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Preface

Numerical mathematics is concerned with the development and analysis of methods
for solving mathematical problems. It is a firm component of mathematics education
at universities, but often plays a subordinate role, even though all mathematical
disciplines result from the goal of solving concrete and practical problems. This
important aspect is often neglected in highly developed modern mathematics. On
the other hand, numerics is often seen as the time-consuming and sometimes less
exciting technical implementation of mathematical concepts, which leads to a false
impression of the contents of numerics. In fact, many of the numerical methods go
back to scientists like Gauss and Newton, who wanted to quantify and understand
profound questions of the natural sciences via explicit calculations. The use of the
computer should therefore simplify the handling of numerical methods and not
make it more difficult.

In this textbook, the most important ideas and concepts for the algorithmic solu-
tion of some basic mathematical problems are discussed and the main difficulties
of their practical implementation are examined. In doing so, three questions must
always be considered:

* Is it possible to specify a method for the approximate solution of a mathematical
problem?

e How do perturbations, for example due to rounding of input data, affect the
numerical solution?

e What is the computational complexity of a method to achieve a given accuracy?

These questions are addressed for model problems, such as the solution of systems
of linear equations, the calculation of eigenvalues of a matrix, the numerical
integration of functions, the approximate solution of nonlinear equations and the
approximation of solutions of differential equations.

In developing the course material, I have followed the presentations of various
scripts, textbooks and monographs, which are listed at the end of this book. If I
have followed a source too closely in the presentation of the material at one point
or another, this is to be understood as an appreciation of a particularly successful
elaboration. This text makes no claim as to the originality of its contents. Its sole
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aim is to provide students of mathematics, engineering and the natural sciences an
opportunity to familiarise themselves with the basics of numerical mathematics.

The presentation of the classic material is intended to illustrate basic methods
of numerics by example. Optimality of the methods or greatest generality of the
associated statements was consciously omitted. When solving concrete, possibly
practical problems, it is therefore essential to consult the specialised literature,
which is also presented in extract form at the end of the book. The application
examples listed in the text are intended for motivation and illustration and should
not be interpreted as real case studies. For special applications, it is usually
necessary to adapt the methods developed for idealised model situations to the
special characteristics of the present problem. This book is intended to prepare the
reader for this challenge.

The present text results from lectures taught at the Universities of Bonn and
Freiburg and is a translation of the second edition of the German version of the
textbook. I would like to thank numerous colleagues, assistants and tutors for
corrections and suggestions for improvement. [ would like to particularly thank Lea
Heusler for her careful proofreading of the first edition and Benedikt Albrecht and
Nick Seinsche for their important help in the development of the second edition of
the text. Furthermore, I would like to thank Yohance Osborne and Vanessa Styles
for carefully checking the English translation of the text.

Freiburg, Germany Soren Bartels
December 2024
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Notation

Numbers, Vectors and Matrices

7

N, Ny

R, C

R>0, R0
[s, t], (s, 1)
RVL
Rnxm

By (x), K (x)
ACB

x = (x;), A = (aj)
xT, AT

-1l

X-y= .XTy

X X y

x Ly

I

O(n)

L, y1T, (x, )

|:x1 XQ:|
Y1 y2

Various Symbols

o(sP), O(sP), O(n?)

L]
|A]

Integers

Positive and non-negative integers

Real and complex numbers

Non-negative and positive real numbers
Closed and open interval

n-dimensional Euclidean space

Set of n x m matrices

Open and closed ball with radius r around x
Aisasubsetof Bor A =B

Column vector and matrix

Transposition of a vector or a matrix

Norm of a vector or operator norm of a matrix
Scalar product of vectors x, y € R”

Cross product of vectors x, y € R

x is orthogonal to y

n X n identity matrix

Orthogonal group

Vector with entries x and y

Matrix with entries x1, x2, y1, ¥2

Imaginary unit

Landau symbols
Maximum number k € Z withk <r
Cardinality of a finite set

XV
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<, 7z Consistency terms

N,(1) Level set of the p-norm

Ny (x0) Sublevel set of the function g
Linear Mappings

ker A Kernel of the linear mapping A
ImA Image of the linear mapping A
rank A Rank of the linear mapping A
dim W  Dimension of the vector space W
det A Determinant of the matrix A

tr A Trace of the matrix A

Differential Operators

9;, Oy, % Partial derivative with respect to the i-th argument
1

vVf Gradient of the function f

div F Divergence of the vector field F

Df,D>f Jacobian and Hessian matrix of a function f
Y Time derivative of the function y

Function Spaces

Ck([a, b)) k-times continuously differentiable functions on [a, b]

P Polynomials of degree m

S™K(F)  Piecewise degree m polynomial, k-times continuously differentiable
functions



Prologue: Why Numerics?

Goals and Concepts

Numerical mathematics or simply numerics is concerned with the practical imple-
mentation of mathematical concepts, for example, to calculate real processes. This
can be the infection dynamics of a pandemic, the evaluation and visualisation of a
medical computer tomography, the realisation of search algorithms on the internet,
the usage behaviour of an internet platform, the training of a neural network,
the prediction of the weather, the calculation of ocean currents, the load-bearing
capacity of bridges and buildings, the simulation of a crash test or the compression
of data for fast transmission of information. As a rule, large amounts of data occur,
the implementation is typically done with the help of computers, which leads to
additional peculiarities.

Computers can only perform simple arithmetic operations and this only approx-
imately, i.e., with rounding errors. Every mathematical task must therefore be
reduced to simple problems. The solution of systems of linear equations and the
evaluation of explicit calculation rules can be realised very efficiently and robustly.
With these two concepts, many tasks such as eigenvalue problems, constrained
optimisation tasks, nonlinear equations and data compression problems can be
solved approximately.

However, unexpected effects can occur during the development of methods. For
example, equivalent formulas can lead to different results when implemented on a
computer, different sequences with the same limit can converge at different speeds
and rounding errors can accumulate during a calculation. Since rounding errors are
anyway unavoidable, it is neither necessary nor sensible to determine exact solutions
to problems.

The first part of the book is dedicated to the fast and robust solution of systems
of linear equations with regular matrices A € R"*", i.e., for a given vector b € R”
the determination of x € R" with

XVii
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It is particularly important to understand how disturbances of data affect the
solution. Based on this, overdetermined systems of equations or least squares
problems, eigenvalue problems and linear optimisation problems are considered.

The core of the second part is the approximation of functions with simply
representable functions such as piecewise polynomial functions sy, so that a given
accuracy ¢ > 0 is achieved, i.e.,

If = snllcoy < e.

This can be used to reduce the calculation of derivatives and integrals to simple
problems. Further aspects are the calculation of zeros and minima. In the third
part, the numerical approximation of ordinary differential equations or initial value
problems is examined, which have the general form

Y= f(t,y®),  y0) = .

They form the basis of the simulation of time-dependent problems. Even the simple
case y' = ay with solution y(z) = ype*' leads to insights that can be transferred to
large classes of problems. With these methods, trajectories of bodies, Hamiltonian
systems for the description of solar systems and one-dimensional boundary value
problems can be numerically approximated.

Difficulties and Ideas

We consider some typical and partly surprising phenomena of the direct algorithmic
implementation of mathematical concepts.

Rounding Errors

Since binary computers can only represent finitely many numbers, rounding errors
are inevitable. Even if modern computers calculate with high accuracy, this can
easily lead to difficulties. For example, if a party receives np = 2099 580 out of a
total of ng =42 - 10° votes cast, a computer delivers the share

n_P/n_G = 0.0500

thus supposedly 5.00% of the votes. However, a legal 5% hurdle in an election does
not provide for rounding and a more accurate representation of the quotient shows
the result

P 0.04999000,
ne
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I % machine_precision.m

b = g

3 while 1+x > 1 I >> machine_precision
4 X = xX/2; 2 2.2204e-16

5 end

6 disp(2%x);

Fig. 1 Determination of machine accuracy (left) and result of calculation (right)

so the party did not receive the required votes. Here, a misleading result is created
by rounding in the visual representation of the number. Another error occurs due
to rounding-related arithmetic operations of the computer. The relative calculation
accuracy of a computer can be determined by halving the number x = 1 until the
expression 1 + x is no longer distinguished from 1 by the computer, see Fig. 1. A
typical accuracy is at 1- 1071, so one can assume 15 correct decimal places. Instead
of setting the calculation accuracy in relation to a single vote, the 5% hurdle can be
checked more easily with the inequality np/ng > 1/20 or 20np > ng.

Convergence Speed

The number +/2 can be constructed by successively determining the decimal places.
Starting from rp = 1, decimal places are added to obtain numbers r; with k decimal
places, which are maximised subject to the constraint r,? < 2. In the first step,
r1 = 1.4 is set, since (1.5)2 > 2 holds. In the k-th step, ’”1371 < 2 and

e =rp—1+4- 107*

where ¢ € {0, 1, ..., 9} is chosen to maximise r subject to the constraint r,? < 2.
Thus, in each step, one obtains another correct decimal place and accordingly, for
the error

8 = |vV2—ri] < 107%.

The error is reduced by the factor ¢ = 1/10 in each step. With a trick, one obtains
approximations where the number of correct decimal places doubles in each step.
For this, we consider more generally the calculation of \/a for a positive number
a > 0. The equation x> = a is obviously equivalent to

xz—lxz—f—la — x—l(x+g)
T2 2 2 x/



XX Prologue: Why Numerics?

The second identity characterises the solution as a fixed point x* of a function x >
@ (x) and this observation can be used to define the fixed point iteration

1 a
Xep1 = D(xg) = E(xk + x—k>

with a suitable starting value xo > 0, which is referred to as Heron’s method. Here,
one can prove so-called quadratic convergence of the errors e; = |\/a — x|, i.e.

€k+1 = ce,%
or the doubling of correct decimal places in each step, provided ce,% < 1 holds.

An implementation can be found in Fig. 2. The convergence speed of a fixed point
iteration can be quantified with a Taylor approximation. If ®'(x,) = 0, then

1
Xt = Xe = D) — P () = S (§) vk — X%,

which implies local, quadratic convergence. If ®'(x,) # 0, then the local, linear
convergence ey < qey, follows analogously, if |®'(x)| < g < 1forall x € Bg(xy).
Typical courses of corresponding fixed point iterations are depicted in Fig. 3.

: ; ieg(.jg,:mdelta = 1.0e-15; g e ShemEn

3 x = a/2; e = abs(x-sqrt(a)); 2

. while e > delta 1.5000e+00 8.5786e-02

. 2= (e ) B 1.4167e+00 2.4531e-03

. 5 = cises e (a0 ) 5 1.4142e+00 2.1239%9e-06

’ disp((x,e]); 6 1.4142e+00  1.5947e-12
7 1.4142e+00 2.2204e-16

s end
Fig. 2 Calculation of the square root according to Heron (left) and results of the calculation (right)
Fig. 3 Linear (left) and

quadratic (right) convergence .
of fixed point iterations

N
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Instabilities

Rounding errors can become very noticeable in problems with specific bad proper-
ties. As an example, we consider the approximation of the number = by computing
the area of the unit circle. For this purpose, the circle is approximated as shown in
Fig. 4 with n congruent triangles, whose heights are denoted by &, so that the area
A = m is approximated by A, = nk,/2. Such an approach was already used by
Archimedes in the third century BC.

We have that k,, = sin(2w/n), however, only basic operations and the square root
should be used. Using the identity sino = 2 sin(c/2) cos(o/2) and the pg-formula
results in the recursion formula

23, =1— /1 —k2.

From sin(w/6) = 1/2 one obtains the starting value k1 = 1/2 and can thus
determine a sequence of heights. The results generated with the program shown in
Fig. 5 and listed in Fig. 4 show that the approximations of 7 initially improve, then
stagnate and finally become completely useless. However, if one uses a binomial

J An €n
0 3.000000000000000 1.4159 x 107!
1 3.105828541230250 3.5764 x 1072
ky 2 3.132628613281237 8.9640 x 103
| 11 3.141592618640789 3.4949 x 10~8
L 12 3.141592645321216 8.2686 x 10~°
15 3.141592645321216 8.2686 x 1077
16 3.141593669849427 1.0163 x 10°
19 3.141586839655041 5.8139 x 10°
23 3.159806164941135 1.8214 x 102
27 6.000000000000000 2.8584

Fig. 4 Approximation of the unit circle area with n triangles (left) and numerically determined
areas A, as well as errors e, = |A, — 7| withn = 2/ - 12 (right)

I % pi_approx.m I % pi_approx_mod.m

»n =12; k = 0.5; J = 30; »n =12; k = 0.5; J = 30;

; for j = 1:J s for j = 1:J

4 n = 2+*n; 4 n = 2%n;

5 k = sqrt((l-sqrt(1-k"2))/2); s k = k/sqrt(2+(l+sqrt(1-k"2)));

6 A = nxk/2; e = abs(pi-A); 6 A = nxk/2; e = abs(pi-A);
disp([Jj,A,el); / disp([Jj,A,el);

s end s end

Fig. 5 Approximation of the circle number 7 with direct (left) and modified (right) calculation of
the heights &,
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formula, one obtains the equivalent representation
1+/1-k2 k2
2k3, = (1 — /1 —k2) * 2= R
1+1—k2 14+1—k

This formula allows 7 to be approximated to machine precision. It will be shown
that generally the subtraction of nearly equal numbers should be avoided.

Computational Effort

The calculation of the determinant of a square matrix A € R"*”" can be performed
using the Laplace expansion theorem. With the recursion formula

n
detA = Z(—I)Hjalj det A,
j=1

where A- 1j is the submatrix obtained by deleting the first row and j-th column,
the calculation can be reduced to computing determinants of smaller matrices until
finally matrices with only one entry appear, Fig. 6 shows a practical implementation.
The computational effort grows dramatically, when transitioning from n = 8 to
n = 10 the computing time increases by a factor of 90 = 9 - 10 and for matrices of
dimension n > 12 the method is hardly feasible in a reasonable time. Practically and
theoretically, it is seen that n! operations are necessary. Alternatively, the Gaussian
elimination method provides a factorisation A = LU with triangular matrices L
and U, where for the diagonal entries of L, £;; = 1 may be required. Thus, with the

% det_laplace.m

> function val = det_laplace(A)

3 n = size(A,1); val = 0;
1

% det_laplace_hilb.m
> for n = 4:2:10

A(1,1); B pibin);

. . 4 tic; d = det_laplace(A); toc
for j = 1:n s g

§ I = 2:n;

9 J = [l:j*1,j+1:n]; I >> det_laplace_hilb

10 hat A 13 = A(I’AJ);. > Elapsed time is 0.000814 seconds.

1 val = valf(—l) CRSVEERY Elapsed time is 0.002340 seconds.

12 *A(L,3) ... ) i Elapsed time is 0.108463 seconds.

13 *laplace(hat A 13); | Elapsed time is 9.220774 seconds.

14 end

15 end

Fig. 6 Calculation of the determinant with the Laplace expansion theorem (left) and run times for
matrix sizes n = 4, 6, 8, 10 (right)
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rules for the determinant, it follows that
detA =detLdetU = (L1182 ... Lun)(Ui1U2 .. . Upy) = UL1UDD . . . Upy,

where we have used that the determinant of a triangular matrix is given by the
product of the diagonal entries or eigenvalues. If the factorisation is given, the
determinant can be computed with n — 1 operations. A check of the elimination
method shows that the factorisation can be found with n3 operations, here required
row swapping may be included in the operations.

Robustness to Disturbances

Rounding errors can be considered as disturbances and so one can abstractly assess
whether a problem can be approximated or numerically solved at all, regardless of
specific algorithms. For illustration we consider the determination of the roots of a
polynomial. Specifically, we choose

px)=x—-a)" -0

with a given number a, which is then the n-fold root of the polynomial. We now
disturb the term O and subtract a small number ¢ > 0 instead, i.e. we consider the
polynomial

pe(x) = (x —a)" —&.

The complex roots shown in Fig.7 are given by X; = a + sge'/" with the n-th
roots of unity s = eiZmk/n | — 1.2, ... n, which are evenly distributed on the
boundary of the unit circle in the complex plane, in the case n = 2 they are s; = —1
and sp = 1. The error between the correct roots x; = a and those of the disturbed
polynomial is e = |xx —Xk| = &1/" and this becomes smaller as & becomes smaller.
However, the problem is that the ratio of the output error to the input error, i.e.

maxg=1,. . |Xk — Xk| gl/n — pU=m)/n
P — pellcogw) €

Fig. 7 The (complex) roots

of the disturbed elolynomlal a+tel/n
pe(x) = (x —a)" — ¢ are a, / -
located on the circle around a ‘ -
with radius r = ¢!/"
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is unbounded for ¢ — 0 and n > 2. Small disturbances in the data of the problem
thus have a disproportionate effect on the result. Therefore, the determination of
roots of polynomials is referred to as an ill-conditioned problem. Directly connected
with this is the poor conditioning of the determination of eigenvalues of a matrix. A
real-life ill-conditioned problem is the vertical positioning of a pen.

Inexact Solving

The Gaussian elimination method for solving a system of linear equations leads
to a cost of n® computational operations. However, an exact solution in terms of
computer arithmetic is rarely necessary, as not only rounding errors influence the
result, but the data can also not be considered exact due to measurement and model
errors. This observation leads to the idea that by merely approximating the solution
of the linear system, the computational effort can be significantly reduced. One
approach is based on the decomposition of the matrix A into its diagonal part D
and the rest R = A — D. Provided D is regular, the equation Ax = b is thus
equivalent to the equations

Dx=b—Rx <= x=D'(b—Rx).

The second equation can be interpreted as a fixed point equation x = ®(x) and
leads to the iteration

Xpr1 = D71 (b — Rxy)

with a starting vector xo € R". In some cases, good approximations are obtained
in a few steps. The evaluation of the right-hand side generally requires a cost of 72
computational operations, but in many cases A or R have many vanishing entries
and the cost is only a moderate multiple cn of n. If the iteration converges quickly,
the cost of solving the system is reduced from n° to ¢n, which is enormous for
typical sizes of n in the range [10, 10’]. To exploit this aspect, the definition
of A must be modified, as in the program shown in Fig. 8, to avoid unnecessary
multiplications with zero. Corresponding runtimes are displayed in Fig. 9. A better
convergence behaviour is achieved with the iteration x 1 = (D + U Y~ U(b — Lxy),
where U and L are the submatrices of A above and below the diagonal, respectively,
and in each step a system of equations with triangular matrix D 4 U must be solved.
Rounding errors are not a problem here, as convergent fixed point iterations have
a self-stabilising effect in the sense that each iterate can be considered as a new
starting value.
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oo

jacobi_iteration.m

= 10"2; b = ones(n,1);

= ones(n,1); e_s = ones(n-1,1);

= diag(4~+e,0)-diag(e_s,1l)-diag(e_s,-1);
A = spdiags([-e,4*e,-e], [-1,0,1],n,n);

S =IO =]

6 D diag(A); D_inv = D."(-1); R = A-diag(D);
x = zeros(n,1l); tol = 1.0e-3; ctr = 0;
s while norm(Axx-b) > tol
9 x = D_inv.*(b-R*x); ctr = ctr+l; disp(ctr);
0 end

Fig. 8 Solving a system of equations with the Jacobi iteration, the alternative definition of the
band matrix A avoids unnecessary multiplications with zero entries

n A fully populated A sparsely populated

4 -1

107 0.005273s 0.047754

R 100 0.0281205 0.009399s
- . 10 1.042249 0.023457 s
L 10° — 0.106429 s

10° — 0.512903 s

Fig. 9 If unnecessary multiplications are avoided with band matrices, the iterative method leads
to low memory requirements and short computation times even for very large matrices

Approximation with Polynomials

A theorem by Weierstral} states that any continuous function on a compact interval
can be approximated arbitrarily well by polynomials. However, these results do
not show how to find the polynomials or what degree of polynomial is needed to
achieve a given accuracy. To calculate such polynomials, pairwise different points
X0, X1, --., X, in the interval [a, b] can be chosen together with a polynomial p
defined by the requirement

pxi)=f(x), i=0,1,...,n.

To fulfil these n + 1 interpolation conditions, the polynomial must have at least
degree n. From the fundamental theorem of algebra, it follows that a polynomial of
this degree is uniquely defined. With a basis (p;)j=o,...n, such as the monomials
pi(x) = x/, the coefficient vector ¢ € R**! of p results from the system of
equations Ac = f with A;; = p;j(x;) and f; = f(x),i,j = 0,1,...,n.
However, for certain functions f and uniformly distributed points xg, x1, ..., X, itis
observed that the polynomials do not converge uniformly for increasing numbers 7,
see Figs. 10 and 11. Using Rolle’s theorem, it can be seen that the distances between
the support points should be chosen smaller at the edges, which is optimally realised
by so-called Chebyshev nodes. In addition to this effect, it should be noted, that the
monomial basis leads to a matrix A with unfavourable properties with respect to
small disturbances.
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% interpolation.m
f = Q(x) 1./(1+425%x.72);

5

s delta = 0.01; X = (-l:delta:1l); Y = £(X); n = 11;
4+ x_eq = zeros(n+l,1); y_eq = zeros(n+l,1);
5 x_ch= zeros(n+1l,1); y_ch = zeros(n+1,1);

6 dx = 2/n; dtheta = pi/ (2 (n+l));
7 for k = 1:n+l

8 x_eqg(k) = -1+(k-1)xdx; y_eqg(k) = f(x_eqg(k));

9 x_ch(k) = cos((2xk-1)+dtheta); y_ch(k) = f(x_ch(k));
0 end

11 p_eq = polyfit(x_eq,y_eq,n); p_ch = polyfit(x_ch,y_ch,n);
2 plot(X,Y,'--',x _eq,y_eq, 'o',X,polyval (p_eq, X)) ;

13 title('equidistant'); pause

4 plot (X,Y,'--",x_ch,y_ch,'o',X,polyval (p_ch,X));

5 title('chebyshev');

Fig. 10 Calculation and representation of an interpolation polynomial with evenly and unevenly
distributed support points

equidistant chebyshev
\

1,

-0.2 -0.2
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Fig. 11 Polynomial interpolation with equidistant support points (left) and Chebyshev nodes
(right)

Choice of Suitable Bases

Every vector x € R”" can be represented with respect to the canonical basis
e1,ea,...,e, such that

n
X = Z oe,
k=1

where the coefficients o correspond to the components of the vector. If the vector
x has special properties, for example, it is given as a sampled audio signal at
times 11, 12, ..., I, it makes sense to choose a basis vy, v, ..., v, that takes these
properties into account. In this case, many coefficients in the linear combination
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Fig. 12 Functions can often
be represented as a sum of
sine oscillations

have the property of being very small in magnitude or negligible, and hence we
have

n m
x = Zﬁkvk A Zﬂkgvkg, m <L n.

k=1 =1

For example, if n = 10%, the vector x can often be well represented with m ~ 10%
relevant pieces of information. This is referred to as data compression, which
is the basis of the digital age. The mathematical challenge lies in the efficient
implementation of the basis change. If the vectors (vi)k=1,.., are chosen as
fundamental oscillations, then the fast Fourier transformation allows for an almost
optimal basis change. An example is shown in Fig. 12.

Large Intermediate Results

Swapping rows is only necessary in the Gaussian elimination process when so-
called pivot elements, with which the elimination of entries below the diagonal
is performed, are identically zero. To avoid instabilities or strong effects of
rounding errors, swapping rows should also be performed when pivot elements are
small compared to other entries. Otherwise, intermediate values that are large in
magnitude can occur, as can be checked using the example

el X1 1

11 [x] |2
with solution (x1, x2) ~ (1, 1) for 0 < ¢ « 1. The fact that intermediate results
can lead to large computational errors is shown by the perturbation calculation for
the sum s = y; + y2 + --- 4+ y, with exact summands y; and disturbed values

yi = (1 4+ oi&)y;, with o; € {1} and &; > 0, so that for the disturbed sum 5 we
have

n n n
F=)%i=) (+oe)yi=s+) oieiyi.

i=1 i=1 i=1
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oo

ntermediate_vals.m
2 =1.0; s =1.0;
s eps_p = 107 (-5); k = 1073;
f X_Pp = (l+eps_p)*x;
5 s_p = sqrt(x_p)+k*exp(x_p-1)... 1 >> intermediate_vals
6 +k+sin (3xpi*x_p/2); 2 1.0006e+03
7 e_rel_s = abs((s_p-s)/s);
s e_rel_x = abs(eps_p);
kappa_rel = e_rel_s/e_rel_x;
disp (kappa_rel);

b

1

Fig. 13 If intermediate results or summands are larger in magnitude than the result, a large
amplification of relative errors can occur

For the relative error in the result |s — §/|s]| it follows from the triangle inequality
and the relative errors |y; — y;|/|yi| = &; of the data, that

ls — Z’.lzl lyil
&y = Z| l||yl|<(l—) max 31—K‘9y

|S| B | | 4 Is| i=l..

So, a large amplification of the relative error can occur if |s| is small compared to
the absolute summands |y; |. The first inequality is an equality when the disturbances
have the same sign as the summands, and the second inequality is an equality when
all disturbances are of equal size. The program shown in Fig. 13 calculates the value

= /x +kexp(x — 1) + ksin(x3m/2)

for a disturbance ¥ = (1 + ¢ p)x of x = 1, which leads to an amplification of the
relative errors by the factor k & k and thus confirms the result.

A special case of the above estimate is the subtraction of nearly equal numbers,
which corresponds to the case y; &~ —y; and leads to so-called cancellation
effects. For example, if two rods have the lengths ¢; = 101.51 and ¢, = 100.49
in centimetres and these were approximately measured with ¢; = 102.00 and
> = 100.00, then the relative errors g;, i = 1,2, are less than 0.5%; however,
the relative error of the differences § = 1.02 and 8 = 2.00 is almost 100.0%, which
corresponds to an error amplification of ¥ ~ 200.

Descent Methods

To determine a (local) minimum of a differentiable function g : R" — R, it makes
sense, as when descending in a mountain landscape, to gradually reduce the function
values. In order to reach a minimum as quickly as possible, the direction with locally
the greatest reduction of the function value should be chosen for the next iteration
step. This is given by the negative gradient of the function. Starting from an initial
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Fig. 14 Tllustration of the
descent method for
determining a minimum of a

function

/1
value xo € R", a sequence of iterates xg, k = 0, 1, ..., is thus determined by the
rule

Xkl = Xk — ap Vg (xg).

The step size o should be chosen sensibly so that one does not actually get a value
of the function which is larger than before. Figure 14 shows a path resulting from a
descent method on the graph of the function. In addition to optimising the step sizes,
for a class of minimisation problems also the optimisation of the search directions is
of interest. For quadratic minimisation problems of the form g(x) = (1/2)||Ax—b|)?
it can be ensured that the descent directions are orthogonal to each other in a suitable
sense and one obtains the minimum with a maximum of 7 steps.

Implicit and Explicit Methods

Approximate solutions of the initial value problem y’ = f(z,y), y(0) = yg, are
obtained by approximating the derivative of y by a secant slope

Y+ =0
T

Y (1)

which in the case of this right-sided difference quotient with step size t > 0 and
time steps #; = kt leads to the Euler method

Vi1 = Yk + ©f (T, i)

with starting value yg. Thus one obtains a sequence of approximations (yk)x=o.....k
by simple successive or explicit evaluation of the right-hand side. However,
experiments in the case f(¢,y) = «ay with ¢ < 0 and exact, bounded solution
y(t) = ype*" show that the approximations only remain bounded for sufficiently
small step sizes, see Fig. 15. This is improved, if instead of the right-sided difference
quotient a left-sided one is taken, which leads to the method
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30 expl. Euler
I % euler_expl.m
alpha = -2; y_0 =1; T = 10;

3 £ = @(t,s) alphaxs; 20
i K = 8; tau = T/K;
sy = zeros (K+1,1); y(1) = y_0; 10
s for k = 1:K

t_k = (k-1)=xtau; 0
8 y(k+1l) = y(k)+tauxf(t_k,y(k));
v end -10
0 plot (taux(0:K),y,'o-");
11 title('expl. Euler'); -20

0 2 4 6 8 10

Fig. 15 The explicit Euler method is a simple to implement method (left), which however can
lead to unbounded approximations (right)

impl. Euler

I % euler_impl.m
> alpha = -2; y_. 0 =1; T = 10;
s K = 16; tau = T/K;
y = zeros(K+1,1); y(1) = y_0;
for k = 2:K+1
t_k = (k-1)~*tau;
% y(k) = y(k-1)+tauxf(t_k,y(k)); Y
y(k) = (l-alphaxtau)” (-1)=*y(k-1); o
v end 0.2 H%&
plot (taux[0:K],y, 'o-"); ‘E: ~~~~~ -
title('impl. Euler'); 0 S B o )

- TS

o

Fig. 16 The implicit Euler method has better stability properties than the explicit method

Yk = Yi—1 + Tf (e, Yi)
with starting value yy, see Fig. 16. The price for the better stability properties of the

method is however the required solution of a possibly nonlinear system of equations
in each iteration step. This method is therefore referred to as an implicit method.

Multi-Term Recursion

To obtain better approximations of derivatives, it is obvious to use more than just two
time points, for example one could use the following combination of three values
Yk+2, Yk+1, Yk to approximate the derivative y’(z,)

V' (1) & aoyk + o1 yi—1 + o yk—2.

Possible coefficients ay, £ = 0, 1, 2, result from Taylor approximations; however,
not all values found using this method result in good choices. Criteria to choose the
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coefficients can be found by considering the trivial differential equation y’(r) = 0
with starting value yp and constant solution y(¢#) = yp. A sensible method should
guarantee that in this case, approximations remain bounded. These fulfil for given
initial values yo, y; the three-term recursion

V42 + A1 Ye+1 +apyr =0

or in matrix representation with y, = —ay /o, £ = 0, 1, the relation

[)’k+1j|=|:0 1][ Yk }:A[ Yk }
Yi+2 Yo Y1l LYk+1 YVie+1
A transformation of the iteration matrix A into Jordan normal form yields

. _ A 0 . 1 A1
J=T7"AT = J=T7"AT =
® [0 Az]’ w [o /\1]

with an orthogonal matrix 7" and geometrically simple or multiple eigenvalues
A1, A2 € C. Relevant for the stability of the numerical method is now whether the
matrix J is non-expansive, i.e., whether || Jz||x < ||z]|« forall z € C? with a suitable
vector norm || - ||«. In the first case, this is given if |A], |A2| < 1, and in the second,
if |A1] < 1. Examples of unstable and stable three-term recursions are given by the
coefficients (a2, o1, p) = (1,4, —5) and (a2, o1, @g) = (3, —4, 1), respectively.
The results of an unstable iteration are shown in Fig. 17.

I % multistep_stab.m 200 multistep
> a = [-5,4,1]; % unstable 366

$a=[1,-4,3]; % stable

(x I 3

4+ g_2 = -a(2)/a(3);
s g_1 = -a(l)/a(3); -100
6 K = 8; delta = .01; -200
7y = zeros (K+1,1); 566
s y(l) = 1; y(2) = l+delta;
o for k = 2:K -400
10 y(k+1l) = g_2*y(k)+g_l*y(k-1); -500
11 end -600
2 plot ((0:K),y,'o-"); i ]
3 title('multistep'); 0 1 2 3 4 5 6 7 8

Fig. 17 Multistep methods (left) can lead to oscillating, rapidly growing approximations (right)
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Sources of Error

In the numerical solution of a mathematical problem, numerous, mostly unavoidable
erTors arise.

* Model error: This refers to the error of the often simplified representation of
a real problem by mathematical equations as well as measurement errors in
determining specific problem properties.

* Method error: The algorithm used to solve a problem leads to errors caused
by approximations of continuous quantities such as derivatives or termination
criteria in iterative methods.

* Rounding error: All arithmetic operations of the computer must be considered as
error-prone.

It turns out that relative errors are better suited for evaluating a method than
absolute errors. The conditioning of a problem is understood to be the (independent
of the numerical method) susceptibility of the problem to disturbances, the stability
of a method is the error amplification caused by the calculation steps, and conver-
gence is the reduction of the method error when approximations are improved and
termination criteria are reduced.

Approach of Numerics

The development of numerical methods for the approximate solution of a mathe-
matical problem should consider the following aspects:

* Observe and understand unexpected phenomena
* Develop methods that avoid problems

 Find suitable fixed-point equations

 Identify dominant sources of error

* Use meaningful convergence concepts

» Utilise special properties of problem classes

* Construct problem-adapted bases

* Critically discuss conditions for convergence

Problems

The following tasks can be worked on experimentally or theoretically.

(a) Determine for £ = 1,2, ..., 10 the smallest machine number x such that the
comparison 10¢ + x > 10¢ is evaluated by the computer as correct. Interpret
your results.
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(b) Check the condition ®'(x*) = 0 for quadratic convergence of the Heron method
and construct suitable initial values for the approximation of \/a, a > 0.

(c) Approximate the derivative of the exponential function at the point x = 1 by
secant slopes (f(x + h) — f(x))/h and (f(x + h) — f(x — h))/(2h) with
different step sizes & > 0 and comment on your results.

(d) Provide a stable method for the approximate calculation of exp(x) for any x €
R.

(e) How long does it take to calculate the solution of a linear system of equations
of size n = 10¢, £ = 3,4, 5, 6, with the Gaussian elimination method, if the
computer can perform 10° operations per second, and how much storage space
is required?

(f) Test the Jacobi method xx41 = D~1(b — Rx;) and the Gauss-Seidel method
Xis1 = (D 4+ U)~ (b — Lx;) for band matrices A € R"*" with off-diagonal
entries — 1 and main diagonal entries a;; =2 ora;; =4 fori =1,2,...,n.

(g) Test the polynomial interpolation with equidistant support points and Cheby-
shev nodes in the case f(x) = cos(x). Calculate extrema of some derivatives of
the functions f(x) = cos(x) and f(x) = (1 +25x2)~! in the interval [—1, 1].

(g) Determine a basis of the polynomial space of maximum degree 3, so that a
polynomial g with the properties g (0) = vg, g(1) = vy and ¢’(0) = v, ¢’ (1) =
v3 can be represented with the coefficients vy, vy, v, v3.

(h) Experimentally determine error amplifications of Gaussian elimination without
pivot search for the system of equations Ax = b, where aj| = ¢, ajp = a1 =
ay) = land by = 1 4 ¢ as well as by = 2 for some & > 0.

(i) In the case of termination of the descent method with termination criterion
IVegxp)l < e with a given number 0 < & <« 1, is there always an
approximation of a global minimum?

(j) Discuss sources of error in the calculation of the trajectory of a body with the
equation resulting from Newton’s laws x (1) = xo + tvg + (12/2)(0, —g) with
g = 9.81m/s? and given xg, vg € R%.

(k) What special property is observable in the implicit Euler method for the
equation y’(¢) = 1, y(0) = yp, on a large time interval [0, T]?

(1) Investigate the stability of the three-term recursion yx42 = —2yr4+1 + Yk and
test this with the initial values yo = 1 and y; = /2 — 1.
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Basic Concepts Qe

1.1 Problem Statement

Numerical mathematics deals with the practical calculation of mathematical objects
such as

1
/ e dx, min F(x), f(x) =0, Ax =b, Ax=ix, y = f(t,y).
0 x€l0,1]

Abstractly, this can be formulated as the evaluation of a mapping.

Definition 1.1 A mathematical operation consists in the evaluation of a mapping
¢p: X —>Yatx € X.

For example, ¢(x) = f~1(x), ¢(x) = A~ 'x or ¢(x) = sin(x). Many of the
objects listed above are not defined by closed formulas and can possibly only be
determined approximately. Moreover, only a finite number of so-called machine
numbers are available on computers, so not every real number can be entered
exactly and elementary arithmetic operations like 1/3 can only be determined
approximately. This leads to rounding errors. Other sources of error are model
errors, which occur in the simplified mathematical description of a real process,
and data errors, which can be caused by measurements. Many of these inaccuracies
are unavoidable and therefore it is usually neither necessary nor sensible to solve
a mathematical problem exactly. By approximate solving the computational effort
can often be significantly reduced. The calculation of the determinant of a matrix
A € R™" using the Laplace expansion theorem, for example, leads to n! arithmetic
operations, which for large dimensions n is hardly feasible in a reasonable time.
However, it is often possible to construct at least approximately a factorisation
A =& LR with triangular matrices L, R € R™ with the help of which the
determinant det A ~ det L det R can be determined with an effort comparable to
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4 1 Basic Concepts

n. Solving a system of linear equations Ax = b is closely related to this. In practice,
the inverse matrix A~! is usually not determined explicitly, but the system is directly
or iteratively solved. The expression x = A~'b therefore stands in numerics mostly
for the solution of the linear system Ax = b and less often for the multiplication
of b with A~!. More generally, the following typical questions are discussed in
numerics:

* Computability of problems (algorithmics)

 Influence of perturbations (conditioning and stability)

* Error between calculated and exact solution (convergence)
e Computational effort of methods (complexity)

An important goal is to achieve a good compromise between accuracy and effort of
a method. This is investigated for the following problems:

* Systems of linear equations

» FEigenvalue problems

* Interpolation of functions

* Integration of functions

* Root finding and optimisation
¢ Initial value problems

1.2 Condition and Stability

We consider an example that illustrates the effects of perturbations on the solution
of a problem.

Example 1.1 For each ¢ € R\ {0}, the unique solution of the linear system

1 1 2
X =
114e¢ 2
is given by x = [2, 0]". We assume that ¢ is very small and perturb the right side in
the second component, that is, we consider

1 1 |~ 2
X = .
|:11+8i| [2+8]

The unique solution is given by X = [1, 1. Although the perturbation in the right
hand side is arbitrarily small, the solutions x and X differ greatly.

The effects of perturbations on the solution of a problem lead to the concept of
conditioning.
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Definition 1.2 A mathematical operation ¢ (x) is ill conditioned (at the point x),
if small relative perturbations ¢, of the data cause large relative errors &4 in the
solution that is, if a perturbation X exists with

6@ - o) F—xl
=T ol O W

where x # 0 and ¢ (x) # 0 hold. Otherwise, the operation is called well conditioned
and there exists a moderate constant ccong > 0 with £ < ceondéx-

The relation @ > b means that a is significantly larger than b, for example
a > 100b. What is considered significantly larger or as a moderate constant is
generally problem-dependent. To show that the multiplication of two numbers is
well conditioned, we consider the componentwise relative error of the arguments.

Proposition 1.1 The operation ¢ (x, y) = xy is well conditioned in the sense that
for x,y € R with x,y # 0 (and consequently ¢ (x,y) # 0) and perturbations
X,y € R the relative errors

CEDH —d Wl K—x [Tyl
= & = ——— &y =
160, ) x| Iyl

)

Sfulfill the estimate
ep < &x + &y + ex8y.

If ex and &\ are small, then the relative error g4 is also small.

Proof We have

L ol G -0FxG ol W oxl Foy oyl [Tyl
¢ lxyl lxyl = ] ]

and the triangle inequality |y — y + y| < |y — y| + |y| implies the claim. O

Remark 1.1 Other well conditioned operations are the addition of two positive or
two negative numbers and the inversion of non-zero numbers. 11l conditioned, on
the other hand, is the subtraction of nearly equal numbers, as will be shown below.

Obviously, an operation needs to be well conditioned to be able to meaningfully
solve a given problem numerically, as rounding errors otherwise could cause large
eITors.

Definition 1.3 A procedure_or algorithm for the (approximate) solution of an
operation ¢ is a mapping ¢ : X — Y, which is defined by the execution of
elementary, possibly rounding error-prone operations, where in the simplest case

d=frofi-10---0 fi.
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Example 1.2

(i) The operation ¢ (x) = x* can be realised by 5 = f o f, with the multiplication
provided by the computer f(x) = x & x.

(ii) The root ¢(x) = +/x of a number x > 0 is given according to Heron as the
limit of the sequence z,,+1 = (z,+x/2,)/2 with zg > 0. Thus, 5 can be defined
as the J-fold application of this iteration rule with initialisation zg = 1.

For an operation, different methods are usually conceivable, but even if the
operation is well conditioned, not all methods lead to good results, as rounding
errors can have different effects during the execution of a method.

Example 1.3 The operation defined by the function

11
x+1 x(x+1D

1
) = - —
X

is well conditioned for large values |x|, because for a perturbation ¥ = (1 + &y)x
with a small number ¢, we get

(I+e)x((I+e)x+1) —x(x+1) ~ ZLZ
A+e)x((I+e0x+ Dxx+1) x4

P(x) —p(¥) =

&x.

This implies that the relative error satisfies &y < 4¢y, provided |x| > 1 holds. The
numerical realisation can be done via the methods

e0=()- () B0- ey

where the brackets determine the order of execution of operations. Numerical
experiments show that ¢; and ¢, differ greatly for large numbers x.

Definition 1.4 An algorithm (75 is called unstable, if there is a perturbation X of
x, such that the relative error &7 caused by rounding errors and perturbations is
significantly larger than the error €4 caused only by the perturbation, i.e. if ¢ (x) # 0
and

o 9D @I 9@ — oW _
P Il P 0]

An algorithm is called stable, if it is not unstable, and in this case there exists a
moderate constant cgp > 0 with €5 =< Cstab€¢-

Remark 1.2 A necessity for the stability of an algorithm is that each individual
computational step is a well conditioned operation.

The above algorithm 1 is unstable due to so-called cancellation effects, which
occur when subtracting nearly equal-sized numbers.
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Example 1.4 For x = 0.677354 and y = 0.677335 the value ¢(x,y) = x —y =
0.000019 = 0.19 - 10~*. For the perturbation ¥ = (1 4+ &,)x withe, = 1.0- 107 it
follows

_e@ ) =, x  0.677354-107
- - X

&y = ~ 3.565021
I (x, ¥)I X—y 0.19-10—4

The perturbation of 0.01% thus causes a relative error of over 350%, corresponding
to an amplification factor « = |x|/|x — y| & 35000.

The subtraction of nearly equal-sized numbers is therefore an ill conditioned
operation. Cancellation phenomena occur independently of the size of the sub-
stracted numbers if these are nearly equal and are often a result of intermediate
values that are large in magnitude.

Proposition 1.2

(i) Let¢(x,y) = x—y # Oandlet X,y be perturbations of x, y. Then, t he relative
errors &x = |x —X|/|x| and ey =|y— Y|/|y| are amplified by the inverse of the
exact difference § = x — y and the sum of the absolute values of x and y, i.e.,

_x =D+ -D)
8]

£ < 18171 (x| + |y]) max{ey, ey ).

(i) Ifs =y1+y2+ -+ y,ands = Y1 + Y + - -- + Y, with relative errors
ei = |Yi — yil/|vil, then the relative error g = |5 — s|/|s| for the perturbed
sum satisfies

1
EAS(—Z ) max ¢&;,
s 5] - lyil P j

i.e., a strong error amplification occurs if |y1| + |y2| + -+ - + |yu| > Is].
Proof
(1) The first estimate follows from an application of the triangle inequality.

(ii) With factors o; € {1} so that o;6; = (J; — y;)/y; the perturbed sum is given
by

n

n
s = Z(l +oigi)yi =85 + ZO’[Siyi.
i=1

i=1

The triangle inequality implies the error bound which is an equality if, e.g.,
oigiyi > 0fori =1,2,...,n.
O
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Remark 1.3 The error caused by rounding and approximate solving in the numeri-
cal solution of an operation can be estimated using the conditioning of the operation
and the stability of the method, because

() — @I _ b — %

o) — @I _ et

Copqp ) T PN Ll )
ol ¢ (x)] |x|

1.3 Computational Complexity

In addition to the stability of a numerical algorithm, the computational complexity
is an important quantity.

Definition 1.5 For an operation ¢ : R" — R™ and a corresponding algorithm
¢ : R" — R™, the (computational) complexity is the number of required elementary
operations in evaluating ¢.

An exact determination of the complexity is usually not necessary and instead
the dependence on the problem size n is examined. The so-called Landau notation
is helpful in this regard.

Definition 1.6 The sequence (ay,),eN is (asymptotically) of the order of the
sequence (by)neN, if numbers ¢ > 0 and N € N exist, so that |a,| < c|b,]| for
all n > N. In this case, we use the Landau notation a, = O(b,,).

For the complexity a, of an algorithm, it is relevant whether this is of a
polynomial order n?.

Example 1.5

(1) The multiplication of a vector x € R" with a fixed number a € R leads to an
complexity of order O(n).

(i) The Gaussian algorithm for solving a linear system has a complexity of
(’)(n3), while Cramer’s rule with a calculation of the determinant according
to Laplace’s expansion theorem leads to a complexity of order O(n!).

1.4 Learning Objectives, Quiz and Application

You should be able to explain the concept of the conditioning of a mathematical
operation and illustrate it with examples. Furthermore, you should be able to define
the stability of an algorithm and describe possible problems such as cancellation
effects. You should be able to explain the Landau notation and determine the
complexity of basic matrix operations.
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Quiz 1.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

We have that n” = O(In(1 + n)) forevery 0 < p < 1.

A stable algorithm is well conditioned.

In practice, cancellation effects are rather unlikely.

The sequential execution of two well conditioned operations is well conditioned.

If a system of linear equations is well conditioned for one right-hand side, it is well
conditioned for any right-hand side.

Application 1.1 A union of n countries decides to introduce a common currency.
The conversion rates imply fixed exchange rates between the national currencies,
which are denoted by m;;. We have that m j; = mfj] . For the practical implementa-
tion, approximations 77;; should be suitably chosen.

(i) What is a sufficient tolerance for the relative errors ¢;; = (m; j —mjj)/mijj, so
that a maximum relative deviation of 0.01% results from exchanging five times
at random?

(i) Alternatively, the conversion rates can be rounded so that, for example, six
significant decimal places are retained, which means approximately m;; =
0.00123456 or m;; = 12.3456 if m;; = 0.00123456789 or m;; = 12.3456789
respectively. Is this approach more sensible?



Chapter 2 ®
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2.1 Vector Norms

In order to be able to specify the concepts of conditioning and stability, distances
between points in R” or lengths of vectors must be measurable.

Definition 2.1 A norm on R" is a mapping || - || : R* — Rx( with the following
properties:

@) |lx]l =0 = x =0forall x € R” (definiteness);
@) x4+ yll < llxll + lly|l for all x, y € R” (triangle inequality);
@iii) [[Ax]l = |A|]lx|| for all A € R and x € R" (homogeneity).

Example 2.1 The ¢7-norms are for | < p < oo and x = [xl,...,xn]T e R”
defined by

1/p
(Z'}zl Iij”) , P <00,

max;—i,..n |Xjl, p=o00.

lxllp =
The norm || - ||2 is called Euclidean norm and satisfies ||x||% —x-x=x"x.
Remarks 2.1

(1) The £P-norms are equivalent in the sense that for all 1 < p, g < oo a constant
cpg > 1 exists, so that for all x € R" we have

—1
ol xlly < lxllg < epgllxlp.

The constant ¢4 depends on p, g and n.
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12 2 Operator Norm and Condition Number

Fig. 2.1 Level sets Ny (1) of
different £7-norms in R?

(ii) The £7-norms differ by their level sets
Np(l) = {x e R" : |lx]l, = 1},

see Fig.2.1.

2.2 Matrix Norms

In the following, we always identify matrices A € R"™*" with linear mappings A :
R" — R™, for which the respective canonical bases are chosen. A linear mapping
is also referred to as a linear operator.

Definition 2.2 For norms || - |[g= and || - |[g» on R™ and R" respectively, the
(induced) operator norm for all A € R™*" is defined by

[Allop = sup  [[Ax][gn.

xeR", || x||gn =1

The operator norm measures how strongly level sets are deformed.

Example 2.2 A symmetric matrix A € R2x2 maps the circular level set Na(1) to
an ellipse contained in the circle with radius || A||>.

The operator norm defines a norm with the following properties.

Lemma 2.1 For fixed norms || - || on R" and R™, let || - ||, be the induced operator
norm on R™*", Then:
(i) |l - llop defines a norm on R™*";
(it) |Allop = sup [|Ax| =inf{c > 0:Vx € R" [|[Ax| < c|lx|l};
xeR", [|x|=1
(iii) for A # 0 and x € R" with ||x|| < 1 and ||Ax|| = ||Allop it follows that
xll = 1;

(iv) the infimum and the supremum in (ii) are attained.
Proof Exercise. O

Remark 2.2 From (ii) it follows that [|Ax|| < [|Allopllx|| for all x € R”.
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For some ¢”-norms, the induced operator norms can be explicitly given. The
entries of a matrix A € R™*" are denoted by aij, 1 <i<m,1<j=<n

Examples 2.3

(i) The ¢!-norm on R™ and R” induces the maximum absolute column sum

m
[Allt = max E |aij].
j=l,...n“ ]

=

(ii) The £°°-norm on R™ and R”" induces the maximum absolute row sum

n
1Allo = max " lal.
i=l1,..., m < |
J=

(iii) The £?-norm on R™ and R” induces the spectral norm

lAll2 = +/0o(ATA) = (max {IA] : A is an eigenvalue of ATA})I/Z.

The number (AT A) is called spectral radius of ATA.
Some further properties of the operator norm are the following.

Lemma 2.2 Let norms on RY, R™ and R" be fixed and the induced operator norms
be denoted by | - |.

(i) For A € R™™ and B € R™ " we have |AB| < ||A|||B].
(ii) The identity matrix I, € R"*" satisfies || I,|| = 1.
(iii) Every induced operator norm on R"*" satisfies || Allop = |X| for all matrices
A € R™" and every eigenvalue A of A.

Proof According to the previous lemma, ||[ABx| < |A|ll|lBx| < [[AlllB]x]l
and this implies ||AB]|| < ||A|l||B]|. The other statements follow directly from the
definition of the operator norm. O

The Euclidean norm can be defined in a straightforward way on R™>" but it is
not an induced operator norm.
Example 2.4 The Frobenius norm of a matrix A € R™*" is defined by || A||r =
12 . . . .
(>xr, > i al.zl.) /2 Tt is not an induced operator norm for n > 1, since || I, || =

/1 holds. Also the scaled Frobenius norm n~Y2||A|| £ is not an induced operator
norm, because this violates the property [|All,, > |A| for every eigenvalue A of A.
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2.3 Condition Number

With the help of the concept of the operator norm, the conditioning of a system of
linear equations can be specified.

Proposition 2.1 Let || - || be an operator norm on R"*". Let A € R"*" be regular
and let x,X, b, b € R" \ {0}, such that

Ax=b, AX=b.
Then it follows that

Ilx — X Ly b =Bl
= < IAIIATY

llxl o1

Proof We have that [|lx —¥|| = [[A~' (6 —b)|| < |A~"|||b—bl| and |Ib]| = || Ax]|| <
IA|lllx]l or lx|l = [[A]l~"||&]|. From this it follows

’

lxll — flxll — ALl

thus the claimed estimate. O

The product ||A||||[A~!|| controls the amplification of the relative error when
solving a system of linear equations.

Definition 2.3 The condition number of a regular matrix A € R"*" with respect to
the operator norm induced by the norm || - || on R" is defined by

condy.j(A) = [[A[|A").

In the case of an £”-norm, we write cond,, instead of condy.,.
Remarks 2.3

(i) The condition number of a matrix is always bounded below by 1, since for every
operator norm 1 = [AA™!|| < [|A[[|A~!| = cond.|(A).
(i) If A is symmetric with eigenvalues A1, ..., A,, then

Let us consider the condition number of the matrix from the earlier Example 1.1,
in which perturbations of the right side caused large errors.
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I 1
11+4¢
(1 + £2/4)!/2. With the Taylor approximation (1 + x)'/2 ~ 1 + x/2 it follows that
for small numbers ¢ we have A} &~ 2+ ¢/2 and Ay = ¢/2. Thus, condy(A) = 4g71,
which explains the sensitive behaviour of corresponding systems of equations to
perturbations.

Example 2.5 The matrix A = |: ] has the eigenvalues A1 = 1 +¢/2 &+

Geometrically interpreted, the condition number measures the distortion defined
by the linear mapping A, but is independent of uniform scalings.

Example 2.6 For a symmetric matrix A € R?*?, cond,(A) describes the ratio of
the radii of the ellipse A(N2(1)).

2.4 Learning Objectives, Quiz and Application

You should be familiar with various characterisations of the operator norm as well
as some concrete examples. You should be able to define the condition number and
explain its significance for the approximate solution of systems of linear equations.

Quiz 2.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

If a system of linear equations is well conditioned with respect to an operator norm,
it is also well conditioned with respect to any other operator norm.

For A, B € R"*" and A, i € R and an arbitrary operator norm || - || holds
IAA + puBl < AlAI+ gl BIl.

-2 4

For A = , |1Allcc = 6 and ||A]l; =9 hold.
05

For A € R™*" and B € R"*P, ker AB = ker A holds.

If A is an eigenvalue of A, then ||A|| < |A| holds for every operator norm.

Application 2.1 The routes of two airplanes flying in a plane are given by ¢
xt 4+ rvf with x?, v’ € R? fori = 1,2, where ||v'|| = 350km/h applies. Calculate
the point where the routes of the airplanes intersect and the respective times when
the airplanes arrive at this point. How large can measurement errors in determining
the initial positions xi,i =1, 2, be at most, so that the error in the calculation of the
intersection point is less than 5 km?



Chapter 3 )
Matrix Factorisations Check for

3.1 Triangular Matrices

Systems of linear equations can be solved in a canonical way when they are defined
by a triangular matrix. This motivates the factorisation of matrices using triangular
matrices. In this chapter, we follow the presentation in [10].

Definition 3.1 A matrix L € R"*" is called lower triangular matrix, if £;; = 0
fori < j. A matrix U € R"" is called upper triangular matrix, if U" is a lower
triangular matrix. A triangular matrix D € R"*" is called normalised, if d;; = 1 for
i=1,2,...,n.

Linear systems with a regular triangular matrix can be solved using backward
or forward substitution. The diagonal elements of a regular triangular matrix U are
non-zero because 0 # detU = uq1u22...uny.

Algorithm 3.1 (Backward Substitution) Let U € R™" be a regular upper
triangular matrix and b € R"*. Compute x € R" by:

n
fori=n:-1:1; x;, = (b,- - Z u,-jxj)/uii; end
j=i+1

Remark 3.1 In the i-th step, n — i multiplications and subtractions as well as one
division are performed, so that the total effort of the backward substitution is given
by

n—1

dd+2m—i)=n+2) k=n+@m—-n=n”

i=1 k=1
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The sets of regular lower and upper triangular matrices are groups.

Lemma 3.1 Let U,V € R™™" be upper triangular matrices. Then UV is an upper
triangular matrix and if U is regular;, then U™ is also an upper triangular matrix
with diagonal entries u;l i=1,2,...,n.

Proof Exercise. O

3.2 LU Decomposition

If a factorisation A = LU of a regular matrix A € R"*" into a lower (lower) and an
upper (upper) triangular matrix L € R"*" and U € R"*" is given, then the linear
system Ax = b can be solved in two steps:

(i) Solve Ly =b. (ii) Solve Ux = y.

This implies that Ax = (LU)x = L(Ux) = Ly = b. Perturbations are amplified
in the first step with cond(L) and in the second with cond(U), so in total with
cond(L) cond(U). The method is therefore only stable if cond(L)cond(U) =
cond(A) holds. This is generally not the case.

Example 3.1 For A = I:i (1)i| with 0 < & <« 1 we have A~! = |:(1) ! i| and we
—&

have ||Alloo = |A7 loo = 1 + € 50 condao(A) = (1 4+ &) & 1. A factorisation is

given by
10 e 1
L= , U= .
|:81 1:| |:0 —81:|

We have [Llloo = IL oo = 1+ e and |Ulloo = e, U Moo = 1+ 71,
thus

condoo (L) = (1 + e ~e2, condo (U) = (1 —i—e*l)/s ~ e,

Definition 3.2 A factorisation A = LU with lower triangular matrix L € R"*"
and upper triangular matrix U € R"*" is called LU decomposition of A. Itis called
normalised, if L is normalised, that is, only ones are on the diagonal of L.

Proposition 3.1 For a regular matrix A € R"™ " the following statements are
equivalent:

(i) There exists a uniquely determined normalised LU decomposition of A.
(ii) All upper left submatrices Ay = (a;j)1<i,j<k € Rk =1,2,....n, of A are
regular.
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Proof (i) — (ii).If A = LU and A is regular, then L and U are also regular,
because 0 # det(A) = det(L) det(U). Furthermore, all submatrices Ly and Uy are
regular, since for example det(L) = £11€2; ... ¢y, holds. Since for each submatrix
Ay, the decomposition Ay = LUy holds, the regularity of Ay follows.

(ii) == (i). For n = 1 the implication is clear and assume it is proven
for n — 1. Then there exists a uniquely determined normalised LU decomposition
A,_1 = L,_1U,_1. Let the vectors [bT, a,,] and [cT, a,, ] be the last column and
row of A respectively. To prove the statement for # it suffices to show that uniquely
determined vectors £, u € R"~! and r € R exist with

A1 b _ Ly-10[|Up-1u _ Ly, 1Uy—1 Ly_1u
' anm v 0 r ol o u+r]

Because A;,—1 = L,,—1U,_ this is equivalent to

b=L,_u, c= UT_IK, Ay = Tu+r

n

Since L,—1 and U,_; are regular, uniquely determined solutions # and ¢ exist,
which then uniquely determine r. O

Examples 3.2

(1) If A is positive definite, that is Ax - x > 0 for all x € R" \ {0}, or strictly
diagonally dominant, that is ijlwn’#i lajj| < laj| fori = 1,2,...,n,
then A has an LU decomposition.

(ii)) The matrix A = |:(1) (1)i| does not have an LU decomposition.

The LU decomposition of a matrix can be determined easily.

Lemma 3.2 If A = LU is a normalised LU decomposition of A, it follows for
1<i,k<n

i—1 i—1
aik =Mik+25ijujk, ari = Lriltii +Z€kjuji~
=1 j=1

Proof Because ¢;; = 0 for j > i and £;; = 1 we have

n i i—1
aix = Zeijujk = Z&'/Mjk = uik + Zgijujk
j=1 j=1 j=1
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and because u j; = 0 for j > i we have

n i i—1
aki = Zﬁkjuji = szjuji = Ljui + szjuji-
j=1 j=l1 j=l1

This proves the assertion. O

The formulas of the lemma can be solved for u;; for i < k and since u;; # 0
for £; for k > i. In the following algorithm, the rows of U and columns of L are
determined alternately.

Algorithm 3.2 (LU Decomposition) The matrix A € R"*" has a normalised LU
decomposition. The non-trivial entries of L and U are given by:

fori=1:n
i—1

fork=1i:n; uikzaik—ZEijujk; end
j=l1

i—1
fork=i+4+1:n; ¥ = (ak,- — Z@kjuji)/uii; end
j=1
end

Remarks 3.2

(1) The calculation of u;; requires i — 1 multiplications and subtractions, for £;; an
additional division is required, so that in the i-th step

m—i+D2—D+@m—i)QG—1)+1)=@n+5)i —4i> - 3n+2)

operations are carried out. By summing over i = 1,2,...,n the total
computational effort 2n3/3 + O(n?) is obtained.

(i) The entries of A can be successively overwritten by the non-trivial entries of L
and U, so no additional storage space is necessary.

3.3 Cholesky Decomposition

If A € R is symmetric, only n(n + 1)/2 many entries of A are relevant and
it is canonical to look for a factorisation A = LLT with a lower triangular matrix
L € R™". What is necessary for this is that A is symmetric and positive semi-
definite, because the factorisation implies that

AT= LT =LLT = A,

xTAx =xT(LLNx = (LTx)T(LTx) = |ILTx|3 > 0.
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If A or L is regular, it follows that A must be positive definite. In this case, the
conditions for the existence of the Cholesky decomposition are also sufficient and
imply their uniqueness.

Definition 3.3 The matrix A € R"*" is called positive definite if for all x € R"\ {0}
we have that xT Ax > 0. If only xT Ax > 0 holds for all x € R”, then A is called
positive semidefinite.

Lemma 3.3 Let A be symmetric and positive definite. Then det A > 0 and all
submatrices Ay = (aij)1<i, j<k are positive definite.
Proof Exercise. O

Definition 3.4 A factorisation A = LLT with a lower triangular matrix L is called
Cholesky decomposition of A.

Proposition 3.2 Let A € R"*" be symmetric and positive definite. Then there exists
a uniquely determined lower triangular matrix L € R"™" with A = LLT and
Lii >0fori=1,2,...,n.

Proof 1If n = 1, then a;; > 0 and the construction follows by choice of £1; =
J/ai1. The submatrix A, 1 = (a;j)1<i,j<n—1 is positive definite and symmetric.
Let us suppose that we have the factorisation A,_; = L,,_lLI_1 with the desired

properties. Let [bT, ann] be the last row of A. Then a vector ¢ € R"~! and a number
o > 0 are to be constructed such that

A,_1 b _ L,_10 LI—I cl_ LnflLI_l L,_1c
b Aun ' 0 « (Ln_lc)T az+cTe
holds. Because A,_; = L,,,lLI_ | this is equivalent to the equations L,_jc = b
andclc+a? = ann- Since L, has positive diagonal entries, L, 1 is regular and ¢

is uniquely determined. To be able to solve the second equation with a real number
o > 0, we must prove o =ay,, — cTe > 0. We have

T
det A = det [L”-Fl 0} det [L”—l C} = a’(detL,_)>.
c o 0 «o

Since det A > 0 and detL,,_; > O it follows a? > 0, that is, there exists a unique
o > 0, which completes the factorisation. O

The factorisations can again be determined successively.

Lemma 3.4 If A= LL", then it follows

o {fiikékk + Y5 ity fori > k,
e k—1 .
o2+ 2in E%j fori =k.
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Proof Since £;; = 0 for j > k, we have

n k
ajx = Zﬂijﬂkj = Zﬁijﬁkj
j=1 j=1

and this implies the claim. O
These identities can be solved for £ and £;.

Algorithm 3.3 (LLT Decomposition) Ler A € R"™*" be symmetric and positive
definite. The non-trivial entries of L are given by:

fork=1:n
k—1 ,
1
G = (apk — Z(f;%j) /
Jj=1 k—1
fori=k+1:n;, {Lj= (a,-k — Zﬂijﬂkj)/ﬁkk; end
j=1
end

Remark 3.3 The algorithm calculates the Cholesky decomposition with n3/3 +
O(n?) operations.

Example 3.2 The matrix A = bj| is positive definite if > 0 and ca — b*> > 0

a
X

hold. In this case, one obtains A = LLT with

L=

il 0
/a2 (¢ = b?/a)' 2]

The solution of a linear system can be determined using the Cholesky decompo-
sition as follows:

(i) Solve Ly =b. (ii) Solve LTx = y.

To show that this defines a stable algorithm, we use that the spectral norm of a
matrix M € R"*" is given by

||M||% = ,o(MTM) = max{|A| : A is an eigenvalue of MTM}.

If M is symmetric, then ||[M |2 = p(M).

Proposition 3.3 If A € R" " is symmetric and positive definite, then for the
Cholesky decomposition A = LLT, we have that

condy (L) = condy(LT) = (condz(A))l/z.
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Proof The symmetric but generally different matrices LTL and LLT have the same
eigenvalues, because since L is regular, we have forall x € R” and A € R

L'Lx=)x <= LL"(Lx)=A(Lx).

With p(LLT) = p(LTL) it follows |[L|l» = |ILT|2 and similarly [|[L~ !, =
IL~T||2. This implies condy(L) = condy(LT). With LLT = A and since A is
symmetric, we have

ILI3 = ILT13 = p(LLT) = p(A) = || Al2
and
IL73 = p(L7 L7 = p((LLHY ™) = p(A7Y) = 1471 |Jo.

With these identities, it follows overall

_ 2 —1n1/2 1/2
conda(L) = [ILIIIL ™ ]2 = A1 1A 3% = (conda(4)) /2.

This proves the claim. O

3.4 Learning Objectives, Quiz and Application

You should be able to define the LU and Cholesky factorisations, name sufficient
and necessary conditions for their existence and derive algorithms for practical
computations. You should be able to explain the effort and stability properties of
solving linear systems using these factorisations.

Quiz 3.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

If xT Ax < 0 holds for all x € R”, then A has an LU decomposition.
If A has an LU decomposition and A is symmetric, then U = LT.

If A is invertible with Cholesky decomposition A = LLT, then L~ L defines a
Cholesky decomposition of A~!.

If a Cholesky decomposition A = LLT is given, then the linear system Ax = b can
be solved with the effort O(n?).

If A is symmetric and invertible, then A is positive definite.

Application 3.1 For the evaluation of financial derivatives such as options, the sim-
ulation of multidimensional Brownian motions is required. For this, n-dimensional
random variables are needed that follow a correlated normal distribution, that is
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X ~ N(u, X) with an expected value # € R” and a symmetric, positive definite
covariance matrix X € R"*". This means that

Yij = E[(Xi — ui)(Xj — )]

and u; = E(X;) fori,j = 1,2,...,n. If Y is a standard normally distributed
vector random variable, that is ¥ ~ N(O, I,,), and ¥ = LLT is the Cholesky
decomposition of X, then by means of X = p 4+ LY a random variable with
X ~ N(u, Y) is obtained. In MATLAB a realisation of X can be generated using
pseudo-random variables by X=mu+L*randn(n, 1). Use n = 3,

110 -5
EZ 151 5 IJ,: O )
015 5

generate 1000 realisations of the variable X and display the histograms of the
components X; using the command hist in the range [—10, 10] fori =1, 2, 3.
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Elimination Methods Chock or

4.1 Gaussian Elimination Method

Systems of linear equations appear in various areas of applications. They allow us
to determine (approximately) internal quantities from certain external, measurable
quantities, which are often not directly accessible.

Example 4.1 Can the total value of coins in a jar be determined by their weight and
volume?

The Gaussian method successively transforms a linear system into an equivalent
system with an upper triangular matrix. We follow the presentation in [10] in this
chapter.

Algorithm 4.1 (Gaussian Elimination) Ler A € R"*" and b € R".

(1) Set AV = A and bV =band k = 1.

(2) The matrix AW satisfies afj]f) =0forl <j<k—1landi > j+ 1 andwith
lix = al.(,];)/algi) fori =k 4+ 1,...,n the normalised lower triangular matrix
L% e R™™ is defined as follows:

P (7] 1
ay ... o ayy,
) _ © ® ® _ 1
A" = ay --.a |, L= i
(k) (k) ) ’
L A, - Ann | — 1
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Then for AC+D = L® A® it holds that al;*" = 0 for 1 < j < k and
i>j+1,thatis

(D) O
ay ... Seeoag,

(k) (k)
WGy
i 1,k+1 - Yt 1on

A+

(k+1) (k+1)
| Ayl - Ann

Also set b*+1) = [ ©OpK),

Stop if k + 1 = n; otherwise increase k — k + 1 and repeat step (2).

Proposition 4.1 If A € R"*" is regular, then the Gaussian method is feasible if and
only if A has an LU decomposition. The method then provides the normalised LU
decomposition with U = A™ and L = (L(”fl) e L(l))fl. The modified right-
hand side y = b"™ is given by y = L™'b and the solution of the linear system
Ax = b is the solution of the system Ux = y.

Proof

®

(i)

Assume that the matrix A has an LU decomposition. The Gaussian method is
implementable, provided a,(cl,? # 0 holds at every step. We consider the left,
upper k X k submatrix A,(ck) of AW = L*=D 1A thatis

(M a0

a“ (2) %121)

A0 _ as o
k= . )

®

gk

With the left, upper submatrices L\’ of L) and A of A then
(k) _ y(k=1) (1)
Al =Ly oLy A

Since the normalised triangular matrices L,((j ) are regular, A,((k) is regular exactly

when Ay is regular. This is given by the result on the existence of the LU
s . (k) 1 () (k) (k)

decomposition. Thus, it follows that 0 # det A} = a;, a,; ...ay soay #0

and the procedure is well-defined.

Conversely, if the Gaussian method is feasible, then U = AM =

L®=D LM A is an upper triangular matrix and it suffices to show that
L= (LD, L(l))f1 is a normalised lower triangular matrix. With the k-th
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canonical basis vector ¢, € R” and
_ T
L =10,...,0, €ky1ks---s Lkl
L® = I, — tre] . With e] ¢, = 0 it follows
LOU, +tre]) = (I —trel )L +rel) = I, — bre] +tref — el tre] = 1,

that is (L(k))_l =1+ Eke;{. With complete induction it follows

L=, 2O =)~ e =y, +Zz, e]
or
1
{1
L= .
gnl en,n—l 1

This shows that A = LU is the normalised LU decomposition of A.
O

Remark 4.1 The proof shows that no additional calculations are required to
determine L.

For the implementation of the Gaussian method, the matrices L® do not need to
be explicitly set up.

Algorithm 4.2 (Gaussian Method) Let A € R" " be an LU-decomposable
matrix and b € R". Calculate the LU decomposition and the vector y = L™'b
by:

fork=1:n-1

fori=k+1:n; L= a,(;]f)/a;i],?; b§k+l) = b(k) - Kikbl(ck);
forj=k+1:n; al(fﬂ) l.(f) - Z,ka,?;), end;
end
end

Remark 4.2 The algorithm provides the non-trivial entries of the LU decompo-
sition of the matrix A and the modified right-hand side y with (2/3)n® + On?)
computational steps. The entries of U are given by u;; = a( D The matrix A can be

overwritten with the calculated quantities.
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4.2 Pivot Strategy

The Gaussian elimination defined above is not feasible for every matrix and can lead
to instabilities.

Example 4.2 The system of linear equations

J[]= L

11] [x] |[2

is well conditioned for 0 < ¢ < 1/2 and has the solution x; = 1/(1 — ¢)
and x» = (1 — 2¢)/(1 — €). The first step of the back substitution in the
Gaussian elimination initially provides an approximation for x», which for very
small numbers ¢ considering rounding is given by X, = 1. If this result is used
to calculate X in the equation £X] + X = 1, then the result is X; = 0, which is not

a good approximation of the correct value x;. However, considering the equivalent
system of equations resulting from a row swap

)=

no instabilities occur in the Gaussian elimination.

The avoidance of instabilities in Gaussian elimination is achieved through a pivot
search. For this, the above procedure in the k-loop before the i-loop is extended as
follows:

+ determine p € {k, ..., n} with a0} | = maxi— . laf|;

e swap the rows p andk in LA(k) |b(k)] and obtain [X(k) |3(k)];
« eliminate entries in [A®|5®] and obtain [A*+D |p*+D],

Practically, the swapping is not actually performed, but corresponding indices are
renamed by defining a vector 7 € N” that describes the swaps:

e initialise w withzt = [1, ..., n];
* if the rows k and p are to be swapped, then swap 7 (k) and 7 (p).

The swapping of rows can also be represented with a permutation matrix. It holds
that A® = PO A® where P® is obtained by swapping the rows p and k in the
identity matrix I,,.

Remark 4.3 Instead of the column pivot search, a total pivot search can be
performed, in which case columns of the remaining matrix are also swapped.
However, this leads to a high effort.
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Proposition 4.2 If A € R"*" is regular and b € R", then the Gaussian method
with pivot search is feasible. It provides the normalised LU decomposition PA =
LU with |¢;;| < 1 forall1l < 1i,j < n as well as the modified right-hand side
b™ = L=1Pb. Here, P = P~V .. pD).

Proof The method is not feasible exactly when in the k-th step with 1 <k <n —1,
it holds that |ag;()| = maX;=k,..n |a,.(lk<)| = 0, that is, the k-th column of the matrix
A® has only vanishing entries from the diagonal element onwards,

r (D @1 A

ay .- cee agy,
k=1) (k=1 (k=1
Ak — U—1k-1 %1k - —1.n
- 0 % a® |
kk+1 - Y
: o
L 0 a,(l),)(+1 a,(m) N

thus the first k columns of A% are linearly dependent and consequently A% is not
regular. But then A cannot be regular either, because A®) arises from A through

regular transformations. This is a contradiction and it follows max;—x . |ai(],:)| >
0. For the coefficients of L, £;; = ai(,]f) /ag;() holds and after choosing al(ﬁ() it follows

that |€;;] < 1. To derive the decomposition PA = LU, we note with (P%)~1 =
P®  that

A =4,
A Z L pM AW ) p) 4

A® = LOpOAR) — [@p@ [ p() 4 = 2 p@ LD p@][p@ p]4,

AD LB pB3) 43
— L(3)[P(3)L(2)P(3)][P(3)P(2)L(1)P(2)P(3)][P(3)P(2)P(1)]A
and corresponding identities for A®, ..., A®™. With
70 — p=D) p@=2)  pk+D K pk+l)  p(r=2) pr—1)
it holds

AW =T0=D  TMpa.
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The matrix A® = U is an upper triangular matrix and with L&) = 1, — Ekez it
follows that

o -
Tk _ R
—Lit1,k
L b L
_ (T (=1 RONE . . .
and L = (L ...LMW) ™" is a normalised lower triangular matrix. O

Remarks 4.4

(i) To solve Ax = b using an LU decomposition PA = LU, one solves the
systems of equations Ly = Pb and Ux = y. In the modified Gaussian method,
y = b"™ = L= Pp and one solves Ux = b™.

(i) In an implementation, the vector 7 must be created to obtain U and L from
the overwritten matrix A, which means additional storage space is needed. The
effort for the Gaussian method with pivot search also amounts to 213 /34O (n?)
operations.

4.3 Learning Objectives, Quiz and Application

You should be able to motivate and apply the Gaussian elimination method and
explain its relationships to LU decomposition. You should be able to illustrate the
importance of pivot strategies.

Quiz 4.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

With the Gaussian elimination method, the inverse A~! of an LU decomposable
matrix A can be determined with the effort O(n%).

If A € R"™" is positive definite, no pivot search is necessary to perform the
Gaussian elimination method.

IfFLD, L@ . L@=D are the elimination matrices in the Gaussian elimination
method for a system of equations with system matrix A, then the factor L in the LU
decomposition of A is given by L = LOL® | =D,

The pivot search prevents the occurrence of cancellation effects.

