
Raymond Lee

Natural 
Language 
Processing  
A Textbook with Python 
Implementation

Second Edition 



Natural Language Processing



Raymond Lee

Natural Language Processing
A Textbook with Python Implementation

Second Edition



ISBN 978-981-96-3207-7        ISBN 978-981-96-3208-4  (eBook)
https://doi.org/10.1007/978-981-96-3208-4

None

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore 
Pte Ltd. 2024, 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore

If disposing of this product, please recycle the paper.

Raymond Lee
Faculty of Science and Technology
Beijing Normal-Hong Kong Baptist University
Zhuhai, China

https://doi.org/10.1007/978-981-96-3208-4


This book is dedicated to all readers and 
students taking my undergraduate and 
postgraduate courses in natural language 
processing; your enthusiasm in seeking 
knowledge motivated me to write this book.



vii

Preface

�Motivation of This Book

Natural language processing (NLP) and its associated applications have flourished 
due to advancements in artificial intelligence (AI) over the past few decades. NLP 
applications include information retrieval (IR) systems, text summarization (TS) 
systems, question-and-answering (chatbot) systems, as well as recent developments 
in large language models (LLMs) and generative AI (GenAI). These topics are prev-
alent in both industry and academia, offering varied routines that significantly 
enhance a wide range of everyday services.

The objective of this book is to provide readers with foundational NLP concepts 
and knowledge through 14  h of step-by-step workshops. These workshops will 
guide participants in practicing various core Python-based NLP tools, including 
NLTK, spaCy, TensorFlow, Keras, transformer, and BERT technology, to build their 
own Python-based NLP applications.

�Organization and Structure of This Book

This book is structured into two main parts: Part I—Concepts and Technology, and 
Part II—Natural Language Processing Workshops with Python Implementation in 
14 Hours. In Part I, the first ten chapters lay a solid foundation in natural language 
processing (NLP) concepts, exploring key topics such as N-gram language models, 
part-of-speech tagging, syntax analysis, semantic representations, and latest 
advancements in transfer learning and transformer technology. Each chapter builds 
on the preceding one, leading to an understanding of major NLP applications and 
the evolution of large language models and generative AI, while also addressing 
ethical considerations in AI.

Part II consists of seven practical workshops that provide hands-on experience 
with Python implementations relevant to the concepts discussed in the first part. 
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Starting with an introduction to the Natural Language Toolkit (NLTK), the work-
shops guide readers through various NLP tasks such as N-gram modeling, senti-
ment analysis, and use of transformers like BERT. Each workshop offers step-by-step 
instructions, empowering readers to apply their knowledge in real-world scenarios, 
including the creation and deployment of a chatbot system. This structured approach 
balances foundational theory with practical application, making it suitable for learn-
ers eager to advance their skills in NLP.

�Major Enhancement in 2nd Edition

The second edition includes the following major updates:

	1.	 An overview of the development of BERT, transformer models, ChatGPT, and 
large language models (LLMs) from the 2000s to the present, covered in Sect. 
1.5, “A Brief History of NLP,” in Chap. 1

	2.	 A new chapter focusing on the latest advancements in NLP, specifically in LLMs 
and generative AI (GenAI), included in Chap. 10

	3.	 Revised and updated NLP workshops (originally Chaps. 10, 11, 12, 13, 14, 15, 
and 16, now Chaps. 11, 12, 13, 14, 15, 16, and 17) to align with the latest ver-
sions of Python-based NLP packages and tools

�Readers of This Book

This book serves as both an NLP textbook and a practical guide for NLP Python 
implementation, tailored for:

•	 Undergraduates and postgraduates across various disciplines, including AI, com-
puter science, IT, data science, and related fields

•	 Lecturers and tutors teaching NLP or AI-related courses
•	 NLP and AI scientists, as well as developers, who wish to learn the fundamental 

concepts of NLP and apply them through Python-based workshops
•	 Readers interested in learning NLP concepts and practicing Python-based NLP 

techniques using tools such as NLTK, spaCy, TensorFlow, Keras, BERT, trans-
former technology, and latest developments in LLMs and GenAI

Preface
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�How to Use This Book?

This book can be used as a textbook for undergraduate and postgraduate courses on 
natural language processing (NLP) and as a reference for general readers who want 
to learn key NLP technologies and implement NLP applications using contempo-
rary tools such as NLTK, spaCy, TensorFlow, BERT, and transformer technology.

Part I (Chaps. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10) covers the foundational concepts 
and key technologies in NLP, including the N-gram language model, part-of-speech 
tagging, syntax and parsing, meaning representation, semantic analysis, pragmatic 
analysis, transfer learning, and transformer technology. It also discusses major NLP 
applications and the latest developments in BERT, ChatGPT, large language models 
(LLMs), and generative AI (GenAI).

Part II (Chaps. 11, 12, 13, 14, 15, 16, and 17) consists of materials for a 14-h, 
step-by-step Python-based NLP implementation spread across seven workshops.

For readers and AI scientists, this book serves as a reference for learning NLP 
and applying Python-based NLP tools and libraries, using the latest development 
tools and platforms.

For the seven NLP workshops in Part II (Chaps. 11, 12, 13, 14, 15, 16, and 17), 
readers can download all Jupyter Notebook files and data from my NLP GitHub 
directory: https://github.com/raymondshtlee/nlp/. For any queries, please feel free 
to contact me via email at raymondshtlee@uic.edu.cn.

Zhuhai, China� Raymond Lee  
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Chapter 1
Natural Language Processing

Consider this scenario: Late in the evening, Jack starts a mobile app and talks with 
AI Tutor Max.

1.1 � Introduction

There are many chatbots available today that enable humans to communicate with 
devices using natural language. Figure 1.1 illustrates a dialogue between a student, 
who has returned to the dormitory after a full day of classes, and a mobile applica-
tion called AI Tutor 2.0 (Cui et al. 2020), developed as part of our research on AI 
Tutor chatbots. The goal is to allow the user (Jack) not only to learn from reading 
books but also to engage in candid conversations with AI Tutor 2.0 (Max), which 
provides knowledge-based responses in natural language.

This differs from traditional chatbots that respond only to basic commands. 
Instead, it represents human-computer interaction, demonstrating how a student 
might converse with a tutor about subject knowledge in the physical world. The 
process is dynamic and involves two main components: (1) World Knowledge: This 
includes simple handshaking dialogues such as greetings and general discussions. 
Developing this is a complex task, as it requires knowledge and common sense to 
construct a functional chatbot capable of engaging in everyday dialogues; (2) 
Domain Knowledge: This refers to the technical expertise within a specific subject 
area. To achieve this, the chatbot must first learn from the author’s book, AI in Daily 
Life (Lee 2020), which provides foundational knowledge on the subject. This 
knowledge is then organized into a knowledge tree or ontology graph. The goal is to 
create a new type of publication and interactive device, facilitating learning between 
humans and computers.

Natural Language Processing (NLP) intersects with various disciplines, includ-
ing linguistics, computational linguistics, statistical engineering, AI and machine 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_1&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_1#DOI
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Max: Good evening, Jack. How are you?
Jack: Busy day. Just finished dinner after whole af-

ternoon lecture. 
Max: I see. Anything I can help?
Jack: Yes. Today Dr Lee has talked about data min-

ing and search engine. Some concepts are not 
so clear, might need your help. 

Max: Sure thing. Which part are you not clear?
Jack: What is the limitation of search engine?
Max: Search engines today have one intrinsic prob-

lem, that is all the search results are searched 
automatically and ranked according to similar 
query keywords. 

Jack: Why Hidden Markov Model is popular?
Max: The reason why HMM is popular because it 

is: 1) reliable; 2) easy to implement technical-
ly; and 3) the Marko chains can be trained 
automatically and computationally feasible to 
use.

Jack: What is Data Mining?
Max: Data mining is the process of discovering pat-

terns in large datasets involving methods at 
the intersection of machine learning, statis-
tics, and database systems. 

Jack: I see. Thank you very much. Have a nice even-
ing. 

Max: You too. Good night!

Fig. 1.1  A snapshot of the AI Tutor chatbot

learning, data mining, and voice processing and synthesis. Over the past few 
decades, many innovative chatbots developed by NLP and AI scientists have become 
commercial products. This chapter will introduce the core technology and its com-
ponents, with more detailed discussions of related technologies in the following 
chapters.

1.2 � Human Language and Intelligence

There is an old saying: Your actions define who you are. It is because we never know 
what people think, the only method is to evaluate and judge their actions and 
behaviors.

NLP core technologies and methodologies arose from the famous Turing Test 
(Eisenstein 2019; Bender 2013; Turing 1936, 1950) proposed by Sir Alan Turing 

1  Natural Language Processing
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Fig. 1.2  Turing test (Tuchong 2020a)

(1912–1954) the in 1950s, the father of AI. Figure 1.2 shows a human judge con-
versing with two individuals in two rooms. One is a human, the other is either a 
robot, a chatbot, or an NLP application. During a 20-min conversation, the judge 
can ask human/machine technical/non-technical questions and require a response 
to every question so that the judge can decide whether the respondent is a human or 
a machine. NLP in the Turing Test is to recognize, understand questions, and 
respond in human language. It remains a popular topic in AI today because we can’t 
see and judge people’s thinking to define intelligence. It is the ultimate chal-
lenge in AI.

Human language is a significant component of human behavior and civilization. 
Generally, it can be categorized into (1) written and (2) oral aspects. Written lan-
guage undertakes to process, store, and pass human/natural language knowledge to 
the next generations. Oral or spoken language acts as a communication medium 
among individuals.

NLP has examined the basic effects on philosophy such as meaning and knowl-
edge, psychology in word meanings, linguistics in phrase and sentence formation, 
and computational linguistics in language models. Hence, NLP is cross-disciplinary 
integration of disciplines such as philosophy in human language ontology models, 
psychological behavior between natural and human language, linguistics in mathe-
matical and language models, computational linguistics in agents, and ontology 
trees technology as shown in Table 1.1.

1.2  Human Language and Intelligence
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Table 1.1  Various disciplines related to NLP

Discipline Problems to tackle with Solutions and tools

Philosophy What is meaning and knowledge? Ontology and epistemology
How do words and sentences acquire 
meaning?

Natural language argumentation 
using intuition

How can we relate ideas and concept 
into words and meanings

Mathematical models such as 
logic theory and model theory

Psychology How can we identify the structure of 
sentences?

Psychological experiments to 
measure the performance

How the meaning of words can be 
identified?

Statistical analysis of 
observations

When does understanding take place?
Linguistics How to form phrases and sentences with 

words?
Mathematical model of language 
structure

How can we represent the meaning of a 
sentence?

Logical model for the 
representation of language 
structure and patterns

Computational 
linguists and NLP

How to model different types of human 
languages?

Agent ontology and ontological 
tree modeling

How to model knowledge and meaning? NLP techniques discussed in this 
chapter

How to use human language for 
human–machine direct communication?

1.3 � Linguistic Levels of Human Language

Linguistic levels (Hausser 2014) are regarded as functional analyses of human writ-
ten and spoken languages. There are six levels of linguistics analysis: (1) phonetics, 
(2) phonology, (3) morphology, (4) syntax, (5) semantics, and (6) pragmatics (dis-
course) classified in basic sound linguistics. These six levels of linguistics are 
shown in Fig. 1.3.

The basic linguistic structure of spoken language includes phonetics and phonol-
ogy. Phonetics refers to the physical aspects of sound, the study of the production 
and perception of sounds called phones. Phonetics governs the production of human 
speech often without preceding knowledge of spoken language, organizes sounds, 
and studies the phonemes of languages that can provide various meanings between 
words and phrases.

Direct language structure is related to morphological and syntactic levels. 
Morphology is the form and word level determined by grammar and syntax gener-
ally. It refers to the smallest form in linguistic analysis, consisting of sounds, to 
combine words with grammatical or lexical functions.

Lexicology is the study of vocabulary from a word form to a derived form. Syntax 
represents the primary level of clauses and sentences to organize the meaning of 
different words order, that is, addition and subtraction of spoken language, and 
deals with related sentence patterns and ambiguous analysis.

The advanced structure deals with actual language meaning at semantic and 
pragmatic levels. Semantic level is the domain of meaning that consists of 
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Fig. 1.3  Linguistic levels 
of human languages

morphology and syntax but is regarded as a level that requires one’s own learning to 
assign correct meaning promptly with vocabulary, terminology form, grammar, sen-
tence, and discourse perspective. Pragmatics is the use of language in definitive 
settings. The meaning of discourse does not have to be the same as abstract form in 
actual use. It is largely based on the concept of speech acts and the contents of state-
ments with intent and effect analysis of language performance.

1.4 � Human Language Ambiguity

In many language models, cultural differences often produce identical utterances 
with more than a single meaning in conversation. Ambiguity is the capability to 
understand sentence structures in many ways. There are (1) lexical, (2) syntactic, (3) 
semantic, and (4) pragmatics ambiguities in NLP.

Lexical ambiguity arises from words where a word’s meaning depends on con-
textual utterance. For instance, the word green is normally a noun for color. But it 
can be an adjective or even a verb in different situations.

Syntactic ambiguity arises from sentences and is parsed differently, for example, 
Jack watched Helen with a telescope. It can be described as either Jack watched 
Helen by using a telescope or Jack watched Helen holding a telescope.

Semantic ambiguity arises from word meaning and can be misinterpreted, or a 
sentence has ambiguous words or phrases, for example, The van hits the boar while 
it is moving. It can be described as either the van hits the boar while the van is mov-
ing, or the van hits the boar while the boar is moving. It has more than a simple 
syntactic meaning and requires to work out the correct interpretation.

1.4  Human Language Ambiguity
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Pragmatic ambiguity arises from a statement and is not clearly defined when the 
context of a sentence provides multiple interpretations such as I like that too. It can 
describe what I like that too, others like that too but the description of that is uncertain.

NLP analyzes sentences ambiguity incessantly. If they can be identified earlier, 
it will be easier to define proper meanings.

1.5 � A Brief History of NLP

There are several major NLP transformation stages in NLP history (Santilal 2020).

1.5.1 � First Stage: Machine Translation (Before the 1960s)

The concept of NLP was introduced in seventeenth century by philosopher and 
mathematician Gottfried Wilhelm Leibniz (1646–1716) and polymath René 
Descartes (1596–1650). Their studies of the relationships between words and lan-
guages formed the basis for language translation engine development (Santilal 2020).

The first patent for an invention related to machine translation was filed by inven-
tor and engineer Georges Artsrouni in 1933, but formal study and research was 
rendered by Sir Alan Turing from his remarkable article Computing Machinery and 
Intelligence published in 1950 (Turing 1936, 1950) and his famous Turing Test offi-
cially used as an evaluation criterion for machine intelligence since NLP research 
and development were mainly focused on language translation at that time.

The first and second International Conference on Machine Translation held in 
1952 and 1956 used basic rule-based and stochastic techniques. The 1954 Georgetown-
IBM experiment engaged in wholly automatic machine translation of more than 60 
Russian sentences into English and was over-optimistic that the whole machine trans-
lation problem could be solved within a few years. However, a breakthrough in NLP 
was achieved by Emeritus Professor Noam Chomsky on universal grammar for lin-
guistics in 1957, but the ALPAC report published in 1966 revealed deficient progress 
for AI and machine translation in the past 10 years signifying the first winter of AI.

1.5.2 � Second Stage: Early AI on NLP (1960s–1970s)

NLP’s major development was focused on how it can be used in different areas such 
as knowledge engineering called agent ontology (Climiano et  al. 2014) to shape 
meaning representations following AI grew popular over time. The BASEBALL sys-
tem (Green et al. 1961) was a typical example of a Q&A-based domain expert system 
of human and computer interaction developed in the 1960s, but inputs were restrictive 
and language processing techniques remained in basic language processing.

1  Natural Language Processing
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In 1968, Professor Marvin Minsky (1927–2016) developed a more powerful 
NLP system. This advanced system used an AI-based question-answering inference 
engine between humans and computers to provide knowledge-based interpretations 
of questions and answers. Further, Professor William A. Woods proposed an aug-
mented translation network (ATN) to represent natural language input in 1970. 
During this period, many programmers started to transcribe codes in different AI 
languages to conceptualize natural language ontology knowledge of real-world 
structural information into human understanding mode status. Yet these expert 
systems were unable to meet expectations signified the second winter of AI.

1.5.3 � Third Stage: Grammatical Logic on NLP (1970s–1980s)

NLP research turned to knowledge representation, programming logic, and reason-
ing in AI. This period was regarded as the grammatical logic phase of NLP in which 
powerful sentence processing techniques such as SRI’s core language engine and 
discourse representation theory emerged. These innovations introduced new prag-
matic representations and discourse interpretation with practical resources and tools 
such as parsers and Q&A chatbots. Although R&D was hampered by computational 
power, the lexicon in 1980s aimed to expand NLP.

1.5.4 � Fourth Stage: AI and Machine Learning (1980s–2000s)

The revolutionary success of the Hopfield Network in the field of machine learning 
proposed by Professor Emeritus John Hopfield activated a new era of NLP research 
using machine learning techniques as an alternative to complex rule-based and sto-
chastic methods in the past decades.

Computational technology upgrades in computational power and memory comple-
mented Chomsky’s theory of linguistics had augmented language processing from 
machine learning methods of corpus linguistics. This development stage was also 
known as NLP lexical, and corpus referred to grammar emergence in lexicalization 
method in the late 1980s, which signified the IBM DeepQA project led by Dr. David 
Ferrucci for their remarkable question-answering system developed in 2006.

1.5.5 � Fifth Stage: Rise of BERT, Transformer, ChatGPT, 
and LLMs (2000s–Present)

NLP has significant advancements over the past two decades fueled by innovations 
in neural networks, especially deep learning architectures. The timeline of this evo-
lution began in the early 2000s with the rise of Recurrent Neural Networks (RNNs). 

1.5  A Brief History of NLP
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RNNs were designed to handle sequential data by maintaining a hidden state that 
could “remember” past information. This allowed them to model temporal depen-
dencies in tasks like speech recognition, translation, and text generation (Hochreiter 
and Schmidhuber 1997). However, RNNs had limitations in retaining information 
across long sequences leading to performance degradation (Mikolov et al. 2010).

To address this, Long Short-Term Memory (LSTM) networks were introduced as 
a specialized type of RNN. LSTMs incorporated a memory mechanism to retain 
information over longer periods, which significantly improved performance in 
tasks requiring long-range context such as machine translation and time-series 
prediction (Hochreiter and Schmidhuber 1997). They were more effective than 
basic RNNs regardless of scalability and computational efficiency (LeCun 
et al. 2015).

The real breakthrough in NLP came with the introduction of the Transformer 
architecture in 2017 outlined in the landmark paper “Attention is All You Need” 
(Vaswani et al. 2017). Transformers replaced the sequential processing of RNNs 
and LSTMs with a self-attention mechanism to weigh the importance of different 
words in a sentence relative to each other in a parallel fashion. This design not only 
improved the speed and accuracy but also paved the way for Large Language 
Models (LLMs) by enabling scalable architectures to handle vast amounts of text 
(Devlin et al. 2018).

BERT (Bidirectional Encoder Representations from Transformers) developed by 
Google in 2018 took it further by introducing a bidirectional approach to under-
standing context. BERT read text in both directions simultaneously unlike previous 
models that processed text in one direction. This innovation allowed the model to 
achieve state-of-the-art results in tasks like question-answering, sentiment analysis, 
and natural language understanding (Devlin et al. 2018).

Generative Pre-trained Transformers (GPT) by OpenAI was a major leap in 
NLP. This technological evolution has demonstrated significant model size scaling 
development for other robust LLMs. GPT-1 released in 2018 had 117 million 
parameters focused on understanding unsupervised learning. GPT-2 released in 
2019 had 1.5 billion parameters that validated the large-scale unsupervised learn-
ing capability to generate coherent and contextually relevant text across a wide 
range of tasks (Radford et al. 2019). However, it raised concerns about the poten-
tial for AI misuse to generate misinformation and deepfake text (Solaiman 
et al. 2019).

GPT-3 released in 2020 had 175 billion parameters and was 100 times more 
vigorous than GPT-2 significantly increasing the size of the language model. This 
extension excelled in few-shot and zero-shot learning to perform tasks with minimal 
examples that have not been explicitly trained (Brown et al. 2020). Its sheer size 
could mimic human-like reasoning and perform complex tasks such as program-
ming, writing essays, and engaging in sophisticated dialogue (Floridi and 
Chiriatti 2020).

OpenAI released ChatGPT based on GPT-4 in 2023 was the next LLM evolution. 
While OpenAI did not disclose the precise parameters number, GPT-4 advanced in 
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coherence, reasoning, and factual accuracy realizing it a versatile tool for conversa-
tional AI, content generation, and real-time problem-solving (OpenAI 2023).

The progression from GPT-1 to GPT-4 has demonstrated exponential growth in 
parameters and computational power, bringing AI closer to human-like language 
understanding and generation. Each GPT generation has expanded the boundaries 
of what AI models could achieve to challenge traditional notions of human intel-
ligence (Marcus and Davis 2020). LLMs continued to exert AI’s capability limits 
to perform tasks that were once considered uniquely human but raised important 
ethical and societal questions about usage and impact on the future (Bender 
et al. 2021).

1.6 � NLP and AI

NLP can be regarded as automatic or semi-automatic processing of human language 
(Eisenstein 2019). It requires extensive knowledge of linguistics and logical theory 
in theoretical mathematics, also known as computational linguistics. It is a multidis-
ciplinary study of epistemology, philosophy, psychology, cognitive science, and 
agent ontology.

NLP is an AI area in which computer machines can analyze and interpret 
human speech for human-computer interaction (HCI) to generate structural knowl-
edge for information retrieval operations, text and automatic text summarization, 
sentiment and speech recognition analysis, data mining, deep learning, and 
machine translation agent ontologies at different levels of Q&A chatbots, as shown 
in Fig. 1.4.

Fig. 1.4  NLP and AI (Tuchong 2020b)

1.6  NLP and AI
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Fig. 1.5  NLP main 
components

1.7 � Main Components of NLP

NLP consists of (1) Natural Language Understanding (NLU), (2) Knowledge 
Acquisition and Inferencing (KAI), (3) Natural Language Generation (NLG) com-
ponents as shown in Fig. 1.5.

NLU is a technique and method devised to understand the meanings of human-
spoken languages by syntax, semantic, and pragmatic analyses.

KAI is a system to generate proper responses after spoken languages are fully 
recognized by NLU.  It is an unresolved knowledge acquisition and inferencing 
problem in machine learning and AI by the conventional rule-based system due to 
the intricacies of natural language and conversation, that is, an if-then-else type of 
query-response used in expert systems. Most KAI systems strive to regulate knowl-
edge domain at a specific industry for resolution, that is, customer service knowl-
edge for insurance, medical, etc. Further, agent ontology has achieved a favorable 
outcome.

NLG includes answer, response, and feedback generation in human-machine 
dialogue. It is a multi-facet machine translation process that converts responses into 
text and sentences to perform text-to-speech synthesis from the target language and 
produce near-human speech responses.

1.8 � Natural Language Understanding (NLU)

Natural Language Understanding (NLU) is a process of recognizing and under-
standing spoken language in four stages (Allen 1994): (1) speech recognition, (2) 
syntactic (syntax) analysis, (3) semantic analysis, and (4) pragmatic analysis as 
shown in Fig. 1.6.

1  Natural Language Processing
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Fig. 1.6  NLU systematic diagram

1.8.1 � Speech Recognition

Speech recognition (Li et al. 2015) is the first stage in NLU that performs phonetic, 
phonological, and morphological processing to analyze spoken language. The task 
involves breaking down the stems of spoken words called utterances, into distinct 
tokens representing paragraphs, sentences, and words in different parts. Current 
speech recognition models apply spectrogram analysis to extract distinct frequen-
cies, for example, the word uncanny can be split into two-word tokens un and canny. 
Different languages have different spectrogram analyses.

1.8  Natural Language Understanding (NLU)
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1.8.2 � Syntax Analysis

Syntax analysis (Sportier et al. 2013) is the second stage of NLU direct response 
speech recognition to analyze the structural meaning of spoken sentences. This task 
has two purposes: (1) check syntax correctness of the sentence/utterance and (2) 
break down spoken sentences into syntactic structures to reflect syntactic relation-
ship between words. For instance, the utterance oranges to the boys will be rejected 
by syntax parser because of syntactic errors.

1.8.3 � Semantic Analysis

Semantic analysis (Goddard 1998) is the third stage in NLU and corresponds to 
syntax analysis. This task is to extract the precise meaning of a sentence/utterance, 
or dictionary meanings defined by the text and reject meaningless, for example, 
semantic analyzer rejects word phrase like hot snowflakes despite correct syntactic 
words meaning but incorrect semantic meaning.

1.8.4 � Pragmatic Analysis

Pragmatic analysis (Ibileye 2018) is the fourth stage in NLU and stringent spoken 
language analysis involving high level or expert knowledge with common sense, for 
example, will you crack open the door? I’m getting hot. This sentence/utterance 
requires extra knowledge in the second clause to understand crack is to break in 
semantic meaning, but it should be interpreted as to open in pragmatic meaning.

1.9 � Potential Applications of NLP

After years of R&D from machine translation and rule-based systems to data min-
ing and deep networks, NLP technology has a wide range of applications in every-
day activities such as machine translation, information retrieval, sentiment analysis, 
information extraction, and question-answering chatbots as in Fig. 1.7.

1.9.1 � Machine Translation (MT)

Machine translation (Koehn, 2009; Scott 2018) is the earliest application in NLP 
since 1950s. Although it is not difficult to translate one language to another yet 
there are dilemmas for (1) naturalness (or fluency) means different languages 
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Fig. 1.7  Potential NLP 
applications

have different styles and usages and (2) adequacy (or accuracy) means different 
languages may present independent ideas in different languages. Experienced 
human translators address this trade-off in creative ways such as statistical meth-
ods, or case-by-case rule-based systems in the past but since there have been 
many ambiguous scenarios in language translation, the goal of machine transla-
tion R&D nowadays strive for several AI techniques applications for recurrent 
networks, or deep networks backbox systems to enhance machine learning 
capabilities.

1.9.2 � Information Extraction (IE)

Information extraction (Hemdev 2011) is an application task to extract key lan-
guage information from texts or utterances automatically. It can be structural, 
semi-structural machine-readable documents or from users’ languages of NLP in 
most cases. The recent activities in complex formats such as audio, video, and even 
interactive dialogue can be extracted from multiple media. Hence, many commer-
cial IE programs become domain-specific such as medical science, law or AI 
Tutor-specified AI knowledge in our case. By doing so, it is easier to set up an 
ontology graph and ontology knowledge base to contain all the retrieved informa-
tion that can be referenced to these domain knowledge graphs to extract useful 
knowledge.

1.9.3 � Information Retrieval (IR)

Information retrieval (Peters et al. 2012) is an application for organizing, retrieving, 
storing, and evaluating information from documents, source repositories, especially 
textual information, and multimedia such as video and audio knowledge bases. It 
helps users to locate relevant documents without answering any questions explicitly. 
The user must request the IR system to retrieve the relevant output and respond in 
document form.

1.9  Potential Applications of NLP
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Fig. 1.8  NLP on sentiment analysis

1.9.4 � Sentiment Analysis

Sentiment analysis (Liu 2012) is a kind of data mining system in NLP to analyze 
user sentiment toward products, people, and ideas from social media, forums, and 
online platforms. It is an important application for data extraction from messages, 
comments, and conversations published on these platforms and assigns a labeled 
sentiment classification as in Fig. 1.8 to interpret natural language and utterances. 
Deep networks are ways to analyze large amounts of data. In Part 2, the NLP 
Implementation Workshop will explore how to implement sentiment analysis in 
detail using Python spaCy and Transformer Technology.

1.9.5 � Question-Answering (Q&A) Chatbots

Q&A systems is the objective in NLP (Raj 2018). A process flow is necessary to 
implement a Q&A chatbot. It includes voice recognition to convert into a list of 
tokens in sentences/utterances, syntactic grammatical analysis, semantic meaning 
analysis of whole sentences, and pragmatic analysis for embedded or complex 
meanings. When an enquirer’s utterance meaning is generated, it is necessary to 
search from knowledgebase for the most appropriate answer or response through 
inferencing either by a rule-based system, statistical system, or deep network, for 
example, Google BERT system. Once a response is available, reverse engineering is 
required to generate a natural voice from a verbal language called voice synthesis. 
Hence, the Q&A system in NLP is an important technology that can be applied to 
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daily activities such as human-computer interaction in auto-driving, customer ser-
vices support, and language skills improvement.

The final workshop will discuss how to integrate various Python NLP implemen-
tation tools including NLTK, spaCy, TensorFlow Keras, and Transformer Technology 
to implement a Q&A movies chatbot system.
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Chapter 2
N-Gram Language Model

2.1 � Introduction

NLP entities like word-to-word tokenization using NTLK and spaCy technologies 
in Workshop 1 (Chap. 11) analyzed words in insolation, but the relationship between 
words is important in NLP. This chapter will focus on word sequences, their model-
ing, and analyses.

In many NLP applications, there are noises and disruptions affecting incorrect 
word pronunciation regularly in applications like speech recognition, text classifica-
tion, text generation, machine translation, Q&A chatbots, Q&A conversation 
machines, or agents being used in auto-driving.

Humans experience mental confusion about spelling errors as in Fig. 2.1 often 
caused by pronunciations, typing speeds, and keystroke’s location. These errors can 
be corrected by looking up a dictionary, a spell checker, and grammar usage.

Word prediction in a word sequence can provide automatic spell-check correc-
tions, and its corresponding concept terminology can model words relationships, 
estimate occurrence frequency to generate new texts with classification, and apply 
in machine translation to correct errors.

Probability or word counting method can work on a large databank called a cor-
pus (Pustejovsky and Stubbs 2012), which can be the collection of text documents, 
literatures, public speeches, conversations, and other online comments or opinions.

Figure 2.2 shows the text with spelling and grammatical errors highlighted in 
yellow and blue. This method can calculate the probability of word occurrence and 
provide alternatives with higher frequency probability, but it cannot always provide 
accurate options.

Figure 2.3 illustrates a simple scenario of next-word prediction in sample utter-
ances I like photography, I like science, and I love mathematics. The probability of 
I like is 0.67 (2/3) compared with I love is 0.33 (1/3), the probability of like photog-
raphy and like science are similar at 0.5 (1/2). Assigning probability to scenarios, I 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_2&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_2#DOI
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Fig. 2.1  Common spelling 
errors

Fig. 2.2  Spelling and 
grammar checking tools

Fig. 2.3  Next word 
prediction in simple 
utterances
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like photography and I like science are both 0.67 × 0.5 = 0.335, and I love mathe-
matics is 0.33 × 1 = 0.33.

When applying probability to language models, it must always note (1) domain-
specific verity of keywords togetherness and terminology knowledge varies accord-
ing to domains, for example, medical science, AI, etc., (2) syntactic knowledge 
attributes to syntax and lexical knowledge, (3) common sense or world knowledge 
attributes to the collection of habitual behaviors from past experiences, and (4) lan-
guages usage significance in high-level NLP.

When applying probability to word prediction in an utterance, there are words 
often proposed by rank and frequency to provide a sequential optimum estimation.

For example:

[2.1] I notice three children standing on the??? (ground, bench …).
[2.2] I just bought some oranges from the??? (supermarket, shop …)
[2.3] She stopped the car and then opened the??? (door, window …)

The structure of [2.3] is perplexed because the word counting method with a 
sizeable knowledge domain is adequate but common sense, world knowledge or 
specific domain knowledge are among the sources. It involves scenario syntactic 
knowledge that attributes to do something with the superior level at the scene such 
as descriptive knowledge to help the guesswork. Although it is plain and mundane 
to study preceding and word tracking, it is one the most useful techniques for word 
prediction. Let’s begin with some simple word-counting methods in NLP, the 
N-gram language model.

2.2 � N-Gram Language Model

It was learned that the motivations for word prediction can apply to voice recogni-
tion, text generation, and Q&A chatbot. The N-gram language model, also called 
N-gram model or N-gram (Sidorov 2019; Liu et al. 2020), is a fundamental method 
to formalize word prediction using probability calculation. An N-gram is a statisti-
cal model consisting of a word sequence in N number, commonly used N-grams 
include:

•	 Unigram refers to a single word, that is, N = 1. It is seldomly used in practice 
because it contains only one word in N-gram. However, it is important to serve 
as the base for higher-order N-gram probability normalization.

•	 Bigram refers to a collection of two words, that is, N = 2. For example: I have, I 
do, he thinks, she knows, etc. It is used in many applications because its occur-
rence frequency is high and easy to count.

•	 Trigram refers to a collection of three words, that is, N  =  3. For example: I 
noticed that, noticed three children, children standing on, standing on the. It is 
useful because it contains more meaning and is not lengthy. Given a count knowl-
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edge of the first three words can easily guess the next word in a sequence. 
However, its occurrence frequency is low in a moderate corpus.

•	 Quadrigram refers to a collection of four words, that is, N = 4. For example: I 
noticed that three, noticed that three children, three children standing on. It is 
useful with literature or large corpus like Brown Corpus because of their exten-
sive words’ combinations.

A sizeable N-gram can present more central knowledge but can pose a problem. 
If it is too large, it means that the probability and occurrence of a word sequence are 
infrequent and even 0 in terms of probability counts.

Corpus volume and other factors also affect performance. N-gram model training 
is based on an extensive knowledgebase (KB) or databank from specific domains 
such as public speeches, literature, and topic articles like news, finance, medical, 
science, or chat messages from social media platforms. Hence, a moderate N-gram 
is the balance by frequency and proportions.

The knowledge of counts acquired by a N-gram can assess to conditional prob-
ability of candidate words as the next word in a sequence, e.g., It is not difficult. It 
is a bigram which means to count the occurrence of is given that it has already been 
mentioned from a large corpus, or the conditional probability of it is given that it has 
already been mentioned or can be applied one by one to calculate the conditional 
probability of an entire words sequence. It is like words and sentences formation of 
day-to-day conversations which is a psychological interpretation in logical thinking. 
N-gram progresses in this orderly fashion.

It serves to rank the likelihood of a sequence consisting of various alternative 
hypotheses in a sentence/utterance for an application like automatic speech recogni-
tion (ASR), for example, [2.4] The cinema staff told me that popcorn/amelcorn 
sales have doubled. It is understood that it refers to popcorn and not amelcorn 
because the concept of popcorn is always attributed to conversations about cinema. 
Since the occurrence of popcorn in a sentence/utterance has a higher rank than 
amelcorn, it is natural to select popcorn as the best answer.

Another purpose is to assess the likelihood of a sentence/utterance for text gen-
eration or machine translation, for example, [2.5] The doctor recommended a cat 
scan to the patient. It may be difficult to understand what a cat scan is or how can a 
scan be related to a cat without any domain knowledge. Since the word “doctor” is 
attributed to the medical field, it is natural that by searching articles, literature, and 
websites about medical knowledge, we will learn that cat scan refers to a computer 
axial tomography scanner as shown in Fig. 2.4, not a cat. This type of word predic-
tion is usually domain-specific and works together with previous words as a guide 
to choosing an appropriate expression.
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Fig. 2.4  Computerized 
axial tomography scanner 
(aka. CAT scan) (Tuchong 
2022)

Table 2.1  Stemming vs. 
lemmatization

Word Stemming Lemmatization

information inform information
informative inform information
computers comput computer
feet feet foot

2.2.1 � Basic NLP Terminology

Here is a list of common terminologies in NLP (Jurafsky et al. 1999; Eisenstein 2019):

•	 Sentence is a unit of written language. It is a basic entity in a conversation or 
utterance.

•	 Utterance is a unit of spoken language. Different from the concept of sentence, 
utterance is usually domain and culture specific, which means it varies according 
to countries and even within country.

•	 Word Form is an inflected form that occurs in a corpus. It is another basic entity 
in a corpus.

•	 Types/Word Types are distinct words in a corpus.
•	 Tokens are generic entities or objects of a passage. It is different from word form 

as tokens can be meaningful words or symbols, punctuations, or simple and dis-
tinct character(s).

•	 Stem is a root form of words. Stemming is the process of reducing inflected, or 
derived words from their word stem.

•	 Lemma is an abstract form shared by word forms in the same stem, part of speech, 
and word sense. Lemmatization is the process of grouping together the inflected 
forms of a word so that they can be analyzed as a single item, which can be iden-
tified by the word’s lemma or dictionary form.

An example to demonstrate meaning representations between lemma and stem is 
shown in Table 2.1. Lemmatization is the abstract form to generate a concept. It 
indicated that stem or root word can be a meaningful word, or meaningless, or a 

2.2  N-Gram Language Model



24

symbol such as inform or comput to formulate meaningful words such as informa-
tion, informative, computer, or computers.

There are several corpora frequently used in NLP applications.
Google (2022) is one of the largest corpora as it contains words and texts from 

its search engine and the internet. It has over trillion English tokens with over mil-
lion meaningful wordform types sufficient to generate sentences/utterances for 
daily use.

