MODEL DEEP LEARNING UNTUK PEMANTAUAN KEPATUHAN PAKAIAN MAHASISWA SEBAGAI PENDUKUNG TATA TERTIB AKADEMIK DI CYBER UNIVERSITY
- YULITA AYU WARDANI
- 14230021
ABSTRAK
ABSTRAK
- Nama : Yulita Ayu Wardani
- NIM : 14230021
- Program Studi : Ilmu Komputer
- Fakultas : Teknologi Informasi
- Jenjang : Strata Dua (S2)
Peminatan : Artificial Intelligence and Blockchain Judul : Model Deep Learning Untuk Pemantauan Kepatuhan Pakaian Mahasiswa Sebagai Pendukung Tata Tertib Akademik Di Cyber University Universitas Siber Indonesia (Cyber University) adalah salah satu perguruan tinggi yang sangat memperhatikan kode etik cara berpakaian mahasiswa. Penelitian ini bertujuan untuk mengembangkan model deep learning berbasis YOLO v8 untuk memantau kepatuhan berpakaian mahasiswa sebagai bentuk dukungan terhadap tata tertib akademik di perguruan tinggi. Dataset terdiri dari foto mahasiswa Cyber University yang diproses dengan teknik augmentasi seperti pemotongan, rotasi, dan pencahayaan guna meningkatkan kinerja model. Hasil penelitian menunjukkan bahwa dalam pengujian terbaik dengan dataset 70:30 (20 epochs, batch size 16, learning rate 0.001), model YOLO v8 mencapai precision 0.78, recall 0.62, F1-score 0.68, box loss sebesar 1.47, dan mAP@0.5 sebesar 0.62. Tantangan yang dihadapi dalam penelitian ini meliputi variasi pencahayaan, perbedaan pose mahasiswa, latar belakang yang kompleks, serta kemiripan warna pakaian dengan lingkungan sekitar. Meskipun dalam beberapa kondisi akurasi mencapai 33.4%-100%, diperlukan dataset lebih besar dan perbandingan model lain untuk meningkatkan akurasi Sistem ini berpotensi dapat mendukung sistem pemantauan kepatuhan berpakaian secara otomatis, efisien, dan objektif di lingkungan perguruan tinggi, sekaligus menjadi langkah awal penerapan smart campus berbasis teknologi visi komputer.
KATA KUNCI
METODE DEEP LEARNING
DAFTAR PUSTAKA
DAFTAR PUSTAKA
[1] T. Elimar, A. A. Lestari, S. Susyanti, M. R. Fitri, and E. Fatmayanti, “Strategi Promosi Penerimaan Mahasiswa Baru di Lingkungan Perguruan Tinggi Keagamaan Islam Negeri,” Leader: Jurnal Manajemen Pendidikan Islam, vol. 2, no. 1, pp. 176–185, May 2024, doi: 10.32939/ljmpi.v2i1.3790.
[2] F. Jamaludin and A. Pambudi, “PENERAPAN YOLO (YOU ONLY LOOK ONCE) UNTUK DETEKSI ETIKA BERBUSANA DI UNIVERSITAS MUHAMMADIYAH SUKABUMI,” 2024.
[3] H. Lou et al., “DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor,” Electronics (Switzerland), vol. 12, no. 10, May 2023, doi: 10.3390/electronics12102323.
[4] A. R. Firdaus et al., “Deteksi Kode Etik Berpakaian pada Area Kampus Menggunakan YoloV8,” Journal of Information System Research (JOSH), vol. 5, no. 2, pp. 450–458, 2024, doi: 10.47065/josh.v5i2.4741.
[5] A. K. Kanade, M. P. Potdar, A. Kumar, G. Balol, and K. Shivashankar, “Weed detection in cotton farming by YOLOv5 and YOLOv8 object detectors,” European Journal of Agronomy, vol. 168, p. 127617, 2025.
