KLASIFIKASI TUMOR OTAK MENGGUNAKAN MODEL CONVOLUTIONAL NEURAL NETWORK DENGAN PENDEKATAN PEMBELAJARAN ENSEMBLE SOFT VOTING
- KARTIKA PUSPITA
- 14220025
ABSTRAK
ABSTRAK
- Nama : Kartika Puspita
- NIM : 14220025
- Program Studi : Ilmu Komputer
- Fakultas : Teknologi Informasi
- Jenjang : Strata Dua (S2)
Peminatan : Artificial Intelligence dan Blockchain Judul: Klasifikasi Tumor Otak Menggunakan Model Convolutional Neural Network Dengan Pendekatan Pembelajaran Ensemble Soft Voting
Otak merupakan organ vital yang mengatur fungsi sensorik, motorik, dan kognitif pada manusia. Salah satu ancaman serius bagi kesehatan otak adalah pertumbuhan jaringan abnormal yang memicu munculnya tumor, seperti glioma, meningioma, dan pituitari. Pemindaian MRI merupakan metode diagnosis yang paling umum digunakan, namun proses klasifikasi citra secara konvensional masih rentan terhadap kesalahan. Penelitian ini bertujuan untuk meningkatkan akurasi klasifikasi tumor otak dengan menerapkan strategi ensemble learning menggunakan teknik soft voting. Empat model CNN diantaranya VGG16, MobileNet, ResNet50, dan DenseNet121 digunakan dan dioptimalkan melalui pendekatan fine-tuning. Dataset terdiri dari 7.023 citra MRI yang diklasifikasikan ke dalam empat kategori. Hasil menunjukkan bahwa model ensemble mencapai akurasi 97,67% dengan nilai f1-score dan recall yang tinggi, sehingga menunjukkan potensi besar dalam pengembangan sistem diagnosis berbasis citra.
KATA KUNCI
MODEL CONVOLUTIONAL NEURAL
DAFTAR PUSTAKA
DAFTAR REFERENSI
[1] T. A. Sadoon and M. H. Ali, “Deep learning model for glioma, meningioma, and pituitary classification,” International Journal of Advances in Applied Sciences, vol. 10, no. 1, pp. 88–98, Mar. 2021, doi: 10.11591/ijaas.v10.i1.pp88- 98.
[2] M. Aamir et al., “Brain Tumor Detection and Classification Using an Optimized Convolutional Neural Network,” Diagnostics, vol. 14, no. 16, Aug. 2024, doi: 10.3390/diagnostics14161714.
[3] S. R. Gesaka, P. M. Okemwa, and P. M. Mwachaka, “Histological types of brain tumors diagnosed at the Kenyatta National Hospital between 2016 and 2019: a retrospective study,” Discover Oncology, vol. 15, no. 1, Dec. 2024, doi: 10.1007/s12672-024-00893-6.
[4] A. A. Asiri, A. Shaf, T. Ali, M. Aamir, M. Irfan, and S. Alqahtani, “Enhancing brain tumor diagnosis: an optimized CNN hyperparameter model for improved accuracy and reliability,” PeerJ Comput Sci, vol. 10, pp. 1–28, 2024, doi: 10.7717/peerj-cs.1878.
[5] N. Riaz, T. Jeen, T. J. Whelan, and T. O. Nielsen, “Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer,” Feb. 01, 2023, MDPI. doi: 10.3390/cancers15041260.
[6] S. Sardeshmukh et al., “Effects of Raupya Suvarna Sutashekhara, a herbomineral-metallic formulation as adjunct Oral Ayurvedic Medicine on long-term survival in patients of malignant brain tumor,” J Ayurveda Integr Med, vol. 15, no. 5, Sep. 2024, doi: 10.1016/j.jaim.2024.101070.
[7] Z. Rasheed, Y. K. Ma, I. Ullah, M. Al-Khasawneh, S. S. Almutairi, and M. Abohashrh, “Integrating Convolutional Neural Networks with Attention Mechanisms for Magnetic Resonance Imaging-Based Classification of Brain Tumors,” Bioengineering, vol. 11, no. 7, Jul. 2024, doi: 10.3390/bioengineering11070701.
[8] L. Wills et al., “Estimating surgery, radiotherapy and systemic anti-cancer therapy treatment costs for cancer patients by stage at diagnosis,” European Journal of Health Economics, vol. 25, no. 5, pp. 763–774, Jul. 2024, doi: 10.1007/s10198-023-01623-5.
