OPTIMASI PREDIKSI HOST BOTNET DENGAN ENKRIPSI GUNA MEMPERKUAT KEAMANAN JARINGAN

  • OMEGA JOEL PATRIA MOATA
  • 14230016

ABSTRAK

ABSTRAK

  • Nama              : Omega Joel Patria Moata
  • NIM                 : 14230016
  • Program Studi : Magister Ilmu Komputer
  • Fakultas           : Teknologi Informasi
  • Jenjang             : Strata Dua (S2)

Konsentrasi : Artificial Intelegnce & Blockchain Judul : Optimasi Prediksi Host Botnet Dengan Enkripsi Guna Memperkuat Keamanan Jaringan.

Penelitian ini mengembangkan pendekatan optimasi untuk memprediksi host botnet secara andal dan aman. Metode yang diusulkan mengintegrasikan teknik deep learning dan enkripsi guna meningkatkan akurasi prediksi sekaligus menjaga kerahasiaan data. Proses penelitian mencakup eksplorasi mendalam pada tahap prapemrosesan data serta perbandingan kinerja antara model RNN-GRU dan LSTM untuk menentukan metode paling efektif dalam memprediksi lalu lintas jaringan selama 30 hari ke depan. Hasil evaluasi statistik menunjukkan bahwa metode yang diusulkan mampu mencapai tingkat akurasi hingga 98%. Selain itu, sistem deteksi anomali berhasil diimplementasikan dengan dukungan enkripsi pada data teks untuk menyamarkan informasi sensitif.

KATA KUNCI

Keamanan Jaringan


DAFTAR PUSTAKA

   DAFTAR PUSTAKA

[1] J. A. Lee and F. Di Troia, “Detecting Botnets Through Deep Learning and Network Flow Analysis,” 2022, pp. 85–105. doi: 10.1007/978-3-030-97087- 1_4.

[2] A. Y. U. KURNIA, “IMPLEMETASI METODE SIMPLE ADDTIVE WEIGHTING (SAW) PADA SISTEM PENDUKUNG KEPUTUSAN DALAM PEMILIHAN PEGWAI TERBAIK,” 2024.

[3] R. A. Permana, R. Anindita, Z. Zainol, and A. Quinn, “Analisis Metode dan Teknologi untuk Perlindungan Data dan Informasi dari Ancaman Siber,” Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi, vol. 3, no. 2, pp. 137–146, 2025, doi: 10.33050/mentari.v3i2.744.

[4] A. Gulraiz, H. Gulraiz, M. Zia, S. Badar, and S. S. H. Zaidi, “Utilizing IoT and Cloud Computing for Weather-Health Monitoring Application,” International Journal of Electrical Engineering and Computer Science, vol. 6, pp. 152–158, 2024, doi: 10.37394/232027.2024.6.18.

[5] L. Lin et al., “StHCFormer: A Multivariate Ocean Weather Predicting Method Based on Spatiotemporal Hybrid Convolutional Attention Networks,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 17, pp. 3600–3614, 2024, doi: 10.1109/JSTARS.2024.3354254.

[6] T. Arjunan, “Real-Time Detection of Network Traffic Anomalies in Big Data Environments Using Deep Learning Models,” Int J Res Appl Sci Eng Technol, vol. 12, no. 3, pp. 844–850, 2024, doi: 10.22214/ijraset.2024.58946.

[7] E. Priyono, “Prediction of Tuberculosis Patients With Machine Learning Algorithms,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 4, pp. 2349–2356, 2024, doi: 10.29100/jipi.v9i4.5486.

[8] A. S. I. Ahmad Turmudi Zy Donny Maulana, “ANALISIS EFEKTIVITAS SISTEM DETEKSI INTRUSI TERHADAP SERANGAN DDOS: INVESTIGASI BERBASIS SIMULASI,” 2025.

[9] D. Riana, Y. Ramdhani, R. T. Prasetio, and A. N. Hidayanto, “Improving Hierarchical Decision Approach for Single Image Classification of Pap Smear,” International Journal of Electrical and Computer Engineering, vol. 8, no. 6, pp. 5415–5424, 2018, doi: 10.11591/ijece.v8i6.pp5415-5424.