[6] M. A. Megaarta, “Comparative Evaluation of YOLOv5 and YOLOv8 Models in Detecting Smoking Behavior,” Journal of Artificial Intelligence and Engineering Applications (JAIEA), vol. 4, no. 3, pp. 2048–2056, 2025.
[7] C. Aibar-Guzmán, I.-M. García-Sánchez, and C. Salvador-González, “Do codes of conduct really mean a change in corporate practices with regard to human rights? Evidence from the largest garment companies worldwide,” The International Journal of Human Rights, vol. 27, no. 2, pp. 282–306, 2023.
[8] G. Barrera-Verdugo and A. Villarroel-Villarroel, “Influence of product selection criteria on clothing purchase and post-purchase behaviours: A gender and generational comparison,” PLoS One, vol. 17, no. 6, p. e0267783, 2022. Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[9] M. A. Özdil, “The effect of clothing as a marker on identity,” Motif Akademi Halkbilimi Dergisi, vol. 14, no. 33, pp. 117–130, 2021. [10] “FACE ,OBJECT AND COLOUR IDENTIFICATION SYSTEM IN SCHOOLS FOR DRESS-CODE MONITORING.” [Online]. Available: https://ssrn.com/abstract=3580777
[11] A. Wijoyo, A. Y. Saputra, S. Ristanti, R. Sya’ban, M. Amalia, and R. Febriansyah, “Pembelajaran Machine Learning”.
[12] P. Pimpalshende, S. G. Dharpade, T. S. Nimje, R. C. Wankhede, and S. R. Dongare, “Dress Code Detection using YOLOV8N,AI and Machine Learning Tool,” International Journal on Advanced Electrical and Computer Engineering, 2025.
[13] M. Rana and M. Bhushan, “Machine learning and deep learning approach for medical image analysis: diagnosis to detection,” Multimed Tools Appl, vol. 82, no. 17, pp. 26731–26769, 2023.
[14] O. Panahi, “Deep Learning in Diagnostics,” Journal of Medical Discoveries, vol. 2, no. 1, pp. 1–6, 2025.
[15] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin, “Deep Learning on Image Denoising: An overview,” Dec. 2019, [Online]. Available: http://arxiv.org/abs/1912.13171
[16] X. Chen et al., “Deep learning-based software engineering: progress, challenges, and opportunities,” Science China Information Sciences, vol. 68, no. 1, p. 111102, 2025.
[17] S. K. Zhou, H. Greenspan, and D. Shen, Deep learning for medical image analysis. Academic Press, 2023.
[18] F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed, “A Comprehensive Overview and Comparative Analysis on Deep Learning Models.”
[19] M. Rana and M. Bhushan, “Machine learning and deep learning approach for medical image analysis: diagnosis to detection,” Multimed Tools Appl, vol. 82, no. 17, pp. 26731–26769, 2023.
[20] J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning,” Genet Program Evolvable Mach, vol. 19, no. 1–2, pp. 305–307, Jun. 2018, doi: 10.1007/s10710-017-9314-z. Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[21] X. Kong et al., “Deep learning for time series forecasting: a survey,” International Journal of Machine Learning and Cybernetics, pp. 1–34, 2025.
[22] M. R. Zaraa Allah, H. M. Kamar, K. Y. Wong, and I. H. Hatif, “Exploring the impact of dress codes on thermal comfort and workplace satisfaction in tropical climates,” Theor Appl Climatol, vol. 156, no. 4, pp. 1–14, 2025.
[23] M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory Untuk Prediksi Curah Hujan Kota Malang,” REPOSITOR, vol. 2, no. 3, pp. 331–338, 2020.
[24] N. A. Megantara and E. Utami, “Object Detection using YOLOv8: A Systematic Review,” Sistemasi: Jurnal Sistem Informasi, vol. 14, no. 3, pp. 1186–1193, 2025.
[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” May 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.
[26] M. Hussain, “YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection,” Machines, vol. 11, no. 7, p. 677, 2023.