Permutation matrices are obtained by row swaps in the identity matrix.
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Application 4.1 The combustion of glucose is described by the chemical reaction
equation

x1 CgH1206 + x2 O —> x3COs + x4 H,O
A minimal integer solution x = [x, x2, ..., x4]T # 0 1is to be determined, such that

the same number of atoms of each involved substance is on the left and right side.
How can the Gaussian elimination method be modified to construct a solution?



Chapter 5 ®
Least Squares Problems Qe

5.1 Gaussian Normal Equation

In many applications, overdetermined systems of equations occur, that is for A €
R™" withm > n and b € R™, a vector x € R” is sought such that

Ax =~ b.
The problem is generally not exactly solvable, since more conditions than variables

can occur.

Example 5.1 For measurement data (t;, y;),i = 1,2, ..., m, a number ¢ € R is
sought with y; = ct;. The number ¢ then describes the slope of a straight line, which
approximates the pairs of points as well as possible, see Fig. 5.1.

Definition 5.1 Given A € R"™*" and b € R™, the least squares problem is defined
as:

Minimise x > ||Ax — b||3

For x € R", the vector r = b — Ax is the residual of x.

The method is referred to as method of least squares, due to the presence of the
Euclidean norm.

Proposition 5.1 The solutions of the least squares problem are exactly the solutions
of the Gaussian normal equation

ATAx = ATh,
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Fig. 5.1 In linear regression
problems, an approximation
of given measured values by a
straight line is sought

Fig. 5.2 Abstract solution of
the least squares problem
using the decomposition

b= Ax +r withr € ker AT

and, in particular, a solution x € R" exists. If z € R" is another solution, then
Ax = Az and the associated residuals agree.

Proof According to results of linear algebra, it holds
R™ =ImA +ker A"

and this decomposition is orthogonal. A proof follows from considering the set
(Im A)*L. Thus, for b € R™ uniquely determined vectors y € Im A and r € ker AT
exist with y -7 = 0 and b = y + r. Furthermore, an x € R" exists with y = Ax, see
Fig.5.2. In all it follows

ATh=ATy + ATr = ATAx + 0= AT Ax,

that is, x solves the normal equation. To show that x is also a solution of the least
squares problem, let z € R” be arbitrary. With r = b — Ax and ATr = 0 it follows

Ib — Az[l3 = |I(b — Ax) + A(x — )3
= |Ib— Ax|3+2r - Ax — 2) + [ AGx — D)3
= 16— Ax3+2(ATr) - (x —2) + [AGx — 2113
= [Ib— Ax|} + [|AGx — 2)II3
> |lb— Ax|3.

So, x is a minimum point and thus a solution of the least squares problem. Equality
holds exactly when A(x —z) = 0sox —z € ker A = ker AT A holds, which is to
say z is a minimum point and fulfils the normal equation. In particular, it follows
that A(x — z) = 0 holds, when z € R” is another solution. m]

Remark 5.1 The identity ATr = 0 states that r is perpendicular or normal to the
columns of A.
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Lemma 5.1 The matrix AT A is symmetric and positive semi-definite. It is positive
definite if and only if ker A = {0}, that is, when A is injective or the column vectors
of A are linearly independent, i.e. rank A = n if m > n. In this case, the solution to
the normal equation is unique.

Proof We have (ATA)T = ATA and

xT(ATA)x = (Ax)T(Ax) = |Ax]5 >0
with equality if and only if Ax = 0. This implies the assertion, since positive definite
matrices are regular. O
Remark 5.2 The condition number of ATA is generally larger than that of A,

because for m = n and a regular matrix A € R"*" we have

Amax (ATA)

—_— = condz(A)z,
)"min (ATA)

condy(ATA) = |ATAL|(ATA) 2 =

so condy(ATA) > conda(A), since conda(A) > 1.

Because of this observation, least squares problems are not solved using the
normal equation.

5.2 Householder Transformations

Since the Euclidean norm is invariant under rotations, we have
1Q(Ax —b)|2 = [|[Ax — bl2

for every rotation O and more generally for orthogonal matrices. We will try to
construct an orthogonal matrix Q such that Q A has a generalised upper triangular
shape, which allows a simple solution to the least squares problem.

Definition 5.2 The matrix Q € R*! is called orthogonal if QT Q = I,. The set of
orthogonal matrices is denoted by O (£).

Lemma 5.2 Forall P,Q € O(), PO € O(), 0~ ' = Q0T € 0(), |0x|2 =
Ixll2 for all x € R® and cond>(Q) = 1.

Proof For all x € RY we have

10x13 = (0x)T(Qx) = xT(QTQ)x = x"x = |Ix|3
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Fig. 5.3 Householder
transformations define
reflections on a plane

Pz=w—v
T w=Pw

Z=w—+vV

and thus || Q|| = 1. From the identities

00" =(oN" =1/ =1,
0o =o' =T T=T=1,
POT(PO)=0Q"(PTP)O=0"0=1

it follows that PQ € O() and Q! = Q7 € O(¥). These properties imply
condx(Q) = [ Q21107 2 = L. O

Definition 5.3 For v € R¢ with ||v], = 1 the matrix P, = I, — 2vv! is called a
Householder transformation.

Householder transformations realise reflections on the plane perpendicular to v,
see Fig.5.3.

Lemma 5.3 Every Householder transformation P, = Iy — 2vv" is symmetric and
orthogonal. It holds that Pyv = —v and Pyw = w for all w € R with w - v = 0.

Proof Exercise. O

Every vector x € Rf\ {0} can be mapped to a multiple of the canonical basis
vector ¢ € RY with a Householder transformation in R¢.

Lemma 5.4 Let x € R\ {0} and x ¢ span{e} and define, with o = sign(x}) if
x1 # 0 and o = 1 otherwise, the vector v € Rt by

_ X +ollxll2er
|x + ollxll2er Hz

Then it holds
Pyx = (I — 2vv)x = —o||x|2e1.
Proof The matrix P, remains unchanged when x is replaced by X = ox/||x||2, and

from P,X = —e; it follows that P,x = o|x|2P,X = —o||x]||2e1. Therefore, it
is sufficient to consider the case ||x|l» = 1 and o = 1. Since x ¢ span{e;}, v is
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well-defined and it holds ||v||» = 1. With ¥ = x + e it holds due to | e; ||% = ||x||%,
that

WTx =2(x+e) x = |x+el3 =713

and thus due to v = v/||7]|2

~T
T vV X ~
Pox=U—2vv' )x=x—-2v—=—=x —0|V|]2 =x — V= —ej.

vl

This proves the lemma. O

Remark 5.3 The introduction of o avoids cancellation effects.

5.3 QR Decomposition

With the help of Householder transformations, we will step by step transform the
first columns of submatrices of A to multiples of canonical basis vectors e of
corresponding length and thus generate an upper triangular structure.

Proposition 5.2 Let A € R™ " with m > n and rank A = n. Then there exist
Q € O(m) and a generalised upper triangular matrix R € R™*", that is r;; = 0
fori > j, such that

ri1ri2 ... rn
rp ... 1My

A= QR: Q
nn

Furthermore, |riij| > 0 for all 1 < i < n. The factorisation is called QR
decomposition.

Proof 1In the first step, we set A = A. Let x = a; € R™ be the first column of A;.

If x is a multiple of e, we set Q1 = I,,,. Otherwise, we define Q1 = P, as in the
previous lemma. It follows Qa1 = ri1e; with |r11| = ||Q1a1]l2 = |la1ll2 > 0 and
thus

T
ri1 r

Al = 1
014 [ AJ
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with a matrix A, € R"—Dx@=1 gp4 4 vector ry € R"~! In the second step,
let @y € R™~! be the first column of A, and 0, € R(’”_l)x(’”_l) € Om—1)
be the identity matrix 7,1 or a Householder transformation Qz = Py, such that

Qzaz = rye; € R™ 1 with || = ||Q2a2|| = |laz|l2 > 0. This implies
T
~ rn T
Ay = 2
024, [ AJ

with a matrix A3 € R™=2x1=2) and a vector r, € R*~2 and it follows

;
QQA—[1~}QA—[”1 1 ]— M
214 = Q2 14 = Q2A2 221423

The first two rows remain unchanged in the following steps. The matrix Q» is
orthogonal, and, in particular, it is the PLouseholder transformation for the vector
v = [0,9]", where ¥ = 0 in the case Q> = I,,_|. After n steps, we obtain the
factorisation

QnQn—l ce QlA = R.

Since each Householder transformation is orthogonal and symmetric, it follows that
Q_ = QT Q;for j =1,2,..., n. This results in

(0nQn-t1...0N' =070, .. 0 =0]0) ... 0N =010,... 0,

and with Q = Q10> ... O, the claimed factorisation A = QR follows. The entries

rii, i = 1,2,...,n, of R satisfy |r;;| = |lai|l2 # O, since A would otherwise not
have full rank. a
Remarks 5.4

(i) In the case m = n, the factorisation is uniquely determined up to the sign
of the diagonal entries of R, because if A = QR = Q’'R’, it follows that
E = (0)7'Q = R'R™! is an upper triangular matrix in O(n). Since E~!
is an upper triangular matrix, the identity E" = E~' can only hold, if E is a
diagonal matrix with diagonal elements in {#-1} and thus it follows Q = Q'E
and R = ER’.

(i) The Householder transformations are not realised via matrix-matrix multipli-
cations, because with w = ATy

A=y —200)A=A—-200w"A) = A —2vw'.

(iii) The vectors v;, i =1, 2, ..., n, which define the Householder transformations
can be stored in the lower triangular part of A, where v; = 0 if Q; = I.
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Setting v; = [0, v;] € R™,i = 1,2, ..., n, italso holds

0 = [[m - 203)).

i=1

Algorithm 5.1 (O R Decomposition) Let A € R"™*" with rank A = n. Initialise

Al=Aandi = 1.

(1) Let a; € R™F! be the first column of the right lower block A; €
RO=i+DX=i+1) ¢ 4.

(2) If a; = ey, then continue with (5).

(3) Define vV = a; + ol|a;|2e1 and v =7/||V]>.

(4) Replace the block A; with A; — vw" where w = 2A;rv.

(5) Stop ifi = n; otherwise increase i — i + 1 and repeat step (1).

Remark 5.5 In the i-th iteration step,

e 4(m — i+ 1) 4+ 4 operations are required to calculate v,
e (m—1i+42)(n—1i+ 1) operations are required to calculate w,

e (m —1i)(n — i+ 1) operations are required to calculate A; — v’

are needed. In total, the effort to calculate the factorisation is thus 2mn? — (2/3)n> +
O(mn). In the case m = n, the calculation is twice as expensive as that of the LU
decomposition.

5.4 Solution of the Least Squares Problem

We use the QR decomposition to construct a stable method for the least squares
problem.

Proposition 5.3 Let A € R™*" with m > n and rank A = n. With the QR
decomposition A = QR and

T, _|c T, _»_|R
oefi ner=i

with ¢ € R", d € R™"™" and an upper triangular matrix E € R"™ " the solution of
the least squares problem defined by A and b is given by Rx = c.

Proof With ||Qz|l2 = ||zl|2 for all z € R™ and 070 = I, it follows that

HRHE

2
= |[Rx —cl5 + IdI3.

Ib— Ax|3 = [Q(QTh — QT AX)|} = ‘
2
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Fig. 5.4 Transformation of
the least squares problem
using the Q R decomposition
of A

Since rank A = n, R is regular. The right-hand side is obviously minimal for x =
R le. a

A geometric interpretation of the use of QR decomposition for the solution of
the least squares problem is shown in Fig. 5.4.

Remark 5.6 From Q € O(n) it follows for regular matrices A € R"*", that
condy(R) = condy(A). The QR decomposition thus defines a stable algorithm
for solving least squares problems.

5.5 Learning Objectives, Quiz and Application

You should be familiar with applications that lead to least squares problems, and
you should be able to derive the Gaussian normal equation and its most important
properties. You should be able to explain the construction of the Q R decomposition
of a matrix and describe its significance in solving least squares problems.

Quiz 5.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

The least squares problem always has a solution.
If rank A = n < m, then AT A is invertible.

A Householder transformation is defined by 1, — 2(v"v)~2vv", provided
v € R" \ {0} holds.

If Q is orthogonal, then both the row and column vectors of Q are pairwise
orthogonal.

For every vector norm || - || on R”, every orthogonal matrix Q € O (n) and every
vector x € R”, || Qx| = ||x|| holds.

Application 5.1 Theoretical considerations of two physical processes lead to the
assumption that the quantities y and ¢ are related in the form y(¢) = co+c 1t +ort?+
c313 and the quantities z and v follow the relation z(v) = c¢/v. Experiments yield
measurement data (#;, y;) and (v;, z;) fori = 1,2, ..., m. Formulate least squares
problems for the approximate determination of cg, ¢y, ..., ¢3 and ¢ and set up the
corresponding Gaussian normal equations. How can the validity of the assumption
about the relationship be assessed after calculating the coefficients?



Chapter 6 ®
Singular Value Decomposition Qe
and Pseudoinverse

6.1 Singular Value Decomposition

The symmetric and positive semidefinite matrix ATA € R"" for A € R"*"
plays an important role in the least squares problem. It is diagonalisable and there
exists an orthonormal basis consisting of eigenvectors vy, va, ..., v, with associated
eigenvalues

AMZA =2 Z2hp>hpp1 = =4 =0
with 0 < p < n, where eigenvalues are listed multiple times if necessary according

to their multiplicity. Fori = 1,2, ..., p we define u; = ){l/zAvi. Forl <i,j<p
then

wluj = 172052 AT (Avj) = (a0l (AT Av))
= x0T Gy = 2 0un ) Ve = 55
The vectors (uy,us,...,up) thus form an orthonormal set of vectors in R™.
We supplement it with vectors (#pi1,#p12,...,U,) to an orthonormal basis
(uy,up, ..., uy) of R™. We have
ATup =27 AT Ay =20, i=1,2,...,p.
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From ker ATA = ker A and n = dimker A + dimIm A we deduce the identity
ImA = span{ui,uz,...,up} and thus {upyq,...,un} = (ImA)J- = kerAT
respectively

ATu,'=O, i=p+1,...,m.

Using 0; = Al-l/z, i=1,2,..., p, we obtain the following proposition.

Proposition 6.1 Let A € R™*". Then there exist numbers o1 > 02 > -+ > 0, > 0
and orthonormal bases (u;)i=1,...m of R™ and (v;) j=1,...n of R" with the properties

T .
Av; = oju;, A'u;=ojv;, i=1,2,...,p,

Avj =0, ATuk=O, j=p+1l....n, k=p+1,...,m.

The numbers oiz, i=1,2,...,p, are exactly the non-zero eigenvalues of ATA and
are called singular values of A. For

U=T[ui,....,uy] e R™", V=[v,...,v,] € R"*"

we have that U € O(m) and V € O (n) and with

o1 0...0
0,0...0
3 = P RM*n
0...00..0|€
(0...00...0]

it follows
14 p
A=UZVT =) owp], AT=vITUT =) o,
i=1 i=1

The factorisation is called singular value decomposition (SVD).

Proof The statements follow from the construction and the application of the
factorisations to the orthonormal bases. O
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6.2 Pseudoinverse

With the help of the singular value decomposition, the concept of the inverse matrix
can be generalised to non-regular and non-square matrices.

Definition 6.1 If A = UX VT is the singular value decomposition of A and X+ ¢
R™*™ is defined by

afl 0
E+ — T . 5 e Rn Xm’
ap_l
0O ... 00
then A* = VEZHUT = Y7 o7 'wu] € R™™ is called pseudoinverse or Moore—
Penrose-Inverse of A.
Remarks 6.1
(i) By construction of A* we have ker A* = span{upi1, ..., u,} = ker AT and
Im A" = span{vi, v2, ..., v,} =Im AT,

(ii) The matrix A" is the uniquely determined solution in X € R" ™ of the
algebraic equations

AXA=A, XAX=X, (AX)!=AX, (XA =XA.
For example, because U'u = I, and viv = I,,, we have that
AtAAt = wztuhwzsvhwvztuh=vztzztuT
=vytuT = At

With the pseudoinverse, the least squares problem can be solved.

Proposition 6.2 The vector AYb is, among all solutions of the least squares
problem, the one with the minimal norm.

Proof With ATAAT = AT and Remark 6.1 (i) it follows

AATb—bekerAT =kerA',
that is ATA(ATh) = ATb or, that Ath is a solution of the Gaussian normal
equation. If z € R” is another solution, then because ker ATA = ker A, we have

that

ATAATh—2) =0 < AATh—2)=0.
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With w = Atb — z € ker A it follows from Ath € ImA*T = (ker A)L, that
(A*h) - w =0and forz = ATh — w we get

1213 = [IATDBI3 + [w]? > |ATD]3.

Thus, ATb is a solution with minimal norm. ]

Remark 6.2 If rank A = n < m, then it follows from ATh = (ATA)~1ATb for all
b e R™, that At = (ATA)~'AT and in particular At = A~ if n = m.

6.3 Learning Objectives, Quiz and Application

You should be able to describe the ideas for the construction of the singular value
decomposition of a matrix and to concretise the definition of the pseudoinverse as
well as its relation to least squares problems.

Quiz 6.1 Decide for each of the following statements whether they are true or false.
You should be able to justify your answer.

The squares of the singular values of a matrix are the eigenvalues of AAT.
For the first singular value o1 of A, o1 = ||Al|2 holds.

If A € R™" is symmetric, then the singular value decomposition defines a
diagonalisation of A.

A solution to the least squares problem is defined by the solution of the system of
linear equations A*x = b.

There exists a solution z € R” to the least squares problem with the property
IA*bl2 = |zll2-

Application 6.1 The matrix A € R™*" describes certain data such as the greyscale
of the pixels of an image. To compress the data, the singular value decomposition

A= Zf:l oiuiv;r is first determined. For ¢ > Oandi = 1,2, ..., p, let
~ oi, ifo; >,
o =

0, ifo; <e,

and

Show that

and rank A <rank A.
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The Simplex Method ST

7.1 Linear Programs

In applications such as the minimisation of production costs, linear optimisation
problems with linear inequality constraints arise. To formulate such problems
succinctly, we use the notation a < b for vectors a,b € R™, if q; < b; for
i =1,2,...,m. In this chapter, we follow the presentation in [12].

Definition 7.1 A linear program is an optimisation problem
Minimise g(y) = pTy subject to the constraint Uy < d

with given p € RY, U € R7*¢ and d € RY. A linear program is in standard form, if
it can be written in the form

T

Minimise f(x) = ¢ x subject to the constraint Ax = b, x >0

with given ¢ € R", A € R™*" and b € R™.

Remark 7.1 By introducing additional variables, any linear program can be trans-
formed into standard form. Here, one decomposes y; = v; — w; with v;, w; > 0
and writes an inequality Uy < d as an equation Uy + z = d with z > 0. The new
variable is then the vector x = [v, w, z].

Definition 7.2 The feasible set of a linear program in standard form is M = {x €
R": Ax = b, x > 0}.

Remark 7.2 The feasible set is convex and can be empty, a single element, and
bounded or unbounded, see Fig.7.1.
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Fig. 7.1 The feasible set M
of a linear program is the
intersection of convex sets

Definition 7.3 A point x € M is called a corner, if it cannot be written as a proper
convex combination in M, thatis forall z,y € M and A € (0, 1) withx = Az +
(1 —=A)yitfollowsx =y = z.

We will always assume that M is non-empty. Without proof, we use the following
results.

Proposition 7.1 Assume that the feasible set M is non-empty and bounded.

(i) The set M has finitely many corners vy, 2, ...,y € M and these span M,
thatis M = {x = Y j Ay o2 € [0, 10, Y A = 1),

(ii) The linear program has a solution and the minimum is attained at a corner
of M.

Remark 7.3 If M is unbounded, the problem can be solvable or unsolvable.

To solve a linear program, it is thus sufficient to consider corners. The set of
possible solutions is thus reduced to finitely many points.

Definition 7.4 The index set I, of a corner x € M consists of the indices of the
non-zero components

Ixz{ie{l,Z,...,n}:xi >O}

and let J, = {1,2,...,n}\ L. The sets I, and J, are considered ordered and for a
vector z € R” and the matrix A € R™*" with column vectors (q; : i =1,2,...,n)
we denote

2, =i €ly), zy,=(zj:j€ty),
A[x = (a,- = Ix), A‘]X = (aj ] S Jx).

When it is clear from the context which corner is meant, the index x is omitted
from I, and J,. For z € R" we then have

Az=Arz1 +Ayzy.

Proposition 7.2 The following statements apply to the corners of M :

(i) A point x € M is a corner if and only if the column vectors (a; : i € I,) are
linearly independent.
(ii) Each corner x € M is uniquely determined by its index set.
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Proof

®

(ii)

If x is not a corner, then there exist y,z € M \ {x}and A € (0, 1) with x =
Ay + (1 —X)z.Wehave (y —z);y =0withJ ={1,2,...,n}\ T and I = I,,
since from x; = 0 and y,z > 0 also y; = z; = 0 follows. This implies
0=b—b=A(y—z) = A;(y — z); and because (y — z); # O the linear
dependence of the columns of the matrix A; follows. Conversely, if the columns
of Aj are linearly dependent, then there exists y % 0 with A;y = 0 and y can
be completed by zeros to y € R"” with y; = J. Since x; > O foralli € I,
then with ¢ > O sufficiently small, we have that x &= ¢y > 0. Furthermore,
Ay = 0 and thus A(x £¢y) = b,s0x £ ey € M. With A = 1/2 then
x = Ax +¢ey)+ (1 — A)(x — ¢ey) is a true convex combination and x is not a
corner.

If x is a corner, then according to (i) the column vectors of A; are linearly
independent and from b = Ax = Ajx; it follows that x; is uniquely
determined.

0

The number of equality constraints Ax = b defined by A € R™*" in a linear

program in standard form is usually less than the number of unknowns, that is,
m < n.

Definition 7.5 A corner x € M is called degenerate if |I,| < m holds. Otherwise,
it is called non-degenerate.

Remark 7.4 If x € M is a non-degenerate corner and rank A = m, that is, the
constraints are linearly independent, then |I,| = m and the matrix A; € R™*™ ig

inv

ertible.

Example 7.1 The corner x = [0, 117 with index set I, = {2} is non-degenerate for

A = [0, 1] and degenerate for A = |:O 1].

02

7.2 The Simplex Step

To

solve a linear program, it is sufficient to consider the corners of the feasible set.

Starting from a corner, a new one is constructed so that the function value is reduced.
Let rank A = m and M be non-empty. We proceed as follows:

ey
@

Let x € M be a corner and if it is degenerate, let I, be supplemented to an
m-element set I so that Ay is regular. Let J = {1,2,...,n}\ 1.
For all z € M it follows fromb = Az = Ajz; + Ajzy, that

2 =A'b— AT Az, (7.1)
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3

“

&)

(6)

7 The Simplex Method

Thus, the components with respect to I are uniquely determined by those with
respect to J; in particular, due to x; = 0, it follows that x; = Al_lb. For the
function value f(z) = ¢z it follows

clz= c}—m + C}-ZJ = c}-(Al_lb — AI_IAJZJ) + C}—ZJ

= c-Ier + (c}- — c-,rA;]AJ)zJ =c'x + (cj — A}-A;TCI)TZJ.
Withuy; =cj — A}AI_TCI we deduce that

f@ = f) +uyzy. (7.2)

Due to z > 0, a reduction of the function value is only possible if # ; is negative
in one component. Otherwise, x is already the solution to the problem.
Let u, < O foranr € J. We consider the vector z defined via

2j=0,jel\{r), z=t

with a number ¢ > 0 to be chosen. We use (7.1) to supplement z; to a vector
z € R" that satisfies Az = b, that is we set

7] = Al_lb — Al_lAij = X7 — tAl_lar.
Here, a, is the r-th column of A. With (7.2) it follows

f@) = f&x)+tu, < f(x).

When choosing ¢, it is still necessary to ensure z > 0.

Letd = Al_lar, sothat z; = x; — td. If d < 0, then z > 0 for any choice of
t > 0and f(z) > —oo fort — oo, thatis M is unbounded and the problem is
not solvable.

Letd; > O forani € I. The condition z > 0 is fulfilled, as long as

zi=x;—td; >0

holds. To maximally reduce the function value f(z) and at the same time ensure
z > 0, we choose
Xi Xs

t= min — = —.
iel,d;>0 d; dy

This implies in particular z; = 0. If x is non-degenerate, then due to x; > 0 for
all i € I, it follows that # > 0 and the function value is genuinely reduced.

We show that z € M is a corner. We have I, C 1" = (I, \ {s}) U {r} and
according to Proposition 7.2 it suffices to show, that the vectors (a; : i € 1Y)
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are linearly independent. Let y; € R, i € I"°", such that

0= Z vidi = Z vidi + Yrar

ie[new iel\{s}

holds. Withd = Al_la, ora, = Ajd it follows

0= Z viai + vr Zdiai = Z Vi + vrdp)a; + yrdsas.
iel\{s} iel iel\{s}

Since the vectors (a; : i € I) are linearly independent, it follows y; + y,d; =0
fori € I\ {s} and y.d; = 0. Because d; # O this implies y; = 0 for all
i € I"" . Thus z is a corner.

We have proven the following result.

Proposition 7.3 Let rank A = m and x € M be a corner. With I, C I, such that
A; € R™ js regular, let J = {1,2,...,n}\ L. Ifu = cj — A;AI_TC[ > 0,
then x is the solution of the problem. If u, < 0 for some r € J, then define d =
Al_lar. If d < 0, then the problem is unsolvable. If d; > 0 with s € I, such that
f = minjes 4,0 Z—i = Z—z, then, by setting

xi —tdi, i€l\{s}
; =1t, i=r,

0, ie(J\{rh) Ulis}
a corner x"% of M is defined with the property

F&") < f).

If x is non-degenerate, then the inequality is strict.
Remarks 7.5

(i) The simplex method consists in the repeated application of the simplex step,
until the case d < 0 for unsolvability occurs, the sufficient termination criterion
u > 0 for a corner is fulfilled or a corner is passed through a second time. Since
there are only finitely many corners, the method always terminates.

(i) So-called cycles can occur, i.e. one returns to a corner already visited without
a reduction occurring or the minimum being reached. However, this is not
observed for practically relevant problems.

(iii)) The newly constructed corner x"°* can be degenerate, even if x is non-
degenerate.

(iv) There are (;’1) many corners, so in the worst case O(n!) many corners would
have to be passed through to reach the minimum. In practice, only polynomial
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effort with respect to n is observed, but there are examples where 2" many
simplex steps are required.

(v) The algorithmic construction of a corner for the initialization of the method is

by no means trivial.

7.3 Learning Objectives, Quiz and Application

You should be able to explain geometric properties of linear programs and the
essential ideas of the simplex step.

Quiz 7.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

Every linear program in normal form has a solution.

The simplex step realizes a proper reduction of the function to be minimized.

The point x = 0 is always a corner of the feasible set.

Each corner is uniquely determined by its zero entries.

In the simplex method, the number of zero entries of the corners passed through
strictly decreases.

Application 7.1

®

(ii)

Table 7.1 Transport costs

A product is stored at the locations Ay, .., A, in the respective quantities
ai,...,ap and it is needed at the locations Bj,..., B, in the quantities
by, ..., b,. Let ¢jj denote the costs for transporting a unit quantity of the
product from A; to B;. Formulate a linear program in standard form to minimise
the total cost of transporting the product.

A producer of road salt receives an order to deliver 50 tonnes of road salt to
Rome, 20 to Paris and 30 to Berlin. There are 40 and 60 tonnes available
in warehouses in Prague and Amsterdam respectively. What are the optimal
transport quantities, if the costs per 10 tonnes of transport quantity in Euros
are given according to Table 7.1? Use the MATLAB routine linprog for the
solution.

Rome | Paris | Berlin

per tonne of road salt

Prague 700 600 | 200
Amsterdam | 800 300 | 400



Chapter 8 ®
Eigenvalue Problems Qe

8.1 Localisation

The calculation of individual or all eigenvalues of a matrix and, if applicable,
associated eigenvectors is referred to as eigenvalue problems. In general, it is
difficult and inefficient to determine the roots of a characteristic polynomial, as even
the evaluation of the polynomial is associated with high computational effort.

Proposition 8.1 Let A € R"*" and A € C be an eigenvalue of A. Then we have

n
kEUKi, KiZ{ZE(CI|Z—aii|§ Z Iaij|}.
i=1 J=l,on, j£i

The sets K; are called Gershgorin circles.

Proof Let Ax = \x hold for an x € C"\ {0}. Then there exists an i with |x;| < |x;]|
forall j =1,2,...,n,and x; # 0. We have

n
Mxi = (Ax); = Zaijxj
j=1
and after division by x; # 0 it follows
X
- Aty
J=L..n, j#i

The triangle inequality and |x;|/|x;| < 1 imply A € K; and thus the assertion. O
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Fig. 8.1 Gershgorin circles
in Example 8.1

Example 8.1 For the following matrix A € R3%3, the Gershgorin circles K1, K»,
K3 result, see Fig. 8.1.
Ki={zeC:|z—-5] <3},
A=]1-11], Kry={zeC:|z+ 1] <2},
K3 ={ze€C:|z] <3}

In the case of symmetric matrices, the eigenvalues can be characterised by the
extreme values of the so-called Rayleigh quotient.

Proposition 8.2 Let A € R™" be symmetric. For the maximum and minimum
eigenvalue of A we have

xTAx xTAx

Amin = Mmin  ——, max = Max ——-.
xeRM\(0} [|x |15 xeRM\{0} [x|I5

Proof Let (vi,v2,...,v,) C R” be an orthonormal basis of R” consisting of
eigenvectors corresponding to the eigenvalues Ay > A > --- > A, € R
of the matrix A. For x € R”" there exist ay,a2,...,0, € R, such that x =
o1v] +azvr + - - - + o, v, and we have

Ax = a1 Av; + opApvr + - oAUy,
The orthonormality v; - v; = §;;, 1 <1, j < n, of the vectors vy, v2, ..., v, implies

n n n n
xTx = (ZO[,‘Uf) . (Zajvj) = Z Qv - V; = ZO{?,

i=1 j=1 i,j=1 i=1
n n n n
xTAx = (Z%‘W) . (ZajAvj> = Z ajljajvi - vj = Z)L,-aiz.
i=1 j=1 i,j=1 i=1
It follows that
n
T 2 2 2
xTAx =2 > of = Allx13 = Amin |13,
i=1

where equality holds for x = v,,. The statement for A1 = X, follows analogously.
O



8.2 Conditioning 53

8.2 Conditioning

A matrix A € R™*" is complex diagonalisable if there is a regular matrix V € C"*"

and a diagonal matrix D € C"*" such that A = VDV~ holds. In this situation,
the following result from Bauer and Fike can be proven.

Proposition 8.3 Let A € R"*" be complex diagonalisable with A = VDV, let
E € R™" and let A € C be an eigenvalue of A+ E. Then there exists an eigenvalue
A € Cof A, such that

% — A < condy (V)| E2.

where the operator norm and condition number are generalised in an obvious way
for complex matrices.

Progf If X is also an eigenvalue of A, then ~the statement is trivial. In the following,
let A not be an eigenvalue of A, so that Al, — A is invertible. If x € C"is an
eigenvector of A + E corresponding to the eigenvalue X, then

Ex = (A+ E)x — Ax = hx — Ax = (A1, — A)x,

SO X = (3:1,1 — A)’lEx, that is, 1 is an eigenvalue of (3;1,, — A)*lE. From this
follows

1< |Gl — AT El=1Gvv=—vDV-HlE|,
= V3L, — DY 'VTLE|L < VIl (KL, — D) 2V LI El

= condy(V) max [x — A7V E]a,
reo(A)

where the maximum is formed over all complex eigenvalues A of A. With the

identity max,cy |x|™' = (minyex |x|)~! the claim follows. |

Remarks 8.1

(1) Not every matrix is complex diagonalisable, however every matrix is complex
triangularisable.

(i) Normal matrices, that is, matrices with the property AAT = ATA, are

complex diagonalisable with unitary transformation matrix V, that is, V fulfils
=T
VV=1l,.

Corollary 8.1 Let A € R"™" be normal, E € R"™" and * be an eigenvalue of
A + E. Then there exists an eigenvalue of A with

I =% < |Ell2
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Fig. 8.2 The eigenvalues of
the matrix A, from

Example 8.2 lie on a circle
with centre a and radius g!/”

a+81/n

Proof Since A is diagonalisable with a unitary matrix V. € C"" and since
cond, (V) = 1 holds, the estimate follows from the previous result. |

For normal, in particular symmetric matrices, the determination of the eigenval-
ues is thus a well conditioned problem with respect to absolute errors. Generally,
this is not the case.

Example 8.2 If p(r) = 1" + a,_1t"~' + --- 4+ ait + ag is any polynomial, then
p(t) = (—1)*det(A — t1,) with the Frobenius companion matrix

0 —a
10 —a
A=
1 0—a,—
1 —an—

In particular, the complex roots of p correspond to the complex eigenvalues of A.
Fora € R\{0} and ¢ > 0, the polynomial po(t) = (t—a)" has the n-fold root A = a,
while the polynomial p,(1) = (r — a)* — ¢ has the roots Ay = a + g!/"e!27k/,
k=1,2,...,n,see Fig. 8.2. The polynomials pg and p, differ only in the constant
coefficient and for the difference A — A, of the associated companion matrices we
have ||A — Ag|l¢ = € for £ € {1, 2, 00}. We have |A — Ax| = ¢!/ and for the relative
errors it follows that

A =Ml _ e /" I Alle 1A = Aclle

A lal Al e
_ e Alle A = Aclle
e lal Al

The factor ¢!=/" is unbounded for ¢ — 0, provided n > 1. Multiplying the
equations with |A| = |a| shows that the ill conditioning also applies to absolute
errors in the case n > 1 for small numbers ¢ > 0.
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8.3 Power Method

Let A € R™" be real diagonalisable with eigenvalues A, A2,..., A, € R
and associated linearly independent eigenvectors vy, va, ..., v, € R”, for which
lvillo =1,i =1,2,...,n, holds. For every x € R" with

n
X = E o V;
i=1

the k-fold application of A to x results in

n n
Afx = A% (ZM(X,’U,’) == Z)\?Olivi.
i=1 i=1

If 11 is the absolute largest eigenvalue, then for sufficiently large k, it follows that
Afx ~ ozl)»’fvl.

We consider the norms || A¥x ||, and | A*+1x||, and form their quotient, so due to
llvill2 = 1 it follows

A,

A% x ]2

With this observation, one can determine the dominant eigenvalue of a matrix.

Algorithm 8.1 (Von Mises Power Method) Let A € R"™", x e R" \ {0} and
estop > 0. Set xg = x/||x|l2, o =0 and k = 0.

(1) Calculate Xy11 = Axg, pir1 = |Xkr1ll2 and xgq1 = Xpp1/ ks -
(2) Stop if |r+1 — pk| < Esrop; Otherwise increase k — k + 1 and repeat step (1).

Remark 8.2 Inductively, it is shown that x; = A¥x/||A*x|» holds. To avoid
leaving the range of representable numbers, a normalisation must be carried out
in each iteration step.

We show that the sequence (xi)ren approximates a normalised eigenvector to
the absolute maximum eigenvalue of A, whose magnitude is approximated by the

sequence (Uk)keN-
Proposition 8.4 Let [A1| > |A2| > -+ > |Ay| > Oand let x = Y ;_, ajv; with
the normalised eigenvectors vy, vy, ..., v, of A. If a1 # O then it follows with
q = |A2l/|M| < land k > K, that

[Axill2 = [21]1] < 4l All2cq*

with a constant ¢ > 0 independent of k.
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Proof For each k > 0 we have
Afx = )L]fotl (v1 + Z )L—;{avi) = )Jfotl(vl + wy),
where w; € R” is defined by the sum. It follows
o]
lwell2 < qkzm = cq".
i=2

Furthermore,

A e (v wp)
A xll2  [a%en|llor + will2

Xk

v + wg )

_ sign()»]foll)vl + sign(lfal)(m -

= sign()»]fozl)vl + 1.

With the reverse triangle inequality ||a|l2 — ||b]l2 < |la + b]|; as well as the ordinary
triangle inequality [la + b2 < llall2 + (b2 it follows

k k
I —cq” < |villa = llwkll2 = llvr + well2 < llvillz + lwill2 < 1+ cq

and it follows for k sufficiently large, so that cg* < 1/2 holds,

vi(l — [lvg + will2) + wi
lrllz =
llvr + well2 2
|1 = vt + will2| + w2 2cq
< < -
lvi + well2 1 —cq

< 4ch.

For X;+1 = Axy the above representation of x; leads to
Xpir1 = A sign(klfal)vl + Ary
and thus
IFe+1 — A1 sign(ianvillz < [Arclla < 4l Allacq”.

Another application of the reverse triangle inequality combined with X311 = Axg
and |lv1]|2 = 1 shows the assertion. m|
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Remarks 8.3

(i) In each step of the iteration, the approximation error is reduced by the factor
qg < 1.
(i) The last inequality in the proof shows that A; < 0 holds exactly when the
signs of (xx)k=1,2,... alternate, and that the sequence (xx)i=1,2,... converges to
an eigenvector up to the factor sign A’f .
(i) The condition o1 # O must be ensured in the specific case. Due to rounding
errors, this can be assumed, but the constant ¢ ~ 1/|c¢1| may then be large.

yees

In the case of symmetric matrices, a better convergence statement can be proven,
which shows that the error is reduced by the factor ¢2 in each step.

Proposition 8.5 If A € R"™" is symmetric, then under the conditions of the
previous proposition

A1 — x) Axg| < 2] Allac?g%.

Proof If A is symmetric, the eigenvectors (vi, v2, ..., v,) in the proof of the
previous result can be assumed to be orthonormal and we have

Aky = )Jfal(vl + wy)
with vy - wx = 0. Let
v = signGan) or + wlly!
and since [[vy + will3 = [[v1 13 + lwil3 = 1. we have [y| < 1. It follows

A e+ w)
IARxll2 [akon|flvr + will

Xk = VkV1 + VkWk

and thus
(Al — A)xp = yrrvl + VA iwi — Ve Avy — v Awg
= (Al — A)wg.
Since Awy € span{vy, v3, ..., v,}, the vector on the right side is orthogonal to v;.

With the Cauchy-Schwarz inequality a'b < |lal2|lb|l2 and yx < 1, it follows that

g Oty — A)xe] = yH (o1 + wi) T L, — A)wg|
< w221 Iy — A2 llwgll2
< (Il + IAI) w3

2
= 2[|All2llwi I3,
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where in the last equality |A;| = ||A|l> was used. From [Jw |2 < cg* and x,;rxk =1
the assertion follows. a0
Remarks 8.4

(i) If0 < |Ay| < |An—1] < --- < |A1], then the power method with A~! instead of
A provides an approximation of |, |~!. This is referred to as inverse iteration.
(ii) If one applies the power method to the matrix (A — ;LI,,)_I, it converges under
suitable conditions towards the eigenvalue that is closest to p.
(iii) The dominant eigenvalue can occur multiple times, meaning the condition of
the propositions can be weakened to [A]| = -+ = |[Ap| > [Apgp1] = -+ =
[An| = 0.

8.4 QR Method

The Q R method calculates approximations of all eigenvalues of a matrix simultane-
ously under suitable conditions. To this end, the power method is applied to several
vectors, which are orthogonalised at each step. We follow the argument from [30]
and calculate two sequences of vectors (xx)k=o.1,... and (yx)k=o0,1,... using the power
method, and make a correction at each step, which ensures that the vectors x; and
vk are orthogonal to each other for all £ > 0. Let xg, yo € R” \ {0} be orthogonal
and determine for k = 1, 2, ... the iterates x; and y; through

xe = Afxo, e = Afyo — yien,

with yx = (A yo) - x/Ilxl|3, so that x¢ - yx = 0 holds. If (vi, va, ..., v,) is a basis
of R" consisting of eigenvectors corresponding to the eigenvalues |A| > |A2| >
[A3| > --- > |A,]| of A, it follows

n n
Xe= Y ailfv, =) (bj — ykaj)ibv;,
i=1 j=1

with the coefficients a1, az, ..., a, and by, by, .. ., b, of the vectors xg and yg with
respect to the basis (v, va, ..., v,). We assume that a; and r = by — bjas/a; are
different from zero. The orthogonality xj - yx = 0 implies that

n n
0=>"Y ai(b; — wajrfrkvi - v;.
i=1 j=1

Assuming that the sequence y¢, k = 1,2, ..., is bounded, a division of this identity
by A%k as well as the condition |A¢/A1| < 1 for £ =2, 3, ..., n, implies that
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by —yrag — 0

as k — oo. This yields for large numbers k, that
n
W x Y (b —yrajiiv;.
j=2

Because by — yraz — r # O and |Az| > [A;|, j > 3, the first term dominates in
this sum, so that y; converges to a multiple of the eigenvector v, as k — oo. For the
practical implementation we use normalisations, meaning we set

~ Xk ~ Yk
Xk = > Yk = T
[l |l Iyl
and obtain the relations
Xk = AXp—1, Ay = AVk—1 — ey

with suitable numbers ci, di, e, € R. With the definitions

U — ~ o~ IR}’1X27 R — Ck ek R2X2
k [xk yk] € k |:0 dy (S

we deduce
AUy—1 = UxRg.

Due to the orthogonality and normalisation of the vectors X; and Vi, Uy is an
orthogonal matrix, meaning we have that U ,;r Uy = L. If we define

A1 =ULAU, Qe =U]_ Uy
then in the case n = 2, it follows that Q; € O(2), and

Ax = U]_|AU_1 = (U] U R = QkRy,

A1 = U] AU, = U] AU U] U = Ry Oy,

where in the last step Ry = U,;'—Uk_lU,LlAUk_l = U,;rAUk_l was used. Thus, a
O R factorisation of Ay is determined and subsequently Ay is defined by swapping
the factors. This procedure can be generalised to the case n > 2 and leads to
the QR method, which under suitable conditions provides approximations of all
eigenvalues of a matrix. The above-derived (approximate) similarities of Ay and Ry
to A indicate, that the iterates Ay converge to an upper triangular matrix and their
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diagonal entries thus define approximations of the eigenvalues. As starting vectors
for the Q R method the canonical basis vectors are chosen.

Algorithm 8.2 (QR Method) Let A € R™*" be regular. Set Ag = A and k = 0.

(1) Determine the QR decomposition A = Qi Ry and set Axy1 = Ry Q.
(2) Stop if ||diag(Ag+1) — diag(Ap) || < &srop; otherwise increase k — k + 1 and
repeat step (1).

The iterates of the Q R method are similar to each other.

Lemma 8.1 We have

Arp1 = OF A Qk = (Qo ... Q1) TA(Qo . .. Op).

Proof From Apy; = RiQk and Ay = Qi Ry respectively Ry = QZAk it follows
Ap41 = QZA/( Oy and the repeated application of this argument proves the second
equation. O

With the help of this lemma and a stability property of the QO R decomposition
the following result can be proven, see for example [7].

Proposition 8.6 Ler A € R"*" be diagonalisable with A = V DV~ such that, for
the eigenvalues A1, A2, ..., Ay € R, we have

A1l > [A2] > -+ > |An] >0
and the inverse of the matrix V has an LU decomposition. Then we have

| diag(Ar) — diag(D) > < cq¥

with ¢ = maxXi<j<j<n |Aj|/|A;i| and a constant ¢ > 0.
Remarks 8.5

(1) In practice, convergence is observed under significantly weaker conditions
on A.

(i1) In general, a step in the O R method leads to an effort of order & (n3). If A is
first transformed by Householder transformations into a so-called Hessenberg

matrix
a .- dlp
a21 a22 “ee a2n

A=HTAH = as ... 3

Ap,n—1 Ann
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that is, a; 7 =0fori > j + 1, then the QR decomposition can be determined
in 0'(n?) steps using Givens rotations.

8.5 Jacobi Method

The result about Gershgorin circles shows that the diagonal entries of a matrix define
approximations of the eigenvalues, which are particularly accurate when the off-
diagonal elements are small. In the Jacobi method, these entries of a symmetric
matrix are successively reduced with similarity transformations. We follow the
presentation in [9].

Definition 8.1 For A € R"*", let

n
N (A =A% =D ahi= D
i=1

I<i,j<n,i#j

Obviously, A is a diagonal matrix exactly when .4/ (A) = 0 holds. More
generally, it can be shown that for each diagonal entry a;;, 1 < j < n, there exists
an eigenvalue A with the property [A —a;;| < +/.# (A). From the Gershgorin circle
result, one obtains the weaker statement that for each eigenvalue A of A there exists
a diagonal entry a;; such that [A —a;;| < (n — D2/ A (A).

Definition 8.2 Forc,s € Rwithc? +s2 = land 1 < p,.q <nwithp # g, a
Givens rotation G p4 € O(n) is defined by

L i=j.i#p, 1 |

17 [:J’l;éq,

C, i = )28 .] =D, ¢ —s
(Gpglij = V¢, i=gq,j=q, Gpg =

s, i=gq,j=p, s ¢

) i = p; .] =dq,

0 otherwise. i 1_

The following lemma uses the fact that the Frobenius norm is invariant under
orthogonal transformations, i.e. that || QTM||_g = |MQl|lz = ||M| & forall M €
R™" and Q € O(n). This follows, for example, from ||M||<2g = tr(M"M) and

IMllz=IIMT|%.
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Lemma 8.2 If A € R"" is symmetric and G p is any Givens rotation, then for
B = G;qAqu, we have that

N (B) = N (A) = 2az, — b3,

where bpy = cs(agqg — app) + (c? — sz)apq.

Proof One directly verifies that the entries of the symmetric matrix B are given by
bij = ajj, provided i, j & {p, q}, as well as

bpp = czapp + 2csapy + s2aqq,

byq = szapp —2csapg + czaqq,

bpq = bap = csagg — app) + (¢ = s7)apg.

bip = caip +saiqg, i €{1,2,....n}\ {p,q},
big = —saip +caiq, 1 €{1,2,....n}\{p,q}.

With | Bll.# = || All # it follows
n n
N(B) =Bl — Y ai + Y (a} —b})
i=1 i=1

n
2 2 2 2 2 2
= llAlz - Zaii + @y = bpp +ag, — byy)
i=1
_ 2 2 2 2
= N(A) +ay, +agy — by, — by,
The formulas for the entries of B show that
bpp bpg | _ | ¢ s||app apq||Cc =S
bpg bgg] L= ¢ lapg agglls ¢ 1’
Identifying this identity with b= g'ag, it follows ||B||25[ = ||Zz\||L29 or

2 2 2 _ 2 2 2
bpp +bqq +2bpq =ay, +ag, + 2a

pg°
thus
2 2 2 2 g2 2
App +aqq = bpp = byq = 2(bg — apy)

and this implies the assertion. O
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If the Givens rotation G, can be chosen so that b,, = 0 applies, this results in
a reduction of the non-diagonal entries. By considering ¢ = cos(«), s = % sin(w)
and D = cos(2«) one obtains the following result.

Lemma 8.3 If ay, # 0 and the matrix Gy is defined by ¢ = /(1 + D)/2 and
s = sign(apg)/(1 — D)/2 with

D= “pp — a4 e[—1,1]
12 J
((app — agq)* + 4“;2>q)

then bpq = 0 applies.
Proof Exercise. O

To achieve the greatest possible reduction of .#"(A), it is obvious to choose the
absolute largest non-diagonal element of A.

Proposition 8.7 If a,, is the absolute largest non-diagonal element of A, then
with the Givens rotation G pq defined in the previous lemma for the matrix B =
G;qAqu and with ¢, = 2/(n(n — 1)), we have that

A (B) = (1 — &n) N (A),

Proof After choosing a,, we have A" (A) < n(n — 1)a,2,q. This implies

N (B) = N (A) =242, < (1 _ ;D)JV(A),

n(n —
thus the claimed estimate. O
From the proposition follows the convergence of the following method.

Algorithm 8.3 (Jacobi Method) Let A € R"™" be symmetric. Set Ag = A and
k=0.

(1) Let p, q be the indices of the largest absolute non-diagonal element of Ay and
choose the Givens rotation G pg, so that for Apyp = G;quG pq the entry
(Ak+1) pg vanishes.

(2) Stop if N (Ak41) < Esiop; Otherwise increase k — k + 1 and repeat step (1).

Remarks 8.6

(i) In general, & (n? log(1/&510p)) many iterations are needed to guarantee
f/V(Ak—H) = Estop-
(i) An entry already transformed to zero can deviate from zero again during the
method.
(ili) The method constructs a factorisation A = GDG' with an orthogonal matrix
G and an approximate diagonal matrix D. In particular, the column vectors of
G are approximate eigenvectors of A.
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(iv) Since the search for the maximum non-diagonal element is time-consuming,
in practice, all non-diagonal elements are processed successively and this is
repeated until .4 (Ag) is sufficiently small. This approach is referred to as
cyclic Jacobi method.

8.6 Learning Objectives, Quiz and Application

You should be familiar with various eigenvalue problems and their conditioning.
You should be able to derive various methods for the numerical solution of
eigenvalue problems and be able to specify their convergence and complexity
properties.

Quiz 8.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

If A € R"*" is regular, then the calculation of the eigenvalues of A is a well
conditioned problem.

The matrices A and AT have the same eigenvalues and eigenvectors.

The convergence speed of the power method depends on the ratio of the largest
absolute to the smallest absolute eigenvalue.

The execution of a step of the Q R method requires a complexity of order & (n?).
The Jacobi method is feasible and convergent for every diagonalisable matrix.

Application 8.1 The numbers 1, 2, 3 are indicators for the comprehensibility of
a mathematics lecture, where 1 stands for good, 2 for medium and 3 for low
comprehensibility. Assume that the probability that a lecture of value j is followed
by a lecture of value i is denoted by p;; and we have

0.10.30.6
P=1{05020.1
040503

A very comprehensible lecture is followed by a little comprehensible lecture
with 40% probability. Given the vector xo € [0, 113 for the current lecture, the
probabilities of the comprehensibility indicators k lectures later is given by x; =
kao.

(1) Experimentally test the convergence of the sequence (xi)r>0, Where xq is
defined by canonical basis vectors in R3, that is, after how many steps does
lxx — xkt1ll1 < 1073 hold? What does this mean for the comprehensibility of
the lectures?
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(ii) Suppose the sequence (xi)x>0 becomes stationary, that is we have x; ~ x*
for all k > K with a sufficiently large number K > 0. How can x* be

characterised?
(iii) Test five starting vectors xo € [0, Nk generated with rand(3,1), scaled
with ||xgll; = 1 and characterise the stationary points. Consider the eigen-

values and eigenvectors of P, which you can determine in MATLAB with
[V,D] = eig(P).



Chapter 9 ®
Iterative Solution Methods Creck o

9.1 Inexact Solution

Due to model and data errors as well as numerical rounding, it is generally neither
necessary nor sensible to solve a system of linear equations exactly in the sense of
computer arithmetic. We will approximate the solution of a system of equations
through a sequence of approximate solutions and stop the iteration when the
equation is sufficiently well fulfilled. This approach leads to a significant reduction
in effort in many cases. In this chapter, we follow the presentation in [10].

9.2 Banach’s Fixed Point Theorem

Banach’s fixed point theorem defines a method that approximates the solution of a
fixed point equation under suitable conditions.

Definition 9.1 A mapping @ : R” — R” is called a contraction with respect to a
norm | - || on R”, if there is a number ¢ < 1 such that for all x, y € R" we have

@) =W = qllx =yl

For contractions, the following fixed point iteration leads to convergent approxi-
mations.

Algorithm 9.1 (Fixed Point Iteration) Ler @ : R" — R” be a contraction and
xY e R Setk = 0.

(1) Define Xk = q§(xk).
(2) Stop tf||)ck'"l — xk|| < &s10p; Otherwise increase k — k + 1 and repeat step (1).
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The iteration converges for every choice of the initial x°.

Proposition 9.1 If® : R" — R” is a contraction, then @ has a unique fixed point
x* € R", that is, we have @ (x*) = x*. For any initial value x0 e R”, the fixed point
iteration x**1 = & (x¥) fork = 0,1, 2, ..., defines a sequence of approximations
of x* with the property

k

1
Fox*| < ! — X0,

[lx

in particular, the sequence (x*)ren converges to x*.

Proof The mapping @ has at most one fixed point, because if x*, y* € R” are fixed
points, then

[x* =yl = 2G") — @) < gllx™ — y*|

and since g < 1, it follows that x* = y*. The sequence defined by the procedure
xk+1 = @ (x*) is a Cauchy sequence, because from

Ik — X = o F T — o (K| < gllxF Tt — XK
it follows inductively that
k_ ket

k140 1
llx =g llx" —x|

and with the triangle inequality for n > m

[x™ = x| = [|x™ — xmtl +xm+l A +xm+2 . +xn—l —x"|
n—1 n—1 n—m—1
k k+1 k.0 1 0 1 k
I e e e I A B e P ol ) N
k=m k=m k=0
1 —ght—m m
=10 — g < 0 — L=
1—g¢g 1 -

As a Cauchy sequence, (xF)ren has a limit x* € R” and for this it follows with the
Lipschitz continuity of @, that
= lim x**!' = lim @5 = o ().
k— 00 k— 00
Thus, x* is a fixed point of @. The error bound follows from the above estimates by
considering the limit transition n — 0. O
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Remarks 9.1

(i) From the error estimation, it can be determined how many iteration steps are
necessary to achieve a given error tolerance.

(i1) The fact that the method converges to the solution for any choice of the initial
value x¥ is referred to as global convergence.

9.3 Linear Iteration Methods

We want to investigate the contraction property for affine-linear mappings @ (x) =
M x + c. Obviously, the mapping @ is a contraction, if there exists an operator norm
Il - llop on R**" with ||M||,, < 1. The spectral radius of a matrix M € R"*" is
defined by

p (M) = max{|A| : A is a complex eigenvalue of M}.

The following proposition shows that it is sufficient to show p (M) < 1 to guarantee
a contraction property. Note that p (M) for n > 2 does not define a norm on R"**",

Proposition 9.2 For M € R"™*" we have
p(M) =inf {|M|lop : || - llop is an induced operator norm on C"*"}.

Proof
(1) Let A € C be an eigenvalue of M with p(M) = |A| and x € C" \ {0} a
corresponding eigenvector. Then for every norm on C", we have that

p(M) x|l = lIax]l = Mx]| < |M]lopllxIl,

thus p(M) < [[M||op.
(i) The matrix M is complex triangularizable, i.e. there exist an invertible matrix
T € C™" and an upper triangular matrix R € C"*" with

AMT ... Tln
R=T"'MT =
An—1 n—1,n
An
and the complex eigenvalues A1, A2, ..., A, of M. Fore > 0let D, € R"*" be
the diagonal matrix with diagonal elements 1, ¢, g2 ..., e" 1. Then by

—1p—1
[xlle = 1D T xlloo
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anorm on C" is defined. For the corresponding operator norm we have

1D T~ Mxlloo x=TDiy 1D ' T~ 'MT Dyl

1Ml =sup = o 15lloc
_ qup 1P RDeYlloo _ ID; ' RD¢ |
y£0 Iy lloo
with the row sum norm || - || . Direct calculation shows
Aoerio ... &7,
D;'RD.= [8_(i_1)rij8j_1]i,j:1 ..... n=

An—1 Ern—1,n
An

and thus, provided ¢ < 1,

n
IMlle = lIDe " RDelloc = _max n(l?»il )
=12,.., Pl

=, [2il + €llRlloo = p(M) + €[ R]| 0.
1= n

,,,,,,

Since ¢ > 0 can be chosen arbitrarily small, the assertion follows.
O

Corollary 9.1 If p(M) < 1, then the mapping ® : x — Mx + c is a contraction.

Example 9.1 The Richardson method for the approximate solution of the linear
system Ax = b is for w > 0 defined by M = I,, — wA and ¢ = wb, that is

= Mxk 4o =xF— a)(Axk —b).

If A is symmetric and positive definite, then all eigenvalues of A are positive, and
for w sufficiently small, p(I, — wA) < 1. If x¥*1 = xk then x¥ is a solution of
Ax = b.

9.4 Jacobi and Gauss-Seidel Methods

Based on simple decompositions of matrices, iterative methods can be defined.
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Definition 9.2 For A € R"*", the lower, diagonal and upper part L, U, D € R**"
of A are defined by

aii, 1=17, aii, 1>7], a;i, 1<],
e N 0 PR AT S
0, i# ], 0, i <j, 0, i>j.

Since A = L + D + U, the linear system Ax = b is equivalent to
Lx+Dx+Ux=0b

and iteration methods can be defined by replacing x in the different terms by x¥ or
x**1 for example

Li* + D' +uxk=p — xM*'=—_Dp 14— D)x*+ D 'b.

For a stationary point or in the case x¥*!

fulfilled. An alternative to this approach is

= x*, the linear system is obviously

L' 4 Dl 4 Uxk =p = ' =—w+D)'Ux*+ @+ D) b
Definition 9.3 The Jacobi and Gauss-Seidel methods are defined by

M =—-DYA-D), ¢/ =D7b,
M = L +D)'u, “S=(@+D)p,

provided D is regular.
Remarks 9.2

(1) In the Jacobi method, a linear system with a diagonal matrix is to be solved
in each iteration step, and in the Gauss-Seidel method with a lower triangular
matrix.

(ii) It is expected that the Gauss-Seidel method has better convergence properties
than the Jacobi method, as the matrix L + D is generally a better approximation
of A than the matrix D.

9.5 Diagonal Dominance and Irreducibility

We want to formulate sufficient conditions for a matrix that imply the contraction
property of an iteration procedure.
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Definition 9.4 The matrix A € R"*" is called diagonally dominant, if for i =
1,2, ..., n we have

Z laij| < laji]

J=1en, ji
and this inequality is strict for an iy € {1,2,...,n}. If it is strict for all i =
1,2,...,n, then A is called strictly diagonally dominant.

Example 9.2 For the matrices

2 —1 4 —1

IR | L —1
-1 2 -1 4

we have that A1 is diagonally dominant but not strictly diagonally dominant and A;
is strictly diagonally dominant.
Remarks 9.3

(i) If A is strictly diagonally dominant, then a;; # O fori = 1,2,...,n and D
is regular. For the iteration matrix M 7 = —D7Y(A = D) of the associated
Jacobi method, mlll = 0 holds and thus due to the diagonal dominance for
i=1,2,...,n

- la; il 1

J ij
2 |mij|_ E ot~ 2 laij| < 1.
i=1 |aii|

Gl on, i |aiil J=loeon, j#i
This means |[M” ||oo < 1 and thus ,o(MJ) < 1.
(ii) For strictly diagonally dominant matrices, p (M GSy < oM 7Y holds.
Strict diagonal dominance is generally too restrictive a condition.

Definition 9.5 The matrix A € R"*" is called reducible, if disjoint, non-empty
index sets I, J C {1,2,...,n}exist,suchthat /U J = {1,2,...,n}and g;; =0
for all pairs (i, j) € I x J. Otherwise, A is called irreducible.

Example 9.3
(i) The matrix
102

A=1345
607

is reducible with I = {1, 3} and J = {2}.
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(i) The band matrices from Example 9.2 are irreducible, because from i € [ it also
followsi+1 e lforl <i <n—1laswellasi —1 € I for2 <i < n and thus
I={1,2,...,n}orl =0.

Remark 9.4 For reducible matrices, the solution of the linear system Ax = b can
be decomposed into smaller systems. If for X, Y C {1, 2, ..., n} the submatrix Axy
is defined by Axy = (a;j)iex, jey and the subvector xy by xy = (xi)key, then we
have A]j = 0 and thus A[[)C] = b] and AJ]XJ = b] — A][)C].

Lemma 9.1 If M is irreducible and diagonally dominant, then M is regular with
mi; Z0fori =1,2,...,n.

Proof If M is not regular, then there exists x € R” \ {0} with Mx = 0 and from the
i-th row of the identity it follows

mixi <Y mijllxgl.
J=1en, j#i
Define I = {i : |x;| = [[xlloc}and J = {j : |x;] < [IX|lcc}. Then ] # P and IUJ =
{1,2,...,n}. Also, J # ¥, because otherwise |x;| = [|x|loc for j =1,2,...,n and
thus

mil <Y mij

j=1,..n, ji

would hold, which contradicts the diagonal dominance, which guarantees strict
inequality in the opposite direction for an ip. Therefore, J/ # @ and due to the
irreducibility there existi € I and j € J with m;; # 0 and thus

x|
mil <> Imijl o — < > Imijl
j=1,..n, j#i X j=l,n, i

contradicting the diagonal dominance of M. Consequently, M is regular. The
regularity and the diagonal dominance of M imply m;; # O fori = 1,2,...,n,
because otherwise a row of M would be identically zero, which would contradict
the regularity of M. O

9.6 Convergence

The preceding lemma allows us to prove the convergence of the Jacobi and Gauss-
Seidel methods.
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Proposition 9.3 If A is irreducible and diagonally dominant, then the Jacobi and
Gauss-Seidel methods are feasible and convergent, that is M’ and M®S are well-
defined and satisfy p(M”) < 1 and p(M®S) < 1.

Proof

®

(i)

According to the previous lemma, a;; # 0 fori = 1,2,...,n and thus
M’ = —D~1(A — D) is well-defined. We show, that M/ — I, forall u € C
with || > 1 is regular, so that p(M’) < 1 follows. Since irreducibility is
independent of the diagonal elements of a matrix, A as well as A — D and
M’ = —D~1(A— D) are irreducible. Likewise, M = M” — ju1, is irreducible.

With the diagonal dominance of A, it follows fori = 1, 2, ..., n, that
J aij
Yooodml= Y mfi= ) Ty = 1= Iul = Imal
j=1,...n, j#i j=1,...n, j#i j=1,..n, j£i Y
where the inequality is strict for an ip € {1,2,...,n}. Consequently, M is

diagonally dominant for every u € C with |u| > 1 and together with the
irreducibility, the regularity of M follows.

Again, a;; #0fori =1,2,...,n implies that M®S = —(L + D)~'U is well-
defined. For u € C with |u| > 1 let M = MYS — uI,,. Since L + D is regular,
M is regular if and only if

M=—(L+DM=—L+D)(~(L+D)'U—pul,)=U+puL+uD

is~ regular. With A = U + L + D, the matrix M is also irreducible. Furthermore,
M is diagonally dominant, because for i = 1,2,...,n due to the diagonal
dominance of A, we have that

i—1 n
S gl = 1wl Y lagl+ Y lagl <lwl D aijl
j=1

J=l,een, ji j=i+1 J=1,en, ji
< lullaii| = miil,
where strict inequality holds for an ip € {1,2,...,n}. So M is diagonally

dominant and the preceding lemma implies the regularity of M.
|

Remark 9.5

(i) In the case of convergence, often a few iteration steps lead to a good

approximate solution. Since each iteration step in the Jacobi and Gauss-Seidel
method requires O(n%) many operations, this can reduce the typical effort of
O(n?) of direct solution methods like Gauss elimination.

(i) The conditions are sufficient but not necessary, as for example regular diagonal

matrices are diagonally dominant and reducible, but the Jacobi and Gauss-
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Seidel method determine the exact solution in one step. In general, both
conditions are needed, because for the matrices

110
A2=|:_11£|, Az=|-110],
001

we have that Aj is irreducible but not diagonally dominant, while A3 is
diagonally dominant but not irreducible. In both cases, the iteration matrix of
the Jacobi method realises a rotation by 7 /2 in the (x, y)-plane, so in general,
convergence does not have to occur.

An alternative proof for the convergence of the Gauss-Seidel method can be given
for symmetric, positive definite matrices.

Proposition 9.4 If A € R"*" is symmetric and positive definite, then p(M°S) < 1.

Proof First, we obtain with U = A — (D + L) and Q = 2A~(D + L) — I,, that
for M9S = —(D + L)~'U we have

MO =1, —(D+L)'A=1,-224A"' D+ L))"
=1, =20+ =@ - L)@+ 1)
From this identity, it follows that & = 1 is not an eigenvalue of M%S, and if u €
C\ {1} is an eigenvalue of MO, then there exists an eigenvalue A € C\ {—1} of Q,
such that u = (A — 1)/(A + 1) holds. If z € C" is an eigenvector associated to the
eigenvalue A € C of Q, then

Qz=M <= Mz=2(D+ L)z Az

We multiply the second equation from the left with Z' and use the fact that the
symmetry and positive definiteness of A and D imply that

ZTAZ > 0, ZTDZ >0
hold, in particular both expressions are real-valued. With a"h = b'a it follows
2Re(Z'Lz) =7 Lz +2'L2=2"Lz+ (LT)"z2=2"(Lz+ LT2).
Because LT = U and A = D + L + U it follows that

Z'AzRe(A) = Re (AZ' Az) = 22" Dz + 2Re(Z' L2) — Z' Az

=7'@D+L+U);—Z Az=7"'Dz > 0,
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and thus Re(A) > 0. Any such number A € C has a strictly smaller distance to the
point 1 than to the point — 1, that means we have [A —1| < [A—(—1)| = |[L+ 1], and
thus for every eigenvalue u = (A—1)/(A+1) of MOYS that |u| < 1or p(M%5) < 1
holds. O

Remark 9.6 The argumentation of the proof goes back to Ostrowski and Reich and
can be generalised to a family of so-called relaxation methods.

9.7 Learning Objectives, Quiz and Application

You should be able to derive iterative methods for solving linear systems and be able
to demonstrate their advantages compared to other methods. You should be able to
name sufficient conditions for the convergence of linear iteration methods and to
explain structural properties of matrices that ensure the convergence of the methods
and illustrate their significance.

Quiz 9.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

If A € R"*" is irreducible and D € R**" is a diagonal matrix, then A — D is also
irreducible.

If A € R"*" is diagonally dominant, then A is regular.
For symmetric matrices, the Jacobi and Gauss-Seidel methods agree.

The property a;; # 0 of a matrix A € R"*" is necessary for the well-definedness of
the Jacobi and Gauss-Seidel methods.

If A — ul, is regular for all © € C with || > 1/4, then |A| < 1/4 holds for all
eigenvalues of A.

Application 9.1 In applications such as the description of the elastic behaviour of
truss structures, regular matrices A € R"*" occur, in which many entries vanish. In
these cases, it is often sensible to implement an iterative method without completely
storing the matrix A. Show that the Jacobi and the Gauss-Seidel method can be
written in the form

k1 —1f, ok
x; T =ay (bl Za,.,x]),

J#i
respectively
k+1 -1 k+1
X; 1 a; (bi — Zaijxj+ — Zaijxf)
j<i Jj>i
fori = 1,2,...,n. Simplify these formulas for the case of matrices with finite

bandwidth w > 0, that is, in the case that a;; = 0 for [i — j| > w.



Chapter 10
General Condition Number and Floating g
Point Numbers

10.1 Conditioning

We consider the effects of perturbations in the evaluation of a mathematical
operation ¢ (x), which is defined by a mapping ¢ : X — Y between normed vector
spaces. Here, perturbations X of x are additively represented as the sum X = x + Ax
with Ax = X — x. The following definition from [2] generalises the concept of the
condition number for general mathematical operations.

Definition 10.1 The (relative) condition number ky(x) of the function ¢ : X — Y
at x # 0 with ¢ (x) # 0 is the infimum of all « > 0, for which a § > 0 exists, such
that

gt + A0 — gl _ l1Ax]
ool =l

X

for all Ax € X with & =||Ax||/|llx|] < &. The operation ¢(x) is called ill
conditioned, if ky(x) > 1, and ill-posed, if k4 (x) is not defined. It is called well
conditioned otherwise.

Examples 10.1

(i) The operation defined by ¢(x) = |x — 1|* + 1 is well conditioned at x = 1
exactly for s > 1, that is, when left- and right-hand derivatives at x = 1 exist.
(i) The operation defined by ¢ (x) = a|x — 1|+ 1 is ill conditioned at x = 1 when
a>1.
(iii)) The operation defined by the discontinuous function ¢ (x) = sign(x — 1) 4+ 2
is ill-posed at x = 1.
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Fig. 10.1 Well conditioned, o
ill conditioned and ill-posed 0] \/ ¢ ¢
operations ¢ (x) \o/ .

X X X

The examples are sketched in Fig. 10.1.
Proposition 10.1 If ¢ is differentiable at x, then

P 6o [ ]
? lp)l

Proof 1t holds
¢(x + Ax) — ¢ (x) = Dp(x)[Ax] + ¢ (Ax),

with a function ¥, which fulfils ¥ (Ax)/||Ax|| — 0 for Ax — 0. Thus, for every
& > 0 there exists a § > 0, such that for all Ax with ||Ax|/||x|| < § it holds

) ¢(x + Ax) —¢p(x)  D¢(x)[Ax]

| <e.
1 Ax] | Ax]

From this follows

l¢Cx + Ax) — ¢ _ (8 n ||D¢>(X)[AX]|I) [ Ax|l
llo o)l - [ Ax]| ol

By definition of the operator norm, it holds || D¢ (x)[Ax]|| < || D¢ (x)||||Ax||, where
equality occurs for suitable Ax. Since ¢ > 0 can be chosen arbitrarily small, the
assertion follows. O

In the case of systems of linear equations, the condition number is bounded by
the special condition number of the matrix.

Remarks 10.1
(i) For ¢(b) = A~'b it holds Dp(b) = A~! and with the identity ||b| =
IACA™'B)|| < [|Al|A~ "D implies that

1At
la=1b]

Kkp(b) = 16 < AT [[IA]l = cond(A).

Furthermore, there exists a b € R” such that equality holds.

(ii) To investigate the influences of perturbations of the matrix A, we consider
the mapping ¢(A) = A~'b. From the constancy of A — A¢(A) = b it
follows that D (A)[E] = —A~'EA~'b and with the estimate | D¢ (A)| <
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[A=Y 1A= 5] we get

A=A B | A|
IA=TD] = cond(A),

kp(A) <

that is, errors in A are also amplified by the factor cond(A).
Cancellation effects are also captured by the condition number.
Examples 10.2
(i) For ¢(x1, x2) = x1 + x2 we have D¢ (x1, x2) = [1, 1] and thus

L TG, )l Il + |x2]
|x1 + x2] X1 + x2|

Kk (x1, x2)

so the operation is ill-conditioned if x; & —x», that is, when cancellation effects
can occur.

(ii) Intuitively, standing a pen upright is an ill conditioned problem, while standing
a can is generally well conditioned.

10.2 Floating Point Numbers

On digital computers, only a finite number of numbers are available, which are
determined according to certain rules. We follow the presentation in [9].

Definition 10.2 For a base b > 2, a precision p > 1 and exponent limits e, <
emax With b, p, enin, emax € Z the set of floating point or machine numbers is
defined by

G:{imbe_P:m,eeZ,Ofmgbp—l, emmfegemax}.

A floating point number g € G is called normalised, if m > bP —1 and we let Guor
denote the set of normalised floating point numbers. In the cases b = 2 and b = 10
we speak of the binary and decimal system.

Examples 10.3

(1) Forb = 2, epyin = 0, epax = 3, p = 2 the normalised floating point numbers
are given by +{2/4,3/4,2/2,3/2,2/1,3/1,2-2,3 -2}; the set of all floating
point numbers additionally contains the numbers =+ {0, 1/4}.

(ii) Forb =10, p = 3, epin = —2 and epqx = 2 G consists of all numbers of the
form £m - 107" with0 <m <999 and 1 < r < 5, for example

—783.107>, 400-1073, 40.1072,

where only the first two numbers are normalised.
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Remarks 10.2
(i) Each floating point number g € G can be represented as a b-adic sum, that is,
it holds
g=£b(dib™ +dab™? + - +dpbP)
with digits dy,d,...,d, € {0,1,...,b — 1} and e;in < e =< eyqx. For
normalised floating point numbers, this representation is uniquely defined with
dy #0.

(i) For normalised floating point numbers g, gmin < |g| < gmax With gnin =
bemin=l and gy = bémax (1 — b™P).

(iii) For b = 10, g = *£10° - 0.d1d>...d, and the decimal point is floating
depending on e.

Example 10.4 In the 754R standard of the Institute of Electrical and Electronics
Engineers (IEEE), the formats single and double precision are defined by
b =2, emin = —125, emax = 128, p =24,
b =2, emin = —1021, eqx = 1024, p = 53.
The relative error in the approximation of real numbers by machine numbers is
limited by the so-called machine precision.

Definition 10.3 The machine precision is defined by the smallest number geps €
Gor, for which geps > 1, as eps = geps — 1 = ming.; g — 1

Remark 10.3 It holds that geps = b'(b™! +0-b72 + .- +0- b P 4 p7P) =
1 4+ b'~P and thus eps = b' 7.

Examples 10.5

(i) The normalised floating point numbers between b¢ and b¢*! for e, —1 < e <
emax — 1 are uniformly arranged at a distance of b°eps, see Fig. 10.2.

(ii) For the IEEE-754R formats single and double, eps = 2723 ~ 1.2 1077 and
eps = 2792 &~ 2.2 - 1071 respectively.

eps beps b*eps
| |+HHH*|-H++H:H-|—|—H—4:|;|—PH-|—|—|—|—|4_—:-—|—|—|—|—| |
0b'1 b b? B bemas(1—pP)

Fig. 10.2 Schematic representation of the arrangement of machine numbers
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10.3 Rounding

Rounding functions approximate real numbers by machine numbers.

Definition 10.4 For a set of machine numbers G, a mapping rd : [—gmnax, €max] =
Gror is called a rounding function, if for every real number x € [—gmax, &maxls
|x —rd(x)| = mingeg,,, |1x — gI.

Remarks 10.4

(i) If x is exactly between two machine numbers, the IEEE standards select the
machine number whose last digit is even.

(i) We speak of overflow and underflow, when |x| > gmax O |X| < gmin
respectively. In the second case, it is usually rounded to zero, but a large error
occurs. In the denormalised IEEE standard, additional machine numbers are
used in a neighbourhood of zero.

(iii) In addition to the numbers in G, there is usually also the value NaN, which is
used for undefined expressions such as 1/0 and stands for not-a-number.