Brown Corpus is an important and well-known corpus because it is the first well-
organized corpus in human history founded by Brown University in 1961 with con-
tinuous updates. At present, it has over 583 million tokens, 293,181 wordform types 
and words in foreign languages. It is one of the most comprehensive corpora for 
daily use, and a KB used in many N-grams-related NLP models and applications.

The Wall Street Journal is one of the earliest domain-specific corpora to discover 
knowledge from financial news, the Associated Press focuses on news and interna-
tional events, Hansard is a famous corpus of British parliamentary speeches; Boston 
University Broadcast News Corpus; NLTK Corpus, etc. (Bird et al. 2009; Eisenstein 
2019; Pustejovsky and Stubbs 2012).

A language model is a traditional word counting model to count and calculate 
conditional probability to predict the probability based on a word sequence, e.g., 
applying utterance it is difficult to… that with a sizeable corpus like Brown Corpus. 
This traditional word counting method may suggest either say/tell/guess based on 
occurrence frequency for predictions and forecasts at advanced computer systems 
and research in specialized deep networks and AI models. Although there has been 
a technology shift, a statistical model is always the fundamental model in many 
cases (Jurafsky et al. 1999; Eisenstein 2019).

2.2.2 � Language Modeling and Chain Rule

Conditional probability calculation is to study the definition of conditional proba-
bilities and look for counts, given by:

	

P AB
P A B

P B
|( ) = ( )

( )


	

(2.1)

For example, to evaluate conditional probability: The garden is so beautiful that 
given by the word sequence “The garden is so beautiful” will be:

	

P
P

that|The garden isso beautiful
The garden isso beautiful

( ) =
  that

The garden isso beautiful

Count The garden isso be

( )
( )

=

P

aautiful that

Count The garden isso beautiful

( )
( ) 	

(2.2)
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Although the calculation is straightforward but if the corpus or text collection is 
moderate, this conditional probability (counts) will probably be zero.

The Chain Rule of probability can be used as an independent hypothesis to cor-
rect this problem.

By rewriting the conditional probability equation (2.1), it will be:

	
P A B P AB P B∩( ) = ( ) ( )|

	
(2.3)

For a sequence of events, A, B, C, and D, the Chain Rule formulation will become:

	
P A B C D P A P B A P C A B P D A B C, , , | | |, |, |,( ) = ( ) ( ) ( ) ( ),

	
(2.4)

In general:

	
P x x x x P x P x x P x x x P x x xn n n1 2 3 1 2 1 3 1 2 1 1, , , | | |…( ) = ( ) ( ) ( )… …( )−,

	
(2.5)

If the sequence of words from position 1 to n is defined as wn
1 , then the Chain 

Rule applied to word sequences becomes:
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(2.6)

So, the conditional probability for the previous example will be:

	

P P P

P

the garden isso beautiful that the garden|the

is|

( ) = ( )∗ ( )
∗ tthe garden so|the garden is beautiful|the garden is( )∗ ( )∗P P sso

that|the garden isso beautiful

( )
( )∗P

	

(2.7)

Note: Normally, <s> and </s> are used to denote the start and end of a sentence/
utterance for better formulation.

This approach seems fair and easy to understand, but there are two major prob-
lems. First, it is unlikely to collect correct prefix statistics, which means that the 
starting point of the sentence is unknown. Second, the calculation of word order 
probabilities is mundane. If the sentence is long, the conditional probability at the 
end of this equation is complicated to calculate.

Let’s explore how the genius Markov Chain is applied to solve this problem.
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2.3 � Markov Chain in N-Gram Model

Prof. Andrey Andrevevich Markov (1856–1922) was a renowned Russian mathema-
tician and academician who made a significant contribution to science by studying 
the theory of probability, his primary contribution called Markov chains or Markov 
process had applied to biology, chemistry, computer science, and statistics (Ching 
et al. 2013). Markov chains theory can be applied to speech recognitions, N-gram 
language model, internet ranking, information, and queueing theories (Eisenstein 
2019). There is a single-dimension domain Markov chain modeling called Hidden 
Markov Chain in handwritten characters and human voice recognitions. This model 
has an important concept called Markov Assumption which assumes the entire pre-
fix history is not necessary, in other words, an event doesn’t depend on its whole 
history; it is only a fixed length nearby history is the essence of Markov chain theory.

A Markov chain is a stochastic process that describes a sequence of possible 
events where the probability of each event depends only on the state reached by the 
previous event. There are many kinds of Markov chain conventions. An important 
convention called descriptive Markov chain is shown in Fig. 2.5. It revealed that an 
event of Markov chain can be a list of relationships of every single event. Another 
concept is that the previous state is important but not all previous sequences. Hence, 
this model can apply in thermodynamics, statistical mechanics, physics, chemistry, 
economy, finance, information theory and NLP. A complete Markov Chain event is 
like a conversation in a sentence/utterance, each word is equivalent to an object in 
Markov chain. Although the whole chain of conditional probability can be calcu-
lated, the last event is the most important one.

By applying the Markov chain model, the conditional probability for N-gram 
probability of a word sequence wn

1  will be approximated by (assuming a prefix of 
N words):

	
P w w P w wn

n
n n N

n| |1
1

1
1−

− +
−( ) ≈ ( ) 	

(2.8)

In general:

Fig. 2.5  Markov chain model
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P w P w wn

k

n

k k1
1

1( ) ≈ ( )
=

−∏ |
	

(2.9)

In other words, the original complex conditional probability of a word sequence 
stated in (2.6) can be easily evaluated by a sequence of bigram probability 
calculations.

Let’s look at an N-gram example The big white cat. Unigram probability is 
P(cat). Bigram probability is the P(cat | white). Trigram probability is P(cat | big 
white) = P(white | big)*P(cat | white) and quadrigram probability is P(cat | the big 
white) = P(big | the)*P(white | big)*P(cat | white). All can be easily evaluated by a 
simple sequence of bigram probability multiplications applying (2.9).

However, it is cautious to note that the probability of a word formulation given 
fixed prefixes may not always be appropriate in many cases. They may be verifiable 
events in real-time speeches as words uttered are often correlated to the previous but 
in cases with pragmatic or embedded meanings at both right and left contexts, there 
is no priori reason adhered to left contexts.

2.4 � Example: The Adventures of Sherlock Holmes

N-gram probability calculation usually come from a training corpus or knowledge-
base (KB) in two extremes. One is an overly narrow corpus, and the other one is an 
overly general corpus. An overly narrow corpus is a restricted, specific corpus, can 
be domain specific on a particular knowledge with significant counts to be found 
during conditional probability counting. An overly general corpus cannot reflect a 
specific domain but counting can always be found. Hence, a balance between the 
two dimensions is required. Another consideration is a separate text corpus applied 
to evaluate standard metrics called held out test set, or development test set. Further, 
cross-validations and results tested for statistical significance are also required.

Let’s begin with a corpus came frthe om Project Gutenberg website (Gutenberg 
2022) on The Adventures of Sherlock Holmes (Doyle 2019), a famous literature by 
writer and physician Sir Arthur Conan Doyle (1859–1930). Gutenberg is a website 
consisting of primarily copyright clearance, free access, and download western cul-
tural tradition literature available to the public. This literature has 12 outstanding 
detective stories of Sherlock Holmes ranging from A Scandal in Bohemia to The 
Adventure of the Copper Beeches with other statistics below. It is a domain-specific 
corpus with comprehensive detective knowledge to form a meaningful knowledge 
base to perform N-gram modeling in NLP.

No. of pages : 424
No. of characters (exclude spaces) : 470,119
No. of words : 110,087
No. of tokens : 113,749

2.4  Example: The Adventures of Sherlock Holmes
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Table 2.2  Unigram counts for words “I have no doubt that” from The Adventures of 
Sherlock Holmes

I have no doubt that
2755 867 276 84 1767

No. of sentences : 6830
No. of word types (V) : 9886

N-gram modeling in this example is to analyze an influential quote of Sherlock 
Holmes: I have no doubt that I …. This quote does not occur often in other literature 
but because it is a detective story, the character has a unique aptitude for deducing 
hypotheses and notions to solve cases. Applying the Markov chain model can avoid 
mundane conditional probability, the N-gram probability is given by:

	

P P I s P P

P

I have nodoubt that I | have | I no | have

doubt | n

( ) = ( )∗ ( )∗ ( )
∗ oo that | doubt I | that( )∗ ( )∗ ( )P P

	

(2.10)

Unigram checking on word counting for I have no doubt is necessary as a basis 
to calculate the conditional probability for all bigrams as shown in Table 2.2. So, 
given the unigram count of I is 2755, the bigram probability of I have applying 
Markov chain method will be 288/2755, which is 0.105 as shown in Table 2.3. It is 
a list of all related bigram counts and probabilities for a given bigram such as I have, 
I had, I am, I was, I knew, I hear, I don’t up to I should which are common words 
found in many literatures. The probability also showed I have is the most frequent 
with 0.105 which means that I have no doubt that is quoted by the character regu-
larly. The occurrence of I think is high and general phrases such as I have, I had.

A bigram grammar fragment related to I have no doubt that … is shown in 
Table  2.4 for the counting and probability occurrence frequency beginning with 
<s>I, <s>I’d, <s>The, <s>It, I have, I had, I can, have no, have to, have been to 
compare with several versions or combinations related to, I have no doubt that 
means to compare occurrence frequency of I have with I had or I can, which is simi-
lar to compare the occurrence of no doubt, no sign and no harm or that I, that he, 
that she, that it. It is noted that the occurrence of I have no doubt that is high and 
distinct in this literature.

Counting all conditional bigram probabilities based on unigram count in 
Table 2.2 showed I have no doubt that for I is at 0.138 which is very high, but it is 
interesting to note that no doubt is even higher at 0.167 but again since it is a detec-
tive story with a restricted domain, doubt that is very high at 0.202 because the 
character always involves guesswork and frequent grammar usage. Further, the 
probability of bigram that I is much higher than other combinations like that he, that 
she and that it. The occurrence frequency in other literature is much lower but 
because the character is a self-assured and intelligent expert, he said that I is more 
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Table 2.3  Bigram grammar fragment from The Adventures of Sherlock Holmes

Bigram with “I” (by counts) Bigram with “I” (by probability)

I have 288 I observe 8 I have 0.105 I observe 0.003
I had 161 I deduce 3 I had 0.058 I deduce 0.001
I am 159 I can 37 I am 0.058 I can 0.013
I was 147 I can’t 6 I was 0.053 I can’t 0.002
I knew 34 I may 23 I knew 0.012 I may 0.008
I hear 33 I must 32 I hear 0.012 I must 0.012
I don’t 14 I could 77 I don’t 0.005 I could 0.028
I saw 42 I passed 8 I saw 0.015 I passed 0.003
I think 72 I take 4 I think 0.026 I take 0.001
I should 90 I see 32 I should 0.033 I merely 0.012

Table 2.4  Bigram grammar fragment related to utterance “I have no doubt that I” from The 
Adventures of Sherlock Holmes

Bigram related to “I have no doubt that I” (by 
counts)

Bigram related to “I have no doubt that I” 
(by probability)

<s>I 883 no doubt 46 <s>I 0.138 no doubt 0.167
<s>I’d 4 no sign 9 <s>I’d 0.001 no sign 0.033
<s>The 164 no harm 4 <s>The 0.026 no harm 0.014
<s>It 229 doubt that 17 <s>It 0.036 doubt that 0.202
I have 288 doubt as 3 I have 0.105 doubt as 0.036
I had 161 doubt 

upon
2 I had 0.058 doubt 

upon
0.024

I can 37 that I 228 I can 0.013 that I 0.129
have no 35 that he 139 have no 0.040 that he 0.079
have to 12 that she 61 have to 0.014 that she 0.035
have been 122 that it 109 have been 0.141 that it 0.062

often than that he or that she. That is the significance of a domain-specific corpus to 
check for N-gram probability.

So, let’s look at some N-gram probabilities calculation, e.g., the probability of 
P(I have no doubt that I) given by Eq. 2.10:

	

P I have no doubt that I( ) = × × × × ×
=

0 138 0 105 0 040 0 167 0 202 0 129

0

. . . . . .

..000002526 	

It is compared with P(I have no doubt that he):

	

P I have no doubt that he( ) = × × × × ×
=

0 138 0 105 0 040 0 167 0 202 0 079. . . . . .

00 000001540. 	

This example test results led to several observations. It is noted that all these 
probabilities are limited in general. Conditional probability is limited in a long 
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sentence and required for the Markov chain. If applying the traditional method on 
conditional probability with complex calculation, most of the time the probability is 
diminished. Further, the probability seems to capture both syntactic facts and world 
knowledge. Although that I or that he is often used in English grammar, the proba-
bility in this literature that I is more frequent. Hence, it is related to both syntactic 
usage, common sense, and specific domain knowledge. It depends on knowledge 
domains leading to diverse probability calculation results.

It is also noted that most of the conditional probabilities are limited because the 
multiplication of all probability calculations in a long sentence becomes dimin-
ished, so it is important to apply the Markov chain and convert complex conditional 
probabilities into bigram probabilities. Although the occurrence of bigram is infre-
quent but still exists. Nevertheless, if it is not a sizeable knowledge base or corpus, 
most of the bigrams will be 0. Hence, the selection of a corpus knowledge base is 
important. An effective N-gram is related to word counting, conditional probabili-
ties calculation, and normalization.

Another observation is that it showed all these conditional probabilities are lim-
ited and underflows as mentioned. A method is to convert them into natural log. 
Applying a natural log will become additions to calculate conditional probability 
with Markov chain operation.

Maximum Likelihood Estimates (MLE) is another principal method to calculate 
the N-gram model. They are parameters of a model M from a training set T. It is the 
estimate that maximizes the likelihood of training set T given the model M. Suppose 
the word language occurred 380 times in a corpus with a million words, for exam-
ple, Brown corpus, the probability of a random word from other text forms with the 
same distribution will be language, which it will be 380/1,000,000 = 0.00038. This 
may be a poor estimate for other corpora, but this type of calculation is domain 
specific as mentioned meaning that the calculation varies according to different 
corpora.

Let’s return to The Adventures of Sherlock Holmes’ famous quote I have no 
doubt that example. This time the counting and probability calculation of these 
words are tabulated as shown in Tables 2.5 and 2.6, respectively. It showed that I 
have has the most occurrence frequency with 288, that I is the next with 228 occur-
rences, no doubt with surprising high 46 occurrences, doubt that is 17 followed by 
that no and so on. Another discovery is that most of the other combinations is 0. It 
is intuitive because they are not grammatically or syntactically possible, e.g., no I or 
I I and many are infrequent in English usage.

Table 2.5  Bigram counts for “I have no doubt that I” in The Adventures of Sherlock Holmes

I have no doubt that I

I 0 288 0 1 0 0
have 5 0 35 0 2 5
no 0 0 0 46 0 0
doubt 0 0 0 0 17 0
that 228 1 10 0 7 228
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Table 2.6  Bigram probability (normalized) for “I have no doubt that I” in The Adventures of 
Sherlock Holmes

I have no doubt that I

I 0.000 0.105 0.000 0.000 0.000 0.000
have 0.006 0.000 0.040 0.000 0.002 0.006
no 0.000 0.000 0.000 0.167 0.000 0.000
doubt 0.000 0.000 0.000 0.000 0.202 0.000
that 0.129 0.001 0.006 0.000 0.004 0.129

Bigram normalization is achieved by the division of each bigram counts by 
appropriate unigram counts for wn − 1. Here is the bigram normalization result for I 
have no doubt that, for example, computing bigram probability of no doubt is the 
counting of no doubt which is 46 as shown in Table 2.5 against the counting of no 
which is 276 as in Table 2.2 which becomes 46/276 = 0.167. In fact, such bigram 
probability P(no doubt) is much higher than P(I have) = 0.105, which is infrequent 
in other corpora because not many corpora have a frequency of no doubt as com-
pared with I have as I have is common in English usage. Since it is detective litera-
ture and the character is an expert in his field, it is unsurprised to identify the 
occurrence frequency of no doubt is very high.

The overall bigram probability (normalized) findings are: I have is 0.105, no 
doubt is 0.167 the highest, that I is 0.129 as shown in Table 2.6. This is special 
because the occurrence frequency of I is not high as compared with I have. Doubt 
that is 0.202 which is very high, and others are mostly 0. These findings showed 
that, first, all conditional probabilities are limited because N-gram calculation char-
acteristics come from an extensive corpus. But it doesn’t mean that there is no com-
parison. It can be compared if they are not 0. Second, 0 s are meaningful as most of 
these words’ combinations are neither syntactically nor grammatically incorrect. 
Third, these conditional probabilities and MLE are domain specific, which may not 
be the same in other situations.

2.5 � Shannon’s Method in N-Gram Model

Shannon’s method (Jurafsky et  al. 1999) is another important topic in N-gram 
model. Professor Claude Shannon (1916–2001) was a renowned American mathe-
matician, electrical engineer, cryptographer, also known as the father of information 
theory and a major founder of contemporary cryptography. He wrote his famous 
thesis at age 21, a master’s degree student at MIT demonstrating Boolean algebra 
electrical applications to construct any logical numerical relationship with meaning. 
One of his most influential papers, A mathematical theory of communications 
(Shannon 1948) published in 1948 had defined a mathematical notion by which 
information could be quantified and delivered reliably over imperfect communica-
tion channels like phone lines or wireless connections nowadays. His 
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Table 2.7  Algorithm of 
Shannon’s method for 
language generation

Shannon’s method on language generation

1. Choose a random N-gram (<s>, w) according to its 
probability
2. Now choose a random N-gram (w, x) according to its 
probability
3. And so on until we choose </s>
4. Then string the words together into a sentence

Table 2.8  Sentence generation using the Shannon’s method from The Complete Works of 
Shakespeare

N-gram Generated sample sentences from The Complete Works of Shakespeare

Unigram • To him swallowed confess hear both which of save on trail for are ay device and 
rote life have
• Every enter now severally so
• Hill he late speaks a more to leg less first you enter
• Are where exeunt and sighs have rise excellency took of sleep knave we near vile 
like

Bigram • What means sir I confess she?
• Why dost stand forth thy canopy for sooth
• What we hath got so she I rest and sent to scold and nature bankrupt nor the first 
gentlemen?
• Ener Menenius if it so many good direction found thou art a strong upon 
command of fear not a liberal largess given away

Trigram • Sweet prince Falstaff shall die
• This shall forbid it should be branded if renown made it empty
• Indeed the duke and had a very good friend
• Fly and will rid me these news of price

Quadri-
gram

• King Henry I will go seek the traitor Gloucester
• Will you not tell me who I am?
• It cannot be but so
• Indeed the short and the long

groundbreaking innovation had provided the tools for network communications and 
internet technologies. This method showed that assigning probabilities to sentences 
are well but less informative for language generation in NLP. However, it has a more 
interesting task to turn it around by applying N-gram and its probabilities to gener-
ate random sentences like human sentences by which the model is derived.

There are four steps of Shannon’s Method for language generation as shown in 
Table 2.7:

An example of four N-gram texts generation methods from The Complete Works 
of Shakespeare by William Shakespeare (1564–1616) (Shakespeare 2021) applying 
Shannon’s Method is shown in Table 2.8.
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In summary:

•	 Unigram results showed that the four random sentences are almost meaningless 
because they used a single word to calculate the probability mostly without 
relations.

•	 Bigram results showed that the four random sentences have little meaning 
because they used two words to calculate. It reflected its high occurrence prob-
ability frequency but was not grammatically correct.

•	 Trigram results showed that word relations are coherent because it used three 
words to calculate. It reflected the conditional probability ranking had improved 
grammar and meanings like human language.

•	 Quadrigram results showed that the language of sentences is almost perfect per 
original sentences since it used four words co-relation to calculate, but its high 
occurrence conditional probability frequency are the words encountered with 
low-ranking options due to copious information to search. It may not be benefi-
cial to text generation.

Although quadrigrams can provide realistic language, sentences/utterances lack 
freedoms to generate new sentences. Hence, trigrams are often a suitable option for 
language generation. Again, if corpus is not sizeable enough to accommodate tokens 
and words volume like this literature, trigram will be unable to provide the frequent 
words for N-gram may need to switch using bigram in this case. Hence, quadrigram 
is unsuitable for text generation because it will be too close to the osriginal words 
or sentences.

Corpus used in this example is also domain specific from The Complete Works of 
Shakespeare. It consists of 884,647 tokens and 29,066 distinct words that are 
approximately 10 times more as compared with The Adventures of Sherlock Holmes. 
It has approximately 300,000 bigram types out of all these tokens and the number 
of bigram combinations will be 844 million possible bigrams. In other words, less 
than 1% is used and another 99.96% of possible bigrams are never used. It makes 
sense because most of these random bigram generations are grammatic, syntactic or 

Table 2.9  Sample sentence generation using Shannon’s method with Wall Street Journal articles

N-gram Generated sample sentences from Wall Street Journal articles

Unigram Months the my and issue of year foreign new exchange’s September were recession 
exchange new endorsed a acquire to six executes

Bigram Last December through the way to preserve the Hudson corporation N. B. E. C. 
Taylor would seem to complete the major central planners one point five percent of 
U. S. E. has already old M. X. corporation of living on information such as more 
frequently fishing to keep her

Trigram They also point to ninety nine point six billion dollars from two hundred four oh six 
three percent of the rates of interest stores as Mexico and Brazil on market conditions

Quadri-
gram

Executives from some of the biggest U.S. news organizations check with a British 
economist last year at Washington’s exclusive Metropolitan Club to strategize with a 
mutual obsession of getting their industry out from under the thumb of Google and 
Facebook
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even pragmatic meaningless, but pose a problem in N-gram calculations for text 
generation.

For illustration purposes on how domain knowledge affects N-gram generation, 
Table 2.9 shows some sample sentences generated by Wall Street Journal (WSJ) 
articles as the corpus (Jurafsky et al. 1999). It showed that trigram has the best per-
formance in terms of sentence structure and meaningfulness on text generation.

2.6 � Language Model Evaluation and Smoothing Techniques

Language Model Evaluation (LME) (Jurafsky et al. 1999) is a standard method to 
train parameters on a training set and to review model performance with new data 
constantly. That often occurred in real world to learn how the models perform called 
training data (training set) on language model and see whether it works with unseen 
information called test data (test set). A test set is a data set completely different 
than the training set model but is drawn from the same source, which is a specific 
domain and applies an evaluation metric, for example, perplexity to determine lan-
guage model effectiveness.

Unknown words are words unseen prior looking at test data regardless of how 
much training data is available. It can be managed by an open vocabulary task with 
steps below:

	1.	 Create an unknown word token <UNK>.
	2.	 Train <UNK> probabilities.

	 (a)	 create a fixed lexicon L, of size V from a dictionary or a subset of terms from 
the training set.

	 (b)	 a subnet of terms from the training set.
	 (c)	 at text normalization phase, any training word not in L changed o <UNK>.
	 (d)	 now can count that like a normal word.

	3.	 Test.

	 (a)	 use <UNK> counts for any word not in training.

2.6.1 � Perplexity

Perplexity (PP) is the probability of the test set assigned by the language model, 
normalized by the number of words as given by:

	

PP W
P w w wN

N( ) =
…( )

1

1 2 	

(2.11)

By applying the Chain rule, it will become:
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For bigrams, it will be given by:
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(2.13)

In general, minimizing perplexity is the same as maximizing probability for 
model performance, which means the best language model is the one that can best 
predict an unseen test set with minimized perplexity rate.

An example of perplexity values for WSJ is shown in Table 2.10 indicating that 
trigram with minimized perplexity has performed better than bigram and unigram 
supported this principle for text generation (Jurafsky et al. 1999).

2.6.2 � Extrinsic Evaluation Scheme

An extrinsic evaluation is a popular method for N-gram evaluation, its theory is 
straightforward as follows:

	1.	 Put model A into an application, for example, a speech recognizer or even a QA 
chatbot.

	2.	 Evaluate application performance with model A.
	3.	 Put model B into the application and evaluate.
	4.	 Compare two models’ application performance.

The good thing about extrinsic evaluation is that it can perform exact testing at 
two models which is fair and objective, but it is time consuming for system testing 
and implementations, i.e., take days to perform experiments if is a sophisticated 
system. So, a temporary solution is to use intrinsic evaluation with an approxima-
tion called perplexity to evaluate N-gram. It is easier to implement if the same sys-
tem is used but perplexity is a poor approximation unless the test data looks identical 
to the training data. Hence, it is generally useful in pilot experiments.

Table 2.10  Perplexity values for WSJ from unigram to trigram

N-gram order Unigram Bigram Trigram

Perplexity 962 170 109
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2.6.3 � Zero Counts Problems

Next step is to manage zero counts problems. Let’s return to The Adventures of 
Sherlock Holmes example, this literature had produced 109,139 bigram types over 
100 million possible bigrams as recalled, so there are approximately 99.89% of pos-
sible bigrams never seen that have zero entries in the bigram table. In other words, 
most of these zeros conditional probabilities are bigrams that need to be managed, 
especially in different NLP applications such as text generation and speech 
recognition.

There is a brief synopsis of such zero-count dilemma. Some of these zeros are 
truly zeros which means that can’t and shouldn’t occur because they won’t make 
grammatical or syntactic sense, on the other hand, some are only rare events which 
means they occurred infrequently, for example, with an extensive training corpus.

Further, Zipf’s law (Saichev et al. 2010) states that a long tail phenomenon is a 
rare event that occurs in a very high frequency, and large events numbers occur in a 
low frequency constantly. These are two extremes, which means some popular 
words always occur in a high frequency, and most are bigrams in a low frequency. 
Hence, it is clear to collect statistics on high-frequency events and may have to wait 
for a long time until a rare event occurs, e.g., a bigram to take a count on this low 
occurrence frequency event. In other words, high occurrence frequency events 
always dominate the whole corpus. This phenomenon is essential because it always 
occurs in website statistics or website counting. These high-frequency websites and 
N-grams are usually the top 100 and others with limited visit counts and occurrence, 
so the estimate results are sparse as there are neither counts nor rare events that are 
required to estimate the likelihood of unseen or 0 count N-grams.

2.6.4 � Smoothing Techniques

Every N-gram training matrix is sparse even with large corpora because of Zipf’s 
law phenomenon. The solution is to use likelihood estimation for figures on unseen 
N-grams or 0 count N-grams to judge the rest of corpus accommodated with these 
phantom/shadow N-grams. It will affect the rest of the corpus.

Let’s assume that an N-gram is used, all the words are known and seen before-
hand. When assigning a probability to a sequence where one of these components is 
0, the initial process is to search for a low N-gram order and back off from a bigram 
to unigram and replace 0 with something else, or a value with several methods to 
resolve zero count problems based on this concept; these collective methods are 
called smoothing techniques.

This section explores four commonly used smoothing techniques: (1) Laplace 
(Add-one) Smoothing, (2) Add-k Smoothing, (3) Backoff and Interpolation 
Smoot,hing and (4) Good Turing Smoothing (Chen and Goodman 1999; Eisenstein 
2019; Jurafsky et al. 1999).
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2.6.5 � Laplace (Add-One) Smoothing

Laplace (Add-one) Smoothing (Chen and Goodman 1999; Jurafsky et  al. 1999) 
logic is to consider all zero counts are rare events and add 1 into them. These rare 
events are neither occurred nor sampled during corpus training.

For unigram:

	1.	 Add 1 to every single word (type) count.
	2.	 Normalize N token/(N (tokens) + V (types)).
	3.	 Smooth count ci

∗  (adjusted for additions to N) given by:

	
c c

N

N Vi i
∗ = +( )

+
1

	
(2.14)

	4.	 Normalize N to obtain a new unigram probability p∗given by:

	
p

c

N V
i∗ =
+
+

1

	
(2.15)

For bigram:

	1.	 Add 1 into every bigram c(wn − 1wn) + 1.
	2.	 Increase unigram count by vocabulary size c(wn − 1) + V.

Table 2.11 shows a bigram count with and without Laplace Method for the previ-
ous example I have no doubt that I from The Adventures of Sherlock Holmes. It 
indicated that all zeros become 1 so that no I becomes 1, others like I have will come 
from 288 to 289, the calculation is simple but effective.

For bigram probability calculation is given by:

	

P w w
C w w

C wn n
n n

n

| −
−

−

( ) = ( )
1

1

1( ) 	

(2.16)

So, the bigram probability with the Laplace method will be given by:

Table 2.11  Bigram counts with and without Laplace method

Original bigram table of “I have no doubt 
that I”

Bigram table of “I have no doubt that I” with 
Laplace method

(by bigram count) (by bigram count)
I have no doubt that I I have no doubt that I

I 0 288 0 1 0 0 I 1 289 1 2 1 1

have 5 0 35 0 2 5 have 6 1 36 1 3 6

no 0 0 0 46 0 0 no 1 1 1 47 1 1

doubt 0 0 0 0 17 0 doubt 1 1 1 1 18 1

that 228 1 10 0 7 228 that 229 2 11 1 8 229
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Table 2.12 shows the bigram probabilities with and without Laplace Method for 
the previous example I have no doubt that I from The Adventures of Sherlock Holmes.

Note: The bigram probability is calculated by the division of unigram originally 
but now it will be the division by the count of unigram + total number of word type 
(V) which is equal to 9886, e.g., P(have | I) = 288/2755 = 0.105. Applying Laplace 
method, it becomes 289/(2755 + 9886) = 0.023. It showed that all zero cases will 
become 1 which is simple for text generation, but the problem is, some probabilities 
have changed notably such as I have from 0.105 to 0.023, and no doubt has the high-
est change from 0.1667 to only 0.00463.

Although it is adequate to assign a number to all zero events but the one with 
high frequency becomes insignificant because of copious word types in corpus base, 
indicating that the performance of Laplace Add-one smoothing may not be effective 
in many cases and required to look for alternatives.

2.6.6 � Add-k Smoothing

Add-k Smoothing (Chen and Goodman 1999; Jurafsky et al. 1999) logic is to assume 
that each N-gram is seen in k times, but the occurrence is rare. These zeros are rare 
events that are less than 1 and unnoticeable meaning that there is a line between 0 
and 1, it can be 0.1, 0.01, 0.2 or even smaller; so, a non-integer count is added 
instead of 1 to each count, for example, 0.05, 0.1, 0.2, typically, 0 < k < 1 provided 
that k must be a small number less than 1 in practical applications. It is because if k 
is too large, it will cause similar problem occurred in Laplace method.

By using the same logical as Add-1 method, Add-k Smoothing is given by:

	

P w w
C w w k

C w kVk n n
n n

n
Add |−
∗

−
−( ) = ( ) +

( ) +1
1

	

(2.18)

where 0 < k < 1
It is adequate to compare with the Laplace method in that the whole V is not used 

if V is very large such as 9886 in The Adventure of Sherlock Holmes. When the event 
is, say 0.05, means that it will be even smaller, but the new number won’t be too 
small. Aslthough add-k is useful for many tasks including text classification and 
generation, but not for all language modeling, generating counts with poor variance 
and often inappropriate discounts (Gale and Church 1994). Another add-k model 
consideration is to select an appropriate k number through trial and error but that 
will lead to problems in practical applications. Nevertheless, Add-k smoothing usu-
ally provides a better and more viable solution as compared with the Add-1 method.
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2.6.7 � Backoff and Interpolation Smoothing

Backoff and Interpolation (B&I) Smoothing (Chen and Goodman 1999; Suyanto 
2020) logic is to look for a lower dimension N-gram if there is no example of a 
particular N-gram. If N − 1 gram has an insufficient number count (or doesn’t exist), 
then will switch to N − 2 gram, and so on. Although it is not the perfect option, at 
least it can produce some viable counting for word prediction. That is to estimate a 
probability with a bigram instead of a trigram if there is none to be found. 
Furthermore, it can look up to unigram if no bigram either. This is a kind of backoff 
method and by interpolation, can always weigh and combine with quadrigram, tri-
gram, bigram, and unigram probabilities counts, for example, when calculating tri-
gram probability with unigram, bigram, and trigram, each weighted by some λ 
values. Note the sum of all λs must be 1 given by these equations:
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For a sophisticated version of linear interpolation, each λ value can be calculated 
by conditioning on the context which means it can be done by using conditional 
probabilities as well. In this way, if a particular bigram has accurate numbers, it can 
assume that the trigrams numbers are based on this bigram, which will be a robust 
method to implement given by the following equation:
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(2.20)

It is noted that by comparing with the previous equation (2.19), this equation also 
considers conditional probability in all N-gram levels. Hence, both simple interpo-
lation and conditional interpolation methods are learned from a held-out corpus. A 
held-out corpus is an additional training corpus to set hyperparameters like λ values 
by choosing λ values that can maximize the likelihood of held-out corpus. By 
adjusting N-gram probabilities and search for λ value is to provide the highest prob-
ability of held-out set. In fact, there are numerous approaches to find this optimal set 
of λ, a simple way is applying EM algorithm which is an interactive learning algo-
rithm to converge locally optimal λ (Jelinek and Mercer, 1980).
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2.6.8 � Good Turing Smoothing

Good Turing (GT) Smoothing (Chen and Goodman 1999; Gale and Sampson 1995) 
logic is to use the total frequency of events that occurred only once to estimate how 
much mass shift to unseen events, e.g., using a bag of green color beans to estimate 
the probability of an unseen red color bean.

This technique uses the frequency of N-gram occurrence to reallocate probabil-
ity distribution in two criteria, for example, N-gram statistics of The Adventures of 
Sherlock Holmes in Table 2.12. It showed that the probability of have doubt = 0 
without smoothing, so by using bigrams frequency that occurred once, i.e., proba-
bility of I doubt to represent the total number of bigrams for unknown bigrams 
given by:

	
P w wi iunknown |

Count of bigrams that appeared once

Count−( ) =1   of total bigrams 	
(2.21)

It is an intuitive method because it only considers the conditional probability of 
bigrams that occurred once to represent unknown probabilities instead of adding 1 
to them. In other words, the conditional probability of an unknown bigram of the 
word will be the count for the bigram that occurred once over the count of total 
bigrams.

For known bigrams such as no doubt, the frequency of bigrams that occurred 
more than one of the current bigram frequency Nc+1, frequency of bigrams that 
occurred the same as the current bigram frequency Nc, and the total number of big-
ram N are given by:

	
P w w
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Ni iknown | −

∗

( ) =1

	

	
where and count of input bigramc c
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(2.22)

Exercise: Try to calculate these probabilities from data provided by Table 2.12.

Exercises
	 2.1.	 What is a Language Model (LM)? Discuss the roles and importance of lan-

guage models in NLP.
	 2.2.	 What is an N-gram? Discuss and explain the importance of N-gram in NLP 

and text analysis.
	 2.3.	 State the Chain Rule and explain how it works for the formulation of N-gram 

probabilities. Use trigram as an example to illustrate.
	 2.4.	 What is a Markov Chain? State and explain how it works for the formulation 

of N-gram probabilities.
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	 2.5.	 Use The Adventures of Sherlock Holmes as corpus, calculate N-gram proba-
bility the for sentence “I don’t believe in that” with Markov Chain and evalu-
ate all related bigram probabilities.

	 2.6.	 Repeat Exercise 2.5 by using another famous literature Little Women by 
Louisa May Alcott (1832–1888) (Alcott 2017) to calculate N-gram probabil-
ity of the sentence “I don’t believe in that” and compare it with results in 2.5. 
What are the findings?

	 2.7.	 Use Shannon’s text generation scheme on The Adventures of Sherlock Holmes 
as corpus, generate sample sentences like Table 2.9 using unigram, bigram, 
trigram, and quadrigram text generation methods.

	 2.8.	 Repeat Exercise 2.7 using the literature Little Women (Alcott 2017) to gener-
ate corresponding sample sentences and compare them with results in 2.7. 
What are the findings?

	 2.9.	 What is Perplexity (PP) in N-gram model evaluation? Use The Adventures of 
Sherlock Holmes as corpus with sample test set, evaluate PP values from uni-
gram to trigram, and compare it with Table 2.10. What are the findings?

	2.10.	 Use Little Women (Alcott 2017) as a corpus and some sample test sets. 
Compare the performance of Add-1 smoothing against Add-k (k = 0.5). Which 
one is better? Why?

	2.11.	 What is Backoff and Interpolation (B&I) method in N-gram smoothing? 
Repeat 2.10 using B&I smoothing method with λ1 = 0.4, λ2 = 0.3 and λ3 = 0.3. 
Compare the performance with results obtained in 2.10.

	2.12.	 What is Good Turing (GT) Smoothing in N-gram smoothing? Repeat Exercise 
2.10 using GT Smoothing and compare performance results obtained in 2.10 
and 2.11. Which one is better? Why?
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Chapter 3
Part-of-Speech (POS) Tagging

3.1 � What Is Part of Speech (POS)?

Part of Speech (PoS or POS) is a category of words normally in lexical terms that 
have similar grammatic behaviors or properties (Bender 2013; Jurafsky et al. 1999). 
These are words assigned to the same POS exhibited in syntactic or functional 
behaviors and roles in grammatic structure sentences, for example, English verbs 
and nouns. They sometimes have similar morphology and can be inflected to pro-
duce similar properties and semantic behavior. To explore how POS works, it is 
important to understand the concept of inflection.

