PENGEMBANGAN CHATBOT DENGAN PENDEKATAN RAG UNTUK MENDUKUNG PENGELOLAAN LIMBAH RADIOAKTIF

  • IHSAN AULIA RAHMAN

ABSTRAK

ABSTRAK

Keterbatasan akses terhadap informasi teknis yang komprehensif mengenai Disused Sealed Radioactive Sources (DSRS) menjadi tantangan dalam pengelolaan limbah radioaktif di Indonesia. Kebutuhan akan sistem digital yang mampu menyajikan klasifikasi, prosedur penanganan, dan pemanfaatan ulang DSRS secara interaktif mendorong pengembangan solusi berbasis kecerdasan buatan. Penelitian ini bertujuan untuk mengembangkan sistem chatbot berbasis Large Language Model (LLM) yang dilengkapi dengan pendekatan Retrieval-Augmented Generation (RAG) guna meningkatkan pemahaman kontekstual chatbot terhadap dokumen teknis terkait DSRS. Sistem mengintegrasikan dua jenis model LLM, yaitu model lokal melalui Ollama dan model eksternal berbasis API OpenAI, yang diakses melalui antarmuka pengguna OpenWebUI. Arsitektur RAG digunakan untuk mengekstraksi konteks dari dokumen teknis menggunakan vektor semantik sebelum dilakukan proses generatif. Evaluasi menggunakan empat metrik, yaitu Cosine Similarity, ROUGE-L, BERTScore F1, dan Fuzzy Ratio menunjukkan bahwa model GPT o1 - Deep Thinking - With RAG menghasilkan respons paling akurat dan relevan terhadap ground truth, dengan skor Cosine Similarity tertinggi sebesar 0.9026 dan BERTScore F1 sebesar 0.8632. Hasil ini mengindikasikan bahwa integrasi LLM dan RAG secara signifikan meningkatkan kualitas jawaban chatbot dalam domain pengelolaan limbah radioaktif. Penelitian ini memberikan kontribusi dalam bentuk prototipe sistem informasi yang adaptif dan dapat menunjang proses pengambilan keputusan serta diseminasi pengetahuan secara lebih efektif di bidang nuklir.

Kata kunci: Limbah Radioaktif, DSRS, Chatbot, Large Language Model, RAG

KATA KUNCI

PENGEMBANGAN CHATBOT,PENDEKATAN RAG


DAFTAR PUSTAKA

DAFTAR PUSTAKA

BAPETEN, “Data jumlah sumber radioaktif tersegel di Indonesia,” 2022.

IAEA, “IAEA ANNUAL REPORT 2018 IAEA Annual Report 2018,” International Atomic Energy Agency, vol. 63, no. 5, pp. 27–198, 2018.

J. H. Jurafsky, D., & Martin, Speech and Language Processing. 2023.

OpenAI et al., “GPT-4 Technical Report,” vol. 4, pp. 1–100, 2024, [Online]. Available: http://arxiv.org/abs/2303.08774

A. Grattafiori et al., “The Llama 3 Herd of Models,” pp. 1–92, 2024, [Online]. Available: http://arxiv.org/abs/2407.21783 Language

Y. Zhang et al., “Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Models,” http://arxiv.org/abs/2309.01219 2023, [Online]. Available:

R. Bommasani et al., “On the Opportunities and Risks of Foundation Models,” pp. 1–214, 2022, [Online]. Available: http://arxiv.org/abs/2108.07258

P. Lewis et al., “Retrieval-augmented generation for knowledge-intensive NLP tasks,” Adv Neural Inf Process Syst, vol. 2020-Decem, 2020.

International Atomic Energy Agency, “Artificial Intelligence for Accelerating Nuclear Applications, Science and Technology,” Artificial Intelligence for Accelerating Nuclear Applications, Science and Technology, pp. 1–98, 2022, [Online]. Available: https://www.iaea.org/publications/15198/artificialintelligence-for-accelerating-nuclear-applications-science-and-technology

V. Karpukhin et al., “Dense passage retrieval for open-domain question answering,” EMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, pp. 6769–6781, 2020, doi: 10.18653/v1/2020.emnlp-main.550.

G. Izacard and E. Grave, “Leveraging passage retrieval with generative models for open domain question answering,” EACL 2021 - 16th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference, 10.18653/v1/2021.eacl-main.74. pp. 874–880, 2021, doi:

W. E. Ojovan, M. I., & Lee, An Introduction to Nuclear Waste Immobilisation. 2014.

Iaea, “GC(51)/5 - IAEA Annual Report 2006,” 2006.

Jurafaky, “Chatbots and Dialogue Systems Introduction to Chatbots and Dialogue Systems Conversational Agents”.