Lemma 10.1 For every x € R with |x| € [gmin, &max),

that is, there exists a § € R with |§| < eps/2 and rd(x) = (1 4 §)x.

Proof Since the normalised floating point numbers are uniformly spaced in every
interval [b¢, b°11] at a distance beps, there exists a £ > 0 with b° + £b°eps < x <
b® + (£ + 1)b°eps and let g be the upper or lower bound with |x — g| < (1/2)b°eps.
Since |x| > b¢ the assertion follows. O

Definition 10.5 The standard model of floating point arithmetics requires that for
all x,y € R with |x|, |y] € [gmin> &max] and every standard arithmetic operation
op € {+, —, %, :} with |x op ¥| € [gmin> &mnax] as well as their numerical realisation
op; : G x G — G there exists a § € R with [§] < eps/2 such that

rd(x) opg rd(y) = (x op y)(1 +6).

Remarks 10.5

(1) Itis often further simplified to assume that rd(x) ops rd(y) = rd(x op y).
(i) The standard model is fulfilled by the IEEE standards, which are implemented
on common computers.
(ii1) In many operations, rounding errors can accumulate and become relevant. This
is also referred to as error propagation.
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10.4 Stability

Let q~5 : X — Y denote a numerical method, that is a finite sequence of operations
subject to rounding errors. When rounding the argument x it holds

P(x) — (x + Ax) = (p(x) — d(x + Ax)) + (P (x + Ax) — $(x + AX)),

where the first term on the right-hand side is controlled by the conditioning of ¢
and the second describes the stability of the method. The latter depends on the the-
oretically freely selectable rounding accuracy ¢ and in the following we also write
qb,s instead of qb to indicate this. If instead of the impact of erroneous operations the
approximation of an operation ¢ by an approximation q,’) is considered, for example
when approximating a series by a finite sum, the difference ¢ — 5 is also referred to
as the consistency term. The following definition from [2] specifies the concept of
stability in the present context. It is measured relative to the condition number.

Definition 10.6 The stability indicator og(x) of the numerical method $ is the
infimum of all o > 0 for which a § > 0 exists, such that

lp(x) — de ()l
llp (o)l

< okp(x)e

for every 0 < & < §. The method ¢~5 is called unstable, if aq;(x) > 1. Otherwise, the
method is called (forward-) stable.

The number oj(x) describes the error amplification caused by the method.
Precise stability analyses are generally extremely complex. The following concepts
are usually applied in practice.

Remark 10.6 In the linear forward analysis, each intermediate result z; is consid-
ered as subject to rounding and replaced by (1 + ¢;)z; with |g;| < e. Products of the
form ¢;¢; are neglected in the calculation. The division is linearised with respect to
¢, that is for example

@l +e)~ 1 —ex!
A simple to check, but very restrictive stability criterion is the so-called backward

stability, where the method error is represented by a perturbation of the argument x.

Definition 10.7 The backward stability indicator pg(x) of an operation 55 X >
Y at x is the infimum of all p > 0, for which a § > 0 exists, such that for all
0<e <dthereisa Ax € X with ¢ (x + Ax) = ¢.(x) and

lg~" (@) — ¢~ @) _lIAx| < pe
[ CIeN] lxll —

The method is called backward stable, provided that pgx) > 1 does not hold.
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Remark 10.7 If (58 is backward stable, then 58 is stable, because it holds

1 lgex) —p )] __ 1 oG+ 4Ax) — oM™l
kp(xX)e @)l Kp(x)€ llo

[ Ax]|
[lx ]l

1
< - < o~
=3 _P¢(x)

and thus by definition of the stability indicator a(;(x) < ,og(x).
Examples 10.6

(1) The floating-point realisation of the operation ¢(x) = 1 4 x is not backward
stable for small numbers x, because it holds

67 A+ x + 4x) =~ A+ 0)1/167 (1 + )| = |Ax]/Ix] > |Ax].
Obviously, q~5 = ¢ is however stable for small numbers x.
(ii) Cramer’s rule is not backward stable but forward stable for systems of linear
equations of dimension 2.

10.5 Learning Objectives, Quiz and Application

You should be able to understand the general condition number of a mathematical
operation and illustrate it with examples. You should moreover be able to clarify the
importance of floating point numbers and their accuracy for numerical calculations
and motivate the concept of the stability indicator of a numerical method.

Quiz 10.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

If ¢ : R" — R™ is Lipschitz continuous and ||¢ (x)|| > c||x| for all x € R" with

¢ > 0, then ¢ is well conditioned.

Forb =10, p =4, epin = =3, epax =3, — 13- 1072 is a normalised floating point
number.

Ifrd(x) = 0 and ejyin < 2 — p, then |x| < eps.

The machine precision eps limits the absolute error in the approximation of real
numbers by floating point numbers.

If ¢ is ill conditioned, then every numerical method ¢~5 is stable.



86 10  General Condition Number and Floating Point Numbers

Fig. 10.3 Conditioning NNANANANANDN

examination of a billiard shot

Application 10.1 On a billiard table of width 1, a ball is placed on the centre line
and played at an angle o € (0, 7/2) to it. For a fixed number n € N, let ¢, () be
the distance to the starting position on the centre line, with which the ball crosses
this after n wall contacts, see Fig. 10.3. Derive a formula for ¢, («), determine the
condition number g, () and interpret this.



Chapter 11 ®
Polynomial Interpolation Qe

11.1 Lagrange Interpolation

Interpolation refers to the approximation of a given function in a finite-dimensional
space of functions, such as polynomials of limited degree. Since only the coeffi-
cients with respect to a basis need to be stored, this is advantageous for the numerical
processing or tabular recording of a function. In the following, let

n
P, = {Zaixi taop, dy, ..., dy GR}
i=0

be the vector space of polynomials of maximum degree n € Np.

Remark 11.1 We have that dim &, = n + 1 and the monomials (xo, x4 x")
form a basis of &?,,. Here, x denotes the constant function with value 1.

Definition 11.1 The Lagrange interpolation task seeks for given, pairwise different
nodes a < xop < x1 < --- < X, < b and associated values vy, y1,...,Yn @
polynomial p € &, with p(x;) = y; fori =0, 1,...,n, see Fig. 11.1.

The interpolation task can be solved directly with a special basis of &7,.

Definition 11.2 The Lagrange polynomials Ly, L1, ..., L, € &, associated with
the nodes xp < x1 < - -+ < x,, are defined by

Liy=]] Xox =X (x —xi—1) (X — Xi41) (x — xn)
ST —xy G —x) T —xm) (g — X)) (G — )

Remark 11.2 We have that L; (x;) = §;; forall 0 <17, j < n, see Fig. 11.2.

© The Author(s), under exclusive license to Springer-Verlag GmbH, 87
DE, part of Springer Nature 2025

S. Bartels, Numerical Mathematics 3x9, La Matematica per il 3+2 160,
https://doi.org/10.1007/978-3-662-70890-3_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-70890-3protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11
https://doi.org/10.1007/978-3-662-70890-3_11

88 11  Polynomial Interpolation

Fig. 11.1 Lagrange
interpolation task

X0 X| X2 X3

Fig. 11.2 The interpolation

task can be solved with the Lo L
Lagrange polynomials L; 1 //r\\z
N—" ‘ =z
X0 X1 X2 X3\

Proposition 11.1 The Lagrange interpolation task is uniquely solved by

n
p= Z yiLi
i=0

This polynomial is referred to as the (Lagrange) interpolation polynomial.

Proof From L;(x;) = §;; it follows that p(x;) = y; for j =0,1,...,n,ie. pis
a solution. If ¢ € &7, is another solution, then forr = p —q € P, r(x;) = 0 for
j=0,1,...,n,ie.r hasn+1 zeros from which » = 0 and thus p = ¢ follows. O

Remark 11.3 If (qo, g1, - . . , gn) is a basis of &2, then the solution of the Lagrange
interpolation task can be represented as a linear combination p = > ¢;g;, where
the coefficient vector ¢ = [cy, ..., cn]T solves the regular system of linear equations
Ve =y withy = [y, Y1, ..., ya]" and the Vandermonde matrix V e R+Dx+1)
with entries v;; = ¢;(x;). For the choice of Lagrange polynomials, it follows that
V = I,. If, on the other hand, one chooses the monomial basis (x°, x!, ..., x"),
then V is generally ill conditioned.

11.2 Interpolation Error

Often the values yo, y1, - . . , ¥, represent function values of a function f and one is
interested in the size of the error f — p.

Proposition 11.2 Ler f € C"t'([a, b]) and let f(x;) = y; fori =0, 1, ..., n. For
the solution p € &, of the Lagrange interpolation problem and every x € [a, b]
there exists a & € |a, b), such that

FODE) L

fx) —px) = TESE
j=0

(x —xj).
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Proof Let x € [a, b]. If x € {xg, x1, ..., xn}, then the statement is clear, so assume
x # x;fori =0,1,...,n in the following. With the node polynomial

n
wy) =[Jo-x)=y""+ay"+ - +a€ Pup
Jj=0

for y € [a, b] let

F(y)=(fx) — p@))w®) — (f ) — p(»)w(x).

Then F(x;) = Ofori = 0,1,...,n and F(x) = 0O, that is F has at least n + 2
different zeros. According to Rolle’s theorem, F’ has a zero between two zeros
of F, thus F’ has at least n + 1 different zeros. The repeated application of this
argument shows that the derivative F +1) has at least one zero & € la, b]. This
gives

0=F"VE) = (f(x) = p)m+ D! = FOTDEw(x)

and this is the claimed identity. O

Corollary 11.1 For the interpolation error we have

||f(n+1)||c0([a,b])

(n+ 1)' (b—a)”“.

INf— p”CO([a,b]) =<

The corollary implies that the Lagrange interpolation polynomials converge
uniformly to f as n — oo, provided the distance b — a is reduced or the number
of nodes is increased and the derivatives of f do not grow too rapidly. However, the
latter is generally not the case.

Example 11.1 Let f : [—1,1] — R be defined by f(x) = (I + 25x%)! and
let the nodes be chosen equidistantly, i.e. x; = —1 + 2i/n fori = 0,1,...,n.
Then the sequence of Lagrange interpolation polynomials (p,),en of f does not
converge pointwise to f as n — 0o, since the expression || f 1| CO([—1,1]) SrOWS
too rapidly. The interpolation polynomial is shown in Fig. 11.6.

11.3 Neville’s Algorithm

The direct evaluation of the interpolation polynomial at a point x € [a,b] is
expensive and potentially unstable. Neville’s algorithm allows a calculation of p(x)
with &'(n?) computational operations. We follow the presentations in [9, 10].
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Dil
L]
° ® Dio i ° * pi2
e ;
g
Xi—1 Xi Xiyl Xig2 Xi—1 Xi Xi+1 Xiy2 Xi—1 Xi Xiy1 Xiy2

Fig. 11.3 The interpolation polynomial is constructed step by step in the Neville scheme

Definition 11.3 For n + 1 nodes and values (xg, yo), (x1, ¥1), - .., (Xu, Yn) as well
as0 < j<nand0 <i <n-—jlet p;; € &; be the uniquely determined
Lagrange interpolation polynomial with p; j(xx) = yk, k =i,i +1,...,i + j, see
Fig. 11.3.

Remark 11.4 We have that p; o(x) = y; fori = 0,1,...,n and pp,(x) = p(x)
for x € [a, b].
Proposition 11.3 The polynomials p; ; are given by p;o(x) = y; for i =

0,1,...,naswell as

(X —x)piy1,j—1(x) — (x —Xigj)pi,j—1(x)
x,~+.,~ — X

pi,j(x) =

fori=0,1,....,.n—jand j=1,2,...,n.

Proof For j = 0 the statement holds by definition, so assume that it is true for
j—1with j > 1.Let0 <i <n — jand let g(x) denote the right-hand side of the
claimed identity for p; ;. Since p;y1,j—1, pi,j—1 € &j—1, it follows that g € ;.
Moreover, g(xi) = pi j—1(xi) = yi and ¢(xi+;) = pi+1,j—1(xi+j) = yit;j. For
k=i+1,i+2,...,i+ j—1,since p;jy1,j—1(xk) = pi,j—1(xk) = Y, it follows
that

Xk — xi) pig1,j—1(xx) — Ok — Xig ;) pi, j—1(xx)

q(xx) =
Xitj — Xi
e = x)yk — Ok — X )Yk
Xitj — Xi
The uniqueness of the interpolation polynomial implies g = p; ;. O

Remark 11.5 The Neville scheme should not be implemented backwards in recur-
sive form, as many quantities would be calculated multiple times. Instead, the values
pi, j(x) should be evaluated successively forwards, which leads to a computational
cost of &(n?) and is illustrated in Fig. 11.4.

Remark 11.6 Closely connected with the Neville scheme is the method of divided
differences, which determines the coefficients A;, j = 0, 1, ..., n, of the Lagrange
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Poo(x) =yo po.1(x) Po2(x) ... Pon—1(x) Po.a(x)
p1o(x) =y p11(x) p12(x) Pia-1(x)
P20(x) =2 p2.1(x) :
: Pn—2.2(x)
Pn—1,1(x)
Pn0(X) = Yn

Fig. 11.4 Schematic representation of the Neville scheme; the evaluation is carried out from left
to right

interpolation polynomial with respect to the Newton basis (qo, q1, - - -, qn) defined
by go = 1 and

j—1

q;(x) =[x —xp),

k=0
j=1,2,...,n, thatis p(x) = Z?:o %;jq;(x). With the initialisation y; o = yj,
i =0,1,...,n, and the iteration rule

Vij = Yi+1,j-1 = Vi, j—1

Xitj — Xi

forl < j<mnand0 <i <n-—j,wehavethatA; = yo;, j =0,1,...,n. The

evaluation of the interpolation polynomial is then efficiently done with effort &'(n)
via Horner’s scheme, that is by means of the representation

p(x) =Ao+ (x —xo)[)q + (x —xl)[)\z +... [kn_1 + (x —xn_l))»n] ]]

This type of evaluation of the interpolation polynomial has the useful property that
additional interpolation points can be easily added. The scheme is also well suited
when the value of the polynomial p is needed at several points.

Remark 11.7 An alternative approach to evaluating an interpolation polynomial p
is obtained using barycentric representations of the basis functions. Letting

n

vi= ] i—xp7 we=]]e—xp,

j=0,....n, j#i j=0

one has L;(x) = y;w(x)(x — x;)~! for x # x;, and correspondingly

pex) =w) Y (x —x) iy

i=0
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for x & {xg, x1,...,x,} and p(x;) = y; otherwise. If yo =y = --- =y, = 1,
then we have 1 = w(x) Y7_, ¥ (x — x;)~! which leads to

Yo —x) iy
Yoo —xi)Tly

px) =

These representations of p can be evaluated with &'(n) operations provided that the
weights (y;)i=0.....» have been pre-computed.

11.4 Chebyshev Nodes

One way to reduce the interpolation error in Lagrange interpolation is to optimise
the position of the nodes, so that the node polynomial

w(x) = H(x —Xj)

Jj=0
takes as uniformly small values as possible in the interval [a, b]. Without loss of
generality, we consider the case [a, b] = [—1, 1].
Definition 11.4 For n € Ny, the n-th Chebyshev polynomial for t € [—1, 1] is
defined by

T, (1) = cos (narccos ),

see Fig. 11.5. The roots of a Chebyshev polynomial are called Chebyshev nodes.
The Chebyshev polynomials have remarkable properties.
Lemma 11.1
(i) We have |T,,(t)| < 1forallt € [-1, 1].
(ii) With To(t) = 1 and Ty (t) = t we have

Taq1(t) =2t Tp (1) — Ty—1 (1)
Fig. 11.5 The roots of the

Chebyshev polynomials
define the Chebyshev nodes
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forallt € [—1,1]. In particular, T,, € Pyl[-1,1] and for n > 1 it follows
T (1) = 2"711" + g1 (8) with gu—y € Pp_ilj-1.1)-

(iii) Forn > 1, T, has the roots tj = cos((j +1/2)n/n), j =0,1,...,n—1, and
the n + 1 extreme points sj = cos(jm/n), j =0,1,...,n.

Proof Exercise. O

The roots of the Chebyshev polynomials define an optimal choice of nodes in the
sense of the following proposition, which shows that for them the supremum norm
of the node polynomial is minimal.

Proposition 11.4 Let 1y, t1,...,t, € [—1,1] be the roots of the Chebyshev
polynomial T, 1. Then we have

n n
min max l_[|x—xj|= max 1_[|x—tj|=2_”.
X0, xp €[—1, 1] xe[—1,1] ° 0 xe[=1,1] 0

Proof From the preceding lemma it follows 7;4(x) = 2" H;f:o(x —t;) as well

as maxye[—1,1] |Tn+1(x)| = 1, which proves the second claimed identity. Suppose
the nodes 19, t1, ..., t, are not optimal, that is there exist xq, X1, ..., X, such that
for w(x) = ]_[;fzo(x — x;j), we have that max,¢(—1,1] |w(x)| < 27". Since w(x) =

X" () and T,p (x) = 2"x" T 4 g, (x) with g,,, 7, € PP, it follows that
p = 2"Ty4+1 —w = 27"g, — r is a polynomial of degree n, thus p € Z,.
Since T, takes the values =+ 1 with alternating signs at its n + 2 extreme points
505 815 --+>Sp+1 and |w(x)| < 27" holds, it follows that sq, 51, ..., Sy4+1 are not
roots of p and their function values p(s;) have alternating signs. This implies that
p has at least n + 1 roots in [—1, 1], which results in p = 0 and thus contradicts
p(si) #0. m
Remarks 11.8

(i) For the interpolation error with Chebyshev nodes in the interval [—1, 1] we
have the estimate

—n ||f(n+l) ||CO([_1,1])

— <
If = pllcog—1,1)) = n+ 1!

(i) For general intervals [a, b] the optimal nodes are constructed using an affine-
linear transformation ¢ : [—1, 1] — [a, b].

(iii)) The Chebyshev nodes correspond to the vertical projection of uniformly
distributed n + 1 points on a semicircle, see Fig. 11.6.

(iv) For interpolation with Chebyshev nodes, it can be shown that uniform con-
vergence applies for Lipschitz-continuous functions. In particular, pointwise
convergence applies for the function f(x) = 1/(1 + 25x2). The interpolation
polynomial with 9 Chebyshev nodes is shown in Fig. 11.6.
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Fig. 11.6 Interpolation of the function f(x) = 1/(1 + 25x2) with equidistantly distributed as
well as Chebyshev nodes 7y, t1, ..., 3

) =1/(1+252)
__ Chebyshev nodes

equidistant nodes

11.5 Hermite Interpolation

In the interpolation of smooth, i.e. very often continuously differentiable, functions,
it makes sense to prescribe derivatives at nodes in order to reduce the approximation
error while keeping the number of nodes constant, see Fig. 11.7.

Definition 11.5 The Hermite interpolation task looks for a polynomial p € Py

such that for given nodes a < x9o < x; < --- < Xx, < b and values
yl.(o), yl.(l), e, yi(z") fori =0,1,...,n with numbers ¢; € Ny we have
0 1 i i
pi) =y p'ay =y p @) =y

fori =0,1,...,nwith N =37 _;(¢; + 1) — 1 holds.

In the Hermite interpolation task, N + 1 = Y/ (¢; + 1) conditions are to be
met, so it is canonical to use the polynomial space Zy.

Proposition 11.5 The Hermite interpolation task is uniquely solvable.

Proof The linear mapping T : 2y — RV*! is defined by

Tp = [p(x0). p'@o0). ... PO o). ... plaa). PG, - p )]

If Tp = 0, then p has the roots x;, i = 0, 1, ..., n, with multiplicities ¢; + 1.
Considering the multiplicities, p € Zx thus has a total of N + 1 roots and the
fundamental theorem of algebra implies p = 0. Thus, T is injective and as a linear
mapping between spaces of the same dimension also bijective. This implies the
unique solvability of the Hermite interpolation problem. O

Fig. 11.7 In Hermite

interpolation, derivatives are

also prescribed at the nodes in /\/
addition to function values

X0 X1
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Remark 11.9 In the case of a single node xo and values y(()j ) = FPD(x), j =
0,1, ..., ¢y, the Hermite interpolation problem yields the £¢-th Taylor polynomial
of f at the point xp.

To derive an error estimate, we restrict ourselves to the case £g = €] = --- =
£, =Lforanf > 0,sothat N+ 1= (£ + 1)(n + 1) holds.

Proposition 11.6 For f € CNt([a, b)), let p € Py be the Hermite polynomial
with p®(x;) = f®(x;), 0 <i <n, 0 <k < £ for given nodes a < xy < x| <
- < X, <b. Foreach x € [a, b] there exists a & € [a, b] with

e - N
F0) =P = "0 E)(x —x)ttL

In particular, it holds that

IF NN cogans

1 N+1
If = Pllcoqapny = Y b—a)".
Proof If x € {xo,x1,...,xn}, the statement is clear, so let x € [a,b] \
{xo0, x1, ..., x,} in the following. For y € [a, b] define

n
w) =[] - e Pyn
i=0

and

F(y)=(fx) = p@))wi) — (f ) — p(»)w(x).

The function F has the (¢ 4 1)-fold zeros xo, x1, ..., x, as well as the simple zero
x and between two adjacent zeros F’ has a zero different from them. Thus, F’
according to Rolle’s theorem has besides the ¢-fold zeros at xq, x1, ..., x, further
n—+ 1 zeros, thus in total at least 2n 4 2 zeros. Between all these zeros F” has further
zeros, provided £ > 2 holds, that is F” has (n + 1) + (2n + 1) = 3n + 2 zeros.
Inductively it follows, that F ® has at least (n + 1) + (bn + 1) many zeros. When
differentiating F©, the number of zeros decreases by one and thus the derivative
FtAntlttn) — p(N+D) oti]] has one zero & € [a, b]. Thus,

0=FNDE) = (fx) = p))(N + D! = (FNTVE) - 0)w(x)

and this implies the claimed statements. O

Remark 11.10 In the case of Hermite interpolation with 3 nodes and specification
of the function values as well as two derivatives at each node, one obtains a
comparable accuracy to that of Lagrange interpolation with 9 nodes.
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11.6 Learning Objectives, Quiz and Application

You should be familiar with various interpolation tasks and be able to prove
corresponding error estimates. You should be able to explain and illustrate with
examples the possibilities of improving interpolation results through different
choices of nodes.

Quiz 11.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

The Lagrange polynomials satisfy the identity Y »_, L;(x) = 1 for all x € [a, b].

To capture the function f(x) = sin(x) in the interval [0, 1] in tabular form with an
error of at most 0.01, the specification of four function values is sufficient.
Chebyshev nodes are the extreme points of the Chebyshev polynomials.

The Neville scheme calculates the coefficients of the Lagrange interpolation polyno-
mial with respect to the monomial basis.

The Hermite interpolation task with four nodes and specification of the first and second
derivatives at the nodes leads to 8 conditions.

Application 11.1 A press for the production of mechanical components is driven
by a spindle. In this case, the spindle travel 0 < s < ¢ leads to a diameter d(s) of the
component. To produce components of a specified diameter, a suitable spindle travel
must therefore be specified. Tests with the machine lead to the measured values in
millimetres

(s, d(5)) = (0.10,0.098), (0.20, 0.043), (0.35, 0.122), (0.40, 0.157).

Construct a function that provides a sensible spindle travel based on these data for
a desired radius.



Chapter 12 ®
Interpolation with Splines ST

12.1 Splines

Interpolation with polynomials requires high regularity properties of functions
to guarantee small errors. To also approximate functions that only satisfy f €
C%([a, b]) with high accuracy, the interval [a, b] is divided into subintervals and
a polynomial interpolation is performed on each subinterval. At the transitions
between the subintervals, suitable continuity and differentiability conditions must
be imposed. In this chapter, we follow the presentations in [7-9].

Definition 12.1 For a partitioning .7, of [a, b] defined by a = xo < x1 <

- < x, = b, afunction s : [a,b] — R is called a spline of (polynomial)
degree m € Ny and of (differentiability) order k € Ny, if s € C*([a, b)) and
Sl vl € Pl gl i = 1,2,...,n, holds. Let .#™*(7,) denote the space
of all splines of degree m with respect to J},. Splines of degree m = 1, 2, 3 and of
order m — 1 are called linear, quadratic or cubic splines, respectively.

Remark 12.1 Often, with splines, only the differentiability order k = m — 1
is considered and then .#™(J},) is written instead of .#"™™~1( 7). This is the
maximum order for which the polynomial space £, is a proper subspace of
Mk For k > m, however, Pmllab] = Mk,

Proposition 12.1 For given values yo, yi, ..., yn there exists exactly one linear
spline s € V0T, with s(x;) = y; fori = 0,1,...,n. This is given by s =
Z?:o Yi@; with the hat functions (¢g, @1, ..., ¢n) € LT which are defined

by ¢i(xj) = 6;j for 0 < i, j < n, see Fig. 12.1.
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Fig. 12.1 Hat functions
@0, @2 associated with the
nodes xo and x; and linear
spline function s

X0 X1 X2 X3 X0 X1 X2 X3

Proof The function ¢; € .#19(.7,) is given for x € [a, b] by

(x —xi—1)/(xi —xi—1), x €[xi—1,x],
@i(x) = 3 (xig1 —x)/(Xig1 — X)), X € [x;, xiq1],

0, otherwise.

From the representation s = ) 7_ y;¢; the unique solvability of the interpolation
task follows. |

Proposition 12.2 The dimension of the space ™"~ (T,) is n + m.

Proof For m = 1 the statement follows from the previous result. Let
(¢0, ®1, ..., @n) be the basis of . Lo consisting of the hat functions. For
i =0,1,...,n let r; be an (m — 1)-th antiderivative of ¢;, that is ri(m*l) = ;.
Then, (ro,r1,...,rn) C 5””””’1(%) holds. Moreover, the monomial basis
(9 x1, ..., x™2) is contained in .~ 1(.7,) and we show that

(ros 1y o vty X0 x0, L X2

is a basis of ™"~ L(F ) Lets € .M~ 1(F). Since s~V ¢ .#1.0(F), there
exist cgp, 1, ..., ¢, such that

n
s = cigi
i=0

and integrating (m — 1) times leads to

n m—2
s(x) = Zciri(x) + Z djxj
=0 j=0

with integration constants dy, di, . .., d,—2. To establish linear independence, let
co,Cl,...,cqpand do, dq, ..., d;,—> be such that

n m—2

e+ Y dixl =0

i=0 j=0



12.2  Cubic Splines 99

holds for all x € [a, b]. By differentiating (m — 1) times it follows that

n n
-1
i=0 i=0

and thus cp = ¢; = - - - = ¢, = 0. This implies Z;'Coz djxj = 01in [a, b], which in
turn impliesdp = dy = --- = dy—2 = 0. o
Remarks 12.2

(i) With n + 1 nodes, in addition to n + 1 interpolation conditions s(x;) = y;,
i =0,1,...,n, a further m — 1 conditions must be imposed, to uniquely
determine s € .M~ 1(F,).

(i) Ifmisoddand f € C"™*!([a, b]), an interpolating spline s € .7 "=1/2( )
can be defined by piecewise Lagrange or Hermite interpolation with the
property

i (m+1)
1 = slevqann = Gy Nevdann-

where & = max;=
T

(iii) More generally, by integrating piecewise polynomial (typically discontinuous)
functions of degree m — (k 4 1) repeatedly (k + 1) times, it can be shown that
dim.7"*(F,) = n(m — k) + (k + 1) holds for k < m.

n(xi — xj—1) is the maximum grid width of the partition

,,,,,

12.2 Cubic Splines

While linear splines have kinks and quadratic splines have discontinuous second
derivatives, which can be well perceived at practically relevant resolutions, cubic
splines appear very smooth.

Definition 12.2 For a partition .7, = {xg, X1, ..., x,} of the interval [a, b] and
support values yo, V1, ..., Yn, the interpolation task with cubic splines consists in
determining a function s € 32T with s(x;) = yifori =0,1,...,n taking

into account one of the following boundary conditions:

* natural boundary conditions, i.e. s" (a) = 0 and 5" (b) = 0;

» complete or Hermite boundary conditions, i.e. s'(a) = y(()]) and s’ (b) = y,g) with
given numbers y(()l), y,(ll) e R;

* periodic boundary conditions, that is s’(a) = s'(b) and s”(a) = s”(b), where
additionally yp = y, applies.
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Fig. 12.2 Cubic splines are

piecewise smooth, running
through given points

X0 X1 X2 X3

Remark 12.3 The cubic spline interpolation can be interpreted as the fixing of a
thin wooden strip through given points, see Fig. 12.2. The word spline refers to a
long, very flexible ruler used in shipbuilding.

Interpolating cubic splines are minimal for a linearised bending energy, as the
following statement shows.

Proposition 12.3 Let s € .7>2(.9,) be a solution of a cubic spline interpolation
task and let g € C*([a, b)) be any function that satisfies the interpolation conditions
gxi) = yi, i = 0,1,...,n. Assume that (i) s"(x) = 0 for x € {a, b}, (ii) (g —
5) (x) = 0forx € {a, b} or (iii) s" (a) = 5" (b) and (g — 5) (@) = (g — s)'(b). Then
it holds

b b b
/ Is” ()% dx + f (s — &) () > dx = f lg” (x)]? dx.

Proof 1t holds

b b
[gPax= [T g -9 P
a a
b b b
:/ |s”|2dx+ |(g—s)”|2dx+2/ s”(g—s)”dx
a a a

and it suffices to show that the last integral on the right side vanishes. From the
boundary conditions it follows

5"(@)(g'@) = 5'@) = 5"(b)(g'(b) — 5'()).

Partial integration on each subinterval [x;_y, x;],i = 1,2, ..., n, shows

/ s"(g - S)”dx_Z/ s"(g =
a Xi-1
(- / D g e (- ).
i=1

For the sum of the boundary terms, using s € C?*([a, b]) and the boundary
conditions at xo = a and x,, = b, it follows that
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n n

Y ("= = (" e =) () = 5" (e (g — ) (xi-1))

i=1 i=1

= 5" (xn)(g — 5) (xn) — 5" (x0) (g — ) (x0) = 0.

Since s is constant on each interval (x;_, x;), for example with value ¢;, it follows
using the main theorem of differential and integral calculus and the interpolation
conditions s(x;) = g(x;) fori =0, 1, ..., n, that

n

Zf g -9 dr = ci((g — 9)() — (g — $)(xi—1) = 0.
j=1 Y%=l

i=1

In total, it is thus shown that

b
f S//(g _ s)//dx -0
a

and the statement of the proposition is proven. O

The preceding result implies the well-posedness of the interpolation task, which
is stated here only for complete and natural boundary conditions.

Proposition 12.4 There exists a unique solution to the interpolation task with cubic
splines and natural or complete boundary conditions.

Proof If 5,g € S32(F) are two solutions to the interpolation task, it follows
from the repeated application of the previous result with swapped roles of s and g
and addition of the two resulting equations, that

b
f s —8)"Pdx =0

and thus (s — g)” = 0ors(x) — g(x) = p + ¢x in [a, b]. From s(x;) — g(x;) =0
fori = 0andi = n it follows p = ¢ = 0 and thus s = g. In the case of complete
boundary conditions, with dim.#3?(.7},) = n + 3, the linear mapping

Ty : S>2(F) — R s 5 (s(x0), ..., s(xn), s'(x0), 5" (x))

is injective and thus also bijective. The case of natural boundary conditions follows
by replacing s’(xo) and s’(x;,) by s”(x9) and 5" (x;,,) in the mapping Ty . O
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12.3 Calculation of Cubic Splines

Due to the regularity condition s € C%([a, b)), interpolating cubic splines cannot
be determined locally and a system of linear equations must be solved to obtain a
representation in the monomial basis on each subinterval.

Proposition 12.5 For a partitioning xo < x1 < --- < X, and given interpolation
values yo, y1, ..., yn, lets € P3G with s(x;) = vi, i =0,1,...,n. Then the
quantities y; = 5" (x;), i =0, 1, ..., n, satisfy the system of linear equations
PR (hit1 + hi) 4viq1 hyyy ViR Y2 T Vidl | Vil T i
6 2 6 6 hit1 hi
fori=0,1,...,n—2, where h; = x; 41 — x;. With the quantities
L — v ' d; ST
py= YL T Vi Sh2od = Yitl — Vi
hi 2 6 hi
we have on each subinterval [x;, x;+1], i =0, 1,...,n — 1, the representation

Sy 1 (¥) = yi + bi(x — xi) + %(x — )+ G =),

Proof If s € .#32(7,) with s(x;) = y; and s” (x;) = ; then there exist b;, d; € R,
i=0,1,...,n—1,with

Sy 1 (6) = pi(x) = yi + bi(x — xi) + %(x —x)? 4+ G =),

(i) The continuity of s at x; 1, that is the identity p;(xj+1) = pi+1(xi+1) leads to
the equation

Y

d;
5 P+ —hl=yin &= b=

yi +bih; + 6
fori =0,1,...,n — 1, with b; being determined by d;, y;, yi+1 and y;.

(ii) The continuity of s” at x; 1 or the identity p!(x;y1) = pl”+ (xit1) as well as
5" (xn) = y» leads to the equation

Yi+1 — Vi

vitdihi =vyiq &= di=—r
]

fori =0,1,...,n — 1, whereby d; is determined by y; and y; 4.
(iii) The continuity of s” at x;+1, that is the identity pj(xi+1) = pj, (xi+1), is
equivalent to

d; d;
bi + hiyi + jhlz =biy1 << biy1—bi=hy+ Elhlz
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fori =0,1,...,n — 2. If one uses in this identity the above representations of b;
and b; 41 as well as d; and d; 41, the asserted n — 1 equations for the coefficients y;,
i=0,1,2,...,n are obtained. m]

In the preceding result, n — 1 equations were derived, which must be satisfied by
the n + 1 derivatives y; = s”(x;), i = 0, 1, ..., n. The addition of two boundary
conditions completes the system of equations.

Example 12.1 For an equidistant grid, that is h; = h fori = 0,1,...,n — 1,
and the natural boundary conditions s”(xg) = s”(x,) = 0 or y9 = y, = 0, the
quantities yi, ¥2, ..., Yn—1 are given as the solution of the tridiagonal system of
linear equations

41 Y1 r
1|14 - 22 I
6 o] :

1 4 Yn—1 "'n—1

with r; = (yig1 — 2yi + vi—1)/h% i = 1,2,...,n — 1. The strictly diagonally
dominant system matrix is regular and thus there exists a unique solution.

12.4 Interpolation Error

Error estimates for spline interpolation are usually provided in norms, which are
given by integrals. We consider the L? norm induced by the L? scalar product, that
is

5 1/2
(f, &2 :/If(x)g(x)dx, I flle2ay = (/If (x)dx) :

An important tool for working with this norm is the Cauchy—Schwarz or Holder
inequality

(s @2y = W 2 ligh2

which holds for functions f, g € C(1).

Proposition 12.6 Ler s € #V0(.F},) be the continuous, piecewise linear spline
interpolant of the function f € C2([a, b)), that is s1(x;) = f(x;),i =0,1,..., N.
Then

h2
I =sillz2gapy) < ?||f”||L2([a,b])
withh = max;—|___ N Xi — Xi_1.

.....
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Proof The error e = f — s satisfies e(x;) = 0 fori = 0,1,..., N, as well
asel, € C 2(I,-) on all subintervals I; = [x;_1, x;]. Under these conditions, the
Poincaré and the seminorm interpolation estimates apply

h 1/2 1/2
||e||L2([,-) = E”e/HLZ(Ii)’ ||e/||L2(],-) = ||e||L/2(Ii)||e//||L/2(1i)

fori =1,2,..., N. From these two estimates it follows that

h h?
2 2
||€||L2(1i) =< 7”6/”142(11') = ?||e||L2(1,-)||eN||L2(1,-)

and after division by |le||2(;., and using e[} = f|7, it follows that

h2 2
lellLzq,y < 7”6””L2(1,-) = ?”f””LZ([,-)-

Squaring and summing this inequality leads to

2 al 2 h4 y 2 h4 2
— E _2 : 7 _ e
”e”Lz([a,b]) - ”e”Lz(l,') S 4 ”f ”Lz(li) - 4 ”f ||L2([a,b])’
i=1 i=I

thus the claimed error estimate. The Poincaré inequality used here results from the
representation

e(x) =f e (y)dy,
Xi—1

the application of the Holder inequality to this integral, that is

x 12, [x 1/2
el = ([ 1ay) ([ @0rPdy) = =201,
Xi—1 Xi—1

and subsequent squaring and integrating

Xi h2
2 2 X o2
ey < 1€, [ G i de < T,

Xi—1
The seminorm interpolation estimate is obtained with partial integration, the

identities e(x;_1) = e(x;) = 0 and the Holder inequality,

le'1Z2,) = — /1 e(x)e” (x) dx + (e(xi)e'(xi) — e(xi—1)e’ (xi-1))

A

= ||€||L2(1,-)||e”||L2(1,-)-
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This completes the proof. O
The proposition implies an error estimate for cubic spline interpolation.

Corollary 12.1 Let s3 € .#32(.9,) be an interpolating cubic spline function of the
function f € C*([a, b]). Assume that (i) f”(x) = 0 for x € {a, b}, (ii) s5(x) =
f'(x) for x € {a, b} or (iii) f(i)(a) = f(i)(b)fori =0, 1,2, in the case of natural,
complete, and periodic boundary conditions, respectively. Then it holds that

e
If = s3llz2qany = I”f 22 (1a,b1)-

Proof Let I1(g) € & 1'0(9,,) denote the interpolating linear spline function of a
function g € C 2([a, b]). Then I (f — s3) = 0 and according to the previous result

h2
I =s3lle2qaey = 1 —53) = Li(f = s)l2qanp < 7||(f = 53" L2(ta.01)-

Let r € .#>2(Z,) be such that r” = I;(f”) holds and r has the same boundary
values as f and s3. By construction we then have r”’(x) = f”(x) for x € {a, b}.
Fors = s3—r € >>(J,) and g = f —r € C?([a, b]) the conditions of
Proposition 12.3 apply, so that

163 = 1) 12 qapyy + 1 =" = (3= 120y = 1 =P 13200
This implies that

ICf — SS)NHLZ([a,b]) < - V)N”LZ([a,h]) =|f" - Il(f”)||L2([a,b])-

With another application of the previous proposition, we obtain in total

h? o
" "
lf - S3||L2([a,b]) < 7||f - Li(f )||L2(|a,b]) < Z”f( )”Lz([a,b])’

which proves the claimed inequality. O

Remark 12.4 A key aspect of interpolation with cubic spline functions is that,
unlike Lagrange interpolation with piecewise cubic polynomials, we obtain an
interpolating function in the space C%([a, b)).

12.5 Learning Objectives, Quiz and Application

You should be able to define spline spaces and determine their dimensions. For cubic
splines, you should be able to specify a minimality property and its derivation.
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Quiz 12.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

Every spline function is once continuously differentiable.

It holds that .1-9(.7,) N .#>2(.7,) = {0}, where 0 denotes the constant function
with value 0.

Ifg € #, and x9 < x| < --- < x, is a partition .7}, of [a, b], then
qliap) € L™ (T).

Interpolating cubic spline functions minimise a linearised bending energy among
interpolating C? functions.

The calculation of a cubic spline leads to a system of linear equations with a
diagonally dominant, irreducible system matrix.

Application 12.1 Smooth curves such as cubic spline functions find diverse appli-
cations in computer graphics for the calculation and representation of curves and
surfaces. With few pieces of information, complex graphic objects such as CAD
models or postscript fonts can be described. In addition to the memory requirement,
the efficient further processing such as scaling or rotation of the objects is an
important aspect. Closely related to spline functions are so-called Bézier curves,
which are defined for given points Py, Py, ..., P, € RZandr € [0, 1] by

=y ('I,’)z"(l — )" P

i=0

(i) Show that for n = 2 the representation
2t) =1 =0D[A =Py + 1P| +t[(1 — )Py + 1 P,]
holds and interpret this formula geometrically.

(i1) Show that with the initialisation z?(t) = P;,i =0,1,...,n,and the recursion
rule

doy=0-0z" o+l ©

fort € [0,1],j =1,2,...,n,andi = 0,1,...,n — j the identity z = z;

follows.
(iii) Implement a recursive function y = de_casteljau(j,i,P) for evaluating
the curve z for given points Py, P, ..., P, at a point ¢t € [0, 1] using the

formula from (ii). Use your program to graphically represent the curve defined
by the points Py = (0,0), P = (1, 1), P, = (2,0) and P; = (3, 2).



Chapter 13 )
Discrete Fourier Transform Check for

13.1 Trigonometric Interpolation

Many signals or functions that occur in applications are created by superpositions
of fundamental oscillations of different frequencies, that is, after suitable transfor-
mation to the interval [0, 27 ]

fx) =" (cecos(Lx) + dy sin(€x)),
=0

see Fig.13.1. In fact, every Riemann-integrable function can be represented in
this way and this motivates to interpolate functions with trigonometric functions.
Compared to approximation for example with polynomials, many coefficients are
small and in practice negligible.

Definition 13.1 For m € N, n = 2m and nodes x; = 2rj/n and values y; € R,
Jj=0,1,...,n—1,the real trigonometric interpolation task consists in determining
ag, by eR, £=1,...,m —1,and ag, a,, € R, so that for

m—1
T(x) = %O + EX_I: (ag cos(¢x) + by sin(éx)) + Cl?m cos(mx)

the identity 7'(x;) = y; holdsfor j =0, 1,...,n — 1.

The real trigonometric interpolation task can be represented concisely in the
complex plane. Leti = +/—1 € C denote the imaginary unit.

Definition 13.2 The complex trigonometric interpolation task consists in deter-
mining By € C, k = 0,1,...,n — 1, so that for x; = 27j/n and y; € C,

© The Author(s), under exclusive license to Springer-Verlag GmbH, 107
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Fig. 13.1 Functions can
often be represented as a sum
of sine oscillations

j=0,1,...,n—1,and
. . . n_l .
p() = Po+ Bie™ + pre™ 4 4 BT =) et
k=0

the identity p(x;) = y; holds for j =0,1,...,n — 1.

The real and the complex trigonometric interpolation tasks are equivalent to each
other in the following sense.

Proposition 13.1 Letn = 2m and yo, y1, ..., Yn—1 € R. The coefficients By, k =
0,...,n — 1, solve the complex trigonometric interpolation task exactly when the
coefficients ao, ay, and ag, by, for £ = 1,2, ..., m — 1, defined by

ap =2Po, ae¢=Pe+ Pom—t, be=1(B¢ — Pom—-e), am = 2Pm,

solve the real trigonometric interpolation task defined by vy, y1, ..., Yn—1-
Proof Tt holds that e 16¥j = ¢=i27ti/n — (2(n=0)j/n — (i=0xj apnd with ¢ =

cos(x) + isin(x) it follows

ilx; —ilx; ilx; i(n—€)x;
Oy el +e J e +e i
cos(fx;) = Re(e!™7) = = ,

2 2
y 6‘iéxj _ e—inj ei(ixj- _ ei(n—l)x/-
sin(fx;) = Im(e") = =
(tx)) €™ 2i 2i
With 1/i = —iand n = 2m and cos(mx;) = %) | this implies that

m—1
%0 + Z (ag cos(€x;) + by sin(fx;)) + %ﬂ cos(mx ;)

=1
m—1 . m—1 .
ao ag —iby gy, ar +iby gy, | Gm iy,
=2 Y ity N, i i
RS 2 >

With the relations By = ao/2, B¢ = (a¢ — ibg)/2 and B,—¢ = (a¢ + iby)/2 for
£=1,2,...,m —1and B, = a,/2 the assertion follows. m]
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Remarks 13.1

(1) In the situation of the previous result, p(x;) = T(x;), j =0,1,...,n—1, but
in general p # T.
(ii) Due to the identity ¢** = (™)K, we also speak of trigonometric polynomials.
(iii) Better approximation properties are achieved with functions of the form
r(x) = ,’(”;_lm Sxe** which however can be obtained via the complex
trigonometric interpolation task.

13.2 Fourier Bases

If we write the interpolation conditions p(x;) = y; in vector form, we get

Y0 eikxo
n—1 B n—1
kx|
1 e k
y= = E Br = E Bro".
Yoot k=0 eikxn—l k=0

This identity can be interpreted as a basis change from the representation of the
vector y with respect to the canonical basis in R” to a representation with the vectors

(x)k — [eikxo’ eikxl o eikx,l,l]T

Necessary and sufficient for the solvability of the complex-valued trigonometric
interpolation task is that the vectors (a)k)k:o,_,_,n_ 1 define a basis of the C-vector
space C".

Definition 13.3 Forn € N, let w, = ¢>"/" be the n-th unit root, see Fig. 13.2, and
fork=0,1,...,n—1,let o* € C" be defined by

of = [wgk, wik’ o wr(ln—l)k]T
The family (0°, »!, ..., @"™') c C" is called Fourier basis.

The structure of the Fourier basis vectors motivates the numbering of vectors in
C" with the indices j = 0, 1, ..., n — 1. Similarly, matrices will be numbered in the

Fig. 13.2 The powers of the
n-th unit root w, are evenly
distributed complex numbers
on the unit circle
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following beginning with 0. The scalar product of two vectors a, b € C" is defined
bya-b=a'b=)"_ya;b,.

Lemma 13.1 The vectors (o*)g=o....n—1 Sform an orthogonal basis of the C-vector
space C", that is, o* - w* = néyy holds.
Proof Exercise. O

To solve the complex trigonometric interpolation problem, the representing
matrix of the basis change must therefore be determined.

Lemma 13.2 The basis change from the Fourier basis to the basis (eg, eq, ...,
en—1), consisting of the canonical basis vectors, is realised by the matrix

T, = [0, &', ..., 0" 1] eCP"

with inverse Tn_1 = (l/n)TZ. Forall y = Z;’;(l) vje; € C" we therefore have that
— . =T

y = Y420 Bra® with = (1/m)T, y.

Proof For y € C", let B = [Bo, B1.-..,Bn_1]" be the coefficient vector with

.....

this it follows that

n—1
yTa (Zﬂkw) ' =Y A = npe,

k=0
_ Tt _ —0\T : ;
so Be = (1/n)y '@ = (1/n)(@")" y or in vector notation

Bo @")7
Bn—1 (@"~ I)T

The identity o* - @ = n8g, implies that T, T = nl, or T,' = (1/n)T, holds.
O

Definition 13.4 The mapping y — 8 = (1/ n)TIy is called (discrete) Fourier
transform and the inverse mapping 8 — y = T, 8 is referred to as Fourier synthesis.

Remarks 13.2

(1) The Fourier transform can be represented using the Fourier synthesis and
complex conjugations, i.e. since 7, is symmetric we have § = %Tn y =
i (17).

(i) The complex trigonometric interpolation problem is solved with the discrete
Fourier transform. The Fourier synthesis realises the evaluation of a trigono-
metric polynomial at the nodes.
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13.3 Fast Fourier Transform

The matrix 7, has only n different entries, which are arranged in a cyclic manner,
so that the multiplication with 7}, can be realised with a significantly lower effort
than &(n?).

Example 13.1 ([8]) Using wé = wé mod8 “the Fourier synthesis y = Tgf can be
expressed as

_yo_ _a)g a)g a)g a)g a)g wg a)g a)g_ _ﬂo_
|| g oy of of o of Of of || B
|| g of ogof oy of o e || B
3| a)g a)g a)g wé a)g a)g a)g a)g B3
V4 N a)g a)é1 a)g a)‘s1 a)g a)g1 a)g a)g Ba
| | @k 0f of of o5 oy of of | | Bs
Yo | | @k of of of oy of og of | | Bo

7] Lok of of of og of of oy | [ 7]

_}’0_ _wg a)g a)g wg wg a)g a)g wg_ _/30_
0 2 4 6|1 3.5 7
yi wg Wy Wy Wg|wg Wy Wy g | | fr
0 4 0 4.2 6.2 6
2 wg Wy Wy Wg|wyg Wy wg g | | By
0.6 4 213 1.7 5
Y3 | _ | @8 @5 Wg Wg|wy Wy wg Wy || P
Y4 a)g a)g a)g a)g wéL a)g a)gl a)é’ B
v || of it of uffof of of o} | | B
0 4 0 46,2 6,2
Y6 wg wg wg wg|wg wg wg g | | Ps
0.6 4 217 5 3 |
Ly7] Loy g g of|og oy o5 og | A7
With the identities w2¥ = i272k/8 — (i27k/4 _ wlj and a)g = ¢l = —1 it follows
Yo Bo
il Be
V4 B1
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where T4 and D4 are defined by

0.0.0.0 0
0)46()4(1)40)4 0)8
0 1.2 3
T, = Wy Wy Wy Wy Dy =
=1 0.2, 0,2/ = 2
(,()4(,()4(1)4(,()4 (1)8

0o 3 2 1 3
Wy Wy Wy Wy wg

This implies

Yo Bo B1 V4 Bo b1

Yo Pl epn | | =0 || by | P
2 Ba Bs Y6 Ba Bs

y3 Be B7 7 Be B7

The Fourier synthesis y = 7gf can therefore be reduced to two Fourier syntheses
of dimension n = 4.

The procedure of the example can be generalised.

Proposition 13.2 For g € C2" let D,,, € C"*™M pe the diagonal matrix with entries
(Dy)ee = a)gm, £=0,1,....m—1.Theny = Tp,, B is given by y = (yl, yz) with
vectors y', y? € C™ defined by

yl — Tmﬂeven + DmelBOddv y2 — Tmﬂeven _ Dme,BOddv

where " = [Bo, B2, - ., Pam—2]" and B = [B1, B3, ..., Pam—11"

Proof For 0 < £ < m — 1 we find, using w3, 2kt a)ke
2m—1 2m—1
ve= Y (Tam)ijBj = Z ),
j=0
— 2k 1@
- S+ Tl
m—

e
= o Bu+ 0, Y o B

k=0 k=0
m—1 m—1
=Y (Twabok + Dm)ee Y (T exPokr1-
k=0 k=0
thus y! = 7,,8¢" + D, T,,°/. For £ > m a similar calculation considering
Wb, = wglm% modm —wmodm Jeads to the claimed identity. i
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The result reduces a problem of size n with effort <7 (n) to two problems of
size n/2 with effort o7 (n/2). The assembly of the vectors 7, 8Y" and T, 8¢ to
the subvectors y', y? of length n/2 according to the identities of the proposition
requires the computational effort of 3n/2. The procedure can be generalised and
iterated for dimensions n = 2%, ¢ = log,(n) € N. For the computational effort we
thus obtain

3n 3n , 3n
I>+—_>..._>z@f(1)+e7

() — 24/ (n)2) + 37" = 2(2@%(,1/4) + :

Since 7(1) = 1 applies, the effort of the resulting procedure is about n(1 +
(3/2) log, n) (complex) arithmetic operations. This replaces the effort On?) of a
matrix-vector multiplication by the significantly lower effort &'(n log, (n)).

13.4 Learning Objectives, Quiz and Application

You should be able to explain the basic ideas of the discrete Fourier transform and
describe the effort reduction of the fast Fourier transform.

Quiz 13.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

As a complex vector space, C" has the dimension n and as a real vector space the

dimension 2n.
If w,, is the n-th unit root, then w,'f/z = —1 if and only if n is even.

The complex trigonometric interpolation problem is solved by 8 = T,y with the
Fourier matrix 7;,.

The matrix S, = (1/+4/n)T, defines an isometry on C", that is, we have
1Seyll2 = llyll2 forall y € C".

For real values yg, y1, ..., Yn—1, the solution of the complex trigonometric
interpolation problem is real-valued.

Application 13.1 The discrete Fourier transform calculates a frequency decompo-
sition of a given signal. In order to process only relevant information, calculated
coefficients, which are small compared to others, can often be neglected. In addition,
coefficients that belong to frequencies that are not perceptible in the respective
application can be eliminated. The vector y = [yo, y1, ..., yn_1]T € R" is defined
by y; =sin(2rwj/n)+(1/10)§;, j =0, 1, ..., n—1, where &; stands for a normally
distributed random value that can be generated in MATLAB with randn. Use the
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MATLAB routine fft to determine the Fourier transform 8 € C", and eliminate
coefficients B, for which

| <6  max Y
| £=0,1,....n—1 |Be]

applies, that is, replace such coefficients with zero. Use the inverse transform ifft
to obtain a vector y € C". Interpret the vectors y and y as values of a function and
graphically represent them for n = 256 and various values of 6.



Chapter 14 ®
Numerical Integration Qe

14.1 Quadrature Formulas

The aim of numerical integration or quadrature is the approximation of proper
integrals

b
I(f)Z/ J(x)dx,

which cannot be explicitly calculated using an antiderivative.

Definition 14.1 A quadrature formula on the interval [a, b] is a linear mapping
0 : C%(la, b]) — R of the form

O(f) =Y wif(x)
i=0

with (quadrature) points (x;)i—o,....n» and (quadrature) weights (w;)i=o,....n. The
number ||Q| = (b —a)™! Yo lwil is its stability indicator.

Remarks 14.1
(1) Ifa =xo < x1 <--+ < x, = b, the Riemann integral can be approximated by

n—1

b
[T SETEYes
a i=0

and the right-hand side defines a quadrature formula with weights w; = x; 41 —
xifori =0,1,...,n—1and w, = 0, see Fig. 14.1.
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Fig. 14.1 Riemann sums 4

define simple quadrature

fornut (!,
X0 X4

(i1) For every quadrature formula, we have that

101 = (D 1wil) f lengap = 1216 = DI f leoiasy-

i=0

Definition 14.2 The quadrature formula Q is called exact of degree r, if Q(p) =
I(p) for all p € &, holds.

If a function f can be well approximated by polynomials, then a quadrature
formula with a high degree of exactness provides good approximations of the
integral.

Proposition 14.1 Let Q be exact of degree r > 0. Then Y ;_,w; = b — a holds
and for all f € C°([a, b))

1) =N <A+ 12Dk —a) pnel,];}}, If = Pllcoga.ny-

In the case w; > 0,1 =0, 1,...,n, we have that | Q] = 1.

Proof According to the assumption, Y 7_,w; = Q(1) = I(1) = b — a holds. Let
f e C%la,b]) and p € P, be arbitrary. With 7 (p) = Q(p), the linearity of / and
Q as well as the triangle inequality, it follows that

[1(f) = o(N|= A+ 12" = a)l f = plicogapy-

Since p € &2, is arbitrary, the assertion follows. O
Remarks 14.2

(i) With interpolation estimates, quantitative statements about the quadrature error
are obtained, that is, for example, with Corollary 11.1

(r+1)
Il coga, by b —ay .

1) = 2| = A+11eh® —a) T

By using Chebyshev nodes, this estimate can be further improved.

(i) If Q is exact of degree 2¢g and the weights (w;);=o.... » and nodes (x;);i=0,...n
are symmetric with respect to the interval midpoint (a + b)/2, then Q is exact
even of degree 2qg + 1.



14.2 Newton-Cotes Formulas 117

(ii1) If Q is a quadrature formula on [a, b], then one obtains with the transformation
¢:la,b]l - [c,d], x> c+ (x —a)d—c)/(b—a),and

d b d—c b
/ gy dy = / g(p(x0)¢ (x) dx = — / g(p(x)) dx

a quadrature formula on the interval [c, d].

14.2 Newton-Cotes Formulas

A class of quadrature formulas is obtained by Lagrange interpolation of a function
and subsequent exact integration of the interpolation polynomial. For given equidis-
tant nodes xg < x; < --- < x, and the associated Lagrange basis polynomials

n

Ly =[] 2=

X —x;
j=0"t
j#i

the Lagrange interpolation polynomial is given by p = Y 7 f(x;)L;. Hence, by
b n b n
/ px)dx =) f(xi)/ Li(x)dx = > wi f(x) = Q(f)
a i=0 a i=0

a quadrature formula Q with weights w; = fab L;(x)dx is defined. Since p = f
for all f € &,, this quadrature formula is exact of degree n. It is referred to as a
Newton-Cotes formula.

Proposition 14.2 The Newton—Cotes formula defined by nodes xo < x1 < -+ <
X, and weights w; = fub Li(x)dx,i =0,1,...,n, is exact of degree n.

Proof The statement follows directly from the construction of the quadrature
formula. =

For the cases n = 0, 1, 2, simple quadrature formulas are obtained, which are
shown in Fig. 14.2.

Examples 14.1

(1) Forn = 0and xo = (a + b)/2, the midpoint rule Q pp(f) = (b — a)f((a +
b) /2) is obtained, which is exact of degree 1.
(i) Forn = 1and xo = a, x; = b, the trapezoidal rule

b b—a
/ fx)dx = Qrrap(f) = T[f(a) + fD)].

is also exact of degree 1.
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Fig. 14.2 Midpoint, trapezoidal and the Simpson rule as special cases of the Newton—Cotes
formulas forn =0, 1,2

(iii) Forn =2 and x9 = a, x1 = (a +b)/2, xp = b, the Simpson or Kepler’s barrel
rule

/f(x)dx 0sin(H = " 1@ +47(“E2) + ro0)

which due to its symmetry is exact of degree 3, is obtained.
(iv) Forn > 7, negative weights occur, which can lead to stability problems as then
1Q]l > 1 holds.

14.3 Composite Quadrature Formulas

To achieve high accuracies without restrictive regularity assumptions, the interval
[a, b] can be divided into smaller subintervals, on which a quadrature formula of
possibly low degree of exactness is applied.

Definition 14.3 Leta = a9 < a; < --- < ay = b be the uniform partitioning
of the interval [a, b] with nodes ay = a + £(b —a)/N,£ = 0,1,..., N, and let
Q¢ CO([ag_l, a¢]) — R be a quadrature formula on the subinterval [a¢—1, a,] for
£=1,2,..., N. Then the mapping

N
OV () =D 0(fliarr.a)

=1

is a composite quadrature formula.

Example 14.2 With the trapezoidal rule on each subinterval [a,_1, a¢] we get
N ar —
oV f = Z H(flae-n) + fa))

=" (fao) + 20 @) + -+ 2f an) + flaw).
2N
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The accuracy of composite quadrature formulas can be improved by reducing
the length of the subintervals or by increasing the degree of exactness on each
subinterval.

Proposition 14.3 [f the quadrature formulas on the subintervals have the degree of
exactness r > 0, then

—(r+1)
I...., r+ 1!

+1
1 DN o gann-

Proof On each subinterval [a,—1, a¢] we have
ag
|/ fdx = Qu(H)| = A+ 11Qel(ae — ag—1) min || f = pllcoga,_ .-
ag—1 PEP,

The error estimates for the Lagrange interpolation show

in I = pl 1 leoa s e
min || f — = ag —ae— ‘
Jin 1/ = Plleoqar.an = o+ 1) ¢t

Withay —ay—1 = (b —a)/N we get

N
1= 0"l = Y| [ rac-oun)
e=1 va-l

b—a)yt? ”f(r+1)”C°([aefl,ai,l)
NT+2 r+ 1!

N
<> A+ 106
=1

b—a) 21 coqany
N2 r+ D!

= (I+ max [Q/DN

.....

This implies the claimed estimate. O
Definition 14.4 A composite quadrature formula QV is called convergent of order

s >0, if

10V (f) = 1)l = 6(")
forall f € C°([a,b]) and h = (b — a)/N — 0 holds. In the cases s = 1, 2, 3 this
is referred to as linear, quadratic and cubic convergence, respectively.
Examples 14.3

(1) The composite trapezoidal rule is quadratically convergent.
(i) The composite Simpson rule has the order of convergence s = 4.
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Remark 14.3 Often, faster convergence for the composite trapezoidal rule is
observed. For periodic functions f € C k([O, 21]), whose derivatives up to order
k are also periodic, one can show for the quadrature error 8y = |QN (f) — 1(f)|
that 8y = ¢'(h*). If the interval [0, 27r] is identified with the unit circle in C and if
f admits a holomorphic extension to an open neighbourhood of the circle then the
exponential convergence property 8y = &' (r ) for some > 1 can be proved.

14.4 Gaussian Quadrature

The choice of quadrature points and weights affects the accuracy of a quadrature
formula. A certain degree of exactness cannot be exceeded with a given number of
points.

Lemma 14.1 A quadrature formula with n 4+ 1 weights and quadrature points
possesses at most the degree of exactness 2n + 1.

Proof Let Q(f) = Y !_ow; f(x;) and define p(x) = [[/_y(x — x;)>. Then p €
Pon+2 and p is positive except at the quadrature points, where p vanishes. This
implies I (p) > 0 as well as Q(p) = 0 and this implies the assertion. m|

We will show in the following that there actually is a quadrature formula with
the maximum degree of exactness 2n + 1. If a quadrature formula is exact of degree
n, then the weights are already uniquely determined. If it is exact of degree 2n, then
these are positive.

Lemma 14.2 A quadrature formula with n + 1 weights and quadrature points
(xi, w;)i=0,....n is exact of degree n if and only if we have

b
w; =/ L;(x)dx

points (x;)i=o0....,
i:O,l,...,}’l.

Proof Exercise. O

In the Gauss quadrature, n 4+ 1 quadrature points are constructed so that the
maximum degree of exactness 2n+-1 is achieved. More generally, weighted integrals
of the form

b
Io(f) = / FE)w () dx

with a non-negative weight function @ € C%(a, b) are considered. This function is
chosen so that through
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b
(f. 8o = f FO8(0w() dr

a scalar product on C%la, b]) is defined. This is exactly the case when w is
improperly integrable on (a, b) and from (f, f), = 0 already f = 0 follows for
every function f € C%([a, b]). With respect to this scalar product, an orthogonal
basis of &, is determined using the Gram—Schmidt process.

Proposition 14.4 There exist orthogonal polynomials (77;) j—o,...» Such that w; €
Piand (7w, ) = 8jk forall 0 < j, k < n. In particular, (n;, p), = 0 holds for
all p € P;_y and the polynomials form a basis of &,

Proof Exercise. O
The orthogonality implies the existence of roots.

Lemma 14.3 Every orthogonal polynomial 7tj, 0 < j < n, has j simple roots in
the interval (a, b).

Proof Let us assume that the statement of the lemma is false fora j € {0, 1, ..., n}.
If 7j hasaroot z € R\ (a, b), then p(x) = m;(x)/(x —z) is a polynomial in &;_;
and it follows

b 72(x)

0=tm = [ oW

which is not possible, since x — z has no root in (a, b) and 7 is not identically zero.
If z € (a, b) is a multiple root or if z € C \ R, then 7 is also a root of 7; and it
follows p(x) = m;(x)/((x — 2)(x —2)) = mj(x)/|x — z|2 € Pj_o. Again, the
identity 0 = (7}, p), leads to a contradiction. O

Examples 14.4

(i) For the weight function w(x) = (1 — x?)~!/2 in the interval (—1, 1), the
Chebyshev polynomials are obtained.

(ii)) For w(x) = 1 in the interval [—1, 1] the Legendre polynomials are obtained as
derivatives of order n of the polynomial (x> — 1)", that is

n

2
2np) dx™ O = 1%

Py(x) =

The zeros of the orthogonal polynomial 7, define a quadrature formula with
degree of exactness 2n + 1.

Proposition 14.5 Let 1,41 € P41 be the (n + 1)-th orthogonal polynomial with
respect to the weight function v € C O(a, b). The zeros (x;)i=0,...n of Tn+1 and the
weights

.....

b
w; :/ Li(x)w(x)dx
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ori =0,1,...,n define a quadrature formula Q. f = Y i_qwi f(x;) such that
q i=0

b
Qu(p) = 1u(p) = / p(x)w(x)dx

forall p € Pyyy;.

Proof The quadrature formula defined in the proposition is well-defined and by
choice of the weights, we have I,(r) = Q,(r) forallr € £,.If p € Py,41, one
obtains by polynomial division polynomials ¢, r € &, with p = g7, + r. Since
(g, Th+1)e = 0 holds, it follows

b b
1y(p) = / q(X)?Tn+1(X)w(X)dx+/ ro()dx = (g, Ta1)otlo () = lu(r).

With ,41(x;) =0,i =0, 1, ..., n, it follows

n

Qu(p) =Y wi(gC) Tt (x) +r(x)) = Y wir(x;) = Qu(r).

i=0 i=0

In total, 1,(p) = 1,(r) = Qu(r) = Ou(p). o

Example 14.5 For the weight function w(x) = 1 in the interval [—1, 1] we have
Po(x) =1, P{(x) = x, Pa(x) = 3x* — 1)/2 and P3(x) = (5x° — 3x)/2. Thus, for
n = 0, 1, 2 we obtain quadrature formulas defined by

_X():O, w0=2,
xo=—v1/3, x1 =/1/3, wo=1w =1,
xo=—/3/5.x1=0,x2=1/3/5, wo=>5/9, wi =8/9, wr=5/9,

and which are Gaussian quadrature formulas.

14.5 Extrapolation

A composite quadrature formula defines a function 7 (&), which for a given function
f € C*(la, b]) and partitioning fineness & = (b —a)/N provides an approximation
of the integral, which is generally not directly accessible, and is denoted by 7' (0) =
limy, 0 T (h). We assume that 7' is given as a function on Rx¢. If the error of the
quadrature formula is of order 2 for a y € N, it follows

T'(h) =T(0) + ¢(h)
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Fig. 14.3 Extrapolation of

the calculated values 7 (h;), pi
wpproxintion of the 7 (ko)
T(0
unknown value 7'(0) through (O) T(hl)
P1(0) p1(0)
Y Y
h 1 h()

for a function ¢ with ¢(0) = 0 and |@(h)| < ch”. A Taylor expansion of ¢ around
0, that is

0(@) =12 + " T 4 r(2)
with coefficients ¢, ¢, and a remainder term r € o(z” 1) for z — 0, leads to
T(h) = T) +c1h? +cah? ™ 4 r(h).

The evaluation of the quadrature formula for the fineness //2 then yields

2

2y+1h7’+1 +r(h/2).

a1
T(h/2) =T(0) + z—yhy +
With this equation, the term ¢;/” in the identity for 7' (k) can be eliminated and we
obtain

T(h) —2YT(h/2 1-27

1
hV—H + 0(hV+1).

The computable expression T*(/) thus defines an approximation of 7(0) with an
error of the order h¥T!, which is more accurate for small values of % than the
approximations 7' (h) and T (h/2). The procedure is illustrated in Fig. 14.3.

Example 14.6 The extrapolation of the composite trapezoidal rule with conver-
gence order s = y = 2 leads to the composite Simpson rule, where due to
symmetry effects ¢, = 0 can be assumed and thus instead of the expected improved
convergence order s = 3 even the order s = 4 is obtained.

The described procedure can be generalised by performing a polynomial inter-
polation of the values T'(h;),i =0, 1, ..., n, for the nodes hg’ i=0,1,...,n,for
example with 4; = 27/ for a fixed & > 0. The interpolation polynomial p, € 2,
is thus defined by the conditions

pa(h]) =T (h;)

fori =0,1,...,n. The extrapolated value p,(0) =~ T (0) can be determined using
the Neville scheme. Corresponding details can be found, for example, in [1, 9].
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Remark 14.4 The Aitkin delta-squared process constructs from a given sequence
(xr)k>0 a sequence (yx)r>2 With potentially improved convergence properties. If
the sequence (xx)x>0 converges linearly with factor 0 < ¢ < 1 to some x*, then we
have the approximations (x* — xx) &~ q(x* — xx—1) and (x* — x411) & g(x* — xz),
which can be combined to eliminate ¢ and obtain an approximate formula for x*,
ie.,

Xk—1Xk+1 — X7 . (8x1)*
=Xpyl — —5—
Xkl — 2X + Xg—1 82x

* —
X ’\’)’k+l—

)

where §xx = xg4+1 — x¢ and 82x; = Xk+1 — 2x; + xx—1. Under certain conditions
on the differences x; — x™* the sequence (yx)x>2 converges quadratically to x*.

14.6 Experimental Convergence Order

The convergence properties of a composite quadrature formula QY with step size
h = (b—a)/N can be experimentally analysed, by considering for a non-polynomial
function f € C k([a, b)), for example f(x) = sin(x), whose exact integral I (f) is
explicitly known, the errors

en = 1(f)— QN (f)l

for some step sizes & > 0. From the approach e; ~ c1h? it follows by using two
different step sizes i, H > 0, that

and thus

_ log(en/en) _ log(er) — log(en)
V'™ Tog(h/H)  Tlog(h) — log(H)

In particular, if H = h/2, then y =~ log(es/ens2)/log(2). If this expression is
calculated for several step sizes h, then this defines an (average) experimental
convergence order by means of a least squares fit or the arithmetic mean. It should
be noted, that this can depend on the differentiability order of f. Additionally, one
can graphically represent the convergence behaviour by using logarithmic scaling
of the x- and y-axes and connecting experimentally determined pairs (%, e,) via a
polygonal chain. If there is indeed a relationship of the form e; ~ c1h?, then the
polygonal chain with respect to the logarithmic scaling will have the slope y.

Example 14.7 We consider the pairs of values (h, e;) given by h = 27¢, ¢ =
1,...,5,and e, = h%/3. Figure 14.4 shows that the slope of the polygonal chain
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Fig. 14.4 The experimental
convergence order results as
the slope of a least squares
line through measurement
points with respect to
logarithmic scaling

€n

102 10! 10172 100
h

defined in this way in logarithmic scaling matches the slope of the line parallel to it
through the points (10~!, 1073) and (107'/2, 102). The logarithmic slope of this
line results from the difference quotient of the powers, that is

A (D-(=3) _
A% T (-1/2) = (=D

y%

Due to the logarithmic scaling, the value 10~!/2
middle of the values 10° and 107!, see Fig. 14.4.

on the x-axis is exactly in the

14.7 Learning Objectives, Quiz and Application

You should be able to define the degree of exactness of a quadrature formula
and derive abstract error estimates based on it. You should be able to specify
the Newton—Cotes formulas and apply them to examples and to describe the
construction of the Gauss quadrature and name the properties of the method.

Quiz 14.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

For every quadrature formula, Q(af 4+ fg) = ¢ Q(f) + BQO(g) holds.

If a quadrature formula is exact of degree r > 1, then the weights of the quadrature
formula are positive.

Every Newton-Cotes formula with n + 1 = 2¢ nodes is exact of degree n + 2.

The Gauss quadrature uses the n + 1 zeros of an orthogonal polynomial 7, € &, as
quadrature points.

The trapezoidal rule on the interval [—1, 1] approximates the integral of the function

oy [f(=D+ fD]/2.
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Application 14.1 Based on samples and statistical considerations, the weight of a
hen’s egg can be approximated as a normally distributed random variable X with
expected value 1 = 57 g and standard deviation o = 7 g. The probability that the
weight of an egg lies in the interval [m 1, m;] is thus given by

1 myp 20202
P(m; <X <mp) = / o~ (=220 4
mi

V2mwo?

(i) Determine, with a composite quadrature formula as well as the identity

x5
/ e 2t = /n /2,

0

the probability that an egg weighs more than 63 g.
(i) Compare your result with an approach to calculating the probability without
numerical integration using the identity

) 2 t4 t6
e =1—t +2—!—§+...
and the exact integration of some monomials. In which situations is this
approach useful?

(iii) Specify numerically with four decimal places accuracy the so-called 68-95-
99.7 rule, which gives the probabilities for the deviation by one, two or three
standard deviations from the expected value, i.e. the quantities P(|X — u| <
jo)forj=1,2,3.



Chapter 15 ®
Nonlinear Problems Chock or

15.1 Root Finding and Minimisation Problems

For an open set U C R" and mappings f : U — R" and g : U — R, we consider
the following problems:

(N) Find x* € U such that f(x*) = 0.
(M) Find x* € U such that g(x*) = milrjlg(x).
xXe

These problems are connected via the optimality condition Vg(x*) = 0 or via
the minimisation of x + || f(x)||>. Furthermore, root finding is equivalent to
determining a fixed point of the mapping @ (x) = f(x) + x. In general, it is neither
possible nor sensible to determine a solution exactly, and therefore sequences
(Xr)k=0.1,... are constructed iteratively, which under suitable conditions converge
to a solution. The following terms are used to classify the convergence behaviour.

Definition 15.1 A numerical method that defines a sequence (xx)x=0.1,... of approx-
imations for a numerical problem is called

(1) globally convergent, if the sequence (xx)k=o,1,... for every starting vector xg €
U converges to a solution x* € U, and

(i) locally convergent, if for every solution x* € U there exists a number ¢ > 0
such that the sequence (xx)x=o,1.... for every starting vector xo € B.(x*) N U
converges to x*.

Obviously, every globally convergent method is also locally convergent. To
characterise the convergence speed of methods, we assume that x; # x* for all
k e N().
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Definition 15.2 A locally convergent method is called convergent of order o« > 1,
if a ¢ € R exists, such that for every solution x* € U, every starting vector
X0 € B:(x*) N U and the sequence (xi)reN, generated by the method for the
approximation errors 8 = ||x* — x|, there holds

. Sk+1
limsup —— =g¢
k— 00 k

and in the case « = 1 we additionally have ¢ < 1. A method that is convergent
of order « is called linearly convergent if « = 1 and ¢ < 1 and quadratically
convergent if « = 2 and ¢ € Rxq holds. It is called superlinear or sublinearly
convergent if o = 1and g = 0or o = 1 and ¢ = 1 hold, respectively.

Examples 15.1

i If @ : R* — R" is a contraction, then the method x;4; = @(x;) for
approximating a fixed point of @ is globally and linearly convergent.

(i) If @ € CL(R), then the fixed point iteration xi1 = @ (xx) for determining a
fixed point x* of @ is locally linearly convergent, provided that |@'(x*)| < 1
by the mean value theorem. If |@’(x*)| > 1, then the method is divergent. If
@'(x,) = 0and @ € C2(R) then local quadratic convergence occurs, which is
an immediate consequence of a Taylor approximation argument, i.e.,

1
X = X" = @) — PRT) = " (E) (u — x*)2.

The cases of linear and quadratic convergence are illustrated in Fig. 15.1.

