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Preface 

Numerical mathematics is concerned with the development and analysis of methods 
for solving mathematical problems. It is a firm component of mathematics education 
at universities, but often plays a subordinate role, even though all mathematical 
disciplines result from the goal of solving concrete and practical problems. This 
important aspect is often neglected in highly developed modern mathematics. On 
the other hand, numerics is often seen as the time-consuming and sometimes less 
exciting technical implementation of mathematical concepts, which leads to a false 
impression of the contents of numerics. In fact, many of the numerical methods go 
back to scientists like Gauss and Newton, who wanted to quantify and understand 
profound questions of the natural sciences via explicit calculations. The use of the 
computer should therefore simplify the handling of numerical methods and not 
make it more difficult. 

In this textbook, the most important ideas and concepts for the algorithmic solu-
tion of some basic mathematical problems are discussed and the main difficulties 
of their practical implementation are examined. In doing so, three questions must 
always be considered: 

• Is it possible to specify a method for the approximate solution of a mathematical 
problem? 

• How do perturbations, for example due to rounding of input data, affect the 
numerical solution? 

• What is the computational complexity of a method to achieve a given accuracy? 

These questions are addressed for model problems, such as the solution of systems 
of linear equations, the calculation of eigenvalues of a matrix, the numerical 
integration of functions, the approximate solution of nonlinear equations and the 
approximation of solutions of differential equations. 

In developing the course material, I have followed the presentations of various 
scripts, textbooks and monographs, which are listed at the end of this book. If I 
have followed a source too closely in the presentation of the material at one point 
or another, this is to be understood as an appreciation of a particularly successful 
elaboration. This text makes no claim as to the originality of its contents. Its sole
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vi Preface

aim is to provide students of mathematics, engineering and the natural sciences an 
opportunity to familiarise themselves with the basics of numerical mathematics. 

The presentation of the classic material is intended to illustrate basic methods 
of numerics by example. Optimality of the methods or greatest generality of the 
associated statements was consciously omitted. When solving concrete, possibly 
practical problems, it is therefore essential to consult the specialised literature, 
which is also presented in extract form at the end of the book. The application 
examples listed in the text are intended for motivation and illustration and should 
not be interpreted as real case studies. For special applications, it is usually 
necessary to adapt the methods developed for idealised model situations to the 
special characteristics of the present problem. This book is intended to prepare the 
reader for this challenge. 

The present text results from lectures taught at the Universities of Bonn and 
Freiburg and is a translation of the second edition of the German version of the 
textbook. I would like to thank numerous colleagues, assistants and tutors for 
corrections and suggestions for improvement. I would like to particularly thank Lea 
Heusler for her careful proofreading of the first edition and Benedikt Albrecht and 
Nick Seinsche for their important help in the development of the second edition of 
the text. Furthermore, I would like to thank Yohance Osborne and Vanessa Styles 
for carefully checking the English translation of the text. 

Freiburg, Germany Sören Bartels 
December 2024 
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Df , D2f . Jacobian and Hessian matrix of a function f 
yt . Time derivative of the function y 

Function Spaces 

Ck([a, b]). k-times continuously differentiable functions on [a, b]. 
Pm . Polynomials of degree m 
S m,k(Th). Piecewise degree m polynomial, k-times continuously differentiable

functions
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Goals and Concepts 

Numerical mathematics or simply numerics is concerned with the practical imple-
mentation of mathematical concepts, for example, to calculate real processes. This 
can be the infection dynamics of a pandemic, the evaluation and visualisation of a 
medical computer tomography, the realisation of search algorithms on the internet, 
the usage behaviour of an internet platform, the training of a neural network, 
the prediction of the weather, the calculation of ocean currents, the load-bearing 
capacity of bridges and buildings, the simulation of a crash test or the compression 
of data for fast transmission of information. As a rule, large amounts of data occur, 
the implementation is typically done with the help of computers, which leads to 
additional peculiarities. 

Computers can only perform simple arithmetic operations and this only approx-
imately, i.e., with rounding errors. Every mathematical task must therefore be 
reduced to simple problems. The solution of systems of linear equations and the 
evaluation of explicit calculation rules can be realised very efficiently and robustly. 
With these two concepts, many tasks such as eigenvalue problems, constrained 
optimisation tasks, nonlinear equations and data compression problems can be 
solved approximately. 

However, unexpected effects can occur during the development of methods. For 
example, equivalent formulas can lead to different results when implemented on a 
computer, different sequences with the same limit can converge at different speeds 
and rounding errors can accumulate during a calculation. Since rounding errors are 
anyway unavoidable, it is neither necessary nor sensible to determine exact solutions 
to problems. 

The first part of the book is dedicated to the fast and robust solution of systems 
of linear equations with regular matrices A ∈ R

n×n
., i.e., for a given vector b ∈ R

n
. 

the determination of x ∈ R
n
. with 

.Ax = b.

xvii
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It is particularly important to understand how disturbances of data affect the 
solution. Based on this, overdetermined systems of equations or least squares 
problems, eigenvalue problems and linear optimisation problems are considered. 

The core of the second part is the approximation of functions with simply 
representable functions such as piecewise polynomial functions sh ., so that a given 
accuracy ε > 0. is achieved, i.e., 

. ‖f − sh‖C0(I ) ≤ ε.

This can be used to reduce the calculation of derivatives and integrals to simple 
problems. Further aspects are the calculation of zeros and minima. In the third 
part, the numerical approximation of ordinary differential equations or initial value 
problems is examined, which have the general form 

. y′(t) = f
(
t, y(t)

)
, y(0) = y0.

They form the basis of the simulation of time-dependent problems. Even the simple 
case y′ = αy . with solution y(t) = y0e

αt
. leads to insights that can be transferred to 

large classes of problems. With these methods, trajectories of bodies, Hamiltonian 
systems for the description of solar systems and one-dimensional boundary value 
problems can be numerically approximated. 

Difficulties and Ideas 

We consider some typical and partly surprising phenomena of the direct algorithmic 
implementation of mathematical concepts. 

Rounding Errors 

Since binary computers can only represent finitely many numbers, rounding errors 
are inevitable. Even if modern computers calculate with high accuracy, this can 
easily lead to difficulties. For example, if a party receives nP = 2 099 580. out of a 
total of nG = 42 · 106

. votes cast, a computer delivers the share 

n_P/n_G = 0.0500

thus supposedly 5.00%. of the votes. However, a legal 5% hurdle in an election does 
not provide for rounding and a more accurate representation of the quotient shows 
the result 

.
nP

nG

= 0.04999000,
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1 % machine_precision.m
2 x = 1;
3 while 1+x > 1
4 x = x/2;
5 end
6 disp(2*x);

1 >> machine_precision
2 2.2204e-16

Fig. 1 Determination of machine accuracy (left) and result of calculation (right) 

so the party did not receive the required votes. Here, a misleading result is created 
by rounding in the visual representation of the number. Another error occurs due 
to rounding-related arithmetic operations of the computer. The relative calculation 
accuracy of a computer can be determined by halving the number x = 1. until the 
expression 1 + x . is no longer distinguished from 1 by the computer, see Fig. 1. A  
typical accuracy is at 1 ·10−16

., so one can assume 15 correct decimal places. Instead 
of setting the calculation accuracy in relation to a single vote, the 5% hurdle can be 
checked more easily with the inequality nP /nG ≥ 1/20. or 20nP ≥ nG .. 

Convergence Speed 

The number
√

2. can be constructed by successively determining the decimal places. 
Starting from r0 = 1., decimal places are added to obtain numbers rk . with k decimal 
places, which are maximised subject to the constraint r2

k < 2.. In the first step, 
r1 = 1.4. is set, since (1.5)2 > 2. holds. In the k-th step, r2

k−1 < 2. and 

. rk = rk−1 + � · 10−k

where � ∈ {0, 1, . . . , 9}. is chosen to maximise rk . subject to the constraint r2
k < 2.. 

Thus, in each step, one obtains another correct decimal place and accordingly, for 
the error 

. δk = ∣∣√2 − rk
∣∣ < 10−k.

The error is reduced by the factor q = 1/10. in each step. With a trick, one obtains 
approximations where the number of correct decimal places doubles in each step. 
For this, we consider more generally the calculation of

√
a . for a positive number 

a > 0.. The equation x2 = a . is obviously equivalent to 

.x2 = 1

2
x2 + 1

2
a ⇐⇒ x = 1

2

(
x + a

x

)
.
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The second identity characterises the solution as a fixed point x∗
. of a function x �→

�(x). and this observation can be used to define the fixed point iteration 

. xk+1 = �(xk) = 1

2

(
xk + a

xk

)

with a suitable starting value x0 > 0., which is referred to as Heron’s method. Here, 
one can prove so-called quadratic convergence of the errors ek = |√a − xk|., i.e. 

. ek+1 ≤ ce2
k

or the doubling of correct decimal places in each step, provided ce2
k < 1. holds. 

An implementation can be found in Fig. 2. The convergence speed of a fixed point 
iteration can be quantified with a Taylor approximation. If �′(x∗) = 0., then 

. xk+1 − x∗ = �(xk) − �(x∗) = 1

2
�′′(ξ)(xk − x∗)2,

which implies local, quadratic convergence. If �′(x∗) �= 0., then the local, linear 
convergence ek+1 ≤ qek . follows analogously, if |�′(x)| ≤ q < 1. for all x ∈ Bε(x∗).. 
Typical courses of corresponding fixed point iterations are depicted in Fig. 3. 

1 % heron.m
2 a = 2.0; delta = 1.0e-15;
3 x = a/2; e = abs(x-sqrt(a));
4 while e > delta
5 x = (x+a/x)/2;
6 e = abs(x-sqrt(a));
7 disp([x,e]);
8 end

1 >> format shortE
2 >> heron
3 1.5000e+00 8.5786e-02
4 1.4167e+00 2.4531e-03
5 1.4142e+00 2.1239e-06
6 1.4142e+00 1.5947e-12
7 1.4142e+00 2.2204e-16

Fig. 2 Calculation of the square root according to Heron (left) and results of the calculation (right) 

Fig. 3 Linear (left) and 
quadratic (right) convergence 
of fixed point iterations 

xx

x2x∗x1 x0 x0x2x1 x∗
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Instabilities 

Rounding errors can become very noticeable in problems with specific bad proper-
ties. As an example, we consider the approximation of the number π . by computing 
the area of the unit circle. For this purpose, the circle is approximated as shown in 
Fig. 4 with n congruent triangles, whose heights are denoted by kn . so that the area 
A = π . is approximated by An = nkn/2.. Such an approach was already used by 
Archimedes in the third century BC. 

We have that kn = sin(2π/n)., however, only basic operations and the square root 
should be used. Using the identity sin α = 2 sin(α/2) cos(α/2). and the pq-formula 
results in the recursion formula 

. 2k2
2n = 1 −

√
1 − k2

n.

From sin(π/6) = 1/2. one obtains the starting value k12 = 1/2. and can thus 
determine a sequence of heights. The results generated with the program shown in 
Fig. 5 and listed in Fig. 4 show that the approximations of π . initially improve, then 
stagnate and finally become completely useless. However, if one uses a binomial 

r = 1

kn

j An en
0 3.000000000000000 1.4159×10−1

1 3.105828541230250 3.5764×10−2

2 3.132628613281237 8.9640×10−3

11 3.141592618640789 3.4949×10−8

12 3.141592645321216 8.2686×10−9

15 3.141592645321216 8.2686×10−9

16 3.141593669849427 1.0163×10−6

19 3.141586839655041 5.8139×10−6

23 3.159806164941135 1.8214×10−2

27 6.000000000000000 2.8584

Fig. 4 Approximation of the unit circle area with n triangles (left) and numerically determined 
areas An . as well as errors en = |An − π |. with n = 2j · 12. (right) 

1 % pi_approx.m
2 n = 12; k = 0.5; J = 30;
3 for j = 1:J
4 n = 2*n;
5 k = sqrt((1-sqrt(1-kˆ2))/2);
6 A = n*k/2; e = abs(pi-A);
7 disp([j,A,e]);
8 end

1 % pi_approx_mod.m
2 n = 12; k = 0.5; J = 30;
3 for j = 1:J
4 n = 2*n;
5 k = k/sqrt(2*(1+sqrt(1-kˆ2)));
6 A = n*k/2; e = abs(pi-A);
7 disp([j,A,e]);
8 end

Fig. 5 Approximation of the circle number π . with direct (left) and modified (right) calculation of 
the heights kn .
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formula, one obtains the equivalent representation 

. 2k2
2n = (

1 −
√

1 − k2
n

)1 + √
1 − k2

n

1 + √
1 − k2

n

= k2
n

1 + √
1 − k2

n

.

This formula allows π . to be approximated to machine precision. It will be shown 
that generally the subtraction of nearly equal numbers should be avoided. 

Computational Effort 

The calculation of the determinant of a square matrix A ∈ R
n×n

. can be performed 
using the Laplace expansion theorem. With the recursion formula 

. det A =
n∑

j=1

(−1)1+j a1j det Â1j ,

where Â1j . is the submatrix obtained by deleting the first row and j -th column, 
the calculation can be reduced to computing determinants of smaller matrices until 
finally matrices with only one entry appear, Fig. 6 shows a practical implementation. 
The computational effort grows dramatically, when transitioning from n = 8. to 
n = 10. the computing time increases by a factor of 90 = 9 · 10. and for matrices of 
dimension n ≥ 12. the method is hardly feasible in a reasonable time. Practically and 
theoretically, it is seen that n!. operations are necessary. Alternatively, the Gaussian 
elimination method provides a factorisation A = LU . with triangular matrices L 
and U , where for the diagonal entries of L, �ii = 1. may be required. Thus, with the 

1 % det_laplace.m
2 function val = det_laplace(A)
3 n = size(A,1); val = 0;
4 if n == 1
5 val = A(1,1);
6 else
7 for j = 1:n
8 I = 2:n;
9 J = [1:j-1,j+1:n];

10 hat_A_1j = A(I,J);
11 val = val+(-1)ˆ(1+j)...
12 *A(1,j)...
13 *laplace(hat_A_1j);
14 end
15 end

1 % det_laplace_hilb.m
2 for n = 4:2:10
3 A = hilb(n);
4 tic; d = det_laplace(A); toc
5 end

1 >> det_laplace_hilb
2 Elapsed time is 0.000814 seconds.
3 Elapsed time is 0.002340 seconds.
4 Elapsed time is 0.108463 seconds.
5 Elapsed time is 9.220774 seconds.

Fig. 6 Calculation of the determinant with the Laplace expansion theorem (left) and run times for 
matrix sizes n = 4, 6, 8, 10. (right)
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rules for the determinant, it follows that 

. det A = det L det U = (�11�22 . . . �nn)(u11u22 . . . unn) = u11u22 . . . unn,

where we have used that the determinant of a triangular matrix is given by the 
product of the diagonal entries or eigenvalues. If the factorisation is given, the 
determinant can be computed with n − 1. operations. A check of the elimination 
method shows that the factorisation can be found with n3

. operations, here required 
row swapping may be included in the operations. 

Robustness to Disturbances 

Rounding errors can be considered as disturbances and so one can abstractly assess 
whether a problem can be approximated or numerically solved at all, regardless of 
specific algorithms. For illustration we consider the determination of the roots of a 
polynomial. Specifically, we choose 

. p(x) = (x − a)n − 0

with a given number a, which is then the n-fold root of the polynomial. We now 
disturb the term 0 and subtract a small number ε > 0. instead, i.e. we consider the 
polynomial 

. pε(x) = (x − a)n − ε.

The complex roots shown in Fig. 7 are given by x̃k = a + skε
1/n

. with the n-th 
roots of unity sk = ei2πk/n

., k = 1, 2, . . . , n., which are evenly distributed on the 
boundary of the unit circle in the complex plane, in the case n = 2. they are s1 = −1. 

and s2 = 1.. The error between the correct roots xk = a . and those of the disturbed 
polynomial is ek = |xk − x̃k| = ε1/n

. and this becomes smaller as ε . becomes smaller. 
However, the problem is that the ratio of the output error to the input error, i.e. 

. 
maxk=1,...,n |xk − x̃k|

‖p − pε‖C0(R)

= ε1/n

ε
= ε(1−n)/n

Fig. 7 The (complex) roots 
of the disturbed polynomial 
pε(x) = (x − a)n − ε . are 
located on the circle around a 
with radius r = ε1/n . 

a a+ 1/n



xxiv Prologue: Why Numerics?

is unbounded for ε → 0. and n ≥ 2.. Small disturbances in the data of the problem 
thus have a disproportionate effect on the result. Therefore, the determination of 
roots of polynomials is referred to as an ill-conditioned problem. Directly connected 
with this is the poor conditioning of the determination of eigenvalues of a matrix. A 
real-life ill-conditioned problem is the vertical positioning of a pen. 

Inexact Solving 

The Gaussian elimination method for solving a system of linear equations leads 
to a cost of n3

. computational operations. However, an exact solution in terms of 
computer arithmetic is rarely necessary, as not only rounding errors influence the 
result, but the data can also not be considered exact due to measurement and model 
errors. This observation leads to the idea that by merely approximating the solution 
of the linear system, the computational effort can be significantly reduced. One 
approach is based on the decomposition of the matrix A into its diagonal part D 
and the rest R = A − D .. Provided D is regular, the equation Ax = b. is thus 
equivalent to the equations 

. Dx = b − Rx ⇐⇒ x = D−1(b − Rx).

The second equation can be interpreted as a fixed point equation x = �(x). and 
leads to the iteration 

. xk+1 = D−1(b − Rxk)

with a starting vector x0 ∈ R
n
.. In some cases, good approximations are obtained 

in a few steps. The evaluation of the right-hand side generally requires a cost of n2
. 

computational operations, but in many cases A or R have many vanishing entries 
and the cost is only a moderate multiple cn of n. If the iteration converges quickly, 
the cost of solving the system is reduced from n3

. to c̃n., which is enormous for 
typical sizes of n in the range [102, 107].. To exploit this aspect, the definition 
of A must be modified, as in the program shown in F ig. 8, to avoid unnecessary 
multiplications with zero. Corresponding runtimes are displayed in Fig. 9. A better 
convergence behaviour is achieved with the iteration xk+1 = (D + U)−1(b − Lxk)., 
where U and L are the submatrices of A above and below the diagonal, respectively, 
and in each step a system of equations with triangular matrix D+U . must be solved. 
Rounding errors are not a problem here, as convergent fixed point iterations have 
a self-stabilising effect in the sense that each iterate can be considered as a new 
starting value.
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1 % jacobi_iteration.m
2 n = 10ˆ2; b = ones(n,1);
3 e = ones(n,1); e_s = ones(n-1,1);
4 A = diag(4*e,0)-diag(e_s,1)-diag(e_s,-1);
5 % A = spdiags([-e,4*e,-e],[-1,0,1],n,n);
6 D = diag(A); D_inv = D.ˆ(-1); R = A-diag(D);
7 x = zeros(n,1); tol = 1.0e-3; ctr = 0;
8 while norm(A*x-b) > tol
9 x = D_inv.*(b-R*x); ctr = ctr+1; disp(ctr);

10 end

Fig. 8 Solving a system of equations with the Jacobi iteration, the alternative definition of the 
band matrix A avoids unnecessary multiplications with zero e ntries

A=

⎡ 

⎢⎢⎢⎢⎣ 

4 −1

−1
. . .

. . .
. . .

. . . −1
−1 4

⎤ 

⎥⎥⎥⎥⎦ 

n A fully populated A sparsely populated
102 0.005273 s 0.047754 s
103 0.028120 s 0.009399 s
104 1.042249 s 0.023457 s
105 — 0.106429 s
106 — 0.512903 s

Fig. 9 If unnecessary multiplications are avoided with band matrices, the iterative method leads 
to low memory requirements and short computation times even for very large matrices 

Approximation with Polynomials 

A theorem by Weierstraß states that any continuous function on a compact interval 
can be approximated arbitrarily well by polynomials. However, these results do 
not show how to find the polynomials or what degree of polynomial is needed to 
achieve a given accuracy. To calculate such polynomials, pairwise different points 
x0, x1, . . . , xn . in the interval [a, b]. can be chosen together with a polynomial p 
defined by the r equirement

. p(xi) = f (xi), i = 0, 1, . . . , n.

To fulfil these n + 1. interpolation conditions, the polynomial must have at least 
degree n. From the fundamental theorem of algebra, it follows that a polynomial of 
this degree is uniquely defined. With a basis (pj )j=0,...,n ., such as the monomials 
pj (x) = xj

., the coefficient vector c ∈ R
n+1

. of p results from the system of 
equations Ac = f . with Aij = pj (xi). and fi = f (xi)., i, j = 0, 1, . . . , n.. 
However, for certain functions f and uniformly distributed points x0, x1, . . . , xn . it is 
observed that the polynomials do not converge uniformly for increasing numbers n, 
see Figs. 10 and 11. Using Rolle’s theorem, it can be seen that the distances between 
the support points should be chosen smaller at the edges, which is optimally realised 
by so-called Chebyshev nodes. In addition to this effect, it should be noted, that the 
monomial basis leads to a matrix A with unfavourable properties with respect to 
small disturbances.
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1 % interpolation.m
2 f = @(x) 1./(1+25*x.ˆ2);
3 delta = 0.01; X = (-1:delta:1); Y = f(X); n = 11;
4 x_eq = zeros(n+1,1); y_eq = zeros(n+1,1);
5 x_ch= zeros(n+1,1); y_ch = zeros(n+1,1);
6 dx = 2/n; dtheta = pi/(2*(n+1));
7 for k = 1:n+1
8 x_eq(k) = -1+(k-1)*dx; y_eq(k) = f(x_eq(k));
9 x_ch(k) = cos((2*k-1)*dtheta); y_ch(k) = f(x_ch(k));

10 end
11 p_eq = polyfit(x_eq,y_eq,n); p_ch = polyfit(x_ch,y_ch,n);
12 plot(X,Y,'--',x_eq,y_eq,'o',X,polyval(p_eq,X));
13 title('equidistant'); pause
14 plot(X,Y,'--',x_ch,y_ch,'o',X,polyval(p_ch,X));
15 title('chebyshev');

Fig. 10 Calculation and representation of an interpolation polynomial with evenly and unevenly 
distributed support points 

Fig. 11 Polynomial interpolation with equidistant support points (left) and Chebyshev nodes 
(right) 

Choice of Suitable Bases 

Every vector x ∈ R
n
. can be represented with respect to the canonical basis 

e1, e2, . . . , en . such that 

. x =
n∑

k=1

αkek,

where the coefficients αk . correspond to the components of the vector. If the vector 
x has special properties, for example, it is given as a sampled audio signal at 
times t1, t2, . . . , tn ., it makes sense to choose a basis v1, v2, . . . , vn . that takes these 
properties into account. In this case, many coefficients in the linear combination
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Fig. 12 Functions can often 
be represented as a sum of 
sine oscillations 

have the property of being very small in magnitude or negligible, and hence we 
have 

. x =
n∑

k=1

βkvk ≈
m∑

�=1

βk�
vk�

, m � n.

For example, if n = 104
., the vector x can often be well represented with m ∼ 102

. 

relevant pieces of information. This is referred to as data compression, which 
is the basis of the digital age. The mathematical challenge lies in the efficient 
implementation of the basis change. If the vectors (vk)k=1,...,n . are chosen as 
fundamental oscillations, then the fast Fourier transformation allows for an almost 
optimal basis change. An example is shown in Fig. 12. 

Large Intermediate Results 

Swapping rows is only necessary in the Gaussian elimination process when so-
called pivot elements, with which the elimination of entries below the diagonal 
is performed, are identically zero. To avoid instabilities or strong effects of 
rounding errors, swapping rows should also be performed when pivot elements are 
small compared to other entries. Otherwise, intermediate values that are large in 
magnitude can occur, as can be checked using the example 

. 

[
ε 1
1 1

] [
x1

x2

]
=

[
1
2

]

with solution (x1, x2) ≈ (1, 1). for 0 ≤ ε � 1.. The fact that intermediate results 
can lead to large computational errors is shown by the perturbation calculation for 
the sum s = y1 + y2 + · · · + yn . with exact summands yi . and disturbed values 
ỹi = (1 + σiεi)yi ., with σi ∈ {±1}. and εi ≥ 0., so that for the disturbed sum ̃s . we 
have 

.̃s =
n∑

i=1

ỹi =
n∑

i=1

(1 + σiεi)yi = s +
n∑

i=1

σiεiyi .
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1 % intermediate_vals.m
2 x = 1.0; s = 1.0;
3 eps_p = 10ˆ(-5); k = 10ˆ3;
4 x_p = (1+eps_p)*x;
5 s_p = sqrt(x_p)+k*exp(x_p-1)...
6 +k*sin(3*pi*x_p/2);
7 e_rel_s = abs((s_p-s)/s);
8 e_rel_x = abs(eps_p);
9 kappa_rel = e_rel_s/e_rel_x;

10 disp(kappa_rel);

1 >> intermediate_vals
2 1.0006e+03

Fig. 13 If intermediate results or summands are larger in magnitude than the result, a large 
amplification of relative errors can occur 

For the relative error in the result |s − s̃|/|s|. it follows from the triangle inequality 
and the relative errors |̃yi − yi |/|yi | = εi . of the data, that 

. εs = |s − s̃|
|s| ≤ 1

|s|
n∑

i=1

|εi ||yi | ≤
(∑n

i=1 |yi |
|s|

)
max

i=1,...,n
εi = κεy.

So, a large amplification of the relative error can occur if |s|. is small compared to 
the absolute summands |yi |.. The first inequality is an equality when the disturbances 
have the same sign as the summands, and the second inequality is an equality when 
all disturbances are of equal size. The program shown in Fig. 13 calculates the value 

. s = √
x + k exp(x − 1) + k sin(x3π/2)

for a disturbance x̃ = (1 + εp)x . of x = 1., which leads to an amplification of the 
relative errors by the factor κ ≈ k . and thus confirms the result. 

A special case of the above estimate is the subtraction of nearly equal numbers, 
which corresponds to the case y1 ≈ −y2 . and leads to so-called cancellation 
effects. For example, if two rods have the lengths �1 = 101.51. and �2 = 100.49. 

in centimetres and these were approximately measured with �̃1 = 102.00. and 
�̃2 = 100.00., then the relative errors εi ., i = 1, 2., are less than 0.5%.; however, 
the relative error of the differences δ = 1.02. and δ̃ = 2.00. is almost 100.0%., which 
corresponds to an error amplification of κ ≈ 200.. 

Descent Methods 

To determine a (local) minimum of a differentiable function g : Rn → R., it makes 
sense, as when descending in a mountain landscape, to gradually reduce the function 
values. In order to reach a minimum as quickly as possible, the direction with locally 
the greatest reduction of the function value should be chosen for the next iteration 
step. This is given by the negative gradient of the function. Starting from an initial
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Fig. 14 Illustration of the 
descent method for 
determining a minimum of a 
function 

value x0 ∈ R
n
., a sequence of iterates xk ., k = 0, 1, . . . ., is thus determined by the 

rule 

. xk+1 = xk − αk∇g(xk).

The step size αk . should be chosen sensibly so that one does not actually get a value 
of the function which is larger than before. Figure 14 shows a path resulting from a 
descent method on the graph of the function. In addition to optimising the step sizes, 
for a class of minimisation problems also the optimisation of the search directions is 
of interest. For quadratic minimisation problems of the form g(x) = (1/2)‖Ax−b‖2

. 

it can be ensured that the descent directions are orthogonal to each other in a suitable 
sense and one obtains the minimum with a maximum of n steps. 

Implicit and Explicit Methods 

Approximate solutions of the initial value problem y′ = f (t, y)., y(0) = y0 ., are  
obtained by approximating the derivative of y by a secant slope

. y′(t) ≈ y(t + τ) − y(t)

τ

which in the case of this right-sided difference quotient with step size τ > 0. and 
time steps tk = kτ . leads to the Euler method 

. yk+1 = yk + τf (tk, yk)

with starting value y0 .. Thus one obtains a sequence of approximations (yk)k=0,...,K . 

by simple successive or explicit evaluation of the right-hand side. However, 
experiments in the case f (t, y) = αy . with α < 0. and exact, bounded solution 
y(t) = y0e

αt
. show that the approximations only remain bounded for sufficiently 

small step sizes, see Fig. 15. This is improved, if instead of the right-sided difference 
quotient a left-sided one is taken, which leads to the method
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1 % euler_expl.m
2 alpha = -2; y_0 = 1; T = 10;
3 f = @(t,s) alpha*s;
4 K = 8; tau = T/K;
5 y = zeros(K+1,1); y(1) = y_0;
6 for k = 1:K
7 t_k = (k-1)*tau;
8 y(k+1) = y(k)+tau*f(t_k,y(k));
9 end

10 plot(tau*(0:K),y,'o-');
11 title('expl. Euler');

Fig. 15 The explicit Euler method is a simple to implement method (left), which however can 
lead to unbounded approximations (right) 

1 % euler_impl.m
2 alpha = -2; y_0 = 1; T = 10;
3 K = 16; tau = T/K;
4 y = zeros(K+1,1); y(1) = y_0;
5 for k = 2:K+1
6 t_k = (k-1)*tau;
7 % y(k) = y(k-1)+tau*f(t_k,y(k));
8 y(k) = (1-alpha*tau)ˆ(-1)*y(k-1);
9 end
10 plot(tau*[0:K],y,'o-');
11 title('impl. Euler');

Fig. 16 The implicit Euler method has better stability properties than the explicit method 

. yk = yk−1 + τf (tk, yk)

with starting value y0 ., see Fig. 16. The price for the better stability properties of the 
method is however the required solution of a possibly nonlinear system of equations 
in each iteration step. This method is therefore referred to as an implicit method. 

Multi-Term Recursion 

To obtain better approximations of derivatives, it is obvious to use more than just two 
time points, for example one could use the following combination of three values 
yk+2, yk+1, yk . to approximate the derivative y′(tr ). 

. y′(tr ) ≈ α0yk + α1yk−1 + α2yk−2.

Possible coefficients α� ., � = 0, 1, 2., result from Taylor approximations; however, 
not all values found using this method result in good choices. Criteria to choose the



Prologue: Why Numerics? xxxi

coefficients can be found by considering the trivial differential equation y′(t) = 0. 

with starting value y0 . and constant solution y(t) = y0 .. A sensible method should 
guarantee that in this case, approximations remain bounded. These fulfil for given 
initial values y0, y1 . the three-term recursion 

. α2yk+2 + α1yk+1 + α0yk = 0

or in matrix representation with γ� = −α�/α2 ., � = 0, 1., the relation 

. 

[
yk+1

yk+2

]
=

[
0 1
γ0 γ1

] [
yk

yk+1

]
= A

[
yk

yk+1

]
.

A transformation of the iteration matrix A into Jordan normal form y ields

. (i) J = T −1AT =
[
λ1 0
0 λ2

]
, (ii) J = T −1AT =

[
λ1 1
0 λ1

]
,

with an orthogonal matrix T and geometrically simple or multiple eigenva lues
λ1, λ2 ∈ C.. Relevant for the stability of the numerical method is now whether the 
matrix J is non-expansive, i.e., whether ‖Jz‖∗ ≤ ‖z‖∗ . for all z ∈ C

2
. with a suitable 

vector norm ‖ · ‖∗ .. In the first case, this is given if |λ1|, |λ2| ≤ 1., and in the second, 
if |λ1| < 1.. Examples of unstable and stable three-term recursions are given by the 
coefficients (α2, α1, α0) = (1, 4,−5). and (α2, α1, α0) = (3,−4, 1)., respectively. 
The results of an unstable iteration are shown in Fig. 17. 

1 % multistep_stab.m
2 a = [-5,4,1]; % unstable
3 % a = [1,-4,3]; % stable
4 g_2 = -a(2)/a(3);
5 g_1 = -a(1)/a(3);
6 K = 8; delta = .01;
7 y = zeros(K+1,1);
8 y(1) = 1; y(2) = 1+delta;
9 for k = 2:K

10 y(k+1) = g_2*y(k)+g_1*y(k-1);
11 end
12 plot((0:K),y,'o-');
13 title('multistep');

Fig. 17 Multistep methods (left) can lead to oscillating, rapidly growing approximations (right)
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Sources of Error 

In the numerical solution of a mathematical problem, numerous, mostly unavoidable 
errors arise. 

• Model error: This refers to the error of the often simplified representation of 
a real problem by mathematical equations as well as measurement errors in 
determining specific problem properties. 

• Method error: The algorithm used to solve a problem leads to errors caused 
by approximations of continuous quantities such as derivatives or termination 
criteria in iterative methods. 

• Rounding error: All arithmetic operations of the computer must be considered as 
error-prone. 

It turns out that relative errors are better suited for evaluating a method than 
absolute errors. The  conditioning of a problem is understood to be the (independent 
of the numerical method) susceptibility of the problem to disturbances, the stability 
of a method is the error amplification caused by the calculation steps, and conver-
gence is the reduction of the method error when approximations are improved and 
termination criteria are reduced. 

Approach of Numerics 

The development of numerical methods for the approximate solution of a mathe-
matical problem should consider the following aspects: 

• Observe and understand unexpected phenomena 
• Develop methods that avoid problems 
• Find suitable fixed-point equations 
• Identify dominant sources of error 
• Use meaningful convergence concepts 
• Utilise special properties of problem classes 
• Construct problem-adapted bases 
• Critically discuss conditions for convergence 

Problems 

The following tasks can be worked on experimentally or theoretically. 

(a) Determine for � = 1, 2, . . . , 10. the smallest machine number x such that the 
comparison 10� + x > 10�

. is evaluated by the computer as correct. Interpret 
your results.
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(b) Check the condition �′(x∗) = 0. for quadratic convergence of the Heron method 
and construct suitable initial values for the approximation of

√
a ., a > 0.. 

(c) Approximate the derivative of the exponential function at the point x = 1. by 
secant slopes (f (x + h) − f (x))/h. and (f (x + h) − f (x − h))/(2h). with 
different step sizes h > 0. and comment on your results. 

(d) Provide a stable method for the approximate calculation of exp(x). for any x ∈
R.. 

(e) How long does it take to calculate the solution of a linear system of equations 
of size n = 10�

., � = 3, 4, 5, 6., with the Gaussian elimination method, if the 
computer can perform 109

. operations per second, and how much storage space 
is required? 

(f) Test the Jacobi method xk+1 = D−1(b − Rxk). and the Gauss-Seidel method 
xk+1 = (D + U)−1(b − Lxk). for band matrices A ∈ R

n×n
. with off-diagonal 

entries − 1. and main diagonal entries aii = 2. or aii = 4. for i = 1, 2, . . . , n.. 
(g) Test the polynomial interpolation with equidistant support points and Cheby-

shev nodes in the case f (x) = cos(x).. Calculate extrema of some derivatives of 
the functions f (x) = cos(x). and f (x) = (1 + 25x2)−1

. in the interval [−1, 1].. 
(g) Determine a basis of the polynomial space of maximum degree 3, so that a 

polynomial q with the properties q(0) = v0 ., q(1) = v1 . and q ′(0) = v2 ., q ′(1) =
v3 . can be represented with the coefficients v0, v1, v2, v3 .. 

(h) Experimentally determine error amplifications of Gaussian elimination without 
pivot search for the system of equations Ax = b., where a11 = ε ., a12 = a21 =
a22 = 1. and b1 = 1 + ε . as well as b2 = 2. for some ε > 0.. 

(i) In the case of termination of the descent method with termination criterion 
‖∇g(xk)‖ ≤ ε . with a given number 0 < ε � 1., is there always an 
approximation of a global minimum? 

(j) Discuss sources of error in the calculation of the trajectory of a body with the 
equation resulting from Newton’s laws x(t) = x0 + tv0 + (t2/2)(0,−g). with 
g = 9.81m/s2

. and given x0, v0 ∈ R
2
.. 

(k) What special property is observable in the implicit Euler method for the 
equation y′(t) = 1., y(0) = y0 ., on a large time interval [0, T ].? 

(l) Investigate the stability of the three-term recursion yk+2 = −2yk+1 + yk . and 
test this with the initial values y0 = 1. and y1 = √

2 − 1..



Chapter 1 
Basic Concepts 

1.1 Problem Statement 

Numerical mathematics deals with the practical calculation of mathematical objects 
such as 

. 

∫ 1

0
e−x2 dx, min

x∈[0,1] F(x), f (x) = 0, Ax = b, Ax = λx, y′ = f (t, y).

Abstractly, this can be formulated as the evaluation of a mapping. 

Definition 1.1 A mathematical operation consists in the evaluation of a mapping 
φ : X → Y . at x ∈ X .. 

For example, φ(x) = f −1(x)., φ(x) = A−1x . or φ(x) = sin(x).. Many of the 
objects listed above are not defined by closed formulas and can possibly only be 
determined approximately. Moreover, only a finite number of so-called machine 
numbers are available on computers, so not every real number can be entered 
exactly and elementary arithmetic operations like 1/3 can only be determined 
approximately. This leads to rounding errors. Other sources of error are model 
errors, which occur in the simplified mathematical description of a real process, 
and data errors, which can be caused by measurements. Many of these inaccuracies 
are unavoidable and therefore it is usually neither necessary nor sensible to solve 
a mathematical problem exactly. By approximate solving the computational effort 
can often be significantly reduced. The calculation of the determinant of a matrix 
A ∈ R

n×n
. using the Laplace expansion theorem, for example, leads to n!. arithmetic 

operations, which for large dimensions n is hardly feasible in a reasonable time. 
However, it is often possible to construct at least approximately a f actorisation
A ≈ LR . with triangular matrices L,R ∈ R

n×n
. with the help of which the 

determinant detA ≈ detL detR . can be determined with an effort comparable to 
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n. Solving a system of linear equations Ax = b. is closely related to this. In practice, 
the inverse matrixA−1

. is usually not determined explicitly, but the system is directly 
or iteratively solved. The expression x = A−1b. therefore stands in numerics mostly 
for the solution of the linear system Ax = b. and less often for the multiplication 
of b with A−1

.. More generally, the following typical questions are discussed in 
numerics: 

• Computability of problems (algorithmics) 
• Influence of perturbations (conditioning and stability) 
• Error between calculated and exact solution (convergence) 
• Computational effort of methods (complexity) 

An important goal is to achieve a good compromise between accuracy and effort of 
a method. This is investigated for the following problems: 

• Systems of linear equations 
• Eigenvalue problems 
• Interpolation of functions 
• Integration of functions 
• Root finding and optimisation 
• Initial value problems 

1.2 Condition and Stability 

We consider an example that illustrates the effects of perturbations on the solution 
of a problem. 

Example 1.1 For each ε ∈ R \ {0}., the unique solution of the linear system 

. 

[
1 1
1 1 + ε

]
x =

[
2
2

]

is given by x = [2, 0]T .. We assume that ε . is very small and perturb the right side in 
the second component, that is, we consider 

. 

[
1 1
1 1 + ε

]
x̃ =

[
2

2 + ε

]
.

The unique solution is given by x̃ = [1, 1]T .. Although the perturbation in the right 
hand side is arbitrarily small, the solutions x and x̃ . differ greatly. 

The effects of perturbations on the solution of a problem lead to the concept of 
conditioning.
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Definition 1.2 A mathematical operation φ(x). is ill conditioned (at the point x), 
if small relative perturbations εx . of the data cause large relative errors εφ . in the 
solution that is, if a perturbation x̃ . exists with 

. εφ = |φ(̃x) − φ(x)|
|φ(x)| � |̃x − x|

|x| = εx,

where x �= 0. and φ(x) �= 0.hold. Otherwise, the operation is called well conditioned 
and there exists a moderate constant ccond ≥ 0.with εφ ≤ ccondεx .. 

The relation a � b. means that a is significantly larger than b, for e xample
a ≥ 100b.. What is considered significantly larger or as a moderate constant is 
generally problem-dependent. To show that the multiplication of two numbers is 
well conditioned, we consider the componentwise relative error of the arguments. 

Proposition 1.1 The operation φ(x, y) = xy . is well conditioned in the sense that 
for x, y ∈ R. with x, y �= 0. (and consequently φ(x, y) �= 0.) and perturbations 
x̃, ỹ ∈ R. the relative errors 

. εφ = |φ(̃x, ỹ) − φ(x, y)|
|φ(x, y)| , εx = |̃x − x|

|x| , εy = |̃y − y|
|y|

fulfill the estimate 

. εφ ≤ εx + εy + εxεy.

If εx . and εy . are small, then the relative error εφ . is also small. 

Proof We have 

. εφ = |̃xỹ − xy|
|xy| = |(̃x − x)ỹ + x(ỹ − y)|

|xy| ≤ |̃x − x|
|x|

|̃y − y + y|
|y| + |̃y − y|

|y|
and the triangle inequality |̃y − y + y| ≤ |̃y − y| + |y|. implies the claim. 
�
Remark 1.1 Other well conditioned operations are the addition of two positive or 
two negative numbers and the inversion of non-zero numbers. Ill conditioned, on 
the other hand, is the subtraction of nearly equal numbers, as will be shown below. 

Obviously, an operation needs to be well conditioned to be able to meaningfully 
solve a given problem numerically, as rounding errors otherwise could cause large 
errors. 

Definition 1.3 A procedure or algorithm for the (approximate) solution of an 
operation φ . is a mapping φ̃ : X → Y ., which is defined by the execution of 
elementary, possibly rounding error-prone operations, where in the simplest case 

.φ̃ = fJ ◦ fJ−1 ◦ · · · ◦ f1.
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Example 1.2 

(i) The operation φ(x) = x4
. can be realised by φ̃ = f ◦ f ., with the multiplication 

provided by the computer f (x) = x � x .. 
(ii) The root φ(x) = √

x . of a number x > 0. is given according to Heron as the 
limit of the sequence zn+1 = (zn+x/zn)/2.with z0 > 0.. Thus, φ̃ . can be defined 
as the J -fold application of this iteration rule with initialisation z0 = 1.. 

For an operation, different methods are usually conceivable, but even if the 
operation is well conditioned, not all methods lead to good results, as rounding 
errors can have different effects during the execution of a method. 

Example 1.3 The operation defined by the function 

. φ(x) = 1

x
− 1

x + 1
= 1

x(x + 1)

is well conditioned for large values |x|., because for a perturbation x̃ = (1 + εx)x . 

with a small number εx .we get 

. φ(x) − φ(̃x) = (1 + εx)x
(
(1 + εx)x + 1

) − x(x + 1)

(1 + εx)x
(
(1 + εx)x + 1

)
x(x + 1)

≈ 2x2

x4
εx.

This implies that the relative error satisfies εφ ≤ 4εx ., provided |x| ≥ 1. holds. The 
numerical realisation can be done via the methods 

. ̃φ1(x) =
(1
x

)
−

( 1

x + 1

)
, φ̃2(x) = 1(

x(x + 1)
)

where the brackets determine the order of execution of operations. Numerical 
experiments show that φ̃1 . and φ̃2 . differ greatly for large numbers x. 

Definition 1.4 An algorithm φ̃ . is called unstable, if there is a perturbation x̃ . of 
x, such that the relative error εφ̃ . caused by rounding errors and perturbations is 
significantly larger than the error εφ . caused only by the perturbation, i.e. if φ(x) �= 0. 
and 

. εφ̃ =|φ̃(̃x) − φ(x)|
|φ(x)| � |φ(̃x) − φ(x)|

|φ(x)| = εφ.

An algorithm is called stable, if it is not unstable, and in this case there exists a 
moderate constant cstab ≥ 0.with εφ̃ ≤ cstabεφ .. 

Remark 1.2 A necessity for the stability of an algorithm is that each individual 
computational step is a well conditioned operation. 

The above algorithm φ̃1 . is unstable due to so-called cancellation effects, which 
occur when subtracting nearly equal-sized numbers.
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Example 1.4 For x = 0.677354. and y = 0.677335. the value φ(x, y) = x − y =
0.000019 = 0.19 · 10−4

.. For the perturbation x̃ = (1+ εx)x .with εx = 1.0 · 10−4
. it 

follows 

. εφ = |φ(̃x, y) − φ(x, y)|
|φ(x, y)| = x

x − y
εx = 0.677354 · 10−4

0.19 · 10−4 ≈ 3.565021

The perturbation of 0.01%. thus causes a relative error of over 350%., corresponding 
to an amplification factor κ = |x|/|x − y| ≈ 35000.. 

The subtraction of nearly equal-sized numbers is therefore an ill conditioned 
operation. Cancellation phenomena occur independently of the size of the sub-
stracted numbers if these are nearly equal and are often a result of intermediate 
values that are large in magnitude. 

Proposition 1.2 

(i) Let φ(x, y) = x−y �= 0.and let x̃, ỹ .be perturbations of x, y .. Then, t he relative 
errors εx = |x − x̃|/|x|. and εy = |y − ỹ|/|y|. are amplified by the inverse of the 
exact difference δ = x − y . and the sum of the absolute values of x and y, i.e .,

. εφ = |(x − x̃) + (y − ỹ)|
|δ| ≤ |δ|−1(|x| + |y|)max{εx, εy}.

(ii) If s = y1 + y2 + · · · + yn . and s̃ = ỹ1 + ỹ2 + · · · + ỹn ., with relative errors 
εi = |̃yi − yi |/|yi |., then the relative error εs = |̃s − s|/|s|. for the perturbed 
sum satisfies 

. εs ≤
( 1

|s|
n∑

i=1

|yi |
)

max
j=1,...,n

εj ,

i.e., a strong error amplification occurs if |y1| + |y2| + · · · + |yn| � |s|.. 
Proof 

(i) The first estimate follows from an application of the triangle inequality. 
(ii) With factors σi ∈ {±1}. so that σiεi = (ỹi − yi)/yi . the perturbed sum is given 

by 

. ̃s =
n∑

i=1

(1 + σiεi)yi = s +
n∑

i=1

σiεiyi .

The triangle inequality implies the error bound which is an equality if, e.g., 
σiεiyi ≥ 0. for i = 1, 2, . . . , n..


�
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Remark 1.3 The error caused by rounding and approximate solving in the numeri-
cal solution of an operation can be estimated using the conditioning of the operation 
and the stability of the method, because 

. 
|φ(x) − φ̃(̃x)|

|φ(x)| ≤ cstab
|φ(x) − φ(̃x)|

|φ(x)| ≤ cstabccond
|x − x̃|

|x| .

1.3 Computational Complexity 

In addition to the stability of a numerical algorithm, the computational complexity 
is an important quantity. 

Definition 1.5 For an operation φ : R
n → R

m
. and a corresponding algorithm 

φ̃ : Rn → R
m

.,  the  (computational) complexity is the number of required elementary 
operations in evaluating φ̃ .. 

An exact determination of the complexity is usually not necessary and instead 
the dependence on the problem size n is examined. The so-called Landau notation 
is helpful in this rega rd.

Definition 1.6 The sequence (an)n∈N . is (asymptotically) of the order of the 
sequence (bn)n∈N ., if numbers c > 0. and N ∈ N. exist, so that |an| ≤ c|bn|. for 
all n ≥ N .. In this case, we use the Landau notation an = O(bn).. 

For the complexity an . of an algorithm, it is relevant whether this is of a 
polynomial order np

.. 

Example 1.5 

(i) The multiplication of a vector x ∈ R
n
. with a fixed number a ∈ R. leads to an 

complexity of order O(n).. 
(ii) The Gaussian algorithm for solving a linear system has a complexity of 

O(n3)., while Cramer’s rule with a calculation of the determinant according 
to Laplace’s expansion theorem leads to a complexity of order O(n!).. 

1.4 Learning Objectives, Quiz and Application 

You should be able to explain the concept of the conditioning of a mathematical 
operation and illustrate it with examples. Furthermore, you should be able to define 
the stability of an algorithm and describe possible problems such as cancellation 
effects. You should be able to explain the Landau notation and determine the 
complexity of basic matrix operations.
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Quiz 1.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

We have that np = O(ln(1 + n)). for every 0 < p ≤ 1.. 

A stable algorithm is well conditioned. 

In practice, cancellation effects are rather unlikely. 

The sequential execution of two well conditioned operations is well conditioned. 

If a system of linear equations is well conditioned for one right-hand side, it is well 
conditioned for any right-hand side. 

Application 1.1 A union of n countries decides to introduce a common currency. 
The conversion rates imply fixed exchange rates between the national currencies, 
which are denoted by mij .. We have that mji = m−1

ij .. For the practical implementa-
tion, approximations m̃ij . should be suitably chosen. 

(i) What is a sufficient tolerance for the relative errors εij = (m̃ij − mij )/mij .,  so  
that a maximum relative deviation of 0.01% results from exchanging five times 
at random?

(ii) Alternatively, the conversion rates can be rounded so that, for example, six 
significant decimal places are retained, which means approximately m̃ij =
0.00123456. or m̃ij = 12.3456. if mij = 0.00123456789. or mij = 12.3456789. 
respectively. Is this approach more sensible?



Chapter 2 
Operator Norm and Condition Number 

2.1 Vector Norms 

In order to be able to specify the concepts of conditioning and stability, distances 
between points in Rn

. or lengths of vectors must be measurable. 

Definition 2.1 A norm on Rn
. is a mapping ‖ · ‖ : Rn → R≥0 . with the following 

properties: 

(i) ‖x‖ =  0 �⇒ x = 0. for all x ∈ R
n
. (definiteness); 

(ii) ‖x + y‖ ≤ ‖x‖ + ‖y‖. for all x, y ∈ R
n
. (triangle inequality); 

(iii) ‖λx‖ = |λ|‖x‖. for all λ ∈ R. and x ∈ R
n
. (homogeneity). 

Example 2.1 The �p
.-norms are for 1 ≤ p ≤ ∞. and x = [x1, . . . , xn]T ∈ R

n
. 

defined by 

. ‖x‖p =
⎧
⎨

⎩

( ∑n
j=1 |xj |p

)1/p
, p < ∞,

maxj=1,...,n |xj |, p = ∞.

The norm ‖ · ‖2 . is called Euclidean norm and satisfies ‖x‖22 = x · x = xTx .. 

Remarks 2.1 

(i) The �p
.-norms are equivalent in the sense that for all 1 ≤ p, q ≤ ∞. a constant 

cpq ≥ 1. exists, so that for all x ∈ R
n
.we have 

. c−1
pq ‖x‖p ≤ ‖x‖q ≤ cpq‖x‖p.

The constant cpq . depends on p, q and n .
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Fig. 2.1 Level sets Np(1). of 
different �p .-norms in R2 . 

p = 2 
p = 1 

p = �

(ii) The �p
.-norms differ by their level sets 

. Np(1) = {x ∈ R
n : ‖x‖p = 1},

see Fig. 2.1. 

2.2 Matrix Norms 

In the following, we always identify matrices A ∈ R
m×n

. with linear mappings A :
R

n → R
m

., for which the respective canonical bases are chosen. A linear mapping 
is also referred to as a linear operator. 

Definition 2.2 For norms ‖ · ‖Rm . and ‖ · ‖Rn . on R
m

. and Rn
. respectively, the 

(induced) operator norm for all A ∈ R
m×n

. is defined by 

. ‖A‖op = sup
x∈Rn,‖x‖Rn=1

‖Ax‖Rm.

The operator norm measures how strongly level sets are deformed. 

Example 2.2 A symmetric matrix A ∈ R
2×2

. maps the circular level set N2(1). to 
an ellipse contained in the circle with radius ‖A‖2 .. 

The operator norm defines a norm with the following properties. 

Lemma 2.1 For fixed norms ‖ · ‖. on Rn
. and Rm

.,  let ‖ · ‖op . be the induced operator 
norm on Rm×n

.. Then: 

(i) ‖ · ‖op . defines a norm on R
m×n

.; 
(ii) ‖A‖op = sup 

x∈Rn,‖x‖=1
‖Ax‖ =  inf {c ≥ 0 : ∀x ∈ Rn ‖Ax‖ ≤ c‖x‖}.; 

(iii) for A �= 0. and x ∈ R
n
. with ‖x‖ ≤ 1. and ‖Ax‖ = ‖A‖op . it follows that 

‖x‖ = 1.; 
(iv) the infimum and the supremum in (ii) are attained. 

Proof Exercise. �

Remark 2.2 From (ii) it follows that ‖Ax‖ ≤ ‖A‖op‖x‖. for all x ∈ R

n
..
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For some �p
.-norms, the induced operator norms can be explicitly given. The 

entries of a matrix A ∈ R
m×n

. are denoted by aij ., 1 ≤ i ≤ m., 1 ≤ j ≤ n.. 

Examples 2.3 

(i) The �1 .-norm on Rm
. and Rn

. induces the maximum absolute column sum 

. ‖A‖1 = max
j=1,...,n

m∑

i=1

|aij |.

(ii) The �∞
.-norm on Rm

. and Rn
. induces the maximum absolute row sum 

. ‖A‖∞ = max
i=1,...,m

n∑

j=1

|aij |.

(iii) The �2 .-norm on Rm
. and Rn

. induces the spectral norm 

. ‖A‖2 =
√

�(ATA) = (
max {|λ| : λ is an eigenvalue of ATA})1/2.

The number �(ATA). is called spectral radius of ATA.. 

Some further properties of the operator norm are the following. 

Lemma 2.2 Let norms on R�
., Rm

. and Rn
. be fixed and the induced operator norms 

be denoted by ‖ · ‖.. 

(i) For A ∈ R
�×m

. and B ∈ R
m×n

.we have ‖AB‖ ≤ ‖A‖‖B‖.. 
(ii) The identity matrix In ∈ R

n×n
. satisfies ‖In‖ = 1.. 

(iii) Every induced operator norm on R
n×n

. satisfies ‖A‖op ≥ |λ|. for all matrices 
A ∈ R

n×n
. and every eigenvalue λ. of A. 

Proof According to the previous lemma, ‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖. 

and this implies ‖AB‖ ≤ ‖A‖‖B‖.. The other statements follow directly from the 
definition of the operator norm. �


The Euclidean norm can be defined in a straightforward way on R
m×n

., but it is 
not an induced operator norm. 

Example 2.4 The Frobenius norm of a matrix A ∈ R
m×n

. is defined by ‖A‖F =
( ∑m

i=1
∑n

j=1 a2ij

)1/2
.. It is not an induced operator norm for n > 1., since ‖In‖F =√

n. holds. Also the scaled Frobenius norm n−1/2‖A‖F . is not an induced operator 
norm, because this violates the property ‖A‖op ≥ |λ|. for every eigenvalue λ. of A.
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2.3 Condition Number 

With the help of the concept of the operator norm, the conditioning of a system of 
linear equations can be specified. 

Proposition 2.1 Let ‖ · ‖. be an operator norm on R
n×n

.. Let A ∈ R
n×n

. be regular 
and let x, x̃, b, b̃ ∈ R

n \ {0}., such that 

. Ax = b, Ax̃ = b̃.

Then it follows that 

. 
‖x − x̃‖

‖x‖ ≤ ‖A‖‖A−1‖‖b − b̃‖
‖b‖

Proof We have that ‖x − x̃‖ = ‖A−1(b− b̃)‖ ≤ ‖A−1‖‖b− b̃‖. and ‖b‖ = ‖Ax‖ ≤
‖A‖‖x‖. or ‖x‖ ≥ ‖A‖−1‖b‖.. From this it follows 

. 
‖x − x̃‖

‖x‖ ≤ ‖A−1‖‖b − b̃‖
‖x‖ ≤ ‖A−1‖‖b − b̃‖

‖A‖−1‖b‖ ,

thus the claimed estimate. �

The product ‖A‖‖A−1‖. controls the amplification of the relative error when 

solving a system of linear equations. 

Definition 2.3 The condition number of a regular matrix A ∈ R
n×n

.with respect to 
the operator norm induced by the norm ‖ · ‖. on Rn

. is defined by 

. cond‖·‖(A) = ‖A‖‖A−1‖.

In the case of an �p
.-norm, we write condp . instead of cond‖·‖p .. 

Remarks 2.3 

(i) The condition number of a matrix is always bounded below by 1, since for every 
operator norm 1 = ‖AA−1‖ ≤ ‖A‖‖A−1‖ = cond‖·‖(A).. 

(ii) If A is symmetric with eigenvalues λ1, . . . , λn ., then 

. cond2(A) = maxj=1,...,n |λj |
mink=1,...,n |λk| .

Let us consider the condition number of the matrix from the earlier Example 1.1, 
in which perturbations of the right side caused large errors.
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Example 2.5 The matrix A =
[
1 1
1 1 + ε

]

. has the eigenvalues λ1,2 = 1 + ε/2 ±
(1 + ε2/4)1/2 .. With the Taylor approximation (1 + x)1/2 ≈ 1 + x/2. it follows that 
for small numbers ε .we have λ1 ≈ 2+ ε/2. and λ2 ≈ ε/2.. Thus, cond2(A) ≈ 4ε−1

., 
which explains the sensitive behaviour of corresponding systems of equations to 
perturbations. 

Geometrically interpreted, the condition number measures the distortion defined 
by the linear mapping A, but is independent of uniform scalings. 

Example 2.6 For a symmetric matrix A ∈ R
2×2

., cond2(A). describes the ratio of 
the radii of the ellipse A(N2(1)).. 

2.4 Learning Objectives, Quiz and Application 

You should be familiar with various characterisations of the operator norm as well 
as some concrete examples. You should be able to define the condition number and 
explain its significance for the approximate solution of systems of linear equations. 

Quiz 2.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

If a system of linear equations is well conditioned with respect to an operator norm, 
it is also well conditioned with respect to any other operator norm. 

For A,B ∈ R
n×n . and λ,μ ∈ R. and an arbitrary operator norm ‖ · ‖. holds 

‖λA + μB‖ ≤ λ‖A‖ + μ‖B‖.. 

For A =
[
−2 4

0 5

]

., ‖A‖∞ = 6. and ‖A‖1 = 9. hold. 

For A ∈ R
m×n . and B ∈ R

n×p ., kerAB = kerA. holds. 

If λ. is an eigenvalue of A,  then ‖A‖ ≤ |λ|. holds for every operator norm. 

Application 2.1 The routes of two airplanes flying in a plane are given by t �→
xi + tvi

.with xi, vi ∈ R
2
. for i = 1, 2., where ‖vi‖2 = 350 km/h. applies. Calculate 

the point where the routes of the airplanes intersect and the respective times when 
the airplanes arrive at this point. How large can measurement errors in determining 
the initial positions xi

., i = 1, 2., be at most, so that the error in the calculation of the 
intersection point is less than 5 km.?



Chapter 3 
Matrix Factorisations 

3.1 Triangular Matrices 

Systems of linear equations can be solved in a canonical way when they are defined 
by a triangular matrix. This motivates the factorisation of matrices using triangular 
matrices. In this chapter, we follow the presentation in [10]. 

Definition 3.1 A  matrix L ∈ R
n×n

. is called lower triangular matrix,  if �ij = 0. 
for i < j .. A matrix U ∈ R

n×n
. is called upper triangular matrix,  if UT

. is a lower 
triangular matrix. A triangular matrix D ∈ R

n×n
. is called normalised,  if dii = 1. for 

i = 1, 2, . . . , n.. 

Linear systems with a regular triangular matrix can be solved using backward 
or forward substitution. The diagonal elements of a regular triangular matrix U are 
non-zero because 0 �= detU = u11u22 . . . unn .. 

Algorithm 3.1 (Backward Substitution) Let U ∈ R
n×n

. be a regular upper 
triangular matrix and b ∈ R

n
.. Compute x ∈ R

n
. by: 

. for i = n : −1 : 1; xi =
(
bi −

n∑
j=i+1

uij xj

)
/uii; end

Remark 3.1 In the i-th step, n − i . multiplications and subtractions as well as one 
division are performed, so that the total effort of the backward substitution is given 
by 

. 

n∑
i=1

(1 + 2(n − i)) = n + 2
n−1∑
k=1

k = n + (n − 1)n = n2.
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The sets of regular lower and upper triangular matrices are groups. 

Lemma 3.1 Let U,V ∈ R
n×n

. be upper triangular matrices. Then UV  is an upper 
triangular matrix and if U is regular, then U−1

. is also an upper triangular matrix 
with diagonal entries u−1

ii ., i = 1, 2, . . . , n.. 

Proof Exercise. ��

3.2 LU Decomposition 

If a factorisation A = LU . of a regular matrix A ∈ R
n×n

. into a lower (lower) and an 
upper (upper) triangular matrix L ∈ R

n×n
. and U ∈ R

n×n
. is given, then the linear 

system Ax = b. can be solved in two steps: 

. (i) Solve Ly = b. (ii) Solve Ux = y.

This implies that Ax = (LU)x = L(Ux) = Ly = b.. Perturbations are amplified 
in the first step with cond(L). and in the second with cond(U).,  so  in  total  w  ith
cond(L) cond(U).. The method is therefore only stable if cond(L) cond(U) ≈
cond(A). holds. This is generally not the case. 

Example 3.1 For A =
[
ε 1
1 0

]
. with 0 < ε � 1. we have A−1 =

[
0 1
1 −ε

]
. and we 

have ‖A‖∞ = ‖A−1‖∞ = 1 + ε . so cond∞(A) = (1 + ε)2 ≈ 1.. A factorisation is 
given by 

. L =
[

1 0
ε−1 1

]
, U =

[
ε 1
0 −ε−1

]
.

We have ‖L‖∞ = ‖L−1‖∞ = 1 + ε−1
. and ‖U‖∞ = ε−1

., ‖U−1‖∞ = 1 + ε−1
., 

thus 

. cond∞(L) = (1 + ε−1)2 ≈ ε−2, cond∞(U) = (1 + ε−1)/ε ≈ ε−2.

Definition 3.2 A factorisation A = LU . with lower triangular matrix L ∈ R
n×n

. 

and upper triangular matrix U ∈ R
n×n

. is called LU decomposition of A. It is called 
normalised,  if  L is normalised, that is, only ones are on the diagonal of L.

Proposition 3.1 For a regular matrix A ∈ R
n×n

. the following statements are 
equivalent: 

(i) There exists a uniquely determined normalised LU decomposition of A .
(ii) All upper left submatrices Ak = (aij )1≤i,j≤k ∈ R

k×k
., k = 1, 2, . . . , n.,  of  A are 

regular.
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Proof (i) �⇒ ( ii)..  If A = LU . and A is regular, then L and U are also re gular,
because 0 �= det(A) = det(L) det(U).. Furthermore, all submatrices Lk . and Uk . are 
regular, since for example det(L) = �11�22 . . . �nn . holds. Since for each submatrix 
Ak . the decomposition Ak = LkUk . holds, the regularity of Ak . follows. 

(ii) �⇒ (i)..  For n = 1. the implication is clear and assume it is proven 
for n − 1.. Then there exists a uniquely determined normalised LU decomposition 
An−1 = Ln−1Un−1 .. Let the vectors [bT, ann]. and [cT, ann]. be the last column and 
row of A respectively. To prove the statement for n it suffices to show that uniquely 
determined vectors �, u ∈ R

n−1
. and r ∈ R. exist with 

. 

[
An−1 b

cT ann

]
=

[
Ln−1 0
�T 1

] [
Un−1 u

0 r

]
=

[
Ln−1Un−1 Ln−1u

(UT
n−1�)

T �Tu + r

]
.

Because An−1 = Ln−1Un−1 . this is equivalent to 

. b = Ln−1u, c = UT
n−1�, ann = �Tu + r.

Since Ln−1 . and Un−1 . are regular, uniquely determined solutions u and �. exist, 
which then uniquely determine r . ��
Examples 3.2 

(i) If A is positive definite, that is Ax · x > 0. for all x ∈ R
n \ {0}., or strictly 

diagonally dominant, that is
∑

j=1,..,n,j �=i |aij | < |aii |. for i = 1, 2, . . . , n., 
then A has an LU decomposition.

(ii) The matrix A =
[
0 1
1 0

]
. does not have an LU decomposition. 

The LU decomposition of a matrix can be determined easily .

Lemma 3.2 If A = LU . is a normalised LU decomposition of A, it follows for
1 ≤ i, k ≤ n. 

. aik = uik +
i−1∑
j=1

�ij ujk, aki = �kiuii +
i−1∑
j=1

�kjuji .

Proof Because �ij = 0. for j > i . and �jj = 1.we have 

.aik =
n∑

j=1

�ij ujk =
i∑

j=1

�ij ujk = uik +
i−1∑
j=1

�ij ujk
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and because uji = 0. for j > i .we have 

. aki =
n∑

j=1

�kjuji =
i∑

j=1

�kjuji = �kiuii +
i−1∑
j=1

�kjuji .

This proves the assertion. ��
The formulas of the lemma can be solved for uik . for i ≤ k . and since uii �= 0. 

for �ki . for k > i .. In the following algorithm, the rows of U and columns of L are 
determined alternately.

Algorithm 3.2 (LU Decomposition) The matrix A ∈ R
n×n

. has a normalised LU 
decomposition. The non-trivial entries of L and U are given by:

. 

for i = 1 : n

for k = i : n; uik = aik −
i−1∑
j=1

�ij ujk; end

for k = i + 1 : n; �ki = (
aki −

i−1∑
j=1

�kjuji

)
/uii; end

end

Remarks 3.2 

(i) The calculation of uik . requires i −1.multiplications and subtractions, for �ki . an 
additional division is required, so that in the i-th step 

. (n − i + 1)2(i − 1) + (n − i)(2(i − 1) + 1) = (4n + 5)i − 4i2 − (3n + 2)

operations are carried out. By summing over i = 1, 2, . . . , n. the total 
computational effort 2n3/3 + O(n2). is obtained. 

(ii) The entries of A can be successively overwritten by the non-trivial entries of L 
and U , so no additional storage space is necessary.

3.3 Cholesky Decomposition 

If A ∈ R
n×n

. is symmetric, only n(n + 1)/2. many entries of A are relevant and 
it is canonical to look for a factorisation A = LLT

. with a lower triangular matrix 
L ∈ R

n×n
.. What is necessary for this is that A is symmetric and positive semi-

definite, because the factorisation implies t hat

.

AT = (LLT)T = LLT = A,

xTAx = xT(LLT)x = (LTx)T(LTx) = ‖LTx‖22 ≥ 0.
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If A or L is regular, it follows that A must be positive definite. In this case, the 
conditions for the existence of the Cholesky decomposition are also sufficient and 
imply their uniqueness.

Definition 3.3 The matrixA ∈ R
n×n

. is called positive definite if for all x ∈ R
n\{0}. 

we have that xTAx > 0.. If only xTAx ≥ 0. holds for all x ∈ R
n
., then A is called 

positive semidefinite .

Lemma 3.3 Let A be symmetric and positive definite. Then detA > 0. and all 
submatrices Ak = (aij )1≤i,j≤k . are positive definite. 

Proof Exercise. ��
Definition 3.4 A factorisation A = LLT

.with a lower triangular matrix L is called 
Cholesky decomposition of A .

Proposition 3.2 LetA ∈ R
n×n

.be symmetric and positive definite. Then there exists 
a uniquely determined lower triangular matrix L ∈ R

n×n
. with A = LLT

. and 
�ii > 0. for i = 1, 2, . . . , n.. 

Proof If n = 1., then a11 > 0. and the construction follows by choice of �11 =√
a11 .. The submatrix An−1 = (aij )1≤i,j≤n−1 . is positive definite and symmetric. 

Let us suppose that we have the factorisation An−1 = Ln−1L
T
n−1 . with the desired 

properties. Let [bT, ann]. be the last row of A. Then a vector c ∈ R
n−1

. and a number 
α > 0. are to be constructed such that 

. 

[
An−1 b

bT ann

]
=

[
Ln−1 0
cT α

] [
LT

n−1 c

0 α

]
=

[
Ln−1L

T
n−1 Ln−1c

(Ln−1c)
T α2 + cTc

]

holds. Because An−1 = Ln−1L
T
n−1 . this is equivalent to the equations Ln−1c = b. 

and cTc+α2 = ann .. Since Ln−1 . has positive diagonal entries, Ln−1 . is regular and c 
is uniquely determined. To be able to solve the second equation with a real number
α > 0.,  we  must  prove α2 = ann − cTc > 0..  We  ha  ve

. detA = det

[
Ln−1 0
cT α

]
det

[
LT

n−1 c

0 α

]
= α2(detLn−1)

2.

Since detA > 0. and detLn−1 > 0. it follows α2 > 0., that is, there exists a unique 
α > 0., which completes the factorisation. ��

The factorisations can again be determined successively. 

Lemma 3.4 If A = LLT
., then it follows 

.aik =
{

�ik�kk + ∑k−1
j=1 �ij �kj for i > k,

�2kk + ∑k−1
j=1 �2kj for i = k.
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Proof Since �kj = 0. for j > k .,  we  ha  ve

. aik =
n∑

j=1

�ij �kj =
k∑

j=1

�ij �kj

and this implies the claim. ��
These identities can be solved for �kk . and �ik .. 

Algorithm 3.3 (LLT
. Decomposition) Let A ∈ R

n×n
. be symmetric and positive 

definite. The non-trivial entries of L are given by:

. 

for k = 1 : n

�kk = (
akk −

k−1∑
j=1

�2kj
)1/2

for i = k + 1 : n; �ik = (
aik −

k−1∑
j=1

�ij �kj

)
/�kk; end

end

Remark 3.3 The algorithm calculates the Cholesky decomposition with n3/3 +
O(n2). operations. 

Example 3.2 The matrix A =
[
a b

b c

]
. is positive definite if a > 0. and ca − b2 > 0. 

hold. In this case, one obtains A = LLT
.with 

. L =
[

a1/2 0
b/a1/2 (c − b2/a)1/2

]
.

The solution of a linear system can be determined using the Cholesky decompo-
sition as follows: 

. (i) Solve Ly = b. (ii) Solve LTx = y.

To show that this defines a stable algorithm, we use that the spectral norm of a 
matrix M ∈ R

n×n
. is given by 

. ‖M‖22 = ρ(MTM) = max{|λ| : λ is an eigenvalue of MTM}.

If M is symmetric, then ‖M‖2 = ρ(M).. 

Proposition 3.3 If A ∈ R
n×n

. is symmetric and positive definite, then for the 
Cholesky decomposition A = LLT

., we have that 

. cond2(L) = cond2(L
T) = (

cond2(A)
)1/2

.
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Proof The symmetric but generally different matrices LTL. and LLT
. have the same 

eigenvalues, because since L is regular, we have for all x ∈ R
n
. and λ ∈ R. 

. LTLx = λx ⇐⇒ LLT(Lx) = λ(Lx).

With ρ(LLT) = ρ(LTL). it follows ‖L‖2 = ‖LT‖2 . and similarly ‖L−1‖2 =
‖L−T‖2 .. This implies cond2(L) = cond2(LT).. With LLT = A. and since A is 
symmetric, we hav e

. ‖L‖22 = ‖LT‖22 = ρ
(
LLT) = ρ(A) = ‖A‖2

and 

. ‖L−1‖22 = ρ
(
L−TL−1) = ρ

(
(LLT)−1) = ρ

(
A−1) = ‖A−1‖2.

With these identities, it follows overall 

. cond2(L) = ‖L‖2‖L−1‖2 = ‖A‖1/22 ‖A−1‖1/22 = (
cond2(A)

)1/2
.

This proves the claim. ��

3.4 Learning Objectives, Quiz and Application 

You should be able to define the LU and Cholesky factorisations, name sufficient 
and necessary conditions for their existence and derive algorithms for practical 
computations. You should be able to explain the effort and stability properties of 
solving linear systems using these f actorisations.

Quiz 3.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

If xTAx < 0. holds for all x ∈ R
n .,  then  A has an LU decomposition.

If A has an LU decomposition and A is symmetric, then U = LT .. 

If A is invertible with Cholesky decomposition A = LLT .,  then L−TL. defines a 
Cholesky decomposition of A−1 .. 

If a Cholesky decomposition A = LLT . is given, then the linear system Ax = b. can 
be solved with the effort O(n2).. 

If A is symmetric and invertible, then A is positiv e definite.

Application 3.1 For the evaluation of financial derivatives such as options, the sim-
ulation of multidimensional Brownian motions is required. For this, n-dimensional 
random variables are needed that follow a correlated normal distribution, that is
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X ∼ N(μ,Σ). with an expected value μ ∈ R
n
. and a symmetric, positive definite 

covariance matrix Σ ∈ R
n×n

.. This means that 

. Σij = E[(Xi − μi)(Xj − μj )]

and μi = E(Xi). for i, j = 1, 2, . . . , n..  If  Y is a standard normally distributed 
vector random variable, that is Y ∼ N(0, In)., and Σ = LLT

. is the Cholesky 
decomposition of Σ ., then by means of X = μ + LY . a random variable with 
X ∼ N(μ,Σ). is obtained. In MATLAB a realisation of X can be generated using 
pseudo-random variables by X=mu+L*randn(n,1).  Use n = 3., 

. Σ =
⎡
⎣
1 1 0
1 5 1
0 1 5

⎤
⎦ , μ =

⎡
⎣

−5
0
5

⎤
⎦ ,

generate 1000 realisations of the variable X and display the histograms of the 
components Xi . using the command hist in the range [−10, 10]. for i = 1, 2, 3..



Chapter 4 
Elimination Methods 

4.1 Gaussian Elimination Method 

Systems of linear equations appear in various areas of applications. They allow us 
to determine (approximately) internal quantities from certain external, measurable 
quantities, which are often not directly accessible. 

Example 4.1 Can the total value of coins in a jar be determined by their weight and 
volume? 

The Gaussian method successively transforms a linear system into an equivalent 
system with an upper triangular matrix. We follow the presentation in [10]  in  this  
chapter.

Algorithm 4.1 (Gaussian Elimination) Let A ∈ R
n×n

. and b ∈ R
n
.. 

(1) Set A(1) = A. and b(1) = b. and k = 1.. 
(2) The matrix A(k)

. satisfies a
(k)
ij = 0. for 1 ≤ j ≤ k − 1. and i ≥ j + 1. and with 

�ik = a
(k)
ik /a

(k)
kk . for i = k + 1, . . . , n. the normalised lower triangular matrix 

L(k) ∈ R
n×n

. is defined as follows: 

. A(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)
11 . . . . . . a

(1)
1n

. . .
...

a
(k)
kk . . . a

(k)
kn

...
...

a
(k)
nk . . . a

(k)
nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, L(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
−�k+1,k

...
. . .

−�nk 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then for A(k+1) = L(k)A(k)
., it holds that a

(k+1)
ij = 0. for 1 ≤ j ≤ k . and 

i ≥ j + 1., that is 

. A(k+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)
11 . . . . . . a

(1)
1n

. . .
...

a
(k)
kk . . . . . . a

(k)
kn

a
(k+1)
k+1,k+1 . . . a

(k+1)
k+1,n

...
...

a
(k+1)
n,k+1 . . . a

(k+1)
nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Also set b(k+1) = L(k)b(k)
.. 

(3) Stop if k + 1 = n.; otherwise increase k → k + 1. and repeat step (2). 

Proposition 4.1 If A ∈ R
n×n

. is regular, then the Gaussian method is feasible if and 
only if A has an LU decomposition. The method then provides the normalised LU 
decomposition with U = A(n)

. and L = (
L(n−1) . . . L(1)

)−1
.. The modified right-

hand side y = b(n)
. is given by y = L−1b. and the solution of the linear system 

Ax = b. is the solution of the system Ux = y .. 

Proof 

(i) Assume that the matrix A has an LU decomposition. The Gaussian method is 
implementable, provided a

(k)
kk �= 0. holds at every step. We consider the left, 

upper k × k . submatrix A
(k)
k . of A(k) = L(k−1) . . . L(1)A., that is 

. A
(k)
k =

⎡
⎢⎢⎢⎢⎣

a
(1)
11 . . . . . . a

(1)
1n

a
(2)
22 a

(2)
2n

. . .
...

a
(k)
kk

⎤
⎥⎥⎥⎥⎦

.

With the left, upper submatrices L
(j)
k . of L(j)

. and Ak . of A then 

. A
(k)
k = L

(k−1)
k . . . L

(1)
k Ak.

Since the normalised triangular matrices L
(j)
k . are regular, A(k)

k . is regular exactly 
when Ak . is regular. This is given by the result on the existence of the LU 
decomposition. Thus, it follows that 0 �= detA(k)

k = a
(1)
11 a

(2)
22 . . . a

(k)
kk . so a

(k)
kk �= 0. 

and the procedure is well-defined. 
(ii) Conversely, if the Gaussian method is feasible, then U = A(n) =

L(n−1) . . . L(1)A. is an upper triangular matrix and it suffices to show that 
L = (

L(n−1) . . . L(1)
)−1

. is a normalised lower triangular matrix. With the k-th
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canonical basis vector ek ∈ R
n
. and 

. �k = [0, . . . , 0, �k+1,k, . . . , �nk]T

L(k) = In − �ke
T
k .. With eTk �k = 0. it follows 

. L(k)(In+�ke
T
k ) = (In−�ke

T
k )(In+�ke

T
k ) = In−�ke

T
k +�ke

T
k −�ke

T
k �ke

T
k = In,

that is (L(k))−1 = In + �ke
T
k .. With complete induction it follows 

. L = (
L(n−1) . . . L(1))−1 = (

L(1))−1
. . .

(
L(n−1))−1 = In +

n−1∑
j=1

�j e
T
j

or 

. L =

⎡
⎢⎢⎢⎣

1
�21 1
...

. . .
. . .

�n1 . . . �n,n−1 1

⎤
⎥⎥⎥⎦ .

This shows that A = LU . is the normalised LU decomposition of A .
��

Remark 4.1 The proof shows that no additional calculations are required to 
determine L. 

For the implementation of the Gaussian method, the matrices L(k)
. do not need to 

be explicitly set up. 

Algorithm 4.2 (Gaussian Method) Let A ∈ R
n×n

. be an LU -decomposable 
matrix and b ∈ R

n
.. Calculate the LU decomposition and the vector y = L−1b. 

by: 

. 

for k = 1 : n − 1

for i = k + 1 : n; �ik = a
(k)
ik /a

(k)
kk ; b

(k+1)
i = b

(k)
i − �ikb

(k)
k ;

for j = k + 1 : n; a
(k+1)
ij = a

(k)
ij − �ika

(k)
kj ; end;

end

end

Remark 4.2 The algorithm provides the non-trivial entries of the LU decompo-
sition of the matrix A and the modified right-hand side y with (2/3)n3 + O(n2). 

computational steps. The entries of U are given by uij = a
(i)
ij .. The matrix A can be 

overwritten with the calculated quantities.
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4.2 Pivot Strategy 

The Gaussian elimination defined above is not feasible for every matrix and can lead 
to instabilities. 

Example 4.2 The system of linear equations 

. 

[
ε 1
1 1

] [
x1

x2

]
=

[
1
2

]

is well conditioned for 0 ≤ ε < 1/2. and has the solution x1 = 1/(1 − ε). 

and x2 = (1 − 2ε)/(1 − ε).. The first step of the back substitution in the 
Gaussian elimination initially provides an approximation for x2 ., which for very 
small numbers ε . considering rounding is given by x̃2 = 1.. If this result is used 
to calculate x̃1 . in the equation εx̃1 + x̃2 = 1., then the result is x̃1 = 0., which is not 
a good approximation of the correct value x1 .. However, considering the equivalent 
system of equations resulting from a row swap 

. 

[
1 1
ε 1

] [
x1

x2

]
=

[
2
1

]
,

no instabilities occur in the Gaussian elimination. 

The avoidance of instabilities in Gaussian elimination is achieved through a pivot 
search. For this, the above procedure in the k-loop before the i-loop is extended as 
follows: 

• determine p ∈ {k, . . . , n}.with |a(k)
pk | = maxi=k,...,n |a(k)

ik |.; 
• swap the rows p and k in [A(k)|b(k)]. and obtain [Ã(k) |̃b(k)].; 
• eliminate entries in [Ã(k) |̃b(k)]. and obtain [A(k+1)|b(k+1)].. 
Practically, the swapping is not actually performed, but corresponding indices are 
renamed by defining a vector π ∈ N

n
. that describes the swaps: 

• initialise π .with π = [1, . . . , n].; 
• if the rows k and p are to be swapped, then swap π(k). and π(p).. 

The swapping of rows can also be represented with a permutation matrix. It holds 
that Ã(k) = P (k)A(k)

., where P (k)
. is obtained by swapping the rows p and k in the 

identity matrix In .. 

Remark 4.3 Instead of the column pivot search, a total pivot search can be 
performed, in which case columns of the remaining matrix are also swapped. 
However, this leads to a high effort.
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Proposition 4.2 If A ∈ R
n×n

. is regular and b ∈ R
n
., then the Gaussian method 

with pivot search is feasible. It provides the normalised LU decomposition PA =
LU . with |�ij | ≤ 1. for all 1 ≤ i, j ≤ n. as well as the modified right-hand side 
b(n) = L−1Pb..  Here, P = P (n−1) . . . P (1)

.. 

Proof The method is not feasible exactly when in the k-th step with 1 ≤ k ≤ n− 1., 
it holds that |a(k)

pk | = maxi=k,...,n |a(k)
ik | = 0., that is, the k-th column of the matrix 

A(k)
. has only vanishing entries from the diagonal element onwards, 

. A(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)
11 . . . . . . a

(1)
1n

. . .
...

a
(k−1)
k−1,k−1 a

(k−1)
k−1,k . . . a

(k−1)
k−1,n

0 a
(k)
k,k+1 . . . a

(k)
kn

...
... . . .

...

0 a
(k)
n,k+1 . . . a

(k)
nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

thus the first k columns of A(k)
. are linearly dependent and consequently A(k)

. is not 
regular. But then A cannot be regular either, because A(k)

. arises from A through 
regular transformations. This is a contradiction and it follo ws maxi=k,...,n |a(k)

ik | >

0.. For the coefficients of L, �ik = a
(k)
ik /a

(k)
pk . holds and after choosing a

(k)
pk . it follows 

that |�ik| ≤ 1.. To derive the decomposition PA = LU ., we note with (P (k))−1 =
P (k)

., that 

. 

A(1) = A,

A(2) = L(1)P (1)A(1) = L(1)P (1)A,

A(3) = L(2)P (2)A(2) = L(2)P (2)L(1)P (1)A = L(2)[P (2)L(1)P (2)][P (2)P (1)]A,

A(4) = L(3)P (3)A(3)

= L(3)[P (3)L(2)P (3)][P (3)P (2)L(1)P (2)P (3)][P (3)P (2)P (1)]A

and corresponding identities for A(5), . . . , A(n)
.. With 

. ̂L(k) = P (n−1)P (n−2) . . . P (k+1)L(k)P (k+1) . . . P (n−2)P (n−1)

it holds 

.A(n) = L̂(n−1) . . . L̂(1)PA.
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The matrix A(n) = U . is an upper triangular matrix and with L(k) = In − �ke
T
k . it 

follows that 

. ̂L(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
−�̂k+1,k

...
. . .

−�̂nk 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and L = (
L̂(n−1) . . . L̂(1)

)−1
. is a normalised lower triangular matrix. ��

Remarks 4.4 

(i) To solve Ax = b. using an LU decomposition PA = LU ., one solves the 
systems of equations Ly = Pb. and Ux = y .. In the modified Gaussian method, 
y = b(n) = L−1Pb. and one solves Ux = b(n)

.. 
(ii) In an implementation, the vector π . must be created to obtain U and L from 

the overwritten matrix A, which means additional storage space is needed. The 
effort for the Gaussian method with pivot search also amounts to 2n3/3+O(n2). 

operations. 

4.3 Learning Objectives, Quiz and Application 

You should be able to motivate and apply the Gaussian elimination method and 
explain its relationships to LU decomposition. You should be able to illustrate the 
importance of pivot strateg ies.

Quiz 4.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

With the Gaussian elimination method, the inverse A−1 . of an LU decomposable 
matrix A can be determined with the effort O(n4).. 

If A ∈ R
n×n . is positive definite, no pivot search is necessary to perform the 

Gaussian elimination method. 

If L(1), L(2), . . . , L(n−1) . are the elimination matrices in the Gaussian elimination 
method for a system of equations with system matrix A, then the factor L in the LU 
decomposition of A is given by L = L(1)L(2) . . . L(n−1) .. 

The pivot search prevents the occurrence of cancellation effects. 

Permutation matrices are obtained by row swaps in the identity matrix.
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Application 4.1 The combustion of glucose is described by the chemical reaction 
equation 

. x1 C6H12O6 + x2 O2 −→ x3 CO2 + x4 H2O

A minimal integer solution x = [x1, x2, . . . , x4]T �= 0. is to be determined, such that 
the same number of atoms of each involved substance is on the left and right side. 
How can the Gaussian elimination method be modified to construct a solution?



Chapter 5 
Least Squares Problems 

5.1 Gaussian Normal Equation 

In many applications, overdetermined systems of equations occur, that is for A ∈
R

m×n
.with m ≥ n. and b ∈ R

m
., a vector x ∈ R

n
. is sought such that 

. Ax ≈ b.

The problem is generally not exactly solvable, since more conditions than variables 
can occur. 

Example 5.1 For measurement data (ti , yi)., i = 1, 2, . . . , m., a number c ∈ R. is 
sought with yi ≈ cti .. The number c then describes the slope of a straight line, which 
approximates the pairs of points as well as possible, see F ig. 5.1. 

Definition 5.1 Given A ∈ R
m×n

. and b ∈ R
m

.,  the  least squares problem is defined 
as:

. Minimise x �→ ‖Ax − b‖22
For x ∈ R

n
., the vector r = b − Ax . is the residual of x. 

The method is referred to as method of least squares, due to the presence of the 
Euclidean norm. 

Proposition 5.1 The solutions of the least squares problem are exactly the solutions 
of the Gaussian normal equation 

. ATAx = ATb,

© The Author(s), under exclusive license to Springer-Verlag GmbH, 
DE, part of Springer Nature 2025 
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Fig. 5.1 In linear regression 
problems, an approximation 
of given measured values by a 
straight line is sought 

t 

y = ct 

y 

Fig. 5.2 Abstract solution of 
the least squares problem 
using the decomposition 
b = Ax + r .with r ∈ kerAT . 

ImA 

y = Ax 

rb 

and, in particular, a solution x ∈ R
n
. exists. If z ∈ R

n
. is another solution, then 

Ax = Az. and the associated residuals agree. 

Proof According to results of linear algebra, it holds 

. R
m = ImA + kerAT

and this decomposition is orthogonal. A proof follows from considering the set 
(ImA)⊥ .. Thus, for b ∈ R

m
. uniquely determined vectors y ∈ ImA. and r ∈ kerAT

. 

exist with y · r = 0. and b = y + r .. Furthermore, an x ∈ R
n
. exists with y = Ax .,  see  

Fig. 5.2. In all it follows 

. ATb = ATy + ATr = ATAx + 0 = ATAx,

that is, x solves the normal equation. To show that x is also a solution of the least 
squares problem, let z ∈ R

n
. be arbitrary. With r = b − Ax . and ATr = 0. it follows 

. 

‖b − Az‖22 = ‖(b − Ax) + A(x − z)‖22
= ‖b − Ax‖22 + 2r · A(x − z) + ‖A(x − z)‖22
= ‖b − Ax‖22 + 2(ATr) · (x − z) + ‖A(x − z)‖22
= ‖b − Ax‖22 + ‖A(x − z)‖22
≥ ‖b − Ax‖22.

So, x is a minimum point and thus a solution of the least squares problem. Equality 
holds exactly when A(x − z) = 0. so x − z ∈ kerA = kerATA. holds, which is to 
say z is a minimum point and fulfils the normal equation. In particular, it follows 
that A(x − z) = 0. holds, when z ∈ R

n
. is another solution. 	


Remark 5.1 The identity ATr = 0. states that r is perpendicular or normal to the 
columns of A.
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Lemma 5.1 The matrix ATA. is symmetric and positive semi-definite. It is positive 
definite if and only if kerA = {0}., that is, when A is injective or the column vectors 
of A are linearly independent, i.e. rankA = n. if m ≥ n.. In this case, the solution to 
the normal equation is unique. 

Proof We have (ATA)T = ATA. and 

. xT(ATA)x = (Ax)T(Ax) = ‖Ax‖22 ≥ 0

with equality if and only ifAx = 0.. This implies the assertion, since positive definite 
matrices are regular. 	