Inflection can be considered as the process of word formation in which items are 
added to the base form of a word to convey grammatical meanings. The word inflec-
tion comes from the Latin word inflectere, which means to bend, for example, (1) 
inflection -s of cats signifies the noun is plural, (2) the same -s inflection of gets 
signifies the subject is a third-person singular (e.g., [3.1] He gets the book), and (3) 
inflection of -ed often signifies past tense (e.g., arrive → arrived, close → closed, 
etc.). Thus, inflections are to express grammatical types such as persons, quantities, 
and tenses. There are several types of POS to define inflection characteristics.

3.1.1 � Nine Major POS in the English Language

Every word in English sentences falls into nine major POS types. They are (1) 
adjectives, (2) verbs, (3) pronouns, (4) conjunctions, (5) prepositions, (6) articles 
(determiners), (7) adverbs, (8) nouns, and (9) interjections as shown in Fig. 3.1. 
Some linguists include only first eight as major POS and leave interjections as an 
individual category.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_3&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_3#DOI


46

Fig. 3.1  Major POS in the English language

POS is important to study:

	1.	 Word class categorization and usage in linguistics
	2.	 Grammars in English usage
	3.	 Word functions categorization in NLP
	4.	 POS tagging

3.2 � POS Tagging

3.2.1 � What Is POS Tagging in Linguistics?

Part-of-Speech Tagging (Khanam 2022; Sree and Thottempudi 2011), also called 
POS tagging, POST, or grammatical tagging, is the operation of labelling a word in 
a text, or corpus according to a particular POS based on definition and contexts in 
linguistics. A simplified format is usually learned by students to identify word types 
such as adjectives, adverbs, nouns, verbs, etc. Grammars vary in foreign languages 
leading to several POS tagging categorizations.

3.2.2 � What Is POS Tagging in NLP?

Tagging is a kind of classification process that may be defined as an automatic 
description assignment to words or tokens in NLP (Eisenstein 2019). They are 
called POS tags or tags to represent one of the POS, semantic information in a 
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Fig. 3.2  POS example for utterance “She sells seashells on the seashore”

sentence or utterance. Some words may have different meanings and roles in POS, 
for example, book can be used as a noun or booking a table as a verb.

In NLP, POS tagging is the operation of converting a sentence/utterance to forms, 
or a list of words and list of tuples, where each tuple has a word or tag form to sig-
nify noun, verb, adjective, pronoun, conjunction, and their subcategories. Figure 3.2 
shows how tagging is applied to sample sentence/utterance: [3.2] She sells seashells 
on the seashore.

Machine learning and rule-based models can produce POS tags in NLP. They 
generally fall into (1) Rule-based POS tagging, (2) Stochastic POS tagging, and (3) 
Hybrid POS tagging using advanced technology like Transformation-based tagging 
(Jurafsky et al. 1999; Khanam 2022; Pustejovsky and Stubbs 2012). We will study 
how they work with NLTK and spaCy technologies at workshops in Part II. First, 
let’s look at some realistic POS databanks.

3.2.3 � POS Tags Used in the PENN Treebank Project

PENN Treebank is a frequently used POS tag databank provided by the PENN 
Treebank corpus (Marcus et al. 1993). It is an English corpus marked by a TreeTagger 
tool developed by Professor Helmut Schmid at the University of Stuttgart in 
Germany. It classifies nine major POS into subclasses that have a total of 45 POS 
tags with punctuation and examples as shown in Table 3.1, and its English Penn 
Treebank (PTB) corpus has a comprehensive section of Wall Street Journal (WSJ) 
articles to be used on sequential labeling models’ evaluation as well as characters 
and word levels language modeling.

A POS tagging table for sentence [3.3] David has purchased a new laptop from 
Apple store in Fig. 3.3 showed that Apple is a proper noun because it can be differ-
entiated by capital letter A as a product brand name.

3.2  POS Tagging
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Table 3.1  Penn Treebank POS tags (with punctuation)

No
POS 
tag Description Example No

POS 
tag Description Example

1 CC coordinating 
conjunction

and, but, or 24 SYM Symbol $ / [ = *

2 CD cardinal number 1, third 25 TO infinitive ‘to’ to
3 DT determiner a, the 26 UH interjection haha, oops
4 EX existential there there is 27 VB verb—base form drink
5 FW foreign word les 28 VBD verb—past tense drank
6 IN preposition, 

sub-conj
in, of, by, like 29 VBG verb—gerund drinking

7 JJ adjective big, wide, 
green

30 VBN verb—past 
participle

drunk

8 JJR adjective, 
comparative

bigger, wider, 
greener

31 VBP verb—non-3sg 
pres

drink

9 JJS adjective, 
superlative

biggest, 
wildest, 
greenest

32 VBZ verb—3sg pres drinks

10 LS list marker 1), One, i 33 WDT wh-determiner which, that
11 MD modal can, could, 

shall, will
34 WP wh-pronoun who, what

12 NN noun, singular or 
mass

table, shop 35 WP$ possessive 
wh-pronoun

whose, 
those

13 NNS noun plural tables, shops 36 WRB wh-abverb where, 
when, how

14 NNP proper noun, 
singular

Samsung 37 # # #

15 NNPS proper noun, 
plural

Vikings 38 $ $ $

16 PDT predeterminer all/both the 
students

39 “ Left quotation ‘ “

17 POS possessive ending friend’s 40 ” Right quotation ’ ”
18 PP personal pronoun I, he, it, you 41 ( Opening brackets ( {
19 PPZ possessive 

pronoun
my, his, your, 
one’s

42 ) Closing brackets ) }

20 RB adverb however, 
quickly, here

43 , Comma ,

21 RBR adverb, 
comparative

better, quicker 44 : Sent-final punc . ! ?

22 RBS adverb, 
superlative

best, quickest 45 : Mid-sentence 
punc

: ; … -

23 RP particle of, up (e.g. give 
up)
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Fig. 3.3  Penn Treebank POS tags of sample sentence “David has purchased a new laptop from 
Apple store”

3.2.4 � Why Do We Care About POS in NLP?

POS is a fundamental concept to understand the proper use of language, for exam-
ple, English. Without this, we cannot differentiate the usages or roles of different 
words in a sentence whether it is a noun, verb, adjective, and determiner. The major 
concerns include:

	1.	 Pronunciation often differs from the same word with different roles.
For example [3.4] Here are the students’ records versus [3.5] The teacher 

records his lecture.
	2.	 Prediction of the following word, for example, (a) they should use will instead of 

shall and (b) the word after to is not past tense. It is natural in grammar rules as 
compared with N-gram solely relied on counting words relationship.

	3.	 Stemming is within a restricted tag set, for example, comput for computer.
	4.	 Syntactic parsing base and then meaning extraction.

For example [3.6] Better get going or you will be late.
	5.	 Machine translation for the same word with different POS classes most likely 

has a different translation in other languages, for example, translation from 
English to French.

(E) book + N → (F) acheter + N (Buy a book → Achète un livre)
(E) book + VB → (F) réserver + VB (Book a room → Réserver une chambre)

A proper POS tagging can provide correct translation between foreign languages. 
Further, it is to stress different accents and avoid confusion of the same word (word 
type) with different POS in a sentence/utterance. There are three types:-

	1.	 Noun vs verb confusion, for example, ABstract (noun) vs. abstRACT (verb).
	2.	 Adjective vs Verb confusion, for example, PERfect (adjective) vs. per-

FECT (verb).
	3.	 Adjective vs Noun confusion, for example, miNUTE (adjective) vs MInute (noun).

Table 3.2 shows some examples of common English words from the CELEX 
online dictionary, which have different stresses and meanings to distinguish the role 
of each word in the sentence/utterance when dealing with noisy channels. These 
problems can be solved by applying statistical probability N-gram methods or sto-
chastic techniques and corpus for fact analysis. Nevertheless, part-of-speech tag-
ging is the first step to solve the problem.

3.2  POS Tagging
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Table 3.2  Common example of same English word with different stress accents

Noun Verb Noun Verb Noun Verb

ABstract abstRACT ENvelope enVELope REBel reBEL
ACcent acCENT EScort esCORT REcap reCAP
ADdict adDICT EXploit exPLOIT REcall reCALL
ADdress adDRESS EXport exPORT REcord reCORD
ANnex anNEX EXtract exTRACT REfill reFILL
ALly alLY FInance fiNANCE REfund reFUND
ATtribute atTRIBute FRAgment fragMENT REfuse refUSE
COMbat comBAT IMpact imPACT REject reJECT
COMmune comMUNE IMprint imPRINT REplay rePLAY
COMpact comPACT INcrease inCREASE SUBject subJECT
COMpound comPOUND INsert inSERT SURvey surVEY
COMpress comPRESS INsult inSULT SUSpect susPECT
CONduct conDUCT MANdate manDATE TORment torMENT
CONfines conFINES OBject obJECT TRANSfer transFER
CONflict conFLICT OVERcharge overCHARGE TRANSplant transPLANT
CONscript conSCRIPT OVERwork overWORK TRANSport transPORT
CONsort conSORT PERmit perMIT UPset upSET
CONtract conTRACT PERvert perVERT
CONtrast conTRAST PREfix preFIX Adjective Verb
CONverse conVERSE PREsent preSENT ABsent abSENT
CONvert conVERT PROceeds proCEEDS FREquent freQUENT
CONvict conVICT PROcess proCESS PERfect perFECT
DEcrease deCREASE PROduce proDUCE
DEsert deSERT PROgress proGRESS Adjective Noun
DEtail deTAIL PROject proJECT inVALid INvalid
DIScard disCARD PROtest proTEST miNUTE (my noot) MInute (min it)
DIScharge disCHARGE RAMpage ramPAGE comPLEX COMplex

3.3 � Major Components in NLU

Natural Language Understanding (NLU) (Allen 1994; Mitkov 2005) is a critical 
component in various NLP applications including text summarization, sentiment 
analysis, information retrievals to Q&A chatbot systems. It composes of five basic 
modules: (1) morphology, (2) POS tagging, (3) syntax, (4) semantics, and (5) dis-
course integration as shown in Fig. 3.4.

Morphology is the understandings of shapes and patterns for every word of a sen-
tence/utterance.

POS tagging is key process to provide functions and categories of words.
Syntax is syntactic analysis to understand the syntactic role and usage of every word 

or word pattern.
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Morphology

POS Tagging

Syntax

Semantics

Discourse Integration

Fig. 3.4  Major 
components in NLU

Semantics is an analysis to understand semantic meaning of a sentence/utterance 
and its overall meaning.

Discourse integration is to understand the relationship between different sentences 
and its contents.

3.3.1 � Computational Linguistics and POS

Computational linguistics (CL) (Bender 2013; Clark et al. 2012; Mitkov 2005) can 
be regarded as understanding written or spoken language from a computational and 
scientific perspective. It focuses on building artifacts that process and analyze lan-
guage. Language is like a mirror of the mind that reflects human thoughts. 
Computational interpretations of language provide new insights into how human 
thinking and intelligence work.

As human language is natural and the most polytropic means of communication 
either person-to-person or person-to-machine, linguistically enabled computer sys-
tems provide a new era of NLP applications. There are two major issues to address 
in computational linguistics: (1) linguistic itself refers to facts about language and 
(2) algorithmic refers to effective computational procedures dealing with these facts.

The major goals of computational linguists include:

	1.	 Construction of grammatical and semantic frameworks/models for language 
characterization.

	2.	 Realization of learning models for the exploration of both structural and distri-
butional properties of language, and,

	3.	 Exploration of neuroscience and cognitive-oriented computational models of 
how language processing and learning work in our brains.

Thus, POS and POS tagging can be considered as the fundamental process in 
computational linguistics to understand and model human languages.
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3.3.2 � POS and Semantic Meaning

The elementary level of language semantics (Goddard 1998) is to describe actual 
meaning of word forms. For example, a noun may be a category of words for people, 
locations, and things. Adjectives may be the category of words for properties 
of nouns.

Consider: [3.7] green book in which green is an adjective while book is a noun.
In fact, the word book can have two meanings: (1) description of word book from 

the dictionary and (2) noun in a sentence, which is an object. For the word green, it 
has an in-depth interpretation of (1) an adjective to describe the book in green color 
and (2) a semantic meaning to describe the book in green.

Now consider: [3.8] book worm???

[3.9] This green is very smoothing???

Here the word book has the same spelling and pronunciation as [3.8] but it 
becomes an adjective instead of a noun because of the semantic meaning of book 
worm. In [3.9], green becomes a noun instead of an adjective because of semantic 
meaning consideration in the whole sentence/utterance. So, the POS of every word/
word pattern can be varied when considering the role in the overall semantic mean-
ing of a sentence/utterance.

3.3.3 � Morphological and Syntactic Definition of POS

According to the structure of morphologically clear grammatical rules, when there 
is an adjective to fill in the blank, for example [3.10] It’s so _____, it can be difficult, 
expensive, small, etc. This rules’ structure gives shape to appropriate POS tags for 
description, for example, when a noun is a word that can be labeled as plural means, 
it can be defined in either singular or plural form with s, or the other way round 
which is a two-way process. Thus, when a tagger tags a word with s, it gives hints 
that the word may contain s or a noun in plural, for example, cat or cats.

On the other hand, when there is a noun that can fill in the blank. For example, 
[3.11] the _____ is so pretty, it can be decoration, house, painting, etc. and con-
scious of not using a proper noun, for example, the Tesla.

Consider the following situations, what is the POS for the word purple:

[3.12] It’s so purple.
[3.13] Both purples should be okay for the room.
[3.14] The purple is a bit odd for the white carpet.

In [3.12], it is an adjective. However, in [3.13] it is a particular noun in plural 
forms. In [3.14], it is also an indifferent noun to classify as a group against uncount-
able objects in purple.
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3.4 � Nine Key POS in English

There are nine key POS in English: (1) pronoun, (2) verb, (3) adjective, (4) interjec-
tion, (5) noun, (6) adverb, (7) conjunction, (8) preposition, and (9) article as shown 
in Fig.  3.5. Some linguists consider interjections as separate POS category to 
express strong feeling or emotion in a single word or a phrase, for example, [3.15] 
Hooray! It’s the last day of school. It is distinct compared with other POS.

3.4.1 � English Word Classes

There are two types of English word classes: (1) closed class and (2) open class. 
Both classes are important to understand proper sentences in different languages.

Closed-class words are also known as functional/grammar words. They are 
closed since new words are seldom created in the class. For example, conjunctions, 
determiners, pronouns, and prepositions are closed class. On the other hand, new 
items are added to open classes regularly. As closed-class words are usually used 
with a particular grammatical structure, it cannot be interpreted in isolation, for 
example, [3.16] the style of this painting, both the and this have no special meaning 
as compared with painting that has a specific meaning in usual knowledge.

Open-class words are also known as lexical/content words. They are open 
because the meaning of open-class words can be found in dictionaries and therefore 
their meaning can be interpreted individually. For example, nouns, verbs, adjec-
tives, and adverbs are open class made up of the entire sub-class of words. These 
connective words are restrictive and used frequently to describe different scenarios 

Fig. 3.5  Nine major POS in the English language with description
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or meanings about spatial positions of two object nouns, for example, [3.17] The cat 
sits by/under/above the piano. Further, there are new types of open-class objects 
created from scratch or a combination of the existing words according to contempo-
rary times, for example, fax, telex, internet, iPhone, hub, bitcoin, metaverse, etc.

3.4.2 � What Is a Preposition?

Preposition (PP) is POS with a word (group of words) being used before a noun, 
pronoun, or noun phrase to indicate direction, location, spatial relationships, time or 
to describe an object or information to the recipient. There are approximately 
80–100 prepositions in English to generate functional sentences/utterances.

This information can include where something takes place, for example, [3.18] 
before dinner, or general descriptive information, for example, [3.19] the girl with 
ponytail. The target of the preposition is the noun that followed the preposition. It is 
also the ending point for each preposition phrase. For instance, [3.20] to the super-
market. The word to is a preposition and supermarket is the target of the preposi-
tion, and [3.21] over the rainbow, the word over is the preposition and rainbow is 
the target of the preposition. A list of the top 40 prepositions from the CELEX 
online dictionary (CELEX 2022) of the COBUILD 16-million-word corpus is 
shown in Table 3.3. It showed that of, in, for, to, and with are the top five preposi-
tions to correlate with ideas and additional information of a sentence/utterance.

3.4.3 � What Is a Conjunction?

Conjunction (CONJ or CNJ) is POS to connect words, clauses, or phrases that are 
known as conjuncts. This definition may sometimes overlap with other POS so that 
the constitute of a conjunction must be defined for each foreign language. For 
instance, a word in English may have several senses and meanings. It can be consid-
ered as either a conjunction or preposition highly dependable on the syntax of the 
sentence/utterance, for example, after is a preposition in [3.22] Jane left after the 
show but is a conjunction in [3.23] Jane left after she finished her homework.

Co-ordinating conjunction allows joining words, clauses, or phrases of equal 
grammatic rank in a sentence/utterance. Common co-ordinating conjunctions are 
and, but, for, nor, or yet which include logical meaning at times.

Subordinating conjunctions join independent and dependent clauses to present a 
causation relationship, or some kind of relationship between different words, 
clauses, or phrases. Common subordinating conjunctions are as, although, because, 
since, though, while, and whereas. A conjunction is a non-inflected grammatical 
item in many situations as it may or may not link up the items being conjoined, for 
example, [3.24] the book is so difficult that is hard for children to read. That is to 
describe about the book to connect two ideas and [3.25] this painting is very 
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Table 3.3  Top 40 commonly used prepositions extracted from the CELEX online dictionary

Rank PP Freq. Rank PP Freq.

1 of 540,085 21 above 3056
2 in 331,235 22 near 2026
3 for 142,421 23 off 1695
4 to 125,691 24 past 1575
5 with 124,965 25 worth 1563
6 on 109,129 26 toward 1390
7 at 100,169 27 plus 750
8 by 77,794 28 till 686
9 from 74,843 29 amongst 525
10 about 38,428 30 via 351
11 than 20,210 31 amid 222
12 over 18,071 32 underneath 164
13 through 14,964 33 versus 113
14 after 13,670 34 amidst 67
15 between 13,275 35 sans 20
16 under 9525 36 circa 14
17 per 6515 37 pace 12
18 among 5090 38 nigh 9
19 within 5030 39 re 4
20 towards 4700 40 mid 3

beautiful but is expensive. In this case but is to explain an initial idea to correlate 
with second idea. A list of top 50 commonly used co-ordinating and subordinating 
conjunctions from the CELEX online dictionary is shown in Table 3.4. It showed 
and, that, or, and as are used frequently to convey more than one concept at the 
same time or further explanation.

3.4.4 � What Is a Pronoun?

Pronoun (PRN or PN) is POS that can be considered as a word (phrase) to serve as 
a substitution for a noun or noun phrase. It is also called the pronoun’s antecedent. 
Pronouns usually appear as short words to replace a noun (noun phrase) for the 
construction of a sentence/utterance. Commonly used pronouns are I, he, she, you, 
me, we, us, this, them, that.

A pronoun can be used as a subject, direct (indirect) object, object of preposition 
and more to substitute any person, location, animal, or thing. It can replace a per-
son’s name in a sentence/utterance, for example, [3.26] Jack is sick today, he cannot 
attend the evening seminar. Pronoun is also a powerful tool to simplify the contents 
of dialogue and conversation by replacing them with simple tokens. A list of the top 
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Table 3.4  Top 50 commonly used conjunctions extracted from the CELEX online dictionary

Rank CONJ. Freq. Rank CONJ. Freq.

1 and 514,946 26 now 1290
2 that 134,773 27 neither 1120
3 but 96,889 28 whenever 913
4 or 76,563 29 whereas 867
5 as 54,608 30 except 864
6 if 53,917 31 till 686
7 when 37,975 32 provided 594
8 because 23,626 33 whilst 351
9 so 12,933 34 suppose 281
10 before 10,720 35 cos 188
11 though 10,329 36 supposing 185
12 than 9511 37 considering 174
13 while 8144 38 lest 131
14 after 7042 39 albeit 104
15 whether 5978 40 providing 96
16 for 5935 41 whereupon 85
17 although 5424 42 seeing 63
18 until 5072 43 directly 26
19 yet 5040 44 ere 12
20 since 4843 45 notwithstanding 3
21 where 3952 46 according as 0
22 nor 3078 47 as if 0
23 once 2826 48 as long as 0
24 unless 2205 49 as though 0
25 why 1333 50 both and 0

50 commonly used pronouns extracted from the CELEX online dictionary is shown 
in Table 3.5. It showed it, I, he, you, and his are used frequently.

The truth is without pronouns, nouns become repetitive and cumbersome in 
speech and writing. However, the pronoun may cause ambiguity, for example, 
[3.27] Jack blamed Ivan for losing the car key, he felt sorry for that. He normally 
refers to the first person which is Jack but makes sense in pragmatic meaning for 
Ivan to feel sorry because Jack blamed him for the loss.

3.4.5 � What Is a Verb?

Verb (VB) can be considered as a word syntax to conduct an action, process, occur-
rence, or state of being. In general, verbs are inflected to encode tense, aspect, mood, 
and voice in many languages, but are interchangeable with nouns of a word in some 
foreign languages. In English, a verb may also conform with gender, person, or 
number of arguments such as its subject or object.
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Table 3.5  Top 50 commonly used pronouns extracted from the CELEX online dictionary

Rank PRN Freq. Rank PRN Freq.

1 it 199,920 26 our 23,029
2 I 198,139 27 these 22,697
3 he 158,366 28 any 22,666
4 you 128,688 29 more 21,873
5 his 99,820 30 many 17,343
6 they 88,416 31 such 16,880
7 this 84,927 32 those 15,819
8 that 82,603 33 own 15,741
9 she 73,966 34 us 15,724
10 her 69,004 35 how 13,137
11 we 64,846 36 another 12,551
12 all 61,767 37 where 11,857
13 which 61,399 38 same 11,841
14 their 51,922 39 something 11,754
15 what 50,116 40 each 11,320
16 my 46,791 41 both 10,930
17 him 45,024 42 last 10,816
18 me 43,071 43 every 9788
19 who 42,881 44 himself 9113
20 them 42,099 45 nothing 9026
21 no 33,458 46 when 8336
22 some 32,863 47 one 7423
23 other 29,391 48 much 7237
24 your 28,923 49 anything 6937
25 its 27,783 50 next 6047

English verbs have tenses consideration: (1) present tense to notify that an action 
is being carried out, (2) past tense to notify that an action has been completed, (3) 
future tense to notify that an action to be happened in future, and (4) future perfect 
tense to notify an action will be completed in future.

A modal verb is a category of verb that contextually indicates a modality such 
as ability, advice, capacity, likelihood, order, obligation, permission, request, or 
suggestion. It is usually accompanied by the base (infinitive form) of another word 
with semantic contents. Common modal verbs are can, could, may, might, shall, 
should, will, would, and must. A list of the top 25 commonly used verbs from the 
CELEX online dictionary is shown in Table 3.6. It showed can, will, may, would, 
and should are used frequently. They also express significance in the subsequent 
verb, for example, verb following can and will must use present tense, not 
past tense.
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Table 3.6  Top 25 commonly used modal verbs extracted from the CELEX online dictionary

Rank VB Freq. Rank VB Freq.

1 can 70,930 14 won’t 3100
2 will 69,206 15 ’d 2299
3 may 25,802 16 ought 1845
4 would 18,448 17 will 862
5 should 17,760 18 shouldn’t 858
6 must 16,520 19 mustn’t 332
7 need 9955 20 ’ll 175
8 can’t 6375 21 needn’t 148
9 have 6320 22 mightn’t 68
10 might 5580 23 oughtn’t 44
11 couldn’t 4265 24 mayn’t 3
12 shall 4118 25 dare 3
13 wouldn’t 3548

3.5 � Different Types of POS Tagset

3.5.1 � What Is Tagset?

There are nine POS in English—pronoun, verb, adjective, interjection, noun, 
adverb, conjunction, preposition, and article learnt as students but there are clearly 
more sub-categories that can be further divided. For example, in nouns, the plural, 
possessive, and singular forms can be distinguished and further classified.

A Tagset is a batch of POS tags (POS tags or POST) to indicate the part of speech 
and sometimes other grammatical categories such as case and tense for the classifi-
cation of each word in a sentence/utterance.

Brown Corpus Tagset (Brown 2022), PENN Treebank Tagset (Treebank 2022), 
and CLAWS (CLAWS7 2022) are commonly used. Brown Corpus was the first well-
organized corpus of English for NLP analysis developed by Profs Emeritus Henry 
Kučera (1925–2010) and W.  Nelson Francis (1910–2002) at Brown University, 
United States, in mid-1960s. It consists of over one million English words extracted 
from over 500 samples of randomly chosen publications. Each sample consists of 
over 2000 words with 87 tags defined (Brown 2022).

The English PENN Treebank Tagset originated by English corpora is annotated 
with the TreeTagger tool. PENN Treebank Tagset developed by Professor Helmud 
Schmid in the University of Stuttgart, Germany, consists of 45 distinct tags (Abeillé 
2003; Treebank 2022).

English CLAWS part-of-speech Tagset version 7, also called C7 Tagset, is avail-
able in English corpora annotated with tools using CLAWS (Constituent Likelihood 
Automatic Word-tagging System). C7 Tagset developed by the University Centre 
for Computer Corpus Research on Language at Lancaster University was based on 
the Hidden Markov model to determine the likelihood of sentences and sequences 
of words in anticipating each POS label. It consists of 146 distinct tags 
(CLAWS7 2022).
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3.5.2 � Ambiguous in POS Tags

It may be the necessity of tagset databank against the dictionary to check out POS. A 
reason is that there are ambiguities in POS tags for many words:

	1.	 Noun-verb ambiguity.
For example, record: [3.28] records the lecture vs [3.29] play CD records.

	2.	 Adjective-verb ambiguity.
For example, perfect: [3.30] a perfect plan vs [3.31] Jack perfects the 

invention.
	3.	 Adjective-noun ambiguity.

For example, complex: [3.32] a complex case vs [3.33] a shopping complex.

Table 3.7 shows an ambiguous analysis of words in Brown corpus (DeRose 
1988). One tag refers to a word tagged with a single POS type; 2–7 tags refer to a 
word tagged with several POS types. For example, a 3 POS ambiguous tag for 
green: (a) [3.34] color green (noun), (b) [3.35] a green apple (adjective), and (c) 
[3.36] the roof was greening with leaves (verb). A 7 POS ambiguous tag for still: (a) 
[3.37] the still status (adjective), (b) [3.38] the still of the night (noun), (c) [3.39] it 
was still snowing (adverb), and (d) [3.40] Her quiet words stilled the animal (verb). 
(Note: As an exercise, find out the other three POS tag usages for still.) Overall, 
there is a total of 10.4% ambiguous word types often used in language in which over 
40% of ambiguous words are easy to disambiguate.

3.5.3 � POS Tagging Using Knowledge

There are four methods to acquire knowledge from POS tagging: (1) dictionary, (2) 
morphological rules, (3) N-gram frequencies, and (4) structural relationships 
combination.

Dictionary is the basic method for tag usage, but it may not be fully reliable 
because there are ambiguous words meaning that the same word can have more than 
a single POS tagging in diverse scenarios.

Table 3.7  Ambiguous 
analysis of words in 
Brown Corpus

Unambiguous (1 tag) 35,340
2 tags 3760
3 tags 264
4 tags 61
5 tags 12
6 tags 2
7 tags 1
Ambiguous (2–7 tags) 4100
Ambiguous % 10.40%
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Morphological rules are to identify well-known word shapes and patterns, for 
example, the inflection -ed for past tense, verb + -ing for continuous form, -tion for 
noun description, -ly for adjective, and capitalization such as New York for 
proper noun.

N-gram frequencies checking, also called next word prediction, for example, 
grammatic pattern to ___. When there is a to, if the next word is a verb, it must be 
in present and not past tense. If it is a determiner, the next word must be a noun.

Structural relationships combination method means to combine several methods 
to acquire tag information, for example, [3.41] She barely heard the foghorns knell-
ing her demise vs. [3.42] The hunter’s horn sounded the final knell. If there is no 
understanding on what knell means, there is an -ing pattern to indicate that is a verb 
in continuous tense, and final is an adjective description to indicate that knell is 
likely a noun.

3.6 � Approaches for POS Tagging

There are three basic approaches to POS Tagging: (1) Rule-based, (2) Stochastic-
based, and (3) Hybrid Tagging.

3.6.1 � Rule-Based Approach POS Tagging

The rule-based approach is a classical approach in linguistics (Sree and Thottempudi 
2011). The grammar knowledge learnt in primary schools is in fact grammatic rules, 
which means that the rule-based approach is the transfer of linguistic rule base 
usage into POS tagging.

It is a two-stage process: (1) dictionary consists of all possible POS tags for basic 
concepts of words as abovementioned and (2) words with more than single tag 
ambiguity applied handwritten or grammatic rules to assign the correct tag(s) 
according to surrounding words. The obtained rule sets directly affect tagging 
results accuracy. The lexicon is used initially for basic segmentation and tagging of 
the corpus, listing all possible lexical properties of the object, and combining rule-
base with contextual information to disambiguate and retain the only suitable lexi-
cal properties.

The rule generation can be achieved by (1) hand creation and (2) training from a 
corpus with machine learning. The advantages of hand creation are that it is sensible 
and explainable to humans, but manual construction of rules is usually labor inten-
sive. Also, if rules are described with too many details, the coverage of rules will be 
greatly reduced and difficult to adjust according to the actual situation. On the other 
hand, if rules are not based on contexts but rather on the lexical nature of rules, 
ambiguity may arise, that is, if the preceding of a word is an article, then the word 
must be a noun.
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For example, consider [3.43] a book. a is an article as per possible tags that can 
be assigned directly, but a book can either be a noun or a verb. If considered a book, 
a is an article and follows the rules above, book should be a noun because the article 
is often followed by a noun, so a tag of noun is assigned to book. Word structures 
are often complex leading to more ambiguities and rules are required for 
differentiation.

3.6.2 � Example of Rule-Based POS Tagging

Step 1: Assign each word with a list of possible tags based on a dictionary.
Step 2: Work out unknown and ambiguous words with two approaches: rules that 

specify what (1) to do and (2) not to do.

Figure 3.6 shows a sample adverbial that rule (Jurafsky et al. 1999):
It showed that:

–– The first two statements of this rule verify the word that directly precedes a sen-
tence/utterance’s final adjective, adverb, or quantifier.

–– For all other cases, the adverb reading is eliminated.
–– The last clause eliminates cases that are preceded by verbs like consider or 

believe which can take a noun and an adjective.
–– The logic behind this is to avoid tagging the following instance of that as an 

adverb such as [3.44] It isn’t that odd.
–– The other rule is used to verify if the previous word is a verb that expects a 

complement (like think or hope), and if that is followed by the beginning of a 
noun phrase, and a finite verb such as [3.45] I consider that a win or more com-
plex structure such as [3.46] I hope that she is confident.

Stochastic-based approach (Dermatas and Kokkinakis 1995) is different from 
the rule-based approach in which it is a supervised model using frequencies or 
probabilities of tags that appeared in the training corpus to assign a tag to a new 
word. This tagging method depends on tag occurrence statistics, that is, probability 
of the tags. Stochastic taggers are further categorized into two parts: (1) word fre-
quency and (2) tag sequence frequency to determine a tag.

Example: Adverbial “that” rule
Given input: “that”
If

(+1 A/ADV/QUANT)
(+2 SENT-LIM)
(NOT -1 SVOC/A)

Then eliminate non-ADV tags
Else eliminate ADV

It isn’t that odd . vs

I consider that a win. vs

I hope that she is confident.

Fig. 3.6  Sample rule for adverbial “that” rule
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Word frequency is to identify the tag that has a notable occurrence of the word, 
for example, based on the counting from a corpus, the word list occurs ten times in 
which six times as a noun and four times as a verb, and the word cloud will always 
be assigned as a noun since it has a notable occurrence in the training corpus. Hence, 
a word frequency approach is not very reliable in certain scenarios.

Tag sequence frequency, also called N-gram approach, is assigned the best tag to 
a word evaluated by the probability of N previous words tags. Although it provides 
better outcomes than word frequency approach, it may be unable to provide accu-
rately for some rare words and phrases.

Stochastic POS tag model allows features to be non-independent and the addi-
tion of various granularities features. Hidden Markov Model (HMM) Tagger is a 
common stochastic-based approach, its Maximum Entropy Markov Model 
(MEMM) (Huang and Zhang 2009) is a stochastic POS tagging model that deter-
mine an exponential algorithm for each state as the conditional probability of the 
next state given the current state, which has the advantages of a stochastic POS tag-
ging model. However, it also suffers from label bias problems. Unlike MEMM 
model, the Conditional Random Field (CRF) model adopts only one model as the 
joint probability of the entire label sequence given the observations sequence. 
Lafferty et al. (2001) verified that this model can effectively solve the tagging bias 
problems.

3.6.3 � Example of Stochastic-Based POS Tagging

Let’s use HMM Tagger as example. The rationale of the HMM tagger is applying 
N-gram frequencies to determine the best tag for a given word, like the same con-
cept to investigate N-gram with Markov Chain. Mathematically, all is needed to 
maximize the conditional probability. The conditional probability wi is tag ti in the 
context given wi by

	

P t w
P w t P t

P wi i
i i i

i

in context|
| in context in context

( ) = ( ) ( )
( ) 	

(3.1)

In other words, given a sentence/utterance or word sequence, HMM taggers 
select tag sequence that maximizes the following formula given by:

	
P P nword|tag tag|previous tags( )∗ ( ) 	

(3.2)

For bigram-HMM tagger, select tag ti for wi, that is most probable given the pre-
vious tag ti−1, and the current word wi in this equation by:

	
t P t t wi j j i i= ( )−

argmax |, |,1 	
(3.3)
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By simplifying Markov assumptions, the previous equation is applied to give a 
basic HMM equation for a single tag as follows:

	
t P t t P w ti j j i i j= ( ) ( )−

argmax | |1 	
(3.4)

3.6.4 � Hybrid Approach for POS Tagging Using Brill’s Taggers

Hybrid approach is the integration of rule-based and stochastic with high-level 
methods including neural networks such as LSTM and other machine learning 
related methods often applied in NLP nowadays. Let’s study an important hybrid 
approach for POS Tagging—Transformation-based tagging, also called Brill’s 
Taggers invented by Dr. Eric Brill in 1995 (Brill 1995). It is a direct Transformation-
Based Learning (TBL) implementation based on the integration of these two 
approaches.

3.6.5 � What Is Transformation-Based Learning?

There are five steps in TBL by comparison to analog of oil painting with a layering-
and-refinement approach.

	1.	 Start with a background theme such as sky or household background.
	2.	 Paint the background first, for example, if sky is the background scheme, paint 

clouds over it.
	3.	 Paint the main theme or object over the background, for example, land-

scape, birds.
	4.	 Refine the main theme or object over the background to make it more precise, for 

example, paint a landscape, add trees and animals layer-by-layer.
	5.	 Further refine objects or the main theme until perfect, for example, apply a layer-

ing process or refinement for every single tree and animal (Fig. 3.7).

3.6.6 � Hybrid POS Tagging: Brill’s Tagger

Brill’s Tagger is a type of hybrid TBL. Hybrid refers to integrate rule-based and 
stochastic-based methods in Brill’s algorithm.

Rule 1: Label each word of the tag that is mostly likely given on contextual informa-
tion, for example.

	
Race NN race VB race: . ; .P P( ) = ( ) =0 98 0 02
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Fig. 3.7  Oil painting 
analog to Brill’s Tagger 
transformation technique 
(Tuchong 2022)

Rule 2: Apply the transformation rule based on the context established.

Example:

Race: change NN to VB when the previous tag is TO.
[3.47] Secretariat is expected to race tomorrow.—change tag race from NN to VB.
[3.48] The race is already over. —no change, race remains as NN.

For [3.47] race has a higher probability of a noun, it will be treated as such by 
applying rule 1 initially. However, when there is a verb prior to, it should apply rule 
2 to change into a verb instead of a noun according to grammatical rules.

For [3.48] race again has a high probability of being a noun but due to the gram-
matical rule being invalid, it remains as a noun. Thus, TBL is often applied to iden-
tify stochastic probabilities of tag frequencies for initial guesswork followed by 
grammatic rules for refinement.

3.6.7 � Learning Brill’s Tagger Transformations

There are three stages to learn Brill’s tagger transformations:

	1.	 Label every word with its best tag with the stochastic method,
	2.	 Examine every possible transformation to select one with the most improved 

tagging and,
	3.	 Retag data according to tagging rules.

These three stages are repetitive until a stopping criterion with no more rules to 
apply. TBL output is an ordered list of transformations that constitute a POS tagging 
procedure to a new corpus. The sample rules of Brill’s TBL model are shown in 
Fig. 3.8 (Jurafsky et al. 1999).

Many NLP applications have adopted the Brill’s model because it is a good com-
bination of rule-based models (which provide detailed refinement) and stochastic 
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The preceding (following) word is tagged z. 

The word two before (after) is tagged z.

One of the two preceding (following) words is tagged z. 

One of the three preceding (following) words is tagged z.