Remarks 15.1

(1) Inthe so-called asymptotic region, that is, after a sufficient number of iterations,
linear convergence results in an error reduction by the factor ¢, while quadratic
convergence doubles the number of correct decimal places in each step.

(i) Convergent fixed-point iterations are robust with respect to rounding errors
since they are self-stabilizing in the sense that every iterate can be interpreted
as a new starting value.

Fig. 15.1 Linear (left) and
quadratic (right) convergence
of fixed-point iterations
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15.2 Approximation of Roots

The bisection method is based on the fact that any continuous function f €
CY%([a, b]) with the property f(a) f(b) < 0 has a root in the interval [a, b]. If then
¢ € (a, b) is arbitrary, it follows

f@)fe)=0 or f)fb) =<0

and the subinterval [a, c] or [c, b] contains at least one root of f, see Fig. 15.2.

Algorithm 15.1 (Bisection Method) Let f € C%([a, b)) with f(a) f(b) < 0 and
&stop > 0. Set (ap, bo) = (a,b) and k = 0.

(1) Define ¢y, = (ag + by)/2.
(2) Set

(ag, ck) if flax) fcr) <0,

(Ak+1, br+1) =
(ck, by) otherwise.

(3) Stop if bp+1 — ar+1 < Esrops Otherwise increase k — k + 1 and repeat step (1).

Since the current interval is halved at each step, the following statement is
immediately apparent.

Proposition 15.1 The bisection method is linearly convergent with the approxima-
tions xp = ci fork = 0,1,2,... with q = 1/2. It stops after J < 1 + log, ((b -
a) /8”0,,) steps and the interval [ay, bj] contains a root.

While the bisection method is only meaningful in one dimension, the secant
method approximates a derivative, which is also possible in multiple dimensions.
The easily determined root of the secant defines the new reference point, see
Fig. 15.3.

Algorithm 15.2 (Secant Method) Let f € C 0([a, b)) and &g0p > 0. Set xo = a,
x1=bandk = 1.

Fig. 15.2 The sign change
of a continuous function
implies the existence of a root

Fig. 15.3 The root of the
secant serves as an
approximation of a root
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Fig. 15.4 The root of the
tangent serves in the Newton
method as an approximation
of a root

(1) If f(xx) # f(xk—1), then define

Xk — Xk—1 f(xk)-

) — fou-n)

Xk+1 = Xk

(2) Stop if |xk41 — Xk| < Esrops Otherwise increase k — k + 1 and repeat step (1).
Remarks 15.2

(i) When implementing the secant method, cancellation effects can occur and
rounding errors can become significant.
(ii) An alternative termination criterion is | f (x¢+1)| < &gr0p-
(iii) The regula-falsi method combines the bisection method with the secant
method, so that the interval [x;_1, xx] always contains a root.

The quantity (f(xx) — f(xx—1))/(xk — xx—1) that appears in the secant method
is an approximation of the derivative f’(xz). This slope defines a tangent to f at
the point (xg, f(xx)), which is used in the Newton method to determine the new
approximation xi41, see Fig. 15.4. This is especially easier to implement in multi-
dimensional cases, provided the Jacobian matrix can be easily determined.

A Taylor approximation of the C! mapping f : U — R”" around the point x
shows

0= f(x*) = f(x) + Df ()" —x) + p(x* —x).

If the approximation x = xi is close to x*, neglecting the term ¢ (x* — x) implies
that

J k) + Df (i) (x* — x) 0
and this motivates that by
Xt =Xk — Df (i) ™! f () ~ x*

an improved approximation x1 ~ x* is defined, provided D f (x;) is regular.

Algorithm 15.3 (Newton Method) Let f € CL(U;R"), xo € U and &g0p > O.
Setk = 0.

(1) If Df (xi) is regular, then define

X1 = Xk — Df ()~ f o).



15.2  Approximation of Roots 131

(2) Stop if |xk+1 — Xkl < Estops Otherwise increase k — k + 1 and repeat step (1).
The Newton method is locally quadratically convergent.

Proposition 15.2 Let f € C>(U; R") and x* € U be a root of f in U, such that
Df (x*) is regular. Then there exists a number ¢ > 0, such that for every initial
value xo € B¢ (x™) N U the Newton method is executable and convergent. For the
iterates (X )k=0.1,... we have

2
57 = xpepr | < ellx™ — xell

with a constant ¢ > 0.

Proof Since det Df (x*) # 0 and the mapping x — det Df (x) is continuous, there
exists a number £ > 0, such that det Df(x) # 0 and ||Df(x)_1|| < ¢ for all
x € Bz(x*) C U. Let x; € By(x*) for a k > 0. The Taylor expansion

0= f(x*) = fxu) + Df (i) (™ — xx) + p(x™ — x¢)

with a function ¢ : R” — R, which fulfils |¢(z)| < c2|z|? for all |z] < c3, implies
1/ G + Df () (* = x| < eallx™ — x|

if [|x* — x|l < c3. With the iteration rule we get

X* = X1 = 2% — x + DF ()7 f ()

= Df (w0~ (f () + Df (x0) (™ = xi)).
Hence it follows
I = st || < IDF )~ L Ga) + D ) (6 = x| < ereallx® — x|,

With & < min{1/(ci¢2), €, c3} it follows, provided x; € B.(x*), that

" = xiprll<crezellx™ —xill < 2™ —xll <e <&

and thus xg4; € Bz(x™). The iteration is therefore well-defined and convergent,
provided xg € B (x*). m|

Remark 15.3 If x; is not close enough to x*, divergence can occur, see Fig. 15.5.
This can be avoided in many cases by introducing damping, i.e. by the modification
Xia1 = xx —oDf (xp) "' f(xx) with 0 < @ < 1, However, in general, no quadratic
convergence is then guaranteed.



132 15 Nonlinear Problems

Fig. 15.5 The Newton
method is generally only
locally convergent

15.3 One-Dimensional Minimisation

The global minimisation of a continuous function on a compact set is rarely
achievable without further additional conditions on the function. Therefore, one
usually restricts oneself to determining local minima. In the case of convex
functions, these are already global minima.

Algorithm 15.4 (Discrete Search) Let a = x9 < x| < -+ < x, = b be
a partitioning into n > 3 subintervals and g € CY%[a, b]). Determine xi with
g(xx) = min{g(x1), g(x2), ..., g(xn—1)}, see Fig. 15.6.

Proposition 15.3 If xi is the point determined by the discrete search, then the
interval [xg—1, Xk+1] contains a local minimum xl*oc € [a, b), i.e. there exists a
8 > Owith g(x},.) < g(x) forall x € Bs(x;},.) N [a, b].

Proof On the compact interval [x;_1, xx+1], the function g attains its minimum.
O

In interval reduction methods, the discrete search is applied to intervals of
decreasing lengths, see Fig. 15.7.

Algorithm 15.5 (Interval Reduction) Let g € C 0([a, b)) and g510p > 0. Set ap =
a, bp=bandk = 0.

(1) Choose cy, dy € (ay, by) with ay < ¢ < di < by and set

(ak, dr) if glcr) < g(dy),

(@k+1, bi+1) =
(ck, by) otherwise.

(2) Stop if bp+1 — ar+1 < Esrops Otherwise increase k — k + 1 and repeat step ().

Remark 15.4 An optimized choice of points ¢ and dj leads to a uniform reduction
of the intervals and a minimal number of function evaluations.

Fig. 15.6 The minimum of a
finite set of function values
provides an approximation of
a local minimum
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Fig. 15.7 Reduction of the
search region based on
multiple function values

ar  cpdi by

15.4 Multidimensional Minimisation

In multiple dimensions, successive one-dimensional minimisations are usually
performed along suitable search directions. A canonical choice of the respective
search direction is the direction of steepest descent, which is given by the negative
gradient of the function to be minimised. We follow the presentations in [7, 8].

Algorithm 15.6 (Gradient Method) Ler g € C'(R"), xg € R", ¢ € (0, 1) and
estop > 0. Setk = 0.

(1) Define dy = —Vg(xy) and determine the maximum number o € {2_2 NS
No}, for which the Armijo condition

g + ardy) < g(xx) — oo lldi|?

is fulfilled, see Fig. 15.8.
(2) Set xp+1 = xx + ogdg.
(3) Stop if llaxdi || < &stop; Otherwise increase k — k + 1 and repeat step (1).

Remark 15.5 The method performs a discrete search in each iteration step to
determine the step size ak. The existence of an admissible step size follows from
an exercise. If g € C2(R") and an upper bound for | D3g] is explicitly available, a
fixed step size can be chosen and the Armijo search can be omitted.

In the analysis of the method, the termination criterion is ignored and the
convergence of the search directions (di)en, to zero is proven.

Proposition 15.4 Let g € C*(R") and xo € R" be such that the sublevel set
Ny (o) = [x € R" : g(x) < g(x0))

is bounded, i.e. Ng_(xo) C Kg(xg) for some R > 0, see Fig. 15.9. Then for
the iterates of the gradient method, it follows that Vg(xx) — 0 as k — 00

Fig. 15.8 The Armijo
condition guarantees a
predetermined relative
reduction of the function
value Ot:—)g(xk)fOZGHdkHz

T T T =

X X+ 2_édk

%) o g+ ady)
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Fig. 15.9 Sublevel set
N; (x0) (hatched) of a
function g at the level g(xp)

X0

and o > (1 — 0)/y for all k € Ny with y = maXyekg,, (x,) |D*gx)| and
M = MaXyekp(x) IVE).

Proof The sequence (g(xk)) is monotonically decreasing, so that (xx)ren, C

keNo
Ng_(xo) and g(xx) > co = minxeNg(xo)g(x) for all k € Ny. From the Armijo

condition it follows
g(x0) = g(x1) + o[ Vg (x0) |12

> g(x2) + a1 |Vgx) | + ool Vg (xo)|?

14

> > g +0 Y ol Vgl
k=0

Hence, Z,fio axl|Vg(xp)|I? < (g(x0) — co)/o and it follows that ag || Vg (xp)||> —
0. It is therefore sufficient to show that oy > § > O for all k € Ny and a number

8 > 0 applies. For each k € Ny, either oy = 1 or the Armijo condition is violated
for 2a. The latter means

20ai Vg (xi)lI* > g(x) — g(xx + 200dy).

A Taylor approximation implies that a § € K., (x0) exists with
1
8(xk + 20dy) = g(xp) + Vg(xi) - Qokdi) + 5(2061()202(%’(5)[(11(, di].

With dy = —Vg(xx) and D?g(&)[dy, di] < y ||di|? it follows
2o0lldi|l* > 2o ldic||* — 2y ol |I*

or (1 —o)ag < ya,% and thus oy > (1 — o) /y for all k € Np. |
Remarks 15.6

(i) The sequence (xi)ieN, 1S generally not convergent. If x; € Ng’ (xp) is an
accumulation point of a subsequence (x,),eN,, then x; is a stationary point of
g, thatis Vg(xs) = 0, and x; can be a local minimum or maximum or a saddle



15.5 Learning Objectives, Quiz and Application 135

point. However, local maxima and saddle points are unstable with respect to
perturbations, so the gradient method usually converges to a local minimum in
practice.

(i1) From the estimates Zﬁ:o axl|[Ve(x)lI? < (g(x0) —co)/o and oy > (1—0)/y
of the proof it follows that

(€+1), min IVg(xi)lI* < v (g(x0) — co)/(o(1 — )

or ming—o,...» [|Vg(xx)| = 0 (n~'/?) applies. For uniformly convex functions,
improved convergence properties can be established.

15.5 Learning Objectives, Quiz and Application

You should be familiar with different methods for the approximate calculation of
zeros and minima. You should be able to motivate the methods and explain their
properties.

Quiz 15.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

If the series Zlfio 8y converges, then the sequence (8x)x>o is linearly convergent.
The sequence & = sin’(1/k), k € N, is quadratically convergent to zero.

The gradient method with a function g defines a convergent sequence (X )ken,
whose limit is a critical point of g.

Sufficient for the convergence of the gradient method is that g € C2(R") applies and
g is convex.

If the Newton method converges, then || f (xx)|| < c|lx* — x|l with a constant ¢ > 0
forall k > 0.

Application 15.1 In the shape optimisation of a rotationally symmetric drinking
glass, whose base is circular with a diameter of 3 cm, is 10 cm high and has a volume
of about 0.21 ¢, the surface area should be minimised. The shape of the glass should
be described by a cubic curve s : [0, 10] — R such that the surface of the glass is
given by

10
A(s) = 2nf s(1+ |s'1H)? dx + 7 (3/2)2
0
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Use the nodes 0 = x¢p < x1 < x3 < x3 = 10 to describe the desired curve with the
values yo = 1.5 and yq, y2, y3. For the choice x| = 5 and the approximation of the
volume

Vi) =n | (s(x))*dx
0

using the Simpson rule, the value y; can be eliminated. Formulate the surface
as a function of y, and y3 and minimise the resulting expression numerically by
discretising A(s) appropriately.



Chapter 16 ®
Conjugate Gradient Method Qe

16.1 Quadratic Minimisation

If A € R™" is symmetric and positive definite, then the solution x* € R” of the
system of equations Ax = b is the unique minimum point of the function

1 5 1,
$(x) = Zlb = Axly = 5(A7 (b = AD) - (b — Ax) = 0,

because for every symmetric and positive definite matrix B € R"*” a norm in R”
is defined by v — ||lvllg = +/(Bv) - v. With a variant of the descent method, for an
approximate solution or an initial value X € R" and a search direction . deR',a
new approximation X + ad is obtained by minimising 1// t— (X + td) We have
that

~ 1 s o~ 2~
() = S~ AT —1(b— AT) - d + S (Ad) -d

and differentiating with respect to # shows that the minimum is given by

. (b-AY)-d
a = == .
(Ad)-d
If the search direction is chosen as the negative gradient of ¢ at X, that is

d=—-V¢() = b — A%,

then for the new approximate solution we have that

XY =X+ad =% +db — AX),
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which corresponds exactly to a step of a Richardson procedure. The repeated
execution of this strategy defines a sequence of approximate solutions (xx)k=0.1,...
for which an exercise in the case of symmetric, positive definite matrices shows the
convergence behaviour

+1

I = ¥l = () lhvo — x*lla

K
with k = cond,(A). For large condition numbers, therefore, only a small improve-
ment is generally achieved in each iteration step.

16.2 Conjugate Search Directions

The search directions occurring in the descent method are successively orthogonal to
each other, but only lead to slow convergence. A strong acceleration is achieved by
using so-called A-conjugate search directions. In the following, it is always assumed
that A € R™" is symmetric and positive definite. In this chapter, we follow the
presentation in [8].

Definition 16.1 The vectors x, y € R”" are called A-conjugate, if x - (Ay) = 0
holds.

The concept of A-conjugacy generalises the concept of orthogonality, because
orthogonal vectors are A-conjugate with respect to A = I,,.

Lemma 16.1 Assume that the vectors do, dy, ...,dy € R" \ {0} are pairwise A-
conjugate, thatis d; - Ad; =0 forall0 < i, j < kwithi # j. Ifxo € R" and x
is obtained from x j by successively minimising ¢ in the direction of d;, that is

j
Xj41 =xj+ajdj=xo+ Zagdg,

=0
dj'(b—AXj) dj~(b—Ax0)
aj = =
dj- Adj dj- Adj
Sfor j=1,2,... k, then xj1 is the minimum of ¢ in the set

X0 + span{do, d, ..., d;}.

Proof For j = 1,2,...,k + 1, x; € xo + span{dy, di,...,dj_1} and with the
A-conjugacy of the vectors do, di, . .., dj_ it follows

dj~A()Cj —x0)=0
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and thus d;j - (b — Ax;) = d; - (b — Axp), which proves the second representation
of ;. From this it follows

2
o
¢(xj+a;dj) =¢(x)) + %dj “Adj —ajdj - (b— Axj)

2
o
=¢(xj)+ 7’(1,- - Adj —a;jd; - (b — Axp)

=¢(x;) + V(o))
with the quadratic function ¥ (¢) = (t?/2)d i+ Adj —tdj - (b — Axp). Inductively,
it follows
J J
B(x0+ Y aede) =p(xo) + Y (@),
=0 =0

A necessary and sufficient condition for a minimum point of the convex function
¢ in the set xo + span{dy, ..., d;} is the vanishing of the partial derivatives with
respect to the coefficients o;, i =0, 1, ..., j, that is

J
8%4,4)()“) + Z%agdg) = y/(@;) =0

fori = 0,1, ..., j. This corresponds exactly to the choice of coefficients and thus
the statement of the lemma is proven. O
Remark 16.1 The lemma shows that the coefficients «j, ..., @,—1 can be deter-

mined independently of each other, provided the A-conjugate vectors are given.

16.3 Calculation of Conjugate Directions

The determination of A-conjugate search directions is carried out simultaneously
with the step-by-step improvement of the approximate solutions. For an approxima-
tion xi, the residual of xj is defined by

re =b — Axg.

If ry, = 0, then x; solves the system of equations Ax = b and if x;4+1 = xx + axdk,
then obviously ri+1 = ry — o Ady.
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Lemma 16.2 For any vector xo € R" and ro = b — Axq as well as dy = ro, the
recursion

Thal =tk — g Ady,  diy1 = i1 — Brdi,

o — dic - i _ di - A

“TdcAdy YT d - Ady
determines a sequence of non-vanishing A-conjugate vectors dy,dy, ..., dx
until rr+1 = 0 holds. For the Krylov space defined by J(A,rg) =
span{rg, Arg, ..., Ak_lro}, we have

J (A, ro) = span{dy, di, ..., dx—1} = span{rg, r1, ..., rk—1}

and ry, is orthogonal to these spaces.

Proof We use the abbreviations %, = (A, rg), Zx = span{dy, d, ..., dr—1},
and Zy = span{rg, ri, ..., rg—1}. Assume that the equality %y = Py = %) and the
A-conjugacy of the vectors do, dy, . .., dy—1 are proven for some k > 1. For k = 1
the statements are obviously correct and we infer them for k 4 1 in four steps.

(i) We have that ry € Jj41. Because r—| € J& C Hry1 as well as dy—1 € g
and thus Adyg_| € 4 it follows

Pk = r—1 — Qg—1Adi—1 € Jp11.

(ii) We have that ry 1. 9. The A-conjugacy of dy, dy, ..., dx—1, the identity x; =
xo + Zf;& o;d; and the choice of oy show for 0 < £ < k — 1, that

dp-rik=dp-(b— Axp) =dp - (b— Axo) — aedy - Ady = 0.
(iii) We have that K11 = Dr+1 = Pr+1. If rip # 0 then
Hie = Kk = D & Ki+1 = spanfro, ri, ..., i} C Ky,
it follows by dimension that %y = #ky1. With dy = ri — Br—1dx—1 we also
get D1 = K.

(iv) We have that dy - Ady =0for€ =0,1,...,k — 1. Fromdy = ry — Br—1di—1
it follows

dg - Ady = dg - Ary — Br—1dg - Adg—1.

If £ = k — 1, the choice of fr_1 implies that dy_1 - Ady = 0 holds. If on the
other hand ¢ < k — 2, the orthogonality r; L .#;, the inclusion Ad, € J# and
the A-conjugacy of the vectors dy, di, . . ., dr—1 imply that dy - Ad; = 0 holds.

O
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16.4 CG Method

For the efficient implementation of the iterative method with A-conjugated search
directions, we note that the orthogonality of ry and dy_1, that is r; - dg—1 = O,
implies the equation

w = B _ k= Brdic) re _ nell?
T4 Ady dy - Ady dy - Ady
From ry € J£4+1(A, rg) = span{dy, d1, . .., di} L rr4q it follows
di - Arpyr = (Adp) - rip1 = — (ke = Iegl) - Tl = — 5= 171l
(077 7l
and thus
B = di - Ariet e |1
dy - Ady, lrll>

With these identities, the conjugate gradient method is implemented as follows.

Algorithm 16.1 (CG Method) Let A € R"™ " be symmetric and positive definite,
b eR”", xo € R" and &50p > 0. Define dy =ro = b — Axp and k = 0.

(1) Set xpy1 = xp + agdy, riy1 = 1y — apAdy and diy1 = 11 — Brdi with

w_nwz m__mmﬁ
dy - Ady’ 7112

(2) Stop if llrk1 /116Nl < &st0p holds; otherwise increase k — k + 1 and repeat
step (1).

Remark 16.2 The algorithm terminates after at most n steps, since otherwise
we have r, L span{dy,d,...,d,—1} holds and the vectors dy, dy, ..., d,—1 are
linearly independent, unless ry, = 0 fora 0 < k < n — 1 already holds. In particular,
the exact solution of the linear system is obtained with a maximum of n steps.

The difference between the CG method and the descent method is schematically
illustrated in Fig. 16.1.

Fig. 16.1 The CG method
often requires fewer iteration
steps than the descent method --- CG

X0

—— descent
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16.5 Convergence of the CG Method

In many cases, the CG method provides a good approximation of the solution of the
system of equations after a few steps.

Proposition 16.1 For the iterates xo, x1, ... of the CG method and the solution x*
of the system of equations Ax = b, we have with k = cond(A)

* K2 —1\k *
[x™ — xklla < 2(m) lx* — xolla-
Proof The minimality property of the iterates from Lemma 16.1 and the represen-
tations of the Krylov spaces from Lemma 16.2 imply

Xi) = min = min .
¢ 0xk) yexo+8pan{do,--qdk—1}¢(y) yexo+-%fk(A,ro)¢(y)
Since b — Ay = A(x* — y) and ||Av|[4-1 = ||v]| 4, we have

1 1
¢ () = 5 |lx* -3 o) = Sl = yIA

This leads to
2 . * 2
x* —xilly = min lx™ — ylla-
AT yexo+ A A
For every y € xo + %% (A, rg) there exists a vector ¢ = [cy, ¢3, . . ., ck]T € R¥ with

y =Xx0+c1 Aoro + czAlro + -+ ckAk_lro

= x0 + 1 A" —x0) + -+ - + cx AF(x* — x0),

where we have used ro = A(x* — xg). If &2 denotes the space of polynomials of
maximum degree k, then

2 . k 2
[x* — xxll3 = min [|x* — xo — c;A(x™ — x0) — -+ — cx A" (x" — x0)|I 3
ceRk
=min (I, —c1A—...— A —x)3 = min  p(AE*—x0)lA.
ceRK PEPy, p(0)=1

Since A is symmetric and positive definite, there exist eigenvalues 0 < A} < Ay <
- < A, and corresponding orthonormal eigenvectors vy, vp, ..., v, € R". With
suitable coefficients yy, y», ..., yY» we have

n

n
X —xg =Y (v (F—x0))vi =Y yivi
i=1

i=1
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and
n n n

Ix* = xoll 3 = (AGx* — x0)) - (x* — x0) = (Zki%’vi) : (Zijj) => nvi.
i=1 =1 i=1

For each polynomial p € & with p(0) = 1 using p(A)v; = p(Xi)v;, it follows
that

IpAa* —xo)l = | Y vipwi | = Y vipGaow;

i=1 i=1

= (i J/ip()»i)Avi) : (i Vjp()\j)vj> = i v pOi)Phi
j=1 i=l1

i=1

n
< max [pA)IP Y ytai = max [pOi)*x* — xoll3
i=1,...,n i i=l,..., n
In the case A} = A» = --- = A, we can find a polynomial p € & with p(0) = 1,
such that p(A;) = 0 fori = 1,2,...,n and the statement of the proposition is

proven. We assume in the following that A; < A, holds. With the k-th Chebyshev
polynomial Ty € &% whose roots are contained in the interval [—1, 1] and in this
interval is given by Ty (s) = cos(k arccos(s)), we set

An + A1 —2t)/Tk<)»n —H»l)'

t :T(
q(1) k p— pa—y

Then g € & with ¢(0) = 1 holds. If t € [A, A,,] then (A, + A1 —28) /(A — A1) €
[—1, 1] and from max,e[—1,17 [Tk (s)| < 1 it follows

A AryT! An/A 1\71-1
max JgGol < [n(Z )] = [ (2]
i=1,...,n An — M }"n/)\l -1

An exercise shows

T<s+1)> 1 (s'2 4+ 1)k
=1/ = 222k

for s > 1 and thus with k = A, /A1, it follows that

(IC]/2 _ 1)k

*
1,..., (K1/2+1)k ”.X _x0||A-

This proves the claim. O
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Example 16.1 If « = 100, then the CG method yields an error reduction by g ~
0.8 in each iteration step and about 20 steps are required to reach 1% of the initial
error. In the descent method, ¢ = 0.98 is obtained and more than 200 steps are
required.

Remark 16.3 The condition number is relevant for two aspects of numerical
mathematics. On the one hand, it describes the effects of perturbations on the
solution of a system of linear equations and on the other hand, it indicates how many
steps are required in the approximate iterative solution of a system of equations. In
the first case, the choice of norms that determine the condition number is usually
dictated by the application, while in the second case, the condition number induced
by the spectral norm is of interest.

16.6 Learning Objectives, Quiz and Application

You should be able to explain the concept of conjugate search directions and
their significance in the iterative solution of systems of linear equations. You
should be able to state sufficient conditions for the convergence of the CG method.
Furthermore, you should be able to carry out comparative effort considerations.

Quiz 16.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

With the Cholesky decomposition A = LLT of the matrix A, lxlla = IILx]|.

If xo = x* is the solution of Ax = b, then the Krylov spaces are trivial, that is,
S = {0} fork =1,2,...,n.

Forx € R" and A € R™*", [x|la = [[Ax||4-1.

One iteration step of the CG method requires an effort of ¢(n%) operations.
Non-vanishing, pairwise A-conjugate vectors are linearly independent.

Application 16.1 For a simple mathematical description of a two-dimensional
diffusion process we consider a grid on the domain [0, 1]> with grid points x; i =
@i, j)h,i,j=0,1,...,nand grid width s = 1/n. Let ufj denote the concentration
of a substance near the grid point x;; at time #, that is, the quotient of the amount
of particles of the considered substance in the region x;; + [—h/2, h/ 2]? and the
area h”. The probability that a particle within the time interval [f, f;41] of length
T jumps from the vicinity of a grid point to the vicinity of a neighbouring point is
denoted by p. This is proportional to the length 4 of the interface, to the length t of
the time interval, inversely proportional to the area 12 and inversely proportional to
the average distance h, that is, with a diffusion constant ¢ > 0 we have

T
pZCﬁ.
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Obviously, p < 1/4 should hold. At the boundary points the concentration is kept at
zero by removing or adding substance. The quantity fl.];H denotes the amount added
or removed in the vicinity of an inner grid point x;; in the time interval [#, fx41]
relative to the volume A2. For the concentration at time tk+1, we thus have

k1 _ k k k k k k+1
wp = (L —=dpyui; — plug_y j +ujyy j+up g Fug ) +of;

k+1
ij
function fl’; is constant over time, an equilibrium will be established after a certain

for inner grid points and u = 0 for grid points on the sides of [0, 1]%. If the grid

period of time, that is ufj’l o uf.‘/. forall0 <i,j <mandallk > K.

(i) Show that the equilibrium state of the diffusion process can be determined
as the solution of a system of linear equations with a symmetric and positive
definite system matrix.

(i) Experimentally investigate the dependence of the condition number of the
matrix A on & and determine the necessary number of iteration steps of the
descent and CG methods to achieve an accuracy &g10p = h.

(iii) Solve the system of linear equations approximately with the CG method and
present the approximate solution with the help of the MATLAB commands
meshgrid and surf for the case f;; = 1 graphically.



Chapter 17 ®
Sparse Matrices and Preconditioning Qe

17.1 Sparse Matrices

The CG method requires a matrix-vector multiplication in each iteration step and
is therefore particularly efficient when this is associated with low effort. This is
the case when only a few entries of the system matrix are different from zero. In
the following, the matrix A € R"*" always represents a sequence (Ag)¢eny With
Ay € R™*M with ny — oo for £ — oo.

Definition 17.1 The matrix A € R"*" is called sparse if for the number of entries
different from zero N,, = |{(i, j) : 1 < i, j < n, a;; # O} we have that N,,;, =
O (n). The index nz stands for not zero.

Example 17.1 Band matrices A € R"*" with a number k € N of non-vanishing
subdiagonals independent of n, i.e. a;; # 0 implies |i — j| € {dy, d>, ..., di} with
numbers d, € No, r = 1,2,...,k, are sparse. The bandwidth is given by w =
max,—i,.. i dr, see Fig. 17.1.

To save memory, sparse matrices are not stored as n x n-arrays. Instead, lists
I,J € Nz and X € RV are used, which contain the positions and values of the
entries of A different from zero, i.e. we have

aij #0 <= 31 <k < Ny, (G, j) = Ug, J), aij = Xi.

This representation is called coordinate representation. More generally, if a position
(i, j) appears repeatedly in the index lists, the corresponding values are usually
summed up. The memory requirement is further reduced in the compressed-column-
storage (CCS) format by defining / and X as above and the ¢-th entry of a list
J e Np specifies from which position in / and X the entries of the £-th column
begin.
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Fig. 17.1 Schematic

representation of a band \\
matrix with few entries
different from zero \\

Example 17.2 For the following matrix A € R**4 the lists 7, J, X and J result:

7010 1=01,3,4,2,1,3,2,4", jF=1.4517.
0803 T
A: =
4050/ J=1[1,1,1,2,3,3,4,4]",
2003 X =1[7,4,2,8,1,5,3,3]",

The matrix-vector multiplication with a matrix in the coordinate format can be
easily implemented.

Remark 17.1 The vector y = Az is calculated by:

y=0; forl=1:Nu; yie =yre +XW®zs0e; end

17.2 Preconditioned CG Method

The number of required iterations of the CG method for the approximate solution
of the linear system Ax = b depends on the condition number of the symmetric
and positive definite system matrix A. By choosing a suitable invertible matrix C €
R™ " 'however, it is attractive to consider the equivalent system

(CA)x = Cb.

If cond(CA) « cond(A), it can be expected that this system can be solved
faster and more robustly, provided the matrix C has a simple structure, so that
the multiplication with C can be implemented efficiently. In terms of the condition
number, the choice C = A~! would be optimal, but then the multiplication with
C would be equivalent to solving the original problem Ax = b. Therefore, an
approximate inverse is chosen in the sense of the following definition.

Definition 17.2 Let A € R"*" be regular. A regular matrix C € R"*" is called
preconditioning matrix for A, if cond(CA) < cond(A) holds and the computational
effort of the matrix-vector multiplication z + Cz is less than the direct solution of
the linear system Ax = b.

A simple type of preconditioning is the row equilibration.
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Proposition 17.1 Let A € R"*" be regular and the diagonal matrix C € R"*" for
i=1,2,...,ndefined by

n

-1

Cii = (Z Iaijl) .
i=1

Then C is a preconditioning matrix for A with respect to the row sum norm.

Proof The matrix B = CA satisfies Z?:l |bjjl = lforalli =1,2,...,n, and
consequently || B|loc = 1. For any diagonal matrix 7 € R"*" it follows

n
ITBlloo = max |t;i] Y Ibij| = max || = || Tlloo
1<i<n - 1<i<n
]=

and thus we get

condog(B) = 1B Moo = INTB) ' Tlleo < ITB) ool T llow

= (T B) MloollT Bllos = condoo(T B).

Since the estimate also applies for T = C~! and the matrix-vector multiplication
z +> Cz can be realised with n operations, the statement follows. m]

In general, the preconditioned system matrix C A is neither symmetric nor posi-
tive definite, even if A and C have these properties, and therefore the convergence
of the CG method for the preconditioned system is not immediately guaranteed.
However, this can be circumvented by using the Cholesky decomposition C =
\% VT, because we have

Ax=b <= VIAVI=VTh, ¥=Vlx
and the matrix VTAV is symmetric and positive definite. The preconditioned
CG method solves this transformation, without using the Cholesky factorisation

explicitly. To demonstrate this, we apply the CG method to the preconditioned
system of equations

AX=0b, A=VTAV, b=VTbh,

so that the sought solution x is given by x = VX. In the iteration rules of the CG
method

Xkl = X +ondy,  Fip1 =Tk —apAdy  dig1 = Tk — Prdk,

ax = |7/ i - Ady),  Be = =Tt I/ 171,
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the explicit use of the product VTAV should be avoided. To do this, the first and
third equation are multiplied by V' and the second by V=T, This gives rise to the
quantities xp = VX, rx = V"7 and dx = Vdj which satisfy

Xkl = Xk +ardr,  Trg1 =1k — o Ady  diy1 = Crigr — Prdy,

where the equations V_T;lgk = Ady and V741 = Crye1 were exploited. For the
calculation of the coefficients the following results

VTrk . VTrk Cry-rg
ak = = ,
Voldy - VTAV(V=1dy)  di - Ady
= Ving: - Ving  Crigr - rig
k V- VTrg Cri-rp

By introducing the variable zz = Cry the following procedure is obtained.

Algorithm 17.1 (Preconditioned CG Method) Let A, C € R"™" be symmetric
and positive definite, b € R", xo € R" and &g40p > 0. Definerg = b — Axp, k =0
and set dy = zo = Cry.

(1) Set xry1 = xx + ardy and riy1 = ry — g Ady as well as zx+1 = Criy1 and
define diy+1 = zk+1 — Prdi with

2k " Tk B = kA1 Tkl

o = s
di - Ady, Tk " Tk

(2) Stop if lres11l/11bll < &s10ps otherwise increase k — k + 1 and repeat (1).
Remarks 17.2

(i) The reformulation of the system of equations requires to impose the property
cond( vTa V) < cond(A) on a preconditioning matrix C = vvT,

(ii)) The construction of suitable preconditioning matrices is usually based on
particular properties of the underlying application.

17.3 Further Preconditioning Matrices

Stationary iteration methods of the form
Xit+1 = Xk — R(Axxy — b) = (I, — RA)x; + Rb
can be interpreted as fixed point iterations of the system of equations

RAx = Rb
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They are convergent, provided o(I, — RA) < 1 holds, and motivate the choice of
C = R as a preconditioning matrix, since then in rough approximation CA =~ I,
so we can expect cond(CA) ~ 1. Whether a preconditioning matrix is actually
well-defined must be checked in each individual case.

Examples 17.3

(i) With the decomposition A = L + D + R into the diagonal part D and the strict
lower and upper part L and R the Jacobi method is defined by

Dxj41=—(L+R)xp+b=(D—A)xi+b
or
Xep1 = Xk — D™ (Axg — b),

which motivates the preconditioning matrix C; = D1

(ii)) The Gauss-Seidel method leads to the matrix Cgs = D + L, which is
generally not symmetric. The symmetric Gauss-Seidel preconditioning matrix
of a symmetric matrix A = L 4+ D 4+ LT € R"*" is defined by

Cses = [+ D)D" (D +D)T]".

The direct solution of a sparse system of equations using an LU or Cholesky
decomposition can be inefficient, as the factors of the decomposition are generally
not sparse. This effect is referred to as fill-in. The incomplete calculation of an LU
or Cholesky decomposition can, however, lead to a suitable preconditioning matrix.
A population structure Z C {1,2,...,n} x {1, 2, ..., n} is specified for the factors
and it is required that

(LU)ij =ajj, (,j) e B, Lij=u;;j=0, (,J)¢2RB

For certain classes of matrices, the existence of the incomplete LU or Cholesky
decomposition can be proven. The calculation is done by ignoring the entries in the
null pattern in the algorithms for the complete factorisations. It should be noted that
the factors of the incomplete Cholesky decompositions may not be regular, which is
referred to as pivot breakdown.

Algorithm 17.2 (Incomplete Cholesky Decomposition) Let A € R"*" be sym-
metric and positive definite and # C {1,2,...,n} x {1,2, ..., n} be symmetric.



152 17 Sparse Matrices and Preconditioning

The non-trivial entries of L are calculated by:

fork=1:n

Ok = (ark — Z 513]-)1/2
j=1,..k—1, (j,k)e B

fori=k+1:n

if (k) e B;, L= (a,-k — Z Z,’jﬂkj)/gka end
j=lok—1,

i, k)eRB, (i,])ePB
end .keB, (i,j)e

end

With an incomplete factorisation, a preconditioning matrix can be defined.

Example 17.4 If the incomplete Cholesky decomposition A = LLT + E exists,
then C = (LLT)7] defines a possible preconditioning matrix. Typical definitions
for the occupancy structure are those of the given matrix A, that is, & = {(i, j) :
ajj # 0}, which is referred to as zero-fill-in, or a bandwidth w € Ny is specified and
B =1{(, j) i — j| < w}is defined.

17.4 Learning Objectives, Quiz and Application

You should be able to explain the concept of a sparse matrix and illustrate it with
examples. Furthermore, you should be familiar with the basic ideas of using a
preconditioning matrix in the CG method and be able to name some examples.

Quiz 17.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

If for the number of non-zero entries N; = [{(i, j) : 1 <i,j <n, a;; =0}| = 0(n?),
then A is sparse.

A sparse matrix A € R™" is specified in the CCS format by &(n) pieces of
information.

The product of two sparse matrices is a sparse matrix.

Every row-equilibrated matrix A € R™", that is }7_la;;| = 1, satisfies
cond(A) = 1.

The preconditioning of a system of linear equations leads to a system that can be solved
with the effort &'(n).

Application 17.1 To illustrate Google’s PageRank algorithm, a model internet with
N pages is considered. Let n; be the number of links leading from the i-th page to
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Fig. 17.2 Links in a model
internet

other pages. The variable x; > 0 is supposed to indicate the relevance of the i-th
page and for each link leading from the j-th to the i-th page, it increases by the
value x;/n . In the sketch shown in Fig. 17.2, for example, we have

0 1
X] = =X2 + =X3 + —Xx4.
1= 55Xt g3t
Overall, a system of linear equations for determining the vector x =
[x1,x2,...,x N]T, which describes a balance state of the proportional page accesses
of a group of users, is established when they repeatedly switch between pages at
random.

(i) Show that the determination of a solution of the system of equations can be
formulated as an eigenvalue problem Ax = Ax with A = 1.

(i) Determine the Gerschgorin circles for AT, to show that |[A] < 1 for all
eigenvalues of A, and prove that A = 1 is an eigenvalue of AT or A.

(iii) Determine with the help of MATLAB an eigenvector x of the matrix A for the
eigenvalue 1 withx; > 0,i = 1,2,..., N,and || x||; = 1 for the model internet
shown in Fig. 17.2.

(iv) Perform 5 steps of the power method with the starting vector xg =
[1,1,1, I]T/4 and normalise with respect to the norm || - ||1.

(v) Discuss whether the matrix A can be assumed to be sparse in reality and
whether the effort can be reduced by using suitable storage formats and
algorithms for matrix-vector multiplication.



Chapter 18 ®
Multidimensional Approximation Qe

18.1 Grids and Triangulations

There are various approaches to approximating functions and integrals in multiple
dimensions, which depend on the properties of the underlying domain. A domain is
defined as an open and connected set £2 C RY with d € N, which is also always
assumed to be bounded in the following. The simplest situation arises when £2 is
the product of intervals, i.e. when 2 is a right-angled, axis-parallel parallelepiped
of the form

d
2 = (a1,b1) x (a2, b2) x -+ x (ag, ba) = [ [ (@i, b)
i=1

In this case, one-dimensional arguments can be transferred to the multidimensional
case using tensor product approaches.

Definition 18.1 A (fensor product) grid of the domain 2 = I—[flzl (ai, b;) is a set
of points

Gy = {x = (a1, a2, ...,aq) + (jih1, joha, ..., jaha) :
0<ji<nm,i=12,...,d}

with grid fineness h; = (b; — a;)/nj,n; € N,i = 1,2,...,d, see Fig. 18.1. The
grid is called uniformif hy = hy =--- = hg = h.

In the case of a more general bounded domain 2 C R4, we assume that it has a
polygonal boundary, i.e. there exist affine-linear subspaces Hy={x€R? : di-x = ¢y}
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Fig. 18.1 Tensor product
grid of a rectangle with grid
fineness i1 and h

hy [

hy

Fig. 18.2 Triangulation of a h
two-dimensional domain into \

triangles

with d; € R? and ¢; € R, so that
K
02 = (022 N Hy).
k=1

Domains of this type can be divided into simple subdomains. A simplex in R¢
is a closed subset 7 C R9, which is given as the convex hull of d + 1 points
20,31, .--532d € Rd,i.e.

d d
T = conv{zo, 21, ..., 24} = {x eR?:x = Z@izi, 6; >0, ZQ,' = 1},
i=0 i=0

so that T is non-degenerate, i.e. it has a non-empty interior or a positive d-
dimensional volume. For d = 1, 2, 3, simplices are intervals, triangles or tetrahedra,
respectively, see Fig. 18.2.

Definition 18.2 A (regular) triangulation of the polygonal domain £2 is a set I}, =
{T1,T», ..., Ty} of simplices T; C Rd,j =1,2,...,J,sothat

J
2= U T;
j=1

and the intersection T; N T; of two different simplices is either empty or a
common subsimplex, i.e. a common corner, edge or side surface. The simplices
of a triangulation are also referred to as elements and the set .43, of the corners of
elements as nodes. The triangulation is called uniform if all elements are congruent.
It has the (maximum) mesh width h > 0, if diam(T) < h holds forall T € .9},.

Different polynomial spaces are used on parallelepipeds and simplices.
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Definition 18.3 Let A C RY be a closed set and k € Ny. The set of polynomials of
partial degree k and of total degree k on A are defined by

i1 02 id .
2k (A) = {q(X) = Z Qiyiy.igX| Xy oo Xf D Qigiy.iy € R},
0<iy,iz,....ia<k
i1 0> id .
Pr(A) = {p(x) = Z Qiyiy.igX| Xy - X7 Qiyiy.ig € R}.
0<iy,iz,...,iqa <k,
iy +ig+tig <k

Remarks 18.1

(1) Polynomials of partial degree k are linear combinations of tensor products of
one-dimensional polynomials of degree k.

(ii) Wehave dim 2;(A) = 27 and dim 2| (A) = d+1, which corresponds exactly
to the number of corners of parallelepipeds and simplices in R?.

Example 18.1 The polynomial ¢ (x1, x3) = x%xé’ is of total degree 5 and partial
degree 3.

18.2 Approximation on Tensor Product Grids

By means of suitable linear transformations, every right-angled parallelepiped can
be mapped onto the set 2 = (0, l)d and in the following, this case is always
considered together with a uniform tensor product grid of grid size & > 0.

Definition 18.4 For a given function f € C9([0, 11%) and a given grid size h =
1/n, the tensor product interpolation task consists in determining a polynomial g €
2,(10, 11%) with

qx) = f(x)

forall x € 4, = {h(i1,i2,...,iq): 0 <i{,i2,...,0g En}.
Proposition 18.1 The tensor product interpolation task is uniquely solvable.

Proof To illustrate the idea of the proof, we consider the case d = 2. Let E :
2,(10,1» - R®+D’ be the linear mapping g — (g(x) : x € 4,). Letq €
2,10, 11%) have the property Eq = 0. For (s,t) € [0, 172 the expression ¢(s, t)
has the representations

q(s,t) = Z apstt" = Z ( Z agmtm)s/d: Z be(r)s.

0<t¢,m<n 0<é<n 0<m<n 0<fl<n

For each fixed t; = jh, j = 0,1,...,n, the polynomial s + ¢(s,t;) has the
zeros s; = ih,i =0,1,...,n,and it follows by(¢;) = Oforall j, £ =0,1,...,n.
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For each £ =0, 1, ..., n the polynomial # + b,(¢) therefore has the roots ¢;, j =
0,1,...,nanditfollows by (t) = O forall ¢ € [0, 1] and thus ay,, = 0 forall £, m =
0,1,...,n respectively ¢ = 0. Thus E is injective and due to dim 2, ([0, 1]2) =
(n 4+ 1?2 also bijective. O

The numerical integration of a function f € CO([O, 119) is reduced to the
approximation of one-dimensional integrals by means of the iteration formula based
on Fubini’s theorem

1 1 1
Id(f):/[oudf(x)dx:/o /0 /0 fx1,x2, ..., xg)dx; dxa ... dxg.

Proposition 18.2 If Q : C°([0,1])) — R is a quadrature formula with non-
negative weights and points (wj, t;)i=o,...n With degree of exactness k > 0, then

0% (f) = ZZ“'Zwilwizmwidf(til,tiz,~--,fid)

i1=0i=0 ig=0

defines an iterated quadrature formula 0% : €90, 11%) — R that is exact for all
p € 2.4([0, l]d). Furthermore, we have

d
1 =0UN <> sup |I(fz) - Q(f)].
i=1 %i€[0,1]¢-!
where f5; forxi = (x1, ..., Xi—1, Xi41, ..., Xq) € [0, 1]”1_1 denotes the mapping
t— f(xl, ey X1y by X1y e ey Xd)-

Proof We consider the case d = 2. Then we have

1 1 n n
() -0 (f) = /0 /0 fox)derdog = Y Y wiwy, £ (6, iy)

i1=0i,=0

1 1 n
:/(; [/0 S, x)dxg — Z wilf(lil,xz)] dx,

i1=0

1 n no n
+/0 Z w;, f(t,, x2)dxp — Z Z Wi, Wi, f (&5 tiy)

i1=0 i1=0i=0

1
= fo (If (ox2) = QF (- x2)) da

+ > wi (If 6y, ) = Of iy ).

i1=0
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Together with the property Y !_,w; = 1 the asserted statement is obtained by
taking the absolute value. O

Remark 18.2 The effort of the iterated quadrature formula grows exponentially
with respect to d, thatis (n + l)d function evaluations are required. The error order,
on the other hand, is independent of the dimension and is determined by the one-
dimensional degree of exactness.

18.3 Two-Dimensional Fourier Transform

Based on the observation that with a basis (a)k)k:ogl,,,_,,,_l of C" through the
matrices (a)k(a)z)T)k ¢—0 . a1 @ basis of the vector space C"*" is defined, the
discrete Fourier transform can be generalised to the two-dimensional case.

Proposition 18.3 For every matrix Y € C"*" there exist uniquely determined
coefficients B = (bre)k ¢=0...n—1 € C™*", such that

,,,,,

n—1
Y = Z bkgEkK
k,0=0

with the orthogonal basis defined by the matrices E*‘= (ei(j' k+/2£)2”/”) .

e CY" for k,t = _0,1,...,n — 1 with respect to the scalar product
E : F = Zl};nlzo EjnF jy. With T, € C"" defined by (T,)jx = el/km/n
J,k=0,1,...,n—1, we have

1
Y = ﬁTnBTn, B=T,YT,.

Proof Exercise. O
Remarks 18.2

(i) The matrix multiplications required for the transformation can be performed
with &(n?logn) operations. To do this, the one-dimensional fast Fourier
transformation is first applied to the columns of ¥ and then to the rows of the
resulting matrix.

(ii)) The two-dimensional Fourier transform is the basis for image compression
techniques such as the jpeg format.

18.4 Approximation on Triangulations

Spline spaces can be generalised using triangulations.
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Definition 18.5 For k, m > 0 and a triangulation .73, of a domain £2 C R4, denote
KTy = {vn € CK$2) : vplr € Pu(T)forall T € )

the spline space of degree m and order k with respect to .Jj,.

By using affine-linear transformations investigations of the spline spaces can be
reduced to the case of the standard simplex

T = conv{Zp, 21, .-, 2d}

where Zp = O and Z; = ¢ fori = 1,2,...,d with the canonical basis
(e1,er,...,eq) c R4,

Lemma 18.1 For i = 0,1,...,d let ¢; € 4@1(?) be the uniquely defined
hat function satisfying the conditions ¢;(z;) = &j, j = 0,1,...,d. If T =
conv{zo, 21, ..., 2d} € R isa non-degenerate simplex, then by

d
X @7 (x) = Z@(@Zi

i=0

an affine-linear diffeomorphism @7 : T— Tis defined with the property @7 (Z;) =
zi,1=0,1,...,d, see Fig. 18.3. The volume of T is given by |det D®r|/d..

Proof The hat functions on T are given by ¢;(x) = 55,':\1' =1,2,...,d, and
X)) =1—-x —--- —x4 forx = (X1, X2, .;,Ec\d) € T and the mapping @7
fulfils &7(z;) = z;,i =0,1,...,d.Forallx € T we have

@7 (X) =20+ OrX =20+ [21 — 20,22 — 20, - - -, Zd — 20]%-
The determinant of Q7 is defined as the volume of the image of the unit cube [0, 1]¢
under the linear mapping Qr, with which the volume of the image of the standard
simplex is given by | det Qr|/d!. Since this coincides with the volume of T and is
therefore positive, it follows that @7 is a diffeomorphism. m]

The hat functions from the proof can be transformed with the diffeomorphism @7
onto the elements and lead to the concept of the nodal basis, with which the spline

Fig. 18.3 The Or

22
diffeomorphism @7 maps the i)
standard simplex T /ZO_A
bijectively onto the simplex T’

<]
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Fig. 18.4 Hat function ¢,

¢
associated with a node z in a
triangulation

interpolation task in the space .#%(.%,) can be solved. A typical hat function is
shown in Fig. 18.4.

Proposition 18.4 There exists a uniquely determined basis (¢, : z € N}) of the
space . V0(Fy) with the property ¢.(y) = Sy forallz,y € N, For f € ()
it is defined by

Ihf =Y fQe

7€M,

the nodal interpolant %, f € #10(.9},) with the property %, f(z) = f(z) for all
z € M.

Proof letz € M, and T € 9. If 7 € T, then define ¢,|r = 0. Otherwise, let
i € {0,1,...,d}, such that ®7(z;) = z holds and define ¢,|7 = @; o q§;1. In
this way, functions (¢, : z € A,) C .#'(.7},) with the properties ¢, (y) = 8y for
Z, ¥ € A, are defined. To prove that this is a basis, let s, € . LO( 7)) be arbitrary.
By

Sh= ) s(@e:

ZENM,

a function 5, € .#19(.7,) is defined with 5),(z) = sp,(z) for all z € Aj. For each
T € .9, the functione = (5; — s) o @ is affine-linear on T with €(0) = 0 and
e(e;)) =0,i =0,1,...,d. From this follows ¢ = 0 and overall s, = 5},. O

The interpolation error can be bounded as in the one-dimensional case.

Proposition 18.5 Let f € C2(2) and F;, be a regular triangulation of 2. Then
we have

]’l2
If =i flcog = 5 1D fllco@y:

Proof We definee = f — ., f and letx,, € 2 and T € .7}, such that x,,, € T and
le(xm)| = ||e||Co(§) holds. Obviously, we have e|7 € C>(T). If x,, is in the interior
of T, then Ve(x,,) = 0. If x,, is a corner of T, then e|; = 0 follows. If x,, is on
a side of T, then there exists a corner z € 4, N T, such that the derivative of the
mapping t — e(z+1(x;;, —z)) atthe point ¢ = 1 vanishes, thatis Ve(x,,)- (x,, —2) =
0. In all three cases there exists a z € 47, N T, such that with a Taylor approximation
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fora & € T we have
0=e(z) = l — Tp? —
=e(z) = e(xm) + 2(1 Xm) D7e(§)(z — xpm).

Since |z — x,,| < h and D>.%, |1 = 0 hold, the assertion follows. O

Composite quadrature formulas on triangulated domains are defined using the
reference element.

Definition 18.6 Let @ : C 0(?) — R be a quadrature formula on f, defined by
quadrature points and weights (&, W;)i=o,..n, thatis Of = Y ' w; f(&). A

corresponding composite quadrature formula Q 7, : C 0(2) — Ris defined by

07,(f)=Y_ > |det D&r|i; f(Pr(E))

TeJ, i=0

Remark 18.4 If the quadrature formula Q : CO(T) —>AR is exact of total degree
m > 0, that is, the integrals of all polynomials ¢ € £2,,(T) are exactly reproduced,
then the composite quadrature formula Q g, is exact for all f € . m.0( ).

Example 18.2 Gaussian quadrature formulas with one, three or seven quadrature
points on T C R? are defined by £ € R"*? and i € R” with

and

or with s = /15

ver)
Il

1659425 6-5 6+5 6+59-257]"
216—5 6—5 94+259—2s6+s 6+s5 7] ~

1
B = 2o [155 = 5,155 — 5, 155 — 5,155 + 5, 155 +5, 155 +5,270]" .

These quadrature formulas are exact for the polynomial spaces @(f), 322(?) or
Ps(T), respectively; they are schematically shown in Fig. 18.5.
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Fig. 18.5 Schematic
representation of Gaussian
quadrature formulas on the
reference triangle

On=1
on=3
e n=717

18.5 Learning Objectives, Quiz and Application

You should be familiar with approaches to interpolation and quadrature of functions
in several variables. You should be able to state interpolation estimates and explain
the problems of quadrature in high-dimensional spaces.

Quiz 18.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

The polynomial g (x, y) = x2y3z* 4+ 3x has the partial degree 4 and the total degree
5.

We have that dim 2 (RY) = (k + 1)¢.
We have that dim 2 (R?) = (d + 1)k.
We have that dim.¥!(.},) = |.#;|, where |4} | denotes the cardinality of .47,.

If .7, is a triangulation of a region 2 C R? with edges &7, and nodes .47, then the
cardinalities of the sets satisfy |47 — |&3| + |- 75| = 1.

Application 18.1 At a narrow point of a river, its width dF is to be determined. To
this end, sighting marks are placed on the opposite banks. At some distance from
the spot on the river, there is a town with a church and a water tower, the distance
between which is known with high accuracy and denoted by dr, see Fig. 18.6. A
sighting device, which can measure the angle between two sighting points, and the
possibility of installing additional sighting marks are available. Use a triangulation
to determine the size dr. What error influences must be taken into account and how
can these be minimised? How should it be interpreted if the sum of the angles at an
inner node deviates from 27, but this cannot be attributed to measurement errors?
How should geographical peculiarities be taken into account?

Fig. 18.6 Determination of ) )
an unknown from a known
distance dr



Chapter 19 ®
Ordinary Differential Equations ST

19.1 Fundamentals

Many time-varying processes can be described by so-called ordinary differential
equations. In this case, a differentiable function y : [0, 7) — R is sought, which
for a given mapping f : (0, T) x R — R satisfies the equation

Y (@) = f(t, y(0)

for all t € (0, T) as well as the initial condition y(0) = yo for a given number yg €
R. One refers to ¢ as the independent and y as the dependent variable of the initial
value problem. The differential equation is often written in the form y' = f(z, y),
that is the argument 7 is omitted in the function y and its derivatives. A differential
equation is linear, if the mapping s — f(¢, s) is linear for all ¢ € (0, T').

Example 19.1 For k € R we consider the linear differential equation y'(¢) = ky(¢),
that is f (¢, s) = ks is independent of 7. For each ¢ € R the function

y(t) = cel

is a solution of the differential equation on any interval (0, 7). An initial condition
¥(0) = yo determines ¢ = yy.

Remarks 19.1

(i) The initial value problem y’ = ky, y(0) = yo describes the development of
an account with initial capital yg at a fixed interest rate k per unit of time and
immediate consideration of compound interest.

(i) According to Newton’s law of cooling, the change in temperature 6 of a body is
proportional to the difference to the surrounding temperature 6, that is 6 (¢) =
—k(O(t) — 6).

© The Author(s), under exclusive license to Springer-Verlag GmbH, 167
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(iii) The identity y’(¢) = ky(r) means that the change of y at time 7 is proportional
to the value of y at this time.

(iv) The differential equation y’ = ky also describes the development of a
population, where k > 0 applies when the birth rate is higher than the mortality
rate.

In many applications several relevant quantities are considered simultaneously,
whose values influence each other. This leads to systems of differential equations,
where functions y1, y2, ..., y : [0, T) — R are sought with the property that

yi@®) = fi(t, y1@0), y2(0), ..., yu (1)),

@) = fu(t, y1(0), y2(0), ..., ya (D))

hold for all r € (0, T). Such systems can be written in vector notation as y'(r) =
f(t. y(®)), where y = [y1, y2, ..., ya]" and

Sfit, 1,52, ..., 8)
f,s)= :
fn(t,sl,527 .. -,Sn)
for s = [s1,52,..., s,,]T € R". An initial condition is then defined by a vector

yo € R™.

19.2 The Predator-Prey Model

The predator-prey model according to Lotka—Volterra describes the development of
the number of predators and prey, such as raptors and mice, where it is assumed that
the predators feed exclusively on the prey. Let y; (z) and y,(#) be the number of prey
and predators, respectively, at time ¢ in suitable units, so that for y; = y, = 1 a state
of equilibrium occurs, that is, in this case, the increase in y, exactly corresponds to
the decrease in y; due to death and being eaten. The change in the number of prey
y1 is then proportional to their number, with the proportionality factor depending on
the number of predators and is positive if y» < 1 applies, and negative if y; > 1
applies, that is, for example

yi (@) = a1 = y2(0)) y1 (0).

Similarly, the change in the number of predators y; is proportional to their number,
with the proportionality factor being positive if more prey are available than in the
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Fig. 19.1 Typical periodic
solution in the predator-prey
model

state of equilibrium, that is, for example

y2(1) = B(y1(t) = 1)y2(0).

A typical development of the populations for the case y;(0) > 1 and y»(0) = 1 is
shown in Fig. 19.1 and demonstrates that a large number of prey leads to an increase
in predators until a critical value is reached, and a low number of predators leads to
an increase in prey.

19.3 Higher Order Equations

The equations considered so far only contained first-order derivatives. More gener-
ally, one can consider ordinary differential equations of m-th order, which can be
abstractly written as

YW@y = f(t, v,y @),y @), ..., y" VD)

with a function f : (0, T) x R™ — R. However, higher order differential equations
can be written as a system of first order differential equations by introducing
auxiliary variables. To this end, z = [z1, 22, . - ., zm]T is defined by

/ 7 —1
=y, =y, =y, ..., Zm=y™ D

and the system

7y (1) = 22(1),

L1 () = zm (1),
() = f(t.21(0), 22(0), ..., Zm (D))
is considered, which can be written in an obvious way as a vectorial differential

equation 7/ = f (¢, z). For higher order differential equations, it is generally not
sufficient to only prescribe the function value at + = 0. In addition, the derivatives
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Fig. 19.2 Oscillation

behaviour of a damped spring (t)

pendulum y
y()— ¢ % %

up to order m — 1 must be given as initial data, that is

YO) =y0 YO =yo1. ... Y"O)=yom-1
or with z defined above, the condition z(0) = zo with zo = [¥0,0, 0.1, - - - » Y0.m— 1]T
e R™,
Example 19.2 The differential equation y” = —c?y has the solutions y(r) =

a sin(ct) with the property y(0) = 0 for any choice of ¢ € R. By prescribing
v'(0), « is uniquely determined.

Remark 19.2 The deflection of a spring pendulum, which is fixed at the upper
end, loaded at the lower end of the spring with the point mass m and in the resting
position has the length ¢, satisfies the force equilibrium

my"(t) +ry @)+ D(y@t) —€) =0

from inertial force, frictional force and restoring force. The resting position is given
by the weight force through ¢ = mg/D. To predict the oscillation behaviour for
¢t > 0 in addition to the initial deflection y(0) the initial velocity y’(0) must also be
known. A typical solution is shown in Fig. 19.2.

19.4 Autonomous Equations

Differential equations y'(r) = f (¢, y(¢)), in which the function f does not depend
ont,ie. f(t,s) = f (s) applies, are called autonomous differential equations. By
adding the equation z'(r) = 1 it is shown that every differential equation can be
written as a system of autonomous differential equations.

Remark 19.3 A solution of a system of autonomous differential equations y’ =
f(y) with f : R" — R" is also referred to as an integral curve of the vector field
f, because y can be geometrically interpreted as a curve in R”, whose tangent at
each point is just prescribed by f, see Fig. 19.3. This is also referred to as a phase
diagram. From it, qualitative properties of solutions such as periodicity or damping
can be read off.
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Fig. 19.3 Solutions of 52
autonomous differential / - G (S)
equations are integral curves / — .
of the vector field f m
/ TN ¥(t)

- 5
Fig. 19.4 Attractive
gravitational forces act F
between bodies ./(

P

19.5 Two-Body Problems

Attractive gravitational forces act between bodies, which are proportional to the
product of the masses and inversely proportional to the square of the distance. With
Newton’s second law, which states that the change in momentum of a body or the
product of mass and acceleration corresponds to the sum of the forces acting, this
allows motion equations to be formulated. If the functions yy, y; : [0, T) — R3
describe the positions of the centres of two bodies of masses m 1, m>, then it follows,

mimy y2—=2
Iyi = y2l? lly1 = y2Il’

mimy yi—»n
Iyt = 2012 Iyt — y2ll°

miy| = Fi(y1,y2) =v

myyy = Fa(yi, y2) =y

where y & 6.673 - 10~''m3/(kgs) is the gravitational constant. Note the opposite
directions of the forces acting. With the initial positions y; (0) and y,(0) as well as
the initial velocity vectors y{(0) and y/(0), the positions of the bodies can then be
predicted, as long as they have a positive distance, see Fig. 19.4.

19.6 Explicit Solutions

In special situations, ordinary differential equations can be explicitly solved. For
separated equations of the form y’ = f(¢)g(y), the formal equivalence

D rogy = Lo roa = /L—ffm
ar — 1Y g(y) gly)
with antiderivatives G (y) of 1/g(y) and F(¢) 4 c of f(¢) leads to the identities

Gy)=Ft)+c <= yt)=G'(F@t)+c).
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This procedure is referred to as separation of variables. The method of variation of
constants allows the solution of equations of the form y’ = f(¢)y + h(z). First, the
homogeneous equation 77 = f(¢)z is solved and then a function ¢ is sought such
that y = ¢z holds. With the product rule, we get

fOez+h() =y =¢'74+ 07 =072+ 0f )z,

thus the condition ¢’ = h/z.
Examples 19.3

(i) For the equation y’ = y2, with F () = ¢t and G(y) = —1/y, the solutions
y(t) = —1/(t + c¢) are obtained.

(i) In the case y' = ky + h(r), z(t) = ceX’ satisfies the equation z’ = kz and with
o(t) = fé h(s)c_le_ks ds, a general solution is obtained.

19.7 Learning Objectives, Quiz and Application

You should be able to explain ordinary differential equations and initial value
problems and illustrate them with examples. For some special cases, you should
be able to construct explicit solutions.

Quiz 19.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

The necessary number of initial data for the well-posedness of an ordinary differential
equation corresponds to the order of the differential equation.

If y is a solution of the autonomous differential equation y’ = f(y), then y(r + ¢) is
also a solution for every ¢ € R.

The identity y’ = y(y(¢)) defines an ordinary differential equation.

The differential equation my’ = ky describes the conservation of momentum of a body
of mass m.

If f(s) = 0 for some s € R”, then the constant mapping y(¢) = s is a solution of the
autonomous differential equation y’ = f(y).

Application 19.1 The growth of a population is only meaningfully described by
the differential equation y’ = ky within a certain range. When a capacity limit y,,,x
is reached, no further increase in the population will occur. Explain why this effect
can be described by the equation y' = k(1 — y/ymax)y and sketch solutions of this
differential equation.



Chapter 20 ®
Existence, Uniqueness and Stability Qe

20.1 Existence and Uniqueness

A central existence result is based on Banach’s fixed point theorem. For this, let X
be a Banach space, i.e. X is a vector space on whichanorm || - || : X — R is
defined, with respect to which every Cauchy sequence in X converges.

Proposition 20.1 If¥ : X — X is a contraction on the Banach space X, i.e. there
exists a constant K < 1, such that

¥ @) =¥ @ = Kllu—vl|

forallu,v € X, then ¥ has a unique fixed point'y € X, i.e. it holds that ¥ (y) = y.

The resulting existence statement uses an equivalent representation of an ordi-
nary differential equation as an integral equation.

Lemma 20.1 Ler f € C°([0, T] x R). The function y € C1([0, T)) satisfies
Yy = f(t,y®), 1 €0, T), y©0) =y

if and only if y € C°([0, T) and

t

y(1) = yo +/0 f(s. y(s))ds

forallt € [0, T].
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Proof

(i) First, let y € C'([0, T']) be a solution of the differential equation, which we
write with s instead of ¢. The fundamental theorem of calculus yields

t

t

(@) —y(0) = /0 Y (s)ds = /O f(s, y(s))ds.
With the initial condition y(0) = yyp, the integral equation follows.

(i) Conversely, let y € CY([0, T]) satisfy the integral equation. The fundamental
theorem of calculus implies that the right-hand side of the integral equation
defines a differentiable mapping with derivative f (¢, y(¢)) and value yq for t =
0. This implies y € Cl([0, T1) and y solves the initial value problem.

O

The integral representation shows that y is a solution of the fixed point equation
y =¥[ylif ¥ : C°([0, T]) — C°([0, T]) is defined by

t
WUKﬂ=yo+A.ﬂ&y@Dm

In the following Picard-Lindeldf theorem, a norm is constructed on the space
C O([O, T1) with respect to which ¥ is a contraction. For the sake of clarity, scalar
equations are considered.

Proposition 20.2 Assume that the mapping f € C°([0, T] x R) is uniformly
Lipschitz continuous in the second argument, i.e. there exists an L > 0, such that

|f(t,v) — ft, w)] < Ljv—w

forallt € [0,T] and all v, w € R. Then the initial value problem
Y@ = f(t.y@®), t€0.T), y0) =y

has a unique solution y € Cl([O, T).

Proof The operator ¥ is defined as above. For each u € C 0([0, T1) the conditions
on f imply that ¥[u] € C°([0, T']) holds. On C°([0, T]) we consider the weighted
norm

—2L
lulle = sup e |u()|.
t€[0,T]

With this norm, C%([0, T']) is complete and it suffices to show that ¥ is a contraction
with respect to || - ||z. For u, v € CY%(0,T]) and r € [0, T] the following holds
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e 2L W)t — wl(0)| = e

t

/0 f(s.u(s)) = f(s, v(s)) ds‘
t

< Le‘“’/ lu(s) — v(s)| ds

0
t

— Le*2Ll/ eZL‘Yeszslu(s) _ U(S)|ds
0

t
< Le M u — v||L/ e*s ds
0

_ 1
— Le 2L15(62L[ _ 1)”” _ U||L

1
< —|lu—vllr.
= Sllu = vl

By forming the supremum on the left side we obtain
1
1@ ] = ¥l < S llu = vllL.

that is ¥ : C°(0,T]) — C9([0, T]) is a contraction and Banach’s fixed point
theorem implies the existence of a unique fixed point y € C°([0, T). According to
the definition of ¥ and the previous lemma, this is equivalent to y being a solution
of the initial value problem. O

The constructive proof of Banach’s fixed point theorem shows that the fixed point
y € CO([0, T)) is given as the limit of the recursively defined sequence

ykJrl — q/[yk]

with any starting function yo € CO([0, T]). This observation can be used for the
construction of numerical methods for solving initial value problems, however,
functions must be suitably interpolated and integrated.

Remark 20.1 The condition of uniform Lipschitz continuity on the function f is
a restrictive assumption. If f is merely continuous, then with the Peano’s theorem
the existence of a local solution can be proven, that is there exist 0 < 7, < T and
y € CL([0, T,.)), such that y solves the initial value problem on the interval (0, 7).

Examples 20.1

(i) The initial value problem y’ = ky, y(0) = yp, has a unique solution on any
interval (0, T'] and for any k € R.

(ii) The initial value problem y’ = y?, y(0) = yo, with yo > 0 has the unique
solution y(t) = (Tx — 1)~ ! on the interval [0, T},) with T}, = 1/yo.
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(iii) The initial value problem y’ = y1/2 y(0) = 0, has the solutions y(r) = 0 as
well as y(t) = 12 /4.

Frequently, the solution of an initial value problem possesses higher regularity
properties than just differentiability.

Proposition 20.3 If f € C™([0, T] x R"), then y € C"+1([0, TY) follows. In the
case m > 1, solutions of corresponding initial value problems are unique.

Proof Exercise. O

20.2 Gronwall’s Lemma

Gronwall’s lemma controls the growth of the solution of a differential equation.

Lemma 20.2 Letu € C°([0, T]) and o, B € R with B > 0, such that

t
u(t) <a +,B/ u(s)ds
0

forallt € [0, T]. Then forall t € [0, T], it follows that
u(t) < ael,

Proof Letv € C([0, T]) be defined by
t
v(1) = e—f"f Bu(s) ds.
0
The product rule and the assumptions of the lemma imply
1
V(1) = —ﬂe_ﬂt/ Bu(s)ds + e P Bu(t) < Be Pla.
0
With v(0) = 0 it follows
t t t
eiﬁt/. Bu(s)ds =v() = / V(s)ds < ,Ba/ e Pids = a(l — eiﬂ’).
0 0 0
Multiplication with e#’ leads to
t
ut) <a +/ Bu(s)ds < o +oteﬁt(1 — e_ﬂ’) = el
0

and proves the lemma. O
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Remark 20.2 Gronwall’s lemma is often given in differential form. The condition
then reads u/(¢) < Bu(r) and from the resulting inequality (logu)’ = u'/u < B itis
evident that u grows at most exponentially.

20.3 Stability

The stability of an initial value problem refers to the conditioning of the associated
mathematical operation, i.e. the effects of perturbations on solutions of the initial
value problem. We assume that y € C'([0, T) is the unique solution of the initial
value problem

Y0y = f(t, y®), y©0) =

and that for perturbations f and yg of the function f and the initial data yo, the
function y € CL([0, T)) is the unique solution of the associated perturbed initial
value problem

V)= f(t.5®), F0) =%

Assuming that the perturbations are small, it can be shown that y and ¥ are close to
each other for certain times.

Proposition 20.4 Ler f, f eC O([O, T] x R), such that a § > 0 exists with

|f(t,v) — ft,0)] <8

forallt € [0,T] and v € R, and let f be uniformly Lipschitz-continuous with
respect to the second argument, i.e. there exists a number L > 0, such that

forallt € [0, T] and all v, w € R. Furthermore, let vy, Yo € R with |yo — Yol < 8o
forady > 0. Lety,y € C'([0, T x R) be solutions of the initial value problems

y(@©) = f(t, y®), ¥©0) =y,
¥ = f(t.50). ¥0) =%
in [0, T]. Then we have

sup |y(t) — ¥(1)| < (8o + 8T)e".
t€[0,T]
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Proof The difference y — ¥ satisfies the integral equation

t
y(®) _S;(t) =0 _y() +A f(S, }’(S)) - f(S, y(S)) ds

and this implies that

t
ly(®) = (O =< Iyo — Yol +/ [ (5. y() = [ (s, 5())] ds.
0
The triangle inequality and the assumptions on f show that

| £ (5, 5) = F(5, Y®)| < [ £ (5, y) = F(5. T®)| + | £ (5, 5) = F(5,56)|
< Lly(s) = 5(s)| + 6

holds, and with |yg — yo| < 8 it follows

t
(1) — ()] < 80 + 81 + L/O 19(s) — F(s)] ds.

For the function u(¢) = |y(t) — y(¢t)| witha = 8y + 8T and B = L it follows
t
ult) <a+ ,3/ u(s)ds.
0

The lemma of Gronwall implies u () < aeP' < qePT | from which the statement of
the proposition follows. O

Remark 20.3 The error in the solution of the differential equation is proportional
to 8o and 8, however, the proportionality factor is exponentially dependent on 7 and
L. The initial value problem is therefore well conditioned or stable, provided LT is
sufficiently small.

Example 20.2 Considering two spring pendulums with spring constants D and D,
the solutions y and y get out of phase and the solutions differ greatly from each
other for large times, see Fig. 20.1. This reflects the exponential dependence on the
time horizon T.

Fig. 20.1 Small
perturbations of initial data
can become noticeable in the
long-term behaviour
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20.4 Learning Objectives, Quiz and Application

You should be able to reformulate an initial value problem as an equivalent integral
equation. Based on this, you should be able to explain the ideas leading to the Picard-
Lindelof theorem. You should be able to derive the Gronwall lemma and explain its
importance for the conditioning of initial value problems.

Quiz 20.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

Every solution of the differential equation y” = 2y is of the form y(t) = « sin(ct) +
B cos(ct).

If f € C'(R), then the initial value problem y' = f(y), y(0) = yo, has a solution
y e C1([0,T]) forall yg e Rand T > 0.

Every contraction ¥ : R” — R" is continuously differentiable.

There exist autonomous differential equations y’ = f(y) that have solutions y €
([0, T) with the property y & C%([0, T]).

If y,5 € C'([0, T]) are solutions of the differential equation y = f(y) with a
Lipschitz-continuous mapping f : R — R, then |y(t) — 3(¢)| < |y(0) — ¥(0)] for all
tel0,T].

Application 20.1 The flight path of a rocket in the Earth’s gravitational field can
be described by a simplification of the two-body problem, assuming that the centre
of the Earth remains unchanged and can be set as ygqr:;, = 0. Furthermore, it is
assumed that the rocket flies perpendicular to the Earth’s surface. and the fuel is
depleted, so that no further acceleration occurs. Show that the height z of the rocket
is described by the equation

=
CWT o)y

with a suitable constant a and determine the solution for different initial velocities
by using the approach z (1) = a(t — 19)?. Discuss sufficient conditions for the global
existence of the solution.
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Single-Step Methods ST

21.1 Euler Method

A simple method for the numerical approximation of solutions to ordinary differen-
tial equations of the form

Yy = f(t,y®), y©0) =y

arises from the approximation of the derivative by a (forward) difference quotient,
that is from

Y+ =0
T

Y ()

with a fixed step sizet > 0. If y € C L0, 1), the right-hand side converges to
y'(¢) as T — 0. The approximation leads to

y(t+1) ~y@) +Tf(t, y(0))

and means that, as long as an approximation of y at time ¢ is known, an
approximation at time ¢t 4+ t can be directly calculated. Starting with the initial
data at fp = O the approximations at the time steps ty = kt, k = 1,2,..., K, are
obtained, where K is the largest natural number with the property Kt < T, denoted
by K = |T/z].

