Optimasi Klasifikasi Penyakit Daun Padi Menggunakan Arsitektur ConvNeXt_tiny dan Transfer Learning
- Muhammad Syofian
- 14230005
ABSTRAK
ABSTRAK
- Nama : Muhammad Syofian
- NIM : 14230005
- Program Studi : Magister Ilmu Komputer
- Jenjang : Strata Dua (S2)
Konsentrasi : Artificial Intelligence & Blockchain Judul Tesis : Optimasi Klasifikasi Penyakit Daun Padi Menggunakan Arsitektur ConvNeXt_tiny dan Transfer Learning
Penelitian ini membahas optimalisasi model ConvNeXt_tiny dalam klasifikasi penyakit daun padi berbasis citra menggunakan pendekatan transfer learning. Deteksi penyakit daun secara otomatis menjadi penting dalam mendukung pertanian presisi dan pengendalian penyakit tanaman. Metode manual yang selama ini digunakan memiliki keterbatasan dalam hal kecepatan, akurasi, dan konsistensi, sehingga dibutuhkan solusi berbasis kecerdasan buatan untuk meningkatkan efisiensi dan efektivitas. Pada penelitian ini, citra daun padi yang terdiri dari 10 kelas penyakit diolah melalui tahapan preprocessing dan augmentasi, termasuk resizing, color jitter, rotasi acak, affine transformasi, crop acak, dan flip horizontal. Model ConvNeXt_tiny dilatih selama 5 epoch menggunakan dataset sebanyak 11.215 citra, dengan strategi fine-tuning dan transfer learning dari ImageNet. Evaluasi performa menunjukkan bahwa model ini mencapai akurasi dan F1-score sebesar 97,40%, melampaui beberapa arsitektur populer seperti EfficientNet, ResNet, dan MobileViTV2 dalam studi sebelumnya. Hasil ini menunjukkan bahwa ConvNeXt_tiny efektif digunakan sebagai model ringan dan akurat untuk klasifikasi citra daun padi, dengan potensi besar untuk diterapkan dalam sistem deteksi penyakit tanaman di dunia nyata.
KATA KUNCI
Keyword ConvNeXt_tiny dan Transfer Learning
DAFTAR PUSTAKA
DAFTAR PUSTAKA
[1]. N. Gadal, J. Shrestha, M. N. Poudel, and B. Pokharel, “A review on production status and growing environments of rice in Nepal and in the world,” Archives of Agriculture and Environmental Science, vol. 4, no. 1, pp. 83–87, Mar. 2019, doi: 10.26832/24566632.2019.0401013.
[2]. Sutardi et al., “The Transformation of Rice Crop Technology in Indonesia: Innovation and Sustainable Food Security,” Agronomy, vol. 13, no. 1, p. 1, Dec. 2022, doi: 10.3390/agronomy13010001.
[3]. G. O. Agbowuro, M. S. Afolabi, E. F. Olamiriki, and S. O. Awoyemi, “Rice Blast Disease (Magnaporthe oryzae): A Menace to Rice Production and Humanity,” International Journal of Pathogen Research, pp. 32–39, Jun. 2020, doi: 10.9734/ijpr/2020/v4i330114.
[4]. A. R. Muslikh, D. R. I. M. Setiadi, and A. A. Ojugo, “RICE DISEASE RECOGNITION USING TRANSFER LEARNING XCEPTION CONVOLUTIONAL NEURAL NETWORK,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1535–1540, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1529.
[5]. M. A. Azim, M. K. Islam, Md. M. Rahman, and F. Jahan, “An effective feature extraction method for rice leaf disease classification,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 19, no. 2, p. 463, Apr. 2021, doi: 10.12928/telkomnika.v19i2.16488.
[6]. G. Latif, S. E. Abdelhamid, R. E. Mallouhy, J. Alghazo, and Z. A. Kazimi, “Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model,” Plants, vol. 11, no. 17, p. 2230, Aug. 2022, doi: 10.3390/plants11172230.
[7]. B. Paneru, B. Adhikari, R. B. Adhikari, R. Paudel, dan S. M. Bhattarai, “Analysis of Convolutional Neural Network-based Image Classifications: A Multi-featured Application for Rice Leaf Disease Prediction using GUI,” arXiv preprint arXiv:2410.01827, Oct. 2024, https://arxiv.org/abs/2410.01827. 39
[8]. M. Maaz et al., “EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications,” Computer Vision – ECCV 2022 Workshops, pp. 3–20, 2023, doi: 10.1007/978-3-031-25082-8_1.