The preceding word is tagged z and the following word is tagged w.

The preceding (following) word is tagged z and the word two 

before (after) is tagged w.

Fig. 3.8  Sample rules used in Brill’s TBL scheme

models (which provide efficient tagging solutions). In addition, the Brill’s model 
can be easily implemented in both the world domain and the knowledge domain 
(such as medical knowledge domain), which may have specific rules or terminology 
for the corpus.

3.7 � Taggers Evaluations

There are several considerations when POS taggers are implemented (Padro and 
Marquez 1998):

	1.	 Evaluate algorithm adequacy.
	2.	 Identify error’s origin.
	3.	 Repair and solve.

A confusion matrix suggests that current taggers face major problems:

	1.	 Noun-single or mass vs. proper noun-singular vs. adjective (NN vs. NNP vs. JJ). 
These are hard to distinguish as proper nouns is crucial for information extrac-
tion, retrieval, and machine translation for different languages that have diverse 
tagging algorithms or classification schemes.

	2.	 Adverb vs. adverb vs. preposition-sub-conjunction (RP vs. RB vs. IN). All of 
these can appear in satellite sequences following a verb immediately.

	3.	 Verb-base form vs. verb-past participle vs. adjective (VB vs. VBN vs. JJ). They 
are crucial to distinguish for partial parsing, i.e., participles to identify passives 
and to label the edges of noun phrases correctly.

The confusion matrix from HMM error analysis of The Adventures of Sherlock 
Holmes (Doyle 2019) is shown in Table 3.8. For example, the mis-tagging of (1) NN 
by JJ is 7.56%, (2) NNP by NN is 5.23%, and (3) JJ by NN is 4.35%. Hence, mistak-
ing NN by JJ occurred more often than JJ by NN in English texts but it may vary in 
other foreign languages.
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Table 3.8  Confusion matrix from HMM of The Adventures of Sherlock Holmes

IN JJ NN NNP RB VBD VBN

IN 0.18 0.56
JJ 0.32 4.35 3.21 2.25 0.31 2.54
NN 7.56 0.35
NNP 0.31 3.12 5.23 0.15
RB 2.45 3.21 0.43
VBD 0.56 0.52 4.31
VBN 3.21 2.12

3.7.1 � How Good Is an POS Tagging Algorithm?

A satisfactory POS tagging algorithm depends on the maximum performance it can 
achieve. It must be realistic and of course the higher the better, but there are limits. 
For example, a POS tagging system has more than 90% accuracy should be consid-
ered satisfactory. But how can we define satisfactory? For example, (1) it is satisfac-
tory for a voice dialogue system to give the correct meaning to user input 97% of the 
time, because ambiguity often occurs in noisy backgrounds and incorrect pronun-
ciation or (2) it is satisfactory for an OCR system to correctly determine the word 
97% of the time. So, it depends on the scenario, environment, complexity, domain 
problem, and application to be implemented.

Exercises
	 3.1	 What is Part-of-Speech (POS)? How is it critical for NLP systems/applica-

tions implementation?
	 3.2	 State and explain NINE basic types of POS in the English Language. For each 

POS type, give an example for illustration.
	 3.3	 What is POS Tagging in NLP? How is it important to NLP systems/applica-

tions implementation? Give two examples of NLP systems/applications for 
illustration.

	 3.4	 State and explain THREE types of POS Tagging methods in NLP.
	 3.5	 What is PENN Treebank tagset? Perform POS Tagging for the following sen-

tences/utterances using the PENN Treebank tagset.
[3.47] POS tagging is a very interesting topic.
[3.48] It is not difficult to learn PENN Treebank tagset provided that we 

have sufficient examples.
	 3.6	 What is Natural Language Understanding (NLU)? State and explain FIVE 

major components of NLU in NLP.
	 3.7	 Why semantic meaning is an important factor in POS tagging? Give two 

examples to support your answer.
	 3.8	 What is ambiguous in POS tags? Give two examples of words with three and 

four ambiguous POS tags.
	 3.9	 What is the rule-based approach in POS tagging? Give an example of the POS 

tagging rule to illustrate how it works.
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	3.10	 What is a stochastic-based approach in POS tagging? Give an example to 
explain how word frequency and tag sequence frequency are applied for POS 
tagging.

	3.11	 State and explain transformation-based learning (TBL). Give an example to 
support your answer.
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Chapter 4
Syntax and Parsing

4.1 � Introduction and Motivation

This chapter will explore syntax analysis and introduce different types of constitu-
ents in the English language followed by the main concept of context-free grammar 
(CFG) and CFG parsing. We will also study major parsing techniques including 
lexical and probabilistic parsing with examples.

Linguistic and grammatical aspects are addressed in NLP to identify patterns 
that govern the creation of language sentences like English. They include the inves-
tigation of Part-of-Speech (POS) mentioned in Chap. 3, and grammatic rules to 
create sentences or utterances with syntactic rules. These syntactic rules relied on 
effective computational procedures such as rule-based, stochastic-based, tech-
niques and machine learning to deal with language syntax (Bender 2013; 
Gorrell 2006).

Another motivation is to study syntax and parsing methods or algorithms so that 
they can fall into an automatic system like forming a parser to understand syntactic 
structure during the construction process. Figure  4.1 illustrates the relationship 
between grammar, syntax, and the corresponding parse tree of a sentence/utterance 
with four tokens: Tom pushed the car. Syntax-level analysis is to analyze the struc-
ture and the relationship between tokens to create a parse tree accordingly.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_4&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_4#DOI
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Fig. 4.1  Grammar, syntax, and parse tree

4.2 � Syntax Analysis

4.2.1 � What Is Syntax

Syntax refers to the set of rules that govern how groups of words are combined to 
form phrases, clauses, and sentences or utterances in linguistics (Bender 2013; 
Brown and Miller 2020). The term syntax is derived from the Greek word σύνταξη, 
which means arrangement of words.

Syntax provides a structured and organized way to create meaningful phrases and 
sentences. It is an essential tool in technical writing and sentence construction. The 
fact is all native speakers learn proper syntax from their mother languages by nature. 
The complex sentences by a writer or speaker create formal or informal level, or 
phrases and clauses presentation to audiences. Syntax can be defined as the correct 
arrangement of word tokens in written or spoken sentences and utterances, enabling 
computer systems to process these tokens without requiring an understanding of 
their precise meaning from an NLP perspective.

4.2.2 � Syntactic Rules

POS in English often follows patterns order in sentences and clauses (Khanam 
2022; Jurafsky et  al. 1999). For instance, compound sentences are combined by 
conjunctions like and, or, with or multiple adjectives transformation of the same 
noun based on order(s) according to their classes, for example, [4.1] The big 
black dog.

Syntactic rules also described to assist language parts make sense. For example, 
sentences/utterances in English usually begin with a subject followed by a predicate 
(i.e. a verb in the simplest form) and an object or a complement to show what’s 

4  Syntax and Parsing



71

acted upon, for example, [4.2] Jack chased the dog is a typical sentence with a 
subject-verb-object pattern of syntactic rule in English. However, [4.3] Jack quickly 
chased the dog at lush green field contains adverbs and adjectives to take their 
places in front of the sentence transformation (quickly chased, lush green field) with 
informative description.

4.2.3 � Common Syntactic Patterns

There are seven common syntactic patterns:

	1.	 Subject → Verb
For example, [4.4] The cat meowed.
This syntactic pattern is a standardized pattern containing only minimum subject 

and verb requirements. The topic always comes first in usual situations.
	2.	 Subject → Verb → Direct Object.
For example, [4.5] The cat plays the ball.
When the verb is transitive with a direct object, the direct object usually goes after 

the verb in this syntactic pattern.
	3.	 Subject → Verb → Subject Complement.
For example, [4.6] The cat is playful.
Subject complement usually goes after the verb in this syntactic pattern. Linking 

verbs such as be, is, like, or seem are usually used with subject complement.
	4.	 Subject → Verb → Adverbial Complement.
For example, [4.7] The cat paced slowly.
Adverbial complement usually goes after the verb like the previous case (3).
	5.	 Subject → Verb → Indirect Object → Direct Object
For example, [4.8] The cat gave me the ball.
This syntactic pattern contains direct and indirect objects. The direct object usually 

goes after the indirect object and the indirect object usually goes right after the 
verb. For example, [4.8] can be rephrased as [4.9] The cat gave the ball to me.

	6.	 Subject → Verb → Direct Object → Direct Complement
For example, [4.10] The cat made the ball dirty.
Object complement usually goes after the direct object and the direct object is usu-

ally followed by a verb in this syntactic pattern.
	7.	 Subject → Verb → Direct Object → Adverbial Complement
For example, [4.11] The cat perked its ears up.
up is the adverbial complement to describe how the cat behaves. Direct complement 

is replaced by adverbial complement like in the previous case (6).

The main purpose of syntactic parsing is a study to formulate rules with POS tags 
to perform automatic, or semi-automatic sentence parsing.
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4.2.4 � Importance of Syntax and Parsing in NLP

There are five major components in Natural Language Understanding (NLU) as 
shown in Fig. 4.2. Among these, the syntax and parsing components play central 
roles in linking natural language with its syntactic structure before understanding its 
semantic or embedded (pragmatic) meanings in NLP (Allen 1994; Eisenstein 2019). 
These components form the first layer of analysis to determine whether sentences or 
utterances are logically sound. In other words, if a sentence or utterance contains a 
syntactic error, such as Jack buys (buys what?), it will be nonsensical, making it 
impossible to proceed to semantic analysis.

Syntax and parsing are sole processes beneficial to:

	1.	 Check grammar by word-processing applications such as Microsoft Word.
	2.	 Speech recognizer at human speech real-time syntactic level in noisy environment.

It has significance in high-level NLP applications such as machine translation 
and Q&A chatbot systems.

4.3 � Types of Constituents in Sentences

4.3.1 � What Is Constituent?

A constituent is considered as the linguistic component of a language (Bender 2013; 
Brown and Miller 2020). For example, words or phrases that combine into a sen-
tence or utterance are constituents. It can be a word, morpheme, clause, or phrase. 
Parsing is a kind of sentence analysis to identify the subject or predicate with differ-
ent POS, and parse sentences/utterances into corresponding constituents e.g. There 
are several ways to describe the cat in Fig. 4.3.

[4.12] The milky cat with long tail (as a constituent of a clause) is meowing.

Morphology

POS Tagging

Syntax

Semantics

Discourse Integration

Fig. 4.2  Major 
components in NLU
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Fig. 4.3  The milky cat 
with long tail is meowing 
(Tuchong 2022)

A single pronoun it to replace the identified constituent. This makes sense as it 
described the milky cat with long tail is meowing, it is meowing, or a name to the 
cat Coco, like:

[4.13] Coco is meowing or
[4.14] Coco with long tail is meowing

which means a word or phrase form can be replaced by a simple token, or complex 
constituents with additional description:

[4.15] The milky cat with long tail is meowing in the late afternoon.
[4.16] The milky cat with long tail is meowing the late afternoon while Jack is asleep.

Constituents can also be a time unit with usage variations instead of an object 
unit in noun phrase (NP), they are syntactically acceptable, but some are not:

[4.17] Jane wants to go to Greece late this winter.
[4.18] Late this winter Jane wants to go to Greece.
[4.19] Jane wants late this winter to go to Greece.

It makes sense wherever the location of late this winter as it is a constituent 
describing a particular time in syntax, but there are syntactic errors as below:

[4.20] Late Jane wants to go to Greece this winter.
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  – Cannot separate time unit into two parts.
[4.21] Jane wants late to go to Greece this winter.
  – Senseless meaning
[4.22] The late this winter Jane wants to Greece.
  – Incorrect syntactic pattern

4.3.2 � Kinds of Constituents

Constituents are present in every sentence, phrase, and clause. In other words, each 
sentence is formed by combining these elements into meaningful constructions or 
utterances (Bender 2013; Brown and Miller 2020). The commonly used constituent 
types include (1) noun-phrase, (2) verb-phrase, and (3) preposition-phrase. For 
instance:

[4.23] My cat Coco scratches the UPS courier on the table.
  – These constituents are made up of noun phrase (my cat Coco), predicate, and 

verb phrase (scratches the UPS courier on the table).

4.3.2.1 � Noun Phrase (NP)

A noun phrase (NP) consists of a noun and its modifiers. Modifiers that precede the 
noun include adjectives, articles, participles, possessive nouns, and possessive pro-
nouns, while those that follow the noun include adjective clauses, participial 
phrases, and prepositional phrases. For example, in [4.23] My cat Coco is an NP 
consisting of determiner (DT) My + noun (NN) cat + proper noun (NNP) Coco.

There are other NPs appear as objects of prepositions or objects of verbs:

[4.24] The milky cat with long tail is meowing.
[4.25] Very few cats wore a collar.
[4.26] The long tail is brought to room.
[4.27] Many places hear meowing.
[4.28] A cat with a long tail and a collar is meowing.
[4.29] Jane saw so many cats in the room.

4.3.2.2 � Verb Phrase (VP)

A Verb Phrase (VP) consists of a main verb accompanied by linking verbs or modi-
fiers that function as the verb of the sentence. Modifiers in a VP are words that can 
alter, specify, limit, or elaborate on the main verb. They typically include auxiliary 
verbs such as “is,” “has,” “am,” and “are,” which work in conjunction with the main 
verb. The main verb in a VP conveys information about the event or activity being 
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discussed, while the auxiliary verbs provide additional meaning by indicating the 
tense or aspect of the phrase.

There are nine common VP types:

	1.	 Singular main verb.
[4.30] Jack catches a deer.
	2.	 Auxiliary verb (to be) + main verb -ing form
When the main verb is used in -ing form, e.g., walking, talking, it expresses a con-

tinuous aspect to show whether is in the past, present, or future.
[4.31] Jack is singing.
	3.	 Auxiliary verb (have) + main verb (past participle form).
When the verb to have (i.e., have, has, had) and the main verb in past participle form.
[4.32] Jack has broken the vase.
	4.	 Modal verb + main verb.
When a modal verb is combinedly used with a main verb, it includes things such as 

possibility, probability, ability, permission, and obligation. Examples of modal 
words include must, shall, will, should, would, can, could, may and might.

[4.33] Jack will leave.
	5.	 Auxiliary verb (have + been) + main verb (-ing form).
When both continuous and perfect aspects are expressed, the continuous aspect 

comes from -ing verb and the perfect aspect comes from the auxiliary verb 
have been.

[4.34] Jack has been washing the car.
	6.	 Auxiliary verb (to be) + main verb (past participle form).
When a verb to be is combined with the main verb in past participle form to express 

a passive voice. The passive voice is used to indicate an action is happening to 
the subject of a sentence than the subject performing the action.

[4.35] The lunch was served.
	7.	 Negative and interrogative verb phrases.
VP gets separated when sentences have a negative or interrogative nature.
[4.36] Jack is not answering the exam questions.
	8.	 Emphasize verb phrases.
Use auxiliary verbs, for example, do, does, did to emphasize a sentence.
[4.37] Jack did enjoy the vacation.
	9.	 Composite VP.
When it consists of other VP or NP.
[4.38] My cat Coco scratches the UPS courier on the table.
  – scratch is the main verb in VP to describe an action/event that happens to object 

UPS courier, on the table is auxiliary information to further explain the event. It 
still makes sense with/without it. It includes scratch VP + UPS courier NP + on 
the table PP.
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4.3.3 � Complexity on Simple Constituents

Single-word constituents are parts of speech (POS) discussed in Chap. 3, where the 
types of single-word constituents vary based on tagset sizes. Additionally, there are 
several complex design considerations:

[4.39] Jane bought the big red handbag ☑ vs.
[4.40] Jane bought the red big handbag ☒

Although there are two parts of speech that can be syntactically correct, such as 
the placement of “red” before “big,” the arrangement can result in incorrect syntax. 
Additionally, there may be incomplete simple constituent types.

[4.41] The cat with a long tail meowing a collar. ☒
  – Doesn’t make sense although NP is correct, collar is an incorrect description.
[4.42] Jane imagined a cat with a long tail. ☑
[4.43] Jane decided to go. ☑
  – Both make sense without further description in syntactic structure.
[4.44] Jane decided a cat with a long tail. ☒
  – Doesn’t make sense again in syntactic correctness.
[4.45] Jane decided a cat with a long tail should be her next pet. ☑
  – Syntactic correct although the sentence structure is slightly complex.
[4.46] Jane gave Lily some food. ☑
  – Syntactic correct although most of the time it describes food.
[4.47] Jane decided Lily some food. ☒
  – Although the syntactic structure is the same, they have different designs to fur-

ther describe food types and purposes.

4.3.4 � Verb Phrase Subcategorization

There is a universal pattern or structure for classifying verbs in verb phrases (VPs). 
Subcategories reflect the ability of lexical items (typically verbs) to recognize the 
existence and types of syntactic arguments they can co-occur within linguistics 
(Brown and Miller 2020; Gorrell 2006). While traditional English grammar classi-
fies verbs into transitive and intransitive subcategories, modern English grammars 
identify more than 100 subcategories. Subcategorization frames can be viewed as a 
set of rules that generate syntactic structures from the base form. Five major frame 
rules are illustrated in Table 4.1.

	1.	 VP with a single verb as member
[4.48] He talks. (VP → VB)
[4.49] I laugh. (VP → VB)
	2.	 Verbal phrase requires a noun phrase (NP) as a specifier (VS)—intransitive verbs
[4.50] He finds a clue. (VP → VB + NP)
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Table 4.1  Examples of verbs with different frames of subcategorization in VP syntax

Frame rule Description Examples

 ϕ VP with single verb as member talk, sleep, eat, 
laugh, etc.

VS(NP) The verbal phrase requires a noun phrase (NP) as a 
specifier (VS)—intransitive verbs

find, see, leave, 
get, etc.

VS(NP)VC(NP) The verbal phrase requires a noun phrase (NP) as a 
specifier (VS) and a noun phrase (NP) as a complement 
(VC) (direct transitive verbs)—direct transitive verbs

show, make, 
read, write, etc.

VS(NP)
VC(PH([on]))

The verbal phrase requires a noun phrase (NP) as a 
specifier (VS) and a prepositional phrase (PP) headed by 
“on” as a complement (VC)—indirect transitive verbs 
governing “on”

depend, insist, 
operate, suggest 
etc.

VS(NP)VC(NP)
VC(PH([to]))

The verbal phrase requires a noun phrase as a specifier 
(VS), a noun phrase as a complement (VC), and a 
prepositional phrase headed by “to” as a complement 
(VC)—ditransitive verbs

give, mean, 
think, etc.

[4.51] She sees Jack. (VP → VB + NP)
	3.	 Verbal phrase requires a noun phrase (NP) as a specifier (VS) and a noun phrase 

(NP) as a complement (VC)—direct transitive verbs
[4.52] Please show me the map. (VP → VB + NP + NP)
	4.	 Verbal phrase requires a noun phrase (NP) as a specifier (VS) and a prepositional 

phrase (PP) headed by on as a complement (VC)—indirect transitive verbs gov-
erning on:

[4.53] This ingredient can make six muffins depending on size
(VP → VB + PP + NP)
	5.	 Verbal phrase requires a noun phrase (NP) as a specifier (VS), as a complement 

(VC) and a prepositional phrase headed by to as a complement (VC)—ditransi-
tive verbs:

[4.54] Do you mean that I need to attend the exam? (VP-VB + S)

4.3.5 � The Role of Lexicon in Parsing

A lexicon is the vocabulary of a language or a specific field of knowledge, such as 
medicine or computer science (Bender 2013; Brown and Miller 2020). It serves as 
an inventory of lexemes in linguistics. The term “lexicon” is derived from the Greek 
word λεξικόν, which means “of or for words.”

Linguists believe that all human languages are composed of two major compo-
nents: (1) lexicon as the list of a language’s words and vocabulary and (2) grammar 
as the set of rules to allow word combinations into meaningful sentences.

Items within a lexicon are called lexemes, and groups of lexemes are called lem-
mas, often used to describe the size of a lexicon.
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Lexical analysis is the process to understand what words mean, intuit contexts, 
and note the relationship of one word to others. It analyses and converts the sequence 
of words into a list of lexical tokens. A program that performs such lexical analysis 
is called tokenizer, lexer, or scanner. A lexer is combined with a parser generally to 
analyze the syntax of sentences, texts, or dialogues.

The roles of lexicon in parsing are to:

	1.	 Treat as the starting point for POS tagging.
	2.	 Provide extra information such as subcategorization with frames and syntac-

tic rules.

For verbs, lexicon refers to several types of subcategorizations such as think 
versus laugh.

For adjectives:

[4.55] Jack is angry with Sophia vs. [4.56] Jack is angry at Sophia.
[4.57] Jack is mad at Sophia vs. [4.58] Jack is mad with Sophia. ☒

There are patterns and rules. Both are correct for [4.55] and [4.56], but for the 
verb mad, [4.57] is correct while incorrect for [4.58] which means subcategoriza-
tion is acceptable for some pattern but not only on syntax.

For nouns: [4.59] Janet has a passion for classical music vs. [4.60] Janet has an 
interest in classical music.

They have different patterns of syntactic rules.

4.3.6 � Recursion in Grammar Rules

English sentences can be structurally complex. A concise sentence typically con-
sists of a limited set of constituent types, such as NP (Noun Phrase), VP (Verb 
Phrase), and PP (Prepositional Phrase), which can recursively combine to form 
more intricate structures according to specific grammatical rules.

S → NP VP [4.61] My good friend Jack buys a flat.
VP → V NP [4.62] buys a flat.
NP → NP PP [4.63] My good friend.
NP → NP S [4.64] The boy who come early today won the game.
PP → prep NP [4.65] The cupcake with sprinkles is yours.
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4.4 � Context-Free Grammar (CFG)

4.4.1 � What Is Context Free Language (CFL)?

Context-free language (CFL) is a superset of Regular Language (RL) generated by 
context-free grammar (CFG) which means every RL is a CFL but not all CFL is a 
RL (Eisenstein 2019; Jurafsky et al. 1999). In short, CFL is:

	1.	 Recursively enumerable language as a superset of language model.
	2.	 Context-sensitive language, a subset of recursively enumerable language.
	3.	 Subsets of context-sensitive language.

The four levels of human language are shown in Fig. 4.4.
The set of all Context-Free Languages (CFLs) is identical to the set of languages 

accepted by pushdown automata, and regular languages (RL) form a subset of 
CFLs. An input language is accepted by a computational model if it passes through 
the model and ends in an acceptable final state. Most arithmetic expressions gener-
ated by a Context-Free Grammar (CFG) are CFLs.

A CFL is closed under specific operations, meaning that applying these opera-
tions to a CFL results in another CFL. These operations include union, concatena-
tion, Kleene closure, substitution, prefix, cycle, reversal, quotient, intersection, 
difference with RL, and homomorphism. CFLs and CFGs play a significant role in 
both NLP and computer language design in computer science and linguistics.

4.4.2 � What Is Context Free Grammar (CFG)?

CFG is to describe CFL as a set of recursive rules for generating string patterns, 
because the application of production rules in grammar is context-independent, 
meaning they do not depend on other symbols with the rules (Bender 2013; Brown 
and Miller 2020).

CFG is commonly applied in linguists and compiler design to describe program-
ming languages and parsers that can be created automatically.

Fig. 4.4  Level of 
languages
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4.4.3 � Major Components of CFG

CFG consists of four major components (Bender 2013; Jurafsky et al. 1999):

	1.	 A set of non-terminal symbols N are placeholders for patterns of terminal sym-
bols created by nonterminal symbols. These symbols are usually located at the 
LHS (left-hand-side) of production rules (P). The strings generated by CFG usu-
ally consist of symbols only from nonterminal symbols.

	2.	 A set of terminal symbols Σ (disjoint from N) are characters appear in strings 
generated by grammar. Terminal symbols usually located only at RHS (right-
hand-side) of production rules (P).

	3.	 A set of production rules P: A → α,where A is a non-terminal symbol and α is a 
string of symbols from the infinite set of strings (Σ ∪ N).

	4.	 The designated start symbol S is a start symbol of the sentence/utterance.

Σ is a set of POS and N is the set of constituent types, that is, NP, VP, and PP 
mentioned in Chap. 3 and previous section, respectively.

4.4.4 � Derivations Using CFG

The standard formulation of CFG is given by:
Assume LG generated by grammar G is a set of strings composed of terminal 

symbols, which is generated from S:

	
L w w S wG | is in and= ⇒{ }∗Σ

	
(4.1)

Let Σ be the set of POS, so CFG in (4.1) can create grammar like this:

	 N V Ndet 	 (4.2)

The definition of CFG is given by:

	
L s w S w s w

G
| is in and and can be derived from by

substituting wo
= ⇒∗Σ

rrds for POSas licensed by the lexicon






 	 (4.3)

Based on this definition can generate numerous productions like this format:

	 S NPVP→ 	 (4.4)

Equation 4.4 is the most basic grammar rule where a sentence is generated from 
an NP and a VP that can be further decomposed recursively as shown in Fig. 4.5.

It shows CFG rules and its corresponding parse tree for sentence/utterance [4.66] 
Jane plays the piano. There are four tokens in this sentence/utterance to form a 
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Fig. 4.5  CFG rules and corresponding parse tree for sentence [4.66] Jane plays the piano

well-defined syntactic structure generated by NP and VP. NP can be designated to a 
name pointed to token Jane, and for VP, is decomposed into a verb or NP as shown 
in four production rules shown in the top left corner of Fig. 4.5. In this case, the verb 
is pointed to plays, NP can be decomposed into a determiner and a noun pointed to 
the and piano, respectively.

4.5 � CFG Parsing

There are three CFG parsing levels: (1) morphological, (2) phonological, and (3) 
syntactic (Grune and Jacob 2007; Jurafsky et al. 1999).

4.5.1 � Morphological Parsing

Morphological parsing is the initial level to determine the morphemes of a word 
being constructed. For example, a morphological parser can reveal that the word 
mice is the plural form of the noun stem mouse, while cats are the plural form of the 
noun stem cat. Given the string cats as input, the morphological parser will interpret 
cats as cat N PL.  By using FSA (Finite State Automata), FST (Finite State 
Transducer), a morphological parser can produce an output with their stems and 
modifiers.

Originally, FST was generated by algorithmic parsing of word sources such as a 
complete dictionary with modifier markups but can be realized by recurrent neural 
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networks with training corpus upon advancement in machine learning and artificial 
neural networks.

4.5.2 � Phonological Parsing

Phonological parsing is the second level using the sounds of a language, that is, 
phonemes to process sentences or utterances (Wagner and Torgesen 1987).

Phonological processing includes (1) awareness, (2) working memory, and (3) 
phonological retrieval. All three components are important to speech production 
and written language skills development. Hence, it is necessary to observe chil-
dren’s spoken and written language development with phonological processing 
difficulties.

Phonological parsing is to interpret sounds into words and phrases to gener-
ate parser.

4.5.3 � Syntactic Parsing

Syntactic parsing is the third level to identify relevant components and correct 
grammar of a sentence. Abstract meaning representation is assigned to define legal 
strings of a language like CFG without recognizing the structure.

Parsing algorithms are applied to analyze sentences or utterances within lan-
guage and assign appropriate syntactic structures into them. Parse trees are useful 
to study grammar, semantic analysis, machine translation, speech recognition, and 
Q&A chatbots in NLP.

4.5.4 � Parsing as a Kind of Tree Searching

Syntactic parsing can be considered as search within a set of parse trees, its main 
purpose is to identify the right path and space through automation in an FSA system 
structure.

CFG is a process to determine the right parse tree among all possible options. If 
there is more than one possible parse tree, stochastic method (or other machine 
learning methods) will be applied to locate a probable one. In other words, it is a 
process to identify search space defined by grammatical rules so that their con-
straints can become inputs to perform automatic parsing and study grammar.
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4.5.5 � CFG for Fragment of English

English grammar and lexicon simplified domains are applied to reveal CFG rules in 
an example of musical instruments as shown in Table 4.2. It consists of production 
rules from several categories S → NP VP, S → Aux NP VP, S → VP as well as pro-
duction rules for NP, Nom, and VP with components Det, N, V, Prep, and PropN.

4.5.6 � Parse Tree for “Play the Piano” for Prior CFG

A parse tree of sentence/utterance [4.67] play the piano is shown in Fig. 4.6. It has 
three tokens play—Verb, the—Det and piano—Noun to construct a parse tree from 
the top node S to generate VP, VP to generate Verb and NP, and NP to decompose 
into Det Nom, and Nom to generate Noun.

4.5.7 � Top-Down Parser

There are (1) top-down and (2) bottom-up parser approaches to construct a parse 
tree. Top-down parser constructs from root-node S down to leave-nodes (words in 
the sentence or utterance). The first step is to identify all trees with root S, the next 
step is to expand all constituents in these trees based on the given production rules. 
The whole process is operated level-by-level process until parse trees reach the 
leaves i.e. POS tokens of the sentence/utterance. For candidate parse trees that can-
not match the leave nodes, that is, POS tokens are discarded and considered as 
failed parse tree(s). Figure 4.7 shows the first three-level construction of all possible 
parse trees applying a Top-Down parser.

It showed that the parse tree construction started from the base level with S tag 
(root node). The second level has generated an additional layer with three possible 
production rules: S → NP & VP, S → Aux & NP & VP, and S → VP. The third level 
is complex because it has decomposed into three levels, S → NP & VP is the first 

Table 4.2  A simplified 
example on English grammar 
and lexicon

S → NP VP VP → V
S → Aux NP VP Det → this | that | the | a
S → VP N → play | piano | guitar | flute
NP → Det Nom V → play | include | prefer
NP → PropN Aux → does, do
Nom → N Nom Prep → on | from | to
Nom → N PropN → Germany | Italy | Yamaha
Nom → Nom PP
VP → V NP
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Fig. 4.6  Parse tree for the 
simple sentence “Play the 
piano”

Fig. 4.7  A three-level expansion of parse tree generation using a top-down approach

variation to decompose into Det and Nom. NP is the second variation to decompose 
into PropN. It is noted that LHS is the expanded part for demonstration purposes, 
but both LHS and RHS require expansion. S → Aux & NP & VP are the second 
variation where NP decomposes into Det & Nom, and an NP decomposes into 
PropN. VP decomposition in the first four parse tree is not shown as they all failed 
to match the leave nodes except only the fifth case is correct to form a complete play 
the piano parse tree.

The top-down approach by CFG on terminals and non-terminals is shown in 
Table 4.3. It showed rule 3 as the first one to apply and rule 2 for VP decomposed 
into V NP and V to decompose play and then NP to Det and Nom, rule 4 and rule 5 
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Table 4.3  CFG rules and 
terminal/non-terminal nodes 
being used with top-down 
approach parsing

S → NP VP VP → V
S → Aux NP VP Det → this | that | the (5) | a
S → VP (1) N → play | piano (7) | guitar | flute
NP → Det Nom (4) V → play (3) | include | prefer
NP → PropN Aux → does, do
Nom → N Nom Prep → on | from | to
Nom → N (6) PropN → Germany | Italy | Yamaha
Nom → Nom PP
VP → V NP (2)

are Det points to the, and rule 6 Nom points to an and final rule points to end, and 
rule 7 points to piano. This will complete a top-down approach parsing with the fifth 
parse tree end-up as valid solution. Readers can apply these seven-step processes to 
complete the construction of parse tree for the fifth case as an exercise.

4.5.8 � Bottom-Up Parser

Bottom-up parser on the other hand starts from token words of the sentences/utter-
ances to construct a parser tree upward by applying the same set of production rules 
and try to generate from right-hand-side (RHS) of the production rule in reverse 
order. In example [4.67] play the piano has two variations to start in which the word 
play can be considered either as a noun (N) or a verb (V). So, there are two options: 
one with the play the piano as N Det or as V Det N. Since this approach cannot 
indicate which one is the correct option so the parsing operation will continue to 
grow until they can reach the root node S, and if they cannot match the root node, 
the tree(s) will be discarded.

Figure 4.8 shows the first three-level expansion of a parse tree using bottom-up 
approach. So, in this case play the piano has two variations either play is N or 
V. There are two parts one is play consider as N and other as V from base level. So, 
at second level is to further expand the line pointed to play and tried to expand N 
pointed to play into N in the first case. In second case is to further expand N pointed 
to Nom in second layer. In the third level, second case is further expanded into two 
options, one is Nom → V and the other is VP → V & NP, NP → Det & Nom, and 
further up to S → VP to complete the whole parsing, in which other two parse tree 
options ended-up with invalid parsing as shown in Fig. 4.8.

Table 4.4 shows CFG rules for terminal and non-terminal nodes applying bot-
tom-up approach parsing. Again, it consists of seven steps. Rule 1 is V pointed to 
play, rule 2 is Det pointed to the, rule 3 is N pointed to piano, rule 4 is Nom pointed 
to N, rule 5 is NP pointed to Det & Nom, rule 6 is VP pointed to NP and rule 7 is S 
point to VP to complete the whole parse tree until it can finally match the root/
source node S.
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Fig. 4.8  A three-level expansion of parse tree generation using bottom-up approach

Table 4.4  CFG rules and 
terminal/non-terminal nodes 
being used with bottom-up 
approach parsing

S → NP VP VP → V
S → Aux NP VP Det → this | that | the (2) | a
S → VP (7) N → play | piano (3) | guitar | flute
NP → Det Nom (5) V → play (1) | include | prefer
NP → PropN Aux → does, do
Nom → N Nom Prep → on | from | to
Nom → N (4) PropN → Germany | Italy | Yamaha
Nom → Nom PP
VP → V NP (6)

4.5.9 � Control of Parsing

Although both top-down and bottom-up parsing are straightforward, the control of 
parsing is required to consider (1) which node to expand first and (2) select gram-
matical rules sequence wisely to save time as most of the parse tree generation are 
dead-end and wastage of resources.
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4.5.10 � Pros and Cons of Top-Down vs. Bottom-Up Parsing

4.5.10.1 � Top-Down Parsing Approach

�Pros

Since it starts from root/source node S, it can always generate a correct parse tree 
unless the sentence has a syntactic error. In other words, it never explores the parse 
that won’t end up in root/source node S, which means it will always find a solution.

�Cons

This approach doesn’t consider final word/token tags during parsing from the very 
beginning, it will waste a lot of time to generate tree(s) that may be totally unrelated 
to the correct result. Play should parse as V instead of N as shown in Fig. 4.7, this 
approach showed that all first and fourth parts of the parse tree using play as N are 
invalid and a waste of time to parse tree generation.

4.5.10.2 � Bottom-Up Parsing Approach

�Pros

Since it starts from sentence tokens/POS, it can always generate a parse tree with all 
tokens/POS in the sentence considered and reduced time on rules unrelated to these 
tokens which means it can sort out problems that occur in the top-down approach 
for all production rules without POS tags.

�Cons

This approach may often end up with broken tree(s) that cannot match the root node 
S to complete parse tree as it starts from leave node instead of root/source node S. It 
makes sense because although there are many ways to match production rules, the 
variations of most parse trees are syntactic incorrect so they cannot match the root/
source node S. All parse trees in Fig. 4.8 showed that except the last one (also the 
correct one), others ended up with broken trees and failed to match the root/source 
node S again wasted time to parse tree generation.

Let’s look at lexicalized and probabilistic parsing as alternatives.
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4.6 � Lexical and Probabilistic Parsing

4.6.1 � Why Using Probabilities in Parsing?

There are two reasons for using probabilities parsing (Eisenstein 2019; Jurafsky 
et al. 1999): (1) resolve ambiguity and (2) word prediction in voice recognition. For 
instance:

[4.68] I saw Jane with the telescope. (Jane with telescope or I use telescope to 
see Jane?)

[4.69] I saw the Great Pyramid flying over Giza plateau vs.
[4.70] I saw UFO flying over Giza plateau

Although both situations have pragmatic problems in which [4.69] is incorrect 
because the Great Pyramid is an unmovable architecture. It can be solved using 
probabilities in parsing from a large corpus and knowledgebase (KB) to identify the 
frequencies of a particular term or constituent is used correctly without pragmatical 
analysis.

For example, in voice recognition:

[4.71] Jack has to go vs.
[4.72] Jack half to go vs.
[4.73] If way thought Jack wood go

Note: when analyzing N-gram probabilities in Chap. 2 on the N-gram Language 
Model, I have, I should, I would usage and bigram probabilities from The Adventures 
of Sherlock Holmes, they provided directions for one that is more probable and used 
frequently instead of understanding their exact semantic or pragmatic meanings. So, 
such a probabilistic method can also be applied to parsing.

4.6.2 � Semantics with Parsing

The following examples show how semantic meanings (Bunt et al. 2013; Goddard 
1998) affect/determine the validness of sentence/utterance in parsing:

[4.74] Jack drew one card from a desk [?] vs.
[4.75] Jack drew one card from a deck.
Note: drew → deck is clearly a semantic concern.
[4.76] I saw the Great Pyramid flying over Giza plateau. [?] vs.
[4.77] I saw a UFO flying over Giza plateau.
Note: movable vs. unmovable objects.
[4.78] The workers dumped sacks into a pin. [?] vs.
[4.79] The workers dumped sacks into a bin.
Note: dump looks for a locative complement.
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[4.80] Tom hit the ball with the pen. [?] vs.
[4.81] Tom hit the ball with the bat.
Note: which object can use to hit the ball?
[4.82] Visiting relatives can be boring. [?] vs.
[4.83] Visiting museums can be boring.