Remark 5.2 The condition number of ATA. is generally larger than that of A, 
because for m = n. and a regular matrix A ∈ R

n×n
.we have 

. cond2(A
TA) = ‖ATA‖2‖(ATA)−1‖2 = λmax(A

TA)

λmin(ATA)
= cond2(A)2,

so cond2(ATA) ≥ cond2(A)., since cond2(A) ≥ 1.. 

Because of this observation, least squares problems are not solved using the 
normal equation. 

5.2 Householder Transformations 

Since the Euclidean norm is invariant under rotations, we have 

. ‖˜Q(Ax − b)‖2 = ‖Ax − b‖2
for every rotation ˜Q. and more generally for orthogonal matrices. We will try to 
construct an orthogonal matrix Q such that QA has a generalised upper triangular 
shape, which allows a simple solution to the least s quares problem.

Definition 5.2 The matrix Q ∈ R
�×�

. is called orthogonal if QTQ = I� ..  The  set  of  
orthogonal matrices is denoted by O(�).. 

Lemma 5.2 For all P,Q ∈ O(�)., PQ ∈ O(�)., Q−1 = QT ∈ O(�)., ‖Qx‖2 =
‖x‖2 . for all x ∈ R

�
. and cond2(Q) = 1.. 

Proof For all x ∈ R
�
.we have 

.‖Qx‖22 = (Qx)T(Qx) = xT(QTQ)x = xTx = ‖x‖22
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Fig. 5.3 Householder 
transformations define 
reflections on a plane 

Pvv =−v 
Pvz = w− v 

w = Pvw 

z = w+ v 
v 

and thus ‖Q‖2 = 1.. From the identities 

. 

QQT = (QQT)T = IT� = I�,

Q−TQ−1 = (QQT)−1 = (QTQ)−T = I−T
� = I�,

(PQ)T(PQ) = QT(P TP)Q = QTQ = I�

it follows that PQ ∈ O(�). and Q−1 = QT ∈ O(�).. These properties imply 
cond2(Q) = ‖Q‖2‖Q−1‖2 = 1.. 	

Definition 5.3 For v ∈ R

�
. with ‖v‖2 = 1. the matrix Pv = I� − 2vvT . is called a 

Householder transformation. 

Householder transformations realise reflections on the plane perpendicular to v, 
see Fig. 5.3. 

Lemma 5.3 Every Householder transformation Pv = I� − 2vvT . is symmetric and 
orthogonal. It holds that Pvv = −v . and Pvw = w . for all w ∈ R

�
.with w · v = 0.. 

Proof Exercise. 	

Every vector x ∈ R

� \ {0}. can be mapped to a multiple of the canonical basis 
vector e1 ∈ R

�
.with a Householder transformation in R�

.. 

Lemma 5.4 Let x ∈ R
� \ {0}. and x �∈ span{e1}. and define, with σ = sign(x1). if 

x1 �= 0. and σ = 1. otherwise, the vector v ∈ R
�
. by 

. v = x + σ‖x‖2e1
∥

∥x + σ‖x‖2e1
∥

∥

2

.

Then it holds 

. Pvx = (I� − 2vvT)x = −σ‖x‖2e1.

Proof The matrix Pv . remains unchanged when x is replaced by x̃ = σx/‖x‖2 ., and 
from Pvx̃ = −e1 . it follows that Pvx = σ‖x‖2Pvx̃ = −σ‖x‖2e1 .. Therefore, it 
is sufficient to consider the case ‖x‖2 = 1. and σ = 1.. Since x �∈ span{e1}., v is
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well-defined and it holds ‖v‖2 = 1.. With ṽ = x + e1 . it holds due to ‖e1‖22 = ‖x‖22 ., 
that 

. 2̃vTx = 2(x + e1)
Tx = ‖x + e1‖22 = ‖̃v‖22

and thus due to v = ṽ/‖̃v‖2 . 

. Pvx = (I� − 2vvT)x = x − 2v
ṽTx

‖̃v‖2 = x − v‖̃v‖2 = x − ṽ = −e1.

This proves the lemma. 	

Remark 5.3 The introduction of σ . avoids cancellation effects. 

5.3 QR Decomposition 

With the help of Householder transformations, we will step by step transform the 
first columns of submatrices of A to multiples of canonical basis vectors e1 . of 
corresponding length and thus generate an upper triangular structure. 

Proposition 5.2 Let A ∈ R
m×n

. with m ≥ n. and rankA = n.. Then there exist 
Q ∈ O(m). and a generalised upper triangular matrix R ∈ R

m×n
., that is rij = 0. 

for i > j ., such that 

. A = QR = Q

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r11 r12 . . . r1n

r22 . . . r2n
. . .

...

rnn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Furthermore, |rii | > 0. for all 1 ≤ i ≤ n.. The factorisation is called QR 
decomposition .

Proof In the first step, we set A1 = A..  Let x = a1 ∈ R
m

. be the first column of A1 .. 
If x is a multiple of e1 .,  we  set Q1 = Im .. Otherwise, we define Q1 = Pv . as in the 
previous lemma. It follows Q1a1 = r11e1 . with |r11| = ‖Q1a1‖2 = ‖a1‖2 > 0. and 
thus 

.Q1A1 =
[

r11 rT1
A2

]
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with a matrix A2 ∈ R
(m−1)×(n−1)

. and a vector r1 ∈ R
n−1

.. In the second step, 
let a2 ∈ R

m−1
. be the first column of A2 . and ˜Q2 ∈ R

(m−1)×(m−1) ∈ O(m − 1). 
be the identity matrix Im−1 . or a Householder transformation ˜Q2 = Pṽ ., such that 
˜Q2a2 = r22e1 ∈ R

m−1
.with |r22| = ‖˜Q2a2‖ = ‖a2‖2 > 0.. This implies 

. ˜Q2A2 =
[

r22 rT2
A3

]

with  a  matrix A3 ∈ R
(m−2)×(n−2)

. and a vector r2 ∈ R
n−2

. and it follows 

. Q2Q1A =
[

1
˜Q2

]

Q1A =
[

r11 rT1
˜Q2A2

]

=
⎡

⎣

r11 [ rT1 ]
r22 rT2

A3

⎤

⎦ .

The first two rows remain unchanged in the following steps. The matrix Q2 . is 
orthogonal, and, in particular, it is the Householder transformation for the vector 
v = [0, ṽ]T ., where ṽ = 0. in the case ˜Q2 = Im−1 ..  After  n steps, we obtain the 
factorisation

. QnQn−1 . . . Q1A = R.

Since each Householder transformation is orthogonal and symmetric, it follows that 
Q−1

j = QT
j = Qj . for j = 1, 2, . . . , n.. This results in 

. (QnQn−1 . . . Q1)
−1 = Q−1

1 Q−1
2 . . . Q−1

n = QT
1QT

2 . . . QT
n = Q1Q2 . . . Qn

and with Q = Q1Q2 . . . Qn . the claimed factorisation A = QR . follows. The entries 
rii ., i = 1, 2, . . . , n.,  of  R satisfy |rii | = ‖ai‖2 �= 0., since A would otherwise not 
have full rank. 	

Remarks 5.4 

(i) In the case m = n., the factorisation is uniquely determined up to the sign 
of the diagonal entries of R, because if A = QR = Q′R′

., it follows that 
E = (Q′)−1Q = R′R−1

. is an upper triangular matrix in O(n).. Since E−1
. 

is an upper triangular matrix, the identity ET = E−1
. can only hold, if E is a 

diagonal matrix with diagonal elements in {±1}. and thus it follows Q = Q′E . 

and R = ER′
.. 

(ii) The Householder transformations are not realised via matrix-matrix multipli-
cations, because with w = ATv . 

. PvA = (Im − 2vvT)A = A − 2v(vTA) = A − 2vwT.

(iii) The vectors vi ., i = 1, 2, . . . , n., which define the Householder transformations 
can be stored in the lower triangular part of A, where vi = 0. if Qi = Im ..
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Setting v̂i = [0, vi] ∈ R
m

., i = 1, 2, . . . , n., it also holds 

. Q =
n

∏

i=1

(Im − 2̂vi v̂
T
i ).

Algorithm 5.1 (QR Decomposition) Let A ∈ R
m×n

. with rankA = n.. Initialise 
A1 = A. and i = 1.. 

(1) Let ai ∈ R
m−i+1

. be the first column of the right lower block Ai ∈
R

(m−i+1)×(n−i+1)
. of A. 

(2) If ai = e1 ., then continue with (5). 
(3) Define ṽ = ai + σ‖ai‖2e1 . and v = ṽ/‖̃v‖2 .. 
(4) Replace the block Ai .with Ai − vwT

.where w = 2AT
i v .. 

(5) Stop if i = n.; otherwise increase i → i + 1. and repeat step (1). 

Remark 5.5 In the i-th iteration step, 

• 4(m − i + 1) + 4. operations are required to calculate v, 
• (m − i + 2)(n − i + 1). operations are required to calculate w, 
• (m − i)(n − i + 1). operations are required to calculate Ai − vwT

. 

are needed. In total, the effort to calculate the factorisation is thus 2mn2−(2/3)n3+
O(mn).. In the case m = n., the calculation is twice as expensive as that of the LU 
decomposition. 

5.4 Solution of the Least Squares Problem 

We use the QR decomposition to construct a stable method for the least squares 
problem.

Proposition 5.3 Let A ∈ R
m×n

. with m ≥ n. and rankA = n.. With the QR 
decomposition A = QR . and 

. QTb =
[

c

d

]

, QTA = R =
[

̂R

0

]

with c ∈ R
n
., d ∈ R

m−n
. and an upper triangular matrix ̂R ∈ R

n×n
., the solution of 

the least squares problem defined by A and b is given by ̂Rx = c.. 

Proof With ‖Qz‖2 = ‖z‖2 . for all z ∈ R
m

. and QTQ = Im . it follows that 

.‖b − Ax‖22 = ‖Q(QTb − QTAx)‖22 =
∥

∥

∥

∥

[

c

d

]

−
[

̂R

0

]

x

∥

∥

∥

∥

2

2

= ‖̂Rx − c‖22 + ‖d‖22.
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Fig. 5.4 Transformation of 
the least squares problem 
using the QR decomposition 
of A

QTb =  [c,d]T 
ImA 

d 

c = ̂Rx 

b

Since rankA = n., ̂R . is regular. The right-hand side is obviously minimal for x =
̂R−1c.. 	


A geometric interpretation of the use of QR decomposition for the solution of 
the least squares problem is shown in F ig. 5.4. 

Remark 5.6 From Q ∈ O(n). it follows for regular matrices A ∈ R
n×n

., that 
cond2(R) = cond2(A)..  The  QR decomposition thus defines a stable algorithm 
for solving least s quares problems.

5.5 Learning Objectives, Quiz and Application 

You should be familiar with applications that lead to least squares problems, and 
you should be able to derive the Gaussian normal equation and its most important 
properties. You should be able to explain the construction of the QR decomposition 
of a matrix and describe its significance in solving least squares problems.

Quiz 5.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

The least squares problem always has a solution. 

If rankA = n ≤ m.,  then ATA. is invertible. 

A Householder transformation is defined by In − 2(vTv)−2vvT ., provided 
v ∈ R

n \ {0}. holds. 
If Q is orthogonal, then both the row and column vectors of Q are p airwise
orthogonal.

For every vector norm ‖ · ‖. on Rn ., every orthogonal matrix Q ∈ O(n). and every 
vector x ∈ R

n ., ‖Qx‖ = ‖x‖. holds. 

Application 5.1 Theoretical considerations of two physical processes lead to the 
assumption that the quantities y and t are related in the form y(t) = c0+c1t+c2t

2+
c3t

3
. and the quantities z and v follow the relation z(v) = c/v .. Experiments yield 

measurement data (ti , yi). and (vi, zi). for i = 1, 2, . . . , m.. Formulate least squares 
problems for the approximate determination of c0, c1, . . . , c3 . and c and set up the 
corresponding Gaussian normal equations. How can the validity of the assumption 
about the relationship be assessed after calculating the coefficients?



Chapter 6 
Singular Value Decomposition 
and Pseudoinverse 

6.1 Singular Value Decomposition 

The symmetric and positive semidefinite matrix ATA ∈ R
n×n

. for A ∈ R
m×n

. 

plays an important role in the least squares problem. It is diagonalisable and there 
exists an orthonormal basis consisting of eigenvectors v1, v2, . . . , vn .with associated 
eigenvalues 

. λ1 ≥ λ2 ≥ · · · ≥ λp > λp+1 = · · · = λn = 0

with 0 ≤ p ≤ n., where eigenvalues are listed multiple times if necessary according 
to their multiplicity. For i = 1, 2, . . . , p .we define ui = λ

−1/2
i Avi ..  For 1 ≤ i, j ≤ p . 

then 

. 
uTi uj = λ

−1/2
i λ

−1/2
j (Avi)

T(Avj ) = (λiλj )
−1/2vTi (ATAvj )

= (λiλj )
−1/2vTi (λj vj ) = λj (λiλj )

−1/2vTi vj = δij .

The vectors (u1, u2, . . . , up). thus form an orthonormal set of vectors in R
m

.. 
We supplement it with vectors (up+1, up+2, . . . , um). to an orthonormal basis 
(u1, u2, . . . , um). of Rm

..  We  ha  ve

. ATui = λ
−1/2
i ATAvi = λ

1/2
i vi , i = 1, 2, . . . , p.
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From kerATA = kerA. and n = dim kerA + dim ImA. we deduce the identity 
ImA = span{u1, u2, . . . , up}. and thus {up+1, . . . , um} = (ImA)⊥ = kerAT

. 

respectively 

. ATui = 0, i = p + 1, . . . , m.

Using σi = λ
1/2
i ., i = 1, 2, . . . , p ., we obtain the following proposition. 

Proposition 6.1 LetA ∈ R
m×n

.. Then there exist numbers σ1 ≥ σ2 ≥ · · · ≥ σp > 0. 
and orthonormal bases (ui)i=1,...,m .of Rm

.and (vj )j=1,...,n .of Rn
.with the properties 

. 
Avi = σiui, ATui = σivi, i = 1, 2, . . . , p,

Avj = 0, ATuk = 0, j = p + 1, . . . , n, k = p + 1, . . . , m.

The numbers σ 2
i ., i = 1, 2, . . . , p ., are exactly the non-zero eigenvalues of ATA. and 

are called singular values of A.  Fo  r

. U = [u1, . . . , um] ∈ R
m×m, V = [v1, . . . , vn] ∈ R

n×n

we have that U ∈ O(m). and V ∈ O(n). and with 

. Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 . . . 0
. . .

...
...

σp 0 . . . 0
0 . . . 0 0 . . . 0
...

...
...

...

0 . . . 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
m×n

it follows 

. A = UΣV T =
p∑

i=1

σiuiv
T
i , AT = V ΣTUT =

p∑
i=1

σiviu
T
i .

The factorisation is called singular value decomposition (SVD). 

Proof The statements follow from the construction and the application of the 
factorisations to the orthonormal bases. ��
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6.2 Pseudoinverse 

With the help of the singular value decomposition, the concept of the inverse matrix 
can be generalised to non-regular and non-square matrices. 

Definition 6.1 If A = UΣV T
. is the singular value decomposition of A and Σ+ ∈

R
n×m

. is defined by 

. Σ+ =

⎡
⎢⎢⎢⎣

σ−1
1 0

. . .
...

σ−1
p 0

0 . . . 0 0

⎤
⎥⎥⎥⎦ ∈ R

n×m,

then A+ = V Σ+UT = ∑p

i=1 σ−1
i viu

T
i ∈ R

n×m
. is called pseudoinverse or Moore– 

Penrose-Inverse of A. 

Remarks 6.1 

(i) By construction of A+
. we have kerA+ = span{up+1, . . . , um} = kerAT

. and 
ImA+ = span{v1, v2, . . . , vp} = ImAT

.. 
(ii) The matrix A+

. is the uniquely determined solution in X ∈ R
n×m

. of the 
algebraic equations 

. AXA = A, XAX = X, (AX)T = AX, (XA)T = XA.

For example, because UTU = Im . and V TV = In ., we have that 

. A+AA+ = (V Σ+UT)(UΣV T)(V Σ+UT) = V Σ+ΣΣ+UT

= V Σ+UT = A+.

With the pseudoinverse, the least squares problem can be solved. 

Proposition 6.2 The vector A+b. is, among all solutions of the least squares 
problem, the one with the minimal norm. 

Proof With A+AA+ = A+
. and Remark 6.1 (i) it follows 

. AA+b − b ∈ kerA+ = kerAT,

that is ATA(A+b) = ATb. or, that A+b. is a solution of the Gaussian normal 
equation. If z ∈ R

n
. is another solution, then because kerATA = kerA.,  we  hav  e

that

.ATA(A+b − z) = 0 ⇐⇒ A(A+b − z) = 0.
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With w = A+b − z ∈ kerA. it follows from A+b ∈ ImA+ = (kerA)⊥ ., that 
(A+b) · w = 0. and for z = A+b − w .we get 

. ‖z‖22 = ‖A+b‖22 + ‖w‖22 ≥ ‖A+b‖22.

Thus, A+b. is a solution with minimal norm. ��
Remark 6.2 If rankA = n ≤ m., then it follows from A+b = (ATA)−1ATb. for all 
b ∈ R

m
., that A+ = (ATA)−1AT

. and in particular A+ = A−1
. if n = m.. 

6.3 Learning Objectives, Quiz and Application 

You should be able to describe the ideas for the construction of the singular value 
decomposition of a matrix and to concretise the definition of the pseudoinverse as 
well as its relation to least squares problems. 

Quiz 6.1 Decide for each of the following statements whether they are true or false. 
You should be able to justify your answer. 

The squares of the singular values of a matrix are the eigenvalues of AAT .. 

For the first singular value σ1 . of A, σ1 = ‖A‖2 . holds. 
If A ∈ R

n×n . is symmetric, then the singular value decomposition defines a 
diagonalisation of A. 

A solution to the least squares problem is defined by the solution of the system of 
linear equations A+x = b.. 

There exists a solution z ∈ R
n . to the least squares problem with the property 

‖A+b‖2 = ‖z‖2 .. 

Application 6.1 The matrix A ∈ R
m×n

. describes certain data such as the greyscale 
of the pixels of an image. To compress the data, the singular value decomposition 
A = ∑p

i=1 σiuiv
T
i . is first determined. For ε > 0. and i = 1, 2, . . . , p .,  le  t

. ̃σi =
{

σi, if σi ≥ ε,

0, if σi < ε,

and 

. ̃A =
p∑

i=1

σ̃iuiv
T
i .

Show that 

. ‖A − Ã‖F ≤ pε

and rank Ã ≤ rankA..



Chapter 7 
The Simplex Method 

7.1 Linear Programs 

In applications such as the minimisation of production costs, linear optimisation 
problems with linear inequality constraints arise. To formulate such problems 
succinctly, we use the notation a ≤ b. for vectors a, b ∈ R

m
.,  if ai ≤ bi . for 

i = 1, 2, . . . , m.. In this chapter, we follow the presentation in [12]. 

Definition 7.1 A linear program is an optimisation problem 

. Minimise g(y) = pTy subject to the constraint Uy ≤ d

with given p ∈ R
�
., U ∈ R

q×�
. and d ∈ R

q
.. A linear program is in standard form,  if  

it can be written in the form

. Minimise f (x) = cTx subject to the constraint Ax = b, x ≥ 0

with given c ∈ R
n
., A ∈ R

m×n
. and b ∈ R

m
.. 

Remark 7.1 By introducing additional variables, any linear program can be trans-
formed into standard form. Here, one decomposes yi = vi − wi . with vi, wi ≥ 0. 
and writes an inequality Uy ≤ d . as an equation Uy + z = d . with z ≥ 0.. The new 
variable is then the vector x = [v,w, z].. 
Definition 7.2 The feasible set of a linear program in standard form is M = {x ∈
R

n : Ax = b, x ≥ 0}.. 
Remark 7.2 The feasible set is convex and can be empty, a single element, and 
bounded or unbounded, see Fig. 7.1. 
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Fig. 7.1 The feasible set M 
of a linear program is the 
intersection of convex sets

x ≥ 0 

Ax = b 

M

Definition 7.3 A point x ∈ M . is called a corner, if it cannot be written as a proper 
convex combination in M , that is for all z, y ∈ M . and λ ∈ (0, 1). with x = λz +
(1 − λ)y . it follows x = y = z.. 

We will always assume that M is non-empty. Without proof, we use the following 
results.

Proposition 7.1 Assume that the feasible set M is non-empty and bounded.

(i) The set M has finitely many corners y1, y2, . . . , yL ∈ M . and these span M , 
that is M = {x = ∑L

i=1 λiy
i : λi ∈ [0, 1], ∑L

i=1 λi = 1}.. 
(ii) The linear program has a solution and the minimum is attained at a corner 

of M . 

Remark 7.3 If M is unbounded, the problem can be solvable or unsolv able.

To solve a linear program, it is thus sufficient to consider corners. The set of 
possible solutions is thus reduced to finitely many points. 

Definition 7.4 The index set Ix . of a corner x ∈ M . consists of the indices of the 
non-zero components 

. Ix = {
i ∈ {1, 2, . . . , n} : xi > 0

}

and let Jx = {1, 2, . . . , n} \ Ix ..  The  set  s Ix . and Jx . are considered ordered and for a 
vector z ∈ R

n
. and the matrix A ∈ R

m×n
.with column vectors (ai : i = 1, 2, . . . , n). 

we denote 

. 
zIx = (zi : i ∈ Ix), zJx = (zj : j ∈ Jx),

AIx = (ai : i ∈ Ix), AJx = (aj : j ∈ Jx).

When it is clear from the context which corner is meant, the index x is omitted 
from Ix . and Jx ..  For z ∈ R

n
.we then have 

. Az = AIzI + AJ zJ .

Proposition 7.2 The following statements apply to the corners of M: 

(i) A point x ∈ M . is a corner if and only if the column vectors (ai : i ∈ Ix). are 
linearly independent. 

(ii) Each corner x ∈ M . is uniquely determined by its index set.
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Proof 

(i) If x is not a corner, then there exist y, z ∈ M \ {x}. and λ ∈ (0, 1). with x =
λy + (1 − λ)z..  We  have (y − z)J = 0. with J = {1, 2, . . . , n} \ I . and I = Ix ., 
since from xi = 0. and y, z ≥ 0. also yi = zi = 0. follows. This implies 
0 = b − b = A(y − z) = AI (y − z)I . and because (y − z)I �= 0. the linear 
dependence of the columns of the matrix AI . follows. Conversely, if the columns 
of AI . are linearly dependent, then there exists ỹ �= 0. with AI ỹ = 0. and ỹ . can 
be completed by zeros to y ∈ R

n
. with yI = ỹ .. Since xi > 0. for all i ∈ I ., 

then with ε > 0. sufficiently small, we have that x ± εy ≥ 0.. Furthermore, 
Ay = 0. and thus A(x ± εy) = b.,  so x ± εy ∈ M .. With λ = 1/2. then 
x = λ(x + εy) + (1 − λ)(x − εy). is a true convex combination and x is not a 
corner .

(ii) If x is a corner, then according to (i) the column vectors of AI . are linearly 
independent and from b = Ax = AIxI . it follows that xI . is uniquely 
determined. 

��
The number of equality constraints Ax = b. defined by A ∈ R

m×n
. in a linear 

program in standard form is usually less than the number of unknowns, that is, 
m ≤ n.. 

Definition 7.5 A corner x ∈ M . is called degenerate if |Ix | < m. holds. Otherwise, 
it is called non-degenerate. 

Remark 7.4 If x ∈ M . is a non-degenerate corner and rankA = m., that is, the 
constraints are linearly independent, then |Ix | = m. and the matrix AI ∈ R

m×m
. is 

invertible. 

Example 7.1 The corner x = [0, 1]T .with index set Ix = {2}. is non-degenerate for 
A = [0, 1]. and degenerate for A =

[
0 1
0 2

]

.. 

7.2 The Simplex Step 

To solve a linear program, it is sufficient to consider the corners of the feasible set. 
Starting from a corner, a new one is constructed so that the function value is reduced. 
Let rankA = m. and M be non-empty. We proceed as follo ws:

(1) Let x ∈ M . be a corner and if it is degenerate, let Ix . be supplemented to an 
m-element set I so that AI . is regular. Let J = {1, 2, . . . , n} \ I .. 

(2) For all z ∈ M . it follows from b = Az = AIzI + AJ zJ ., that 

.zI = A−1
I b − A−1

I AJ zJ . (7.1)
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Thus, the components with respect to I are uniquely determined by those with 
respect to J ; in particular, due to xJ = 0.,  it  follows  that xI = A−1

I b..  For  the  
function value f (z) = cTz. it follows 

. 
cTz = cTI zI + cTJ zJ = cTI (A−1

I b − A−1
I AJ zJ ) + cTJ zJ

= cTI xI + (cTJ − cTI A−1
I AJ )zJ = cTx + (cJ − AT

J A−T
I cI )

TzJ .

With uJ = cJ − AT
J A−T

I cI .we deduce that 

.f (z) = f (x) + uTJ zJ . (7.2) 

Due to z ≥ 0., a reduction of the function value is only possible if uJ . is negative 
in one component. Otherwise, x is already the solution to the problem.

(3) Let ur < 0. for an r ∈ J .. We consider the vector z defined via

. zj = 0, j ∈ J \ {r}, zr = t

with a number t ≥ 0. to be chosen. We use (7.1) to supplement zJ . to a vector 
z ∈ R

n
. that satisfies Az = b., that is we set 

. zI = A−1
I b − A−1

I AJ zJ = xI − tA−1
I ar .

Here, ar . is the r-th column of A. With (7.2) it follows 

. f (z) = f (x) + tur ≤ f (x).

When choosing t , it is still necessary to ensure z ≥ 0.. 
(4) Let d = A−1

I ar ., so that zI = xI − td ..  If d ≤ 0., then z ≥ 0. for any choice of 
t ≥ 0. and f (z) → −∞. for t → ∞., that is M is unbounded and the problem is 
not solv able.

(5) Let di > 0. for an i ∈ I .. The condition z ≥ 0. is fulfilled, as long as 

. zi = xi − tdi ≥ 0

holds. To maximally reduce the function value f (z). and at the same time ensure 
z ≥ 0., we choose 

. t = min
i∈I,di>0

xi

di

= xs

ds

.

This implies in particular zs = 0..  If  x is non-degenerate, then due to xi > 0. for 
all i ∈ I ., it follows that t > 0. and the function value is genuinely reduced. 

(6) We show that z ∈ M . is a corner. We have Iz ⊂ Inew = (
Ix \ {s}) ∪ {r}. and 

according to Proposition 7.2 it suffices to show, that the vectors (ai : i ∈ Inew).
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are linearly independent. Let γi ∈ R., i ∈ Inew
., such that 

. 0 =
∑

i∈Inew

γiai =
∑

i∈I\{s}
γiai + γrar

holds. With d = A−1
I ar . or ar = AId . it follows 

. 0 =
∑

i∈I\{s}
γiai + γr

∑

i∈I

diai =
∑

i∈I\{s}
(γi + γrdi)ai + γrdsas .

Since the vectors (ai : i ∈ I ). are linearly independent, it follows γi + γrdi = 0. 
for i ∈ I \ {s}. and γrds = 0.. Because ds �= 0. this implies γi = 0. for all 
i ∈ Inew

.. Thus z is a corner .

We have proven the following result. 

Proposition 7.3 Let rankA = m. and x ∈ M . be a corner. With Ix ⊂ I ., such that 
AI ∈ R

m×m
. is regular, let J = {1, 2, . . . , n} \ I ..  If u = cJ − AT

J A−T
I cI ≥ 0., 

then x is the solution of the problem. If ur < 0. for some r ∈ J ., then define d =
A−1

I ar ..  If d ≤ 0., then the problem is unsolvable. If ds > 0. with s ∈ I ., such that 
t = mini∈I,di>0

xi

di
= xs

ds
., then, by setting 

. xnew
i =

⎧
⎪⎪⎨

⎪⎪⎩

xi − tdi, i ∈ I \ {s},
t, i = r,

0, i ∈ (J \ {r}) ∪ {s},

a corner xnew
. of M is defined with the pr operty

. f (xnew) ≤ f (x).

If x is non-degenerate, then the inequality is strict.

Remarks 7.5 

(i) The simplex method consists in the repeated application of the simplex step, 
until the case d ≤ 0. for unsolvability occurs, the sufficient termination criterion 
u ≥ 0. for a corner is fulfilled or a corner is passed through a second time. Since 
there are only finitely many corners, the method always terminates. 

(ii) So-called cycles can occur, i.e. one returns to a corner already visited without 
a reduction occurring or the minimum being reached. However, this is not 
observed for practically relevant problems. 

(iii) The newly constructed corner xnew
. can be degenerate, even if x is non-

de generate.
(iv) There are

(
n
m

)
. many corners, so in the worst case O(n!). many corners would 

have to be passed through to reach the minimum. In practice, only polynomial
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effort with respect to n is observed, but there are examples where 2n
. many 

simplex steps are required. 
(v) The algorithmic construction of a corner for the initialization of the method is 

by no means trivial. 

7.3 Learning Objectives, Quiz and Application 

You should be able to explain geometric properties of linear programs and the 
essential ideas of the simplex step. 

Quiz 7.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

Every linear program in normal form has a solution. 

The simplex step realizes a proper reduction of the function to be minimized. 

The point x = 0. is always a corner of the feasible set. 

Each corner is uniquely determined by its zero entries. 

In the simplex method, the number of zero entries of the corners passed through 
strictly decreases. 

Application 7.1 

(i) A product is stored at the locations A1, .., Am . in the respective quantities 
a1, . . . , am . and it is needed at the locations B1, . . . , Bn . in the quantities 
b1, . . . , bn ..  Let cij . denote the costs for transporting a unit quantity of the 
product from Ai . to Bj .. Formulate a linear program in standard form to minimise 
the total cost of transporting the product. 

(ii) A producer of road salt receives an order to deliver 50 tonnes of road salt to 
Rome, 20 to Paris and 30 to Berlin. There are 40 and 60 tonnes available 
in warehouses in Prague and Amsterdam respectively. What are the optimal 
transport quantities, if the costs per 10 tonnes of transport quantity in Euros 
are given according to Table 7.1?  Use  the  MATLAB routine linprog for the
solution.

Table 7.1 Transport costs 
per tonne of road salt 

Rome Paris Berlin 

Prague 700 600 200 

Amsterdam 800 300 400



Chapter 8 
Eigenvalue Problems 

8.1 Localisation 

The calculation of individual or all eigenvalues of a matrix and, if applicable, 
associated eigenvectors is referred to as eigenvalue problems. In general, it is 
difficult and inefficient to determine the roots of a characteristic polynomial, as even 
the evaluation of the polynomial is associated with high computational effort. 

Proposition 8.1 Let A ∈ R
n×n

. and λ ∈ C. be an eigenvalue of A. Then we have 

. λ ∈
n⋃

i=1

Ki, Ki = {
z ∈ C : |z − aii | ≤

∑

j=1,..,n, j �=i

|aij |
}
.

The sets Ki . are called Gershgorin circles. 

Proof Let Ax = λx . hold for an x ∈ C
n \{0}.. Then there exists an i with |xj | ≤ |xi |. 

for all j = 1, 2, . . . , n., and xi �= 0..  We  ha  ve

. λxi = (Ax)i =
n∑

j=1

aij xj

and after division by xi �= 0. it follows 

. λ − aii =
∑

j=1,...,n, j �=i

aij

xj

xi

.

The triangle inequality and |xj |/|xi | ≤ 1. imply λ ∈ Ki . and thus the assertion. ��
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Fig. 8.1 Gershgorin circles 
in Example 8.1 

Example 8.1 For the following matrix A ∈ R
3×3

., the Gershgorin circles K1 ., K2 ., 
K3 . result, see Fig. 8.1. 

. A =
⎡

⎣
5 1 2
1 −1 1
2 1 0

⎤

⎦ ,

K1 = {z ∈ C : |z − 5| ≤ 3},
K2 = {z ∈ C : |z + 1| ≤ 2},
K3 = {z ∈ C : |z| ≤ 3}.

In the case of symmetric matrices, the eigenvalues can be characterised by the 
extreme values of the so-called Rayleigh quotient. 

Proposition 8.2 Let A ∈ R
n×n

. be symmetric. For the maximum and minimum 
eigenvalue of A we have

. λmin = min
x∈Rn\{0}

xTAx

‖x‖22
, λmax = max

x∈Rn\{0}
xTAx

‖x‖22
.

Proof Let (v1, v2, . . . , vn) ⊂ R
n
. be an orthonormal basis of Rn

. consisting of 
eigenvectors corresponding to the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ∈ R. 

of the matrix A.  For x ∈ R
n
. there exist α1, α2, . . . , αn ∈ R., such that x =

α1v1 + α2v2 + · · · + αnvn . and we have 

. Ax = α1λ1v1 + α2λ2v2 + · · · + αnλnvn.

The orthonormality vi · vj = δij ., 1 ≤ i, j ≤ n., of the vectors v1, v2, . . . , vn . implies 

. 

xTx =
( n∑

i=1

αivi

)
·
( n∑

j=1

αjvj

)
=

n∑

i,j=1

αiαjvi · vj =
n∑

i=1

α2
i ,

xTAx =
( n∑

i=1

αivi

)
·
( n∑

j=1

αjAvj

)
=

n∑

i,j=1

αiλjαjvi · vj =
n∑

i=1

λiα
2
i .

It follows that 

. xTAx ≥ λn

n∑

i=1

α2
i = λn‖x‖22 = λmin‖x‖22,

where equality holds for x = vn .. The statement for λ1 = λmax . follows analogously.
��
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8.2 Conditioning 

A  matrix A ∈ R
n×n

. is complex diagonalisable if there is a regular matrix V ∈ C
n×n

. 

and a diagonal matrix D ∈ C
n×n

. such that A = V DV −1
. holds. In this situation, 

the following result from Bauer and Fike can be proven. 

Proposition 8.3 Let A ∈ R
n×n

. be complex diagonalisable with A = V DV −1
.,  le  t

E ∈ R
n×n

. and let λ̃ ∈ C. be an eigenvalue of A+E .. Then there exists an eigenvalue 
λ ∈ C. of A, such that 

. |̃λ − λ| ≤ cond2(V )‖E‖2,

where the operator norm and condition number are generalised in an obvious way 
for complex matrices. 

Proof If λ̃. is also an eigenvalue of A, then the statement is trivial. In the following, 
let λ̃. not be an eigenvalue of A, so that λ̃In − A. is invertible. If x ∈ C

n
. is an 

eigenvector of A + E . corresponding to the eigenvalue λ̃., then 

. Ex = (A + E)x − Ax = λ̃x − Ax = (̃λIn − A)x,

so x = (̃λIn − A)−1Ex ., that is, 1 is an eigenvalue of (̃λIn − A)−1E ..  From  this  
follows

. 

1 ≤ ‖(̃λIn − A)−1E‖2 = ‖(̃λV V −1 − V DV −1)−1E‖2
= ‖V (̃λIn − D)−1V −1E‖2 ≤ ‖V ‖2‖(̃λIn − D)−1‖2‖V −1‖2‖E‖2
= cond2(V ) max

λ∈σ(A)
|̃λ − λ|−1‖E‖2,

where the maximum is formed over all complex eigenvalues λ. of A. With the 
identity maxx∈X |x|−1 = (minx∈X |x|)−1

. the claim follows. ��
Remarks 8.1 

(i) Not every matrix is complex diagonalisable, however every matrix is complex 
triangularisable. 

(ii) Normal matrices, that is, matrices with the property AAT = ATA.,  are  
complex diagonalisable with unitary transformation matrix V , that is, V fulfils
V

T
V = In .. 

Corollary 8.1 Let A ∈ R
n×n

. be normal, E ∈ R
n×n

. and λ̃. be an eigenvalue of 
A + E .. Then there exists an eigenvalue of A with 

.|λ − λ̃| ≤ ‖E‖2
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Fig. 8.2 The eigenvalues of 
the matrix Aε . from 
Example 8.2 lie on a circle 
with centre a and radius ε1/n . 

a a+ 1/n 

Proof Since A is diagonalisable with a unitary matrix V ∈ C
n×n

. and since 
cond2(V ) = 1. holds, the estimate follows from the previous result. ��

For normal, in particular symmetric matrices, the determination of the eigenval-
ues is thus a well conditioned problem with respect to absolute errors. Generally, 
this is not the case. 

Example 8.2 If p(t) = tn + an−1t
n−1 + · · · + a1t + a0 . is any polynomial, then 

p(t) = (−1)n det(A − tIn).with the Frobenius companion matrix 

. A =

⎡

⎢⎢⎢⎢⎢⎣

0 −a0

1 0 −a1
. . .

. . .
...

1 0 −an−2

1 −an−1

⎤

⎥⎥⎥⎥⎥⎦
.

In particular, the complex roots of p correspond to the complex eigenvalues of A. 
For a ∈ R\{0}.and ε > 0., the polynomial p0(t) = (t−a)n .has the n-fold root λ = a ., 
while the polynomial pε(t) = (t − a)n − ε . has the roots λk = a + ε1/nei2πk/n

., 
k = 1, 2, . . . , n., see Fig. 8.2. The polynomials p0 . and pε . differ only in the constant 
coefficient and for the difference A − Aε . of the associated companion matrices we 
have ‖A−Aε‖� = ε . for � ∈ {1, 2,∞}..  We  have |λ−λk| = ε1/n

. and for the relative 
errors it follows that 

. 

|λ − λk|
|λ| = ε1/n

|a|
‖A‖�

‖A‖�

‖A − Aε‖�

ε

= ε1/n

ε

‖A‖�

|a|
‖A − Aε‖�

‖A‖�

.

The factor ε(1−n)/n
. is unbounded for ε → 0., provided n > 1.. Multiplying the 

equations with |λ| = |a|. shows that the ill conditioning also applies to absolute 
errors in the case n > 1. for small numbers ε > 0..
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8.3 Power Method 

Let A ∈ R
n×n

. be real diagonalisable with eigenvalues λ1, λ2, . . . , λn ∈ R. 

and associated linearly independent eigenvectors v1, v2, . . . , vn ∈ R
n
.,  for  whic  h

‖vi‖2 = 1., i = 1, 2, . . . , n., holds. For every x ∈ R
n
.with 

. x =
n∑

i=1

αivi

the k-fold application of A to x results in

. Akx = Ak−1
( n∑

i=1

λiαivi

)
= · · · =

n∑

i=1

λk
i αivi .

If λ1 . is the absolute largest eigenvalue, then for sufficiently large k, it follows that 

. Akx ≈ α1λ
k
1v1.

We consider the norms ‖Akx‖2 . and ‖Ak+1x‖2 . and form their quotient, so due to 
‖v1‖2 = 1. it follows 

. 
‖Ak+1x‖2
‖Akx‖2 ≈ |λ1|.

With this observation, one can determine the dominant eigenvalue of a matrix. 

Algorithm 8.1 (Von Mises Power Method) Let A ∈ R
n×n

., x ∈ R
n \ {0}. and 

εstop > 0.. Set x0 = x/‖x‖2 ., μ0 = 0. and k = 0.. 

(1) Calculate x̃k+1 = Axk ., μk+1 = ‖x̃k+1‖2 . and xk+1 = x̃k+1/μk+1 . . 
(2) Stop if |μk+1 − μk| ≤ εstop .; otherwise increase k → k + 1. and repeat step (1). 

Remark 8.2 Inductively, it is shown that xk = Akx/‖Akx‖2 . holds. To avoid 
leaving the range of representable numbers, a normalisation must be carried out 
in each iteration step. 

We show that the sequence (xk)k∈N . approximates a normalised eigenvector to 
the absolute maximum eigenvalue of A, whose magnitude is approximated by the 
sequence (μk)k∈N .. 

Proposition 8.4 Let |λ1| > |λ2| ≥ · · · ≥ |λn| ≥ 0. and let x = ∑n
i=1 αivi . with 

the normalised eigenvectors v1, v2, . . . , vn . of A.  If α1 �= 0. then it follows with 
q = |λ2|/|λ1| < 1. and k ≥ K ., that 

. 
∣∣‖Axk‖2 − |λ1|

∣∣ ≤ 4‖A‖2cqk

with a constant c ≥ 0. independent of k.
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Proof For each k ≥ 0.we have 

. Akx = λk
1α1

(
v1 +

n∑

i=2

λk
i

λk
1

αi

α1
vi

)
= λk

1α1(v1 + wk),

where wk ∈ R
n
. is defined by the sum. It follows 

. ‖wk‖2 ≤ qk
n∑

i=2

|αi |
|α1| = cqk.

Furthermore, 

. 

xk = Akx

‖Akx‖2 = λk
1α1 (v1 + wk)

|λk
1α1|‖v1 + wk‖2

= sign(λk
1α1)v1 + sign(λk

1α1)
( v1 + wk

‖v1 + wk‖2 − v1
)

= sign(λk
1α1)v1 + rk.

With the reverse triangle inequality ‖a‖2 −‖b‖2 ≤ ‖a + b‖2 . as well as the ordinary 
triangle inequality ‖a + b‖2 ≤ ‖a‖2 + ‖b‖2 . it follows 

. 1 − cqk ≤ ‖v1‖2 − ‖wk‖2 ≤ ‖v1 + wk‖2 ≤ ‖v1‖2 + ‖wk‖2 ≤ 1 + cqk

and it follows for k sufficiently large, so that cqk ≤ 1/2. holds, 

. ‖rk‖2 =
∥∥∥
v1(1 − ‖v1 + wk‖2) + wk

‖v1 + wk‖2
∥∥∥
2

≤
∣∣1 − ‖v1 + wk‖2

∣∣ + ‖wk‖2
‖v1 + wk‖2 ≤ 2cqk

1 − cqk
≤ 4cqk.

For x̃k+1 = Axk . the above representation of xk . leads to 

. ̃xk+1 = λ1 sign(λ
k
1α1)v1 + Ark

and thus 

. ‖x̃k+1 − λ1 sign(λ
k
1α1)v1‖2 ≤ ‖Ark‖2 ≤ 4‖A‖2cqk.

Another application of the reverse triangle inequality combined with x̃k+1 = Axk . 

and ‖v1‖2 = 1. shows the assertion. ��
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Remarks 8.3 

(i) In each step of the iteration, the approximation error is reduced by the factor 
q < 1.. 

(ii) The last inequality in the proof shows that λ1 < 0. holds exactly when the 
signs of (xk)k=1,2,... . alternate, and that the sequence (xk)k=1,2,... . converges to 
an eigenvector up to the factor sign λk

1 .. 
(iii) The condition α1 �= 0. must be ensured in the specific case. Due to rounding 

errors, this can be assumed, but the constant c ∼ 1/|α1|.may then be large. 

In the case of symmetric matrices, a better convergence statement can be proven, 
which shows that the error is reduced by the factor q2

. in each step. 

Proposition 8.5 If A ∈ R
n×n

. is symmetric, then under the conditions of the 
previous proposition 

. |λ1 − xT
k Axk| ≤ 2‖A‖2c2q2k.

Proof If A is symmetric, the eigenvectors (v1, v2, . . . , vn). in the proof of the 
previous result can be assumed to be orthonormal and we have 

. Akx = λk
1α1(v1 + wk)

with v1 · wk = 0..  Le  t

. γk = sign(λk
1α1)‖v1 + wk‖−1

2

and since ‖v1 + wk‖22 = ‖v1‖22 + ‖wk‖22 ≥ 1.,  we  have |γk| ≤ 1.. It follows 

. xk = Akx

‖Akx‖2 = λk
1α1(v1 + wk)

|λk
1α1|‖v1 + wk‖2

= γkv1 + γkwk

and thus 

. 
(λ1In − A)xk = γkλ1v1 + γkλ1wk − γkAv1 − γkAwk

= γk(λ1In − A)wk.

Since Awk ∈ span{v2, v3, . . . , vn}., the vector on the right side is orthogonal to v1 .. 
With the Cauchy-Schwarz inequality aTb ≤ ‖a‖2‖b‖2 . and γk ≤ 1., it follows that 

.

|xT
k (λ1In − A)xk| = γ 2

k |(v1 + wk)
T(λ1In − A)wk|

≤ ‖wk‖2‖λ1(In − A)‖2‖wk‖2
≤ (|λ1| + ‖A‖2)‖wk‖22
= 2‖A‖2‖wk‖22,
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where in the last equality |λ1| = ‖A‖2 .was used. From ‖wk‖2 ≤ cqk
. and xT

k xk = 1. 
the assertion follows. ��
Remarks 8.4 

(i) If 0 < |λn| < |λn−1| ≤ · · · ≤ |λ1|., then the power method with A−1
. instead of 

A provides an approximation of |λn|−1
.. This is referred to as inverse iteration. 

(ii) If one applies the power method to the matrix (A−μIn)
−1

., it converges under 
suitable conditions towards the eigenvalue that is closest to μ.. 

(iii) The dominant eigenvalue can occur multiple times, meaning the condition of 
the propositions can be weakened to |λ1| = · · · = |λp| > |λp+1| ≥ · · · ≥
|λn| ≥ 0.. 

8.4 QR Method 

The QR method calculates approximations of all eigenvalues of a matrix simultane-
ously under suitable conditions. To this end, the power method is applied to several 
vectors, which are orthogonalised at each step. We follow the argument from [30] 
and calculate two sequences of vectors (xk)k=0,1,... . and (yk)k=0,1,... . using the power 
method, and make a correction at each step, which ensures that the vectors xk . and 
yk . are orthogonal to each other for all k ≥ 0..  Let x0, y0 ∈ R

n \ {0}. be orthogonal 
and determine for k = 1, 2, . . . . the iterates xk . and yk . through 

. xk = Akx0, yk = Aky0 − γkxk,

with γk = (Aky0) · xk/‖xk‖22 ., so that xk · yk = 0. holds. If (v1, v2, . . . , vn). is a basis 
of Rn

. consisting of eigenvectors corresponding to the eigenvalues |λ1| > |λ2| >

|λ3| ≥ · · · ≥ |λn|. of A, it follows 

. xk =
n∑

i=1

aiλ
k
i vi, yk =

n∑

j=1

(bj − γkaj )λ
k
j vj ,

with the coefficients a1, a2, . . . , an . and b1, b2, . . . , bn . of the vectors x0 . and y0 .with 
respect to the basis (v1, v2, . . . , vn).. We assume that a1 . and r = b2 − b1a2/a1 . are 
different from zero. The orthogonality xk · yk = 0. implies that 

. 0 =
n∑

i=1

n∑

j=1

ai(bj − γkaj )λ
k
i λ

k
j vi · vj .

Assuming that the sequence γk ., k = 1, 2, . . . ., is bounded, a division of this identity 
by λ2k1 . as well as the condition |λ�/λ1| < 1. for � = 2, 3, . . . , n., implies that
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. b1 − γka1 → 0

as k → ∞.. This yields for large numbers k, that 

. yk ≈
n∑

j=2

(bj − γkaj )λ
k
j vj .

Because b2 − γka2 → r �= 0. and |λ2| > |λj |., j ≥ 3., the first term dominates in 
this sum, so that yk . converges to a multiple of the eigenvector v2 . as k → ∞..  For  the  
practical implementation we use normalisations, meaning we set

. ̃xk = xk

‖xk‖ , ỹk = yk

‖yk‖
and obtain the relations 

. ckx̃k = Ax̃k−1, dkỹk = Aỹk−1 − ekx̃k

with suitable numbers ck, dk, ek ∈ R.. With the definitions 

. Uk = [
x̃k ỹk

] ∈ R
n×2, Rk =

[
ck ek

0 dk

]
∈ R

2×2

we deduce 

. AUk−1 = UkRk.

Due to the orthogonality and normalisation of the vectors x̃k . and ỹk ., Uk . is an 
orthogonal matrix, meaning we have that UT

k Uk = I2 .. If we define 

. Ak+1 = UT
k AUk, Qk = UT

k−1Uk

then in the case n = 2., it follows that Qk ∈ O(2)., and 

. 
Ak = UT

k−1AUk−1 = (UT
k−1Uk)Rk = QkRk,

Ak+1 = UT
k AUk = UT

k AUk−1U
T
k−1Uk = RkQk,

where in the last step Rk = UT
k Uk−1U

T
k−1AUk−1 = UT

k AUk−1 . was used. Thus, a 
QR factorisation ofAk . is determined and subsequentlyAk+1 . is defined by swapping 
the factors. This procedure can be generalised to the case n > 2. and leads to 
the QR method, which under suitable conditions provides approximations of all 
eigenvalues of a matrix. The above-derived (approximate) similarities of Ak . and Rk . 

to A indicate, that the iterates Ak . converge to an upper triangular matrix and their
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diagonal entries thus define approximations of the eigenvalues. As starting vectors 
for the QR method the canonical basis vectors are chosen.

Algorithm 8.2 (QR Method) Let A ∈ R
n×n

. be regular. Set A0 = A. and k = 0.. 

(1) Determine the QR decomposition Ak = QkRk . and set Ak+1 = RkQk .. 
(2) Stop if ‖diag(Ak+1) − diag(Ak)‖ ≤ εstop .; otherwise increase k → k + 1. and 

repeat step (1). 

The iterates of the QR method are similar to each other .

Lemma 8.1 We have 

. Ak+1 = QT
k AkQk = (Q0 . . . Qk)

TA(Q0 . . . Qk).

Proof From Ak+1 = RkQk . and Ak = QkRk . respectively Rk = QT
k Ak . it follows 

Ak+1 = QT
k AkQk . and the repeated application of this argument proves the second 

equation. ��
With the help of this lemma and a stability property of the QR decomposition 

the following result can be proven, see for example [7]. 

Proposition 8.6 Let A ∈ R
n×n

. be diagonalisable with A = V DV −1
. such that, for 

the eigenvalues λ1, λ2, . . . , λn ∈ R., we have 

. |λ1| > |λ2| > · · · > |λn| > 0

and the inverse of the matrix V has an LU decomposition. Then we have

. ‖diag(Ak) − diag(D)‖2 ≤ cqk

with q = max1≤i<j≤n |λj |/|λi |. and a constant c ≥ 0.. 

Remarks 8.5 

(i) In practice, convergence is observed under significantly weaker conditions 
on A. 

(ii) In general, a step in the QR method leads to an effort of order O(n3)..  If  A is 
first transformed by Householder transformations into a so-called Hessenber g
matrix

.Â = HTAH =

⎡

⎢⎢⎢⎢⎢⎣

â11 . . . â1n

â21 â22 . . . â2n

â32 . . . â3n
. . .

...

ân,n−1 ânn

⎤

⎥⎥⎥⎥⎥⎦
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that is, âij = 0. for i > j + 1., then the QR decomposition can be determined 
in O(n2). steps using Givens rotations. 

8.5 Jacobi Method 

The result about Gershgorin circles shows that the diagonal entries of a matrix define 
approximations of the eigenvalues, which are particularly accurate when the off-
diagonal elements are small. In the Jacobi method, these entries of a symmetric 
matrix are successively reduced with similarity transformations. We follow the 
presentation in [9]. 

Definition 8.1 For A ∈ R
n×n

.,  le  t

. N (A) = ‖A‖2F −
n∑

i=1

a2ii =
∑

1≤i,j≤n, i �=j

a2ij .

Obviously, A is a diagonal matrix exactly when N (A) = 0. holds. More 
generally, it can be shown that for each diagonal entry ajj ., 1 ≤ j ≤ n., there exists 
an eigenvalue λ.with the property |λ − ajj | ≤ √

N (A).. From the Gershgorin circle 
result, one obtains the weaker statement that for each eigenvalue λ. of A there exists 
a diagonal entry ajj . such that |λ − ajj | ≤ (n − 1)1/2

√
N (A).. 

Definition 8.2 For c, s ∈ R. with c2 + s2 = 1. and 1 ≤ p, q ≤ n. with p �= q .,  a  
Givens rotation Gpq ∈ O(n). is defined by 

. (Gpq)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, i = j, i �= p,

1, i = j, i �= q,

c, i = p, j = p,

c, i = q, j = q,

s, i = q, j = p,

−s i = p, j = q,

0 otherwise.

Gpq =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

c −s

. . .

s c

. . .

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following lemma uses the fact that the Frobenius norm is invariant under 
orthogonal transformations, i.e. that ‖QTM‖F = ‖MQ‖F = ‖M‖F . for all M ∈
R

n×n
. and Q ∈ O(n).. This follows, for example, from ‖M‖2F = tr(MTM). and 

‖M‖F = ‖MT‖F ..
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Lemma 8.2 If A ∈ R
n×n

. is symmetric and Gpq . is any Givens rotation, then for 
B = GT

pqAGpq ., we have that 

. N (B) = N (A) − 2(a2pq − b2pq),

where bpq = cs(aqq − app) + (c2 − s2)apq .. 

Proof One directly verifies that the entries of the symmetric matrix B are given by
bij = aij ., provided i, j �∈ {p, q}.,  as  wel  l as

. bpp = c2app + 2csapq + s2aqq,

bqq = s2app − 2csapq + c2aqq,

bpq = bqp = cs(aqq − app) + (c2 − s2)apq,

bip = caip + saiq , i ∈ {1, 2, . . . , n} \ {p, q},
biq = −saip + caiq , i ∈ {1, 2, . . . , n} \ {p, q}.

With ‖B‖F = ‖A‖F . it follows 

. 

N (B) = ‖B‖2F −
n∑

i=1

a2ii +
n∑

i=1

(a2ii − b2ii )

= ‖A‖2F −
n∑

i=1

a2ii + (a2pp − b2pp + a2qq − b2qq)

= N (A) + a2pp + a2qq − b2pp − b2qq .

The formulas for the entries of B show that

. 

[
bpp bpq

bpq bqq

]
=

[
c s

−s c

] [
app apq

apq aqq

] [
c −s

s c

]
.

Identifying this identity with b̂ = gTâg .,  it  follows ‖b̂‖2F = ‖̂a‖2F . or 

. b2pp + b2qq + 2b2pq = a2pp + a2qq + 2a2pq,

thus 

. a2pp + a2qq − b2pp − b2qq = 2(b2pq − a2pq)

and this implies the assertion. ��



8.5 Jacobi Method 63

If the Givens rotation Gpq . can be chosen so that bpq = 0. applies, this results in 
a reduction of the non-diagonal entries. By considering c = cos(α)., s = ± sin(α). 

and D = cos(2α). one obtains the following result. 

Lemma 8.3 If apq �= 0. and the matrix Gpq . is defined by c = √
(1 + D)/2. and 

s = sign(apq)
√

(1 − D)/2.with 

. D = app − aqq
(
(app − aqq)2 + 4a2pq

)1/2 ∈ [−1, 1]

then bpq = 0. applies. 

Proof Exercise. ��
To achieve the greatest possible reduction of N (A)., it is obvious to choose the 

absolute largest non-diagonal element of A. 

Proposition 8.7 If apq . is the absolute largest non-diagonal element of A, then 
with the Givens rotation Gpq . defined in the previous lemma for the matrix B =
GT

pqAGpq . and with εn = 2/(n(n − 1))., we have that 

. N (B) ≤ (1 − εn)N (A),

Proof After choosing apq .,  we  have N (A) ≤ n(n − 1)a2pq .. This implies 

. N (B) = N (A) − 2a2pq ≤
(
1 − 2

n(n − 1)

)
N (A),

thus the claimed estimate. ��
From the proposition follows the convergence of the following method. 

Algorithm 8.3 (Jacobi Method) Let A ∈ R
n×n

. be symmetric. Set A0 = A. and 
k = 0.. 

(1) Let p, q . be the indices of the largest absolute non-diagonal element of Ak . and 
choose the Givens rotation Gpq ., so that for Ak+1 = GT

pqAkGpq . the entry 
(Ak+1)pq . vanishes. 

(2) Stop if N (Ak+1) ≤ εstop .; otherwise increase k → k + 1. and repeat step (1). 

Remarks 8.6 

(i) In general, O(n2 log(1/εstop)). many iterations are needed to guarantee 
N (Ak+1) ≤ εstop .. 

(ii) An entry already transformed to zero can deviate from zero again during the 
method. 

(iii) The method constructs a factorisation A = GDGT
. with an orthogonal matrix 

G and an approximate diagonal matrix D. In particular, the column vectors of 
G are approximate eigenvectors of A.
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(iv) Since the search for the maximum non-diagonal element is time-consuming, 
in practice, all non-diagonal elements are processed successively and this is 
repeated until N (Ak). is sufficiently small. This approach is referred to as 
cyclic Jacobi method. 

8.6 Learning Objectives, Quiz and Application 

You should be familiar with various eigenvalue problems and their conditioning. 
You should be able to derive various methods for the numerical solution of 
eigenvalue problems and be able to specify their convergence and complexity 
properties. 

Quiz 8.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

If A ∈ R
n×n . is regular, then the calculation of the eigenvalues of A is a well 

conditioned p roblem.

The matrices A and AT . have the same eigenvalues and eigenvectors. 

The convergence speed of the power method depends on the ratio of the largest 
absolute to the smallest absolute eigenvalue. 

The execution of a step of the QR method requires a complexity of order O(n3).. 

The Jacobi method is feasible and convergent for every diagonalisable matrix. 

Application 8.1 The numbers 1, 2, 3. are indicators for the comprehensibility of 
a mathematics lecture, where 1 stands for good, 2 for medium and 3 for low 
comprehensibility. Assume that the probability that a lecture of value j is followed 
by a lecture of value i is denoted by pij . and we have 

. P =
⎡

⎣
0.1 0.3 0.6
0.5 0.2 0.1
0.4 0.5 0.3

⎤

⎦ .

A very comprehensible lecture is followed by a little comprehensible lecture 
with 40% probability. Given the vector x0 ∈ [0, 1]3 . for the current lecture, the 
probabilities of the comprehensibility indicators k lectures later is given by xk =
P kx0 .. 

(i) Experimentally test the convergence of the sequence (xk)k≥0 ., where x0 . is 
defined by canonical basis vectors in R3

., that is, after how many steps does 
‖xk − xk+1‖1 ≤ 10−5

. hold? What does this mean for the comprehensibility of 
the lectures?
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(ii) Suppose the sequence (xk)k≥0 . becomes stationary, that is we have xk ≈ x∗
. 

for all k ≥ K . with a sufficiently large number K ≥ 0.. How can x∗
. be 

characterised? 
(iii) Test five starting vectors x0 ∈ [0, 1]3 . generated with rand(3,1), scaled 

with ‖x0‖1 = 1. and characterise the stationary points. Consider the eigen-
values and eigenvectors of P , which you can determine in MATLAB with 
[V,D] = eig(P).



Chapter 9 
Iterative Solution Methods 

9.1 Inexact Solution 

Due to model and data errors as well as numerical rounding, it is generally neither 
necessary nor sensible to solve a system of linear equations exactly in the sense of 
computer arithmetic. We will approximate the solution of a system of equations 
through a sequence of approximate solutions and stop the iteration when the 
equation is sufficiently well fulfilled. This approach leads to a significant reduction 
in effort in many cases. In this chapter, we follow the presentation in [10]. 

9.2 Banach’s Fixed Point Theorem 

Banach’s fixed point theorem defines a method that approximates the solution of a 
fixed point equation under suitable conditions. 

Definition 9.1 A mapping Φ : Rn → R
n
. is called a contraction with respect to a 

norm ‖ · ‖. on Rn
., if there is a number q < 1. such that for all x, y ∈ R

n
.we have 

. ‖Φ(x) − Φ(y)‖ ≤ q‖x − y‖.

For contractions, the following fixed point iteration leads to convergent approxi-
mations. 

Algorithm 9.1 (Fixed Point Iteration) Let Φ : Rn → R
n
. be a contraction and 

x0 ∈ R
n
.. Set k = 0.. 

(1) Define xk+1 = Φ(xk).. 
(2) Stop if ‖xk+1 − xk‖ ≤ εstop .; otherwise increase k → k + 1. and repeat step (1). 
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The iteration converges for every choice of the initial x0
.. 

Proposition 9.1 If Φ : Rn → R
n
. is a contraction, then Φ . has a unique fixed point 

x∗ ∈ R
n
., that is, we have Φ(x∗) = x∗

.. For any initial value x0 ∈ R
n
., the fixed point 

iteration xk+1 = Φ(xk). for k = 0, 1, 2, . . . ., defines a sequence of approximations 
of x∗

.with the property 

. ‖xk − x∗‖ ≤ qk

1 − q
‖x1 − x0‖,

in particular, the sequence (xk)k∈N . converges to x∗
.. 

Proof The mapping Φ . has at most one fixed point, because if x∗, y∗ ∈ R
n
. are fixed 

points, then 

. ‖x∗ − y∗‖ = ‖Φ(x∗) − Φ(y∗)‖ ≤ q‖x∗ − y∗‖

and since q < 1., it follows that x∗ = y∗
.. The sequence defined by the procedure 

xk+1 = Φ(xk). is a Cauchy sequence, because from 

. ‖xk − xk+1‖ = ‖Φ(xk−1) − Φ(xk)‖ ≤ q‖xk−1 − xk‖

it follows inductively that 

. ‖xk − xk+1‖ ≤ qk‖x0 − x1‖

and with the triangle inequality for n ≥ m. 

. ‖xm − xn‖ = ‖xm − xm+1 + xm+1 − xm+2 + xm+2 − · · · − xn−1 + xn−1 − xn‖

≤
n−1∑

k=m

‖xk − xk+1‖ ≤
n−1∑

k=m

qk‖x0 − x1‖ = ‖x0 − x1‖qm
n−m−1∑

k=0

qk

= ‖x0 − x1‖qm 1 − qn−m

1 − q
≤ ‖x0 − x1‖ qm

1 − q
.

As a Cauchy sequence, (xk)k∈N . has a limit x∗ ∈ R
n
. and for this it follows with the 

Lipschitz continuity of Φ ., that 

. x∗ = lim
k→∞ xk+1 = lim

k→∞ Φ(xk) = Φ(x∗).

Thus, x∗
. is a fixed point of Φ .. The error bound follows from the above estimates by 

considering the limit transition n → ∞.. 	




9.3 Linear Iteration Methods 69

Remarks 9.1 

(i) From the error estimation, it can be determined how many iteration steps are 
necessary to achieve a given error tolerance. 

(ii) The fact that the method converges to the solution for any choice of the initial 
value x0

. is referred to as global convergence. 

9.3 Linear Iteration Methods 

We want to investigate the contraction property for affine-linear mappings Φ(x) =
Mx + c.. Obviously, the mapping Φ . is a contraction, if there exists an operator norm 
‖ · ‖op . on R

n×n
. with ‖M‖op < 1..  The  spectral radius of a matrix M ∈ R

n×n
. is 

defined by 

. ρ(M) = max{|λ| : λ is a complex eigenvalue of M}.

The following proposition shows that it is sufficient to show ρ(M) < 1. to guarantee 
a contraction property. Note that ρ(M). for n ≥ 2. does not define a norm on Rn×n

.. 

Proposition 9.2 For M ∈ R
n×n

.we have 

. ρ(M) = inf
{‖M‖op : ‖ · ‖op is an induced operator norm on C

n×n
}
.

Proof 

(i) Let λ ∈ C. be an eigenvalue of M with ρ(M) = |λ|. and x ∈ C
n \ {0}. a 

corresponding eigenvector. Then for every norm on Cn
., we have that 

. ρ(M)‖x‖ = ‖λx‖ = ‖Mx‖ ≤ ‖M‖op‖x‖,

thus ρ(M) ≤ ‖M‖op .. 
(ii) The matrix M is complex triangularizable, i.e. there exist an invertible matrix

T ∈ C
n×n

. and an upper triangular matrix R ∈ C
n×n

.with 

. R = T −1MT =

⎡

⎢⎢⎢⎣

λ1 r12 . . . r1n
. . .

...

λn−1 rn−1,n

λn

⎤

⎥⎥⎥⎦

and the complex eigenvalues λ1, λ2, . . . , λn . of M .  For ε > 0. let Dε ∈ R
n×n

. be 
the diagonal matrix with diagonal elements 1, ε, ε2, . . . , εn−1

.. Then by 

.‖x‖ε = ‖D−1
ε T −1x‖∞
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a norm on Cn
. is defined. For the corresponding operator norm we have 

. 

‖M‖ε = sup
x �=0

‖D−1
ε T −1Mx‖∞

‖D−1
ε T −1x‖∞

x=T Dεy= sup
y �=0

‖D−1
ε T −1MT Dεy‖∞

‖y‖∞

= sup
y �=0

‖D−1
ε RDεy‖∞
‖y‖∞

= ‖D−1
ε RDε‖∞

with the row sum norm ‖ · ‖∞ .. Direct calculation shows 

. D−1
ε RDε=

[
ε−(i−1)rij ε

j−1]
i,j=1,...,n =

⎡

⎢⎢⎢⎣

λ1 εr1,2 . . . εn−1r1,n
. . .

...

λn−1 εrn−1,n

λn

⎤

⎥⎥⎥⎦

and thus, provided ε ≤ 1., 

. ‖M‖ε = ‖D−1
ε RDε‖∞ = max

i=1,2,...,n

(|λi | +
n∑

j=i+1

εj−i |rij |
)

≤ max
i=1,2,...,n

|λi | + ε‖R‖∞ = ρ(M) + ε‖R‖∞.

Since ε > 0. can be chosen arbitrarily small, the assertion follows. 
	


Corollary 9.1 If ρ(M) < 1., then the mapping Φ : x �→ Mx + c. is a contraction. 

Example 9.1 The Richardson method for the approximate solution of the linear 
system Ax = b. is for ω > 0. defined by M = In − ωA. and c = ωb., that is 

. xk+1 = Mxk + c = xk − ω
(
Axk − b).

If A is symmetric and positive definite, then all eigenvalues of A are positive, and
for ω . sufficiently small, ρ(In − ωA) < 1..  If xk+1 = xk

., then xk
. is a solution of 

Ax = b.. 

9.4 Jacobi and Gauss-Seidel Methods 

Based on simple decompositions of matrices, iterative methods can be defined.
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Definition 9.2 For A ∈ R
n×n

., the lower, diagonal and upper part L,U,D ∈ R
n×n

. 

of A are defined by

. dij =
{

aii , i = j,

0, i �= j,
�ij =

{
aij , i > j,

0, i ≤ j,
uij =

{
aij , i < j,

0, i ≥ j.

Since A = L + D + U ., the linear system Ax = b. is equivalent to 

. Lx + Dx + Ux = b

and iteration methods can be defined by replacing x in the different terms by xk
. or 

xk+1
., for example 

. Lxk + Dxk+1 + Uxk = b ⇐⇒ xk+1 = −D−1(A − D)xk + D−1b.

For a stationary point or in the case xk+1 = xk
., the linear system is obviously 

fulfilled. An alternative to this approach is 

. Lxk+1 + Dxk+1 + Uxk = b ⇐⇒ xk+1 = −(L + D)−1Uxk + (L + D)−1b.

Definition 9.3 The Jacobi and Gauss-Seidel methods are defined by 

. 
MJ = −D−1(A − D), cJ = D−1b,

MGS = −(L + D)−1U, cGS = (L + D)−1b,

provided D is regular .

Remarks 9.2 

(i) In the Jacobi method, a linear system with a diagonal matrix is to be solved 
in each iteration step, and in the Gauss-Seidel method with a lower triangular 
matrix. 

(ii) It is expected that the Gauss-Seidel method has better convergence properties 
than the Jacobi method, as the matrix L+D . is generally a better approximation 
of A than the matrix D .

9.5 Diagonal Dominance and Irreducibility 

We want to formulate sufficient conditions for a matrix that imply the contraction 
property of an iteration procedure.
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Definition 9.4 The matrix A ∈ R
n×n

. is called diagonally dominant,  if  f  or i =
1, 2, . . . , n.we have 

. 
∑

j=1,...,n, j �=i

|aij | ≤ |aii |

and this inequality is strict for an i0 ∈ {1, 2, . . . , n}.. If it is strict for all i =
1, 2, . . . , n., then A is called strictly diagonally dominant .

Example 9.2 For the matrices 

. A1 =

⎡

⎢⎢⎢⎢⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤

⎥⎥⎥⎥⎦
, A2 =

⎡

⎢⎢⎢⎢⎣

4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

⎤

⎥⎥⎥⎥⎦

we have that A1 . is diagonally dominant but not strictly diagonally dominant and A2 . 

is strictly diagonally dominant. 

Remarks 9.3 

(i) If A is strictly diagonally dominant, then aii �= 0. for i = 1, 2, . . . , n. and D 
is regular. For the iteration matrix MJ = −D−1(A − D). of the associated 
Jacobi method, mJ

ii = 0. holds and thus due to the diagonal dominance for 
i = 1, 2, . . . , n. 

. 

n∑

j=1

|mJ
ij | =

∑

j=1,...,n, j �=i

|aij |
|aii | = 1

|aii |
∑

j=1,...,n, j �=i

|aij | < 1.

This means ‖MJ ‖∞ < 1. and thus ρ(MJ ) < 1.. 
(ii) For strictly diagonally dominant matrices, ρ(MGS) ≤ ρ(MJ ). holds. 

Strict diagonal dominance is generally too restrictive a condition. 

Definition 9.5 The matrix A ∈ R
n×n

. is called reducible, if disjoint, non-empty 
index sets I, J ⊂ {1, 2, . . . , n}. exist, such that I ∪ J = {1, 2, . . . , n}. and aij = 0. 
for all pairs (i, j) ∈ I × J .. Otherwise, A is called irreducible .

Example 9.3 

(i) The matrix 

. A =
⎡

⎣
1 0 2
3 4 5
6 0 7

⎤

⎦

is reducible with I = {1, 3}. and J = {2}..



9.6 Convergence 73

(ii) The band matrices from Example 9.2 are irreducible, because from i ∈ I . it also 
follows i + 1 ∈ I . for 1 ≤ i ≤ n − 1. as well as i − 1 ∈ I . for 2 ≤ i ≤ n. and thus 
I = {1, 2, . . . , n}. or I = ∅.. 

Remark 9.4 For reducible matrices, the solution of the linear system Ax = b. can 
be decomposed into smaller systems. If for X, Y ⊂ {1, 2, . . . , n}. the submatrix AXY . 

is defined by AXY = (aij )i∈X,j∈Y . and the subvector xY . by xY = (xk)k∈Y ., then we 
have AIJ = 0. and thus AII xI = bI . and AJJ xJ = bJ − AJI xI .. 

Lemma 9.1 If M is irreducible and diagonally dominant, then M is re gular with
mii �= 0. for i = 1, 2, . . . , n.. 

Proof If M is not regular, then there exists x ∈ R
n \ {0}.with Mx = 0. and from the 

i-th row of the identity it follows 

. |miixi | ≤
∑

j=1,...,n, j �=i

|mij ||xj |.

Define I = {i : |xi | = ‖x‖∞}. and J = {j : |xj | < ‖x‖∞}.. Then I �= ∅. and I ∪J =
{1, 2, . . . , n}..  Also, J �= ∅., because otherwise |xj | = ‖x‖∞ . for j = 1, 2, . . . , n. and 
thus 

. |mii | ≤
∑

j=1,...,n, j �=i

|mij |

would hold, which contradicts the diagonal dominance, which guarantees strict 
inequality in the opposite direction for an i0 .. Therefore, J �= ∅. and due to the 
irreducibility there exist i ∈ I . and j ∈ J .with mij �= 0. and thus 

. |mii | ≤
∑

j=1,...,n, j �=i

|mij | |xj |
‖x‖∞

<
∑

j=1,...,n, j �=i

|mij |

contradicting the diagonal dominance of M . Consequently, M is regular. The 
regularity and the diagonal dominance of M imply mii �= 0. for i = 1, 2, . . . , n., 
because otherwise a row of M would be identically zero, which would contradict 
the regularity of M . 	


9.6 Convergence 

The preceding lemma allows us to prove the convergence of the Jacobi and Gauss-
Seidel methods.
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Proposition 9.3 If A is irreducible and diagonally dominant, then the Jacobi and 
Gauss-Seidel methods are feasible and convergent, that is MJ

. and MGS
. are well-

defined and satisfy ρ(MJ ) < 1. and ρ(MGS) < 1.. 

Proof 

(i) According to the previous lemma, aii �= 0. for i = 1, 2, . . . , n. and thus 
MJ = −D−1(A − D). is well-defined. We show, that MJ − μIn . for all μ ∈ C. 

with |μ| ≥ 1. is regular, so that ρ(MJ ) < 1. follows. Since irreducibility is 
independent of the diagonal elements of a matrix, A as well as A − D . and 
MJ = −D−1(A−D). are irreducible. Likewise, M = MJ −μIn . is irreducible. 
With the diagonal dominance of A,  it  follows  for i = 1, 2, . . . , n., that 

. 
∑

j=1,...,n, j �=i

|mij | =
∑

j=1,...,n, j �=i

|mJ
ij | =

∑

j=1,...,n, j �=i

|aij |
|aii | ≤ 1 ≤ |μ| = |mii |,

where the inequality is strict for an i0 ∈ {1, 2, . . . , n}.. Consequently, M is 
diagonally dominant for every μ ∈ C. with |μ| ≥ 1. and together with the 
irreducibility, the regularity of M follo ws.

(ii) Again, aii �= 0. for i = 1, 2, . . . , n. implies that MGS = −(L + D)−1U . is well-
defined. For μ ∈ C.with |μ| ≥ 1. let M = MGS − μIn .. Since L + D . is regular, 
M is regular if and only i f

. M̃ = −(L + D)M = −(L + D)
( − (L + D)−1U − μIn

) = U + μL + μD

is regular. With A = U +L+D ., the matrix M̃ . is also irreducible. Furthermore, 
M̃ . is diagonally dominant, because for i = 1, 2, . . . , n. due to the diagonal 
dominance of A, we have that 

. 

∑

j=1,...,n, j �=i

|m̃ij | = |μ|
i−1∑

j=1

|aij | +
n∑

j=i+1

|aij | ≤ |μ|
∑

j=1,...,n, j �=i

|aij |

≤ |μ||aii | = |m̃ii |,

where strict inequality holds for an i0 ∈ {1, 2, . . . , n}..  So M̃ . is diagonally 
dominant and the preceding lemma implies the regularity of M̃ .. 

	

Remark 9.5 

(i) In the case of convergence, often a few iteration steps lead to a good 
approximate solution. Since each iteration step in the Jacobi and Gauss-Seidel 
method requires O(n2). many operations, this can reduce the typical effort of 
O(n3). of direct solution methods like Gauss elimination. 

(ii) The conditions are sufficient but not necessary, as for example regular diagonal 
matrices are diagonally dominant and reducible, but the Jacobi and Gauss-
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Seidel method determine the exact solution in one step. In general, both 
conditions are needed, because for the matrices 

. A2 =
[
1 1

−1 1

]
, A3 =

⎡

⎣
1 1 0

−1 1 0
0 0 1

⎤

⎦ ,

we have that A2 . is irreducible but not diagonally dominant, while A3 . is 
diagonally dominant but not irreducible. In both cases, the iteration matrix of 
the Jacobi method realises a rotation by π/2. in the (x, y).-plane, so in general, 
convergence does not have to occur. 

An alternative proof for the convergence of the Gauss-Seidel method can be given 
for symmetric, positive definite matrices. 

Proposition 9.4 If A ∈ R
n×n

. is symmetric and positive definite, then ρ(MGS) < 1.. 

Proof First, we obtain with U = A − (D + L). and Q = 2A−1(D + L) − In ., that 
for MGS = −(D + L)−1U .we have 

. 
MGS = In − (D + L)−1A = In − 2

(
2A−1(D + L)

)−1

= In − 2(Q + In)
−1 = (Q − In)(Q + In)

−1.

From this identity, it follows that μ = 1. is not an eigenvalue of MGS
., and if μ ∈

C \ {1}. is an eigenvalue of MGS
., then there exists an eigenvalue λ ∈ C \ {−1}. of Q, 

such that μ = (λ − 1)/(λ + 1). holds. If z ∈ C
n
. is an eigenvector associated to the 

eigenvalue λ ∈ C. of Q, then 

. Qz = λz ⇐⇒ λAz = 2(D + L)z − Az.

We multiply the second equation from the left with zT . and use the fact that the 
symmetry and positive definiteness of A and D imply that

. zTAz > 0, zTDz > 0

hold, in particular both expressions are real-valued. With aTb = bTa . it follows 

. 2Re(zTLz) = zTLz + zTLz = zTLz + (LTz)Tz = zT
(
Lz + LTz).

Because LT = U . and A = D + L + U . it follows that 

.

zTAzRe(λ) = Re
(
λzTAz

) = 2zTDz + 2Re(zTLz) − zTAz

= zT(2D + L + U)z − zTAz = zTDz > 0,
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and thus Re(λ) > 0.. Any such number λ ∈ C. has a strictly smaller distance to the 
point 1 than to the point −1., that means we have |λ−1| < |λ−(−1)| = |λ+1|., and 
thus for every eigenvalue μ = (λ−1)/(λ+1).of MGS

., that |μ| < 1.or ρ(MGS) < 1. 
holds. 	

Remark 9.6 The argumentation of the proof goes back to Ostrowski and Reich and 
can be generalised to a family of so-called relaxation methods. 

9.7 Learning Objectives, Quiz and Application 

You should be able to derive iterative methods for solving linear systems and be able 
to demonstrate their advantages compared to other methods. You should be able to 
name sufficient conditions for the convergence of linear iteration methods and to 
explain structural properties of matrices that ensure the convergence of the methods 
and illustrate their significance. 

Quiz 9.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

If A ∈ R
n×n . is irreducible and D ∈ R

n×n . is a diagonal matrix, then A − D . is also 
irreducible. 

If A ∈ R
n×n . is diagonally dominant, then A is regular .

For symmetric matrices, the Jacobi and Gauss-Seidel methods agree. 

The property aii �= 0. of a matrix A ∈ R
n×n . is necessary for the well-definedness of 

the Jacobi and Gauss-Seidel methods. 

If A − μIn . is regular for all μ ∈ C.with |μ| ≥ 1/4.,  then |λ| < 1/4. holds for all 
eigenvalues of A. 

Application 9.1 In applications such as the description of the elastic behaviour of 
truss structures, regular matrices A ∈ R

n×n
. occur, in which many entries vanish. In 

these cases, it is often sensible to implement an iterative method without completely 
storing the matrix A. Show that the Jacobi and the Gauss-Seidel method can be 
written in the form 

. xk+1
i = a−1

ii

(
bi −

∑

j �=i

aij x
k
j

)
,

respectively 

. xk+1
i = a−1

ii

(
bi −

∑

j<i

aij x
k+1
j −

∑

j>i

aij x
k
j

)

for i = 1, 2, . . . , n.. Simplify these formulas for the case of matrices with finite 
bandwidth w > 0., that is, in the case that aij = 0. for |i − j | > w ..



Chapter 10 
General Condition Number and Floating 
Point Numbers 

10.1 Conditioning 

We consider the effects of perturbations in the evaluation of a mathematical 
operation φ(x)., which is defined by a mapping φ : X → Y . between normed vector 
spaces. Here, perturbations x̃ . of x are additively represented as the sum x̃ = x +Δx . 

with Δx = x̃ − x .. The following definition from [2] generalises the concept of the 
condition number for general mathematical operations. 

Definition 10.1 The (relative) condition number κφ(x). of the function φ : X → Y . 

at x �= 0. with φ(x) �= 0. is the infimum of all κ ≥ 0.,  for  which a δ > 0. exists, such 
that 

. εφ =‖φ(x + Δx) − φ(x)‖
‖φ(x)‖ ≤ κ

‖Δx‖
‖x‖ = κεx

for all Δx ∈ X . with εx =‖Δx‖/‖x‖ ≤ δ .. The operation φ(x). is called ill 
conditioned,  if κφ(x) � 1., and ill-posed,  if κφ(x). is not defined. It is called well 
conditioned otherwise. 

Examples 10.1 

(i) The operation defined by φ(x) = |x − 1|s + 1. is well conditioned at x = 1. 
exactly for s ≥ 1., that is, when left- and right-hand derivatives at x = 1. exist. 

(ii) The operation defined by φ(x) = a|x − 1|+ 1. is ill conditioned at x = 1.when 
a � 1.. 

(iii) The operation defined by the discontinuous function φ(x) = sign(x − 1) + 2. 
is ill-posed at x = 1.. 
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Fig. 10.1 Well conditioned, 
ill conditioned and ill-posed 
operations φ(x). 

x x x  

The examples are sketched in Fig. 10.1. 

Proposition 10.1 If φ . is differentiable at x, then 

. κφ(x) = ‖Dφ(x)‖‖x‖
‖φ(x)‖ .

Proof It holds 

. φ(x + Δx) − φ(x) = Dφ(x)[Δx] + ψ(Δx),

with a function ψ ., which fulfils ψ(Δx)/‖Δx‖ → 0. for Δx → 0.. Thus, for every 
ε > 0. there exists a δ > 0., such that for all Δx .with ‖Δx‖/‖x‖ ≤ δ . it holds 

. 

∥

∥

∥

φ(x + Δx) − φ(x)

‖Δx‖ − Dφ(x)[Δx]
‖Δx‖

∥

∥

∥ ≤ ε.

From this follows 

. 
‖φ(x + Δx) − φ(x)‖

‖φ(x)‖ ≤
(

ε + ‖Dφ(x)[Δx]‖
‖Δx‖

) ‖Δx‖
‖φ(x)‖ .

By definition of the operator norm, it holds ‖Dφ(x)[Δx]‖ ≤ ‖Dφ(x)‖‖Δx‖., where 
equality occurs for suitable Δx .. Since ε > 0. can be chosen arbitrarily small, the 
assertion follows. 	


In the case of systems of linear equations, the condition number is bounded by 
the special condition number of the matrix. 

Remarks 10.1 

(i) For φ(b) = A−1b. it holds Dφ(b) = A−1
. and with the identity ‖b‖ =

‖A(A−1b)‖ ≤ ‖A‖‖A−1b‖. implies that 

. κφ(b) = ‖A−1‖
‖A−1b‖‖b‖ ≤ ‖A−1‖‖A‖ = cond(A).

Furthermore, there exists a b ∈ R
n
. such that equality holds. 

(ii) To investigate the influences of perturbations of the matrix A, we consider 
the mapping φ(A) = A−1b.. From the constancy of A �→ Aφ(A) = b. it 
follows that Dφ(A)[E] = −A−1EA−1b. and with the estimate ‖Dφ(A)‖ ≤
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‖A−1‖‖A−1b‖.we get 

. κφ(A) ≤ ‖A−1‖‖A−1b‖‖A‖
‖A−1b‖ = cond(A),

that is, errors in A are also amplified by the factor cond(A).. 

Cancellation effects are also captured by the condition number. 

Examples 10.2 

(i) For φ(x1, x2) = x1 + x2 .we have Dφ(x1, x2) = [1, 1]. and thus 

. κφ(x1, x2) = ‖[1, 1]‖1‖(x1, x2)‖1
|x1 + x2| = |x1| + |x2|

|x1 + x2| ,

so the operation is ill-conditioned if x1 ≈ −x2 ., that is, when cancellation effects 
can occur. 

(ii) Intuitively, standing a pen upright is an ill conditioned problem, while standing 
a can is generally well conditioned. 

10.2 Floating Point Numbers 

On digital computers, only a finite number of numbers are available, which are 
determined according to certain rules. We follow the presentation in [9]. 

Definition 10.2 For a base b ≥ 2.,  a  precision p ≥ 1. and exponent limits emin ≤
emax . with b, p, emin, emax ∈ Z. the set of floating point or machine numbers is 
defined by 

. G = { ± mbe−p : m, e ∈ Z, 0 ≤ m ≤ bp − 1, emin ≤ e ≤ emax

}

.

A floating point number g ∈ G. is called normalised,  if m ≥ bp−1
., and we let Gnor . 

denote the set of normalised floating point numbers. In the cases b = 2. and b = 10. 
we speak of the binary and decimal system. 

Examples 10.3 

(i) For b = 2., emin = 0., emax = 3., p = 2. the normalised floating point numbers 
are given by ± {2/4, 3/4, 2/2, 3/2, 2/1, 3/1, 2 · 2, 3 · 2}.; the set of all floating 
point numbers additionally contains the numbers ± {0, 1/4}.. 

(ii) For b = 10., p = 3., emin = −2. and emax = 2. G consists of all numbers of the 
form ± m · 10−r

.with 0 ≤ m ≤ 999. and 1 ≤ r ≤ 5., for example 

. − 783 · 10−5, 400 · 10−3, 40 · 10−2,

where only the first two numbers are normalised.
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Remarks 10.2 

(i) Each floating point number g ∈ G. can be represented as a b-adic sum, that is, 
it holds 

. g = ±be
(

d1b
−1 + d2b

−2 + · · · + dpb−p
)

with digits d1, d2, . . . , dp ∈ {0, 1, . . . , b − 1}. and emin ≤ e ≤ emax ..  For  
normalised floating point numbers, this representation is uniquely defined with
d1 �= 0.. 

(ii) For normalised floating point numbers g, gmin ≤ |g| ≤ gmax . with gmin =
bemin−1

. and gmax = bemax (1 − b−p).. 
(iii) For b = 10., g = ±10e · 0.d1d2 . . . dp . and the decimal point is floating 

depending on e. 

Example 10.4 In the 754R standard of the Institute of Electrical and Electronics 
Engineers (IEEE), the formats single and double precision are defined by 

. 
b = 2, emin = −125, emax = 128, p = 24,

b = 2, emin = −1021, emax = 1024, p = 53.

The relative error in the approximation of real numbers by machine numbers is 
limited by the so-called machine precision. 

Definition 10.3 The machine precision is defined by the smallest number geps ∈
Gnor .,  for  which geps > 1.,  as eps = geps − 1 = ming>1 g − 1. 

Remark 10.3 It holds that geps = b1(b−1 + 0 · b−2 + · · · + 0 · b−p+1 + b−p) =
1 + b1−p

. and thus eps = b1−p
.. 

Examples 10.5 

(i) The normalised floating point numbers between be
. and be+1

. for emin−1 ≤ e ≤
emax − 1. are uniformly arranged at a distance of beeps., see Fig. 10.2. 

(ii) For the IEEE-754R formats single and double, eps = 2−23 ≈ 1.2 · 10−7
. and 

eps = 2−52 ≈ 2.2 · 10−16
. respectively. 

b−10 bemax(1−b−p) 

b2 epseps 

b b2 b3 

beps 

1 

Fig. 10.2 Schematic representation of the arrangement of machine numbers
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10.3 Rounding 

Rounding functions approximate real numbers by machine numbers. 

Definition 10.4 For a set of machine numbers G, a mapping rd : [−gmax, gmax] →
Gnor . is called a rounding function, if for every real number x ∈ [−gmax, gmax]., 
|x − rd(x)| = ming∈Gnor |x − g|.. 
Remarks 10.4 

(i) If x is exactly between two machine numbers, the IEEE standards select the 
machine number whose last digit is ev en.

(ii) We speak of overflow and underflow, when |x| > gmax . or |x| < gmin . 

respectively. In the second case, it is usually rounded to zero, but a large error 
occurs. In the denormalised IEEE standard, additional machine numbers are 
used in a neighbourhood of zero. 

(iii) In addition to the numbers in G, there is usually also the value NaN, which is 
used for undefined expressions such as 1/0. and stands for not-a-number. 

Lemma 10.1 For every x ∈ R.with |x| ∈ [gmin, gmax]., 

. 
|x − rd(x)|

|x| ≤ 1

2
eps,

that is, there exists a δ ∈ R.with |δ| ≤ eps/2. and rd(x) = (1 + δ)x .. 

Proof Since the normalised floating point numbers are uniformly spaced in every 
interval [be, be+1]. at a distance beeps., there exists a � ≥ 0.with be + �beeps ≤ x ≤
be + (�+ 1)beeps. and let g be the upper or lower bound with |x − g| ≤ (1/2)beeps.. 
Since |x| ≥ be

. the assertion follows. 	

Definition 10.5 The standard model of floating point arithmetics requires that for 
all x, y ∈ R. with |x|, |y| ∈ [gmin, gmax]. and every standard arithmetic operation 
op ∈ {+,−, ∗, :}.with |x op y| ∈ [gmin, gmax]. as well as their numerical realisation 
opG : G × G → G. there exists a δ ∈ R.with |δ| ≤ eps/2. such that 

. rd(x) opG rd(y) = (x op y)(1 + δ).