A. Casadei, S. Schlogl, and M. Bergmann, “Chatbots for Robotic Process Automation: Investigating Perceived Trust and User Satisfaction,” Proceedings of the 2022 IEEE International Conference on Human-Machine Systems, ICHMS 2022, 2022, doi: 10.1109/ICHMS56717.2022.9980826.

R. R. Panigrahi et al., “AI Chatbot Adoption in SMEs for Sustainable Manufacturing Supply Chain Performance,” Sustainability (Switzerland), vol. 15, no. 18, 2023.

X. Zhang, A. L. Chen, X. Piao, M. Yu, Y. Zhang, and L. Zhang, “Is AI chatbot recommendation convincing customer? An analytical response based on the elaboration likelihood model,” Acta Psychol (Amst), vol. 250, no. October, 2024, doi: 10.1016/j.actpsy.2024.104501.

A. Kelly, E. Noctor, L. Ryan, and P. van de Ven, “The Effectiveness of a Custom AI Chatbot for Type 2 Diabetes Mellitus Health Literacy: Development and Evaluation Study,” J Med Internet Res, vol. 27, pp. 1–20, 2025, doi: 10.2196/70131.

M. Ltifi, “Trust in the chatbot: a semi-human relationship,” Future Business Journal, vol. 9, no. 1, 2023, doi: 10.1186/s43093-023-00288-z.

R. Nilsson and O. Rosman, “Design and Evaluation of a RAG Chatbot in an Industrial Setting,” 2025.

F. Liu, Z. Kang, and X. Han, “Optimizing RAG Techniques for Automotive Industry PDF Chatbots: A Case Study with Locally Deployed Ollama ModelsOptimizing RAG Techniques Based on Locally Deployed Ollama ModelsA Case Study with Locally Deployed Ollama Models,” Proceedings of 2024 3rd International Conference on Artificial Intelligence and Intelligent Information Processing, 10.1145/3707292.3707358. AIIIP 2024, pp. 152–159, 2025, doi:

Y. Goldberg, Neural Network Methods for Natural Language Processing. 2017.

K. Mohiuddin et al., “Attention Is All You Need,” International Conference on Information and Knowledge Management, Proceedings, no. Nips, pp. 47524758, 2023, doi: 10.1145/3583780.3615497.

J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, vol. 1, no. Mlm, pp. 4171–4186, 2019.

T. B. Brown et al., “Language models are few-shot learners,” Adv Neural Inf Process Syst, vol. 2020-Decem, 2020.

M. Thirunavukarasu, A. J., Jassar, S., Fote, G., & Ghassemi, “Large Language Models,” 2024.

K. Gao, Y., Xiong, Y., Gao, L., & Liu, Retrieval-Augmented Generation for Large Language Models. 2024.

N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using siamese BERT-networks,” EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, pp. 3982–3992, 2019, doi: 10.18653/v1/d19-1410.

Openwebui, “OpenWebUI Docs.”

J. Ha, M. Kambe, and J. Pe, Data Mining: Concepts and Techniques. Elsevier, 2011. doi: 10.1016/C2009-0-61819-5.

A. Shiri, “Introduction to Modern Information Retrieval (2nd edition),” Library Review, vol. 53, no. 9, pp. 462–463, 2004, doi: 10.1108/00242530410565256.

C. Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Proceedings of the workshop on text summarization branches out (WAS 2004), Barcelona, Spain: Association for Computational Linguistics, Jul. 2004, pp. 2526. [Online]. Available: papers2://publication/uuid/5DDA0BB8-E59F-44C188E6-2AD316DAEF85

P. J. Rao, K. N. Rao, and S. Gokuruboyina, “An Experimental Study with Fuzzy-Wuzzy (Partial Ratio) for Identifying the Similarity between English and French Languages for Plagiarism Detection,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 10, pp. 393–401, 2022, doi: 10.14569/IJACSA.2022.0131047.

E. Laloy, B. Rogiers, A. Bielen, and S. Boden, “Bayesian inference of 1D activity profiles from segmented gamma scanning of a heterogeneous radioactive waste drum,” Applied Radiation and Isotopes, vol. 175, no. May, p. 109803, 2021, doi: 10.1016/j.apradiso.2021.109803.

D. S. Wisnubroto, H. Zamroni, R. Sumarbagiono, and G. Nurliati, “Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia,” Nuclear Engineering and Technology, vol. 53, no. 2, pp. 549–561, 2021, doi: 10.1016/j.net.2020.07.005.

Detail Informasi

Skripsi ini ditulis oleh :

  • NIM : 15210014
  • Nama : IHSAN AULIA RAHMAN
  • Prodi : Sains Data
  • Kampus : Margonda
  • Tahun : 2025
  • Periode : I
  • Pembimbing : Tati Mardiana, M.Kom
  • Asisten :
  • Kode : 0004.S1.SD.SKRIPSI.I.2025
  • Diinput oleh : RKY
  • Terakhir update : 06 Januari 2026
  • Dilihat : 22 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020