Note: Visiting relatives is genuinely ambiguous. Visiting museums is evident as 
only animate bodies can visit. There is no need for abstraction with enough data, in 
other words, sufficient large corpus, databank or dialogue databank can sort out 
ambiguity problems to work out correct syntax with semantic meaning in many cases.

There are two classical approaches to add semantics into parsing: (1) cascade 
systems to construct all parses and use semantics for rating tedious and complex; (2) 
do semantics incrementally.

A modern approach is to forget the meaning and only based on KB and corpus. 
If a corpus contains sufficient sentences and knowledge, facts about meaning 
emerge in the probability of observed sentences themselves. It is modern because 
constructing world models is harder than early researchers realized but there are 
huge text corpora to construct useful statistics. Here comes the lexical and probabi-
listic approach of parsing.

4.6.3 � What Is PCFG?

A probabilistic context-free grammar (PCFG) is a context-free grammar that asso-
ciates each of its production rules with a probability. It creates the same set of parses 
for a test that traditional CFG performs but assigns a probability value to each parse. 
In other words, the probability of a parse generated by a PCFG is the product of 
probability’s rules.

The general format of PCFG production rule is given by:

	
A p→ [ ]β

	 (4.5)

Another way to interpret it is.

	
P A A→( )β

	 (4.6)

Note: the sum of all probabilities of rules with LHS A must be 1.
PCFG extends CFG like how Markov models extend regular grammars. Each 

production rule is assigned with probability. The probability of a parse is the prod-
uct of probabilities of productions used in that derivation. These probabilities can be 
regarded as parameters of the model, and for large NLP problems, it is convenient 
to learn these parameters via machine learning methods. A probabilistic grammar’s 
validity is constrained by the context of its training dataset.
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An efficient PCFG design must weigh scalability, generality factors and issues 
such as grammar ambiguity must be resolved to improve system performance.

4.6.4 � A Simple Example of PCFG

This section used sentences/utterances [4.84] buy coffee from Starbucks as example 
to illustrate how PCFG works. It has simple CFG rules and probabilities in a seg-
ment of an AI chatbot dialogue for food ordering at campus as shown in Table 4.5.

The probability of each production rule type must sum up to 1 is one of the most 
important basic criteria of PCFG as shown. For instance, three production rules of 
S: S → NP VP (0.82), S → Aux NP VP (0.12) and S → VP (0.06) must sum-up to 
1. It is the same as other production rules for NP, Nom, VP, Det, N, V, Aux, Proper-N, 
and Pronoun. Of course, if the corpus is very large, some of these probability values 
will be very small, just like N-gram probability evaluation discussed in Chap. 2.

It can apply either a top-down parser or bottom-up parser approach to generate a 
parse tree with the following PCFG probability evaluation scheme:

	
P T p r n

n T

( ) = ( )( )
∈
∏

	 (4.7)

where p(r(n)) is the probability that rule r will be applied to expand the non-
terminal n.

Table 4.5  Sample CFG rules 
and their probabilities in AI 
chatbot dialogues (food 
ordering at campus)

CFG rules [Prob] CFG rules [Prob]

S → NP VP [0.82] Det → a[0.12] | that[0.03] | the[0.75] 
| this[0.10]

S → Aux NP VP 
[0.12]

N → coffee [0.75]

S → VP [0.06] N → tea [0.13]
NP → Det Nom 
[0.21]

N → food [0.12]

NP → Proper-N 
[0.37]

V → buy [0.41]

NP → Nom [0.06] V → pay [0.27]
NP → Pronoun [0.36] V → order [0.32]
Nom → Noun [0.72] Aux → do [0.31]
Nom → N Nom 
[0.23]

Aux → does [0.26]

Nom → Proper-N 
Nom [0.05]

Aux → can [0.43]

VP → V [0.58] Proper-N → Starbucks [0.63]
VP → V NP [0.36] Proper-N → KFC [0.37]
VP → V NP NP 
[0.06]

Pronoun → I[0.42]|you[0.36]| 
he[0.12]|she[0.10]
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So, what required to achieve is

	

ˆ argmax
T S

P T

T S
( ) = ( )

∈ ( )τ
	 (4.8)

where τ(S) denotes the set of all possible parses for S.
Figure 4.9 depicts different meanings and two parse trees for utterances [4.85] 

can you buy Starbucks coffee? The first interpretation regards Starbucks and coffee 
are two standalone NPs with equal significance. The second interpretation is to 
combine Starbucks and coffee into a single NP constituent which is a brand name, 
in this case, can you buy Starbucks coffee can interpret to buy coffee or non-coffee 
items. Hence, parse tree probability calculation is also different.

Table 4.6 shows all CFG rules and associated probabilities of these two parse 
trees. So, PCFG probabilities for parse trees 1 and 2 are

	

P PT1 0 12 0 36 0 06 0 06 0 37 0 72 0 43 0 36 0 41 0 63 0( ) = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗. . . . . . . . . . ..

.

75

1 242 10 6= × −

	

	

P PT2 0 12 0 36 0 36 0 06 0 05 0 72 0 43 0 36 0 41 0 63 0( ) = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗. . . . . . . . . . ..

.

75

1 007 10 6= × −

	

Fig. 4.9  Two possible parse trees for the utterance “Can you buy Starbucks coffee”?
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Table 4.6  CFG rules and 
associated probabilities for 
two possible parse trees 
PT1 vs. PT2

CFG rules for TP1 [Prob] CFG rules for TP2 [Prob]

S → Aux NP VP [0.12] S → Aux NP VP [0.12]
NP → Pronoun [0.36] NP → Pronoun [0.36]
VP → V NP NP [0.06] VP → V NP [0.36]
NP → Nom [0.06] NP → Nom [0.06]
NP → Proper-N [0.37] Nom → Proper-N Nom [0.05]
Nom → Noun [0.72] Nom → Noun [0.72]
Aux → can [0.43] Aux → can [0.43]
Pronoun → you [0.36] Pronoun → you [0.36]
V → buy [0.41] V → buy [0.41]
Proper-N → Starbucks [0.63] Proper-N → Starbucks [0.63]
N → coffee [0.75] N → coffee [0.75]

CFG probability algorithm parse tree 1 has a high probability. In other words, it 
is more possible the meaning is to buy coffee rather than buy other things from 
Starbucks. It also shows an efficient solution to differentiate which parse tree is 
more probable, when there are ambiguities in two or more parse trees provided with 
sufficient lexical probabilities and a corpus to calculate probabilities.

4.6.5 � Using Probabilities for Language Modelling

Probability parsing can be considered as the integration of the N-gram probability 
concept with parse tree formation. Since there are fewer grammar rules than word 
sequences for N-gram generation, applying this calculation method one can calcu-
late results efficiently instead of N-gram frequencies regardless of syntactic mean-
ing and rules.

Based on this method, the probability of S is the sum of probabilities of all pos-
sible parses given by:

	

P S P T
T S

( ) = ( )
∈ ( )
∑
τ 	 (4.9)

against N-gram probability calculation with the Markov model.

	
P S P w P w w P w w w P w w w w( ) = ( )∗ ( )∗ ( )∗ ( )…1 2 1 3 1 2 4 1 2 3| | |

	 (4.10)

4.6.6 � Limitations for PCFG

In many situations, it is adequate to know that one rule is used more frequently than 
another e.g.
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[4.86] Can you buy Starbucks coffee? versus [4.87] Can you buy KFC coffee?
But often it matters what the context is
For example:

	

S NPVP

NP Pronoun

NP LexNP

→
→ [ ]
→ [ ]

0 80

0 20

.

.
	 (4.11)

For example, when NP is the subject, the probability of a pronoun may be higher 
at 0.91. When NP is the direct object, the probability of a pronoun may be lower at 
0.34 which means it depends on the NP position in a sentence/utterance. In other 
words, the probabilities also often depend on lexical options as shown in the follow-
ing examples:

[4.88] I saw the Great Pyramid flying over Giza Plateau. vs.
[4.89] I saw a UFO flying over Giza Plateau.
[4.90] Farmer dumped sacks in the bin. vs.
[4.91] Farmer dumped sacks of apples.
[4.92] Jack hit the ball with the bag. vs.
[4.93] Jack hit the ball with the bat.
[4.94] Visiting relatives can be boring. vs.
[4.95] Visiting museums can be boring.
[4.96] There were boys in park and girls vs.
[4.97] There were boys in park and shops.

For instance, there are two interpretations of utterances [4.98] boys in park and 
girls as shown in Fig. 4.10 showing their syntax ambiguities.

Figure 4.10 shows two possible parse trees for utterance [4.98]. The first is boys 
in park is a noun clause with conjunction NP girls. The second is park and girls 
belong to a single NP with boys as single NP. Although structures are different but 
the mathematization result for two parse trees are identical which means CFG prob-
ability calculation can’t differentiate which is better or popular. How to fix this 
problem?

4.6.7 � The Fix–Lexicalized Parsing

The lexicon can be considered as an estimation of a knowledgebase (KB) a possible 
solution to the above ambiguous problem.

Figure 4.11 shows [4.90] applying lexical parsing as an example. Each constitu-
ent is a head word i.e. S using dumped as Head word. NP and VP are signified by 
farmer and the other signified by head word dumped at second tier. From farmer it 
comes up with NNS farmer. VP from dumped because will come up with VBD, NP, 
and PP, and VDB is signified by dumped as head word and NP is sack and PP is into. 
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Fig. 4.10  Two interpretations of the utterance “boys in park and girls”

Fig. 4.11  Lexical tree for the utterance “workers dumped sacks into a bin”

So, sack further decomposes in NNS which points to sacks, for PP to further decom-
poses into P and NP into bin. This will provide information to further decomposi-
tion by combining keywords. So, for the NP bin it will further decompose into the 
and the bin as head words for DT and NN respectively.

By adding lexical items with production rules:

	
VP dumped VBD dumped NP sacks PP into( ) → ( ) ( ) ( ) = × −8 10 10

	 (4.12)

	
VP dumped VBD dumped NP cats PP into( ) → ( ) ( ) ( ) = × −1 10 10

	 (4.13)
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VP dumped VBD dumped NP stones PP into( ) → ( ) ( ) ( ) = × −2 10 10

	 (4.14)

	
VP dumped VBD dumped NP sacks PP above( ) → ( ) ( ) ( ) = × −1 10 12

	 (4.15)

with lower probabilities means infrequency appeared in the corpus.
This determination method is more efficient as compared with N-gram probabil-

ity calculation, sample sentences/utterances such as:

[4.99] The farmer dumped sacks of apples into a bin. vs.
[4.100] The farmer dumped sacks of peaches into a bin. vs.
[4.101] The farmer dumped all the sacks of apples into a bin.

But there will be situations that many lexical probabilities come-up with 0 values 
like N-gram probability evaluation.

A short-cut by considering the following lexical rule as replacement instead of 
considering the whole lexical rule such as (4.12) can sort out this problem:

	
VP dumped VBD NP PP ,( ) → ( ) ( )( )p r n n h n

	 (4.16)

By doing so, the lexical probability of certain nodes n with heads h is considered 
based on two conditions: (1) syntactic type of node n and (2) head of node’s mother 
h(m(n)), so lexical rule of (4.16) is split into the following:

	

Given word |, |,

VP dumped PP into

VP du

P h n n h m n

p p

i( ) = ( )( )( )
( ) → ( ) =, 1

mmped PP of

NP sacks PP of

( ) → ( ) =

( ) → ( ) =
,

,

p p

p p

2

3
	 (4.17)

Now the original lexical probability (4.7) becomes:

	
P T p r n n h n p h n n h m n

n T

( ) = ( ) ( )( )∗ ( ) ( )( )( )
∈
∏ |, |, |, |,

	 (4.18)

Using Brown corpus as an example, the probability of:

	

p

p

p

VP VBD NP PP|,VP|,dumped

VP VBD NP VP dumped

i

→( ) =
( ) → =

0 67

0 0

.

, ) .#

nnto|,PP|,dumped

into|,PP|,sacks

( ) =
( ) =

0 22

0

.

p
	 (4.19)

parse contribution of this part to the total scores for two candidates will be:
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dumped into

sacks into

[ ] × =

[ ] × =
0 67 0 22 0 147

0 0 0

. . .

	 (4.20)

So, we should consider dumped into instead of sacks into in this case.

Exercises

	 4.1.	 What are the syntax and parsing in linguistics? Discuss why they are impor-
tant in NLP.

	 4.2.	 What is the syntactic rule? State and explain SEVEN commonly used syntac-
tic patterns in English language, with an example each to illustrate.

	 4.3.	 Answer (4.2) by applying to other languages such as Chinese, French or 
Spanish. What is (are) the difference(s) of the syntactic rules between these 
two languages with examples to illustrate.

	 4.4.	 What are constituents in the English language? State and explain three com-
monly used English constituents, with an example each to illustrate how 
it works.

	 4.5.	 What is Context-Free Grammar (CFG)? State and explain the importance of 
CFG in NLP.

	 4.6.	 State and explain FOUR major CFG components in NLP. Use an example 
sentence/utterance to illustrate.

	 4.7.	 What are TWO major types of CFG parsing scheme? Use an example sen-
tence/utterance [4.102] Jack just brought an iPhone from Apple store to illus-
trate how these parsers work.

	 4.8.	 What is PCFG in NLP parsing? Use same example [4.102] Jack just brought 
an iPhone from Apple store to illustrate how it works. Compare with parsers 
used in (4.7), which one is better?

	 4.9.	 What are the advantages and limitations of PCFG in NLP parsing? Use some 
sample sentences/utterances to support your answers.

	4.10.	 What is lexical parsing in NLP parsing? Discuss and explain how it works by 
using sample sentence [4.102] Jack just brought an iPhone from Apple store 
for illustration.
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Chapter 5
Meaning Representation

5.1 � Introduction

While the understanding of sentences and utterances in terms of structure, grammar, 
and the relationships between words by using N-gram models or simple syntactic 
rules has been extensively studied, the actual meaning of sentences or the meanings 
of individual words within a sentence have not been thoroughly explored. This 
chapter will focus on how to interpret meaning, introducing scientific and logical 
methods for processing meaning, known as meaning representation. Without this 
foundational understanding, it would be challenging to interpret advanced NLP 
analyses involving semantic meaning, pragmatic meaning, and discourse in the fol-
lowing chapters. We will begin by exploring meaning representations, which inte-
grate linguistic knowledge of the real world with the world of linguistics.

5.2 � What Is Meaning?

Language is prodigious in recognizing humans that encode or decode world descrip-
tion from experiences to ideas and interpret others’ opinions. It is natural but diffi-
cult to utter word strings that match the world into expressions. A way to enrich this 
activity is to transform essences that wish to convey into meaningful words, clauses, 
phrases, or sentences/utterances in verbal or written forms for others to listen, 
understand, inference, and even respond.

In linguistics, meaning refers to the message conveyed by words, phrases, and 
sentences or utterances within a given context. It is often referred to as lexical or 
semantic meaning. Professor W. Tecumseh Fitch described semantic meaning in 
The Evolution of Language (Fitch 2010) as a branch of language study that is closely 
linked to philosophy. This connection exists because the study of semantic meaning 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_5&domain=pdf
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raises numerous fundamental philosophical questions that demand resolution and 
explanation from philosophers.

A good dictionary provides meaning explanation of a single word in detail and 
many dictionaries on concept/language translation. Nevertheless, the meanings of 
sentences or utterances are not simply the combination of individual word’s mean-
ing, but usually appeared as phrasal words with specific meanings at the pragmatic 
level, e.g., [5.1] off the wagon.

Semantic meaning is the study of meaning assignment to minimal meaning-
bearing elements to form complex and meaningful ideas. Some basic word groups 
may be aggregated in content relationship called thematic groups, and lexical or 
semantic fields related to common sense or world knowledge, e.g., the concept of 
doctor in English constitutes the lexical-semantic field in two senses: a medical doc-
tor, or a person with PhD title. Once the meaning of a word (word group) is decrypted 
or analyzed, a reaction is formed as a response to the event it represents. Words and 
their meanings are significant informational cues to understand languages. Further, 
a person’s life experience and cultural difference are relevant to linguistic meaning 
development in the communication process.

5.3 � Meaning Representations

This chapter will adopt a similar approach to syntax and morphology analysis 
(Bender 2013) to build linguistic input representations and capture their meaning. 
These linguistic representations are meaning representations of sentences and states 
of affairs in the real world.

Unlike parse trees, these representations are not primarily a description of the 
input structure, but a representation of how humans understand, represent anything 
(such as actions, events, objects, etc.), and try to understand it in our environment—
the meaning of everything.

There are five types of meaning representation: (1) categories, (2) events, (3) 
time, (4) aspect, and (5) beliefs, desires, and intentions.

	1.	 Categories refer to specific objects and entities, e.g., company names, locations, 
objects.

	2.	 Events refer to actions or phenomena experienced, e.g., eating lunch, watching a 
movie. They are relevant to verbs or verb phrases (VPs) expressed in POS.

	3.	 Time refers to the exact or reference moment, e.g., 9:30 am, next week, 2025.
	4.	 Aspects refer to.

	 (a)	� Stative—to state facts.
For example, [5.2] Jane knows how to run.

	 (b)	 Activity—to describe action.
For example, [5.3] Jane is running.

	 (c)	 Accomplishment—to describe completed action without ending terms.
For example, [5.4] Jane booked the room.
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	 (d)	 Achievement—to describe terminated action.
For example, [5.5] Jane found the book.

	5.	 Beliefs, desire, and intention refer to principles such as:
[5.6] I think what you are saying is totally correct.
[5.7] Jane wants to know why she failed in the test.
[5.8] I believe everything happens for a reason.

These principles are complex because they involve a variety of ideas in philoso-
phy. However, it is important to design appropriate, logical, and computational rep-
resentations in NLP to facilitate semantic processing and express ideas in sentences/
utterances.

5.4 � Semantic Processing

Semantic processing (Bender 2013; Best et  al. 2000; Goddard 1998) performs 
meaning representation to encode and interpret meaning. These representations 
allow the following:

	1.	 Reason relations with the environment.
For example, [5.9] Is Jack inside the classroom?

	2.	 Answer questions based on contents.
For example, [5.10] Who got the highest grade in the test?

	3.	 Perform inference based on knowledge and determine the verity of unknown 
fact(s), thing(s), or event(s).
For example, [5.11] If Jack is in the classroom, and Mary is sitting next to him, 

then Mary is also in the classroom.
Semantic processing is applied in typical applications, including question-and-

answer chatbot systems, where it is necessary to understand meaning, i.e., the abil-
ity to answer questions about the context or utterance with knowledge, literal 
meaning, or even embedded meaning. Examples from our AI Tutor chatbot (Cui 
et al. 2020) are shown below, involving varying degrees of semantic processing:

[5.12] What is the meaning of NLP?
  – Basic level of semantic processing for the meaning of certain concept.
[5.13] How does N-gram model work?
  – Requires understanding of facts and meanings to respond.
[5.14] Is the Turing test still exist?
  – Involves high-level query and inference from previous knowledge.
[5.15] Why do we need to study self-awareness in AI?
  – Involves high-level information such as world knowledge or common sense 

aside from AI terminology knowledge base (KB) to respond.
[5.16] Should I study AI?
  – Involves the highest level information about user’s common sense and world 

knowledge aside from AI concepts learnt by the book.
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5.5 � Common Meaning Representation

There are four common methods of meaning representation scheme: (1) first-order 
predicate calculus (FOPC); (2) semantic networks (semantic net), (3) conceptual 
dependency diagram (CDD), and (4) frame-based representation. A sample sen-
tence [5.17] Jack drives a Mercedes is used to illustrate how they perform.

5.5.1 � First-Order Predicate Calculus

First-Order Predicate Logic (FOPL) (Dijkstra and Scholten 1989; Goldrei 2005) is 
also known as predicate logic or FOPC. It is a robust language representation 
scheme to express the relationship between information objects as predicates. For 
example, FOPC meaning for [5.17] is given by:

	

∃ ( ) ∧ ( ) ∧ ( )
∧
x y x x y x, Driving Driver Jack, DriveThing , 

CarBrand Merrcedes, y( ) 	
(5.1)

This FOPC formulation consists of four predicate calculus segments (predicates) 
in logical terms.

5.5.2 � Semantic Networks

Semantic networks (semantic nets) (Jackson 2019; Sowa 1991) are knowledge rep-
resentation techniques used for propositional information. They convey knowledge 
meanings in a two-dimensional representation. A semantic net can be represented as 
a labeled directed graph. The logic behind this is that a concept meaning is con-
nected to other concepts and can be represented as a graph. The information in 
semantic net is characterized as a set of concept nodes to link up with each other by 
a set of labeled arcs which characterized the relationship as illustrated in Fig. 5.1 for 
example sentence [5.17].

Driving is the core concept connected to two nodes (concepts): Driver and 
DriveThing, which links to Jack as the Driver and Mercedes as DriveThing, 
respectively.

5.5.3 � Conceptual Dependency Diagram

CDD is a theory that describes how sentence/utterance meaning is represented for 
reasoning. It has been argued that CDD represents an independent representation of 
the language in which the sentence was originally stated.
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Fig. 5.1  Semantic net for 
example sentence [5.17]

Fig. 5.2  Conceptual 
dependency diagram for 
example sentence [5.17]

Schank (1972) proposed conceptual dependency (CD) theory as a part of a natu-
ral language comprehension project. Sentences/utterances applying CD can trans-
late and express basic concepts as a small set of semantic primitives, which can be 
integrated to represent complex meanings—conceptualizations. Figure 5.2 shows a 
CD diagram for example sentence [5.17].

Mercedes and Jack are two concepts linked up by the main concept Drive-by 
using CD representation.

5.5.4 � Frame-Based Representation

Frame-based systems use frames and notions as basic components to characterize 
domain knowledge introduced by Prof. Marvin Minsky in his remarkable work A 
framework for representing knowledge published in 1975 (Minsky 1975).

A frame is a knowledge configuration to characterize a concept such as a car or 
driving a car attached to certain definitional and descriptive information. There are 
several constructed knowledge representation systems based on the original model. 
The vital successor of frame-based representation schemes is description logs that 
encode the declarative part of frames using semantic logics. Most of these semantic 
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logics are components in the first-order logic that are related to feature logics. A 
frame-based representation for [5.17] is shown in Fig. 5.3.

The frame-based representation is also invariance to language(s) being used like 
other meaning representation models.

In summary, these meaning representations indicated that the linguistic meaning 
for [5.17] describes certain state-of-affairs happened in a real world. Different 
meaning representation models are just different ways to represent the same sce-
nario. For example, FOPC is a kind of mathematical and logical representation of 
meanings, while semantic nets are graphical representation of such meaning in the 
form of directed graphs.

5.6 � Requirements for Meaning Representation

There are three factors to fulfill a meaning representation (Bunt 2013; Butler 2015; 
Potts 1994): (1) verifiability, (2) ambiguity, and (3) vagueness considerations.

5.6.1 � Verifiability

Verifiability refers to determining whether a sentence/utterance has a literal meaning 
(it expresses a proposition) and whether it is analyzable or empirically verifiable, 
which means it must provide a link between the meaning representation and facts 
with the KB, world knowledge, or common-sense comparison methods:

For example, [5.18] Does Jack drive a Mercedes?
A verifiable meaning representation asserts to prove the correctness of this state-

ment with comparison, matching or inferencing operations.
The answer is yes according to statement [5.17].

Fig. 5.3  Frame-based 
diagram for example 
sentence [5.17]
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5.6.2 � Ambiguity

Ambiguity is a word, statement, or phrase that consists of more than one meaning. 
Ambiguous words or phrases can cause confusion, misunderstanding, or even 
humor situations.

For example, [5.19] Jack rode a horse in brown outfit.
This clause may drive readers to wonder whether the horse wore a brown outfit 

instead of the rider. Likewise, the same words with different meanings induce ambi-
guity, e.g., Jack took off his gun at the bank. It is diverting to confuse the meaning 
of bank that refers to a building or the land alongside of a river or lake. Context 
meaning is important to resolve ambiguity.

5.6.3 � Vagueness

Vagueness is to describe borderline cases, e.g., tall is a vague term in the sense that 
a person who is 1.6 m in height is neither tall nor short since there is no amount of 
conceptual analysis or empirical investigation can settle whether a 1.6-m person is 
tall or not without any frame of reference. Here is another example:

[5.20] He lives somewhere in the south of US,
which is also vague as to the meaning of location.

Ambiguity and vagueness are two varieties of uncertainty which are often dis-
cussed together but are distinct in essential features and significances in semantic 
theory. Ambiguity involves uncertainty about mapping between representation lev-
els which have more than a single meaning with different structural characteristics, 
while vagueness involves uncertainty about the actual meaning of terms. Hence, a 
good meaning representation system should resolve vagueness and avoid ambiguity.

5.6.4 � Canonical Forms

5.6.4.1 � What Is Canonical Form?

A canonical form refers to entities of resources which can be determined in more 
than one way, and one of them can be considered as a favorable canonical (stan-
dard) form.

The canonical form of a mathematical entity is a standard way of determining 
that quantity in mathematical expression. For example, the canonical form of a posi-
tive integer in decimal form is a number sequence that does not start from zero. It is 
a class of entity in which an equivalence relation is defined. For example, a Row 
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Echelon Form (REF) and Jordan Normal Form are typical canonical forms for 
matrix interpretation in Linear Algebra.

There are many methods to represent the canonical form of the same entity in 
computer science, for instance, (1) computer algebra, which represents mathemati-
cal objects and (2) path concept in a hierarchical file system, where a single file can 
be referenced in several ways.

5.6.4.2 � Canonical Form in Meaning Representation

The canonical form of meaning representation in NLP refers to the phenomena of a 
single sentence/utterance that can be assigned with multiple meanings leading to the 
same meaning representation. For example:

[5.21] Jack eats KitKat.
[5.22] KitKat, Jack likes to eat.
[5.23] What Jack eats is KitKat?
[5.24] It’s KitKat at that Jack eats.

All these sentences/utterances have similar meanings with minor variations in 
tones and thematic issues.

FOPC, semantic net, CDD, and frame-based representation are good elabora-
tions of how canonical form performs and stores such representations in a KB.

5.6.4.3 � Canonical Forms: Pros and Cons

�Advantages

	1.	 Simplify reasoning and storage operations.
	2.	 Needless to generate inference rules for all different variations with the same 

meaning.

�Disadvantages

Nevertheless, it may complicate semantic analysis for sentences/utterances with 
similar meanings, but each has variance in phonemes or high-level semantic mean-
ings like examples [5.21–5.24].

5.7 � Inference

5.7.1 � What Is Inference?

Inference (Blackburn and Bos 2005) is divided into deduction and induction with 
origin dated back to Ancient Greece from Aristotle, 300s BCE. Deduction refers to 
using available information to guess or draw conclusions about facts such as 
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legendary Sherlock Holmes’ deductive reasoning methods (Doyle 2019). Examples 
of inference by deduction reasoning are as follows:

[5.25] Jack is a pilot; he travels a lot.
[5.26] Jane’s hair is totally soaked; it might be raining outside.
[5.27] Mary has been very busy at work and may not be able to come for a gathering 

this evening.

Induction is inference from evidence to a universal conclusion. An important fact 
is that the conclusions may be correct or incorrect.

Examples of inference by inductive reasoning are as follows:

[5.28] The sun rose in the morning every day for the past 30 years. The sun rises 
every day (in human history).

[5.29] The first two kids I met at my new school were kind to me. The students at this 
school are kind.

[5.30] Our teacher allows us to pick a piece of object out of a box. The first four 
students got candies. The box must be full of candies.

An inference is valid in general if it is conformed to sound evidence(s), and the 
conclusion follows logically from related premises.

5.7.2 � Example of Inferencing with FOPC

Inferencing with FOPC is to come up with valid conclusions which leaned on inputs 
meaning representation and KB. For example:

[5.31] Does Jack eat KitKat?

It consists of two FOPC statements:

	
Thing KitKat( ) 	

(5.2)

	
Eat Jack, Thingx x( ) ( )Λ

	
(5.3)

Given the above two FOPC statements are true, it can infer the saying [5.31] as 
yes by using inductive or deductive reasoning.

5.8 � Fillmore’s Theory of Universal Cases

Case grammar (Fillmore 2020; Mazarweh 2010) is a linguistic system that focuses 
on the connection between the quantity such as the subject, object, or valence of a 
verb and the grammatical context used in language analysis. This theory was pro-
posed by American linguistic professor Charles J.  Fillmore (1929–2014) in his 
famous book The Case for Case in Semantic Analysis published in 1968, also known 
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as Fillmore’s Theory of Universal Cases (Fillmore 1968). He believed that only a 
limited number of semantic roles, called case roles, occur in every sentence/utter-
ance constructed with verbs.

5.8.1 � What Is Fillmore’s Theory of Universal Cases?

The Fillmore’s Theory of Universal Cases (Fillmore 2020; Mazarweh 2010) ana-
lyzes the fundamental syntactic structure of sentences/utterances by exploring the 
association of semantic roles such as agent, benefactor, location, object, or instru-
ment, which are required by the verb in sentence/utterance. For instance, the verb 
pay consists of semantic roles such as agent (A), beneficiary (B), and object (O) for 
sentence construction. For example:

[5.32] Jane (A) pays cash (O) to Jack (B).

According to Fillmore’s Case Theory, each verb needs a certain number of case 
roles to form a case-frame. Thus, case-frame determines the vital aspects of seman-
tic valency of verbs, adjectives, and nouns. Case-frames are conformed to certain 
limitations, i.e., a particular case role can appear only once per sentence. There are 
mandatory and optional cases. Mandatory cases cannot be deleted; otherwise, it 
will produce ungrammatical sentences. For example:

[5.33] This form is used to provide you.

This sentence/utterance makes no sense without an additional role that explains 
provide you to or with what matter or notion. One possible solution is as follows:

[5.34] This form is used to provide you with the necessary information.

The association between nouns and their structures contain both syntactic and 
semantic importance. The syntactic positional relationship between forms in a sen-
tence varies from language to language, so grammarians can observe, examine 
semantic values in these nouns, and provide information to consider case role in a 
specific language.

One of the major tasks of semantic analysis in Fillmore’s Theory is to offer a 
possible mapping between syntactic constituents of a parsed clause and their seman-
tic roles associated with the verb. The term case role is widely used for purely 
semantic relations, including theta and thematic roles. The theta role (θ-role) refers 
to a formal device for representing syntactic argument structure required syntacti-
cally by a particular verb. For instance:

[5.35] Jack gives the toy to Ben.

Statement [5.35] shows the verb give has three arguments, whereas Jack is deter-
mined as the external theta role of agent, toy is determined as the theme role, and to 
Ben is determined as the goal role.

Thematic role, also called semantic role, refers to case role that a noun phrase 
(NP) may deploy with respect to action or state used by the main verb. For example:
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[5.36] Jack gets a prize.

Statement [5.36] shows Jack is the agent as he is doer to get, the prize is the 
object being received, so it is a patient.

5.8.2 � Major Case Roles in Fillmore’s Theory

There are six major roles in Fillmore’s Theory:

	1.	 Agent—doer of action, attribute intention.
	2.	 Experiencer—doer of action without intention.
	3.	 Theme—thing that undergoes change or being acted upon with
	4.	 Instrument—tool being used to perform the action.
	5.	 Beneficiary—person or thing for which the action being acted on or performed to.
	6.	 To/At/From Loc/Poss/Time—to possess thing(s), place, location, or time.

For example:

[5.37] Jack cut the meat with a knife.
[5.38] The meat was cut by Jack.
[5.39] The meat was cut with a knife.
[5.40] A knife cut the meat.
[5.41] The meat is cut.
[5.42] Jack lent Jane the CD.
[5.43] Jack lent the CD to Jane.

These examples can conclude that:

	1.	 Agent—Jack is the doer revealed in [5.37, 5.38, 5.42 and 5.43] that performs 
the action.

	2.	 Theme—meat and CD are things (objects) being acted upon or undergoing 
change as revealed in [5.38–5.43] accordingly

	3.	 Instrument—knife is the tool to complete an action as revealed in [5.37, 5.39 
and 5.40].

	4.	 To-Poss—Jane is the one that possesses the CD as revealed in [5.42 and 5.43] 
driven by Jack, the giver.

Syntactic choices intuition is largely a reflection of underlying semantic relation-
ships, which means that identical meanings can descend to articles, e.g., [5.37] can 
also be presented in [5.38 and 5.39], or simplified versions can also be presented in 
[5.40 and 5.41]. Syntax can have several syntactic options that are related to same 
meanings in semantic meanings. Semantic analysis is a major task to offer a suitable 
linkage between constituent of a parsed clause and associated semantic roles related 
to the main verb.
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5.8.3 � Complications in Case Roles

There are four types of complications in case role analysis:

	1.	 Syntactic constituents’ ability to indicate semantic roles in several cases, e.g., 
subject position: agent vs. instrument vs. theme:
[5.44] Jack cut the fish.
[5.45] The knife cut the fish.
[5.46] The fish is cut.

	2.	 Syntactic expression option availability, e.g., agent and theme in different 
configurations:
[5.47] Jack cut the fish.
[5.48] It was the fish that Jack cut.
[5.49] The fish was cut by Jack.

	3.	 Prepositional ambiguity not always introduces the same role, e.g., proposition by 
may indicate either agent or instrument:
[5.50] The meat was cut by Jack.
[5.51] The meat was cut by a knife.

	4.	 Role options in a sentence:
[5.52] Jack cut the fish with a knife.
[5.53] The fish was cut by Jack.
[5.54] The fish was cut with a knife.
[5.55] A knife cut the fish.
[5.56] The fish was cut.

It seems that semantic roles act like a musical conductor in an orchestra with old 
syntactic constituents and leave them out at times, but it isn’t as bad as it seems. 
There are regularities to consider sets of rules which are the beauty of human lan-
guages to describe the same idea in different styles and configurations.

There are possible rules in case role, such as:

	

If Agent it becomes Subject

Elseif Instrument it becomes Subje

∃
∃
,

cct

Elseif Themeit becomes Subject

Agent preposition is BY

Inst

∃

rrument preposition is BYif noagent else WITH,
	

(5.4)

Note that:

	1.	 They are general rules; some verbs may have exceptions.
	2.	 Every syntactic constituent can only fill-in one case at a time.
	3.	 No case role can appear twice in the same rule.
	4.	 Only NPs of the same case role can be cojoined in the rule.
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5.8.3.1 � Selectional Restrictions

Selectional restrictions are methods to restrict types of certain roles to be used for 
semantic consideration. For instance:

	1.	 Agents must be animate objects, i.e., a living thing such as a person, Jack.
	2.	 Instruments must be inanimate objects, i.e., nonliving things such as rock.
	3.	 Themes are types that may be dependent on verbs e.g. window relates to the 

verb break.

Such constraints can be applied to the following examples to check whether they 
make sense or not:

[5.57] Someone assassinated the President vs
[5.58] The spider assassinated the fly. ☒

Nevertheless, additional rules can be deployed to state that assassinate has inten-
tional or political killing such that [5.58] may be incorrect. In fact, such a method is 
usually applied for semantic analysis to be discussed in Chap. 6.

5.9 � First-Order Predicate Calculus

5.9.1 � FOPC Representation Scheme

FOPC (Dijkstra and Scholten 1989; Goldrei 2005) can be used as a framework to 
derive semantic representation of a sentence/utterance. Although it is imperfect, it is 
still the most straightforward mechanism to interpret meanings as other alternatives 
are finite and complex for implementation. In most cases, they become notational 
variants in which the quintessential parts are the same regardless of the variant 
to select.

FOPC supports:

	1.	 Reasoning in truth condition analysis to respond yes or no questions.
	2.	 Variables in general cases through variable binding at responses and storage.
	3.	 Inference to respond beyond KB storage on new knowledge.

This choice is neither arbitrary nor determined by practical application. FOPC 
reflects natural language semantics as it was designed by humans.

5.9.2 � Major Elements of FOPC

FOPC consists of four major elements: (1) terms, (2) predicates, (3) connectives, 
and (4) quantifiers.
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	1.	 Terms
Terms are object names with three representations: (a) constants, (b) functions, 

and (c) variables.
Constants refer to the specific object described in sentence/utterance, e.g., 

Jack, IBM.
Functions refer to concepts expressed as genitives such as brand name, location, 

e.g., Brandname(Mercedes), LocationOf(KFC) can be regarded as single-
argument predicate.

Variables refer to objects without reference which object is referred to, like vari-
ables x, y, and z used in a mathematical equation x + y = z (e.g., a, b, c, x, y, 
z) They are frequently used in FOPC for query and inferencing operations.