[27] M. Safaldin, N. Zaghden, and M. Mejdoub, “An improved YOLOv8 to detect moving objects,” IEEE Access, vol. 12, pp. 59782–59806, 2024.
[28] Y.-H. Chang and Y.-Y. Zhang, “Deep learning for clothing style recognition using YOLOv5,” Micromachines (Basel), vol. 13, no. 10, p. 1678, 2022.
[29] J. Zou, T. Song, S. Cao, B. Zhou, and Q. Jiang, “Dress Code Monitoring Method in Industrial Scene Based on Improved YOLOv8n and DeepSORT,” Sensors, vol. 24, no. 18, Sep. 2024, doi: 10.3390/s24186063.
[30] B. J. Tantra and M. Widjaja, “Automatic detection of dress-code surveillance in a university using YOLO algorithm,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 14, no. 2, p. 1568, Apr. 2025, doi: 10.11591/ijai.v14.i2.pp1568-1575. Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[31] J. Brzozowska, J. Pizo?, G. Baytikenova, A. Gola, A. Zakimova, and K. Piotrowska, “Data engineering in CRISP-DM process production data– case study,” Applied Computer Science, vol. 19, no. 3, 2023.
[32] C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on applying CRISP-DM process model,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 526–534. doi: 10.1016/j.procs.2021.01.199.
[33] J. S. Saltz, “CRISP-DM for data science: strengths, weaknesses and potential next steps,” in 2021 IEEE International Conference on Big Data (Big Data), IEEE, 2021, pp. 2337–2344.
[34] A. M. Shimaoka, R. C. Ferreira, and A. Goldman, “The evolution of CRISP-DM for data science: Methods, processes and frameworks,” SBC Reviews on Computer Science, vol. 4, no. 1, pp. 28–43, 2024.
[35] V. Plotnikova, M. Dumas, and F. P. Milani, “Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements,” Data Knowl Eng, vol. 139, p. 102013, 2022.
[36] A. Purbasari, F. R. Rinawan, A. Zulianto, A. I. Susanti, and H. Komara, “CRISP-DM for data quality improvement to support machine learning of stunting prediction in infants and toddlers,” in 2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA), IEEE, 2021, pp. 1–6.
[37] J. A. Solano, D. J. L. Cuesta, S. F. U. Ibáñez, and J. R. CoronadoHernández, “Predictive models assessment based on CRISP-DM methodology for students performance in Colombia-Saber 11 Test,” Procedia Comput Sci, vol. 198, pp. 512–517, 2022.
[38] A. Bansal, R. Sharma, A. K. Jain, V. Sharma, and V. Kukreja, “Enhancing Fashion Cloth Image Classification through Hybrid CNNSVM Modeling: A Multi-Class Study,” in 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), IEEE, 2023, pp. 484–489.
[39] M. Bartl, A. Mandal, S. Leavy, and S. Little, “Gender bias in natural language processing and computer vision: A comparative survey,” ACM Comput Surv, vol. 57, no. 6, pp. 1–36, 2025. Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[40] Z. Wei, J. K. Calautit, S. Wei, and P. W. Tien, “Real-time clothing insulation level classification based on model transfer learning and computer vision for PMV-based heating system optimization through piecewise linearization,” Build Environ, vol. 253, p. 111277, 2024.
[41] M. Abubakar, Y. Surajo, and S. Tasiu, “An Explainable Deep Learning Model for Illegal Dress Code Detection and Classification,” Journal of Basics and Applied Sciences Research, vol. 3, no. 1, pp. 1–10, Feb. 2025, doi: 10.4314/jobasr.v3i1.1.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : YULITA AYU WARDANI
- NIM : 14230021
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2025
- Periode : I
- Pembimbing : Dr. Windu Gata, M.Kom
- Asisten :
- Kode : 0004.S2.IK.TESIS.I.2025
- Diinput oleh : SGM
- Terakhir update : 05 Desember 2025
- Dilihat : 45 kali
TENTANG PERPUSTAKAAN
E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020