Algorithm 21.1 (Explicit Euler Method) Ler f € CO([O, T] x R), yo € R and
T>0.Setk=0and K = |T/t].
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Fig. 21.1 Euler methods y

approximate solutions T/2
through polygonal chains Yk

Vi

(1) Compute

Vit1 = Yk + of (tk, yk)-

(2) Stop ifk +1 > K, otherwise increase k — k + 1 and repeat step (1).

Geometrically, the curve ¢+ +— y(¢) is approximated by a polygonal chain
that connects the values (yx)x=o....x, see Fig.21.1. Therefore, the method is also
referred to as Euler’s polygonal chain method.

Remark 21.1 In general, the approximations y; do not coincide with the exact
solution y(#;) at the times #x, k = 1,2,...., K.

Definition 21.1 A method of the form

Vi+1 = Yk + TP (tk, Yk Yh+1,7), k=0,1,..., K —1,

is called a single-step method with increment function @ : [0, T x RxR xR>o —
R. If @ is independent of yi1, the method is referred to as explicit and otherwise
as implicit.

The implicit Euler method results from the use of the backward difference

quotient

y@) =yt —1)
T

y (1) ~

and the evaluation of the differential equation at #; 1.

Algorithm 21.2 (Implicit Euler Method) Let f € C 0([0, T] x R), yo € R and
T>0.Stk=0and K = |T/7].

(1) Determine yr+1 € R as the solution of the equation

Vi1 = Yk + Tf (b1, Yes1)-

(2) Stop ifk + 1 > K, otherwise, increase k — k + 1 and repeat step (1).
Remarks 21.2

(1) In contrast to the explicit method, the implicit Euler method requires solving a
system of equations at each iteration step. The solvability of this system must
be ensured in each case.
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(i1) For the explicit and implicit Euler methods, the increment functions @ are given
by

Dexpi (te, Vi Y1, T) = ftes Yi)s Pimpt Ty Vi, Vi1, T) = Uk + T, Yir1)-

Higher accuracy is achieved by using the two approximations y; and yj41.

Example 21.1 The midpoint method is defined by

D (1, ks Vi1, T) = [tk + /2, Gk + Yis1)/2).

21.2 Consistency

If the function values y(#) of the exact solution of a differential equation at the time
steps tx, k = 0, 1, ..., K, are inserted into a numerical method, it can be assessed
how accurate the method is. In the case of the explicit Euler method, using the
differential equation evaluated at #;, we have

Y(tt1) — y(t)
T

f o, y(m) = M — ¥ (%)

A Taylor approximation shows

Y(tk+1)t— Y (%) —y/(tk)’ < % sup [yl

r€(te, tk+1]
The values of the exact solution thus fulfil the numerical method up to the

consistency term (t/2)|y’ /”CO([O,T])' To generalise this approach, for a given value
Zk at time step t, we consider the local initial value problem

70 = f(t.z0), t €t i), 2() = 2.

The deviation of the solution z(#x4+) at time f;4 from the approximation defined
by the single-step method

Tkl = 2k + TP (tk, Zhs Tht1> T)
is given by
2(tk1) — 2kl = 2(tky1) — 2k — TP (tks Zks Th415 T)

see Fig.21.2.
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Fig. 21.2 The discretisation 2(tiy1)
error of a time step defines
the consistency of a method % 14— TC (t, 2%, T)
|
Zk+1
I lk+1

Definition 21.2 The local discretisation error € (ty, Zk, T) of the increment func-
tion @ is defined by

Z2(te+1) — 2k

C(tx, 2k, T) = — D (tx, Zk» Zk41, T).

The method defined by @ is called consistent of order p > 0, if for all functions f €
C?([0, T] x R), which are uniformly Lipschitz continuous in the second argument,
andk =0,1,..., K — 1 as well as z;z € R we have that

C(tk, 2k, T) = O(F)
for T — 0, that is, if there exist ¢1, ¢ > 0, so that |€ (t, zx, T)| < c17? holds for
all0 < 7t < cy.
Remarks 21.3

(1) If @ is Lipschitz continuous in the third argument, then z;41 can be replaced
by z(tx+1) to determine the consistency order, that is, using zx = z(#),

2(trg1) —2()
T

€ty 2k, T) = D (tr, 2(t), 2(tk41), T).
In the case zx = y(#), this corresponds to the substitution of the function values
of the exact solution into the numerical scheme.

(i) For zx = y(#), the local solution z matches y on the interval [#, #x+1] and we
have

Cg(fk’ y(f), T) = M = D (tr, y(1), y(trs1), T).

We will mostly use this expression in the following.
Examples 21.1
(i) For the explicit Euler method it follows from @ (tk, zk, zk+1, T) = f (tk, 2k),
2k = z(t) and ' (&) = f (1, 2(t)), that € (1, zx, T) = € (tk, 2k, T) With

() —z(w)

C (tk, 2k, T) = 7 (t)
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holds. With a Taylor approximation it follows

1
sup  |z7 ()],
ety tr+11

|C (tr, 2k, T)| <

SRR

so that the explicit Euler method is consistent of order p = 1.

(i) An analogous argument shows that the implicit Euler method also has the
consistency order p = 1.

(iii) Also from Taylor approximations, the consistency order p = 2 of the midpoint
method is derived.

21.3 Discrete Gronwall Lemma and Convergence

The consistency of a single-step method is a measure of the exactness of a method.
Based on this, we will show that the approximations (yx)k=o.... x are close to the
exact function values (y(#))x=o.... k - For this purpose, a single-step method

Vi1 = Yk + TP (ks Yk Y41, T)
with consistency order p is given, that is, we have

(1, y(t), 7) = w — @ (1, y(t), y(try1), T) = O(zP).

The following error estimate is based on the interpretation of the exact solution
values (y(f))k=o....x as a solution of the numerical method perturbed by terms
of order &'(z?). For this, the following discrete version of the Gronwall lemma is
needed.

Lemma 21.1 Let (up)k=o0,... k be a sequence of non-negative, real numbers and
o, B € Rwith B > 0, such that

-1

uy S(X+TZﬁMk

k=0
forallt =0,1,..., K. Then it follows forall ¢ =0, 1, ..., K, that
uy < aexp(tp).

Proof Exercise. O

If one interprets the sum as a quadrature formula, the relationship to the
continuous Gronwall lemma becomes apparent.
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Definition 21.3 A single-step method is called convergent of order p > 0, if for
all functions f € C?([0, T] x R), which are uniformly Lipschitz continuous in the
second argument, initial data yp € R and the exact solution y € C p+l ([0, T]) as
well as the approximations (y¢)¢=o,... x We have

,,,,,

ma ) — = O (tP).
Z=0’“>.<‘K|y(e) yel )

With the help of the discrete Gronwall lemma, the consistency of order p of
a method leads to the convergence of order p of the method, that is, we obtain a
general error estimate for single-step methods.

Proposition 21.1 Let the single-step method defined by @ be well-defined and
consistent of order p. Assume that the increment function @ is uniformly Lipschitz
continuous in the second and third argument, that is, there exists M > 0, such that

|@(@t,a1,b1,7) — ®(t, a2, by, 7)| < M(la1 — az| + |b1 — b))
forallt € [0,T], ay,az,b1,bo e Randt > 0. If t < 1/(2M), then it follows

, IgaxK |y(te) — ye| < 2cTt? exp(dMT)

=u,...,

with a constant ¢ > 0 independent of .

Proof For the function values (y(#x))k=o0,... k. according to the definition of the
consistency term, we have

V(1) = y(6) + 1@ (1, Y1), y(trs). T) + TE (10, y(10). 7).

while the approximations (yk)i=o,... x are defined by

,,,,,

Vi1 = Yk + TP (ks Yo Yht1. T)

Subtracting the two identities leads to

Y(trr1) = verr = Y1) — yi + [ (tk. y(@0), y (115 T) = P (tks Yo Yir1. )]
+ 'L’%?J(tk, y(t), ‘L’).

With the triangle inequality, the Lipschitz continuity of @ and the consistency order
p, it follows

Y (trs1) = it | < |y — yie| + M (| @) — yie| + [y tes1) = g |) + et
With the definition uyx = |y(fx) — yx| we get

(1= tMujrr < (1 + tM)ug + et
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or

1+tM c

<
N Ty v i gy,

AR

Subtracting u; on both sides yields using 1 —tM > 1/2

Cc

1+tM
—ug < —1) + TPt
et Mk_(l—tM T M
2M + cT »
=T T
— M T 1T m
< t4Muy + 2ctT?.

A summationoverk =0,1,...,£ — 1 with0 < ¢ < K leads to
-1
ug—u0§4MrZuk+2cKrr”.
k=0

Hence, the sequence (ux)k—o,... x satisfies the conditions of the discrete Gronwall
lemma with

a=uy+2c(Kt)t?, B=4tM

and with ug = 0 and £t < K1 < T the assertion follows. O
Remarks 21.4

(1) Similar to the stability estimate, the constant in the error estimate critically
depends on the product M T.

(i) The proof of the proposition shows that it is sufficient to approximate the initial
data with an accuracy |yg — y(0)| = O(zP).

In some special cases the convergence results can be improved and reveal an
important difference between explicit and implicit schemes.

Example 21.3 We consider the equation y’ = Ay with a number A < 0. For the
explicit Euler method we obtain for e; = y(#;) — yx the error equation

ery1 = (1 +th)ep + T‘g;xpz(tk, Y1), 7).
Unless |1 + tA| < 1l ort < 1/(2|A]), a strong error amplification is to be expected

in the time stepping. This explains the step size condition in the previous result. For
the implicit Euler method we obtain the error equation

(1 = th)ers1 = ek + TGimpr (s y(11), 7).
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Since 1 — A > 1, a damping effect for the error takes place. In particular, noting
[1 —tA|~! < 1 we obtain by taking absolute values that for u; = |ex| we have

Ukl < Uk + et

A summationoverk =0,1,...,¢ — 1 with 0 < £ < K shows that

max ) — <cTr.
k:O,...,K'y(k) yel <

This estimate holds without a step size condition and without an exponential
dependence on 7 and |A|.

21.4 Higher-Order Methods

The consistency order of the Euler methods is given by the Taylor formulas used in
the derivation. This motivates the use of a higher accuracy approximation such as

Yt — y() Y () + %y”(tk) + 0@,

provided y € C3([0, T]). Based on this identity, there are various ways to construct
an increment function.

Examples 21.4 ([8, 9])

(i) Differentiating the differential equation y’ = f (¢, y) with respect to ¢, one gets
with the partial derivatives 9, f and 9, f* of f that

Y'@) =8 f(t, y@®) + 3y £ (£, y®))y' (2)
=0, f(r, y®) + 0y £ (t. y(0)) f (£, y(@)).

The use of this identity in the above Taylor formula shows that the expression

PO Z IO 2 (o f (1 y00) + 4 F 1 y000) £ (1 ¥(00))

approximates the derivative y’(#) up to an error & (t2) and motivates the use
of the explicit increment function

Ot o Vi1 ) = £t 30 + 5 (30 e 30 + 0y F o 30 £ 01 30)).

The calculations imply € (f, yk, T) = 0(7?).
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(i) With coefficients a, b, ¢, d € R to be determined, the approach

D(t,y, 1) = af(t,y) +bf (t +ct,y +tdf (1, y))

is considered and inserted into the definition of the consistency term, where for
brevity ¢ and y stand for #; and y,. Using the Taylor approximation

fltrer, y+def(t,y) = ft )+ f @, y)et+dy f &, y)def t, ) +0 (@)
the conditions a + b = 1, bc = 1/2 and bd = 1/2 arise for the parameters

a, b, c,d for the consistency of order p = 2. The solution a = b = 1/2,
¢ = d = 1 defines Heun’s method

1
D(t,y,7) = E(f(t, WA+ ft+t.y+TfEy))

and the solutiona = 0, b = 1, ¢ = d = 1/2 defines the Euler—Collatz method

O(1.y. 1) = f(t+ 3.7+ 3 F1.0).

Remark 21.5 The terms appearing in the methods

Vi +O0Tf (e, yo) ~ Yk + 0ty (1)

approximate the unknown values y(#1) in the case § = 1 and y(txy1/2) = (yx +
Yk+1)/2 in the case & = 1/2, where ty 12 =t +1/2.

21.5 Learning Objectives, Quiz and Application

You should be able to derive particular single-step methods and show their
differences. You should be able to motivate and define the concept of consistency
and explain its use in deriving error estimates.

Quiz 21.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.
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21 Single-Step Methods

The increment function @ (¢, a, b, 1) = a(a + b)/2 defines a single-step method for
the differential equation y’ = ay.

Explicit single-step methods are always well-defined.

The local discretisation error of the explicit Euler method for the differential equation
y' = Ay is given by (z(tx41) — 2k) /T — Azx.

The increment function @ (¢, a, b, t) = f(t + t/2,a + tf (¢, a)/2) defines a method
of consistency order p = 2.

In general, the error |y, — y(#¢)| increases with each time step.

Application 21.1

@

(i)

(iii)

The speed of the chemical reaction of two substances A and B with product
2B is determined by a reaction coefficient « and the differential equations

C)y = —aCaCp, Cly=aCaCp

where C4, Cp : [0, T] — [0, 1] indicate the respective concentrations. In the
reaction equation, this is taken into account by the notation A + B 2, 2B.
Show that the sum of the concentrations C4 + Cp is constant.

We consider the reaction scheme

A% B L Brc BycL A+,

with the reaction coefficients « = 0.04, 8 = 3 - 107, y = 10%, that is for
example, that the substance B is very quickly converted into the substance C.
Formulate a system of differential equations to describe the reaction scheme,
show that the sum of the concentrations is constant and determine numerically
the maximum concentration of the substance B, if at the beginning of the
process only the substance A is present.

Test various MATLAB routines for the numerical solution of the problem in the
time interval [0, 1/2] and comment on the results.



Chapter 22 ®
Runge-Kutta Methods Qe

22.1 Motivation

The construction of numerical methods based on Taylor approximations with higher
consistency order usually leads to schemes in which many function evaluations,
especially of derivatives, are required in each step. This is generally associated with
very high effort. The starting point for the development of methods that avoid the
evaluation of derivatives of f is a local integral representation of the differential
equation y’ = f (¢, y). We have

173 Ti+1

+1
V(s)ds = y(1) + / F(s. y(s)) ds.

Ik

V) = y(@) + f

Ik

If the integral is approximated by the value of the integrand at the point #; multiplied
by the length of the integration range #;41 — tx = t, the result is

Y1) = y(@) + f (te, y(@)),

and this motivates the explicit Euler method. It is obvious to apply more exact
quadrature formulas to obtain methods of higher accuracy. In the case of the
midpoint rule, with #x 1,2 = (k + 1/2)7, we get

Y1) = y(1) + Tf (k172 Y (tes172)).

The function value y(#x41,2) can be approximated using an approximation of y (),
because a Taylor approximation and the evaluation of the differential equation at #;
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show for a § € [1, tk41/2]

2

Yltks12) = (1) + 3300 + %y”(s)

T 7’ "
=y + 5./ (16 y@0) + 5" @)
Overall, this leads to the Euler—Collatz method

T T
Vir1 =k +of (0 + 5k + Ef(fky Yi))-

With a Taylor approximation of the right side, it is shown that this method has the
consistency order p = 2.

22.2 Runge-Kutta Methods

If (¢, ye)e=1...m is a quadrature formula on the interval [0, 1], then (f +
Ty, TVe)e=1,....m defines a quadrature formula on [#, #x+1] and we obtain

fer1 n ‘
Y(try1) = y(t) +f Y(s)ds ~ y(t) +1 Y e

fk e=1
with the approximations
o~y (e + tay) = ftx + toe, y(i + Ta)).
The right side is approximated using
m m
Yt +Tog) R y(t) + 1 Z Bejy'(tk + taj) = y(1e) + T Zﬁan'}
j=1 j=1

and thus the quantities n’g can be determined as the solution of the nonlinear system
of equations

m
ng = f(lk +tog, e+t Zﬂff”.];)
j=1
for £ = 1,2, ..., m. This leads to the following definition.

Definition 22.1 For oy, B¢j, v¢e € R, j, £ = 1,2,...,m, an m-stage Runge-Kutta
method is defined by
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Fig. 22.1 Runge-Kutta Vi
methods use implicitly Vi 2 Yi+1
defined intermediate steps “

Table 22.1 Butcher tableau

o ..
of a Runge-Kutta method L Au Bim
am | PBmi Binm
4! VYm

m m
Vi+1 =yk+rZVm]E, n§=f<tk+mz,yk+fz,3zw’})~
=1 j=1

Intuitively, a Runge-Kutta method uses intermediate steps txys/m = t& + T,
s = 1,2,..., m, and corresponding approximations yxis/m = Yk + T > y_; ymf
to determine yi1, see Fig.22.1.

Remark 22.1 Runge-Kutta methods are single-step methods, where the increment
function @ (1, yk, T) = Y 4 ymf is defined by the solution of a possibly
nonlinear problem. In terms of single-step methods, Runge-Kutta methods are
explicit, however, this view is not meaningful.

Remark 22.2 A Runge-Kutta method is determined by the associated Butcher
tableau, in which the coefficients are schematically arranged as in Table 22.1.
Examples 22.1
(i) Form =1,a;1 =0, 811 =0, y1 = 1 we get the explicit Euler method defined
by
k _ _ k
m = f(t, Yk, Vi1 = Yk + T}

(i) The Euler—Collatz method and the Heun method are defined by the respective
Butcher tableau shown in Table 22.2.
(iii) The trapezoidal method results from the use of the trapezoidal rule, that is

2

i T
Vi1 = Yk + E(f(tk» i) + f (trrts yern)) = v+ 3 > g
=1

with 7% = f (1, yi) and 0§ = £ (1 + 7, yeg1).
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Table 22.2 Butcher tableau of the explicit Euler method, the Euler-Collatz and Heun methods,
as well as the trapezoidal method

0 o0 |o 0olo |0 oo |o
00 1/2/1/2/ 0 11 |0 117212
1 0 |1 1721172 1/2/1/2

22.3 Well-Posedness

The execution of an iteration step with a Runge-Kutta method requires the solution
of a system of equations. If § is a strict lower triangular matrix, this can be solved
explicitly.

Definition 22.2 A Runge-Kutta method is called explicit if B¢; = 0 holds for all
1 < ¢ < j < n.ltis called implicit otherwise.

Remark 22.3 If a Runge-Kutta method is explicit, the expressions nlg can be

determined successively. For £ = 1, 2, ..., m the following then applies
-1
ng = f(tk +rTog, e+t Zﬁq’?(})-
j=1

Example 22.1 Examples of explicit, four-stage Runge-Kutta methods are the
classic Runge-Kutta method and the 3/8 rule, which are defined by the respective
Butcher tableau shown in Table 22.3.

In the implicit case, a fixed point equation must be solved. With the abbreviations
t =1,y = yrand ny = nle‘, avector n = [n1, 12, ..., ] is to be determined
such that

m = f(t+ztan,y+Bunm +tBim+ -+ tBimim),

Nm = f(t +tam, y + tBmimt + thmama + - + f,Bmmnm)

holds, which can be written abstractly as a vectorial equation n = ¥ ().

Table 22.3 Butcher tableau 0 0
of the classic Runge-Kutta
1/211/2 1/3/1/3
method and the 3/8 rule 211 ;3
1/2/0 |1/2 2/3|—-1/3|1

1 0 0 |1 11 =11
1/6/1/31/31/6 1/8 |3/83/8 1/8
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Table 22.4 Butcher tableau
for the implicit Euler, the
midpoint and the Radau-3
methods

1/35/12] =1/12
11 172172 1 3/4 | 1/4
1 3/4 | 1/4

—_

Proposition 22.1 If f € C°([0, T] x R) is uniformly Lipschitz continuous in the
second argument with Lipschitz constant L > 0 and if

Lt||Blloo < 1,

with the row sum norm ||Bllcoc = maxXe=1,.. .m 271:1 |Bejl, then W is a contraction
with respect to the maximum norm on R™ and there exists a unique fixed point
n € R™ of W.

Proof Let &, ¢ € R™. Then we have that

|¥ &) —¥©)]

=£=r?,?).(,m ‘f(t + Ttoy, y +‘L’Z,3@jéjj) — f(t +‘L'otg,y+‘r25(j§'j)‘

j=1 j=l1

m

< max Lty |Byl max [& — ¢l = Lt]|BlloollE = ¢llco-

=1,..., m 1 j=1,...m
]:

The Banach fixed point theorem implies in the case Lt||B||cc < 1 the existence of
a unique fixed point. O

Remark 22.4 A fixed point of the contraction ¥ : R” — R" can be approximated
with any initial value €0 € R™ through the iteration £+ = ¥ (&%). Under suitable
conditions, the nonlinear system of equations can be approximately solved using
the Newton method. An initial value can be defined using the approximation to the
previous time step.

Example 22.3 Examples of implicit Runge-Kutta methods are the implicit Euler
method, the midpoint method and the Radau-3 method, which are defined by the
respective Butcher tableau shown in Table 22.4.

22.4 Consistency

Since Runge-Kutta methods are based on quadrature formulas, the exactness of the
underlying quadrature formula is decisive for the consistency of the method. The
quadrature formula (o, y¢)¢=1,...m is called exact of degree r on the interval [0, @],
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if

fo q(s)ds =Y yeq(ar)

=1

for all polynomials g up to degree r. In this case, for every function ¢ €
C™*1([0, T1), we have that

t+ta m
/ d(s)ds =t Z ved(t + tag) + 0.
t

=1

In the sense of this statement, the trivial quadrature formula, which approximates
every integral by the value 0, is exact of degree r = —1. The exactness of degree
p — 1 is necessary for the consistency of order p.

Lemma 22.1 Assume that the Runge-Kutta method defined by the coefficients
ag, Bej, ve, j, € =1,2,...,m, is consistent of order p > 0. Then the quadrature
formula defined by (ay, Ve)e=1....m is exact of degree p — 1 on [0, 1].

.....

Proof For0 < n < p —1,lety : [0,1] — R be the solution of the differential
equation y'(r) = f(t, y(1)), y(0) = 0, with f(r,z) = t". Obviously y(t) =
t"t1/(n 4 1). The consistency of order p of the Runge-Kutta method implies that
for all T > O the estimate

10,0, 7)

| = yw — ®(0,0,7)| < ct”

holds and hence

m

‘ 1 .L.n+1 Z
- - ve(tap)”
tn+1 =

< ct?.

A division of this inequality by t”* and the limit T — O imply, that the quadrature
formula is exact for the monomials ¢ — t",0 < n < p — 1, in the interval [0, 1].
By its linearity this is true for all polynomials of degree p — 1. O

The reversal of the statement holds under additional conditions on the coefficients
Bej and leads to a sufficient condition for a consistency statement, which follows the
presentation in [8].

Proposition 22.2 Let ay, Bej, ve, j. € = 1,2,..., m be such that the quadrature
Sformula defined by (ae, ye)e=1.....m on the interval [0, 1] is exact of degree p — 1
andfort = 1,2, ..., m the quadrature formula defined by (o.j, Bej) j=1,...m 1S exact
on [0, a¢] of degree p — 2. Then the Runge-Kutta method defined by o, Bej, ve has
the consistency order p.
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Proof From local integral representations of the differential equation y’ = f (s, y)
and the assumed exactness of the quadrature formulas, it follows that

t+t m
ye+1)—y@) = / fls,y@s)ds =7 Z)/ef(ﬂrme, y(t+mz))+ﬁ(fp+1)
! =1
andfor{ =1,2,...,m
t+tay m
yotra)=y@ = [ 6 y6)ds =T Y fuf (e, e+ O
t =1

For the consistency term, with the first equation, the abbreviations ¢ = f; and ;. y =
tr + tap and

ne = f (1 +vae, yO + 7Y Busns)

s=1

and @ (¢, y(1),T) = Y 4, Vene, it follows that
~ 1+1)—y(t) —
1€ (t, y(0), 7)| = ‘M - Z)fme’
=1

= ‘ iw[f(tk,e, y(tke)) — f(fk,e, y)+t iﬂéjnj):” +0(z?)
=1

j=1

m m m
< LY Inl|y a0 =y =7 3 s+ 0GN = LY b+ 0(?).
=1 =1 =1

Here, using the second equation,

m
re =y +ra) =y = T Y |
j=1

‘T i/gﬁj [f(lk,j, y(i,j)) — f(fk,j» yit)+t iﬁjnnn)]‘ +0(?)
=

n=1

IA

+ O0(zP)

n=1

LY 1Bul|y ) = v + Y B
Jj=1

=1L _|Bylrj + O(?).
j=1
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From this estimate it follows
Irlloe < TLIBlsolI7lloo + cT?
or ||7]leo < 2ct?, provided TL||B|lco < 1/2 holds. Overall, we get
2, y(0), 7)| < TP

and this proves the assertion. O

Remark 22.5 Alternatively, the consistency order of a Runge-Kutta method can be
investigated using Taylor approximations. For example, using the abbreviation y for
y(t), we have

WD O iy 4 Ly + 0

= ft.y)+ %[&f(t, W+ [ @]+ O,

where y* = f(t,y) and the identity y” = 8, f(t,y) + 9, f(t, y)y' resulting
by differentiation were exploited. For the increment function @(¢, y(¢),7) =
Y i vene the Taylor approximations

m
ne = f(t+wz,y+r2ﬁejnj)

j=1

= F@ )+ 0@ v+ 0, f@ (2 Y Byng) + 0D

j=1

aswell as n; = f (¢, y) + O(z), imply that

Dty 7) = Y e[ £ )+ y)Tee + 0, £ )T Y Byn |+ O

=1 j=1

m m
= Y n[Fe )t ety f )T Y] By £ )] + O,
=1 j=1
A comparison of the coefficients in the resulting identity for

YA =30

. 1,y(), 7)
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implies the sufficient conditions

~
Il
—_
~
Il
—_
~

=1 J:]

for second order consistency. The last condition can be replaced by «p = Z';?:l Bej -

Examples 22.4 The explicit Euler method has the consistency order p = 1, the
midpoint method, the Euler—Collatz method and Heun’s method have the order p =
2, the Radau-3 method the consistency order p = 3 and the classic Runge-Kutta
method as well as the 3/8 rule have the order p = 4.

Remarks 22.6

(i) Explicit m-stage Runge-Kutta methods have at most the consistency order p =
m.

(i) By using Gaussian quadrature formulas, which have the degree of exactness
2m — 1 at m quadrature points, implicit Runge-Kutta methods with consistency
order p = 2m can be constructed.

22.5 Learning Objectives, Quiz and Application

You should be familiar with the approach to deriving Runge-Kutta methods and you
should be able to create a Butcher tableau. You should moreover be able to describe
sufficient criteria for determining the consistency of a Runge-Kutta method.

Quiz 22.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

The midpoint method results from an application of the midpoint quadrature formula.
An m-stage Runge-Kutta method has at least the consistency order 1.
For every explicit Runge-Kutta method of consistency order p = 2, &1 = 0 holds.

The condition > -, ¥, = 1 is necessary for the consistency of positive order of a
Runge-Kutta method.

Every single-step method of consistency order p defines a quadrature formula of
exactness degree p.

Application 22.1 Both attractive and repulsive forces act between particles such
as atoms or molecules. The attractive forces dominate for large distances and
the repulsive forces for small distances. This is often described with a so-called
Lennard—Jones potential V(r) = —c1r~2 + cor %, which defines the acting force
through certain negative gradients, using the fact that the derivative V'(r) =
201r73 —deprd s negative for r? < rg = 2c>/c1 and positive for r > ry. With
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Newton’s law of inertia, the trajectories of N interacting particles with unit mass
can be described by the system of differential equations

Yi —Yj
==Y VyVlyi—yilb=— Y Vidy-y; ||>ﬁ
j=1,...N, j#i j=1,....N, j#i Yi =Y
fori = 1,2, ..., N with suitable initial data. In this way, systems of particles such

as water droplets can be simulated, which however leads to extremely large systems
of differential equations. Use various MATLAB routines to simulate systems of 10—
40 particles, which are distributed on a grid with grid spacing d = 1 and have
no initial velocities, in the time interval [0, T'] with T = 100 with the parameters
cy =10and ¢, = 2.
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Multistep Methods Qe

23.1 General Multistep Methods

Multistep methods are like Runge—Kutta methods usually based on quadrature
formulas, but they avoid function evaluations at the intermediate steps and instead
use the values calculated in the previous time steps. The starting point is the integral
representation of a differential equation y’ = f (¢, y) on the interval [f5 1,1, trtm],
that is

tk+m
Ytm) = Y E4m—1) + / f(s, y(s))ds.

Tktm—1

The integral on the right-hand side is approximated using the function values at the
time steps fx, tk41, - - - » tk+m, that is

tktm m
/ f(s.y(s))ds ~ T Zﬁef(lkH, Y(t40))-
3

+m—1 =0

This can be interpreted as a generalised quadrature formula, where a function on
the interval [#, fx+m,] is interpolated and the interpolant is then integrated over
the subinterval [#¢ym;—1, tk+m], see Fig. 23.1. The function values at the time steps
only need to be determined once and can be reused in later time steps. The above
integration of the differential equation can also generally be carried out over a larger
interval [tx1m—n, ti+m] With 1 <n < m.

Definition 23.1 An m-multistep method is a method of the form

m
D eyt = Tk, Yoo Yt 15 - Yeckms T)
£=0
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Fig. 23.1 Multistep methods

can be interpreted as the
application of a generalised
quadrature formula N

173 tetm

with real coefficients (c¢)¢=0. .. m, Where o;; = 1 applies. The method is called
explicit if @ does not depend on yi,, and implicit otherwise. It is called linear if
coefficients (B¢)¢—o.....m €Xist, such that

.....

m
Dty Yo+ Vitms T = D Bef (s Yiro)-
=0

Remarks 23.1

(i) A linear multistep method is explicit exactly when §,, = 0 applies.

(ii) In order to perform a step of a multistep method, the values yg, ..., Yk4m—1
must already be available. At the start of the method, approximations
Y1, ..., Ym—1 can be determined with single-step methods.

Examples 23.1
(i) The leapfrog method is defined by

Vit2 = Yk + 20 f (i1, Yir1)-

(i) The Adams-Bashforth and Adams-Moulton methods are explicit and implicit
linear multistep methods of the form

m
Yetm = Vitm—1 +T Y Bof (tise Yeero),
=0
(iii) So-called backward-differentiation-formulas or BDF methods use the

Lagrange interpolation polynomial ¢ € %, with q(t+i) = Yk+is
i=0,1,...,m, and determine yi4,, as the solution of the equation

q/(tk-i-m) = f(tktm> Yetm)-

23.2 Consistency

To determine the accuracy of a multistep method, a local solution is inserted into
the numerical scheme.
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Definition 23.2 For z; € R, let z : [#, tx+m] — R be the solution of the initial
value problem z/ = f (¢, z) in (t, tx+m] With z(&x) = zx. The local consistency
error of a multistep method is defined by

~ 1 &
C (tk. 2(tr). T) = z ZOlEZ(tk+£) — D (1, 2(t0), - - -, 2(trgm), T)-

A multistep method is called consistent of order p, if for all f € CP([0, T] x R),
k=0,1,...,K —mand z € CP*([1, tr4m]) We have

(tx, 2(0), 1) = O(xP).

For linear multistep methods, simple criteria for the consistency of order p
emerge, as the following result, which follows the presentation in [9], shows.

Proposition 23.1 The linear m-step method

m m
D aeyire =1 Bof (ke Yire)

=0 £=0
is consistent of order p > 1 if and only if

m

m
Zae =0, Z(aﬂq —ﬂgqﬂq_l) =0, ¢g=12,...,p.
£=0

£=0

Proof The Taylor approximations

2(tiye) = 2tk + r) = Z(q) D) + 0",
g=0

s =4 £0) = Y ) + ()
g=1 '

as well as f(feqe, 2(tkre)) = 2/ (tk+¢) show

m

‘g(tk, (), T Z ?Z([k-'rm) — BeZ (40 ]

£=0

m qg—1
=Z[‘”Z(h) 2D (1) — B Z(Zi D)+ o)

!
=0 =0 D!
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L 258 07)d!
=—Zazz(tk)+2 ["f(f) D 1)‘]Z(q)(tk)+ﬁ(rp)

=0 g=1 (C]
p

1 m mo_g
= ; Z(D([Z(lk) + Z Z Tq' [Olgeq — ﬂgngfl]z(q)(tk) + ﬁ(‘[p).

=0 g=14¢=0

Under the given conditions, both sums vanish. The reversal of the statement follows
by considering the functions z(f) = ", z(0) = 0, n = 1,2,..., p, as well as
z(t) = 1 as solutions of suitable differential equations. |

23.3 Adams Methods

Adams methods are linear multistep methods based on the approximation of local
integral representations of a differential equation, that is, with a polynomial p that
approximates the mapping s +— f(s, y(s)) in the interval Iy, = [fk4m—1, tktmls
one uses

Y(t4m) = Y (trm—1) + f(s,y(s))ds

Ik,m

R Vitm—1 +/ p(s)ds.
k,m

The polynomial p € 5 of degree m < m is chosen as the Lagrange interpolation

polynomial for the nodes and values (tx+t¢, f (tk+¢, Yk+¢))e=o.,....7, that is
m
P(s) =Y f(trge. yiro)Le(s),
=0
with the Lagrange basis (L¢)¢—o,.. » for the nodes #, ty+1, ... tk+sm. With the

coefficients

1
Be = —/ Le(s)ds
Ii.m

T

the multistep method results in

Yerm = Yerm—1 +T Y Bef Ukyes Yeo)-
=0
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s Li(s Lo(s Li(s
Lo(s) Lo(s) 1(s) 0(s) 1(s)

_—

/! N
Tetm—1 [k,nl \ / Ik,m

Fig. 23.2 The coefficients of the Adams methods result from the integration of the Lagrange basis
polynomials in the interval It » = [fx-tm—1, tk+m]; the cases m = 1, m = 0 (left), m = 2, m = 1
(middle) and m = 1, m = 1 (right) are shown

Typical choices of the parameter 7 are m = m — 1 and m = m, leading to explicit
and implicit methods, respectively, which are referred to as Adams-Bashforth and
Adams-Moulton methods. It should be noted that the Lagrange basis polynomials
are only integrated in the interval [ty 4, —1, fx+m], in the case m = m — 1 thus outside
the node range [f, x+m—1], see Fig. 23.2. The sum of the coefficients Sy is always 1.

Example 23.2

(i) For the explicit Adams-Bashforth method with m = 1 and m = 0, Lo(s) = 1
is constant and By = 1 results. In the case of m = 2 and m = 1, the functions
Lo and L are linear and their integrals yield the coefficients By = —1/2 and
B =3/2.

(ii) For the implicit Adams-Moulton method with m = 1 and m = 1, the functions
Lo and L are linear and the coefficients fg = 1/2 and 8; = 1/2 result. In the
case of m = 2 and m = 2, the integration of the quadratic polynomials Lo, L1
and L, yields the coefficients 8y = —1/12, 81 = 8/12 and 8>, = 5/12.

In general, the coefficients shown in Tables 23.1 and 23.2 result.
Remarks 23.2

(i) The Adams-Bashforth method with m steps has the consistency order m.
(i) In each step of the Adams-Bashforth method, only one new function evaluation
is required.

Remark 23.3 The Adams-Moulton method with m steps has the consistency order

m+ 1. It is well-defined, provided 7 || 8|1 L < 1 with the uniform Lipschitz constant
L with respect to the second argument of f.

Table 23.1 Coefficients of

the Adams-Bashforth m_| o b 2 Ps
methods L1

2 | —1/2 32

3 |5/12 —16/12 |23/12

4 | —9/24 |37/24 —59/24 | 55/24
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Table 23.2 Coefficients of the Adams-Moulton method form =1, ..., 4

m Bo Bi B B3 Ba

1 12 12

2 —1/12 8/12 5/12

3 1/24 —5/24 19/24 9/24

4 —19/720 106/720 —264/720 646/720 251/720

23.4 Predictor-Corrector Method

The Adams-Moulton and Adams-Bashforth methods can be combined into an
explicit method, which retains the higher consistency order of the Adams-Moulton
method. The idea is to perform a step of a fixed point iteration, the corrector step, for
the Adams-Moulton method, where the initial value is determined by the Adams-
Bashforth method, that is, it results from a predictor step.

Algorithm 23.1 (Adams-Bashforth-Moulton Method) Let yop € R, t > 0 and
fe CY([0, T] x R) and m € N. Furthermore, let initial values Vs Y2y oovs Ym—1 €
R be given. Setk =0and K = |T/t].

(1) Determine the auxiliary value Yii, € R with the Adams-Bashforth method,
that is, calculate

m—1

Ferm = Yerm—1 +7 Y BEE ftye, yire)-
=0

(2) Perform a step of a fixed point iteration of the Adams-Moulton method with
initial value Vi1, that is, calculate

m—1

Yerm = Yirm—1 +T Y BEM F e, yere) + TBaM £ Wi, Feem)-
=0

(3) Stop ifk +m > K; otherwise increase k — k + 1 and repeat step (1).
One iteration step of the Adams-Bashforth-Moulton method can be written,

neglecting the arguments #; and 7, as

Vim = Yerm—1 + TP (v, oy Ykwm—1, Yegm—1 + 7B ks o, Ykrm—1)),

thereby defining an explicit increment function ®45M | which is not linear.

Proposition 23.2 Let the function f be uniformly Lipschitz continuous in the
second argument. Then the Adams-Bashforth—-Moulton method with m steps has
the consistency order m + 1.
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Proof For a local solution z : [t, tx+m] — R, due to the consistency order m + 1
of the Adams-Moulton method we have

T (1, 2(01), T) = 2(thm) — 2(thm—1)

— 1M (200), s 2k, ZCimo) + TP (2(00), - 2m) )
= 2(tkrm) — 2(tkgm—1) — T M (210, .., 2(term—1), 2(teim))
e[ MY (2, - 2 2tsn)

- quM(z(tk), oo Ztigm—1) + T (2(t0), . . ., z(tk+m—1)))]

= 2(tktm) — 2(tepm—1) — @M (2(10), ... o, 2(tkgm)) + T -]

=0@") + 1. ].

The uniform Lipschitz continuity of f or the increment function @4 with respect
to the last argument shows

Tl 1) < TL|2(tkgm) — 2(tkam—1) + T®AE (6, 2(t0), .. 2(tegm—1)]-

Due to the consistency of order m of the Adams-Bashforth method, |[...]| =
O(t"1?) and thus the claimed consistency order follows. O

Remark 23.4 More generally, an explicit method of consistency order peyp; can
be used to determine a starting value and subsequently v repetitions of a fixed point
iteration with an implicit method of consistency order p;;p; can be performed. The
resulting predictor-corrector method has the consistency order p = min{pexp +
V, Pimpi}, see for example [9].

23.5 Learning Objectives, Quiz and Application

You should be able to construct multistep methods, clarify their advantages and
disadvantages compared to single-step methods and be able to give some examples.
You should be able to derive a criterion for determining the consistency order of a
multistep method. You should moreover be able to explain the ideas of combining
explicit and implicit multistep methods into predictor-corrector methods.

Quiz 23.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.
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Fig. 23.3 The double
pendulum consists of two
combined pendulums

Adams-Bashforth methods for m > 1 define linear, implicit multistep methods with
consistency order m + 1.

Necessary for the consistency p > 1 of a multistep method is the condition
Yo Be=1.

The explicit Euler method is a multistep method with two steps.
Predictor-corrector methods can be interpreted as implicit multistep methods.

The use of the leapfrog method and the subsequent execution of 3 fixed point
iterations with the Adams-Moulton method with m = 3 leads to a method of
consistency order p = 5.

Application 23.1 Interacting oscillations often lead to undesirable effects such as
the spilling of a liquid being transported in a vessel, or the strong shaking of a
washing machine running at certain speeds. The mathematical description can in
these cases lead to differential equations for which small changes in the data can
have large effects on the solutions, which is also referred to as chaotic behaviour.
Numerically, the processes are therefore usually only approximable for short periods
of time. An example is the double pendulum, where another pendulum is attached to
the arm of a pendulum, see Fig. 23.3. Let ¢; and ¢, denote the deflection angles with
respect to the respective rest positions. Then the pendulum movements in the case of
equal masses and pendulum lengths and with a suitable scaling of the gravitational
acceleration are described by the system of differential equations

26 + ¢ cos(@1 — ¢2) + ¢} sin(@1 — p2) + 2sin(gy) = 0,
¢35 + ¢ cos(@1 — ¢2) — ¢y sin(¢1 — ¢) + sin(¢2) =0
Simulate the system with the initial data ¢1(0) = /2, ¢2(0) = 0, ¢{(0) = 0,

#5(0) = 0 in the time interval [0, T'] with T = 100. Perturb the initial data and use
different MATLAB routines for the numerical solution. Visualise your results.



Chapter 24 ®
Convergence of Multistep Methods Qe

24.1 Difference Equations

For single-step methods, the consistency of a method already implies its conver-
gence. This is generally false for multistep methods. In these, the equation

1 m
- Z oYkt =0
T

=0

defines approximations of the trivial problem y’(t) = 0. The following example
shows that even a high order of consistency does not necessarily lead to meaningful
approximations. In this chapter, we follow the presentations in [1, 8, 9].

Example 24.1 The multistep method defined by m = 2 and ap = 1, a1 = 4,
ap=—-Sand B =0, =4,60=2

Yir2 +4yks1 — Sy = T(4f (k1 yer1) + 2 (1. 1))

has the order of consistency p = 3. Thus, approximate solutions of the differential
equation y’ = 0 satisfy yg12 + 4yk+1 — 5yx = 0. Solutions of this equation are
given by linear combinations y; = y1vx + y>wi of the special solutions

Ukz)»]f, U)kZ)Lk,

where A; = 1 and A, = —5 are the roots of the polynomial g(1) = A% + 41 — 5.
For the initial values yo = land y; =1 +dwegety; =1+§/6 and y» = —5/6
and the solution

ye=1438/6— (=5)%8/6

© The Author(s), under exclusive license to Springer-Verlag GmbH, 209
DE, part of Springer Nature 2025

S. Bartels, Numerical Mathematics 3x9, La Matematica per il 3+2 160,
https://doi.org/10.1007/978-3-662-70890-3_24


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-70890-3protect T1	extunderscore 24&domain=pdf
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24
https://doi.org/10.1007/978-3-662-70890-3_24

210 24 Convergence of Multistep Methods

Fig. 24.1 Unbounded
solution of the difference
equation

Yi+2 +4Yk+1 — 5y =0

is unbounded for any & # 0, see Fig. 24.1. Thus, the exact solution y(¢) = 1 of the
problem y'(t) = 0, y(0) = 1, is not meaningfully approximated. The initial value
y1 = 1 4§ can be interpreted as an approximation of y(¢1) of a single-step method.

Definition 24.1 Given o, a1, ..., o, € R with ), = 1, the equation

m
Z agyr+e =0
=0

is called a (linear homogeneous) difference equation. A sequence (yi)i>0 1S a
solution of the difference equation if it is satisfied for every k € Np.

Remark 24.1 For every vector (yi)ik=o0....m—1 Of initial values, there exists a
uniquely determined solution of a difference equation.

The behaviour of solutions of the difference equation can be analysed using an
eigenvalue problem.

Lemma 24.1 A sequence (yi)k>0 is a solution of the difference equation defined by
(ate)¢=0.....m if and only if for the vectors

Yi = ks Ykt 1o - s Yiam111

the relation Yy11 = AYy holds for k = 0,1, ..., where the companion matrix
A € R™ js defined by

0 1
—0p) —O] ... —Opy—1

If A has the linearly independent eigenvectors vy, va, . . ., vy, € R™ with associated
eigenvalues A, Ay, ..., Ay and y1, y2, ... Ym € R are the coefficients of the vector
Yo with respect to this basis, then it follows

m
k k
Yy =AYy = E A.jijj.
j=1

The eigenvalues A1, A2, ..., Ay are exactly the roots of the characteristic polyno-
mial g(L) = X" 4+ oy A" o 4 Ao + ap.
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Proof Exercise. O

24.2 Zero-Stability

For a multistep method to lead to meaningful approximations, solutions of the
associated homogeneous difference equation should be bounded. In the case of the
diagonalisability of the companion matrix, this is the case, provided that |1;| < 1
fori =1,2,...,m.

Definition 24.2 A linear, homogeneous difference equation is called zero-stable, if
every solution of the difference equation is bounded.

The following definition and the subsequent proposition define a sufficient and
necessary criterion for the zero-stability of a difference equation.

Definition 24.3 The polynomial g € &, satisfies Dahlquist’s root condition, if
every root A € C of ¢ satisfies the estimate |[A| < 1, and, in the case a given root A
satisfies |A| = 1, the root is simple.

Remark 24.2 Multiple roots A € C with [A| > 1 always lead to unbounded
solutions, because if ¢(A) = ¢’ (1) = 0, then for y; = kA, it follows that

m m m
D aeyire =k aht £ A apn T = kg + 25 ') = 0.
=0 =0 =0

If the characteristic polynomial of the companion matrix of a difference equation
satisfies Dahlquist’s root condition, then the equation is zero-stable and conse-
quently its solutions are bounded.

Proposition 24.1 Assume that the characteristic polynomial q(z) = 7" +
12"V 4+ - + a1z + ag of the companion matrix A satisfies Dahlquist’s root
condition. Then there exists a regular matrix R € C"™*™, such that, with the norm
I -llgr 2 x = |[Rx|loc and the induced operator norm ||Bllr = supjj,=1 I Bxl&
we have ||A||g < 1.

Proof Let L1, Ay, ..., A, € C be the complex eigenvalues of A with multiplicities
51,82, ..., Sr. The main theorem about the Jordan normal form implies the existence
of a regular matrix T € C™*™ and of matrices J; € C5*5 | =1,2,...,r, such
that
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If a Jordan block of size s; > 2 and consequently an eigenvalue |A;| < 1 exists,
define

e=min{l — x| :i=12....r [&] <1},

and otherwise set ¢ = 1. Let D € R™*"™ be the diagonal matrix with the entries
djj = g1 for j = 1,2,..., m. Then we have

For the IOW sum norm of the scaledNJ ordan blocks Z we have due to the choice of
e, that || Jileo < 1, and it follows || J]lcc < 1. With R = D17~ it follows for the
induced operator norm with the replacement y = D~!T~!x, that

—1—1
lAllg = sup [|Ax|lr = sup ID™' T Axlleo
lxllr=1 ID=1T1x|p0=1

= sup [|DT'T'ATDy|oo < 1T llco-
Iylloo=1

This proves the claim. O

Example 24.2 For Adams methods, we have o, = 1, ;-1 = —l and oy = 0
otherwise, so that the characteristic polynomial g (z) = 2 — 2! has the (m — 1)-
fold zero A = 0 as well as the simple zero A = 1. Consequently, Adams methods are
zero-stable. Similarly, the general zero-stability of single-step methods is obtained.

24.3 Convergence

For a multistep method, the zero-stability of the associated difference equation is a
necessary criterion for the convergence of the method. Every multistep method

m
D @eyise =T, Yoo Vit s - -5 Yetm» T)
=0
can be represented with the vectors Yy € R", k = 0,1,..., K — m + 1, and the

function ¥ : [0, T] x R™ x R"xR — R defined by



24.3 Convergence 213

Yi = [Vks Vit 1o - s Yerm—1]1'»

W (1, Yi, Yir1, ©) = [0, .., 0, @ (e, Yios Vit 1 -+ » Vietm DT
as well as the companion matrix A € R™*™ in the form
Yiy1 = AYk + ¥ (&, Y, Yit1, T),

This is the structure of a single-step method and an error analysis can be carried
out similarly. The validity of Dahlquist’s root condition allows the influence of the
matrix A to be controlled.

Proposition 24.2 Suppose that the multistep method

m
Zafyk—M = 1P (I, Yks> Yk+15 -+ -5 Yk+m> 7)
£=0

is consistent of order p and the polynomial q(z) = 2" + apm_12" '+ -+ + a1z +
ag satisfies Dahlquist’s root condition. Furthermore, assume that @ is uniformly
Lipschitz continuous in the arguments Y, . . ., Yk+m, that is, there exists a constant
L > 0 such that forallt € [0,T], v,w € R™" and © > 0 we have

| D@t v0, ... U, T) = @t wo, ..., W, T)| < L(lvo — wol + - -+ + [Ug — wil).
If the initial values yo, y1, ..., ym—1 are chosen such that

max |yx — y(t)| < Cot?
k=0,...,m—1

with a constant Cy > 0 independent of t, then there exist constants C1, Ca, C3 such
that

max —y(t)| < C1Tt? exp(CLLT
pnax. K|yk Y| = Cy p(C2LT)

forall0 <1 < Cs.

Proof In this proof, c stands for a constant that can increase from step to step, but
does not depend on t andNK. F()Vr k=0,1,..., K letey = yx — y(fx). By definition
of the consistency term %, = € (t, y(tx), T) we have

m
> averre = T[@ (e Ver 2 Virm: T) — Dt Y0 -, Y (tim). T) — Gi]
=0
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fork =0, 1,..., K—m and let tr¢ be the right-hand side. The Lipschitz continuity
of @ and the consistency of the method imply that

m
Tl < 7L Y lexgel +et?*,

(=0

With the vectors
Ep = T Ge=100,...,0,r]"
= lek, ex+1, - s €ktm—1], k=100,...,0,rk]
and the companion matrix A it follows
Ery1 = AE; + 1Gy.

Let || - ||z be a norm on R™ such that ||A||g < 1 with the induced operator norm.
The equivalence of norms on the vector space R™ shows that

m

I I
ITGillr < ctlrel < ctPt 4+ ctL Y lerrel < et L(| Exrallr + | Exllg) + et
=0

With the scheme for the vectors Ey, it follows that

IEk+1llr < IAEklR + ITGillr < IANIRIEK|R + cTlrel
< [|Eklig + ctL(I|Ekllg + | Exs1llR) + cTPT!

or
(1 —'tL)|Exsillr < (14 TL) || Exllg + 'tPH
Subtracting (1 — ¢’tL)|| Ex|| g from both sides leads to
IExtillg — | Exllg < 4c'TL| Exllg +2¢" TP,

where ¢'tL < 1/2or 1 — ¢’tL > 1/2 was assumed. With ¢; = ¢/, ¢c; = 4¢’ and

c3 = 2¢” and a summation of this equation overk =0, 1,..., K’ with K’ < K —m
results in
K/
1
1Eks1llz < IEollr + catL ) || Exllg + c3t” ' K.
k=0

The discrete Gronwall lemma and XK't < T show that
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max [ Exlg = (I1Eollr +esTe’) exp (2L T).

k=0,1,....,K—m
Since ||Epllg < ct? and |exy¢| < c||Ekllg fork = 0,1,..., K —m + 1 and
£=0,1,...,m — 1 the claimed estimate follows. m]

Remark 24.3 A two-step method with quadratic consistency can be initialized with
the implicit or explicit Euler method. If, e.g., y; is obtained via the explicit scheme
y1 = yo + tf(0, yo) then, noting the consistency error

2
y(T) = yo — tf (0, yo) = y(z) — y(0) — 7y(0) = %y”(é)

for some & € [0, t], we find that y; —y(¢]) = ﬁ(rz). In the convergence analysis for
the Euler schemes one factor t is needed to control the accumulation of consistency
errors over several steps ty = kt, k=1,2,..., K.

24.4 Learning Objectives, Quiz and Application

You should be able to specify stability problems of multistep methods and explain
Dahlquist’s root condition. You should be able to provide a proof sketch for the
derivation of error estimates for multistep methods.

Quiz 24.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

Zero stability is a necessary criterion for the convergence of a multistep method of
positive consistency order.

Every single-step method satisfies Dahlquist’s root condition.

The validity of Dahlquist’s root condition for a multistep method implies the zero
stability of the associated difference equation.

The recursion formula yg42 = yky1 — (1/4)yx is zero-stable.

If a multistep method satisfies Dahlquist’s root condition, then for the associated
companion matrix o(A) < 1.

Application 24.1 The simulation of electrical circuits allows the prediction of the
voltages falling on the components. As an example, we consider an RLC circuit,
which consists of a resistor, an inductor and a capacitor, as shown in Fig.24.2.
According to Ohm’s law, the voltage drop across the resistor Ug is proportional
to the current /g flowing through it, i.e. U = RI. The current /¢ flowing through
the capacitor is proportional to the voltage change, that is, Ic = CU(.. On the
other hand, the voltage drop Uy at the coil is proportional to the current change,
that is, Uy = LI;. Kirchhoff’s laws state that the sum of the currents flowing
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Fig. 24.2 Diagram of an
RLC circuit

through a node of a circuit is zero and that the sum of the voltages belonging to a
mesh disappears. For the RLC circuit with time-dependent voltage source U (¢), the
equations are therefore

Ut) = Ugr(t) + UL(t) + Uc(1),
1(1) = Ir(t) = IL(t) = Ic(7).

Derive the differential equation

1"+ Ry + L1 =U'
L LC
for the current I (¢) flowing through the circuit and simulate this for the initial values
I1(0) = 0A, I'(0) = 0.5 A/s, the proportionality factors R = 47 £2, L = 20mH,
C = 0.1 uF and the alternating voltage U () = sin(50 - 27¢)230V. Solve the
initial value problem with various MATLAB routines and test other values of the
capacitance. Present the voltages Ug, Uy, and U¢ as functions of time in the interval
[0, T] with T = 10 ms comparatively in a graph.



Chapter 25 ®
Stiff Differential Equations ST

25.1 Stiffness

The convergence studies of the Euler methods in the important special case y' =
Ay show that error estimates for the explicit method are valid under a condition
T|A| < ¢, while this condition is not necessary for the implicit variant if A < 0. In
applications, differential equations of the form y’ = Ay occur, where the matrix A
has negative eigenvalues. Implicit methods are particularly well suited for this class.
In this chapter, we follow the presentations in [1, 7, 8].

Example 25.1 For A < 0, the solution of the initial value problem

y =iy, ¥(0) = yo,

is given by y(¢) = yoe“ and it holds that | y(t)| < |yo| forallt > 0

(a) With the explicit Euler method, we get yx = (1 + r)»)k yo, k > 0, and this
sequence is bounded exactly when |1 + 7A| < 1 holds, thus when t < 2/|A]
holds.

(b) With the implicit Euler method, we get y; = (1 — tA)_k y0, k > 0, and since
1 — tA > 1 holds, the sequence is bounded for any choice of 7 > 0.

The difficulties of explicit methods become even more apparent in systems of
differential equations.

Example 25.2 For A1, A < 0, the bounded solution of the system
|:)’1:|/ _1! [M + 22 A1 — Xz] |:)’1:| |:YI(0):| _ [2]
V2 2 M —A A+ ] [0 0

© The Author(s), under exclusive license to Springer-Verlag GmbH, 217
DE, part of Springer Nature 2025

S. Bartels, Numerical Mathematics 3x9, La Matematica per il 342 160,
https://doi.org/10.1007/978-3-662-70890-3_25


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-70890-3protect T1	extunderscore 25&domain=pdf
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25
https://doi.org/10.1007/978-3-662-70890-3_25

218 25 Stiff Differential Equations

is given by

@] _ [eM + e
»®] "~ L =]
With the explicit Euler method, the approximations are

yik =14+t + 1+ a0k,

yar = (1 + oAk = (14 a0,

and the sequence (Y1, Y2.k)k>0 is bounded exactly when |1 + tA;| < 1 and
[1 4+ X2 < 1 hold. For example, if A; = —1 and A, = —10% with @ > 2 the
contributions e*?! = ¢~10°7 o the exact solution are negligible for r > 10~%/2, but
the time step size is determined by A7 in the form t < 2/|A2| =2 - 107%.

The occurrence of large negative eigenvalues in a differential equation leads to
the concept of stiffness.

Definition 25.1 The differential equation y’ = f(z, y) is called stiff, if the Jacobian
matrix Df(¢,y) € R"™" with respect to the argument y has an eigenvalue A € C
with the property Re(1) « 0 for somet > 0O andy € R".

Remark 25.1 The local behaviour of a solution y at time #, > 0 is described by the
matrix A = Df (¢, y(¢.)) and its eigenvalues, particularly in terms of perturbations.
The function z defined by y (¢« + s) = y(t«) + z(s) satisfies for small values s > 0
in the case of an autonomous equation the linear differential equation

Z(s) =y (1 +5) = fF(y(t) + 2(5) = f(y(tx) + Az(s),

where initial values z(0) = z¢ are considered to assess the effects of perturbations.
If A is diagonalisable and the eigenvalues have exclusively negative real parts, then
the solution y is stable in the sense that small perturbations do not lead to large
changes in the solution.

25.2 A-Stability

The following concept of stability is used to identify suitable numerical methods for
stiff differential equations.

Definition 25.2 A numerical method is called A-stable or unconditionally stable, if
for every complex diagonalisable matrix A € R"*" whose eigenvalues all have non-
positive real parts, the approximations (yx)i=o of the differential equation y’ = Ay
defined by the method are bounded for all initial data and all time step sizes t > 0.
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Due to the diagonalisability of the matrix A, it is sufficient to consider scalar
equations in which A is replaced by a number . € C with Re(X) < O to prove
A-stability.

Example 25.3 The implicit Euler method is A-stable, but the explicit Euler method
is not.

The A-stability of single-step methods can be analysed using so-called stability
functions.

Definition 25.3 A function g : § — C with S C C is called stability function
of the single-step method defined by the increment function @, if for all » € C,
yo € R, 7 > 0 with A € § and all k € Ny for the approximations of the initial
value problem y’ = Ay, y(0) = yg, we have

Ykl = Yk + TP (1, Yk Yit1, T) = (TA) Yk
Necessary and sufficient for the A-stability of a method is that |g(z)| < 1 for all
z € C with Re(z) <0.
Examples 25.4

(i) For the explicit Euler method, g(z) = 1 + z.
(ii) For the implicit Euler method, g(z) = 1/(1 — z).
(iii) For the trapezoidal or midpoint method, @ (¢, v, Yk+1,T) = A(Vk + Vk+1)/2
and thus g(z) = 2+ 2)/(2 — 2).

For Runge—Kutta methods, a closed formula for the stability function can be
given.

Lemma25.1 Let « € R™, B € R™™ and y € R™ be the coefficients of a
Runge—Kutta method. Then, with the vectore = [1, 1, ..., l]T e R™, the associated
stability function is given by

@) =1+zy"(y —z8) e

For strict lower triangular matrices 8, g is well-defined for all z € C.

Proof For Runge—Kutta methods, yr+1 = yx + ryTnk applies with the solution
nk = [77]1‘, 77]2‘, ceey nfn]T € R™ of the system of equations

m
nt = fte + Ty +t Zﬂeﬂ?]j)
j=1
for¢ =1,2,...,m.Inthe special case f(¢, y) = Ly, we get

n* = r(yke + 1)
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or f = (I, — AtB) " (Ayre), from which the claimed identity for g follows. If 8
is a strict lower triangular matrix, then the matrix I,, — z8 is invertible for every
zeC. o

By forward substitution, polynomial expressions are obtained in the case
of explicit Runge—Kutta methods. For implicit methods, rational functions are
obtained.

Example 25.5 The classic Runge—Kutta method is defined by m = 4 as well as
o =10,1/2,1/2,11", y = [1,2,2,11"/6 and B € R*** with the non-vanishing
entries B21 = B32 = 1/2 and B43 = 1. This results in

2 Z3 Z4

@=l41+=+=+=
=TTy T Ty

Various statements can be derived from the stability function of a single-step
method.

Proposition 25.1 Let g : S — C be the stability function of a single-step method
with the property that {z € C : Re(z) <0} C S.

(i) The method is A-stable if and only if |g(z)| < 1 for all z € C with Re(z) < 0.
(ii) In the case of an explicit Runge—Kutta method, lim|;_ |g(z)| = 00, i.e.
explicit Runge—Kutta methods are not A-stable.
(iii) If the method is consistent of order p > 0, then |¢* — g(z)| < c|z|P*! for
O0<lzl <ec

Proof

(i) If |g(z)| < 1, then the boundedness of the sequence y;, = g(rk)kyo, k e N,
immediately follows, and obviously this condition is also necessary.

(i1) For explicit Runge—Kutta methods, it follows from the representation g(z) =
1+zy (1, —zB)'e and Cramer’s rule, that g is a polynomial in z, from which
the claim follows.

(iii) Let A € C with |A| = 1. For the solution y(t) = e, of the initial value
problem y’" = Ay, y(0) = 1, and the approximation y; = g(tA)yg = g(tA), it
follows with the definition of the consistency term, that

le™ — g(tn)| = [y(r) — y1| < cr?*! =c|zaPH!
for all 0 < t < ¢’ applies. With z = 7, the claim follows.

O

If a polynomial g € 2, satisfies |g(z) — ¢?| < c|z|Pt!, then the first p + 1
coefficients of g coincide with those of the exponential function.

Corollary 25.1 An m-stage, explicit Runge—Kutta method has at most consistency
order m.
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Table 25.1 Overview of various stability concepts

Stability concept | Test equation | Meaning Example
Zero-stability y =0 Necessary convergence criterion Adams method
A-stability y =2y Avoidance of a step size condition | Trapezoidal method
L-stability Y =2y Numerical damping property Implicit Euler method

Proof The stability function is a polynomial of degree m and this can approximate
the function e? at most up to an error &(z"*1). O

The unconditional boundedness of approximations is a meaningful requirement
for numerical methods. In some situations, however, too rapid decay of the
approximation solutions can be undesirable. For the implicit Euler method, for
example, we have |g(z)] — O for z — —oo, which leads to a strong damping
behaviour for large step sizes. For the trapezoidal method, on the other hand,
|g(z)| — 1 for |z] — o0, so no numerical damping for large time step sizes occurs,
but oscillations must be expected.

Definition 25.4 A single-step method is called L-stable, if it is A-stable and in
addition limge(z)— —oco0 &(z) = 0 holds.

The A-stability property thus describes the unconditional stability of a method
and the L-stability property indicates additional damping properties of the method
for large step sizes. An overview of various stability concepts is shown in Table 25.1.

Remarks 25.2

(i) The implicit Euler method is L-stable.
(ii) The trapezoidal method is A-stable, but not L-stable.

25.3 Gradient Flows

An important class of stiff differential equations are gradient flows, in which the
right-hand side is given by the negative gradient of a function, i.e. autonomous
differential equations of the form

Y =-VG(y®), y©0) =y,

with a given function G € C!(R"). These initial value problems can be interpreted
as continuous descent methods for the minimisation of the function G. The value
of the function G is reduced along the path t — y(¢), because if one multiplies the
differential equation with — y’(¢), it follows

d
— YOI ==y -y'0) = VG(y(®) - y' (1) = EG(y(t))-
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If the function G is coercive, i.e. G(w) — oo for |lw| — oo, it follows that
solutions remain bounded and are defined for all ¢+ € [0, c0), even if G’ is not
globally Lipschitz continuous. If G is u-convex, i.e. there exists a number u > 0
such that G (s) + (11/2)|s|? is convex, then the implicit Euler method is well-defined
and stable for t < 1/u. Note that gradient flows in general do not define linear
differential equations of the form y’ = Ay.

Proposition 25.2 Let G € C*(R") be p-convex. For0 < v < p~!

the sequence

and yp € R",

Ye+1 = Yk — TVG (Y1)
is uniquely defined and for all £ > 0 we have

-1

1
GO+ 5= Iyt = el < GGo).
k=0

Proof Let y; € R" for a k > 0 be given. The mapping

1
Hi1(s) = o—lls = yill? + G(s)

is strictly convex for 0 < t < u~!, i.e. D?Hyy (s) is positive definite for all

s € R, and its unique minimum yx4; € R” is attained in a compact set B, (0). For
this the optimality condition applies

1
0= VHer1Gr) =~ Ok1 = 20 + VG Gitn)-
With the convexity property
VHi1(v)(w —v) + Hiy1(v) < Hi1(w),

which holds for all v, w € R”, it follows with v = yx+1 and w = yy, that

1
GOrrn) + - llyesr = wll? < Gn)

and the summation of this estimate over k =0, 1, ..., £ — 1 proves the claim. O
Remarks 25.3

(i) From coercivity or growth properties of G it follows, that y;+1 — yr — 0 for
k — o0, and thus the convergence y;, — y4 of a subsequence to a stationary
point or a minimum y, of G,i.e. VG(y,) = 0.

(i) Note that no Lipschitz continuity of VG was assumed.
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(iii) The equation yx4+1 = yx — TVG(yr+1) is solved with a fixed point iteration or
the Newton method.

(iv) If G is given as the sum of a convex and a concave function, i.e. G = G +
GV, then the implicit-explicit method

Vi1 = Yk — VG (Ykg1) — VG (yk)

is preferable to the implicit method due to the better solvability with the
Newton method. Often, semi-implicit methods based on the linearisation
VG (it1) = VG (i) + D*G(ye) (k1 — k). ie.

Yert = Yk — T[VG ) — D*G (i) Gks1 — v |

provide a good alternative to the implicit method. This corresponds exactly to
the execution of one step of the Newton method for the implicit scheme.

25.4 Heat Equation

Stiff differential equations occur in the spatial discretisation of parabolic partial
differential equations such as the heat equation. In a one-dimensional situation, a
function u : [0, T] x [a, b] — R is sought, which solves the initial boundary value
problem

oru(t, x) — Kafu(t,x) = f(t,x) (t,x) € (0,T] x (a,b),
u(0, x) = up(x) x € la, b],
u(t,a) =0, u(t,b)=0 te0,T]

where the right-hand side f € CO([O, T] x [a, b]) and the initial values ug €
CO([a, b)) are given. The function u describes the temperature distribution in a thin
metal wire, whose ends are constantly kept at temperature O and at time t = 0
has the temperature distribution ug. The right-hand side f describes possible heat
sources and sinks in the wire. Similar to the approximation of a first derivative, a
second derivative can be approximated with a difference quotient. For a step size
h > 0 we have

=) — 20 —uE AR sy g,

h2
With the spatial step size h = (b — a)/M and the grid points x; = a + jh, j =
0,1,..., M and a time step size T > 0 and the time steps #xy = kt, k=0, 1,..., K,
approximations

k ~
Uj A u(ty, Xj)



224 25 Stiff Differential Equations

are sought. Replacing the time derivative and the second spatial derivative with
difference quotients leads to the identities

Lokt ey K kst K+l kel k+1
;(Uj - Uj) - ﬁ(Uj—l -2 — Uj+1) =F;

fork =0,1,....,K—1,j = 1,2,....M — Land F{™' = f(ti11,x)). At

the boundary nodes, the boundary conditions U(])‘+1 =U 1’{,1“ = 0 are used. The
equations for j = 1,2,..., M — 1 can be written simultaneously as
k+1 — k41 k k+1
U; 21 U; U; Fy
|| ok el Ukt 1| Uk Fit!
k+1 k+1 k k41
Un—i 1 —2| LUy Um—i Fy_y

With the vectors U% = [UF, UF, ..., UX_ 1T and F* = [FK, FE, ..., Fk_ |17 this
is equivalent to

gkl — [k +T(%A[’jk+1 + Fk-H)

fork =0,1,..., K — 1 with the initial data U0 = [ug(x1), ..., uo(xM_l)]T. This
can be interpreted as an implicit time discretisation of a system of linear differential
equations, that is of the initial value problem

U'(r) = %AU(z) +F(), U®©) = Do,

with the symmetric and negative definite matrix A € RM~=Dx(M=D for which
condy(A) ~ h2 applies, that is, a stiff differential equation.

25.5 Learning Objectives, Quiz and Application

You should be aware of the problems of explicit methods with stiff differential
equations and you should be able to name and explain terms for categorising the
stability of a numerical method. You should be able to define gradient flows and
prove the basic properties of the application of the implicit Euler method.

Quiz 25.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.
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The differential equation y’ = e’ sin(y) is stiff.

The explicit Euler method is A-stable and the implicit Euler method L-stable.
The trapezoidal method is consistent of order p = 2 and A-stable.

The stability function of every explicit Runge—Kutta method is unbounded.

The Richardson method for the iterative solution of Ax = b corresponds to the
application of the explicit Euler method on y’ = —(Ay — b).

Fig. 25.1 Diffusion : 0
processes strive for a state of !_ o
equilibrium - -

Application 25.1 Heat conduction and diffusion processes are balancing processes
that aim for a stationary, i.e. a temporally invariant state. For a mathematical
description, we consider a metal body and model it as a uniform particle grid. To
achieve a balancing effect, we use the assumption that the change in temperature at
each internal grid point is proportional to the deviation of the temperature from the
average of the temperatures at the neighbouring points, i.e.

1
%0 x0) = 35 (00 x0) — o 3 003a),

YGEN (xG)

where A4 (xg) denotes the set of neighbouring points of xg with cardinality
|4 (xg)| and h is the grid size, see Fig.25.1. At the boundary points, the
temperature is given by the value O and at the time ¢+ = 0 by values 6y(xg).

(i) Show that the right-hand side of the differential equation in the case of a twice
continuously differentiable function 6 for & — 0 converges to k0" (¢, xg) or
KAO(t, xG).

(i) Show that the heat conduction process can be formulated as a system of
differential equations ¥’ = AY in (0, T] with initial condition Y (0) = Yy
and specify the matrix A for the case of a metal plate, which is described as a
uniform grid of the domain (0, 1)2.

(ii1) Use the grid size h = 1/20 as well as the implicit and explicit Euler method
with different time step sizes and randomly generated initial data. Assess for
which step sizes you obtain useful approximations and whether it is a stiff
differential equation.
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Step Size Control ST

26.1 A Posteriori Error Control

We next derive an error estimate that depends on the calculated approximations and
the non-constant step sizes. The estimate allows for an optimal local adjustment of
the step sizes on particular features of solutions and thus leads to efficient methods,
see Fig. 26.1.

The sequence (yx)k=o..... k 18 defined by the implicit Euler method

Vi1 = Yk + Tt f k1)

with possibly non-constant step sizes tx41 = tx+1 — #% > 0. We identify 7 with the
sequence (Tg)k=1,...x and assume thattx = T.

,,,,,

Definition 26.1 The affine-linear interpolant y; : [0, T] — R is defined for ¢t €
[tk, k411, k=0,1,..., K — 1, by

~ I — Ikl r—1I
y(t) = i + Vi+1-
Tk — Tk+1 Tk1 — Ik

The piecewise constant interpolant y, : [0, T] — R is defined for t € (#, tx+1],
k=0,1,...,K —1,by

yr (t) = Yk+1-

The interpolants are exemplarily shown in Fig. 26.2.
By definition of y;, for ¢ € (t, tx+1)

1
Vo(t) = —— k1 — Yi)
Tk+1
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Fig. 26.1 Adaptive control

of local step sizes
[

o Il
Fig. 26.2 Piecewise linear A
and piecewise constant Ve V:
interpolants of given
approximation values >

and with the definition of y_, it follows that the implicit Euler method can be written
for all t € (#, tx+1) in the form

V) =f.0)=ro:0)+ (fG:0) = FG:D)).

The function y; therefore solves the autonomous equation y' = f(y) outside the
time steps (tx)k=12....k—1 up to the residual

R: = f(0) — fOD).

This observation can be quantified and leads to an a posteriori error estimate.

Proposition 26.1 Let f : R — R be Lipschitz continuous with constant L > 0 and
y€E CL([0, T)) the solution of the initial value problem y' = f(y), y(0) = yo. Then

K-1
~ L 2
sup |y (t) — e (0)* < §< Z Tt | Yr1 — V| )eXP (3LT).
t€[0.T] P

Proof Subtracting the identities

Y=f, V=00 +(fG) - fG0)

shows that the error e; = y — y; satisfies the equation

L= (fO)—fO0) - (fG) — fGD)

Multiplying this equation by e and using the product rule (|e;|?)" = 2eer, we find
that

dl 5 , — - ~

Ezlerl =erer = (f() = fOD))er = (fO) — fGr))er

< Llec|* + LI — . llezl.
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With the inequality 2ab < a? + b? it follows

d 1 L = L
E;erﬁ5L|er|2+5|yf—yf|2+5|ef|2

3L s L . _
= lec| +E|)’r_)’r

- | 2
2

Since e is continuous and piecewise differentiable, the integration of this inequality
over (0, t) shows that

t T
|er<t)|2—|er<0>|253LfO |er<s)|2ds+L/0 |52 (s) — ¥ (s)|* ds.

Using that e;(0) = 0, an application of the Gronwall lemma implies that for all
t € [0, T] we have

T
lec ()] < L(/() [7: (5) —it(s)|2ds) exp (3LT).

On each interval (#, tx4+1) we have

~ - 1 1 — I
Ve ($) = Yo () = —((tkg1 — ¥k + (8 — ) Yk41) — —— Vit
Tk+1 Tk+1
§ = Igt1
= —k+1 — Y-
Thk+1
This leads to
T K-1 ( 2 tit1
—~ - Vk+1 = Vi) +
/ [Fe(s) = e ()P ds = ) 2—] (trp1 — $)*ds
0 T t
k=0 k+1 k
K-1 3
_ Z (k41 — i) Tkt 1
= 5 .
k=0 Tk+1 3
This proves the assertion. O

Remark 26.1 The estimate of the proposition is called a posteriori error estimate,
since it bounds the approximation error y —y; after the calculation of the numerical
solution by computable quantities.
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26.2 Adaptive Algorithm

The a posteriori error estimate allows for an adaptive adjustment of the time step
sizes, that is the step size tx41 should be reduced until the error indicator defined by
Nk+1 = |Vk+1— Yk| satisfies the estimate 11 < 6 with a given tolerance § satisfied.
Conversely, an inequality nx+1 < 6 motivates the enlargement of the step size in the
following time step.

Algorithm 26.1 (Step Size Control) Lets > 0, yo € Rand r1 > 0. Setk =0
and tog = 0.

(1) Compute yxi1 using

Yit1 = Yk + Thr1 P (T, Yoo Vi 15 Tkt 1)

(2) If nk+1 > 8, then set tx11 — Tk+1/2 and repeat (1).
(3) Stop if try1 = tx + tk+1 = T, otherwise increase k — k + 1, set 41 =
min{2tx, T — f;}, and repeat step (1).