	2.	 Predicates
Predicates (Epstein 2012) refer to a predicate notion in traditional grammar that 

traces back to Aristotelian logic (Parry and Hacker 1991). A predicate is 
regarded as the property of a subject that has or is characterized by. It can be 
considered as the expression of fact to the relations that link up some fixed 
number of objects in a specific domain, e.g., he talks, she cries, Jack plays 
football, etc. Predicates are often represented with capital letters like Buy or 
Play in FOPC and combine with object names to form a proposition, e.g., 
Drive(Mercedes), Drive(Mercedes, Jack), Drive(Mercedes, x), 
Drive(Mercedes, Jack, UIC, Starbucks), Drive(car, x, org, dest).

	3.	 Connectives
Connectives refer to proposition combinations. Conjunctions (and as in English, 

written as & or Λ), disjunctions (or as in English, written as V), and implica-
tions (if-then as in English, written as → or ⊃). Negation (not as in English, 
written as ¬ or ~) is also regarded as a connective, even though it operates on 
a single proposition.

	4.	 Quantifiers
Quantifiers refer to generalizations. There are two major kinds of quantifiers: 

universal (all as in English, written as ∀) and existential (some as in English, 
written as ∃). The term first-order in FOPC means that this logic only uses 
quantifiers to generalize objects, but never onto predicates.

A FOPC context-free grammar (CFG) specification is shown in Fig. 5.4.

5.9.3 � Predicate-Argument Structure of FOPC

The semantics of human languages usually exhibit certain predicate-argument 
structure by variables, e.g., indefinites in generic cases and inferencing. It also uses 
quantifiers, e.g., every, some to create FOPC flexibility for sentence structures and 
partial compositional semantics, e.g., sort of.

Predicate-argument structure refers to actions, events, and relations that can be 
determined and represented by predicates and arguments. Languages exhibit a cer-
tain division-of-labor in which words/constituents are served as predicates and 
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Fig. 5.4  Context-free grammar (CFG) specification of FOPC

arguments, e.g., predicates to manifest verb, and arguments to manifest different 
cases of the verb.

Predicates are primarily verbs (V), VPs, prepositions, adjectives, and sentences/
utterances, and sometimes can be nouns and even NPs. For instance:

[5.59] Helen cries.
[5.60] Helen speaks to Mary.
[5.61] Helen speaks loudly.
[5.62] Helen speaks loudly in the classroom.

Arguments are primarily nouns, nominals, and NPs, but can be other constituents 
which rely upon the actual context of sentence/utterance. For instance:

[5.63] Jack goes to the bank vs.
[5.64] He goes to the bank.

The following shows an FOPC formulation example:

[5.65] Jack gave a pen to Jane.

	
Giving Jack, Jane, Pen( ) 	

(5.5)
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Note that the corresponding FOPC formulation (5.5) is precisely in Fillmore’s 
case role theory that give conveys a three-argument predicate: (1) Agent which is 
Jack as the giver; (2) Possess which is Jane as the recipient; and (3) Theme which is 
the pen as the direct object.

It can have other configurations to describe the same predicate logic; for example:

	
Giving Jack,Pen,Jane( ) 	

(5.6)

	
Gave Jack,Pen,Jane( ) 	

(5.7)

Here are some complex cases with additional constituents:

[5.66] Jack gave Jane a pen for Susan.

	
Giving Jack,Jane,Pen,Susan( ) 	

(5.8)

[5.67] Jack gave Jane a pen for Susan on Monday.

	
Giving Jack,Jane,Pen,Susan,Monday( ) 	

(5.9)

[5.68] Jack gave Jane a pen for Susan in class on Monday.

	
Giving Jack,Jane,Pen,Susan,in class,Monday( ) 	

(5.10)

Note that all these predicates should be treated individually as their arguments 
have different overall meanings.

5.9.4 � Meaning Representation Problems in FOPC

A predicate that represents a verb meaning, e.g., give, has the same argument num-
bers present as its syntactic categorization frame. It is still difficult to (1) determine 
the correct role numbers for an event, (2) manifest facts about case role(s) associ-
ated with the event, and (3) ensure correct inference(s) is/are derived from meaning 
representation.

According to the above considerations, the FOPC formulation stated in (5.5) is 
not as useful as it seems it would be preferable if roles or cases are separated and 
flexible when deciding the whole FOPC statement like this:

	

∃ ( ) ∧ ( ) ∧ ( )
∧

x y x x y x,

_

Borrowing Borrower Jack, Borrowed ,

Borrow to Jaane, Isa , Penx y( ) ∧ ( ) 	
(5.11)
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Note: Corresponding to Fillmore’s case role theory, Borrower  =  Agent, 
Borrowed = Theme, Borrow_to = To-Poss.

Although the notion of predicate relation becomes complicated, it allows more 
flexibility for sentence/utterance construction.

It may further generalize (5.11) into the following formulation:

	

∃ ( ) ∧ ( )
∧ ( ) ∧
x y z x w x

y x z
, ,

_

Borrowing Borrower ,

Borrowed , Borrow to , xx( ) 	
(5.12)

By doing so, it can generate other complicated clauses by applying different 
predicate combinations. The semantics of NPs and PPS in a sentence plug into slots 
provided by the template which can allow flexibility to variable argument number 
associated with an event (predicate).

Event has many roles to cement input with specific category (e.g., pen) on cate-
gories and instances declaration. For example:

	
Isa MobyDick Novel AKO(Novel,Literature), ,( ) 	

(5.13)

Note: Just like Isa() to serve as predicate Is a, AKO() is a useful predicate to serve 
as the meaning a kind of. In fact, FOPC materializes events so that they can be quan-
tified, and related to other events and objects through a defined set of relationships, 
and logical connections between closely related instances without meaning 
assumptions.

5.9.5 � Inferencing Using FOPC

Inference is an important process in FOPC which has the capability to validate or 
prove whether a proposition is true or false from a KB. Modus Ponens (MP) is a 
fundamental inferencing method used in FOPC.

MP is a mode of reasoning from a hypothetical proposition. If the antecedent is 
true, then the consequent should be also true. In other words, MP is a kind of deduc-
tive reasoning in the form of: P implies Q, i.e., If P is true, then Q must also be true. 
Its rule may be written in sequent notation as:

	
P Q P Q→ −or

	 (5.14)

where P, Q, and P → Q are statements or propositions in a formal language, and ├ 
is a metalogical symbol, meaning that Q is a syntactic consequence of P and P → Q 
in a logical system. MP rule justification in a classical two-valued logic is given by 
a truth table as shown in Table 5.1

The following example uses a Tesla car to demonstrate how FOPC works in 
logic inference. It has three statements to process:
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Table 5.1  Truth table of MP 
in two-valued logic

P Q P → Q

T T T
T F F
F T T
F F T

	

ElectricCar Tesla

ElectricCar Fuel ,Electricity

Fuel

( )
∀ ( ) → ( )x x x

TTesla,Electricity( )
	

(5.15)

Note: The first statement says Tesla is an electric car, the second statement says 
for all electric cars x, if a car is an electric car, the fuel being used must be electricity.

The above predicate ElectricCar (Tesla) matches the antecedent of the rule, so 
based on simple MP deduction to conclude that Fuel(Tesla, Electricity) is a True 
statement.

In fact, MP can be applied in Forward and Backward Reasoning modes.
Forward Reasoning (FR), also called normal mode, is used in normal situations 

by adding all facts into a KB to invoke all applicable implication rules to examine 
clause correctness or new knowledge addition.

Backward Reasoning (BR) is MP that operates in reverse mode to prove specific 
proposition or called query in computer science, i.e., to examine whether the query 
formula is true by its presence in KB, or without negative implication or facts on 
return query results.

Exercises
	 5.1.	 What is meaning representation? Explain why meaning representation is 

important in NLP. Give one or two examples to support your answer.
	 5.2.	 State and explain five major categories of meaning representation. Give an 

example to support your answer.
	 5.3.	 State and explain four common types of meaning representation in NLP. For 

each type, use the following sample sentence/utterance [5.70] [5.69] Jack 
buys a new flat in London to illustrate how they work for meaning 
representation.

	 5.4.	 What are the three basic requirements for meaning representation? Give two 
examples for each requirement to support your answer.

	 5.5.	 What is canonical form? How canonical form is applied to meaning represen-
tation. For sample sentence/utterance [5.70] [5.69] Jack buys a new flat in 
London, give five variations of this sentence and work out the canonical form 
in the forms of FOPC and semantic net.

	 5.6.	 What is inference? Explain why inference is vital to NLP and the implemen-
tation of NLP applications such as Q&A chatbot.
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	 5.7.	 What is Fillmore’s Theory of universal cases? State and explain six major 
case roles of Fillmore’s Theory in meaning representation. Use an example to 
illustrate.

	 5.8.	 What is the complication of Fillmore’s Theory in meaning representation by 
using several examples? Explain how it can be solved.

	 5.9.	 What are the four basic components of FOPC? State and explain their roles 
and function in FOPC formulation.

	5.10.	 What is MP in inferencing? In addition to MP, state and explain other possi-
ble inferencing methods that can be applied to FOPC in meaning 
representation.
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Chapter 6
Semantic Analysis

6.1 � Introduction

6.1.1 � What Is Semantic Analysis?

Semantic analysis (Cruse 2011; Goddard 1998; Kroeger 2019) can be considered as 
the process of identifying meanings from texts and utterances by analyzing gram-
matical structure relationships between words, tokens of written texts, or verbal 
communications in NLP.

Semantic analysis tools can assist organizations to extract meaningful informa-
tion from unstructured data automatically such as emails, conversations, and cus-
tomers’ feedback. There are many ways ranging from complete ad-hoc 
domain-oriented techniques to some theoretical but impractical methods. It is a 
sophisticated task for a machine to perform interpretation due to complexity and 
subjectivity involved in human languages. Semantic analysis of natural language 
captures text meaning with contexts, sentences, and grammar logical structures 
(Bender and Lascarides 2019; Butler 2015).

Semantic analysis is a process to transform linguistic inputs to meaning repre-
sentation and stamina for machine-learning tools like text analysis, search engines, 
and chatbots. From the computer science perspective, semantics can be considered 
as a group of words, phrases, or clauses that provide concern-specific context to 
language, or clues to word meanings and relationships. For instance, a successful 
semantic analysis will base on quantity methods such as word frequency and con-
text on location to generate cognitive connection between the clause giant panda is 
a portly folivore found in China and its semantic meaning instead of just the name 
panda it stands for.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_6&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_6#DOI
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6.1.2 � The Importance of Semantic Analysis in NLP

Semantic analysis (Goddard 1998; Sowa 1991) is important to conscious of knowl-
edge relevance and information about meaning, e.g., giant panda characteristics, 
comparisons with other panda species, evolution history, related news and 
information.

It ensures that the contents are relevant to the understanding of (1) user, (2) con-
tent, and (3) context presence in NLP. The problem with establishing relationships 
between contents and context is that most data-driven technology cannot compre-
hend contextual message of the sentence (phrase or clause) it conveys. If the under-
standing of context and user’s behavior has a deep semantic level, it can produce 
content relevance and resonant experience.

There are many automatic classification systems today with a purely bag-of-
words approach to identify relevant features and determine document meanings. 
Few use correlation and collocation to account for words that have several mean-
ings based on the context. Nevertheless, none uses full semantic analysis for words’ 
meanings. But this is markedly required to interpret a document correctness because 
language, especially English language, is ambiguous. English nouns have an aver-
age of five to eight synonyms; e.g., run has more than 100 common meanings like 
running toward the finish line, run to a meeting, run a company, the machine is 
running, tears ran down her face, ran for president, run him a couple thousand dol-
lars, etc. If a bag of words is used as features, the software will never be able to 
distinguish between important facts and irrelevant information leading to imprecise 
classification results and ambiguities.

6.1.3 � How Human Is Good in Semantic Analysis?

Humans extract abstract ideas and notions like breathing without awareness. Take 
the meaning of apple as an example, when discussing the concept of apple, they 
referred to fruit consumed regularly. But now, a majority refer to the brand name 
Apple that dominates mobile phone and computer industry. In other words, humans 
are competent to extract context surrounding words, phrases, objects, scenarios and 
compare information with prior experience, common sense, and world knowledge 
to construct overall meanings in a text or conversation. These analyses outputs will 
be used to predict outcome with incredible accuracy, but algorithm and computer 
capacity upgrades had modified habitual practices to fit in with machine learning 
and NLP allowing machine-driven semantic analysis becomes reality. Such 
machine-learning-based semantic analysis schemes can assist in revealing the 
meanings in online messages and conversations and determine answers to questions 
without manually extracting relevant information from large volumes of unstruc-
tured data. The truth is semantic analysis aims to make sense of everything from 
words to languages in daily life.
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6.2 � Lexical vs. Compositional Semantic Analysis

6.2.1 � What Is Lexical Semantic Analysis?

Lexical semantic analysis (Cruse 1986) is a subfield of linguistic semantics to study 
word’s compositionality, grammar, structure mechanisms, and the relationships 
between word senses and their usages.

The analytical unit in lexical semantics is called lexical unit, which includes not 
only words, but also partial words, affixes (subunits), compound words, and phrases, 
collectively referred to as lexical terms. Lexical units are catalog of words called 
lexicon of a language. Lexical semantics can be interpreted as the relationship 
between lexical terms, sentence/utterance syntax, and its meaning.

Lexical semantics analyzes the meaning of lexical items in relation to language 
and syntactic structure. This field of study involves the following:

	1.	 Classifying and decomposing lexical terms and tokens.
	2.	 Examining the similarities and differences in lexical semantic structures across 

languages.
	3.	 Reviewing the correlation between a sentence's lexical and syntactic meaning 

with its semantic meaning.

Lexical relation in lexical semantic involves the analysis of meaning or word 
relevance in lexical level and includes homonymy, polysemy, metonymy, synonyms, 
antonyms, and hyponymy and hypernymy to be studied in word sense and relation 
section.

6.2.2 � What Is Compositional Semantic Analysis?

Compositionality is a concept in the philosophy of language that posits the meaning 
of a complex expression in a sentence or utterance depends not only on the mean-
ings of individual words but also on their syntactic structure and arrangement. From 
a linguistic perspective, a sentence or utterance can be considered compositional if 
its meaning arises from both the meaning of its constituent words and how those 
words are syntactically linked together.

In a compositional language, the meaning of a sentence or utterance is derived 
solely from the meanings of the words that comprise it and their syntactic relationships. 
Thus, compositional semantics focuses on investigating the meaning of a sentence or 
utterance as a whole, rather than analyzing the individual words in isolation. The 
underlying logic is that words collectively create the overall meaning of the sentence or 
utterance, rather than merely combining their individual meanings. For example:

[6.1] Andrew likes Jane = > likes (Andrew, Jane) vs.
[6.2] Jane likes Andrew = > likes (Jane, Andrew)

Although individual meaning of every single word in these sentences/utterances 
is the same due to different words’ arrangement, their meanings and predicate logics 
can be different.
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Compositional semantics is to study the meaning of complex language units such 
as sentences, paragraphs, or documents. It is vital to transform the information rep-
resented by language units into a formal representation which consists of (1) sym-
bolic and (2) vectorial representations.

Symbolic representations are meanings expressed as a logical formula by infer-
ential mechanisms, or graph-based representations expressed by graphical 
transformation.

Vectorial representations are methods based on distributional semantics such 
as word embeddings to represent meaning as word vectors in multidimen-
sional space.

Currently, only vectorial representations are widely used, as it is challenging to 
ensure the consistency of large sets of logical propositions based on textual input 
due to problematic inferential mechanisms. Moreover, there is no consensus on suit-
able graph-based representations, such as semantic networks, for expressing the 
meanings of linguistic entities, nor are there appropriate operations for applying 
these representations.

6.3 � Word Senses and Relations

6.3.1 � What Is Word Sense?

Word sense is a crucial concept for interpreting the meanings of words in linguistics. 
For example, the word “bank” can have over 20 different word senses in a diction-
ary, each with a distinct meaning depending on the context and syntactic structure 
in which it is used. Some of these senses include the following:

	 1.	 Financial organizations that accept deposits and use funds for lending opera-
tions (noun).
[6.3] Jack goes to the bank and withdraws some money.

	 2.	 Inventory or stock that keeps for emergencies (noun).
[6.4] Jack goes to the food bank to acquire some food.

	 3.	 A container with an opening on top to store money (noun).
[6.5] His coin bank was empty.

	 4.	 A sloping land besides a slope or body of water (noun).
[6.6] Jack stands beside the bank of a river (noun).

	 5.	 A long plie or ridge (noun).
[6.7] Jack digs a bank of earth.

	 6.	 Enclose with a bank (verb).
[6.8] bank roads.

	 7.	 Cover with ashes to control the flames (verb).
[6.9] Bank a fire.
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	 8.	 Tip laterally (verb).
[6.10] The pilot had to bank the aircraft.

	 9.	 A fighter maneuvers the aircraft to tip laterally (noun).
[6.11] F19 fighter went into a steep bank.

	10.	 Similar objects are arranged in a row (noun).
[6.12] He operated a bank of switches.

6.3.2 � Types of Lexical Semantics

There are six types of commonly used lexical semantics: (1) homonymy, (2) poly-
semy, (3) metonymy, (4) synonyms, (5) antonyms, and (6) hyponymy and 
hypernymy.

6.3.2.1 � Homonymy

Homophones are words that are spelled and pronounced the same but have different 
meanings. The word homonym comes from prefix homo- that stands for same and 
suffix -nym that stands for name.

Example 1: bank1: financial institution vs. bank2: slopping land:
[6.13] He went to the bank and withdrew some cash.
[6.14] He was standing at the bank of the lake in the forest.
Example 2: bat1: a sporting club for ball hitting vs. bat2: a kind of flying mammal:
[6.15] He handles his bat skillfully during the game.
[6.16] Bats live the longest as compared with other species of similar size.
Example 3: play1: light-hearted recreational activity for amusement vs. play2: the 

activity of doing something in an agreed succession:
[6.17] This Shakespeare play is excellent.
[6.18] It is still my play.

There are two related concepts with homonymy: (1) homographs are usually 
defined as words that have the same spelling with different pronunciations and (2) 
homophones are words that share same pronunciation regardless of spellings as 
examples above. Further, homographs are words with the same spellings, and het-
erographs are words that share the same pronunciation but different spellings, e.g., 
chart vs. chat, peace vs. piece, right vs. write.

Homonymy often causes problems in the following NLP applications:

	1.	 Information retrieval confusion, e.g., cat scan.
	2.	 Machine translation confuses foreign languages’ meanings:
e.g., bank1—financial institution; bank (English) → la banque (French).
[6.19] He goes to the bank and withdraws some cash. (English)
[6.20] Il va à la banque et retire de l’argent. (French)
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e.g., bank2—sloping land, bank (English) → la rive (French)
[6.21] He lived by the bank of the lake. (English)
[6.22] Il habitait au bord du lac. (French)
	3.	 text-to-speech confusion:
e.g., bass (string instrument) vs. bass (fish).

6.3.2.2 � Polysemy

Polysemy are words with the same spellings but different in meanings and context. 
The difference between homonymy and polysemy is delicate and subjective.

For example, bank
[6.23] The bank was built in 1866. (financial building)
[6.24] He withdrew some money from the bank early this morning. (financial 

organization)

In fact, many commonly used words are polysemy with multiple contexts and 
meanings in different sentence situations.

For example, get is a commonly used word that has at least three distinct meanings.
[6.25] I get an apple from the basket. (have something)
[6.26] I get it. (understand)
[6.27] She gets thinner. (reach or cause to a specified state or condition)

6.3.2.3 � Metonymy

Metonymy is a kind of figure-of-speech in which one word or phrase is replaced by 
another association.

It is also a rhetorical strategy to describe the periphery of nucleus indirectly, as 
in describing someone’s outfit to individual’s characteristics. It is regarded as a sys-
tematic relationship between senses, or systematic polysemy, e.g., college, hospital, 
and museum can all stand for building with semantic relationship between that 
building and an institution.

Metonymy and metaphor have fundamental differences in functions. Metonymy 
is about referring a method of designation or component identification or symbolic 
linkage with association, e.g., crown for monarchy or royalty. Metaphor is about 
understanding and interpretation in contract. It is a means to understand or explain 
a phenomenon by another description. For instance:

[6.28] Her business rises like phoenix.

6.3.2.4 � Zeugma Test

Zeugma is the usage of a word(s) that make(s) sense in one way but not the other. 
Examples of zeugma that caused conflicts in semantics:
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[6.29] Wage neither war nor peace.
  – There is a term to wage war but is literally incorrect to say to wage peace.
[6.30] He watched the brightness of lightning and the pounding of thunderstorm.
  – He can only watch lightning but not thunder.

The zeugma test in semantic analysis consists of using a putatively ambiguous 
expression in a sentence in which several of its putative meanings are crowded 
together, whether it makes sense or not. Let’s use the word serve as example:

[6.31] Which United Airlines flights serve dinner?
[6.32] Does Jack serve the Army?
[6.33] Do United Airlines flights serve dinner and the Army?

It showed that there are two different senses of serve though [6.33] may 
sound odd.

6.3.2.5 � Synonyms

Synonyms are words with the same meaning in some or all contexts. They usually 
appear in language in different contexts, such as formal and informal language, 
daily conversations, and business correspondence. Synonyms have modest meaning 
when used, although they have the same meaning, e.g., create/make, start/begin, 
big/huge, attempt/try, house/mansion, pretty/beauty. Synonyms have two lexemes if 
they are interchangeable in all cases and retain the same meaning.

However, there are very few truths synonymy in the real-world situation as to 
whether two words are truly synonyms. The logic behind this is if they are different 
words, then they must mean something else or have some context differences in 
usage and cannot be the same in all situations. In many cases, two words are not 
exactly interchangeable when they appear, even though many aspects of the mean-
ing are the same. These words are used and mean differently due to concepts of 
politeness, slang, register, genre, etc.

For example, large vs. big (are they exactly the same?)
[6.34] This building is very big vs.
[6.35] This building is very large.
[6.36] Janet is her big sister vs.
[6.37] Janet is her large sister.

Although both words have same meanings in the description of size, the word big 
has an additional notion of older in terms of seniority description.

6.3.2.6 � Antonyms

Antonyms are the word sense between words with opposite context meanings. It is 
a place which other sense relations do not occupy synonym regardless of human 
tendency to categorize experience in dichotomous contrast that is not easily judged.
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However, the notion of antonyms is immeasurable. Humans understand the con-
cept of opposite from childhood, encounter them in daily life, and even use ant-
onyms as a kind of a cognitive method to organize notions, concepts, and experiences, 
e.g., big vs. small, dark vs. bright, hot vs. cold, in vs. out. Antonyms can also use to 
interpret binary, scale, or position opposition such as long vs. short, fast vs. slow, 
and up vs. down.

6.3.2.7 � Hyponymy and Hypernymy

Hyponym is a word sense of another word if the first word sense is specific, denoting 
a subclass of the other sense in linguistics, e.g., truck is a hyponym of vehicle, 
mango is a hyponym of fruit, and chair is a hyponym of furniture; or conversely 
hypernym/superordinate (hyper is super), e.g., vehicle is a hypernym of truck, fruit 
is a hypernym of mango, and furniture is hypernym of chair.

It is interesting to know that hyponymy is not only limited to nouns, but it can 
also be found in verbs, e.g., gaze, glimpse, and stare are all regarded to specific 
moment of seeing.

Hyponymy and hypernymy relationship between word sense and relation is 
regarded as the relationship between class and subclass concepts in object-oriented 
programming (OOP) from the computer science perspective, e.g., the class of vehi-
cle has three subclasses: car, lorry, and bus, while the class of fruit can have numer-
ous subclasses such as apple, orange, and mango; or in reverse manner, the concept 
vehicle is the superclass of car, and the concept fruit is the superclass of mango.

Further, words that have hyponyms of the same broader term are hypernym 
known as co-hyponyms. The semantic relationship between each of the more spe-
cific words, e.g., daisy and rose, and the broader term, e.g., flower, is called hypon-
ymy or inclusion, which has the same situation for word sense relation of 
co-hypernymy.

Hyponymy has (1) extensional, (2) entailment, (3) transitive, and (4) IS-A hierar-
chy characteristics:

	1.	 Extensional is the class represented by the parent extension, including the class 
represented by hyponym, e.g., the relations between vehicle and truck.

	2.	 Entailment is a hyponym sense A of sense B if A entails B.
	3.	 Transitive means if A entails B and B entails C, then A entails C, e.g., truck, 

vehicle, transport where truck is a hyponymy of vehicle and vehicle is a hypon-
ymy of transport, so truck is a hyponymy of transport.

	4.	 IS-A hierarchy where A IS-A B (or A IsA B), and B subsumes A in OOP.

6.3.2.8 � Hyponyms and Instances

Hyponyms have notions of instance and class. In linguistics, an instance can be 
considered as a proper noun with a unique entity. For example, New York is an 
instance of city; USA is an instance of country. It is regarded as the relationship 
between class vs. object in object programming.
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In short, class is the notion of things and objects, whereas object is the instance 
of class, e.g., person is a class concept to describe an individual person, while Jack 
is an object, which is an instance of that class concept.

A simple test: the relationship between car and Tesla, are they class-object rela-
tionship or class-subclass relationship?

6.4 � Word Sense Disambiguation

6.4.1 � What Is Word Sense Disambiguation (WSD)?

Word sense disambiguation (WSD) (Agirre and Edmonds 2007) is a well-known 
challenge in computational linguistics that involves the identification for correct 
semantic meaning of words used in sentences/utterances. WSD is the ability to 
determine which meaning of a word is activated when a word is used in a specific 
context of NLP.

Lexical ambiguity is one of the initial problems that any NLP system may 
encounter. In summary, POS tagging is applied to resolve syntactic ambiguity, 
while WSD is applied to resolve semantic ambiguity. However, it is always difficult 
to resolve semantic rather than syntactic ambiguity. Consider distinct sense for the 
word bass examples:

[6.38] Jane hates to hear the bass sound.
[6.39] Jack is eating fried bass.

It has completely different word sense in which [6.38] represents a musical 
instrument and [6.39] represents a type of fish. So, by using WSD the two sentences 
can be interpreted as follows:

[6.40] Jane hates to hear the bass/instrument sound.
[6.41] Jack is eating fried bass/fish.

6.4.2 � Difficulties in WSD

There are five major concerns in WSD: (1) difference meaning across dictionaries, 
(2) POS tagging, (3) inter-judge variance, (4) pragmatics (discourse), and (5) sense 
discreteness.

	1.	 Difference meaning across dictionaries.
A problem with WSD is sense decision as dictionaries and thesauri offer several 

word divisions into senses. Many WSD research papers have commonly used 
WordNet (WordNet 2022a) as the reference word sense corpus for English. It 
can be considered as a comprehensive lexicon that is composed of word con-
cepts and their semantic relations with other concepts (e.g., synonyms). For 
example, the concept of car is interpreted as {car, auto, automobile, machine, 
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motorcar}. BabelNet (2022) is a recent multilingual encyclopedic dictionary 
with multilingual WSD.

	2.	 POS tagging.
WSD and POS tagging involve disambiguation or tagging with words. However, 

algorithms used for one tend not to work well for the other, mainly because a 
word’s POS is primarily determined by adjacent one to three words versus word 
sense determined by more distant words in many cases. For example, the success 
rate of POS tagging algorithms is around 96% versus 75% in WSD with super-
vised learning (SL) current research and findings (Agirre and Edmonds 2007).

	3.	 Inter-judge variance.
WSD system test results on a task are usually compared to ones by humans. While 

it is easy to attribute POS to texts, it is difficult in training to mark word senses. 
Since human performance serves as the standard, it is an upper limit for com-
puter performance. However, humans fared much better at coarse-grained dis-
crimination than at fine-grained discrimination and it is the reason for the 
research of the former to put the test in recent WSD evaluation exercises.

	4.	 Pragmatics (discourse).
Pragmatics and discourse are complex problems in NLP.  Many AI researchers 

believe that one cannot analyze meanings of words without some form of sen-
sible ontology analysis and world knowledge at a pragmatic level. Also, common 
sense is sometimes required to distinguish words such as pronouns in anaphors 
or cataphors of the text.

	5.	 Sense discreteness.
The notion of word sense is sometimes unpredictable and controversial. Most can 

agree on semantic interpretation at the level of coarse-grained homographs, but 
going down to fine-grained polysemy can lead to disagreement. For example, 
Senseval-2 (Preiss 2006) uses fine-grained sensory distinctions, with only 85% 
of the annotated words that can agree with. Word meanings are infinitely vari-
able, in principle are dependent on context, and cannot be easily broken down 
into distinct or separate submeanings.

6.4.3 � Method for WSD

WSD commonly used methods include (1) knowledge base (KB), (2) SL, (3) semi-
supervised learning, and (4) unsupervised learning (UL) (Agirre and Edmonds 
2007; Preiss 2006).

	1.	 KB is a method mainly based on dictionaries, thesauri, and lexical knowledge 
databases. They don’t need corpus evidence for disambiguation. The Lesk 
method (Lesk 1986) is a pioneering dictionary-based method introduced by 
Prof. Michael Lesk in 1986. The Lesk definition and its algorithm aim to mea-
sure the overlap between the meaning definitions of all words in a context. 
Kilgarriff and Rosenzweig (2000) simplified the Lesk definition to measure the 
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overlap between meaning definition of a word and current context, meaning the 
correctness of identifying one word at a time, the current context being the set of 
words in surrounding sentence/utterance or paragraph (Ayetiran and 
Agbele 2016).

	2.	 SL methods are standard machine-learning techniques applying semantically 
annotated corpora to train disambiguation. These methods assume that context 
alone can provide sufficient evidence to clarify meaning, so verbal knowledge 
and reasoning are considered unnecessary. A context is interpreted as a set of 
word features that contains information about surrounding words. Support 
Vector Machines (SVMs) and memory-based learning are commonly used SL 
methods for WSD.  However, they are usually computationally intensive and 
require large manually labeled corpora to produce satisfactory results.

	3.	 Since many WSD problems lack training corpora, semi-supervised methods are 
applied on both labeled and unlabeled data, which require only amount of anno-
tated text and a large amount of plain unannotated text, as well as bootstrapping 
from starting data. The bootstrapping method starts with a small amount of start-
ing data for each word, either with manually labeled training examples or with a 
small set of triggering decision rules. The seed value is intended to train an initial 
classifier with some supervised method. This classifier is then applied on the 
unlabeled portion of corpus to extract a larger training set with the safest classi-
fication. This process is repeated to train each new classifier until the entire cor-
pus is exhausted or the maximum number of iterations is reached. Other 
semi-supervised techniques apply large unlabeled corpora to provide co-
occurrence information to complement labeled corpus perspectives to help 
supervised models adapt to different domains.

	4.	 UL methods assume that similar meanings appear in similar contexts, that is why 
perceptions can be induced from texts by clustering word occurrences using a 
similarity measure of context. This task is called word sense induction or dis-
crimination. UL methods can overcome knowledge acquisition bottlenecks due 
to their independence from manual work. Although the performance is lower 
than other methods mentioned above, fair comparison is hard as the induced 
senses should link up to a known word sense dictionary.

6.5 � WordNet and Online Thesauri

6.5.1 � What Is WordNet?

WordNet (WordNet 2022a) is a lexical corpus of words with over 200 languages 
with adjectives, adverbs, nouns, and verbs grouped into a set of synonyms where 
each word in WordNet has a distinct concept. It is organized by concepts and mean-
ings against a dictionary in alphabets. Since traditional dictionaries were created by 
humans, a lexical resource is required for computers effecting WordNet that is 
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Table 6.1  WordNet basic statistical information

Category Unique strings

Noun 117,798
Verb 11,529
Adjective 22,479
Adverb 4481

applicable in NLP. It is available for public access and free download with statistical 
information as shown in Table 6.1.

WordNet’s structure is an integral tool for computational linguistics and NLP 
implementations. It resembles a thesaurus and group words by meanings. However, 
they have basic differences: (a) WordNet indicates word senses in addition to word 
forms. As a result, words that are found near one another in the network are semanti-
cally related or even synonym with each other. (b) WordNet encodes semantic rela-
tions among words, whereas words in a thesaurus do not follow a distinct pattern 
other than the similarity in surface meaning.

6.5.2 � What Are Synsets?

WordNet can be considered as a network of words connected by lexical and seman-
tic relations. Nouns, verbs, adjectives, and adverbs are combined into a group of 
cognitive synonyms called synsets with each expressing a specific concept. Synsets 
are associated with conceptual semantics and lexical relationships such as hypo-
nyms and antonyms. WordNet contains over 117,000 synsets. Each of these synsets 
is associated with other in a small number of conceptual relationships.

A synset contains a short definition called a gloss, and one or more short sen-
tences describing how members of synset are used in most contexts. Word forms 
with many different meanings are represented in different synsets. This is the form 
of each form-meaning pair in WordNet. Each synonym group is a synset within a 
WordNet term, and synonyms that are part of a synset are lexical variants of that 
concept. Figure 6.1 shows a synset tree for the synset concept book and all concept 
relationships with all other related synsets. Meaningful related words and concepts 
in the generated network can be browsed from the WordNet browser (WordNet 2022b).

6.5.3 � Knowledge Structure of WordNet

A WordNet structure is concepts of word relationship in a WordNet network to 
arrange same concepts in similar interchange contexts in Fig. 6.2. These words are 
unordered sets grouped into synsets and linked with small conceptual relations. An 
example of synset structure benefit arrayed synonyms profit with definitions and 
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Fig. 6.1  Synset concept of book in WordNet

examples as shown in Fig. 6.3. Benefit(profit) is defined as an advantage or profit 
gain from something. For example, He receives benefits of computers trade.

6.5.4 � What Are Major Lexical Relations Captured in WordNet?

Super-subordinate relation, also called hypernymy, hyponymy, or IS-A relation is a 
frequently used relation among synsets. It links generic synsets such as {furniture, 
piece_of_furniture} to subconcepts like {chair} and {armchair}. Thus, WordNet 
indicates that synset furniture consists of synset chair, which in turn includes synset 
armchair; conversely, synsets like chair or armchair make up the synset furniture. 
In fact, the synset tree goes up to root-node {entity}.

As said, such hyponym relation is transitive in nature, e.g., if an armchair is a 
kind of chair and if a chair is a kind of furniture, then an armchair is a kind of fur-
niture. WordNet distinguishes between types (general nouns) and instances (spe-
cific people, countries, and geographic entities), e.g., book is a type of publication, 
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Fig. 6.2  Basic knowledge 
structure of WordNet

and Abraham Lincoln is an instance of President. Instances are always denoted as 
leaves (terminal nodes) in synset tree hierarchies.

Major lexical relations include the following:

•	 Synonymy: words with similar meaning.
•	 Polysemy: words with more than single sense.
•	 Hyponymy/Hypernymy: IS-A relation between words.
•	 Meronymy/Holonymy: part-whole relation between words.
•	 Antonymy: opposite meanings between words.
•	 Troponymy: applicable for verbs, e.g., whisper is troponym of speak.

Table 6.2 shows the major lexical relation capture in WordNet with examples.

6.5.5 � Applications of WordNet and Thesauri?

WordNet and Thesauri applications include information extraction, information 
retrieval, question answering, medical informatics, and machine translation. 
WordNet has another common usage to determine word similarity with algorithms 
proposed, including to measure the distance(s) among words in WordNet synset 
graphs (trees), e.g., counting the number of edges among synsets. Intuitive words 
or synonyms are close to meaning. Many WordNet-based world similarity algo-
rithms are implemented in a Perl package called WordNet::Similarity and a Python 
package using NLTK and SpaCy will be explored in the second part of NLP 
workshops.
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Fig. 6.3  Example of knowledge structure of synset benefit

Table 6.2  Major lexical relations captured in WordNet with examples

Semantic relation Syntactic category Examples

Synonymy (similar) N, V, Aj, Av pipe, tube rise, ascend sad, unhappy rapidly, 
speedily

Antonymy (opposite) Aj, Av, (N, V) wet, dry powerful, powerless friendly, 
unfriendly rapidly, slowly

Hyponymy (subordinate) N sugar maple, maple maple, tree tree, plant
Meronymy (part) N brim, hat gin, martini ship, fleet
Troponomy (manner) V march, walk whisper, speak
Entailment V drive, ride divorce, marry

Note: N = Nouns, Adj = Adjectives, V = Verbs, Av = Adverbs

6.6 � Other Online Thesauri: MeSH

6.6.1 � What Is MeSH?

Medical Subject Thesaurus, aka. MeSH (MeSH 2022) is a hierarchically organized 
vocabulary for indexing, cataloging, and searching biomedical- and health-related 
information created by the US National Library of Medicine (NLM). MeSH 
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contains subject headings that appear in MEDLINE/PubMed, NLM catalog, and 
other NLM databases. It consists of 177,000 entries and 26,142 biomedical titles, 
and continues to soar as the literature expands. The 2020 edition contains more than 
25,000 subject headings, 4400 approximately more since its launch in 1960. These 
headings are organized into an 11-level hierarchy with 83 subheadings. MeSH can 
be freely used via US NLM’s online MeSH browser (MeSH 2022). MeSH headings 
are organized in a knowledge tree with 16 major branches:

MeSH glossary contains several entry terms intended to be synonyms for canoni-
cal title terms in addition to a hierarchical set of canonical terms.