[10] E. Altulaihan, M. A. Almaiah, and A. Aljughaiman, “Anomaly Detection IDS for Detecting DoS Attacks in IoT Networks Based on Machine Learning Algorithms,” Sensors, vol. 24, no. 2, 2024, doi: 10.3390/s24020713.

[11] E. E. Abdallah, W. Eleisah, and A. F. Otoom, “Intrusion Detection Systems using Supervised Machine Learning Techniques: A survey,” in Procedia 57 Computer Science, Elsevier B.V., 2022, pp. 205–212. doi: 10.1016/j.procs.2022.03.029.

[12] V. Çetin and O. Y?ld?z, “A comprehensive review on data preprocessing techniques in data analysis,” Pamukkale University Journal of Engineering Sciences, vol. 28, no. 2, pp. 299–312, 2022, doi: 10.5505/pajes.2021.62687.

[13] M. Ali, M. Shahroz, M. F. Mushtaq, S. Alfarhood, M. Safran, and I. Ashraf, “Hybrid Machine Learning Model for Efficient Botnet Attack Detection in IoT Environment,” IEEE Access, vol. 12, pp. 40682–40699, 2024, doi: 10.1109/ACCESS.2024.3376400.

[14] O. Joel, P. Moata, A. Vebiyatama, and M. Indra, “Improving DES Robustness for Text Encryption via Blum-Blum-Shub Key Generation,” 2025.

[15] D. S. Susilawati and D. Riana, “Optimization the Naive Bayes Classifier Method to diagnose diabetes Mellitus,” IAIC Transactions on Sustainable Digital Innovation (ITSDI), vol. 1, no. 1, pp. 78–86, 2021, doi: 10.34306/itsdi.v1i1.21.

[16] M. Hamza, “Optimizing early detection of diabetes through retinal imaging: A comparative analysis of deep learning and machine learning algorithms,” Journal of Computational Informatics &Business, vol. 1, no. 1, 2024.

[17] G. J. Hakim and S. Masanam, “Dynamical Tests of a Deep Learning Weather Prediction Model,” Artificial Intelligence for the Earth Systems, vol. 3, no. 3, pp. 1–11, 2024, doi: 10.1175/aies-d-23-0090.1.

[18] C. Althati, M. Tomar, and J. N. Arasu Malaiyappan, “Scalable Machine Learning Solutions for Heterogeneous Data in Distributed Data Platform,” Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, vol. 4, no. 1, pp. 299–309, 2024, doi: 10.60087/jaigs.v4i1.157.

[19] P. Björnlund and F. Faqiri, “Survey of ongoing and Next-Generation Cybersecurity of Maritime Communication Sys-tems Undersökning av dagens och nästa generations cybersäkerhet för sjöfartskommunikationssytem.”

[20] E. Priyono, T. Al Fatah, S. Ma’mun, and F. Aziz, “Tubercolusis Segmentation Based on X-ray Images,” Journal Medical Informatics Technology, pp. 101– 104, 2023, doi: 10.37034/medinftech.v1i4.22.

[21] B. Anwar, N. Jalinus, and R. Abdullah, “Weather Forecast In Medan City With Hopfield Artificial Neural Network Algorithm,” Sinkron, vol. 8, no. 1, pp. 398– 404, 2023, doi: 10.33395/sinkron.v8i1.12048.

[22] M. Gelgi, Y. Guan, S. Arunachala, M. S. S. Rao, and N. Dragoni, “TechniquesSystematic Literature Review of IoT Botnet DDOS Attacks and Evaluation of Detection,” 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s24113571. 58

[23] S. Padhiar and R. Patel, “Performance evaluation of botnet detection using machine learning techniques,” International Journal of Electrical and Computer Engineering, vol. 13, no. 6, pp. 6827–6835, 2023, doi: 10.11591/ijece.v13i6.pp6827-6835.

[24] D. Ponce, C. Tipantuña, and C. Espinosa, “Analysis of Internet Traffic in Ecuador,” IEEE Access, vol. 11, pp. 126365–126385, 2023, doi: 10.1109/ACCESS.2023.3331609.

[25] G. Gunawan, M. Miftakhudin, and Z. Arif, “Application of artificial neural network with optimization of genetic algorithms for weather prediction,” Jurnal Mantik, vol. 8, no. 1, pp. 758–767, 2024, doi: 10.35335/mantik.v8i1.5225.