26.3 Control Procedure

If no a posteriori error estimation is available, an alternative possibility for step
size control is obtained via the use of a so-called control procedure. This is
based on an additional scheme of higher consistency order than the actually used
method. If (yk)k=o,.. x are approximations of order €(t?) and (Yi)r=o
approximations of order &'(t?) with ¢ > p, then it follows

,,,,,

|y(t) = Ykl < 1y(t) = Vel + Yk — yel = O ) + [yk — Ykl
With the reverse triangle inequality, |a| — |b| < |a — b|, one also obtains
1Yk = Ykl = O @) = |5k — el = 15k — y@)| < lyk — y @)l
Overall, up to terms of order &'(t), we have that
|y (@) = vl ~ nie = 15k — Yl

that is, the computable quantity n; approximates the actual error up to terms of
higher order.
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26.4 Extrapolation

An extrapolated scheme can serve as a control procedure for step size control. For
the approximations (y,ﬁ )k=0,....k of the exact solution y : [0, T] — R calculated
with a single-step procedure of consistency order p, it can be shown that the error
y(tx) — yx can be represented by a function ¢(7) that ¢(r) = O(z?) fort — 0. A
Taylor expansion of the function ¢ leads to the representation

y(t) — yi=c1tP + cat? T fo(xP ).

If the same procedure is used with the step size /2, we obtain through yzr,fz a further
approximation of y(#;) and may assume the error representation

V(1) = y3it= 2P 4 02 PPt oot

The multiplication of the second equation by 27 and subsequent subtraction from
the first equation lead to

(1=27)y(t) — y§ + 27937 = e2(1 = 27P)ePH o(xP ),

that is, the term ¢ t? is eliminated. This implies

/2 _

1—-27°
= y(t) — CZWTPH + O(fPH),

so that the computable expression y; approximates the function value y(#) up to an
error term of order &'(t”*!), see Fig. 26.3. We have thus constructed a procedure
where the effort is approximately doubled, but the error is reduced by the factor t
and not merely 277. This approach can be rigorously analysed and generalised.

Fig. 26.3 Construction of a
control procedure through
extrapolation of the
approximation solutions y*
and y?/?

/)

/2

¥

T

k

T

o Yr
Vi

X




232 26  Step Size Control
26.5 Learning Objectives, Quiz and Application

You should be able to explain the basic concepts of step size control and derive
an a posteriori error estimation. You should be able to explain the role of control
procedures.

Quiz 26.1 Decide for each of the following statements whether they are true or
false. You should be able to justify your answer.

The approximation error of the implicit Euler method cannot be bounded without
knowledge of the exact solution.

In the adaptive algorithm, a step size is determined with which all approximations
are calculated.

Foralla,b e Randy > 0,ab < ya?/2 + b*/(2y) holds.
Ify e CO(0, T]) and t; = kt fork =0,1,..., K witht = T/K, then
maxg=0,...k—1 |y (tx+1) — y(t&)| = O for — 0.

By extrapolating a single-step method of consistency order p > 1 with step sizes T
and t/2, a method of consistency order p + 1 is obtained.

Application 26.1 In simple markets, the price p of a product is determined by
the supply s and the demand d. Demand decreases with increasing price, while
supply increases with increasing price. Consequently, p — d(p) is a monotonically
decreasing and p + s(p) a monotonically increasing function. A difference
between supply and demand leads to a change in price, that is, we have

p'(t) = a(d(p) —s(p)).

(i) Show that under suitable conditions on d and s, a state of equilibrium is reached

and this is attained exponentially quickly in the case of small perturbations.

(i1) In reality, the number of products purchased may be less than the demand, as
for example the price does not yet correspond to the actual value of the product,
but this number is moving towards the demand. Modify and extend the model
to account for this delay effect.

(iii) How can the model take into account the dependence on external factors such
as the availability of required raw materials?
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27.1 Hamiltonian Systems

A Hamiltonian system describes the dynamics of N bodies in three-dimensional
space using a differentiable function H : R¥*3 x R¥*3 — R and the system of
differential equations

q' =0,H(q,p), p' =-0,H(q,p)

in the interval (0, T'] with initial data for g and p. The functions ¢;, p; : [0, T] —
R3,i=1, 2, ..., N, describe the positions and impulses of the bodies and H is the
sum of kinetic and potential energy, that is, for example,

N 2
I pill
H 5 == -~ V ) 9 ey )
(. p) ; o T V@)
with the masses m;,i = 1,2, ..., N, of the bodies.
Examples 27.1
(i) The pendulum described by the equation ¢’ = —(g/£)sin(¢) can be

represented as a Hamiltonian system of the function

1
2mi?

Hp, ) = W% — mgl cos()

because it follows that m€2¢’ = y and ' = —mg¥ sin(¢).

(i) Multi-body problems such as solar systems can be described by Hamiltonian
systems.
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(iii) Through [0,H (g, p), —0d,H(q, p)]T a tangent vector to the graph of H at the
point (p, g) is defined. The associated Hamiltonian system thus follows a level
line of the function H.

Hamiltonian systems fulfil conservation principles for total angular momentum
and total energy.

Example 27.2 The total energy of a Hamiltonian system is constant, because we
have

d
@ p)=0,H(, p)p +9,H(q. p)g = 0.

If we combine the variables ¢ and p into a vector z € R?" with n = dN and
d € {1,2,3} and identify H(q, p) = H(z), then a Hamiltonian system can be
written as

7 =JVH(z), z(00)=2

J= [ 1,,]_
_In

The matrix J fulfils the identities JT = —J = J~! and defines the skew-symmetric
bilinear form

with the matrix

w(z1,22) = 21 J 22.

This expression corresponds to an oriented area of the parallelogram spanned by z;

and z,. In the case n = 1 for example, we have that w(zy, z2) = det[z1, z2] for
2

71,22 € R%.

Definition 27.1 A matrix A € R>"*?" is called symplectic, if
w(Az1, Az2) = w(21, 22)

for all z;,zp € R*" or equivalently ATJA = J. A differentiable mapping ¥ :
R¥ — R is called symplectic, if its differential DW (z) for all z € R** is a
symplectic matrix.

Symplectic mappings preserve the oriented area of parallelograms. Symplecticity
is the characteristic property of Hamiltonian systems.

Proposition 27.1 For a Hamiltonian system 7/ = JVH(z), z(0) = zo, with H €
C2(R?") the flow ¢, : R¥”" — R?", zo > z(t), which assigns the state z(t) at time
t to an initial configuration z, is a symplectic mapping for every t € R.
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Fig. 27.1 According to the At

second Keplerian law, the
radius vector of a planet «
sweeps out equal segments in At

equal time intervals

A=A planet

Proof For the mapping ¢ — ¢;(zp) we have

d d ,
Ed)t(zo) = Zz(t) =7/(t) = JVH((z(t)) = JVH (¢:(20)).-

Differentiating this identity with respect to zq leads to

d 2
2, P#:(20) =JD H(¢:(20)) Dér (20)-

To prove the symplecticity, we consider F(t) = D¢y (ZO)TJ D¢, (zo) and note that
from ¢ (z0) = zo for all zg € R?" the identity F(0) = J follows. For the derivative,
using the symmetry of the Hessian matrix D> H, we have that

d T d
F'(0) = [ 5:08:0) | I[D#,z0)] + [P (z0)] 7| 5D o)

= [D¢:(z0)] D H (¢:(20)) I I [ Db (z0)]
+ D (z0)] 2D H (¢4 (20)) [ D (z0)] = O,

where JTJ = I, = —J? was used. Thus, it follows F(z) = J forall ¢ € [0, T] or
the symplecticity of ¢;. O

Remark 27.1 Kepler’s laws for determining planetary orbits can be interpreted as
a consequence of the symplecticity or the conservation properties of Hamiltonian
systems. The second Keplerian law, for example, postulates that a radius vector
drawn from the Sun to the planet sweeps out equal areas in equal times, see Fig. 27.1.

27.2 Symplectic Methods

In order to meaningfully capture the dynamics of a Hamiltonian system, that is to
approximate the energy and momentum conservation properties well, the numerical
methods used should also define symplectic mappings. A single-step method of the
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form
|ZLIk+li| _ [Qk] g |:<pl(fk,61k, Pk> Gk+1, Pk+1, T)}
Pk+1 Pk Po(ks Gk Pk Gi+1> Pk+15T)
defines in the case of well-posedness for k =0, 1, ..., K — 1 the mappings

gktl . (k. Pr) = (Qk+1, Pk+1)-

Definition 27.2 A numerical method is called symplectic, if the mappings defined
by it, gk+l . (gx»> pr) = (Gk+1, Pk+1), kK = 0,1,..., K — 1, for each Hamilton
function H € C?(R?") are symplectic.

The symplecticity of a method can be checked with the following criterion in the
casen = 1.

Lemma 27.1 A mapping ¥ : R? — R2 is symplectic if and only if det D¥ = 1
holds.

Proof We have

puTrpw — |1 a2 || 0 L1 ¥ | 0 detDw]
O W | [—10][31¥ 0¥, _detD¥ 0

from which the claim follows. O
We check the symplecticity for some standard methods.
Examples 27.3
(i) For the explicit Euler method, wk+l — @ holds with

|:C]k+l:| — (g ) = [Wl (qx. Pk)i| _ I:‘Ik] ir [ dpH (g, Pk):|

Dic+1 Y2 (qk» pk) Dk —3, H (qk, pr)
and thus
W =1+710,0,H, ¥ =  10,0,H,
Wy = —T10,0,H, ¥ =1-103,0,H,

as well as det D¥ = 1 4+ @(¢?), so that the method is not symplectic.
(ii) For the partitioned Euler method

[Qk+1:| _ |:Qki| " [ dp H (g, Pk+1):|
= T
Dl+1 Pk —03,H(qk, Pk+1)
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the right side depends on py+1, so that

0qk+1 OPk+1
N = —t = 1+ 18,9, H(qr. pis1) + TI2H (i pret) ——
G G
9qk+1 2 IPk+1
¥ = = 10, H(qk, pk+1) :
Api apk
Opr+1 OPk+1
0y =~ = —TdlH(qk, py1) — T, H (g, Pry1) ——
oqk d
OPk+1 OPk+1
¥ = =1-10,0,H (g, .
h¥) o 70p H (qks pr+1) Py

The last two equations can be solved and lead to

8pk+1 -1

vy = = = —t(1+ 1940, H(qr. pr+1)) 9 H(qe: prs1),
0Pk+1 -1

HW = 81; = (1 + td,8, H(qk, prs1)) -

Hence, det D¥ = 1, so the method is symplectic.
(iii)) The midpoint method is symplectic.
(iv) The implicit Euler method is not symplectic.

Remark 27.2 In the case of a Hamiltonian function of the form

A T
H(g.p) =) o T3 > V(g —q;ll)

i=1 ! i,j=1

i#]j

the systems of equations defined by the partitioned Euler method can be explicitly
solved at each time step.

The advantages of symplectic methods can be illustrated using the example of
the linearised pendulum.

Example 27.4 We consider the Hamiltonian function

HG. p) = 2p*+ 54
q,P) = 2P 2‘1
for which the solutions of the Hamiltonian system

/ /

q =P, P =—4

are given by ¢g(¢) = asin(¢) + bcos(t) and p(t) = acos(t) — bsin(z). The total
energy H(q(t), p(t)) of each solution is constant. With the difference quotient
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diagy1 = (ag+1 — ar)/t and the 0-method

diqi+1 = prre, = (1 —02) pr + 02 pet 1,
dipr+1 = —qik+o, = (1 — 0)qr + 01qk+1,

the explicit and implicit Euler, the midpoint and the partitioned Euler methods can
be described by the choices

0=(0,0, 06=01, 0=(1/2,1/2), 6=(01)
respectively. We use the formula

1-26
2

(a—b)(a+(1—-60)0b)= %(a2 — b — (a — b)?,

which is obtained by adding and subtracting a /2, and multiply the equations of the
0-method by g4, and pyg, respectively. The subsequent addition of the equations
in the cases of the explicit and implicit Euler and the midpoint methods leads to

1

1 1—26; 1—26
2—r(6113+1 —6113) + Z(p’%“ - P%) =5 (Qk+1 _C]k)2+ 77 2 (Pk+1 —pk)z-
We sumoverk =0, 1, ..., ¢ — 1, multiply by 7 and obtain
-1 £—1
1—26 1—26
H(qe. pe) — H(qo. po) = 5 S (g —aq)’+ 5 2 > (prnr -p)’
k=0 k=0

In the case of the explicit Euler method, the right-hand side is generally positive
and there is an increase in the total energy, while in the case of the implicit Euler
method there is a decrease. For the midpoint method, the right-hand side vanishes
and the energy is exactly conserved. For the partitioned Euler method, multiplying
the equations by gx41/2 and pr41,2 yields

H(qe, pe) — H(qo. po) = (— tpeqe + tpoqo)/2.

With 7|pq| < 7(p? + ¢?)/2 it follows

1—1/2 +1/2
H(qo, po) < H(qe, pe) < /

1
H(qo, po).
) =210 Po)

The results of corresponding numerical experiments are shown in Fig. 27.2.
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o explicit

o implicit

¢ midpoint
* partitioned

t

Fig. 27.2 Application of various methods to a Hamiltonian system; symplectic methods such as
the midpoint and the partitioned Euler method preserve physically relevant quantities

27.3 Shooting Method

In one-dimensional boundary value problems, a function u : [a, b] — R is sought,
which satisfies a differential equation within the interval and boundary conditions at
both interval ends. A one-dimensional boundary value problem of second order is,
for example,

W (x) = fx,u(x),u'(x)), xe€a,b),
ua) = o, ul) = B.
This can describe the trajectory of a ball that is thrown at location a at height « so
that it reaches height B at location b. One-dimensional boundary value problems
can be solved iteratively with the numerical methods constructed for initial value
problems. In the above model problem, we are looking for a parameter s € R, such
that the solution y : [a, b] — R of the initial value problem
Y'(x) = f(x, y(),Y'), x € (a,b),
y@ =a, y'@ =s
has the property y(b) = B and thus fulfils the boundary value problem. Since y
depends on the parameter s, we write y, for the solution of the initial value problem

in the following. Intuitively, the sought number s € R is the launch angle necessary
to achieve the height 8 at location b. We define the mapping

F:R—>R, st y(b)—8

and try to determine a root s* of F. With the Newton method, this is done
approximately for a starting value so through the iteration

_ F(s)
F'(s;)

Si+1 =i

’
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Fig. 27.3 Different initial
velocities s; lead to different
values at the final time point

where F(s) = ys(b) — B and F'(s) = 0,ys(b) applies. The so-called shooting
method is illustrated in Fig. 27.3.

The function v(x) = 9;y(x) is for given s € R and y, the solution of the initial
value problem differentiated with respect to s, that is

v (x) = B2 f (%, ys (), ¥y () v(x) + 33 f(x, ys (x), y; () (), x € (a,b),
v(a) =0, v'(a) = 1.
The function v is thus the solution of a linear initial value problem, which can be

solved with little effort. To achieve convergence of the Newton method, the starting
value so must generally be close enough to s*.

27.4 Discontinuous Galerkin Methods

We multiply the autonomous differential equation y' = f(y) with a function ¢,
integrate the product over the interval [#, tx+1] and perform a partial integration, so
that we obtain the identity under utilisation of the continuity property y(t,:r ) =y()

Tk1 th 1
—/ Yy (1) di + y(1, NP (1) — y(E )P ) =/ S @) @) de
t 173

where g(tnﬂf) denotes the right and left-hand limits lim,— ¢ g(#, *+ &) for ¢ >
0. The idea of the discontinuous Galerkin method is to consider discontinuous
approximations y; : [0, T] — R, and to partially reverse the above reformulation
to derive a defining equation for y,. We replace y with y; in the above equation and
use

tt1 Tk+1
- / ye(0)¢' (1) dt = / Yo () dr + yo (5P 1) — ye (1 N (1, ).
tx k

This leads to the integral equation

Tr4+1 Tk+1
/ Yo @) dt + [y (1) — y: () ]o ) = / Fye (@) (t)dt,
173 Ik
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Fig. 27.4 Discontinuous
Galerkin methods
approximate the solution by
discontinuous, piecewise
polynomial functions

where y:(f;) = yo. The numerical solution is now sought as a piecewise
polynomial y¢|w. i1 € Zel.nsr]> S0 that the integral equation holds for all
k=0,1,...,K —landall $ € P 4, see Fig.27.4.

Example 27.5 For £ = 0 we obtain the implicit Euler method, because if we set
Yi+1 = Yel(ty 411> it follows using y; 1= 0 and with ¢ = 1, that yg41 — yr =

/
|(tk,lk+|
(k1 — ) f rt1)-

27.5 Learning Objectives, Quiz and Application

You should be able to define Hamiltonian systems and explain the significance of
symplectic methods. You should be able to motivate shooting methods and explain
their algorithmic implementation. Moreover, you should be able to demonstrate
characteristic properties of discontinuous Galerkin methods.

Quiz 27.1 Decide for each of the following statements whether it is true or false.
You should be able to justify your answer.

Hamiltonian systems are special gradient flows.
Orthogonal matrices are symplectic.
The partitioned Euler method has consistency order p = 2.

Every boundary value problem can be formulated in a unique way as an initial value
problem.

The approximate solution of the discontinuous Galerkin method is a discontinuous
function.

Application 27.1 To simulate the outer solar system, we use the Hamilton function

Ypil? v mim;
H(q’ p) — Z ! - 4
Somi 2 A g = q
i#j
with the momenta p; € R3 and positions ¢g; € R3,i = 1,2,..., N, of the

considered planets. Use the resulting Hamiltonian system and the approximations
given in Table 27.1 in solar masses SM ~ 2 - 103°kg and astronomical units
AU 2 150 - 10° m or AU/day to describe three planets.
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Table 27.1 Data for

" - - Planet
simulating a simple solar
Sun
system
Jupiter
Saturn

27 Symplectic, Shooting and dG Methods

Mass

1
1/1000
3/10000

Initial position

0,0,0)
(—3,-4,-1)
(10, -3, -2)

Initial velocity
0,0,0)-1073
(5,—4,-2)-1073
2,5,2)-1073

Use as the gravitational constant the simple approximation of the heliocentric
gravitational constant y = 3 - 107*AU%/(SM - day?). Simulate the system
numerically using the explicit and the partitioned Euler methods with different step
sizes. Plot the orbits of the planets and consider the total energy of the system as a
function of time. Experimentally determine the length of a Jupiter year.



Chapter 28
Problems on Numerical Linear Algebra Qe

28.1 Basic Concepts

Problem 28.1.1 Let ¢7 = fog be amethod for the mathematical operation ¢ and let
the operation defined by g be ill-conditioned. Show that the method ¢ is generally
unstable.

Problem 28.1.2 Show that the addition of two non-negative or non-positive num-
bers is well conditioned.

Problem 28.1.3 For p > 0, 8 > 1 and j = 1, 2, 3, 4 let the sequences (a,(lj))neN
be defined by

a,gl) =nP, a,(lz) =pg", af) =nl, a,(l4) = log, n.

For which pairs 1 < i, j < 4 does a\” = ¢(a%’’) hold?

Problem 28.1.4 Under what conditions on a, b, ¢, d € R is the calculation of an
intersection point of the two lines x +— ax + b and x — cx + d a well conditioned
problem?

Problem 28.1.5 How can cancellation effects be avoided in the practical calcula-
tion of the expressions

1—2x 1 e —1
14+2x 14x° X

for x # 0 with |x| < 1?

Problem 28.1.6 Discuss the conditioning of determining the roots of a quadratic
equation x> 4+ px 4+ ¢ = 0 as well as the stability of their calculation with the pg-
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formulax;» = —p/2 + (p*/4 — ¢)'/2. Consider especially the cases p* ~ 4¢ and
p* > 4ql.

Problem 28.1.7 For which x € R must cancellation effects be expected in the
approximate calculation e* ~ Y }_, xK/k!? How can these be avoided?

Problem 28.1.8 Determine the order of magnitude of the effort for matrix-vector
multiplication, matrix-matrix multiplication and the computation of the determinant
of a matrix using Laplace’s expansion theorem.

Problem 28.1.9 Assume that a computer operates with 10° floating point oper-
ations per second (flops) and there are three algorithms with effort &'(n), & (n?)
and O'(n!) to solve the same task. How many seconds, hours, days or years do the
algorithms approximately need for the problem sizes n = 10¥ withk = 1,2, ..., 6?

Problem 28.1.10 Let ¢(0) be a well conditioned operation with ¢'(0) = 3.
Examine for given x1, x5 € R the conditioning of the operation ¢ (x1 + x2).

Project 28.1.1 The functions f, g : R.¢o — R defined by

1
X)=——-—:, X)=————
Fex) x x—+1 x(x+1)
agree, but motivate two different methods for numerical computation. Determine for
Xp = 10"‘, k=1,2,...,15, the expression

£ 0w — g

)
¢ 9G]

in MATLAB and arrange the results in a table. What do you observe and how do you
explain the observations?

Project 28.1.2 Implement the recursive calculation of the determinant of a square
matrix using Laplace’s expansion theorem in MATLAB, C++ or Python. Measure
manually, or with the help of the commands tic ... toc or clock(), the
runtimes for the calculation of det A with the matrix A € R"*" defined by a;; = 2
and a;; = (—1)/ /(n — 1) for n = 10, 20, 40, 80.

28.2 Operator Norm and Condition Number

Problem 28.2.1 For fixed norms ||-|| on R" and on R™, let || - ||, denote the induced
operator norm on R”*". Prove the following statements:

(i) The operator norm || - ||, defines a norm on R™>",
(ii)) We have
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IAllop = sup [|Ax|| = inf{c > 0: Vx € R"||Ax| < c|lx||}

lxl=1

and the supremum and the infimum are attained, provided A # 0.
(iii) In the case A # 0, for x € R™ with ||x|| < 1 and ||Ax|| = [|A|lop it holds that

lxll = 1.
(iv) Show that ||All¢ = maxi<; j<n |a;j| defines a norm but not an operator norm
on R"*",
Problem 28.2.2
(i) Show that the spectral radius is bounded by any operator norm || - ||,, on the

space of square matrices, i.e. we have |A| < ||A]|,p for every eigenvalue A € R
of A.

(ii) Let | - || be a norm on R" and let || - ||,, be the induced operator norm. Show
that for every regular matrix D € R"*" anorm || - ||p : x — || Dx|| is defined
on R" and construct for every matrix A € R"*" a matrix Mp_4 such that, for
the operator norm induced by | - || p, denoted | - [lop, p, We have [|Allop,p =

”MD,A ||0p~
(iii) Show that the inequality ||A|l2 < [|Allop, D is generally false.

Problem 28.2.3 For 1 < p < o0, a norm is defined on R’ by Ixll, =

¢ (p\ P . .
> j=1 ]x L | . The induced operator norm is also denoted by || - || .

.....

(i1) For the symmetric matrix B € R"*", let
p(B) = max{|A| : A is an eigenvalue of B}.
Show, that ||A|l» = v/ p(ATA) holds for all A € R™*".

Problem 28.2.4 Let A = [‘; b } with a, b, ¢ € R, such that det A # 0. Determine
C

cond;(A), condy(A) and conds(A) and discuss for which ratios of a, b and ¢ the
corresponding linear equation systems are ill conditioned.

Problem 28.2.5 Let A € R™" be invertible and let || - || be an induced operator
norm on R"*", Show that

IA=" = (_inf |lAx])”"

lxl=1

and [|[A~Y| > |AlI~! hold.
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Problem 28.2.6
(i) Let A € R"*", Show that

1AL < 1AL 1 Alloo

holds and verify the statement explicitly for A = [a bb c].
(ii) Show that for every matrix A € R"*" the estimates
n~'2JAll <Al < 2P Al2,
n Al <l Al < nll Al
hold and provide matrices A € R™"*" that show that the estimates cannot be
improved.

Problem 28.2.7 For A € R™" the Frobenius norm is defined by ||A||é; =
Y i<iij<n al?j. Show that

IAll7 = /tr(ATA).

Conclude that the Frobenius norm is compatible with the operator norm induced by
the Euclidean norm in the sense that

All2 < IAll7 < V/nllAll2.
Use the identity tr(ATA) = A1 + -+ + A, with the non-negative eigenvalues
A1, ..., Anof ATA. Can the estimates also be proven without using the eigenvalues?

Problem 28.2.8 Let A € R™*",
(i) Show that (Im A7)+ = ker A with

Vi=(weR':v-w=0forallw e V}

for V. C R” and conclude R” = Im AT + ker A.

(i) Prove the dimension formula n = dim(Im A) + dim(ker A) and conclude that
rank A = rank AT, where for a matrix M the column rank of M is defined by
rank M = dimIm M.

(iii) Show that

ker ATA = ker A.
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Problem 28.2.9

(1) Let A € R™ and B € R™*P, With natural numbers n{, ny, my, ma, pi, p2
let A;; € R">*™j, B € R™i*Pk, such that

By1 By

A =[A11 AnAz Axn], B=|: i|

[ ] B>1 B2

holds. Determine matrices Cj; € R * Pk so that a corresponding partitioning
also holds for C = AB.

(i) Show that for every regular matrix A € R"*" the identity (AH™L =@ HT
holds, which justifies the notation AT,

Problem 28.2.10 Let A € R"*" be regular and 1 < m < n, such that the upper
left m x m submatrix A1 = (aij)1<i,j<m 1s also regular. Let A be decomposed

according to
A |:A11 A12:| .
Az Ax

Show that S = Ay — A21A1_11A12 is regular and that Al is given by

Aol (AT A AST An AT —A AsT!
—S71 Ay AT 5! '

Project 28.2.1 Write programs in C++ and MATLAB that calculate the operator
norm || - || of a matrix A € R™*". Measure manually, or with the help of the
commands clock() or tic \ldots toc, for the Hilbert matrix H € R"*" with
entries h;; = 1/(i+j—1),1 < i, j < n, the runtimes of the programs for n = 10,
k =1,2,...,4. Also compare your programs with the runtime of the MATLAB
routine norm(H, inf).

Project 28.2.2 The set N>(1) = {x € R? : |lx|l» = 1} can be approximated in
MATLAB using plot(X,Y,’-b’), with Phi=(0:dphi:2*pi) and X=cos(Phi),
Y=sin(Phi) for example using dphi=0.01. Plot the deformed set A(N>(1)) for

matrices
kO ki1 0 c s 1k s
0k|’ 0k |’ —sc|> |01]|° s ¢

with suitable numbers k, k1, k; € R, ¢ = cos(#), s = sin(f) for 6 € [0, 27]. Using
the commands hold on/off, the sets can be displayed in one graphics window,
and by changing the argument ’-b’ with different colours. Finally, replace N2 (1)
with N1 (1) and Nyo(1).
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28.3 Matrix Factorisations

Problem 28.3.1 Let A € R"*" be a positive definite matrix, i.e. x| Ax > 0 for all
x € R"\ {0}.

(i) Show that A is regular.
(ii) Show that for all 1 < k < n the k x k submatrix Ay = (a;j)1<i,j<k is also
positive definite.
(iii)) Show that all real eigenvalues of A are positive.

Problem 28.3.2 Let A € R"*" be a strictly diagonally dominant matrix, i.e.

S aijl <laiil. i=1,2,....n.

J=lin, j#i

(i) Show that the submatrices Ay = (aij)i<i j<k for k = 1,2,...,n are also
strictly diagonally dominant.
(i) Show that the matrix A is regular.

Hint: To prove (ii), show that for a suitable norm || - || on R” the estimate ||Ax| > 0
holds for all x € R" \ {0}, and deduce from this that A is injective.

Problem 28.3.3 Show that the invertible (normalised) lower triangular matrices
form a group, i.e. if L, L1, L, € R™*" are (normalised) lower triangular matrices
and det L # 0, then L~ and L, L, are also (normalised) lower triangular matrices.

Problem 28.3.4 Let A € R™*", alower triangular matrix L and an upper triangular
matrix U with A = LU be given. Show that, for k = 1, 2, ..., n and the left, upper
k x k submatrices Ay, Ly and Uy of A, L and U respectively, the decomposition
Ag = LUy also holds.

Problem 28.3.5

(i) Show that A; = |:(1) 8:| does not have a normalised LU decomposition and

Ay = |:(1) (1)] does not have a Cholesky decomposition.

(ii) Calculate the normalised LU decomposition of A3 and the Cholesky decompo-
sition of A4 with

531 9129
A3 =1108 8 |, Ay =1124122],
151110 9 2238

if they exist.

Problem 28.3.6 Let A € R™*" be symmetric and positive definite.
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(i) Show that there exists a uniquely determined normalised lower triangular
matrix L € R" " and a diagonal matrix D € R™" with positive diagonal
entries, such that A = LDLT holds.

(i) Develop a method for determining L and D that avoids the use of the square
root function, and determine the matrices L and D for

9129
A=1124122
9 2238

Problem 28.3.7 Let (vy, va, ..., v,) be a basis of R".

(i) Show that the matrix G € R"*" defined by g;; = v; - v; is symmetric and
positive definite.
(ii) Show that G is invertible and G~! is also symmetric and positive definite.
(iii) Construct a lower triangular matrix L € R™*", such that for W = LV the
identity WTW = I, holds, where V = [v], va, ..., v,] € R?¥",

Problem 28.3.8 Let A € R"™™”" be symmetric with non-negative eigenvalues.
Construct a symmetric matrix B € R"*" with A = B?> = BB and show that
condy(B) = condy(A)}/2, provided A is regular.

Problem 28.3.9 Let A € R™*" be a symmetric and positive definite matrix. Show
that A,,,0x (A1) = 1/Ain(A) holds.

Problem 28.3.10

(i) How can the LU decomposition be simplified in the case of symmetric matrices
and what effort does this entail?

(ii) Let A € R™" be a band matrix with bandwidth m, i.e. a;; = 0if |i — j| > m.
How large is the effort of calculating the LU decomposition, provided it exists?

Project 28.3.1 Write a C++ or Python program with functions solve_upper and
solve_lower for solving systems of linear equations with regular upper or lower
triangular matrix. The solutions of Ux = b and Lx = b are given by backward or
forward running loops through

n

j—1
xj=(bj— > wpxe)fug  xj=(bj— Y pxe)/jj,
k=1

k=j+1

where the empty sum has the value zero. Test the routines for the systems of
equations Agx = by, £ = 1,2, with

123 6 1 3
Al = 451, b1=1(9], Ar=123 , bp=112
6 6 456 28
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Project 28.3.2 Write a C++ or Python program that determines the LU decompo-
sition for a matrix A € R"*" that can be LU decomposed. Justify why the entries
of the matrix A can be overwritten with the calculated entries of L, so that no new
fields need to be initialised. Under what circumstances should the calculation of L
be aborted? Test the implementation with the matrices

423 N
Ar=1242]1, Ay = o ,
324 B |
-1 2

to solve the systems of equations A;x = b;,i = 1,2 for by = [1, 1, 1]T and by =
[1,..., l]T, where Ay € R"" and b, € R"” with n = 10, 20, 40, 80. Check your
results using the MATLAB commands 1u(A) and x=A\beta . What can be said
about the runtime for the solution of the system of equations A,x = b depending
onn?

Project 28.3.3 Write a C++ or Python program that calculates the Cholesky
decomposition A = LLT for a given symmetric, positive definite matrix A =
(aij)i,j=1,...n € R™" Justify why the entries of the matrix A can be overwritten
with the calculated entries of L so that no new fields need to be initialised. Under
what circumstances should the calculation of L be aborted? Test the implementation
with the matrices

423 -
Al =242, Ay = C ,
324 L =1
-1 2

to solve the system of equations A;x = b;,i = 1,2, for by = [1, 1, l]T and by =
[1,..., 1]T, where A, € R"" and by € R” with n = 10, 20, 40, 80 apply. Check
your results using the MATLAB commands chol(A) and x=A\beta . What can
be said about the runtime for the solution of the system of equations Axx = b;
depending on n?

Project 28.3.4 Form € Nandn = m?, let B,, € R™*™ and A,, € R"*" be defined
by

B, —1I, 4 -1

—1, . . -1
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Use the MATLAB routines chol and 1u, to determine Cholesky and LU decompo-
sitions L, LI = A, and M, U, = A, and consider the errors

1An — LaLMlloos  1An — MyUplloos

which you can determine with norm(B, inf), forn = 105, k=1,2,...,6.

28.4 Elimination Methods

Problem 28.4.1 Construct a permutation matrix P € R**#, such that the matrix
P A has a normalised LU decomposition, where

-12 3 3
1 —4-2-5
0 —40 -3
—-110 =5 17

A=

Solve the linear system Ax = b with b = [17, —23, —13, 51]T.

Problem 28.4.2 Use the Gaussian elimination method without pivot search to solve
the linear system Ax = b with

-1 16 —4 3 —24
—320 =22 0 —45
A= 1 —16 1 =2|" b= 20
3 -6 4 2 11

Determine the LU decomposition of A and calculate det A.

Problem 28.4.3 Let

1 01 5 _ 5.5
A=|2-11|, b=|T7|, b=|65
223 14 14.5

Calculate A~1, condss(A) and the solutions of Ax = b as well as AX = b.

Problem 28.4.4 Let A € R"*" be a symmetric and positive definite matrix and
let 5V, pP ... p" e R” different right sides. Let A = LLT be the Cholesky
decomposition of A with the lower triangular matrix L € R"*". Compare the effort
of the following two approaches to solve the m linear systems Ax?) = p® i =
1,2,...,m:

(i) By solving the n linear systems Az() = ¢ ; with the Cholesky decompo-
sition of A for the canonical basis vectors e; € R", the inverse A"l =
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[z, z® .., z™] is determined and subsequently x® = A~1pD for i =
1,2, ..., mis determined by matrix-vector multiplication.

(i) With the Cholesky decomposition of A, the solutions of Ax") = »® fori =
1,2, ..., m are determined.

Problem 28.4.5 Let P € R" " be the permutation matrix corresponding to the
bijection 77 : {1,2,...,n} — {1,2,...,n}. Show that PT = P~! and

-1
P = [enfl(l)’ 71—1(2),...,87.[—1(”)].
Problem 28.4.6 How does the effort of the Gaussian elimination method with
column pivot search differ from that with total pivot search?

Problem 28.4.7 Show that with the canonical basis vectors ey, ez, ..., ¢, € R™
and f1, f2,..., fn € R" for A € R™*", we have that

m n
=3 Y aar]

i=1 j=1
Problem 28.4.8 Let P € R"*" be a permutation matrix that swaps the k-th and
£-th entry of a vector, where £ > k.

(i) Let A € R"*", Determine PA and AP.
(i) Let L = I, — Zke;{r with the canonical basis vector ¢, € R” and a vector

€ =10,...,0, €14 .., £ni]". Show that a vector
z\k = [07 "’7072\k+1,k7 -"9E’l,k]T

exists, such that with = I, — ?kez the identity 7 = PLP holds.

Problem 28.4.9 Let A € R™*". Construct a method for determining all solutions
of Ax =0.

Problem 28.4.10 Fork = 1,2,....,n — 1 let L® = I, — ¢xe] be defined with
vectors £ =[0,...,0, L1y, LoxlT andlet L = LO=DL@=2 1D Show
that

n—1
o Tad
k=1

Project 28.4.1 Write a C++ or Python program, that, for an LU-decomposable
matrix A € R"™" and a vector b € R”, solves the linear system Ax = b using
Gaussian elimination and determines the LU decomposition of A. Test the program
with the system defined by
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17 -2 3 21
PO R e BN B
81 3 5 39
4—4 4 —4 -8

The matrix A can be overwritten by the calculated values al.(j].{H) and ¢;;. Use your
program to solve systems of linear equations with upper triangular matrix to solve
the resulting system A®™x = ™.

Project 28.4.2 Perturb the right side of the linear system Ax = b defined by

n
aij = (i+j-D7" b = Y (=D +k=1), xi = (=) i =12,
k=1

with the vector d € R", d; = 1073 cos(im/n) fori = 1,2,...,n and n = 10.
Consider the relative error ||x — x4l[2/]|x|l2 and compare this with the condition
number of the matrix, which you can determine with the MATLAB command
cond (A, 2). Comment on the results.

Project 28.4.3 Implement the Gaussian elimination method with pivot search. To
do this, introduce a vector 7 € N", which takes into account the row swaps. Also
implement a termination criterion that ends the procedure if for the pivot element
the estimate |aj(1k()k), el = 10710 applies. When solving the resulting system of linear
equations the row swaps need to be considered in the backward substitution. Test
the procedure for the system Ax = b where A € R>*® and b € R? are defined by

010

1
A=]1001]|,b=|2
100 3

28.5 Least Squares Problems

Problem 28.5.1 Let A € R™*" b € R™ and x, y € R". Calculate the derivative of
the mapping

t |A(x +1y) —bl3, t€R,

and deduce the Gaussian normal equation, if x is a solution of the associated least
squares problem.
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Problem 28.5.2 Let A € R>*! and b € R? be defined by

<[ -[)

Determine graphically using a set square the solution of the least squares problem
by orthogonally decomposing b into vectors v, w with v € Im A and w € ker AT

Problem 28.5.3 A Householder matrix P € R™*™ is defined for v € R™ with
lvlla =1by P = I, — 2vv'.

(i) Show that P = PT and P~! = P hold.
(i) Show that a real m x m Householder matrix has m — 1 eigenvalues with the
value 1 and one eigenvalue — 1.
(iii) Construct using geometric considerations for m = 2, 3 a Householder matrix
that maps a given vector x € R™ to a multiple of e; € R™.

Problem 28.5.4 Let D € R™*™ be a diagonal matrix with positive diagonal
entries. The minimisation of x — ||D(Ax — b) ||§ realises for example a different
weighting of various measurement results. Determine the associated normal equa-
tion.

Problem 28.5.5 Let A € R™*", b € R" and 1 < p < oo. Calculate the partial
derivatives of the mapping

x> |Ax —b|h, x eR™

Determine all numbers p, for which the derivative is given by a linear mapping.

Problem 28.5.6 Calculate using the Householder method a Q R decomposition for

1 1 1
A=10-v22)2
0 V2 5/V2

and solve the equation Ax = b for b = [3\/5, -1, 7]T.

Problem 28.5.7 Let A € R™*”" be a regular matrix with columns ay, as, ..., a, €
R" and let (g1, g2, - - - , gn) be the resulting orthonormal basis obtained through the
Gram—Schmidt process, that is

j-1 .

- q;
gj=aj— Yy @ - q=-—">
Pt 1g;ll2

forj=1,2,...,n.
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(i) Show that for R € R™"*" defined by ry; = a; - gy fork < j,rij =0fork > j,
rjj = Igjll2 for j =1, .., n, it follows A = QR.
(i1) Calculate Q and R for

120
A=|(012
102

Problem 28.5.8 Let A € R"*" and A = QR be a QR decomposition. Show that
R defines a Cholesky decomposition of ATA.

Problem 28.5.9 Let A € R"*" be regular and A = QR be a Q R decomposition.
Show that cond;(A) = cond;(R) holds.

Problem 28.5.10 Leti < j, 6 € R and define B = B(i, j, 0) € K"*™ by byy =
Sxefork #1i, j,bij =bj; =cand b;; = —bj; = s, withc = cos(f) and s = sin(9),
that is

B(i, j,0) =

(i) Show that the matrix B(i, j, 0) defines a rotation of the (i, j) plane by the
angle 6.
(i1) Show that the successive multiplication of A € R™*" with suitable B(i, j, 0)
leads to a QO R decomposition.
(iii) Is this procedure more expensive than the Householder procedure? If yes, are
there classes of matrices for which it is less complex?

Project 28.5.1 Implement the Householder procedure for calculating a Q R decom-
position in C++ or Python. Use your program to solve the linear system Ax = b
with the n x n Hilbert matrix A defined by a;; = (i + j — 1)’1, 1<i,j<n,and
the right-hand side b = [1, 2, ..., n]T forn =3 and n = 10.

Project 28.5.2 From physics, it is known that bodies exposed only to gravity fly
in parabolas. A body has the initial velocity v = (vy, vy) and is at point O at time
t = 0. At time ¢ it is then at the location x = vyt, y = vyt — %gﬂ, where g
is the acceleration due to gravity. In a series of experiments, the values given in
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Table 28.1 Measurement : 1 2 3 4 3 6 7

i
values of an experimental
series t[s] |01 |02 |06 |09 |1.1 |12 2.0

xi[m] 10.73 |1.28 [4.24 |6.11 |7.69 |8.21 |13.83
yilm] 1096 |1.81 4.23 5.05 |5.15 481 @ 0.55

Table 28.1 were measured. Formulate a suitable least squares problem and solve it in
MATLAB using the Q R decomposition provided by [Q,R] = qr(A), to determine
the velocity vy and the acceleration due to gravity g as accurately as possible. Create
a graph using the plot command, in which the measured values and the calculated
parabola are listed. To what accuracy is it meaningful to specify the results? What
model errors, data errors and measurement errors occur in this experiment?

28.6 Singular Value Decomposition and Pseudoinverse

Problem 28.6.1 Let A, B € R™*" and (vy, va,...,v,) C R" be a basis of R”.
Show that from Av; = Bv; fori =1, 2, ..., n the equality A = B follows.

Problem 28.6.2 Determine a singular value decomposition of the matrix

.
1 -1 —
a3 113
40-1-33 1

Calculate A using the singular value decomposition as well as the identity AT =
(ATA)"'AT. Use A" to solve the least squares problem defined by A and b
[4,1,2,3]".

Problem 28.6.3 Let A € R™*", Show that the pseudoinverse A" is the unique
solution X € R"*™ of the equations

AXA=A, XAX=X, AX) =4X, XAT=Xx4

To prove uniqueness, assume the existence of a second solution Y, derive the
identities X = XA(YAY)(AXA)X and Y = (YA)TY(AY)T and show that the
right-hand sides match.

Problem 28.6.4 Show that rank ATA = rank AAT = rank A holds.
Problem 28.6.5

(i) Let V C R" be a subspace and V* its orthogonal complement. Show that there
exists a uniquely determined matrix Py € R"*" with Pyv = vforallv € V
and Pyw = Oforallw € VL.

(ii) Let A € R™*". Show that AT A = Py, 4L and AAT = Py a.
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Problem 28.6.6 Let (A;,v;) € R x R", i = 1,...,n, be eigenvalues and
corresponding linearly independent eigenvectors of the matrix A € R"*". Show

that A can be represented as A = VDVl with V. = [v1,...,v,] and D =
diag(r1, ..., An).
Problem 28.6.7 Let A € R"*" with eigenvalues A1, ..., 1, € Cand || - [|op an

operator norm.

(i) Show that ||All> < |[|A[lop holds.
(i1) Show that max;—1, , |Ai| < [|A[2 holds.

Problem 28.6.8

(i) Let A € R and A € Cbe an eigenvalue of A. Prove the following statements:

(a) The number A is an eigenvalue of A.

(b) If A is symmetric, then the eigenvalues of A are real.

(c) If A is regular, then A~ is an eigenvalue of A~!.

(d) The matrix AT has the eigenvalue A.

(i) Let A, B € R™" be matrices with eigenvalues X and . Under what conditions
is Au an eigenvalue of AB?

Problem 28.6.9

(i) Letn € Nbe odd and Q € SO(n), i.e. we have Q € R™" with QTQ = I,
and det Q = 1. Show that Q has the eigenvalue 1.

(ii)) Conclude that during a football match there are at least two points on the surface
of the football that are in the same place in the surrounding space at least twice.

Problem 28.6.10 Show that the tridiagonal matrix defined by a, b,c € R with
bc >0

A= e RV

has the eigenvalues Ay = a + 2sign(c)~v/bccos(kn/(n+ 1)),k =1,2,...,n. First
consider the case a = 0 and the vectors

ve = ((¢/b)*?sin(kne/(n + 1))),_,

Project 28.6.1 In MATLAB the singular value decomposition of a matrix A can
be calculated with the command svd. For an image defined by the file img. jpg,
a compression of the grayscale representation can be defined with the lines shown
in Fig. 28.1. Choose as an image, for example, the section from Albrecht Diirer’s
picture Melancolia I, which shows the magic square. Explain the individual lines
of the program and extend it by a calculation of the approximation error || X —
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I RGB = imread('img.jpg');

> G = rgb2gray (RGB) ;

;3 D = double (G) ;

. X = D/max (max (D)) ;

s figure(1l);

6 subplot(1l,2,1); imshow(X); title('original');
7 [U,S,V] = svd(X);

s for k = 5:5:size (U, 1)

9 X comp = U(:,1:k)*S(l:k,1:k)*xV(:,1:k)"';
10 subplot(1,2,2); imshow (X_comp) ;

11 title('compressed'); pause

2 end

Fig. 28.1 Image compression using singular value decomposition

Xcompll#z. How do you assess the ratio of quality loss to reduction of storage
requirements for different values of k? Test the program for another image.

Project 28.6.2 The unit square Q = [0, 1]> C R? can be represented in MATLAB
by fill(X,Y,0) with X = [0,1,1,0,0] and Y = [0,0,1,1,0]. Visualise the
image A(Q) with the linear transformations, which are defined by the matrices

kO ki 0 c s 1k s
0k|’ 0 k| |=sc|” |O1] s ¢
with suitable numbers k, k1, kp € R, ¢ = cos(0), s = sin(f) for 0 € [0, 27]. Deter-

mine the eigenvalues and eigenvectors of the transformations with the MATLAB
command [V,D] = eig(A) and interpret them geometrically.

28.7 The Simplex Method

Problem 28.7.1 Let A € R™*" and b € R™. Show thatthe set C = {x e R" : x >
0, Ax = b} has at most a finite number of corners.
Hint: Consider the zero entries of elements in C.

Problem 28.7.2 Let f(x) = a'x + b and let C C R” be a convex, closed and
bounded set. Show that the function f takes its extreme values at the corners of C,
i.e. there exist corner points x,,, xpy € C with f(x,;,) = minyec f(x) and f(xpy) =
maxcec f(x).

Problem 28.7.3 Transform the minimisation of g(y) = p'y under the constraint
Uy < d into a linear program in normal form by decomposing y = v — w into
non-negative vectors v and w, introducing a non-negative vector z with Uy +z = d
and defining suitable vectors ¢, d and a suitable matrix A.
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Problem 28.7.4 Determine all corners of the convex sets 312(0) ={x e R":
lxll2 < 1} and B®(0) = {x € R" : [Ix[loc < 1}

Problem 28.7.5

(i) Determine all minima of the function f(x) = ), |x — z;| for the cases
c=[-111", z=[-10.1]", z=[0,10]", z=[0,1,10]".

How can minima be characterised?
(i) Letzy,z2,...,20 € Rwithz) <z < ... < z,. Determine a minimum of the
function

f)=Y"Ix—zl.
i=1

Use the formal necessary optimality condition f'(x*) = 0 with the derivative
| -|" = sign(").
Problem 28.7.6 Letzy,z2, ..., 2, € R.Formulate the minimisation of the function
F(») =371y — z as a linear program.

Problem 28.7.7 Let ¢ € R? and ¢ € R. Construct through geometric considera-
tions the minimisers of the mappings x + [/x||, under the constraint a'x = « for
p=1,2,00.

Problem 28.7.8 Let a € R" \ {0} and let C C R" be non-empty, bounded and
strictly convex, i.e. if 0x1 + (1 — 6)xp € 9C for x;,xp € C,thenf = 1 or6 = 0.
Show that the minimisation of the function f(x) = a - x under the constraint x € C
has a unique solution.

Problem 28.7.9 Let A =[4,2,1],b=4andc=[1,1,1]".

(i) Determine the corners of the set {x € R3 : x > 0, Ax = b} and investigate
whether these are degenerate.

(ii) Carry out the simplex method for the minimisation of f(x) = c¢'x under the
constraint Ax = b and x > 0 with the starting corner x% =10, 0, 4]T.

T

Problem 28.7.10 Construct matrices A € R3*2 and vectors b € RZ, so that the
resulting sets M = {x € R? : Ax = b, x > 0} are (i) empty and unbounded and
(ii) bounded and non-empty.

Project 28.7.1 A company produces m different products, for the manufacture of
which n machines are required. The j-th machine has a maximum monthly running
time of £; hours. The k-th product generates a profit of e; euros per unit and
occupies the j-th machine with #;; hours per unit. The total monthly profit should
be optimised without exceeding the maximum running times.
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1 [x_1,x_2,%x_3] = sphere;
> surf ([m_l+r*x_1,m 2+r*x_2,m_3+r*x_3]); hold on;
3 tetramesh([1,2,3,4],%2); hold off;

Fig. 28.2 Visualisation of a sphere

(1) Formulate the described situation as a maximisation problem with constraints
in the form

Maximise f(x) = c - x under the conditions Ax < b, x >0

where x = (x1, X2, ..., X;,) are the monthly units of the different products and
the inequalities are to be understood component-wise.

(ii)) Use the MATLAB routine 1inprog to solve the problem for the data m = 2,
n=23,e =200,e0 =600,and 111 = 1,101 = 1,131 =0,t1p =3, 10 = 1,
132 =2 and £1 = 150, £, = 180, £3 = 140. What is the optimal monthly profit?

Project 28.7.2 If a € R3 is a vector with positive components and « € R is a
positive number, then {x € R3:x >0, a'x < o} defines a tetrahedron. The centre
m and the radius » > 0 of a sphere of maximum volume contained in the tetrahedron
are to be determined. Formulate the problem as a linear program and solve it with the
MATLAB routine 1linprog. Then determine the solution for the case a = [1, 2, 3]T
and o = 4. You can visualise your solution with the MATLAB commands shown in
Fig. 28.2, where Z € R**3 is a matrix containing the coordinates of the corners of
the tetrahedron.

Hint: The distance of a point m € R3 to the plane defined by a vector v € R with
llv]l2 = 1 and a number y € R is given by |va -yl

28.8 Eigenvalue Problems

Problem 28.8.1

(i) Determine the Gershgorin circles of the matrix

147
A=1258
369

(ii) Let A € R™" be strictly diagonally dominant and symmetric. Provide an
explicit upper bound for the condition number cond;(A).

Problem 28.8.2 Show that the characteristic polynomial p(A) = det(A — A1) of
the n x n matrix
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0 —ap
10 —dai
A=
1 0—a,_»
1 —a,—1

is given by p(h) = (=1)" (V" + au_1 A"~ 4 -+ arh + ).
Problem 28.8.3
(1) Let A € R™" be symmetric with eigenvalues A; > A > --- > A, and let
v € R"\ {0} be an eigenvector corresponding to the eigenvalue A;. Show that
xTAx
2 = max 5
xeR"\{0) [lx]5
x-v1=0

(ii) Show that the vector x* € R" \ {0} is an eigenvector of the symmetric matrix
A € R if and only if Vr(x*) = 0 holds with the function

xTAx

l1x113

r:R"\{0} > R, x>

Problem 28.8.4

(1) Show that the power method also converges when the iterates are normalised
with respect to a different norm.
(ii) Perform five steps of the power method for the matrices

1 20 0 -6 —22 59
A:E 05 -1, B=|—-4 -6 22
0-15 -2 —4 13

with the initial vector xg = [1, 1, 1]T/2 and observe the sizes || X || and x,;rAxk.

Problem 28.8.5 Determine the k-th iterate of the power method for the matrix

02
A =
2 0
with the starting vectors xg = [1,0,..., 0]T and xo = [1,1,..., l]T and discuss

the validity of the assumptions of the convergence result.
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Problem 28.8.6 Let A ¢ R"*",

(i) Show that a Householder matrix H € Ro=Dx0=1) exigts, such that for B =
HAHT with H = [1 00 H] the property b;; = 0 holds for i > 2.
(i) Conclude that A can be transformed into a matrix A € R with a;j =0

fori > j 4 1 using n — 2 similarity transformations. Discuss the required
numerical effort.

(iii) Show that the property a;; = 0 fori > j + 1 is preserved in the Q R method.
Problem 28.8.7 Perform a step of the Q R method for the matrix

1-23
A=1(0 3 5],
012

determine the eigenvalues of A using the characteristic polynomial and compare the
results.

Problem 28.8.8
(i) Let A € R"*" be a symmetric matrix and G ,, € R"*" a Givens rotation. Show
for the entries of the matrix B = G;qlAG pq that
bpp = Cap, + 2csapg + szaqq,
by = szapp —2csapg + czaqq,
bpq = bap = cs(agq — app) + (> = 5%)apq,
bip =cajp +saiq, i€{1,2,...,n}\{p,q},
big = —sajp +caiq, i€{1,2,....,n}\{p,q},
bij = aij, i, €{p,q}.

(ii) Infer by = 0, provided apq # 0 and G, is defined by ¢ = /(1 + D)/2 and
s = sign(apg)+/(1 — D)/2 with

D— App ~ 9qq
/2"
((app —agq)* + 4“;%1;)

Problem 28.8.9 Let |A| 7 = ().} i=1 afj)l/ ? be the Frobenius norm.

(i) Show that ||A||?/ =tr(ATA) as well as tr(AB) = tr(BA) forall A, B € R"™*"
and infer |Q~'BQ||.#z = ||B|.# for B € R™" Q € O(n).
(ii) Show that ||A]2 < ||A||.# for all A € R™*",
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Problem 28.8.10 Construct a symmetric matrix Ay € R3*3 with an entry (Ag)ij =
0, so that for the next iterate Ay in the Jacobi method (Ag41);; # 0 holds.

Project 28.8.1 Implement the von Mises power method to approximate the small-
est and largest eigenvalue as well as the corresponding eigenvectors of the n x n
matrix

1
-1 2

forn = 4, 16, 64, 256. Use the MATLAB command x = B\c to solve linear systems
Bx = c. Use different starting vectors and a suitable termination criterion for the
iteration and determine the errors of the approximations using the exact values
Amin =2 —2cos(mr/(n+ 1)) and Aygx =2 — 2cos(nm/(n + 1)).

Project 28.8.2

(1) Use the MATLAB routine [Q,R] = qr(A), to implement the Q R method and
terminate the iteration if ||Ax — Ar+1ll2/1Akll2 < 1073 holds. What would
be another meaningful termination criterion? Approximate with your program
the eigenvalues of the matrices A € R"*" n = 4,10, 20 and B, BT ¢ R¥3
defined by

A —-1-1029
A= T , B=|-2 -4 18
L~ -1 =3 11

-1 2

and discuss the prerequisites of the proposition about the convergence of the
method based on these examples.

(i) Implement the Jacobi method with the termination criterion A4 (Ag) < 10~%in
MATLAB and test it for the matrix A € R"*" defined by

ajj = sin(|i — ]|7'[/n) — 25,’j

fori,j = 1,2,...,n with n = 2,4,8,16. Modify the program to obtain
an implementation of the cyclic Jacobi method, that is, the search for the
largest entry is omitted and all entries are successively treated. Observe
graphically the size of the entries of the iterates using the MATLAB com-
mands [X,Y] = meshgrid(l:n,1:n), surf(X,Y,A) and view(-270,90).
Consider the number of iterations required depending on 7.
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28.9 Iterative Solution Methods

Problem 28.9.1 Construct a matrix M € R2*2 which is a contraction with respect
to an operator norm and not with respect to another.

Problem 28.9.2 Show that for the iterates of the fixed point iteration xH = @ (xk)
with the contraction @ : R" — R” the error estimate

k

k_ k-1
—x* < X% — X"l

llx

holds. How is this estimation relevant for practical purposes?
Problem 28.9.3

(1) Let T € R"™ " be a regular matrix and || - || a norm on R”. Show that ||x||7 =
T x| for x € R" defines another norm on R”.

(i) Let R € R™" and D € R"*" be an invertible diagonal matrix. Show that for
T=D"'RDandi,j=1,2,...,n we have

dlr,'j.

dji

Lij =
Problem 28.9.4 For a given matrix A € R"*" we define a directed graph G with
node set {1,2,...,n}and edges ¢;;, 1 <1, j < n,fromnodei tonode j,if a;; # 0.
Show that A is irreducible if and only if one can reach every node j from any node
i along the edges with j # i.

Problem 28.9.5
(1) Let Ay, Ay € R™™" be defined by

2 1 4 —1
A= b . A= -

L —1 Ll —1

12 ~1 4

Investigate these matrices with respect to diagonal dominance and irreducibil-
ity.

(ii) Show that in the case of the matrix A, for the iteration matrix M~ of the Jacobi
method the estimate o(M”) < 1/2 holds.

Problem 28.9.6 Perform 5 steps of the Richardson, Jacobi and Gauss-Seidel
methods for

2 -10 1
A=|-12 —-1|, b=|1
0 -1 2 1
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with w = 1 and @ = 1/10 and x° = [, 1, ' respectively. Compare the iterates
with the exact solution of the system of equations.

Problem 28.9.7 Show that A € R"*" is irreducible if and only if for all i, j €
{1,2, ..., n} there exists a sequence i1, i2,...,i¢ € {1,2,...,n} withi; =i and
ig = jand @y, #0fork=1,2,...,£—1.

Problem 28.9.8 Show that A € R"*" is reducible if and only if there exists a
permutation matrix P € {0, 1}"*", such that

papT = |:Bn Blz]

0 Bx»
with suitable matrices By, B2 and By, and a null matrix 0 € RF*¢ where k+¢ = n.

Problem 28.9.9 For the matrix A € R"*" let o(I, — A) < 1. Show that A is
invertible and that the inverse A~! is given by the convergent series

-1 = i(ln — A,
i=0

Hint: Consider the matrix B = I, — A and argue as when determining the value of
the geometric series.

Problem 28.9.10 Show that the iteration process defined by (D + U)x*t! =
—Lx* 4 b converges in the case of an irreducible and diagonally dominant matrix
A =U + D+ L € R™" for any initial value x° € R”.

Project 28.9.1 Use the equivalent representations

K+l 1y ok
ST (bl Za’JxJ')’

J#i
k+1 71 k+1 ok
X; (bl Za,] Za,]xj)
j<i Jj>i

of the Jacobi and Gauss-Seidel methods to implement these in C++. Test your
programs for the system of linear equations Ax = b with
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and the starting vector x0 = [1,1,..., I]T e R" for n = 10, 20, 40. Terminate the
iteration when || x* — x¥*1||, < § with § = 107>, Comment on the dependence of
the number of iterations on the dimension n of the system of equations.

Project 28.9.2 Implement the Richardson method in MATLAB and test it for the
system of linear equations Ax = b with

2 —1
-1 . 1
A = 1 s b ——
SOV :
-1 2 1
and a starting vector x” € R” randomly generated with the MATLAB command
randn(n, 1) forn = 10, 20, 40, 80 and the parameters w = 1, 1/10, 1/n. Visualise
the iterations using plot([0:1/n:1], [0,x’]) and observe the behaviour of these
curves for several different initial values. Try to identify and characterise different

phases of the iteration.



Chapter 29 ®
Problems on Numerical Analysis Qe

29.1 General Condition Number and Machine Numbers

Problem 29.1.1 Show that given a basis » > 2 every number x € R \ {0} can be
represented in the form

o0
x = +b° deb_k
k=1

withdy,dp,---€{0,1,...,b — 1} and e € Z where d; # 0 can be chosen.
Problem 29.1.2

(i) Calculate the number of floating point numbers as well as the positive extrema
8min and g4y for the IEEE formats single and double precision.
(i) Determine rd(;r) forb =2, p =5and b = 10, p = 4.
(iii) How can the occurrence of overflow be avoided when calculating (a®+b?)

. 1/2
if max{al, [b]} > gy and |al, |b] < gmax/2?

Problem 29.1.3

(i) Represent the numbers 142, 237 and 1111 for the bases b = 2, 4 and 10 with
the precision p = 10 and the exponent limits e;;,;, = —10 and e;,4, = 10 as
normalised floating point numbers.

(i) Determine the 25th decimal place of 1/7.

(iii)) Why is the number 1/10 in the binary system only representable by an infinite
series?

1/2
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Problem 29.1.4

(1) Let¢ = ¢j0---0¢,, where the suboperations ¢y, . .., ¢ are well conditioned.
Show that ¢ is well conditioned.

(ii) Let g € C'(R). Discuss the conditioning of the determination of the roots of g
and illustrate the results graphically.

Problem 29.1.5 Let ¢ : R> — R2 ¢(p,q) = (x1,x2), be the operation of
determining the roots x1, x of the quadratic polynomial x> + px + ¢. Determine a
subset W C R? on which ¢ is well-defined. Calculate for (p, g) € W the relative
condition number k4 (p, ¢) and discuss for which pairs (p, g) the operation is well
conditioned.

Problem 29.1.6 Identify possible problems when evaluating the pg-formula
x12 = —p/2+(p*/4 —q)'/? for determining the roots of the quadratic polynomial
x2 4+ px + g. Construct a stable algorithm by utilising the relationship xj x> = g.

Problem 29.1.7

(i) Show that the set of regular n x n matrices defines an open subset of R"*".
(i) Show that for E € R"*" and sufficiently small numbers 4 € R the matrix
I, + hE is regular with

o
(I +hE)™" = (=D*n*EX.
k=0

Problem 29.1.8 Assume that the floating point addition is given by x +g y =
rd(x + y).

(i) Prove that the harmonic series > - ; 1/k converges in floating point arithmetic.
(i) Show that the floating point addition +¢ is not associative.

Problem 29.1.9

(i) Show that the operation ¢ (x) = (1/x) — (1/(x + 1)) is well conditioned for
large numbers x € R.
(ii) Show that the method qNS(x) = (1/x) — (1/(x + 1)) is unstable.
(iii) Show that the method qNS(x) = 1/(x(x + 1)) is stable.
Hint: Identify the dominant terms of the expression

o~ 1+ 1+

¢ = (x(lfazl) - <x(1+e1>+8f><1+53>> (1+¢5)
and consider the quotient |<Z()7) — ¢(x)]/|¢(x)|. Use approximations 1/(1 +
ey~ l—cand1/(1+e+1/x)~1—e—1/x.

Problem 29.1.10 Use the Gaussian elimination method without or with pivot
search to solve the system of equations
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0.1-107317[x1] [t
1 1 x]  [2]°
Use decimal numbers with precision p = 3, 4, 5, i.e., work using suitable rounding

with numbers of the form £ 0.did>...d, - 10° withe € Z and dy,d>, ...,d, €
{0,1,...,9}

Project 29.1.1 To determine the rounding accuracy of a computer, let x = 1 and
replace x with x/2 as long as the expression 1 + x > 1 is evaluated as true by the
computer. Determine experimentally in C++ the value of x for which this procedure
stops. Define for this purpose x as a variable of type float or double.

Project 29.1.2 We consider the numerical determination of the Euler number e,
which is characterised by the limit values

n
1
e= lim (1+1/n)", e= lim —
n— o0 n—o00 k’
k=0
Use only basic arithmetic operations and finite approximations of the above limit
values with n = 10/, j = 1,2,...,15, to approximate e. Determine the
approximation errors using the reference approximation e ~ 2.718281828459045
and display these with 15 decimal places in a table. Evaluate your results.

Project 29.1.3 The solution of a system of linear equations Ax = b is given by
Cramer’s rule as x; = detA;/detA,i = 1,2,...,n, where A; € R"*" is obtained
from A by replacing the i-th column of A with the vector b. In MATLAB A; can be
generated with the commands A_i=A and A_i(:,1i)=b;. Implement Cramer’s rule
in MATLAB and test your program for the system of equations Ax = b with

_ [0.2161 0.1441 _ [0.1440
~11.29690.8648 |  |0.8642]

The exact solution is given by x = [2, —2]". Determine for the numerical solution ¥
the forward error || x —X |0/ || % |0 @s well as the backward error || AX — b | oo/ ||16]] co-
Consider the condition number of A and compare the errors with those of the
numerical solution x calculated by the Gaussian elimination method with pivot

search, which you can determine in MATLAB with x=A\beta .
29.2 Polynomial Interpolation
Problem 29.2.1

() Let f € C?([a, b]) with the property f(a) = f(b) and f'(a) = f'(b) = 0.
Provide an optimal lower bound for the number of roots of f”.
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(ii) For nodes xo < x; < --- < xp, let w(x) = ]_[’}Zo(x — x;) be the node
polynomial and L;,i =0, 1, ..., n, the i-th Lagrange basis polynomial. Show
that

w(x)
Lix)= —F——.
(x = x)w'(x;)
Problem 29.2.2 [eta < x9 < x; < --- < x, < b be given nodes and
(vo, v1, ..., Uy) polynomials of maximum degree 7.

(i) Show that the matrix V e ROFDX0FD defined by Vi; = vi(x)), i,j =
0,1,...,n,is regular if and only if from Z?:() ;v (x) = 0 for all x € [a, b]
it follows that o; =0 fori =0, 1, ..., n.

(ii) Show that in the case of the monomials v; (x) = x%,i =0, 1, ..., n, we have

detV = l_[ (xj — xi).

O<i<j<n

Problem 29.2.3 Let f(x) = sin(wx) forx € [0,1], xo = 0and x; = i/n,i =

0,1,...,nif n > 0. Calculate and sketch the interpolation polynomial of f for
n=0,1,...,4.

Problem 29.2.4 Let f(x) = sin(zwx) forx € [0,1],xo =0and x; = i/n fori =
1,2,...,nifn > 0. Calculate and sketch the Hermite interpolation polynomials for
n=0,1,2and ¢; =¢£,i =0,1,...,n,with¢ =0, 1, 2.

Problem 29.2.5

(i) Forx € [—5,5]let f(x) = (1 +x2)~! = arctan’(x). Use the identities

1 . X
cos(arctan(x)) = m, sin(arctan(x)) = m
sin(x) sin(y) — cos(x) cos(y) = —cos(x + y),

sin(x) cos(y) + cos(x) sin(y) = sin(x + y),

to inductively prove or verify forn = 0, 1, 2, 3 that

- n! (=12 cos((n + 1) arctan(x)), n even,

F0) = s X .

(14 x2)+D/ (=D D/ 25in((n + 1) arctan(x)), n odd.

(ii) Conclude that || f @m| 5 = (2n)! and that the Lagrange interpolation polyno-
mials of f(x) = f(5x) in the interval [—1, 1] do not necessarily converge
uniformly towards f as n — oo.
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Problem 29.2.6 Construct nodes a < xp < x; < --- < X, < b in the interval
[a, b], such that for the Lagrange interpolation of any function f € C"*!([a, b])
we have

_ b —a\n+l ||f(n+1)||c()[ b]
1/ = Plleogasy <27 (5) (la.b]

2 n+ 1!

Problem 29.2.7 Prove the following properties of the functions defined by 7, (¢) =
cos(n arccost) fort € [—1, 1]:

(i) We have that |T,,(¢)| < 1forallt € [—1, 1].
(i1) With Ty(¢r) = 1 and T7(¢) = ¢, we have that

Th+ () =2t Ty () — Ty—1(2)

for all + € [—1,1]. In particular, 7, € Py|[-1,17 and forn > 1, T,(t) =
27 4 gy with guo1 € Pu_ili—11)

(iii) Forn > 1, T, has the roots t; = cos((j +1/2)n/n), j =0,1,...,n—1,and
the n + 1 extreme points s; = cos(jn/n), j =0,1,...,n.

Problem 29.2.8

(i) Provide a method using on as few as possible basic arithmetic operations for
evaluating the polynomial (x + 3)'°.

(i) Compare the effort of the direct evaluation of the polynomial p(x) = ap +
ayxy + - - - + a,x" with that of using the equivalent representation

px) =ap +x(a1 +x(a2 + .. .x(an,Q +x(an,1 +xan)) .. ))

Problem 29.2.9 For n + 1 nodes and values (xg, yo), (x1, ¥1), ..., (xn, y») and
O0<j<naswellas0 <i <n— j,let p;; € &; be defined by p; j (xr) = y,
k=i,i+1,...,i+ j. The numbers y; ; are defined by y; 0o = y;,i =0,1,...,n,
and

_ Jitl,j—1 — Vi, j—1

Yij =
Xit+j — Xi

forl <j<nand0<i<n-—j.

(1) Show that p; j(x) = y,-,jxj +7; j(x) with a polynomial 7; ; € &;_ for j > 1
andi =0,1,...,n—j.

(ii) Show that for g;j(x) = po j(x) — po,j—1(x), where po 1 = 0, the
representation g ; (x) = yo, ; ]_[f:_(: (x — x;) holds.

(iii) Conclude that po., (x) = Y"'_g yo.; [T/Zo (x — x0).
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Problem 29.2.10 Letxgp < x; < --- <x,andf € NForx e Rand0 < j <n
define

Hj(x) = (v = x))f ﬁ ( al )ZH.

al i—0 Xj — Xj
i#]

Show that for the derivatives of H; , the identities %H i6(Xm) = 8kedjm for 0 <
k <€and 0 <m < n apply.

Project 29.2.1 Implement the Neville scheme in non-recursive form and use it to
interpolate the function f(x) = (1 + 25x%)~! using equidistant nodes — 1 =
Xo < X1 < -+ < x, = 1 as well as Chebyshevnodes — 1 <7 <t < --- <
t, < 1 to evaluate the polynomial at the points x, = /8 and x, = /4 forn =
1,2,4,8, 16,32. Comment on your observations.

Project 29.2.2

(1) Write a MATLAB program to determine the coefficients of an interpolation
polynomial with respect to the Newton basis for given nodes xg < x; < --- <
X, and corresponding values yy, ..., V.

(i) Test your program for the functions f(x) = sin(wx), g(x) = (1 + 25x
and h(x) = |x| in the interval [—1, 1] using equidistant nodes and Chebyshev
nodes. Evaluate the interpolation polynomials at the points z; = —1 +
2j/100, j = 0,1, ..., 100 using the Horner scheme and plot the interpolation
polynomials forn = 1, 2, 4, 8.

2)—1

29.3 Interpolation with Splines

Problem 29.3.1

(i) Let 0 < a < b and x — g(x) be the linear function that interpolates the
function f(x) = x1/2 at the nodes a and b. Show that for the error e,, =
maxye[a,p] |8(x) — f(x)| the estimates e,, < (b — a)za’3/2/8 in the case
a > 0and e, < b'/?/4in the case a = 0 apply.

(i) Forn € Nand x; = i/n,i = 0,1,...,n, let f, € #1097, be the
interpolating spline function of f(x) = x!/? in the interval [0, 1]. Show that
maxyeqo, 1] | fu(¥) — f()| < n/2/4.

(iii) In which regions is the error estimate from (ii) suboptimal?

Problem 29.3.2 For the partitioning defined by the points x; = (i/n)*, i =
0,1,...,n, of [0, 1], let f,, € ZL0( T be the interpolating spline function of
f(x) = x'/2. Show that maxye[o,1] 1 fn(x) — f(x)] < cn~2 with a constant ¢ > 0
independent of n applies. Sketch f,, forn = 2,4, 8.
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Problem 29.3.3

(i) Show that for every interval [ag,a;] C R there are uniquely determined
polynomials g0, 90.1,¢1.0,91.1 € <73 such that q%,i(am) = 8jm0ke for
Jsk,€,m =0, 1. Draw the polynomials for the interval [0, 1].

(ii) Conclude that on each partitioning .7, with grid points xg < x; < - -+ < x, for
given values yo, y1,..., Y and ro, rq, ..., r, there exists a uniquely defined
spline s € .>1(.7,) with s(x;) = y; and s'(x;) = r;,i = 0,1,...,n, and
provide a representation formula.

Problem 29.3.4 Show that the cubic spline interpolation task with natural bound-

ary conditions is uniquely solvable by considering the linear subspace ,7"3&,2(%) =
(s € S32(F) : 5" (a) = 5" (b) = 0).

Problem 29.3.5 Let .7, be the partitioninga = xo < x| < --+- < x, = b and
let s € .#>2(.7,) be the interpolating cubic spline of the function values yy = 1
and y; = 0,7 = 1,2,...,n with natural boundary conditions. Show that s has
only finitely many zeros on each interval [x;_1, x;],7 = 1,2, ..., n, and provide a
possibly accurate upper estimate for the number of zeros on each of these intervals.
Sketch the function s.

Problem 29.3.6 Explicitly determine the interpolating cubic splines with natural
as well as Hermite boundary conditions s’(—1) = 0, s’(1) = 3, for the nodes
xi = —1+i/2and values y; = (—1)',i =0,1,2,...,4, and draw these.

Problem 29.3.7 Let .7, be a partitioning of the interval [a, b] and let s € .7 Lo(7)
and g € C'([a, b)) satisfy s(x;) = g(x;) fori =0, 1, ..., n. Prove the inequality

n Xi b
Zf Is'|? dx 5/ lg|? dx.
i=1 YXi-1 a

Problem 29.3.8 The functions B,, : R — R, m € N, are defined by the recursion

X+1/2
Bpi1(x) = / B, (¢) dt
x—1/2

with the initialisation Bo(x) = 1 for |x| < 1/2 and By(x) = 0 for |x| > 1/2.

(i) Show that B, is non-negative and By, (x) = 0 for |x| > (m + 1)/2.
(i) Show that, with the partitioning 7,41 of the interval [—(m + 1) /2, (m 4+ 1)/2]
defined by the points x; =i — (m + 1)/2,i = 0,...,m + 1 = n, for each
m € N a spline function B, € 5””’*”’_1(9,”“) is defined.
(iii) Determine the functions B, B, and B3 explicitly and sketch them.
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Problem 29.3.9 Forn € Nandi = 0,1,...,n the function B;, : R — R is
defined by

n . .
Bin(x) = (i)x'a — )"

(i) Show that the functions (Bo ,, B1,n, - .., Bn,n) define a basis of the polynomial
space &,.
(i1) Prove the formula B; ,(x) = (1 — x)B; n—1(x) +xBi_1 n—1(x).

Problem 29.3.10

(i) Let Py, Py, ..., P, € R™. Show that the mapping z : [0, 1] — R™,
" /n
2(1) = Z; <,->”“ - 0" P,
1=

has the properties z(0) = Py, z(1) = P, as well as z/(0) = n(P; — Py),
Z(1) =n(Py, — Py_1).

(ii) Construct points Py, P, P, P3 € R? so that the graph of the mapping z
approximates the quarter circle {(x, y) € R? : y=(1- x2)1/2, 0<x<l}as
well as possible.