[9] L. B. O. Jans et al., “MRI-based Synthetic CT in the Detection of Structural Lesions in Patients with Suspected Sacroiliitis: Comparison with MRI,” Radiology, vol. 298, no. 2, pp. 343–349, Feb. 2021, doi: 10.1148/RADIOL.2020201537. 84 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[10] A. Kumar, “Study and analysis of different segmentation methods for brain tumor MRI application,” Multimed Tools Appl, vol. 82, no. 5, pp. 7117–7139, Feb. 2023, doi: 10.1007/s11042-022-13636-y.
[11] M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Mar. 01, 2023, MDPI. doi: 10.3390/computation11030052.
[12] H. Dave, N. Kant, N. Dave, and D. Ghorui, “Brain Tumor Classification Using Deep Learning,” International Journal of Engineering Applied Sciences and Teclogy, vol. 6, pp. 227–238, 2021, [Online]. Available: http://www.ijeast.com
[13] S. Takahashi et al., “Fine-tuning approach for segmentation of gliomas in brain magnetic resonance images with a machine learning method to normalize image differences among facilities,” Cancers (Basel), vol. 13, no. 6, pp. 1–15, Mar. 2021, doi: 10.3390/cancers13061415.
[14] J. Khatib Sulaiman, B. Agustina, A. Rahman Isnain, and I. Artikel Abstrak, “Penerapan Deep Learning pada Sistem Klasifikasi Tumor Otak Berbasis Citra CT Scan,” Indonesian Journal of Computer Science, 2024, [Online]. Available: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-
[15] M. A. Khan et al., “Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists,” Diagnostics, vol. 10, no. 8, Aug. 2020, doi: 10.3390/diagnostics10080565.
[16] A. ul Haq et al., “MCNN: a multi-level CNN model for the classification of brain tumors in IoT-healthcare system,” J Ambient Intell Humaniz Comput, vol. 14, no. 5, pp. 4695–4706, May 2023, doi: 10.1007/s12652-022-04373-z.
[17] D. Y. Omkari and K. Shaik, “An Integrated Two-Layered Voting (TLV) Framework for Coronary Artery Disease Prediction Using Machine Learning Classifiers,” IEEE Access, vol. 12, pp. 56275–56290, 2024, doi: 10.1109/ACCESS.2024.3389707.
[18] C. Chakraborty, M. Bhattacharya, S. Pal, and S. S. Lee, “From machine learning to deep learning: Advances of the recent data-driven paradigm shift in medicine and healthcare,” Jan. 01, 2024, Elsevier B.V. doi: 10.1016/j.crbiot.2023.100164.
[19] A. M. Rahmani et al., “Machine learning (Ml) in medicine: Review, applications, and challenges,” Nov. 01, 2021, MDPI. doi: 10.3390/math9222970.
[20] S. Badillo et al., “An Introduction to Machine Learning,” Clin Pharmacol Ther, vol. 107, no. 4, pp. 871–885, Apr. 2020, doi: 10.1002/cpt.1796.
[21] G. Maulani et al., Machine Learning. Jatinangor: CV. Mega Press Nusantara, 2025. 85 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[22] S. Bouhafra and H. El Bahi, “Deep Learning Approaches for Brain Tumor Detection and Classification Using MRI Images (2020 to 2024): A Systematic Review,” Jun. 01, 2025, Springer Nature. doi: 10.1007/s10278-024-01283-8.
[23] D. R. Adhi, N. Anwar, S. Maesaroh, and R. Hermawan, Machine Learning dan Internet of Things (IoT) Implementasi Machine Learning dalam Internet of Things. Yogyakarta: PT. Star Digital Publishing, 2025.
[24] B. Mahesh, “Machine Learning Algorithms - A Review,” International Journal of Science and Research (IJSR), vol. 9, no. 1, pp. 381–386, Jan. 2020, doi: 10.21275/art20203995.
[25] H. C. Li, Z. Y. Deng, and H. H. Chiang, “Lightweight and resource-constrained learning network for face recognition with performance optimization,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–20, Nov. 2020, doi: 10.3390/s20216114.
[26] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00444-8.
[27] M. Z. Khaliki and M. S. Ba?arslan, “Brain tumor detection from images and comparison with transfer learning methods and 3-layer CNN,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-52823-9.
[28] X. Shu and Y. Ye, “Knowledge Discovery: Methods from data mining and machine learning,” Soc Sci Res, vol. 110, Feb. 2023, doi: 10.1016/j.ssresearch.2022.102817.