Remarks 10.5 

(i) It is often further simplified to assume that rd(x) opG rd(y) = rd(x op y).. 
(ii) The standard model is fulfilled by the IEEE standards, which are implemented 

on common computers. 
(iii) In many operations, rounding errors can accumulate and become relevant. This 

is also referred to as error propagation.
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10.4 Stability 

Let ˜φ : X → Y . denote a numerical method, that is a finite sequence of operations 
subject to rounding errors. When rounding the argument x it holds

. φ(x) − ˜φ(x + Δx) = (

φ(x) − φ(x + Δx)
) + (

φ(x + Δx) − ˜φ(x + Δx)
)

,

where the first term on the right-hand side is controlled by the conditioning of φ . 

and the second describes the stability of the method. The latter depends on the the-
oretically freely selectable rounding accuracy ε . and in the following we also write 
˜φε . instead of ˜φ ., to indicate this. If instead of the impact of erroneous operations the 
approximation of an operation φ . by an approximation ˜φ . is considered, for example 
when approximating a series by a finite sum, the difference φ − ˜φ . is also referred to 
as the consistency term. The following definition from [2] specifies the concept of 
stability in the present context. It is measured relative to the condition number. 

Definition 10.6 The stability indicator σ
˜φ(x). of the numerical method ˜φ . is the 

infimum of all σ ≥ 0. for which a δ > 0. exists, such that 

. 
‖φ(x) − ˜φε(x)‖

‖φ(x)‖ ≤ σκφ(x)ε

for every 0 ≤ ε ≤ δ .. The method ˜φ . is called unstable,  if σ
˜φ(x) � 1.. Otherwise, the 

method is called (forward-) stable. 

The number σ
˜φ(x). describes the error amplification caused by the method. 

Precise stability analyses are generally extremely complex. The following concepts 
are usually applied in practice. 

Remark 10.6 In the linear forward analysis, each intermediate result zi . is consid-
ered as subject to rounding and replaced by (1+ εi)zi .with |εi | ≤ ε .. Products of the 
form εiεj . are neglected in the calculation. The division is linearised with respect to 
ε ., that is for example 

. (x(1 + ε))−1 ≈ (1 − ε)x−1.

A simple to check, but very restrictive stability criterion is the so-called backward 
stability, where the method error is represented by a perturbation of the argument x. 

Definition 10.7 The backward stability indicator ρ
˜φ(x). of an operation ˜φε : X →

Y . at x is the infimum of all ρ ≥ 0.,  for  which a δ > 0. exists, such that for all 
0 ≤ ε ≤ δ . there is a Δx ∈ X .with φ(x + Δx) = ˜φε(x). and 

. 
‖φ−1(φ(x)) − φ−1(˜φε(x))‖

‖φ−1(φ(x))‖ =‖Δx‖
‖x‖ ≤ ρε.

The method is called backward stable, provided that ρ
˜φ(x) � 1. does not hold.
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Remark 10.7 If ˜φε . is backward stable, then ˜φε . is stable, because it holds 

. 
1

κφ(x)ε

‖˜φε(x) − φ(x)‖
‖φ(x)‖ = 1

κφ(x)ε

‖φ(x + Δx) − φ(x)‖
‖φ(x)‖ ≤ 1

ε

‖Δx‖
‖x‖ ≤ ρ

˜φ(x)

and thus by definition of the stability indicator σ
˜φ(x) ≤ ρ

˜φ(x).. 

Examples 10.6 

(i) The floating-point realisation of the operation φ(x) = 1 + x . is not backward 
stable for small numbers x, because it holds 

. |φ−1(1 + x + Δx) − φ−1(1 + x)|/|φ−1(1 + x)| = |Δx|/|x| � |Δx|.

Obviously, ˜φ = φ . is however stable for small numbers x. 
(ii) Cramer’s rule is not backward stable but forward stable for systems of linear 

equations of dimension 2. 

10.5 Learning Objectives, Quiz and Application 

You should be able to understand the general condition number of a mathematical 
operation and illustrate it with examples. You should moreover be able to clarify the 
importance of floating point numbers and their accuracy for numerical calculations 
and motivate the concept of the stability indicator of a numerical method. 

Quiz 10.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

If φ : Rn → R
m . is Lipschitz continuous and ‖φ(x)‖ ≥ c‖x‖. for all x ∈ R

n .with 
c > 0.,  the  n φ . is well conditioned. 

For b = 10., p = 4., emin = −3., emax = 3., − 13 · 10−2 . is a normalised floating point 
number. 

If rd(x) = 0. and emin ≤ 2 − p .,  then |x| < eps.. 

The machine precision eps. limits the absolute error in the approximation of real 
numbers by floating point numbers. 

If φ . is ill conditioned, then every numerical method ˜φ . is stable.
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Fig. 10.3 Conditioning 
examination of a billiard shot 

Application 10.1 On a billiard table of width 1, a ball is placed on the centre line 
and played at an angle α ∈ (0, π/2). to it. For a fixed number n ∈ N.,  let φn(α). be 
the distance to the starting position on the centre line, with which the ball crosses 
this after n wall contacts, see F ig. 10.3. Derive a formula for φn(α)., determine the 
condition number κφn(α). and interpret this.



Chapter 11 
Polynomial Interpolation 

11.1 Lagrange Interpolation 

Interpolation refers to the approximation of a given function in a finite-dimensional 
space of functions, such as polynomials of limited degree. Since only the coeffi-
cients with respect to a basis need to be stored, this is advantageous for the numerical 
processing or tabular recording of a function. In the following, let 

. Pn = { n∑

i=0

aix
i : a0, a1, . . . , an ∈ R

}

be the vector space of polynomials of maximum degree n ∈ N0 .. 

Remark 11.1 We have that dimPn = n + 1. and the monomials (x0, x1, . . . , xn). 

form a basis of Pn .. Here, x0
. denotes the constant function with value 1. 

Definition 11.1 The Lagrange interpolation task seeks for given, pairwise different 
nodes a ≤ x0 < x1 < · · · < xn ≤ b. and associated values y0, y1, . . . , yn . a 
polynomial p ∈ Pn .with p(xi) = yi . for i = 0, 1, . . . , n., see Fig. 11.1. 

The interpolation task can be solved directly with a special basis of Pn .. 

Definition 11.2 The Lagrange polynomials L0, L1, . . . , Ln ∈ Pn . associated with 
the nodes x0 < x1 < · · · < xn . are defined by 

. Li(x) =
n∏

j=0
j �=i

x − xj

xi − xj

= (x − x1)

(xi − x1)
. . .

(x − xi−1)

(xi − xi−1)

(x − xi+1)

(xi − xi+1)
. . .

(x − xn)

(xi − xn)
.

Remark 11.2 We have that Li(xj ) = δij . for all 0 ≤ i, j ≤ n., see Fig. 11.2. 
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Fig. 11.1 Lagrange 
interpolation task 

x0 x1 x3x2 

Fig. 11.2 The interpolation 
task can be solved with the 
Lagrange polynomials Li . 1 

x0 x1 x2 x3 

L0 
L2 

Proposition 11.1 The Lagrange interpolation task is uniquely solved by 

. p =
n∑

i=0

yiLi

This polynomial is referred to as the (Lagrange) interpolation polynomial. 

Proof From Li(xj ) = δij . it follows that p(xj ) = yj . for j = 0, 1, . . . , n., i.e. p is 
a solution. If q ∈ Pn . is another solution, then for r = p − q ∈ Pn ., r(xj ) = 0. for 
j = 0, 1, . . . , n., i.e. r has n+1. zeros from which r = 0. and thus p = q . follows. ��
Remark 11.3 If (q0, q1, . . . , qn). is a basis ofPn ., then the solution of the Lagrange 
interpolation task can be represented as a linear combination p = ∑n

i=0 ciqi ., where 
the coefficient vector c = [c0, . . . , cn]T . solves the regular system of linear equations 
V c = y .with y = [y0, y1, . . . , yn]T . and the Vandermonde matrix V ∈ R

(n+1)×(n+1)
. 

with entries vij = qi(xj ).. For the choice of Lagrange polynomials, it follows that 
V = In .. If, on the other hand, one chooses the monomial basis (x0, x1, . . . , xn)., 
then V is generally ill conditioned.

11.2 Interpolation Error 

Often the values y0, y1, . . . , yn . represent function values of a function f and one is 
interested in the size of the error f − p .. 

Proposition 11.2 Let f ∈ Cn+1([a, b]). and let f (xi) = yi . for i = 0, 1, . . . , n..  For  
the solution p ∈ Pn . of the Lagrange interpolation problem and every x ∈ [a, b]. 
there exists a ξ ∈ [a, b]., such that 

.f (x) − p(x) = f (n+1)(ξ)

(n + 1)!
n∏

j=0

(x − xj ).
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Proof Let x ∈ [a, b]..  If x ∈ {x0, x1, . . . , xn}., then the statement is clear, so assume 
x �= xi . for i = 0, 1, . . . , n. in the following. With the node polynomial 

. w(y) =
n∏

j=0

(y − xj ) = yn+1 + any
n + · · · + a0 ∈ Pn+1

for y ∈ [a, b]. let 

. F(y) = (
f (x) − p(x)

)
w(y) − (

f (y) − p(y)
)
w(x).

Then F(xi) = 0. for i = 0, 1, . . . , n. and F(x) = 0., that is F has at least n + 2. 
different zeros. According to Rolle’s theorem, F ′

. has a zero between two zeros 
of F , thus F ′

. has at least n + 1. different zeros. The repeated application of this 
argument shows that the derivative F (n+1)

. has at least one zero ξ ∈ [a, b]..  This  
giv es

. 0 = F (n+1)(ξ) = (
f (x) − p(x)

)
(n + 1)! − f (n+1)(ξ)w(x)

and this is the claimed identity. ��
Corollary 11.1 For the interpolation error we have 

. ‖f − p‖C0([a,b]) ≤ ‖f (n+1)‖C0([a,b])
(n + 1)! (b − a)n+1.

The corollary implies that the Lagrange interpolation polynomials converge 
uniformly to f as n → ∞., provided the distance b − a . is reduced or the number 
of nodes is increased and the derivatives of f do not grow too rapidly. However, the 
latter is generally not the case.

Example 11.1 Let f : [−1, 1] → R. be defined by f (x) = (1 + 25x2)−1
. and 

let the nodes be chosen equidistantly, i.e. xi = −1 + 2i/n. for i = 0, 1, . . . , n.. 
Then the sequence of Lagrange interpolation polynomials (pn)n∈N . of f does not 
converge pointwise to f as n → ∞., since the expression ‖f (n+1)‖C0([−1,1]) . grows 
too rapidly. The interpolation polynomial is shown in Fig. 11.6. 

11.3 Neville’s Algorithm 

The direct evaluation of the interpolation polynomial at a point x ∈ [a, b]. is 
expensive and potentially unstable. Neville’s algorithm allows a calculation of p(x). 

with O(n2). computational operations. We follow the presentations in [9, 10].
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pi,2 pi,0 

pi,1 

xi−1 xi xi+1 xi+2xi−1 xi xi+1 xi+2 xi−1 xi xi+1 xi+2 

Fig. 11.3 The interpolation polynomial is constructed step by step in the Neville scheme 

Definition 11.3 For n + 1. nodes and values (x0, y0)., (x1, y1).,  . . . , (xn, yn). as well 
as 0 ≤ j ≤ n. and 0 ≤ i ≤ n − j .,  let pi,j ∈ Pj . be the uniquely determined 
Lagrange interpolation polynomial with pi,j (xk) = yk ., k = i, i + 1, . . . , i + j .,  see  
Fig. 11.3. 

Remark 11.4 We have that pi,0(x) = yi . for i = 0, 1, . . . , n. and p0,n(x) = p(x). 

for x ∈ [a, b].. 
Proposition 11.3 The polynomials pi,j . are given by pi,0(x) = yi . for i =
0, 1, . . . , n. as well as 

. pi,j (x) = (x − xi)pi+1,j−1(x) − (x − xi+j )pi,j−1(x)

xi+j − xi

for i = 0, 1, . . . , n − j . and j = 1, 2, . . . , n.. 

Proof For j = 0. the statement holds by definition, so assume that it is true for 
j − 1.with j ≥ 1..  Let 0 ≤ i ≤ n − j . and let q(x). denote the right-hand side of the 
claimed identity for pi,j .. Since pi+1,j−1, pi,j−1 ∈ Pj−1 ., it follows that q ∈ Pj .. 
Moreover, q(xi) = pi,j−1(xi) = yi . and q(xi+j ) = pi+1,j−1(xi+j ) = yi+j ..  Fo  r
k = i + 1, i + 2, . . . , i + j − 1., since pi+1,j−1(xk) = pi,j−1(xk) = yk ., it follows 
that 

. 

q(xk) = (xk − xi)pi+1,j−1(xk) − (xk − xi+j )pi,j−1(xk)

xi+j − xi

= (xk − xi)yk − (xk − xi+j )yk

xi+j − xi

= yk.

The uniqueness of the interpolation polynomial implies q = pi,j .. ��
Remark 11.5 The Neville scheme should not be implemented backwards in recur-
sive form, as many quantities would be calculated multiple times. Instead, the values 
pi,j (x). should be evaluated successively forwards, which leads to a computational 
cost of O(n2). and is illustrated in Fig. 11.4. 

Remark 11.6 Closely connected with the Neville scheme is the method of divided 
differences, which determines the coefficients λj ., j = 0, 1, . . . , n., of the Lagrange
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Fig. 11.4 Schematic representation of the Neville scheme; the evaluation is carried out from left 
to right 

interpolation polynomial with respect to the Newton basis (q0, q1, . . . , qn). defined 
by q0 = 1. and 

. qj (x) =
j−1∏

k=0

(x − xk),

j = 1, 2, . . . , n., that is p(x) = ∑n
j=0 λjqj (x).. With the initialisation yi,0 = yi ., 

i = 0, 1, . . . , n., and the iteration rule 

. yi,j = yi+1,j−1 − yi,j−1

xi+j − xi

for 1 ≤ j ≤ n. and 0 ≤ i ≤ n − j ., we have that λj = y0,j ., j = 0, 1, . . . , n..  The  
evaluation of the interpolation polynomial is then efficiently done with effort O(n). 

via Horner’s scheme, that is by means of the representation 

. p(x) = λ0 + (x − x0)
[
λ1 + (x − x1)

[
λ2 + . . .

[
λn−1 + (x − xn−1)λn

]
. . .

]]
.

This type of evaluation of the interpolation polynomial has the useful property that 
additional interpolation points can be easily added. The scheme is also well suited 
when the value of the polynomial p is needed at several points.

Remark 11.7 An alternative approach to evaluating an interpolation polynomial p 
is obtained using barycentric representations of the basis functions. L etting

. γi =
∏

j=0,...,n, j �=i

(xi − xj )
−1, w(x) =

n∏

j=0

(x − xj ),

one has Li(x) = γiw(x)(x − xi)
−1

. for x �= xi ., and correspondingly 

.p(x) = w(x)

n∑

i=0

(x − xi)
−1γiyi
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for x �∈ {x0, x1, . . . , xn}. and p(xi) = yi . otherwise. If y0 = y1 = · · · = yn = 1., 
then we have 1 = w(x)

∑n
i=0 γi(x − xi)

−1
.which leads to 

. p(x) =
∑n

i=0(x − xi)
−1γiyi∑n

i=0(x − xi)−1γi

.

These representations of p can be evaluated with O(n). operations provided that the 
weights (γi)i=0,...,n . have been pre-computed. 

11.4 Chebyshev Nodes 

One way to reduce the interpolation error in Lagrange interpolation is to optimise 
the position of the nodes, so that the node polynomial 

. w(x) =
n∏

j=0

(x − xj )

takes as uniformly small values as possible in the interval [a, b].. Without loss of 
generality, we consider the case [a, b] = [−1, 1].. 
Definition 11.4 For n ∈ N0 .,  the  n-th Chebyshev polynomial for t ∈ [−1, 1]. is 
defined by 

. Tn(t) = cos
(
n arccos t

)
,

see Fig. 11.5. The roots of a Chebyshev polynomial are called Chebyshev nodes. 

The Chebyshev polynomials have remarkable properties. 

Lemma 11.1 

(i) We have |Tn(t)| ≤ 1. for all t ∈ [−1, 1].. 
(ii) With T0(t) = 1. and T1(t) = t .we have 

. Tn+1(t) = 2t Tn(t) − Tn−1(t)

Fig. 11.5 The roots of the 
Chebyshev polynomials 
define the Chebyshev nodes 

T1 
T2 
T3 
T4
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for all t ∈ [−1, 1].. In particular, Tn ∈ Pn|[−1,1] . and for n ≥ 1. it follows 
Tn(t) = 2n−1tn + qn−1(t).with qn−1 ∈ Pn−1|[−1,1] .. 

(iii) For n ≥ 1., Tn . has the roots tj = cos((j + 1/2)π/n)., j = 0, 1, . . . , n − 1., and 
the n + 1. extreme points sj = cos(jπ/n)., j = 0, 1, . . . , n.. 

Proof Exercise. ��
The roots of the Chebyshev polynomials define an optimal choice of nodes in the 

sense of the following proposition, which shows that for them the supremum norm 
of the node polynomial is minimal. 

Proposition 11.4 Let t0, t1, . . . , tn ∈ [−1, 1]. be the roots of the Chebyshev 
polynomial Tn+1 .. Then we have 

. min
x0,...,xn∈[−1,1] max

x∈[−1,1]

n∏

j=0

|x − xj | = max
x∈[−1,1]

n∏

j=0

|x − tj | = 2−n.

Proof From the preceding lemma it follows Tn+1(x) = 2n
∏n

j=0(x − tj ). as well 
as maxx∈[−1,1] |Tn+1(x)| = 1., which proves the second claimed identity. Suppose 
the nodes t0, t1, . . . , tn . are not optimal, that is there exist x0, x1, . . . , xn . such that 
for w(x) = ∏n

j=0(x − xj )., we have that maxx∈[−1,1] |w(x)| < 2−n
.. Since w(x) =

xn+1 + rn(x). and Tn+1(x) = 2nxn+1 + qn(x). with qn, rn ∈ Pn ., it follows that 
p = 2−nTn+1 − w = 2−nqn − r . is a polynomial of degree n, thus p ∈ Pn .. 
Since Tn+1 . takes the values ± 1. with alternating signs at its n + 2. extreme points 
s0, s1, . . . , sn+1 . and |w(x)| < 2−n

. holds, it follows that s0, s1, . . . , sn+1 . are not 
roots of p and their function values p(si). have alternating signs. This implies that 
p has at least n + 1. roots in [−1, 1]., which results in p = 0. and thus contradicts 
p(si) �= 0.. ��
Remarks 11.8 

(i) For the interpolation error with Chebyshev nodes in the interval [−1, 1]. we 
have the estimate 

. ‖f − p‖C0([−1,1]) ≤ 2−n
‖f (n+1)‖C0([−1,1])

(n + 1)! .

(ii) For general intervals [a, b]. the optimal nodes are constructed using an affine-
linear transformation ψ : [−1, 1] → [a, b].. 

(iii) The Chebyshev nodes correspond to the vertical projection of uniformly 
distributed n + 1. points on a semicircle, see Fig. 11.6. 

(iv) For interpolation with Chebyshev nodes, it can be shown that uniform con-
vergence applies for Lipschitz-continuous functions. In particular, pointwise 
convergence applies for the function f (x) = 1/(1 + 25x2).. The interpolation 
polynomial with 9 Chebyshev nodes is shown in Fig. 11.6.
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π/9 

π/18 

equidistant nodes 
Chebyshev nodes 
f (x)  =  1/(1+25x2) 

n = 8

Fig. 11.6 Interpolation of the function f (x) = 1/(1 + 25x2). with equidistantly distributed as 
well as Chebyshev nodes t0, t1, . . . , t8 . 

11.5 Hermite Interpolation 

In the interpolation of smooth, i.e. very often continuously differentiable, functions, 
it makes sense to prescribe derivatives at nodes in order to reduce the approximation 
error while keeping the number of nodes constant, see Fig. 11.7. 

Definition 11.5 The Hermite interpolation task looks for a polynomial p ∈ PN . 

such that for given nodes a ≤ x0 < x1 < · · · < xn ≤ b. and values 
y

(0)
i , y

(1)
i , . . . , y

(�i )
i . for i = 0, 1, . . . , n.with numbers �i ∈ N0 .we have 

. p(xi) = y
(0)
i , p′(xi) = y

(1)
i , . . . , p(�i )(xi) = y

(�i )
i

for i = 0, 1, . . . , n.with N = ∑n
i=0(�i + 1) − 1. holds. 

In the Hermite interpolation task, N + 1 = ∑n
i=0(�i + 1). conditions are to be 

met, so it is canonical to use the polynomial space PN .. 

Proposition 11.5 The Hermite interpolation task is uniquely solvable. 

Proof The linear mapping T : PN → R
N+1

. is defined by 

. Tp = [
p(x0), p

′(x0), . . . , p(�0)(x0), . . . ., p(xn), p
′(xn), . . . , p

(�n)(xn)
]T

.

If Tp = 0., then p has the roots xi ., i = 0, 1, . . . , n., with multiplicities �i + 1.. 
Considering the multiplicities, p ∈ PN . thus has a total of N + 1. roots and the 
fundamental theorem of algebra implies p = 0.. Thus, T is injective and as a linear 
mapping between spaces of the same dimension also bijective. This implies the 
unique solvability of the Hermite interpolation p roblem. ��

Fig. 11.7 In Hermite 
interpolation, derivatives are 
also prescribed at the nodes in 
addition to function values 

x0 x1
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Remark 11.9 In the case of a single node x0 . and values y
(j)

0 = f (j)(x0)., j =
0, 1, . . . , �0 ., the Hermite interpolation problem yields the �0 .-th Taylor polynomial 
of f at the point x0 .. 

To derive an error estimate, we restrict ourselves to the case �0 = �1 = · · · =
�n = �. for an � ≥ 0., so that N + 1 = (� + 1)(n + 1). holds. 

Proposition 11.6 For f ∈ CN+1([a, b]).,  let p ∈ PN . be the Hermite polynomial 
with p(k)(xi) = f (k)(xi)., 0 ≤ i ≤ n., 0 ≤ k ≤ �., for given nodes a ≤ x0 < x1 <

· · · < xn ≤ b.. For each x ∈ [a, b]. there exists a ξ ∈ [a, b].with 

. f (x) − p(x) = f (N+1)(ξ)

(N + 1)!
n∏

i=0

(x − xi)
�+1.

In particular, it holds that 

. ‖f − p‖C0([a,b]) ≤ ‖f (N+1)‖C0([a,b])
(N + 1)! (b − a)N+1.

Proof If x ∈ {x0, x1, . . . , xn}., the statement is clear, so let x ∈ [a, b] \
{x0, x1, . . . , xn}. in the following. For y ∈ [a, b]. define 

. w(y) =
n∏

i=0

(y − xi)
�+1 ∈ PN+1

and 

. F(y) = (
f (x) − p(x)

)
w(y) − (

f (y) − p(y)
)
w(x).

The function F has the (� + 1).-fold zeros x0, x1, . . . , xn . as well as the simple zero 
x and between two adjacent zeros F ′

. has a zero different from them. Thus, F ′
. 

according to Rolle’s theorem has besides the �.-fold zeros at x0, x1, . . . , xn . further 
n+1. zeros, thus in total at least 2n+2. zeros. Between all these zeros F ′′

. has further 
zeros, provided � ≥ 2. holds, that is F ′′

. has (n + 1) + (2n + 1) = 3n + 2. zeros. 
Inductively it follows, that F (�)

. has at least (n + 1) + (�n + 1). many zeros. When 
differentiating F (�)

., the number of zeros decreases by one and thus the derivative 
F (�+n+1+�n) = F (N+1)

. still has one zero ξ ∈ [a, b].. Thus, 

. 0 = F (N+1)(ξ) = (
f (x) − p(x)

)
(N + 1)! − (

f (N+1)(ξ) − 0
)
w(x)

and this implies the claimed statements. ��
Remark 11.10 In the case of Hermite interpolation with 3 nodes and specification 
of the function values as well as two derivatives at each node, one obtains a 
comparable accuracy to that of Lagrange interpolation with 9 nodes.
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11.6 Learning Objectives, Quiz and Application 

You should be familiar with various interpolation tasks and be able to prove 
corresponding error estimates. You should be able to explain and illustrate with 
examples the possibilities of improving interpolation results through different 
choices of nodes. 

Quiz 11.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

The Lagrange polynomials satisfy the identity
∑n

i=0 Li(x) = 1. for all x ∈ [a, b].. 
To capture the function f (x) = sin(x). in the interval [0, 1]. in tabular form with an 
error of at most 0.01., the specification of four function values is sufficient. 

Chebyshev nodes are the extreme points of the Chebyshev polynomials. 

The Neville scheme calculates the coefficients of the Lagrange interpolation polyno-
mial with respect to the monomial basis. 

The Hermite interpolation task with four nodes and specification of the first and second 
derivatives at the nodes leads to 8 conditions. 

Application 11.1 A press for the production of mechanical components is driven 
by a spindle. In this case, the spindle travel 0 ≤ s ≤ �. leads to a diameter d(s). of the 
component. To produce components of a specified diameter, a suitable spindle travel 
must therefore be specified. Tests with the machine lead to the measured values in 
millimetres 

. 
(
s, d(s)

) = (0.10, 0.098), (0.20, 0.043), (0.35, 0.122), (0.40, 0.157).

Construct a function that provides a sensible spindle travel based on these data for 
a desired radius.



Chapter 12 
Interpolation with Splines 

12.1 Splines 

Interpolation with polynomials requires high regularity properties of functions 
to guarantee small errors. To also approximate functions that only satisfy f ∈
C2([a, b]). with high accuracy, the interval [a, b]. is divided into subintervals and 
a polynomial interpolation is performed on each subinterval. At the transitions 
between the subintervals, suitable continuity and differentiability conditions must 
be imposed. In this chapter, we follow the presentations in [7–9]. 

Definition 12.1 For a partitioning Tn . of [a, b]. defined by a = x0 < x1 <

· · · < xn = b., a function s : [a, b] → R. is called a spline of (polynomial) 
degree m ∈ N0 . and of (differentiability) order k ∈ N0 ., if s ∈ Ck([a, b]). and 
s|[xi−1,xi ] ∈ Pm|[xi−1,xi ] ., i = 1, 2, . . . , n., holds. Let S m,k(Tn). denote the space 
of all splines of degree m with respect to Tn .. Splines of degree m = 1, 2, 3. and of 
order m − 1. are called linear, quadratic or cubic splines, respectively. 

Remark 12.1 Often, with splines, only the differentiability order k = m − 1. 

is considered and then S m(Tn). is written instead of S m,m−1(Tn).. This is the 
maximum order for which the polynomial space Pm . is a proper subspace of 
S m,k(Tn).. For  k ≥ m., however, Pm|[a,b] = S m,k(Tn).. 

Proposition 12.1 For given values y0, y1, . . . , yn . there exists exactly one linear 
spline s ∈ S 1,0(Tn). with s(xi) = yi . for i = 0, 1, . . . , n.. This is given by s =∑n

i=0 yiϕi . with the hat functions (ϕ0, ϕ1, . . . , ϕn) ∈ S 1,0(Tn)., which are defined 
by ϕi(xj ) = δij . for 0 ≤ i, j ≤ n.,  see  Fig  . 12.1. 
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Fig. 12.1 Hat functions 
ϕ0, ϕ2 . associated with the 
nodes x0 . and x2 . and linear 
spline function s 

x3x1 x2x0 

s 

x3x1 x2x0 

1 0 
2 

Proof The function ϕi ∈ S 1,0(Tn). is given for x ∈ [a, b]. by 

. ϕi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x − xi−1)/(xi − xi−1), x ∈ [xi−1, xi],
(xi+1 − x)/(xi+1 − xi), x ∈ [xi, xi+1],
0, otherwise.

From the representation s = ∑n
i=0 yiϕi . the unique solvability of the interpolation 

task follows. ��
Proposition 12.2 The dimension of the space S m,m−1(Tn). is n + m.. 

Proof For m = 1. the statement follows from the previous result. Let 
(ϕ0, ϕ1, . . . , ϕn). be the basis of S 1,0(Tn). consisting of the hat functions. For 
i = 0, 1, . . . , n. let ri . be an (m − 1).-th antiderivative of ϕi ., that is r

(m−1)
i = ϕi .. 

Then, (r0, r1, . . . , rn) ⊂ S m,m−1(Tn). holds. Moreover, the monomial basis 
(x0, x1, . . . , xm−2). is contained in S m,m−1(Tn). and we show that 

. (r0, r1, . . . , rn, x
0, x1, . . . , xm−2)

is a basis of S m,m−1(Tn).. Let s ∈ S m,m−1(Tn).. Since s(m−1) ∈ S 1,0(Tn)., there 
exist c0, c1, . . . , cn . such that 

. s(m−1) =
n∑

i=0

ciϕi

and integrating (m − 1). times leads to 

. s(x) =
n∑

i=0

ciri(x) +
m−2∑

j=0

djx
j

with integration constants d0, d1, . . . , dm−2 .. To establish linear independence, let 
c0, c1, . . . , cn . and d0, d1, . . . , dm−2 . be such that 

.

n∑

i=0

ciri(x) +
m−2∑

j=0

djx
j = 0
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holds for all x ∈ [a, b].. By differentiating (m − 1). times it follows that 

. 

n∑

i=0

cir
(m−1)
i =

n∑

i=0

ciϕi = 0

and thus c0 = c1 = · · · = cn = 0.. This implies
∑m−2

j=0 djx
j = 0. in [a, b]., which in 

turn implies d0 = d1 = · · · = dm−2 = 0.. ��
Remarks 12.2 

(i) With n + 1. nodes, in addition to n + 1. interpolation conditions s(xi) = yi ., 
i = 0, 1, . . . , n., a further m − 1. conditions must be imposed, to uniquely 
determine s ∈ S m,m−1(Tn).. 

(ii) If m is odd and f ∈ Cm+1([a, b])., an interpolating spline s ∈ S m,(m−1)/2(Tn). 

can be defined by piecewise Lagrange or Hermite interpolation with the 
property 

. ‖f − s‖C0([a,b]) ≤ hm+1

(m + 1)! ‖f
(m+1)‖C0([a,b]),

where h = maxi=1,...,n(xi − xi−1). is the maximum grid width of the partition 
Tn .. 

(iii) More generally, by integrating piecewise polynomial (typically discontinuous) 
functions of degree m − (k + 1). repeatedly (k + 1). times, it can be shown that 
dim S m,k(Tn) = n(m − k) + (k + 1). holds for k ≤ m.. 

12.2 Cubic Splines 

While linear splines have kinks and quadratic splines have discontinuous second 
derivatives, which can be well perceived at practically relevant resolutions, cubic 
splines appear very smooth. 

Definition 12.2 For a partition Tn = {x0, x1, . . . , xn}. of the interval [a, b]. and 
support values y0, y1, . . . , yn ., the  interpolation task with cubic splines consists in 
determining a function s ∈ S 3,2(Tn). with s(xi) = yi . for i = 0, 1, . . . , n. taking 
into account one of the following boundary conditions:

• natural boundary conditions, i.e. s′′(a) = 0. and s′′(b) = 0.;
• complete or Hermite boundary conditions, i.e. s′(a) = y

(1)
0 . and s′(b) = y

(1)
n . with 

given numbers y
(1)
0 , y

(1)
n ∈ R.;

• periodic boundary conditions, that is s′(a) = s′(b). and s′′(a) = s′′(b)., where 
additionally y0 = yn . applies.
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Fig. 12.2 Cubic splines are 
piecewise smooth, running 
through given points 

x0 x1 x2 x3 

Remark 12.3 The cubic spline interpolation can be interpreted as the fixing of a 
thin wooden strip through given points, see Fig. 12.2. The word  spline refers to a 
long, very flexible ruler used in shipbuilding. 

Interpolating cubic splines are minimal for a linearised bending energy, as the 
following statement shows. 

Proposition 12.3 Let s ∈ S 3,2(Tn). be a solution of a cubic spline interpolation 
task and let g ∈ C2([a, b]).be any function that satisfies the interpolation conditions 
g(xi) = yi ., i = 0, 1, . . . , n.. Assume that (i) s′′(x) = 0. for x ∈ {a, b}., (ii) (g −
s)′(x) = 0. for x ∈ {a, b}. or (iii) s′′(a) = s′′(b). and (g − s)′(a) = (g − s)′(b).. Then 
it holds 

. 

∫ b

a

|s′′(x)|2 dx +
∫ b

a

|(s − g)′′(x)|2 dx =
∫ b

a

|g′′(x)|2 dx.

Proof It holds 

. 

∫ b

a

|g′′|2 dx =
∫ b

a

|s′′ + (g − s)′′|2 dx

=
∫ b

a

|s′′|2 dx +
∫ b

a

|(g − s)′′|2 dx + 2
∫ b

a

s′′(g − s)′′ dx

and it suffices to show that the last integral on the right side vanishes. From the 
boundary conditions it follows 

. s′′(a)
(
g′(a) − s′(a)

) = s′′(b)
(
g′(b) − s′(b)

)
.

Partial integration on each subinterval [xi−1, xi]., i = 1, 2, . . . , n., shows  

. 

∫ b

a

s′′(g − s)′′ dx =
n∑

i=1

∫ xi

xi−1

s′′(g − s)′′ dx

=
n∑

i=1

(
−

∫ xi

xi−1

s′′′(g − s)′ dx + (
s′′(g − s)′

)∣
∣xi

xi−1

)
.

For the sum of the boundary terms, using s ∈ C2([a, b]). and the boundary 
conditions at x0 = a . and xn = b., it follows that
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. 

n∑

i=1

(
s′′(g − s)′

)∣
∣xi

xi−1
=

n∑

i=1

(
s′′(xi)(g − s)′(xi) − s′′(xi−1)(g − s)′(xi−1)

)

= s′′(xn)(g − s)′(xn) − s′′(x0)(g − s)′(x0) = 0.

Since s′′′
. is constant on each interval (xi−1, xi)., for example with value ci ., it follows 

using the main theorem of differential and integral calculus and the interpolation 
conditions s(xi) = g(xi). for i = 0, 1, . . . , n., that 

. 

n∑

i=1

∫ xi

xi−1

s′′′(g − s)′ dx =
n∑

i=1

ci

(
(g − s)(xi) − (g − s)(xi−1)

) = 0.

In total, it is thus shown that 

. 

∫ b

a

s′′(g − s)′′ dx = 0

and the statement of the proposition is proven. ��
The preceding result implies the well-posedness of the interpolation task, which 

is stated here only for complete and natural boundary conditions. 

Proposition 12.4 There exists a unique solution to the interpolation task with cubic 
splines and natural or complete boundary conditions. 

Proof If s, g ∈ S 3,2(Tn). are two solutions to the interpolation task, it follows 
from the repeated application of the previous result with swapped roles of s and g 
and addition of the two resulting equations, that

. 

∫ b

a

|(s − g)′′|2 dx = 0

and thus (s − g)′′ = 0. or s(x) − g(x) = p + qx . in [a, b].. From s(xi) − g(xi) = 0. 

for i = 0. and i = n. it follows p = q = 0. and thus s = g .. In the case of complete 
boundary conditions, with dim S 3,2(Tn) = n + 3., the linear mapping 

. TH : S 3,2(Tn) → R
n+3, s �→ (

s(x0), . . . , s(xn), s
′(x0), s

′(xn)
)

is injective and thus also bijective. The case of natural boundary conditions follows 
by replacing s′(x0). and s′(xn). by s′′(x0). and s′′(xn). in the mapping TH .. ��
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12.3 Calculation of Cubic Splines 

Due to the regularity condition s ∈ C2([a, b])., interpolating cubic splines cannot 
be determined locally and a system of linear equations must be solved to obtain a 
representation in the monomial basis on each subinterval. 

Proposition 12.5 For a partitioning x0 < x1 < · · · < xn . and given interpolation 
values y0, y1, . . . , yn .,  let s ∈ S 3,2(Tn). with s(xi) = yi ., i = 0, 1, . . . , n.. Then the 
quantities γi = s′′(xi)., i = 0, 1, . . . , n., satisfy the system of linear equations 

. hi

γi

6
+ (hi+1 + hi)

2

4γi+1

6
+ hi+1

γi+2

6
= yi+2 − yi+1

hi+1
− yi+1 − yi

hi

,

for i = 0, 1, . . . , n − 2., where hi = xi+1 − xi .. With the quantities 

. bi = yi+1 − yi

hi

− γi

2
hi − di

6
h2

i , di = γi+1 − γi

hi

we have on each subinterval [xi, xi+1]., i = 0, 1, . . . , n − 1., the representation 

. s|[xi ,xi+1](x) = yi + bi(x − xi) + γi

2
(x − xi)

2 + di

6
(x − xi)

3.

Proof If s ∈ S 3,2(Tn). with s(xi) = yi . and s′′(xi) = γi . then there exist bi, di ∈ R., 
i = 0, 1, . . . , n − 1., with 

. s|[xi ,xi+1](x) = pi(x) = yi + bi(x − xi) + γi

2
(x − xi)

2 + di

6
(x − xi)

3.

(i) The continuity of s at xi+1 ., that is the identity pi(xi+1) = pi+1(xi+1). leads to 
the equation 

. yi + bihi + γi

2
h2

i + di

6
h3

i = yi+1 ⇐⇒ bi = yi+1 − yi

hi

− γi

2
hi − di

6
h2

i

for i = 0, 1, . . . , n − 1., with bi . being determined by di ., yi ., yi+1 . and γi .. 
(ii) The continuity of s′′

. at xi+1 . or the identity p′′
i (xi+1) = p′′

i+1(xi+1). as well as 
s′′(xn) = γn . leads to the equation 

. γi + dihi = γi+1 ⇐⇒ di = γi+1 − γi

hi

for i = 0, 1, . . . , n − 1., whereby di . is determined by γi . and γi+1 .. 
(iii) The continuity of s′

. at xi+1 ., that is the identity p′
i (xi+1) = p′

i+1(xi+1)., is  
equivalent to 

.bi + hiγi + di

2
h2

i = bi+1 ⇐⇒ bi+1 − bi = hiγi + di

2
h2

i
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for i = 0, 1, . . . , n − 2.. If one uses in this identity the above representations of bi . 

and bi+1 . as well as di . and di+1 ., the asserted n − 1. equations for the coefficients γi ., 
i = 0, 1, 2, . . . , n. are obtained. ��

In the preceding result, n − 1. equations were derived, which must be satisfied by 
the n + 1. derivatives γi = s′′(xi)., i = 0, 1, . . . , n.. The addition of two boundary 
conditions completes the system of equations. 

Example 12.1 For an equidistant grid, that is hi = h. for i = 0, 1, . . . , n − 1., 
and the natural boundary conditions s′′(x0) = s′′(xn) = 0. or γ0 = γn = 0., the  
quantities γ1, γ2, . . . , γn−1 . are given as the solution of the tridiagonal system of 
linear equations 

. 
1

6

⎡

⎢
⎢
⎢
⎢
⎣

4 1

1 4
. . .

. . .
. . . 1
1 4

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

γ1

γ2
...

γn−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

r1

r2
...

rn−1

⎤

⎥
⎥
⎥
⎦

with ri = (yi+1 − 2yi + yi−1)/h2
., i = 1, 2, . . . , n − 1.. The strictly diagonally 

dominant system matrix is regular and thus there exists a unique solution. 

12.4 Interpolation Error 

Error estimates for spline interpolation are usually provided in norms, which are 
given by integrals. We consider the L2

. norm induced by the L2
. scalar product, that 

is 

. (f, g)L2(I ) =
∫

I

f (x)g(x) dx, ‖f ‖L2(I ) =
( ∫

I

f 2(x) dx
)1/2

.

An important tool for working with this norm is the Cauchy–Schwarz or Hölder 
inequality 

. (f, g)L2(I ) ≤ ‖f ‖L2(I )‖g‖L2(I ),

which holds for functions f, g ∈ C0(I ).. 

Proposition 12.6 Let s1 ∈ S 1,0(Th). be the continuous, piecewise linear spline 
interpolant of the function f ∈ C2([a, b])., that is s1(xi) = f (xi)., i = 0, 1, . . . , N .. 
Then 

. ‖f − s1‖L2([a,b]) ≤ h2

2
‖f ′′‖L2([a,b])

with h = maxi=1,...,N xi − xi−1 ..
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Proof The error e = f − s1 . satisfies e(xi) = 0. for i = 0, 1, . . . , N ., as well  
as e|Ii

∈ C2(Ii). on all subintervals Ii = [xi−1, xi].. Under these conditions, the 
Poincaré and the seminorm interpolation estimates apply 

. ‖e‖L2(Ii )
≤ h√

2
‖e′‖L2(Ii )

, ‖e′‖L2(Ii )
≤ ‖e‖1/2

L2(Ii )
‖e′′‖1/2

L2(Ii )

for i = 1, 2, . . . , N .. From these two estimates it follows that 

. ‖e‖2
L2(Ii )

≤ h2

2
‖e′‖2

L2(Ii )
≤ h2

2
‖e‖L2(Ii )

‖e′′‖L2(Ii )

and after division by ‖e‖L2(Ii )
. and using e|′′Ii

= f |′′Ii
., it follows that 

. ‖e‖L2(Ii )
≤ h2

2
‖e′′‖L2(Ii )

= h2

2
‖f ′′‖L2(Ii )

.

Squaring and summing this inequality leads to 

. ‖e‖2
L2([a,b]) =

N∑

i=1

‖e‖2
L2(Ii )

≤ h4

4

N∑

i=1

‖f ′′‖2
L2(Ii )

= h4

4
‖f ′′‖2

L2([a,b]),

thus the claimed error estimate. The Poincaré inequality used here results from the 
representation 

. e(x) =
∫ x

xi−1

e′(y) dy,

the application of the Hölder inequality to this integral, that is 

. |e(x)| ≤
( ∫ x

xi−1

1 dy
)1/2(

∫ x

xi−1

(e′(y))2 dy
)1/2 ≤ (x − xi−1)

1/2‖e′‖L2(Ii )
,

and subsequent squaring and integrating 

. ‖e‖2
L2(Ii )

≤ ‖e′‖2
L2(Ii )

∫ xi

xi−1

(x − xi−1) dx ≤ h2

2
‖e′‖2

L2(Ii )
.

The seminorm interpolation estimate is obtained with partial integration, the 
identities e(xi−1) = e(xi) = 0. and the Hölder inequality, 

.

‖e′‖2
L2(Ii )

= −
∫

Ii

e(x)e′′(x) dx + (
e(xi)e

′(xi) − e(xi−1)e
′(xi−1)

)

≤ ‖e‖L2(Ii )
‖e′′‖L2(Ii )

.
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This completes the proof. ��
The proposition implies an error estimate for cubic spline interpolation. 

Corollary 12.1 Let s3 ∈ S 3,2(Tn). be an interpolating cubic spline function of the 
function f ∈ C4([a, b]).. Assume that (i) f ′′(x) = 0. for x ∈ {a, b}., (ii) s′

3(x) =
f ′(x). for x ∈ {a, b}. or (iii) f (i)(a) = f (i)(b). for i = 0, 1, 2., in the case of natural, 
complete, and periodic boundary conditions, respectively. Then it holds that 

. ‖f − s3‖L2([a,b]) ≤ h4

4
‖f (4)‖L2([a,b]).

Proof Let I1(g) ∈ S 1,0(Tn). denote the interpolating linear spline function of a 
function g ∈ C2([a, b]).. Then I1(f − s3) = 0. and according to the previous result 

. ‖f − s3‖L2([a,b]) = ‖(f − s3) − I1(f − s3)‖L2([a,b]) ≤ h2

2
‖(f − s3)

′′‖L2([a,b]).

Let r ∈ S 3,2(Tn). be such that r ′′ = I1(f
′′). holds and r has the same boundary 

values as f and s3 .. By construction we then have r ′′(x) = f ′′(x). for x ∈ {a, b}.. 
For s = s3 − r ∈ S 3,2(Tn). and g = f − r ∈ C2([a, b]). the conditions of 
Proposition 12.3 apply, so that 

. ‖(s3 − r)′′‖2
L2([a,b]) + ‖(f − r)′′ − (s3 − r)′′‖2

L2([a,b]) = ‖(f − r)′′‖2
L2([a,b]).

This implies that 

. ‖(f − s3)
′′‖L2([a,b]) ≤ ‖(f − r)′′‖L2([a,b]) = ‖f ′′ − I1(f

′′)‖L2([a,b]).

With another application of the previous proposition, we obtain in total 

. ‖f − s3‖L2([a,b]) ≤ h2

2
‖f ′′ − I1(f

′′)‖L2([a,b]) ≤ h4

4
‖f (4)‖L2([a,b]),

which proves the claimed inequality. ��
Remark 12.4 A key aspect of interpolation with cubic spline functions is that, 
unlike Lagrange interpolation with piecewise cubic polynomials, we obtain an 
interpolating function in the space C2([a, b]).. 

12.5 Learning Objectives, Quiz and Application 

You should be able to define spline spaces and determine their dimensions. For cubic 
splines, you should be able to specify a minimality property and its derivation.
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Quiz 12.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

Every spline function is once continuously differentiable. 

It holds that S 1,0(Tn) ∩ S 3,2(Tn) = {0}., where 0 denotes the constant function 
with value 0. 

If q ∈ Pm . and x0 < x1 < · · · < xn . is a partition Tn . of [a, b]., then  
q|[a,b] ∈ S m,m−1(Tn).. 

Interpolating cubic spline functions minimise a linearised bending energy among 
interpolating C2 . functions. 

The calculation of a cubic spline leads to a system of linear equations with a 
diagonally dominant, irreducible system matrix. 

Application 12.1 Smooth curves such as cubic spline functions find diverse appli-
cations in computer graphics for the calculation and representation of curves and 
surfaces. With few pieces of information, complex graphic objects such as CAD 
models or postscript fonts can be described. In addition to the memory requirement, 
the efficient further processing such as scaling or rotation of the objects is an 
important aspect. Closely related to spline functions are so-called Bézier curves, 
which are defined for given points P0, P1, . . . , Pn ∈ R

2
. and t ∈ [0, 1]. by 

. z(t) =
n∑

i=0

(
n

i

)

t i (1 − t)n−iPi .

(i) Show that for n = 2. the representation 

. z(t) = (1 − t)
[
(1 − t)P0 + tP1

] + t
[
(1 − t)P1 + tP2

]

holds and interpret this formula geometrically. 
(ii) Show that with the initialisation z0

i (t) = Pi ., i = 0, 1, . . . , n., and the recursion 
rule 

. z
j
i (t) = (1 − t)z

j−1
i (t) + tz

j−1
i+1 (t)

for t ∈ [0, 1]., j = 1, 2, . . . , n., and i = 0, 1, . . . , n − j . the identity z = zn
0 . 

follows. 
(iii) Implement a recursive function y = de_casteljau(j,i,P) for evaluating 

the curve z for given points P0, P1, . . . , Pn . at a point t ∈ [0, 1]. using the 
formula from (ii). Use your program to graphically represent the curve defined 
by the points P0 = (0, 0)., P1 = (1, 1)., P2 = (2, 0). and P3 = (3, 2)..



Chapter 13 
Discrete Fourier Transform 

13.1 Trigonometric Interpolation 

Many signals or functions that occur in applications are created by superpositions 
of fundamental oscillations of different frequencies, that is, after suitable transfor-
mation to the interval [0, 2π ]. 

. f (x) =
∞∑

�=0

(
c� cos(�x) + d� sin(�x)

)
,

see Fig. 13.1. In fact, every Riemann-integrable function can be represented in 
this way and this motivates to interpolate functions with trigonometric functions. 
Compared to approximation for example with polynomials, many coefficients are 
small and in practice negligible. 

Definition 13.1 For m ∈ N., n = 2m. and nodes xj = 2πj/n. and values yj ∈ R., 
j = 0, 1, . . . , n−1.,  the  real trigonometric interpolation task consists in determining
a�, b� ∈ R., � = 1, . . . , m − 1., and a0, am ∈ R., so that for 

. T (x) = a0

2
+

m−1∑

�=1

(
a� cos(�x) + b� sin(�x)

) + am

2
cos(mx)

the identity T (xj ) = yj . holds for j = 0, 1, . . . , n − 1.. 

The real trigonometric interpolation task can be represented concisely in the 
complex plane. Let i = √−1 ∈ C. denote the imaginary unit. 

Definition 13.2 The complex trigonometric interpolation task consists in deter-
mining βk ∈ C., k = 0, 1, . . . , n − 1., so that for xj = 2πj/n. and yj ∈ C., 
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Fig. 13.1 Functions can 
often be represented as a sum 
of sine oscillations 

j = 0, 1, . . . , n − 1., and 

. p(x) = β0 + β1e
ix + β2e

i2x + · · · + βn−1e
i(n−1)x =

n−1∑

k=0

βke
ikx

the identity p(xj ) = yj . holds for j = 0, 1, . . . , n − 1.. 

The real and the complex trigonometric interpolation tasks are equivalent to each 
other in the following sense. 

Proposition 13.1 Let n = 2m. and y0, y1, . . . , yn−1 ∈ R.. The coefficients βk ., k =
0, . . . , n − 1., solve the complex trigonometric interpolation task exactly when the 
coefficients a0, am . and a�, b� .,  for � = 1, 2, . . . , m − 1., defined by 

. a0 = 2β0, a� = β� + β2m−�, b� = i(β� − β2m−�), am = 2βm,

solve the real trigonometric interpolation task defined by y0, y1, . . . , yn−1 .. 

Proof It holds that e−i�xj = e−i2π�j/n = ei2π(n−�)j/n = ei(n−�)xj . and with eix =
cos(x) + i sin(x). it follows 

. 

cos(�xj ) = Re(ei�xj ) = ei�xj + e−i�xj

2
= ei�xj + ei(n−�)xj

2
,

sin(�xj ) = Im(ei�xj ) = ei�xj − e−i�xj

2i
= ei�xj − ei(n−�)xj

2i
.

With 1/i = −i. and n = 2m. and cos(mxj ) = eimxj ., this implies that 

. 

a0

2
+

m−1∑

�=1

(
a� cos(�xj ) + b� sin(�xj )

) + am

2
cos(mxj )

= a0

2
+

m−1∑

�=1

a� − ib�

2
ei�xj +

m−1∑

�=1

a� + ib�

2
ei(n−�)xj + am

2
eimxj .

With the relations β0 = a0/2., β� = (a� − ib�)/2. and βn−� = (a� + ib�)/2. for 
� = 1, 2, . . . , m − 1. and βm = am/2. the assertion follows. ��
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Remarks 13.1 

(i) In the situation of the previous result, p(xj ) = T (xj )., j = 0, 1, . . . , n− 1.,  but  
in general p �= T .. 

(ii) Due to the identity eikx = (eix)k ., we also speak of trigonometric polynomials. 
(iii) Better approximation properties are achieved with functions of the form 

r(x) = ∑m−1
k=−m δke

ikx
., which however can be obtained via the complex 

trigonometric interpolation task. 

13.2 Fourier Bases 

If we write the interpolation conditions p(xj ) = yj . in vector form, we get 

. y =

⎡

⎢⎢⎣

y0

y1

. . .

yn−1

⎤

⎥⎥⎦ =
n−1∑

k=0

βk

⎡

⎢⎢⎣

eikx0

eikx1

. . .

eikxn−1

⎤

⎥⎥⎦ =
n−1∑

k=0

βkω
k.

This identity can be interpreted as a basis change from the representation of the 
vector y with respect to the canonical basis inRn

. to a representation with the vectors 

. ωk = [eikx0 , eikx1 , . . . , eikxn−1 ]T

Necessary and sufficient for the solvability of the complex-valued trigonometric 
interpolation task is that the vectors (ωk)k=0,...,n−1 . define a basis of the C.-vector 
space Cn

.. 

Definition 13.3 For n ∈ N.,  let ωn = ei2π/n
. be the n-th unit root, see Fig. 13.2, and 

for k = 0, 1, . . . , n − 1.,  let ωk ∈ C
n
. be defined by 

. ωk = [ω0k
n , ω1k

n , . . . , ω(n−1)k
n ]T

The family (ω0, ω1, . . . , ωn−1) ⊂ C
n
. is called Fourier basis. 

The structure of the Fourier basis vectors motivates the numbering of vectors in 
C

n
.with the indices j = 0, 1, . . . , n−1.. Similarly, matrices will be numbered in the 

Fig. 13.2 The powers of the 
n-th unit root ωn . are evenly 
distributed complex numbers 
on the unit circle
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following beginning with 0. The scalar product of two vectors a, b ∈ C
n
. is defined 

by a · b = aTb = ∑n−1
j=0 ajbj .. 

Lemma 13.1 The vectors (ωk)k=0,...,n−1 . form an orthogonal basis of the C.-vector 
space Cn

., that is, ωk · ω� = nδk� . holds. 

Proof Exercise. ��
To solve the complex trigonometric interpolation problem, the representing 

matrix of the basis change must therefore be determined. 

Lemma 13.2 The basis change from the Fourier basis to the basis (e0, e1, . . . ,
en−1)., consisting of the canonical basis vectors, is realised by the matrix 

. Tn = [ω0, ω1, . . . , ωn−1] ∈ C
n×n

with inverse T −1
n = (1/n)T

T
n .. For all y = ∑n−1

j=0 yj ej ∈ C
n
. we therefore have that 

y = ∑n−1
k=0 βkω

k
.with β = (1/n)T

T
ny .. 

Proof For y ∈ C
n
.,  let β = [β0, β1, . . . , βn−1]T . be the coefficient vector with 

respect to the Fourier basis (ωk)k=0,...,n−1 ., that is, y = ∑n−1
k=0 βkω

k
. holds. From 

this it follows that 

. yTω� =
( n−1∑

k=0

βkω
k
)T

ω� =
n−1∑

k=0

βk(ω
k)Tω� = nβ�,

so β� = (1/n)yTω� = (1/n)(ω�)Ty . or in vector notation 

. β =
⎡

⎢⎣
β0
...

βn−1

⎤

⎥⎦ = 1

n

⎡

⎢⎣
(ω0)T

...

(ωn−1)T

⎤

⎥⎦ y = 1

n
T
T
ny.

The identity ωk · ωm = nδkm . implies that TnT
T
n = nIn . or T −1

n = (1/n)T
T
n . holds. 

��
Definition 13.4 The mapping y 	→ β = (1/n)T

T
ny . is called (discrete) Fourier 

transform and the inverse mapping β 	→ y = Tnβ . is referred to as Fourier synthesis. 

Remarks 13.2 

(i) The Fourier transform can be represented using the Fourier synthesis and 
complex conjugations, i.e. since Tn . is symmetric we have β = 1

n
T ny =

1
n

(
Tny

)
.. 

(ii) The complex trigonometric interpolation problem is solved with the discrete 
Fourier transform. The Fourier synthesis realises the evaluation of a trigono-
metric polynomial at the nodes.
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13.3 Fast Fourier Transform 

The matrix Tn . has only n different entries, which are arranged in a cyclic manner, 
so that the multiplication with Tn . can be realised with a significantly lower effort 
than O(n2).. 

Example 13.1 ([8]) Using ω�
8 = ω�mod 8

8 ., the Fourier synthesis y = T8β . can be 
expressed as 

. 

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0
8 ω0

8 ω0
8 ω0

8 ω0
8 ω0

8 ω0
8 ω0

8

ω0
8 ω1

8 ω2
8 ω3

8 ω4
8 ω5

8 ω6
8 ω7

8

ω0
8 ω2

8 ω4
8 ω6

8 ω0
8 ω2

8 ω4
8 ω6

8

ω0
8 ω3

8 ω6
8 ω1

8 ω4
8 ω7

8 ω2
8 ω5

8

ω0
8 ω4

8 ω0
8 ω4

8 ω0
8 ω4

8 ω0
8 ω4

8

ω0
8 ω5

8 ω2
8 ω7

8 ω4
8 ω1

8 ω6
8 ω3

8

ω0
8 ω6

8 ω4
8 ω2

8 ω0
8 ω6

8 ω4
8 ω2

8

ω0
8 ω7

8 ω6
8 ω5

8 ω4
8 ω3

8 ω2
8 ω1

8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

β2

β3

β4

β5

β6

β7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A rearrangement of the right side according to even and odd indices leads to 

. 

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0
8 ω0

8 ω0
8 ω0

8 ω0
8 ω0

8 ω0
8 ω0

8

ω0
8 ω2

8 ω4
8 ω6

8 ω1
8 ω3

8 ω5
8 ω7

8

ω0
8 ω4

8 ω0
8 ω4

8 ω2
8 ω6

8 ω2
8 ω6

8

ω0
8 ω6

8 ω4
8 ω2

8 ω3
8 ω1

8 ω7
8 ω5

8

ω0
8 ω0

8 ω0
8 ω0

8 ω4
8 ω4

8 ω4
8 ω4

8

ω0
8 ω2

8 ω4
8 ω6

8 ω5
8 ω7

8 ω1
8 ω3

8

ω0
8 ω4

8 ω0
8 ω4

8 ω6
8 ω2

8 ω6
8 ω2

8

ω0
8 ω6

8 ω4
8 ω2

8 ω7
8 ω5

8 ω3
8 ω1

8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β2

β4

β6

β1

β3

β5

β7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With the identities ω2k
8 = ei2π2k/8 = ei2πk/4 = ωk

4 . and ω4
8 = eiπ = −1. it follows 

.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0
...

y3

y4
...

y7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

T4 D4T4

T4 −D4T4

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0
...

β6

β1
...

β7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where T4 . and D4 . are defined by 

. T4 =

⎡

⎢⎢⎢⎣

ω0
4 ω0

4 ω0
4 ω0

4

ω0
4 ω1

4 ω2
4 ω3

4

ω0
4 ω2

4 ω0
4 ω2

4

ω0
4 ω3

4 ω2
4 ω1

4

⎤

⎥⎥⎥⎦ , D4 =

⎡

⎢⎢⎢⎣

ω0
8

ω1
8

ω2
8

ω3
8

⎤

⎥⎥⎥⎦ .

This implies 

. 

⎡

⎢⎢⎣

y0

y1

y2

y3

⎤

⎥⎥⎦ = T4

⎡

⎢⎢⎣

β0

β2

β4

β6

⎤

⎥⎥⎦ + D4T4

⎡

⎢⎢⎣

β1

β3

β5

β7

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

y4

y5

y6

y7

⎤

⎥⎥⎦ = T4

⎡

⎢⎢⎣

β0

β2

β4

β6

⎤

⎥⎥⎦ − D4T4

⎡

⎢⎢⎣

β1

β3

β5

β7

⎤

⎥⎥⎦ .

The Fourier synthesis y = T8β . can therefore be reduced to two Fourier syntheses 
of dimension n = 4.. 

The procedure of the example can be generalised. 

Proposition 13.2 For β ∈ C
2m

. letDm ∈ C
m×m

.be the diagonal matrix with entries 
(Dm)�� = ω�

2m ., � = 0, 1, . . . , m − 1.. Then y = T2mβ . is given by y = (y1, y2).with 
vectors y1, y2 ∈ C

m
. defined by 

. y1 = Tmβeven + DmTmβodd, y2 = Tmβeven − DmTmβodd,

where βeven = [β0, β2, . . . , β2m−2]T . and βodd = [β1, β3, . . . , β2m−1]T .. 

Proof For 0 ≤ � ≤ m − 1.we find, using ω2k�
2m = ωk�

m ., 

. 

y� =
2m−1∑

j=0

(T2m)�jβj =
2m−1∑

j=0

ω
j�

2mβj

=
m−1∑

k=0

ω2k�
2m β2k +

m−1∑

k=0

ω
(2k+1)�
2m β2k+1

=
m−1∑

k=0

ωk�
m β2k + ω�

2m

m−1∑

k=0

ωk�
m β2k+1

=
m−1∑

k=0

(Tm)�kβ2k + (Dm)��

m−1∑

k=0

(Tm)�kβ2k+1,

thus y1 = Tmβeven + DmTmβodd
..  For � ≥ m. a similar calculation considering 

ω�
2m = ωm+�modm

2m = −ω�modm
2m . leads to the claimed identity. ��
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The result reduces a problem of size n with effort A (n). to two problems of 
size n/2. with effort A (n/2).. The assembly of the vectors Tmβeven

. and Tmβodd
. to 

the subvectors y1, y2
. of length n/2. according to the identities of the proposition 

requires the computational effort of 3n/2.. The procedure can be generalised and 
iterated for dimensions n = 2�

., � = log2(n) ∈ N.. For the computational effort we 
thus obtain 

. A (n) → 2A (n/2) + 3n

2
→ 2

(
2A (n/4) + 3n

4

)
+ 3n

2
→ · · · → 2�A (1) + �

3n

2
.

Since A (1) = 1. applies, the effort of the resulting procedure is about n(1 +
(3/2) log2 n). (complex) arithmetic operations. This replaces the effort O(n2). of a 
matrix-vector multiplication by the significantly lower effort O(n log2(n)).. 

13.4 Learning Objectives, Quiz and Application 

You should be able to explain the basic ideas of the discrete Fourier transform and 
describe the effort reduction of the fast Fourier transform. 

Quiz 13.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

As a complex vector space, Cn . has the dimension n and as a real vector space the 
dimension 2n .
If ωn . is the n-th unit root, then ω

n/2
n = −1. if and only if n is ev en.

The complex trigonometric interpolation problem is solved by β = Tny .with the 
Fourier matrix Tn .. 

The matrix Sn = (1/
√

n)Tn . defines an isometry on Cn ., that is, we have 
‖Sny‖2 = ‖y‖2 . for all y ∈ C

n .. 

For real values y0, y1, . . . , yn−1 ., the solution of the complex trigonometric 
interpolation problem is real-valued. 

Application 13.1 The discrete Fourier transform calculates a frequency decompo-
sition of a given signal. In order to process only relevant information, calculated 
coefficients, which are small compared to others, can often be neglected. In addition, 
coefficients that belong to frequencies that are not perceptible in the respective 
application can be eliminated. The vector y = [y0, y1, . . . , yn−1]T ∈ R

n
. is defined 

by yj = sin(2πj/n)+(1/10)ξj ., j = 0, 1, . . . , n−1., where ξj . stands for a normally 
distributed random value that can be generated in MATLAB with randn.  Use  the
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MATLAB routine fft to determine the Fourier transform β ∈ C
n
., and eliminate 

coefficients βk .,  for  whic  h

. |βk| ≤ θ max
�=0,1,...,n−1

|β�|

applies, that is, replace such coefficients with zero. Use the inverse transform ifft 
to obtain a vector ỹ ∈ C

n
.. Interpret the vectors y and ỹ . as values of a function and 

graphically represent them for n = 256. and various values of θ ..



Chapter 14 
Numerical Integration 

14.1 Quadrature Formulas 

The aim of numerical integration or quadrature is the approximation of proper 
integrals 

. I (f ) =
∫ b

a

f (x) dx,

which cannot be explicitly calculated using an antiderivative. 

Definition 14.1 A quadrature formula on the interval [a, b]. is a linear mapping 
Q : C0([a, b]) → R. of the form 

. Q(f ) =
n∑

i=0

wif (xi)

with (quadrature) points (xi)i=0,...,n . and (quadrature) weights (wi)i=0,...,n ..  The  
number ‖Q‖ = (b − a)−1 ∑n

i=0 |wi |. is its stability indicator. 

Remarks 14.1 

(i) If a = x0 < x1 < · · · < xn = b., the Riemann integral can be approximated by 

. 

∫ b

a

f (x) dx ≈
n−1∑
i=0

(xi+1 − xi)f (xi)

and the right-hand side defines a quadrature formula with weights wi = xi+1 −
xi . for i = 0, 1, . . . , n − 1. and wn = 0., see Fig. 14.1. 
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Fig. 14.1 Riemann sums 
define simple quadrature 
formulas 

x0 x4 

(ii) For every quadrature formula, we have that 

. |Q(f )| ≤
( n∑

i=0

|wi |
)
‖f ‖C0([a,b]) = ‖Q‖(b − a)‖f ‖C0([a,b]).

Definition 14.2 The quadrature formula Q is called exact of degree r,  i  f Q(p) =
I (p). for all p ∈ Pr . holds. 

If a function f can be well approximated by polynomials, then a quadrature 
formula with a high degree of exactness provides good approximations of the 
inte gral.

Proposition 14.1 Let Q be exact of degree r ≥ 0.. Then
∑n

i=0 wi = b − a . holds 
and for all f ∈ C0([a, b]). 

. 
∣∣I (f ) − Q(f )

∣∣ ≤ (1 + ‖Q‖)(b − a) min
p∈Pr

‖f − p‖C0([a,b]).

In the case wi ≥ 0., i = 0, 1, . . . , n., we have that ‖Q‖ = 1.. 

Proof According to the assumption,
∑n

i=0 wi = Q(1) = I (1) = b − a . holds. Let 
f ∈ C0([a, b]). and p ∈ Pr . be arbitrary. With I (p) = Q(p)., the linearity of I and 
Q as well as the triangle inequality, it follo ws that

. 
∣∣I (f ) − Q(f )

∣∣≤ (1 + ‖Q‖)(b − a)‖f − p‖C0([a,b]).

Since p ∈ Pr . is arbitrary, the assertion follows. �	
Remarks 14.2 

(i) With interpolation estimates, quantitative statements about the quadrature error 
are obtained, that is, for example, with Corollary 11.1 

. 
∣∣I (f ) − Q(f )

∣∣ ≤ (1 + ‖Q‖)(b − a)
‖f (r+1)‖C0([a,b])

(r + 1)! (b − a)r+1.

By using Chebyshev nodes, this estimate can be further improved. 
(ii) If Q is exact of degree 2q and the weights (wi)i=0,...,n . and nodes (xi)i=0,...,n . 

are symmetric with respect to the interval midpoint (a + b)/2., then Q is exact 
even of degree 2q + 1..
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(iii) If Q is a quadrature formula on [a, b]., then one obtains with the transformation 
ϕ : [a, b] → [c, d]., x 
→ c + (x − a)(d − c)/(b − a)., and 

. 

∫ d

c

g(y) dy =
∫ b

a

g
(
ϕ(x)

)
ϕ′(x) dx = d − c

b − a

∫ b

a

g
(
ϕ(x)

)
dx

a quadrature formula on the interval [c, d].. 

14.2 Newton-Cotes Formulas 

A class of quadrature formulas is obtained by Lagrange interpolation of a function 
and subsequent exact integration of the interpolation polynomial. For given equidis-
tant nodes x0 < x1 < · · · < xn . and the associated Lagrange basis polynomials 

. Li(x) =
n∏

j=0
j �=i

x − xj

xi − xj

the Lagrange interpolation polynomial is given by p = ∑n
i=0 f (xi)Li .. Hence, by 

. 

∫ b

a

p(x) dx =
n∑

i=0

f (xi)

∫ b

a

Li(x) dx =
n∑

i=0

wif (xi)= Q(f )

a quadrature formula Q with weights wi = ∫ b

a
Li(x) dx . is defined. Since p = f . 

for all f ∈ Pn ., this quadrature formula is exact of degree n. It is referred to as a 
Newton-Cotes formula. 

Proposition 14.2 The Newton–Cotes formula defined by nodes x0 < x1 < · · · <

xn . and weights wi = ∫ b

a
Li(x) dx ., i = 0, 1, . . . , n., is exact of degree n. 

Proof The statement follows directly from the construction of the quadrature 
formula. �	

For the cases n = 0, 1, 2., simple quadrature formulas are obtained, which are 
shown in Fig. 14.2. 

Examples 14.1 

(i) For n = 0. and x0 = (a + b)/2.,  the  midpoint rule QMp(f ) = (b − a)f
(
(a +

b)/2
)
. is obtained, which is exact of degree 1. 

(ii) For n = 1. and x0 = a ., x1 = b.,  the  trapezoidal rule

. 

∫ b

a

f (x) dx ≈ QT rap(f ) = b − a

2

[
f (a) + f (b)

]
.

is also exact of degree 1.
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Fig. 14.2 Midpoint, trapezoidal and the Simpson rule as special cases of the Newton–Cotes 
formulas for n = 0, 1, 2. 

(iii) For n = 2. and x0 = a ., x1 = (a +b)/2., x2 = b.,  the  Simpson or Kepler’s barrel 
rule

. 

∫ b

a

f (x) dx ≈ QSim(f ) = b − a

6

[
f (a) + 4f

(a + b

2

)
+ f (b)

]
,

which due to its symmetry is exact of degree 3, is obtained. 
(iv) For n ≥ 7., negative weights occur, which can lead to stability problems as then 

‖Q‖ > 1. holds. 

14.3 Composite Quadrature Formulas 

To achieve high accuracies without restrictive regularity assumptions, the interval 
[a, b]. can be divided into smaller subintervals, on which a quadrature formula of 
possibly low degree of exactness is applied. 

Definition 14.3 Let a = a0 < a1 < · · · < aN = b. be the uniform partitioning 
of the interval [a, b]. with nodes a� = a + �(b − a)/N ., � = 0, 1, . . . , N ., and let 
Q� : C0([a�−1, a�]) → R. be a quadrature formula on the subinterval [a�−1, a�]. for 
� = 1, 2, . . . , N .. Then the mapping 

. QN(f ) =
N∑

�=1

Q�(f |[a�−1,a�])

is a composite quadrature formula. 

Example 14.2 With the trapezoidal rule on each subinterval [a�−1, a�].we get 

.

QNf =
N∑

�=1

a� − a�−1

2

(
f (a�−1) + f (a�)

)

= b − a

2N

(
f (a0) + 2f (a1) + · · · + 2f (aN−1) + f (aN)

)
.
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The accuracy of composite quadrature formulas can be improved by reducing 
the length of the subintervals or by increasing the degree of exactness on each 
subinterval. 

Proposition 14.3 If the quadrature formulas on the subintervals have the degree of 
exactness r ≥ 0., then 

. 
∣∣I (f ) − QN(f )

∣∣ ≤ (b − a)r+2(1 + max
�=1,...,N

‖Q�‖)N
−(r+1)

(r + 1)! ‖f
(r+1)‖C0([a,b]).

Proof On each subinterval [a�−1, a�].we have 

. 
∣∣
∫ a�

a�−1

f dx − Q�(f )
∣∣ ≤ (1 + ‖Q�‖)(a� − a�−1) min

p∈Pr

‖f − p‖C0([a�−1,a�]).

The error estimates for the Lagrange interpolation show 

. min
p∈Pr

‖f − p‖C0([a�−1,a�]) ≤ ‖f (r+1)‖C0([a�−1,a�])
(r + 1)! (a� − a�−1)

r+1.

With a� − a�−1 = (b − a)/N .we get 

. 

∣∣I (f ) − QN(f )
∣∣ ≤

N∑
�=1

∣∣ ∫ a�

a�−1

f dx − Q�(f )
∣∣

≤
N∑

�=1

(1 + ‖Q�‖) (b − a)r+2

Nr+2

‖f (r+1)‖C0([a�−1,a�])
(r + 1)!

≤ (1 + max
�=1,...,N

‖Q�‖)N (b − a)r+2

Nr+2

‖f (r+1)‖C0([a,b])
(r + 1)! .

This implies the claimed estimate. �	
Definition 14.4 A composite quadrature formula QN

. is called convergent of order 
s ≥ 0.,  i  f

. |QN(f ) − I (f )| = O(hs)

for all f ∈ Cs([a, b]). and h = (b − a)/N → 0. holds. In the cases s = 1, 2, 3. this 
is referred to as linear, quadratic and cubic convergence, respectively. 

Examples 14.3 

(i) The composite trapezoidal rule is quadratically convergent. 
(ii) The composite Simpson rule has the order of convergence s = 4..
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Remark 14.3 Often, faster convergence for the composite trapezoidal rule is 
observed. For periodic functions f ∈ Ck([0, 2π ])., whose derivatives up to order 
k are also periodic, one can show for the quadrature error δN = |QN(f ) − I (f )|. 
that δN = O(hk).. If the interval [0, 2π ]. is identified with the unit circle in C. and if 
f admits a holomorphic extension to an open neighbourhood of the circle then the 
exponential convergence property δN = O(r−N). for some r > 1. can be proved. 

14.4 Gaussian Quadrature 

The choice of quadrature points and weights affects the accuracy of a quadrature 
formula. A certain degree of exactness cannot be exceeded with a given number of 
points. 

Lemma 14.1 A quadrature formula with n + 1. weights and quadrature points 
possesses at most the degree of exactness 2n + 1.. 

Proof Let Q(f ) = ∑n
i=0 wif (xi). and define p(x) = ∏n

i=0(x − xi)
2
.. Then p ∈

P2n+2 . and p is positive except at the quadrature points, where p vanishes. T his
implies I (p) > 0. as well as Q(p) = 0. and this implies the assertion. �	

We will show in the following that there actually is a quadrature formula with 
the maximum degree of exactness 2n+ 1.. If a quadrature formula is exact of degree 
n, then the weights are already uniquely determined. If it is exact of degree 2n, then 
these are positive. 

Lemma 14.2 A quadrature formula with n + 1. weights and quadrature points 
(xi, wi)i=0,...,n . is exact of degree n if and only if we have

. wi =
∫ b

a

Li(x) dx

for i = 0, 1, . . . , n. with the Lagrange basis polynomials (Li)i=0,...,n . defined by the 
points (xi)i=0,...,n .. If the quadrature formula is exact of degree 2n, then wi > 0. for 
i = 0, 1, . . . , n.. 

Proof Exercise. �	
In the Gauss quadrature, n + 1. quadrature points are constructed so that the 

maximum degree of exactness 2n+1. is achieved. More generally, weighted integrals 
of the form 

. Iω(f ) =
∫ b

a

f (x)ω(x) dx

with a non-negative weight function ω ∈ C0(a, b). are considered. This function is 
chosen so that through
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. 〈f, g〉ω =
∫ b

a

f (x)g(x)ω(x) dx

a scalar product on C0([a, b]). is defined. This is exactly the case when ω . is 
improperly integrable on (a, b). and from 〈f, f 〉ω = 0. already f = 0. follows for 
every function f ∈ C0([a, b]).. With respect to this scalar product, an orthogonal 
basis of Pn . is determined using the Gram–Schmidt process. 

Proposition 14.4 There exist orthogonal polynomials (πj )j=0,...,n . such that πj ∈
Pj . and 〈πj , πk〉ω = δjk . for all 0 ≤ j, k ≤ n.. In particular, 〈πj , p〉ω = 0. holds for 
all p ∈ Pj−1 . and the polynomials form a basis of Pn .. 

Proof Exercise. �	
The orthogonality implies the existence of roots. 

Lemma 14.3 Every orthogonal polynomial πj ., 0 ≤ j ≤ n., has j simple roots in 
the interval (a, b).. 

Proof Let us assume that the statement of the lemma is false for a j ∈ {0, 1, . . . , n}.. 
If πj . has a root z ∈ R \ (a, b)., then p(x) = πj (x)/(x − z). is a polynomial in Pj−1 . 

and it follows 

. 0 = 〈πj , p〉ω =
∫ b

a

π2
j (x)

x − z
ω(x) dx,

which is not possible, since x −z. has no root in (a, b). and πj . is not identically zero. 
If z ∈ (a, b). is a multiple root or if z ∈ C \ R., then z. is also a root of πj . and it 
follows p(x) = πj (x)/((x − z)(x − z)) = πj (x)/|x − z|2 ∈ Pj−2 ..  Again,  th  e
identity 0 = 〈πj , p〉ω . leads to a contradiction. �	
Examples 14.4 

(i) For the weight function ω(x) = (1 − x2)−1/2
. in the interval (−1, 1).,  the  

Chebyshev polynomials are obtained.
(ii) For ω(x) = 1. in the interval [−1, 1]. the Legendre polynomials are obtained as 

derivatives of order n of the polynomial (x2 − 1)n ., that is 

. Pn(x) = 1

2nn!
dn

dxn
(x2 − 1)n.

The zeros of the orthogonal polynomial πn . define a quadrature formula with 
degree of exactness 2n + 1.. 

Proposition 14.5 Let πn+1 ∈ Pn+1 . be the (n + 1).-th orthogonal polynomial with 
respect to the weight function ω ∈ C0(a, b).. The zeros (xi)i=0,...,n . of πn+1 . and the 
weights 

.wi =
∫ b

a

Li(x)ω(x) dx
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for i = 0, 1, . . . , n. define a quadrature formula Qωf = ∑n
i=0 wif (xi). such that 

. Qω(p) = Iω(p) =
∫ b

a

p(x)ω(x) dx

for all p ∈ P2n+1 .. 

Proof The quadrature formula defined in the proposition is well-defined and by 
choice of the weights, we have Iω(r) = Qω(r). for all r ∈ Pn ..  If p ∈ P2n+1 ., one 
obtains by polynomial division polynomials q, r ∈ Pn .with p = qπn+1 + r .. Since 
〈q, πn+1〉ω = 0. holds, it follows 

. Iω(p)=
∫ b

a

q(x)πn+1(x)ω(x)dx+
∫ b

a

r(x)ω(x)dx = 〈q, πn+1〉ω+Iω(r) = Iω(r).

With πn+1(xi) = 0., i = 0, 1, . . . , n., it follows 

. Qω(p) =
n∑

i=0

wi

(
q(xi)πn+1(xi) + r(xi)

) =
n∑

i=0

wir(xi) = Qω(r).

In total, Iω(p) = Iω(r) = Qω(r) = Qω(p).. �	
Example 14.5 For the weight function ω(x) = 1. in the interval [−1, 1]. we have 
P0(x) = 1., P1(x) = x ., P2(x) = (3x2 − 1)/2. and P3(x) = (5x3 − 3x)/2.. Thus, for 
n = 0, 1, 2.we obtain quadrature formulas defined by 

. 

x0 = 0, w0 = 2,

x0 = −√
1/3, x1 = √

1/3, w0 = 1, w1 = 1,

x0 = −√
3/5, x1 = 0, x2 = √

3/5, w0 = 5/9, w1 = 8/9, w2 = 5/9,

and which are Gaussian quadrature formulas. 

14.5 Extrapolation 

A composite quadrature formula defines a function T (h)., which for a given function 
f ∈ Ck([a, b]). and partitioning fineness h = (b−a)/N . provides an approximation 
of the integral, which is generally not directly accessible, and is denoted by T (0) =
limh→0 T (h).. We assume that T is given as a function on R≥0 .. If the error of the 
quadrature formula is of order hγ

. for a γ ∈ N.,  it  follo  ws

.T (h) = T (0) + ϕ(h)



14.5 Extrapolation 123

Fig. 14.3 Extrapolation of 
the calculated values T (hi)., 
i = 0, 1.,  for  a  better  
approximation of the 
unknown value T (0). through 
p1(0). 

h1 h0 

T (h1) 
T (h0) 

p1 

p1(0) 
T (0) 

for a function ϕ . with ϕ(0) = 0. and |ϕ(h)| ≤ chγ
.. A Taylor expansion of ϕ . around 

0, that is 

. ϕ(z) = c1z
γ + c2z

γ+1 + r(z)

with coefficients c1, c2 . and a remainder term r ∈ o(zγ+1). for z → 0., leads to 

. T (h) = T (0) + c1h
γ + c2h

γ+1 + r(h).

The evaluation of the quadrature formula for the fineness h/2. then yields 

. T (h/2) = T (0) + c1

2γ
hγ + c2

2γ+1 hγ+1 + r(h/2).

With this equation, the term c1h
γ
. in the identity for T (h). can be eliminated and we 

obtain 

. T ∗(h) = T (h) − 2γ T (h/2)

1 − 2γ
= T (0) + c2

1 − 2−1

1 − 2γ
hγ+1 + o(hγ+1).

The computable expression T ∗(h). thus defines an approximation of T (0). with an 
error of the order hγ+1

., which is more accurate for small values of h than the 
approximations T (h). and T (h/2).. The procedure is illustrated in Fig. 14.3. 

Example 14.6 The extrapolation of the composite trapezoidal rule with conver-
gence order s = γ = 2. leads to the composite Simpson rule, where due to 
symmetry effects c2 = 0. can be assumed and thus instead of the expected improved 
convergence order s = 3. even the order s = 4. is obtained. 

The described procedure can be generalised by performing a polynomial inter-
polation of the values T (hi)., i = 0, 1, . . . , n., for the nodes hγ

i ., i = 0, 1, . . . , n.,  for  
example with hi = 2−ih. for a fixed h > 0.. The interpolation polynomial pn ∈ Pn . 

is thus defined by the conditions 

. pn(h
γ

i ) = T (hi)

for i = 0, 1, . . . , n.. The extrapolated value pn(0) ≈ T (0). can be determined using 
the Neville scheme. Corresponding details can be found, for example, in [1, 9].
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Remark 14.4 The Aitkin delta-squared process constructs from a given sequence 
(xk)k≥0 . a sequence (yk)k≥2 . with potentially improved convergence properties. If 
the sequence (xk)k≥0 . converges linearly with factor 0 < q < 1. to some x∗

., then we 
have the approximations (x∗ − xk) ≈ q(x∗ − xk−1). and (x∗ − xk+1) ≈ q(x∗ − xk)., 
which can be combined to eliminate q and obtain an approximate formula for x∗

., 
i.e., 

. x∗ ≈ yk+1 = xk−1xk+1 − x2
k

xk+1 − 2xk + xk−1
= xk+1 − (δxk)

2

δ2xk

,

where δxk = xk+1 − xk . and δ2xk = xk+1 − 2xk + xk−1 .. Under certain conditions 
on the differences xk − x∗

. the sequence (yk)k≥2 . converges quadratically to x∗
.. 

14.6 Experimental Convergence Order 

The convergence properties of a composite quadrature formula QN
. with step size 

h = (b−a)/N .can be experimentally analysed, by considering for a non-polynomial 
function f ∈ Ck([a, b])., for example f (x) = sin(x)., whose exact integral I (f ). is 
explicitly known, the errors 

. eh = |I (f ) − QN(f )|

for some step sizes h > 0.. From the approach eh ≈ c1h
γ
. it follows by using two 

different step sizes h,H > 0., that 

. c1 ≈ eh

hγ
≈ eH

Hγ

and thus 

. γ ≈ log(eh/eH )

log(h/H)
= log(eh) − log(eH )

log(h) − log(H)
.

In particular, if H = h/2., then γ ≈ log(eh/eh/2)/ log(2).. If this expression is 
calculated for several step sizes h, then this defines an (average) experimental 
convergence order by means of a least squares fit or the arithmetic mean. It should 
be noted, that this can depend on the differentiability order of f . Additionally, one 
can graphically represent the convergence behaviour by using logarithmic scaling 
of the x- and y-axes and connecting experimentally determined pairs (h, eh). via a 
polygonal chain. If there is indeed a relationship of the form eh ≈ c1h

γ
., then the 

polygonal chain with respect to the logarithmic scaling will have the slope γ .. 

Example 14.7 We consider the pairs of values (h, eh). given by h = 2−�
., � =

1, . . . , 5., and eh = h2/3.. Figure 14.4 shows that the slope of the polygonal chain
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Fig. 14.4 The experimental 
convergence order results as 
the slope of a least squares 
line through measurement 
points with respect to 
logarithmic scaling 

10−1 10010−2 

10−1 

10−2 

10−3 

10−4 

h 

e h
 

10−1/2 

1/2 

1 

defined in this way in logarithmic scaling matches the slope of the line parallel to it 
through the points (10−1, 10−3). and (10−1/2, 10−2).. The logarithmic slope of this 
line results from the difference quotient of the powers, that is 

. γ ≈ Δ
log
y

Δ
log
x

= (−2) − (−3)

(−1/2) − (−1)
= 2.

Due to the logarithmic scaling, the value 10−1/2
. on the x-axis is exactly in the 

middle of the values 100 . and 10−1
., see Fig. 14.4. 

14.7 Learning Objectives, Quiz and Application 

You should be able to define the degree of exactness of a quadrature formula 
and derive abstract error estimates based on it. You should be able to specify 
the Newton–Cotes formulas and apply them to examples and to describe the 
construction of the Gauss quadrature and name the properties of the method. 

Quiz 14.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

For every quadrature formula, Q(αf + βg) = αQ(f ) + βQ(g). holds. 

If a quadrature formula is exact of degree r ≥ 1., then the weights of the quadrature 
formula are positive. 

Every Newton-Cotes formula with n + 1 = 2q . nodes is exact of degree n + 2.. 

The Gauss quadrature uses the n + 1. zeros of an orthogonal polynomial πn ∈ Pn . as 
quadrature points. 

The trapezoidal rule on the interval [−1, 1]. approximates the integral of the function 
f by

[
f (−1) + f (1)

]
/2..
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Application 14.1 Based on samples and statistical considerations, the weight of a 
hen’s egg can be approximated as a normally distributed random variable X with 
expected value μ = 57 g. and standard deviation σ = 7 g.. The probability that the 
weight of an egg lies in the interval [m1,m2]. is thus given by 

. P(m1 ≤ X ≤ m2) = 1√
2πσ 2

∫ m2

m1

e−(x−μ)2/(2σ 2) dx.

(i) Determine, with a composite quadrature formula as well as the identity 

. 

∫ ∞

0
e−t2/2 dt = √

π/2,

the probability that an egg weighs more than 63 g.. 
(ii) Compare your result with an approach to calculating the probability without 

numerical integration using the identity 

. e−t2 = 1 − t2 + t4

2! − t6

3! + . . .

and the exact integration of some monomials. In which situations is this 
approach useful? 

(iii) Specify numerically with four decimal places accuracy the so-called 68-95-
99.7 rule, which gives the probabilities for the deviation by one, two or three 
standard deviations from the expected value, i.e. the quantities P(|X − μ| ≤
jσ ). for j = 1, 2, 3..



Chapter 15 
Nonlinear Problems 

15.1 Root Finding and Minimisation Problems 

For an open set U ⊂ R
n
. and mappings f : U → R

n
. and g : U → R., we consider 

the following problems: 

. 

(N) Find x∗ ∈ U such that f (x∗) = 0.

(M) Find x∗ ∈ U such that g(x∗) = min
x∈U

g(x).

These problems are connected via the optimality condition ∇g(x∗) = 0. or via 
the minimisation of x �→ ‖f (x)‖2 .. Furthermore, root finding is equivalent to 
determining a fixed point of the mapping Φ(x) = f (x) + x .. In general, it is neither 
possible nor sensible to determine a solution exactly, and therefore sequences 
(xk)k=0,1,... . are constructed iteratively, which under suitable conditions converge 
to a solution. The following terms are used to classify the convergence behaviour. 

Definition 15.1 A numerical method that defines a sequence (xk)k=0,1,... .of approx-
imations for a numerical problem is called 

(i) globally convergent, if the sequence (xk)k=0,1,... . for every starting vector x0 ∈
U . converges to a solution x∗ ∈ U ., and 

(ii) locally convergent, if for every solution x∗ ∈ U . there exists a number ε > 0. 
such that the sequence (xk)k=0,1,... . for every starting vector x0 ∈ Bε(x

∗) ∩ U . 

converges to x∗
.. 

Obviously, every globally convergent method is also locally convergent. To 
characterise the convergence speed of methods, we assume that xk 
= x∗

. for all 
k ∈ N0 .. 
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Definition 15.2 A locally convergent method is called convergent of order α ≥ 1., 
if a q ∈ R. exists, such that for every solution x∗ ∈ U ., every starting vector 
x0 ∈ Bε(x

∗) ∩ U . and the sequence (xk)k∈N0 . generated by the method for the 
approximation errors δk = ‖x∗ − xk‖., there holds 

. lim sup
k→∞

δk+1

δα
k

= q

and in the case α = 1. we additionally have q ≤ 1.. A method that is convergent 
of order α . is called linearly convergent if α = 1. and q < 1. and quadratically 
convergent if α = 2. and q ∈ R≥0 . holds. It is called superlinear or sublinearly 
convergent if α = 1. and q = 0. or α = 1. and q = 1. hold, respectively. 

Examples 15.1 

(i) If Φ : R
n → R

n
. is a contraction, then the method xk+1 = Φ(xk). for 

approximating a fixed point of Φ . is globally and linearly convergent. 
(ii) If Φ ∈ C1(R)., then the fixed point iteration xk+1 = Φ(xk). for determining a 

fixed point x∗
. of Φ . is locally linearly convergent, provided that |Φ ′(x∗)| < 1. 

by the mean value theorem. If |Φ ′(x∗)| > 1., then the method is divergent. If 
Φ ′(x∗) = 0. and Φ ∈ C2(R). then local quadratic convergence occurs, which is 
an immediate consequence of a Taylor approximation argument, i.e., 

. xk+1 − x∗ = Φ(xk) − Φ(x∗) = 1

2
Φ ′′(ξ)(xk − x∗)2.