Project 29.3.1 The MATLAB command plot(X,Y, ’r-*’) graphically represents
a polygonal chain defined by the vectors X and Y. If X = [xg, xq, ..., xn]T and
Y = [f(x0), f(x1), ..., f (xn)]T, a continuous, piecewise linear interpolation of
the function f is represented. The representation of the graph can be changed
in colour, line representation and marking with the optional argument r-*. Other
useful commands are:

hold on, hold off, clf, axis, xlabel, ylabel, legend

(i) Graphically illustrate the piecewise linear approximation of the function
f(x) = x'/2 on the interval [0, 1] with the grid points

@ x=i/n, (b x=3/n

for i = 0,1,...,n and n = 2,4,8,16, by comparing these with the
representation of f on a very fine grid.

(i) Write a routine for calculating an interpolating cubic spline with natural
boundary conditions. Test the routine with the partitions from (i) for the
function f(x) = sin(2wx).

(iii)) Generate meaningful graphics in each case and save them in a jpg or png file.
Comment on the results.
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Project 29.3.2

(i) Research the term Bézier curve and explain it in 5 to 10 lines.

(i) Use a drawing program (e.g., xfig under Unix or the online program Mathcha
(https://www.mathcha.io)) to draw two identical black ellipses in rectangles
with side lengths £; = 5.0cm and £, = 10.0cm.

(iii) Each quarter of the two ellipses should be approximated using different
methods such as a polygonal chain, a spline function, a Bézier curve , or a
composite variant. For each segment, a maximum of 3 or 5 interpolation or
control points should be used. In the case of composite curves, a position used
twice counts as one point. Use different colors for different approximations.

(iv) Which function achieves the best approximation? Define a suitable distance
concept for the curves and manually measure the corresponding errors.

(v) Export your graphic as a pdf file.

29.4 Discrete Fourier Transform

Problem 29.4.1

(i) Letn € Nand € € Z. Show that Y7—) ¢l®*>"/" = p holds, if n is a divisor of
¢,and Y {24 27/m = O otherwise.

(ii) Conclude that the Fourier basis (0°, @, ..., 0" 1) c C" defined by of =
[c_ugk, a),llk, e, a),(f’_l)k]T, k=0,1,...,n—1, with the n-th root of unity w, =
e27/™ has the property o* - w* = ndy,.

Problem 29.4.2

(i) Let the nodes zo,z1,-...,2n—1 € C be pairwise different and the values
Y0, Y1, - --» yn—1 € C arbitrary. Show that there exists a uniquely determined

polynomial p(z) = Bo + Biz + -+ + Bu—12" " with complex coefficients B;,
i=0,1,...,n—1,suchthat p(z;) =y;jforj=0,1,...,n— 1.

(i) Conclude the unique solvability of the complex trigonometric interpolation
problem.

Problem 29.4.3 Let wo, wy,...,wy,—; € C and n = 2m. Construct
Y0, Y1, ---» Yu—1 € C, so that, with the coefficients By, B1, ..., Bi—1 € C of
the solution of the corresponding complex trigonometric interpolation problem and
the function

m—1
qx) =Y Birme™,
k=—m

the interpolation property g(x;) = w; for j =0,1,...,n — 1l and x; = 27 j/n is
fulfilled.
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Problem 29.4.4 Calculate without using matrix-vector multiplications the Fourier
synthesis y = Tgf of the vector

B =10,+2,1,v2,0,—v2, -1, —/2]".

Problem 29.4.5

(i) Show that on the space of continuous, complex-valued functions CcY([0, 2r1;
C) through

2
(v, w) :/ v(x)w(x)dx
0

a scalar product is defined.

(ii) Show that the functions (¢ : k € 7Z) defined by ¢ (x) = e**, k € Z, x €
[0, 2], define an orthogonal system, that is, we have (@i, p¢) = Sk for all
k,l € Z withk # ¢.

(iii) Show that the orthogonality of the system (¢ : k € Z) is preserved when the
integral is approximated by a Riemann sum, that is, with respect to

2T n—1 _
(v, wh = = w(x)w(x))
j=0
withx; =2mj/n, j=0,1,...,n— L

Problem 29.4.6 Let (-,-) : V x V — R be a scalar product on the real, n-
dimensional vector space V and let (vo, v1, ..., v,—1) be an orthonormal basis of
V. Show that for every vector w € V we have

n—1

w = Z(w, vj)v;.

j=0

Problem 29.4.7 Given yo, y1,..., V-1 € R, let T and p be the solutions of
the real and complex trigonometric interpolation problems respectively. Show that
T(xj) = p(xj)forx; =2mj/n, j=0,1,...,n— 1, butin general T # p holds.

Problem 29.4.8

(i) Show that the solution of the real trigonometric interpolation problem is given
by the coefficients

2n—l 2n—1
=- i kxj), b¢=- i sin(€x
ay HZOyJCOS( xj) ¢ n;y] (£x;)
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fork = 0,1,....mand £ = 1,2,...,m — 1 with x; = 27j/n, j =
0,1,...,n—1,and n = 2m.
(ii) Conclude that the vectors

sy —17 < A A =0, ..,

fork=0,1,...,mand £ = 1,2, ..., m — 1 define an orthogonal basis of R".

Problem 29.4.9 letn,m € Nwithn = 2m, A, B € R"™ and C = AB. For
i,je{l,2}let A;;, B;j, Cij € R™>*™ be the sub-blocks of A, B and C, such that

A= |:A11 A12:|7 B [311 312:|7 c— [Cu C12:|.
Ayl Ap By Ba Cy C2

(i) Show that the computation of C with the standard method for computing the
product of matrices leads to @ (n'°228) multiplications.
(i1) Show that with
My = (A + A2)(Bi1 + B), M> = (A21 + A22) By,
M3 = Ay1(Bi2 — Bn), My = A2 (B2 — Bii),
Ms = (A1 + A12) B, Ms = (A21 — A11)(B11 + Bi2),
M7 = (A12 — An)(B21 + B2)

we have

Cii=M +My—Ms+ M7, Cip= M3+ Ms,
Co1 = Mo + My, Cp =M — M+ M3+ M.
(iii) Let n = 2K for a k € N. Construct a recursive method for computing AB that
uses 0(7%) = 0(n'°27) multiplications.

Remark This approach uses the fact that the computation of an expression (a +
b)(c + d) is less expensive than the equivalent expression ac + bc + ad + bd.

Problem 29.4.10
(i) Foray,by e R, £=0,1,...,m,let

T(x)= T+ Y (acsinex) + by cos(£x)).
=1
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Construct 8, € C, k=0, 1, ..., 2m, such that, with

m
qx) = Y Sryme™,

k=—m

there holds 7' (x) = ¢g(x) for all x € [0, 27]. 3
(i) Show that the function g is real-valued if and only if §,,_x = 8,4« holds for
k=0,1,..., m.

Project 29.4.1 Implement the complex Fourier synthesis as a recursive function
and use your routine to compute the Fourier transform of the vectors y € C" defined
by y; = frQmj/n), j =0,1,....,n—1,r = 1,2,3, with fi(x) = sin(5x) +
(1/2) cos(x) and

1, xel[r—1/4, 7+ 1/4], 1, x € [0, ),
S x) = f3x) =
0, x¢lr—1/4,7+1/4], -1, x¢€[n,27),
withn = 2%, s = 1,2,...,5, to compute. Graphically represent the associated

complex trigonometric polynomials. Use the MATLAB implementation of complex
numbers in the creation of your program.

Project 29.4.2 Let the function f : [0, 27 ] — R be defined by
X, x €0, ],

f(X)=[

2m —x, x € [m, 2m].

Use the MATLAB routine £ft to compute forn = 2%, s = 1,2,...,5, complex
coefficients (Bk)k=0.1,...n—1 and (8k)k=0.1,....n—1 such that for the functions

n—1 n/2—1
px) =Y Be®. q)= > Synpe™
k=0 k=—n/2
the interpolation property p(x;) = f(x;)orq(x;) = f(x;)for j =0,1,...,n—1
and with x; = 2mj/n is fulfilled. Plot the real and imaginary parts of the functions
p and g and discuss your results.

29.5 Numerical Integration

Problem 29.5.1 Use the representation of the Lagrange interpolation error
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e £ ,
f) = pl) = T ]E)u —x)),

to prove for the trapezoidal and Simpson’s rule that

b— 3

1 = Crrap (P = C 0 ooy,
(b —a)

1) = Qsim(N] = o= F Pl coan-

Problem 29.5.2 LetQ : C 0 ([a, b] — R be a quadrature formula with n+1 weights
and quadrature points (x;, w;);=o....n, Which is exact of degree n.

(i) Show that

,,,,,

b
w; :/ Li(x)dx

fori =0, 1, ..., n with the Lagrange basis polynomials (L;);o,...» defined by
the nodes (x;);=o0,...n-

(i) Show that in the case of exactness of degree 2n, we have that w; > 0 for
i=0,1,...,n.

Problem 29.5.3 Assume that the quadrature formula Q : C%a, b)) — R is
exact of degree 2¢ and the associated weights (w;);=o,....» and nodes (x;)i=0,..»
are symmetrically arranged with respect to the interval midpoint (@ + b)/2. Show
that Q is exact of degree 2q + 1.

Problem 29.5.4

(i) Let w € C%a,b) be a function that is improperly Riemann-integrable and
positive outside a finite number of points. Show that by

b
(f. 8o = / S()gx)w(x)dx
a scalar product on CY([a, b)) is defined.

(ii)) Show that the polynomials (P,),cN defined by the derivatives

dl’l
= 2l dxn

P(x) [(x* = D"]

are orthogonal with respect to the scalar product defined by the weight function
w(x) = 1forx € [-1, 1], that is for j # k we have (P}, Py), = 0.
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Problem 29.5.5 Let (f, g) — (f, g) be a scalar product on the space C%la, b)).
Show that with the initialisations pg(x) = 1 and p;(x) = x — By and the recursion
rule

pj+1(x) = (x — Bj)pj(x) —yjpj—1(x)

with the coefficients B; = (xp;, p;)/(pj, p;) and y; = (pj, pj}/(pj-1.Pj-1) a
sequence of pairwise orthogonal polynomials p; € &; is defined.

Problem 29.5.6

(i) Show that the function w(x) = (I — x2)~!/2 on the interval (—1,1) is
improperly Riemann-integrable.

(ii)) Show that the Chebyshev polynomials 7, (#) = cos(n arccos(t)), n € Ny, are
orthogonal with respect to the scalar product defined by the weight function
wx) =1 —x3H)~l2

Problem 29.5.7 Determine n 4 1 quadrature points and weights in the interval
[—1, 1], such that the resulting quadrature formula is exact of degree 2n + 1 for
n =0, 1, 2. Use the formulas to approximate the integral of the function x > x> in
the interval [—1, 1].

Problem 29.5.8 Let w : (a,b) — R be a weight function. Construct polynomials
() j=0,...,n using the Gram—Schmidt process such that 7; € &; for j =
0,1,....n, (mj, ) = dji forall 0 < j, k < n with j # k, (mj, p)o = 0
forall pe &;_jand j =1,2,...,n and the polynomials form a basis of &7,.

Problem 29.5.9

(i) Let f € C%(a, b]) and for a partition fineness & = (b — a)/N let T (h) be the
value of the composite trapezoidal rule, that is

N-1

T(h) = g[f(a) +2Y fla+in+f®)]

i=1

Show that the extrapolation T*(h) = (T (h)—2Y T (h/2))/(1—=27) of the values
T (h) and T (h/2) with a suitable parameter y leads to the composite Simpson
rule.

(i) For f € C*°([a,b]) and h > 0O let T(h) € R be the value of a composite
quadrature formula for the partition fineness 2 > 0 with error order &'(hY).
Construct a number 7*(h) using the values T (h), T (h/2) and T (h/4) that
approximates the integral of f with an error of the order &(h?*2).

Problem 29.5.10 We identify peripdic functions f € C ([0, 2w]) with functions on
the unit circle 9B (0) C C via f(e!?) = f(0) and set

2

1(f) = A f (%) de.
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Integrals over sets d B (0) are defined as line integrals with y () = re'? via

2

/ fw)dw = fy©)y'©¥)ds.
3B, (0) 0

Assume that f can be extended to a holomorphic function in B3(0), 7 > 1.

(i) Show that the composite trapezoidal rule is given by
2 ;
oV (f) =5 D fe ),
k=1

and that it can also be interpreted as a composite midpoint rule.
(ii) By Cauchy’s integral formula we have for z € Br(0) and 0 < r < 7 that

00
(0 1 f(w)
= n n’ n — = T ————dw.
f(Z) nX:(:)C . ¢ n! 2ri 3B, (0) (U) _0)n+1 w

Show that I (f) = 2mcp and [c,| < M,r~" with M, = maxyejg, ) | f(w)].
(iii) Show that

oN(f)=2m) e

£=0

and deduce that |QN (f) — I(f)| < 2aM,r—N(1 —r~M)~1 = 6G¢—V) for
l<r<T7.

Project 29.5.1 Use the composite trapezoidal and Simpson rules, as well as a
composite Gaussian 3-point quadrature formula, to approximate the integrals in the
interval [0, 1] of the functions

f(x) =sin(zx)e®, gx) =x'3

with step sizes h = 2=t ¢ =1,2,...,10. Calculate the error ej, in each case and
determine an experimental convergence rate y from the approach e, ~ cih? and
the resulting formula

 log(en/en)
log(h/H)

for two successive step sizes h, H > 0. Compare the experimental convergence
rates with the theoretical convergence rates of the methods and comment on your
results. Display the pairs (4, ep,) for the different quadrature formulas comparatively
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as polygonal chains graphically in logarithmic axis scaling using the MATLAB
command loglog.

Project 29.5.2
(i) Taylor’s formula implies that the quotients

fx+h) - fx)
B —

fa+h—fx-h
2h

dy f(x) = dp f (x) =
for a given step size h > 0 define approximations of f’(x) with the error
order 0(h) and € (h?) respectively. Check this property experimentally for
the example f(x) = tan(x) for x = 1/2 with the step sizes h = 2-¢,
£=1,2,...,15.

(i) Construct by extrapolation a quotient ZZ\,;* f(x), that approximates the derivative
f/(x) up to an error of the order ¢(h*) and repeat the calculations. What
are the advantages and disadvantages of approximating the derivative using
extrapolation?

29.6 Nonlinear Problems

Problem 29.6.1

(i) Calculate three steps of the Newton method for the function f(x) = arctan(x)
with the initial values xg = 1, 3/2, 2.

(i) Repeat the calculations for the damped Newton method x;4+; = x; —
wf (xx)/f (xx) with the damping parameters w = 1/2, 3/4.

Problem 29.6.2 Let f € ok (R) be convex, thatis forall x, y € Rand ¢ € [0, 1] we
have that f(tx + (1 —1)y) <tf(x)+ (1 —1) f(y), as well as strictly monotonically
increasing and let x* € R satisfy f(x*) = 0. Show that the Newton method
converges for every initial value xg € R.

Problem 29.6.3 Formulate sufficient conditions for the global convergence of the
damped Newton method, by considering it as a fixed point iteration with the
mapping @ (x) = x — a)Df(x)flf(x).

Problem 29.6.4

(i) Leta,b € R with a < b. Construct points ¢, d € (a, b) with ¢ < d, such that

for the interval lengths {1 = ¢ — a, {2 = b — c and £3 = d — c the relations

{3 13 {3 _ £

60 6 -6 6

hold. Consider the size g = €>/¢;.
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(i) Based on the previous construction, formulate an interval reduction method for
the approximation of minimum points, in which only one function evaluation
is necessary per iteration step and the interval length is always reduced by the
same factor.

Problem 29.6.5

(i) Letg € C'(R"), x € R" and o € (0, 1). Show that a number & > 0 exists, so
that with d = —Vg(x) # 0 we have

g(x +ad) < g(x) —oalld|*.

(i) Let g € C2(Ng(x0)). Show that the search directions dj of the descent
method converge to zero when a fixed step size 0 < o < 1/y with y =
mMaXyeN, (xg) ||D2g(x) || is used instead of the Armijo condition.

Problem 29.6.6 The Heron method approximates the square root a'/? of a number

a > 0 through the iteration x;41 = @ (x) with the function @ (x) = (x +a/x)/2.

(i) Show that @ is a contraction in the interval ((a/2)'/?, c0).

(i) Show that the Heron method coincides with the Newton method for the
function x — x2 — a and investigate sufficient conditions for the local,
quadratic convergence of the method.

(iii)) Show that the Heron method can be interpreted as a descent method for the
function g(x) = x + a/x.

Problem 29.6.7

(1) With fo = f1 = 1 the sequence of Fibonacci numbers is defined by f; =
fr—1 + fi—2 for all k > 2. Let o be the positive solution of the equation x% =
1 + x. Show that &' < f; < o* forall k > 0.

(ii) Let (ex)ken, be a sequence of positive real numbers such that eg, e; < 1 and
ex42 < exq1ex for all k > 0. Show that the sequence (ex)ken, is dominated by
a sequence (8x)r>0 that converges to zero of order «, i.e. we have e; < § for
all k£ € N and there exists a g € R with

lim sup §x+1/87 =gq.

k— 00

Problem 29.6.8

(i) Discuss the well-posedness of the secant method.
(i1) Show that for the approximation errors e = x* — x; of the iterates of the
secant method the relation

k1 _ g(xr) — g(xk—1)
exep—1  fOu) — flxk—1)
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holds with the function g(x) = — f(x)/(x — x™), provided both sides are well-
defined.

(iii)) Under what conditions is the right-hand side in the identity for exy1/(exer—1)
bounded and what can be inferred about the convergence of the method?

Problem 29.6.9 Show that the polynomial p(x) = x> — 2x> — 1 has exactly one
root x* > 2 and justify the fixed point equation @ (x*) = x* with @ (x) = 2+ 1/x°.
Prove that @ is a contraction on [2, oo) C R and calculate three steps of the fixed
point iteration. What accuracy is achieved after 3 steps? How many steps are needed
to achieve an accuracy of 1076?

Problem 29.6.10 For given g € C*>(R"), x; € R" and H; € R™" define g :
R" — R, d = g(w) + Vg(xi) - d + (1/2)d" Hyd.

(i) Provide sufficient conditions for the existence of a unique minimum point dy, €
R" of qk-
(i) Show that the iteration x4 = xi + di corresponds to the Newton method and
the descent method with fixed step size oy = «, provided Hy = D2g(xk) or
H; = al is used.
(iii) Interpret the iteration geometrically.

Project 29.6.1

(i) Experimentally investigate the convergence of Heron’s method for calculating
a square root, i.e. the iteration rule x4+ = (xx + a/xx)/2, for a = 3/2 and
various initial values xo € R.

(i) Repeat the execution of the commands sqrt(a) and (a*®8.5) or pow(a,®.5)

108 times with @ = 3/2 and discuss reasons for possible differences in
runtimes.
(iii) For a holomorphic function f : C — C with zeros 71,22, ...,2z, € C, the

complex plane can be partitioned into basins of attraction E; C C, which for
j=1,2,...,n,are defined by

E; = {z € C : Newton’s method with initial value z converges to z;}

as well as the remainder X = (C\U’}:1 E ;. Consider the function f(z) = -1
and use as initial values grid points z; = x¢ + iy, in the range [—1, 11?2 c C?,
which are arranged at a distance & = 1/200. Mark the points differently
according to their belonging to the basin of attraction of a zero and display
them graphically. Use the MATLAB commands shown in Fig.29.1 with a
suitably defined matrix C.

I [X,Y] = meshgrid(-1:h:1,-1:h:1);
» scatter(X(:),Y¥(:),15,C(:));

Fig. 29.1 Representation of differently coloured points



29.7 Conjugate Gradients Method 287

Project 29.6.2

(i) Implement the Newton and secant methods for finding the roots of a function
f :R — R in MATLAB and test it with the function f(x) = exp(x) + x> — 2,
the starting value xo € {—1, 0, 1} and the termination criterion |xz4+1 — x;| <
10712, Terminate the Newton method after 100 iterations if the termination
criterion is not met. Compare the number of iterations and the number of
correct decimal places for the iteration steps.

(i) Realise the root finding of f by a descent method for the function g(x) =
| £(x)|? and compare the convergence speed with that of the Newton method.

(iii) Use the Newton method to approximate a root of the mapping

‘R — R3, (x1, x2, x3) > X2+ x2 —e,3xy + 4x3 —\/g,xz — /4
1 2 1

How can the solvability be assessed and a meaningful starting value be
constructed?

29.7 Conjugate Gradients Method

Problem 29.7.1 For A € R™ and x,y € R”, let ||x||la = (x - (Ax))"/? and
(x, ¥)a = (Ax)-y. Show that (x, y) + (x, y) 4 defines a scalar product that induces
the norm || - || 4 if and only if A is symmetric and positive definite.

Problem 29.7.2 Let A € R™*" be symmetric and positive definite with eigenvalues
0 <Ay <Ay <--+- <Xy Show that for all x € R \ {0} the inequality

(x - Ax)(x - A" 1x) _ + )2
[l 14 T A

holds. Consider the case A1A, = 1 first and use the diagonalisation A = 0'DQ
and the elementary inequality ab < (a + b)?/4.

Problem 29.7.3 Let b € R", let A € R"*" be symmetric and positive definite and
let ¢(x) = (A~1(b— Ax)) - (b — Ax) for all x € R". For an approximation X € R",
the descent method uses the search direction d = —V¢ (X).

(i) Show that d=b-— i\f holds and determine the minimum point @ of the
function t = ¢ (X + td).
Tnew

(ii) Show that with the optimal & and X"¢% = X + &d we have

Id|* )

;new_x*sz_x*2<l_~ bl _
|| I = 1 = "13(1 - o
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(iii) Let k = condy(A) = A~! Jnax be the condition number of A. Use without

min

proof the estimate valid for all x € R" \ {0}

(x . Ax)(x . A_lx) < O\min + Amax)z
||)C||4 - AhminImax

)

to prove that

~ K—1y\ -
5 —la < (g )IF = 5"l

Problem 29.7.4

(i) Show that the function Ty () = cos(k arccost), t € [—1, 1], can be uniquely
extended as a polynomial on R and for || > 1 we have

1 1
Te() = S (1 + (% ~ n'2y* 4 S(— = 112y,
(i1) Show that for all s > 1 we have
1/sY2 4 1\k s+1 sVZ 4 1\k
2Gr) =n() =Gry)
2\sl/2 — 1 s—1 s2 1

Problem 29.7.5 Let0 < a < b and k > 0. Show that the problem

min { max |p(1)|: p € P, p(0) = 1}
tela,b]

has the unique solution

0= (") ()

where T is the k-th Chebyshev polynomial.
Hint: Assume that the statement is false and consider the zeros and extreme values
of the difference r = g — p for a suitable polynomial p € .

Problem 29.7.6 Use the CG method to determine a solution to the system of linear
equations Ax = b defined by

2 -10 0 1
-12 -10 1
A= 0 -1 2 —1}|’ b= 1
0 0 —-12 1



29.7 Conjugate Gradients Method 289

Start with xg = [1, 0, 1, O]T, calculate the Krylov space J#3(A, ro) = span{rg, Aro}
and compare it with the space span{dy, d1}. Also verify that A is positive definite.

Problem 29.7.7

(i) Deduce from known statements that for the approximate solutions (xx)x=0.1,...
calculated with the descent and the CG method, an estimate

k
x* — xxlla < cq"lIx™* — xolla

withe = 1,9 = 1—2condy(A) " '4+2¢€ andc = 2, g = 1—2condr(A) /2 4+2¢
with numbers 0 < & < condz(A)’2 and0 <¢ < condz(A)’1 applies.

(i) Show that log(l + s) =~ s for |s| < 1.

(iii) For &g0p > 0, let My = |log(&ss0p)|- Conclude that with the descent and the
CG method, about M, cond(A) or M, cond(A)l/ 2 many iterations are needed
to meet the termination criterion ||x* —xi|l4 < &s10p, if conda(A) >> 1 applies.

Problem 29.7.8 Let A € R™*" be symmetric and positive definite. For A-conjugate
vectors do, dy, ...,dr—1 € R"\ {0} and b € R", let f : R¥ — R be defined by

k—1

1 2

flao, o1, ..., 0—1) = EHb — A(xo + anidi) ‘A—l'
=

Calculate V f(ag, a1, ..., 0g—1).

Problem 29.7.9 Modify the Gram-Schmidt orthogonalisation process to determine
for a given symmetric and positive definite matrix A € R"*" a family (d; : i =
0,1,...,n — 1) of non-vanishing A-conjugate vectors.

Problem 29.7.10 Let A € R"*" be symmetric and positive definite. For x € R",
let ¢(x) = [|b — Ax||3_, /2 and x* € R" satisfy Ax* = b.

(i) Prove ¢ (x) — p(x™) = ||x — x*||z‘/2 and Vo (x) = —(b — Ax).

(i) Show thatd = —V¢ (x) is orthogonal to the level set N, = {y € R" : ¢ (y) =
a} for a = ¢(x) at the point x, i.e. for every C'-curve ¢ : (—¢, &) — R” with
c(t) € Ny¢ forall t € (—e, €) and ¢(0) = x, we have ¢/(0) - d = 0.

Project 29.7.1 Implement the CG and the descent method for the approximate
solution of the system Ax = b. Compare the number of iterations required by the
two methods using the example

2 —1
A= eRY™, b=h"| | eR"
e :
-1 2 1
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withn =10°,s =1,2,...,5,and h = 2/(n + 1). Choose the termination criterion
b — Axgll < h and as initial value xo = [0,0,...,0]T € R". Calculate the
quotient of the norms for two consecutive residuals, display these in a table and
comment on your results. Visualise the numerical solution graphically using the
command plot([-1:h:1],[0,x’,0]). The curve should approximate a function
u:[—1,1] = Rfor which —u” =1and u(—1) = u(1) = 0 hold.

Project 29.7.2 For n > 1, the Hilbert matrix H € R"*”" is defined by the entries
hij = 1/ + j — 1). The matrix H is symmetric and positive definite but ill
conditioned. In MATLAB it can be generated with the command hilb(n).

(1) Use the MATLAB routine cond to approximately determine the condition
number of the Hilbert matrix forn = 10°, s = 1,2, ..., 3, and experimentally
verify that cond(H) = €((1 + +/2)*"//n) holds.

(i) Implement the CG method and use it to solve the systems of equations Hx = b
withb; = Z;Zl hij,i =1,2,..,n,forn =105 =1,2,..., 4, with the initial

vector x = [0,0,..., O]T € R” and assess to what extent the convergence
statement for the CG method is sharp.

29.8 Sparse Matrices and Preconditioning

Problem 29.8.1 Show that if A € R"*" is a band matrix with bandwidth w € N,
i.e.a;j = Ofor |i — j| > w, then the factors of the LU and Cholesky decompositions
are also band matrices with bandwidth w, provided they exist.

Problem 29.8.2

(1) Let A, B € R™" be sparse matrices and b € R". Construct as efficient
as possible algorithms for the calculation of AB and Ab and determine their
complexity.

(i) Show that the product of two sparse matrices is generally not sparse.

Problem 29.8.3 Let A € R"*" with n = w? for a w € N be defined by

8, |i—j|=0,
aij = .
L, i —jle{l,w}

(1) Show that A is a sparse band matrix.
(i) Show that A has a Cholesky decomposition, the factors of which are not sparse.

Problem 29.8.4 Represent the matrix
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10034
02501
A=140013
20100
00760

in coordinate and CCS format and calculate Ax for x = [1,2,..., 5]T using the
coordinate vectors.

Problem 29.8.5 Let A, C € R"™*" be symmetric and positive definite.

(i) Show that the product C A is generally neither symmetric nor positive definite.
(i) Show that C A is positive definite with respect to the scalar product (x, y) +—>

(Cx) - y.
Problem 29.8.6 Let A € R"™”" be defined by a;; = 2 fori = 1,2,...,n and
ajj = —1fori,j=1,2,...,nwith|i — j| = landleth = [1,1,...,1]T € R".
For n = 5, perform as many iterations of the Gauss-Seidel method until the first
two decimal places of the entries of the solution vector no longer change. Use the
sparsity of the matrix A to perform the matrix-vector multiplications as efficiently
as possible.

Problem 29.8.7 Determine the condition numbers with respect to row sum norm

of the matrix
12
A=
i)

Problem 29.8.8 Investigate whether the row equilibration C A of a matrix A can
be formulated in the form LT AL and whether this also leads to a reduction of the
condition number.

Problem 29.8.9

and its row equilibration C A.

(i) Let A € R™" be symmetric and positive definite. Determine a Cholesky
decomposition Csgs = VVT of the symmetric Gauss-Seidel preconditioning
matrix Csgs = [(L + D)D~'(D 4 L)]~! with the decomposition A =
L+ D+ LT of A into diagonal and lower and upper parts.

(ii) Show that A — Cyg = —LD~'LT holds.

(iii) Calculate the difference A — CEG] g for

2 -10 0
-12 -10
0 -1 2 -1
0 0 —-12

A=
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1 U = zeros(m+2,m+2); U(2:m+1l,2:m+1l) = reshape(x,m,m)"';
» dx = 1/ (m+1); mesh(0:dx:1,0:dx:1,U);

Fig. 29.2 Plotting a function defined by a matrix U

Problem 29.8.10 Let A, M € R"*" be regular with the property that || — M A|| =
8 < 1 with respect to a suitable operator norm on R"*". Show that the estimates
IMA| < 1+8and |[(MA)~"| < 1/(1 — 8) hold and deduce cond(MA) < (1 +
8)/(1 —9).

Project 29.8.1 Implement the preconditioned CG method and test it for the linear
system Ax = b, where A € R"*" withn = m? and T,, € R™*" are defined by

T, —In 4 —1

o~ PR |
Iy Ty 1 4

and b € R" is given by b = (m + 1)72[1,1,...,1]T. Use the preconditioning
by row equilibration, incomplete Cholesky decompositions of different bandwidths
and the symmetric Gauss-Seidel preconditioning. Compare the iteration numbers for
m=2°-10,5 =0,1,...,4, and the termination parameter &5,y = (m + 1)_2/10.
Visualise the solution x € R™” of the equation system using the commands shown
in Fig.29.2. A smooth function in the domain (0, 1) should be displayed, which
vanishes on the boundary.

Project 29.8.2

(i) Define the matrices A = eye(n) and B = speye(n) in MATLAB and calculate
A*x and B*x for x = ones(n,1). Measure the time required for the dimen-
sionsn = 10°, s = 1,2, ..., 5. Explain any differences.

(i1) Construct using the MATLAB commands sparse and spdiags the band matrix
A e RV withn = w? forw € Nand a;; = 8anda;; = 1for|i —j| € {1, w}.
Check the occupancy structure of the matrix using the command spy (A) for
various numbers w. Solve the linear system Ax = bwithb =11, 1, ..., 1]T for
w = 10% and repeat this after executing the command A = full(A). Comment
on your observations.

29.9 Multidimensional Approximation

Problem 29.9.1 Show that the simplex T = conv{zog, z1, - . -, z4} defined by the
corners zo, 21, - - -, 2d € R is non-degenerate if and only if the vectors z; — z¢ for
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i =1,2,...,d are linearly independent and in this case, the volume is given by the
absolute value of det[z; — zo, 22 — 20, ..., 24 — 20]/d\.

Problem 29.9.2 Show that with the reference triangle T = conv{0, eq, ey} for
Jj, k >0 we have

. i 1k!
/s/tkd(s,t) ="
7 (+k+2)

and deduce the exactness of the partial degree 2 of the quadrature formula defined
by

Problem 29.9.3 For a non-degenerate simplex 7 C R? and functions f,g €
cl(T), let ]/‘\,Z;\ e C 1(7"\) be defined on the reference simplex T c RY by
f: f o @7 and g = g o @7 with an affine-linear diffeomorphism &7 : T > T.
Show that

/Vf~ngx=detD¢T/AVf~ (D®T Do) 'VZdz.
T T

Problem 29.9.4 Forn € N, leto* = (eV%27/"); o, 1 € C"fork =0,1,....n
and T, = (eljkzn/n)j,kzo,...,n—l e Cnxn,

(i) Show that an orthogonal basis is defined by Ekt = a)k(a)e)T for k, ¢

0,1,...,n — 1 with respect to the matrix scalar product defined by E : F =
-1 — . —T
> =0 Ejij Fjijps by proving E : F = tr(EF ).
(ii) Show that for any matrix ¥ € C"*" and B = (bre)k.¢=0,..n—1 = T, YT, we

have

n—1
Y = Z bkgEkZ.
k,£=0

Problem 29.9.5 For the matrix ' = (fjx) k=01 € R2%2 let the vector f € R* be
defined by f = [ foo, fo1, fi0, fn]T € R*. Show that the two-dimensional Fourier
transform of F and the one-dimensional Fourier transform of f lead to different
results.

Problem 29.9.6 For a non-degenerate simplex T = conv{zg, z1, ..., 24} and i
0,1,...,dletg; : T — R be the affine-linear function with the property ¢; (z;)
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5,‘j, j= 0,1,...,d. Show that
det|:1 .. 111 ... 1}

20 -+ Zi—1 X Zi4+1 --- Zn
det|:1 AU L T li|

20 ---Zi—1 Zi Zi4+l --- Zn
Problem 29.9.7 Let (7},) be a sequence of triangulations of the domain 2 C R?
with maximum mesh widths 4, > 0, for which #,, — 0 holds as n — o0.
Furthermore, assume that for all interior angles « of the triangles in .7, the estimate

o > oo > 0 holds with a constant g independent of . Show that a constant K € N
exists, independent of 7, such that each triangle in .7;, has at most K neighbours.

Problem 29.9.8 Let .7}, be a triangulation of 2 C R4, fecC 1(2) and .7, f e
Z1.0(7) the nodal interpolant of f. Show that

@i (x) =

If— ﬂhf”co(ﬁ) = h||vf||co(§)-

Problem 29.9.9 Let 0 : C%0,1]) — R be a quadrature formula with non-
negative weights and points (w;, t;);=o,..., and degree of exactness k > 0, and
let 94 : C°([0, 119) — R be defined by

QU =YY o > wiwiy e wiy f fiy by 1)

i1=0i=0 iq=0

.....

Show for the case d = 3, that

d
19 —0UNHl <>, sup |ifs — Ofsl.
i=1 %i€l0, 1141
where f5, forX; = (x1, ..., Xi—1, Xi+1, ..., xq) € [0, 1791 denotes the mapping
t> (X1, e Xic 1 by XigeDs o ooy Xd)-
Problem 29.9.10 Let T = conv{zg, 21,...,24} C RY d e {2, 3}, be a non-

degenerate simplex and let g : T — R be the hat function associated with the
vertex zo. Further, let Sp be the side of the triangle or tetrahedron opposite the node
zo and let ng be the outer unit normal to T on Sy. Show that

—I[Sol
d|T|

no

holds with the area or volume |T'| of 7' and the length or area | S| of Sp.
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Project 29.9.1 For d € N and a function f € C O([O, l]d), its integral on the cube
[0, 1]d should be determined numerically.

(i) Write a routine that implements the iterated trapezoidal rule Q”}r ap and test it
for d = 5 and the functions

d
filx) = Hxiz, fr(x) =sin(x1x2...xq).

i=1

Verify the order of convergence in the case of f; and determine the computa-
tional effort.

(ii) For uniformly and independently distributed random variables £!, £2, ..., &V
€ [0, 11¢ a Monte-Carlo quadrature formula is defined by

AN
Qe = D fE).
i=1

It can be shown that the expected value of 14(f) — Q%C( )] is of the
order 0'(N~'/2). Verify this convergence behaviour with the above examples
and determine the computational effort of Q%C (f). Realisations of suitable
pseudo-random variables can be generated with the MATLAB command
rand(d, 1).

(iii) Discuss in which situations the use of an iterated or a Monte Carlo quadrature
formula is advantageous.

Project 29.9.2 A common format for storing triangulations consists of a list Z €
RN*4 with the coordinates of the nodes z1, z2, . .., zy € R4, which also defines a
numbering of the nodes, and a list T € RLX@+D) which contains the numbers of
the nodes of the individual triangles or tetrahedra Ty, T», ..., Tr.

(1) Write a program that performs a uniform refinement of a given triangulation of
a two-dimensional domain in the above format. Each triangle should be divided
into four congruent sub-triangles by bisecting its sides, as shown in Fig. 29.3.
Test your routine on two simple examples. You can visualise triangulations in
MATLAB with the command trimesh(T,Z(:,1),Z2(:,2)).

Fig. 29.3 Refinement of a
triangulation by bisecting the
edges N
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(i) Implement a composite quadrature formula for a given triangulation of a
domain £ C R? that uses a Gaussian 5-point quadrature formula on each
triangle. Experimentally verify the exactness and convergence properties of the
formula using a sequence of uniformly refined triangulations and the function
f(x1,x2) = sin(2wx1) sin(27wx2) in the domain 2 = (—1, 1)2\ (0, 1)2.



Chapter 30 ®)
Problems on Numerics for Differential Creck o
Equations

30.1 Ordinary Differential Equations

Problem 30.1.1
(i) Show that the function y(r) = G~'(F(t) + c) resulting from the formal
equivalence
dy 1 1
— =fg(y) = ——dy=[fndt < —=[ 0
dt 8(y) 8(y)
with antiderivatives G (y) of 1/g(y) and F(¢) +c of f(¢) solves the differential
equation y' = f(#)g(y) and discuss sufficient conditions for the well-

posedness of this representation.

(ii)) How can initial conditions be taken into account and to what extent is the
solution unique?

(iii) Construct a non-trivial solution to the initial value problem y’ = y23,y(0) =
0.

Problem 30.1.2 Justify that the two-body problem for describing the flight altitude
z of a body near the Earth’s surface is described by the equation 7/ = —g, where
g ~ 9.812m/ s2 is the acceleration due to gravity. Use the sizes mgq i, = 5.974 -
10%* kg and rgqp 0 ~ 6.371 - 10 m.

Problem 30.1.3 We consider the string pendulum of length ¢ > 0, sketched in
Fig.30.1, at the end of which a weight of mass m is attached. Determine the
tangential acceleration a;,, to show that the deflection angle ¢ : [0, T] — R can
be described by the differential equation ¢” = —(g/£) sin(¢) with the acceleration
due to gravity g if friction effects are neglected. Simplify the differential equation
for small angles and derive the solution of the resulting equation.
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Fig. 30.1 Mathematical )
description of a string [
pendulum I}

N

tan

Problem 30.1.4 Sketch the phase diagram of the predator-prey model

yi=all —y)yi. ¥y, =B01— Dy

in the range [0, 5]° for the parameters « = 1 and 8 = 1. Use this to deduce the
occurrence of periodic solutions and the positivity of solutions for suitable initial
data.

Problem 30.1.5 Sketch the phase diagram for the equation of the undamped string
pendulum ¢” = —(g/£) sin(¢), by writing the differential equation as a first order
system. Draw various solution curves into the diagram and interpret them physically.

Problem 30.1.6 For a natural number n > 2 let y be a solution of the differential
equation y/ = f(1)y + g(t)y". Show that the function z = y!'™" satisfies a
differential equation that can be solved using the method of variation of constants.

Problem 30.1.7 Let y be a solution of the differential equation y' = f(¢)y +
g(t)y* + h. Show that with every solution z of the differential equation 7/ =
—(f(t) + 257(t)g(t))z — g(¢) and the formula z = 1/(y — ) further solutions
of the first differential equation can be obtained. To what extent is this observation
useful?

Problem 30.1.8 Construct the solution of the initial value problem my” + ry’ +
D(y —¢) =0, y(0) = £, y(0) = vy, which describes the deflection of a spring
pendulum of length £. Use the approach y(¢) = cz(t) + £, where z(t) = eM for a
A € C. Discuss qualitative properties of solutions for different ratios of D and r.

Problem 30.1.9

(i) Let A € R™™" be diagonalisable, i.e. there exist a diagonal matrix D € R"*"
and a regular matrix R € R™", such that A = R~!DR holds. Determine the
solution of the system of differential equations y' = Ay with initial condition
y(0) = yo.

(ii) How can the procedure be generalised if the Jordan normal form J = RAR™!
of the matrix A is given?

Problem 30.1.10 Determine non-trivial solutions of the differential equations y’ =
ty,y =sin(t)y, and y' = cos(t)e”.

Project 30.1.1 Differential equations can be solved approximately in MATLAB
with the routine ode45. In the case of the system y’ = f(z, y) in the interval [0, T']
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i function test_ode

> T =1; y_ 0 = [1,2];

3 [t_vec,y_vec] = oded5(Qf, [0,T],y_0);

. plot (t_vec,y_vec(:,1),'-r'); hold on;
s plot (t_vec,y_vec(:,2),"'-b"); hold off;

6
7 function dy = f(t,y)
8 A= [-2,0;0,-5]; dy = Axy;

Fig. 30.2 Numerically solving an initial value problem with MATLAB routines

with initial condition y(0) = yp this is realised for the mapping f(t,y) = Ay
in the MATLAB program shown in Fig.30.2. The routine ode45 provides a list
t_vec of time points 0 = 7y < ;] < --- < ty = T and a matrix y_vec with
corresponding approximations y(¢;) of the exact solution values y(f;) at the time
points #;,i = 0, 1, ..., N. Modify the program test_ode.m to solve the following
initial value problems approximately and to graphically display the approximate
solutions:

(i) the initial value problem of the predator-prey model
yi=ayi(l=y), yy=pBn01-1)
in the interval [0, T] with T = 10 and ¢ = 2, 8 = 1 and the initial conditions

y1(0) =3 and y2(0) = 1;
(ii) the initial value problem of the spring pendulum

my" +ry +D(y—4£)=0
in the interval [0, T]with T = 1andm = 1, D = 1, £ = 1 and various values

r € {0, 1, 5} and the initial conditions y(0) = £ and y'(0) = 1;
(iii) the initial value problem of the undamped pendulum

y" = —(g/0) sin(y)

with g = 1, £ = 1 and the initial conditions y(0) = 0 and y'(0) € {1, 2, 4, 8};
(iv) the initial value problem

y =Ny —(N+1Dy=0
in the interval [0, 1] with initial conditions y(0) = 1, y'(0) = —1, whose exact
solution is given by y(t) = e, for N = 1, 2, 10 and small perturbations of

the initial condition y(0) = 1.

Project 30.1.2 A point grid (x;, y;),i = 1,2, ..., N on a rectangular set [a, b] X
[e,d] C R2? for the step sizes dy,dy > 0 in x- respectively y-direction is
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i function test_phase_diagram

»a =1; b= 4; dx = 1/4;

s c=-3; d=23; dy = 1/6;

. [x,y] = meshgrid(a:dx:b,c:dy:d);

5 r = (x.72+y.72).7(1/2);

6 v = sin(r); w = cos(r);

7 quiver (x,y,v,w, 'c'); hold on;

s vo = 1.5; w0 = 2;

9 streamline(x,y,v,w,v0,w0); hold off;

Fig. 30.3 Representation of a phase diagram

generated in MATLAB by [x,y] = meshgrid(a:dx:b,c:dy:d). Here, x and y
are matrices that contain the x and y coordinates of the grid points. A discrete
vector field, defined by matrices v and w, by associating the vector (v;, w;)
with each grid point (x;, y;), can be visualised using quiver(x,y,v,w). An
integral curve of the discrete vector field starting at a point (vg, wq) is represented
by streamline(x,y,v,w,v0,w0). The MATLAB program shown in Fig.30.3
implements this for a simple example. Modify the program to display the phase
diagrams of the following differential equations and plot two corresponding integral
curves in each case:

(i) the initial value problem of the predator-prey model

vi=all—=y)yi, yy3=B01—Dn

witha =8 =1;
(i1) the initial value problem of the spring pendulum

my" +ry +D(y -6 =0

withm=r=D=0=1;
(iii) the initial value problem of the undamped string pendulum

y" = —(g/0) sin(y)

withg=1,¢=1.

30.2 Existence, Uniqueness and Stability

Problem 30.2.1 Let L, T > 0. Show that the space C 0([0, T1) is complete with
respect to the norm |[u||L = sup,¢[o 1) e‘zL’|u(t)|.

Problem 30.2.2 Solve the initial value problem y’ = y3, y(0) = yo, sketch the
solution and discuss the applicability of the Picard-Lindelof theorem.
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Problem 30.2.3 Construct infinitely many solutions of the initial value problem
y' = y!3, y(0) = 0, sketch some of them and discuss the applicability of the
Picard-Lindelof theorem.

Problem 30.2.4 Determine and sketch the iterates y*, k = 0,1,...,4, of the
Banach fixed point iteration

t
W) = yo + /O (s, Y (5)) ds,

using the starting function y°(r) = yo for the cases f(, y) = ay and yo = 1 as well
as f(t,y) =1+ y*and yo = 0.

Problem 30.2.5 Assume that the function y : [0, 7) — R is a solution of the initial
value problem y’ = f(y), y(0) = yo. Show that y is unique, provided f € C'(R).

Problem 30.2.6 Let f € C"([0,T] x R) and y € C!([0, T]) be a solution of the
differential equation y’ = f (¢, y). Show that y € c"+1([0, T1) holds.

Problem 30.2.7 Generalise the existence and uniqueness statements for differential
equations with delay effect, which for a delay parameter #, > 0 seek a solution of
the differential equation y'(¢) = f (t, y(), y(t — tv)) for t € (0, T) and the initial
condition y(t) = yg fort € (—1t1, 19).

Problem 30.2.8 Consider the differential equation y” + r~'y’ + 4ty = 0 with
initial data y’(0) = 0 and y(0) = yp. Use the power series approach y(t) =
Y o2 olan/n)", to represent the solution of the equation as a series. Discuss the
convergence of this series.

Problem 30.2.9 For a continuous mapping A : [0, T] — R"*" we consider the
system of differential equations y’ = A(¢)y.

(i) Modify the proof of the Picard-Lindelof theorem to show the existence of a
unique solution with the initial condition y(0) = yg for yp € R".
(ii) Show that the set L of all solutions of the system y’ = A(¢)y defines a vector
space.
(iii) Consider the mapping Eg : L — R”", y — y(0), and infer that dimL = n
holds.

Problem 30.2.10 Let g : R” — R be a continuously differentiable, non-negative
mapping and let f : R” — R” be defined by f = —Vg. Show that every solution
y : [0, T] — R”" of the initial value problem y' = f(y), y(0) = yo, satisfies the
identity

t
/0 1Y/ ()* ds + g(v(1)) = g(0)

for every ¢ € [0, T].
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Project 30.2.1 The altitude of a body in the Earth’s gravitational field, taking into
account frictional forces, is described at high speeds by the equation

my” (1) + nsign (y/()) [y’ (1) > = —mg

where n > 0 is a friction coefficient, for example, depending on the shape of the
body. Determine experimentally with the MATLAB routine ode45 values for 1 to
describe the free and braked fall of a parachutist, so that the free fall from a height
of 4km to a height of 1km takes about 60s and the subsequent parachute flight
to landing takes about 180s. Simulate with the parameters found different jump
heights and heights for triggering the parachute. What maximum average speeds do
you observe for the free fall and the parachute flight?

Project 30.2.2 Use the MATLAB routine ode45 to approximate and display the
two-body problem

mly//_y mymy »2 =W
! lyr = y202 y1 = yall’
” mipma Y1 — W
may, =y

Iyt — y21I? iyt — 2l

for different initial data and mass ratios m/m> € {1, 2, 10}. Construct both initial
data that lead to the existence of a solution defined for all positive times, as well as
initial data, for which the solution only exists in a finite interval.

30.3 Single-Step Methods

Problem 30.3.1 Lety € CZ(REO) and T > 0. For k € Ny define t; = kt and set
y* = y(t). Show that for the quantities
k k—1 k+1 k
_ y o=y -
dt ykz—v d;_yk=—y
T T

k=1,2,..., K — 1, the estimates

T
ldEyd =yl < = sup 1Y)
2 et £[0,7]

hold. What estimate can be proven for the difference |ZZ\, yk—y'(1)| with the quantity

diy* =



30.3 Single-Step Methods 303

k=1,2,...,K—1?

Problem 30.3.2 Let (y;)¢=0,...x be a non-negative sequence of numbers and
o, B> 0,suchthatfor £ =0, 1,..., K the estimate

-1
yesa+ Y By
k=0

holds. Show that y, < a(1 + ,8)/Z < aexp (K,B) for ¢ = 0,1,..., K. Infer the
discrete version of Gronwall’s lemma.

Problem 30.3.3 Use the explicit and implicit Euler method for the differential
equation y'(r) = 2ary(r) with step sizes T = 1/25, ¢ = 1,2,3, as well as the
initial value yo = 1 and ¢ = =3, to determine the approximate solutions of both
methods at time 7 = 1 and compare these with the exact solution. Comment on
your results.

Problem 30.3.4 For an increment function @ and zx € R, let z : [tk, fxr+1] & R
be the solution of the initial value problem z'(r) = f(z,z(t)), z(tx) = 7k, and
Zk+1 = 2k + TP (tk, 2k, Zk+1, T)- With this, the consistency quantities ¢ and & are
defined by

Z2(te+1) — 2k
= Z(tk+1) — %k
C(tky 2%, T) = — D (tk, 2k, 2(trv1), 7).

Assume that the increment function @ is uniformly Lipschitz continuous in the third
argument with Lipschitz constant L. Show that for T < 1/(2L) the equivalence

HNE (e, 21, O] < [ €k, 210 D] < |Gt 21, 0|

holds. Specify the constant ¢ which depends only on L.

Problem 30.3.5 Let f be a Lipschitz continuous function. Show that the implicit
Euler method

Yi+1 = Yk + Tf (k+15 Yk+1)

is consistent of order p = 1, that is, that |% (f, zx, T)| < ct with a suitable constant
c>0.

Problem 30.3.6 Let f € C2([0, T] x R). Show that the method

Yirt = Yk + [ f (e, v) + %(&f(tk, i) + 0y f (1, i) f (ts yi) |
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is consistent of order p = 2.

Problem 30.3.7 Show that the step size condition T < 1/(2M) of the error estimate
for single-step methods cannot be avoided in general for the implicit and explicit
Euler methods. Consider for this the equation y' = Ay with appropriately chosen
numbers A € R.

Problem 30.3.8 Provide a formula for the approximations (yx)k=o,1,... of the initial
value problem y' = Ay, y(0) = yo defined by the implicit and explicit Euler
methods. Sketch the exact and numerical solutions for three different values of A
and different time step sizes. Discuss in the case A < 0 the boundedness of the
approximations and the exact solution.

Problem 30.3.9 Determine numbers a, b, ¢, d € R, for which the explicit single-
step method defined by the increment function

D (1, vk, T) = af (e, &) + bf (ix + ct, ye + 1df (tx, Y1)

possesses the consistency order p = 2.
Hint: Justify and use the approximation f(t 4+ ct,y + dtf(t,y)) = f(t,y) +
O ft, yyer+0y f(t, ydtf(t, y)+0 (z2) and differentiate the differential equation.

Problem 30.3.10 Use the implicit function theorem to ensure the existence of a
unique solution yx| of the equation

Vi1 = Yk + TP (tk, Yo, Vi1, T)

under suitable conditions on the function @ and the step size 7.

Project 30.3.1 The MATLAB program shown in Fig. 30.4 implements the explicit
Euler—Collatz method defined by the increment function @ (#¢, yr, t) = f(&x +
t/2, yk + tf (tx, yx)/2) for the spring pendulum equation

y' +ry +D(y—£)=0

with the initial data y(0) = y¢ and y'(0) = vy.

(i) Experimentally investigate the dependence of the approximate solutions on the
parameters » and D.

(ii) Use the exact solution y(¢) = (vo/w)e ""/?sin(wt) with w = (D — r2/4)1/2
of the initial value problem for the special case r = 1/10, D =1, yo = £ =0,
vo = 1 and determine the approximation error |yx — y(¢x )| for the step sizes
t=2"%s=1,2,...,7, at the time tx = 100.

(iii)) Modify the program to implement the explicit and implicit Euler methods as
well as Heun’s method. Compare the qualitative behaviour of the different
approximate solutions for the time horizon 7 = 1000.
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I function spring_pendulum

> T =10; y.0 = 0; v_0 = 1;

v s = 5; tau = 2" (-s); K = floor(T/tau);
4+ y = zeros (K+1,2);

s y(l,:) = [y_0,v_01;
s for k = 1:K
y(k+1l,:) = y(k,:)+tauxPhi((k-1)~*tau,y(k,:),tau);
8 plot (taux (0:k),y(1:k+1,1),'r");
9 axis([0,T,-5,5]); drawnow;
10 end
11 D

=1; r = 1/10; omega = sqrt(D-r"2/4); t = Kxtau;
y_ex = ...
abs (y_ex-y (K+1))

do oo

5 funetion val = Phi(t,y,tau)

6 val = (f(t,y)+f(t+tau,y+tauxf(t,y)))/2;
.

11 function vec = f(t,y)

v r =1/10; D =1; ell = 0;

0 vec = [y(2),-rxy(2)-Dx(y(1l)-ell)];

Fig. 30.4 Numerical solution of the initial value problem for the spring pendulum

function predator_prey

> T = 10; tau = 1/100; K = floor(T/tau);
; alpha = 2; beta = 1;

4+ y = zeros(K+1,2);

s y(l,:) = [3,1];

s for k = 1:K

7 y(k+1,1) = y(k,1)+tauxalphaxy(k,1)*(1-y(k,2));
3 yv(k+1,2) = y(k,2)+tauxbetaxy(k,2)«*(y(k,1)-1);

9 plot (taux (0:k),y(1:k+1,1), 'b'); hold on;
10 plot (taux (0:k),y(1:k+1,2),'r"'); hold off;
1 axis([0,T,0,4]); drawnow;

» end

Fig. 30.5 Numerical solution of the initial value problem for the predator-prey model
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Project 30.3.2 The MATLAB program shown in Fig.30.5 calculates an approxi-

mate solution of the predator-prey model.

(i) Comment on each line of the program and identify the realised numerical

method.

(ii) Test various step sizes and observe the qualitative behaviour of the approximate

solutions. For which step sizes do meaningful results emerge?

(iii)) Modify a line of the program to obtain an implicit method. How does the

qualitative behaviour of the numerical solutions change?
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30.4 Runge-Kutta Methods

Problem 30.4.1 Determine the iterates (yk)x=0,1,... of the explicit Euler method,
the Euler—Collatz method and the classical Runge-Kutta method in the approx-
imation of the initial value problem y’ = Ay, y(0) = yg, by constructing an
expression g(tA) such that yr11 = g(tA)y, &k = 0,1,2,.... Determine the
order of convergence of the approximation errors |y(#x) — yk|, by using the identity
y(tir1) = e y(tx) and considering the difference e™ — g(tA) for the three
methods.

Problem 30.4.2 Derive sufficient conditions for the third order consistency of a
Runge-Kutta method in the case of autonomous differential equations.

Problem 30.4.3 Show, by constructing polynomial solutions of suitable initial
value problems, that the conditions Y ',y = 1, Yy yeee = 1/2 and
Yo Z'}’:l veBej = 1/2 are necessary for the consistency order p = 2 of a
Runge-Kutta method.

Problem 30.4.4 Determine a two-stage Runge-Kutta method of consistency order
p = 4, based on the Gaussian quadrature formula with the quadrature points
x0, x1 = 1/2 £ 1/(24/3) and corresponding weights wg = wy = 1/2.

Problem 30.4.5 Determine the Butcher tableau of the Runge-Kutta method defined
by the increment function

1
D(t,y, 1) = g(m +4n2 + n3),

m=fy), n=[fC+1/2,y+1m/2),
m=f(t+t.y+t(=n+2m)

and show that it has the consistency order p = 3.

Problem 30.4.6 Which quadrature formulas underlie the classical Runge-Kutta
method, the 3/8 rule and the Radau-3 method, and what degrees of exactness do
they possess?

Problem 30.4.7 Assume that the autonomous system 7/ = F(z), z(0) = zq, is
the equivalent formulation of the differential equation y' = f(¢, y), y(0) = yo,
obtained by introducing the auxiliary variable w with w’ = 1 and w(0) = 0. Show
that Runge-Kutta methods in both cases provide identical approximations of y.

Problem 30.4.8 Construct a Runge-Kutta method of consistency order p = 4
based on the Simpson rule.

Problem 30.4.9 Show for the case of autonomous differential equations that
the classical Runge-Kutta method defined by « = [0,1/2,1/2, 1]T, y =
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[1/6,1/3,1/3, 1/6]T and B € R with the non-trivial entries fo; = 1/2,
B3> = 1/2, Ba3 = 1 is consistent of order p = 4.

Problem 30.4.10

(1) Let A € R™*™ be such that || A]| < 1 with respect to an operator norm. Show
that the matrix I,, — A is invertible with (1, — A)_1 = Z;io A",

(i) Formulate the Newton method for solving the fixed point equation n = ¥ ()
for determining a coefficient vector n € R™ in a Runge-Kutta method and
discuss its well-posedness.

Project 30.4.1 The MATLAB program shown in Fig. 30.6 implements an explicit
Runge-Kutta method for solving a scalar differential equation y’ = f (¢, y), y(0) =

Yo-

(i) Document each line of the program.

(i1) Verify that the exact solution for the case f(z, y) = —2y+5cos(¢) and yg = 2
is given by y(¢#) = 2cos(t) + sin(z). Determine for the step sizes Tt = 277,
s =0,1,...,5, the approximation error |y(T) — yx| with T = tx = 10.

(iii)) Modify the program to implement the explicit Euler method, the Euler—Collatz
method, the classic Runge-Kutta method and the 3/8 rule.

(iv) Determine for all methods the approximation errors |y(7)—yg| attime T = 10
with the step sizes 7 = 27°, s = 0,1,...,5. Present these comparatively

function runge_kutta_expl
> T = 10; s = 2; tau = 2" (-s); K = floor(T/tau);

3y = zeros(K+1,1); y(1) = 2;

i for k = 1:K

5 yv(k+1l) = y(k)+tauxPhi((k-1)+tau,y(k),tau);
s end

7 plot (taux (0:K),y(1:K+1), 'b-0o'); hold on;

o function val = Phi(t,y,tau)

om = 2; alpha = [0,1/2]; beta = [0,0;1/2,0]; gamma = [0,1];
11 eta = zeros(m,1);

2 val = 0;

3 for ell = 1:m

14 dy = 0;

15 for j = l:ell-1

16 dy = dy+betal(ell, j)~*eta(j);

17 end

18 eta(ell) = f(t+tauxalpha(ell),y+tauxdy);
19 val = val+gamma (ell) xeta(ell);

0 end

» function val = f(t,y)
3 val = -2xy+5*cos(t);

Fig. 30.6 Implementation of an explicit Runge-Kutta method



308 30 Problems on Numerics for Differential Equations

as polygonal chains in a graph with logarithmic axis scaling, which can be
implemented in MATLAB with the command loglog.

Project 30.4.2 Write two MATLAB routines for the numerical approximation of
ordinary differential equations with general implicit Runge-Kutta methods. Use
both a fixed point iteration and the Newton method with an appropriate termination
criterion. Investigate the respective iteration numbers in the time steps for the
Radau-3 method using the example y’ = (1 4+ y?)!/2, y(0) = 0, in the interval
[0, T] with T = 4, whose exact solution is given by y(¢) = sinh(z).

30.5 Multistep Methods

Problem 30.5.1 For a step size T > 0 and time steps #; = kt, k € Ny, let values
wi € R be given.

(i) Construct the interpolation polynomial ¢ € 4%, defined by the interpolation
pairs (fx4¢, Wk+e)e=0,1,2 and integrate this over the interval [fx42, fx43] tO
obtain coefficients (8¢)¢=0,1,2 such that

Tk+3 2
/ g dt =1 ) Prwire.
173

+2 =0

(ii) Construct the interpolation polynomial ¢ € 42, defined by the interpolation
pairs (fx+¢, Wik+¢)e=0,1,2 and integrate this over the interval [fx41, tk42] to
obtain coefficients (8¢)¢=0,1,2 such that

T2 2
/ q(t)dr =7y Bewire.
1,

ket =0

Problem 30.5.2 Determine the maximum number p € N such that the identities

m m

Zaz =0, Z(agéq —ﬂgqe‘r]) =0, ¢g=12,...,p,
=0 =0

hold for the Adams-Bashforth and the Adams-Moulton method with m = 3 and
m = 2 respectively.

Problem 30.5.3 Show that the Adams-Moulton method is well-defined under the
condition 7||B||1L < 1, where L is the uniform Lipschitz constant of the function
f associated with the differential equation.
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Problem 30.5.4 Determine the consistency order of the /eap-frog method on the
one hand directly with an error estimate for the approximation of the time derivative
using y'(#x) ~ (y(fx+1) — y(tx—1))/(27) and on the other hand by checking the
general consistency criterion for multistep methods.

Problem 30.5.5 For a step size T > 0 and time steps #;y = kt, k € Ny, let values
wy € R be given. Determine the derivative p’(fx+,) of the interpolation polynomial
p € &y, for the interpolation pairs (fxt¢, Wr+e)e=0,...m Withm = 1,2, 3. Discuss
how a multistep method can be constructed with this.

Problem 30.5.6 Construct a multistep method by approximating the integral in the
representation

k2

y(tit2) = y(n) + f(s,y(s))ds

Tk

with the Simpson rule and determine the consistency order of the method obtained
in this way.

Problem 30.5.7 Show, by constructing suitable initial value problems, that the
sufficient consistency criterion for linear multistep methods

m

m
Dar=0, Y (et —Bqti') =0, g=12,....p,
=0 =0

is necessary.

Problem 30.5.8 Show that for each m > 1 there is exactly one linear m-step
method of consistency order 2m and none of consistency order 2m + 1. Use the
normalisation Byp = 1 for this purpose and formulate the general consistency
criterion as a system of linear equations A[a, E]T =bwithd@ = [a1,..., 0]
and ﬁ =[p1,..., ,Bm]T. Use the fundamental theorem of algebra to investigate the
matrix AT

Problem 30.5.9 Let a linear, explicit multistep method be defined by (ay,
The approximation yi,, is defined by yxy, = y,ii)m, where y,?_):m is calculated by
the iteration rule

m—1 m—1
it .
y;ﬁ’jm) =- Z CeYkte + T Z Be f (Gktts Yere) + B f (Tkm s y,?im)
=0 =0

with the initialisation y,i(_)gm = Vitm for

m—1

m—1
Ferm=— Y @eyvre +T Y Bef (thves yire)-
=0 =0
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Show that this defines an explicit multistep method of consistency order p =
min{pexpi + V, Pimpt}, Where peypr and pipmp; denote the consistency orders of the
explicit and implicit methods, respectively.

Problem 30.5.10 Investigate for which values z = TA € R you obtain bounded
approximations of the initial value problem y’ = Ay in (0, 00), y(0) = 1 with the
two-step methods defined by:

ay |« a | P Bi Bo
1 -1 0 0 32 | —1)2
1 -1 |0 |5/12 8/12 | —1/12
1 —4/3 (13 [2/3 |0 0

Write the methods in the form Y341 = BY and investigate the matrix B € R2x2,

Project 30.5.1 We consider the initial value problem y’ = f (¢, y) for ¢t € (0, T,
y(0) = yo, with f(r,y) = (1 + y*)'/2, yo = 0and T = 1. The exact solution is
given by y(¢) = sinh(z).

(i) Implement the Adams-Bashforth method.
(i) Use a fixed point iteration with a suitable termination criterion to implement
the Adams-Moulton method.
(iii) Realize the Adams-Bashforth—-Moulton method.
(iv) Compare the errors |y(T) — yg| at the final time tx = T of the three methods
for m = 2, 3,4 and step sizes T = 2=t ¢ =123,...,6, in three tables. As
initial values, you can use the function values of the exact solution.

Project 30.5.2 Write a short program for the algorithmic determination of the
consistency order of a given multistep method. Test it for the Adams methods with
m =1,2,3,4 steps as well as for the method with m = 6 and

1
[ag, a5, ..., 00] = m[147, —360, 450, —400, 225, —72, 10],

1
,B5, ..., = —[60,0,0,0,0,0,0].
[Bs, Bs Bol 147[ ]

30.6 Convergence of Multistep Methods

Problem 30.6.1 Let A € R™*™ be the diagonalisable companion matrix of the
difference equation defined by (a¢)¢=o0,... m With linearly independent eigenvectors
V1, V2, ..., Uy. Show that the sequence (yx)i>0 is a solution of the homogeneous
difference equation if and only if for the vectors Yx = [y, Yk+1s - - -» yk+m_1]T we
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have that Y, = Z?:l )J; yjvj, k > 0, with suitable numbers y; € R and the roots
A of the polynomial g(A) = A™ + A 1 AV da + .

Problem 30.6.2 Investigate the zero stability and consistency of the multistep
method yi42 — 4yk+1 + 3yk = =271 (t, yi)-

Problem 30.6.3 For (a¢)¢—o
difference equation

m With o, = 1 we consider the linear homogeneous

.....

m
Z agyr+e = 0.
=0

(i) Show that for m initial values yo, y1,..., yu—1 € R exactly one sequence
(yr)k>0 exists, which solves the homogeneous difference equation.

(i) Show that the homogeneous difference equation has m linearly independent
solutions (yx)k>0-

Problem 30.6.4 Let . € C be an s-fold root of the polynomial ¢(z) = z” +
12"V 4+ -+ + a1z + ap and let (Yk)k>0 be defined by y; = k" Ak with r € N,
r < s. Furthermore, for f € C!(R) and x € R the function Af € C°(R) is defined
by Af (x) = xf’(x).

(i) Prove the identity

m r m r
1k r v r—val _ 1k r VAT—V

E Oy Vite = A E <U)k E ol VA=A E <\))k A" g (A).

=0 v=0 =0 v=0

(ii) Letxg be an (r+1)-fold root of f € C"(R), that is, we have f(xg) = f’(xg) =
o= f(x0) = 0. Show that A’ f(xg) =0fori =0,1,...,7.

(iii) Conclude that (yi)r>o0 is a solution of the linear homogeneous difference
equation Y ;' a¢yk+¢ = 0 and discuss the boundedness of this sequence.

Problem 30.6.5 Let R € C™*™ be regular and let || - || be a norm on C”. Show that
by A > sup,cgm\ (o) IRAx||/|lx]| an operator norm on R™*™ is defined.

Problem 30.6.6 Investigate the zero stability of the Fibonacci sequence yxyp; =
YVk+1 + Yk and the Chebyshev recursion Ty12(x) = 2xTp41(x) — Ty (x).

Problem 30.6.7 Assume that the Jordan normal form of the companion matrix A €
R™>™ of a difference equation is real and the Dahlquist root condition is violated.
Show that then o(A) > 1 holds.

Problem 30.6.8 Specify the constants Cp, C1, C3 in the general convergence state-
ment for multistep methods and discuss in which situations the error estimation is
of practical use.
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Problem 30.6.9 Let f € C'([0,T] x R) with [3,f(t,z)] < C for all
(t,z) € [0, T] x R. Show that the Adams-Moulton, Adams-Bashforth, and Adams-
Bashforth-Moulton methods satisfy the conditions of the general convergence
statement for multistep methods.

Problem 30.6.10 Let J = T~ 'AT be the Jordan normal form of the matrix A €
R™*m with Jordan blocks J;, i = 1,2,...,r. For ¢ > 0, let D € R™*™ be the
diagonal matrix with entries dy; = e*~lfork = 1,2,..., m. Show that the matrix
J=D'IDis given by the blocks

i=1,2,...,r.
Project 30.6.1 Formulate algorithms for the systematic experimental analysis of
the zero stability of a difference equation, on the one hand by testing randomly
selected initial values and on the other hand by solving a suitable eigenvalue
problem. Discuss the reliability of the assessment determined in this way and test
your algorithms with the coefficients

[a27 o, aO] = []’ 49 _5]’

[(XZ, ay, 010] = [1’ _47 3]’

[a27 o, 010] = [15 07 _1]’

[oa, a3, 02, @1, ag] = [1, —48/25,36/25, —16/25, 3/25].

Project 30.6.2 The BDF methods (backward differentiation formulas) are given for
m > 1by

m
Z&Zyk+l = Tf (tktms Ykt+m)
=0
with the coefficients &, = »_7_; 1/j and
— — _1 m—~{ _ ,
G =0T ) j(m—ﬁ)
j=m—L

£=0,1,...,m— 1. Use the BDF methods withm =1, 2, ..., 7 for the numerical
approximation of the initial value problem y’ = f(z, y) in (0, T], y(0) = yp, with
f(t,y) = =2y + 5cos(t), yo = 1 and T = 1, whose exact solution is given by
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y(t) = 2cos(t) + sin(¢). Determine the experimental convergence rates at time
T = 1 with suitable sequences of time step sizes and the approach e; ~ ct?, so
that for two different step sizes it follows

y ~ log(er/er)/log(t/T').

30.7 Stiff Differential Equations

Problem 30.7.1 Let A € R>*? with eigenvalues A1, A € C. Draw the phase
diagrams of the differential equation 7/ = Az in a neighbourhood of the origin
for four typical situations characterised by

(@) A1, k2 € Rog, (i) A1, A2 € R, (i) A1, A2 € R, A <0, (iv) A1 = Az

Problem 30.7.2 Assume that a numerical method leads to bounded approximations
of the scalar differential equation y’ = Ay for every step size T > 0, provided
Re(A) < 0 holds. Furthermore, let A € R"*" be complex diagonalisable and the
eigenvalues of A have exclusively negative real parts. Show that the method is A-
stable.

Problem 30.7.3

(i) Show that the application of a linear multistep method to the differential
equation y’ = Ay leads to a homogeneous difference equation.

(ii) Define the concept of A-stability for linear multistep methods, so that it is
consistent with the definition for single-step methods in the case of the implicit
Euler method.

(iii) Investigate the A-stability of the methods defined by m = 2 and

[ao, a1, a0l = [1,—4/3,1/3],  [B2, B1, Bol = [2/3,0,0]
orm = 3 and

[o3, 02, ap, o] = [1, —18/11,9/11, =2/11],
[B3. B2. B1. Pol = [6/11,0,0, 0]

respectively.

Problem 30.7.4 Let A € R"*" be negative definite, i.e. there exists a number o >
0, such that z' Az < —a/|z||? for all z € R”". Show that the solution of the initial
value problem y’ = Ay converges exponentially fast to O for every initial value
yo € R".
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Problem 30.7.5 Let € R™, 8 € R™ and y € R™ be the coefficients of a
Runge—Kutta method. Show that the associated stability function is a polynomial or
rational function.

Problem 30.7.6 Investigate the Runge—Kutta method defined by the Butcher table

1/35/12/—1/12
1 3/4 1/4
3/4 1/4

for A- and L-stability.

Problem 30.7.7 Let the function f : R” — R”" be one-sided Lipschitz continuous,
i.e. for all z, w € R" we have

(f@) — fw),z—w) < Lllz — w|*

Show that the differential equation y’ = f(y) has at most one solution for every
initial value yo and discuss the well-posedness of the differential equations y’ =
—y3and y = y3.

Problem 30.7.8
(i) Let G € C!(R"). Show that G is convex if and only if

VG(2) - (w—2)+G(2) < G(w)

holds for all z, w € R”.
(i) Let G € C2(R"). Show that G is convex if and only if D?g(x) is positive
semi-definite for all x € R".

Problem 30.7.9 Peano’s theorem states that every initial value problem y’ = f(y),
v(0) = yo, with a continuous function f : R” — R” has a solution in an interval
(0, ¢) and ¢ > 0 can be chosen arbitrarily, provided the solution remains bounded.
Show that the initial value problem y’ = —VG(y) with a coercive function G €
CY(R") for every initial value yp € R” has a solution defined on all R-( and discuss

the applicability to the differential equation y’ = —y3.

Problem 30.7.10

(i) Let G : R — R be defined by G(z) = (1 — z%)2. Sketch the function G and
show that G is p-convex.

(ii) Assume G(x) > —c1 + c2|x|? with p > 1. Show that G is coercive and,
provided G is also continuous, has a minimum.

Project 30.7.1 We consider the initial value problem y’ = —a(y — cos(?)), y(0) =
0 in the interval [0, T] with T = 1 and @ = 50.

(i) Verify that the solution of the problem is given by
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o : —at
y(t) = m(sm(t) + acos(t) — ae )

(i) Solve the problem approximately with the explicit and implicit Euler method,
the trapezoidal method, and the classical Runge—Kutta method with the step
sizes T =27¢/10, £ =0, 1, 2, 3. Present the errors at time 7' comparatively in
a table.

(iii) Present the approximations for some step sizes and the exact solution in a graph
and discuss the results.

Project 30.7.2 We consider the initial value problem y’ = —ay3, y(0) = 1, in the
interval [0, T] with T = 1 and o = 200.

(i) Show that the initial value problem defines a gradient flow for a suitable
function G and determine the exact solution.

(ii) Test the explicit and implicit Euler method for the approximate solution of the
problem. Use the Newton method to solve nonlinear equations approximately.
Document your observations.

(iii) Test the semi-implicit Euler method

Vil = Yk — TOVE Vit

as well as the linearised implicit Euler method

Vir1 = vk — ra(f ) + OG0 Okt1 — 1)),

where f(y) = y?, and document your observations.
(iv) Experimentally determine for each of the above methods step sizes for which

the sequence (G( yk)) t—o._ g is monotonically decreasing.

30.8 Step Size Control

Problem 30.8.1 Let y; : [0,7] — R be the affine-linear interpolant of the
approximations calculated with the implicit Euler method for the initial value
problem y' = f(y), y(0) = yo, and let y € C'([0, T]). Show that y; converges
uniformly to y on [0, T'] as Tjyqx = maxg=1,.  x Tk — 0.