[26] M. S. Ansari, V. Bartoš, and B. Lee, “GRU-based deep learning approach for network intrusion alert prediction,” Future Generation Computer Systems, vol. 128, pp. 235–247, 2022, doi: 10.1016/j.future.2021.09.040.

[27] P. Laksana, A. F. Isnawati, and A. R. Noermartyas, “Comparative Analysis of QoS VSAT IP and VSAT Star Telkomsat,” Jurnal Nasional Teknik Elektro, pp. 113–119, 2024, doi: 10.25077/jnte.v13n3.1258.2024.

[28] A. Ismail, L. Saidi, M. Sayadi, and M. Benbouzid, “A new data-driven approach for power IGBT remaining useful life estimation based on feature reduction technique and neural network,” Electronics (Switzerland), vol. 9, no. 10, pp. 1– 15, 2020, doi: 10.3390/electronics9101571.

[29] J. Zhang, X. Qiu, X. Li, Z. Huang, M. Wu, and Y. Dong, “Support Vector Machine Weather Prediction Technology Based on the Improved Quantum Optimization Algorithm,” Comput Intell Neurosci, vol. 2021, 2021, doi: 10.1155/2021/6653659.

[30] L. Yang, M. Zhang, and Y. Zhang, “Research on the Meteorological Prediction Algorithm Based on the CNSS and Particle Swarm Optimization,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/6415589.

[31] A. P. R. M. R. A. S. S. N. P. Thippeswamy1, “Efficient network management and security in 5G enabled,” 2024, doi: 10.11591/ijece.v14i1.pp1058-1070.

[32] S. Amaliah, M. Nusrang, and A. Aswi, “Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng,” VARIANSI: Journal of Statistics and Its application on Teaching and Research, vol. 4, no. 3, pp. 121–127, 2022, doi: 10.35580/variansiunm31.

[33] J. Zhang, Z. Gao, Y. Li, and Y. Jiang, “A deep learning method for convective weather forecasting: CNN-BiLSTM-AM (version 1.0),” Geoscientific Model Development Discussions, vol. 2023, no. October, pp. 1–32, 2023.

[34] S. Mahjoub, L. Chrifi-Alaoui, B. Marhic, and L. Delahoche, “Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks,” Sensors, vol. 22, no. 11, p. 4062, May 2022, doi: 10.3390/s22114062. 59

[35] M. Abumohsen, A. Y. Owda, and M. Owda, “Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms,” Energies (Basel), vol. 16, no. 5, pp. 1– 31, 2023, doi: 10.3390/en16052283.

[36] A. R. K. Verma, “Cybersecurity in Satellite Communication Networks: Key Threats and Neutralization Measures,” IEEE Open Journal of the Communications Society, vol. 6, pp. 5667–5692, 2025, doi: 10.1109/OJCOMS.2025.3585060.

[37] K. A. Alsoqour, NETWORK INTRUSION DETECTION?: Machine learning Algorithm. King Abdul-Aziz University Facility of Computing and information Technology , 2024. doi: 10.1109/MILCOM47813.2019.9020824.

[38] T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geosci Model Dev, vol. 15, no. 14, pp. 5481– 5487, 2022, doi: 10.5194/gmd-15-5481-2022.

[39] S. A. Lingishetty, C. Moharir, and M. Kumar, "AI-Based Encryption Techniques for Securing Data Transmission in Telecommunication Systems," International Journal of Innovative Research in Computer Science and Technology (IJIRCST), vol. 13, no. 2, pp. 19-25, Mar. 2025.

[40] S. Agrawal, S. Sarkar, O. Aouedit, G. Yenduri, K. Piamrat, S. Bhattacharya, P. K. R. Maddikunta, and T. R. Gadekallu, "Federated Learning for Intrusion Detection System: Concepts, Challenges and Future Directions," arXiv preprint arXiv:2106.09527, 2021.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : OMEGA JOEL PATRIA MOATA
  • NIM : 14230016
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2025
  • Periode : I
  • Pembimbing : Prof. Dr. Dwiza Riana, S,Si, MM, M.Kom
  • Asisten :
  • Kode : 0001.S2.IK.TESIS.I.2025
  • Diinput oleh : SGM
  • Terakhir update : 05 Desember 2025
  • Dilihat : 43 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020