The cases of linear and quadratic convergence are illustrated in Fig. 15.1. 

Remarks 15.1 

(i) In the so-called asymptotic region, that is, after a sufficient number of iterations, 
linear convergence results in an error reduction by the factor q, while quadratic 
convergence doubles the number of correct decimal places in each step. 

(ii) Convergent fixed-point iterations are robust with respect to rounding errors 
since they are self-stabilizing in the sense that every iterate can be interpreted 
as a new starting value. 

Fig. 15.1 Linear (left) and 
quadratic (right) convergence 
of fixed-point iterations 

xx 

x2x∗x1 x0 x0x2x1 x∗
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15.2 Approximation of Roots 

The bisection method is based on the fact that any continuous function f ∈
C0([a, b]). with the property f (a)f (b) ≤ 0. has a root in the interval [a, b].. If then 
c ∈ (a, b). is arbitrary, it follows 

. f (a)f (c) ≤ 0 or f (c)f (b) ≤ 0

and the subinterval [a, c]. or [c, b]. contains at least one root of f , see Fig. 15.2. 
Algorithm 15.1 (Bisection Method) Let f ∈ C0([a, b]). with f (a)f (b) ≤ 0. and 
εstop > 0.. Set (a0, b0) = (a, b). and k = 0.. 

(1) Define ck = (ak + bk)/2.. 
(2) Set 

. (ak+1, bk+1) =
{

(ak, ck) if f (ak)f (ck) ≤ 0,

(ck, bk) otherwise.

(3) Stop if bk+1 − ak+1 ≤ εstop .; otherwise increase k → k + 1. and repeat step (1). 

Since the current interval is halved at each step, the following statement is 
immediately apparent. 

Proposition 15.1 The bisection method is linearly convergent with the approxima-
tions xk = ck . for k = 0, 1, 2, . . . . with q = 1/2.. It stops after J ≤ 1 + log2

(
(b −

a)/εstop

)
. steps and the interval [aJ , bJ ]. contains a root. 

While the bisection method is only meaningful in one dimension, the secant 
method approximates a derivative, which is also possible in multiple dimensions. 
The easily determined root of the secant defines the new reference point, see 
Fig. 15.3. 

Algorithm 15.2 (Secant Method) Let f ∈ C0([a, b]). and εstop > 0.. Set x0 = a ., 
x1 = b. and k = 1.. 

Fig. 15.2 The sign change 
of a continuous function 
implies the existence of a root 

a bc 

Fig. 15.3 The root of the 
secant serves as an 
approximation of a root 

xk−1 

xk+1 

xk
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Fig. 15.4 The root of the 
tangent serves in the Newton 
method as an approximation 
of a root xk+1 

xk 

(1) If f (xk) 
= f (xk−1)., then define 

. xk+1 = xk − xk − xk−1

f (xk) − f (xk−1)
f (xk).

(2) Stop if |xk+1 − xk| ≤ εstop .; otherwise increase k → k + 1. and repeat step (1). 

Remarks 15.2 

(i) When implementing the secant method, cancellation effects can occur and 
rounding errors can become significant. 

(ii) An alternative termination criterion is |f (xk+1)| ≤ εstop .. 
(iii) The regula-falsi method combines the bisection method with the secant 

method, so that the interval [xk−1, xk]. always contains a root. 
The quantity (f (xk) − f (xk−1))/(xk − xk−1). that appears in the secant method 
is an approximation of the derivative f ′(xk).. This slope defines a tangent to f at 
the point (xk, f (xk))., which is used in the Newton method to determine the new 
approximation xk+1 ., see Fig. 15.4. This is especially easier to implement in multi-
dimensional cases, provided the Jacobian matrix can be easily determined. 

A Taylor approximation of the C1
. mapping f : U → R

n
. around the point x 

show s

. 0 = f (x∗) = f (x) + Df (x)(x∗ − x) + ϕ(x∗ − x).

If the approximation x = xk . is close to x∗
., neglecting the term ϕ(x∗ − x). implies 

that 

. f (xk) + Df (xk)(x
∗ − xk) ≈ 0

and this motivates that by 

. xk+1 = xk − Df (xk)
−1f (xk) ≈ x∗

an improved approximation xk+1 ≈ x∗
. is defined, provided Df (xk). is regular. 

Algorithm 15.3 (Newton Method) Let f ∈ C1(U ;Rn)., x0 ∈ U . and εstop > 0.. 
Set k = 0.. 

(1) If Df (xk). is regular, then define 

.xk+1 = xk − Df (xk)
−1f (xk).
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(2) Stop if ‖xk+1 − xk‖ ≤ εstop .; otherwise increase k → k + 1. and repeat step (1). 

The Newton method is locally quadratically convergent. 

Proposition 15.2 Let f ∈ C2(U ;Rn). and x∗ ∈ U . be a root of f in U , such t hat
Df (x∗). is regular. Then there exists a number ε > 0., such that for every initial 
value x0 ∈ Bε(x

∗) ∩ U . the Newton method is executable and convergent. For the 
iterates (xk)k=0,1,... .we have 

. ‖x∗ − xk+1‖ ≤ c‖x∗ − xk‖2

with a constant c ≥ 0.. 

Proof Since detDf (x∗) 
= 0. and the mapping x �→ detDf (x). is continuous, there 
exists a number ε̃ > 0., such that detDf (x) 
= 0. and ‖Df (x)−1‖ ≤ c1 . for all 
x ∈ Bε̃(x

∗) ⊂ U ..  Let xk ∈ Bε̃(x
∗). for a k ≥ 0.. The Taylor expansion 

. 0 = f (x∗) = f (xk) + Df (xk)(x
∗ − xk) + ϕ(x∗ − xk)

with a function ϕ : Rn → R., which fulfils |ϕ(z)| ≤ c2|z|2 . for all |z| ≤ c3 ., implies 

. ‖f (xk) + Df (xk)(x
∗ − xk)‖ ≤ c2‖x∗ − xk‖2

if ‖x∗ − xk‖ ≤ c3 .. With the iteration rule we get 

. 
x∗ − xk+1 = x∗ − xk + Df (xk)

−1f (xk)

= Df (xk)
−1(f (xk) + Df (xk)(x

∗ − xk)
)
.

Hence it follows 

. ‖x∗ − xk+1‖ ≤ ‖Df (xk)
−1‖ ‖f (xk) + Df (xk)(x

∗ − xk)‖ ≤ c1c2‖x∗ − xk‖2.

With ε ≤ min{1/(c1c2), ε̃, c3}. it follows, provided xk ∈ Bε(x
∗)., that 

. ‖x∗ − xk+1‖<c1c2ε‖x∗ − xk‖ ≤ ‖x∗ − xk‖ < ε ≤ ε̃

and thus xk+1 ∈ Bε̃(x
∗).. The iteration is therefore well-defined and convergent, 

provided x0 ∈ Bε(x
∗).. ��

Remark 15.3 If x0 . is not close enough to x∗
., divergence can occur, see Fig. 15.5. 

This can be avoided in many cases by introducing damping, i.e. by the modification 
xk+1 = xk − ωDf (xk)

−1f (xk).with 0 < ω < 1., However, in general, no quadratic 
convergence is then guaranteed.
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Fig. 15.5 The Newton 
method is generally only 
locally convergent 

xk+2 

xk 

xk+1 

15.3 One-Dimensional Minimisation 

The global minimisation of a continuous function on a compact set is rarely 
achievable without further additional conditions on the function. Therefore, one 
usually restricts oneself to determining local minima. In the case of convex 
functions, these are already global minima. 

Algorithm 15.4 (Discrete Search) Let a = x0 < x1 < · · · < xn = b. be 
a partitioning into n ≥ 3. subintervals and g ∈ C0([a, b]).. Determine xk . with 
g(xk) = min{g(x1), g(x2), . . . , g(xn−1)}.,  see  Fig  . 15.6. 

Proposition 15.3 If xk . is the point determined by the discrete search, then the 
interval [xk−1, xk+1]. contains a local minimum x∗

loc ∈ [a, b]., i.e. there exists a 
δ > 0.with g(x∗

loc) ≤ g(x). for all x ∈ Bδ(x
∗
loc) ∩ [a, b].. 

Proof On the compact interval [xk−1, xk+1]., the function g attains its minimum.
��

In interval reduction methods, the discrete search is applied to intervals of 
decreasing lengths, see Fig. 15.7. 

Algorithm 15.5 (Interval Reduction) Let g ∈ C0([a, b]). and εstop > 0.. Set a0 =
a ., b0 = b. and k = 0.. 

(1) Choose ck, dk ∈ (ak, bk).with ak < ck < dk < bk . and set 

. (ak+1, bk+1) =
{

(ak, dk) if g(ck) ≤ g(dk),

(ck, bk) otherwise.

(2) Stop if bk+1 − ak+1 ≤ εstop .; otherwise increase k → k + 1. and repeat step (1). 

Remark 15.4 An optimized choice of points ck . and dk . leads to a uniform reduction 
of the intervals and a minimal number of function evaluations. 

Fig. 15.6 The minimum of a 
finite set of function values 
provides an approximation of 
a local minimum



15.4 Multidimensional Minimisation 133

Fig. 15.7 Reduction of the 
search region based on 
multiple function values 

bkckak dk 

15.4 Multidimensional Minimisation 

In multiple dimensions, successive one-dimensional minimisations are usually 
performed along suitable search directions. A canonical choice of the respective 
search direction is the direction of steepest descent, which is given by the negative 
gradient of the function to be minimised. We follow the presentations in [7, 8]. 

Algorithm 15.6 (Gradient Method) Let g ∈ C1(Rn)., x0 ∈ R
n
., σ ∈ (0, 1). and 

εstop > 0.. Set k = 0.. 

(1) Define dk = −∇g(xk). and determine the maximum number αk ∈ {2−
 : 
 ∈
N0}., for which the Armijo condition 

. g(xk + αkdk) ≤ g(xk) − σαk‖dk‖2

is fulfilled, see Fig. 15.8. 
(2) Set xk+1 = xk + αkdk .. 
(3) Stop if ‖αkdk‖ ≤ εstop .; otherwise increase k → k + 1. and repeat step (1). 

Remark 15.5 The method performs a discrete search in each iteration step to 
determine the step size αk .. The existence of an admissible step size follows from 
an exercise. If g ∈ C2(Rn). and an upper bound for ‖D2g‖. is explicitly available, a 
fixed step size can be chosen and the Armijo search can be omitted. 

In the analysis of the method, the termination criterion is ignored and the 
convergence of the search directions (dk)k∈N0 . to zero is proven. 

Proposition 15.4 Let g ∈ C2(Rn). and x0 ∈ R
n
. be such that the sublevel set 

. N−
g (x0) = {x ∈ R

n : g(x) ≤ g(x0)}

is bounded, i.e. N−
g (x0) ⊂ KR(x0). for some R > 0.,  see  Fig  . 15.9. Then for 

the iterates of the gradient method, it follows that ∇g(xk) → 0. as k → ∞. 

Fig. 15.8 The Armijo 
condition guarantees a 
predetermined relative 
reduction of the function 
value
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Fig. 15.9 Sublevel set 
N−

g (x0). (hatched) of a 
function g at the level g(x0). 

g 

g(x0) 

x0 

and αk > (1 − σ)/γ . for all k ∈ N0 . with γ = maxx∈KR+m(x0) ‖D2g(x)‖. and 
m = maxx∈KR(x0) ‖∇g(x)‖.. 

Proof The sequence
(
g(xk)

)
k∈N0

. is monotonically decreasing, so that (xk)k∈N0 ⊂
N−

g (x0). and g(xk) ≥ c0 = minx∈N−
g (x0)

g(x). for all k ∈ N0 .. From the Armijo 
condition it follows 

. 

g(x0) ≥ g(x1) + σα0‖∇g(x0)‖2

≥ g(x2) + σα1‖∇g(x1)‖2 + σα0‖∇g(x0)‖2

≥ · · · ≥ g(x
+1) + σ


∑
k=0

αk‖∇g(xk)‖2.

Hence,
∑∞

k=0 αk‖∇g(xk)‖2 ≤ (g(x0) − c0)/σ . and it follows that αk‖∇g(xk)‖2 →
0.. It is therefore sufficient to show that αk ≥ δ > 0. for all k ∈ N0 . and a number 
δ > 0. applies. For each k ∈ N0 ., either αk = 1. or the Armijo condition is violated 
for 2αk .. The latter means 

. 2σαk‖∇g(xk)‖2 > g(xk) − g(xk + 2αkdk).

A Taylor approximation implies that a ξ ∈ KR+m(x0). exists with 

. g(xk + 2αkdk) = g(xk) + ∇g(xk) · (2αkdk) + 1

2
(2αk)

2D2g(ξ)[dk, dk].

With dk = −∇g(xk). and D2g(ξ)[dk, dk] ≤ γ ‖dk‖2 . it follows 

. 2σαk‖dk‖2 > 2αk‖dk‖2 − 2γα2
k‖dk‖2

or (1 − σ)αk < γα2
k . and thus αk > (1 − σ)/γ . for all k ∈ N0 .. ��

Remarks 15.6 

(i) The sequence (xk)k∈N0 . is generally not convergent. If xs ∈ N−
g (x0). is an 

accumulation point of a subsequence (xkn)n∈N0 ., then xs . is a stationary point of 
g, that is ∇g(xs) = 0., and xs . can be a local minimum or maximum or a saddle
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point. However, local maxima and saddle points are unstable with respect to 
perturbations, so the gradient method usually converges to a local minimum in 
practice. 

(ii) From the estimates
∑


k=0 αk‖∇g(xk)‖2 ≤ (g(x0)−c0)/σ . and αk ≥ (1−σ)/γ . 

of the proof it follows that 

. (
 + 1) min
k=0,...,


‖∇g(xk)‖2 ≤ γ (g(x0) − c0)/(σ (1 − σ))

or mink=0,...,n ‖∇g(xk)‖ = O(n−1/2). applies. For uniformly convex functions, 
improved convergence properties can be established. 

15.5 Learning Objectives, Quiz and Application 

You should be familiar with different methods for the approximate calculation of 
zeros and minima. You should be able to motivate the methods and explain their 
properties. 

Quiz 15.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

If the series
∑∞

k=0 δk . converges, then the sequence (δk)k≥0 . is linearly convergent. 

The sequence δk = sin2(1/k)., k ∈ N., is quadratically convergent to zero. 

The gradient method with a function g defines a convergent sequence (xk)k∈N0 ., 
whose limit is a critical point of g. 

Sufficient for the convergence of the gradient method is that g ∈ C2(Rn). applies and 
g is convex .
If the Newton method converges, then ‖f (xk)‖ ≤ c‖x∗ − xk‖.with a constant c ≥ 0. 
for all k ≥ 0.. 

Application 15.1 In the shape optimisation of a rotationally symmetric drinking 
glass, whose base is circular with a diameter of 3 cm.,  is 10 cm.high and has a volume 
of about 0.21 
., the surface area should be minimised. The shape of the glass should 
be described by a cubic curve s : [0, 10] → R. such that the surface of the glass is 
given by 

.A(s) = 2π
∫ 10

0
s(1 + |s′|2)1/2 dx + π(3/2)2
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Use the nodes 0 = x0 < x1 < x2 < x3 = 10. to describe the desired curve with the 
values y0 = 1.5. and y1, y2, y3 .. For the choice x1 = 5. and the approximation of the 
volume 

. V (s) = π

∫ 10

0
(s(x))2 dx

using the Simpson rule, the value y1 . can be eliminated. Formulate the surface 
as a function of y2 . and y3 . and minimise the resulting expression numerically by 
discretising A(s). appropriately.



Chapter 16 
Conjugate Gradient Method 

16.1 Quadratic Minimisation 

If A ∈ R
n×n

. is symmetric and positive definite, then the solution x∗ ∈ R
n
. of the 

system of equations Ax = b. is the unique minimum point of the function 

. φ(x) = 1

2
‖b − Ax‖2

A−1 = 1

2

(
A−1(b − Ax)

) · (b − Ax) ≥ 0,

because for every symmetric and positive definite matrix B ∈ R
n×n

. a norm in Rn
. 

is defined by v �→ ‖v‖B = √
(Bv) · v .. With a variant of the descent method, for an 

approximate solution or an initial value x̃ ∈ R
n
. and a search direction d̃ ∈ R

n
.,  a  

new approximation x̃ + α̃d̃ . is obtained by minimising ψ̃ : t �→ φ(̃x + t d̃)..  We  hav  e
that

. ̃ψ(t) = 1

2
‖b − Ax̃‖2

A−1 − t (b − Ax̃) · d̃ + t2

2
(Ad̃) · d̃

and differentiating with respect to t shows that the minimum is given b y

. ̃α = (b − Ax̃) · d̃

(Ad̃) · d̃
.

If the search direction is chosen as the negative gradient of φ . at x̃ ., that is 

. ̃d = −∇φ(̃x) = b − Ax̃,

then for the new approximate solution we have that 

. ̃xnew = x̃ + α̃d̃ = x̃ + α̃(b − Ax̃),
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which corresponds exactly to a step of a Richardson procedure. The repeated 
execution of this strategy defines a sequence of approximate solutions (xk)k=0,1,... . 

for which an exercise in the case of symmetric, positive definite matrices shows the 
convergence behaviour 

. ‖xk − x∗‖A ≤
(κ − 1

κ + 1

)k‖x0 − x∗‖A

with κ = cond2(A).. For large condition numbers, therefore, only a small improve-
ment is generally achieved in each iteration step. 

16.2 Conjugate Search Directions 

The search directions occurring in the descent method are successively orthogonal to 
each other, but only lead to slow convergence. A strong acceleration is achieved by 
using so-called A-conjugate search directions. In the following, it is always assumed 
that A ∈ R

n×n
. is symmetric and positive definite. In this chapter, we follow the 

presentation in [8]. 

Definition 16.1 The vectors x, y ∈ R
n
. are called A-conjugate,  if x · (Ay) = 0. 

holds. 

The concept of A-conjugacy generalises the concept of orthogonality, because 
orthogonal vectors are A-conjugate with respect to A = In .. 

Lemma 16.1 Assume that the vectors d0, d1, . . . , dk ∈ R
n \ {0}. are pairwise A-

conjugate, that is di · Adj = 0. for all 0 ≤ i, j ≤ k .with i �= j ..  If x0 ∈ R
n
. and xj+1 . 

is obtained from xj . by successively minimising φ . in the direction of dj ., that is 

. 

xj+1 = xj + αjdj= x0 +
j∑

�=0

α�d�,

αj = dj · (b − Axj )

dj · Adj

= dj · (b − Ax0)

dj · Adj

for j = 1, 2, . . . , k ., then xj+1 . is the minimum of φ . in the set 

. x0 + span{d0, d1, . . . , dj }.

Proof For j = 1, 2, . . . , k + 1., xj ∈ x0 + span{d0, d1, . . . , dj−1}. and with the 
A-conjugacy of the vectors d0, d1, . . . , dj−1 . it follows 

.dj · A(xj − x0) = 0
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and thus dj · (b − Axj ) = dj · (b − Ax0)., which proves the second representation 
of αj ..  From  this  it  fol  lows

. 

φ(xj + αjdj ) = φ(xj ) + α2
j

2
dj · Adj − αjdj · (b − Axj )

= φ(xj ) + α2
j

2
dj · Adj − αjdj · (b − Ax0)

= φ(xj ) + ψj (αj )

with the quadratic function ψj(t) = (t2/2)dj · Adj − tdj · (b − Ax0).. Inductively, 
it follows 

. φ
(
x0 +

j∑

�=0

α�d�

)
=φ(x0) +

j∑

�=0

ψ�(α�).

A necessary and sufficient condition for a minimum point of the convex function 
φ . in the set x0 + span{d0, . . . , dj }. is the vanishing of the partial derivatives with 
respect to the coefficients αi ., i = 0, 1, . . . , j ., that is 

. 
∂

∂αi

φ
(
x0 +

j∑

�=0

α�d�

)
= ψ ′

i (αi) = 0

for i = 0, 1, . . . , j .. This corresponds exactly to the choice of coefficients and thus 
the statement of the lemma is proven. 
�
Remark 16.1 The lemma shows that the coefficients α1, . . . , αn−1 . can be deter-
mined independently of each other, provided the A-conjugate vectors are given. 

16.3 Calculation of Conjugate Directions 

The determination of A-conjugate search directions is carried out simultaneously 
with the step-by-step improvement of the approximate solutions. For an approxima-
tion xk .,  the  residual of xk . is defined by 

. rk = b − Axk.

If rk = 0., then xk . solves the system of equations Ax = b. and if xk+1 = xk + αkdk ., 
then obviously rk+1 = rk − αkAdk ..
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Lemma 16.2 For any vector x0 ∈ R
n
. and r0 = b − Ax0 . as well as d0 = r0 .,  the  

recur sion

. 

rk+1 = rk − αkAdk, dk+1 = rk+1 − βkdk,

αk = dk · rk

dk · Adk

, βk = dk · Ark+1

dk · Adk

determines a sequence of non-vanishing A-conjugate vectors d0, d1, . . . , dk . 

until rk+1 = 0. holds. For the Krylov space defined by Kk(A, r0) =
span{r0, Ar0, . . . , A

k−1r0}., we have 

. Kk(A, r0) = span{d0, d1, . . . , dk−1} = span{r0, r1, . . . , rk−1}

and rk . is orthogonal to these spaces. 

Proof We use the abbreviations Kk = Kk(A, r0)., Dk = span{d0, d1, . . . , dk−1}., 
and Rk = span{r0, r1, . . . , rk−1}.. Assume that the equality Kk = Dk = Rk . and the 
A-conjugacy of the vectors d0, d1, . . . , dk−1 . are proven for some k ≥ 1..  For k = 1. 
the statements are obviously correct and we infer them for k + 1. in four steps. 

(i) We have that rk ∈ Kk+1 .. Because rk−1 ∈ Kk ⊂ Kk+1 . as well as dk−1 ∈ Kk . 

and thus Adk−1 ∈ Kk+1 . it follows 

. rk = rk−1 − αk−1Adk−1 ∈ Kk+1.

(ii) We have that rk ⊥ Dk ..  The  A-conjugacy of d0, d1, . . . , dk−1 ., the identity xk =
x0 + ∑k−1

i=0 αidi . and the choice of α� . show for 0 ≤ � ≤ k − 1., that 

. d� · rk = d� · (b − Axk) = d� · (b − Ax0) − α�d� · Ad� = 0.

(iii) We have that Kk+1 = Dk+1 = Rk+1 ..  If rk �= 0. then 

. Kk = Rk = Dk � Rk+1 = span{r0, r1, . . . , rk} ⊂ Kk+1,

it follows by dimension that Rk+1 = Kk+1 .. With dk = rk −βk−1dk−1 .we also 
get Dk+1 = Rk+1 .. 

(iv) We have that d� · Adk = 0. for � = 0, 1, . . . , k − 1..  From dk = rk − βk−1dk−1 . 

it follows 

. d� · Adk = d� · Ark − βk−1d� · Adk−1.

If � = k − 1., the choice of βk−1 . implies that dk−1 · Adk = 0. holds. If on the 
other hand � ≤ k − 2., the orthogonality rk ⊥ Kk ., the inclusion Ad� ∈ Kk . and 
the A-conjugacy of the vectors d0, d1, . . . , dk−1 . imply that d� ·Adk = 0. holds.


�
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16.4 CG Method 

For the efficient implementation of the iterative method with A-conjugated search 
directions, we note that the orthogonality of rk . and dk−1 ., that is rk · dk−1 = 0., 
implies the equation 

. αk = dk · rk

dk · Adk

= (rk − βk−1dk−1) · rk

dk · Adk

= ‖rk‖2
dk · Adk

From rk ∈ Kk+1(A, r0) = span{d0, d1, . . . , dk} ⊥ rk+1 . it follows 

. dk · Ark+1 = (Adk) · rk+1 = 1

αk

(rk − rk+1) · rk+1 = −dk · Adk

‖rk‖2 ‖rk+1‖2

and thus 

. βk = dk · Ark+1

dk · Adk

= −‖rk+1‖2
‖rk‖2 .

With these identities, the conjugate gradient method is implemented as follows. 

Algorithm 16.1 (CG Method) Let A ∈ R
n×n

. be symmetric and positive definite, 
b ∈ R

n
., x0 ∈ R

n
. and εstop > 0.. Define d0 = r0 = b − Ax0 . and k = 0.. 

(1) Set xk+1 = xk + αkdk ., rk+1 = rk − αkAdk . and dk+1 = rk+1 − βkdk .with 

. αk = ‖rk‖2
dk · Adk

, βk = −‖rk+1‖2
‖rk‖2 .

(2) Stop if ‖rk+1‖/‖b‖ ≤ εstop . holds; otherwise increase k → k + 1. and repeat 
step (1). 

Remark 16.2 The algorithm terminates after at most n steps, since otherwise 
we have rn ⊥ span{d0, d1, . . . , dn−1}. holds and the vectors d0, d1, . . . , dn−1 . are 
linearly independent, unless rk = 0. for a 0 ≤ k ≤ n− 1. already holds. In particular, 
the exact solution of the linear system is obtained with a maximum of n steps. 

The difference between the CG method and the descent method is schematically 
illustrated in Fig. 16.1. 

Fig. 16.1 The CG method 
often requires fewer iteration 
steps than the descent method 

x∗ 

descent 
CG 

x0
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16.5 Convergence of the CG Method 

In many cases, the CG method provides a good approximation of the solution of the 
system of equations after a few steps. 

Proposition 16.1 For the iterates x0, x1, . . . . of the CG method and the solution x∗
. 

of the system of equations Ax = b., we have with κ = cond2(A). 

. ‖x∗ − xk‖A ≤ 2
(κ1/2 − 1

κ1/2 + 1

)k‖x∗ − x0‖A.

Proof The minimality property of the iterates from Lemma 16.1 and the represen-
tations of the Krylov spaces from Lemma 16.2 imply 

. φ(xk) = min
y∈x0+span{d0,...,dk−1}

φ(y) = min
y∈x0+Kk(A,r0)

φ(y).

Since b − Ay = A(x∗ − y). and ‖Av‖A−1 = ‖v‖A .,  we  ha  ve

. φ(xk) = 1

2
‖x∗ − xk‖2A, φ(y) = 1

2
‖x∗ − y‖2A.

This leads to 

. ‖x∗ − xk‖2A = min
y∈x0+Kk(A,r0)

‖x∗ − y‖2A.

For every y ∈ x0 +Kk(A, r0). there exists a vector c = [c1, c2, . . . , ck]T ∈ R
k
.with 

. 
y = x0 + c1A

0r0 + c2A
1r0 + · · · + ckA

k−1r0

= x0 + c1A(x∗ − x0) + · · · + ckA
k(x∗ − x0),

where  we  have  used r0 = A(x∗ − x0)..  If Pk . denotes the space of polynomials of 
maximum degree k, then 

. ‖x∗ − xk‖2A = min
c∈Rk

‖x∗ − x0 − c1A(x∗ − x0) − · · · − ckA
k(x∗ − x0)‖2A

= min
c∈Rk

‖(In − c1A− . . .− ckA
k)(x∗ −x0)‖2A = min

p∈Pk, p(0)=1
‖p(A)(x∗ −x0)‖2A.

Since A is symmetric and positive definite, there exist eigenva lues 0 < λ1 ≤ λ2 ≤
· · · ≤ λn . and corresponding orthonormal eigenvectors v1, v2, . . . , vn ∈ R

n
.. With 

suitable coefficients γ1, γ2, . . . , γn .we have 

.x∗ − x0 =
n∑

i=1

(
vi · (x∗ − x0)

)
vi =

n∑

i=1

γivi
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and 

. ‖x∗ − x0‖2A = (
A(x∗ − x0)

) · (x∗ − x0) =
( n∑

i=1

λiγivi

)
·
( n∑

j=1

γjvj

)
=

n∑

i=1

λiγ
2
i .

For each polynomial p ∈ Pk . with p(0) = 1. using p(A)vi = p(λi)vi ., it follows 
that 

. 

‖p(A)(x∗ − x0)‖2A = ∥∥
n∑

i=1

γip(A)vi

∥∥2
A

= ∥∥
n∑

i=1

γip(λi)vi

∥∥2
A

=
( n∑

i=1

γip(λi)Avi

)
·
( n∑

j=1

γjp(λj )vj

)
=

n∑

i=1

γ 2
i |p(λi)|2λi

≤ max
i=1,...,n

|p(λi)|2
n∑

i=1

γ 2
i λi = max

i=1,...,n
|p(λi)|2‖x∗ − x0‖2A.

In the case λ1 = λ2 = · · · = λn . we can find a polynomial p ∈ Pk . with p(0) = 1., 
such that p(λi) = 0. for i = 1, 2, . . . , n. and the statement of the proposition is 
proven. We assume in the following that λ1 < λn . holds. With the k-th Chebyshev 
polynomial Tk ∈ Pk . whose roots are contained in the interval [−1, 1]. and in this 
interval is given by Tk(s) = cos(k arccos(s)).,  we  s  et

. q(t) = Tk

(λn + λ1 − 2t

λn − λ1

)/
Tk

(λn + λ1

λn − λ1

)
.

Then q ∈ Pk .with q(0) = 1. holds. If t ∈ [λ1, λn]. then (λn + λ1 − 2t)/(λn − λ1) ∈
[−1, 1]. and from maxs∈[−1,1] |Tk(s)| ≤ 1. it follows 

. max
i=1,...,n

|q(λi)| ≤
[
Tk

(λn + λ1

λn − λ1

)]−1 =
[
Tk

(λn/λ1 + 1

λn/λ1 − 1

)]−1
.

An exercise shows 

. Tk

( s + 1

s − 1

)
≥ 1

2

(s1/2 + 1)k

(s1/2 − 1)k

for s > 1. and thus with κ = λn/λ1 ., it follows that 

. ‖x∗ − xk‖A ≤ max
i=1,...,n

|q(λi)|‖x∗ − x0‖A ≤ 2
(κ1/2 − 1)k

(κ1/2 + 1)k
‖x∗ − x0‖A.

This proves the claim. 
�
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Example 16.1 If κ = 100., then the CG method yields an error reduction by q ≈
0.8. in each iteration step and about 20 steps are required to reach 1%. of the initial 
error. In the descent method, q ≈ 0.98. is obtained and more than 200 steps are 
required. 

Remark 16.3 The condition number is relevant for two aspects of numerical 
mathematics. On the one hand, it describes the effects of perturbations on the 
solution of a system of linear equations and on the other hand, it indicates how many 
steps are required in the approximate iterative solution of a system of equations. In 
the first case, the choice of norms that determine the condition number is usually 
dictated by the application, while in the second case, the condition number induced 
by the spectral norm is of interest. 

16.6 Learning Objectives, Quiz and Application 

You should be able to explain the concept of conjugate search directions and 
their significance in the iterative solution of systems of linear equations. You 
should be able to state sufficient conditions for the convergence of the CG method. 
Furthermore, you should be able to carry out comparative effort considerations. 

Quiz 16.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

With the Cholesky decomposition A = LLT . of the matrix A, ‖x‖A = ‖Lx‖.. 
If x0 = x∗ . is the solution of Ax = b., then the Krylov spaces are trivial, that is, 
Kk = {0}. for k = 1, 2, . . . , n.. 

For x ∈ R
n . and A ∈ R

n×n ., ‖x‖A = ‖Ax‖A−1 .. 

One iteration step of the CG method requires an effort of O(n2). operations. 

Non-vanishing, pairwise A-conjugate vectors are linearly independent. 

Application 16.1 For a simple mathematical description of a two-dimensional 
diffusion process we consider a grid on the domain [0, 1]2 . with grid points xij =
(i, j)h., i, j = 0, 1, . . . , n. and grid width h = 1/n..  Let uk

ij . denote the concentration 
of a substance near the grid point xij . at time tk ., that is, the quotient of the amount 
of particles of the considered substance in the region xij + [−h/2, h/2]2 . and the 
area h2 .. The probability that a particle within the time interval [tk, tk+1]. of length 
τ . jumps from the vicinity of a grid point to the vicinity of a neighbouring point is 
denoted by p. This is proportional to the length h of the interface, to the length τ . of 
the time interval, inversely proportional to the area h2 . and inversely proportional to 
the average distance h, that is, with a diffusion constant c > 0.we have 

.p = c
τ

h2
.
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Obviously, p ≤ 1/4. should hold. At the boundary points the concentration is kept at 
zero by removing or adding substance. The quantity f k+1

ij .denotes the amount added 
or removed in the vicinity of an inner grid point xij . in the time interval [tk, tk+1]. 
relative to the volume h2 .. For the concentration at time tk+1 ., we thus have 

. uk+1
ij = (1 − 4p)uk

ij − p
(
uk

i−1,j + uk
i+1,j + uk

i,j−1 + uk
i,j+1

) + τf k+1
ij

for inner grid points and uk+1
ij = 0. for grid points on the sides of [0, 1]2 .. If the grid 

function f k
ij . is constant over time, an equilibrium will be established after a certain 

period of time, that is uk+1
ij ≈ uk

ij . for all 0 ≤ i, j ≤ n. and all k ≥ K .. 

(i) Show that the equilibrium state of the diffusion process can be determined 
as the solution of a system of linear equations with a symmetric and positive 
definite system matrix. 

(ii) Experimentally investigate the dependence of the condition number of the 
matrix A on h and determine the necessary number of iteration steps of the 
descent and CG methods to achieve an accuracy εstop = h.. 

(iii) Solve the system of linear equations approximately with the CG method and 
present the approximate solution with the help of the MATLAB commands 
meshgrid and surf for the case fij = 1. graphically.



Chapter 17 
Sparse Matrices and Preconditioning 

17.1 Sparse Matrices 

The CG method requires a matrix-vector multiplication in each iteration step and 
is therefore particularly efficient when this is associated with low effort. This is 
the case when only a few entries of the system matrix are different from zero. In 
the following, the matrix A ∈ R

n×n
. always represents a sequence (A�)�∈N . with 

A� ∈ R
n�×n� .with n� → ∞. for � → ∞.. 

Definition 17.1 The matrix A ∈ R
n×n

. is called sparse if for the number of entries 
different from zero Nnz = |{(i, j) : 1 ≤ i, j ≤ n, aij �= 0}|. we have that Nnz =
O(n).. The index nz stands for not zero. 

Example 17.1 Band matrices A ∈ R
n×n

. with a number k ∈ N. of non-vanishing 
subdiagonals independent of n, i.e. aij �= 0. implies |i − j | ∈ {d1, d2, . . . , dk}. with 
numbers dr ∈ N0 ., r = 1, 2, . . . , k ., are sparse. The bandwidth is given by w =
maxr=1,...,k dr ., see Fig. 17.1. 

To save memory, sparse matrices are not stored as n × n.-arrays. Instead, lists 
I, J ∈ N

Nnz . and X ∈ R
Nnz . are used, which contain the positions and values of the 

entries of A different from zero, i.e. we hav e

. aij �= 0 ⇐⇒ ∃1 ≤ k ≤ Nnz, (i, j) = (Ik, Jk), aij = Xk.

This representation is called coordinate representation. More generally, if a position 
(i, j). appears repeatedly in the index lists, the corresponding values are usually 
summed up. The memory requirement is further reduced in the compressed-column-
storage (CCS) format by defining I and X as above and the �.-th entry of a list 
˜J ∈ N

n
0 . specifies from which position in I and X the entries of the �.-th column 

begin. 
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Fig. 17.1 Schematic 
representation of a band 
matrix with few entries 
different from zero 

Example 17.2 For the following matrix A ∈ R
4×4

., the lists I, J,X . and ˜J . result: 

. A =

⎡

⎢

⎢

⎣

7 0 1 0
0 8 0 3
4 0 5 0
2 0 0 3

⎤

⎥

⎥

⎦

,

I = [1, 3, 4, 2, 1, 3, 2, 4]T,

J = [1, 1, 1, 2, 3, 3, 4, 4]T,

X = [7, 4, 2, 8, 1, 5, 3, 3]T,

˜J = [1, 4, 5, 7]T.

The matrix-vector multiplication with a matrix in the coordinate format can be 
easily implemented. 

Remark 17.1 The vector y = Az. is calculated by: 

. y = 0 ; for � = 1 : Nnz; yI (�) = yI (�) + X(�)zJ (�); end

17.2 Preconditioned CG Method 

The number of required iterations of the CG method for the approximate solution 
of the linear system Ax = b. depends on the condition number of the symmetric 
and positive definite system matrix A. By choosing a suitable invertible matrix C ∈
R

n×n
., however, it is attractive to consider the equivalent system 

. (CA)x = Cb.

If cond(CA) 
 cond(A)., it can be expected that this system can be solved 
faster and more robustly, provided the matrix C has a simple structure, so that 
the multiplication with C can be implemented efficiently. In terms of the condition 
number, the choice C = A−1

. would be optimal, but then the multiplication with 
C would be equivalent to solving the original problem Ax = b.. Therefore, an 
approximate inverse is chosen in the sense of the following definition. 

Definition 17.2 Let A ∈ R
n×n

. be regular. A regular matrix C ∈ R
n×n

. is called 
preconditioning matrix for A,  if cond(CA) ≤ cond(A).holds and the computational 
effort of the matrix-vector multiplication z �→ Cz. is less than the direct solution of 
the linear system Ax = b.. 

A simple type of preconditioning is the row equilibration.



17.2 Preconditioned CG Method 149

Proposition 17.1 Let A ∈ R
n×n

. be regular and the diagonal matrix C ∈ R
n×n

. for 
i = 1, 2, . . . , n. defined by 

. Cii =
(

n
∑

j=1

|aij |
)−1

.

Then C is a preconditioning matrix for A with respect to the row sum norm.

Proof The matrix B = CA. satisfies
∑n

j=1 |bij | = 1. for all i = 1, 2, . . . , n., and 
consequently ‖B‖∞ = 1.. For any diagonal matrix T ∈ R

n×n
. it follows 

. ‖T B‖∞ = max
1≤i≤n

|tii |
n

∑

j=1

|bij | = max
1≤i≤n

|tii | = ‖T ‖∞

and thus we get 

. 
cond∞(B) = ‖B−1‖∞ = ‖(T B)−1T ‖∞ ≤ ‖(T B)−1‖∞‖T ‖∞

= ‖(T B)−1‖∞‖T B‖∞ = cond∞(T B).

Since the estimate also applies for T = C−1
. and the matrix-vector multiplication 

z �→ Cz. can be realised with n operations, the statement follo ws. 
�
In general, the preconditioned system matrix CA is neither symmetric nor posi-

tive definite, even if A and C have these properties, and therefore the convergence 
of the CG method for the preconditioned system is not immediately guaranteed. 
However, this can be circumvented by using the Cholesky decomposition C =
V V T

., because we have 

. Ax = b ⇐⇒ V TAV x̃ = V Tb, x̃ = V −1x

and the matrix V TAV . is symmetric and positive definite. The preconditioned 
CG method solves this transformation, without using the Cholesky factorisation 
explicitly. To demonstrate this, we apply the CG method to the preconditioned 
system of equations 

. ˜Ax̃ = ˜b, ˜A = V TAV, ˜b = V Tb,

so that the sought solution x is given by x = V x̃ .. In the iteration rules of the CG 
method 

.

x̃k+1 = x̃k + αk
˜dk, r̃k+1 = r̃k − αk

˜A˜dk
˜dk+1 = r̃k+1 − βk

˜dk,

αk = ‖̃rk‖2/(˜dk · ˜A˜dk), βk = −‖̃rk+1‖2/‖̃rk‖2,
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the explicit use of the product V TAV . should be avoided. To do this, the first and 
third equation are multiplied by V and the second by V −T

.. This gives rise to the 
quantities xk = V x̃k ., rk = V −Tr̃k . and dk = V ˜dk .which satisfy 

. xk+1 = xk + αkdk, rk+1 = rk − αkAdk dk+1 = Crk+1 − βkdk,

where the equations V −T
˜A˜dk = Adk . and V r̃k+1 = Crk+1 . were exploited. For the 

calculation of the coefficients the following results 

. 

αk = V Trk · V Trk

V −1dk · V TAV (V −1dk)
= Crk · rk

dk · Adk

,

βk = −V Trk+1 · V Trk+1

V Trk · V Trk
= −Crk+1 · rk+1

Crk · rk
.

By introducing the variable zk = Crk . the following procedure is obtained. 

Algorithm 17.1 (Preconditioned CG Method) Let A,C ∈ R
n×n

. be symmetric 
and positive definite, b ∈ R

n
., x0 ∈ R

n
. and εstop > 0.. Define r0 = b − Ax0 ., k = 0. 

and set d0 = z0 = Cr0 .. 

(1) Set xk+1 = xk + αkdk . and rk+1 = rk − αkAdk . as well as zk+1 = Crk+1 . and 
define dk+1 = zk+1 − βkdk .with 

. αk = zk · rk

dk · Adk

, βk = −zk+1 · rk+1

zk · rk
.

(2) Stop if ‖rk+1‖/‖b‖ ≤ εstop .; otherwise increase k → k + 1. and repeat (1). 

Remarks 17.2 

(i) The reformulation of the system of equations requires to impose the property 
cond(V TAV ) ≤ cond(A). on a preconditioning matrix C = V V T

.. 
(ii) The construction of suitable preconditioning matrices is usually based on 

particular properties of the underlying application. 

17.3 Further Preconditioning Matrices 

Stationary iteration methods of the form 

. xk+1 = xk − R(Axk − b) = (In − RA)xk + Rb

can be interpreted as fixed point iterations of the system of equations 

.RAx = Rb
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They are convergent, provided �(In − RA) < 1. holds, and motivate the choice of 
C = R . as a preconditioning matrix, since then in rough approximation CA ≈ In ., 
so we can expect cond(CA) ≈ 1.. Whether a preconditioning matrix is actually 
well-defined must be checked in each individual case. 

Examples 17.3 

(i) With the decomposition A = L + D + R . into the diagonal part D and the strict 
lower and upper part L and R the Jacobi method is defined by

. Dxk+1 = −(L + R)xk + b = (D − A)xk + b

or 

. xk+1 = xk − D−1(Axk − b),

which motivates the preconditioning matrix CJ = D−1
.. 

(ii) The Gauss-Seidel method leads to the matrix CGS = D + L., which is 
generally not symmetric. The symmetric Gauss-Seidel preconditioning matrix 
of a symmetric matrix A = L + D + LT ∈ R

n×n
. is defined by 

. CSGS = [

(D + L)D−1(D + L)T
]−1

.

The direct solution of a sparse system of equations using an LU or Cholesky 
decomposition can be inefficient, as the factors of the decomposition are generally 
not sparse. This effect is referred to as fill-in. The incomplete calculation of an LU 
or Cholesky decomposition can, however, lead to a suitable preconditioning matrix. 
A population structure B ⊂ {1, 2, . . . , n}× {1, 2, . . . , n}. is specified for the factors 
and it is required that 

. (LU)ij = aij , (i, j) ∈ B, �ij = uij = 0, (i, j) �∈ B.

For certain classes of matrices, the existence of the incomplete LU or Cholesky 
decomposition can be proven. The calculation is done by ignoring the entries in the 
null pattern in the algorithms for the complete factorisations. It should be noted that 
the factors of the incomplete Cholesky decompositions may not be regular, which is 
referred to as pivot breakdown .

Algorithm 17.2 (Incomplete Cholesky Decomposition) Let A ∈ R
n×n

. be sym-
metric and positive definite and B ⊂ {1, 2, . . . , n} × {1, 2, . . . , n}. be symmetric.
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The non-trivial entries of L are calculated by:

. 

for k = 1 : n

�kk = (

akk −
∑

j=1,...,k−1, (j,k)∈B

�2kj
)1/2

for i = k + 1 : n

if (i, k) ∈ B; �ik =
(

aik −
∑

j=1,...,k−1,
(j,k)∈B, (i,j)∈B

�ij �kj

)

/�kk; end

end

end

With an incomplete factorisation, a preconditioning matrix can be defined. 

Example 17.4 If the incomplete Cholesky decomposition A = LLT + E . exists, 
then C = (

LLT
)−1

. defines a possible preconditioning matrix. Typical definitions 
for the occupancy structure are those of the given matrix A, that is, B = {(i, j) :
aij �= 0}., which is referred to as zero-fill-in, or a bandwidth w ∈ N0 . is specified and 
B = {(i, j) : |i − j | ≤ w}. is defined. 

17.4 Learning Objectives, Quiz and Application 

You should be able to explain the concept of a sparse matrix and illustrate it with 
examples. Furthermore, you should be familiar with the basic ideas of using a 
preconditioning matrix in the CG method and be able to name some examples. 

Quiz 17.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

If for the number of non-zero entries Nz = |{(i, j) : 1 ≤ i, j ≤ n, aij = 0}| = O(n2)., 
then A is sparse.
A sparse matrix A ∈ R

n×n . is specified in the CCS format by O(n). pieces of 
information. 

The product of two sparse matrices is a sparse matrix. 

Every row-equilibrated matrix A ∈ R
n×n .,  that  is

∑n
j=1 |aij | = 1.,  satisfie  s

cond∞(A) = 1.. 

The preconditioning of a system of linear equations leads to a system that can be solved 
with the effort O(n).. 

Application 17.1 To illustrate Google’s PageRank algorithm, a model internet with 
N pages is considered. Let ni . be the number of links leading from the i-th page to
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Fig. 17.2 Links in a model 
internet 

41 2 3  

other pages. The variable xi ≥ 0. is supposed to indicate the relevance of the i-th 
page and for each link leading from the j -th  to  the  i-th page, it increases by the 
value xj /nj .. In the sketch shown in Fig. 17.2, for example, we have 

. x1 = 0

2
x2 + 1

3
x3 + 2

4
x4.

Overall, a system of linear equations for determining the vector x =
[x1, x2, . . . , xN ]T ., which describes a balance state of the proportional page accesses 
of a group of users, is established when they repeatedly switch between pages at 
random. 

(i) Show that the determination of a solution of the system of equations can be 
formulated as an eigenvalue problem λx = Ax .with λ = 1.. 

(ii) Determine the Gerschgorin circles for AT
., to show that |λ| ≤ 1. for all 

eigenvalues of A, and prove that λ = 1. is an eigenvalue of AT
. or A. 

(iii) Determine with the help of MATLAB an eigenvector x of the matrix A for the 
eigenvalue 1 with xi ≥ 0., i = 1, 2, . . . , N ., and ‖x‖1 = 1. for the model internet 
shown in Fig. 17.2. 

(iv) Perform 5 steps of the power method with the starting vector x0 =
[1, 1, 1, 1]T/4. and normalise with respect to the norm ‖ · ‖1 .. 

(v) Discuss whether the matrix A can be assumed to be sparse in reality and 
whether the effort can be reduced by using suitable storage formats and 
algorithms for matrix-vector multiplication.



Chapter 18 
Multidimensional Approximation 

18.1 Grids and Triangulations 

There are various approaches to approximating functions and integrals in multiple 
dimensions, which depend on the properties of the underlying domain. A domain is 
defined as an open and connected set Ω ⊂ R

d
. with d ∈ N., which is also always 

assumed to be bounded in the following. The simplest situation arises when Ω . is 
the product of intervals, i.e. when Ω . is a right-angled, axis-parallel parallelepiped 
of the form 

. Ω = (a1, b1) × (a2, b2) × · · · × (ad, bd) =
d∏

i=1

(ai, bi)

In this case, one-dimensional arguments can be transferred to the multidimensional 
case using tensor product approaches. 

Definition 18.1 A (tensor product) grid of the domain Ω = ∏d
i=1(ai, bi). is a set 

of points 

. 
Gh = {x = (a1, a2, . . . ,ad) + (j1h1, j2h2, . . . , jdhd) :

0 ≤ ji ≤ ni, i = 1, 2, . . . , d}

with grid fineness hi = (bi − ai)/ni ., ni ∈ N., i = 1, 2, . . . , d ., see Fig. 18.1.  The  
grid is called uniform if h1 = h2 = · · · = hd = h.. 

In the case of a more general bounded domain Ω ⊂ R
d
., we assume that it has a 

polygonal boundary, i.e. there exist affine-linear subspacesHk={x∈Rd : dk ·x = ck}. 
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Fig. 18.1 Tensor product 
grid of a rectangle with grid 
fineness h1 . and h2 . 

h2 

h1 

Fig. 18.2 Triangulation of a 
two-dimensional domain into 
triangles 

h 

with dk ∈ R
d
. and ck ∈ R., so that 

. ∂Ω =
K⋃

k=1

(
∂Ω ∩ Hk

)
.

Domains of this type can be divided into simple subdomains. A simplex in Rd
. 

is a closed subset T ⊂ R
d
., which is given as the convex hull of d + 1. points 

z0, z1, . . . , zd ∈ R
d
., i.e. 

. T = conv{z0, z1, . . . , zd} =
{
x ∈ R

d : x =
d∑

i=0

θizi, θi ≥ 0,
d∑

i=0

θi = 1
}
,

so that T is non-degenerate, i.e. it has a non-empty interior or a positive d-
dimensional volume. For d = 1, 2, 3., simplices are intervals, triangles or tetrahedra, 
respectively, see Fig. 18.2. 

Definition 18.2 A (regular) triangulation of the polygonal domain Ω . is a set Th =
{T1, T2, . . . , TJ }. of simplices Tj ⊂ R

d
., j = 1, 2, . . . , J ., so that 

. Ω =
J⋃

j=1

Tj

and the intersection Tj ∩ Tk . of two different simplices is either empty or a 
common subsimplex, i.e. a common corner, edge or side surface. The simplices 
of a triangulation are also referred to as elements and the set Nh . of the corners of 
elements as nodes. The triangulation is called uniform if all elements are congruent. 
It has the (maximum) mesh width h > 0.,  if diam(T ) ≤ h. holds for all T ∈ Th .. 

Different polynomial spaces are used on parallelepipeds and simplices.
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Definition 18.3 Let A ⊂ R
d
. be a closed set and k ∈ N0 .. The set of polynomials of 

partial degree k and of total degree k on A are defined by

. 

Qk(A) =
{
q(x) =

∑

0≤i1,i2,...,id≤k

ai1i2...id x
i1
1 x

i2
2 . . . x

id
d : ai1i2...id ∈ R

}
,

Pk(A) =
{
p(x) =

∑

0≤i1,i2,...,id≤k,
i1+i2+···+id≤k

ai1i2...id x
i1
1 x

i2
2 . . . x

id
d : ai1i2...id ∈ R

}
.

Remarks 18.1 

(i) Polynomials of partial degree k are linear combinations of tensor products of 
one-dimensional polynomials of degree k .

(ii) We have dimQ1(A) = 2d
. and dimP1(A) = d+1., which corresponds exactly 

to the number of corners of parallelepipeds and simplices in Rd
.. 

Example 18.1 The polynomial q(x1, x2) = x2
1x

3
2 . is of total degree 5 and partial 

degree 3. 

18.2 Approximation on Tensor Product Grids 

By means of suitable linear transformations, every right-angled parallelepiped can 
be mapped onto the set Ω = (0, 1)d . and in the following, this case is always 
considered together with a uniform tensor product grid of grid size h > 0.. 

Definition 18.4 For a given function f ∈ C0([0, 1]d). and a given grid size h =
1/n.,  the  tensor product interpolation task consists in determining a polynomial q ∈
Qn([0, 1]d).with 

. q(x) = f (x)

for all x ∈ Gh = {h(i1, i2, . . . , id ) : 0 ≤ i1, i2, . . . , id ≤ n
}
.. 

Proposition 18.1 The tensor product interpolation task is uniquely solvable. 

Proof To illustrate the idea of the proof, we consider the case d = 2..  Le  t E :
Qn([0, 1]2) → R

(n+1)2
. be the linear mapping q �→ (q(x) : x ∈ Gh)..  Le  t q ∈

Qn([0, 1]2). have the property Eq = 0..  For (s, t) ∈ [0, 1]2 . the expression q(s, t). 

has the representations 

. q(s, t) =
∑

0≤�,m≤n

a�ms�tm =
∑

0≤�≤n

( ∑

0≤m≤n

a�mtm
)
s� =

∑

0≤�≤n

b�(t)s
�.

For each fixed tj = jh., j = 0, 1, . . . , n., the polynomial s �→ q(s, tj ). has the 
zeros si = ih., i = 0, 1, . . . , n., and it follows b�(tj ) = 0. for all j, � = 0, 1, . . . , n..
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For each � = 0, 1, . . . , n. the polynomial t �→ b�(t). therefore has the roots tj ., j =
0, 1, . . . , n. and it follows b�(t) = 0. for all t ∈ [0, 1]. and thus a�m = 0. for all �,m =
0, 1, . . . , n. respectively q = 0.. Thus E is injective and due to dimQn([0, 1]2) =
(n + 1)2 . also bijective. 	


The numerical integration of a function f ∈ C0([0, 1]d). is reduced to the 
approximation of one-dimensional integrals by means of the iteration formula based 
on Fubini’s theorem 

. I d(f ) =
∫

[0,1]d
f (x) dx =

∫ 1

0

∫ 1

0
. . .

∫ 1

0
f (x1, x2, . . . , xd) dx1 dx2 . . . dxd .

Proposition 18.2 If Q : C0([0, 1]) → R. is a quadrature formula with non-
negative weights and points (wi, ti)i=0,...,n . with degree of exactness k ≥ 0., then 

. Qd(f ) =
n∑

i1=0

n∑

i2=0

· · ·
n∑

id=0

wi1wi2 . . . wid f (ti1, ti2 , . . . , tid )

defines an iterated quadrature formula Qd : C0([0, 1]d) → R. that is exact for all 
p ∈ Qkd ([0, 1]d).. Furthermore, we have 

. 
∣∣I d(f ) − Qd(f )

∣∣ ≤
d∑

i=1

sup
x̂i∈[0,1]d−1

∣∣I
(
fx̂i

) − Q
(
fx̂i

)∣∣,

where fx̂i
. for x̂i = (x1, . . . , xi−1, xi+1, . . . , xd) ∈ [0, 1]d−1

. denotes the mapping 

. t �→ f (x1, . . . , xi−1, t, xi+1, . . . , xd).

Proof We consider the case d = 2.. Then we have 

.

I 2(f ) − Q2(f ) =
∫ 1

0

∫ 1

0
f (x1, x2) dx1 dx2 −

n∑

i1=0

n∑

i2=0

wi1wi2f (ti1, ti2)

=
∫ 1

0

[ ∫ 1

0
f (x1, x2) dx1 −

n∑

i1=0

wi1f (ti1 , x2)
]
dx2

+
∫ 1

0

n∑

i1=0

wi1f (ti1, x2) dx2 −
n∑

i1=0

n∑

i2=0

wi1wi2f (ti1, ti2)

=
∫ 1

0

(
If (·, x2) − Qf (·, x2)

)
dx2

+
n∑

i1=0

wi1

(
If (ti1 , ·) − Qf (ti1 , ·)

)
.
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Together with the property
∑n

i=0 wi = 1. the asserted statement is obtained by 
taking the absolute value. 	

Remark 18.2 The effort of the iterated quadrature formula grows exponentially 
with respect to d, that is (n + 1)d . function evaluations are required. The error order, 
on the other hand, is independent of the dimension and is determined by the one-
dimensional degree of exactness. 

18.3 Two-Dimensional Fourier Transform 

Based on the observation that with a basis (ωk)k=0,1,...,n−1 . of Cn
. through the 

matrices
(
ωk(ω�)T

)
k,�=0,...,n−1 . a basis of the vector space C

n×n
. is defined, the 

discrete Fourier transform can be generalised to the two-dimensional case. 

Proposition 18.3 For every matrix Y ∈ C
n×n

. there exist uniquely determined 
coefficients B = (bk�)k,�=0,...,n−1 ∈ C

n×n
., such that 

. Y =
n−1∑

k,�=0

bk�E
k�

with the orthogonal basis defined by the matrices Ek�=(
ei(j1k+j2�)2π/n

)
j1,j2=0,...,n−1

∈ C
n×n

. for k, � = 0, 1, . . . , n − 1. with respect to the scalar product 
E : F = ∑n−1

j,m=0 EjmF jm .. With Tn ∈ C
n×n

. defined by (Tn)jk = eijk2π/n
., 

j, k = 0, 1, . . . , n − 1., we have 

. Y = 1

n2
T nBT n, B = TnYTn.

Proof Exercise. 	

Remarks 18.2 

(i) The matrix multiplications required for the transformation can be performed 
with O(n2 log n). operations. To do this, the one-dimensional fast Fourier 
transformation is first applied to the columns of Y and then to the rows of the 
resulting m atrix.

(ii) The two-dimensional Fourier transform is the basis for image compression 
techniques such as the jpeg format. 

18.4 Approximation on Triangulations 

Spline spaces can be generalised using triangulations.
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Definition 18.5 For k,m ≥ 0. and a triangulation Th . of a domain Ω ⊂ R
d
., denote 

. S m,k(Th) = {
vh ∈ Ck(Ω) : vh|T ∈ Pm(T ) for all T ∈ Th

}

the spline space of degree m and order k with respect to Th .. 

By using affine-linear transformations investigations of the spline spaces can be 
reduced to the case of the standard simplex 

. ̂T = conv{̂z0, ẑ1, .., ẑd}

where ẑ0 = 0. and ẑi = ei . for i = 1, 2, . . . , d . with the canonical basis 
(e1, e2, . . . , ed) ⊂ R

d
.. 

Lemma 18.1 For i = 0, 1, . . . , d . let ϕ̂i ∈ P1(T̂ ). be the uniquely defined 
hat function satisfying the conditions ϕ̂i (̂zj ) = δij ., j = 0, 1, . . . , d ..  I  f T =
conv{z0, z1, . . . , zd} ∈ R

d
. is a non-degenerate simplex, then by 

. ̂x �→ ΦT (̂x) =
d∑

i=0

ϕ̂i (̂x)zi

an affine-linear diffeomorphism ΦT : T̂ → T . is defined with the property ΦT (̂zi) =
zi ., i = 0, 1, . . . , d .,  see  Fig  . 18.3. The volume of T is given by | detDΦT |/d!.. 

Proof The hat functions on T̂ . are given by ϕ̂i (̂x) = x̂i ., i = 1, 2, . . . , d ., and 
ϕ̂0(̂x) = 1 − x̂1 − · · · − x̂d . for x̂ = (̂x1, x̂2, . . . , x̂d ) ∈ T̂ . and the mapping ΦT . 

fulfils ΦT (̂zi) = zi ., i = 0, 1, . . . , d .. For all x̂ ∈ T̂ .we have 

. ΦT (̂x) = z0 + QT x̂ = z0 + [
z1 − z0, z2 − z0, . . . , zd − z0

]
x̂.

The determinant of QT . is defined as the volume of the image of the unit cube [0, 1]d . 

under the linear mapping QT ., with which the volume of the image of the standard 
simplex is given by | detQT |/d!.. Since this coincides with the volume of T and is 
therefore positive, it follows that ΦT . is a diffeomorphism. 	


The hat functions from the proof can be transformed with the diffeomorphism ΦT . 

onto the elements and lead to the concept of the nodal basis, with which the spline 

Fig. 18.3 The 
diffeomorphism ΦT .maps the 
standard simplex T̂ . 
bijectively onto the simplex T 

T
̂T

ẑ2

ẑ0 

z2T 

z1 

z0

ẑ1
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Fig. 18.4 Hat function ϕz . 
associated with a node z in a 
triangulation

interpolation task in the space S 1,0(Th). can be solved. A typical hat function is 
shown in Fig. 18.4. 

Proposition 18.4 There exists a uniquely determined basis (ϕz : z ∈ Nh). of the 
space S 1,0(Th). with the property ϕz(y) = δzy . for all z, y ∈ Nh ..  For f ∈ C0(Ω). 

it is defined by 

. Ihf =
∑

z∈Nh

f (z)ϕz

the nodal interpolant Ihf ∈ S 1,0(Th). with the property Ihf (z) = f (z). for all 
z ∈ Nh .. 

Proof Let z ∈ Nh . and T ∈ Th ..  If z �∈ T ., then define ϕz|T = 0.. Otherwise, let 
i ∈ {0, 1, . . . , d}., such that ΦT (̂zi) = z. holds and define ϕz|T = ϕ̂i ◦ Φ−1

T ..  In  
this way, functions (ϕz : z ∈ Nh) ⊂ S 1(Th). with the properties ϕz(y) = δzy . for 
z, y ∈ Nh . are defined. To prove that this is a basis, let sh ∈ S 1,0(Th). be arbitrary. 
By 

. ̃sh =
∑

z∈Nh

sh(z)ϕz

a function s̃h ∈ S 1,0(Th). is defined with s̃h(z) = sh(z). for all z ∈ Nh .. For each 
T ∈ Th . the function ê = (̃sh − sh) ◦ ΦT . is affine-linear on T̂ . with ê(0) = 0. and 
ê(ei) = 0., i = 0, 1, . . . , d .. From this follows ê = 0. and overall sh = s̃h .. 	


The interpolation error can be bounded as in the one-dimensional case. 

Proposition 18.5 Let f ∈ C2(Ω). and Th . be a regular triangulation of Ω .. Then 
we have 

. ‖f − Ihf ‖C0(Ω) ≤ h2

2
‖D2f ‖C0(Ω).

Proof We define e = f − Ihf . and let xm ∈ Ω . and T ∈ Th ., such that xm ∈ T . and 
|e(xm)| = ‖e‖C0(Ω) . holds. Obviously, we have e|T ∈ C2(T )..  If xm . is in the interior 
of T , then ∇e(xm) = 0..  If xm . is a corner of T , then e|T = 0. follows. If xm . is on 
a  side  of  T , then there exists a corner z ∈ Nh ∩ T ., such that the derivative of the 
mapping t �→ e(z+t (xm−z)). at the point t = 1.vanishes, that is ∇e(xm)·(xm−z) =
0.. In all three cases there exists a z ∈ Nh ∩T ., such that with a Taylor approximation
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for a ξ ∈ T .we have 

. 0 = e(z) = e(xm) + 1

2
(z − xm)TD2e(ξ)(z − xm).

Since |z − xm| ≤ h. and D2Ihf |T = 0. hold, the assertion follows. 	

Composite quadrature formulas on triangulated domains are defined using the 

reference element. 

Definition 18.6 Let Q̂ : C0(T̂ ) → R. be a quadrature formula on T̂ ., defined by 
quadrature points and weights (̂ξi , ŵi)i=0,...,n ., that is Q̂f̂ = ∑n

i=0 ŵi f̂ (̂ξi)..  A  
corresponding composite quadrature formula QTh

: C0(Ω) → R. is defined by 

. QTh
(f ) =

∑

T ∈Th

n∑

i=0

| detDΦT |ŵif (ΦT (̂ξi))

Remark 18.4 If the quadrature formula Q̂ : C0(T̂ ) → R. is exact of total degree 
m ≥ 0., that is, the integrals of all polynomials q ∈ Pm(T̂ ). are exactly reproduced, 
then the composite quadrature formula QTh

. is exact for all f ∈ S m,0(Th).. 

Example 18.2 Gaussian quadrature formulas with one, three or seven quadrature 
points on T̂ ⊂ R

2
. are defined by ξ̂ ∈ R

n×2
. and ŵ ∈ R

n
.with 

. ̂ξ = 1

3

[
1
1

]T
, ŵ = 1

2
,

and 

. ̂ξ = 1

6

[
1 4 1
1 1 4

]T
, ŵ = 1

6
[1, 1, 1]T,

or with s = √
15. 

. 

ξ̂ = 1

21

[
6 − s 9 + 2s 6 − s 6 + s 6 + s 9 − 2s 7
6 − s 6 − s 9 + 2s 9 − 2s 6 + s 6 + s 7

]T
,

ŵ = 1

2400

[
155 − s, 155 − s, 155 − s, 155 + s, 155 + s, 155 + s, 270

]T
.

These quadrature formulas are exact for the polynomial spaces P1(T̂ )., Q2(T̂ ). or 
P5(T̂ )., respectively; they are schematically shown in Fig. 18.5.
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Fig. 18.5 Schematic 
representation of Gaussian 
quadrature formulas on the 
reference triangle 

n = 1 
n = 3 
n = 7 

18.5 Learning Objectives, Quiz and Application 

You should be familiar with approaches to interpolation and quadrature of functions 
in several variables. You should be able to state interpolation estimates and explain 
the problems of quadrature in high-dimensional spaces. 

Quiz 18.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

The polynomial q(x, y) = x2y3z4 + 3x5 . has the partial degree 4 and the total degree 
5. 

We have that dimQk(R
d ) = (k + 1)d .. 

We have that dimPk(R
d ) = (d + 1)k .. 

We have that dimS 1(Th) = |Nh|.,  where |Nh|. denotes the cardinality of Nh .. 

If Th . is a triangulation of a region Ω ⊂ R
2 . with edges Eh . and nodes Nh ., then the 

cardinalities of the sets satisfy |Nh| − |Eh| + |Th| = 1.. 

Application 18.1 At a narrow point of a river, its width dF . is to be determined. To 
this end, sighting marks are placed on the opposite banks. At some distance from 
the spot on the river, there is a town with a church and a water tower, the distance 
between which is known with high accuracy and denoted by dT ., see Fig. 18.6.  A  
sighting device, which can measure the angle between two sighting points, and the 
possibility of installing additional sighting marks are available. Use a triangulation 
to determine the size dF .. What error influences must be taken into account and how 
can these be minimised? How should it be interpreted if the sum of the angles at an 
inner node deviates from 2π ., but this cannot be attributed to measurement errors? 
How should geographical peculiarities be taken into account? 

Fig. 18.6 Determination of 
an unknown from a known 
distance 

dT 

dF



Chapter 19 
Ordinary Differential Equations 

19.1 Fundamentals 

Many time-varying processes can be described by so-called ordinary differential 
equations. In this case, a differentiable function y : [0, T ) → R. is sought, which 
for a given mapping f : (0, T ) × R → R. satisfies the equation 

. y′(t) = f
(
t, y(t)

)

for all t ∈ (0, T ). as well as the initial condition y(0) = y0 . for a given number y0 ∈
R.. One refers to t as the independent and y as the dependent variable of the initial 
value problem. The differential equation is often written in the form y′ = f (t, y)., 
that is the argument t is omitted in the function y and its derivatives. A differential 
equation is linear, if the mapping s �→ f (t, s). is linear for all t ∈ (0, T ).. 

Example 19.1 For k ∈ R.we consider the linear differential equation y′(t) = ky(t)., 
that is f (t, s) = ks . is independent of t . For each c ∈ R. the function 

. y(t) = cekt

is a solution of the differential equation on any interval (0, T ).. An initial condition 
y(0) = y0 . determines c = y0 .. 

Remarks 19.1 

(i) The initial value problem y′ = ky ., y(0) = y0 . describes the development of 
an account with initial capital y0 . at a fixed interest rate k per unit of time and 
immediate consideration of compound interest.

(ii) According to Newton’s law of cooling, the change in temperature θ .of a body is 
proportional to the difference to the surrounding temperature θs ., that is θ ′(t) =
−k(θ(t) − θs).. 
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(iii) The identity y′(t) = ky(t).means that the change of y at time t is proportional 
to the value of y at this time.

(iv) The differential equation y′ = ky . also describes the development of a 
population, where k > 0. applies when the birth rate is higher than the mortality 
rate. 

In many applications several relevant quantities are considered simultaneously, 
whose values influence each other. This leads to systems of differential equations, 
where functions y1, y2, . . . , yn : [0, T ) → R. are sought with the property that 

. 

y′
1(t) = f1

(
t, y1(t), y2(t), . . . , yn(t)

)
,

...

y′
n(t) = fn

(
t, y1(t), y2(t), . . . , yn(t)

)

hold for all t ∈ (0, T ).. Such systems can be written in vector notation as y′(t) =
f

(
t, y(t)

)
., where y = [y1, y2, . . . , yn]T . and 

. f (t, s) =
⎡

⎢
⎣

f1(t, s1, s2, . . . , sn)
...

fn(t, s1, s2, . . . , sn)

⎤

⎥
⎦

for s = [s1, s2, . . . , sn]T ∈ R
n
.. An initial condition is then defined by a vector 

y0 ∈ R
n
.. 

19.2 The Predator-Prey Model 

The predator-prey model according to Lotka–Volterra describes the development of 
the number of predators and prey, such as raptors and mice, where it is assumed that 
the predators feed exclusively on the prey. Let y1(t). and y2(t). be the number of prey 
and predators, respectively, at time t in suitable units, so that for y1 = y2 = 1. a state 
of equilibrium occurs, that is, in this case, the increase in y2 . exactly corresponds to 
the decrease in y1 . due to death and being eaten. The change in the number of prey 
y1 . is then proportional to their number, with the proportionality factor depending on 
the number of predators and is positive if y2 < 1. applies, and negative if y2 > 1. 
applies, that is, for example 

. y′
1(t) = α

(
1 − y2(t)

)
y1(t).

Similarly, the change in the number of predators y2 . is proportional to their number, 
with the proportionality factor being positive if more prey are available than in the
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Fig. 19.1 Typical periodic 
solution in the predator-prey 
model 

y1(t) 

y2(t)1 

t 

state of equilibrium, that is, for example 

. y′
2(t) = β

(
y1(t) − 1

)
y2(t).

A typical development of the populations for the case y1(0) > 1. and y2(0) = 1. is 
shown in Fig. 19.1 and demonstrates that a large number of prey leads to an increase 
in predators until a critical value is reached, and a low number of predators leads to 
an increase in prey. 

19.3 Higher Order Equations 

The equations considered so far only contained first-order derivatives. More gener-
ally, one can consider ordinary differential equations of m-th order, which can be 
abstractly written as 

. y(m)(t) = f
(
t, y(t), y′(t), y′′(t), . . . , y(m−1)(t)

)

with a function f : (0, T ) ×R
m → R.. However, higher order differential equations 

can be written as a system of first order differential equations by introducing 
auxiliary variables. To this end, z = [z1, z2, . . . , zm]T . is defined by 

. z1 = y, z2 = y′, z3 = y′′, . . . , zm = y(m−1)

and the system 

. 

z′
1(t) = z2(t),

...

z′
m−1(t) = zm(t),

z′
m(t) = f

(
t, z1(t), z2(t), . . . , zm(t)

)

is considered, which can be written in an obvious way as a vectorial differential 
equation z′ = f̃ (t, z).. For higher order differential equations, it is generally not 
sufficient to only prescribe the function value at t = 0.. In addition, the derivatives
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Fig. 19.2 Oscillation 
behaviour of a damped spring 
pendulum 

y(t)− �

y(t) 

up to order m − 1.must be given as initial data, that is 

. y(0) = y0,0, y′(0) = y0,1, . . . , y(m−1)(0) = y0,m−1

or with z defined above, the condition z(0) = z0 .with z0 = [y0,0, y0,1, . . . , y0,m−1]T
∈ R

m
.. 

Example 19.2 The differential equation y′′ = −c2y . has the solutions y(t) =
α sin(ct). with the property y(0) = 0. for any choice of α ∈ R.. By prescribing 
y′(0)., α . is uniquely determined. 

Remark 19.2 The deflection of a spring pendulum, which is fixed at the upper 
end, loaded at the lower end of the spring with the point mass m and in the resting 
position has the length �., satisfies the force equilibrium 

. m y′′(t) + ry′(t) + D
(
y(t) − �

) = 0

from inertial force, frictional force and restoring force. The resting position is given 
by the weight force through � = mg/D .. To predict the oscillation behaviour for 
t > 0. in addition to the initial deflection y(0). the initial velocity y′(0).must also be 
known. A typical solution is shown in Fig. 19.2. 

19.4 Autonomous Equations 

Differential equations y′(t) = f
(
t, y(t)

)
., in which the function f does not depend 

on t , i.e. f (t, s) = f̃ (s). applies, are called autonomous differential equations. By 
adding the equation z′(t) = 1. it is shown that every differential equation can be 
written as a system of autonomous differential equations. 

Remark 19.3 A solution of a system of autonomous differential equations y′ =
f (y). with f : Rn → R

n
. is also referred to as an integral curve of the vector field 

f , because y can be geometrically interpreted as a curve in R
n
., whose tangent at 

each point is just prescribed by f , see Fig. 19.3.  This  is  also  referred  to  as  a  phase 
diagram. From it, qualitative properties of solutions such as periodicity or damping
can be read off.
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Fig. 19.3 Solutions of 
autonomous differential 
equations are integral curves 
of the vector field f 

y(t) 

f (s) 
s2 

s1 

Fig. 19.4 Attractive 
gravitational forces act 
between bodies 

F2 

F1 

19.5 Two-Body Problems 

Attractive gravitational forces act between bodies, which are proportional to the 
product of the masses and inversely proportional to the square of the distance. With 
Newton’s second law, which states that the change in momentum of a body or the 
product of mass and acceleration corresponds to the sum of the forces acting, this 
allows motion equations to be formulated. If the functions y1, y2 : [0, T ) → R

3
. 

describe the positions of the centres of two bodies of masses m1,m2 ., then it follows, 

. 

m1 y′′
1 = F1(y1, y2) = γ

m1m2

‖y1 − y2‖2
y2 − y1

‖y1 − y2‖ ,

m2 y′′
2 = F2(y1, y2) = γ

m1m2

‖y1 − y2‖2
y1 − y2

‖y1 − y2‖ ,

where γ ≈ 6.673 · 10−11m3/(kg s). is the gravitational constant. Note the opposite 
directions of the forces acting. With the initial positions y1(0). and y2(0). as well as 
the initial velocity vectors y′

1(0). and y′
2(0)., the positions of the bodies can then be 

predicted, as long as they have a positive distance, see Fig. 19.4. 

19.6 Explicit Solutions 

In special situations, ordinary differential equations can be explicitly solved. For 
separated equations of the form y′ = f (t)g(y)., the formal equivalence 

. 
dy

dt
= f (t)g(y) ⇐⇒ dy

g(y)
= f (t)dt ⇐⇒

∫
1

g(y)
=

∫
f (t)

with antiderivatives G(y). of 1/g(y). and F(t) + c. of f (t). leads to the identities 

.G(y) = F(t) + c ⇐⇒ y(t) = G−1(F(t) + c
)
.
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This procedure is referred to as separation of variables. The method of variation of 
constants allows the solution of equations of the form y′ = f (t)y + h(t)..  First,  the  
homogeneous equation z′ = f (t)z. is solved and then a function ϕ . is sought such 
that y = ϕz. holds. With the product rule, we get 

. f (t)ϕz + h(t) = y′ = ϕ′z + ϕz′ = ϕ′z + ϕf (t)z,

thus the condition ϕ′ = h/z.. 

Examples 19.3 

(i) For the equation y′ = y2
., with F(t) = t . and G(y) = −1/y ., the solutions 

y(t) = −1/(t + c). are obtained. 
(ii) In the case y′ = ky + h(t)., z(t) = cekt

. satisfies the equation z′ = kz. and with 
ϕ(t) = ∫ t

0 h(s)c−1e−ks ds ., a general solution is obtained. 

19.7 Learning Objectives, Quiz and Application 

You should be able to explain ordinary differential equations and initial value 
problems and illustrate them with examples. For some special cases, you should 
be able to construct explicit solutions. 

Quiz 19.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

The necessary number of initial data for the well-posedness of an ordinary differential 
equation corresponds to the order of the differential equation. 

If y is a solution of the autonomous differential equation y′ = f (y).,  then y(t + c). is 
also a solution for every c ∈ R.. 

The identity y′ = y(y(t)). defines an ordinary differential equation. 

The differential equationmy′ = ky .describes the conservation of momentum of a body 
of mass m. 

If f (s) = 0. for some s ∈ R
n ., then the constant mapping y(t) = s . is a solution of the 

autonomous differential equation y′ = f (y).. 

Application 19.1 The growth of a population is only meaningfully described by 
the differential equation y′ = ky .within a certain range. When a capacity limit ymax . 

is reached, no further increase in the population will occur. Explain why this effect 
can be described by the equation y′ = k(1 − y/ymax)y . and sketch solutions of this 
differential equation.



Chapter 20 
Existence, Uniqueness and Stability 

20.1 Existence and Uniqueness 

A central existence result is based on Banach’s fixed point theorem. For this, let X 
be a Banach space, i.e. X is a vector space on which a norm ‖ · ‖ : X → R. is 
defined, with respect to which every Cauchy sequence in X conver ges.

Proposition 20.1 If Ψ : X → X . is a contraction on the Banach space X, i.e. there 
exists a constant K < 1., such that 

. ‖Ψ (u) − Ψ (v)‖ ≤ K‖u − v‖

for all u, v ∈ X ., then Ψ . has a unique fixed point y ∈ X ., i.e. it holds that Ψ (y) = y .. 

The resulting existence statement uses an equivalent representation of an ordi-
nary differential equation as an integral equation. 

Lemma 20.1 Let f ∈ C0([0, T ] × R).. The function y ∈ C1([0, T ]). satisfies 

. y′(t) = f
(
t, y(t)

)
, t ∈ (0, T ), y(0) = y0

if and only if y ∈ C0([0, T ]). and 

. y(t) = y0 +
∫ t

0
f

(
s, y(s)

)
ds

for all t ∈ [0, T ].. 

© The Author(s), under exclusive license to Springer-Verlag GmbH, 
DE, part of Springer Nature 2025 
S. Bartels, Numerical Mathematics 3x9, La Matematica per il 3+2 160, 
https://doi.org/10.1007/978-3-662-70890-3_20

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-70890-3protect T1	extunderscore 20&domain=pdf
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20
https://doi.org/10.1007/978-3-662-70890-3_20


174 20 Existence, Uniqueness and Stability

Proof 

(i) First, let y ∈ C1([0, T ]). be a solution of the differential equation, which we 
write with s instead of t . The fundamental theorem of calculus yields

. y(t) − y(0) =
∫ t

0
y′(s) ds =

∫ t

0
f

(
s, y(s)

)
ds.

With the initial condition y(0) = y0 ., the integral equation follows. 
(ii) Conversely, let y ∈ C0([0, T ]). satisfy the integral equation. The fundamental 

theorem of calculus implies that the right-hand side of the integral equation 
defines a differentiable mapping with derivative f (t, y(t)). and value y0 . for t =
0.. This implies y ∈ C1([0, T ]). and y solves the initial value problem.

��
The integral representation shows that y is a solution of the fixed point equation

y = Ψ [y]. if Ψ : C0([0, T ]) → C0([0, T ]). is defined by 

. Ψ [y](t) = y0 +
∫ t

0
f

(
s, y(s)

)
ds

In the following Picard-Lindelöf theorem, a norm is constructed on the space 
C0([0, T ]). with respect to which Ψ . is a contraction. For the sake of clarity, scalar 
equations are considered. 

Proposition 20.2 Assume that the mapping f ∈ C0([0, T ] × R). is uniformly 
Lipschitz continuous in the second argument, i.e. there exists an L ≥ 0., such that 

. |f (t, v) − f (t, w)| ≤ L|v − w|

for all t ∈ [0, T ]. and all v,w ∈ R.. Then the initial value problem 

. y′(t) = f
(
t, y(t)

)
, t ∈ (0, T ), y(0) = y0

has a unique solution y ∈ C1([0, T ]).. 
Proof The operator Ψ . is defined as above. For each u ∈ C0([0, T ]). the conditions 
on f imply that Ψ [u] ∈ C0([0, T ]). holds. On C0([0, T ]). we consider the weighted 
norm 

. ‖u‖L = sup
t∈[0,T ]

e−2Lt |u(t)|.

With this norm, C0([0, T ]). is complete and it suffices to show that Ψ . is a contraction 
with respect to ‖ · ‖L .. For u, v ∈ C0([0, T ]). and t ∈ [0, T ]. the following holds
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. 

e−2Lt
∣∣Ψ [u](t) − Ψ [v](t)∣∣ = e−2Lt

∣∣∣
∫ t

0
f

(
s, u(s)

) − f
(
s, v(s)

)
ds

∣∣∣

≤ Le−2Lt

∫ t

0
|u(s) − v(s)| ds

= Le−2Lt

∫ t

0
e2Lse−2Ls |u(s) − v(s)| ds

≤ Le−2Lt‖u − v‖L

∫ t

0
e2Ls ds

= Le−2Lt 1

2L

(
e2Lt − 1

)‖u − v‖L

≤ 1

2
‖u − v‖L.

By forming the supremum on the left side we obtain 

. ‖Ψ [u] − Ψ [v]‖L ≤ 1

2
‖u − v‖L,

that is Ψ : C0([0, T ]) → C0([0, T ]). is a contraction and Banach’s fixed point 
theorem implies the existence of a unique fixed point y ∈ C0([0, T ]).. According to 
the definition of Ψ . and the previous lemma, this is equivalent to y being a solution 
of the initial value problem. ��

The constructive proof of Banach’s fixed point theorem shows that the fixed point 
y ∈ C0([0, T ]). is given as the limit of the recursively defined sequence 

. yk+1 = Ψ [yk]

with any starting function y0 ∈ C0([0, T ]).. This observation can be used for the 
construction of numerical methods for solving initial value problems, however, 
functions must be suitably interpolated and integrated. 

Remark 20.1 The condition of uniform Lipschitz continuity on the function f is 
a restrictive assumption. If f is merely continuous, then with the Peano’s theorem 
the existence of a local solution can be proven, that is there exist 0 < T∗ ≤ T . and 
y ∈ C1([0, T∗))., such that y solves the initial value problem on the interval (0, T∗).. 

Examples 20.1 

(i) The initial value problem y′ = ky ., y(0) = y0 ., has a unique solution on any 
interval (0, T ]. and for any k ∈ R.. 

(ii) The initial value problem y′ = y2
., y(0) = y0 ., with y0 > 0. has the unique 

solution y(t) = (T∗ − t)−1
. on the interval [0, T∗). with T∗ = 1/y0 ..
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(iii) The initial value problem y′ = y1/2
., y(0) = 0., has the solutions y(t) = 0. as 

well as y(t) = t2/4.. 

Frequently, the solution of an initial value problem possesses higher regularity 
properties than just differentiability. 

Proposition 20.3 If f ∈ Cm([0, T ] × R
n)., then y ∈ Cm+1([0, T ]). follows. In the 

case m ≥ 1., solutions of corresponding initial value problems are unique. 

Proof Exercise. ��

20.2 Gronwall’s Lemma 

Gronwall’s lemma controls the growth of the solution of a differential equation. 

Lemma 20.2 Let u ∈ C0([0, T ]). and α, β ∈ R.with β ≥ 0., such that 

. u(t) ≤ α + β

∫ t

0
u(s) ds

for all t ∈ [0, T ].. Then for all t ∈ [0, T ].,  it  follows  th  at

. u(t) ≤ αeβt .

Proof Let v ∈ C1([0, T ]). be defined by 

. v(t) = e−βt

∫ t

0
βu(s) ds.

The product rule and the assumptions of the lemma imply 

. v′(t) = −βe−βt

∫ t

0
βu(s) ds + e−βtβu(t) ≤ βe−βtα.

With v(0) = 0. it follows 

. e−βt

∫ t

0
βu(s) ds = v(t) =

∫ t

0
v′(s) ds ≤ βα

∫ t

0
e−βs ds = α

(
1 − e−βt

)
.

Multiplication with eβt
. leads to 

. u(t) ≤ α +
∫ t

0
βu(s) ds ≤ α + αeβt

(
1 − e−βt

) = αeβt

and proves the lemma. ��
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Remark 20.2 Gronwall’s lemma is often given in differential form. The condition 
then reads u′(t) ≤ βu(t). and from the resulting inequality (log u)′ = u′/u ≤ β . it is 
evident that u grows at most exponentially .

20.3 Stability 

The stability of an initial value problem refers to the conditioning of the associated 
mathematical operation, i.e. the effects of perturbations on solutions of the initial 
value problem. We assume that y ∈ C1([0, T ]). is the unique solution of the initial 
value problem 

. y′(t) = f
(
t, y(t)

)
, y(0) = y0

and that for perturbations f̃ . and ỹ0 . of the function f and the initial data y0 ., the  
function ỹ ∈ C1([0, T ]). is the unique solution of the associated perturbed initial 
value problem 

. ̃y′(t) = f̃
(
t, ỹ(t)

)
, ỹ(0) = ỹ0

Assuming that the perturbations are small, it can be shown that y and ̃y . are close to 
each other for certain times. 

Proposition 20.4 Let f, f̃ ∈ C0([0, T ] × R)., such that a δ > 0. exists with 

. |f (t, v) − f̃ (t, v)| ≤ δ

for all t ∈ [0, T ]. and v ∈ R., and let f be uniformly Lipschitz-continuous with 
respect to the second argument, i.e. there exists a number L ≥ 0., such that 

. |f (t, v) − f (t, w)| ≤ L|v − w|

for all t ∈ [0, T ]. and all v,w ∈ R.. Furthermore, let y0, ỹ0 ∈ R.with |y0 − ỹ0| ≤ δ0 . 

for a δ0 > 0.. Let y, ỹ ∈ C1([0, T ] × R). be solutions of the initial value problems 

. 
y′(t) = f

(
t, y(t)

)
, y(0) = y0,

ỹ′(t) = f̃
(
t, ỹ(t)

)
, ỹ(0) = ỹ0

in [0, T ].. Then we have 

. sup
t∈[0,T ]

|y(t) − ỹ(t)| ≤ (δ0 + δT )eLT .
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Proof The difference y − ỹ . satisfies the integral equation 

. y(t) − ỹ(t) = y0 − ỹ0 +
∫ t

0
f

(
s, y(s)

) − f̃
(
s, ỹ(s)

)
ds

and this implies that 

. |y(t) − ỹ(t)| ≤ |y0 − ỹ0| +
∫ t

0

∣∣f
(
s, y(s)

) − f̃
(
s, ỹ(s)

)∣∣ ds.

The triangle inequality and the assumptions on f show that

. 

∣∣f
(
s, y(s)

) − f̃
(
s, ỹ(s)

)∣∣ ≤ ∣∣f
(
s, y(s)

) − f
(
s, ỹ(s)

)∣∣ + ∣∣f
(
s, ỹ(s)

) − f̃
(
s, ỹ(s)

)∣∣

≤ L|y(s) − ỹ(s)| + δ

holds, and with |y0 − ỹ0| ≤ δ0 . it follows 

. |y(t) − ỹ(t)| ≤ δ0 + δt + L

∫ t

0
|y(s) − ỹ(s)| ds.

For the function u(t) = |y(t) − ỹ(t)|. with α = δ0 + δT . and β = L. it follows 

. u(t) ≤ α + β

∫ t

0
u(s) ds.

The lemma of Gronwall implies u(t) ≤ αeβt ≤ αeβT
., from which the statement of 

the proposition follows. ��
Remark 20.3 The error in the solution of the differential equation is proportional 
to δ0 . and δ ., however, the proportionality factor is exponentially dependent on T and 
L. The initial value problem is therefore well conditioned or stable, provided LT is 
suf ficiently small.

Example 20.2 Considering two spring pendulums with spring constants D and D̃ ., 
the solutions y and ỹ . get out of phase and the solutions differ greatly from each 
other for large times, see Fig. 20.1. This reflects the exponential dependence on the 
time horizon T . 

Fig. 20.1 Small 
perturbations of initial data 
can become noticeable in the 
long-term behaviour
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20.4 Learning Objectives, Quiz and Application 

You should be able to reformulate an initial value problem as an equivalent integral 
equation. Based on this, you should be able to explain the ideas leading to the Picard-
Lindelöf theorem. You should be able to derive the Gronwall lemma and explain its 
importance for the conditioning of initial value problems. 

Quiz 20.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

Every solution of the differential equation y′′ = c2y . is of the form y(t) = α sin(ct) +
β cos(ct).. 

If f ∈ C1(R)., then the initial value problem y′ = f (y)., y(0) = y0 ., has a solution 
y ∈ C1([0, T ]). for all y0 ∈ R. and T > 0.. 

Every contraction Ψ : Rn → R
n . is continuously differentiable. 