Problem 30.8.2 Let 3;,y, : [0,7] — R be the interpolants of a sequence
(Yk)k=0,...,xk With maximum step size T = maxi—1, . k Tk. Show that for k =
1,2,..., K we have that

sup [ (1) =y, (D) <t sup [y ()]
teltk—1,1] teltk—1,1]
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Problem 30.8.3 Lety_,y; : [0, T] — R be the piecewise constant and piecewise
affine interpolant of the sequence (yk)x=o.,.... x for the uniform step size ¢ > 0. Show
that for every function v € C 1([0, T1) the identities

K—1

T
/0 V'Y df ==Y (k1 — YOV + ykv(T) — yov(0)
k=0

and

T T
/ VY dt = —/ vy, dr + yxv(T) — yov(0)
0 0

hold.

Problem 30.8.4 Let y € CO([O, T1). Determine conditions under which, for a
given parameter § > 0, there exists a number 7 > 0 such that

lyt+1) =y@®)| <4

forallt € [0, T —t]. Show with an example that this does not generally hold without
additional assumptions on y.

Problem 30.8.5 Derive an a posteriori error estimate for the explicit Euler method.

Problem 30.8.6 Show for the case of an autonomous differential equation y’ =
f(y) with a Lipschitz-continuous function f : R — R, that the adaptive method
based on the a posteriori error estimate always terminates, i.e. the final time is
reached.

Problem 30.8.7 Lety. = f(3;) + R; and y) = f(y) in the interval (0, T) and
3:(0) = y(0). Show that for the error e(t) = y(t) — y; (t) we have that

sup le(r)] < max |R.(1)|exp(LT),
t€[0,T] tel0,7T]

and compare this estimate with other a posteriori error estimates.

Problem 30.8.8 Consider a numerical method of consistency order p. Construct
by extrapolation of approximations to the step sizes 7, t/2 and 7/4 a method of
consistency order p + 2. Discuss the total effort of the obtained method compared
to the use of the original method with the step size 3 in the case p = 1.

Problem 30.8.9 Determine the Butcher table of the method obtained by extrap-
olation of the implicit Euler method with step sizes t and t/2 and discuss its
consistency order.

Problem 30.8.10 Let f € Cl([O, T])and g € CO([O, T1) with f, g > 0 and ¢g >
0, such that f'(r) < co + (2(t) £ (1)) holds for all 7 € [0, T].
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(i) Show that foralla, b € Rand y > 0 we have ab < ya?/2 + b*/(2y).
(i) Show using the Gronwall Lemma that for every § > 0 we have

max F@®) = (f0) +coT + (3T/2) ,2[15}’}]8([)) exp (T/(26)).

(iii)) Prove without using the Gronwall Lemma that

max_f(t) <2f(0) +2¢oT + T? max g(t).
tel0,7T] t€l0,T]

(iv) Discuss the advantages and disadvantages of the estimates from (ii) and (iii).

Project 30.8.1 Implement the adaptive algorithm for step size control and test it
with the implicit Euler method for the initial value problems

y'(t) = —(y(t) — 100cos(r)), € (0,1], y(0) =0,
and

Y'() =20(1 — y(1)*)y'(t) = y(©), 1 €1[0,100], y(0)=1/10, y'(0)=0.

Use different parameters § > 0 for the condition |yx4+; — yx| < § and display the
variable step sizes as a function of time. Compare the effort and accuracy of the
adaptive method for calculating the approximations on a uniform grid. Use the fact
that the solution of the first initial value problem is given by y(¢) = 50(sin(¢) +
cos(t) —e™?).

Project 30.8.2 Implement the extrapolation of the trapezoidal method with step
sizes T and 7/2 and verify the improved consistency order using the example of the
initial value problem y’(z) = —y(t) + cos(z), y(0) = 0 in the interval [0, T] with
T = 1, whose exact solution is given by y(¢) = (sin(¢) + cos(t) — e~")/2. Display

...............

a graph.

30.9 Symplectic, Shooting and dG Methods

Problem 30.9.1 Formulate the kinetic energy mv?/2 and the potential energy mgh
in suitable polar coordinates to derive a Hamilton function for the pendulum.

Problem 30.9.2 Show that Newton’s law of inertia can be interpreted as a Hamil-
tonian system. Assume that the acting force is given as the negative gradient of a
potential.
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Problem 30.9.3 With a function V € C'(R), a Hamiltonian system is given by the
function H : RV*3 x RV*3 5 R,

112

2 1 5
H(q,p)—Z”pm. +3 Z V(llgi — g;ll)-

i=1 ! i

Show that the total momentum P and the total angular momentum L, which are
defined with the three-dimensional cross product as

N N
P=Y"pi L= qxpi
i=1 i=1

of the system are conserved.

Problem 30.9.4 Let J € R¥"*2" be defined by

L4

(i) Show that w : R x R — R, w(z1,22) = Z-II-JZQ, defines a skew-symmetric

bilinear form.

(ii) Let P be a parallelogram in R2, spanned by the vectors z; and z,. Show that the
area of P is given by |w(z1, z2)|. How is the sign of w(z1, z2) to be interpreted?

(iii) Construct a nonlinear mapping ¥ : R?> — R?, which is symplectic.

Problem 30.9.5 Determine all symplectic matrices A € R?*2.

Problem 30.9.6 To describe the path of a planet of mass m in the gravitational field

of a stationary sun of mass M > m we use the Hamilton function

Ilpl*  mM

H(g,p) = — —y——.
(g, p) . y”q”

(i) Assume that the motion of the body takes place in a plane and is described by
the function ¢ : [0, T'] — R?. Furthermore, let p = mq’. Use polar coordinates
(r, ¢) to show that

M
H(q.p) = %((r’)2 +(r¢)?) - 22

(i) Use the constancy of the angular momentum L= q X p, whose length is given
by L = mr2¢’, and the total energy H(q(t), p(t)) = Hp, to show that for the
radius as a function of the angle we have
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dr\2  2mr* yMm L?
() =2 e 20 22
do L2 r 2mr?

(iii) Prove that every ellipse {(x,y) € R? : (x/a)®> + (y/b)* = ¢} in polar
coordinates with respect to a focus can be represented by r(¢) = s/(1 +
e cos(¢)), ¢ € [0, 2], and show that

dr\2 ot 5 2s s
(@) =5(F-1+ T 5)
(iv) Conclude that the path of the planet is described by an ellipse.

Problem 30.9.7 Show that the midpoint method is symplectic, but in the case of
the Hamiltonian

|12

> 1 5
H(q,p)—znpm. t5 Z V(llgi —aq;l)

i=1 ! i,j

requires the solution of nonlinear systems of equations.

Problem 30.9.8 Show that the implicit Euler method is not symplectic.
Problem 30.9.9

(i) Show that the method

|:Qk+li| _ [Cik] n [ 817H(6]k+lvpk)i|
= T

Pi+1 Pk —0g H (qk+1, pi)
is symplectic.

(i) What disadvantages arise compared to the partitioned Euler method, where on
the right-hand side the expressions 9, H(gk, pr+1) and — 9, H(qx, pr+1) are
used?

Problem 30.9.10 Show that the discontinuous Galerkin method for £ = 1 leads to
a variant of the midpoint method.

Project 30.9.1 A ball of mass m = 10 g is to be shot vertically upwards so that it
reaches the ground again exactly after 10 seconds. Taking into account air resistance,
an initial velocity s is sought such that for the solution of the initial value problem

my" +nsignO)IY' P = —mg, 1€ (0,101, y©0) =0, (0 =uvo
we have y(10) = 0. Here g = 9.81m/s®> and n = 2 - 10~*kg/m. Use the

bisection method and the Newton method to solve the problem approximately. To
define a suitable starting value, you can first solve the problem neglecting friction
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effects. Test other friction coefficients and discuss the convergence behaviour of the
methods. Check the plausibility of your results.

Project 30.9.2 Use the explicit and implicit Euler method, the midpoint method
and the partitioned Euler method to simulate the pendulum described by the
Hamiltonian

1
H@, ¥) = sz — cos(®)

in the time interval [0, T] with T = 10. Display the trajectories ¢t +— (¢ (1), ¥ (1))
in the phase diagram and plot the total energy ¢ — H (¢ (¢), ¥ (¢)) as well as the
kinetic and potential energy comparatively for the methods and various step sizes.
Solve nonlinear systems of equations with the Newton method.



Chapter 31 ®)
Results from Linear Algebra Qe

31.1 Scalar Product of Vectors

On the vector space R”, the mapping

n
‘R" x R" - R, (v,w)r—>v-w=va=Zv,'w,-

i=1

defines a bilinear mapping, which is referred to as scalar product. The Euclidean
length of a vector is thus given by

ol =)' = (fu,?)”z.

i=1

Two linearly independent vectors v, w € R”" span a plane and with the angle o
between these vectors within the plane, we have

v-w = cos(a)lv]2llwll2.

Two vectors v, w € R” are called orthogonal, denoted by v L w, if v-w = 0.

31.2 Determinant of Square Matrices

In the case n = 2, an oriented area of the parallelogram spanned by two vectors
v, w € R? is defined by

det[v, w] = viwy — vLw;.
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More generally, the oriented volume of a parallelepiped spanned by the vectors
vy, v2,...,U, € R"is given by the determinant detV of the matrix V, whose
columns are the vectors vy, va, ..., v,. The sign of the determinant defines an
equivalence relation on the set of bases of R" and thus allows the definition of
a positive and negative orientation. The value of a determinant can be calculated
recursively with the Laplace expansion theorem, which states that for each i =
1,2, ..., n the identity

n
detV = "v;;(—=1)*/ det Vi;
j=1
holds, where V; i € R"=Dx(=1) jq obtained from V by deleting the i-th row and
Jj-th column and for every real number s € R the identity dets = s holds. For

triangular matrices R € R"*", thatis r;; = O foralli > j orforalli < j, one
deduces detR =r(1r22 ... -

31.3 Image and Kernel of Linear Mappings

For a matrix A € R™*", or the linear mapping x — Ax, x € R”, identified with it,
its image and kernel are defined by

ImA={weR":JveR", w=Av},
kerA ={v e R": Av =0}.

With this, the identities
R” =TmA +kerAT, R*=TImA' +kerA,

hold, where the decompositions are even orthogonal, that is for w = Av € Im A
and u € ker AT we have

wou=wu= (Av)Tu = (UTAT)u = UT(ATu) =0.
Thus, Im A is the orthogonal complement of ker AT, that is ImA = (ker AT)J—.
The rank of a matrix A is the dimension of the image of the induced linear mapping,
that is

rank A = dimIm A.

The rank of a matrix corresponds to the number of linearly independent column
vectors. Elementary arguments reveal that the rank of a matrix matches the rank
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of the transposed matrix. From the orthogonality of the above decompositions, the
formulas

m =rank A + dimkerAT, n =rank A + dimker A,

in particular, rank A = rank AT. For an endomorphism or a square matrix A €
R™*" it follows that it is bijective if and only if it is surjective, that is Im A = R”",
or injective, that is ker A = {0}. In this case, A is regular or invertible and it holds
that det A # 0.

31.4 Eigenvalues and Diagonalisability

Characteristic information about a matrix A and the associated linear mapping are
contained in the eigenvalues, which are the roots of the characteristic polynomial of
degree n

pa(t) =det(A —t1,).

A number A € R is an eigenvalue of A if and only if an associated eigenvector
v € R"\ {0} with Av = Av exists. The set of eigenvalues is also referred to as the
spectrum. Every triangular matrix R € R"*" has, taking into account multiplicities,
n eigenvalues, which are given by the diagonal entries of R. A matrix A € R"*"
is called diagonalisable, if an invertible matrix V € R"*" and a diagonal matrix
D e R™™" exist, such that V"' AV = D holds. In this case, A and D have the
same eigenvalues and these are given by the diagonal entries of D. Furthermore, the
column vectors of V are associated eigenvectors, since

[Avy, ..., Av,]l = Alvy, ..., o] = AV =VD =vy,...,v,]D
= [Avr, ..., Apugl.

This implies that A is diagonalisable if and only if there is a basis consisting of
eigenvectors of A. An example of a non-diagonalisable matrix is

A [O 1} ’
00
because the characteristic polynomial of A has the double root A = 0 and if A were
diagonalisable, there would be an invertible matrix V € R2*2 with V-1AV = 0,
which would imply A = 0. Symmetric matrices are always diagonalisable and there
exists an orthonormal basis consisting of eigenvectors, that is there exist linearly
independent eigenvectors vy, ..., v, with [Jvjll2 =1land v; - vy =0forl < j, k <
n with j # k.
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31.5 Jordan Normal Form

The characteristic polynomial of a matrix A € R"*" always has n complex roots,

however, the mapping defined by A : C" — C", z — Az is generally not
diagonalisable. Every matrix A € R"*" is however complex triangularisable, that is
there exist an invertible matrix 7 € C**"* and an upper triangular matrix J € C"*",
whose diagonal entries are the complex eigenvalues of A, such that A = T~1JT
holds. The existence of the Jordan normal form states that J can be chosen so that

N
J
J =
Jr
with block matrices J; € R%*% j =1, 2, ..., r, the so-called Jordan blocks, which
are associated with eigenvalues A¢,, i = 1,2, ..., r, through
Ag 1
= M
1
e

Here, the number of Jordan blocks associated with an eigenvalue A corresponds to its
geometric multiplicity, that is the dimension of ker(A — A[l,). The sum of the sizes
of the Jordan blocks of an eigenvalue A corresponds to its algebraic multiplicity, that
is the multiplicity of the root A of the characteristic polynomial p 4 (¢).



Chapter 32 ®)
Results from Analysis ST

32.1 Continuous and Differentiable Functions

The intermediate value theorem guarantees for every continuous function f €
CY%([a, b]) with the property f(a)f(b) < 0 the existence of a £ € [a, b], such that
f(&) = 0 holds. The Bolzano—Weierstrass theorem states that every function f €
C%([a, b]) attains its maximum and minimum, that is, there exist &y, Emin € [a, b]
with f(&nax) = f(x) > f(&nin) for all x € [a, b]. A function f : [a, b] - Ris
called differentiable at xo € [a, b], if a number L € R, a number § > 0 and a
function ¢ : [0, §) — R exist, such that

fx) = f(x0) + L(x — x0) + ¢(x — x0)

for all x € [a, b] with |[x — x¢| < 6 and limg_.o @(s)/|s| — O holds. In this case, L
is called the derivative of f at xg and we write f/(xg) = L. If f is differentiable at
every point xg € [a, b], and if the induced function xg > f/(xp) is continuous, then
f is called continuously differentiable and we write f € C!([a, b]). Inductively,
k-times continuously differentiable functions f € C k([a, b)) can be defined. For
each k € Ny the set C k([a, b]) is a vector space, on which

I fllc(apy = max —sup |fO(x)]

----- x€la,b]

the so-called supremum norm is defined. If a function f or one of its derivatives up
to order k is only continuous in the open interval (a, b), we write f € C k(a, b). In
this case, f or a derivative of f can be unbounded and the norm | || c# 4,51y May
not be defined.
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32.2 Mean Value Theorem and Taylor Polynomials

If f € C%a, b]) N C'(a, b), the mean value theorem states, or in the special case
f(a) = f(b) Rolle’s theorem, that there exists a £ € (a, b) with

- f®
@10 _ ),

-b

According to the fundamental theorem of differential and integral calculus the
identity
b
/ f'(x)dx = f(b) - f(a),
a
holds, and with the mean value theorem it follows

b
f(b) = f(a) :f flx)yde = f(E)® —a)

for a & € (a, b). More generally, for a function f € Ck'H([a, b]) and x¢ € [a, b]
Taylor’s formula states that

1
f(x) = f(xo) + f/(xo)(x — x0) + -+ + Ff(k)(m)(x — x0)* + Ri+1(x0)

k
=2
=0

| =

/9 (o) (x = x0) + Ri1 (x0),

~

with a remainder term Ry41(xo), such that the Lagrange representation

1 X 1
Ri1(x0) = 3 / 0 = o O )

holds with a number & € [xg, x]. The Taylor formula thus defines an approximating
polynomial T y, f of degree k with the property

k+1
||f( + )”CO([a,b])

e

||f - Tk,xef” COabl) =
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32.3 Landau Symbols

The approximation property of the Taylor polynomial can be written more concisely
for a function f € C*T1([a, b]) as

F&) = Thg f(X) = O(Ix — xo*Th),  x = xo.

Here, the so-called Landau symbol O'(|x —xg |k+1) stands for an expression ¢ (x —xq)
with a function ¢ : R — R, for which numbers § > 0 and ¢ > 0 exist, such that
|<p(s)|/|s|"+l < cforalls € R\ {0} with |s| < §. For all xg € [a, b] and x € [a, b]
with |[x — x| < § it therefore holds that

|f () = Tieoro f 0] <l = x0[H.
More generally, for f € C¥([a, b]) the property holds that
FO) = Teg f () = o(lx —x0"), x — xo,

where the Landau symbol o(|x — xo|k) represents an expression ¢(x — xo) with a
function ¢ : R — R that has the property lims_¢(s)/|s|¥ — 0. Based on the
Taylor formula, the Weierstrass approximation theorem can be proven, which states
that every function f € C%([a, b]) can be uniformly approximated by polynomials.
In contrast to the notation &'(n?) used, for example, in complexity analysis of
algorithms, here the limit s — 0 is considered. The most important cases of the
Landau symbols can be summarised as follows:

gn)=0m?), n—>00 <= 3Jc>0VneN, |gn)| <cn?,
Y(s)=0(s|P),s >0 <<= 3dc=0limsup ¥ (s)|/Is]” <c,

s—0

y(s) =o(s|”), s >0 < }LH})IW(S)I/ISIPZO-

Usually, it is clear from the context which limit is meant, so the addition n — oo,
s — 0 or x — xq is often omitted.

32.4 Fundamental Theorem of Algebra

A point xg € [a, l_)] is referred to as an ¢-fold root of a function f € C"([a, b)) if
r>+¢—1and f(f)(xo) =0forj=0,1,...,¢— 1. In the case of a polynomial p
of degree k > ¢ it follows that

p(x) = (x — x0)'r (x)
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with a polynomial » of degree k — £. If one identifies a polynomial p(x) =
arx® 4+ ap_1x*=' 4 ... + ay of degree k with real coefficients with a mapping
f:C—C, f2) =@z + ax_12F"" + .. . ap, then according to the fundamental
theorem of algebra the function f always has k roots z1, z2, . .., zx € C, which are
not generally pairwise different. If z; € C \ R is a strictly complex root, then the
complex conjugate number Z; is also a root. If polynomials p and ¢ are given, then
there exist polynomials s and r such that

px) =s()q(x) +r(x)

holds for all x € R. With the condition that the degree of the remainder r is truly
smaller than that of s, s and r are uniquely determined, provided p or ¢ is not
identically zero.

32.5 Multidimensional Calculus

A continuous mapping f : U — R™ defined on an open set U C R”" is called
(totally) differentiable at the point xg € U, if a linear mapping L : R” — R™ exists,
such that

f(x) = f(x0) = L(x — x0) + o(|lx — xo0ll2)

holds. In this case, the differential Df (xp) of f at the point xq is defined as the linear
mapping L and is identified with the representing, so-called Jacobian or functional
matrix. This matrix is also denoted by Df (xg) € R™*" and its entries are for i =
1,2,...,mand j = 1,2,...,n given by the partial derivatives

af;i . filxo+ hej) — f(xo)
9 i) = 1) = lim L j

Xj X—X0 h
If f is differentiable at every point xo € U, we write f € C 1 (U; R™). In the case
m = 1, thatis f : U — R, the gradient of f is defined by V f(x) = (Df ()T e
R”. With this definition, we have

Df)[s]=Vfx)-s
for all s € R”. If all partial derivatives of V f are continuously differentiable, then
the symmetric Hessian matrix D? f corresponds to the functional matrix of V f.

The multidimensional Taylor formula implies that for f € C?(U), U convex, and
x,xoeUa&é=txg+ (1 —1t)x € U,t €0, 1], exists, such that

1
f(x) = f(xo) + VF(x) - (x —x0) + §D2f(é)[x — X0, x — Xol.
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Here, D? f(&)[d, d] stands for the expression d"D? f(&)d. A necessary condition
for an extremum of a function f € C L(U) at the point xg € U is that V f(xg) = 0
holds. If additionally f € C 2(U) is fulfilled and D? f(xp) is positive definite, it
follows that xq is a local isolated minimum. In the case of a convex function, xg is
even a global, unique minimum.



Chapter 33 )
Introduction to C++ Chock or

33.1 Structure

The programming language C++ is a compiler-based language, which means that
programs created with a text editor like emacs or kate are translated into machine-
readable code with the help of the compiler. For this to work flawlessly, programs
must be written within a predefined framework. A C++ language program begins
with the integration of required predefined routines, which are provided in libraries
and classes, such as mathematical functions or input and output functions. This is
optionally followed by self-defined functions and at the end is the main program
beginning with main (). In the main program are variable definitions and commands
such as value assignments and function calls. The program on the left in Fig. 33.1
shows a simple example, in which the square of a number is calculated in a
subroutine. This is called from the main program with an argument. If the program
is saved as a text file under the name comp_square.cc, it can be compiled in the
same directory with the command

$ g++ comp square.cc -O comp_square.out

To start the program, use the command

$ ./comp_ square.out

33.2 Classes

The iostream class provides routines for input and output, while the cmath class
implements elementary mathematical functions. The basic arithmetic operations
+,-,%,/ can be used without the inclusion of libraries. To output text and
numbers, the command std: :cout << "text \n" or std::cout << xis used,
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1 // comp_square.cc 1 // simple_loop.cc

> #include <iostream> > #include <iostream>

; #include <cmath> 3 int main () {

i double square (double x) { | int i;

5 return pow(x,2.0); 5 for (i=0; i<5; i=1i+1){

6 } 6 std::cout << i << "\n";
7 int main () { 7 }

8 double x, vy; 8 std::cout << "\n";

9 x = 3.8; 9 if (i==5) {

10 y = square (x); 10 std::cout << "i is 5 \n";
11 std::cout << "square is "; 11 }

12 std::cout << y << "\n"; 12}

13} 3 //

Fig. 33.1 Elementary programs in C++

Table 33.1 Input and output functions, comments and elementary mathematical functions

cout, cin Output and input of text and variables

\n, endl Creation of a line break

J/*.0.%) )/ Multi-line and single-line comments

cos, sin, tan Trigonometric functions

exp, log, logl® Exponential function and logarithms

pow, sqrt Power and square root

floor, ceil, fabs Rounding to integers and absolute function

where \n causes a line break. The reading of values for a variable is done with
std::cin >> x. By the instruction

using namespace std;

the additions std: : can be avoided. Further commands are listed in Table 33.1.

33.3 Types

Every variable must be declared in C++, that is, before its use it is determined
whether it will hold an integer or a floating-point number, i.e. values of type integer
or double to be stored, see Table 33.2. The use of numbers and arithmetic operations
is also associated with types, for example, the expression 2 is interpreted as a
variable of type integer, while 2. is used as a variable of type double. The operation
2/3 is executed in C++ as a binary operation of the higher-value variable type, which
means

2/3=0, 2./3.~06, 2/3.~06, 2./320.6.

Variables can, for example, be converted with x = (double)a. Lists and matri-
ces of fixed size are referred to as arrays and can be initialised via double x[n]
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Table 33.2 Variable types in C++

int Integer machine numbers
float, double Floating point numbers of single and double precision
bool Boolean variables with values 0 and 1

if (condA) statementA else if (condB) statementB else statementC
while (cond) statement
for (init; cond; step) statement

Fig. 33.2 Case distinction, repetition and enumeration in C++

or double A[m][n]. The indexing of array entries starts with 0. Incorrect indexing
of arrays generally does not lead to an error message and must be excluded in the
program. When declaring a variable, a value can already be assigned, provided it is
not an array whose size is defined by a variable.

33.4 Control Statements

In C++, case distinctions, repetitions and enumerations can be implemented in the
formats shown in Fig. 33.2. Here, cond stands for a logical condition that can be
defined via a logical operation like a<b, while statement stands for a list of
commands enclosed by curly brackets. The expressions init and step stand for
an initialisation like i=0 and a statement of the kind i=i+1, whose execution is
repeated as long as the condition cond, for example i<5, is evaluated as true. First,
init is executed, then cond is checked, then the command block statement is
processed and finally step is executed, before the condition cond is evaluated
again and this process is repeated until cond is false. Occasionally, the use of the
do while loop is also useful, in which the condition is checked after rather than
before the execution of the commands.

33.5 Logical Expressions and Increments

Boolean variables, binary operations for comparing machine numbers, the logi-
cal conjunctions and, or and the negation are available for formulating logical
conditions, see Table 33.3. Comparisons are in brackets, for example (a<b).
Floating point numbers are only compared to machine accuracy and due to possible
disturbances, a test for exact equality of two floating point numbers is not very
meaningful. The command i=i+1 can be replaced in C++ by i++ or ++i and used
in arithmetic or logical expressions. In the case of ++1, the variable is first increased
and then the expression is evaluated, whereas when using i++, the variable is first
increased. The logical expressions (++i==1) or (i++==1) thus lead to different
truth values.
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Table 33.3 Logical operations as well as increment- and decrement functions

==, 1=, >, >=, <, <= Logical comparison of machine numbers

&&, | |,! Logical conjunctions and, or as well as negation
I+, ++1,1--, --1 Pre- and post-increment as well as -decrement
b+=x Short form for b=b+x

33.6 Functions

Functions can either return one variable or none. If a value is returned, the type
of the function value is placed before the function name, otherwise void is used.
Following the function name is a list of arguments in brackets. Arguments of
simple types like double and int are handled by call by value, meaning they are
copied into a local variable. The corresponding calling variable in the main program
remains unchanged. Arrays are not allowed as a return value of a function and are
therefore passed to functions as arguments by call by reference and are changed as
global variables by the subroutine. In the program shown on the left in Fig. 33.3, the
array x is passed to the function mod_vector and used there under the name vec.
After the function has run, the values of the array x are changed. The use of the
asterisk in the declaration of the function’s argument is important here.

// static_array.cc // functions.cc

> #include <iostream> > #include <iostream>

3 using namespace std; 3 using namespace std;

i+ void mod_vector (doublex vec) { i void fun_1 (double z) {

5 vec([0] = 2.0; 5 z = z+1.0;

6 vec[l] = 1.0; 6 }

7 } 7 void fun_2 (doublex z) {

s int main () { 8 *z = *z+1.0;

9 const int n = 2; 9}

10 double x[n]; 0 int main() {

1 x[0] = 1.0; 11 double x = 1.0;

12 x[1] = 2.0; 12 fun_1(x);

13 mod_vector (x) ; 13 cout << "x = " << x << "\n";
14 cout << "x[0] =" << x[0]; 14 fun_2 (&x) ;

15 cout << "\n"; 15 cout <k T = U kg » k "\ng
16 cout << "x[1] = " << x[1]; 16}

17 cout << "\n"; 7 //

18} 8 //

Fig. 33.3 Passing of arrays as well as simple variables and pointers to functions
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33.7 Pointers

A pointer is a variable that contains the address of a section in the computer’s
memory. The pointer allows for reading or changing the content of the correspond-
ing memory section. The size of the section depends on whether a floating point
number or integer machine number is to be stored there. If ptr is a pointer, then
the value of the variable that is found at the address contained in ptr is given by
the ordinary variable *ptr. Conversely, for an ordinary variable var, &var defines a
pointer that contains the address of the corresponding memory location. A pointer is
declared, for example, using double* ptr. When passing the address of a variable,
i.e. the corresponding pointer, to a function, then this variable is treated by call by
reference, so that the content of the variable is manipulated with global effects. The
above-described passing of arrays to functions follows this principle. In the program
shown on the right in Fig. 33.3, the function fun_1 does not change the value of the
variable x of the main program, while the function fun_2 increases its value. A
pointer defined in a function can be used as the return value of the function. In
this case, the function or its value must be declared using double*. The passing of
variables to functions via pointers avoids, for example, the copying of large data.

33.8 Dynamic Arrays

The above-described use of arrays reaches its limits when the dimension of the
arrays is only determined during the course of the program run. The vector
class provides tools for declaring vectors with entries of certain types and their
manipulation. The length of such vectors can then be changed arbitrarily. To be
able to use vectors with floating-point number entries concisely in programs, a new
variable type should be defined, such as the type doubleVec:

typedef typename std::vector<double> doubleVec;

In a corresponding variable declaration, the length of the vector and entries can
then optionally be specified. By

doublevVec x(5,1.);

a vector x of length 5 with floating-point number entries, which are initially set to
one, is defined. The length and the entries can be changed with the methods shown
in Table 33.4. Figure 33.4 shows as an example of application the input and output
of variable length vectors.

Table 33.4 Methods for
manipulating a variable of a
vector type

.size() Returns the length of the vector x
.resize(n) Changes the length of a vector
.push_back(val) | Appends the entry val to a vector

MM XX

.pop_back() Deletes the last element of a vector
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1 // dynamic_vectors.cc

> #include <iostream>

3 #include <vector>

typedef typename std::vector<double> doubleVec;
5 doubleVec scan_vector (doubleVec x) {

¢« for (int i=0; i<x.size(); ++1){
std::cout << "x[" << 1 << "] = ";
8 std::cin >> x[1i];

9 }
10 std::cout << "\n";
11 return (x) ;
2}
13 void print_vector (doubleVec x) {
14 for (int i=0; i<x.size(); ++1i){
15 std::cout << "x[" << 1 << "] =" << x[i] << "\n";
16 }
17 std::cout << "\n";
18}
v int main() {
20 int dim = 5;
21 doubleVec y(dim,1.);
print_vector (y);
std::cout << "dim = \n";
2 std::cin >> dim;
y.resize(dim);
%6 y = scan_vector (y);
2 print_vector (y);
2%}

Fig. 33.4 Input and output of vectors of arbitrary length

33.9 Working with Matrices

A matrix A € R™*" can be identified with a vector A € R™" by writing the columns
of A one below the other into a vector. We have, when numbering the entries with
the indicesi =0,1,...,m—1land j =0,1,...,n — 1, that

Aij = Aitjm.

With this identification, matrices in C++ can be treated like vectors. Occasionally,
it is preferable to treat matrices as two-dimensional arrays. If the size is known in
advance, they can be used like simple variables. The passage to functions is then
done by call by reference, as shown in Fig. 33.5.

33.10 Time Measurement, Saving and Packages

The time.h library provides the variable type clock_t, the command clock(),
and the constant CLOCKS_PER_SEC for performing runtime measurements. Their
use is illustrated in Fig. 33.6.
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1 // matrix.cc

> #include <iostream>
; const int m = 3;

+ const int n = 2;

339

5 void mod_matrix (double mat [m] [n]) {

= 7,08

6 mat [0] [0]
7 8.0;

mat[2] [1] =
s }

9 int main () {

10 double A[m] [n] = {{1.,2.},{3.,4.},{5.,6.}};

11 mod_matrix (A);

12 std::cout << "A[0][0] = " << A[0][0] << "\n";
13 std::cout << "A[2][1] " << A[2][1] << "\n";

14}

Fig. 33.5 Use of two-dimensional arrays

1 // runtime.cc
> #include <iostream>
3 #include <time.h>

1 // save_data.cc
> #include <fstream>
3 int main() {

4+ int main () { 4 std::fstream f;
5 double diff, dt, x = 0.33; double x[3] = {0.,1.,3.};
6 clock_t tl, t2; 6 f.open("var.dat",
7 tl = clock(); 7 std::ios::out);
for (int i=0; 1<100000; i++){ = if (f.good()) {
9 X*X; 9 for (int i=0; 1i<3; 1i++){
10 } 10 f << x[1] << "\n";
11 t2 = clock(); 11 }
12 diff = double(t2-tl); 12 }
13 dt = diff/CLOCKS_PER_SEC; 13 f.close();
14 std::cout << "runtime = "; 4}
15 std::cout << dt << "\n"; s //
16 } 6 //

Fig. 33.6 Runtime measurement and data storage

To save data in files, methods from the fstream class can be used. With the
variable type fstream and the open method, a pointer to a file can be defined,
into which the redirection operator << is then written. Once the writing is finished,
the file must be closed with close. The example program shown on the right in
Fig. 33.6 stores a vector in the file var.dat. This can be read by MATLAB with the
command load var.dat and assigns the values of the vector to the variable var.

The packages BLAS and LAPACK provide implementations of numerical methods,
for example for solving systems of linear equations and eigenvalue problems.
The package Eigen contains, for example, methods for efficiently solving sparse
systems of linear equations.
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34.1 Structure

MATLAB stands for Matrix Laboratory and is a commercial software package,
which provides implementations of a multitude of numerical methods and allows the
creation of your own programs. It is an interpreter language, meaning programs are
sequences of commands that are executed without compilation. The user interface
essentially consists of the command window, in which commands are entered, and
an editor, in which programs can be created. These are stored in the format prog.m,
and can then be started in a command line or from other programs using the
command prog. A command is terminated with a semicolon. If this is not done,
the result of the operation is displayed. Variables are by default defined as type
double, but they can easily be used like variables of type integer, for example when
indexing arrays. As a rule, variables are treated by MATLAB as matrices.

34.2 Lists and Arrays

Central objects in MATLAB are matrices or arrays and lists. These are defined using
square brackets. Entries of a row are separated by commas and different rows by
semicolons. Access to the entries of an array starts with index 1. Submatrices like
Ay = (aij)iel, jes can be extracted via index lists; boolean lists can also be used
instead of index lists. Table 34.1 shows some important operations.
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Table 34.1 Creation of lists and arrays

[a,b,...;X,y,...] Definition of an array (commas optional)
[a,b,...]1,[x;y;...] Definition of a row or column vector
A(L,3),ICH) Access to the entries of an array
a:b,a:step:b List from a to b with step size 1 or step
A(i,:),AC:, ) i-th row and j-th column of A

ACTI,D) Submatrix defined by lists / and J
ones(n,m) Array with entries 1

zeros(n,m) Array with entries 0

accumarray(I,X) Construction of an array by summation

Table 34.2 Elementary matrix operations

A’ Transposed matrix

A+B, A-B, A*B Addition, subtraction and product of matrices
inv(A), det(A) Inverse and determinant of a matrix

x = A\b Solution of the linear system Ax = b

eye(n) Identity matrix of dimension n

A.*B,A./B component-wise multiplication and division
diag(a) Extraction of the diagonal elements

[L,U] = 1uCA) LU decomposition of a matrix

L = chol(A) Cholesky decomposition of a matrix

[Q,R] = qr(A) QR decomposition of a matrix

[V,D] = eig(A) Approximation of eigenvectors and eigenvalues

34.3 Matrix Operations

The basic matrix operations are defined in MATLAB and can be used in a
canonical way, whereby the well-posedness of the operation should be ensured.
Matrix factorisations and approximations of eigenvectors and eigenvalues are also
available. Some standard routines are listed in Table 34.2.

34.4 Manipulation of Arrays

Various set-theoretic operations and rearrangements of arrays are available in
routines. These usually allow further arguments and output values, with which
the execution can be specified such as the formation of the row or column-wise
maximum. Table 34.3 shows some useful commands.
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Table 34.3 Manipulation of arrays
ACD

reshape(A,m,n)
repmat(A,m,n)

unique(A)

setdiff(A,B)

sort(A)

sum(A, 1), sum(A,2)

max(A), min(A)

size(A), length(I)

Table 34.4 Elementary functions

sqrt(x),x"y
exp(x), In(x)
sin(x), cos(x), pi
norm(x,p)

Rearrangement of an array into a column vector
Rearrangement of an array as an m x n array
Repeated arrangement of an array

Extraction of the elements of an array
Complement of A and B

Sorting of the entries of an array

Column and row-wise summation
Column-wise extreme values of an array
Dimensions of an array and length of a list

Square root and powers

Exponential function and logarithm
Trigonometric functions and constant
p-norm of a vector

34.5 Elementary Functions
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Numerical realisations of some functions are available under their respective names.
They can be applied to arrays, which usually realises the component-wise execution.
In exceptions like A"n, the component-wise execution is generated by A. “n. A brief

overview can be found in Table

34.4.

34.6 Loops and Control Statements

Loops can be realised over lists or control statements in an obvious way. The
comparison of variables can be applied to arrays. Figure 34.1 shows the structure
of the most important case distinctions and Table 34.5 shows some important

commands.

if (condA) statementA elseif (condB) statementB

else statementC end

while (cond) statement end

for i = I statement

Fig. 34.1 Case distinction, repetition and enumeration in MATLAB
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Table 34.5 Logical
operations

Table 34.6 Displaying of objects

disp(A)
plot(X,Y,’-%*")
hold on, hold off
mesh(X,Y,Z)
meshgrid
axis([x1,x2,...])
xlabel, ylabel
legend

figure(k)
subplot(n,m,j)
quiver, quiver3
trisurf
tetramesh

34 Introduction to MATLAB

a==b,a"=b Logical test for equality or inequality
a<b, a<=b Logical comparison of two numbers
E&&F,E| |F Logical and and or

tic ... toc | Measurement of CPU time

Display of the variable A

Polygonal chain through points (X (k), Y (k)) in R2
Display of multiple objects in one graphic
Display of a two-dimensional graph
Generation of a grid

Limitation of the displayed region
Labelling of the axes

Insertion of a legend

Selection of a graphic window

Display of multiple plots in one window
Visualisation of vector fields

Graph of a function on a triangular grid
Display of a decomposition into tetrahedra

34.7 Text and Graphic Output

If a program is started via a command line, intermediate results can be output in the
command window. Functions or other objects can be displayed in graphic windows
called figures. A selection of corresponding MATLAB commands can be found in
Table 34.6.

34.8 Creating New Functions

New functions with multiple inputs and outputs can be defined using the framework
shown in Fig. 34.2. The concluding end is optional. Functions should be saved as a
file with the name of the function, for example new_function.m. A file can contain
multiple function definitions, but only the first can be called from outside via the file
name. For this one has to be in the directory of the file or the path must have been
set up as a search path.

i function [yl,y2,..] = new_function(xl,x2,..)
; end

Fig. 34.2 Framework for a newly created function
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Table 34.7 Various commands

whos, clear Display and deletion of all variables

clc, clf Clearing of the command or graphic window
addpath Addition of a search path for functions
save, load Loading and saving of variables

Ctrl-C Termination of a program

fopen Opening of a file

printf Formatted output

strcat Concatenation of strings

34.9 Various Commands

In addition to some Unix commands such as cd and 1s, various commands for
managing the used files and directories as well as variables are available, which are
shown in Table 34.7.

34.10 Sparse Matrices

For matrices with many vanishing entries, the effort of solving associated linear
systems can be reduced, provided the matrices are defined using the matrix type
sparse. For index lists I C {1,2,...,m}and J C {1,2,...,n} and a vector X of
the same length, a matrix A € R™*" is defined by

aj= Y, Xk,

k:1(k)=i,J(k)=j

that is, for multiple occurring index pairs, the associated entries are summed. Access
to individual entries of a sparse matrix is generally inefficient. Some important
commands are listed in Table 34.8.

34.11 Examples

In Fig. 34.3, the input of various commands in the command window of MATLAB
is shown. The calculation of the determinant of a matrix according to the Laplace
expansion theorem leads to a recursion, the MATLAB implementation of which is

Table 34.8 Generation of

. sparse(I,J],X,m,n) | Composition of a sparse matrix
sparse matrices

speye(n) Identity matrix as a sparse matrix
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> A = [2,1;1,2]; b = [1;11; >> x = [pi/2,0,1];
>> x = A\b >> sin(x)
X = ans =
0.3333 1.0000 0 0.8415
0.3333
>> sqrt (-1)
>> x!'
ans =
ans =

0.0000 + 1.00001
0.3333 0.3333
>>
>> >>

Fig. 34.3 Execution of commands in the command window

i function val = laplace(A) i function x = bisect (a,b)
» n = size(A,1); » X = a; z = b;
3 val = 05 3 tol = le—-4;
4 if n == 1 4+ while z-x > tol
5 val = A(1,1); 5 c = (x+z)/2;
s else 6 if f(x)«*f(c)<0
7 for j = 1:n 7 Z = Cj;
I = 2:n; 8 else
) J = [1:9-1,j+1:n]; 9 X = C;
10 val = val+(-1)"(1+3)... 1w end
1 *A(1,3)... 11 end
12 *laplace(A(I,J)); 12
13 end 13 function y = f (x)
1+ end 4y = x"3+cos ((pi/2)*x);

Fig. 34.4 Calculation of the determinant according to Laplace (left) and implementation of the
bisection method (right)

shown in Fig. 34.4. An implementation of the bisection method and its application
to a function f(x) is also shown in Fig. 34.4.

The graphical representation of various functions in a graphics window is
illustrated by the program several_plots.m shown in Fig.34.5. The function
plot_bubble.m shown next to it evaluates a function f(x) defined on R? and
displays it graphically. The graphics generated by the functions are shown in
Fig. 34.6.

34.12 Free Alternative

Octave is a freely available software package, which is largely compatible with
MATLAB. However, some solution routines for ordinary differential equations are
not available in Octave.
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function several_plots

2 dx = .1;

» X = 0:dx:pi;

+ Y1l = sin(X); plot(X,Y1l,'-r');
5 hold on;

6 Y2 = cos(X); plot(X,Y2,"':k'");
7 hold off;

s legend('sin', 'cos');

o disp('press key'); pause; clf
021 = exp(X); plot(X,Z1,"'-+");
11 hold on;

2 22 = log(X); plot(X,Z2,"'-x");
13 hold off;

14 legend('exp', 'log') ;

i function plot_bubble
2 dx = .1;

s dy = .15

v [X,Y] =
meshgrid(-2:dx:2, -2

6 W = E£([X(:),Y(:)]);

7 Z = reshape (W, size (X)) ;

s mesh(X,Y,72);
9

0 function y = f (x)

1y = zeros(size(x,1),1);
o r =sum(x. 2,2).°(1/2);
3 I = r<1;

4 y(I) = exp(-1./(1l-r(I)

347

:dy:2);

5°2)) g

Fig. 34.5 Representation of one-dimensional functions (left) and a function defined on R2 (right)
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Fig. 34.6 Graphic outputs of the functions several_plots.m (left) and plot_bubble.m (right)
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Introduction to Python Qe

35.1 Structure

The programming language Python is an interpreter language that allows both the
interactive input of commands in a console as well as the execution of programs or
scripts, which are saved as a sequence of commands in a file. Python is well-known
for its good readability of programs, the implementation in common operating
systems and the availability of extensive libraries and modules. Variables in Python
do not need to be declared and can be used directly. It is important to maintain
block structures by indenting commands and marking their beginning with a colon.
In Fig.35.1 two simple Python programs are shown, which are saved as text files
with the specified filenames. They are for example started with the command

$ python3 comp_ square.py

from a console.

Typically, each instruction is written into a separate line. A longer command can
be continued into further lines with a backslash. To write multiple commands in one
line, they are separated with a semicolon. Programs usually start with the inclusion
of modules and the definition of functions.
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I # comp_square.py I # simple_loop.py
» def square (x): > import math
X_Sq = X**2 3 n = 10
| return x_sqg . delta_x = math.pi/n
s x = 3.8 s for i in range(n):
6y = square (x) 6 x = math.sin(i*xdelta_x)
print (y) print (i, x)

Fig. 35.1 Elementary programs in Python; indentations are essential components for marking
program blocks

35.2 Elementary Commands

The basic arithmetic operations and the input and output of variables are directly
available in Python. The assignment of values is done with an equals sign. The
command print displays variables and text flexibly and always ends automatically
with a line break. Single-line comments are marked with a hash, multi-line
comments with triple quotation marks. Further mathematical functions are provided
by the modules math and numpy, which are included via the command import. To
avoid cumbersome commands, a library can be renamed when included using as.
The output of floating point numbers can be formatted, for example by:

print ("x = {:>7.4f}". format (x))

Here, space for seven characters is reserved right-aligned and four decimal places of
the variable x are displayed. Table 35.1 provides an overview of some commands.

Table 35.1 Input and output functions, comments, importing of modules as well as mathematical
functions

print, input Output and input of text and variables
\n Generation of a line break

L # Multi-line and single-line comments
% Power and remainder in division
a+=b Short form for a=a+b

import [as] Inclusion of libraries

e, pi Euler’s number and 7

cos, sin, tan Trigonometric functions

exp, log, 1logl0® Exponential function and logarithms
pow, sqrt Power and square root

floor, ceil, abs Rounding to whole numbers and absolute function
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Table 35.2 Immediately int Integer machine numbers
available variable types in — - -
Python float | Double precision floating point numbers
bool | Boolean variables with values false and true
str Strings
list Lists
if (condA): statementA elif (condB): statementB else: statementC

while (cond): statement
for i in <enumerating object>: statement

Fig. 35.2 Control structures in Python: conditional, repetition and enumeration

35.3 Types

Python provides common data types for working with variables, see Table 35.2. The
conversion of a variable or object is done, for example, using i = int(str).

Although Python automatically performs type conversions, so for example 1/2
yields the result 0.5, Python relies on various C++ libraries where this is usually
not the case. Floating point numbers should therefore be specified with a point for
safety, suchas 1./2. or 1.0/2.0.

35.4 Control Statements

Conditional statements and loops in Python have a special structure. The
blocks to be executed are introduced with a colon. For for-loops, the
specification of an enumerating object is required, over which the iteration
is performed. For this, the command range(start,stop,step) is often
used, which generates a sequence of numbers. The specifications of the
start value and the step size are optional, if they are omitted, then O
and 1 are used. The stop value is not included in the list, for example

range (n) ©O,1,....,n—=1)

is an enumeration of the integers from 0 to n — 1. The syntactic structures of the
most important control statements are shown in Fig. 35.2.
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35.5 Logical Expressions

To formulate conditions in conditional statements and repetitions, logical expres-
sions are needed, which can be constructed using the comparisons and conjunctions
shown in Table 35.3.

35.6 Functions

Functions begin with the command def and can have no or several arguments. They
usually return one or more values with the command return. This command can
be omitted if a variable to be changed is passed by call by reference and directly
modified by the function. Lists are always passed in this way, so the explicit return
can and should be omitted. If a function does not contain a return command, the
value None is automatically returned. The exemplary use of functions is shown in
Fig.35.3.

35.7 Lists

Python allows the direct definition of lists or vectors without special commands
for declaration or changing their length. The elements of an array are separated by
commas and enclosed in square brackets:

x = [1.0,2.3,0.7]

Access to one or more elements of a list is also done using square brackets, the
indexing of lists starts with index zero. The formal addition of two lists using x+y
results in their combination into a larger list. The most important list operations are

Table 35.3 Logical operations for formulating conditions

==, 1=,>,>=,< <= Logical comparison of machine numbers
in Logical query for containment
and, or, not Logical conjunctions and, or and negation
| # example_function.py I # function_list.py
> def two_values(x,y): > def several_squares(v):
u = X*xy; V = X+y 3 for i in range(len(v)):
4 return u, v 4 v[ii] = v[i]*%*2
sa=2.0; b=1.0 s x = [1,2,3,41;
6 [c,d] = two_values(a,b) ¢ several_squares (x)
7 print(c,d) 7 print (x)

Fig. 35.3 Definition and call of functions with and without explicit return of values
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Table 35.4 Methods for editing lists

[] Empty list

[0]*n Create a list with n zero entries

x[i], x[-m], x[i:s:]] Access to individual or multiple elements

len(x) Returns the length of the list x

x.append(a) Appends an element at the end of the list

x.sort() Sorts a list

max(x), min(x) Maximum and minimum of a list

del x[i:j] Deletes a range of a list

| # read_vector.py I # numpy_matrices.py

» def scan_vector (x,n): » import numpy as np

for i in range(n): sm=5; n=3

4 str = input ("x[1i] = ") 4+ A = np.zeros((m,n))

x.append (float (str)) 5 X = np.ones(n)

6 x = [] s for i in range(m):

7 str input ("dim = ") for j in range(n):
s n = int (str) 8 A[i] [j] = i*n+]j
9 scan_vector (x,n) 9y = np.matmul (A, x)

0 print (x) 0 print (A, x,Vy)

Fig. 35.4 Reading a vector and matrix-vector multiplication

shown in Table 35.4. The program shown in Fig. 35.4 uses the list commands for
interactive input of a vector.

For working with matrices, the numpy module with the multidimensional fields
and matrix operations defined therein is recommended, a program example is shown
in Fig. 35.4.

35.8 Timing, Saving and Plotting

To determine the runtime of a program, the time module provides the function
t = time.time(), which returns an absolute time in seconds. To access a file,
the command open(’file.txt’,’r’) is used when data is to be read. If a file
is to be created or overwritten, the argument 'w’ is to be used, when appending
data the argument ’a’. The addition of the command with ... as serves for
error handling and ensures the correct closing of the file. The matplotlib module
provides routines for displaying graphs. Examples of the use of the commands and
modules can be found in Figs. 35.5 and 35.6. The module scipy contains methods
for the numerical solution of differential equations.
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| # runtime.py | # save_data.py

» import time » x = [1.0,3.0,6.0]

3 tl = time.time () 3 with open('var.dat','w') as f:
4+ for i in range (10x%x6): 4 for i in range(len(x)):

5 X = ixi # 1ix#2 5 f.write("{:>10.4£}\n".\
6 t2 = time.time () 6 format (x[1]))

7 print ("runtime = ",t2-t1) 7 #

Fig. 35.5 Runtime measurement and data saving in Python

# plot_function.py

> import math 56

3 import matplotlib.pyplot as plt s

4+ n = 100; x = [0]=n;

sy = [0]l*n; z = [0]*n; 939

¢ for i in range(n): 025

7 x[i] = i*2.0*math.pi/n 0.00

8 y[i] = math.sin(x[1i]) Siss

9 z[i] = math.cos(x[i]) 050

0 plt.plot(x,y,"-b",label="sin")

1 plt.plot(x,z,":k",label="cos") 02 —— sinlx) .. E
2 plt.legend(loc="lower left") -Loo cost) e
15 plt.show() 0 ! 2 3 N > e

Fig. 35.6 Plotting of functions in Python



Chapter 36
Example Programs in MATLAB, C++ and  gue
Python

36.1 LU Decomposition and Solving Triangular Systems

The calculation of the LU decomposition is pre-implemented in MATLAB and
the following commands determine the solution of a system of linear equations.
Alternatively, this can be done with the command x = A\beta .

>> A = [2,-1,0;-1,2,-1;0,-1,2]; b = [1;1;1];

>> [L,U] = 1lu(d);

>> y = L\b; x = U\y;

The MATLAB program lu_solution.m shown in Fig.36.1 calculates the LU
decomposition of a given matrix using the Crout algorithm, which is based on the
identities

i—1 i—1

Uik = Ajk — Zﬂijujk, O = (ari — Zﬂkjuji)/uii
—

j=1

The given matrix A is overwritten with the entries of the factors L and U, which is
possible due to the normalisation of L, i.e. the condition ¢;; = 1,i = 1,2,...,n.
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Fig. 36.1 Solution of a system of linear equations using an explicitly calculated LU decomposi-
tion in MATLAB (program available at https://doi.org/10.1007/978-3-662-70890-3_36)

function lu_solution
n = 3;

A= [2,-1,0;-1,2,-1;0,-1,2];

b = [1;1;1];

A = lu_crout(n,A);

y = solve_lower_normalized(n,A,Db);
x = solve_upper(n,A,y);

disp(x);

function A = lu_crout(n,A)

for i = 1:n

for k = i:n
s = 0;
for j = 1:i-1

s = s+A(i,J)*A(J,k);

end
A(i,k) = A(i,k)-s;

end

for k = i+1l:n
s = 0;

for j=1:i-1
s = s+A(k,J)*A(J,1);

end
A(k,1) = (A(k,1)-s)/A(i,1);
end
end
function y = solve_lower_normalized(n,L,Db)
y = zeros(n,1);
for j = 1:n
sum = 0;

for k = 1:j-1
sum = sum+L (j, k) *y(k);

end
y(J) = b(j)-sum;
end
function x = solve_upper (n,U,vy)
x = zeros(n,1);
for j = n:-1:1
sum = 0;

for k = j+l:n
sum = sum+U(Jj,k)*x(k);
end
x(3) = (y(J)-sum)/U(3,J);
end
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With the help of the decomposition, the system of equations Ax = b is then solved
by explicitly solving two systems of equations with triangular matrices, i.e.

Ax=b <<= Ly=b, Ux=y.

The forward substitution used in this process takes advantage of the fact that the
matrix L is normalised. In the subroutines, only the upper triangular part or the
strict lower triangular part of the passed matrix is used.

An implementation in the programming language C++ is shown in Fig.36.2.
It is particularly important to note that the indexing of vectors starts at zero. The
compilation and execution of the program is done with the commands:

$ g++ lu solution.c -o lu_solution.out
$ ./lu solution.out

The analogous implementation of the LU method in the programming language
Python is shown in Fig. 36.3. The program is started using:

$ python3 lu solution.py

Here too, the indexing of lists starts with index 0.

36.2 Polynomial Interpolation and Neville’s Scheme

Neville’s scheme allows the evaluation of an interpolation polynomial p defined by

nodes xg, X1, .. ., X, and values yo, y1, ..., ¥, at a point z via the formula
(z = X)) pi+1,j-1(2) — (2 — Xi+j) pi,j—1(2)
pi,j(Z) _ i)Pi+1,j i+j)Di,j
Xitj —Xi
forj =1,2,...,nandi = 0,1,...,n — j with the initialisation p;o(z) = i

fori =0,1,...,n. Then p(z) = po,n(z) holds. In Fig. 36.4, the MATLAB program
neville_scheme.mis shown, which calculates the values of the interpolation poly-

nomial at the points zx, k = 0, 1, ..., N, using the Neville scheme and subsequently
approximates the interpolation polynomial graphically by a polygonal line through
the points (zx, p(zk)), k =0, 1, ..., N. The calculation is done recursively with the

subroutine neville_recursive and also by successive evaluation of the above
formula in the subroutine neville_forward. When accessing arrays, the indices
are always increased by the value 1, as the index 0 is not allowed in MATLAB. The
final result is thus given by the entry P(1,n+1). Instead of using the array P, the
local variable y could also be overwritten in each step of the loop over variable j to
save memory.

In MATLAB, various interpolation methods are available. The function values
of a cubic spline interpolant can for example be calculated with the following
commands:
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1 // lu_solution.cc
#include <iostream>

s const int n = 3;
. void lu_crout (double A[n] [n]) {
5 double s;

6 for (int i=0; i<n; i++){

7 for (int k=i; k<n; k++){

8 s = 0.0;

0 for (int j=0; j<=i-1; J++){s = s+A[i][J]1*A[F][k];}
10 A[i][k] = A[i][k]-s;

11 }

12 for (int k=i+1; k<n; k++){

13 s = 0.0;
14 for (int j=0;j<=i-1;3j++){s = s+A[k][jI1*A[j][1];}
5 Alk][i] = (A[k][i]l-s)/A[i][i];

16 }

17 }

18}

v void solve_lower_normalized(double L[n] [n], double b[n],
20 double yI[n]) {

21 double s;

2 for (int j=0; j<n; Jj++){

3 s = 0.0;
24 for (int k=0; k<=j-1; k++){s = s+L[]]l[klxy[k]l;}
25 y[jl = bljl-s;

2 }
27}

s void solve_upper (double U[n] [n], double y[n], double x[n]) {
29 double s;

30 for (int j=n-1; j>=0; j—-){

31 s = 0.0;

32 for (int k=7j+1; k<n; k++){s = s+U[Jj][k]l*x[k];}

33 x[j] = (y[jl-s)/U[3]1[3]1;

3 }

5}

3% int main () {

37 double x[n], yl[n];

38 double A[n][n] = {{2.,-1.,0.},{-1.,2.,-1.},{0.,-1.,2.}};
39 double b[n] = {1.,1.,1.};

40 lu_crout (A);

1 solve_lower_normalized(A,b,y);

42 solve_upper (A,y,X);

43 for (int 1i=0; i<n; i++){

44 std::cout << "x[" << 1 << "] =" << x[i] << "\n";

46}

Fig. 36.2 Calculation of the LU decomposition and subsequent solving of a system of equations
in C++ (program available at https://doi.org/10.1007/978-3-662-70890-3_36)
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1 # lu_solution.py
> import numpy as np
3 def lu_crout (A,n):
4 for i in range(n):
5 for k in range(i,n):
6 s = 0.0

for j in range (i
8 s = s+A[i][]
9 A[i][k] = A[i] [k
10 for k in range(i+l,n
11 s = 0.0
12 for j in range(0,1i):
13 s = s+A[k][JI1*A[F][1]
14 A[k][i] = (A[k][i]-s)/A[i][i]
15 def solve_lower_normalized(L,b,y):
16 for j in range(n):

) :
]* [31 k]
1=
)=

17 s = 0.0

18 for k in range (0, j):

19 s = s+L[J] [k]xy[k]
20 y[jl = bljl-s

21 def solve_upper (U, y,x):
for j in range(n-1,-1,-1):
s = 0.0
24 for k in range(j+1,n):
s = s+U[J] [k]l*x[k]

26 x[31 = (y[31-s)/UL31[3]]

" mmn MAIN PROG mmn

8 n = 3;

» A = np.array([[2.0,-1.0,0.0],[-1.0,2.0,-1.01,[0.0,-1.0,2.011)
0 b = np.ones(n); y = np.zeros(n); x = np.zeros(n)

31 1lu_crout (A, n)

> solve_lower_normalized(A,b,y)
13 solve_upper (A, vy, X);

3 print (x)

Fig. 36.3 Calculation of the LU decomposition and subsequent solving of a system of equations
in Python (program available at https://doi.org/10.1007/978-3-662-70890-3_36)

>> x = [-1,-1/3,1/3,11; v = [-1,1,-1,1];
>> N = 100; z = -142[0:N]/N;

>> w = interpl(x,v,z,,spline,);

>> plot(z,w) ;

Here, the interpolation pairs (x;, y;)j=o0,...» are used to calculate an interpolating
cubic spline, this is evaluated at the points (zx)r—o,...n and finally graphically
displayed.

A C++ implementation analogous to the program neville_scheme.m is shown
in Fig. 36.5. Its compilation and execution is similar to the above C++ program. The
program uses dynamic lists for the nodes and values as well as evaluation points and
associated function values. A Python implementation is shown in Fig. 36.6.

.....
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function neville_scheme

> n = 3;

s x = [-1,-1/3,1/3,1];

+y =1[-1,1,-1,1];

s N = 20; z = zeros(N+1,1);
6 w_rec = zeros(N+1,1);

7 w_for = zeros(N+1,1);
s for k = 0:N

9 z(k+1) = -142%k/N;

10 w_rec(k+l) = neville_recursive(z(k+1l),x,y,0,n);
11 w_for(k+1l) = neville_forward(z(k+1),x,y,n);

» end

13 plot (z,w_rec, 'b-0'); hold on;
4+ plot (z,w_for, 'r-x'); hold off;

16 function val = neville_recursive(z,x,y,1i,3)

7 if § == 0

18 val = y(i+1);

v else

20 val = ((z-x(i+1))+*neville_recursive(z,x,y,i+1,3j-1)...

21 —(z-x(i+3j+1))*neville_recursive(z,x,y,i,3-1))/...
2 (2 (i+J+1)-x(i+1));
3 end

24
»s function val = neville_forward(z,x,y,n)
% P = zeros(n+l,n+1);
7 for i = 0:n
P(i+1,1) = y(i+1);
) end
3 for j = 1:n
1 for i = 0:n-j
P(i+1,3+1) = ((z-x(1i+41))*P(1i+2,3) ...
—(z=-x(1+3J+1))*P(i+1, 3)) /(x(i+j+1)-x(i+1));
34 end
s end

3 val = P(l,n+1);
Fig. 36.4 Recursive and direct implementation of the Neville scheme for evaluating the Lagrange

interpolation polynomial through the interpolation pairs (x;, y;), i = 0,1,...,n, in MATLAB
(Program available at https://doi.org/10.1007/978-3-662-70890-3_36)

36.3 Numerical Solution of Ordinary Differential Equations

The implicit Euler method approximates the solution of an initial value problem
y' = f(t,y), y(0) = yo, by the recursively defined sequence

Vir1 = Yk + Tf (k15 Yer1) = Yk + TP (t, Yk, Yit1, T).

This generally requires the solution of a nonlinear system of equations at each time
step, which under suitable conditions is approximated with the fixed point iteration

Zit1 =¥(z) =y + TPk, Yk, 2, T)
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1 // neville_scheme.cc
> #include <iostream>
» #include <vector>
4+ typedef typename std::vector<double> doubleVec;
s const int n = 3;
¢ double neville_recursive (double z, doubleVec x, doubleVec vy,
7 int i, int 7){
8 if (j==0){
9 return y[i];
10 }
1 else(
12 return ((z-x[i])xneville_recursive(z,x,y,i+1,3j-1)
13 -(z-x[i+j])*neville_recursive(z,x,y,1i,3-1))/(x[i+3]1-x[i]);
14 }
15}
s double neville_ forward(double z, doubleVec x, doubleVec y) {
17 double P[n+1] [n+1];
18 for (int i=0; i<=n; 1i++) {
19 P[i][0] = yI[i];
20 }
21 for (int j=1; j<=n; Jj++){
2 for (int i=0; i<=n-j; 1i++){
P[i][§] = ((z-x[i])*P[i+1][§-1]-(z-x[i+3]1)+P[i][§-11)/
24 (x[1+31-x[1]1);
25 }
26 }
27 return P[0] [n];
28}
0 int main () {
30 int N = 20;
31 doubleVec x(n+l), y(n+l);
32 doubleVec z(N+1), w_rec(N+1), w_for (N+1);

33 x[0] =-1.0; x[1] =-1.0/3; x[2] = 1.0/3; x[3] 1.0;
34 y[0] =-1.0; yI[1l] = 1.0; y[2] =-1.0; y[3] = 1.0;
35 for (int k=0; k<=N; k++){

36 z[k] = -1.042.0* (double)k/N;

3 w_rec[k] = neville_recursive(z[k],x,vy,0,n);

38 w_for[k] = neville_forward(z[k],x,Vy);

39 std::cout << "w_rec = " << w_recl[k] << ", ";

10 std::cout << "w_for = " << w_for[k] << "\n";

Fig. 36.5 Recursive and direct implementation of the Neville scheme for evaluating an interpola-
tion polynomial at various points in C++ (Program available at https://doi.org/10.1007/978-3-662-
70890-3_36)

or a Newton method for the equation
F@)=z—y— 1Pk Yk, 2,7) =0,
that is the iteration

zig1 = zi — F(z)/F'(z)).
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I # neville scheme.py
> import numpy as np
; def neville_recursive(z,x,y,1i,3):

4 if (j==0):
5 return y[i]
6 else:
return ((z-x[1i])*neville_recursive(z,x,y,1i+1,3j-1) \
8 —(z-x[1+3j]) *neville_recursive(z,x,vy,1i,3-1)) \

9 /(x[1i+3]1-x[1])
10 def neville_forward(z,x,y,n):

11 P = np.zeros((n+l,n+1))
12 for i in range(n+l):
13 P[1][0] = yl[i]

14 for j in range(1l,n+1):
15 for i in range(n-j+1):

16 P[i]1[J] = ((z-x[1])*P[i+1]1([3-11- \
7 (z-x[i+3])*P[i][3-11)/ \
18 (x[1+31-xT[1]1)

19 return P[0] [n]

0 """ MAIN PROG """

2rn = 3; N = 20

» x = np.array([(-1,-1/3,1/3,11)

sy = np.array([-1,1,-1,11])

24 z = np.zeros (N+1);

5 w_rec = np.zeros(N+1l); w_for = np.zeros(N+1)

s for k in range (N+1):

27 z[k] = -1+2xk/N;

28 w_reclk] = neville_recursive(z[k],x,y,0,n);
29 w_for[k] = neville_forward(z[k],x,y,n);

30 print ("w_rec = {:>7.4f}, w_for = {:>7.4f}" \

31 .format (w_rec[k],w_for[k]))

Fig. 36.6 Recursive and direct implementation of the Neville scheme for evaluating an interpo-
lation polynomial at various points in Python (Program available at https://doi.org/10.1007/978-3-
662-70890-3_36)

As an initial value zg, the solution from the previous time step is used. Both

approaches are implemented in the MATLAB program shown in Fig. 36.7. To take

into account the indexing of arrays in MATLAB starting with 1, a routine inc was

defined in the program, which increases a given number by the value 1. This allows

the iteration rule to be very directly transferred from the theoretical algorithm.
Various methods for the numerical solution of differential equations are already

pre-implemented in MATLAB routines, such as in the routine ode45, which returns

a list of time points and associated approximations. The following lines show an

example of the use of this routine. Other MATLAB routines for solving ordinary

differential equations with different accuracy, effort and stability properties are the

routines ode23, odel13, odel5s, ode23s, ode23t, ode23th.

>> T = 10; y 0 = 1;

>> £ = @(t,y)cos(2xt) *xy"2;

>> [t list,y list] = ode45(f, [0,T],y 0);

>> plot(t_list,y list)
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36.3 Numerical Solution of Ordinary Differential Equations

function implicit_euler
2y_ 0 =1; T = 10;
s tau = 1/100; K = floor(T/tau);

4 y(inc(0)) = y_0;

s for k = 0:K-1

6 t_k = kxtau;

7 y(inc(k+1l)) = fixed_point_iteration(t_k,y(inc(k)),tau);
8 % y(inc(k+1)) = newton_iteration(t_k,y(inc(k)),tau);

s end

0 plot (taux (0:K),y);

2 function z = fixed_point_iteration(t,y_old,tau)
3 z = y_old; diff = 1; eps_stop = tau/10;

1+ while diff > eps_stop

15 z_new = y_old+tauxPhi(t,y_old,z,tau);

16 diff = abs(z_new-2z);

17 zZ = zZ_new;

15 end

20 function z = newton_iteration(t,y_old, tau)
20z = y_old; diff = 1; eps_stop = tau/10;

» while diff > eps_stop

23 F = z-y_old-tauxPhi(t,y_old, z,tau);

24 dF = l-tauxdPhi_y(t,y_old,z,tau);

25 z_new = z-F/dF;

26 diff = abs(z_new-2z);

27 Z = Z_new;

2% end

30 function val = Phi(t,y_old,y_new,tau)
3 val = f(t+tau,y_new);

;3 function val = dPhi_y(t,y_old,y_new,tau)
3 val = df_y(t+tau,y_new);

i function val = f(t,y)
7 val = cos(2xt)*y 2;

» function val = df_y(t,y)

0 val = cos(2xt)*2xy;

41

» function val = inc (k)
3 val = k+1;

363

Fig. 36.7 Two implementations of the implicit Euler method for the numerical solution of an
ordinary differential equation in MATLAB; the solution of the nonlinear equation at each time step
is done via a fixed point or Newton iteration (program available at https://doi.org/10.1007/978-3-

662-70890-3_36)

An implementation in C++ of the implicit Euler method is shown in Fig. 36.8. A

corresponding Python program can be found in Fig. 36.9.
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// implicit_euler.cc
#include <fstream>

; #include <cmath>

#include <vector>
typedef typename std::vector<double> doubleVec;

s double f (double t, double y) {

return cos (2.0xt)*pow(y,2.0);

}

double Phi (double t, double y_old, double y_new,
return f (t+tau,y_new);

}

» void save_solution (doubleVec y, int K) {

std::fstream £f;
f.open("sol.dat",std::ios::0ut);
if (f.good()) {
for (int k=0; k<=K; k++) {
f << y[k] << "\n";

}
f.close();
}
int main() {
double y_0 = 1.0, T = 10.0, tau
double z, z_new, diff, eps_stop = tau/l0;
int k, K = floor(T/tau);
doubleVec y (K+1);
y[0] = y_0;
for (k=0; k<K; k++){
t_k = kxtau;
z = ylk];
diff = 1.0;
while (diff>eps_stop) {
z_new = y[k]+tauxPhi(t_k,y[k],z,tau);

diff = fabs(z_new-z);
z = z_new;

}

ylk+1] = z;

}

save_solution(y,K);

36 Example Programs in MATLAB, C++ and Python

double tau) {

1.0/100.0, t_k;

Fig. 36.8 Implementation of the implicit Euler method in C++; the nonlinear equations in the
time steps are solved with a fixed point iteration (program available at https://doi.org/10.1007/978-
3-662-70890-3_36)
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36.3 Numerical Solution of Ordinary Differential Equations 365

I # implicit_euler.py

> import numpy as np

3 import matplotlib.pyplot as plt

+ def f(t,y):

5 return np.cos (2*t) xyx*x2

s def Phi(t,y_old,y_new,tau):

7 return f (t+tau,y_new)

s def save_solution(y,K):

9 with open('sol.dat','w') as f:

10 for k in range (K):

11 f.write("{:>10.4f} \n".format (y[k]))
o """ MAIN PROG """

3y _0=1.0; T =10.0; tau = 1.0/100

14 eps_stop = tau/10; K = int (np.floor(T/tau))
5y = np.zeros(K+1); t_list = np.zeros (K+1)

6 y[0] = y_0; t_1list[0] = O

17 for k in range (K) :

18 t_k = kxtau

19 z = yl[kl]

20 diff =1

21 while (diff>eps_stop):

z_new = y[k]+tauxPhi(t_k,vI[k],z,tau)
23 diff = abs(z_new-z)

24 z = z_new

25 y[k+1] = z; t_list[k+1l] = t_k+tau

2% save_solution(y,K);

v plt.plot(t_list,y)

2 plt.show ()

Fig. 36.9 Implementation of the implicit Euler method in Python; the nonlinear equations in the
time steps are solved with a fixed point iteration (program available at https://doi.org/10.1007/978-
3-662-70890-3_36)
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Advanced Topics

Some important topics and concepts could not be included in this book. These
are suitable as presentation topics for a seminar following a lecture on numerical
methods.

Numerical Linear Algebra

Convergence of the O R method for eigenvalue problems

SOR method for the iterative solution of linear systems

Stability properties of Gaussian elimination

Perturbation results for eigenvalues of symmetric matrices
Lanczos method for eigenvalue determination

Aspects of the practical implementation of the Simplex algorithm

Numerical Analysis

Lebesgue constant in numerical interpolation
Barycentric Lagrange interpolation

Polynomial approximation with respect to least squares
GMRES method and Arnoldi process

Euler—Maclaurin formula and Romberg quadrature
Levenberg—Marquardt method

Clenshaw—Curtis quadrature

Chebyshev root finding method

CAD methods

Numerics of Ordinary Dif ferential Equations

Splitting methods and exponential integrators
Collocation, Gaussian and Radau methods
Analysis of extrapolation methods
Discussion of special Runge-Kutta methods
Dahlquist’s limit theorems
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368 Advanced Topics

* Error constants in multistep methods

* Stormer—Verlet method for Hamiltonian systems
» Lagrange formulations and variational integrators
* Algebraic differential equations
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A-conjugate, 138
Adams-Bashforth method, 202
Adams-Moulton method, 202
Adaptive algorithm, 230
Aitkin process, 124
Algorithm, 5

Approximate solving, 3
Approximation, 3

Armijo condition, 133
A-stable, 218

Asymptotic, 8

Asymptotic region, 128

B
Backward-differentiation-formulas, 202
Backward substitution, 17
Banach’s fixed point theorem, 67
Band matrix, 147

Bandwidth, 76

Barycentric representations, 91
Bisection method, 129
Bolzano—Weierstrass theorem, 327
Boundary value problem, 239
Butcher tableau, 193

C

Cancellation, xxviii, 6
Characteristic polynomial, 325
Chebyshev nodes, 92
Chebyshev polynomial, 92
Cholesky decomposition, 21

Cholesky decomposition, incomplete, 151

Coercive, 222

Column sum norm, 13
Complexity, 8
Computational effort, 3
Conditioning, 5, 79
Condition number, 14, 79
Conjugate gradient method, 141
Conjugate vectors, 138
Consistency, 183,203
Contraction, 67

Control procedure, 230
Convergence order, 128
Convex, 222

Corner, 46

Cycles, 49

D

Dahlquist’s root condition, 211

Data error, 3

Degree of exactness, 116

Descent method, 133

Determinant, 324

Diagonalisable, 325

Diagonally dominant, 72

Difference quotient, 181

Differential equation, autonomous, 170
Discontinuous Galerkin method, 240
Discrete search, 132

Discretisation error, 184

Divided differences, 90

Double precision, 82
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Euler method, 182

Euler method, partitioned, 236
Exactness, 195

Experimental convergence order, 124

Explicit method, 182
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Fast Fourier transform, 111
Feasible set, 45

Fill-in, 151

Fixed point iteration, Xx
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Fourier basis, 109
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Fundamental theorem, 328, 330
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Gaussian normal equation, 33
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Gauss-Seidel method, 71
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Gradient, 330

Gradient flow, 221

Gradient method, 133
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Gronwall’s lemma, discrete, 185

H

Hat function, 97, 160

Heat equation, 223

Hermite interpolation, 94
Heron’s method, xx

Hessian matrix, 330

Horner scheme, 91
Householder transformation, 36
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Implicit method, 182

Increment function, 182
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Initial value problem, 167
Integral curve, 170
Intermediate value theorem, 327
Interpolant, 161,227
Interpolation polynomial, 88
Interpolation task, 99
Interpolation, trigonometric, 107
Interval reduction, 132

Inverse iteration, 58

Irreducible, 72

Iteration, xxiv

Iterative method, 69

J

Jacobian matrix, 330
Jacobi method, 63, 71
Jordan normal form, 326
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Kepler’s barrel rule, 118
Kernel, 324

Krylov space, 140

L

Lagrange interpolation, 87
Lagrange polynomial, 87
Lagrange representation, 328
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Leapfrog method, 202
Least squares problem, 33
Linear program, 45

Local convergence, 127
L-stable, 221

LU decomposition, 18

M

Machine number, 3, 81
Machine precision, 82
Mathematical operation, 3
Mean value theorem, 328
Mesh width, 156

Method error, xxxii
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Moore—Penrose inverse, 43
Multi-body problem, 171,233
Multistep method, 201

N

Neville’s algorithm, 89, 357
Newton basis, 91

Newton-Cotes formula, 117
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Newton’s law of cooling, 167
Nodal basis, 160

Nodes, 87, 156

Norm, 11
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