6.6.2 � Uses of the MeSH Ontology

MeSH ontology usage includes the following:

	1.	 Synonyms as entry terms, e.g., sucrose and saccharose.
	2.	 Hypernyms from hierarchy, e.g., sucrose is a glycosyl glycoside.
	3.	 Index in MEDLINE/PubMed databases such as bibliographic database NLM 

contains 20 million journal articles with 10–20 MeSH terms manually assigned 
to each article.

6.7 � Word Similarity and Thesaurus Methods

6.7.1 � Introduction

A synonym can be considered as a binary relationship between two synonyms or 
non-synonyms. Similarity or distance is a looser measure when two words share 
more semantic features with each other. Similarity is a relationship between sensa-
tions, e.g., bank is usually not like slope, but in some cases, they may have the same 
meaning, e.g., bank1 is similar to fund3, and bank2 is similar to slope5, in which the 
similarity can be calculated by word sense relationship in a sentence.

A.  Anatomy, B.  Organisms, C.  Diseases, D.  Chemicals and Drugs, 
E.  Analytical Diagnostics and Therapeutic Techniques and Equipment, 
F. Psychiatry and Psychology, G. Phenomena and Processes, H. Disciplines 
and Occupations, I.  Anthropology, Education, Sociology and Social 
Phenomena, J.  Technology, Industry, Agriculture, K.  Humanities, 
L. Information Science, M. Named Groups, N. Health Care, V. Publication 
Characteristics, and Z. Geographicals.
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Fig. 6.4  Path-based similarity for a concept related to car

Word similarity is important because a good measure can be used in information 
retrieval, question answering, machine translation, natural language generation, lan-
guage modeling, automatic paper scoring, and even plagiarism detection.

The difference between word similarity and word relation is that similar words 
are almost synonyms, e.g., car, bicycle are similar in concept but not a kind of Is-A 
relation, whereas related words can be related in any way, e.g., car, gasoline are 
highly related but not similar in semantic meaning.

There are two types of similarity algorithms: (1) thesaurus-based algorithms and 
(2) distributional algorithms. Thesaurus-based algorithms are designed to examine 
adjacent words in a hypernym hierarchy with similar annotations or definitions. 
Distribution algorithms are designed to examine words with similar distributional 
contexts.

6.7.2 � Path-Based Similarity

Path-based similarity aims to examine two concepts in general. The two concepts 
are similar if they are in the vicinity of thesaurus hierarchy. Synset tree (graph), the 
distance (path) between two synset nodes, can provide a good indication of seman-
tic similarity between two concepts. This evaluation method is known as path-based 
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similarity measurement. Figure 6.4 shows an example of path-based similarity for 
the concept car. Note that all concepts have a path value of 1 point to themselves.

For example:
pathlen(car, car) = 1
pathlen(car, automotive) = 2
pathlen(car, truck) = 3
pathlen(car, minibike) = 5
pathlen(car, transport) = 5
pathlen(car, artifact) = 7
pathlen(care, tableware) = 10
pathlen(car, fork) = 12

In general:

	

pathlen , nos of edges in the shortest 
pathat hypern

c c1 2 1( ) = + .
yym graph between sense nodes andc c1 2 	

(6.1)

where pathlen(c1, c2) ranges from 0 to 1.
The path-based similarity simpath(c1,c2) of two nodes (concepts) is given by:

	

simpath ,
pathlen ,

c c
c c1 2

1 2

1( ) = ( ) 	

(6.2)

	
wordsim , simpath ,w w c c1 2 1 2( ) = ( )( )max

	

	
a e ( ) e ( )c w c w1 1 2 2senses senses,

	
(6.3)

Using car concept as example:
simpath(car, car) = 1/1 = 1.0.
simpath(car, automotive) = 1/2 = 0.50.
simpath(car, truck) = 1/3 = 0.33.
simpath(car, minibike) = 1/5 = 0.20.
simpath(car, transport) = 1/5 = 0.20.
simpath(car, artifact) = 1/7 = 0.14.
simpath(car, tableware) = 1/10 = 0.10.
pathlen(car, fork) = 1/12 = 0.08.

6.7.3 � Problems with Path-Based Similarity

Let’s assume every link denotes a uniform distance. It seems that car to minibike is 
closer than car to transport because higher synsets are more abstract in synset tree, 
e.g., object is abstract than artifact, transport is abstract than vehicle.
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Although simpath(car, minibike) and simpath(car, transport) have identical val-
ues, their semantic relationship between each other is different; naturally, synsets in 
other branch of the synset tree are less related in concept, e.g., car vs. tableware or 
even fork.

Hence, it is suggested to have a metric that can represent the cost of each edge 
independently so that words associated with abstract nodes should have less similar-
ity scores.

6.7.4 � Information Content Similarity

The information content similarity metric uses information content (IC) to assess 
semantic similarity in taxonomy that was first proposed by Prof. Philip Resnik, 
whose distinguished work Using information content to evaluate sematic similarity 
in taxonomy was published in 1995 (Resnik 1995).

Let’s define P(c) as the probability of a random word in corpus for an instance of 
concept c. There is a unique random variable ranging from words formally associ-
ated with each concept in the hierarchy. For a given concept, each observed noun is 
either a member of the concept with probability P(c) or is not a member of the 
concept with probability 1 − P(c). All words are members of the root node entity, 
i.e., P(root) = 1; lower nodes in the hierarchy have lower probability.

Information content similarity is generally determined by counting against the 
corpus. When applying to car concept example, each instance of car counts toward 
frequency of automotive, wheeled vehicle, vehicle, etc. So given word(c) is the col-
lection of all words that are children of node c, the probability of information con-
tent similarity P(c) in a corpus is given by Eq. 6.4:

	
P c

w

N

w c( ) =
( )

e ( )
E
words

count

	
(6.4)

Thus, (1) words(transport) = {transport, wheeled vehicle, automotive, car, truck, 
motorcycle, minibike} and (2) words(automotive) = {car, truck}.

A synset tree of car associated with P(c) up to transport level in each corpus is 
shown in Fig. 6.5.

IC is given by:

	
IC c P c( ) = - ( )log

	
(6.5)

where the lowest common subsume (LCS) is given by:

	
LCS , the lowest common subsumerc c1 2( ) = 	

(6.6)
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Fig. 6.5  Synset tree of 
“car” with associated P(c) 
(up to transport level in the 
corpus)

That is, the lower node in hierarchy that subsumes (is a hypernym of) both c1 and 
c2 is ready to apply IC as a similarity metric.

6.7.5 � The Resnik Method

The Resnik method (Resnik 1995, 1999) refers to the similarity between two words 
that are in the vicinity of their common information. It is defined to measure the 
most informative common ICs, i.e., (lowest) subsumer (MIS/LCS) of two nodes, 
given by:

	
sim , LCS ,Resnik c c P C C1 2 1 2( ) = - ( )( )log

	
(6.7)

6.7.6 � The Dekang Lin Method

The Dekang Lin method was proposed by Prof. Dekang Lin with his work 
Information-Theoretic Definition of Similarity at ICML in 1998 (Lin 1998). It deter-
mines not only the similarity between concepts A and B what they have in common 
but also the differences between them. It concerns (1) commonality and (2) differ-
ence. Commonality, denoted by IC(common(A,B)), means A and B are more in 
common that has more similarity. Difference, denoted by IC(description(A,B) − IC
(common(A,B)), means more differences between A and B that has less similarity.

Similarity theorem is similarity between A and B measured by the ratio between 
amount of information required to state commonality of A and B, and the informa-
tion required to describe what A and B are:

	
simLin , common A,B description A,BA B P P( ) - ( )( ) ( )( )log / log

	
(6.8)
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He further modified the Resnik method demonstrating that information in com-
mon is twice the LCS IC given by:
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(6.9)

Using car concept as example:
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This calculation showed that car is related to truck than minibike at hierarchy 
tree in Table 6.5

6.7.7 � The (Extended) Lesk Algorithm

The (extended) Lesk algorithm uses a thesaurus-based algorithm to measure glosses 
which contain similar words for concept similarity. For instance, drawing paper is 
a type of paper for drafting, including the art of transferring designs from specially 
prepared paper to a glass, wood, or even metal surface.

For all n-word phrases which appear in two glosses:

	1.	 Add a score of n2.
	2.	 Paper and specially prepare for 1 + 22 = 5.
	3.	 Evaluate the overlaps for other relations which define glosses of hypernyms and 

hyponyms.

The extended Lesk for similarity (simeLesk) is given by:

	

sim , overlap gloss ,glosseLesk
RELS

c c r c q c
r q
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(6.10)
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6.8 � Distributed Similarity

6.8.1 � Distributional Models of Meaning

Distributional models of meaning can be considered as a kind of vector-space mod-
els of meaning. Prof. Zellig Harris (1909–1992) claimed that oculist and eye-doc-
tor… occur in almost the same environments… (Harris 1954), which means A & B 
is synonym if A and B have almost identical environments. Sir John R Firth 
(1890–1960) also stated that you shall know a word by the company it keeps! 
(Firth 1957):

[6.41] A bottle of Baileys is on the table.
[6.42] Many coffee drinkers like Baileys.
[6.43] Baileys will make you drunk.
[6.44] We make Baileys out of Irish whiskey and cream.

Humans can guess Baileys from context words is an alcoholic coffee beverage 
flavored with cream and Irish whiskey. This means that two words are semantically 
similar if they are similar in the context of the word being used for algorithm 
interpretation.

6.8.2 � Word Vectors

Word vector is a vector of weights. In a simple 1-of-N encoding, every element in the 
vector is associated with a word in vocabulary. Word encoding is vector where the 
corresponding element is set to one, and other elements are zero.

Given a target word w, assume there is a binary feature fi for each N word in lexi-
con vi, the word vector is given by:

	
W f f f fN= ...( )1 2 3, , ,

	
(6.11)

Apply to above Baileys’ example, if w  =  Baileys, f1  =  coffee, f2  =  whiskey, 
f3 = beer, f4 = cream, …

	
w = ...( )1101, , , ,

	
(6.12)

6.8.3 � Term-Document Matrix

Text data is denoted as a matrix in this method. The rows represent sentences from 
the data to be analyzed, and columns represent words of the matrix. Each cell is the 
counting of term t in a document d:tft,d, and each document is a counter vector in ℕͮ .
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Table 6.3 shows a term-document matrix to investigate the relationships of four 
important words: battle, soldier, fool, and trick from six famous literatures: As You 
Like It, Henry V, Julius Caesar, and Twelfth Night extracted from The Complete 
Works of Shakespeare by William Shakespeare (1564–1616) (Shakespeare 2021), 
The Adventures of Sherlock Holmes (Doyle 2019) and Moby Dick by Herman 
Melville (1819–1891) (Melville 2012).

It showed that:

	1.	 Two documents Julius Caesar and Henry V are similar if their term-document 
vectors are similar as in Table 6.4.

	2.	 Each word is a count vector in ℕD as a row. Table 6.5 shows row vector for the 
word fool across these six documents.

	3.	 Two words are semantically similar if their word vectors are similar, e.g., fool 
and trick. It makes sense because they are related to each other semantically as 
compared to battle and soldier as shown in Table 6.6.

Table 6.4  Term-document matrix comparison by document vectors

As You Like 
It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes Moby Dick

battle 1 1 8 15 1 20
soldier 2 2 12 36 0 4
fool 37 58 1 5 3 7
trick 1 3 1 1 3 3

Table 6.5  Illustration of count vector for six document domain

As You Like 
It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes Moby Dick

battle 1 1 8 15 1 20
soldier 2 2 12 36 0 4
fool 37 58 1 5 3 7
trick 1 3 1 1 3 3

Table 6.3  Term-document matrix of six famous English literature

As You Like 
It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes Moby Dick

battle 1 1 8 15 1 20
soldier 2 2 12 36 0 4
fool 37 58 1 5 3 7
trick 1 3 1 1 3 3
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Table 6.6  Sample of two similar words by vector comparison across six documents

As You Like 
It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes Moby Dick

battle 1 1 8 15 1 20
soldier 2 2 12 36 0 4
fool 37 58 1 5 3 7
trick 1 3 1 1 3 3

A term-context matrix can be formed using smaller context, e.g., a set of ten suc-
cessive words from a paragraph or search engine. A word is now defined by a vec-
tor over the number of context words, which can be an entire document, literature, 
or a list of words in a search engine, etc.

There is an argument as to whether raw counts can be used. tf-idf (term-frequency 
and inverse document-frequency) are commonly used in place of raw term counts 
for term-document matrix, whereas Positive Pointwise Mutual Information (PPMI) 
method is used in place of raw term counts for term-context matrix.

6.8.4 � Pointwise Mutual Information

Pointwise Mutual Information (PMI) is to evaluate whether events x and y co-occur 
more if they are independent, which is given by:

	

PMI ,
,

X Y
P x y

P x P y
( ) = ( )

( ) ( )
log2

	

(6.13)

For word similarity measurement application, Church and Hanks (1990) pro-
posed PMI between two words which is given by:
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word ,word

word word1 2 2
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(6.14)

Niwa and Nitta (1994) proposed Positive PMI (or PPMI) by replacing all PMI 
values less than zero into zero values, which is now commonly used in PMI calcula-
tions for document similarity comparison.

6.8.5 � Example of Computing PPMI on a Term-Context Matrix

Given matrix F with C columns (contexts) and W rows (words) and fij is the number 
of times wi occurs in context cj, Positive PMI(PPMI) between word1 and word2 is 
given by:
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where
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in which

•	 p(W, C) is the probability of considering target word W and context word C 
together.

•	 p(W) and p(C) are the probability of occurring target word W and context word 
C, if they are independent, f ij is the number of times Wi occurs in context Cj.

Let’s use the previous document term matrix of six English literatures as exam-
ple to calculate word and context of total counts and probabilities as shown in Tables 
6.7 and 6.8.

	
P W C= =) ( = =fool, As You Like It 37 225 0 164/ .

	

Table 6.7  Term-context matrix of six contexts with word and context total counts

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes

Moby 
Dick Word

battle 1 1 8 15 1 20 46
soldier 2 2 12 36 0 4 56
fool 37 58 1 5 3 7 111
trick 1 3 1 1 3 3 12
Context 41 64 22 57 7 34 225

Table 6.8  Term-context matrix of six contexts with word and context total probabilities

Context
As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes

Moby 
Dick Word

battle 1 1 8 15 1 20 0.204
soldier 2 2 12 36 0 4 0.249
fool 37 58 1 5 3 7 0.493
trick 1 3 1 1 3 3 0.053
Context 0.182 0.284 0.098 0.253 0.031 0.151 1
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Table 6.9  Term-context matrix of six contexts with PPMI values

As You Like 
It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes Moby Dick

battle 0.000 0.000 0.576 0.252 0.000 1.057
soldier 0.000 0.000 0.785 0.931 – 0.000
fool 0.604 0.608 0.000 0.000 0.000 0.000
trick 0.000 0.000 0.000 0.000 2.084 0.503

	
P W =) ( = =fool 111 225 0 493/ .

	

	
P C =) ( = =As You Like It 41 225 0 182/ .

	

Let’s calculate PMI score for the word fool co-occurred with context from 
C1 = As You Like It based on the above information from Table 6.8.

Using PMI ,
,

W C
p W C

p W p C
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( ) ( )
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Similarly, the rest of PMI values for this term-context matrix are calculated as 
follows in Table 6.9:

Note that: PPMI ,
PMI , if PMI ,
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W C
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 from (6.16).

6.8.6 � Weighing PMI Techniques

It is noted that PMI is biased toward infrequent events from above matrix, e.g., rare 
words have high PMI values. There are two possible methods to improve PMI val-
ues: (1) apply add-k smoothing, e.g., add-1 smoothing and (2) assign rare words 
with higher probabilities.

6.8.7 � Add-K Smoothing in PMI Computation

Since PMI is usually biased with infrequent events, add-K smoothing method can 
be solution. For example, apply add-2 smoothing (i.e., set k = 2) in every cell of co-
occurrence matrix as in Table 6.10 and see how it works.

The corresponding probability matrix after add-2 smoothing is shown in 
Table 6.11.
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Table 6.10  Term-context matrix of six contexts with word and context total count with add-2 
smoothing

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes

Moby 
Dick Word

battle 3 3 10 17 3 22 58
soldier 4 4 14 38 2 6 68
fool 39 60 3 7 5 9 123
trick 3 5 3 3 5 5 24
Context 49 72 30 65 15 42 273

Table 6.11  Term-context matrix of six contexts with word and context total prob. with add-2 
smoothing

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes

Moby 
Dick Word

battle 0.011 0.011 0.037 0.062 0.011 0.081 0.212
soldier 0.015 0.015 0.051 0.139 0.007 0.022 0.249
fool 0.143 0.220 0.011 0.026 0.018 0.033 0.451
trick 0.011 0.018 0.011 0.011 0.018 0.018 0.088
Context 0.179 0.264 0.110 0.238 0.055 0.154 1.000

Table 6.12  Term-context matrix of six contexts with PPMI values with add-2 smoothing

As You Like 
It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes Moby Dick

battle 0.000 0.000 0.450 0.208 0.000 0.902
soldier 0.000 0.000 0.628 0.853 0.000 0.000
fool 0.569 0.615 0.000 0.000 0.000 0.000
trick 0.000 0.000 0.129 0.000 1.333 0.303

The term-context matrix with PPMI values after applying add-2 smoothing is 
shown in Table 6.12.

It may have certain improvement in PPMI values giving the rate context words 
theoretically.

However, there were not many improvements in this case.
Another method to achieve this is by raising context probabilities to a certain 

factor α, say 0.8.
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Table 6.13  Term-context matrix of six contexts with PPMI values with α = 0.80

As You Like 
It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes Moby Dick

battle 0.000 0.000 0.144 0.000 0.000 0.625
soldier 0.000 0.000 0.435 0.581 – 0.000
fool 0.369 0.373 0.000 0.000 0.000 0.000
trick 0.000 0.000 0.000 0.000 1.315 0.000

Table 6.14  Term-context matrix of six contexts with PPMI values with α = 0.90

As You Like 
It

Twelfth 
Night

Julius 
Caesar Henry V

Adv of 
Sherlock 
Holmes Moby Dick

battle 0.000 0.000 0.460 0.137 0.000 0.941
soldier 0.000 0.000 0.711 0.858 – 0.000
fool 0.587 0.592 0.000 0.000 0.000 0.000
trick 0.000 0.000 0.000 0.000 1.798 0.217

For example: say P(a) = 0.95 and P(b) = 0.05:
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Results using α = 0.8 and 0.9 are shown in Tables 6.13 and 6.14 respectively.

6.8.8 � Context and Word Similarity Measurement

When applying context and world similarity measurement against context and word 
vector, remember that cosine for computing similarity is given by:
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where vi is PPMI value for word v in context i; wi is PPMI value for word w in con-
text I; and cos(v,w) is the cosine similarity of v and w.

Context and word similarity measurement of six literatures is shown in Table 6.15.
For context comparison, cosine similarity measurement is performed between 

C1 As You Like It and other five literatures, in which cosine (C1, C2) have the high-
est 0.453 as compared to others ranging from 0.044 (C3:Julius Caesar) to 0.157 
(C6:Moby Dick). It showed that it makes sense as the context of As You Like It has 
theme similarity with Twelfth Night than other literatures.
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For word comparison, comparison is performed at W4: trick with three other 
words across six literatures, in which cosine W4:trick, W3:fool have the highest 
similarities among other two words W1:battle and W2:Solder which in fact they are 
related in meanings and English usage.

It also showed other possible similarity measurements including Jaccard, Dice, 
and JSs methods given by:
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6.8.9 � Evaluating Similarity

Like N-grams, similarity methods have (1) intrinsic and (2) extrinsic evaluation 
schemes. Intrinsic evaluation refers to the correlation between similarity scores of 
algorithms and human words. Extrinsic evaluation, also called task-based or end-
to-end evaluation, refers to detect misspellings, WSD, and use in grading essays or 
TOEFL multiple-choice vocabulary tests.

Exercises

	 6.1.	 What is semantic analysis? State and explain the importance of semantic 
analysis in NLP. Give two examples to illustrate.

	 6.2.	 State and explain how humans are good in semantic analysis. Give two exam-
ples to support your answers.

	 6.3.	 What is the difference between lexical vs. compositional semantic analysis? 
Give two examples for each to support your answers.

	 6.4.	 What is word sense in linguistic? State and explain any five basic types of 
lexical semantics and their word senses. Give two examples for each to 
illustrate.

	 6.5.	 What is zeugma is linguistic and why is important in NLP? Give two exam-
ples to illustrate how zeugma test is used for testing semantic correctness of 
sentences/utterances.

	 6.6.	 What are the major concerns and difficulties encountered in WSD. Give an 
example for each concern to support your answers.

6  Semantic Analysis



149

	 6.7.	 State and explain four major methods to tackle WSD. Which one(s) is(are) 
commonly used in NLP application nowadays to tackle WSD? Why?

	 6.8.	 What are synsets in WordNet framework? Give two examples on how it works 
to support your answers.

	 6.9.	 What is path-based similarity in semantic analysis? Use book as the basic 
synset to construct a synset tree like Table 6.4 and calculate all the related 
path-based similarity between different concepts related to book.

	6.10.	 Based on the synset tree created in question 6.9, calculate the similarity val-
ues by using: (1) the Resnik method and (2) the Dekang Lin method, and 
compare them with the ones calculated in 6.9.

	6.11.	 What is distributed similarity? State and explain methods used for distributed 
similarity measurement.

	6.12.	 Use four famous literatures: (1) Moby Dick (Melville 2012), (2) Little Women 
by Louisa Mary Alcott (1832–1888) (Alcott 2017), (3) The Adventures of 
Sherlock Holmes (Doyle 2019), and (4) War and Peace by Leo Tolstoy 
(1828–1910) (Tolstoy 2019) as context documents, and select any four words 
(wisely) to illustrate how term-context matrix, PMI, and PPMI are used for 
document and word similarity measurement in semantic analysis.

	6.13.	 Repeat question 6.12 by using the add-K smoothing method for PMI/PPMI 
calculations (with k = 1 and 2) and different values of α and compare them 
with results found in 6.12. Explain why it can/cannot be improved.
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Chapter 7
Pragmatic Analysis and Discourse

7.1 � Introduction

Pragmatics and discourse analysis (Bender and Lascarides 2019; Cruse 2011; 
Goddard 1998; Kroeger 2019) focus on the study of language in its contextual 
meaning, distinguishing it from earlier discussions on word-level semantics, syntax, 
grammatical relations, meaning representation, and semantic analysis.

Pragmatics analysis focuses on context meaning. Discourse analysis studies 
social context in written and spoken language. They consist of structured, coherent, 
and cohesive sets of sentences or utterances to reflect what constitutes an utterance 
versus a set of unrelated sentences and how the text is related.

There are two types of discourse in daily life: (1) monologue and (2) dialogue. A 
monologue is a one-way communication between a speaker (writer) and an audi-
ence (reader), e.g., read or write a book, watch a TV show or a play, listen to a 
speech, attend a presentation or a lecture that depends on the deposition of dialogue. 
Dialogue refers to participation in turn to speaker and hearer. It has a two-way or 
multiple ways of communications.

There are also two types of dialogue (1) human-to-human, e.g., daily conversa-
tions, group discussions, and (2) (a) human-to-computer interaction (HCI), e.g., 
conversational agent, chatbot in NLP, and (b) computer-to-computer interaction 
(CCI), e.g., cross-machine verbal communication in smart city and intelligent trans-
portation system, multi-agent-based bargain and negotiation systems.

7.2 � Discourse Phenomena

There are many discourse phenomena that can be solved naturally by humans, but 
some like coreference resolutions (CR) require a lot of effort by machines to solve.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_7&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_7#DOI
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7.2.1 � Coreference Resolution

CR (Bender and Lascarides 2019; Goddard 1998) is the task of identifying all lin-
guistic expressions, also known as mentions, that correspond to real-world entities 
described in a text. These mentions are assembled and replaced with the correct 
pronouns and noun phrases (NPs). It’s simple for humans, but machines make mis-
takes all the time. For example:

[7.1] Jack saw Andrew in the examination hall. He looked nervous.
[7.2] Jack saw the student in the examination hall. He looked nervous.

Humans and machine will likely consider the first subject mentioned in forego-
ing sentence or utterance as reference to pronoun of the following sentence. For 
instance, He in [7.1] will refer to Jack. However, coreference resolution from human 
perspective in [7.2] will consider He may not refer to Jack but the student as it is 
natural and logical to relate student with examination.

Example below is more obvious:

[7.3] Jane talked to Amy about her examination result. She looked worried.
[7.4] Jane talked to Amy about her examination result. She felt sorry about it.

She in [7.3] should refer probably to Amy who is worried as she participated in 
the examination instead of Jane.

She in [7.4] should probably refer to Jane instead of Amy participating in the 
examination but Jane is more likely to feel sorry as empathy to Amy.

Humans can discern the above naturally by context, common sense, or world 
knowledge but confound computers to develop judgment.

7.2.2 � Why Is It Important?

Let’s look at some standard situations prior to complex coreference resolution cases:

[7.5] Jack gives Ian 1000 dollars. He is generous. (original sentence).
[7.6] Jack gives Ian 1000 dollars. Jack is generous. (with coreference resolution)
or compact cases handled by computer satisfactorily:
[7.7] I voted for Jack as he is more aligned to my values, Ian said. (original sentence).
[7.8] Ian voted for Jack as Jack is more aligned to Ian’s values, Ian said. (with core-

ference resolution)

From The Adventures of Sherlock Holmes (Doyle 2019):

[7.9] I was seized with a keen desire to see Holmes again, and to know how was 
employing his extraordinary powers. (original sentence).

[7.10] Watson was seized with a keen desire to see Holmes again, and to know how 
Holmes was employing Holmes’ extraordinary powers. (with coreference 
resolution)
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or more challenging sentences of famous discourse from A Scandal in Bohemia:

[7.11] To Sherlock Holmes, she is always “the woman.” I have seldom heard him 
mention her under any other name. (original sentence).

[7.12] To Sherlock Holmes, Irene Adler is always “the woman.” Watson has seldom 
heard Holmes mention Irene Adler under any other name. (with coreference 
resolution)

[7.11] is more challenging as the reference name Irene Adler for she did not 
occur, but after two sentences, there is no emotion akin to affection for Irene Adler.

This phenomenon is called cataphor to acquire meaning from a subsequent word 
or phrase in linguistics.

The subsequent phrase (or word group) is called antecedent or a referent against 
anaphora, a rhetorical term for a phrase (or word group) repetition at the start of 
consecutive sentences/utterances used in many English sentences’ construction; 
i.e., [7.5], [7.7], [7.9] are reference terms mentioned repetitively prior to pronoun 
replacement.

CR is a versatile tool suitable for many NLP applications, including text under-
standing and analysis, information retrieval and extraction, text summarization, 
machine translation, and even sentiment analysis. This is a great way to get unam-
biguous sentences that computers can understand.

7.2.3 � Coherence and Coreference

7.2.3.1 � What Is Coherence?

In linguistics, coherence (Bender and Lascarides 2019; Goddard 1998) refers to 
meaning relationships between individual units, which can be sentences (dis-
courses) or textual statements. Texts appear to have logical and semantical consis-
tency for reader or hearer due to these relations.

Coherence-oriented text analysis is primarily concerned with the construction 
and configuration of meaning in a text; that is, how various components are con-
nected to make the text meaningful to recipient as a random sequence of disjointed 
phrases and clauses.

In other words, if a text has coherence, its parts are well connected and head for 
the same direction. Without coherence, a discussion or utterance may neither make 
sense nor be followed by the audience. It has both verbal and written language 
significance.

Here are some coherence examples:

[7.13] History reveals that humans have come a long way from birth. They have 
invented many new technologies that improve the standard of living. However, 
technologies that are supposed to provide us a better world sometimes end-up to 
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disaster, such as the invention of nuclear weapons, environmental pollution, and 
the extinction of some animal species.

In [7.13], coherence terms History  →  humans  →  They  →  technolo-
gies → nuclear weapons with repetitive terms and concepts provide a stream of idea 
flow and knowledge for hearer or reader to understand the message conveyed in this 
passage.

7.2.3.2 � What Is Coreference?

Coreference (coreference) appears when two (or group of) terms refer to the same 
person or thing with a unified reference to achieve linguistic coherence. For example:

[7.14] Jack said Helen would arrive soon, and she did.
  – Helen and she refer to the same person.

Conference is not always trivial to determine, e.g.:

[7.15] Jack said he would join the term vs.
[7.16] Jack told Ian to come, he smiled.

When comparing [7.15] vs. [7.16], [7.15] is trivial as there is only one subject 
(noun) that he can refer to (i.e., Jack), while he in [7.16] can refer to either Jack or Ian.

Determining coreferential expressions is important in many NLP applications, 
such as information retrieval and extraction, text summarization, and conversation 
understanding in question-and-answer chatbot systems.

7.2.4 � Importance of Coreference Relations

To understand the meaning of a coreference relationship, let’s look at how to extract 
key information or summarize the following text:

[7.17] XYZ bank is continuing to struggle with severe financial problems. According 
to the finance news report, their CEO Charles Smith will announce to step-down 
at the press conference tomorrow morning.

The texts in [7.17] are coherent with well-structured coreference in a typical 
news article. Coherence concept terms are also used to extract information:

[XYZ bank]  →  [financial problem]  →  [CEO]  →  [Charles Smith]  →  [step 
down] → [press conference] → [tomorrow morning].

A reasonable text summary may be:

[7.18] The CEO of XYZ bank Charles Smith will announce his step-down at tomor-
row morning’s press conference.

This example shows the coherent relationships between text segments, where the 
first sentence provides context weights of the second sentence.
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Remarks: A well-structured text summarization/information extraction case will 
and should match with Fillmore’s case role theory with well-defined agent, patient, 
location, time, purpose, beneficiary, possessor, instrument, etc.; in other words, a 
well coherence text message and utterance regard the first sentence as the opening 
of a speech followed by elaboration of an open statement in coreference relation 
with a thematic relation like watching a movie or a TV show.

Further to elaboration and thematic relation, coreference relation has another 
type called inference type. It regards the first sentence/utterance as claims followed 
by explanation of claims sentence. For inference argument, the first sentence is the 
effect followed by cause(s) of the following sentences:

[7.19] Jack keeps Ian’s car key. He was drunk last night. (coherence) vs.
[7.20] Jack keeps Ian’s car key. He wants to see a movie tonight. (without coherence)

Coherence occurred in [7.19] as the first statement has relevance to the second 
statement with pragmatic meaning, whereas the second statement is probably an 
explanation, or a cause of the event where Jack keeps Ian’s car key because Ian was 
drunk by common sense/world knowledge. Thus, He should be Ian instead of Jack 
by inference.

While two statements in [7.20] have neither coherence nor logic cause-effect 
relationship between them, it is difficult to judge whether He in the second state-
ment should refer to Jack or Ian. Thus, Jack regards as the subject and the referent 
He in usage of English although it may be incorrect.

7.2.5 � Entity-Based Coherence

Let’s look at the following examples:

[7.21] Helen went to the superstore to buy a cello.
[7.22] She had frequented the store for a long time.
[7.23] She was delighted to buy the cello finally.
[7.24] She just discovered that the store is closed.
[7.25] It was the store Helen had frequented for a long time.
[7.26] She was delighted to buy that cello.
[7.27] The music generated by it is beautiful.
[7.28] It was closed when Helen arrived.

Entity-based coherence models measure coherence to track salient central enti-
ties across utterances. Centralization theory (Grosz et  al. 1995) is a remarkable 
entity-based coherence theory for tracking whether entities (so-called Central 
Entity, CE) are prominent at each point in a discourse model. For cases from [7.21] 
to [7.23] is Helen who will be the reference for she in these statements naturally. 
While CE in [7.25] is shifted from the superstore to cello in [7.26] and [7.27], CE is 
shifted back to the store in [7.28] to make it more complex.
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7.3 � Discourse Segmentation

7.3.1 � What Is Discourse Segmentation?

Discourse segmentation is the task of determining the smallest nonoverlapping dis-
course units, known as elementary discourse units (EDUs), which can be further 
categorized into (1) sentence segmentation and (2) sentence-level discourse seg-
mentation. The main purpose of discourse segmentation is to divide a text document 
(set of utterances) into a list of subtopics. This is often a higher level simplification 
structure of a discourse. For example, an academic article is usually segmented into 
abstract, introduction, methodology, implementation, results, discussion, conclu-
sion, etc., to comprehend.

There are (1) unsupervised and (2) supervised discourse segmentation methods. 
The applications of automatic discourse segmentation include (1) information 
extraction or retrieval and (2) text summarization on each segment separately.

7.3.2 � Unsupervised Discourse Segmentation

Unsupervised discourse segmentation is a class usually presented as a linear seg-
mentation of raw data and segmentation into multiple paragraph subtopics. 
Unsupervised means that the task is not given training data as examples to under-
stand linear segmentation task. These examples involve splitting the text into multi-
paragraph units to represent paragraphs of the original text. These algorithms rely 
on cohesion, which can be defined as the linguistic means of linking units of text 
together.

Cohesion-based approach involves dividing text into subtopics, where sentences 
or paragraphs cohere to each other, and reveal the relationship between two or more 
words in two units like synonyms.

Cohesion is the linking of text units based on linguistic means. Lexical cohesion 
is the use of similar words to link units of text with the same word, synonym, or 
hypernym. For instance:

[7.29] Yesterday was Jane’s birthday. Betty and Mary went to buy a present from the 
gift shop. Mary intended to buy a purse. “Don’t do that,” mentioned Betty. “Jane 
already got one. She will ask you to return it.”

The non-lexical cohesion approach is the use of anaphora.

[7.30] Peel, core and slice peaches and pineapples, then place these fruits in the 
skillet.

Unsupervised discourse segmentation was proposed by Prof. Marti Hearst in her 
classical works on TextTiling in early 1990.
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7.3.3 � Hearst’s TextTiling Method

Hearst’s TextTiling (Hearst 1997) is a typical discourse segmentation algorithm to 
subdivide explanatory text into multiple paragraphs or automatically grouped sub-
topic segments representing in the original text.

Hearst’s TextTiling method is a typical unsupervised method that no training 
dataset and prior knowledge base are required. Hearst’s original work used articles 
from Stargazers, a science magazine with a TextTiling method to characterize article 
text messages into subtopics.

For example, consider a 21-paragraph science news article extracted from the 
magazine with a topic focused on reports of life on Earth and other plants; its con-
tents are characterized into the following subtopic discussions (Hearst 1997):

[Para 1–3] Introduction—the search of life in space
[Para 4–5] The moon’s chemical composition
[Para 6–8] How early earth-moon proximity shaped the moon
[Para 9–12] How the moon helped life evolve on earth
[Para 13] Improbability of the earth-moon system
[Para 14–16] Binary/trinary star systems make life unlikely
[Para 17–18] The low probability of nonbinary/trinary systems
[Para 19–20] Properties of earth’s sun that facilitate life
[Para 21] Summary

TextTiling is a technique to divide a full-length text document into coherent 
multi-paragraph units that correspond to a series of subtopic paragraphs as shown in 
the example above. The algorithm assumes that during a subtopic discussion, a set 
of words is used, and subtopics change significant parts of vocabulary accordingly.

The distribution of terms extracted from the Stargazers text is assigned with a 
single-digit frequency for each sentence number, with spaces for zero frequencies 
(Hearst 1997) as shown in Fig. 7.1. It revealed that terms:

	1.	 Occurred frequently throughout the text; e.g., moon and planet are often indica-
tive of main topic(s) of the text.

	2.	 Occurred less common but evenly distributed; e.g., scientists and form are both 
generic to create a subtopic title.

	3.	 Like space and star occurred more frequent from sentences 5 to 20 and 60 to 90, 
while term life to planet occurred more frequently from sentences 58 to 78 which 
may create two distinct clusters of subtopic discussion.

	4.	 Like life to species have similar phenomena occurred to create a natural cluster 
between sentences 35–55 and conform with human judgment as subtopic discus-
sion of How the moon helped life evolve on earth.

These results suggested that the logic behind sentences or paragraphs in subtop-
ics are consistent with each other but not with paragraphs in adjacent topics.
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Fig. 7.1  Distribution of selected terms in the Stargazers text (blanks mean zero frequency)

7.3.4 � TextTiling Algorithm

TextTiling algorithm (Hearst 1997) for discourse segmentation and subtopic struc-
ture characterization using term repetition consists of three processes: (1) tokeniza-
tion, (2) lexical score determination, and (3) boundary identification.

Tokenization includes converting words to lowercase, removing stop words and 
root words, and converting words into pseudo-sentences with the same length such 
as 15 words.

Lexical score determination includes calculating lexical cohesion scores for 
each gap between pseudo-sentences. This lexical cohesion score represents word 
similarity. For instance, take ten pseudo-sentences each before and after gap, fol-
lowed by the computation of cosine similarity between word vectors which is 
given by:
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Boundary identification involves assigning a boundary distance to identify a new 
segment. Similarity is first created, and the depth value of similarity valley 
(a − b) + (c − b) is calculated as shown in Fig. 7.2; then, segmentation is performed 
if the depth score value is greater than the threshold as shown in Fig. 7.3.
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Fig. 7.2  Lexical score determination with similarity valleys

Fig. 7.3  Boundary identification with discourse segments

7.3.5 � Supervised Discourse Segmentation

It is relatively easy to collect bounded training data using supervised discourse seg-
mentation such as news reports from TV shows, paragraph segmentation in text, or 
dialogue to find paragraphs in speech recognition output.