[9]. P. Mmileng, A. Whata, M. Olusanya, and S. Mhlongo, “Application of ConvNeXt with transfer learning and data augmentation for malaria parasite detection in resource-limited settings using microscopic images,” PLOS One, vol. 20, no. 6, p. e0313734, Jun. 2025, doi: 10.1371/journal.pone.0313734.
[10]. P. Lv et al., “An improved lightweight ConvNeXt for rice classification,” Alexandria Engineering Journal, vol. 112, pp. 84–97, Jan. 2025, doi: 10.1016/j.aej.2024.10.098.
[11]. R. Sharma et al., “Plant Disease Diagnosis and Image Classification Using Deep Learning,” Computers, Materials & Continua, vol. 71, no. 2, pp. 2125– 2140, 2022, doi: 10.32604/cmc.2022.020017.
[12]. P. Wang, E. Fan, and P. Wang, “Comparative analysis of image classification algorithms based on traditional machine learning and deep learning,” Pattern Recognition Letters, vol. 141, pp. 61–67, Jan. 2021, doi: 10.1016/j.patrec.2020.07.042.
[13]. R. Ashraf et al., “Deep Convolution Neural Network for Big Data Medical Image Classification,” IEEE Access, vol. 8, pp. 105659–105670, 2020, doi: 10.1109/access.2020.2998808.
[14]. G. Menghani, “Efficient Deep Learning: A Survey on
Making Deep Learning Models Smaller, Faster, and Better,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–37, Mar. 2023, doi: 10.1145/3578938.
[15]. S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning,” Archives of Computational Methods in Engineering, vol. 27, no. 4, pp. 1071– 1092, Jun. 2019, doi: 10.1007/s11831-019-09344-w.
[16]. J. A. AYENI, “Convolutional Neural Network (CNN): The architecture and applications,” Applied Journal of Physical Science, vol. 4, no. 4, pp. 42–50, Dec. 2022, doi: 10.31248/ajps2022.085. 40 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[17]. R. Archana and P. S. E. Jeevaraj, “Deep learning models for digital image processing: a review,” Artificial Intelligence Review, vol. 57, no. 1, Jan. 2024, doi: 10.1007/s10462-023-10631-z.
[18]. S. Nigam, A. Dheeraj, H. Sachan, and S. Marwaha, “Automated weed classification using attention-embedded ConvNeXtV2 architecture,” Procedia Computer Science, vol. 262, pp. 291–299, 2025, doi: 10.1016/j.procs.2025.03.204.
[19]. A. D. Raha et al., “Boosting Federated Domain Generalization: Understanding the Role of Advanced Pre-Trained Architectures,” IEEE Internet of Things Journal, pp. 1–1, 2025, doi: 10.1109/jiot.2025.3579372.
[20]. J. Gupta, S. Pathak, and G. Kumar, “Deep Learning (CNN) and Transfer Learning: A Review,” Journal of Physics: Conference Series, vol. 2273, no. 1, p. 012029, May 2022, doi: 10.1088/1742-6596/2273/1/012029.
[21]. E. Sabitha and M. Durgadevi, “Improving the Diabetes Diagnosis Prediction Rate Using Data Preprocessing, Data Augmentation and Recursive Feature Elimination Method,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 9, 2022, doi: 10.14569/ijacsa.2022.01309107.
[22]. R. ?ncir and F. Bozkurt, “A study on effective data preprocessing and augmentation method in diabetic retinopathy classification using pre-trained deep learning approaches,” Multimedia Tools and Applications, vol. 83, no. 4, pp. 12185–12208, Jun. 2023, doi: 10.1007/s11042-023-15754-7.
[23]. K. Alomar, H. I. Aysel, and X. Cai, “Data Augmentation in Classification and Segmentation: A Survey and New Strategies,” Journal of Imaging, vol. 9, no. 2, p. 46, Feb. 2023, doi: 10.3390/jimaging9020046.
[24]. S. Mehnaz and M. T. Islam, "Rice Leaf Disease Detection: A Comparative Study Between CNN, Transformer and Non-neural Network Architectures," arXiv preprint arXiv:2501.06740, Jan. 2025. [Online]. Available: https://arxiv.org/abs/2501.06740.