There exist autonomous differential equations y′ = f (y). that have solutions y ∈
C1([0, T ]). with the property y �∈ C2([0, T ]).. 
If y, ỹ ∈ C1([0, T ]). are solutions of the differential equation y′ = f (y). with a 
Lipschitz-continuous mapping f : R → R., then |y(t) − ỹ(t)| ≤ |y(0) − ỹ(0)|. for all 
t ∈ [0, T ].. 

Application 20.1 The flight path of a rocket in the Earth’s gravitational field can 
be described by a simplification of the two-body problem, assuming that the centre 
of the Earth remains unchanged and can be set as yEarth = 0.. Furthermore, it is 
assumed that the rocket flies perpendicular to the Earth’s surface. and the fuel is 
depleted, so that no further acceleration occurs. Show that the height z of the rocket 
is described by the equation

. z′′(t) = a

(z(t))2

with a suitable constant a and determine the solution for different initial velocities 
by using the approach z(t) = α(t − t0)

β
.. Discuss sufficient conditions for the global 

existence of the solution.



Chapter 21 
Single-Step Methods 

21.1 Euler Method 

A simple method for the numerical approximation of solutions to ordinary differen-
tial equations of the form 

. y′(t) = f
(
t, y(t)

)
, y(0) = y0

arises from the approximation of the derivative by a (forward) difference quotient, 
that is from 

. y′(t) ≈ y(t + τ) − y(t)

τ

with  a  fixed step size τ > 0..  If y ∈ C1([0, T ])., the right-hand side converges to 
y′(t). as τ → 0.. The approximation leads to 

. y(t + τ) ≈ y(t) + τf
(
t, y(t)

)

and means that, as long as an approximation of y at time t is known, an 
approximation at time t + τ . can be directly calculated. Starting with the initial 
data at t0 = 0. the approximations at the time steps tk = kτ ., k = 1, 2, . . . , K .,  are  
obtained, where K is the largest natural number with the property Kτ ≤ T ., denoted 
by K = �T/τ�.. 
Algorithm 21.1 (Explicit Euler Method) Let f ∈ C0([0, T ] × R)., y0 ∈ R. and 
τ > 0.. Set k = 0. and K = �T/τ�.. 
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Fig. 21.1 Euler methods 
approximate solutions 
through polygonal chains 

y 
y /2 k 
yk 

(1) Compute 

. yk+1 = yk + τf
(
tk, yk

)
.

(2) Stop if k + 1 > K .; otherwise increase k → k + 1. and repeat step (1). 

Geometrically, the curve t 	→ y(t). is approximated by a polygonal chain 
that connects the values (yk)k=0,...,K ., see Fig. 21.1. Therefore, the method is also 
referred to as Euler’s polygonal chain method. 

Remark 21.1 In general, the approximations yk . do not coincide with the exact 
solution y(tk). at the times tk ., k = 1, 2, . . . ., K .. 

Definition 21.1 A method of the form 

. yk+1 = yk + τΦ(tk, yk, yk+1, τ ), k = 0, 1, . . . , K − 1,

is called a single-step method with increment function Φ : [0, T ]×R×R×R≥0 →
R..  I  f Φ . is independent of yk+1 ., the method is referred to as explicit and otherwise 
as implicit. 

The implicit Euler method results from the use of the backward difference 
quotient 

. y′(t) ≈ y(t) − y(t − τ)

τ

and the evaluation of the differential equation at tk+1 .. 

Algorithm 21.2 (Implicit Euler Method) Let f ∈ C0([0, T ] × R)., y0 ∈ R. and 
τ > 0.. Set k = 0. and K = �T/τ�.. 
(1) Determine yk+1 ∈ R. as the solution of the equation 

. yk+1 = yk + τf
(
tk+1, yk+1

)
.

(2) Stop if k + 1 > K .; otherwise, increase k → k + 1. and repeat step (1). 

Remarks 21.2 

(i) In contrast to the explicit method, the implicit Euler method requires solving a 
system of equations at each iteration step. The solvability of this system must 
be ensured in each case.
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(ii) For the explicit and implicit Euler methods, the increment functions Φ . are given 
by 

. Φexpl(tk, yk, yk+1, τ ) = f (tk, yk), Φimpl(tk, yk, yk+1, τ ) = f (tk + τ, yk+1).

Higher accuracy is achieved by using the two approximations yk . and yk+1 .. 

Example 21.1 The midpoint method is defined by 

. Φ(tk, yk, yk+1, τ ) = f
(
tk + τ/2, (yk + yk+1)/2

)
.

21.2 Consistency 

If the function values y(tk). of the exact solution of a differential equation at the time 
steps tk ., k = 0, 1, . . . , K ., are inserted into a numerical method, it can be assessed 
how accurate the method is. In the case of the explicit Euler method, using the 
differential equation evaluated at tk .,  we  ha  ve

. 
y(tk+1) − y(tk)

τ
− f

(
tk, y(tk)

) = y(tk+1) − y(tk)

τ
− y′(tk).

A Taylor approximation shows 

. 

∣∣∣
y(tk+1) − y(tk)

τ
− y′(tk)

∣∣∣ ≤ τ

2
sup

t∈[tk,tk+1]
|y′′(t)|.

The values of the exact solution thus fulfil the numerical method up to the 
consistency term (τ/2)‖y′′‖C0([0,T ]) .. To generalise this approach, for a given value 
zk . at time step tk ., we consider the local initial value problem 

. z′(t) = f
(
t, z(t)

)
, t ∈ [tk, tk+1], z(tk) = zk.

The deviation of the solution z(tk+1). at time tk+1 . from the approximation defined 
by the single-step method 

. zk+1 = zk + τΦ(tk, zk, zk+1, τ )

is given by 

. z(tk+1) − zk+1 = z(tk+1) − zk − τΦ(tk, zk, zk+1, τ )

see Fig. 21.2.
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Fig. 21.2 The discretisation 
error of a time step defines 
the consistency of a method zk 

zk+1 

z(tk+1) 

(tk,zk, ) 

tk+1tk 

Definition 21.2 The local discretisation error C (tk, zk, τ ). of the increment func-
tion Φ . is defined by 

. C (tk, zk, τ ) = z(tk+1) − zk

τ
− Φ(tk, zk, zk+1, τ ).

The method defined by Φ . is called consistent of order p ≥ 0., if for all functions f ∈
Cp([0, T ] ×R)., which are uniformly Lipschitz continuous in the second argument, 
and k = 0, 1, . . . , K − 1. as well as zk ∈ R.we have that 

. C (tk, zk, τ ) = O(τp)

for τ → 0., that is, if there exist c1, c2 > 0., so that |C (tk, zk, τ )| ≤ c1τ
p
. holds for 

all 0 < τ ≤ c2 .. 

Remarks 21.3 

(i) If Φ . is Lipschitz continuous in the third argument, then zk+1 . can be replaced 
by z(tk+1). to determine the consistency order, that is, using zk = z(tk)., 

. C̃ (tk, zk, τ ) = z(tk+1) − z(tk)

τ
− Φ

(
tk, z(tk), z(tk+1), τ

)
.

In the case zk = y(tk)., this corresponds to the substitution of the function values 
of the exact solution into the numerical scheme. 

(ii) For zk = y(tk)., the local solution z matches y on the interval [tk, tk+1]. and we 
have 

. C̃
(
tk, y(tk), τ

) = y(tk+1) − y(tk)

τ
− Φ

(
tk, y(tk), y(tk+1), τ

)
.

We will mostly use this expression in the following. 

Examples 21.1 

(i) For the explicit Euler method it follows from Φ(tk, zk, zk+1, τ ) = f (tk, zk)., 
zk = z(tk). and z′(tk) = f (tk, z(tk))., that C (tk, zk, τ ) = C̃ (tk, zk, τ ).with 

.C (tk, zk, τ ) = z(tk+1) − z(tk)

τ
− z′(tk)
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holds. With a Taylor approximation it follows 

. |C (tk, zk, τ )| ≤ τ

2
sup

t∈[tk,tk+1]
|z′′(t)|,

so that the explicit Euler method is consistent of order p = 1.. 
(ii) An analogous argument shows that the implicit Euler method also has the 

consistency order p = 1.. 
(iii) Also from Taylor approximations, the consistency order p = 2. of the midpoint 

method is derived. 

21.3 Discrete Gronwall Lemma and Convergence 

The consistency of a single-step method is a measure of the exactness of a method. 
Based on this, we will show that the approximations (yk)k=0,...,K . are close to the 
exact function values (y(tk))k=0,...,K .. For this purpose, a single-step method 

. yk+1 = yk + τΦ(tk, yk, yk+1, τ )

with consistency order p is given, that is, we hav e

. C̃
(
tk, y(tk), τ

) = y(tk+1) − y(tk)

τ
− Φ

(
tk, y(tk), y(tk+1), τ

) = O(τp).

The following error estimate is based on the interpretation of the exact solution 
values (y(tk))k=0,...,K . as a solution of the numerical method perturbed by terms 
of order O(τp).. For this, the following discrete version of the Gronwall lemma is 
needed. 

Lemma 21.1 Let (uk)k=0,...,K . be a sequence of non-negative, real numbers and 
α, β ∈ R. with β ≥ 0., such that 

. u� ≤ α + τ

�−1∑

k=0

βuk

for all � = 0, 1, . . . , K .. Then it follows for all � = 0, 1, . . . , K ., that 

. u� ≤ α exp(�τβ).

Proof Exercise. �

If one interprets the sum as a quadrature formula, the relationship to the 

continuous Gronwall lemma becomes apparent.
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Definition 21.3 A single-step method is called convergent of order p ≥ 0.,  if  for  
all functions f ∈ Cp([0, T ] × R)., which are uniformly Lipschitz continuous in the 
second argument, initial data y0 ∈ R. and the exact solution y ∈ Cp+1([0, T ]). as 
well as the approximations (y�)�=0,...,K .we have 

. max
�=0,...,K

|y(t�) − y�| = O(τp).

With the help of the discrete Gronwall lemma, the consistency of order p of 
a method leads to the convergence of order p of the method, that is, we obtain a 
general error estimate for single-step methods.

Proposition 21.1 Let the single-step method defined by Φ . be well-defined and 
consistent of order p. Assume that the increment function Φ . is uniformly Lipschitz 
continuous in the second and third argument, that is, there exists M ≥ 0., such that 

. 
∣∣Φ(t, a1, b1, τ ) − Φ(t, a2, b2, τ )

∣∣ ≤ M
(|a1 − a2| + |b1 − b2|

)

for all t ∈ [0, T ]., a1, a2, b1, b2 ∈ R. and τ > 0.. If τ ≤ 1/(2M)., then it follows 

. max
�=0,...,K

|y(t�) − y�| ≤ 2cT τp exp(4MT )

with a constant c ≥ 0. independent of τ .. 

Proof For the function values (y(tk))k=0,...,K ., according to the definition of the 
consistency term, we have 

. y(tk+1) = y(tk) + τΦ
(
tk, y(tk), y(tk+1), τ

) + τ C̃
(
tk, y(tk), τ

)
,

while the approximations (yk)k=0,...,K . are defined by 

. yk+1 = yk + τΦ
(
tk, yk, yk+1, τ

)

Subtracting the two identities leads to 

. y(tk+1) − yk+1 = y(tk) − yk + τ
[
Φ

(
tk, y(tk), y(tk+1), τ

) − Φ
(
tk, yk, yk+1, τ

)]

+ τ C̃
(
tk, y(tk), τ

)
.

With the triangle inequality, the Lipschitz continuity of Φ . and the consistency order 
p, it follows 

. 
∣∣y(tk+1) − yk+1

∣∣ ≤ ∣∣y(tk) − yk

∣∣ + τM
(∣∣y(tk) − yk

∣∣ + ∣∣y(tk+1) − yk+1
∣∣) + cτp+1.

With the definition uk = |y(tk) − yk|.we get 

.(1 − τM)uk+1 ≤ (1 + τM)uk + cτp+1,
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or 

. uk+1 ≤ 1 + τM

1 − τM
uk + c

1 − τM
τp+1.

Subtracting uk . on both sides yields using 1 − τM ≥ 1/2. 

. 

uk+1 − uk ≤
(1 + τM

1 − τM
− 1

)
uk + c

1 − τM
τp+1

= τ
2M

1 − τM
uk + cτ

1 − τM
τp

≤ τ4Muk + 2cττp.

A summation over k = 0, 1, . . . , � − 1.with 0 ≤ � ≤ K . leads to 

. u� − u0 ≤ 4Mτ

�−1∑

k=0

uk + 2cKττp.

Hence, the sequence (uk)k=0,...,K . satisfies the conditions of the discrete Gronwall 
lemma with 

. α = u0 + 2c(Kτ)τp, β = 4τM

and with u0 = 0. and �τ ≤ Kτ ≤ T . the assertion follows. �

Remarks 21.4 

(i) Similar to the stability estimate, the constant in the error estimate critically 
depends on the product MT . 

(ii) The proof of the proposition shows that it is sufficient to approximate the initial 
data with an accuracy |y0 − y(0)| = O(τp).. 

In some special cases the convergence results can be improved and reveal an 
important difference between explicit and implicit schemes. 

Example 21.3 We consider the equation y′ = λy . with a number λ < 0..  For  the  
explicit Euler method we obtain for ek = y(tk) − yk . the error equation 

. ek+1 = (1 + τλ)ek + τ C̃expl

(
tk, y(tk), τ

)
.

Unless |1 + τλ| ≤ 1. or τ ≤ 1/(2|λ|)., a strong error amplification is to be expected 
in the time stepping. This explains the step size condition in the previous result. For 
the implicit Euler method we obtain the error equation 

.(1 − τλ)ek+1 = ek + τ C̃impl

(
tk, y(tk), τ

)
.
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Since 1 − τλ ≥ 1., a damping effect for the error takes place. In particular, noting 
|1 − τλ|−1 ≤ 1.we obtain by taking absolute values that for uk = |ek|.we have 

. uk+1 ≤ uk + cτ 2.

A summation over k = 0, 1, . . . , � − 1.with 0 ≤ � ≤ K . shows that 

. max
k=0,...,K

|y(tk) − yk| ≤ cT τ.

This estimate holds without a step size condition and without an exponential 
dependence on T and |λ|.. 

21.4 Higher-Order Methods 

The consistency order of the Euler methods is given by the Taylor formulas used in 
the derivation. This motivates the use of a higher accuracy approximation such as 

. 
y(tk+1) − y(tk)

τ
= y′(tk) + τ

2
y′′(tk) + O(τ 2),

provided y ∈ C3([0, T ]).. Based on this identity, there are various ways to construct 
an increment function. 

Examples 21.4 ([8, 9]) 

(i) Differentiating the differential equation y′ = f (t, y).with respect to t , one gets 
with the partial derivatives ∂tf . and ∂yf . of f that 

. 
y′′(t) = ∂tf

(
t, y(t)

) + ∂yf
(
t, y(t)

)
y′(t)

= ∂tf
(
t, y(t)

) + ∂yf
(
t, y(t)

)
f

(
t, y(t)

)
.

The use of this identity in the above Taylor formula shows that the expression 

. 
y(tk+1) − y(tk)

τ
− τ

2

(
∂tf

(
tk, y(tk)

) + ∂yf
(
tk, y(tk)

)
f

(
tk, y(tk)

))

approximates the derivative y′(tk). up to an error O(τ 2). and motivates the use 
of the explicit increment function 

. Φ(tk, yk, yk+1, τ ) = f (tk, yk) + τ

2

(
∂tf (tk, yk) + ∂yf (tk, yk)f (tk, yk)

)
.

The calculations imply C (tk, yk, τ ) = O(τ 2)..
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(ii) With coefficients a, b, c, d ∈ R. to be determined, the approach 

. Φ(t, y, τ ) = af (t, y) + bf
(
t + cτ, y + τdf (t, y)

)

is considered and inserted into the definition of the consistency term, where for 
brevity t and y stand for tk . and yk .. Using the Taylor approximation 

. f
(
t+cτ, y+dτf (t, y)

) = f (t, y)+∂tf (t, y)cτ +∂yf (t, y)dτf (t, y)+O(τ 2)

the conditions a + b = 1., bc = 1/2. and bd = 1/2. arise for the parameters 
a, b, c, d . for the consistency of order p = 2.. The solution a = b = 1/2., 
c = d = 1. defines Heun’s method 

. Φ(t, y, τ ) = 1

2

(
f (t, y) + f

(
t + τ, y + τf (t, y)

))

and the solution a = 0., b = 1., c = d = 1/2. defines the Euler–Collatz method 

. Φ(t, y, τ ) = f
(
t + τ

2
, y + τ

2
f (t, y)

)
.

Remark 21.5 The terms appearing in the methods 

. yk + θτf (tk, yk) ≈ yk + θτy′(tk)

approximate the unknown values y(tk+1). in the case θ = 1. and y(tk+1/2) = (yk +
yk+1)/2. in the case θ = 1/2., where tk+1/2 = tk + τ/2.. 

21.5 Learning Objectives, Quiz and Application 

You should be able to derive particular single-step methods and show their 
differences. You should be able to motivate and define the concept of consistency 
and explain its use in deriving error estimates. 

Quiz 21.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer.
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The increment function Φ(t, a, b, τ ) = α(a + b)/2. defines a single-step method for 
the differential equation y′ = αy .. 

Explicit single-step methods are always well-defined. 

The local discretisation error of the explicit Euler method for the differential equation 
y′ = λy . is given by (z(tk+1) − zk)/τ − λzk .. 

The increment function Φ(t, a, b, τ ) = f (t + τ/2, a + τf (t, a)/2). defines a method 
of consistency order p = 2.. 

In general, the error |y� − y(t�)|. increases with each time step. 

Application 21.1 

(i) The speed of the chemical reaction of two substances A and B with product 
2B is determined by a reaction coefficient α . and the differential equations 

. C′
A = −αCACB, C′

B = αCACB

where CA,CB : [0, T ] → [0, 1]. indicate the respective concentrations. In the 
reaction equation, this is taken into account by the notation A + B

α−→ 2B .. 
Show that the sum of the concentrations CA + CB . is constant. 

(ii) We consider the reaction scheme 

. A
α−→ B, 2B

β−→ B + C, B + C
γ−→ A + C,

with the reaction coefficients α = 0.04., β = 3 · 107 ., γ = 104 ., that is for 
example, that the substance B is very quickly converted into the substance C. 
Formulate a system of differential equations to describe the reaction scheme, 
show that the sum of the concentrations is constant and determine numerically 
the maximum concentration of the substance B, if at the beginning of the 
process only the substance A is present.

(iii) Test various MATLAB routines for the numerical solution of the problem in the 
time interval [0, 1/2]. and comment on the results.



Chapter 22 
Runge-Kutta Methods 

22.1 Motivation 

The construction of numerical methods based on Taylor approximations with higher 
consistency order usually leads to schemes in which many function evaluations, 
especially of derivatives, are required in each step. This is generally associated with 
very high effort. The starting point for the development of methods that avoid the 
evaluation of derivatives of f is a local integral representation of the differential 
equation y′ = f (t, y).. We have  

. y(tk+1) = y(tk) +
∫ tk+1

tk

y′(s) ds = y(tk) +
∫ tk+1

tk

f
(
s, y(s)

)
ds.

If the integral is approximated by the value of the integrand at the point tk . multiplied 
by the length of the integration range tk+1 − tk = τ ., the result is 

. y(tk+1) ≈ y(tk) + τf
(
tk, y(tk)

)
,

and this motivates the explicit Euler method. It is obvious to apply more exact 
quadrature formulas to obtain methods of higher accuracy. In the case of the 
midpoint rule, with tk+1/2 = (k + 1/2)τ ., we get 

. y(tk+1) ≈ y(tk) + τf
(
tk+1/2, y(tk+1/2)

)
.

The function value y(tk+1/2). can be approximated using an approximation of y(tk)., 
because a Taylor approximation and the evaluation of the differential equation at tk . 

© The Author(s), under exclusive license to Springer-Verlag GmbH, 
DE, part of Springer Nature 2025 
S. Bartels, Numerical Mathematics 3x9, La Matematica per il 3+2 160, 
https://doi.org/10.1007/978-3-662-70890-3_22

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-70890-3protect T1	extunderscore 22&domain=pdf
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22
https://doi.org/10.1007/978-3-662-70890-3_22


192 22 Runge-Kutta Methods

show for a ξ ∈ [tk, tk+1/2]. 

. 

y(tk+1/2) = y(tk) + τ

2
y′(tk) + τ 2

8
y′′(ξ)

= y(tk) + τ

2
f

(
tk, y(tk)

) + τ 2

8
y′′(ξ).

Overall, this leads to the Euler–Collatz method 

. yk+1 = yk + τf
(
tk + τ

2
, yk + τ

2
f (tk, yk)

)
.

With a Taylor approximation of the right side, it is shown that this method has the 
consistency order p = 2.. 

22.2 Runge-Kutta Methods 

If (α�, γ�)�=1,...,m . is a quadrature formula on the interval [0, 1]., then (tk +
τα�, τγ�)�=1,...,m . defines a quadrature formula on [tk, tk+1]. and we obtain 

. y(tk+1) = y(tk) +
∫ tk+1

tk

y′(s) ds ≈ y(tk) + τ

m∑
�=1

γ�η
k
�

with the approximations 

. ηk
� ≈ y′(tk + τα�) = f

(
tk + τα�, y(tk + τα�)

)
.

The right side is approximated using 

. y(tk + τα�) ≈ y(tk) + τ

m∑
j=1

β�jy
′(tk + ταj ) ≈ y(tk) + τ

m∑
j=1

β�jη
k
j

and thus the quantities ηk
� . can be determined as the solution of the nonlinear system 

of equations 

. ηk
� = f

(
tk + τα�, yk + τ

m∑
j=1

β�jη
k
j

)

for � = 1, 2, . . . , m.. This leads to the following definition. 

Definition 22.1 For α�, β�j , γ� ∈ R., j, � = 1, 2, . . . , m., an  m-stage Runge-Kutta 
method is defined by
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Fig. 22.1 Runge-Kutta 
methods use implicitly 
defined intermediate steps 

tk+1 

yk 

yk+ 1 m 

yk+1 

tk+ 3 m 
tk+ 2 m 

tk+ 1 m 
tk 

yk+ 3 m 

yk+ 2 m 

Table 22.1 Butcher tableau 
of a Runge-Kutta method 

α1 . β11 . . . . . β1m . 

.

.

..
.
.
..

.

.

.. 

αm . βm1 . . . . . βmm . 

γ1 . . . . . γm . 

. yk+1 = yk + τ

m∑
�=1

γ�η
k
�, ηk

� = f
(
tk + τα�, yk + τ

m∑
j=1

β�jη
k
j

)
.

Intuitively, a Runge-Kutta method uses intermediate steps tk+s/m = tk + ταs ., 
s = 1, 2, . . . , m., and corresponding approximations yk+s/m = yk + τ

∑s
�=1 γ�η

k
� . 

to determine yk+1 ., see Fig. 22.1. 

Remark 22.1 Runge-Kutta methods are single-step methods, where the increment 
function Φ(tk, yk, τ ) = ∑m

�=1 γ�η
k
� . is defined by the solution of a possibly 

nonlinear problem. In terms of single-step methods, Runge-Kutta methods are 
explicit, however, this view is not meaningful. 

Remark 22.2 A Runge-Kutta method is determined by the associated Butcher 
tableau, in which the coefficients are schematically arranged as in Table 22.1. 

Examples 22.1 

(i) For m = 1., α1 = 0., β11 = 0., γ1 = 1. we get the explicit Euler method defined 
by 

. ηk
1 = f (tk, yk), yk+1 = yk + τηk

1.

(ii) The Euler–Collatz method and the Heun method are defined by the respective 
Butcher tableau shown in Table 22.2. 

(iii) The trapezoidal method results from the use of the trapezoidal rule, that is 

. yk+1 = yk + τ

2

(
f (tk, yk) + f (tk+1, yk+1)

) = yk + τ

2

2∑
�=1

ηk
�

with ηk
1 = f (tk, yk). and ηk

2 = f (tk + τ, yk+1)..
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Table 22.2 Butcher tableau of the explicit Euler method, the Euler-Collatz and Heun methods, 
as well as the trapezoidal method 

0 0

1

0 0 0

1/2 1/2 0

0 1

0 0 0

1 1 0

1/2 1/2

0 0 0

1 1/2 1/2

1/2 1/2

. 

22.3 Well-Posedness 

The execution of an iteration step with a Runge-Kutta method requires the solution 
of a system of equations. If β . is a strict lower triangular matrix, this can be solved 
explicitly. 

Definition 22.2 A Runge-Kutta method is called explicit if β�j = 0. holds for all 
1 ≤ � ≤ j ≤ n.. It is called implicit otherwise. 

Remark 22.3 If a Runge-Kutta method is explicit, the expressions ηk
� . can be 

determined successively. For � = 1, 2, . . . , m. the following then applies 

. ηk
� = f

(
tk + τα�, yk + τ

�−1∑
j=1

β�jη
k
j

)
.

Example 22.1 Examples of explicit, four-stage Runge-Kutta methods are the 
classic Runge-Kutta method and the 3/8 rule, which are defined by the respective 
Butcher tableau shown in Table 22.3. 

In the implicit case, a fixed point equation must be solved. With the abbreviations 
t = tk ., y = yk . and η� = ηk

� ., a vector η = [η1, η2, . . . , ηm]T . is to be determined 
such that 

. 

η1 = f
(
t + τα1, y + τβ11η1 + τβ12η2 + · · · + τβ1mηm

)
,

...

ηm = f
(
t + ταm, y + τβm1η1 + τβm2η2 + · · · + τβmmηm

)

holds, which can be written abstractly as a vectorial equation η = Ψ (η).. 

Table 22.3 Butcher tableau 
of the classic Runge-Kutta 
method and the 3/8 rule 

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

.

0

1/3 1/3

2/3 −1/3 1

1 1 −1 1

1/8 3/8 3/8 1/8

.
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Table 22.4 Butcher tableau 
for the implicit Euler, the 
midpoint and the Radau-3 
methods 

1 1

1

1/2 1/2

1

1/3 5/12 −1/12

1 3/4 1/4

3/4 1/4

. 

Proposition 22.1 If f ∈ C0([0, T ] × R). is uniformly Lipschitz continuous in the 
second argument with Lipschitz constant L ≥ 0. and if 

. Lτ‖β‖∞ < 1,

with the row sum norm ‖β‖∞ = max�=1,...,m

∑m
j=1 |β�j |., then Ψ . is a contraction 

with respect to the maximum norm on R
m

. and there exists a unique fixed point 
η ∈ R

m
. of Ψ .. 

Proof Let ξ, ζ ∈ R
m

.. Then we have that 

. 
∥∥Ψ (ξ) − Ψ (ζ )

∥∥∞

= max
�=1,...,m

∣∣∣f (
t + τα�, y + τ

m∑
j=1

β�j ξj

) − f
(
t + τα�, y + τ

m∑
j=1

β�j ζj

)∣∣∣

≤ max
�=1,...,m

Lτ

m∑
j=1

|β�j | max
j=1,...,m

|ξj − ζj | = Lτ‖β‖∞‖ξ − ζ‖∞.

The Banach fixed point theorem implies in the case Lτ‖β‖∞ < 1. the existence of 
a unique fixed point. 	

Remark 22.4 A fixed point of the contraction Ψ : Rm → R

m
. can be approximated 

with any initial value ξ0 ∈ R
m

. through the iteration ξ i+1 = Ψ (ξ i).. Under suitable 
conditions, the nonlinear system of equations can be approximately solved using 
the Newton method. An initial value can be defined using the approximation to the 
previous time step. 

Example 22.3 Examples of implicit Runge-Kutta methods are the implicit Euler 
method, the midpoint method and the Radau-3 method, which are defined by the 
respective Butcher tableau shown in Table 22.4. 

22.4 Consistency 

Since Runge-Kutta methods are based on quadrature formulas, the exactness of the 
underlying quadrature formula is decisive for the consistency of the method. The 
quadrature formula (α�, γ�)�=1,...,m . is called exact of degree r on the interval [0, â].,
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if 

. 

∫ α̂

0
q(s) ds =

m∑
�=1

γ�q(α�)

for all polynomials q up to degree r . In this case, for every function φ ∈
Cr+1([0, T ])., we have that 

. 

∫ t+τ â

t

φ(s) ds = τ

m∑
�=1

γ�φ
(
t + τα�

) + O(τ r+2).

In the sense of this statement, the trivial quadrature formula, which approximates 
every integral by the value 0, is exact of degree r = −1.. The exactness of degree 
p − 1. is necessary for the consistency of order p. 

Lemma 22.1 Assume that the Runge-Kutta method defined by the coefficients 
α�, β�j , γ� ., j, � = 1, 2, . . . , m., is consistent of order p ≥ 0.. Then the quadrature 
formula defined by (α�, γ�)�=1,...,m . is exact of degree p − 1. on [0, 1].. 
Proof For 0 ≤ n ≤ p − 1., let y : [0, 1] → R. be the solution of the differential 
equation y′(t) = f

(
t, y(t)

)
., y(0) = 0., with f (t, z) = tn .. Obviously y(t) =

tn+1/(n + 1).. The consistency of order p of the Runge-Kutta method implies that 
for all τ > 0. the estimate 

. 
∣∣C̃ (

0, 0, τ
)∣∣ = ∣∣y(τ) − y(0)

τ
− Φ(0, 0, τ )

∣∣ ≤ cτp

holds and hence 

. 

∣∣∣ 1

τ

τn+1

n + 1
−

m∑
�=1

γ�(τα�)
n
∣∣∣ ≤ cτp.

A division of this inequality by τn
. and the limit τ → 0. imply, that the quadrature 

formula is exact for the monomials t �→ tn ., 0 ≤ n ≤ p − 1., in the interval [0, 1].. 
By its linearity this is true for all polynomials of degree p − 1.. 	


The reversal of the statement holds under additional conditions on the coefficients 
β�j . and leads to a sufficient condition for a consistency statement, which follows the 
presentation in [8]. 

Proposition 22.2 Let α�, β�j , γ� ., j, � = 1, 2, . . . , m. be such that the quadrature 
formula defined by (α�, γ�)�=1,...,m . on the interval [0, 1]. is exact of degree p − 1. 

and for � = 1, 2, . . . , m. the quadrature formula defined by (αj , β�j )j=1,...,m . is exact 
on [0, α�]. of degree p − 2.. Then the Runge-Kutta method defined by α�, β�j , γ� . has 
the consistency order p.
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Proof From local integral representations of the differential equation y′ = f (s, y). 

and the assumed exactness of the quadrature formulas, it follows that 

. y(t +τ)−y(t) =
∫ t+τ

t

f (s, y(s)) ds = τ

m∑
�=1

γ�f
(
t +τα�, y(t +τα�)

)+O(τp+1)

and for � = 1, 2, . . . , m. 

. y(t+τα�)−y(t) =
∫ t+τα�

t

f (s, y(s)) ds = τ

m∑
j=1

β�jf
(
t+ταj , y(t+ταj )

)+O(τp).

For the consistency term, with the first equation, the abbreviations t = tk . and tk,� =
tk + τα� . and 

. η� = f
(
t + τα�, y(t) + τ

m∑
s=1

β�sηs

)

and Φ(t, y(t), τ ) = ∑m
�=1 γ�η� ., it follows that  

. 
∣∣C̃ (

t, y(t), τ
)∣∣ =

∣∣∣y(t + τ) − y(t)

τ
−

m∑
�=1

γ�η�

∣∣∣

=
∣∣∣

m∑
�=1

γ�

[
f

(
tk,�, y(tk,�)

) − f
(
tk,�, y(t) + τ

m∑
j=1

β�jηj

)]∣∣∣ + O(τp)

≤ L

m∑
�=1

|γ�|
∣∣∣y(t + τα�)−y(t)− τ

m∑
j=1

β�jηj

∣∣∣+O(τp) = L

m∑
�=1

|γ�|r� +O(τp).

Here, using the second equation, 

.

r� =
∣∣∣y(t + τα�) − y(t) − τ

m∑
j=1

β�jηj

∣∣∣

=
∣∣∣τ

m∑
j=1

β�j

[
f

(
tk,j , y(tk,j )

) − f
(
tk,j , y(t) + τ

m∑
n=1

βjnηn

)]∣∣∣ + O(τp)

≤ τL

m∑
j=1

|β�j |
∣∣∣y(tk,j ) − y(t) + τ

m∑
n=1

βjnηn

∣∣∣ + O(τp)

= τL

m∑
j=1

|β�j |rj + O(τp).
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From this estimate it follows 

. ‖r‖∞ ≤ τL‖β‖∞‖r‖∞ + cτp

or ‖r‖∞ ≤ 2cτp
., provided τL‖β‖∞ ≤ 1/2. holds. Overall, we get 

. 
∣∣C̃ (

t, y(t), τ
)∣∣ ≤ cτp

and this proves the assertion. 	

Remark 22.5 Alternatively, the consistency order of a Runge-Kutta method can be 
investigated using Taylor approximations. For example, using the abbreviation y for 
y(t)., we have  

. 

y(t + τ) − y(t)

τ
= y′(t) + τ

2
y′′(t) + O(τ 2)

= f (t, y) + τ

2

[
∂tf (t, y) + ∂yf (t, y)f (t, y)

] + O(τ 2),

where y′ = f (t, y). and the identity y′′ = ∂tf (t, y) + ∂yf (t, y)y′
. resulting 

by differentiation were exploited. For the increment function Φ(t, y(t), τ ) =∑m
�=1 γ�η� . the Taylor approximations 

. 

η� = f
(
t + τα�, y + τ

m∑
j=1

β�jηj

)

= f (t, y) + ∂tf (t, y)τα� + ∂yf (t, y)
(
τ

m∑
j=1

β�jηj

)
+ O(τ 2)

as well as ηj = f (t, y) + O(τ )., imply that 

. 

Φ(t, y, τ ) =
m∑

�=1

γ�

[
f (t, y) + ∂tf (t, y)τα� + ∂yf (t, y)τ

m∑
j=1

β�jηj

]
+ O(τ 2)

=
m∑

�=1

γ�

[
f (t, y)+∂tf (t, y)τα�+∂yf (t, y)τ

m∑
j=1

β�jf (t, y)
]

+ O(τ 2).

A comparison of the coefficients in the resulting identity for 

.
y(t + τ) − y(t)

τ
− Φ

(
t, y(t), τ

)
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implies the sufficient conditions 

. 

m∑
�=1

γ� = 1,

m∑
�=1

γ�α� = 1

2
,

m∑
�=1

m∑
j=1

γ�β�j = 1

2

for second order consistency. The last condition can be replaced by α� = ∑m
j=1 β�j .. 

Examples 22.4 The explicit Euler method has the consistency order p = 1., the  
midpoint method, the Euler–Collatz method and Heun’s method have the order p =
2., the Radau-3 method the consistency order p = 3. and the classic Runge-Kutta 
method as well as the 3/8. rule have the order p = 4.. 

Remarks 22.6 

(i) Explicit m-stage Runge-Kutta methods have at most the consistency order p =
m.. 

(ii) By using Gaussian quadrature formulas, which have the degree of exactness 
2m−1. at m quadrature points, implicit Runge-Kutta methods with consistency 
order p = 2m. can be constructed. 

22.5 Learning Objectives, Quiz and Application 

You should be familiar with the approach to deriving Runge-Kutta methods and you 
should be able to create a Butcher tableau. You should moreover be able to describe 
sufficient criteria for determining the consistency of a Runge-Kutta method. 

Quiz 22.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

The midpoint method results from an application of the midpoint quadrature formula. 

An m-stage Runge-Kutta method has at least the consistency order 1. 

For every explicit Runge-Kutta method of consistency order p = 2., α1 = 0. holds. 

The condition
∑m

�=1 γ� = 1. is necessary for the consistency of positive order of a 
Runge-Kutta method. 

Every single-step method of consistency order p defines a quadrature formula of 
exactness degree p .

Application 22.1 Both attractive and repulsive forces act between particles such 
as atoms or molecules. The attractive forces dominate for large distances and 
the repulsive forces for small distances. This is often described with a so-called 
Lennard–Jones potential V (r) = −c1r

−2 + c2r
−4

., which defines the acting force 
through certain negative gradients, using the fact that the derivative V ′(r) =
2c1r

−3 − 4c2r
−5

. is negative for r2 < r2
0 = 2c2/c1 . and positive for r > r0 .. With
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Newton’s law of inertia, the trajectories of N interacting particles with unit mass 
can be described by the system of differential equations

. y′′
i = −

∑
j=1,...,N, j 
=i

∇yi
V (‖yi − yj‖) = −

∑
j=1,...,N, j 
=i

V ′(‖yi − yj‖) yi − yj

‖yi − yj‖

for i = 1, 2, . . . , N . with suitable initial data. In this way, systems of particles such 
as water droplets can be simulated, which however leads to extremely large systems 
of differential equations. Use various MATLAB routines to simulate systems of 10– 
40 particles, which are distributed on a grid with grid spacing d = 1. and have 
no initial velocities, in the time interval [0, T ]. with T = 100. with the parameters 
c1 = 10. and c2 = 2..



Chapter 23 
Multistep Methods 

23.1 General Multistep Methods 

Multistep methods are like Runge–Kutta methods usually based on quadrature 
formulas, but they avoid function evaluations at the intermediate steps and instead 
use the values calculated in the previous time steps. The starting point is the integral 
representation of a differential equation y′ = f (t, y). on the interval [tk+m−1, tk+m]., 
that is 

. y(tk+m) = y(tk+m−1) +
∫ tk+m

tk+m−1

f
(
s, y(s)

)
ds.

The integral on the right-hand side is approximated using the function values at the 
time steps tk, tk+1, . . . , tk+m ., that is 

. 

∫ tk+m

tk+m−1

f
(
s, y(s)

)
ds ≈ τ

m∑
�=0

β�f
(
tk+�, y(tk+�)

)
.

This can be interpreted as a generalised quadrature formula, where a function on 
the interval [tk, tk+m]. is interpolated and the interpolant is then integrated over 
the subinterval [tk+m−1, tk+m]., see Fig. 23.1. The function values at the time steps 
only need to be determined once and can be reused in later time steps. The above 
integration of the differential equation can also generally be carried out over a larger 
interval [tk+m−n, tk+m]. with 1 ≤ n ≤ m.. 

Definition 23.1 An m-multistep method is a method of the form 

. 

m∑
�=0

α�yk+� = τΦ(tk, yk, yk+1, . . . , yk+m, τ)
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Fig. 23.1 Multistep methods 
can be interpreted as the 
application of a generalised 
quadrature formula 

tk ... tk+m 

with real coefficients (α�)�=0,...,m ., where αm = 1. applies. The method is called 
explicit if Φ . does not depend on yk+m . and implicit otherwise. It is called linear if 
coefficients (β�)�=0,...,m . exist, such that 

. Φ(tk, yk, . . . , yk+m, τ) =
m∑

�=0

β�f (tk+�, yk+�).

Remarks 23.1 

(i) A linear multistep method is explicit exactly when βm = 0. applies. 
(ii) In order to perform a step of a multistep method, the values yk, . . . , yk+m−1 . 

must already be available. At the start of the method, approximations 
y1, . . . , ym−1 . can be determined with single-step methods. 

Examples 23.1 

(i) The leapfrog method is defined by 

. yk+2 = yk + 2τf (tk+1, yk+1).

(ii) The Adams-Bashforth and Adams-Moulton methods are explicit and implicit 
linear multistep methods of the form 

. yk+m = yk+m−1 + τ

m∑
�=0

β�f (tk+�, yk+�),

(iii) So-called backward-differentiation-formulas or BDF methods use the 
Lagrange interpolation polynomial q ∈ Pm . with q(tk+i ) = yk+i ., 
i = 0, 1, . . . , m., and determine yk+m . as the solution of the equation 

. q ′(tk+m) = f (tk+m, yk+m).

23.2 Consistency 

To determine the accuracy of a multistep method, a local solution is inserted into 
the numerical scheme.
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Definition 23.2 For zk ∈ R., let z : [tk, tk+m] → R. be the solution of the initial 
value problem z′ = f (t, z). in (tk, tk+m]. with z(tk) = zk .. The  local consistency 
error of a multistep method is defined by 

. C̃
(
tk, z(tk), τ

) = 1

τ

m∑
�=0

α�z(tk+�) − Φ
(
tk, z(tk), . . . , z(tk+m), τ

)
.

A multistep method is called consistent of order p, if for all f ∈ Cp([0, T ] × R)., 
k = 0, 1, . . . , K − m. and z ∈ Cp+1([tk, tk+m]). we have 

. C̃
(
tk, z(tk), τ

) = O(τp).

For linear multistep methods, simple criteria for the consistency of order p 
emerge, as the following result, which follows the presentation in [9], shows. 

Proposition 23.1 The linear m-step method 

. 

m∑
�=0

α�yk+� = τ

m∑
�=0

β�f (tk+�, yk+�)

is consistent of order p ≥ 1. if and only if 

. 

m∑
�=0

α� = 0,

m∑
�=0

(
α��

q − β�q�q−1) = 0, q = 1, 2, . . . , p.

Proof The Taylor approximations 

. 

z(tk+�) = z(tk + �τ) =
p∑

q=0

(�τ)q

q! z(q)(tk) + O(τp+1),

z′(tk+�) = z′(tk + �τ) =
p∑

q=1

(�τ)q−1

(q − 1)!z
(q)(tk) + O(τp)

as well as f
(
tk+�, z(tk+�)

) = z′(tk+�). show 

.

C̃
(
tk, z(tk), τ

) =
m∑

�=0

[α�

τ
z(tk+m) − β�z

′(tk+�)
]

=
m∑

�=0

[α�

τ

p∑
q=0

(�τ)q

q! z(q)(tk) − β�

p∑
q=1

(�τ)q−1

(q − 1)!z
(q)(tk)

]
+ O(τp)
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. 

= 1

τ

m∑
�=0

α�z(tk) +
m∑

�=0

p∑
q=1

[α�

τ

(�τ)q

q! − β�

(�τ)q−1

(q − 1)!
]
z(q)(tk) + O(τp)

= 1

τ

m∑
�=0

α�z(tk) +
p∑

q=1

m∑
�=0

τq−1

q!
[
α��

q − β�q�q−1]z(q)(tk) + O(τp).

Under the given conditions, both sums vanish. The reversal of the statement follows 
by considering the functions z(t) = tn ., z(0) = 0., n = 1, 2, . . . , p ., as well as  
z(t) = 1. as solutions of suitable differential equations. �	

23.3 Adams Methods 

Adams methods are linear multistep methods based on the approximation of local 
integral representations of a differential equation, that is, with a polynomial p that 
approximates the mapping s 
→ f (s, y(s)). in the interval Ik,m = [tk+m−1, tk+m]., 
one uses 

. 

y(tk+m) = y(tk+m−1) +
∫

Ik,m

f (s, y(s)) ds

≈ yk+m−1 +
∫

Ik,m

p(s) ds.

The polynomial p ∈ Pm̃ . of degree m̃ ≤ m. is chosen as the Lagrange interpolation 
polynomial for the nodes and values (tk+�, f (tk+�, yk+�))�=0,...,m̃ ., that is 

. p(s) =
m̃∑

�=0

f (tk+�, yk+�)L�(s),

with the Lagrange basis (L�)�=0,...,m̃ . for the nodes tk, tk+1, . . . tk+m̃ .. With the 
coefficients 

. β� = 1

τ

∫
Ik,m

L�(s) ds

the multistep method results in 

.yk+m = yk+m−1 + τ

m̃∑
�=0

β�f (tk+�, yk+�).
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L0(s) 
L1(s)L0(s)L0(s) L1(s) 

Ik,mtk+m−1 Ik,m 

Fig. 23.2 The coefficients of the Adams methods result from the integration of the Lagrange basis 
polynomials in the interval Ik,m = [tk+m−1, tk+m].; the cases m = 1., m̃ = 0. (left), m = 2., m̃ = 1. 
(middle) and m = 1., m̃ = 1. (right) are shown 

Typical choices of the parameter m̃. are m̃ = m − 1. and m̃ = m., leading to explicit 
and implicit methods, respectively, which are referred to as Adams-Bashforth and 
Adams-Moulton methods. It should be noted that the Lagrange basis polynomials 
are only integrated in the interval [tk+m−1, tk+m]., in the case m̃ = m−1. thus outside 
the node range [tk, tk+m−1]., see Fig. 23.2. The sum of the coefficients β� . is always 1. 

Example 23.2 

(i) For the explicit Adams-Bashforth method with m = 1. and m̃ = 0., L0(s) = 1. 

is constant and β0 = 1. results. In the case of m = 2. and m̃ = 1., the functions 
L0 . and L1 . are linear and their integrals yield the coefficients β0 = −1/2. and 
β1 = 3/2.. 

(ii) For the implicit Adams-Moulton method with m = 1. and m̃ = 1., the functions 
L0 . and L1 . are linear and the coefficients β0 = 1/2. and β1 = 1/2. result. In the 
case of m = 2. and m̃ = 2., the integration of the quadratic polynomials L0 ., L1 . 

and L2 . yields the coefficients β0 = −1/12., β1 = 8/12. and β2 = 5/12.. 

In general, the coefficients shown in Tables 23.1 and 23.2 result. 

Remarks 23.2 

(i) The Adams-Bashforth method with m steps has the consistency order m .
(ii) In each step of the Adams-Bashforth method, only one new function evaluation 

is required. 

Remark 23.3 The Adams-Moulton method with m steps has the consistency o rder
m+1.. It is well-defined, provided τ‖β‖1L < 1. with the uniform Lipschitz constant 
L with respect to the second argument of f .

Table 23.1 Coefficients of 
the Adams-Bashforth 
methods 

m β0 . β1 . β2 . β3 . 

1 1 

2 − 1/2. 3/2. 

3 5/12. − 16/12. 23/12. 

4 − 9/24. 37/24. − 59/24. 55/24.
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Table 23.2 Coefficients of the Adams-Moulton method for m = 1, . . . , 4. 

m β0 . β1 . β2 . β3 . β4 . 

1 1/2. 1/2. 

2 − 1/12. 8/12. 5/12. 

3 1/24. − 5/24. 19/24. 9/24. 

4 − 19/720. 106/720. − 264/720. 646/720. 251/720. 

23.4 Predictor-Corrector Method 

The Adams-Moulton and Adams-Bashforth methods can be combined into an 
explicit method, which retains the higher consistency order of the Adams-Moulton 
method. The idea is to perform a step of a fixed point iteration, the corrector step, for  
the Adams-Moulton method, where the initial value is determined by the Adams-
Bashforth method, that is, it results from a predictor step. 

Algorithm 23.1 (Adams-Bashforth-Moulton Method) Let y0 ∈ R., τ > 0. and 
f ∈ C0([0, T ] ×R). and m ∈ N.. Furthermore, let initial values y1, y2, . . . , ym−1 ∈
R. be given. Set k = 0. and K = �T/τ
.. 
(1) Determine the auxiliary value ỹk+m ∈ R. with the Adams-Bashforth method, 

that is, calculate 

. ̃yk+m = yk+m−1 + τ

m−1∑
�=0

βAB
� f (tk+�, yk+�).

(2) Perform a step of a fixed point iteration of the Adams-Moulton method with 
initial value ỹk+m ., that is, calculate 

. yk+m = yk+m−1 + τ

m−1∑
�=0

βAM
� f (tk+�, yk+�) + τβAM

m f (tk+m, ỹk+m).

(3) Stop if k + m > K .; otherwise increase k → k + 1. and repeat step (1). 

One iteration step of the Adams-Bashforth-Moulton method can be written, 
neglecting the arguments tk . and τ ., as  

. yk+m = yk+m−1 + τΦAM
(
yk, . . . ., yk+m−1, yk+m−1 + τΦAB(yk, . . . , yk+m−1)

)
,

thereby defining an explicit increment function ΦABM
., which is not linear. 

Proposition 23.2 Let the function f be uniformly Lipschitz continuous in the 
second argument. Then the Adams-Bashforth–Moulton method with m steps has 
the consistency order m + 1..
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Proof For a local solution z : [tk, tk+m] → R., due to the consistency order m + 1. 

of the Adams-Moulton method we have 

. 

τ C̃
(
tk, z(tk), τ

) = z(tk+m) − z(tk+m−1)

− τΦAM
(
z(tk), . . . ., z(tk+m−1), z(tk+m−1) + τΦAB

(
z(tk), . . . , z(tk+m−1)

))

= z(tk+m) − z(tk+m−1) − τΦAM
(
z(tk), . . . ., z(tk+m−1), z(tk+m)

)

+ τ
[
ΦAM

(
z(tk), . . . ., z(tk+m−1), z(tk+m)

)

− ΦAM
(
z(tk), . . . ., z(tk+m−1) + τΦAB

(
z(tk), . . . , z(tk+m−1)

))]

= z(tk+m) − z(tk+m−1) − τΦAM
(
z(tk), . . . ., z(tk+m)

) + τ [. . . ]
= O(τm+2) + τ [. . . ].

The uniform Lipschitz continuity of f or the increment function ΦAM
. with respect 

to the last argument shows 

. τ |[. . . ]| ≤ τL
∣∣z(tk+m) − z(tk+m−1) + τΦAB

(
tk, z(tk), . . . , z(tk+m−1)

∣∣.
Due to the consistency of order m of the Adams-Bashforth m ethod, τ |[. . . ]| =
O(τm+2). and thus the claimed consistency order follows. �	
Remark 23.4 More generally, an explicit method of consistency order pexpl . can 
be used to determine a starting value and subsequently ν . repetitions of a fixed point 
iteration with an implicit method of consistency order pimpl . can be performed. The 
resulting predictor-corrector method has the consistency order p = min{pexpl +
ν, pimpl}., see for example [9]. 

23.5 Learning Objectives, Quiz and Application 

You should be able to construct multistep methods, clarify their advantages and 
disadvantages compared to single-step methods and be able to give some examples. 
You should be able to derive a criterion for determining the consistency order of a 
multistep method. You should moreover be able to explain the ideas of combining 
explicit and implicit multistep methods into predictor-corrector methods. 

Quiz 23.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer.
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Fig. 23.3 The double 
pendulum consists of two 
combined pendulums 

Adams-Bashforth methods for m ≥ 1. define linear, implicit multistep methods with 
consistency order m + 1.. 

Necessary for the consistency p ≥ 1. of a multistep method is the condition ∑m
�=0 β� = 1.. 

The explicit Euler method is a multistep method with two steps. 

Predictor-corrector methods can be interpreted as implicit multistep methods. 

The use of the leapfrog method and the subsequent execution of 3 fixed point 
iterations with the Adams-Moulton method with m = 3. leads to a method of 
consistency order p = 5.. 

Application 23.1 Interacting oscillations often lead to undesirable effects such as 
the spilling of a liquid being transported in a vessel, or the strong shaking of a 
washing machine running at certain speeds. The mathematical description can in 
these cases lead to differential equations for which small changes in the data can 
have large effects on the solutions, which is also referred to as chaotic behaviour. 
Numerically, the processes are therefore usually only approximable for short periods 
of time. An example is the double pendulum, where another pendulum is attached to 
the arm of a pendulum, see Fig. 23.3. Let  φ1 . and φ2 .denote the deflection angles with 
respect to the respective rest positions. Then the pendulum movements in the case of 
equal masses and pendulum lengths and with a suitable scaling of the gravitational 
acceleration are described by the system of differential equations 

. 
2φ′′

1 + φ′′
2 cos(φ1 − φ2) + φ′

2 sin(φ1 − φ2) + 2 sin(φ1) = 0,

φ′′
2 + φ′′

1 cos(φ1 − φ2) − φ′
1 sin(φ1 − φ2) + sin(φ2) = 0

Simulate the system with the initial data φ1(0) = π/2., φ2(0) = 0., φ′
1(0) = 0., 

φ′
2(0) = 0. in the time interval [0, T ]. with T = 100.. Perturb the initial data and use 

different MATLAB routines for the numerical solution. Visualise your results.



Chapter 24 
Convergence of Multistep Methods 

24.1 Difference Equations 

For single-step methods, the consistency of a method already implies its conver-
gence. This is generally false for multistep methods. In these, the equation 

. 
1

τ

m∑

�=0

α�yk+� = 0

defines approximations of the trivial problem y′(t) = 0.. The following example 
shows that even a high order of consistency does not necessarily lead to meaningful 
approximations. In this chapter, we follow the presentations in [1, 8, 9]. 

Example 24.1 The multistep method defined by m = 2. and α2 = 1., α1 = 4., 
α0 = −5. and β2 = 0., β1 = 4., β0 = 2. 

. yk+2 + 4yk+1 − 5yk = τ
(
4f (tk+1, yk+1) + 2f (tk, yk)

)

has the order of consistency p = 3.. Thus, approximate solutions of the differential 
equation y′ = 0. satisfy yk+2 + 4yk+1 − 5yk = 0.. Solutions of this equation are 
given by linear combinations yk = γ1vk + γ2wk . of the special solutions 

. vk = λk
1, wk = λk

2,

where λ1 = 1. and λ2 = −5. are the roots of the polynomial q(λ) = λ2 + 4λ − 5.. 
For the initial values y0 = 1. and y1 = 1 + δ . we get γ1 = 1 + δ/6. and γ2 = −δ/6. 
and the solution 

. yk = 1 + δ/6 − (−5)kδ/6

© The Author(s), under exclusive license to Springer-Verlag GmbH, 
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Fig. 24.1 Unbounded 
solution of the difference 
equation 
yk+2 + 4yk+1 − 5yk = 0. 

is unbounded for any δ �= 0., see Fig. 24.1. Thus, the exact solution y(t) = 1. of the 
problem y′(t) = 0., y(0) = 1., is not meaningfully approximated. The initial value 
y1 = 1+ δ . can be interpreted as an approximation of y(t1). of a single-step method. 

Definition 24.1 Given α0, α1, . . . , αm ∈ R.with αm = 1., the equation 

. 

m∑

�=0

α�yk+� = 0

is called a (linear homogeneous) difference equation. A sequence (yk)k≥0 . is a 
solution of the difference equation if it is satisfied for every k ∈ N0 .. 

Remark 24.1 For every vector (yk)k=0,...,m−1 . of initial values, there exists a 
uniquely determined solution of a difference equation. 

The behaviour of solutions of the difference equation can be analysed using an 
eigenvalue problem. 

Lemma 24.1 A sequence (yk)k≥0 . is a solution of the difference equation defined by 
(α�)�=0,...,m . if and only if for the vectors 

. Yk = [yk, yk+1, . . . , yk+m−1]T

the relation Yk+1 = AYk . holds for k = 0, 1, . . . ., where the companion matrix 
A ∈ R

m×m
. is defined by 

. A =

⎡

⎢⎢⎢⎣

0 1
. . .

. . .

0 1
−α0 −α1 . . . −αm−1

⎤

⎥⎥⎥⎦ .

If A has the linearly independent eigenvectors v1, v2, . . . , vm ∈ R
m

.with associated 
eigenvalues λ1, λ2, . . . , λm . and γ1, γ2, . . . γm ∈ R. are the coefficients of the vector 
Y0 .with respect to this basis, then it follows 

. Yk = AkY0 =
m∑

j=1

λk
j γj vj .

The eigenvalues λ1, λ2, . . . , λm . are exactly the roots of the characteristic polyno-
mial q(λ) = λm + αm−1λ

m−1 + · · · + λα1 + α0 ..
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Proof Exercise. ��

24.2 Zero-Stability 

For a multistep method to lead to meaningful approximations, solutions of the 
associated homogeneous difference equation should be bounded. In the case of the 
diagonalisability of the companion matrix, this is the case, provided that |λi | ≤ 1. 
for i = 1, 2, . . . , m.. 

Definition 24.2 A linear, homogeneous difference equation is called zero-stable,  if  
every solution of the difference equation is bounded.

The following definition and the subsequent proposition define a sufficient and 
necessary criterion for the zero-stability of a difference equation. 

Definition 24.3 The polynomial q ∈ Pm . satisfies Dahlquist’s root condition,  if  
every root λ ∈ C. of q satisfies the estimate |λ| ≤ 1., and, in the case a given root λ. 

satisfies |λ| = 1., the root is simple. 

Remark 24.2 Multiple roots λ ∈ C. with |λ| ≥ 1. always lead to unbounded 
solutions, because if q(λ) = q ′(λ) = 0., then for yk = kλk

.,  it  follows  th  at

. 

m∑

�=0

α�yk+� = kλk
m∑

�=0

α�λ
� + λk+1

m∑

�=0

α��λ
�−1 = kλkq(λ) + λk+1q ′(λ) = 0.

If the characteristic polynomial of the companion matrix of a difference equation 
satisfies Dahlquist’s root condition, then the equation is zero-stable and conse-
quently its solutions are bounded. 

Proposition 24.1 Assume that the characteristic polynomial q(z) = zm +
αm−1z

m−1 + · · · + α1z + α0 . of the companion matrix A satisfies Dahlquist’s root 
condition. Then there exists a regular matrix R ∈ C

m×m
., such that, with the norm 

‖ · ‖R : x 
→ ‖Rx‖∞ . and the induced operator norm ‖B‖R = sup‖x‖R=1 ‖Bx‖R ., 
we have ‖A‖R ≤ 1.. 

Proof Let λ1, λ2, . . . , λr ∈ C. be the complex eigenvalues of A with multiplicities
s1, s2, . . . , sr .. The main theorem about the Jordan normal form implies the existence 
of a regular matrix T ∈ C

m×m
. and of matrices Ji ∈ C

si×si ., i = 1, 2, . . . , r ., such 
that 

.T −1AT = J =

⎡

⎢⎢⎢⎣

J1

J2
. . .

Jr

⎤

⎥⎥⎥⎦ , Ji =

⎡

⎢⎢⎢⎢⎣

λi 1
. . .

. . .

. . . 1
λi

⎤

⎥⎥⎥⎥⎦
.
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If a Jordan block of size si ≥ 2. and consequently an eigenvalue |λi | < 1. exists, 
define 

. ε = min
{
1 − |λi | : i = 1, 2, . . . , r, |λi | < 1

}
,

and otherwise set ε = 1..  Let D ∈ R
m×m

. be the diagonal matrix with the entries 
djj = εj−1

. for j = 1, 2, . . . , m.. Then we have 

. ̃J = D−1T −1AT D =

⎡

⎢⎢⎢⎣

J̃1

J̃2
. . .

J̃r

⎤

⎥⎥⎥⎦ , J̃i =

⎡

⎢⎢⎢⎢⎣

λi ε

. . .
. . .

. . . ε

λi

⎤

⎥⎥⎥⎥⎦
.

For the row sum norm of the scaled Jordan blocks J̃i . we have due to the choice of 
ε ., that ‖J̃i‖∞ ≤ 1., and it follows ‖J̃‖∞ ≤ 1.. With R = D−1T −1

. it follows for the 
induced operator norm with the replacement y = D−1T −1x ., that 

. ‖A‖R = sup
‖x‖R=1

‖Ax‖R = sup
‖D−1T −1x‖∞=1

‖D−1T −1Ax‖∞

= sup
‖y‖∞=1

‖D−1T −1AT Dy‖∞ ≤ ‖J̃‖∞.

This proves the claim. ��
Example 24.2 For Adams methods, we have αm = 1., αm−1 = −1. and α� = 0. 
otherwise, so that the characteristic polynomial q(z) = zm − zm−1

. has the (m − 1).-
fold zero λ = 0. as well as the simple zero λ = 1.. Consequently, Adams methods are 
zero-stable. Similarly, the general zero-stability of single-step methods is obtained. 

24.3 Convergence 

For a multistep method, the zero-stability of the associated difference equation is a 
necessary criterion for the convergence of the method. Every multistep method 

. 

m∑

�=0

α�yk+� = τΦ(tk, yk, yk+1, . . . , yk+m, τ)

can be represented with the vectors Yk ∈ R
m

., k = 0, 1, . . . , K − m + 1., and the 
function Ψ : [0, T ] × R

m × R
m×R → R

m
. defined by
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. 
Yk = [yk, yk+1, . . . , yk+m−1]T,

Ψ (tk, Yk, Yk+1, τ ) = [0, . . . , 0, Φ(tk, yk, yk+1, . . . , yk+m, τ)]T

as well as the companion matrix A ∈ R
m×m

. in the form 

. Yk+1 = AYk + τΨ (tk, Yk, Yk+1, τ ),

This is the structure of a single-step method and an error analysis can be carried 
out similarly. The validity of Dahlquist’s root condition allows the influence of the 
matrix A to be controlled.

Proposition 24.2 Suppose that the multistep method 

. 

m∑

�=0

α�yk+� = τΦ(tk, yk, yk+1, . . . , yk+m, τ)

is consistent of order p and the polynomial q(z) = zm + αm−1z
m−1 + · · · + α1z +

α0 . satisfies Dahlquist’s root condition. Furthermore, assume that Φ . is uniformly 
Lipschitz continuous in the arguments yk, . . . , yk+m ., that is, there exists a constant 
L ≥ 0. such that for all t ∈ [0, T ]., v,w ∈ R

m+1
. and τ > 0.we have 

. 
∣∣Φ(t, v0, . . . , vm, τ ) − Φ(t,w0, . . . , wm, τ)

∣∣ ≤ L
(|v0 − w0| + · · · + |vm − wm|).

If the initial values y0, y1, . . . , ym−1 . are chosen such that 

. max
k=0,...,m−1

|yk − y(tk)| ≤ C0τ
p

with a constant C0 ≥ 0. independent of τ ., then there exist constants C1, C2, C3 . such 
that 

. max
k=0,1,...,K

|yk − y(tk)| ≤ C1T τp exp(C2LT )

for all 0 < τ ≤ C3 .. 

Proof In this proof, c stands for a constant that can increase from step to step, but 
does not depend on τ . and K .  For k = 0, 1, . . . , K . let ek = yk − y(tk).. By definition 
of the consistency term C̃k = C̃ (tk, y(tk), τ ).we have 

.

m∑

�=0

α�ek+� = τ
[
Φ

(
tk, yk, . . . , yk+m, τ

) − Φ
(
tk, y(tk), . . . , y(tk+m), τ

) − C̃k

]
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for k = 0, 1, . . . , K −m. and let τrk . be the right-hand side. The Lipschitz continuity 
of Φ . and the consistency of the method imply that 

. τ |rk| ≤ τL

m∑

�=0

|ek+�| + cτp+1.

With the vectors 

. Ek = [ek, ek+1, . . . , ek+m−1]T, Gk = [0, . . . , 0, rk]T

and the companion matrix A it follo ws

. Ek+1 = AEk + τGk.

Let ‖ · ‖R . be a norm on Rm
. such that ‖A‖R ≤ 1. with the induced operator norm. 

The equivalence of norms on the vector space Rm
. shows that 

. ‖τGk‖R ≤ cτ |rk| ≤ cτp+1 + cτL

m∑

�=0

|ek+�| ≤ cτL
(‖Ek+1‖R + ‖Ek‖R

) + cτp+1.

With the scheme for the vectors Ek ., it follows that 

. 
‖Ek+1‖R ≤ ‖AEk‖R + ‖τGk‖R ≤ ‖A‖R‖Ek‖R + cτ |rk|

≤ ‖Ek‖R + cτL
(‖Ek‖R + ‖Ek+1‖R

) + cτp+1

or 

. (1 − c′τL)‖Ek+1‖R ≤ (1 + c′τL)‖Ek‖R + c′′τp+1.

Subtracting (1 − c′τL)‖Ek‖R . from both sides leads to 

. ‖Ek+1‖R − ‖Ek‖R ≤ 4c′τL‖Ek‖R + 2c′′τp+1,

where c′τL ≤ 1/2. or 1 − c′τL ≥ 1/2. was assumed. With c1 = c′
., c2 = 4c′

. and 
c3 = 2c′′

. and a summation of this equation over k = 0, 1, . . . , K ′
.with K ′ ≤ K −m. 

results in 

. ‖EK ′+1‖R ≤ ‖E0‖R + c2τL

K ′∑

k=0

‖Ek‖R + c3τ
p+1K ′.

The discrete Gronwall lemma and K ′τ ≤ T . show that
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. max
k=0,1,...,K−m+1

‖Ek‖R ≤ (‖E0‖R + c3T τp
)
exp

(
c2LT

)
.

Since ‖E0‖R ≤ cτp
. and |ek+�| ≤ c‖Ek‖R . for k = 0, 1, . . . , K − m + 1. and 

� = 0, 1, . . . , m − 1. the claimed estimate follows. ��
Remark 24.3 A two-step method with quadratic consistency can be initialized with 
the implicit or explicit Euler method. If, e.g., y1 . is obtained via the explicit scheme 
y1 = y0 + τf (0, y0). then, noting the consistency error 

. y(τ) − y0 − τf (0, y0) = y(τ) − y(0) − τy′(0) = τ 2

2
y′′(ξ)

for some ξ ∈ [0, τ ]., we find that y1−y(t1) = O(τ 2).. In the convergence analysis for 
the Euler schemes one factor τ . is needed to control the accumulation of consistency 
errors over several steps tk = kτ ., k = 1, 2, . . . , K .. 

24.4 Learning Objectives, Quiz and Application 

You should be able to specify stability problems of multistep methods and explain 
Dahlquist’s root condition. You should be able to provide a proof sketch for the 
derivation of error estimates for multistep methods. 

Quiz 24.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

Zero stability is a necessary criterion for the convergence of a multistep method of 
positive consistency order. 

Every single-step method satisfies Dahlquist’s root condition. 

The validity of Dahlquist’s root condition for a multistep method implies the zero 
stability of the associated difference equation. 

The recursion formula yk+2 = yk+1 − (1/4)yk . is zero-stable. 

If a multistep method satisfies Dahlquist’s root condition, then for the associated 
companion matrix 
(A) < 1.. 

Application 24.1 The simulation of electrical circuits allows the prediction of the 
voltages falling on the components. As an example, we consider an RLC circuit, 
which consists of a resistor, an inductor and a capacitor, as shown in Fig. 24.2. 
According to Ohm’s law, the voltage drop across the resistor UR . is proportional 
to the current IR .flowing through it, i.e. UR = RIR .. The current IC .flowing through 
the capacitor is proportional to the voltage change, that is, IC = CU ′

C ..  On  the  
other hand, the voltage drop UL . at the coil is proportional to the current change, 
that is, UL = LI ′

L .. Kirchhoff’s laws state that the sum of the currents flowing
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Fig. 24.2 Diagram of an 
RLC circuit 

U(t) 
L 

C 
R 

through a node of a circuit is zero and that the sum of the voltages belonging to a 
mesh disappears. For the RLC circuit with time-dependent voltage source U(t).,  the  
equations are t herefore

. 
U(t) = UR(t) + UL(t) + UC(t),

I (t) = IR(t) = IL(t) = IC(t).

Derive the differential equation 

. I ′′ + R

L
I ′ + 1

LC
I = U ′

for the current I (t).flowing through the circuit and simulate this for the initial values 
I (0) = 0A., I ′(0) = 0.5A/s., the proportionality factors R = 47Ω ., L = 20mH., 
C = 0.1μF. and the alternating voltage U(t) = sin(50 · 2πt)230V.. Solve the 
initial value problem with various MATLAB routines and test other values of the 
capacitance. Present the voltages UR ., UL . and UC . as functions of time in the interval 
[0, T ].with T = 10ms. comparatively in a graph.



Chapter 25 
Stiff Differential Equations 

25.1 Stiffness 

The convergence studies of the Euler methods in the important special case y′ =
λy . show that error estimates for the explicit method are valid under a condition 
τ |λ| ≤ c., while this condition is not necessary for the implicit variant if λ < 0..  In  
applications, differential equations of the form y′ = Ay . occur, where the matrix A 
has negative eigenvalues. Implicit methods are particularly well suited for this class. 
In this chapter, we follow the presentations in [1, 7, 8]. 

Example 25.1 For λ < 0., the solution of the initial value problem 

. y′ = λy, y(0) = y0,

is given by y(t) = y0e
λt

. and it holds that |y(t)| ≤ |y0|. for all t ≥ 0. 

(a) With the explicit Euler method, we get yk = (1 + τλ)ky0 ., k ≥ 0., and this 
sequence is bounded exactly when |1 + τλ| ≤ 1. holds, thus when τ ≤ 2/|λ|. 
holds. 

(b) With the implicit Euler method, we get yk = (1 − τλ)−ky0 ., k ≥ 0., and since 
1 − τλ ≥ 1. holds, the sequence is bounded for any choice of τ > 0.. 

The difficulties of explicit methods become even more apparent in systems of 
differential equations. 

Example 25.2 For λ1, λ2 < 0., the bounded solution of the system 

. 

[
y1

y2

]′
= 1

2

[
λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

] [
y1

y2

]
,

[
y1(0)
y2(0)

]
=

[
2
0

]
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is given by 

. 

[
y1(t)

y2(t)

]
=

[
eλ1t + eλ2t

eλ1t − eλ2t

]
.

With the explicit Euler method, the approximations are 

. 
y1,k = (1 + τλ1)

k + (1 + τλ2)
k,

y2,k = (1 + τλ1)
k − (1 + τλ2)

k,

and the sequence (y1,k, y2,k)k≥0 . is bounded exactly when |1 + τλ1| ≤ 1. and 
|1 + τλ2| ≤ 1. hold. For example, if λ1 = −1. and λ2 = −10α

. with α ≥ 2. the 
contributions eλ2t = e−10αt

. to the exact solution are negligible for t ≥ 10−α/2
.,  but  

the time step size is determined by λ2 . in the form τ ≤ 2/|λ2| = 2 · 10−α
.. 

The occurrence of large negative eigenvalues in a differential equation leads to 
the concept of stiffness. 

Definition 25.1 The differential equation y′ = f (t, y). is called stiff, if the Jacobian 
matrix Df (t, y) ∈ R

n×n
. with respect to the argument y has an eigenvalue λ ∈ C. 

with the property Re(λ) � 0. for some t ≥ 0. and y ∈ R
n
.. 

Remark 25.1 The local behaviour of a solution y at time t∗ ≥ 0. is described by the 
matrix A = Df (t∗, y(t∗)). and its eigenvalues, particularly in terms of perturbations. 
The function z defined by y(t∗ + s) = y(t∗) + z(s). satisfies for small values s ≥ 0. 
in the case of an autonomous equation the linear differential equation 

. z′(s) = y′(t∗ + s) = f (y(t∗) + z(s)) ≈ f (y(t∗)) + Az(s),

where initial values z(0) = z0 . are considered to assess the effects of perturbations. 
If A is diagonalisable and the eigenvalues have exclusively negative real parts, then 
the solution y is stable in the sense that small perturbations do not lead to large 
changes in the solution.

25.2 A-Stability 

The following concept of stability is used to identify suitable numerical methods for 
stiff differential equations. 

Definition 25.2 A numerical method is called A-stable or unconditionally stable,  if  
for every complex diagonalisable matrix A ∈ R

n×n
.whose eigenvalues all have non-

positive real parts, the approximations (yk)k≥0 . of the differential equation y′ = Ay . 

defined by the method are bounded for all initial data and all time step sizes τ > 0..
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Due to the diagonalisability of the matrix A, it is sufficient to consider scalar 
equations in which A is replaced by a number λ ∈ C. with Re(λ) ≤ 0. to prove 
A-stability. 

Example 25.3 The implicit Euler method is A-stable, but the explicit Euler method 
is not. 

The A-stability of single-step methods can be analysed using so-called stability 
functions. 

Definition 25.3 A function g : S → C. with S ⊂ C. is called stability function 
of the single-step method defined by the increment function Φ ., if for all λ ∈ C., 
y0 ∈ R., τ > 0. with τλ ∈ S . and all k ∈ N0 . for the approximations of the initial 
value problem y′ = λy ., y(0) = y0 .,  we  ha  ve

. yk+1 = yk + τΦ(tk, yk, yk+1, τ ) = g(τλ)yk.

Necessary and sufficient for the A-stability of a method is that |g(z)| ≤ 1. for all 
z ∈ C.with Re(z) ≤ 0.. 

Examples 25.4 

(i) For the explicit Euler method, g(z) = 1 + z.. 
(ii) For the implicit Euler method, g(z) = 1/(1 − z).. 
(iii) For the trapezoidal or midpoint method, Φ(t, yk, yk+1, τ ) = λ(yk + yk+1)/2. 

and thus g(z) = (2 + z)/(2 − z).. 

For Runge–Kutta methods, a closed formula for the stability function can be 
given. 

Lemma 25.1 Let α ∈ R
m

., β ∈ R
m×m

. and γ ∈ R
m

. be the coefficients of a 
Runge–Kutta method. Then, with the vector e = [1, 1, . . . , 1]T ∈ R

m
., the associated 

stability function is given by 

. g(z) = 1 + zγ T(Im − zβ)−1e.

For strict lower triangular matrices β ., g is well-defined for all z ∈ C.. 

Proof For Runge–Kutta methods, yk+1 = yk + τγ Tηk
. applies with the solution 

ηk = [ηk
1, η

k
2, . . . , η

k
m]T ∈ R

m
. of the system of equations 

. ηk
	 = f

(
tk + τα	,yk + τ

m∑
j=1

β	jη
k
j

)

for 	 = 1, 2, . . . , m.. In the special case f (t, y) = λy ., we get 

.ηk = λ(yke + τβηk)
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or ηk = (Im − λτβ)−1(λyke)., from which the claimed identity for g follows. I f β . 

is a strict lower triangular matrix, then the matrix Im − zβ . is invertible for every 
z ∈ C.. ��

By forward substitution, polynomial expressions are obtained in the case 
of explicit Runge–Kutta methods. For implicit methods, rational functions are 
obtained. 

Example 25.5 The classic Runge–Kutta method is defined by m = 4. as well as 
α = [0, 1/2, 1/2, 1]T ., γ = [1, 2, 2, 1]T/6. and β ∈ R

4×4
. with the non-vanishing 

entries β21 = β32 = 1/2. and β43 = 1.. This results in 

. g(z) = 1 + z + z2

2
+ z3

6
+ z4

24
.

Various statements can be derived from the stability function of a single-step 
method. 

Proposition 25.1 Let g : S → C. be the stability function of a single-step method 
with the property that {z ∈ C : Re(z) ≤ 0} ⊂ S .. 

(i) The method is A-stable if and only if |g(z)| ≤ 1. for all z ∈ C.with Re(z) ≤ 0.. 
(ii) In the case of an explicit Runge–Kutta method, lim|z|→∞ |g(z)| = ∞., i.e. 

explicit Runge–Kutta methods are not A-stable. 
(iii) If the method is consistent of order p ≥ 0., then |ez − g(z)| ≤ c|z|p+1

. for 
0 < |z| ≤ c.. 

Proof 

(i) If |g(z)| ≤ 1., then the boundedness of the sequence yk = g(τλ)ky0 ., k ∈ N., 
immediately follows, and obviously this condition is also necessary. 

(ii) For explicit Runge–Kutta methods, it follows from the representation g(z) =
1+zγ T(Im−zβ)−1e. and Cramer’s rule, that g is a polynomial in z, from which 
the claim follo ws.

(iii) Let λ ∈ C. with |λ| = 1.. For the solution y(t) = etλ
., of the initial value 

problem y′ = λy ., y(0) = 1., and the approximation y1 = g(τλ)y0 = g(τλ).,  it  
follows with the definition of the consistency term, that

. |eτλ − g(τλ)| = |y(τ) − y1| ≤ cτp+1 =c|τλ|p+1

for all 0 < τ ≤ c′
. applies. With z = τλ., the claim follows. 

��
If a polynomial g ∈ Pm . satisfies |g(z) − ez| ≤ c|z|p+1

., then the first p + 1. 
coefficients of g coincide with those of the exponential f unction.

Corollary 25.1 An m-stage, explicit Runge–Kutta method has at most consistency 
order m.
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Table 25.1 Overview of various stability concepts 

Stability concept Test equation Meaning Example 

Zero-stability y′ = 0. Necessary convergence criterion Adams method 

A-stability y′ = λy . Avoidance of a step size condition Trapezoidal method 

L-stability y′ = λy . Numerical damping property Implicit Euler method 

Proof The stability function is a polynomial of degree m and this can approximate 
the function ez

. at most up to an error O(zm+1).. ��
The unconditional boundedness of approximations is a meaningful requirement 

for numerical methods. In some situations, however, too rapid decay of the 
approximation solutions can be undesirable. For the implicit Euler method, for 
example, we have |g(z)| → 0. for z → −∞., which leads to a strong damping 
behaviour for large step sizes. For the trapezoidal method, on the other hand, 
|g(z)| → 1. for |z| → ∞., so no numerical damping for large time step sizes occurs, 
but oscillations must be expected. 

Definition 25.4 A single-step method is called L-stable,  if  it  is  A-stable and in
addition limRe(z)→−∞ g(z) = 0. holds. 

The A-stability property thus describes the unconditional stability of a method 
and the L-stability property indicates additional damping properties of the method 
for large step sizes. An overview of various stability concepts is shown in Table 25.1. 

Remarks 25.2 

(i) The implicit Euler method is L-stable. 
(ii) The trapezoidal method is A-stable, but not L-stable. 

25.3 Gradient Flows 

An important class of stiff differential equations are gradient flows, in which the 
right-hand side is given by the negative gradient of a function, i.e. autonomous 
differential equations of the form 

. y′(t) = −∇G
(
y(t)

)
, y(0) = y0,

with a given function G ∈ C1(Rn).. These initial value problems can be interpreted 
as continuous descent methods for the minimisation of the function G.  The  value  
of the function G is reduced along the path t �→ y(t)., because if one multiplies the 
differential equation with − y′(t).,  it  follo  ws

. − ‖y′(t)‖2 = −y′(t) · y′(t) = ∇G
(
y(t)

) · y′(t) = d

dt
G

(
y(t)

)
.



222 25 Stiff Differential Equations

If the function G is coercive, i.e. G(w) → ∞. for |w| → ∞.,  it  follows  that  
solutions remain bounded and are defined for all t ∈ [0,∞).,  even  if G′

. is not 
globally Lipschitz continuous. If G is μ.-convex, i.e. there exists a number μ > 0. 
such that G(s)+ (μ/2)|s|2 . is convex, then the implicit Euler method is well-defined 
and stable for τ < 1/μ.. Note that gradient flows in general do not define linear 
differential equations of the form y′ = Ay .. 

Proposition 25.2 Let G ∈ C2(Rn). be μ.-convex. For 0 < τ < μ−1
. and y0 ∈ R

n
., 

the sequence 

. yk+1 = yk − τ∇G(yk+1)

is uniquely defined and for all 	 ≥ 0.we have 

. G(y	) + 1

2τ

	−1∑
k=0

‖yk+1 − yk‖2 ≤ G(y0).

Proof Let yk ∈ R
n
. for a k ≥ 0. be given. The mapping 

. Hk+1(s) = 1

2τ
‖s − yk‖2 + G(s)

is strictly convex for 0 < τ < μ−1
., i.e. D2Hk+1(s). is positive definite for all 

s ∈ R
n
., and its unique minimum yk+1 ∈ R

n
. is attained in a compact set Br(0)..  For  

this the optimality condition applies

. 0 = ∇Hk+1(yk+1) = 1

τ
(yk+1 − yk) + ∇G(yk+1).

With the convexity property 

. ∇Hk+1(v)(w − v) + Hk+1(v) ≤ Hk+1(w),

which holds for all v,w ∈ R
n
., it follows with v = yk+1 . and w = yk ., that 

. G(yk+1) + 1

2τ
‖yk+1 − yk‖2 ≤ G(yk)

and the summation of this estimate over k = 0, 1, . . . , 	 − 1. proves the claim. ��
Remarks 25.3 

(i) From coercivity or growth properties of G it follows, that yk+1 − yk → 0. for 
k → ∞., and thus the convergence yk	

→ y∗ . of a subsequence to a stationary 
point or a minimum y∗ . of G, i.e. ∇G(y∗) = 0.. 

(ii) Note that no Lipschitz continuity of ∇G.was assumed.
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(iii) The equation yk+1 = yk − τ∇G(yk+1). is solved with a fixed point iteration or 
the Newton method. 

(iv) If G is given as the sum of a convex and a concave function, i.e. G = Gcx +
Gcv

., then the implicit-explicit method 

. yk+1 = yk − τ∇Gcx(yk+1) − τ∇Gcv(yk)

is preferable to the implicit method due to the better solvability with the 
Newton method. Often, semi-implicit methods based on the linearisation 
∇G(yk+1) ≈ ∇G(yk) + D2G(yk)(yk+1 − yk)., i.e. 

. yk+1 = yk − τ
[∇G(yk) − D2G(yk)(yk+1 − yk)

]

provide a good alternative to the implicit method. This corresponds exactly to 
the execution of one step of the Newton method for the implicit scheme. 

25.4 Heat Equation 

Stiff differential equations occur in the spatial discretisation of parabolic partial 
differential equations such as the heat equation. In a one-dimensional situation, a 
function u : [0, T ] × [a, b] → R. is sought, which solves the initial boundary value 
problem 

. 

∂tu(t, x) − κ∂2xu(t, x) = f (t, x) (t, x) ∈ (0, T ] × (a, b),

u(0, x) = u0(x) x ∈ [a, b],
u(t, a) = 0, u(t, b) = 0 t ∈ (0, T ]

where the right-hand side f ∈ C0([0, T ] × [a, b]). and the initial values u0 ∈
C0([a, b]). are given. The function u describes the temperature distribution in a thin 
metal wire, whose ends are constantly kept at temperature 0 and at time t = 0. 
has the temperature distribution u0 .. The right-hand side f describes possible heat 
sources and sinks in the wire. Similar to the approximation of a first derivative, a 
second derivative can be approximated with a difference quotient. For a step s ize
h > 0.we have 

. 
u(x − h) − 2u(x) − u(x + h)

h2
= u′′(x) + O(h2).

With the spatial step size h = (b − a)/M . and the grid points xj = a + jh., j =
0, 1, . . . ,M . and a time step size τ > 0. and the time steps tk = kτ ., k = 0, 1, . . . , K ., 
approximations 

.Uk
j ≈ u(tk, xj )
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are sought. Replacing the time derivative and the second spatial derivative with 
difference quotients leads to the identities 

. 
1

τ

(
Uk+1

j − Uk
j

) − κ

h2

(
Uk+1

j−1 − 2Uk+1
j − Uk+1

j+1

) = Fk+1
j

for k = 0, 1, . . . , K − 1., j = 1, 2, . . . ,M − 1. and Fk+1
j = f (tk+1, xj )..  At  

the boundary nodes, the boundary conditions Uk+1
0 = Uk+1

M = 0. are used. The 
equations for j = 1, 2, . . . , M − 1. can be written simultaneously as 

. 
1

τ

⎡
⎢⎢⎢⎣

Uk+1
1

Uk+1
2
...

Uk+1
M−1

⎤
⎥⎥⎥⎦ − κ

h2

⎡
⎢⎢⎢⎢⎣

−2 1

1
. . .

. . .

. . .
. . . 1
1 −2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Uk+1
1

Uk+1
2
...

Uk+1
M−1

⎤
⎥⎥⎥⎦ = 1

τ

⎡
⎢⎢⎢⎣

Uk
1

Uk
2
...

Uk
M−1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Fk+1
1

Fk+1
2
...

F k+1
M−1

⎤
⎥⎥⎥⎦ .

With the vectors Û k = [Uk
1 , Uk

2 , . . . , Uk
M−1]T . and Fk = [Fk

1 , F k
2 , . . . , F k

M−1]T . this 
is equivalent to 

. ̂Uk+1 = Û k + τ
( κ

h2
AÛk+1 + Fk+1

)

for k = 0, 1, . . . , K − 1. with the initial data Û0 = [u0(x1), . . . , u0(xM−1)]T ..  This  
can be interpreted as an implicit time discretisation of a system of linear differential 
equations, that is of the initial value problem

. U ′(t) = κ

h2
AU(t) + F(t), U(0) = Û0,

with the symmetric and negative definite matrix A ∈ R
(M−1)×(M−1)

. for which 
cond2(A) ∼ h−2

. applies, that is, a stiff differential equation. 

25.5 Learning Objectives, Quiz and Application 

You should be aware of the problems of explicit methods with stiff differential 
equations and you should be able to name and explain terms for categorising the 
stability of a numerical method. You should be able to define gradient flows and 
prove the basic properties of the application of the implicit Euler method. 

Quiz 25.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer.
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The differential equation y′ = e5t sin(y). is stiff. 

The explicit Euler method is A-stable and the implicit Euler method L-stable. 

The trapezoidal method is consistent of order p = 2. and A-stable. 

The stability function of every explicit Runge–Kutta method is unbounded. 

The Richardson method for the iterative solution of Ax = b. corresponds to the 
application of the explicit Euler method on y′ = −(Ay − b).. 

Fig. 25.1 Diffusion 
processes strive for a state of 
equilibrium 

y1 G xG y2 G 

Application 25.1 Heat conduction and diffusion processes are balancing processes 
that aim for a stationary, i.e. a temporally invariant state. For a mathematical 
description, we consider a metal body and model it as a uniform particle grid. To 
achieve a balancing effect, we use the assumption that the change in temperature at 
each internal grid point is proportional to the deviation of the temperature from the 
average of the temperatures at the neighbouring points, i.e. 

. ∂t θ(t, xG) = − κ

h2

(
θ(t, xG) − 1

|N (xG)|
∑

yG∈N (xG)

θ(t, yG)
)
,

where N (xG). denotes the set of neighbouring points of xG . with cardinality 
|N (xG)|. and h is the grid size, see F ig. 25.1. At the boundary points, the 
temperature is given by the value 0 and at the time t = 0. by values θ0(xG).. 

(i) Show that the right-hand side of the differential equation in the case of a twice 
continuously differentiable function θ . for h → 0. converges to κθ ′′(t, xG). or 
κΔθ(t, xG).. 

(ii) Show that the heat conduction process can be formulated as a system of 
differential equations Y ′ = AY . in (0, T ]. with initial condition Y (0) = Y0 . 

and specify the matrix A for the case of a metal plate, which is described as a 
uniform grid of the domain (0, 1)2 .. 

(iii) Use the grid size h = 1/20. as well as the implicit and explicit Euler method 
with different time step sizes and randomly generated initial data. Assess for 
which step sizes you obtain useful approximations and whether it is a stiff 
differential equation.



Chapter 26 
Step Size Control 

26.1 A Posteriori Error Control 

We next derive an error estimate that depends on the calculated approximations and 
the non-constant step sizes. The estimate allows for an optimal local adjustment of 
the step sizes on particular features of solutions and thus leads to efficient methods, 
see Fig. 26.1. 

The sequence (yk)k=0,...,K . is defined by the implicit Euler method 

. yk+1 = yk + τk+1f (yk+1)

with possibly non-constant step sizes τk+1 = tk+1 − tk > 0.. We identify τ .with the 
sequence (τk)k=1,...,K . and assume that tK = T .. 

Definition 26.1 The affine-linear interpolant ŷτ : [0, T ] → R. is defined for t ∈
[tk, tk+1]., k = 0, 1, . . . , K − 1.,  b  y

. ̂yτ (t) = t − tk+1

tk − tk+1
yk + t − tk

tk+1 − tk
yk+1.

The piecewise constant interpolant yτ : [0, T ] → R. is defined for t ∈ (tk, tk+1]., 
k = 0, 1, . . . , K − 1.,  b  y

. yτ (t) = yk+1.

The interpolants are exemplarily shown in Fig. 26.2. 
By definition of ŷτ .,  for t ∈ (tk, tk+1). 

. ̂y′
τ (t) = 1

τk+1
(yk+1 − yk)
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Fig. 26.1 Adaptive control 
of local step sizes 

t0 t1 . . .  

Fig. 26.2 Piecewise linear 
and piecewise constant 
interpolants of given 
approximation values 

and with the definition of yτ ., it follows that the implicit Euler method can be written 
for all t ∈ (tk, tk+1). in the form 

. ̂y′
τ (t) = f

(

yτ (t)
) = f

(

ŷτ (t)
) + (

f
(

yτ (t)
) − f

(

ŷτ (t)
))

.

The function ŷτ . therefore solves the autonomous equation y′ = f (y). outside the 
time steps (tk)k=1,2,...,K−1 . up to the residual 

. Rτ = f (ŷτ ) − f (yτ ).

This observation can be quantified and leads to an a posteriori error estimate. 