[29] T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining,” Information (Switzerland), vol. 14, no. 1, Jan. 2023, doi: 10.3390/info14010054.
[30] I. Issah, O. Appiah, P. Appiahene, and F. Inusah, “A systematic review of the literature on machine learning application of determining the attributes influencing academic performance,” Jun. 01, 2023, Elsevier Inc. doi: 10.1016/j.dajour.2023.100204.
[31] V. Pasupuleti, B. Thuraka, C. S. Kodete, and S. Malisetty, “Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management,” Logistics, vol. 8, no. 3, p. 73, Jul. 2024, doi: 10.3390/logistics8030073.
[32] P. Mahajan, S. Uddin, F. Hajati, and M. A. Moni, “Ensemble Learning for Disease Prediction: A Review,” Jun. 01, 2023, MDPI. doi: 10.3390/healthcare11121808.
[33] F. Titiani and D. Riana, “Ensemble Learning for the Prediction of Marketing Campaign Acceptance,” International Journal of Software Engineering and 86 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri Computer Systems, vol. 8, no. 2, pp. 67–76, Jul. 2022, doi: 10.15282/ijsecs.8.2.2022.7.0104.
[34] F. Yanti, Z. Abidin, and P. Informatika Sekolah Tinggi Teknik Pati, “Analisis Perbandingan Algoritma Decision Tree Dan K-NN (K-Nearest Neighnbor) Dengan Optimasi Bagging Untuk Klasifikasi Penyakit Jantung,” JURNAL EDUKASI ELEKTROMATIKA, vol. 6, no. 1, 2025.
[35] A. Mahajan et al., “A Novel Stacking-Based Deterministic Ensemble Model for Infectious Disease Prediction,” Mathematics, vol. 10, no. 10, May 2022, doi: 10.3390/math10101714.
[36] C. B. C. Latha and S. C. Jeeva, “Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques,” Inform Med Unlocked, vol. 16, Jan. 2019, doi: 10.1016/j.imu.2019.100203.
[37] S. Chatterjee and Y. C. Byun, “Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification,” Sensors, vol. 22, no. 19, Oct. 2022, doi: 10.3390/s22197661.
[38] H. G. Jabbar, “Advanced Threat Detection Using Soft and Hard Voting Techniques in Ensemble Learning,” Journal of Robotics and Control (JRC), vol. 5, no. 4, pp. 1104–1116, 2024, doi: 10.18196/jrc.v5i4.22005.
[39] A. Manconi, G. Armano, M. Gnocchi, and L. Milanesi, “A Soft-Voting Ensemble Classifier for Detecting Patients Affected by COVID-19,” Applied Sciences (Switzerland), vol. 12, no. 15, Aug. 2022, doi: 10.3390/app12157554.
[40] A. R. Barzani, P. Pahlavani, and O. Ghorbanzadeh, “Ensembling Of Decision Trees, Knn, And Logistic Regression With Soft-Voting Method For Wildfire Susceptibility Mapping,” in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus Publications, Jan. 2023, pp. 647–652. doi: 10.5194/isprs-annals-X-4-W1-2022-647-2023.
[41] S. W. A. Sherazi, J. W. Bae, and J. Y. Lee, “A Soft Voting Ensemble Classifier For Early Prediction And Diagnosis Of Occurrences Of Major Adverse Cardiovascular Events For STEMI And NSTEMI During 2-Year Follow-Up In Patients With Acute Coronary Syndrome,” PLoS One, vol. 16, no. 6 June 2021, Jun. 2021, doi: 10.1371/journal.pone.0249338.
[42] A. Manconi, G. Armano, M. Gnocchi, and L. Milanesi, “A Soft-Voting Ensemble Classifier for Detecting Patients Affected by COVID-19,” Applied Sciences (Switzerland), vol. 12, no. 15, Aug. 2022, doi: 10.3390/app12157554.
[43] M. I. Mahmud, M. Mamun, and A. Abdelgawad, “A Deep Analysis of Brain Tumor Detection from MR Images Using Deep Learning Networks,” Algorithms, vol. 16, no. 4, Apr. 2023, doi: 10.3390/a16040176.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : KARTIKA PUSPITA
- NIM : 14220025
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2025
- Periode : I
- Pembimbing : Ferda Ernawan, M.Sc, Ph.D
- Asisten :
- Kode : 0015.S2.IK.TESIS.I.2025
- Diinput oleh : SGM
- Terakhir update : 09 Desember 2025
- Dilihat : 59 kali
TENTANG PERPUSTAKAAN
E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020