[25]. R. Yakkundimath, G. Saunshi, B. Anami, and S. Palaiah, “Classification of Rice Diseases using Convolutional Neural Network Models,” Journal of The Institution of Engineers (India): Series B, vol. 103, no. 4, pp. 1047–1059, Feb. 2022, doi: 10.1007/s40031-021-00704-4. 41 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[26]. V. K. Shrivastava, M. K. Pradhan, S. Minz, and M. P. Thakur, “RICE PLANT DISEASE CLASSIFICATION USING TRANSFER LEARNING OF DEEP CONVOLUTION NEURAL NETWORK,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII3/W6, pp. 631–635, Jul. 2019, doi: 10.5194/isprs-archives-xlii-3-w6-631-2019.
[27]. H. Zhou, J. Deng, D. Cai, X. Lv, and B. M. Wu, “Effects of Image Dataset Configuration on the Accuracy of Rice Disease Recognition Based on Convolution Neural Network,” Frontiers in Plant Science, vol. 13, Jul. 2022, doi: 10.3389/fpls.2022.910878.
[28]. M. G. Daga, A. R. Prasad, and S. D. Joshi, “Detection and classification of paddy leaf diseases using Convolutional Neural Networks with data augmentation,” arXiv preprint arXiv:2412.07182, 2024. [Online]. Available: https://arxiv.org/abs/2412.07182
[29]. R. Sowmyalakshmi et al., “An Optimal Classification Model for Rice Plant Disease Detection,” Computers, Materials & Continua, vol. 68, no. 2, pp. 1751–1767, 2021, doi: 10.32604/cmc.2021.016825. [30]. E. Anggiratih, S. Siswanti, S. K. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” Jurnal Ilmiah SINUS, vol. 19, no. 1, p. 75, Jan. 2021, doi: 10.30646/sinus.v19i1.526.
[31]. Y. Dai, L. Chen, S. Xian, and R. Liu, “Enhancing with channel attention mechanism: an improved Metric3D network,” International Conference on Mechatronic Engineering and Artificial Intelligence (MEAI 2024), p. 13, Apr. 2025, doi: 10.1117/12.3064189.
[32]. Paddy Doctor, Pandarasamy Arjunan (Samy), and Petchiammal. Paddy Doctor: Paddy Disease Classification. https://kaggle.com/competitions/paddy-diseaseclassification, 2022. Kaggle.
[33]. K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91–99, Jun. 2022, doi: 10.1016/j.gltp.2022.04.020.
[34]. C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still) requires rethinking generalization,” Communications of the ACM, vol. 64, no. 3, pp. 107–115, Feb. 2021, doi: 10.1145/3446776. 42 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[35]. C. L. Ramspek, K. J. Jager, F. W. Dekker, C. Zoccali, and M. van Diepen, “External validation of prognostic models: what, why, how, when and where?,” Clinical Kidney Journal, vol. 14, no. 1, pp. 49–58, Nov. 2020, doi: 10.1093/ckj/sfaa188.
[36]. J. Qi, M. Nguyen, and W. Q. Yan, “Waste Classification from Digital Images Using ConvNeXt,” Image and Video Technology, pp. 1–13, 2023, doi: 10.1007/978-3-031-26431-3_1.
[37]. M. Shah, K. Banker, J. Patel, and D. Rao, “Comparative Analysis of Deep Learning Architectures for Rice Crop Image Classification,” Proceedings of 4th International Conference on Artificial Intelligence and Smart Energy, pp. 245– 259, 2024, doi: 10.1007/978-3-031-61471-2_18.
[38]. D. Setiawan, A. S. Karnyoto, I. Intan, and B. Pardamean, “ConvNeXt Model for Breast Cancer Image Classification,” 2024 6th International Conference on Cybernetics and Intelligent System (ICORIS), pp. 1–5, Nov. 2024, doi: 10.1109/icoris63540.2024.10903832
Detail Informasi
Tesis ini ditulis oleh :
- Nama : Muhammad Syofian
- NIM : 14230005
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2025
- Periode : I
- Pembimbing : Prof.Dr. Jufriadif Na'am
- Asisten :
- Kode : 0008.S2.IK.TESIS.I.2025
- Diinput oleh : SGM
- Terakhir update : 08 Desember 2025
- Dilihat : 65 kali
TENTANG PERPUSTAKAAN
E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020