Proposition 26.1 Let f : R → R. be Lipschitz continuous with constant L ≥ 0. and 
y ∈ C1([0, T ]). the solution of the initial value problem y′ = f (y)., y(0) = y0 .. Then 

. sup
t∈[0,T ]

|y(t) − ŷτ (t)|2 ≤ L

3

(
K−1
∑

k=0

τk+1
∣

∣yk+1 − yk

∣

∣

2
)

exp
(

3LT
)

.

Proof Subtracting the identities 

. y′ = f (y), ŷ′
τ = f (ŷτ ) + (

f (yτ ) − f (ŷτ )
)

shows that the error eτ = y − ŷτ . satisfies the equation 

. e′
τ = (

f (y) − f (ŷτ )
) − (

f (yτ ) − f (ŷτ )
)

Multiplying this equation by e and using the product rule (|eτ |2)′ = 2e′
τ eτ ., we find 

that 

.

d

dt

1

2
|eτ |2 = e′

τ eτ = (

f (y) − f (ŷτ )
)

eτ − (

f (yτ ) − f (ŷτ )
)

eτ

≤ L|eτ |2 + L|̂yτ − yτ ||eτ |.
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With the inequality 2ab ≤ a2 + b2 . it follows 

. 

d

dt

1

2
|eτ |2 ≤ L|eτ |2 + L

2
|̂yτ − yτ |2 + L

2
|eτ |2

= 3L

2
|eτ |2 + L

2
|̂yτ − yτ |2.

Since e is continuous and piecewise differentiable, the integration of this inequality 
over (0, t). shows that 

. |eτ (t)|2 − |eτ (0)|2 ≤ 3L
∫ t

0
|eτ (s)|2 ds + L

∫ T

0
|̂yτ (s) − yτ (s)|2 ds.

Using that eτ (0) = 0., an application of the Gronwall lemma implies that for all 
t ∈ [0, T ].we have 

. |eτ (t)|2 ≤ L
(

∫ T

0
|̂yτ (s) − yτ (s)|2 ds

)

exp
(

3LT
)

.

On each interval (tk, tk+1).we have 

. 

ŷτ (s) − yτ (s) = 1

τk+1

(

(tk+1 − s)yk + (s − tk)yk+1
) − tk+1 − tk

τk+1
yk+1

= s − tk+1

τk+1
(yk+1 − yk).

This leads to 

. 

∫ T

0
|̂yτ (s) − yτ (s)|2 ds =

K−1
∑

k=0

(yk+1 − yk)
2

τ 2k+1

∫ tk+1

tk

(tk+1 − s)2 ds

=
K−1
∑

k=0

(yk+1 − yk)
2

τ 2k+1

τ 3k+1

3
.

This proves the assertion. ��
Remark 26.1 The estimate of the proposition is called a posteriori error estimate, 
since it bounds the approximation error y − ŷτ . after the calculation of the numerical 
solution by computable quantities.
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26.2 Adaptive Algorithm 

The a posteriori error estimate allows for an adaptive adjustment of the time step 
sizes, that is the step size τk+1 . should be reduced until the error indicator defined by 
ηk+1 = |yk+1−yk|. satisfies the estimate ηk+1 ≤ δ .with a given tolerance δ . satisfied. 
Conversely, an inequality ηk+1 ≤ δ .motivates the enlargement of the step size in the 
following time step. 

Algorithm 26.1 (Step Size Control) Let δ > 0., y0 ∈ R. and τ1 > 0.. Set k = 0. 
and t0 = 0.. 

(1) Compute yk+1 . using 

. yk+1 = yk + τk+1Φ
(

tk, yk, yk+1, τk+1
)

.

(2) If ηk+1 > δ ., then set τk+1 → τk+1/2. and repeat (1). 
(3) Stop if tk+1 = tk + τk+1 = T .; otherwise increase k → k + 1.,  se  t τk+1 =

min{2τk, T − tk}., and repeat step (1). 

26.3 Control Procedure 

If no a posteriori error estimation is available, an alternative possibility for step 
size control is obtained via the use of a so-called control procedure.  This  is  
based on an additional scheme of higher consistency order than the actually used 
method. If (yk)k=0,...,K . are approximations of order O(τp). and (ỹk)k=0,...,K . are 
approximations of order O(τ q).with q > p ., then it follows 

. |y(tk) − yk| ≤ |y(tk) − ỹk| + |̃yk − yk| = O(τ q) + |̃yk − yk|.

With the reverse triangle inequality, |a| − |b| ≤ |a − b|., one also obtains 

. |̃yk − yk| − O(τ q) = |̃yk − yk| − |̃yk − y(tk)| ≤ |yk − y(tk)|.

Overall, up to terms of order O(τ q)., we have that 

. |y(tk) − yk| ≈ ηk = |̃yk − yk|,

that is, the computable quantity ηk . approximates the actual error up to terms of 
higher order.
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26.4 Extrapolation 

An extrapolated scheme can serve as a control procedure for step size control. For 
the approximations (yτ

k )k=0,...,K . of the exact solution y : [0, T ] → R. calculated 
with a single-step procedure of consistency order p, it can be shown that the error 
y(tk) − yk . can be represented by a function ϕ(τ). that φ(τ) = O(τp). for τ → 0..  A  
Taylor expansion of the function ϕ . leads to the representation 

. y(tk) − yτ
k = c1τ

p + c2τ
p+1 + o(τp+1).

If the same procedure is used with the step size τ/2., we obtain through y
τ/2
2k . a further 

approximation of y(tk). and may assume the error representation 

. y(tk) − y
τ/2
2k = c12

−pτp + c22
−2pτp+1 + o(τp+1)

The multiplication of the second equation by 2p
. and subsequent subtraction from 

the first equation lead to 

. 
(

1 − 2p
)

y(tk) − yτ
k + 2py

τ/2
2k = c2

(

1 − 2−p
)

τp+1 + o(τp+1),

that is, the term c1τ
p
. is eliminated. This implies 

. ̃yτ
k = yτ

k − 2py
τ/2
2k

1 − 2p
= y(tk) − c2

1 − 2−p

1 − 2p
τp+1 + o(τp+1),

so that the computable expression ỹτ
k . approximates the function value y(tk). up to an 

error term of order O(τp+1)., see Fig. 26.3. We have thus constructed a procedure 
where the effort is approximately doubled, but the error is reduced by the factor τ . 

and not merely 2−p
.. This approach can be rigorously analysed and generalised. 

Fig. 26.3 Construction of a 
control procedure through 
extrapolation of the 
approximation solutions yτ . 
and yτ/2 .



232 26 Step Size Control

26.5 Learning Objectives, Quiz and Application 

You should be able to explain the basic concepts of step size control and derive 
an a posteriori error estimation. You should be able to explain the role of control 
procedures. 

Quiz 26.1 Decide for each of the following statements whether they are true or 
false. You should be able to justify your answer. 

The approximation error of the implicit Euler method cannot be bounded without 
knowledge of the exact solution. 

In the adaptive algorithm, a step size is determined with which all approximations 
are calculated. 

For all a, b ∈ R. and γ > 0., ab ≤ γ a2/2 + b2/(2γ ). holds. 

If y ∈ C0([0, T ]). and tk = kτ . for k = 0, 1, . . . , K .with τ = T/K .,  the  n
maxk=0,...,K−1 |y(tk+1) − y(tk)| → 0. for τ → 0.. 

By extrapolating a single-step method of consistency order p ≥ 1.with step sizes τ . 
and τ/2., a method of consistency order p + 1. is obtained. 

Application 26.1 In simple markets, the price p of a product is determined by 
the supply s and the demand d. Demand decreases with increasing price, while 
supply increases with increasing price. Consequently, p 
→ d(p). is a monotonically 
decreasing and p 
→ s(p). a monotonically increasing function. A difference 
between supply and demand leads to a change in price, that is, we have 

. p′(t) = α
(

d(p) − s(p)
)

.

(i) Show that under suitable conditions on d and s, a state of equilibrium is reached 
and this is attained exponentially quickly in the case of small perturbations.

(ii) In reality, the number of products purchased may be less than the demand, as 
for example the price does not yet correspond to the actual value of the product, 
but this number is moving towards the demand. Modify and extend the model 
to account for this delay effect. 

(iii) How can the model take into account the dependence on external factors such 
as the availability of required raw materials?



Chapter 27 
Symplectic, Shooting and dG Methods 

27.1 Hamiltonian Systems 

A Hamiltonian system describes the dynamics of N bodies in three-dimensional 
space using a differentiable function H : RN×3 × R

N×3 → R. and the system of 
differential equations 

. q ′ = ∂pH(q, p), p′ = −∂qH(q, p)

in the interval (0, T ]. with initial data for q and p. The functions qi, pi : [0, T ] →
R
3
., i = 1, 2, . . . , N ., describe the positions and impulses of the bodies and H is the 

sum of kinetic and potential energy, that is, for e xample,

. H(q, p) =
N∑

i=1

‖pi‖2
2mi

+ V (q1, q2, . . . , qN),

with the masses mi ., i = 1, 2, . . . , N ., of the bodies. 

Examples 27.1 

(i) The pendulum described by the equation φ′′ = −(g/�) sin(φ). can be 
represented as a Hamiltonian system of the function 

. H(φ,ψ) = 1

2m�2
ψ2 − mg� cos(φ)

because it follows that m�2φ′ = ψ . and ψ ′ = −mg� sin(φ).. 
(ii) Multi-body problems such as solar systems can be described by Hamiltonian 

systems. 
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(iii) Through [∂pH(q, p),−∂qH(q, p)]T . a tangent vector to the graph of H at the 
point (p, q). is defined. The associated Hamiltonian system thus follows a level 
line of the function H . 

Hamiltonian systems fulfil conservation principles for total angular momentum 
and total energy. 

Example 27.2 The total energy of a Hamiltonian system is constant, because we 
have 

. 
d

dt
H(q, p) = ∂pH(q, p)p′ + ∂qH(q, p)q ′ = 0.

If we combine the variables q and p into a vector z ∈ R
2n

. with n = dN . and 
d ∈ {1, 2, 3}. and identify H(q, p) = H(z)., then a Hamiltonian system can be 
written as 

. z′ = J∇H(z), z(0) = z0

with the matrix 

. J =
[

In

−In

]
.

The matrix J fulfils the identities J T = −J = J−1
. and defines the skew-symmetric 

bilinear form 

. ω(z1, z2) = zT1Jz2.

This expression corresponds to an oriented area of the parallelogram spanned by z1 . 
and z2 .. In the case n = 1. for example, we have that ω(z1, z2) = det[z1, z2]. for 
z1, z2 ∈ R

2
.. 

Definition 27.1 A  matrix A ∈ R
2n×2n

. is called symplectic,  i  f

. ω(Az1, Az2) = ω(z1, z2)

for all z1, z2 ∈ R
2n

. or equivalently ATJA = J .. A differentiable mapping Ψ :
R
2n → R

2n
. is called symplectic, if its differential DΨ (z). for all z ∈ R

2n
. is a 

symplectic matrix. 

Symplectic mappings preserve the oriented area of parallelograms. Symplecticity 
is the characteristic property of Hamiltonian systems. 

Proposition 27.1 For a Hamiltonian system z′ = J∇H(z)., z(0) = z0 ., with H ∈
C2(R2n). the flow φt : R2n → R

2n
., z0 �→ z(t)., which assigns the state z(t). at time 

t to an initial configuration z0 ., is a symplectic mapping for every t ∈ R..
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Fig. 27.1 According to the 
second Keplerian law, the 
radius vector of a planet 
sweeps out equal segments in 
equal time intervals Sun 

A2t 

t 

planet 

A1 

A1 = A2 

Proof For the mapping t �→ φt (z0).we have 

. 
d

dt
φt (z0) = d

dt
z(t) = z′(t) = J∇H

(
(z(t)

) = J∇H
(
φt (z0)

)
.

Differentiating this identity with respect to z0 . leads to 

. 
d

dt
Dφt (z0) = JD2H

(
φt (z0)

)
Dφt(z0).

To prove the symplecticity, we consider F(t) = Dφt(z0)
TJDφt (z0). and note that 

from φ0(z0) = z0 . for all z0 ∈ R
2n

. the identity F(0) = J . follows. For the derivative, 
using the symmetry of the Hessian matrix D2H ., we have that 

. F ′(t) =
[ d

dt
Dφt (z0)

]T
J
[
Dφt(z0)

] + [
Dφt(z0)

]T
J
[ d

dt
Dφt (z0)

]

= [
Dφt(z0)

]T
D2H

(
φt (z0)

)
J TJ

[
Dφt(z0)

]

+ [
Dφt(z0)

]T
J 2D2H

(
φt (z0)

)[
Dφt(z0)

] = 0,

where J TJ = I2n = −J 2
.was used. Thus, it follows F(t) = J . for all t ∈ [0, T ]. or 

the symplecticity of φt .. �	
Remark 27.1 Kepler’s laws for determining planetary orbits can be interpreted as 
a consequence of the symplecticity or the conservation properties of Hamiltonian 
systems. The second Keplerian law, for example, postulates that a radius vector 
drawn from the Sun to the planet sweeps out equal areas in equal times, see Fig. 27.1. 

27.2 Symplectic Methods 

In order to meaningfully capture the dynamics of a Hamiltonian system, that is to 
approximate the energy and momentum conservation properties well, the numerical 
methods used should also define symplectic mappings. A single-step method of the
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form 

. 

[
qk+1

pk+1

]
=

[
qk

pk

]
+ τ

[
Φ1(tk, qk, pk, qk+1, pk+1, τ )

Φ2(tk, qk, pk, qk+1, pk+1, τ )

]

defines in the case of well-posedness for k = 0, 1, . . . , K − 1. the mappings 

. Ψ k+1 : (qk, pk) �→ (qk+1, pk+1).

Definition 27.2 A numerical method is called symplectic, if the mappings defined 
by it, Ψ k+1 : (qk, pk) �→ (qk+1, pk+1)., k = 0, 1, . . . , K − 1., for each Hamilton 
function H ∈ C2(R2n). are symplectic. 

The symplecticity of a method can be checked with the following criterion in the 
case n = 1.. 

Lemma 27.1 A mapping Ψ : R2 → R
2
. is symplectic if and only if detDΨ = 1. 

holds. 

Proof We have 

. DΨ TJDΨ =
[
∂1Ψ1 ∂1Ψ2

∂2Ψ1 ∂2Ψ2

] [
0 1

−1 0

] [
∂1Ψ1 ∂2Ψ1

∂1Ψ2 ∂2Ψ2

]
=

[
0 detDΨ

− detDΨ 0

]
,

from which the claim follows. �	
We check the symplecticity for some standard methods. 

Examples 27.3 

(i) For the explicit Euler method, Ψ k+1 = Ψ . holds with 

. 

[
qk+1

pk+1

]
= Ψ (qk, pk) =

[
Ψ1(qk, pk)

Ψ2(qk, pk)

]
=

[
qk

pk

]
+ τ

[
∂pH(qk, pk)

−∂qH(qk, pk)

]

and thus 

. ∂1Ψ1 = 1 + τ∂p∂qH, ∂2Ψ1 = τ∂p∂pH,

∂1Ψ2 = −τ∂q∂qH, ∂2Ψ2 = 1 − τ∂p∂qH,

as well as detDΨ = 1 + O(τ 2)., so that the method is not symplectic. 
(ii) For the partitioned Euler method 

.

[
qk+1

pk+1

]
=

[
qk

pk

]
+ τ

[
∂pH(qk, pk+1)

−∂qH(qk, pk+1)

]
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the right side depends on pk+1 ., so that 

. 

∂1Ψ1 = ∂qk+1

∂qk

= 1 + τ∂q∂pH(qk, pk+1) + τ∂2pH(qk, pk+1)
∂pk+1

∂qk

,

∂2Ψ1 = ∂qk+1

∂pk

= τ∂2pH(qk, pk+1)
∂pk+1

∂pk

,

∂1Ψ2 = ∂pk+1

∂qk

= −τ∂2qH(qk, pk+1) − τ∂q∂pH(qk, pk+1)
∂pk+1

∂qk

,

∂2Ψ2 = ∂pk+1

∂pk

= 1 − τ∂q∂pH(qk, pk+1)
∂pk+1

∂pk

.

The last two equations can be solved and lead to 

. 

∂1Ψ2 = ∂pk+1

∂qk

= −τ
(
1 + τ∂q∂pH(qk, pk+1)

)−1
∂2qH(qk, pk+1),

∂2Ψ2 = ∂pk+1

∂pk

= (
1 + τ∂q∂pH(qk, pk+1)

)−1
.

Hence, detDΨ = 1., so the method is symplectic. 
(iii) The midpoint method is symplectic. 
(iv) The implicit Euler method is not symplectic. 

Remark 27.2 In the case of a Hamiltonian function of the form 

. H(q, p) =
N∑

i=1

‖pi‖2
2mi

+ 1

2

N∑

i,j=1
i 
=j

V
(‖qi − qj‖

)

the systems of equations defined by the partitioned Euler method can be explicitly 
solved at each time step. 

The advantages of symplectic methods can be illustrated using the example of 
the linearised pendulum. 

Example 27.4 We consider the Hamiltonian function 

. H(q, p) = 1

2
p2 + 1

2
q2

for which the solutions of the Hamiltonian system 

. q ′ = p, p′ = −q

are given by q(t) = a sin(t) + b cos(t). and p(t) = a cos(t) − b sin(t).. The total 
energy H(q(t), p(t)). of each solution is constant. With the difference quotient
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dtak+1 = (ak+1 − ak)/τ . and the θ .-method 

. 
dtqk+1 = pk+θ2 = (1 − θ2)pk + θ2pk+1,

dtpk+1 = −qk+θ1 = (1 − θ1)qk + θ1qk+1,

the explicit and implicit Euler, the midpoint and the partitioned Euler methods can 
be described by the choices 

. θ = (0, 0), θ = (1, 1), θ = (1/2, 1/2), θ = (0, 1)

respectively. We use the formula 

. (a − b)
(
θa + (1 − θ)b

) = 1

2
(a2 − b2) − 1 − 2θ

2
(a − b)2,

which is obtained by adding and subtracting a/2., and multiply the equations of the 
θ .-method by qk+θ1 . and pk+θ2 . respectively. The subsequent addition of the equations 
in the cases of the explicit and implicit Euler and the midpoint methods leads to 

. 
1

2τ

(
q2
k+1 −q2

k

)+ 1

2τ

(
p2

k+1 −p2
k

) = 1 − 2θ1
2τ

(
qk+1 −qk

)2 + 1 − 2θ2
2τ

(
pk+1 −pk

)2
.

We sum over k = 0, 1, . . . , � − 1., multiply by τ . and obtain 

. H
(
q�, p�

) − H
(
q0, p0

) = 1 − 2θ1
2

�−1∑

k=0

(
qk+1 − qk

)2 + 1 − 2θ2
2

�−1∑

k=0

(
pk+1 − pk

)2
.

In the case of the explicit Euler method, the right-hand side is generally positive 
and there is an increase in the total energy, while in the case of the implicit Euler 
method there is a decrease. For the midpoint method, the right-hand side vanishes 
and the energy is exactly conserved. For the partitioned Euler method, multiplying 
the equations by qk+1/2 . and pk+1/2 . yields 

. H
(
q�, p�

) − H
(
q0, p0

) = ( − τp�q� + τp0q0
)
/2.

With τ |pq| ≤ τ(p2 + q2)/2. it follows 

. 
1 − τ/2

1 + τ/2
H(q0, p0) ≤ H(q�, p�) ≤ 1 + τ/2

1 − τ/2
H(q0, p0).

The results of corresponding numerical experiments are shown in Fig. 27.2.
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H(qk, pk) 

t 

q 

p 

partitioned 
midpoint 
implicit 
explicit 

Fig. 27.2 Application of various methods to a Hamiltonian system; symplectic methods such as 
the midpoint and the partitioned Euler method preserve physically relevant quantities 

27.3 Shooting Method 

In one-dimensional boundary value problems, a function u : [a, b] → R. is sought, 
which satisfies a differential equation within the interval and boundary conditions at 
both interval ends. A one-dimensional boundary value problem of second order is, 
for example, 

. 
u′′(x) = f

(
x, u(x), u′(x)

)
, x ∈ (a, b),

u(a) = α, u(b) = β.

This can describe the trajectory of a ball that is thrown at location a at height α . so 
that it reaches height β . at location b. One-dimensional boundary value problems 
can be solved iteratively with the numerical methods constructed for initial value 
problems. In the above model problem, we are looking for a parameter s ∈ R., such 
that the solution y : [a, b] → R. of the initial value problem 

. 
y′′(x) = f

(
x, y(x), y′(x)

)
, x ∈ (a, b),

y(a) = α, y′(a) = s

has the property y(b) = β . and thus fulfils the boundary value problem. Since y 
depends on the parameter s, we write ys . for the solution of the initial value problem 
in the following. Intuitively, the sought number s ∈ R. is the launch angle necessary 
to achieve the height β . at location b. We define the mapping 

. F : R → R, s �→ ys(b) − β

and try to determine a root s∗
. of F . With the Newton method, this is done 

approximately for a starting value s0 . through the iteration 

.si+1 = si − F(si)

F ′(si)
,
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Fig. 27.3 Different initial 
velocities si . lead to different 
values at the final time point 

a b  

ys1 
ys2 

ys0 

where F(s) = ys(b) − β . and F ′(s) = ∂sys(b). applies. The so-called shooting 
method is illustrated in Fig. 27.3. 

The function v(x) = ∂sys(x). is for given s ∈ R. and ys . the solution of the initial 
value problem differentiated with respect to s, that is 

. 
v′′(x) = ∂2f

(
x, ys(x), y′

s(x)
)
v(x) + ∂3f

(
x, ys(x), y′

s(x)
)
v′(x), x ∈ (a, b),

v(a) = 0, v′(a) = 1.

The function v is thus the solution of a linear initial value problem, which can be 
solved with little effort. To achieve convergence of the Newton method, the starting 
valu e s0 .must generally be close enough to s∗

.. 

27.4 Discontinuous Galerkin Methods 

We multiply the autonomous differential equation y′ = f (y). with a function φ ., 
integrate the product over the interval [tk, tk+1]. and perform a partial integration, so 
that we obtain the identity under utilisation of the continuity property y(t+k ) = y(t−k ). 

. −
∫ tk+1

tk

y(t)φ′(t) dt + y(t−k+1)φ(t−k+1) − y(t−k )φ(t+k ) =
∫ tk+1

tk

f (y(t))φ(t) dt

where g(t±m). denotes the right and left-hand limits limε→0 g(tm ± ε). for ε >

0.. The idea of the discontinuous Galerkin method is to consider discontinuous 
approximations yτ : [0, T ] → R., and to partially reverse the above reformulation 
to derive a defining equation for yτ .. We replace y with yτ . in the above equation and 
use 

. −
∫ tk+1

tk

yτ (t)φ
′(t) dt =

∫ tk+1

tk

y′
τ (t)φ(t) dt + yτ (t

+
k )φ(t+k ) − yτ (t

−
k+1)φ(t−k+1).

This leads to the integral equation 

.

∫ tk+1

tk

y′
τ (t)φ(t) dt + [

yτ (t
+
k ) − yτ (t

−
k )

]
φ(t+k ) =

∫ tk+1

tk

f (yτ (t))φ(t) dt,
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Fig. 27.4 Discontinuous 
Galerkin methods 
approximate the solution by 
discontinuous, piecewise 
polynomial functions 

y 
y 

where yτ (t
−
0 ) = y0 .. The numerical solution is now sought as a piecewise 

polynomial yτ |(tk,tk+1] ∈ P�|(tk,tk+1] ., so that the integral equation holds for all 
k = 0, 1, . . . , K − 1. and all φ ∈ P�|(tk,tk+1] ., see Fig. 27.4. 

Example 27.5 For � = 0. we obtain the implicit Euler method, because if we set 
yk+1 = yτ |(tk,tk+1] ., it follows using yτ |′(tk,tk+1] = 0. and with φ = 1., that yk+1−yk =
(tk+1 − tk)f (yk+1).. 

27.5 Learning Objectives, Quiz and Application 

You should be able to define Hamiltonian systems and explain the significance of 
symplectic methods. You should be able to motivate shooting methods and explain 
their algorithmic implementation. Moreover, you should be able to demonstrate 
characteristic properties of discontinuous Galerkin methods. 

Quiz 27.1 Decide for each of the following statements whether it is true or false. 
You should be able to justify your answer. 

Hamiltonian systems are special gradient flows. 

Orthogonal matrices are symplectic. 

The partitioned Euler method has consistency order p = 2.. 

Every boundary value problem can be formulated in a unique way as an initial value 
problem. 

The approximate solution of the discontinuous Galerkin method is a discontinuous 
function. 

Application 27.1 To simulate the outer solar system, we use the Hamilton function 

. H(q, p) =
N∑

i=1

‖pi‖2
2mi

− γ

2

N∑

i,j=1
i 
=j

mimj

‖qi − qj‖

with the momenta pi ∈ R
3
. and positions qi ∈ R

3
., i = 1, 2, . . . , N .,  of  the  

considered planets. Use the resulting Hamiltonian system and the approximations 
given in Table 27.1 in solar masses SM ≈ 2 · 1030 kg. and astronomical units 
AU ≈ 150 · 109 m. or AU/day. to describe three planets.
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Table 27.1 Data for 
simulating a simple solar 
system 

Planet Mass Initial position Initial velocity 

Sun 1 (0, 0, 0). (0, 0, 0) · 10−3 . 

Jupiter 1/1000 (−3,−4,−1). (5,−4,−2) · 10−3 . 

Saturn 3/10000 (10,−3,−2). (2, 5, 2) · 10−3 . 

Use as the gravitational constant the simple approximation of the heliocentric 
gravitational constant γ = 3 · 10−4AU3/(SM · day2).. Simulate the system 
numerically using the explicit and the partitioned Euler methods with different step 
sizes. Plot the orbits of the planets and consider the total energy of the system as a 
function of time. Experimentally determine the length of a Jupiter year.



Chapter 28 
Problems on Numerical Linear Algebra 

28.1 Basic Concepts 

Problem 28.1.1 Let˜φ = f ◦g .be a method for the mathematical operation φ .and let 
the operation defined by g be ill-conditioned. Show that the method ˜φ . is generally 
unstable. 

Problem 28.1.2 Show that the addition of two non-negative or non-positive num-
bers is well conditioned. 

Problem 28.1.3 For p > 0., β > 1. and j = 1, 2, 3, 4. let the sequences (a
(j)
n )n∈N . 

be defined by 

. a(1)
n = np, a(2)

n = βn, a(3)
n = n!, a(4)

n = log2 n.

For which pairs 1 ≤ i, j ≤ 4. does a
(i)
n = O(a

(j)
n ). hold? 

Problem 28.1.4 Under what conditions on a, b, c, d ∈ R. is the calculation of an 
intersection point of the two lines x �→ ax + b. and x �→ cx + d . a well conditioned 
problem? 

Problem 28.1.5 How can cancellation effects be avoided in the practical calcula-
tion of the expressions 

. 
1 − 2x

1 + 2x
− 1

1 + x
,

ex − 1

x

for x �= 0.with |x| � 1.? 

Problem 28.1.6 Discuss the conditioning of determining the roots of a quadratic 
equation x2 + px + q = 0. as well as the stability of their calculation with the pq-
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formula x1,2 = −p/2 ± (p2/4 − q)1/2 .. Consider especially the cases p2 ≈ 4q . and 
p2 
 4|q|.. 
Problem 28.1.7 For which x ∈ R. must cancellation effects be expected in the 
approximate calculation ex ≈ ∑n

k=0 xk/k!.? How can these be avoided? 
Problem 28.1.8 Determine the order of magnitude of the effort for matrix-vector 
multiplication, matrix-matrix multiplication and the computation of the determinant 
of a matrix using Laplace’s expansion theorem. 

Problem 28.1.9 Assume that a computer operates with 109 . floating point oper-
ations per second (flops) and there are three algorithms with effort O(n)., O(n3). 

and O(n!). to solve the same task. How many seconds, hours, days or years do the 
algorithms approximately need for the problem sizes n = 10k

.with k = 1, 2, . . . , 6.? 

Problem 28.1.10 Let φ(0). be a well conditioned operation with φ′(0) = 3.. 
Examine for given x1, x2 ∈ R. the conditioning of the operation φ(x1 + x2).. 

Project 28.1.1 The functions f, g : R>0 → R. defined by 

. f (x) = 1

x
− 1

x + 1
, g(x) = 1

x(x + 1)

agree, but motivate two different methods for numerical computation. Determine for 
xk = 10k

., k = 1, 2, . . . , 15., the expression 

. δk = |f (xk) − g(xk)|
|g(xk)|

in MATLAB and arrange the results in a table. What do you observe and how do you 
explain the observations? 

Project 28.1.2 Implement the recursive calculation of the determinant of a square 
matrix using Laplace’s expansion theorem in MATLAB, C++ or Python. Measure 
manually, or with the help of the commands tic ... toc or clock(),  the  
runtimes for the calculation of detA. with the matrix A ∈ R

n×n
. defined by aii = 2. 

and aij = (−1)j /(n − 1). for n = 10, 20, 40, 80.. 

28.2 Operator Norm and Condition Number 

Problem 28.2.1 For fixed norms ‖·‖.on Rn
. and on Rm

.,  let ‖·‖op .denote the induced 
operator norm on R

m×n.. Prove the following statements: 

(i) The operator norm ‖ · ‖op . defines a norm on R
m×n

.. 
(ii) We have
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. ‖A‖op = sup
‖x‖=1

‖Ax‖ = inf
{

c ≥ 0 : ∀x ∈ R
n‖Ax‖ ≤ c‖x‖}

and the supremum and the infimum are attained, provided A �= 0.. 
(iii) In the case A �= 0.,  for x ∈ R

m
. with ‖x‖ ≤ 1. and ‖Ax‖ = ‖A‖op . it holds that 

‖x‖ = 1.. 
(iv) Show that ‖A‖G = max1≤i,j≤n |aij |. defines a norm but not an operator norm 

on Rn×n
.. 

Problem 28.2.2 

(i) Show that the spectral radius is bounded by any operator norm ‖ · ‖op . on the 
space of square matrices, i.e. we have |λ| ≤ ‖A‖op . for every eigenvalue λ ∈ R. 

of A. 
(ii) Let ‖ · ‖. be a norm on Rn

. and let ‖ · ‖op . be the induced operator norm. Show 
that for every regular matrix D ∈ R

n×n
. a norm ‖ · ‖D : x �→ ‖Dx‖. is defined 

on Rn
. and construct for every matrix A ∈ R

n×n
. a  matrix MD,A . such that, for 

the operator norm induced by ‖ · ‖D ., denoted ‖ · ‖op,D .,  we  ha  ve ‖A‖op,D =
‖MD,A‖op .. 

(iii) Show that the inequality ‖A‖2 ≤ ‖A‖op,D . is generally false. 

Problem 28.2.3 For 1 ≤ p < ∞., a norm is defined on R�
. by ‖x‖p =

(

∑�
j=1

∣

∣xj

∣

∣

p
)1/p

.. The induced operator norm is also denoted by ‖ · ‖p .. 

(i) Show that ‖A‖1 = maxk=1,...,n
∑m

j=1

∣

∣ajk

∣

∣. holds for all A ∈ R
m×n

.. 
(ii) For the symmetric matrix B ∈ R

n×n
.,  le  t

. ρ(B) = max{|λ| : λ is an eigenvalue of B}.

Show, that ‖A‖2 =
√

ρ(ATA). holds for all A ∈ R
m×n

.. 

Problem 28.2.4 Let A =
[

a b

b c

]

. with a, b, c ∈ R., such that detA �= 0.. Determine 

cond1(A)., cond2(A). and cond∞(A). and discuss for which ratios of a, b and c the 
corresponding linear equation systems are ill conditioned.

Problem 28.2.5 Let A ∈ R
n×n

. be invertible and let ‖ · ‖. be an induced operator 
norm on Rn×n

.. Show that 

. ‖A−1‖ = (

inf‖x‖=1
‖Ax‖)−1

and ‖A−1‖ ≥ ‖A‖−1
. hold.
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Problem 28.2.6 

(i) Let A ∈ R
n×n

.. Show that 

. ‖A‖22 ≤ ‖A‖1‖A‖∞

holds and verify the statement explicitly for A = [

a bb c
]

.. 
(ii) Show that for every matrix A ∈ R

n×n
. the estimates 

. 
n−1/2‖A‖2 ≤‖A‖1 ≤ n1/2‖A‖2,
n−1‖A‖∞ ≤‖A‖1 ≤ n‖A‖∞

hold and provide matrices A ∈ R
n×n

. that show that the estimates cannot be 
improved. 

Problem 28.2.7 For A ∈ R
n×n

. the Frobenius norm is defined by ‖A‖2F =
∑

1≤i,j≤n a2ij .. Show that 

. ‖A‖F =
√

tr(ATA).

Conclude that the Frobenius norm is compatible with the operator norm induced by 
the Euclidean norm in the sense that 

. ‖A‖2 ≤ ‖A‖F ≤ √
n‖A‖2.

Use the identity tr(ATA) = λ1 + · · · + λn . with the non-negative eigenvalues 
λ1, . . . , λn .of ATA.. Can the estimates also be proven without using the eigenvalues? 

Problem 28.2.8 Let A ∈ R
m×n

.. 

(i) Show that (ImAT)⊥ = kerA.with 

. V ⊥ = {v ∈ R
n : v · w = 0 for all w ∈ V }

for V ⊂ R
n
. and conclude Rn = ImAT + kerA.. 

(ii) Prove the dimension formula n = dim(ImA) + dim(kerA). and conclude that 
rankA = rankAT

., where for a matrix M the column rank of M is defined by
rankM = dim ImM .. 

(iii) Show that 

. kerATA = kerA.
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Problem 28.2.9 

(i) Let A ∈ R
n×m

. and B ∈ R
m×p

.. With natural numbers n1, n2 ., m1,m2 ., p1, p2 . 

let Aij ∈ R
ni×mj ., Bjk ∈ R

mj ×pk ., such that 

. A = [

A11 A12A21 A22
]

, B =
[

B11 B12

B21 B22

]

holds. Determine matrices Cik ∈ R
ni×pk ., so that a corresponding partitioning 

also holds for C = AB .. 
(ii) Show that for every regular matrix A ∈ R

n×n
. the identity (AT)−1 = (A−1)T . 

holds, which justifies the notation A−T
.. 

Problem 28.2.10 Let A ∈ R
n×n

. be regular and 1 ≤ m ≤ n., such that the upper 
left m × m. submatrix A11 = (aij )1≤i,j≤m . is also regular. Let A be decomposed 
according to

. A =
[

A11 A12

A21 A22

]

.

Show that S = A22 − A21A
−1
11 A12 . is regular and that A−1

. is given by 

. A−1 =
[

A−1
11 + A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]

.

Project 28.2.1 Write programs in C++ and MATLAB that calculate the operator 
norm ‖ · ‖∞ . of a matrix A ∈ R

m×n
.. Measure manually, or with the help of the 

commands clock() or tic \ldots toc, for the Hilbert matrix H ∈ R
n×n

. with 
entries hij = 1/(i + j −1)., 1 ≤ i, j ≤ n., the runtimes of the programs for n = 10k

., 
k = 1, 2, . . . , 4.. Also compare your programs with the runtime of the MATLAB 

routine norm(H,inf). 

Project 28.2.2 The set N2(1) = {x ∈ R
2 : ‖x‖2 = 1}. can be approximated in 

MATLAB using plot(X,Y,’-b’), with Phi=(0:dphi:2*pi) and X=cos(Phi), 
Y=sin(Phi) for example using dphi=0.01. Plot the deformed set A(N2(1)). for 
matrices 

. 

[

k 0
0 k

]

,

[

k1 0
0 k2

]

,

[

c s

−s c

]

,

[

1 k

0 1

]

,

[

c′ s′
s c′

]

with suitable numbers k, k1, k2 ∈ R., c = cos(θ)., s = sin(θ). for θ ∈ [0, 2π ]..  Using  
the commands hold on/off, the sets can be displayed in one graphics window, 
and by changing the argument ’-b’ with different colours. Finally, replace N2(1). 
with N1(1). and N∞(1)..
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28.3 Matrix Factorisations 

Problem 28.3.1 Let A ∈ R
n×n

. be a positive definite matrix, i.e. xTAx > 0. for all 
x ∈ R

n \ {0}.. 
(i) Show that A is regular .
(ii) Show that for all 1 ≤ k ≤ n. the k × k . submatrix Ak = (aij )1≤i,j≤k . is also 

positive definite. 
(iii) Show that all real eigenvalues of A are positive .

Problem 28.3.2 Let A ∈ R
n×n

. be a strictly diagonally dominant matrix, i.e. 

. 
∑

j=1,...,n,j �=i

|aij | < |aii |, i = 1, 2, . . . , n.

(i) Show that the submatrices Ak = (aij )1≤i,j≤k . for k = 1, 2, . . . , n. are also 
strictly diagonally dominant. 

(ii) Show that the matrix A is regular .

Hint: To prove (ii), show that for a suitable norm ‖ · ‖. on Rn
. the estimate ‖Ax‖ > 0. 

holds for all x ∈ R
n \ {0}., and deduce from this that A is injectiv e.

Problem 28.3.3 Show that the invertible (normalised) lower triangular matrices 
form a group, i.e. if L,L1, L2 ∈ R

n×n
. are (normalised) lower triangular matrices 

and detL �= 0., then L−1
. and L1L2 . are also (normalised) lower triangular matrices. 

Problem 28.3.4 Let A ∈ R
n×n

., a lower triangular matrix L and an upper triangular 
matrix U with A = LU . be given. Show that, for k = 1, 2, . . . , n. and the left, upper 
k × k . submatrices Ak,Lk . and Uk . of A,L. and U respectively, the decomposition
Ak = LkUk . also holds. 

Problem 28.3.5 

(i) Show that A1 =
[

0 0
1 0

]

. does not have a normalised LU decomposition and

A2 =
[

0 1
1 0

]

. does not have a Cholesky decomposition. 

(ii) Calculate the normalised LU decomposition of A3 . and the Cholesky decompo-
sition of A4 .with 

. A3 =
⎡

⎣

5 3 1
10 8 8
15 11 10

⎤

⎦ , A4 =
⎡

⎣

9 12 9
12 41 22
9 22 38

⎤

⎦ ,

if they exist. 

Problem 28.3.6 Let A ∈ R
n×n

. be symmetric and positive definite.
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(i) Show that there exists a uniquely determined normalised lower triangular 
matrix L ∈ R

n×n
. and a diagonal matrix D ∈ R

n×n
. with positive diagonal 

entries, such that A = LDLT
. holds. 

(ii) Develop a method for determining L and D that avoids the use of the square 
root function, and determine the matrices L and D for

. A =
⎡

⎣

9 12 9
12 41 22
9 22 38

⎤

⎦ .

Problem 28.3.7 Let (v1, v2, . . . , vn). be a basis of Rn
.. 

(i) Show that the matrix G ∈ R
n×n

. defined by gij = vi · vj . is symmetric and 
positive definite. 

(ii) Show that G is invertible and G−1
. is also symmetric and positive definite. 

(iii) Construct a lower triangular matrix L ∈ R
n×n

., such that for W = LV . the 
identity WTW = In . holds, where V = [v1, v2, . . . , vn] ∈ R

n×n
.. 

Problem 28.3.8 Let A ∈ R
n×n

. be symmetric with non-negative eigenvalues. 
Construct a symmetric matrix B ∈ R

n×n
. with A = B2 = BB . and show that 

cond2(B) = cond2(A)1/2 ., provided A is regular .

Problem 28.3.9 Let A ∈ R
n×n

. be a symmetric and positive definite matrix. Show 
that λmax(A

−1) = 1/λmin(A). holds. 

Problem 28.3.10 

(i) How can the LU decomposition be simplified in the case of symmetric matrices 
and what effort does this entail?

(ii) Let A ∈ R
n×n

. be a band matrix with bandwidth m, i.e. aij = 0. if |i − j | > m.. 
How large is the effort of calculating the LU decomposition, provided it ex ists?

Project 28.3.1 Write a C++ or Python program with functions solve_upper and 
solve_lower for solving systems of linear equations with regular upper or lower 
triangular matrix. The solutions of Ux = b. and Lx = b. are given by backward or 
forward running loops through 

. xj = (

bj −
n

∑

k=j+1

ujkxk

)

/ujj , xj = (

bj −
j−1
∑

k=1

�jkxk

)

/�jj ,

where the empty sum has the value zero. Test the routines for the systems of 
equations A�x = b� ., � = 1, 2., with 

.A1 =
⎡

⎣

1 2 3
4 5
6

⎤

⎦ , b1 =
⎡

⎣

6
9
6

⎤

⎦ , A2 =
⎡

⎣

1
2 3
4 5 6

⎤

⎦ , b2 =
⎡

⎣

3
12
28

⎤

⎦ .
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Project 28.3.2 Write a C++ or Python program that determines the LU decompo-
sition for a matrix A ∈ R

n×n
. that can be LU decomposed. Justify why the entries 

of the matrix A can be overwritten with the calculated entries of L, so that no new 
fields need to be initialised. Under what circumstances should the calculation of L 
be aborted? Test the implementation with the matrices

. A1 =
⎡

⎣

4 2 3
2 4 2
3 2 4

⎤

⎦ , A2 =

⎡

⎢

⎢

⎢

⎢

⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤

⎥

⎥

⎥

⎥

⎦

,

to solve the systems of equations Aix = bi ., i = 1, 2. for b1 = [1, 1, 1]T . and b2 =
[1, . . . , 1]T ., where A2 ∈ R

n×n
. and b2 ∈ R

n
. with n = 10, 20, 40, 80.. Check your 

results using the MATLAB commands lu(A) and x=A\beta . What can be said 
about the runtime for the solution of the system of equations A2x = b2 . depending 
on n? 

Project 28.3.3 Write a C++ or Python program that calculates the Cholesky 
decomposition A = LLT

. for a given symmetric, positive definite matrix A =
(aij )i,j=1,...,n ∈ R

n×n
.. Justify why the entries of the matrix A can be overwritten 

with the calculated entries of L so that no new fields need to be initialised. Under 
what circumstances should the calculation of L be aborted? Test the implementation 
with the matrices

. A1 =
⎡

⎣

4 2 3
2 4 2
3 2 4

⎤

⎦ , A2 =

⎡

⎢

⎢

⎢

⎢

⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤

⎥

⎥

⎥

⎥

⎦

,

to solve the system of equations Aix = bi ., i = 1, 2.,  for b1 = [1, 1, 1]T . and b2 =
[1, . . . , 1]T ., where A2 ∈ R

n×n
. and b2 ∈ R

n
. with n = 10, 20, 40, 80. apply. Check 

your results using the MATLAB commands chol(A) and x=A\beta . What can 
be said about the runtime for the solution of the system of equations A2x = b2 . 

depending on n? 

Project 28.3.4 For m ∈ N. and n = m2
.,  let Bm ∈ R

m×m
. and An ∈ R

n×n
. be defined 

by 

.An =

⎡

⎢

⎢

⎢

⎢

⎣

Bm −Im

−Im

. . .
. . .

. . .
. . . −Im

−Im Bm

⎤

⎥

⎥

⎥

⎥

⎦

, Bm =

⎡

⎢

⎢

⎢

⎢

⎣

4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

⎤

⎥

⎥

⎥

⎥

⎦

.
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Use the MATLAB routines chol and lu, to determine Cholesky and LU decompo-
sitions LnL

T
n = An . and MnUn = An . and consider the errors 

. ‖An − LnL
T
n‖∞, ‖An − MnUn‖∞,

which you can determine with norm(B,inf),  for n = 10k
., k = 1, 2, . . . , 6.. 

28.4 Elimination Methods 

Problem 28.4.1 Construct a permutation matrix P ∈ R
4×4

., such that the matrix 
PA  has a normalised LU decomposition, where

. A =

⎡

⎢

⎢

⎣

−1 2 3 3
1 −4 −2 −5
0 −4 0 −3

−1 10 −5 17

⎤

⎥

⎥

⎦

.

Solve the linear system Ax = b.with b = [17,−23,−13, 51]T .. 

Problem 28.4.2 Use the Gaussian elimination method without pivot search to solve 
the linear system Ax = b.with 

. A =

⎡

⎢

⎢

⎣

−1 16 −4 3
−3 20 −22 0
1 −16 1 −2
3 −6 4 2

⎤

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎣

−24
−45
20
11

⎤

⎥

⎥

⎦

.

Determine the LU decomposition of A and calculate detA.. 

Problem 28.4.3 Let 

. A =
⎡

⎣

1 0 1
2 −1 1
2 2 3

⎤

⎦ , b =
⎡

⎣

5
7
14

⎤

⎦ , ˜b =
⎡

⎣

5.5
6.5
14.5

⎤

⎦ .

Calculate A−1
., cond∞(A). and the solutions of Ax = b. as well as Ax̃ = ˜b .. 

Problem 28.4.4 Let A ∈ R
n×n

. be a symmetric and positive definite matrix and 
let b(1), b(2), . . . , b(m) ∈ R

n
. different right sides. Let A = LLT

. be the Cholesky 
decomposition of A with the lower triangular matrix L ∈ R

n×n
.. Compare the effort 

of the following two approaches to solve the m linear systems Ax(i) = b(i)
., i =

1, 2, . . . , m.: 

(i) By solving the n linear systems Az(j) = ej . with the Cholesky decompo-
sition of A for the canonical basis vectors ej ∈ R

n
., the inverse A−1 =



254 28 Problems on Numerical Linear Algebra

[z(1) ,  z(2), . . . , z(n)]. is determined and subsequently x(i) = A−1b(i)
. for i =

1, 2, . . . , m. is determined by matrix-vector multiplication. 
(ii) With the Cholesky decomposition of A, the solutions of Ax(i) = b(i)

. for i =
1, 2, . . . , m. are determined. 

Problem 28.4.5 Let P ∈ R
n×n

. be the permutation matrix corresponding to the 
bijection π : {1, 2, . . . , n} → {1, 2, . . . , n}.. Show that P T = P −1

. and 

. P −1 = [eπ−1(1), eπ−1(2), . . . , eπ−1(n)].

Problem 28.4.6 How does the effort of the Gaussian elimination method with 
column pivot search differ from that with total pivot search? 

Problem 28.4.7 Show that with the canonical basis vectors e1, e2, . . . , em ∈ R
m

. 

and f1, f2, . . . , fn ∈ R
n
. for A ∈ R

m×n
., we have that 

. A =
m

∑

i=1

n
∑

j=1

aij eif
T
j .

Problem 28.4.8 Let P ∈ R
n×n

. be a permutation matrix that swaps the k-th and 
�.-th entry of a vector, where � > k .. 

(i) Let A ∈ R
n×n

.. Determine PA  and AP .
(ii) Let L = In − �ke

T
k . with the canonical basis vector ek ∈ R

n
. and a vector 

�k = [0, . . . , 0, �k+1,k, . . . , �n,k]T .. Show that a vector 

. ̂�k = [0, . . . , 0,̂�k+1,k, . . . ,̂�n,k]T

exists, such that with ̂� = In − ̂�ke
T
k . the identity ̂� = PLP . holds. 

Problem 28.4.9 Let A ∈ R
m×n

.. Construct a method for determining all solutions 
of Ax = 0.. 

Problem 28.4.10 For k = 1, 2, . . . , n − 1. let L(k) = In − �ke
T
k . be defined with 

vectors �k = [0, . . . , 0, �k+1,k, . . . , �n,k]T . and let ˜L = L(n−1)L(n−2) . . . L(1)
.. Show 

that 

. ˜L−1 = In +
n−1
∑

k=1

�ke
T
k .

Project 28.4.1 Write a C++ or Python program, that, for an LU -decomposable 
matrix A ∈ R

n×n
. and a vector b ∈ R

n
., solves the linear system Ax = b. using 

Gaussian elimination and determines the LU decomposition of A. Test the program 
with the system defined by
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. A =

⎡

⎢

⎢

⎣

1 7 −2 3
5 −1 −4 0
8 1 3 5
4 −4 4 −4

⎤

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎣

21
−9
39
−8

⎤

⎥

⎥

⎦

.

The matrix A can be overwritten by the calculated values a
(k+1)
ij . and �ik .. Use your 

program to solve systems of linear equations with upper triangular matrix to solve 
the resulting system A(n)x = b(n)

.. 

Project 28.4.2 Perturb the right side of the linear system Ax = b. defined by 

. aij = (i+j−1)−1, bi =
n

∑

k=1

(−1)k−1/(i+k−1), xi = (−1)i−1, i, j = 1, 2, . . . , n,

with the vector d ∈ R
n
., di = 10−5 cos(iπ/n). for i = 1, 2, . . . , n. and n = 10.. 

Consider the relative error ‖x − xd‖2/‖x‖2 . and compare this with the condition 
number of the matrix, which you can determine with the MATLAB command 
cond(A,2). Comment on the results. 

Project 28.4.3 Implement the Gaussian elimination method with pivot search. To 
do this, introduce a vector π ∈ N

n
., which takes into account the row swaps. Also 

implement a termination criterion that ends the procedure if for the pivot element 
the estimate |a(k)

π(k),k| ≤ 10−10
. applies. When solving the resulting system of linear 

equations the row swaps need to be considered in the backward substitution. Test 
the procedure for the system Ax = b.where A ∈ R

3×3
. and b ∈ R

3
. are defined by 

. A =
⎡

⎣

0 1 0
0 0 1
1 0 0

⎤

⎦ , b =
⎡

⎣

1
2
3

⎤

⎦ .

28.5 Least Squares Problems 

Problem 28.5.1 Let A ∈ R
m×n

., b ∈ R
m

. and x, y ∈ R
n
.. Calculate the derivative of 

the mapping 

. t �→ ‖A(x + ty) − b‖22, t ∈ R,

and deduce the Gaussian normal equation, if x is a solution of the associated least 
squares problem.
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Problem 28.5.2 Let A ∈ R
2×1

. and b ∈ R
2
. be defined by 

. A =
[

2
1

]

, b =
[

1
3

]

.

Determine graphically using a set square the solution of the least squares problem 
by orthogonally decomposing b into vectors v,w .with v ∈ ImA. and w ∈ kerAT

.. 

Problem 28.5.3 A Householder matrix P ∈ R
m×m

. is defined for v ∈ R
m

. with 
‖v‖2 = 1. by P = Im − 2vvT .. 

(i) Show that P = P T
. and P −1 = P . hold. 

(ii) Show that a real m × m. Householder matrix has m − 1. eigenvalues with the 
value 1 and one eigenvalue − 1.. 

(iii) Construct using geometric considerations for m = 2, 3. a Householder matrix 
that maps a given vector x ∈ R

m
. to a multiple of e1 ∈ R

m
.. 

Problem 28.5.4 Let D ∈ R
m×m

. be a diagonal matrix with positive diagonal 
entries. The minimisation of x �→ ‖D(Ax − b)‖22 . realises for example a different 
weighting of various measurement results. Determine the associated normal equa-
tion. 

Problem 28.5.5 Let A ∈ R
m×n

., b ∈ R
m

. and 1 < p < ∞.. Calculate the partial 
derivatives of the mapping 

. x �→ ‖Ax − b‖p
p, x ∈ R

n.

Determine all numbers p, for which the derivative is given by a linear mapping. 

Problem 28.5.6 Calculate using the Householder method a QR decomposition f or

. A =
⎡

⎣

1 1 1
0 −√

2
√
2/2

0
√
2 5/

√
2

⎤

⎦

and solve the equation Ax = b. for b = [3√2,−1, 7]T .. 

Problem 28.5.7 Let A ∈ R
n×n

. be a regular matrix with columns a1, a2, . . . , an ∈
R

n
. and let (q1, q2, . . . , qn). be the resulting orthonormal basis obtained through the 

Gram–Schmidt process, that is 

. q̃j = aj −
j−1
∑

k=1

(aj · qk)qk, qj = q̃j

‖q̃j‖2

for j = 1, 2, . . . , n..
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(i) Show that for R ∈ R
n×n

. defined by rkj = aj · qk . for k < j ., rkj = 0. for k > j ., 
rjj = ‖q̃j‖2 . for j = 1, .., n., it follows A = QR .. 

(ii) Calculate Q and R for

. A =
⎡

⎣

1 2 0
0 1 2
1 0 2

⎤

⎦ .

Problem 28.5.8 Let A ∈ R
m×n

. and A = QR . be a QR decomposition. Show that 
R defines a Cholesky decomposition of ATA.. 

Problem 28.5.9 Let A ∈ R
n×n

. be regular and A = QR . be a QR decomposition. 
Show that cond2(A) = cond2(R). holds. 

Problem 28.5.10 Let i < j ., θ ∈ R. and define B = B(i, j, θ) ∈ K
m×m

. by bk� =
δk� . for k �= i, j ., bii = bjj = c. and bij = −bji = s ., with c = cos(θ).and s = sin(θ)., 
that is 

. B(i, j, θ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
. . .

c s

1
. . .

−s c

1
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(i) Show that the matrix B(i, j, θ). defines a rotation of the (i, j). plane by the 
angle θ .. 

(ii) Show that the successive multiplication of A ∈ R
m×n

. with suitable B(i, j, θ). 

leads to a QR decomposition. 
(iii) Is this procedure more expensive than the Householder procedure? If yes, are 

there classes of matrices for which it is less complex? 

Project 28.5.1 Implement the Householder procedure for calculating a QR decom-
position in C++ or Python. Use your program to solve the linear system Ax = b. 

with the n × n.Hilbert matrix A defined by aij = (i + j − 1)−1
., 1 ≤ i, j ≤ n., and 

the right-hand side b = [1, 2, . . . , n]T . for n = 3. and n = 10.. 

Project 28.5.2 From physics, it is known that bodies exposed only to gravity fly 
in parabolas. A body has the initial velocity v = (vx, vy). and is at point 0 at time 
t = 0..  At  time  t it is then at the location x = vxt ., y = vyt − 1

2gt2 ., where g 
is the acceleration due to gravity. In a series of experiments, the values given in
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Table 28.1 Measurement 
values of an experimental 
series 

i 1 2 3 4 5 6 7 

ti [s]. 0.1. 0.2. 0.6. 0.9. 1.1. 1.2. 2.0 

xi [m]. 0.73. 1.28. 4.24. 6.11. 7.69. 8.21. 13.83 

yi [m]. 0.96. 1.81. 4.23. 5.05. 5.15. 4.81. 0.55 

Table 28.1 were measured. Formulate a suitable least squares problem and solve it in 
MATLAB using the QR decomposition provided by [Q,R] = qr(A), to determine 
the velocity vy . and the acceleration due to gravity g as accurately as possible. Create 
a graph using the plot command, in which the measured values and the calculated 
parabola are listed. To what accuracy is it meaningful to specify the results? What 
model errors, data errors and measurement errors occur in this experiment?

28.6 Singular Value Decomposition and Pseudoinverse 

Problem 28.6.1 Let A,B ∈ R
m×n

. and (v1, v2, . . . , vn) ⊂ R
n
. be a basis of Rn

.. 
Show that from Avi = Bvi . for i = 1, 2, . . . , n. the equality A = B . follows. 

Problem 28.6.2 Determine a singular value decomposition of the matrix 

. A = 1

4

[

3 1 −1 −3
−1 −3 3 1

]T

.

Calculate A+
. using the singular value decomposition as well as the identity A+ =

(ATA)−1AT
..  Use A+

. to solve the least squares problem defined by A and b =
[4, 1, 2, 3]T .. 

Problem 28.6.3 Let A ∈ R
m×n

.. Show that the pseudoinverse A+
. is the unique 

solution X ∈ R
n×m

. of the equations 

. AXA = A, XAX = X, (AX)T = AX, (XA)T = XA

To prove uniqueness, assume the existence of a second solution Y , derive the 
identities X = XA(YAY)(AXA)X . and Y = (YA)TY (AY)T . and show that the 
right-hand sides match. 

Problem 28.6.4 Show that rankATA = rankAAT = rankA. holds. 

Problem 28.6.5 

(i) Let V ⊂ R
n
. be a subspace and V ⊥

. its orthogonal complement. Show that there 
exists a uniquely determined matrix PV ∈ R

n×n
. with PV v = v . for all v ∈ V . 

and PV w = 0. for all w ∈ V ⊥
.. 

(ii) Let A ∈ R
m×n

.. Show that A+A = P(kerA)⊥ . and AA+ = PImA ..
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Problem 28.6.6 Let (λi, vi) ∈ R × R
n
., i = 1, . . . , n., be eigenvalues and 

corresponding linearly independent eigenvectors of the matrix A ∈ R
n×n

.. Show 
that A can be represented as A = V DV −1

. with V = [v1, . . . , vn]. and D =
diag(λ1, . . . , λn).. 

Problem 28.6.7 Let A ∈ R
n×n

. with eigenvalues λ1, . . . , λn ∈ C. and ‖ · ‖op . an 
operator norm. 

(i) Show that ‖A‖2 ≤ ‖A‖op . holds. 
(ii) Show that maxi=1,...,n |λi | ≤ ‖A‖2 . holds. 
Problem 28.6.8 

(i) LetA ∈ R
n×n

.and λ ∈ C.be an eigenvalue of A. Prove the following statements: 
(a) The number λ. is an eigenvalue of A. 
(b) If A is symmetric, then the eigenvalues of A are real.
(c) If A is regular, then λ−1

. is an eigenvalue of A−1
.. 

(d) The matrix AT
. has the eigenvalue λ.. 

(ii) Let A,B ∈ R
n×n

. be matrices with eigenvalues λ. and μ.. Under what conditions 
is λμ. an eigenvalue of AB? 

Problem 28.6.9 

(i) Let n ∈ N. be odd and Q ∈ SO(n)., i.e. we have Q ∈ R
n×n

. with QTQ = In . 

and detQ = 1.. Show that Q has the eigenvalue 1 .
(ii) Conclude that during a football match there are at least two points on the surface 

of the football that are in the same place in the surrounding space at least twice. 

Problem 28.6.10 Show that the tridiagonal matrix defined by a, b, c ∈ R. with 
bc > 0. 

. A =

⎡

⎢

⎢

⎢

⎢

⎣

a b

c a
. . .

. . .
. . . b

c a

⎤

⎥

⎥

⎥

⎥

⎦

∈ R
n×n

has the eigenvalues λk = a + 2 sign(c)
√

bc cos(kπ/(n + 1))., k = 1, 2, . . . , n..  First  
consider the case a = 0. and the vectors 

. vk = (

(c/b)�/2 sin(kπ�/(n + 1))
)

�=1,...,n.

Project 28.6.1 In MATLAB the singular value decomposition of a matrix A can 
be calculated with the command svd. For an image defined by the file img.jpg, 
a compression of the grayscale representation can be defined with the lines shown 
in Fig. 28.1. Choose as an image, for example, the section from Albrecht Dürer’s 
picture Melancolia I, which shows the magic square. Explain the individual lines 
of the program and extend it by a calculation of the approximation error ‖X −
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1 RGB = imread('img.jpg'); 
2 G = rgb2gray(RGB); 
3 D = double(G); 
4 X = D/max(max(D)); 
5 figure(1); 
6 subplot(1,2,1); imshow(X); title('original'); 
7 [U,S,V] = svd(X); 
8 for k = 5:5:size(U,1) 
9 X_comp = U(:,1:k)*S(1:k,1:k)*V(:,1:k)'; 

10 subplot(1,2,2); imshow(X_comp); 
11 title('compressed'); pause 
12 end 

Fig. 28.1 Image compression using singular value decomposition 

Xcomp‖F .. How do you assess the ratio of quality loss to reduction of storage 
requirements for different values of k? Test the program for another image. 

Project 28.6.2 The unit square Q = [0, 1]2 ⊂ R
2
. can be represented in MATLAB 

by fill(X,Y,0) with X = [0,1,1,0,0] and Y = [0,0,1,1,0] . Visualise the
image A(Q).with the linear transformations, which are defined by the matrices 

. 

[

k 0
0 k

]

,

[

k1 0
0 k2

]

,

[

c s

−s c

]

,

[

1 k

0 1

]

,

[

c′ s′
s c′

]

with suitable numbers k, k1, k2 ∈ R., c = cos(θ)., s = sin(θ). for θ ∈ [0, 2π ].. Deter-
mine the eigenvalues and eigenvectors of the transformations with the MATLAB 

command [V,D] = eig(A) and interpret t hem geometrically.

28.7 The Simplex Method 

Problem 28.7.1 Let A ∈ R
m×n

. and b ∈ R
m

.. Show that the set C = {x ∈ R
n : x ≥

0, Ax = b}. has at most a finite number of corners. 
Hint: Consider the zero entries of elements in C. 

Problem 28.7.2 Let f (x) = aTx + b. and let C ⊂ R
n
. be a convex, closed and 

bounded set. Show that the function f takes its extreme values at the corners of C, 
i.e. there exist corner points xm, xM ∈ C .with f (xm) = minx∈C f (x). and f (xM) =
maxx∈C f (x).. 

Problem 28.7.3 Transform the minimisation of g(y) = pTy . under the constraint 
Uy ≤ d . into a linear program in normal form by decomposing y = v − w . into 
non-negative vectors v and w, introducing a non-negative vector z with Uy + z = d . 

and defining suitable vectors c, d and a suitable matrix A.
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Problem 28.7.4 Determine all corners of the convex sets B2
1 (0) = {x ∈ R

n :
‖x‖2 ≤ 1}. and B∞

1 (0) = {x ∈ R
n : ‖x‖∞ ≤ 1}.. 

Problem 28.7.5 

(i) Determine all minima of the function f (x) = ∑n
i=1 |x − zi |. for the cases 

. z = [−1, 1]T, z = [−1, 0, 1]T, z = [0, 10]T, z = [0, 1, 10]T.

How can minima be characterised? 
(ii) Let z1, z2, . . . , zn ∈ R. with z1 ≤ z2 ≤ · · · ≤ zn .. Determine a minimum of the 

function 

. f (x) =
n

∑

i=1

|x − zi |.

Use the formal necessary optimality condition f ′(x∗) = 0. with the derivative 
| · |′ = sign(·).. 

Problem 28.7.6 Let z1, z2, . . . , zn ∈ R.. Formulate the minimisation of the function 
f (y) = ∑n

i=1 |y − zi |. as a linear program. 

Problem 28.7.7 Let a ∈ R
2
. and c ∈ R.. Construct through geometric considera-

tions the minimisers of the mappings x �→ ‖x‖p . under the constraint aTx = α . for 
p = 1, 2,∞.. 

Problem 28.7.8 Let a ∈ R
n \ {0}. and let C ⊂ R

n
. be non-empty, bounded and 

strictly convex, i.e. if θx1 + (1 − θ)x2 ∈ ∂C . for x1, x2 ∈ C ., then θ = 1. or θ = 0.. 
Show that the minimisation of the function f (x) = a · x . under the constraint x ∈ C . 

has a unique solution. 

Problem 28.7.9 Let A = [4, 2, 1]., b = 4. and c = [1, 1, 1]T .. 

(i) Determine the corners of the set {x ∈ R
3 : x ≥ 0, Ax = b}. and investigate 

whether these are degenerate. 
(ii) Carry out the simplex method for the minimisation of f (x) = cTx . under the 

constraint Ax = b. and x ≥ 0.with the starting corner x0 = [0, 0, 4]T .. 

Problem 28.7.10 Construct matrices A ∈ R
3×2

. and vectors b ∈ R
2
., so that the 

resulting sets M = {x ∈ R
3 : Ax = b, x ≥ 0}. are (i) empty and unbounded and 

(ii) bounded and non-empty. 

Project 28.7.1 A company produces m different products, for the manufacture of 
which n machines are required. The j -th machine has a maximum monthly running 
time of �j . hours. The k-th product generates a profit of ek . euros per unit and 
occupies the j -th machine with tjk . hours per unit. The total monthly profit should 
be optimised without exceeding the maximum running times.
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1 [x_1,x_2,x_3] = sphere; 
2 surf([m_1+r*x_1,m_2+r*x_2,m_3+r*x_3]); hold on; 
3 tetramesh([1,2,3,4],Z); hold off; 

Fig. 28.2 Visualisation of a sphere 

(i) Formulate the described situation as a maximisation problem with constraints 
in the form 

. Maximise f (x) = c · x under the conditions Ax ≤ b, x ≥ 0

where x = (x1, x2, . . . , xm). are the monthly units of the different products and 
the inequalities are to be understood component-wise. 

(ii) Use the MATLAB routine linprog to solve the problem for the data m = 2., 
n = 3., e1 = 200., e2 = 600., and t11 = 1., t21 = 1., t31 = 0., t12 = 3., t22 = 1., 
t32 = 2. and �1 = 150., �2 = 180., �3 = 140.. What is the optimal monthly profit? 

Project 28.7.2 If a ∈ R
3
. is a vector with positive components and α ∈ R. is a 

positive number, then {x ∈ R
3 : x ≥ 0, aTx ≤ α}. defines a tetrahedron. The centre 

m and the radius r > 0.of a sphere of maximum volume contained in the tetrahedron 
are to be determined. Formulate the problem as a linear program and solve it with the 
MATLAB routine linprog. Then determine the solution for the case a = [1, 2, 3]T . 

and α = 4.. You can visualise your solution with the MATLAB commands shown in 
Fig. 28.2, where Z ∈ R

4×3
. is a matrix containing the coordinates of the corners of 

the tetrahedron. 
Hint: The distance of a point m ∈ R

3
. to the plane defined by a vector v ∈ R

3
. with 

‖v‖2 = 1. and a number γ ∈ R. is given by |vTm − γ |.. 

28.8 Eigenvalue Problems 

Problem 28.8.1 

(i) Determine the Gershgorin circles of the matrix 

. A =
⎡

⎣

1 4 7
2 5 8
3 6 9

⎤

⎦ .

(ii) Let A ∈ R
n×n

. be strictly diagonally dominant and symmetric. Provide an 
explicit upper bound for the condition number cond2(A).. 

Problem 28.8.2 Show that the characteristic polynomial p(λ) = det(A − λIn). of 
the n × n.matrix
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. A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 −a0

1 0 −a1
. . .

. . .
...

1 0 −an−2

1 −an−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

is given by p(λ) = (−1)n(λn + an−1λ
n−1 + · · · + a1λ + a0).. 

Problem 28.8.3 

(i) Let A ∈ R
n×n

. be symmetric with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn . and let 
v1 ∈ R

n \ {0}. be an eigenvector corresponding to the eigenvalue λ1 .. Show that 

. λ2 = max
x∈Rn\{0}
x·v1=0

xTAx

‖x‖22
.

(ii) Show that the vector x∗ ∈ R
n \ {0}. is an eigenvector of the symmetric matrix 

A ∈ R
n×n

. if and only if ∇r(x∗) = 0. holds with the function 

. r : Rn \ {0} → R, x �→ xTAx

‖x‖22
.

Problem 28.8.4 

(i) Show that the power method also converges when the iterates are normalised 
with respect to a different norm. 

(ii) Perform five steps of the power method for the matrices 

. A = 1

2

⎡

⎣

2 0 0
0 5 −1
0 −1 5

⎤

⎦ , B =
⎡

⎣

−6 −22 59
−4 −6 22
−2 −4 13

⎤

⎦

with the initial vector x0 = [1, 1, 1]T/2. and observe the sizes ‖x̃k‖2 . and xT
k Axk .. 

Problem 28.8.5 Determine the k-th iterate of the power method for the matrix 

. A =

⎡

⎢

⎢

⎢

⎢

⎣

0 2
. . .

. . .

. . . 2
2 0

⎤

⎥

⎥

⎥

⎥

⎦

with the starting vectors x0 = [1, 0, . . . , 0]T . and x0 = [1, 1, . . . , 1]T . and discuss 
the validity of the assumptions of the convergence result.
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Problem 28.8.6 Let A ∈ R
n×n

.. 

(i) Show that a Householder matrix ˜H ∈ R
(n−1)×(n−1)

. exists, such that for B =
HAHT

.with H = [

1 00 ˜H
]

. the property bi1 = 0. holds for i > 2.. 
(ii) Conclude that A can be transformed into a matrix ̂A ∈ R

n×n
. with âij = 0. 

for i > j + 1. using n − 2. similarity transformations. Discuss the required 
numerical effort. 

(iii) Show that the property aij = 0. for i > j + 1. is preserved in the QR method. 

Problem 28.8.7 Perform a step of the QR method for the matrix

. A =
⎡

⎣

1 −2 3
0 3 5
0 1 2

⎤

⎦ ,

determine the eigenvalues of A using the characteristic polynomial and compare the 
results.

Problem 28.8.8 

(i) Let A ∈ R
n×n

. be a symmetric matrix and Gpq ∈ R
n×n

. a Givens rotation. Show 
for the entries of the matrix B = G−1

pq AGpq . that 

. 

bpp = c2app + 2csapq + s2aqq,

bqq = s2app − 2csapq + c2aqq,

bpq = bqp = cs(aqq − app) + (c2 − s2)apq,

bip = caip + saiq , i ∈ {1, 2, . . . , n} \ {p, q},
biq = −saip + caiq , i ∈ {1, 2, . . . , n} \ {p, q},
bij = aij , i, j �∈ {p, q}.

(ii) Infer bpq = 0., provided apq �= 0. and Gpq . is defined by c = √
(1 + D)/2. and 

s = sign(apq)
√

(1 − D)/2.with 

. D = app − aqq
(

(app − aqq)2 + 4a2pq

)1/2
.

Problem 28.8.9 Let ‖A‖F = (∑n
i,j=1 a2ij

)1/2
. be the Frobenius norm. 

(i) Show that ‖A‖2F = tr(ATA). as well as tr(AB) = tr(BA). for all A,B ∈ R
n×n

. 

and infer ‖Q−1BQ‖F = ‖B‖F . for B ∈ R
n×n,Q ∈ O(n).. 

(ii) Show that ‖A‖2 ≤ ‖A‖F . for all A ∈ R
n×n

..
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Problem 28.8.10 Construct a symmetric matrix Ak ∈ R
3×3

.with an entry (Ak)ij =
0., so that for the next iterate Ak+1 . in the Jacobi method (Ak+1)ij �= 0. holds. 

Project 28.8.1 Implement the von Mises power method to approximate the small-
est and largest eigenvalue as well as the corresponding eigenvectors of the n × n. 

matrix 

. A =

⎡

⎢

⎢

⎢

⎢

⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤

⎥

⎥

⎥

⎥

⎦

for n = 4, 16, 64, 256..  Use  the  MATLAB command x = B\c to solve linear systems
Bx = c.. Use different starting vectors and a suitable termination criterion for the 
iteration and determine the errors of the approximations using the exact values 
λmin = 2 − 2 cos(π/(n + 1)). and λmax = 2 − 2 cos(nπ/(n + 1)).. 

Project 28.8.2 

(i) Use the MATLAB routine [Q,R] = qr(A), to implement the QR method and 
terminate the iteration if ‖Ak − Ak+1‖2/‖Ak‖2 ≤ 10−5

. holds. What would 
be another meaningful termination criterion? Approximate with your program 
the eigenvalues of the matrices A ∈ R

n×n
., n = 4, 10, 20. and B,BT ∈ R

3×3
. 

defined by 

. A =

⎡

⎢

⎢

⎢

⎢

⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤

⎥

⎥

⎥

⎥

⎦

, B =
⎡

⎣

−1 −10 29
−2 −4 18
−1 −3 11

⎤

⎦

and discuss the prerequisites of the proposition about the convergence of the 
method based on these examples. 

(ii) Implement the Jacobi method with the termination criterion N (Ak) ≤ 10−4
. in 

MATLAB and test it for the matrix A ∈ R
n×n

. defined by 

. aij = sin(|i − j |π/n) − 2δij

for i, j = 1, 2, . . . , n. with n = 2, 4, 8, 16.. Modify the program to obtain 
an implementation of the cyclic Jacobi method, that is, the search for the 
largest entry is omitted and all entries are successively treated. Observe 
graphically the size of the entries of the iterates using the MATLAB com-
mands [X,Y] = meshgrid(1:n,1:n), surf(X,Y,A) and view(-270,90). 
Consider the number of iterations required depending on n.
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28.9 Iterative Solution Methods 

Problem 28.9.1 Construct a matrix M ∈ R
2×2

., which is a contraction with respect 
to an operator norm and not with respect to another. 

Problem 28.9.2 Show that for the iterates of the fixed point iteration xk+1 = Φ(xk). 

with the contraction Φ : Rn → R
n
. the error estimate 

. ‖xk − x∗‖ ≤ q

1 − q
‖xk − xk−1‖

holds. How is this estimation relevant for practical purposes? 

Problem 28.9.3 

(i) Let T ∈ R
n×n

. be a regular matrix and ‖ · ‖. a norm on Rn
.. Show that ‖x‖T =

‖T x‖. for x ∈ R
n
. defines another norm on Rn

.. 
(ii) Let R ∈ R

n×n
. and D ∈ R

n×n
. be an invertible diagonal matrix. Show that for 

T = D−1RD . and i, j = 1, 2, . . . , n.we have 

. tij = djj

dii

rij .

Problem 28.9.4 For a given matrix A ∈ R
n×n

. we define a directed graph G with 
node set {1, 2, . . . , n}. and edges eij ., 1 ≤ i, j ≤ n., from node i to node j ,  if aij �= 0.. 
Show that A is irreducible if and only if one can reach every node j from any node 
i along the edges with j �= i .. 

Problem 28.9.5 

(i) Let A1, A2 ∈ R
n×n

. be defined by 

. A1 =

⎡

⎢

⎢

⎢

⎢

⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤

⎥

⎥

⎥

⎥

⎦

, A2 =

⎡

⎢

⎢

⎢

⎢

⎣

4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

⎤

⎥

⎥

⎥

⎥

⎦

.

Investigate these matrices with respect to diagonal dominance and irreducibil-
ity. 

(ii) Show that in the case of the matrix A2 . for the iteration matrix MJ
. of the Jacobi 

method the estimate �(MJ ) ≤ 1/2. holds. 

Problem 28.9.6 Perform 5 steps of the Richardson, Jacobi and Gauss-Seidel 
methods for 

.A =
⎡

⎣

2 −1 0
−1 2 −1
0 −1 2

⎤

⎦ , b =
⎡

⎣

1
1
1

⎤

⎦
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with ω = 1. and ω = 1/10. and x0 = [1, 1, 1]T . respectively. Compare the iterates 
with the exact solution of the system of equations. 

Problem 28.9.7 Show that A ∈ R
n×n

. is irreducible if and only if for all i, j ∈
{1, 2, . . . , n}. there exists a sequence i1, i2, . . . , i� ∈ {1, 2, . . . , n}. with i1 = i . and 
i� = j . and aikik+1 �= 0. for k = 1, 2, . . . , � − 1.. 

Problem 28.9.8 Show that A ∈ R
n×n

. is reducible if and only if there exists a 
permutation matrix P ∈ {0, 1}n×n

., such that 

. PAP T =
[

B11 B12

0 B22

]

with suitable matricesB11 .,B12 . andB22 . and a null matrix 0 ∈ R
k×�

.where k+� = n.. 

Problem 28.9.9 For the matrix A ∈ R
n×n

. let �(In − A) < 1.. Show that A is 
invertible and that the inverse A−1

. is given by the convergent series 

. A−1 =
∞
∑

i=0

(In − A)i.

Hint: Consider the matrix B = In − A. and argue as when determining the value of 
the geometric series. 

Problem 28.9.10 Show that the iteration process defined by (D + U)xk+1 =
−Lxk + b. converges in the case of an irreducible and diagonally dominant matrix 
A = U + D + L ∈ R

n×n
. for any initial value x0 ∈ R

n
.. 

Project 28.9.1 Use the equivalent representations 

. 

xk+1
i = a−1

ii

(

bi −
∑

j �=i

aij x
k
j

)

,

xk+1
i = a−1

ii

(

bi −
∑

j<i

aij x
k+1
j −

∑

j>i

aij x
k
j

)

of the Jacobi and Gauss-Seidel methods to implement these in C++. Test your 
programs for the system of linear equations Ax = b.with 

.A =

⎡

⎢

⎢

⎢

⎢

⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤

⎥

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎣

1
1
...

1

⎤

⎥

⎥

⎥

⎦
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and the starting vector x0 = [1, 1, . . . , 1]T ∈ R
n
. for n = 10, 20, 40.. Terminate the 

iteration when ‖xk − xk+1‖2 ≤ δ . with δ = 10−5
.. Comment on the dependence of 

the number of iterations on the dimension n of the system of equations.

Project 28.9.2 Implement the Richardson method in MATLAB and test it for the 
system of linear equations Ax = b.with 

. A =

⎡

⎢

⎢

⎢

⎢

⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤

⎥

⎥

⎥

⎥

⎦

, b = 1

n2

⎡

⎢

⎢

⎢

⎣

1
1
...

1

⎤

⎥

⎥

⎥

⎦

and a starting vector x0 ∈ R
n
. randomly generated with the MATLAB command 

randn(n,1) for n = 10, 20, 40, 80. and the parameters ω = 1, 1/10, 1/n.. Visualise 
the iterations using plot([0:1/n:1],[0,x’]) and observe the behaviour of these 
curves for several different initial values. Try to identify and characterise different 
phases of the iteration.



Chapter 29 
Problems on Numerical Analysis 

29.1 General Condition Number and Machine Numbers 

Problem 29.1.1 Show that given a basis b ≥ 2. every number x ∈ R \ {0}. can be 
represented in the form 

. x = ±be
∞∑

k=1

dkb
−k

with d1, d2, · · · ∈ {0, 1, . . . , b − 1}. and e ∈ Z.where d1 �= 0. can be chosen. 

Problem 29.1.2 

(i) Calculate the number of floating point numbers as well as the positive extrema 
gmin . and gmax . for the IEEE formats single and double precision. 

(ii) Determine rd(π). for b = 2., p = 5. and b = 10., p = 4.. 
(iii) How can the occurrence of overflow be avoided when calculating (a2 + b2)1/2 . 

if max{|a|, |b|} > g
1/2
max . and |a|, |b| ≤ gmax/2.? 

Problem 29.1.3 

(i) Represent the numbers 142, 237 and 1111 for the bases b = 2, 4. and 10 with 
the precision p = 10. and the exponent limits emin = −10. and emax = 10. as 
normalised floating point numbers. 

(ii) Determine the 25th decimal place of 1/7.. 
(iii) Why is the number 1/10. in the binary system only representable by an infinite 

series? 
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Problem 29.1.4 

(i) Let φ = φ1◦· · ·◦φJ ., where the suboperations φ1, . . . , φJ . are well conditioned. 
Show that φ . is well conditioned. 

(ii) Let g ∈ C1(R).. Discuss the conditioning of the determination of the roots of g 
and illustrate the results graphically .

Problem 29.1.5 Let φ : R
2 → R

2
., φ(p, q) = (x1, x2)., be the operation of 

determining the roots x1, x2 . of the quadratic polynomial x2 + px + q .. Determine a 
subset W ⊂ R

2
. on which φ . is well-defined. Calculate for (p, q) ∈ W . the relative 

condition number κφ(p, q). and discuss for which pairs (p, q). the operation is well 
conditioned. 

Problem 29.1.6 Identify possible problems when evaluating the pq-formula 
x1,2 = −p/2± (p2/4−q)1/2 . for determining the roots of the quadratic polynomial 
x2 + px + q .. Construct a stable algorithm by utilising the relationship x1x2 = q .. 

Problem 29.1.7 

(i) Show that the set of regular n × n.matrices defines an open subset of Rn×n
.. 

(ii) Show that for E ∈ R
n×n

. and sufficiently small numbers h ∈ R. the matrix 
In + hE . is regular with 

. (In + hE)−1 =
∞∑

k=0

(−1)khkEk.

Problem 29.1.8 Assume that the floating point addition is given by x +G y =
rd(x + y).. 

(i) Prove that the harmonic series
∑∞

k=1 1/k .converges in floating point arithmetic. 
(ii) Show that the floating point addition +G . is not associative. 

Problem 29.1.9 

(i) Show that the operation φ(x) = (1/x) − (1/(x + 1)). is well conditioned for 
large numbers x ∈ R.. 

(ii) Show that the method φ̃(x) = (1/x) − (1/(x + 1)). is unstable. 
(iii) Show that the method φ̃(x) = 1/(x(x + 1)). is stable. 

Hint: Identify the dominant terms of the expression 

. ̃φ(̃x) =
(

1+ε2
x(1+ε1)

− 1+ε4
(x(1+ε1)+1)(1+ε3)

)
(1 + ε5)

and consider the quotient |φ̃(̃x) − φ(x)|/|φ(x)|.. Use approximations 1/(1 +
ε) ≈ 1 − ε . and 1/(1 + ε + 1/x) ≈ 1 − ε − 1/x .. 

Problem 29.1.10 Use the Gaussian elimination method without or with pivot 
search to solve the system of equations
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. 

[
0.1 · 10−3 1

1 1

] [
x1

x2

]
=

[
1
2

]
.

Use decimal numbers with precision p = 3, 4, 5., i.e., work using suitable rounding 
with numbers of the form ± 0.d1d2 . . . dp · 10e

. with e ∈ Z. and d1, d2, . . . , dp ∈
{0, 1, . . . , 9}.. 
Project 29.1.1 To determine the rounding accuracy of a computer, let x = 1. and 
replace x with x/2. as long as the expression 1 + x > 1. is evaluated as true by the 
computer. Determine experimentally in C++ the value of x for which this procedure 
stops. Define for this purpose x as a variable of type float or double.

Project 29.1.2 We consider the numerical determination of the Euler number e, 
which is characterised by the limit values 

. e = lim
n→∞(1 + 1/n)n, e = lim

n→∞

n∑

k=0

1

k!

Use only basic arithmetic operations and finite approximations of the above limit 
values with n = 10j

., j = 1, 2, . . . , 15., to approximate e. Determine the 
approximation errors using the reference approximation e ≈ 2.718281828459045. 
and display these with 15 decimal places in a table. Evaluate your results. 

Project 29.1.3 The solution of a system of linear equations Ax = b. is given by 
Cramer’s rule as xi = detAi/ detA., i = 1, 2, . . . , n., where Ai ∈ R

n×n
. is obtained 

from A by replacing the i-th column of A with the vector b.  In MATLAB Ai . can be 
generated with the commands A_i=A and A_i(:,i)=b;. Implement Cramer’s rule 
in MATLAB and test your program for the system of equations Ax = b.with 

. A =
[
0.2161 0.1441
1.2969 0.8648

]
, b =

[
0.1440
0.8642

]
.

The exact solution is given by x = [2,−2]T .. Determine for the numerical solution x̃ . 

the forward error ‖x− x̃‖∞/‖x‖∞ . as well as the backward error ‖Ax̃−b‖∞/‖b‖∞ .. 
Consider the condition number of A and compare the errors with those of the 
numerical solution x̂ . calculated by the Gaussian elimination method with pivot 
search, which you can determine in MATLAB with x=A\beta . 

29.2 Polynomial Interpolation 

Problem 29.2.1 

(i) Let f ∈ C2([a, b]). with the property f (a) = f (b). and f ′(a) = f ′(b) = 0.. 
Provide an optimal lower bound for the number of roots of f ′′

..
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(ii) For nodes x0 < x1 < · · · < xn .,  let w(x) = ∏n
j=0(x − xj ). be the node 

polynomial and Li ., i = 0, 1, . . . , n.,  the  i-th Lagrange basis polynomial. Show 
that

. Li(x) = w(x)

(x − xi)w′(xi)
.

Problem 29.2.2 Let a ≤ x0 < x1 < · · · < xn ≤ b. be given nodes and 
(v0, v1, . . . , vn). polynomials of maximum degree n. 

(i) Show that the matrix V ∈ R
(n+1)×(n+1)

. defined by Vij = vi(xj )., i, j =
0, 1, . . . , n., is regular if and only if from

∑n
i=0 αivi(x) = 0. for all x ∈ [a, b]. 

it follows that αi = 0. for i = 0, 1, . . . , n.. 
(ii) Show that in the case of the monomials vi(x) = xi

., i = 0, 1, . . . , n.,  we  ha  ve

. detV =
∏

0≤i<j≤n

(xj − xi).

Problem 29.2.3 Let f (x) = sin(πx). for x ∈ [0, 1]., x0 = 0. and xi = i/n., i =
0, 1, . . . , n. if n > 0.. Calculate and sketch the interpolation polynomial of f for 
n = 0, 1, . . . , 4.. 

Problem 29.2.4 Let f (x) = sin(πx). for x ∈ [0, 1]., x0 = 0. and xi = i/n. for i =
1, 2, . . . , n. if n > 0.. Calculate and sketch the Hermite interpolation polynomials for 
n = 0, 1, 2. and �i = �., i = 0, 1, . . . , n., with � = 0, 1, 2.. 

Problem 29.2.5 

(i) For x ∈ [−5, 5]. let f (x) = (1 + x2)−1 = arctan′(x).. Use the identities 

. 

cos(arctan(x)) = 1

(1 + x2)1/2
, sin(arctan(x)) = x

(1 + x2)1/2
,

sin(x) sin(y) − cos(x) cos(y) = − cos(x + y),

sin(x) cos(y) + cos(x) sin(y) = sin(x + y),

to inductively prove or verify for n = 0, 1, 2, 3. that 

. f (n)(x) = n!
(1 + x2)(n+1)/2

×
{

(−1)n/2 cos((n + 1) arctan(x)), n even,

(−1)(n+1)/2 sin((n + 1) arctan(x)), n odd.

(ii) Conclude that ‖f (2n)‖∞ = (2n)!. and that the Lagrange interpolation polyno-
mials of f̃ (x) = f (5x). in the interval [−1, 1]. do not necessarily converge 
uniformly towards f̃ . as n → ∞..
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Problem 29.2.6 Construct nodes a ≤ x0 < x1 < · · · < xn ≤ b. in the interval 
[a, b]., such that for the Lagrange interpolation of any function f ∈ Cn+1([a, b]). 
we have 

. ‖f − p‖C0([a,b]) ≤ 2−n
(b − a

2

)n+1 ‖f (n+1)‖C0([a,b])
(n + 1)! .

Problem 29.2.7 Prove the following properties of the functions defined by Tn(t) =
cos(n arccos t). for t ∈ [−1, 1].: 
(i) We have that |Tn(t)| ≤ 1. for all t ∈ [−1, 1].. 
(ii) With T0(t) = 1. and T1(t) = t ., we have that 

. Tn+1(t) = 2t Tn(t) − Tn−1(t)

for all t ∈ [−1, 1].. In particular, Tn ∈ Pn|[−1,1] . and for n ≥ 1., Tn(t) =
2n−1tn + qn−1 .with qn−1 ∈ Pn−1|[−1,1] .. 

(iii) For n ≥ 1., Tn . has the roots tj = cos((j + 1/2)π/n)., j = 0, 1, . . . , n − 1., and 
the n + 1. extreme points sj = cos(jπ/n)., j = 0, 1, . . . , n.. 

Problem 29.2.8 

(i) Provide a method using on as few as possible basic arithmetic operations for 
evaluating the polynomial (x + 3)16 .. 

(ii) Compare the effort of the direct evaluation of the polynomial p(x) = a0 +
a1x1 + · · · + anx

n
.with that of using the equivalent representation 

. p(x) = a0 + x
(
a1 + x

(
a2 + . . . x

(
an−2 + x

(
an−1 + xan

))
. . .

))
.

Problem 29.2.9 For n + 1. nodes and values (x0, y0)., (x1, y1).,  . . . , (xn, yn). and 
0 ≤ j ≤ n. as well as 0 ≤ i ≤ n − j .,  let pi,j ∈ Pj . be defined by pi,j (xk) = yk ., 
k = i, i + 1, . . . , i + j .. The numbers yi,j . are defined by yi,0 = yi ., i = 0, 1, . . . , n., 
and 

. yi,j = yi+1,j−1 − yi,j−1

xi+j − xi

for 1 ≤ j ≤ n. and 0 ≤ i ≤ n − j .. 

(i) Show that pi,j (x) = yi,j x
j + ri,j (x).with a polynomial ri,j ∈ Pj−1 . for j ≥ 1. 

and i = 0, 1, . . . , n − j .. 
(ii) Show that for qj (x) = p0,j (x) − p0,j−1(x)., where p0,−1 = 0.,  the  

representation qj (x) = y0,j
∏j−1

i=0 (x − xi). holds. 

(iii) Conclude that p0,n(x) = ∑n
j=0 y0,j

∏j−1
i=0 (x − xi)..
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Problem 29.2.10 Let x0 < x1 < · · · < xn . and � ∈ N..  For x ∈ R. and 0 ≤ j ≤ n. 

define 

. Hj,�(x) = (x − xj )
�

�!
n∏

i=0
i �=j

( x − xi

xj − xi

)�+1
.

Show that for the derivatives of Hj,� . the identities dk

dxk Hj,�(xm) = δk�δjm . for 0 ≤
k ≤ �. and 0 ≤ m ≤ n. apply. 

Project 29.2.1 Implement the Neville scheme in non-recursive form and use it to 
interpolate the function f (x) = (1 + 25x2)−1

. using equidistant nodes − 1 =
x0 < x1 < · · · < xn = 1. as well as Chebyshev nodes − 1 ≤ t0 < t1 < · · · <

tn ≤ 1. to evaluate the polynomial at the points xa = π/8. and xb = π/4. for n =
1, 2, 4, 8, 16, 32.. Comment on your observations. 

Project 29.2.2 

(i) Write a MATLAB program to determine the coefficients of an interpolation 
polynomial with respect to the Newton basis for given nodes x0 < x1 < · · · <

xn . and corresponding values y0, . . . , yn .. 
(ii) Test your program for the functions f (x) = sin(πx)., g(x) = (1 + 25x2)−1

. 

and h(x) = |x|. in the interval [−1, 1]. using equidistant nodes and Chebyshev 
nodes. Evaluate the interpolation polynomials at the points zj = −1 +
2j/100., j = 0, 1, . . . , 100. using the Horner scheme and plot the interpolation 
polynomials for n = 1, 2, 4, 8.. 

29.3 Interpolation with Splines 

Problem 29.3.1 

(i) Let 0 ≤ a < b. and x 
→ g(x). be the linear function that interpolates the 
function f (x) = x1/2

. at the nodes a and b. Show that for the error em =
maxx∈[a,b] |g(x) − f (x)|. the estimates em ≤ (b − a)2a−3/2/8. in the case 
a > 0. and em ≤ b1/2/4. in the case a = 0. apply. 

(ii) For n ∈ N. and xi = i/n., i = 0, 1, . . . , n.,  let fn ∈ S 1,0(Tn). be the 
interpolating spline function of f (x) = x1/2

. in the interval [0, 1].. Show that 
maxx∈[0,1] |fn(x) − f (x)| ≤ n−1/2/4.. 

(iii) In which regions is the error estimate from (ii) suboptimal? 

Problem 29.3.2 For the partitioning defined by the points xi = (i/n)4 ., i =
0, 1, . . . , n.,  of [0, 1].,  let fn ∈ S 1,0(Tn). be the interpolating spline function of 
f (x) = x1/2

.. Show that maxx∈[0,1] |fn(x) − f (x)| ≤ cn−2
. with a constant c > 0. 

independent of n applies. Sketch fn . for n = 2, 4, 8..
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Problem 29.3.3 

(i) Show that for every interval [a0, a1] ⊂ R. there are uniquely determined 
polynomials q0,0, q0,1, q1,0, q1,1 ∈ P3 . such that q

(�)
j,k(am) = δjmδk� . for 

j, k, �,m = 0, 1.. Draw the polynomials for the interval [0, 1].. 
(ii) Conclude that on each partitioning Tn .with grid points x0 < x1 < · · · < xn . for 

given values y0, y1, . . . , yn . and r0, r1, . . . , rn . there exists a uniquely defined 
spline s ∈ S 3,1(Tn). with s(xi) = yi . and s′(xi) = ri ., i = 0, 1, . . . , n., and 
provide a representation formula. 

Problem 29.3.4 Show that the cubic spline interpolation task with natural bound-
ary conditions is uniquely solvable by considering the linear subspace S 3,2

nat (Tn) =
{s ∈ S 3,2(Tn) : s′′(a) = s′′(b) = 0}.. 
Problem 29.3.5 Let Tn . be the partitioning a = x0 < x1 < · · · < xn = b. and 
let s ∈ S 3,2(Tn). be the interpolating cubic spline of the function values y0 = 1. 
and yi = 0., i = 1, 2, . . . , n. with natural boundary conditions. Show that s has 
only finitely many zeros on each interval [xi−1, xi]., i = 1, 2, . . . , n., and provide a 
possibly accurate upper estimate for the number of zeros on each of these intervals. 
Sketch the function s. 

Problem 29.3.6 Explicitly determine the interpolating cubic splines with natural 
as well as Hermite boundary conditions s′(−1) = 0., s′(1) = 3., for the nodes 
xi = −1 + i/2. and values yi = (−1)i ., i = 0, 1, 2, . . . , 4., and draw these. 

Problem 29.3.7 Let Tn .be a partitioning of the interval [a, b]. and let s ∈ S 1,0(Tn). 

and g ∈ C1([a, b]). satisfy s(xi) = g(xi). for i = 0, 1, . . . , n.. Prove the inequality 

. 

n∑

i=1

∫ xi

xi−1

|s′|2 dx ≤
∫ b

a

|g′|2 dx.

Problem 29.3.8 The functions Bm : R → R., m ∈ N., are defined by the recursion 

. Bm+1(x) =
∫ x+1/2

x−1/2
Bm(t) dt

with the initialisation B0(x) = 1. for |x| ≤ 1/2. and B0(x) = 0. for |x| > 1/2.. 

(i) Show that Bm . is non-negative and Bm(x) = 0. for |x| > (m + 1)/2.. 
(ii) Show that, with the partitioning Tm+1 . of the interval [−(m+1)/2, (m+1)/2]. 

defined by the points xi = i − (m + 1)/2., i = 0, . . . , m + 1 = n., for each 
m ∈ N. a spline function Bm ∈ S m,m−1(Tm+1). is defined. 

(iii) Determine the functions B1 ., B2 . and B3 . explicitly and sketch them.
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Problem 29.3.9 For n ∈ N. and i = 0, 1, . . . , n. the function Bi,n : R → R. is 
defined by 

. Bi,n(x) =
(

n

i

)
xi(1 − x)n−i .

(i) Show that the functions (B0,n, B1,n, . . . , Bn,n). define a basis of the polynomial 
space Pn .. 

(ii) Prove the formula Bi,n(x) = (1 − x)Bi,n−1(x) + xBi−1,n−1(x).. 

Problem 29.3.10 

(i) Let P0, P1, . . . , Pn ∈ R
m

.. Show that the mapping z : [0, 1] → R
m

., 

. z(t) =
n∑

i=0

(
n

i

)
t i (1 − t)n−iPi,

has the properties z(0) = P0 ., z(1) = Pn . as well as z′(0) = n(P1 − P0)., 
z′(1) = n(Pn − Pn−1).. 

(ii) Construct points P0, P1, P2, P3 ∈ R
2
. so that the graph of the mapping z 

approximates the quarter circle {(x, y) ∈ R
2 : y = (1 − x2)1/2, 0 ≤ x ≤ 1}. as 

well as possible. 

Project 29.3.1 The MATLAB command plot(X,Y,’r-*’) graphically represents 
a polygonal chain defined by the vectors X and Y . If X = [x0, x1, . . . , xn]T . and 
Y = [f (x0), f (x1), . . . , f (xn)]T ., a continuous, piecewise linear interpolation of 
the function f is represented. The representation of the graph can be changed 
in colour, line representation and marking with the optional argument r-*. Other 
useful commands are: 

hold on, hold off, clf, axis, xlabel, ylabel, legend

(i) Graphically illustrate the piecewise linear approximation of the function 
f (x) = x1/2

. on the interval [0, 1].with the grid points 

. (a) xi = i/n, (b) xi = (i/n)4

for i = 0, 1, . . . , n. and n = 2, 4, 8, 16., by comparing these with the 
representation of f on a very fine grid.

(ii) Write a routine for calculating an interpolating cubic spline with natural 
boundary conditions. Test the routine with the partitions from (i) for the 
function f (x) = sin(2πx).. 

(iii) Generate meaningful graphics in each case and save them in a jpg or png file. 
Comment on the results.
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Project 29.3.2 

(i) Research the term Bézier curve and explain it in 5 to 10 lines. 
(ii) Use a drawing program (e.g., xfig under Unix or the online program Mathcha 

(https://www.mathcha.io)) to draw two identical black ellipses in rectangles 
with side lengths �1 = 5.0cm. and �2 = 10.0cm.. 

(iii) Each quarter of the two ellipses should be approximated using different 
methods such as a polygonal chain, a spline function, a Bézier curve , or a 
composite variant. For each segment, a maximum of 3 or 5 interpolation or 
control points should be used. In the case of composite curves, a position used 
twice counts as one point. Use different colors for different approximations. 

(iv) Which function achieves the best approximation? Define a suitable distance 
concept for the curves and manually measure the corresponding errors. 

(v) Export your graphic as a pdf file. 

29.4 Discrete Fourier Transform 

Problem 29.4.1 

(i) Let n ∈ N. and � ∈ Z.. Show that
∑n−1

k=0 ei�k2π/n = n. holds, if n is a divisor of
�., and

∑n−1
k=0 ei�k2π/n = 0. otherwise. 

(ii) Conclude that the Fourier basis (ω0, ω1, . . . , ωn−1) ⊂ C
n
. defined by ωk =

[ω0k
n , ω1k

n , . . . , ω
(n−1)k
n ]T ., k = 0, 1, . . . , n− 1., with the n-th root of unity ωn =

ei2π/n
. has the property ωk · ω� = nδk� .. 

Problem 29.4.2 

(i) Let the nodes z0, z1, . . . , zn−1 ∈ C. be pairwise different and the values 
y0, y1, . . . , yn−1 ∈ C. arbitrary. Show that there exists a uniquely determined 
polynomial p(z) = β0 + β1z + · · · + βn−1z

n−1
. with complex coefficients βi ., 

i = 0, 1, . . . , n − 1., such that p(zj ) = yj . for j = 0, 1, . . . , n − 1.. 
(ii) Conclude the unique solvability of the complex trigonometric interpolation 

problem. 

Problem 29.4.3 Let w0, w1, . . . , wn−1 ∈ C. and n = 2m.. Construct 
y0, y1, . . . , yn−1 ∈ C., so that, with the coefficients β0, β1, . . . , βn−1 ∈ C. of 
the solution of the corresponding complex trigonometric interpolation problem and 
the function 

. q(x) =
m−1∑

k=−m

βk+meikx,

the interpolation property q(xj ) = wj . for j = 0, 1, . . . , n − 1. and xj = 2πj/n. is 
fulfilled.

https://www.mathcha.io
https://www.mathcha.io
https://www.mathcha.io
https://www.mathcha.io
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Problem 29.4.4 Calculate without using matrix-vector multiplications the Fourier 
synthesis y = T8β . of the vector 

. β = [0,√2, 1,
√
2, 0,−√

2,−1,−√
2]T.

Problem 29.4.5 

(i) Show that on the space of continuous, complex-valued functions C0([0, 2π ];
C). through 

. 〈v,w〉 =
∫ 2π

0
v(x)w(x) dx

a scalar product is defined. 
(ii) Show that the functions (ϕk : k ∈ Z). defined by ϕk(x) = eikx

., k ∈ Z., x ∈
[0, 2π ]., define an orthogonal system, that is, we have 〈ϕk, ϕ�〉 = δk� . for all 
k, � ∈ Z.with k �= �.. 

(iii) Show that the orthogonality of the system (ϕk : k ∈ Z). is preserved when the 
integral is approximated by a Riemann sum, that is, with respect to 

. 〈v,w〉n = 2π

n

n−1∑

j=0

v(xj )w(xj )

with xj = 2πj/n., j = 0, 1, . . . , n − 1.. 

Problem 29.4.6 Let 〈·, ·〉 : V × V → R. be a scalar product on the real, n-
dimensional vector space V and let (v0, v1, . . . , vn−1). be an orthonormal basis of 
V . Show that for every vector w ∈ V .we have 

. w =
n−1∑

j=0

〈w, vj 〉vj .

Problem 29.4.7 Given y0, y1, . . . , yn−1 ∈ R.,  let  T and p be the solutions of 
the real and complex trigonometric interpolation problems respectively. Sho w that
T (xj ) = p(xj ). for xj = 2πj/n., j = 0, 1, . . . , n − 1., but in general T �= p . holds. 

Problem 29.4.8 

(i) Show that the solution of the real trigonometric interpolation problem is given 
by the coefficients 

.ak = 2

n

n−1∑

j=0

yj cos(kxj ), b� = 2

n

n−1∑

j=0

yj sin(�xj )
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for k = 0, 1, . . . , m. and � = 1, 2, . . . , m − 1. with xj = 2πj/n., j =
0, 1, . . . , n − 1., and n = 2m.. 

(ii) Conclude that the vectors 

. f k = (
cos(kxj )

)
j=0,...,n−1, g� = (

sin(�xj )
)
j=0,...,n−1

for k = 0, 1, . . . , m. and � = 1, 2, . . . , m − 1. define an orthogonal basis of Rn
.. 

Problem 29.4.9 Let n,m ∈ N. with n = 2m., A,B ∈ R
n×n

. and C = AB ..  Fo  r
i, j ∈ {1, 2}. let Aij , Bij , Cij ∈ R

m×m
., be the sub-blocks of A, B and C, such that

. A =
[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, C =

[
C11 C12

C21 C22

]
.

(i) Show that the computation of C with the standard method for computing the 
product of matrices leads to O(nlog2 8).multiplications. 

(ii) Show that with 

. M1 = (A11 + A22)(B11 + B22), M2 = (A21 + A22)B11,

M3 = A11(B12 − B22), M4 = A22(B21 − B11),

M5 = (A11 + A12)B22, M6 = (A21 − A11)(B11 + B12),

M7 = (A12 − A22)(B21 + B22)

we have 

. C11 = M1 + M4 − M5 + M7, C12 = M3 + M5,

C21 = M2 + M4, C22 = M1 − M2 + M3 + M6.

(iii) Let n = 2k
. for a k ∈ N.. Construct a recursive method for computing AB that 

uses O(7k) = O(nlog2 7).multiplications. 

Remark This approach uses the fact that the computation of an expression (a +
b)(c + d). is less expensive than the equivalent expression ac + bc + ad + bd .. 

Problem 29.4.10 

(i) For a�, b� ∈ R., � = 0, 1, . . . , m.,  le  t

.T (x) = a0

2
+

m∑

�=1

(
a� sin(�x) + b� cos(�x)

)
.
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Construct δk ∈ C., k = 0, 1, . . . , 2m., such that, with 

. q(x) =
m∑

k=−m

δk+meikx,

there holds T (x) = q(x). for all x ∈ [0, 2π ].. 
(ii) Show that the function q is real-valued if and only if δm−k = δm+k . holds for 

k = 0, 1, . . . , m.. 

Project 29.4.1 Implement the complex Fourier synthesis as a recursive function 
and use your routine to compute the Fourier transform of the vectors y ∈ C

n
.defined 

by yj = fr(2πj/n)., j = 0, 1, . . . , n − 1., r = 1, 2, 3., with f1(x) = sin(5x) +
(1/2) cos(x). and 

. f2(x) =
{
1, x ∈ [π − 1/4, π + 1/4],
0, x �∈ [π − 1/4, π + 1/4], f3(x) =

{
1, x ∈ [0, π),

−1, x �∈ [π, 2π),

with n = 2s
., s = 1, 2, . . . , 5., to compute. Graphically represent the associated 

complex trigonometric polynomials. Use the MATLAB implementation of complex 
numbers in the creation of your program. 

Project 29.4.2 Let the function f : [0, 2π ] → R. be defined by 

. f (x) =
{

x, x ∈ [0, π ],
2π − x, x ∈ [π, 2π ].

Use the MATLAB routine fft to compute for n = 2s
., s = 1, 2, . . . , 5., complex 

coefficients (βk)k=0,1,...,n−1 . and (δk)k=0,1,...,n−1 . such that for the functions 

. p(x) =
n−1∑

k=0

βke
ikx, q(x) =

n/2−1∑

k=−n/2

δk+n/2e
ikx

the interpolation property p(xj ) = f (xj ). or q(xj ) = f (xj ). for j = 0, 1, . . . , n− 1. 
and with xj = 2πj/n. is fulfilled. Plot the real and imaginary parts of the functions 
p and q and discuss your results.

29.5 Numerical Integration 

Problem 29.5.1 Use the representation of the Lagrange interpolation error
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. f (x) − p(x) = f (n+1)(ξ)

(n + 1)!
n∏

j=0

(x − xj ),

to prove for the trapezoidal and Simpson’s rule that 

. 

|I (f ) − QT rap(f )| ≤ (b − a)3

12
‖f ′′‖C0([a,b]),

|I (f ) − QSim(f )| ≤ (b − a)5

2880
‖f (4)‖C0([a,b]).

Problem 29.5.2 LetQ : C0([a, b] → R.be a quadrature formula with n+1.weights 
and quadrature points (xi, wi)i=0,...,n ., which is exact of degree n. 

(i) Show that 

. wi =
∫ b

a

Li(x) dx

for i = 0, 1, . . . , n.with the Lagrange basis polynomials (Li)i=0,...,n . defined by 
the nodes (xi)i=0,...,n .. 

(ii) Show that in the case of exactness of degree 2n, we have that wi > 0. for 
i = 0, 1, . . . , n.. 

Problem 29.5.3 Assume that the quadrature formula Q : C0([a, b]) → R. is 
exact of degree 2q and the associated weights (wi)i=0,...,n . and nodes (xi)i=0,...,n . 

are symmetrically arranged with respect to the interval midpoint (a + b)/2.. Show 
that Q is exact of degree 2q + 1.. 

Problem 29.5.4 

(i) Let ω ∈ C0(a, b). be a function that is improperly Riemann-integrable and 
positive outside a finite number of points. Show that by 

. 〈f, g〉ω =
∫ b

a

f (x)g(x)ω(x) dx

a scalar product on C0([a, b]). is defined. 
(ii) Show that the polynomials (Pn)n∈N . defined by the derivatives 

. Pn(x) = 1

2nn!
dn

dxn

[
(x2 − 1)n

]

are orthogonal with respect to the scalar product defined by the weight function 
ω(x) = 1. for x ∈ [−1, 1]., that is for j �= k .we have 〈Pj , Pk〉ω = 0..



282 29 Problems on Numerical Analysis

Problem 29.5.5 Let (f, g) 
→ 〈f, g〉. be a scalar product on the space C0([a, b]).. 
Show that with the initialisations p0(x) = 1. and p1(x) = x − β0 . and the recursion 
rule 

. pj+1(x) = (x − βj )pj (x) − γjpj−1(x)

with the coefficients βj = 〈xpj , pj 〉/〈pj , pj 〉. and γj = 〈pj , pj 〉/〈pj−1, pj−1〉. a 
sequence of pairwise orthogonal polynomials pj ∈ Pj . is defined. 

Problem 29.5.6 

(i) Show that the function ω(x) = (1 − x2)−1/2
. on the interval (−1, 1). is 

improperly Riemann-integrable. 
(ii) Show that the Chebyshev polynomials Tn(t) = cos(n arccos(t))., n ∈ N0 .,  are  

orthogonal with respect to the scalar product defined by the weight function
ω(x) = (1 − x2)−1/2

.. 

Problem 29.5.7 Determine n + 1. quadrature points and weights in the interval 
[−1, 1]., such that the resulting quadrature formula is exact of degree 2n + 1. for 
n = 0, 1, 2.. Use the formulas to approximate the integral of the function x 
→ x5

. in 
the interval [−1, 1].. 
Problem 29.5.8 Let ω : (a, b) → R. be a weight function. Construct polynomials 
(πj )j=0,...,n . using the Gram–Schmidt process such that πj ∈ Pj . for j =
0, 1, . . . , n., 〈πj , πk〉ω = δjk . for all 0 ≤ j, k ≤ n. with j �= k ., 〈πj , p〉ω = 0. 
for all p ∈ Pj−1 . and j = 1, 2, . . . , n. and the polynomials form a basis of Pn .. 

Problem 29.5.9 

(i) Let f ∈ C0([a, b]). and for a partition fineness h = (b − a)/N . let T (h). be the 
value of the composite trapezoidal rule, that is 

. T (h) = h

2

[
f (a) + 2

N−1∑

i=1

f (a + ih) + f (b)
]
.

Show that the extrapolation T ∗(h) = (T (h)−2γ T (h/2))/(1−2γ ).of the values 
T (h). and T (h/2). with a suitable parameter γ . leads to the composite Simpson 
rule. 

(ii) For f ∈ C∞([a, b]). and h > 0. let T (h) ∈ R. be the value of a composite 
quadrature formula for the partition fineness h > 0. with error order O(hγ ).. 
Construct a number T ∗(h). using the values T (h)., T (h/2). and T (h/4). that 
approximates the integral of f with an error of the order O(hγ+2).. 

Problem 29.5.10 We identify periodic functions f ∈ C([0, 2π ]).with functions on 
the unit circle ∂B1(0) ⊂ C. via f (eiθ ) ≡ f (θ). and set 

.I (f ) =
∫ 2π

0
f (eiθ ) dθ.
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Integrals over sets ∂Br(0). are defined as line integrals with γ (θ) = reiθ . via 

. 

∫

∂Br (0)
f (w) dw =

∫ 2π

0
f (γ (θ))γ ′(θ) dθ.

Assume that f can be extended to a holomorphic function in Br̃(0)., r̃ > 1.. 

(i) Show that the composite trapezoidal rule is given by 

. QN(f ) = 2π

N

N∑

k=1

f (eik2π/N),

and that it can also be interpreted as a composite midpoint rule. 
(ii) By Cauchy’s integral formula we have for z ∈ Br̃(0). and 0 < r < r̃ . that 

. f (z) =
∞∑

n=0

cnz
n, cn = f (n)(0)

n! = 1

2π i

∫

∂Br (0)

f (w)

(w − 0)n+1 dw.

Show that I (f ) = 2πc0 . and |cn| ≤ Mrr
−n

.with Mr = maxw∈∂Br (0) |f (w)|.. 
(iii) Show that 

. QN(f ) = 2π
∞∑

�=0

c�N

and deduce that |QN(f ) − I (f )| ≤ 2πMrr
−N(1 − r−N)−1 = O(r−N). for 

1 < r < r̃ .. 

Project 29.5.1 Use the composite trapezoidal and Simpson rules, as well as a 
composite Gaussian 3-point quadrature formula, to approximate the integrals in the 
interval [0, 1]. of the functions 

. f (x) = sin(πx)ex, g(x) = x1/3

with step sizes h = 2−�
., � = 1, 2, . . . , 10.. Calculate the error eh . in each case and 

determine an experimental convergence rate γ . from the approach eh ≈ c1h
γ
. and 

the resulting formula 

. γ ≈ log(eh/eH )

log(h/H)

for two successive step sizes h,H > 0.. Compare the experimental convergence 
rates with the theoretical convergence rates of the methods and comment on your 
results. Display the pairs (h, eh). for the different quadrature formulas comparatively
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as polygonal chains graphically in logarithmic axis scaling using the MATLAB 

command loglog. 

Project 29.5.2 

(i) Taylor’s formula implies that the quotients 

. d+
h f (x) = f (x + h) − f (x)

h
, d̂hf (x) = f (x + h) − f (x − h)

2h

for a given step size h > 0. define approximations of f ′(x). with the error 
order O(h). and O(h2). respectively. Check this property experimentally for 
the example f (x) = tan(x). for x = 1/2. with the step sizes h = 2−�

., 
� = 1, 2, . . . , 15.. 

(ii) Construct by extrapolation a quotient d̂∗
hf (x)., that approximates the derivative 

f ′(x). up to an error of the order O(h4). and repeat the calculations. What 
are the advantages and disadvantages of approximating the derivative using 
extrapolation? 

29.6 Nonlinear Problems 

Problem 29.6.1 

(i) Calculate three steps of the Newton method for the function f (x) = arctan(x). 

with the initial values x0 = 1, 3/2, 2.. 
(ii) Repeat the calculations for the damped Newton method xk+1 = xk −

ωf (xk)/f
′(xk).with the damping parameters ω = 1/2, 3/4.. 

Problem 29.6.2 Let f ∈ C1(R).be convex, that is for all x, y ∈ R. and t ∈ [0, 1].we 
have that f (tx + (1− t)y) ≤ tf (x)+ (1− t)f (y)., as well as strictly monotonically 
increasing and let x∗ ∈ R. satisfy f (x∗) = 0.. Show that the Newton method 
converges for every initial value x0 ∈ R.. 

Problem 29.6.3 Formulate sufficient conditions for the global convergence of the 
damped Newton method, by considering it as a fixed point iteration with the 
mapping Φ(x) = x − ωDf (x)−1f (x).. 

Problem 29.6.4 

(i) Let a, b ∈ R. with a < b.. Construct points c, d ∈ (a, b). with c < d ., such that 
for the interval lengths �1 = c − a ., �2 = b − c. and �3 = d − c. the relations 

. 
�3

�1
= �1

�2
,

�3

�2 − �3
= �1

�2

hold. Consider the size g = �2/�1 ..
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(ii) Based on the previous construction, formulate an interval reduction method for 
the approximation of minimum points, in which only one function evaluation 
is necessary per iteration step and the interval length is always reduced by the 
same factor. 

Problem 29.6.5 

(i) Let g ∈ C1(Rn)., x ∈ R
n
. and σ ∈ (0, 1).. Show that a number α > 0. exists, so 

that with d = −∇g(x) �= 0.we have 

. g(x + αd) < g(x) − σα‖d‖2.

(ii) Let g ∈ C2(Ng(x0)).. Show that the search directions dk . of the descent 
method converge to zero when a fixed step size 0 < α < 1/γ . with γ =
maxx∈Ng(x0) ‖D2g(x)‖. is used instead of the Armijo condition. 

Problem 29.6.6 The Heron method approximates the square root a1/2 . of a number 
a ≥ 0. through the iteration xk+1 = Φ(xk).with the function Φ(x) = (x+a/x)/2.. 

(i) Show that Φ . is a contraction in the interval ((a/2)1/2,∞).. 
(ii) Show that the Heron method coincides with the Newton method for the 

function x 
→ x2 − a . and investigate sufficient conditions for the local, 
quadratic convergence of the method. 

(iii) Show that the Heron method can be interpreted as a descent method for the 
function g(x) = x + a/x .. 

Problem 29.6.7 

(i) With f0 = f1 = 1. the sequence of Fibonacci numbers is defined by fk =
fk−1 + fk−2 . for all k ≥ 2..  Le  t α . be the positive solution of the equation x2 =
1 + x .. Show that αk−1 ≤ fk ≤ αk

. for all k ≥ 0.. 
(ii) Let (ek)k∈N0 . be a sequence of positive real numbers such that e0, e1 < 1. and 

ek+2 ≤ ek+1ek . for all k ≥ 0.. Show that the sequence (ek)k∈N0 . is dominated by 
a sequence (δk)k≥0 . that converges to zero of order α ., i.e. we have ek ≤ δk . for 
all k ∈ N. and there exists a q ∈ R.with 

. lim sup
k→∞

δk+1/δ
α
k = q.

Problem 29.6.8 

(i) Discuss the well-posedness of the secant method. 
(ii) Show that for the approximation errors ek = x∗ − xk . of the iterates of the 

secant method the relation 

.
ek+1

ekek−1
= g(xk) − g(xk−1)

f (xk) − f (xk−1)
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holds with the function g(x) = −f (x)/(x −x∗)., provided both sides are well-
defined. 

(iii) Under what conditions is the right-hand side in the identity for ek+1/(ekek−1). 

bounded and what can be inferred about the convergence of the method? 

Problem 29.6.9 Show that the polynomial p(x) = x3 − 2x2 − 1. has exactly one 
root x∗ ≥ 2. and justify the fixed point equation Φ(x∗) = x∗

.with Φ(x) = 2+1/x2
.. 

Prove that Φ . is a contraction on [2,∞) ⊂ R. and calculate three steps of the fixed 
point iteration. What accuracy is achieved after 3 steps? How many steps are needed 
to achieve an accuracy of 10−6

.? 

Problem 29.6.10 For given g ∈ C2(Rn)., xk ∈ R
n
. and Hk ∈ R

n×n
. define qk :

R
n → R., d 
→ g(xk) + ∇g(xk) · d + (1/2)dTHkd .. 

(i) Provide sufficient conditions for the existence of a unique minimum point dk ∈
R

n
. of qk .. 

(ii) Show that the iteration xk+1 = xk + dk . corresponds to the Newton method and 
the descent method with fixed step size αk = α ., provided Hk = D2g(xk). or 
Hk = αI . is used. 

(iii) Interpret the iteration geometrically. 

Project 29.6.1 

(i) Experimentally investigate the convergence of Heron’s method for calculating 
a square root, i.e. the iteration rule xk+1 = (xk + a/xk)/2.,  for a = 3/2. and 
various initial values x0 ∈ R.. 

(ii) Repeat the execution of the commands sqrt(a) and (a^0.5) or pow(a,0.5)
108 . times with a = 3/2. and discuss reasons for possible differences in 
runtimes. 

(iii) For a holomorphic function f : C → C. with zeros z1, z2, . . . , zn ∈ C.,  the  
complex plane can be partitioned into basins of attraction Ej ⊂ C., which for 
j = 1, 2, . . . , n., are defined by 

. Ej = {z ∈ C : Newton’s method with initial value z converges to zj }

as well as the remainder X = C\∪n
j=1Ej .. Consider the function f (z) = z3−1. 

and use as initial values grid points z� = x� + iy� . in the range [−1, 1]2 ⊂ C
2
., 

which are arranged at a distance h = 1/200.. Mark the points differently 
according to their belonging to the basin of attraction of a zero and display 
them graphically. Use the MATLAB commands shown in Fig. 29.1 with a 
suitably defined matrix C. 

1 [X,Y] = meshgrid(-1:h:1,-1:h:1); 
2 scatter(X(:),Y(:),15,C(:)); 

Fig. 29.1 Representation of differently coloured points
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Project 29.6.2 

(i) Implement the Newton and secant methods for finding the roots of a function 
f : R → R. in MATLAB and test it with the function f (x) = exp(x) + x2 − 2., 
the starting value x0 ∈ {−1, 0, 1}. and the termination criterion |xk+1 − xk| ≤
10−12

.. Terminate the Newton method after 100 iterations if the termination 
criterion is not met. Compare the number of iterations and the number of 
correct decimal places for the iteration steps. 

(ii) Realise the root finding of f by a descent method for the function g(x) =
|f (x)|2 . and compare the convergence speed with that of the Newton method. 

(iii) Use the Newton method to approximate a root of the mapping 

. f : R3 → R
3, (x1, x2, x3) 
→ (

x2
1 + x2

2 − e, 3x2 + 4x3 − √
5, x2

1 − π/4
)

How can the solvability be assessed and a meaningful starting value be 
constructed? 

29.7 Conjugate Gradients Method 

Problem 29.7.1 For A ∈ R
n×n

. and x, y ∈ R
n
.,  let ‖x‖A = (x · (Ax))1/2 . and 

〈x, y〉A = (Ax)·y .. Show that (x, y) 
→ 〈x, y〉A .defines a scalar product that induces 
the norm ‖ · ‖A . if and only if A is symmetric and positive definite.

Problem 29.7.2 Let A ∈ R
n×n

.be symmetric and positive definite with eigenvalues 
0 < λ1 ≤ λ2 ≤ · · · ≤ λn .. Show that for all x ∈ R

n \ {0}. the inequality 

. 
(x · Ax)(x · A−1x)

‖x‖4 ≤ (λ1 + λn)
2

4λ1λn

holds. Consider the case λ1λn = 1. first and use the diagonalisation A = QTDQ. 

and the elementary inequality ab ≤ (a + b)2/4.. 

Problem 29.7.3 Let b ∈ R
n
.,  let A ∈ R

n×n
. be symmetric and positive definite and 

let φ(x) = (
A−1(b −Ax)

) · (b −Ax). for all x ∈ R
n
.. For an approximation x̃ ∈ R

n
., 

the descent method uses the search direction d̃ = −∇φ(̃x).. 

(i) Show that d̃ = b − Ax̃ . holds and determine the minimum point α̃ . of the 
function t 
→ φ(̃x + t d̃).. 

(ii) Show that with the optimal α̃ . and x̃new = x̃ + α̃d̃ .we have 

.‖x̃new − x∗‖2A = ‖x̃ − x∗‖2A
(
1 − ‖d̃‖4

(d̃ · Ad̃)(d̃ · A−1d̃)

)
.
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(iii) Let κ = cond2(A) = λ−1
minλmax . be the condition number of A. Use without 

proof the estimate valid for all x ∈ R
n \ {0}. 

. 
(x · Ax)(x · A−1x)

‖x‖4 ≤ (λmin + λmax)
2

4λminλmax

,

to prove that 

. ‖x̃new − x∗‖A ≤
(κ − 1

κ + 1

)
‖x̃ − x∗‖A.

Problem 29.7.4 

(i) Show that the function Tk(t) = cos(k arccos t)., t ∈ [−1, 1]., can be uniquely 
extended as a polynomial on R. and for |t | ≥ 1.we have 

. Tk(t) = 1

2

(
t + (t2 − 1)1/2

)k + 1

2

(
t − (t2 − 1)1/2

)k
.

(ii) Show that for all s > 1.we have 

. 
1

2

( s1/2 + 1

s1/2 − 1

)k ≤ Tk

( s + 1

s − 1

)
≤

( s1/2 + 1

s1/2 − 1

)k

.

Problem 29.7.5 Let 0 < a < b. and k ≥ 0.. Show that the problem 

. min
{
max

t∈[a,b] |p(t)| : p ∈ Pk, p(0) = 1
}

has the unique solution 

. q(t) = Tk

(a + b − 2t

b − a

)
/Tk

(a + b

b − a

)

where Tk . is the k-th Chebyshev polynomial. 
Hint: Assume that the statement is false and consider the zeros and extreme values 
of the difference r = q − p . for a suitable polynomial p ∈ Pk .. 

Problem 29.7.6 Use the CG method to determine a solution to the system of linear 
equations Ax = b. defined by 

.A =

⎡

⎢⎢⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤

⎥⎥⎦ , b =

⎡

⎢⎢⎣

1
1
1
1

⎤

⎥⎥⎦
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Start with x0 = [1, 0, 1, 0]T ., calculate the Krylov space K2(A, r0) = span{r0, Ar0}. 
and compare it with the space span{d0, d1}.. Also verify that A is positive definite.

Problem 29.7.7 

(i) Deduce from known statements that for the approximate solutions (xk)k=0,1,... . 

calculated with the descent and the CG method, an estimate 

. ‖x∗ − xk‖A ≤ cqk‖x∗ − x0‖A

with c = 1., q = 1−2 cond2(A)−1+2ξ .and c = 2., q = 1−2 cond2(A)−1/2+2ζ . 

with numbers 0 ≤ ξ ≤ cond2(A)−2
. and 0 ≤ ζ ≤ cond2(A)−1

. applies. 
(ii) Show that log(1 + s) ≈ s . for |s| � 1.. 
(iii) For εstop > 0.,  let Mε = | log(εstop)|.. Conclude that with the descent and the 

CG method, about Mε cond(A). or Mε cond(A)1/2 . many iterations are needed 
to meet the termination criterion ‖x∗−xk‖A ≤ εstop .,  if cond2(A) � 1. applies. 

Problem 29.7.8 LetA ∈ R
n×n

.be symmetric and positive definite. For A-conjugate 
vectors d0, d1, . . . , dk−1 ∈ R

n \ {0}. and b ∈ R
n
.,  let f : Rk → R. be defined by 

. f (α0, α1, . . . , αk−1) = 1

2

∥∥∥b − A
(
x0 +

k−1∑

i=0

αidi

)∥∥∥
2

A−1
.

Calculate ∇f (α0, α1, . . . , αk−1).. 

Problem 29.7.9 Modify the Gram-Schmidt orthogonalisation process to determine 
for a given symmetric and positive definite matrix A ∈ R

n×n
. a family (di : i =

0, 1, . . . , n − 1). of non-vanishing A-conjugate vectors. 

Problem 29.7.10 Let A ∈ R
n×n

. be symmetric and positive definite. For x ∈ R
n
., 

let φ(x) = ‖b − Ax‖2
A−1/2. and x∗ ∈ R

n
. satisfy Ax∗ = b.. 

(i) Prove φ(x) − φ(x∗) = ‖x − x∗‖2A/2. and ∇φ(x) = −(b − Ax).. 
(ii) Show that d = −∇φ(x). is orthogonal to the level set Naφ = {y ∈ R

n : φ(y) =
a}. for a = φ(x). at the point x, i.e. for every C1

.-curve c : (−ε, ε) → R
n
. with 

c(t) ∈ Naφ . for all t ∈ (−ε, ε). and c(0) = x .,  we  have c′(0) · d = 0.. 

Project 29.7.1 Implement the CG and the descent method for the approximate 
solution of the system Ax = b.. Compare the number of iterations required by the 
two methods using the example 

.A =

⎡

⎢⎢⎢⎢⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤

⎥⎥⎥⎥⎦
∈ R

n×n, b = h2

⎡

⎢⎢⎢⎣

1
1
...

1

⎤

⎥⎥⎥⎦ ∈ R
n
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with n = 10s
., s = 1, 2, . . . , 5., and h = 2/(n + 1).. Choose the termination criterion 

‖b − Axk‖ ≤ h. and as initial value x0 = [0, 0, . . . , 0]T ∈ R
n
.. Calculate the 

quotient of the norms for two consecutive residuals, display these in a table and 
comment on your results. Visualise the numerical solution graphically using the 
command plot([-1:h:1],[0,x’,0]). The curve should approximate a function 
u : [−1, 1] → R. for which − u′′ = 1. and u(−1) = u(1) = 0. hold. 

Project 29.7.2 For n ≥ 1., the Hilbert matrix H ∈ R
n×n

. is defined by the entries 
hij = 1/(i + j − 1).. The matrix H is symmetric and positive definite but ill 
conditioned. In MATLAB it can be generated with the command hilb(n) .

(i) Use the MATLAB routine cond to approximately determine the condition 
number of the Hilbert matrix for n = 10s

., s = 1, 2, . . . , 3., and experimentally 
verify that cond(H) = O((1 + √

2)4n/
√

n). holds. 
(ii) Implement the CG method and use it to solve the systems of equations Hx = b. 

with bi = ∑n
j=1 hij ., i = 1, 2, .., n.,  for n = 10s

., s = 1, 2, . . . , 4., with the initial 

vector x = [0, 0, . . . , 0]T ∈ R
n
. and assess to what extent the convergence 

statement for the CG method is sharp. 

29.8 Sparse Matrices and Preconditioning 

Problem 29.8.1 Show that if A ∈ R
n×n

. is a band matrix with bandwidth w ∈ N., 
i.e. aij = 0. for |i−j | > w ., then the factors of the LU and Cholesky decompositions 
are also band matrices with bandwidth w, provided they ex ist.

Problem 29.8.2 

(i) Let A,B ∈ R
n×n

. be sparse matrices and b ∈ R
n
.. Construct as efficient 

as possible algorithms for the calculation of AB and Ab and determine their 
complex ity.

(ii) Show that the product of two sparse matrices is generally not sparse. 

Problem 29.8.3 Let A ∈ R
n×n

.with n = w2
. for a w ∈ N. be defined by 

. aij =
{
8, |i − j | = 0,

1, |i − j | ∈ {1, w}.

(i) Show that A is a sparse band matrix.
(ii) Show that A has a Cholesky decomposition, the factors of which are not sparse.

Problem 29.8.4 Represent the matrix
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. A =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 3 4
0 2 5 0 1
4 0 0 1 3
2 0 1 0 0
0 0 7 6 0

⎤

⎥⎥⎥⎥⎥⎦

in coordinate and CCS format and calculate Ax for x = [1, 2, . . . , 5]T . using the 
coordinate vectors. 

Problem 29.8.5 Let A,C ∈ R
n×n

. be symmetric and positive definite. 

(i) Show that the product CA. is generally neither symmetric nor positive definite. 
(ii) Show that CA. is positive definite with respect to the scalar product (x, y) 
→

(Cx) · y .. 

Problem 29.8.6 Let A ∈ R
n×n

. be defined by aii = 2. for i = 1, 2, . . . , n. and 
aij = −1. for i, j = 1, 2, . . . , n. with |i − j | = 1. and let b = [1, 1, . . . , 1]T ∈ R

n
.. 

For n = 5., perform as many iterations of the Gauss-Seidel method until the first 
two decimal places of the entries of the solution vector no longer change. Use the 
sparsity of the matrix A to perform the matrix-vector multiplications as efficiently 
as possible.

Problem 29.8.7 Determine the condition numbers with respect to row sum norm 
of the matrix 

. A =
[
1 2
3 4

]

and its row equilibration CA. 

Problem 29.8.8 Investigate whether the row equilibration CA of a matrix A can 
be formulated in the form LTAL. and whether this also leads to a reduction of the 
condition number. 

Problem 29.8.9 

(i) Let A ∈ R
n×n

. be symmetric and positive definite. Determine a Cholesky 
decomposition CSGS = V V T

. of the symmetric Gauss-Seidel preconditioning 
matrix CSGS = [(L + D)D−1(D + L)]−1

. with the decomposition A =
L + D + LT

. of A into diagonal and lower and upper parts.
(ii) Show that A − C−1

SGS = −LD−1LT
. holds. 

(iii) Calculate the difference A − C−1
SGS . for 

.A =

⎡

⎢⎢⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤

⎥⎥⎦ .
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1 U = zeros(m+2,m+2); U(2:m+1,2:m+1) = reshape(x,m,m)'; 
2 dx = 1/(m+1); mesh(0:dx:1,0:dx:1,U); 

Fig. 29.2 Plotting a function defined by a matrix U 

Problem 29.8.10 Let A,M ∈ R
n×n

. be regular with the property that ‖I −MA‖ =
δ < 1. with respect to a suitable operator norm on R

n×n
.. Show that the estimates 

‖MA‖ ≤ 1 + δ . and ‖(MA)−1‖ ≤ 1/(1 − δ). hold and deduce cond(MA) ≤ (1 +
δ)/(1 − δ).. 

Project 29.8.1 Implement the preconditioned CG method and test it for the linear 
system Ax = b., where A ∈ R

n×n
.with n = m2

. and Tm ∈ R
m×m

. are defined by 

. A =

⎡

⎢⎢⎢⎢⎣

Tm −Im

−Im

. . .
. . .

. . .
. . . −Im

−Im Tm

⎤

⎥⎥⎥⎥⎦
, Tm =

⎡

⎢⎢⎢⎢⎣

4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

⎤

⎥⎥⎥⎥⎦
,

and b ∈ R
n
. is given by b = (m + 1)−2[1, 1, . . . , 1]T .. Use the preconditioning 

by row equilibration, incomplete Cholesky decompositions of different bandwidths 
and the symmetric Gauss-Seidel preconditioning. Compare the iteration numbers for 
m = 2s · 10., s = 0, 1, . . . , 4., and the termination parameter εstop = (m + 1)−2/10.. 

Visualise the solution x ∈ R
m2

. of the equation system using the commands shown 
in Fig. 29.2. A smooth function in the domain (0, 1)2 . should be displayed, which 
vanishes on the boundary. 

Project 29.8.2 

(i) Define the matrices A = eye(n) and B = speye(n) in MATLAB and calculate 
A*x and B*x for x = ones(n,1). Measure t he time required for the dimen-
sions n = 10s

., s = 1, 2, . . . , 5.. Explain any differences. 
(ii) Construct using the MATLAB commands sparse and spdiags the band matrix

A ∈ R
n×n

.with n = w2
. for w ∈ N. and aii = 8. and aij = 1. for |i − j | ∈ {1, w}.. 

Check the occupancy structure of the matrix using the command spy(A) for 
various numbers w. Solve the linear system Ax = b.with b = [1, 1, . . . , 1]T . for 
w = 102 . and repeat this after executing the command A = full(A). Comment 
on your observ ations.

29.9 Multidimensional Approximation 

Problem 29.9.1 Show that the simplex T = conv{z0, z1, . . . , zd}. defined by the 
corners z0, z1, . . . , zd ∈ R

d
. is non-degenerate if and only if the vectors zi − z0 . for
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i = 1, 2, . . . , d . are linearly independent and in this case, the volume is given by the 
absolute value of det[z1 − z0, z2 − z0, . . . , zd − z0]/d!.. 
Problem 29.9.2 Show that with the reference triangle T̂ = conv{0, e1, e2}. for 
j, k ≥ 0.we have 

. 

∫

T̂

sj tk d(s, t) = j !k!
(j + k + 2)!

and deduce the exactness of the partial degree 2 of the quadrature formula defined 
by 

. ̂ξ = 1

6

[
1 4 1
1 1 4

]T
, ŵ = 1

6
[1, 1, 1]T

Problem 29.9.3 For a non-degenerate simplex T ⊂ R
d
. and functions f, g ∈

C1(T ).,  let f̂ , ĝ ∈ C1(T̂ ). be defined on the reference simplex T̂ ⊂ R
d
. by 

f̂ = f ◦ ΦT . and ĝ = g ◦ ΦT . with an affine-linear diffeomorphism ΦT : T̂ → T .. 
Show that 

. 

∫

T

∇f · ∇g dx = detDΦT

∫

T̂

∇f̂ · (
DΦT DΦ

)−1∇ĝ dx̂.

Problem 29.9.4 For n ∈ N.,  let ωk = (eijk2π/n)j=0,...,n−1 ∈ C
n
. for k = 0, 1, . . . , n. 

and Tn = (eijk2π/n)j,k=0,...,n−1 ∈ C
n×n

.. 

(i) Show that an orthogonal basis is defined by Ek� = ωk(ω�)T . for k, � =
0, 1, . . . , n − 1. with respect to the matrix scalar product defined by E : F =
∑n−1

j1,j2=0 Ej1j2Fj1j2 ., by proving E : F = tr(EF
T
).. 

(ii) Show that for any matrix Y ∈ C
n×n

. and B = (bk�)k,�=0,...,n−1 = TnYTn . we 
have 

. Y =
n−1∑

k,�=0

bk�E
k�.

Problem 29.9.5 For the matrix F = (fjk)j,k=0,1 ∈ R
2×2

., let the vector f ∈ R
4
. be 

defined by f = [f00, f01, f10, f11]T ∈ R
4
.. Show that the two-dimensional Fourier 

transform of F and the one-dimensional Fourier transform of f lead to diff erent
results.

Problem 29.9.6 For a non-degenerate simplex T = conv{z0, z1, . . . , zd}. and i =
0, 1, . . . , d . let ϕi : T → R. be the affine-linear function with the property ϕi(zj ) =
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δij ., j = 0, 1, . . . , d .. Show that 

. ϕi(x) =
det

[
1 . . . 1 1 1 . . . 1
z0 . . . zi−1 x zi+1 . . . zn

]

det

[
1 . . . 1 1 1 . . . 1
z0 . . . zi−1 zi zi+1 . . . zn

] .

Problem 29.9.7 Let (Tn). be a sequence of triangulations of the domain Ω ⊂ R
2
. 

with maximum mesh widths hn > 0.,  for  which hn → 0. holds as n → ∞.. 
Furthermore, assume that for all interior angles α . of the triangles in Tn . the estimate 
α ≥ α0 > 0. holds with a constant α0 . independent of n. Show that a constant K ∈ N. 

exists, independent of n, such that each triangle in Tn . has at most K neighbours. 

Problem 29.9.8 Let Th . be a triangulation of Ω ⊂ R
d
., f ∈ C1(Ω). and Ihf ∈

S 1,0(Th). the nodal interpolant of f . Show that 

. ‖f − Ihf ‖C0(Ω) ≤ h‖∇f ‖C0(Ω).

Problem 29.9.9 Let Q : C0([0, 1]) → R. be a quadrature formula with non-
negative weights and points (wi, ti)i=0,...,n . and degree of exactness k ≥ 0., and 
let Qd : C0([0, 1]d) → R. be defined by 

. Qd(f ) =
n∑

i1=0

n∑

i2=0

· · ·
n∑

id=0

wi1wi2 . . . wid f (ti1, ti2 , . . . , tid ).

Show for the case d = 3., that 

. 
∣∣I d(f ) − Qd(f )

∣∣ ≤
d∑

i=1

sup
x̂i∈[0,1]d−1

∣∣Ifx̂i
− Qfx̂i

∣∣,

where fx̂i
. for x̂i = (x1, . . . , xi−1, xi+1, . . . , xd) ∈ [0, 1]d−1

. denotes the mapping 

. t 
→ f (x1, . . . , xi−1, t, xi+1, . . . , xd).

Problem 29.9.10 Let T = conv{z0, z1, . . . , zd} ⊂ R
d
., d ∈ {2, 3}., be a non-

degenerate simplex and let ϕ0 : T → R. be the hat function associated with the 
vertex z0 .. Further, let S0 . be the side of the triangle or tetrahedron opposite the node 
z0 . and let n0 . be the outer unit normal to T on S0 .. Show that 

. ∇ϕ0 = −|S0|
d|T | n0

holds with the area or volume |T |. of T and the length or area |S0|. of S0 ..
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Project 29.9.1 For d ∈ N. and a function f ∈ C0([0, 1]d)., its integral on the cube 
[0, 1]d . should be determined numerically. 

(i) Write a routine that implements the iterated trapezoidal rule Qd
T rap . and test it 

for d = 5. and the functions 

. f1(x) =
d∏

i=1

x2
i , f2(x) = sin(x1x2 . . . xd).

Verify the order of convergence in the case of f1 . and determine the computa-
tional effort. 

(ii) For uniformly and independently distributed random variables ξ1, ξ2, . . . , ξN

∈ [0, 1]d . a Monte-Carlo quadrature formula is defined by 

. QN
MC(f ) = 1

N

N∑

i=1

f (ξ i).

It can be shown that the expected value of |I d(f ) − QN
MC(f )|. is of the 

order O(N−1/2).. Verify this convergence behaviour with the above examples 
and determine the computational effort of QN

MC(f ).. Realisations of suitable 
pseudo-random variables can be generated with the MATLAB command 
rand(d,1). 

(iii) Discuss in which situations the use of an iterated or a Monte Carlo quadrature 
formula is advantageous. 

Project 29.9.2 A common format for storing triangulations consists of a list Z ∈
R

N×d
. with the coordinates of the nodes z1, z2, . . . , zN ∈ R

d
., which also defines a 

numbering of the nodes, and a list T ∈ R
L×(d+1)

., which contains the numbers of 
the nodes of the individual triangles or tetrahedra T1, T2, . . . , TL .. 

(i) Write a program that performs a uniform refinement of a given triangulation of 
a two-dimensional domain in the above format. Each triangle should be divided 
into four congruent sub-triangles by bisecting its sides, as shown in Fig. 29.3. 
Test your routine on two simple examples. You can visualise triangulations in 
MATLAB with the command trimesh(T,Z(:,1),Z(:,2)). 

Fig. 29.3 Refinement of a 
triangulation by bisecting the 
edges
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(ii) Implement a composite quadrature formula for a given triangulation of a 
domain Ω ⊂ R

2
. that uses a Gaussian 5-point quadrature formula on each 

triangle. Experimentally verify the exactness and convergence properties of the 
formula using a sequence of uniformly refined triangulations and the function 
f (x1, x2) = sin(2πx1) sin(2πx2). in the domain Ω = (−1, 1)2 \ (0, 1)2 ..



Chapter 30 
Problems on Numerics for Differential 
Equations 

30.1 Ordinary Differential Equations 

Problem 30.1.1 

(i) Show that the function y(t) = G−1
(
F(t) + c

)
. resulting from the formal 

equivalence 

. 
dy

dt
= f (t)g(y) ⇐⇒ 1

g(y)
dy = f (t)dt ⇐⇒

∫
1

g(y)
=

∫
f (t)

with antiderivatives G(y).of 1/g(y). and F(t)+c.of f (t). solves the differential 
equation y′ = f (t)g(y). and discuss sufficient conditions for the well-
posedness of this representation. 

(ii) How can initial conditions be taken into account and to what extent is the 
solution unique? 

(iii) Construct a non-trivial solution to the initial value problem y′ = y2/3
., y(0) =

0.. 

Problem 30.1.2 Justify that the two-body problem for describing the flight altitude 
z of a body near the Earth’s surface is described by the equation z′′ = −g ., where 
g ≈ 9.812m/s2 . is the acceleration due to gravity. Use the sizes mEarth ≈ 5.974 ·
1024 kg. and rEarth ≈ 6.371 · 106 m.. 

Problem 30.1.3 We consider the string pendulum of length � > 0., sketched in 
Fig. 30.1, at the end of which a weight of mass m is attached. Determine the 
tangential acceleration atan . to show that the deflection angle φ : [0, T ] → R. can 
be described by the differential equation φ′′ = −(g/�) sin(φ). with the acceleration 
due to gravity g if friction effects are neglected. Simplify the differential equation 
for small angles and derive the solution of the resulting equation.
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Fig. 30.1 Mathematical 
description of a string 
pendulum 

atan

�

Problem 30.1.4 Sketch the phase diagram of the predator-prey model 

. y′
1 = α(1 − y2)y1, y′

2 = β(y1 − 1)y2,

in the range [0, 5]2 . for the parameters α = 1. and β = 1.. Use this to deduce the 
occurrence of periodic solutions and the positivity of solutions for suitable initial 
data. 

Problem 30.1.5 Sketch the phase diagram for the equation of the undamped string 
pendulum φ′′ = −(g/�) sin(φ)., by writing the differential equation as a first order 
system. Draw various solution curves into the diagram and interpret them physically. 

Problem 30.1.6 For a natural number n ≥ 2. let y be a solution of the differential 
equation y′ = f (t)y + g(t)yn

.. Show that the function z = y1−n
. satisfies a 

differential equation that can be solved using the method of variation of constants. 

Problem 30.1.7 Let ŷ . be a solution of the differential equation y′ = f (t)y +
g(t)y2 + h.. Show that with every solution z of the differential equation z′ =
−(

f (t) + 2ŷ(t)g(t)
)
z − g(t). and the formula z = 1/(y − ŷ). further solutions 

of the first differential equation can be obtained. To what extent is this observation 
useful? 

Problem 30.1.8 Construct the solution of the initial value problem my′′ + ry′ +
D(y − �) = 0., y(0) = �., y′(0) = v0 ., which describes the deflection of a spring 
pendulum of length �.. Use the approach y(t) = cz(t) + �., where z(t) = eλt

. for a 
λ ∈ C.. Discuss qualitative properties of solutions for different ratios of D and r .

Problem 30.1.9 

(i) Let A ∈ R
n×n

. be diagonalisable, i.e. there exist a diagonal matrix D ∈ R
n×n

. 

and a regular matrix R ∈ R
n×n

., such that A = R−1DR . holds. Determine the 
solution of the system of differential equations y′ = Ay . with initial condition 
y(0) = y0 .. 

(ii) How can the procedure be generalised if the Jordan normal form J = RAR−1
. 

of the matrix A is giv en?

Problem 30.1.10 Determine non-trivial solutions of the differential equations y′ =
ty ., y′ = sin(t)y ., and y′ = cos(t)ey

.. 

Project 30.1.1 Differential equations can be solved approximately in MATLAB 

with the routine ode45. In the case of the system y′ = f (t, y). in the interval [0, T ].
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1 function test_ode 
2 T = 1; y_0 = [1,2]; 
3 [t_vec,y_vec] = ode45(@f,[0,T],y_0); 
4 plot(t_vec,y_vec(:,1),'-r'); hold on; 
5 plot(t_vec,y_vec(:,2),'-b'); hold off; 
6 

7 function dy = f(t,y) 
8 A = [-2,0;0,-5]; dy = A*y; 

Fig. 30.2 Numerically solving an initial value problem with MATLAB routines 

with initial condition y(0) = y0 . this is realised for the mapping f (t, y) = Ay . 

in the MATLAB program shown in Fig. 30.2. The routine ode45 provides a list 
t_vec of time points 0 = t0 < t1 < · · · < tN = T . and a matrix y_vec with 
corresponding approximations ỹ(ti ). of the exact solution values y(ti). at the time 
points ti ., i = 0, 1, . . . , N .. Modify the program test_ode.m to solve the following 
initial value problems approximately and to graphically display the approximate 
solutions:

(i) the initial value problem of the predator-prey model 

. y′
1 = αy1(1 − y2), y′

2 = βy2(y1 − 1)

in the interval [0, T ].with T = 10. and α = 2., β = 1. and the initial conditions 
y1(0) = 3. and y2(0) = 1.; 

(ii) the initial value problem of the spring pendulum 

. my′′ + ry′ + D(y − �) = 0

in the interval [0, T ].with T = 1. and m = 1., D = 1., � = 1. and various values 
r ∈ {0, 1, 5}. and the initial conditions y(0) = �. and y′(0) = 1.; 

(iii) the initial value problem of the undamped pendulum 

. y′′ = −(g/�) sin(y)

with g = 1., � = 1. and the initial conditions y(0) = 0. and y′(0) ∈ {1, 2, 4, 8}.; 
(iv) the initial value problem 

. y′′ − Ny′ − (N + 1)y = 0

in the interval [0, 1].with initial conditions y(0) = 1., y′(0) = −1., whose exact 
solution is given by y(t) = e−t

.,  for N = 1, 2, 10. and small perturbations of 
the initial condition y(0) = 1.. 

Project 30.1.2 A point grid (xi, yi)., i = 1, 2, . . . , N . on a rectangular set [a, b] ×
[c, d] ⊂ R

2
. for the step sizes dx, dy > 0. in x- respectively y-direction is
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1 function test_phase_diagram 
2 a  =  1;  b  =  4;  dx  =  1/4; 
3 c  = -3;  d  =  3;  dy  =  1/6; 
4 [x,y] = meshgrid(a:dx:b,c:dy:d); 
5 r = (x.ˆ2+y.ˆ2).ˆ(1/2); 
6 v  =  sin(r); w = cos(r); 
7 quiver(x,y,v,w,'c'); hold on;
8 v0 = 1.5; w0 = 2;
9 streamline(x,y,v,w,v0,w0); hold off;

Fig. 30.3 Representation of a phase diagram 

generated in MATLAB by [x,y] = meshgrid(a:dx:b,c:dy:d). Here, x and y 
are matrices that contain the x and y coordinates of the grid points. A discrete 
vector field, defined by matrices v and w, by associating the vector (vi, wi). 

with each grid point (xi, yi)., can be visualised using quiver(x,y,v,w).  An  
integral curve of the discrete vector field starting at a point (v0, w0). is represented 
by streamline(x,y,v,w,v0,w0).  The  MATLAB program shown in F ig. 30.3 
implements this for a simple example. Modify the program to display the phase 
diagrams of the following differential equations and plot two corresponding integral 
curves in each case: 

(i) the initial value problem of the predator-prey model 

. y′
1 = α(1 − y2)y1, y′

2 = β(y1 − 1)y2

with α = β = 1.; 
(ii) the initial value problem of the spring pendulum 

. my′′ + ry′ + D(y − �) = 0

with m = r = D = � = 1.; 
(iii) the initial value problem of the undamped string pendulum 

. y′′ = −(g/�) sin(y)

with g = 1., � = 1.. 

30.2 Existence, Uniqueness and Stability 

Problem 30.2.1 Let L, T > 0.. Show that the space C0([0, T ]). is complete with 
respect to the norm ‖u‖L = supt∈[0,T ] e−2Lt |u(t)|.. 
Problem 30.2.2 Solve the initial value problem y′ = y3

., y(0) = y0 .,  sketch  the  
solution and discuss the applicability of the Picard-Lindelöf theorem.
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Problem 30.2.3 Construct infinitely many solutions of the initial value problem 
y′ = y1/3

., y(0) = 0., sketch some of them and discuss the applicability of the 
Picard-Lindelöf theorem. 

Problem 30.2.4 Determine and sketch the iterates yk
., k = 0, 1, . . . , 4.,  of  the  

Banach fixed point iteration

. yk+1(t) = y0 +
∫ t

0
f (s, yk(s)) ds,

using the starting function y0(t) = y0 . for the cases f (t, y) = ay . and y0 = 1. as well 
as f (t, y) = 1 + y2

. and y0 = 0.. 

Problem 30.2.5 Assume that the function y : [0, T ) → R. is a solution of the initial 
value problem y′ = f (y)., y(0) = y0 .. Show that y is unique, provided f ∈ C1(R).. 

Problem 30.2.6 Let f ∈ Cm([0, T ] × R). and y ∈ C1([0, T ]). be a solution of the 
differential equation y′ = f (t, y).. Show that y ∈ Cm+1([0, T ]). holds. 
Problem 30.2.7 Generalise the existence and uniqueness statements for differential 
equations with delay effect, which for a delay parameter tv > 0. seek a solution of 
the differential equation y′(t) = f

(
t, y(t), y(t − tv)

)
. for t ∈ (0, T ). and the initial 

condition y(t) = y0 . for t ∈ (−t1, t0).. 

Problem 30.2.8 Consider the differential equation y′′ + t−1y′ + 4ty = 0. with 
initial data y′(0) = 0. and y(0) = y0 .. Use the power series approach y(t) =∑∞

n=0(an/n!)tn ., to represent the solution of the equation as a series. Discuss the 
convergence of this series. 

Problem 30.2.9 For a continuous mapping A : [0, T ] → R
n×n

. we consider the 
system of differential equations y′ = A(t)y .. 

(i) Modify the proof of the Picard-Lindelöf theorem to show the existence of a 
unique solution with the initial condition y(0) = y0 . for y0 ∈ R

n
.. 

(ii) Show that the set L of all solutions of the system y′ = A(t)y . defines a vector 
space. 

(iii) Consider the mapping E0 : L → R
n
., y �→ y(0)., and infer that dimL = n. 

holds. 

Problem 30.2.10 Let g : Rn → R. be a continuously differentiable, non-negative 
mapping and let f : Rn → R

n
. be defined by f = −∇g .. Show that every solution 

y : [0, T ] → R
n
. of the initial value problem y′ = f (y)., y(0) = y0 ., satisfies the 

identity 

. 

∫ t

0
|y′(s)|2 ds + g(y(t)) = g(y0)

for every t ∈ [0, T ]..
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Project 30.2.1 The altitude of a body in the Earth’s gravitational field, taking into 
account frictional forces, is described at high speeds by the equation 

. my′′(t) + η sign
(
y′(t)

)|y′(t)|2 = −mg

where η ≥ 0. is a friction coefficient, for example, depending on the shape of the 
body. Determine experimentally with the MATLAB routine ode45 values for η . to 
describe the free and braked fall of a parachutist, so that the free fall from a height 
of 4 km. to a height of 1 km. takes about 60 s. and the subsequent parachute flight 
to landing takes about 180 s.. Simulate with the parameters found different jump 
heights and heights for triggering the parachute. What maximum average speeds do 
you observe for the free fall and the parachute flight? 

Project 30.2.2 Use the MATLAB routine ode45 to approximate and display the 
two-body problem

. 

m1 y′′
1 = γ

m1m2

‖y1 − y2‖2
y2 − y1

‖y1 − y2‖ ,

m2 y′′
2 = γ

m1m2

‖y1 − y2‖2
y1 − y2

‖y1 − y2‖
for different initial data and mass ratios m1/m2 ∈ {1, 2, 10}.. Construct both initial 
data that lead to the existence of a solution defined for all positive times, as well as 
initial data, for which the solution only exists in a finite interval. 

30.3 Single-Step Methods 

Problem 30.3.1 Let y ∈ C2(R≥0). and τ > 0..  For k ∈ N0 . define tk = kτ . and set 
yk = y(tk).. Show that for the quantities 

. d−
t yk = yk − yk−1

τ
, d+

t yk = yk+1 − yk

τ
,

k = 1, 2, . . . , K − 1., the estimates 

. |d±
t yk − y′(tk)| ≤ τ

2
sup

t∈tk±[0,τ ]
|y′′(t)|

hold. What estimate can be proven for the difference |d̂t y
k−y′(tk)|.with the quantity 

.d̂t y
k = yk+1 − yk−1

2τ
,
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k = 1, 2, . . . , K − 1.? 

Problem 30.3.2 Let (y�)�=0,...,K . be a non-negative sequence of numbers and 
α, β ≥ 0., such that for � = 0, 1, . . . , K . the estimate 

. y� ≤ α +
�−1∑

k=0

βyk

holds. Show that y� ≤ α(1 + β)� ≤ α exp
(
Kβ

)
. for � = 0, 1, . . . , K .. Infer the 

discrete version of Gronwall’s lemma. 

Problem 30.3.3 Use the explicit and implicit Euler method for the differential 
equation y′(t) = 2αty(t). with step sizes τ = 1/2�

., � = 1, 2, 3.,  as  well  as  th  e
initial value y0 = 1. and α = ±3., to determine the approximate solutions of both 
methods at time T = 1. and compare these with the exact solution. Comment on 
your results. 

Problem 30.3.4 For an increment function Φ . and zk ∈ R.,  let z : [tk, tk+1] → R. 

be the solution of the initial value problem z′(t) = f (t, z(t))., z(tk) = zk ., and 
zk+1 = zk + τΦ(tk, zk, zk+1, τ ).. With this, the consistency quantities C . and C̃ . are 
defined by 

. 

C (tk, zk, τ ) = z(tk+1) − zk

τ
− Φ

(
tk, zk, zk+1, τ

)
,

C̃ (tk, zk, τ ) = z(tk+1) − zk

τ
− Φ

(
tk, zk, z(tk+1), τ

)
.

Assume that the increment function Φ . is uniformly Lipschitz continuous in the third 
argument with Lipschitz constant L. Show that for τ ≤ 1/(2L). the equivalence 

. c−1
∣∣C̃ (tk, zk, τ )

∣∣ ≤ ∣∣C (tk, zk, τ )
∣∣ ≤ c

∣∣C̃ (tk, zk, τ )
∣∣

holds. Specify the constant c which depends only on L .

Problem 30.3.5 Let f be a Lipschitz continuous function. Show that the implicit 
Euler m ethod

. yk+1 = yk + τf (tk+1, yk+1)

is consistent of order p = 1., that is, that |C (tk, zk, τ )| ≤ cτ .with a suitable constant 
c ≥ 0.. 

Problem 30.3.6 Let f ∈ C2([0, T ] × R).. Show that the method 

.yk+1 = yk + τ
[
f (tk, yk) + τ

2

(
∂tf (tk, yk) + ∂yf (tk, yk)f (tk, yk)

)]
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is consistent of order p = 2.. 

Problem 30.3.7 Show that the step size condition τ ≤ 1/(2M).of the error estimate 
for single-step methods cannot be avoided in general for the implicit and explicit 
Euler methods. Consider for this the equation y′ = λy . with appropriately chosen 
numbers λ ∈ R.. 

Problem 30.3.8 Provide a formula for the approximations (yk)k=0,1,... . of the initial 
value problem y′ = λy ., y(0) = y0 . defined by the implicit and explicit Euler 
methods. Sketch the exact and numerical solutions for three different values of λ. 

and different time step sizes. Discuss in the case λ < 0. the boundedness of the 
approximations and the exact solution. 

Problem 30.3.9 Determine numbers a, b, c, d ∈ R., for which the explicit single-
step method defined by the increment function 

. Φ(tk, yk, τ ) = af (tk, yk) + bf
(
tk + cτ, yk + τdf (tk, yk)

)

possesses the consistency order p = 2.. 
Hint: Justify and use the approximation f (t + cτ, y + dτf (t, y)) = f (t, y) +
∂tf (t, y)cτ+∂yf (t, y)dτf (t, y)+O(τ 2). and differentiate the differential equation. 

Problem 30.3.10 Use the implicit function theorem to ensure the existence of a 
unique solution yk+1 . of the equation 

. yk+1 = yk + τΦ(tk, yk, yk+1, τ )

under suitable conditions on the function Φ . and the step size τ .. 

Project 30.3.1 The MATLAB program shown in Fig. 30.4 implements the explicit 
Euler–Collatz method defined by the increment function Φ(tk, yk, τ ) = f (tk +
τ/2, yk + τf (tk, yk)/2). for the spring pendulum equation 

. y′′ + ry′ + D(y − �) = 0

with the initial data y(0) = y0 . and y′(0) = v0 .. 

(i) Experimentally investigate the dependence of the approximate solutions on the 
parameters r and D .

(ii) Use the exact solution y(t) = (v0/ω)e−rt/2 sin(ωt). with ω = (D − r2/4)1/2 . 
of the initial value problem for the special case r = 1/10., D = 1., y0 = � = 0., 
v0 = 1. and determine the approximation error |yK − y(tK)|. for the step sizes 
τ = 2−s

., s = 1, 2, . . . , 7., at the time tK = 100.. 
(iii) Modify the program to implement the explicit and implicit Euler methods as 

well as Heun’s method. Compare the qualitative behaviour of the different 
approximate solutions for the time horizon T = 1000..
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1 function spring_pendulum 
2 T = 10; y_0 = 0; v_0 = 1; 
3 s = 5; tau = 2ˆ(-s); K = floor(T/tau); 
4 y  =  zeros(K+1,2); 
5 y(1,:) = [y_0,v_0]; 
6 for k = 1:K 
7 y(k+1,:) = y(k,:)+tau*Phi((k-1)*tau,y(k,:),tau); 
8 plot(tau*(0:k),y(1:k+1,1),'r'); 
9 axis([0,T,-5,5]); drawnow; 

10 end 
11 D = 1; r = 1/10; omega = sqrt(D-rˆ2/4); t = K*tau; 
12 % y_ex = ... 
13 % abs(y_ex-y(K+1)) 
14 

15 function val = Phi(t,y,tau) 
16 val = (f(t,y)+f(t+tau,y+tau*f(t,y)))/2; 
17 

18 function vec = f(t,y) 
19 r = 1/10; D = 1; ell = 0; 
20 vec = [y(2),-r*y(2)-D* (y(1)-ell)];

Fig. 30.4 Numerical solution of the initial value problem for the spring pendulum 

1 function predator_prey 
2 T = 10; tau = 1/100; K = floor(T/tau); 
3 alpha = 2; beta =  1;  
4 y  =  zeros(K+1,2); 
5 y(1,:) = [3,1]; 
6 for k = 1:K 
7 y(k+1,1) = y(k,1)+tau*alpha*y(k,1)*(1-y(k,2)); 
8 y(k+1,2) = y(k,2)+tau*beta*y(k,2)*(y(k,1)-1); 
9 plot(tau*(0:k),y(1:k+1,1),'b'); hold on; 

10 plot(tau*(0:k),y(1:k+1,2),'r'); hold off; 
11 axis([0,T,0,4]); drawnow; 
12 end

Fig. 30.5 Numerical solution of the initial value problem for the predator-prey model 

Project 30.3.2 The MATLAB program shown in Fig. 30.5 calculates an approxi-
mate solution of the predator-prey model. 

(i) Comment on each line of the program and identify the realised numerical 
method. 

(ii) Test various step sizes and observe the qualitative behaviour of the approximate 
solutions. For which step sizes do meaningful results emerge? 

(iii) Modify a line of the program to obtain an implicit method. How does the 
qualitative behaviour of the numerical solutions change?
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30.4 Runge-Kutta Methods 

Problem 30.4.1 Determine the iterates (yk)k=0,1,... . of the explicit Euler method, 
the Euler–Collatz method and the classical Runge-Kutta method in the approx-
imation of the initial value problem y′ = λy ., y(0) = y0 ., by constructing an 
expression g(τλ). such that yk+1 = g(τλ)yk ., k = 0, 1, 2, . . . .. Determine the 
order of convergence of the approximation errors |y(tk) − yk|., by using the identity 
y(tk+1) = eτλy(tk). and considering the difference eτλ − g(τλ). for the three 
methods. 

Problem 30.4.2 Derive sufficient conditions for the third order consistency of a 
Runge-Kutta method in the case of autonomous differential equations. 

Problem 30.4.3 Show, by constructing polynomial solutions of suitable initial 
value problems, that the conditions

∑m
�=1 γ� = 1.,

∑m
�=1 γ�α� = 1/2. and ∑m

�=1
∑m

j=1 γ�β�j = 1/2. are necessary for the consistency order p = 2. of a 
Runge-Kutta method. 

Problem 30.4.4 Determine a two-stage Runge-Kutta method of consistency order 
p = 4., based on the Gaussian quadrature formula with the quadrature points 
x0, x1 = 1/2 ± 1/(2

√
3). and corresponding weights w0 = w1 = 1/2.. 

Problem 30.4.5 Determine the Butcher tableau of the Runge-Kutta method defined 
by the increment function 

. 

Φ(t, y, τ ) = 1

6
(η1 + 4η2 + η3),

η1 = f (t, y), η2 = f (t + τ/2, y + τη1/2),

η3 = f
(
t + τ, y + τ(−η1 + 2η2)

)

and show that it has the consistency order p = 3.. 

Problem 30.4.6 Which quadrature formulas underlie the classical Runge-Kutta 
method, the 3/8. rule and the Radau-3 method, and what degrees of exactness do 
they possess? 

Problem 30.4.7 Assume that the autonomous system z′ = F(z)., z(0) = z0 .,  is  
the equivalent formulation of the differential equation y′ = f (t, y)., y(0) = y0 ., 
obtained by introducing the auxiliary variable w with w′ = 1. and w(0) = 0.. Show 
that Runge-Kutta methods in both cases provide identical approximations of y. 

Problem 30.4.8 Construct a Runge-Kutta method of consistency order p = 4. 
based on the Simpson rule. 

Problem 30.4.9 Show for the case of autonomous differential equations that 
the classical Runge-Kutta method defined by α = [0, 1/2, 1/2, 1]T ., γ =
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[1/6, 1/3, 1/3, 1/6] T . and β ∈ R
4×4

. with the non-trivial entries β21 = 1/2., 
β32 = 1/2., β43 = 1. is consistent of order p = 4.. 

Problem 30.4.10 

(i) Let A ∈ R
m×m

. be such that ‖A‖ < 1. with respect to an operator norm. Show 
that the matrix Im − A. is invertible with (Im − A)−1 = ∑∞

n=0 An
.. 

(ii) Formulate the Newton method for solving the fixed point equation η = Ψ (η). 

for determining a coefficient vector η ∈ R
m

. in a Runge-Kutta method and 
discuss its well-posedness. 

Project 30.4.1 The MATLAB program shown in Fig. 30.6 implements an explicit 
Runge-Kutta method for solving a scalar differential equation y′ = f (t, y)., y(0) =
y0 .. 

(i) Document each line of the program. 
(ii) Verify that the exact solution for the case f (t, y) = −2y +5 cos(t). and y0 = 2. 

is given by y(t) = 2 cos(t) + sin(t).. Determine for the step sizes τ = 2−s
., 

s = 0, 1, . . . , 5., the approximation error |y(T ) − yK |.with T = tK = 10.. 
(iii) Modify the program to implement the explicit Euler method, the Euler–Collatz 

method, the classic Runge-Kutta method and the 3/8. rule. 
(iv) Determine for all methods the approximation errors |y(T )−yK |.at time T = 10. 

with the step sizes τ = 2−s
., s = 0, 1, . . . , 5.. Present these comparatively 

1 function runge_kutta_expl 
2 T  =  10;  s  =  2;  tau  =  2ˆ(-s); K = floor(T/tau); 
3 y  =  zeros(K+1,1); y(1) = 2; 
4 for k = 1:K 
5 y(k+1) = y(k)+tau*Phi((k-1)*tau,y(k),tau); 
6 end 
7 plot(tau*(0:K),y(1:K+1),'b-o'); hold on; 
8 

9 function val = Phi(t,y,tau) 
10 m = 2; alpha = [0,1/2]; beta = [0,0;1/2,0]; gamma = [0,1]; 
11 eta = zeros(m,1); 
12 val = 0; 
13 for ell = 1:m 
14 dy  =  0;  
15 for j = 1:ell-1 
16 dy = dy+beta(ell,j)*eta(j); 
17 end 
18 eta(ell) = f(t+tau*alpha(ell),y+tau*dy); 
19 val = val+gamma(ell)*eta(ell); 
20 end 
21 

22 function val = f(t,y) 
23 val = -2*y+5*cos(t);

Fig. 30.6 Implementation of an explicit Runge-Kutta method
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as polygonal chains in a graph with logarithmic axis scaling, which can be 
implemented in MATLAB with the command loglog. 

Project 30.4.2 Write two MATLAB routines for the numerical approximation of 
ordinary differential equations with general implicit Runge-Kutta methods. Use 
both a fixed point iteration and the Newton method with an appropriate termination 
criterion. Investigate the respective iteration numbers in the time steps for the 
Radau-3 method using the example y′ = (1 + y2)1/2 ., y(0) = 0., in the interval 
[0, T ].with T = 4., whose exact solution is given by y(t) = sinh(t).. 

30.5 Multistep Methods 

Problem 30.5.1 For a step size τ > 0. and time steps tk = kτ ., k ∈ N0 ., let values 
wk ∈ R. be given. 

(i) Construct the interpolation polynomial q ∈ P2 . defined by the interpolation 
pairs (tk+�, wk+�)�=0,1,2 . and integrate this over the interval [tk+2, tk+3]. to 
obtain coefficients (β�)�=0,1,2 . such that 

. 

∫ tk+3

tk+2

q(t) dt = τ

2∑

�=0

β�wk+�.

(ii) Construct the interpolation polynomial q ∈ P2 . defined by the interpolation 
pairs (tk+�, wk+�)�=0,1,2 . and integrate this over the interval [tk+1, tk+2]. to 
obtain coefficients (β�)�=0,1,2 . such that 

. 

∫ tk+2

tk+1

q(t) dt = τ

2∑

�=0

β�wk+�.

Problem 30.5.2 Determine the maximum number p ∈ N. such that the identities 

. 

m∑

�=0

α� = 0,
m∑

�=0

(
α��

q − β�q�q−1) = 0, q = 1, 2, . . . , p,

hold for the Adams-Bashforth and the Adams-Moulton method with m = 3. and 
m = 2. respectively. 

Problem 30.5.3 Show that the Adams-Moulton method is well-defined under the 
condition τ‖β‖1L < 1., where L is the uniform Lipschitz constant of the function 
f associated with the differential equation.
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Problem 30.5.4 Determine the consistency order of the leap-frog method on the 
one hand directly with an error estimate for the approximation of the time derivative 
using y′(tk) ≈ (y(tk+1) − y(tk−1))/(2τ). and on the other hand by checking the 
general consistency criterion for multistep methods. 

Problem 30.5.5 For a step size τ > 0. and time steps tk = kτ ., k ∈ N0 ., let values 
wk ∈ R. be given. Determine the derivative p′(tk+m). of the interpolation polynomial 
p ∈ Pm . for the interpolation pairs (tk+�, wk+�)�=0,...,m . with m = 1, 2, 3.. Discuss 
how a multistep method can be constructed with this. 

Problem 30.5.6 Construct a multistep method by approximating the integral in the 
representation 

. y(tk+2) = y(tk) +
∫ tk+2

tk

f (s, y(s)) ds

with the Simpson rule and determine the consistency order of the method obtained 
in this way. 

Problem 30.5.7 Show, by constructing suitable initial value problems, that the 
sufficient consistency criterion for linear multistep methods 

. 

m∑

�=0

α� = 0,
m∑

�=0

(
α��

q − β�q�q−1) = 0, q = 1, 2, . . . , p,

is necessary. 

Problem 30.5.8 Show that for each m ≥ 1. there is exactly one linear m-step 
method of consistency order 2m and none of consistency order 2m + 1..  Use  the  
normalisation β0 = 1. for this purpose and formulate the general consistency 
criterion as a system of linear equations A[̂α, β̂]T = b. with α̂ = [α1, . . . , αm]T . 

and β̂ = [β1, . . . , βm]T .. Use the fundamental theorem of algebra to investigate the 
matrix AT

.. 

Problem 30.5.9 Let a linear, explicit multistep method be defined by (̂α�,

β̂�)�=0,...,m . and a linear, implicit multistep method be defined by (α�, β�)�=0,...,m .. 
The approximation yk+m . is defined by yk+m = y

(ν)
k+m ., where y

(ν)
k+m . is calculated by 

the iteration rule 

. ̃y
(i+1)
k+m = −

m−1∑

�=0

α�yk+� + τ

m−1∑

�=0

β�f (tk+�, yk+�) + τβmf (tk+m, y
(i)
k+m)

with the initialisation y
(0)
k+m = ỹk+m . for 

.̃yk+m = −
m−1∑

�=0

α̂�yk+� + τ

m−1∑

�=0

β̂�f (tk+�, yk+�).
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Show that this defines an explicit multistep method of consistency order p =
min{pexpl + ν, pimpl}., where pexpl . and pimpl . denote the consistency orders of the 
explicit and implicit methods, respectively. 

Problem 30.5.10 Investigate for which values z = τλ ∈ R. you obtain bounded 
approximations of the initial value problem y′ = λy . in (0,∞)., y(0) = 1. with the 
two-step methods defined by: 

α2 . α1 . α0 . β2 . β1 . β0 . 

1 − 1. 0 0 3/2. − 1/2. 

1 − 1. 0 5/12. 8/12. − 1/12. 

1 − 4/3. 1/3. 2/3. 0 0 

Write the methods in the form Yk+1 = BYk . and investigate the matrix B ∈ R
2×2

.. 

Project 30.5.1 We consider the initial value problem y′ = f (t, y). for t ∈ (0, T ]., 
y(0) = y0 ., with f (t, y) = (1 + y2)1/2 ., y0 = 0. and T = 1.. The exact solution is 
given by y(t) = sinh(t).. 

(i) Implement the Adams-Bashforth method. 
(ii) Use a fixed point iteration with a suitable termination criterion to implement 

the Adams-Moulton method. 
(iii) Realize the Adams-Bashforth–Moulton method. 
(iv) Compare the errors |y(T ) − yK |. at the final time tK = T . of the three methods 

for m = 2, 3, 4. and step sizes τ = 2−�
., � = 2, 3, . . . , 6., in three tables. As 

initial values, you can use the function values of the exact solution. 

Project 30.5.2 Write a short program for the algorithmic determination of the 
consistency order of a given multistep method. Test it for the Adams methods with 
m = 1, 2, 3, 4. steps as well as for the method with m = 6. and 

. 

[α6, α5, . . . , α0] = 1

147
[147,−360, 450,−400, 225,−72, 10],

[β6, β5, . . . , β0] = 1

147
[60, 0, 0, 0, 0, 0, 0].

30.6 Convergence of Multistep Methods 

Problem 30.6.1 Let A ∈ R
m×m

. be the diagonalisable companion matrix of the 
difference equation defined by (α�)�=0,...,m . with linearly independent eigenvectors 
v1, v2, . . . , vm .. Show that the sequence (yk)k≥0 . is a solution of the homogeneous 
difference equation if and only if for the vectors Yk = [yk, yk+1, . . . , yk+m−1]T . we
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have that Yk = ∑m
j=1 λk

jγj vj ., k ≥ 0., with suitable numbers γj ∈ R. and the roots 

λj . of the polynomial q(λ) = λm + αm−1λ
m−1 + · · · + λα1 + α0 .. 

Problem 30.6.2 Investigate the zero stability and consistency of the multistep 
method yk+2 − 4yk+1 + 3yk = −2τf (tk, yk).. 

Problem 30.6.3 For (α�)�=0,...,m .with αm = 1.we consider the linear homogeneous 
difference equation 

. 

m∑

�=0

α�yk+� = 0.

(i) Show that for m initial values y0, y1, . . . , ym−1 ∈ R. exactly one sequence 
(yk)k≥0 . exists, which solves the homogeneous difference equation. 

(ii) Show that the homogeneous difference equation has m linearly independent 
solutions (yk)k≥0 .. 

Problem 30.6.4 Let λ ∈ C. be an s-fold root of the polynomial q(z) = zm +
αm−1z

m−1 + · · · + α1z + α0 . and let (yk)k≥0 . be defined by yk = krλk
. with r ∈ N., 

r < s .. Furthermore, for f ∈ C1(R). and x ∈ R. the function Af ∈ C0(R). is defined 
by Af (x) = xf ′(x).. 

(i) Prove the identity 

. 

m∑

�=0

α�yk+� = λk
r∑

ν=0

(
r

ν

)
kν

m∑

�=0

α��
r−νλ� = λk

r∑

ν=0

(
r

ν

)
kνAr−νq(λ).

(ii) Let x0 .be an (r+1).-fold root of f ∈ Cr(R)., that is, we have f (x0) = f ′(x0) =
· · · = f (r)(x0) = 0.. Show that Aif (x0) = 0. for i = 0, 1, . . . , r .. 

(iii) Conclude that (yk)k≥0 . is a solution of the linear homogeneous difference 
equation

∑m
�=0 α�yk+� = 0. and discuss the boundedness of this sequence. 

Problem 30.6.5 Let R ∈ C
m×m

. be regular and let ‖ ·‖. be a norm on Cm
.. Show that 

by A �→ supx∈Rm\{0} ‖RAx‖/‖x‖. an operator norm on Rm×m
. is defined. 

Problem 30.6.6 Investigate the zero stability of the Fibonacci sequence yk+2 =
yk+1 + yk . and the Chebyshev recursion Tk+2(x) = 2xTk+1(x) − Tk(x).. 

Problem 30.6.7 Assume that the Jordan normal form of the companion matrix A ∈
R

m×m
. of a difference equation is real and the Dahlquist root condition is violated. 

Show that then �(A) > 1. holds. 

Problem 30.6.8 Specify the constants C0, C1, C2 . in the general convergence state-
ment for multistep methods and discuss in which situations the error estimation is 
of practical use.
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Problem 30.6.9 Let f ∈ C1([0, T ] × R). with |∂zf (t, z)| ≤ C . for all 
(t, z) ∈ [0, T ] ×R.. Show that the Adams-Moulton, Adams-Bashforth, and Adams-
Bashforth-Moulton methods satisfy the conditions of the general convergence 
statement for multistep methods. 

Problem 30.6.10 Let J = T −1AT . be the Jordan normal form of the matrix A ∈
R

m×m
. with Jordan blocks Ji ., i = 1, 2, . . . , r ..  For ε ≥ 0.,  let D ∈ R

m×m
. be the 

diagonal matrix with entries dkk = εk−1
. for k = 1, 2, . . . , m.. Show that the matrix 

J̃ = D−1JD . is given by the blocks 

. ̃Ji =

⎡

⎢⎢⎢⎢
⎣

λi ε

. . .
. . .

. . . ε

λi

⎤

⎥⎥⎥⎥
⎦

,

i = 1, 2, . . . , r .. 

Project 30.6.1 Formulate algorithms for the systematic experimental analysis of 
the zero stability of a difference equation, on the one hand by testing randomly 
selected initial values and on the other hand by solving a suitable eigenvalue 
problem. Discuss the reliability of the assessment determined in this way and test 
your algorithms with the coefficients 

. 

[α2, α1, α0] = [1, 4,−5],
[α2, α1, α0] = [1,−4, 3],
[α2, α1, α0] = [1, 0,−1],

[α4, α3, α2, α1, α0] = [1,−48/25, 36/25,−16/25, 3/25].

Project 30.6.2 The BDF methods (backward differentiation formulas) are given for 
m ≥ 1. by 

. 

m∑

�=0

α̂�yk+� = τf (tk+m, yk+m)

with the coefficients α̂m = ∑m
j=1 1/j . and 

. ̂α� = (−1)m−�
m∑

j=m−�

1

j

(
j

m − �

)
,

� = 0, 1, . . . , m − 1.. Use the BDF methods with m = 1, 2, . . . , 7. for the numerical 
approximation of the initial value problem y′ = f (t, y). in (0, T ]., y(0) = y0 ., with 
f (t, y) = −2y + 5 cos(t)., y0 = 1. and T = 1., whose exact solution is given by
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y(t) = 2 cos(t) + sin(t).. Determine the experimental convergence rates at time 
T = 1. with suitable sequences of time step sizes and the approach eτ ≈ cτγ

.,  so  
that for two different step sizes it follo ws

. γ ≈ log(eτ /eτ ′)/ log(τ/τ ′).

30.7 Stiff Differential Equations 

Problem 30.7.1 Let A ∈ R
2×2

. with eigenvalues λ1, λ2 ∈ C.. Draw the phase 
diagrams of the differential equation z′ = Az. in a neighbourhood of the origin 
for four typical situations characterised by 

. (i) λ1, λ2 ∈ R>0, (ii) λ1, λ2 ∈ R<0, (iii) λ1, λ2 ∈ R, λ1λ2 < 0, (iv) λ1 = λ2.

Problem 30.7.2 Assume that a numerical method leads to bounded approximations 
of the scalar differential equation y′ = λy . for every step size τ > 0., provided 
Re(λ) ≤ 0. holds. Furthermore, let A ∈ R

n×n
. be complex diagonalisable and the 

eigenvalues of A have exclusively negative real parts. Show that the method is A-
stable.

Problem 30.7.3 

(i) Show that the application of a linear multistep method to the differential 
equation y′ = λy . leads to a homogeneous difference equation. 

(ii) Define the concept of A-stability for linear multistep methods, so that it is 
consistent with the definition for single-step methods in the case of the implicit 
Euler method. 

(iii) Investigate the A-stability of the methods defined by m = 2. and 

. [α2, α1, α0] = [1,−4/3, 1/3], [β2, β1, β0] = [2/3, 0, 0]

or m = 3. and 

. [α3, α2, α1, α0] = [1,−18/11, 9/11,−2/11],
[β3, β2, β1, β0] = [6/11, 0, 0, 0]

respectively. 

Problem 30.7.4 Let A ∈ R
n×n

. be negative definite, i.e. there exists a number α >

0., such that zTAz ≤ −α‖z‖2 . for all z ∈ R
n
.. Show that the solution of the initial 

value problem y′ = Ay . converges exponentially fast to 0 for every initial value 
y0 ∈ R

n
..
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Problem 30.7.5 Let α ∈ R
m

., β ∈ R
m×m

. and γ ∈ R
m

. be the coefficients of a 
Runge–Kutta method. Show that the associated stability function is a polynomial or 
rational function. 

Problem 30.7.6 Investigate the Runge–Kutta method defined by the Butcher table 

. 

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

for A- and L-stability. 

Problem 30.7.7 Let the function f : Rn → R
n
. be one-sided Lipschitz continuous, 

i.e. for all z,w ∈ R
n
.we have 

. 〈f (z) − f (w), z − w〉 ≤ L‖z − w‖2.

Show that the differential equation y′ = f (y). has at most one solution for every 
initial value y0 . and discuss the well-posedness of the differential equations y′ =
−y3

. and y′ = y3
.. 

Problem 30.7.8 

(i) Let G ∈ C1(Rn).. Show that G is convex if and only i f

. ∇G(z) · (w − z) + G(z) ≤ G(w)

holds for all z,w ∈ R
n
.. 

(ii) Let G ∈ C2(Rn).. Show that G is convex if and only if D2g(x). is positive 
semi-definite for all x ∈ R

n
.. 

Problem 30.7.9 Peano’s theorem states that every initial value problem y′ = f (y)., 
y(0) = y0 ., with a continuous function f : Rn → R

n
. has a solution in an interval 

(0, ε). and ε > 0. can be chosen arbitrarily, provided the solution remains bounded. 
Show that the initial value problem y′ = −∇G(y). with a coercive function G ∈
C1(Rn). for every initial value y0 ∈ R

n
. has a solution defined on all R≥0 . and discuss 

the applicability to the differential equation y′ = −y3
.. 

Problem 30.7.10 

(i) Let G : R → R. be defined by G(z) = (1 − z2)2 .. Sketch the function G and 
show that G is μ.-convex. 

(ii) Assume G(x) ≥ −c1 + c2|x|p . with p ≥ 1.. Show that G is coercive and, 
provided G is also continuous, has a minimum.

Project 30.7.1 We consider the initial value problem y′ = −α(y − cos(t))., y(0) =
0. in the interval [0, T ].with T = 1. and α = 50.. 

(i) Verify that the solution of the problem is given by
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. y(t) = α

1 + α2

(
sin(t) + α cos(t) − αe−αt

)
.

(ii) Solve the problem approximately with the explicit and implicit Euler method, 
the trapezoidal method, and the classical Runge–Kutta method with the step 
sizes τ = 2−�/10., � = 0, 1, 2, 3.. Present the errors at time T comparatively in 
a t able.

(iii) Present the approximations for some step sizes and the exact solution in a graph 
and discuss the results. 

Project 30.7.2 We consider the initial value problem y′ = −αy3
., y(0) = 1.,  in  the  

interval [0, T ].with T = 1. and α = 200.. 

(i) Show that the initial value problem defines a gradient flow for a suitable 
function G and determine the exact solution.

(ii) Test the explicit and implicit Euler method for the approximate solution of the 
problem. Use the Newton method to solve nonlinear equations approximately. 
Document your observations. 

(iii) Test the semi-implicit Euler method 

. yk+1 = yk − ταy2
k yk+1

as well as the linearised implicit Euler method 

. yk+1 = yk − τα
(
f (yk) + f ′(yk)(yk+1 − yk)

)
,

where f (y) = y3
., and document your observations. 

(iv) Experimentally determine for each of the above methods step sizes for which 
the sequence

(
G(yk)

)
k=0,...,K . is monotonically decreasing. 

30.8 Step Size Control 

Problem 30.8.1 Let ŷτ : [0, T ] → R. be the affine-linear interpolant of the 
approximations calculated with the implicit Euler method for the initial value 
problem y′ = f (y)., y(0) = y0 ., and let y ∈ C1([0, T ]).. Show that ŷτ . converges 
uniformly to y on [0, T ]. as τmax = maxk=1,...,K τk → 0.. 

Problem 30.8.2 Let ŷτ , yτ : [0, T ] → R. be the interpolants of a sequence 
(yk)k=0,...,K . with maximum step size τ = maxk=1,...,K τk .. Show that for k =
1, 2, . . . , K .we have that 

. sup
t∈[tk−1,tk]

|̂yτ (t) − yτ (t)| ≤ τ sup
t∈[tk−1,tk]

|̂y′
τ (t)|.
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Problem 30.8.3 Let yτ , ŷτ : [0, T ] → R. be the piecewise constant and piecewise 
affine interpolant of the sequence (yk)k=0,...,K . for the uniform step size τ > 0.. Show 
that for every function v ∈ C1([0, T ]). the identities 

. 

∫ T

0
v′yτ dt = −

K−1∑

k=0

(yk+1 − yk)v(tk) + yKv(T ) − y0v(0)

and 

. 

∫ T

0
v′ŷτ dt = −

∫ T

0
vŷ′

τ dt + yKv(T ) − y0v(0)

hold. 

Problem 30.8.4 Let y ∈ C0([0, T ]).. Determine conditions under which, for a 
given parameter δ > 0., there exists a number τ > 0. such that 

. |y(t + τ) − y(t)| ≤ δ

for all t ∈ [0, T −τ ].. Show with an example that this does not generally hold without 
additional assumptions on y. 

Problem 30.8.5 Derive an a posteriori error estimate for the explicit Euler method. 

Problem 30.8.6 Show for the case of an autonomous differential equation y′ =
f (y). with a Lipschitz-continuous function f : R → R., that the adaptive method 
based on the a posteriori error estimate always terminates, i.e. the final time is 
reached. 

Problem 30.8.7 Let ŷ′
τ = f (ŷτ ) + Rτ . and y′ = f (y). in the interval (0, T ). and 

ŷτ (0) = y(0).. Show that for the error e(t) = y(t) − ŷτ (t).we have that 

. sup
t∈[0,T ]

|e(t)| ≤ max
t∈[0,T ] |Rτ (t)| exp(LT ),

and compare this estimate with other a posteriori error estimates. 

Problem 30.8.8 Consider a numerical method of consistency order p. Construct 
by extrapolation of approximations to the step sizes τ ., τ/2. and τ/4. a method of 
consistency order p + 2.. Discuss the total effort of the obtained method compared 
to the use of the original method with the step size τ 3 . in the case p = 1.. 

Problem 30.8.9 Determine the Butcher table of the method obtained by extrap-
olation of the implicit Euler method with step sizes τ . and τ/2. and discuss its 
consistency order. 

Problem 30.8.10 Let f ∈ C1([0, T ]). and g ∈ C0([0, T ]). with f, g ≥ 0. and c0 ≥
0., such that f ′(t) ≤ c0 + (

g(t)f (t)
)1/2

. holds for all t ∈ [0, T ]..
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(i) Show that for all a, b ∈ R. and γ > 0.we have ab ≤ γ a2/2 + b2/(2γ ).. 
(ii) Show using the Gronwall Lemma that for every δ > 0.we have 

. max
t∈[0,T ] f (t) ≤ (

f (0) + c0T + (δT /2) max
t∈[0,T ] g(t)

)
exp

(
T/(2δ)

)
.

(iii) Prove without using the Gronwall Lemma that 

. max
t∈[0,T ] f (t) ≤ 2f (0) + 2c0T + T 2 max

t∈[0,T ] g(t).

(iv) Discuss the advantages and disadvantages of the estimates from (ii) and (iii). 

Project 30.8.1 Implement the adaptive algorithm for step size control and test it 
with the implicit Euler method for the initial value problems 

. y′(t) = −(y(t) − 100 cos(t)), t ∈ (0, 1], y(0) = 0,

and 

. y′′(t) = 20
(
1 − y(t)2

)
y′(t) − y(t), t ∈ [0, 100], y(0) = 1/10, y′(0) = 0.

Use different parameters δ > 0. for the condition |yk+1 − yk| ≤ δ . and display the 
variable step sizes as a function of time. Compare the effort and accuracy of the 
adaptive method for calculating the approximations on a uniform grid. Use the fact 
that the solution of the first initial value problem is given by y(t) = 50(sin(t) +
cos(t) − e−t ).. 

Project 30.8.2 Implement the extrapolation of the trapezoidal method with step 
sizes τ . and τ/2. and verify the improved consistency order using the example of the 
initial value problem y′(t) = −y(t) + cos(t)., y(0) = 0. in the interval [0, T ]. with 
T = 1., whose exact solution is given by y(t) = (sin(t) + cos(t) − e−t )/2.. Display 
the approximations (yτ

k )k=0,...,K ., (yτ/2
k )k=0,...,2K . and (ỹk)k=0,...,K . comparatively in 

a graph. 

30.9 Symplectic, Shooting and dG Methods 

Problem 30.9.1 Formulate the kinetic energy mv2/2. and the potential energy mgh 
in suitable polar coordinates to derive a Hamilton function for the pendulum.

Problem 30.9.2 Show that Newton’s law of inertia can be interpreted as a Hamil-
tonian system. Assume that the acting force is given as the negative gradient of a 
potential.
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Problem 30.9.3 With a function V ∈ C1(R)., a Hamiltonian system is given by the 
function H : RN×3 × R

N×3 → R., 

. H(q, p) =
N∑

i=1

‖pi‖2
2mi

+ 1

2

N∑

i,j=1 i �=j

V
(‖qi − qj‖

)
.

Show that the total momentum P and the total angular momentum L, which are 
defined with the three-dimensional cross product as

. P =
N∑

i=1

pi, L =
N∑

i=1

qi × pi,

of the system are conserved. 

Problem 30.9.4 Let J ∈ R
2n×2n

. be defined by 

. J =
[

In

−In

]
.

(i) Show that ω : R2n ×R
2n → R., ω(z1, z2) = zT1Jz2 ., defines a skew-symmetric 

bilinear form. 
(ii) Let P be a parallelogram inR2

., spanned by the vectors z1 . and z2 .. Show that the 
area of P is given by |ω(z1, z2)|.. How is the sign of ω(z1, z2). to be interpreted? 

(iii) Construct a nonlinear mapping Ψ : R2 → R
2
., which is symplectic. 

Problem 30.9.5 Determine all symplectic matrices A ∈ R
2×2

.. 

Problem 30.9.6 To describe the path of a planet of mass m in the gravitational field 
of a stationary sun of mass M � m.we use the Hamilton function 

. H(q, p) = ‖p‖2
2m

− γ
mM

‖q‖ .

(i) Assume that the motion of the body takes place in a plane and is described by 
the function q : [0, T ] → R

2
.. Furthermore, let p = mq ′

.. Use polar coordinates 
(r, φ). to show that 

. H(q, p) = m

2

(
(r ′)2 + (rφ′)2

) − γmM

r
.

(ii) Use the constancy of the angular momentum L̂ = q ×p ., whose length is given 
by L = mr2φ′

., and the total energy H(q(t), p(t)) = H0 ., to show that for the 
radius as a function of the angle we have
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. 

( dr

dφ

)2 = 2mr4

L2

(
H0 + γMm

r
− L2

2mr2

)
.

(iii) Prove that every ellipse {(x, y) ∈ R
2 : (x/a)2 + (y/b)2 = c2}. in polar 

coordinates with respect to a focus can be represented by r(φ) = s/(1 +
ε cos(φ))., φ ∈ [0, 2π ]., and show that 

. 

( dr

dφ

)2 = r4

s2

(
ε2 − 1 + 2s

r
− s2

r2

)
.

(iv) Conclude that the path of the planet is described by an ellipse. 

Problem 30.9.7 Show that the midpoint method is symplectic, but in the case of 
the Hamiltonian 

. H(q, p) =
N∑

i=1

‖pi‖2
2mi

+ 1

2

N∑

i,j=1 i �=j

V
(‖qi − qj‖

)

requires the solution of nonlinear systems of equations. 

Problem 30.9.8 Show that the implicit Euler method is not symplectic. 

Problem 30.9.9 

(i) Show that the method 

. 

[
qk+1

pk+1

]
=

[
qk

pk

]
+ τ

[
∂pH(qk+1, pk)

−∂qH(qk+1, pk)

]

is symplectic. 
(ii) What disadvantages arise compared to the partitioned Euler method, where on 

the right-hand side the expressions ∂pH(qk, pk+1). and − ∂qH(qk, pk+1). are 
used? 

Problem 30.9.10 Show that the discontinuous Galerkin method for � = 1. leads to 
a variant of the midpoint method. 

Project 30.9.1 A ball of mass m = 10 g. is to be shot vertically upwards so that it 
reaches the ground again exactly after 10 seconds. Taking into account air resistance, 
an initial velocity s is sought such that for the solution of the initial value problem

. my′′ + η sign(y′)|y′|2 = −mg, t ∈ (0, 10], y(0) = 0, y′(0) = v0

we have y(10) = 0..  Here g = 9.81m/s2 . and η = 2 · 10−4kg/m..  Use  the  
bisection method and the Newton method to solve the problem approximately. To 
define a suitable starting value, you can first solve the problem neglecting friction
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effects. Test other friction coefficients and discuss the convergence behaviour of the 
methods. Check the plausibility of your results. 

Project 30.9.2 Use the explicit and implicit Euler method, the midpoint method 
and the partitioned Euler method to simulate the pendulum described by the 
Hamiltonian 

. H(φ,ψ) = 1

2
ψ2 − cos(φ)

in the time interval [0, T ]. with T = 10.. Display the trajectories t �→ (φ(t), ψ(t)). 

in the phase diagram and plot the total energy t �→ H(φ(t), ψ(t)). as well as the 
kinetic and potential energy comparatively for the methods and various step sizes. 
Solve nonlinear systems of equations with the Newton method.



Chapter 31 
Results from Linear Algebra 

31.1 Scalar Product of Vectors 

On the vector space Rn
., the mapping 

. · : Rn × R
n → R, (v,w) �→ v · w = vTw =

n∑

i=1

viwi

defines a bilinear mapping, which is referred to as scalar product. The Euclidean 
length of a vector is thus given by 

. ‖v‖2 = (v · v)1/2 =
( n∑

i=1

v2i

)1/2
.

Two linearly independent vectors v,w ∈ R
n
. span a plane and with the angle α . 

between these vectors within the plane, we have 

. v · w = cos(α)‖v‖2‖w‖2.

Two vectors v,w ∈ R
n
. are called orthogonal, denoted by v ⊥ w .,  if v · w = 0.. 

31.2 Determinant of Square Matrices 

In the case n = 2., an oriented area of the parallelogram spanned by two vectors 
v,w ∈ R

2
. is defined by 

. det[v,w] = v1w2 − v2w1.
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More generally, the oriented volume of a parallelepiped spanned by the vectors 
v1, v2, . . . , vn ∈ R

n
. is given by the determinant detV . of the matrix V , whose 

columns are the vectors v1, v2, . . . , vn .. The sign of the determinant defines an 
equivalence relation on the set of bases of Rn

. and thus allows the definition of 
a positive and negative orientation. The value of a determinant can be calculated 
recursively with the Laplace expansion theorem, which states that for each i =
1, 2, . . . , n. the identity 

. detV =
n∑

j=1

vij (−1)i+j det V̂ij

holds, where V̂ij ∈ R
(n−1)×(n−1)

. is obtained from V by deleting the i-th row and 
j -th column and for every real number s ∈ R. the identity det s = s . holds. For 
triangular matrices R ∈ R

n×n
., that is rij = 0. for all i > j . or for all i < j ., one 

deduces detR = r11r22 . . . rnn .. 

31.3 Image and Kernel of Linear Mappings 

For a matrix A ∈ R
m×n

., or the linear mapping x �→ Ax ., x ∈ R
n
., identified with it, 

its image and kernel are defined by 

. 
ImA = {w ∈ R

m : ∃v ∈ R
n, w = Av},

kerA = {v ∈ R
n : Av = 0}.

With this, the identities 

. R
m = ImA + kerAT, R

n = ImAT + kerA,

hold, where the decompositions are even orthogonal, that is for w = Av ∈ ImA. 

and u ∈ kerAT
.we have 

. w · u = wTu = (Av)Tu = (
vTAT)

u = vT
(
ATu

) = 0.

Thus, ImA. is the orthogonal complement of kerAT
., that is ImA = (kerAT)⊥ .. 

The rank of a matrix A is the dimension of the image of the induced linear mapping, 
that is

. rankA = dim ImA.

The rank of a matrix corresponds to the number of linearly independent column 
vectors. Elementary arguments reveal that the rank of a matrix matches the rank
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of the transposed matrix. From the orthogonality of the above decompositions, the 
formulas 

. m = rankA + dim kerAT, n = rankA + dim kerA,

in particular, rankA = rankAT
.. For an endomorphism or a square matrix A ∈

R
n×n

., it follows that it is bijective if and only if it is surjective, that is ImA = R
n
., 

or injective, that is kerA = {0}.. In this case, A is regular or invertible and it holds 
that detA �= 0.. 

31.4 Eigenvalues and Diagonalisability 

Characteristic information about a matrix A and the associated linear mapping are 
contained in the eigenvalues, which are the roots of the characteristic polynomial of 
degree n

. pA(t) = det(A − tIn).

A number λ ∈ R. is an eigenvalue of A if and only if an associated eigenv ector
v ∈ R

n \ {0}. with Av = λv . exists. The set of eigenvalues is also referred to as the 
spectrum. Every triangular matrix R ∈ R

n×n
. has, taking into account multiplicities, 

n eigenvalues, which are given by the diagonal entries of R. A matrix A ∈ R
n×n

. 

is called diagonalisable, if an invertible matrix V ∈ R
n×n

. and a diagonal matrix 
D ∈ R

n×n
. exist, such that V −1AV = D . holds. In this case, A and D have the 

same eigenvalues and these are given by the diagonal entries of D. Furthermore, the 
column vectors of V are associated eigen vectors, since

. [Av1, . . . , Avn] = A[v1, . . . , vn] = AV = V D = [v1, . . . , vn]D
= [λ1v1, . . . , λnvn].

This implies that A is diagonalisable if and only if there is a basis consisting of 
eigenvectors of A. An example of a non-diagonalisable matrix i s

. A =
[
0 1
0 0

]
,

because the characteristic polynomial of A has the double root λ = 0. and if A were 
diagonalisable, there would be an invertible matrix V ∈ R

2×2
. with V −1AV = 0., 

which would imply A = 0.. Symmetric matrices are always diagonalisable and there 
exists an orthonormal basis consisting of eigenvectors, that is there exist linearly 
independent eigenvectors v1, . . . , vn .with ‖vj‖2 = 1. and vj · vk = 0. for 1 ≤ j, k ≤
n.with j �= k ..
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31.5 Jordan Normal Form 

The characteristic polynomial of a matrix A ∈ R
n×n

. always has n complex roots, 
however, the mapping defined by A : C

n → C
n
., z �→ Az. is generally not 

diagonalisable. Every matrix A ∈ R
n×n

. is however complex triangularisable, that is 
there exist an invertible matrix T ∈ C

n×n
. and an upper triangular matrix J ∈ C

n×n
., 

whose diagonal entries are the complex eigenvalues of A, such that A = T −1JT . 

holds. The existence of the Jordan normal form states that J can be chosen so that

. J =

⎡

⎢⎢⎢⎣

J1

J2
. . .

Jr

⎤

⎥⎥⎥⎦

with block matrices Ji ∈ R
si×si ., i = 1, 2, . . . , r ., the so-called Jordan blocks, which 

are associated with eigenvalues λ�i
., i = 1, 2, . . . , r ., through 

. Ji =

⎡

⎢⎢⎢⎢⎣

λ�i
1

λ�i

. . .

. . . 1
λ�i

⎤

⎥⎥⎥⎥⎦
.

Here, the number of Jordan blocks associated with an eigenvalue λ.corresponds to its 
geometric multiplicity, that is the dimension of ker(A − λIn).. The sum of the sizes 
of the Jordan blocks of an eigenvalue λ. corresponds to its algebraic multiplicity, that 
is the multiplicity of the root λ. of the characteristic polynomial pA(t)..



Chapter 32 
Results from Analysis 

32.1 Continuous and Differentiable Functions 

The intermediate value theorem guarantees for every continuous function f ∈
C0([a, b]). with the property f (a)f (b) ≤ 0. the existence of a ξ ∈ [a, b]., such that 
f (ξ) = 0. holds. The Bolzano–Weierstrass theorem states that every function f ∈
C0([a, b]). attains its maximum and minimum, that is, there exist ξmax, ξmin ∈ [a, b]. 
with f (ξmax) ≥ f (x) ≥ f (ξmin). for all x ∈ [a, b].. A function f : [a, b] → R. is 
called differentiable at x0 ∈ [a, b]., if a number L ∈ R., a number δ > 0. and a 
function ϕ : [0, δ) → R. exist, such that 

. f (x) = f (x0) + L(x − x0) + ϕ(x − x0)

for all x ∈ [a, b].with |x − x0| < δ . and lims→0 ϕ(s)/|s| → 0. holds. In this case, L 
is called the derivative of f at x0 . and we write f ′(x0) = L..  If  f is differentiable at 
every point x0 ∈ [a, b]., and if the induced function x0 �→ f ′(x0). is continuous, then 
f is called continuously differentiable and we write f ∈ C1([a, b]).. Inductively, 
k-times continuously differentiable functions f ∈ Ck([a, b]). can be defined. For 
each k ∈ N0 . the set Ck([a, b]). is a vector space, on which 

. ‖f ‖Ck([a,b]) = max
i=0,...,k

sup
x∈[a,b]

|f (i)(x)|

the so-called supremum norm is defined. If a function f or one of its derivatives up 
to order k is only continuous in the open interval (a, b)., we write f ∈ Ck(a, b)..  In  
this case, f or a derivative of f can be unbounded and the norm ‖f ‖Ck([a,b]) . may 
not be defined. 
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32.2 Mean Value Theorem and Taylor Polynomials 

If f ∈ C0([a, b]) ∩ C1(a, b)., the mean value theorem states, or in the special case 
f (a) = f (b). Rolle’s theorem, that there exists a ξ ∈ (a, b).with 

. 
f (a) − f (b)

a − b
= f ′(ξ).

According to the fundamental theorem of differential and integral calculus the 
identity 

. 

∫ b

a

f ′(x) dx = f (b) − f (a),

holds, and with the mean value theorem it follows 

. f (b) − f (a) =
∫ b

a

f ′(x) dx = f ′(ξ)(b − a)

for a ξ ∈ (a, b).. More generally, for a function f ∈ Ck+1([a, b]). and x0 ∈ [a, b]. 
Taylor’s formula states that 

. 

f (x) = f (x0) + f ′(x0)(x − x0) + · · · + 1

k!f
(k)(x0)(x − x0)

k + Rk+1(x0)

=
k∑

j=0

1

j !f
(j)(x0)(x − x0)

j + Rk+1(x0),

with a remainder term Rk+1(x0)., such that the Lagrange representation 

. Rk+1(x0) = 1

k!
∫ x

x0

(x − t)kf (k+1)(t) dt = 1

(k + 1)!f
(k+1)(ξ)(x − x0)

k+1

holds with a number ξ ∈ [x0, x].. The Taylor formula thus defines an approximating 
polynomial Tk,x0f . of degree k with the p roperty

.
∥∥f − Tk,x0f

∥∥
C0([a,b]) ≤ ‖f (k+1)‖C0([a,b])

(k + 1)! (b − a)k+1.
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32.3 Landau Symbols 

The approximation property of the Taylor polynomial can be written more concisely 
for a function f ∈ Ck+1([a, b]). as 

. f (x) − Tk,x0f (x) = O(|x − x0|k+1), x → x0.

Here, the so-called Landau symbolO(|x−x0|k+1). stands for an expression ϕ(x−x0). 

with a function ϕ : R → R., for which numbers δ > 0. and c ≥ 0. exist, such that 
|ϕ(s)|/|s|k+1 ≤ c. for all s ∈ R \ {0}.with |s| ≤ δ .. For all x0 ∈ [a, b]. and x ∈ [a, b]. 
with |x − x0| < δ . it therefore holds that 

. |f (x) − Tk,x0f (x)| ≤ c|x − x0|k+1.

More generally, for f ∈ Ck([a, b]). the property holds that 

. f (x) − Tk,x0f (x) = o(|x − x0|k), x → x0,

where the Landau symbol o(|x − x0|k). represents an expression ϕ(x − x0). with a 
function ϕ : R → R. that has the property lims→0 ϕ(s)/|s|k → 0.. Based on the 
Taylor formula, the Weierstrass approximation theorem can be proven, which states 
that every function f ∈ C0([a, b]). can be uniformly approximated by polynomials. 
In contrast to the notation O(np). used, for example, in complexity analysis of 
algorithms, here the limit s → 0. is considered. The most important cases of the 
Landau symbols can be summarised as follows: 

. g(n) = O(np), n → ∞ ⇐⇒ ∃c ≥ 0∀n ∈ N, |g(n)| ≤ cnp,

ψ(s) = O(|s|p), s → 0 ⇐⇒ ∃c ≥ 0 lim sup
s→0

|ψ(s)|/|s|p ≤ c,

ψ(s) = o(|s|p), s → 0 ⇐⇒ lim
s→0

|ψ(s)|/|s|p = 0.

Usually, it is clear from the context which limit is meant, so the addition n → ∞., 
s → 0. or x → x0 . is often omitted. 

32.4 Fundamental Theorem of Algebra 

A point x0 ∈ [a, b]. is referred to as an �.-fold root of a function f ∈ Cr([a, b]). if 
r ≥ � − 1. and f (j)(x0) = 0. for j = 0, 1, . . . , � − 1.. In the case of a polynomial p 
of degree k ≥ �. it follows that 

.p(x) = (x − x0)
�r(x)
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with a polynomial r of degree k − �.. If one identifies a polynomial p(x) =
akx

k + ak−1x
k−1 + · · · + a0 . of degree k with real coefficients with a mapping

f : C → C., f (z) = akz
k + ak−1z

k−1 + . . . a0 ., then according to the fundamental 
theorem of algebra the function f always has k roots z1, z2, . . . , zk ∈ C., which are 
not generally pairwise different. If zj ∈ C \ R. is a strictly complex root, then the 
complex conjugate number zj . is also a root. If polynomials p and q are given, then 
there exist polynomials s and r such that

. p(x) = s(x)q(x) + r(x)

holds for all x ∈ R.. With the condition that the degree of the remainder r is truly 
smaller than that of s, s and r are uniquely determined, provided p or q is not
identically zero.

32.5 Multidimensional Calculus 

A continuous mapping f : U → R
m

. defined on an open set U ⊂ R
n
. is called 

(totally) differentiable at the point x0 ∈ U ., if a linear mapping L : Rn → R
m

. exists, 
such that 

. f (x) − f (x0) = L(x − x0) + o(‖x − x0‖2)

holds. In this case, the differentialDf (x0).of f at the point x0 . is defined as the linear 
mapping L and is identified with the representing, so-called Jacobian or functional 
matrix. This matrix is also denoted by Df (x0) ∈ R

m×n
. and its entries are for i =

1, 2, . . . , m. and j = 1, 2, . . . , n. given by the partial derivatives 

. ∂jfi(x0) = ∂fi

∂xj

(x0) = lim
x→x0

fi(x0 + hej ) − f (x0)

h

If f is differentiable at every point x0 ∈ U ., we write f ∈ C1(U ;Rm).. In the case 
m = 1., that is f : U → R.,  the  gradient of f is defined by ∇f (x) = (Df (x))T ∈
R

n
.. With this definition, we have 

. Df (x)[s] = ∇f (x) · s

for all s ∈ R
n
.. If all partial derivatives of ∇f . are continuously differentiable, then 

the symmetric Hessian matrix D2f . corresponds to the functional matrix of ∇f .. 
The multidimensional Taylor formula implies that for f ∈ C2(U)., U convex, and
x, x0 ∈ U . a ξ = tx0 + (1 − t)x ∈ U ., t ∈ [0, 1]., exists, such that 

.f (x) = f (x0) + ∇f (x) · (x − x0) + 1

2
D2f (ξ)[x − x0, x − x0].
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Here, D2f (ξ)[d, d]. stands for the expression dTD2f (ξ)d .. A necessary condition 
for an extremum of a function f ∈ C1(U). at the point x0 ∈ U . is that ∇f (x0) = 0. 
holds. If additionally f ∈ C2(U). is fulfilled and D2f (x0). is positive definite, it 
follows that x0 . is a local isolated minimum. In the case of a convex function, x0 . is 
even a global, unique minimum.



Chapter 33 
Introduction to C++ 

33.1 Structure 

The programming language C++ is a compiler-based language, which means that 
programs created with a text editor like emacs or kate are translated into machine-
readable code with the help of the compiler. For this to work flawlessly, programs 
must be written within a predefined framework. A C++ language program begins 
with the integration of required predefined routines, which are provided in libraries 
and classes, such as mathematical functions or input and output functions. This is 
optionally followed by self-defined functions and at the end is the main program 
beginning with main(). In the main program are variable definitions and commands 
such as value assignments and function calls. The program on the left in Fig. 33.1 
shows a simple example, in which the square of a number is calculated in a 
subroutine. This is called from the main program with an argument. If the program 
is saved as a text file under the name comp_square.cc, it can be compiled in the 
same directory with the command 

$ g++ comp_square.cc -o comp_square.out 

To start the program, use the command 

$ ./comp_square.out 

33.2 Classes 

The iostream class provides routines for input and output, while the cmath class 
implements elementary mathematical functions. The basic arithmetic operations 
+,-,*,/ can be used without the inclusion of libraries. To output text and 
numbers, the command std::cout << "text \n" or std::cout << x is used,
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1 // comp_square.cc 
2 #include <iostream> 
3 #include <cmath> 
4 double square(double x){ 
5 return pow(x,2.0); 
6 } 
7 int main(){ 
8 double x, y; 
9 x = 3.8; 

10 y = square(x); 
11 std::cout << "square is "; 
12 std::cout << y << "\n"; 
13 } 

1 // simple_loop.cc 
2 #include <iostream> 
3 int main(){ 
4 int i; 
5 for (i=0; i<5; i=i+1){ 
6 std::cout << i << "\n"; 
7 } 
8 std::cout << "\n"; 
9 if (i==5){ 

10 std::cout << "i is 5 \n"; 
11 } 
12 } 
13 // 

Fig. 33.1 Elementary programs in C++ 

Table 33.1 Input and output functions, comments and elementary mathematical functions 

cout, cin Output and input of text and variables 

\.n, endl Creation of a line break 

/*...*/, // Multi-line and single-line comments 

cos, sin, tan Trigonometric functions 

exp, log, log10 Exponential function and logarithms 

pow, sqrt Power and square root 

floor, ceil, fabs Rounding to integers and absolute function 

where \n causes a line break. The reading of values for a variable is done with 
std::cin >> x. By the instruction
using namespace std; 

the additions std:: can be avoided. Further commands are listed in Table 33.1. 

33.3 Types 

Every variable must be declared in C++, that is, before its use it is determined 
whether it will hold an integer or a floating-point number, i.e. values of type integer 
or double to be stored, see Table 33.2. The use of numbers and arithmetic operations 
is also associated with types, for example, the expression 2 is interpreted as a 
variable of type integer, while 2. is used as a variable of type double. The operation 
2/3. is executed in C++ as a binary operation of the higher-value variable type, which 
means 

. 2/3 = 0, 2./3. ≈ 0.6, 2/3. ≈ 0.6, 2./3 ≈ 0.6.

Variables can, for example, be converted with x = (double)a. Lists and matri-
ces of fixed size are referred to as arrays and can be initialised via double x[n]
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Table 33.2 Variable types in C++ 

int Integer machine numbers 

float, double Floating point numbers of single and double precision 

bool Boolean variables with values 0 and 1 

if (condA) statementA else if (condB) statementB else statementC 
while (cond) statement 
for (init; cond; step) statement 

Fig. 33.2 Case distinction, repetition and enumeration in C++ 

or double A[m][n]. The indexing of array entries starts with 0. Incorrect indexing 
of arrays generally does not lead to an error message and must be excluded in the 
program. When declaring a variable, a value can already be assigned, provided it is 
not an array whose size is defined by a v ariable.

33.4 Control Statements 

In C++, case distinctions, repetitions and enumerations can be implemented in the 
formats shown in Fig. 33.2. Here, cond stands for a logical condition that can be 
defined via a logical operation like a<b, while statement stands for a list of 
commands enclosed by curly brackets. The expressions init and step stand for 
an initialisation like i=0 and a statement of the kind i=i+1, whose execution is 
repeated as long as the condition cond, for example i<5, is evaluated as true. First, 
init is executed, then cond is checked, then the command block statement is 
processed and finally step is executed, before the condition cond is evaluated 
again and this process is repeated until cond is false. Occasionally, the use of the 
do while loop is also useful, in which the condition is checked after r ather than
before the execution of the commands.

33.5 Logical Expressions and Increments 

Boolean variables, binary operations for comparing machine numbers, the logi-
cal conjunctions and, or and the negation are available for formulating logical 
conditions, see Table 33.3. Comparisons are in brackets, for example (a<b). 
Floating point numbers are only compared to machine accuracy and due to possible 
disturbances, a test for exact equality of two floating point numbers is not very 
meaningful. The command i=i+1 can be replaced in C++ by i++ or ++i and used 
in arithmetic or logical expressions. In the case of ++i, the variable is first increased 
and then the expression is evaluated, whereas when using i++, the variable is first 
increased. The logical expressions (++i==1) or (i++==1) thus lead to different
truth values.



336 33 Introduction to C++

Table 33.3 Logical operations as well as increment- and decrement functions 

==, !=, >, >=, <, <= Logical comparison of machine numbers 

& &, ||, ! Logical conjunctions and, or as well as negation 

i++, ++i, i--, --i Pre- and post-increment as well as -decrement 

b+=x Short form for b=b+x 

33.6 Functions 

Functions can either return one variable or none. If a value is returned, the type 
of the function value is placed before the function name, otherwise void is used. 
Following the function name is a list of arguments in brackets. Arguments of 
simple types like double and int are handled by call by value, meaning they are 
copied into a local variable. The corresponding calling variable in the main program 
remains unchanged. Arrays are not allowed as a return value of a function and are 
therefore passed to functions as arguments by call by reference and are changed as 
global variables by the subroutine. In the program shown on the left in Fig. 33.3,  the  
array x is passed to the function mod_vector and used there under the name vec. 
After the function has run, the values of the array x are changed. The use of the 
asterisk in the declaration of the function’s ar gument is important here.

1 // static_array.cc 
2 #include <iostream> 
3 using namespace std; 
4 void mod_vector(double* vec){ 
5 vec[0] = 2.0; 
6 vec[1] = 1.0; 
7 } 
8 int main(){ 
9 const int n  =  2;  

10 double x[n]; 
11 x[0] = 1.0; 
12 x[1] = 2.0; 
13 mod_vector(x); 
14 cout << "x[0] = " << x[0]; 
15 cout << "\n"; 
16 cout << "x[1] = " << x[1]; 
17 cout << "\n"; 
18 } 

1 // functions.cc 
2 #include <iostream> 
3 using namespace std; 
4 void fun_1(double z){ 
5 z = z+1.0; 
6 } 
7 void fun_2(double* z){ 
8 *z  =  *z+1.0; 
9 } 

10 int main(){ 
11 double x = 1.0; 
12 fun_1(x); 
13 cout << "x = " << x << "\n"; 
14 fun_2(&x); 
15 cout << "x = " << x << "\n"; 
16 } 
17 // 
18 //

Fig. 33.3 Passing of arrays as well as simple variables and pointers to functions



33.8 Dynamic Arrays 337

33.7 Pointers 

A pointer is a variable that contains the address of a section in the computer’s 
memory. The pointer allows for reading or changing the content of the correspond-
ing memory section. The size of the section depends on whether a floating point 
number or integer machine number is to be stored there. If ptr is a pointer, then 
the value of the variable that is found at the address contained in ptr is given by 
the ordinary variable *ptr. Conversely, for an ordinary variable var, &var defines a 
pointer that contains the address of the corresponding memory location. A pointer is 
declared, for example, using double* ptr. When passing the address of a variable, 
i.e. the corresponding pointer, to a function, then this variable is treated by call by 
reference, so that the content of the variable is manipulated with global effects. The 
above-described passing of arrays to functions follows this principle. In the program 
shown on the right in Fig. 33.3, the function fun_1 does not change the value of the 
variable x of the main program, while the function fun_2 increases its value. A 
pointer defined in a function can be used as the return value of the function. In 
this case, the function or its value must be declared using double*. The passing of 
variables to functions via pointers avoids, for example, the copying of lar ge data.

33.8 Dynamic Arrays 

The above-described use of arrays reaches its limits when the dimension of the 
arrays is only determined during the course of the program run. The vector 
class provides tools for declaring vectors with entries of certain types and their 
manipulation. The length of such vectors can then be changed arbitrarily. To be 
able to use vectors with floating-point number entries concisely in programs, a new 
variable type should be defined, such as the type doubleVec :
typedef typename std::vector<double> doubleVec; 

In a corresponding variable declaration, the length of the vector and entries can 
then optionally be specified. By 

doubleVec x(5,1.); 

a vector x of length 5 with floating-point number entries, which are initially set to 
one, is defined. The length and the entries can be changed with the methods shown 
in Table 33.4. Figure 33.4 shows as an example of application the input and output 
of variable length vectors. 

Table 33.4 Methods for 
manipulating a variable of a 
vector type 

x.size() Returns the length of the vector x 
x.resize(n) Changes the length of a vector 

x.push_back(val) Appends the entry val to a v ector
x.pop_back() Deletes the last element of a vector
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1 // dynamic_vectors.cc 
2 #include <iostream> 
3 #include <vector> 
4 typedef typename std::vector<double> doubleVec; 
5 doubleVec scan_vector(doubleVec x){ 
6 for (int i=0; i<x.size(); ++i){ 
7 std::cout << "x[" << i << "] = "; 
8 std::cin >> x[i]; 
9 } 

10 std::cout << "\n"; 
11 return(x); 
12 } 
13 void print_vector(doubleVec x){ 
14 for (int i=0; i<x.size(); ++i){ 
15 std::cout << "x[" << i << "] = " << x[i] << "\n"; 
16 } 
17 std::cout << "\n"; 
18 } 
19 int main(){ 
20 int dim  =  5;  
21 doubleVec y(dim,1.); 
22 print_vector(y); 
23 std::cout << "dim = \n"; 
24 std::cin >> dim; 
25 y.resize(dim); 
26 y = scan_vector(y); 
27 print_vector(y); 
28 }

Fig. 33.4 Input and output of vectors of arbitrary length 

33.9 Working with Matrices 

A  matrixA ∈ R
m×n

. can be identified with a vector ̂A ∈ R
mn

.by writing the columns 
of A one below the other into a vector. We have, when numbering the entries with 
the indices i = 0, 1, . . . , m − 1. and j = 0, 1, . . . , n − 1., that 

. Aij = ̂Ai+jm.

With this identification, matrices in C++ can be treated like vectors. Occasionally, 
it is preferable to treat matrices as two-dimensional arrays. If the size is known in 
advance, they can be used like simple variables. The passage to functions is then 
done by call by reference, as shown in Fig. 33.5. 

33.10 Time Measurement, Saving and Packages 

The time.h library provides the variable type clock_t, the command clock(), 
and the constant CLOCKS_PER_SEC for performing runtime measurements. Their 
use is illustrated in Fig. 33.6.
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1 // matrix.cc 
2 #include <iostream> 
3 const int m  =  3;  
4 const int n  =  2;  
5 void mod_matrix(double mat[m][n]){ 
6 mat[0][0] = 7.0; 
7 mat[2][1] = 8.0; 
8 } 
9 int main(){ 

10 double A[m][n] = {{1.,2.},{3.,4.},{5.,6.}}; 
11 mod_matrix(A); 
12 std::cout << "A[0][0] = " << A[0][0] << "\n"; 
13 std::cout << "A[2][1] = " << A[2][1] << "\n";
14 }

Fig. 33.5 Use of two-dimensional arrays 

1 // runtime.cc 
2 #include <iostream> 
3 #include <time.h> 
4 int main(){ 
5 double diff, dt, x = 0.33; 
6 clock_t t1, t2; 
7 t1 = clock(); 
8 for (int i=0; i<100000; i++){ 
9 x*x; 

10 } 
11 t2 = clock(); 
12 diff = double(t2-t1); 
13 dt = diff/CLOCKS_PER_SEC; 
14 std::cout << "runtime = "; 
15 std::cout << dt << "\n"; 
16 } 

1 // save_data.cc 
2 #include <fstream> 
3 int main(){ 
4 std::fstream f; 
5 double x[3] = {0.,1.,3.}; 
6 f.open("var.dat", 
7 std::ios::out); 
8 if (f.good()){ 
9 for (int i=0; i<3; i++){ 
10 f << x[i] << "\n"; 
11 } 
12 } 
13 f.close(); 
14 } 
15 // 
16 // 

Fig. 33.6 Runtime measurement and data storage 

To save data in files, methods from the fstream class can be used. With the 
variable type fstream and the open method, a pointer to a file can be defined, 
into which the redirection operator << is then written. Once the writing is finished, 
the file must be closed with close. The example program shown on t he right in
Fig. 33.6 stores a vector in the file var.dat. This can be read by MATLAB with the 
command load var.dat and assigns the values of the vector to the variable var.

The packages BLAS and LAPACK provide implementations of numerical methods, 
for example for solving systems of linear equations and eigenvalue problems. 
The package Eigen contains, for example, methods for efficiently solving sparse 
systems of linear equations.



Chapter 34 
Introduction to MATLAB 

34.1 Structure 

MATLAB stands for Matrix Laboratory and is a commercial software package, 
which provides implementations of a multitude of numerical methods and allows the 
creation of your own programs. It is an interpreter language, meaning programs are 
sequences of commands that are executed without compilation. The user interface 
essentially consists of the command window, in which commands are entered, and 
an editor, in which programs can be created. These are stored in the format prog.m, 
and can then be started in a command line or from other programs using the 
command prog. A command is terminated with a semicolon. If this is not done, 
the result of the operation is displayed. Variables are by default defined as type 
double, but they can easily be used like variables of type integer, for example when 
indexing arrays. As a rule, variables are treated by MATLAB as matrices. 

34.2 Lists and Arrays 

Central objects in MATLAB are matrices or arrays and lists. These are defined using 
square brackets. Entries of a row are separated by commas and different rows by 
semicolons. Access to the entries of an array starts with index 1. Submatrices like 
AIJ = (aij )i∈I,j∈J . can be extracted via index lists; boolean lists can also be used 
instead of index lists. Table 34.1 shows some important operations. 
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Table 34.1 Creation of lists and arrays 

[a,b,...;x,y,...] Definition of an array (commas optional) 

[a,b,...],[x;y;...] Definition of a row or column vector 

A(i,j), I(j) Access to the entries of an array 

a:b, a:step:b List from a to b with step size 1 or st ep
A(i,:), A(:,j) i-th row and j -th column of A 
A(I,J) Submatrix defined by lists I and J
ones(n,m) Array with entries 1 

zeros(n,m) Array with entries 0 

accumarray(I,X) Construction of an array by summation 

Table 34.2 Elementary matrix operations 

A’ Transposed matrix 

A+B, A-B, A*B Addition, subtraction and product of matrices 

inv(A), det(A) Inverse and determinant of a matrix 

x  =  A  \.b Solution of the linear system Ax = b. 

eye(n) Identity matrix of dimension n 
A.*B, A./B component-wise multiplication and division 

diag(A) Extraction of the diagonal elements 

[L,U] = lu(A) LU decomposition of a matrix

L = chol(A) Cholesky decomposition of a matrix 

[Q,R] = qr(A) QR decomposition of a matrix

[V,D] = eig(A) Approximation of eigenvectors and eigenvalues 

34.3 Matrix Operations 

The basic matrix operations are defined in MATLAB and can be used in a 
canonical way, whereby the well-posedness of the operation should be ensured. 
Matrix factorisations and approximations of eigenvectors and eigenvalues are also 
available. Some standard routines are listed in Table 34.2. 

34.4 Manipulation of Arrays 

Various set-theoretic operations and rearrangements of arrays are available in 
routines. These usually allow further arguments and output values, with which 
the execution can be specified such as the formation of the row or column-wise 
maximum. Table 34.3 shows some useful commands.



34.6 Loops and Control Statements 343

Table 34.3 Manipulation of arrays 

A(:) Rearrangement of an array into a column vector 

reshape(A,m,n) Rearrangement of an array as an m × n. array 

repmat(A,m,n) Repeated arrangement of an array 

unique(A) Extraction of the elements of an array 

setdiff(A,B) Complement of A and B
sort(A) Sorting of the entries of an array 

sum(A,1), sum(A,2) Column and row-wise summation 

max(A), min(A) Column-wise extreme values of an array 

size(A), length(I) Dimensions of an array and length of a list 

Table 34.4 Elementary functions 

sqrt(x), xˆy Square root and powers 

exp(x), ln(x) Exponential function and logarithm 

sin(x), cos(x), pi Trigonometric functions and constant π . 

norm(x,p) p-norm of a vector 

34.5 Elementary Functions 

Numerical realisations of some functions are available under their respective names. 
They can be applied to arrays, which usually realises the component-wise execution. 
In exceptions like Aˆn, the component-wise execution is generated by A.ˆn.  A  brief  
overview can be found in Table 34.4. 

34.6 Loops and Control Statements 

Loops can be realised over lists or control statements in an obvious way. The 
comparison of variables can be applied to arrays. Figure 34.1 shows the structure 
of the most important case distinctions and Table 34.5 shows some important 
commands. 

if (condA) statementA elseif (condB) statementB 
else statementC end 

while (cond) statement end 
for i = I statement 

Fig. 34.1 Case distinction, repetition and enumeration in MATLAB
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Table 34.5 Logical 
operations 

a==b, a˜=b Logical test for equality or inequality 

a<b, a<=b Logical comparison of two numbers 

E& &F, E||F Logical and and or 

tic ... toc Measurement of CPU time 

Table 34.6 Displaying of objects 

disp(A) Display of the variable A 
plot(X,Y,’-*’) Polygonal chain through points (X(k), Y (k)). in R2 . 

hold on, hold off Display of multiple objects in one graphic 

mesh(X,Y,Z) Display of a two-dimensional graph 

meshgrid Generation of a grid 

axis([x1,x2,...]) Limitation of the displayed region 

xlabel, ylabel Labelling of the axes 

legend Insertion of a legend 

figure(k) Selection of a graphic window 

subplot(n,m,j) Display of multiple plots in one window 

quiver, quiver3 Visualisation of vector fields 

trisurf Graph of a function on a triangular grid 

tetramesh Display of a decomposition into tetrahedra 

34.7 Text and Graphic Output 

If a program is started via a command line, intermediate results can be output in the 
command window. Functions or other objects can be displayed in graphic windows 
called figures. A selection of corresponding MATLAB commands can be found in 
Table 34.6. 

34.8 Creating New Functions 

New functions with multiple inputs and outputs can be defined using the framework 
shown in Fig. 34.2. The concluding end is optional. Functions should be saved as a 
file with the name of the function, for example new_function.m. A file can contain 
multiple function definitions, but only the first can be called from outside via the file 
name. For this one has to be in the directory of the file or the path must have been 
set up as a search path.

1 function [y1,y2,..] = new_function(x1,x2,..) 
2 .. 
3 end 

Fig. 34.2 Framework for a newly created function
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Table 34.7 Various commands 

whos, clear Display and deletion of all variables 

clc, clf Clearing of the command or graphic window 

addpath Addition of a search path for functions 

save, load Loading and saving of variables 

Ctrl-C Termination of a program 

fopen Opening of a file 

printf Formatted output 

strcat Concatenation of strings 

34.9 Various Commands 

In addition to some Unix commands such as cd and ls, various commands for 
managing the used files and directories as well as variables are available, which are 
shown in Table 34.7. 

34.10 Sparse Matrices 

For matrices with many vanishing entries, the effort of solving associated linear 
systems can be reduced, provided the matrices are defined using the matrix type 
sparse. For index lists I ⊂ {1, 2, . . . , m}. and J ⊂ {1, 2, . . . , n}. and a vector X of 
the same length, a matrix A ∈ R

m×n
. is defined by 

. aij =
∑

k : I (k)=i,J (k)=j

X(k),

that is, for multiple occurring index pairs, the associated entries are summed. Access 
to individual entries of a sparse matrix is generally inefficient. Some important 
commands are listed in Table 34.8. 

34.11 Examples 

In Fig. 34.3, the input of various commands in the command window of MATLAB 

is shown. The calculation of the determinant of a matrix according to the Laplace 
expansion theorem leads to a recursion, the MATLAB implementation of which is 

Table 34.8 Generation of 
sparse matrices 

sparse(I,J,X,m,n) Composition of a sparse matrix 

speye(n) Identity matrix as a sparse matrix
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>> A = [2,1;1,2]; b = [1;1]; 
>> x = A\b 

x  =  

0.3333 
0.3333 

>> x' 

ans = 

0.3333 0.3333 

>> 

>>  x  =  [pi/2,0,1]; 
>> sin(x) 

ans = 

1.0000 0 0.8415 

>> sqrt(-1) 

ans = 

0.0000 + 1.0000i 

>>
>>

Fig. 34.3 Execution of commands in the command window 

1 function val = laplace(A) 
2 n  =  size(A,1); 
3 val  =  0;  
4 if n  ==  1  
5 val = A(1,1); 
6 else 
7 for j = 1:n 
8 I = 2:n; 
9 J = [1:j-1,j+1:n]; 

10 val = val+(-1)ˆ(1+j)... 
11 *A(1,j)... 
12 *laplace(A(I,J)); 
13 end 
14 end 

1 function x = bisect(a,b) 
2 x  =  a;  z  =  b;  
3 tol = 1e-4; 
4 while z-x > tol 
5 c = (x+z)/2; 
6 if f(x)*f(c)<0 
7 z  =  c;  
8 else 
9 x  =  c;  
10 end 
11 end 
12 

13 function y = f(x)
14 y = xˆ3+cos((pi/2)*x);

Fig. 34.4 Calculation of the determinant according to Laplace (left) and implementation of the 
bisection method (right) 

shown in Fig. 34.4. An implementation of the bisection method and its application 
to a function f (x). is also shown in Fig. 34.4. 

The graphical representation of various functions in a graphics window is 
illustrated by the program several_plots.m shown in F ig. 34.5. The function 
plot_bubble.m shown next to it evaluates a function f (x). defined on R2

. and 
displays it graphically. The graphics generated by the functions are shown in 
Fig. 34.6. 

34.12 Free Alternative 

Octave is a freely available software package, which is largely compatible with 
MATLAB. However, some solution routines for ordinary differential equations are 
not available in Octave.
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1 function several_plots 
2 dx = .1; 
3 X = 0:dx:pi; 
4 Y1 = sin(X); plot(X,Y1,'-r'); 
5 hold on; 
6 Y2 = cos(X); plot(X,Y2,':k'); 
7 hold off; 
8 legend('sin','cos'); 
9 disp('press key'); pause; clf 

10 Z1 = exp(X); plot(X,Z1,'-+'); 
11 hold on; 
12 Z2 = log(X); plot(X,Z2,'-*'); 
13 hold off; 
14 legend('exp','log'); 

1 function plot_bubble 
2 dx = .1; 
3 dy = .1; 
4 [X,Y] = ... 
5 meshgrid(-2:dx:2,-2:dy:2); 
6 W = f([X(:),Y(:)]); 
7 Z  =  reshape(W,size(X)); 
8 mesh(X,Y,Z); 
9 

10 function y = f(x) 
11 y  =  zeros(size(x,1),1); 
12 r  =  sum(x.ˆ2,2).ˆ(1/2); 
13 I = r<1; 
14 y(I) = exp(-1./(1-r(I).ˆ2));

Fig. 34.5 Representation of one-dimensional functions (left) and a function defined on R2 . (right)
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Chapter 35 
Introduction to Python 

35.1 Structure 

The programming language Python is an interpreter language that allows both the 
interactive input of commands in a console as well as the execution of programs or 
scripts, which are saved as a sequence of commands in a file. Python is well-known 
for its good readability of programs, the implementation in common operating 
systems and the availability of extensive libraries and modules. Variables in Python 
do not need to be declared and can be used directly. It is important to maintain 
block structures by indenting commands and marking their beginning with a colon. 
In Fig. 35.1 two simple Python programs are shown, which are saved as text files 
with the specified filenames. They are for example started with the command 

$ python3 comp_square.py 

from a console. 
Typically, each instruction is written into a separate line. A longer command can 

be continued into further lines with a backslash. To write multiple commands in one 
line, they are separated with a semicolon. Programs usually start with the inclusion 
of modules and the definition of functions. 
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1 # comp_square.py 
2 def square(x): 
3 x_sq = x**2 
4 return x_sq 
5 x = 3.8 
6 y = square(x) 
7 print(y) 

1 # simple_loop.py 
2 import math 
3 n  =  10  
4 delta_x = math.pi/n 
5 for i in range(n): 
6 x = math.sin(i*delta_x) 
7 print(i,x)

Fig. 35.1 Elementary programs in Python; indentations are essential components for marking 
program blocks 

35.2 Elementary Commands 

The basic arithmetic operations and the input and output of variables are directly 
available in Python. The assignment of values is done with an equals sign. The 
command print displays variables and text flexibly and always ends automatically 
with a line break. Single-line comments are marked with a hash, multi-line 
comments with triple quotation marks. Further mathematical functions are provided 
by the modules math and numpy, which are included via the command import.  To  
avoid cumbersome commands, a library can be renamed when included using as. 
The output of floating point numbers can be formatted, for example by:

print("x = {:>7.4f}".format(x)) 

Here, space for seven characters is reserved right-aligned and four decimal places of 
the variable x are displayed. Table 35.1 provides an overview of some commands. 

Table 35.1 Input and output functions, comments, importing of modules as well as mathematical 
functions 

print, input Output and input of text and variables 

\.n Generation of a line break 

"""...""", # Multi-line and single-line comments 

**, % Power and remainder in division 

a+=b Short form for a=a+b 
import [as] Inclusion of libraries 

e, pi Euler’s number and π . 

cos, sin, tan Trigonometric functions 

exp, log, log10 Exponential function and logarithms 

pow, sqrt Power and square root 

floor, ceil, abs Rounding to whole numbers and absolute function
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Table 35.2 Immediately 
available variable types in 
Python 

int Integer machine numbers 

float Double precision floating point numbers 

bool Boolean variables with values false and true
str Strings 

list Lists 

if (condA): statementA elif (condB): statementB else: statementC 
while (cond): statement 
for i in <enumerating object>: statement 

Fig. 35.2 Control structures in Python: conditional, repetition and enumeration 

35.3 Types 

Python provides common data types for working with variables, see Table 35.2.  The  
conversion of a variable or object is done, for example, using i = int(str).

Although Python automatically performs type conversions, so for example 1/2 
yields the result 0.5, Python relies on various C++ libraries where this is usually 
not the case. Floating point numbers should therefore be specified with a point for 
safety, such as 1./2. or 1.0/2.0.

35.4 Control Statements 

Conditional statements and loops in Python have a special structure. The 
blocks to be executed are introduced with a colon. For for-loops, the 
specification of an enumerating object is required, over which the iteration 
is performed. For this, the command range(start,stop,step) is often 
used, which generates a sequence of numbers. The specifications of the 
start value and the step size are optional, if they are omitted, then 0 
and 1 are used. The stop value is not included in the list, for example 

range(n) ≡. (0, 1, . . . , n − 1). 

is an enumeration of the integers from 0 to n − 1.. The syntactic structures of the 
most important control statements are shown in Fig. 35.2.
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35.5 Logical Expressions 

To formulate conditions in conditional statements and repetitions, logical expres-
sions are needed, which can be constructed using the comparisons and conjunctions 
shown in Table 35.3. 

35.6 Functions 

Functions begin with the command def and can have no or several arguments. They 
usually return one or more values with the command return. This command can 
be omitted if a variable to be changed is passed by call by reference and directly 
modified by the function. Lists are always passed in this way, so the explicit return 
can and should be omitted. If a function does not contain a return command, the 
value None is automatically returned. The exemplary use of functions is shown i n
Fig. 35.3. 

35.7 Lists 

Python allows the direct definition of lists or vectors without special commands 
for declaration or changing their length. The elements of an array are separated by 
commas and enclosed in square brackets: 

x = [1.0,2.3,0.7] 

Access to one or more elements of a list is also done using square brackets, the 
indexing of lists starts with index zero. The formal addition of two lists using x+y 
results in their combination into a larger list. The most important list operations are

Table 35.3 Logical operations for formulating conditions 

==, !=, >, >=, <, <= Logical comparison of machine numbers 

in Logical query for containment 

and, or, not Logical conjunctions and, or and negation 

1 # example_function.py 
2 def two_values(x,y): 
3 u  =  x*y; v = x+y 
4 return u, v 
5 a = 2.0; b = 1.0 
6 [c,d] = two_values(a,b) 
7 print(c,d) 

1 # function_list.py 
2 def several_squares(v): 
3 for i in range(len(v)): 
4 v[i] = v[i]**2 
5 x = [1,2,3,4]; 
6 several_squares(x) 
7 print(x)

Fig. 35.3 Definition and call of functions with and without explicit return of values
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Table 35.4 Methods for editing lists 

[] Empty list 

[0]*n Create a list with n zero e ntries
x[i], x[-m], x[i:s:j] Access to individual or multiple elements 

len(x) Returns the length of the list x 
x.append(a) Appends an element at the end of the list 

x.sort() Sorts a list 

max(x), min(x) Maximum and minimum of a list 

del x[i:j] Deletes a range of a list 

1 # read_vector.py 
2 def scan_vector(x,n): 
3 for i in range(n): 
4 str = input("x[i] = ") 
5 x.append(float(str)) 
6 x  =  []  
7 str = input("dim = ") 
8 n  =  int(str) 
9 scan_vector(x,n) 

10 print(x) 

1 # numpy_matrices.py 
2 import numpy as np 
3 m  =  5;  n  =  3  
4 A = np.zeros((m,n)) 
5 x = np.ones(n) 
6 for i in range(m): 
7 for j in range(n): 
8 A[i][j] = i*n+j 
9 y = np.matmul(A,x)

10 print(A,x,y)

Fig. 35.4 Reading a vector and matrix-vector multiplication 

shown in Table 35.4. The program shown in Fig. 35.4 uses the list commands for 
interactive input of a vector. 

For working with matrices, the numpy module with the multidimensional fields 
and matrix operations defined therein is recommended, a program example is shown 
in Fig. 35.4. 

35.8 Timing, Saving and Plotting 

To determine the runtime of a program, the time module provides the function 
t = time.time(), which returns an absolute time in seconds. To access a file, 
the command open(’file.txt’,’r’) is used when data is to be read. If a file 
is to be created or overwritten, the argument ’w’ is to be used, when appending 
data the argument ’a’. The addition of the command with ... as serves for 
error handling and ensures the correct closing of the file. The matplotlib module 
provides routines for displaying graphs. Examples of the use of the commands and
modules can be found in Figs. 35.5 and 35.6. The module scipy contains methods 
for the numerical solution of differential equations.
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1 # runtime.py 
2 import time 
3 t1 = time.time() 
4 for i in range(10**6): 
5 x  =  i*i #  i**2 
6 t2 = time.time() 
7 print("runtime = ",t2-t1) 

1 # save_data.py 
2 x = [1.0,3.0,6.0] 
3 with open('var.dat','w') as f: 
4 for i in range(len(x)): 
5 f.write("{:>10.4f}\n".\ 
6 format(x[i])) 
7 #

Fig. 35.5 Runtime measurement and data saving in Python 

1 # plot_function.py 
2 import math 
3 import matplotlib.pyplot as plt 
4 n = 100; x = [0]*n; 
5 y = [0]*n; z = [0]*n; 
6 for i in range(n): 
7 x[i] = i*2.0*math.pi/n 
8 y[i] = math.sin(x[i]) 
9 z[i] = math.cos(x[i]) 

10 plt.plot(x,y,"-b",label="sin") 
11 plt.plot(x,z,":k",label="cos") 
12 plt.legend(loc="lower left") 
13 plt.show() 

Fig. 35.6 Plotting of functions in Python



Chapter 36 
Example Programs in MATLAB, C++ and  
Python 

36.1 LU Decomposition and Solving Triangular Systems

The calculation of the LU decomposition is pre-implemented in MATLAB and 
the following commands determine the solution of a system of linear equations. 
Alternatively, this can be done with the command x = A\beta .

>> A = [2,-1,0;-1,2,-1;0,-1,2]; b = [1;1;1]; 
>> [L,U] = lu(A); 
>> y = L\b; x = U\y;  

The MATLAB program lu_solution.m shown in Fig  . 36.1 calculates the LU 
decomposition of a given matrix using the Crout algorithm, which is based on the 
identities

. uik = aik −
i−1∑

j=1

�ij ujk, �ki = (
aki −

i−1∑

j=1

�kjuji

)
/uii

The given matrix A is overwritten with the entries of the factors L and U , which is 
possible due to the normalisation of L, i.e. the condition �ii = 1., i = 1, 2, . . . , n.. 
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1 function lu_solution
2 n = 3;
3 A = [2,-1,0;-1,2,-1;0,-1,2];
4 b = [1;1;1];
5 A = lu_crout(n,A);
6 y = solve_lower_normalized(n,A,b);
7 x = solve_upper(n,A,y);
8 disp(x);
9

10 function A = lu_crout(n,A)
11 for i = 1:n
12 for k = i:n
13 s = 0;
14 for j = 1:i-1
15 s = s+A(i,j)*A(j,k);
16 end
17 A(i,k) = A(i,k)-s;
18 end
19 for k = i+1:n
20 s = 0;
21 for j=1:i-1
22 s = s+A(k,j)*A(j,i);
23 end
24 A(k,i) = (A(k,i)-s)/A(i,i);
25 end
26 end
27

28 function y = solve_lower_normalized(n,L,b)
29 y = zeros(n,1);
30 for j = 1:n
31 sum = 0;
32 for k = 1:j-1
33 sum = sum+L(j,k)*y(k);
34 end
35 y(j) = b(j)-sum;
36 end
37

38 function x = solve_upper(n,U,y)
39 x = zeros(n,1);
40 for j = n:-1:1
41 sum = 0;
42 for k = j+1:n
43 sum = sum+U(j,k)*x(k);
44 end
45 x(j) = (y(j)-sum)/U(j,j);
46 end

Fig. 36.1 Solution of a system of linear equations using an explicitly calculated LU decomposi-
tion in MATLAB (program available a t https://doi.org/10.1007/978-3-662-70890-3_36)
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With the help of the decomposition, the system of equations Ax = b. is then solved 
by explicitly solving two systems of equations with triangular matrices, i.e. 

. Ax = b ⇐⇒ Ly = b, Ux = y.

The forward substitution used in this process takes advantage of the fact that the 
matrix L is normalised. In the subroutines, only the upper triangular part or the 
strict lower triangular part of the passed matrix is used. 

An implementation in the programming language C++ is shown in F ig. 36.2. 
It is particularly important to note that the indexing of vectors starts at zero. The 
compilation and execution of the program is done with the commands: 

$ g++ lu_solution.c -o lu_solution.out 
$ ./lu_solution.out 

The analogous implementation of the LU method in the programming language 
Python is shown in F ig. 36.3. The program is started using: 

$ python3 lu_solution.py 

Here too, the indexing of lists starts with index 0. 

36.2 Polynomial Interpolation and Neville’s Scheme 

Neville’s scheme allows the evaluation of an interpolation polynomial p defined by 
nodes x0, x1, . . . , xn . and values y0, y1, . . . , yn . at a point z via the formula

. pi,j (z) = (z − xi)pi+1,j−1(z) − (z − xi+j )pi,j−1(z)

xi+j − xi

for j = 1, 2, . . . , n. and i = 0, 1, . . . , n − j . with the initialisation pi,0(z) = yi . 

for i = 0, 1, . . . , n.. Then p(z) = p0,n(z). holds. In Fig. 36.4, the MATLAB program 
neville_scheme.m is shown, which calculates the values of the interpolation poly-
nomial at the points zk ., k = 0, 1, . . . , N ., using the Neville scheme and subsequently 
approximates the interpolation polynomial graphically by a polygonal line through 
the points (zk, p(zk))., k = 0, 1, . . . , N .. The calculation is done recursively with the 
subroutine neville_recursive and also by successive evaluation of the above 
formula in the subroutine neville_forward. When accessing arrays, the indices 
are always increased by the value 1, as the index 0 is not allowed in MATLAB. The  
final result is thus given by the entry P(1,n+1). Instead of using the array P, the  
local variable y could also be overwritten in each step of the loop over variable j to 
sav e memory.

In MATLAB, various interpolation methods are available. The function values 
of a cubic spline interpolant can for example be calculated with the following 
commands:
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1 // lu_solution.cc
2 #include <iostream>
3 const int n = 3;
4 void lu_crout(double A[n][n]){
5 double s;
6 for (int i=0; i<n; i++){
7 for (int k=i; k<n; k++){
8 s = 0.0;
9 for (int j=0; j<=i-1; j++){s = s+A[i][j]*A[j][k];}

10 A[i][k] = A[i][k]-s;
11 }
12 for (int k=i+1; k<n; k++){
13 s = 0.0;
14 for (int j=0;j<=i-1;j++){s = s+A[k][j]*A[j][i];}
15 A[k][i] = (A[k][i]-s)/A[i][i];
16 }
17 }
18 }
19 void solve_lower_normalized(double L[n][n], double b[n],
20 double y[n]){
21 double s;
22 for (int j=0; j<n; j++){
23 s = 0.0;
24 for (int k=0; k<=j-1; k++){s = s+L[j][k]*y[k];}
25 y[j] = b[j]-s;
26 }
27 }
28 void solve_upper(double U[n][n], double y[n], double x[n]){
29 double s;
30 for (int j=n-1; j>=0; j--){
31 s = 0.0;
32 for (int k=j+1; k<n; k++){s = s+U[j][k]*x[k];}
33 x[j] = (y[j]-s)/U[j][j];
34 }
35 }
36 int main(){
37 double x[n], y[n];
38 double A[n][n] = {{2.,-1.,0.},{-1.,2.,-1.},{0.,-1.,2.}};
39 double b[n] = {1.,1.,1.};
40 lu_crout(A);
41 solve_lower_normalized(A,b,y);
42 solve_upper(A,y,x);
43 for (int i=0; i<n; i++){
44 std::cout << "x[" << i << "] = " << x[i] << "\n";
45 }
46 }

Fig. 36.2 Calculation of the LU decomposition and subsequent solving of a system of equations 
in C++ (program available a t https://doi.org/10.1007/978-3-662-70890-3_36)
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1 # lu_solution.py
2 import numpy as np
3 def lu_crout(A,n):
4 for i in range(n):
5 for k in range(i,n):
6 s = 0.0
7 for j in range(i):
8 s = s+A[i][j]*A[j][k]
9 A[i][k] = A[i][k]-s

10 for k in range(i+1,n):
11 s = 0.0
12 for j in range(0,i):
13 s = s+A[k][j]*A[j][i]
14 A[k][i] = (A[k][i]-s)/A[i][i]
15 def solve_lower_normalized(L,b,y):
16 for j in range(n):
17 s = 0.0
18 for k in range(0,j):
19 s = s+L[j][k]*y[k]
20 y[j] = b[j]-s
21 def solve_upper(U,y,x):
22 for j in range(n-1,-1,-1):
23 s = 0.0
24 for k in range(j+1,n):
25 s = s+U[j][k]*x[k]
26 x[j] = (y[j]-s)/U[j][j]
27 """ MAIN PROG """
28 n = 3;
29 A = np.array([[2.0,-1.0,0.0],[-1.0,2.0,-1.0],[0.0,-1.0,2.0]])
30 b = np.ones(n); y = np.zeros(n); x = np.zeros(n)
31 lu_crout(A,n)
32 solve_lower_normalized(A,b,y)
33 solve_upper(A,y,x);
34 print(x)

Fig. 36.3 Calculation of the LU decomposition and subsequent solving of a system of equations 
in Python (program available a t https://doi.org/10.1007/978-3-662-70890-3_36) 

>> x = [-1,-1/3,1/3,1]; y = [-1,1,-1,1]; 
>> N = 100; z = -1+2*[0:N]/N; 
>> w =  interp1(x,y,z,‚spline‚); 
>> plot(z,w); 

Here, the interpolation pairs (xj , yj )j=0,...,n . are used to calculate an interpolating 
cubic spline, this is evaluated at the points (zk)k=0,...,N . and finally graphically 
displayed. 

A C++ implementation analogous to the program neville_scheme.m is shown 
in Fig. 36.5. Its compilation and execution is similar to the above C++ program. The 
program uses dynamic lists for the nodes and values as well as evaluation points and 
associated function values. A Python implementation is shown in Fig. 36.6.
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1 function neville_scheme
2 n = 3;
3 x = [-1,-1/3,1/3,1];
4 y = [-1,1,-1,1];
5 N = 20; z = zeros(N+1,1);
6 w_rec = zeros(N+1,1);
7 w_for = zeros(N+1,1);
8 for k = 0:N
9 z(k+1) = -1+2*k/N;

10 w_rec(k+1) = neville_recursive(z(k+1),x,y,0,n);
11 w_for(k+1) = neville_forward(z(k+1),x,y,n);
12 end
13 plot(z,w_rec,'b-o'); hold on;
14 plot(z,w_for,'r-x'); hold off;
15

16 function val = neville_recursive(z,x,y,i,j)
17 if j == 0
18 val = y(i+1);
19 else
20 val = ((z-x(i+1))*neville_recursive(z,x,y,i+1,j-1)...
21 -(z-x(i+j+1))*neville_recursive(z,x,y,i,j-1))/...
22 (x(i+j+1)-x(i+1));
23 end
24

25 function val = neville_forward(z,x,y,n)
26 P = zeros(n+1,n+1);
27 for i = 0:n
28 P(i+1,1) = y(i+1);
29 end
30 for j = 1:n
31 for i = 0:n-j
32 P(i+1,j+1) = ((z-x(i+1))*P(i+2,j)...
33 -(z-x(i+j+1))*P(i+1,j))/(x(i+j+1)-x(i+1));
34 end
35 end
36 val = P(1,n+1);

Fig. 36.4 Recursive and direct implementation of the Neville scheme for evaluating the Lagrange 
interpolation polynomial through the interpolation pairs (xi , yi )., i = 0, 1, . . . , n., in MATLAB 

(Program available at https://doi.org/10.1007/978-3-662-70890-3_36) 

36.3 Numerical Solution of Ordinary Differential Equations 

The implicit Euler method approximates the solution of an initial value problem 
y′ = f (t, y)., y(0) = y0 ., by the recursively defined sequence 

. yk+1 = yk + τf (tk+1, yk+1) = yk + τΦ(tk, yk, yk+1, τ ).

This generally requires the solution of a nonlinear system of equations at each time 
step, which under suitable conditions is approximated with the fixed point iteration 

.zi+1 = Ψ (zi) = yk + τΦ(tk, yk, zi, τ )
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1 // neville_scheme.cc
2 #include <iostream>
3 #include <vector>
4 typedef typename std::vector<double> doubleVec;
5 const int n = 3;
6 double neville_recursive(double z, doubleVec x, doubleVec y,
7 int i, int j){
8 if (j==0){
9 return y[i];

10 }
11 else{
12 return ((z-x[i])*neville_recursive(z,x,y,i+1,j-1)
13 -(z-x[i+j])*neville_recursive(z,x,y,i,j-1))/(x[i+j]-x[i]);
14 }
15 }
16 double neville_forward(double z, doubleVec x, doubleVec y){
17 double P[n+1][n+1];
18 for (int i=0; i<=n; i++){
19 P[i][0] = y[i];
20 }
21 for (int j=1; j<=n; j++){
22 for (int i=0; i<=n-j; i++){
23 P[i][j] = ((z-x[i])*P[i+1][j-1]-(z-x[i+j])*P[i][j-1])/
24 (x[i+j]-x[i]);
25 }
26 }
27 return P[0][n];
28 }
29 int main(){
30 int N = 20;
31 doubleVec x(n+1), y(n+1);
32 doubleVec z(N+1), w_rec(N+1), w_for(N+1);
33 x[0] =-1.0; x[1] =-1.0/3; x[2] = 1.0/3; x[3] = 1.0;
34 y[0] =-1.0; y[1] = 1.0; y[2] =-1.0; y[3] = 1.0;
35 for (int k=0; k<=N; k++){
36 z[k] = -1.0+2.0*(double)k/N;
37 w_rec[k] = neville_recursive(z[k],x,y,0,n);
38 w_for[k] = neville_forward(z[k],x,y);
39 std::cout << "w_rec = " << w_rec[k] << ", ";
40 std::cout << "w_for = " << w_for[k] << "\n";
41 }
42 }

Fig. 36.5 Recursive and direct implementation of the Neville scheme for evaluating an interpola-
tion polynomial at various points in C++ (Program available at https://doi.org/10.1007/978-3-662-
70890-3_36) 

or a Newton method for the equation 

. F(z) = z − yk − τΦ(tk, yk, z, τ ) = 0,

that is the iteration 

.zi+1 = zi − F(zi)/F
′(zi).
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1 # neville_scheme.py
2 import numpy as np
3 def neville_recursive(z,x,y,i,j):
4 if (j==0):
5 return y[i]
6 else:
7 return ((z-x[i])*neville_recursive(z,x,y,i+1,j-1) \
8 -(z-x[i+j])*neville_recursive(z,x,y,i,j-1)) \
9 /(x[i+j]-x[i])

10 def neville_forward(z,x,y,n):
11 P = np.zeros((n+1,n+1))
12 for i in range(n+1):
13 P[i][0] = y[i]
14 for j in range(1,n+1):
15 for i in range(n-j+1):
16 P[i][j] = ((z-x[i])*P[i+1][j-1]- \
17 (z-x[i+j])*P[i][j-1])/ \
18 (x[i+j]-x[i])
19 return P[0][n]
20 """ MAIN PROG """
21 n = 3; N = 20
22 x = np.array([-1,-1/3,1/3,1])
23 y = np.array([-1,1,-1,1])
24 z = np.zeros(N+1);
25 w_rec = np.zeros(N+1); w_for = np.zeros(N+1)
26 for k in range(N+1):
27 z[k] = -1+2*k/N;
28 w_rec[k] = neville_recursive(z[k],x,y,0,n);
29 w_for[k] = neville_forward(z[k],x,y,n);
30 print("w_rec = {:>7.4f}, w_for = {:>7.4f}" \
31 .format(w_rec[k],w_for[k]))

Fig. 36.6 Recursive and direct implementation of the Neville scheme for evaluating an interpo-
lation polynomial at various points in Python (Program available at https://doi.org/10.1007/978-3-
662-70890-3_36) 

As an initial value z0 ., the solution from the previous time step is used. Both 
approaches are implemented in the MATLAB program shown in Fig. 36.7. To take  
into account the indexing of arrays in MATLAB starting with 1, a routine inc was 
defined in the program, which increases a given number by the value 1. This allows 
the iteration rule to be very directly transferred from the theoretical algorithm.

Various methods for the numerical solution of differential equations are already 
pre-implemented in MATLAB routines, such as in the routine ode45, which returns 
a list of time points and associated approximations. The following lines show an 
example of the use of this routine. Other MATLAB routines for solving ordinary 
differential equations with different accuracy, effort and stability properties are the 
routines ode23, ode113, ode15s, ode23s, ode23t, ode23tb. 

>> T = 10; y_0 = 1; 
>> f = @(t,y)cos(2*t)*y^2; 
>> [t_list,y_list] = ode45(f,[0,T],y_0); 
>> plot(t_list,y_list)
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1 function implicit_euler
2 y_0 = 1; T = 10;
3 tau = 1/100; K = floor(T/tau);
4 y(inc(0)) = y_0;
5 for k = 0:K-1
6 t_k = k*tau;
7 y(inc(k+1)) = fixed_point_iteration(t_k,y(inc(k)),tau);
8 % y(inc(k+1)) = newton_iteration(t_k,y(inc(k)),tau);
9 end

10 plot(tau*(0:K),y);
11

12 function z = fixed_point_iteration(t,y_old,tau)
13 z = y_old; diff = 1; eps_stop = tau/10;
14 while diff > eps_stop
15 z_new = y_old+tau*Phi(t,y_old,z,tau);
16 diff = abs(z_new-z);
17 z = z_new;
18 end
19

20 function z = newton_iteration(t,y_old,tau)
21 z = y_old; diff = 1; eps_stop = tau/10;
22 while diff > eps_stop
23 F = z-y_old-tau*Phi(t,y_old,z,tau);
24 dF = 1-tau*dPhi_y(t,y_old,z,tau);
25 z_new = z-F/dF;
26 diff = abs(z_new-z);
27 z = z_new;
28 end
29

30 function val = Phi(t,y_old,y_new,tau)
31 val = f(t+tau,y_new);
32

33 function val = dPhi_y(t,y_old,y_new,tau)
34 val = df_y(t+tau,y_new);
35

36 function val = f(t,y)
37 val = cos(2*t)*yˆ2;
38

39 function val = df_y(t,y)
40 val = cos(2*t)*2*y;
41

42 function val = inc(k)
43 val = k+1;

Fig. 36.7 Two implementations of the implicit Euler method for the numerical solution of an 
ordinary differential equation in MATLAB; the solution of the nonlinear equation at each time step 
is done via a fixed point or Newton iteration (program available at https://doi.org/10.1007/978-3-
662-70890-3_36) 

An implementation in C++ of the implicit Euler method is shown in Fig. 36.8. A  
corresponding Python program can be found in Fig. 36.9.
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1 // implicit_euler.cc
2 #include <fstream>
3 #include <cmath>
4 #include <vector>
5 typedef typename std::vector<double> doubleVec;
6 double f(double t, double y){
7 return cos(2.0*t)*pow(y,2.0);
8 }
9 double Phi(double t, double y_old, double y_new, double tau){

10 return f(t+tau,y_new);
11 }
12 void save_solution(doubleVec y, int K){
13 std::fstream f;
14 f.open("sol.dat",std::ios::out);
15 if (f.good()){
16 for (int k=0; k<=K; k++){
17 f << y[k] << "\n";
18 }
19 }
20 f.close();
21 }
22 int main(){
23 double y_0 = 1.0, T = 10.0, tau = 1.0/100.0, t_k;
24 double z, z_new, diff, eps_stop = tau/10;
25 int k, K = floor(T/tau);
26 doubleVec y(K+1);
27 y[0] = y_0;
28 for (k=0; k<K; k++){
29 t_k = k*tau;
30 z = y[k];
31 diff = 1.0;
32 while (diff>eps_stop){
33 z_new = y[k]+tau*Phi(t_k,y[k],z,tau);
34 diff = fabs(z_new-z);
35 z = z_new;
36 }
37 y[k+1] = z;
38 }
39 save_solution(y,K);
40 }

Fig. 36.8 Implementation of the implicit Euler method in C++; the nonlinear equations in the 
time steps are solved with a fixed point iteration (program available at https://doi.org/10.1007/978-
3-662-70890-3_36)
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1 # implicit_euler.py
2 import numpy as np
3 import matplotlib.pyplot as plt
4 def f(t,y):
5 return np.cos(2*t)*y**2
6 def Phi(t,y_old,y_new,tau):
7 return f(t+tau,y_new)
8 def save_solution(y,K):
9 with open('sol.dat','w') as f:

10 for k in range(K):
11 f.write("{:>10.4f} \n".format(y[k]))
12 """ MAIN PROG """
13 y_0 = 1.0; T = 10.0; tau = 1.0/100
14 eps_stop = tau/10; K = int(np.floor(T/tau))
15 y = np.zeros(K+1); t_list = np.zeros(K+1)
16 y[0] = y_0; t_list[0] = 0
17 for k in range(K):
18 t_k = k*tau
19 z = y[k]
20 diff = 1
21 while (diff>eps_stop):
22 z_new = y[k]+tau*Phi(t_k,y[k],z,tau)
23 diff = abs(z_new-z)
24 z = z_new
25 y[k+1] = z; t_list[k+1] = t_k+tau
26 save_solution(y,K);
27 plt.plot(t_list,y)
28 plt.show()

Fig. 36.9 Implementation of the implicit Euler method in Python; the nonlinear equations in the 
time steps are solved with a fixed point iteration (program available at https://doi.org/10.1007/978-
3-662-70890-3_36)
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Advanced Topics 

Some important topics and concepts could not be included in this book. These 
are suitable as presentation topics for a seminar following a lecture on numerical 
methods. 

Numerical Linear Alg ebra

• Convergence of the QR method for eigenvalue problems
• SOR method for the iterative solution of linear systems
• Stability properties of Gaussian elimination
• Perturbation results for eigenvalues of symmetric matrices
• Lanczos method for eigenvalue determination
• Aspects of the practical implementation of the Simplex algorithm 

Numerical Analysis

• Lebesgue constant in numerical interpolation
• Barycentric Lagrange interpolation
• Polynomial approximation with respect to least squares
• GMRES method and Arnoldi process
• Euler–Maclaurin formula and Romberg quadrature
• Levenberg–Marquardt method
• Clenshaw–Curtis quadrature
• Chebyshev root finding method
• CAD methods 

Numerics of Ordinary Diff erential Equations

• Splitting methods and exponential integrators
• Collocation, Gaussian and Radau methods
• Analysis of extrapolation methods
• Discussion of special Runge-Kutta methods
• Dahlquist’s limit theorems 
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• Error constants in multistep methods
• Störmer–Verlet method for Hamiltonian systems
• Lagrange formulations and variational integrators
• Algebraic differential equations
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Chebyshev polynomial, 92 
Cholesky decomposition, 21 

Cholesky decomposition, incomplete, 151 
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Convergence order, 128 
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E 
Eigenvalue, 325 
Eigenvalue problem, 51 
Elements, 156 
Elimination method, 25 
Euclidean norm, 11 
Euler method, 182 
Euler method, partitioned, 236 
Exactness, 195 
Experimental convergence order, 124 
Explicit method, 182 

F 
Fast Fourier transform, 111 
Feasible set, 45 
Fill-in, 151 
Fixed point iteration, xx 
Floating point number, 81 
Flow, 234 
Fourier basis, 109 
Fourier synthesis, 110 
Fourier transform, 110 
Frobenius norm, 13 
Fundamental theorem, 328, 330 

G 
Gaussian normal equation, 33 
Gauss quadrature, 120, 162 
Gauss-Seidel method, 71 
Gershgorin circles, 51 
Givens rotation, 61 
Global convergence, 69, 127 
Gradient, 330 
Gradient flow, 221 
Gradient method, 133 
Grid, 155 
Gronwall’s lemma, continuous, 176 
Gronwall’s lemma, discrete, 185 

H 
Hat function, 97, 160 
Heat equation, 223 
Hermite interpolation, 94 
Heron’s method, xx 
Hessian matrix, 330 
Horner scheme, 91 
Householder transformation, 36 

I 
Image, 324 
Implicit method, 182 

Increment function, 182 
Index set, 46 
Initial condition, 167 
Initial value problem, 167 
Integral curve, 170 
Intermediate value theorem, 327 
Interpolant, 161, 227 
Interpolation polynomial, 88 
Interpolation task, 99 
Interpolation, trigonometric, 107 
Interval reduction, 132 
Inverse iteration, 58 
Irreducible, 72 
Iteration, xxiv 
Iterative method, 69 

J 
Jacobian matrix, 330 
Jacobi method, 63, 71 
Jordan normal form, 326 

K 
Kepler’s barrel rule, 118 
Kernel, 324 
Krylov space, 140 

L 
Lagrange interpolation, 87 
Lagrange polynomial, 87 
Lagrange representation, 328 
Landau notation, 8, 329 
Leapfrog method, 202 
Least squares problem, 33 
Linear program, 45 
Local convergence, 127 
L-stable, 221 
LU decomposition, 18 

M 
Machine number, 3, 81 
Machine precision, 82 
Mathematical operation, 3 
Mean value theorem, 328 
Mesh width, 156 
Method error, xxxii 
Method of least squares, 33 
Midpoint method, 183 
Midpoint rule, 117 
Minimisation problem, 127 
Model error, xxxii, 3
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Moore–Penrose inverse, 43 
Multi-body problem, 171, 233 
Multistep method, 201 

N 
Neville’s algorithm, 89, 357 
Newton basis, 91 
Newton-Cotes formula, 117 
Newton method, 130 
Newton’s law of cooling, 167 
Nodal basis, 160 
Nodes, 87, 156 
Norm, 11 
Normalised LU decomposition, 18 
Normalised triangular matrix, 17 
Not-a-number, 83 

O 
Operator norm, 12 
Order, 8 
Order of a differential equation, 169 
Order of convergence, 119, 186 
Ordinary differential equation, 167 
Orthogonal, 323 
Orthogonal matrix, 35 
Orthogonal polynomial, 121 
Overflow, 83 

P 
Partial degree, 157 
Peano’s theorem, 175 
Permutation matrix, 28 
Phase diagram, 170 
Picard-Lindelöf theorem, 174 
Pivot search, 28 
Polygonal chain method, 182 
Positive definite, 21 
Positive semidefinite, 21 
Power method, 55 
Preconditioning matrix, 148 
Predator-prey model, 168 
Predictor-corrector method, 206 
Procedure, 5 
Pseudoinverse, 43 

Q 
QR decomposition, 37 
QR method, 58 
Quadrature formula, 115, 158, 162 
Quadrature formula, composite, 118 

R 
Rank, 324 
Rayleigh quotient, 52 
Reducible, 72 
Regula-falsi method, 130 
Relative error, 5 
Relaxation method, 76 
Remainder term, 328 
Residual, 33, 139 
Richardson method, 70 
Rolle’s theorem, 328 
Root finding, 127 
Rounding, 3, 83 
Rounding error, xxxii 
Row equilibration, 148 
Row sum norm, 13 
Runge-Kutta method, 192 

S 
Scalar product, 323 
Secant method, 129 
Self-stabilizing, 128 
Separation of variables, 172 
Shooting method, 239 
Simplex, 156 
Simplex method, 49 
Simpson rule, 118 
Single precision, 82 
Single-step method, 182 
Singular value decomposition, 42 
Sparse, 147, 345 
Spectral norm, 13 
Spectral radius, 13, 69 
Spectrum, 325 
Spline, 97, 160 
Stability, 6, 84, 177 
Stability function, 219 
Standard form, 45 
Step size, 181 
Step size control, 230 
Stiff differential equation, 218 
Symplectic method, 236 

T 
Taylor’s formula, 328 
Tensor grid, 155 
Time steps, 181 
Total degree, 157 
Trapezoidal method, 193 
Trapezoidal rule, 117 
Triangular matrix, 17 
Triangulation, 156 
Two-body problem, 171



376 Index

U 
Unconditionally stable, 218 
Underflow, 83 
Uniform grid, 155 
Uniform triangulation, 156 
Unit root, 109 

V 
Values, 87 
Vandermonde matrix, 88 

Variables, 167 
Variation of constants, 172 

W 
Weight function, 120 

Z 
Zero-stability, 211
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