Several classifiers can be used to achieve supervised segmentation, one is called 
feature set which is a superset for unsupervised segmentation with often domain-
specific utterance tokens and keywords.

Supervised discourse segmentation is also a model. It is (1) a classification task 
that uses one of the supervised classifier methods, such as SVM, naïve Bayer, and 
maximum entropy to distinguish whether sentence boundaries have paragraph 
boundaries, or (2) a sequence labeling task to label sentences with or without para-
graph borders. It uses cohesive features including word overlap, word cosine simi-
larity, anaphora, and additional features such as discourse markers or keywords.

Discourse tokens or keywords/phrases indicate discourse structure, e.g., good 
evening, join our broadcast news now, or join the company at the beginning/end of 
the segment. They can be manual codes or automatically determined by feature 
selection.

However, measuring precision, recall, and F-measure is not always good evalu-
ation ideas as they are insensitive to near misses. Pevzner and Hearst (2002) pro-
posed a good and effective evaluation metric for text segmentation called the 
WindowDiff method.
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7.4 � Discourse Coherence

7.4.1 � What Makes a Text Coherent?

A text coherent refers to the application of:

	1.	 A coherent relationship between a subfield of discourse called rhetorical struc-
ture and a whole theory called rhetorical structure theory (RST). It is a text 
organization theory that describes the relationships that exist between parts of a 
text. It was proposed by Mann and Thompson (1988) in their remarkable paper 
Rhetorical structure theory: toward a functional theory of text organization, 
published in 1988. The theory was developed as part of research on computer-
aided text generation in text summarization and applications used by NLP 
researchers.

	2.	 The ordering of subsections of discourse called discourse topic structure. It is 
the key to discourse cohesion and embodies the essence of discourse analysis. It 
has been extensively adopted in the past decades and has become a key compo-
nent in text analysis. Linearly segmenting text into appropriate topic structures 
can reveal valuable information such as the overall topic structure of the text, 
which can be used for text analysis tasks such as text summarization, informa-
tion retrieval, and discourse analysis.

	3.	 A Referring Expression (RE) is any NP or a substitute for an NP whose function 
in spoken, and signed or written text is to single out a single person, place, 
object, or group of people, places, objects, etc.

7.4.2 � What Is Coherence Relation?

Coherence relation refers to discourse properties that make each discourse mean-
ingful (or have appropriate meaning) in the context. It refers to common denomina-
tor to identify possible connections between utterances in a series of statements or 
discourses about the same topic.

These sense relations in discourse analysis named Coherence Relations by Prof. 
Jerry R. Hobbs in his works Coherence and Coreference published by Cognitive 
Science in 1979 (Hobbs 1979) had been further developed by other linguistics 
including Sanders et al. (1992) and Kehler (2002) into a well-defined theory.

These meaning relationships, called propositional relations defined by Mann 
and Thompson (1986), are encoded in text recognized by the reader trying to under-
stand the text and its components, and to see why the speaker or author added the 
sentence. Coherent relationships are sometimes referred to as types of thematic 
development such as the narrative of a movie or TV show involving cause-and-
effect story type in sense relations development.
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7.4.3 � Types of Coherence Relations

There are five major types of coherence relations: (1) parallel, (2) elaboration, (3) 
cause-and-effect, (4) contrast, and (5) occasion.

	1.	 Parallel infers p(a1, a2, …) from the assertion of S0 and p(b1, b2…) from the 
assertion of S1, where ai and bi are similar for all i.
[7.31] Rich man wants more power. Poor man wants more food.
They are frequently used in describing two sense relations with similar situation 

(meaning) but different in object, reference, and scenario.
	2.	 Elaboration infers the same proposition P from the assertions of S0 and S1.

[7.32] Dorothy was from Kansas. She lived in the great Kansas prairies.
[7.33] Nicola Tesla was a genius. He invented over hundreds of things in his life.
They are frequently used in discourse construction; the successive sentences/

utterances are further elaboration of the previous one.
	3.	 Cause-and-effect are S0 and S1 if S1 infers S0, i.e., S1 → S0.

[7.34] Jack cannot afford to buy the car. He lost his job.
[7.35] Nicola Tesla invented over hundreds of things in his life. He was a genius.

Cause-and-effect discourse relation that can refer to animate or inanimate subjects 
in [7.35] is the reverse of elaboration statement [7.33] but does not always occur.

	4.	 Contrast infers S0 and S1 if P0 and P1 infer from S0 and S1 with one pair of ele-
ments that are contrast with each other, where other elements are similar in 
context.
[7.36] Hope for the best. Prepare for the worst.
[7.37] Jack is meticulous while Bob is sloppy.
Contrast coherence relations can exist within a sentence or in successive sen-

tences/utterances. It often refers to two subjects, or events with contrast sense 
relations.

	5.	 Occasion is the alteration of state that can infer from the assertion of S0, where 
final state can infer from S1, or the alteration of state can infer from the assertion 
of S1, whose initial state can infer from S0.
[7.38] Jane put the books into a schoolbag, she left the classroom with Helen.
[7.39] Jack failed the exam. He started to work hard.
State change invokes new action.

7.4.4 � Hierarchical Structure of Discourse Coherence

Discourse coherence can also be revealed by the hierarchy between coherent rela-
tions. For example:

[7.40] Jack went to town to buy a toy.
[7.41] He took a bus to the shopping mall.
[7.42] He needed to buy a toy for his child.
[7.43] It is Jane’s birthday.
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[7.44] He also wanted to buy some books for weekend reading.

A hierarchical structure of discourse coherence is shown in Fig.  7.4. [7.40]–
[7.44] can be organized in a hierarchy tree structure; e.g., occasion consists of two 
expressions, one is expression e1 (statement [7.40]), and the other is an explanatory 
clause which in turn consists of expression e2 (statement [7.41]) and a parallel clause 
which consists of two entities, one is explanatory expression e3 and the other is 
expression e5 (statement [7.44]); e3 is further divided into statements [7.42] and 
[7.43], respectively.

7.4.5 � Types of REs

RE is a surrogate for any NP or NP whose function in utterance is to identify some 
discrete objects. There are five frequently used REs in discourse coherence: (1) 
indefinite NPs, (2) definite NPs, (3) pronouns, (4) demonstratives, and (5) names.

	1.	 Indefinite NPs introduce entities into context that are new to listener, e.g., a 
policeman, some apples, a new iPad.
[7.45] I go to the electronic store to buy a new notebook computer.

	2.	 Definite NPs refer to entities recognizable by listener such as abovementioned 
combination of beliefs about the world, e.g., a furry white cat, and the cat.
[7.46] Don’t look at the sun directly with bare eyes, it will hurt yourself.

	3.	 Pronouns are another form of definite designation, usually with stronger restric-
tions than standard designation, e.g., s/he, it, they.
[7.47] I go to the electronic store to buy a new notebook computer. This computer 

is rather light and fast.
	4.	 Demonstratives are pronouns that can act alone or as determiners, e.g., this, that.

[7.48] That book seems to be very interesting and worth buying it.
	5.	 Names are common methods to refer to people, organizations, and locations.

[7.49] I bought lunch at KFC today.

Fig. 7.4  Hierarchical 
structures in discourse 
coherence
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7.4.6 � Features for Filtering Potential Referents

There are four common features to filter potential references in discourse coher-
ence: (1) number agreement, (2) person agreement, (3) gender agreement, and (4) 
binding theory constraints.

	1.	 Number agreement refers to pronouns, and references must agree in number, 
e.g., single or plural.
[7.50] The children are playing in the park. They look happy.

	2.	 Person agreement refers to the first, second, or third person.
[7.51] Jane and Helen got up early. They needed to take an exam this morning.

	3.	 Gender agreement refers to male, female, or nonperson, e.g., he, she or it.
[7.52] Jack looked tired. He didn’t sleep last night.

	4.	 Binding theory constraints refer to constraints imposed by syntactic relations 
between denotative expressions and possible preceding NPs in the same sentence.
[7.53] Jane purchased herself an iPad. (herself should be Jane)
[7.54] Jane purchased her an iPad. (her may not be Jane)
[7.55] She claimed that she purchased Mary an iPad. (She and she may not 

be Mary)

7.4.7 � Preferences in Pronoun Interpretation

There are six types of preferences in pronoun interpretation: (1) recency, (2) gram-
matical role, (3) repeated mention, (4) parallelism, (5) verb semantics, and (6) 
selectional restrictions.

	1.	 Recency refers to entities from recent utterances:
[7.56] Tim went to see a doctor at the clinic. He felt sick. It might be influenza.

	2.	 Grammatical role is to emphasize the hierarchy of entities according to gram-
matical position of the terms that represent them, e.g., subject and object.
[7.57] Jane went to Starbucks to meet Jackie. She ordered a hot mocha. (She 

should be Jane)
[7.58] Jane discussed with Jackie about her exam results. She felt so nervous 

about it. (She should be Jackie instead of Jane)
[7.59] Jane discussed with Jackie about her exam results. She felt so sorry about 

it. (She should be Jane instead of Jackie)
	3.	 Repeated mention refers to mentioning about the same thing.

[7.60] Jane went to supermarket to buy some food. It turned out it was closed.
	4.	 Parallelism refers to subject-to-subject or object-to-object kind of expression:

[7.61] Mary went with Jane to Starbucks. Ian went with her to the bookstore 
afterward. (her should probably be Jane instead of Mary)

	5.	 Verb semantics are verbs seem to emphasize one of their argument positions:
[7.62] Jane warned Mary. She might fail the test.
[7.63] Jane blamed Mary. She lost the watch.
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In [7.62], She should be Mary as Mary is the one being warned about failing the 
test. For [7.63], She should be Jane who suffered. It is a pragmatic phenomenon 
because it involves common sense by word meaning blamed to understand cor-
rect coreference in the second statement.

	6.	 Selectional restrictions refer to another semantic knowledge playing a role:
[7.64] Mary lost her iPhone in the shopping mall after carrying it the whole 

afternoon.
Note that [7.64] involves high-level semantics or common sense understanding 

of it can mean iPhone or shopping mall but it has been carried for the whole after-
noon, so it cannot be an unmovable object except iPhone.

7.5 � Algorithms for Coreference Resolution

7.5.1 � Introduction

CR is the task of finding all linguistic expressions (called mentions) in any text 
involving real-world entities. After finding these mentions and grouping them, they 
can be resolved by replacing pronouns with NPs.

There are three fundamental algorithms for conference resolution: (1) Hobbs’ 
algorithm, (2) centering algorithm, and (3) log-linear model.

7.5.2 � Hobbs’ Algorithm

7.5.2.1 � What Is Hobbs’ Algorithm?

Hobbs’ algorithm was one of the early approaches to pronoun resolution proposed 
by Prof. Jerry R. Hobbs in 1978 (Hobbs 1978) and further consolidated as well-
known algorithm for coreference resolution in his remarkable work Coherence and 
Coreference published in Cognitive Science, 1979 (Hobbs 1979).

The original work proposed two CR algorithms, a simple algorithm based purely 
on grammar, and a complex algorithm that incorporated semantics into parsing 
methods (Hobbs 1978, 1979).

Unlike other algorithms, Hobbs’ algorithm does not turn to a discourse model for 
parsing because its parse tree and grammar rules are the only information used in 
pronoun parsing. Let’s look at how it works.

7.5.2.2 � Hobbs’ Algorithm

Hobbs’ algorithm assumes a parse tree where each NP node has an N-type node 
below it as the parent of a lexical object. It operates as follows:
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	1.	 Start with the node of noun phrase (NP) that directly dominates the pronoun.
	2.	 Go up the tree to the first NP or sentence (S) node visited; denote this node as X 

and name the path being applied to reach it as p.
	3.	 Visit all branches under node X to the left of path p, breadth first, from left to 

right, taking any NP node found as an antecedent; there is an NP or S node 
between it and X.

	4.	 If node X is the highest S node in sentence, visit the surface parse trees of previ-
ous sentences in the text with the most recent first; each tree is then visited in a 
left-to-right and breadth-first manner. When an NP node is encountered, it is 
recommended as an antecedent. If X is not the first S node in the set, go to step 5.

	5.	 Climb up from node X to the first NP or S node encountered; denote this new 
node as X and name the path as p.

	6.	 If X is an NP vertex, and if the path p to X does not pass through a nominal ver-
tex immediately dominated by X, then denote X as an antecedent.

	7.	 Visit all branches under node X to the left of path p, breadth-first manner, from 
left to right, denoting each NP node encountered as an antecedent.

	8.	 If X is an S node, visit all branches of node X to the right of path p from left-to-
right and breadth-first manner, but do not visit below any NP or S being encoun-
tered as the antecedent.

	9.	 Return to step 4.

7.5.2.3 � Example of Using Hobbs’ Algorithm

Statement [7.65] is a classic  paper (Hobbs 1978) to demonstrate how Hobbs’ algo-
rithm works as shown in Fig. 7.5.

[7.65] The castle in Camelot remained the residence of the king until 536 when 
he moved it to London.

Example—What does it stand for?

	1.	 Start with node NP1, step 2 climbs up to node S1.
	2.	 Step 3 searches the left part of S1’s tree but fails to locate any eligible NP node.
	3.	 Step 4 fails to apply.
	4.	 Step 5 climbs up to NP2 which step 6 proposes 536 as antecedent of it.
	5.	 The algorithm can be further improved by applying simple selectional con-

straints, such as
Date can’t move.
Places can’t move.
Large or fixed objects can’t move.

	6.	 After NP2 is rejected, steps 7 and 8 turn up nothing, and control is returned to 
step 4 which fails to apply.

	7.	 Step 5 climbs up to S2 which step 6 fails to apply.
	8.	 In step 7, the breadth-first search recommends the NP3 where the castle is 

rejected by the constraint number 3.
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Fig. 7.5  Parse tree for statement [7.65]

	9.	 The algorithm continues to visit NP4 where it correctly recommends the resi-
dence as antecedent.

Exercise: How to check coreference resolution of he as the king?

7.5.2.4 � Performance of Hobbs’ Algorithm

In the original work, Hobbs manually analyzed 100 consecutive examples from 3 
different texts, assuming correct parsing was available, and the algorithm was 
72.7% correct (Hobbs 1978); which is quite impressive for such simple algorithm. 
If the algorithm is integrated with syntactic constraints when resolving pronouns as 
shown in Fig. 7.5, the performance can be even higher.

However, Hobbs’ algorithm experiences two major problems.

	1.	 When looking for the antecedent of a pronoun within a sentence, it goes sequen-
tially further up the tree to the left of pronoun such an error is looked for in the 
previous sentence.

	2.	 This algorithm does not assume a discourse segmentation structure and may 
revert to arbitrarily far of the text to find an antecedent.

Nevertheless, as he concluded in his original paper, naïve-based approach on 
coreference resolution did provide a high baseline and works in many usual situa-
tions in discourse analysis, and is still being used as a benchmark in related CR 
research nowadays (Cornish 2009; Kehler et  al. 2008; Lata et  al. 2022; Wolna 
et al. 2022).
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7.5.3 � Centering Algorithm

Centering theory (CT) was proposed by Profs Barbara J.  Grosz and Candace 
L. Sidner in their distinguished work Attention, Intentions, and the Structure of Dis-
Course, as part of its main theory of discourse analysis (Grosz and Sidner 1986). It 
is a theory of discourse structure that models the interrelationships between foci or 
centers as the choice of reference terms and the perceived coherence of discourse.

The basic idea is as follows:

	1.	 A discourse has a focus, or center.
	2.	 The center typically remains the same for a few sentences, then shifts to a 

new object.
	3.	 The center of a sentence is typically pronominalized.
	4.	 Once a center is determined, there is a strong inclination for subsequent pro-

nouns to continue referring to it.

In centering algorithm, utterances from a discourse have a backward-looking 
center (Cb) and a set of forward-looking centers (Cf). The Cf set of an utterance U0 
is the set of utterance units elicited by that utterance. Cf set is ranked by discourse 
emphasis, the most accepted ranking is by grammatical role. The highest-ranked 
element in this list is called the preferred center (Cp), which represents the highest-
ranked element among previous utterances found in the current utterance and serves 
as a link between these utterances. Any sudden shifts in the topic of utterances are 
reflected in changes in Cb between utterances.

7.5.3.1 � What Is Centering Algorithm?

Centering algorithm (Grosz and Sidner 1986; Tetreault 2001) consists of three parts: 
(1) initial settings, (2) constraints, and (3) rules and algorithm.

7.5.3.2 � Part I: Initial Setting

–– Let Un, Un+1 be 2 successive utterances.
–– Backward-looking center of Un, written as Cb(Un), denotes focus after Un is 

interpreted.
–– Forward-looking centers of Un, written as Cf(Un), form an ordered list of entities 

in Un that can serve as Cb(Un+1).
–– Cb(Un+1) is the highest-ranking element of Cf(Un) mentioned in Un+1.
–– Order of entities in Cf(Un): in which subject > existential predicate nominal > 

object > indirect object > demarcated adverbial PP.
–– Let Cp(Un+1) be the highest-ranked forward-looking center.
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7.5.3.3 � Part II: Constraints

For each utterance Ui (i = …m) in a discourse segment D:

–– There is precisely one Cb.
–– Every element of Cf-list for Ui must be realized in Ui.
–– The center, Cb (Ui, D), is the highest-ranked element of Cf (Ui-1, D) realized by Ui.

7.5.3.4 � Part III: Rules and Algorithm

For each utterance Ui (i = …m) in a discourse segment D:

Rule 1: If some elements of Cf (Ui−1, D) are realized as a pronoun in Ui, then so is 
Cb (Ui, D).

Rule 2: Transition states, defined as follows, are ordered such that the sequence of 
Continue is preferred over the sequence of Retains, which are preferred over 
Smooth-Shift and then Rough-Shift.

The relationship between Cb and Cp of two utterances determines coherence 
between words. CT ranks the coherence of adjacent utterances with transitions 
determined by:

	1.	 Cb is the same from Un−1 to Un or not.
	2.	 This entity coincides with Cp of Un or not.

Table 7.1 shows the criteria for each transition in the centering algorithm.
The algorithm based on these rules and conditions is defined as follows:

	1.	 Create all possible Cb-Cf combinations.
	2.	 Filter these combinations by constraints and centering rules.
	3.	 Rank remaining combinations by transitions.

7.5.3.5 � Example of Centering Algorithm

U1: Jane heard some beautiful music at the CD store.
U2: Jane played it to Mary.
U3: She bought it.

By applying grammatical role hierarchy to construct Cf. So, for U1 will have:

Table 7.1  Criteria for each transition in centering algorithm

Cb(Un+1) = Cb(Un) or undefined Cb(Un) Cb(Un+1) ≠ Cb(Un)

Cb(Un+1) = Cp(Un+1) Continue Smooth-shift
Cb(Un+1) ≠ Cp(Un+1) Retain Rough-shift
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Cf(U1): {Jane, music, CD store}.
Cp(U1): Jane.
Cb(U1): Undefined.

U2 has two pronouns: She and it. She is compatible (in syntax) with Jane, while 
it is compatible with either music or CD store.

Since Jane is the highest Cf(U1) ranked member, Cb(U2) should be referred to 
Jane by comparing result transitions for every possible referent of it.

If it is assumed to music, the result will be:

Cf(U2): {Jane, music, Mary}.
Cp(U2): Jane.
Cb(U2): Jane.

Result: Continue (since Cp(U2) = Cb(U2) and Cb(U1) is undefined).
On the other hand, if it is assumed to CD store, the result will be:

Cf(U2): {Jane, CD store, Mary}.
Cp(U2): Jane.
Cb(U2): Jane.

Result: Continue (since Cp(U2) = Cb(U2) and Cb(U1) is undefined).
As both are Continue, it will be set referring to music instead of CD store.
Next, let’s look at U3.
For U3, She is compatible with either Jane or Mary, while it is compatible with 

music. So, if she refers to Jane, i.e., Cb(U3) = Jane, the result will be:

Cf(U3): {Mary, music}.
Cp(U3): Mary.
Cb(U3): Mary.

Result: Smooth-Shift (since Cp(U3) = Cb(U3) but Cb(U3) ≠ Cb(U2)).
Since Continue is preferred to Smooth-shift using Rule 2, Jane should be assigned 

as the referent, so centering algorithm works in this situation.

7.5.3.6 � Performance of Centering Algorithm

Clearly, the centering algorithm implicitly accounts for grammatical roles, recency, 
and repeated-mention preference in pronoun interpretation.

However, the grammatical role hierarchy affects emphasis indirectly because the 
final conversion type specifically determines the final reference assignment. 
Confusion can arise if the former leads to a high-level transformation in this case, 
where a referent in a low-level grammatical role prefers a referent in a high-level 
role. For instance:

U1: Jane opened a new music store in the city.
U2: Mary entered the store and looked at some CDs.
U3: She finally bought some.
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In this example, common sense indicates that She in U3 should refer to Mary 
instead of Jane. However, by applying the centering algorithm in this case, it will 
assign she to Jane incorrectly because Cb(U2) = Jane becomes Continue while Mary 
becomes a Smooth-shift. While applying Hobbs’ algorithm, Mary will still be 
assigned as the referent.

Obviously, such situation occurs usually depending on situation and thematic 
scenario, as Prof. Marilyn A. Walker in her work “A corpus-based evaluation of 
centering and pronoun resolution” (Walker 1989) compared a version of centering 
to Hobbs on 281 examples from 3 genres of text in 1989 with 77.6% and 81.8% 
accuracy, respectively.

7.5.4 � Machine-Learning Method

7.5.4.1 � What Is Machine-Learning Method?

Machine-learning (ML) method is a simple supervised ML by using either stochas-
tic or AI approach. It trains classifier by using manual labeled corpus markers: (1) 
positive samples are antecedents marked with each pronoun and (2) negative 
(derived) samples are pairing pronouns with non-antecedent NPs.

In a typical supervised ML scenario, the ML system trains on a set of features 
and produces a pro-antecedent pair to predict 1 if they corefer and 0 otherwise. A 
typical example by applying the log-linear model for pronominal anaphora resolu-
tion is introduced with the following features:

•	 Strict number [true or false].
•	 Compatible number [true or false].
•	 Strict gender [true or false].
•	 Compatible gender [true or false].
•	 Sentence distance [0, 1, 2, 3, …] from pronoun.
•	 Hobbs’ distance [0, 1, 2, 3, …] (non-groups).
•	 Grammatical role [subject, object, PP] (taken by potential antecedent).
•	 Linguistic form [definite, indefinite and proper pronouns].

Example for Pronominal Anaphora Resolution:

U1: Jack saw a beautiful Mercedes GLB300 at a used car dealership.
U2: He showed it to Jim.
U3: He bought it.

A table of feature vector values for sentence U2 is shown in Table 7.2.
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Table 7.2  Table of feature vector values for sentence U2: He showed it to Jim

Feature He(U2) it(U2) Jim(U2) Jack(U1)

Strict number 1 1 1 1
Compatible number 1 1 1 1
Strict gender 1 0 1 1
Compatible gender 1 0 1 1
Sentence distance 1 1 1 2
Hobbs distance 2 1 0 3
Grammatical role Subject Subject PP Subject
Linguistic form Pronoun Pronoun Proper Proper

7.5.4.2 � Performance of the Log-Linear Model

A log-linear model trains on vectors and filters out pleonastic it as in it is raining. It 
results in weights for each and the combination of features. Most of the time, it is 
rigid and harder and must decide if any two NPs corefer.

New features can be added to improve model performance such as:

•	 Anaphor edits distance.
•	 Antecedent edits distance.
•	 Alias [true or false] (based on the named entity tagger).
•	 Appositive [true or false].
•	 Linguistic form [proper, definite, indefinite, pronoun].

7.5.4.3 � Other Advanced ML Models

Big data and AI offer advancement for current ML models. CR research focuses on 
convolutional neural networks (CNN) (Auliarachman and Purwarianti 2019), recur-
rent neural networks (RNN) (Afsharizadeh et  al. 2021), long short-term memory 
networks (LSTM) (Li et  al. 2021), transformers, and BERT models (Joshi et  al. 
2019), which will be discussed in Chap. 9.

7.6 � Evaluation

From performance perspective, commonly used methods emphasize on coreference 
chain evaluation as forming a set of facts A, B, and C that are assigned with A, B, 
and C classes. They consist of two data types: (1) reference/true chain is correct or 
true coreference chain occurred in an entity and (2) hypothesis chain/class is 
assigned with the entity by a coreference algorithm.

For instance, precision of the system can be evaluated according to:
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weighted sum of correct elments in hypothesis chain

Number of  elements in hypothesis chain 	
(7.2)

and recall can be evaluated according to:

	

Number of correct elements in hypothesis chain

Number of eleements in reference chain 	
(7.3)

Like previous chapters on N-gram and semantic analysis, CR model evaluation 
can be achieved by using: (1) intrinsic (using prototype and model itself) vs. (2) 
extrinsic (task-based, end-to-end) evaluation schemes.

Exercises
	 7.1.	 What is pragmatic analysis and discourse in linguistics? Discuss their roles 

and importance in NLP.
	 7.2.	 What is the difference between pragmatic analysis and semantic analysis in 

terms of their functions and roles in natural language understanding (NLU)?
	 7.3.	 What is CR in linguistics? Why it is important in NLP? Use two examples to 

illustrate and support your answer.
	 7.4.	 State and explain the differences between the concept of coherence vs. core-

ference in pragmatic analysis. Give two examples to support your answer.
	 7.5.	 What is discourse segmentation? State and explain why it is vital to prag-

matic analysis and the implementation of NLP application such Q&A chat-
bot. Give two examples to support your answer.

	 7.6.	 State and explain Hearst’s TextTiling technique on discourse segmentation. 
How can it be further improved by using nowadays’ AI and ML technology?

	 7.7.	 What is coherence relation? State and explain five basic types of coherence 
relations. For each type, give an example to illustrate.

	 7.8.	 What is referencing expression in pragmatic analysis? State and explain five 
basic types of referencing expressions. For each type, give an example to 
illustrate.

	 7.9.	 State and explain Hobbs’ algorithm for coreference resolution. Use a sample 
sentence/utterance (other than the one given in the book) to illustrate how 
it works.

	7.10.	 State and explain the pros and cons of Hobbs’ algorithms for CR. Use 
example(s) to support your answer.

	7.11.	 State and explain centering algorithm for coreference resolution. Use a sam-
ple sentence/utterance (other than the one given in the book) to illustrate how 
it works.

	7.12.	 Compare pros and cons between Hobbs’ algorithm vs. centering algorithm. 
Use example(s) to support your answer.

	7.13.	 What is ML? State and explain how ML can be used for coreference resolu-
tion. Use example(s) to support your answer.

	7.14.	 Name any three types of ML models for CR. State and explain how they work.

7  Pragmatic Analysis and Discourse



173

	7.15.	 Name any two types of evaluation method/metrics for CR model in pragmatic 
analysis. State and explain how they work.
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Chapter 8
Transfer Learning and Transformer 
Technology

8.1 � What Is Transfer Learning?

Transfer learning (TL) involves solving a problem by leveraging acquired knowl-
edge and applying that knowledge to address another related problem (Pan and 
Yang 2009; Weiss et al. 2016; Zhuang et al. 2020). It can be likened to two students 
learning to play the guitar, where one already has musical knowledge while the 
other does not. Naturally, the student with a background in music can apply that 
knowledge to the new learning process. In traditional machine learning (ML), each 
task is associated with its own isolated dataset and trained model. In contrast, TL 
allows for the learning of a new task by building on the knowledge gained from 
previously learned tasks, often utilizing larger datasets, as illustrated in Fig. 8.1.

8.2 � Motivation of TL

Traditional ML datasets and trained model parameters cannot be reused. They 
involve enormous, rare, inaccessible, time-consuming, and costly training processes 
in NLP tasks and computer vision. For example, if a task is text sentiment review 
predictions on laptops, there are large amounts of labeled data, target data, and 
training data from these reviews.

Traditional ML can work well on correlated domains, but when there are large 
amounts of target data like food reviews, the inference results will be unsatisfactory 
due to domain differences. Nevertheless, these domains are correlated in some 
sense to bear same domain reviews as language characteristics and terminology 
expressions, which makes TL possible to apply in a high-level approach to the pre-
diction task. This approach enables source domains to become a target domain and 
determine its subdomain correlations as shown in Fig. 8.2.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_8&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_8#DOI
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Fig. 8.1  Traditional machine learning vs. transfer learning

Fig. 8.2  Transfer learning

TL has been implemented to several ML applications such as image and text 
sentiment classifications.

8.2.1 � Categories of TL

The domain is to be assigned with a definition by feature space X and marginal 
probability distribution P(X) where X = {x1, x2, x3, …, xn} ∈ X.

If a feature space X and distribution P(X) between two domains are different, 
they are different domains.

8  Transfer Learning and Transformer Technology
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Fig. 8.3  Two categories of transfer learning

If a task is defined by a label space Y with a predictive function f(⋅), f(⋅) is repre-
sented by a conditional probability distribution given by (8.1):

	
f x P y xi i i( ) = ( )| 	

(8.1)

If a function f(⋅) and label space Y between two tasks are different, they are dif-
ferent tasks.

Now TL can give a new representation by above definitions that have Ds as 
source domain and Ts as source learning task. Dt represents target domain, and Tt 
represents target learning task. Given two domains are unidentical or have two dif-
ferent tasks, TL aim is to improve the results P(Yt|Xt) of Dt when Ts and Ds knowl-
edge can be obtained. There are two types of TL: (1) heterogeneous and (2) 
homogeneous as shown in Fig. 8.3.

Heterogeneous TL: when source feature space and feature space are different 
which means that Yt ≠ Ys and/or Xt ≠ Xs. Under the condition of same domain distri-
butions, the strategy of resolution is to adjust feature space smaller and transform it 
to homogeneous so that the differences between marginal or conditional of source, 
and target domains will be reduced.

Homogeneous TL: when there are conditions Xt = Xs and Yt = Ys, the difference 
between two domains lies in data distributions. Three strategies are commonly used 
to tackle homogeneous TL problems: (1) reduction in the differences of P(Xt) ≠ P(Xs), 
(2) reduction in the differences of P(Yt|Xt) ≠ P(Ys|Xs), and (3) the combination of 
strategies (1) and (2).

8.3 � Solutions of TL

There are four methods to solve problems produced by homogeneous and heteroge-
neous TL: (1) instance-based, (2) feature-based, (3) parameter-based, and (4) 
relational-based methods.

8.3  Solutions of TL
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8.3.1 � Instance-Based Method

This method reweights samples from source domains and uses them as target 
domain data to bridge the gap of marginal distribution differences which works best 
when conditional distributions of two tasks are equal.

8.3.2 � Feature-Based Method

This method works for both heterogeneous and homogeneous TL problems. For 
homogeneous types, it is to bridge the gap between conditional and marginal distri-
butions of target and source domains. For heterogeneous types, it is to reduce the 
differences between source and target feature spaces. It has two approaches (a) 
asymmetric and (b) symmetric.

	(a)	 Asymmetric feature transformation aims to modify the source domain and 
reduce the gap between source and target instances by transforming one of the 
source and target domains to the other as shown in Fig. 8.4. It can be applied 
when Ys and Yt are identical.

	(b)	 Symmetric feature transformation aims to transform source and target domains 
into their shared feature space, starting from the idea of discovering meaningful 
structures between domains. The feature space they share is usually low-
dimensional. The purpose of this approach is to reduce the marginal distribution 
distance between destination and source. The difference between symmetric 
and asymmetric feature transformation is shown in Fig. 8.5.

8.3.3 � Parameter-Based Method

This method transfers learned knowledge by sharing parameters common to the 
models of source and target learners. It applies to the idea that two related tasks have 
similarity in model structure. The trained model is transferred from source domain 

Fig. 8.4  Asymmetric feature transformation
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Fig. 8.5  Symmetric feature transformation (left) and asymmetric feature transformation (right)

Fig. 8.6  Parameter-based methods

to target domain with parameters. This approach has a huge advantage because the 
parameters are usually trained from randomly initialized parameters as the training 
process can be time-consuming for models trained from the beginning. This 
approach can train more than one model on the source data and combine parameters 
learned from all models to improve results of the target learner. It is often used in 
deep learning applications as shown in Fig. 8.6.

8.3.4 � Relational-Based Method

This method transfers learned knowledge by sharing its learned relations between 
different sample parts of source and target domains as shown in Fig. 8.7. Food and 
movie domains are a related domain example. Although the review texts are differ-
ent, sentence structures are similar. It aims to transfer learned relations of different 
review sentence parts from these domains to improve text sentiment analysis results.

8.3  Solutions of TL
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Fig. 8.7  Relational-based approaches: an example of learning sentence structure of food reviews 
to help with movie reviews’ sentiment analysis

Fig. 8.8  Recurrent neural network (left) vs. feedforward neural network (right)

8.4 � Recurrent Neural Network (RNN)

8.4.1 � What Is RNN?

Recurrent neural network (RNN) is a class of artificial neural networks (ANNs) to 
consider time series or sequential data as input and use them as prior inputs to pro-
duce current input and output (Cho et al. 2014; Sherstinsky 2020; Yin et al. 2017). 
The RNN has memory which means its output is influenced by prior elements of the 
sequence against traditional feedforward neural network (FNN) with independent 
inputs and outputs as shown in Fig. 8.8.

8.4.2 � Motivation of the RNN

Many learning tasks require sequential data processing, including speech recogni-
tion, image captioning, and synchronized sequences in video classification. While 
sentiment analysis and machine translation generate sequence-based outputs, the 
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Fig. 8.9  Five major types of RNNs

Fig. 8.10  Basic 
architecture of the RNN

inputs for these tasks are time- or space-dependent, which cannot be effectively 
modeled by traditional neural networks that assume test and training data are 
independent.

For example, a language translation task aims to translate a phrase that feel under 
the weather means unwell. This phrase makes sense only when it is expressed in 
that specific order. Thus, the positions of each word in sentence must be considered 
when model predicts the next word.

There are five major categories of RNN architecture corresponding to different 
tasks: (1) simple one-to-one model for image classification task, (2) one-to-many 
model for image captioning tasks, (3) many-to-one model for sentiment analysis 
tasks, (4) many-to-many models for machine translation, and (5) complex many-to-
many models for video classification tasks as shown in Fig. 8.9.

8.4.3 � RNN Architecture

The RNN like standard neural networks consists of input, hidden, and output layers 
as shown in Fig. 8.10.

An unfolded RNN architecture is narrated by xt as the input at time step t, st stores 
the values of hidden units/states at time t, and ot is the output of the network at time 
step t. U are weights of inputs, Ws are weights of hidden units, and V is the bias as 
shown in Fig. 8.11.
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Fig. 8.11  Unfolded RNN 
architecture

With the activation function f, the hidden states st are calculated by equation:

	
s f Ux Wst t t= +( )−1 	

(8.2)

The output of each recurrent layer ot is calculated by equation:

	
o Vst t= ( )softmax

	
(8.3)

The hidden states st are considered as network memory units which consist of 
hidden states from several former layers. Each layer’s output is only related to hid-
den states of the current layer. A significant difference between RNN and traditional 
neural networks is that weights and bias U, W, and V are shared among layers.

There will be an output at each step of the network but unnecessary. For instance, 
if inference is applied for sentiment expressed by a sentence, only an output is 
required when the last word is input, and none after each word for input. The key to 
RNNs is the hidden layer to capture sequence information.

For RNN feedforward process, if the number of time steps is k, then hidden unit 
values and output will be computed after k + 1 time steps. For backward process, the 
RNN applies an algorithm called backpropagation through time (BPTT).

RNN topologies range from partly to fully recurrent. Partly recurrent is a layered 
network with distinct output and input layers where recurrence is limited to the hid-
den layer. Fully connected recurrent neural network (FRNN) connects all neurons’ 
outputs to inputs as shown in Fig. 8.12.

8.4.4 � Long Short-Term Memory (LSTM) Network

8.4.4.1 � What Is LSTM?

Long short-term memory (LSTM) network (Staudemeyer and Morris 2019; Yu et al. 
2019) is a type of the RNN with special hidden layers to deal with gradient explo-
sion and disappearance problems during long sequence training process proposed 
by Hochreiter and Schmidhuber (1997). LSTM has better performance with train-
ing longer sequences against naïve RNNs.

LSTM and naïve RNN structure frameworks are shown in Fig. 8.13.

8  Transfer Learning and Transformer Technology



183

Fig. 8.12  Simple recurrent neural network (left) and fully connected recurrent neural net-
work (right)

Fig. 8.13  Standard RNNs 
(left) and LSTM (right)

LSTM has two hidden layers as the RNN where a memory cell in the layer is to 
replace the hidden node. The RNN has only one transfer state ht as compared to the 
RNN.  There are two transfer states, ct (cell state) and ht (hidden state), in 
LSTM. RNN’s ht corresponds to LSTM’s ct. ct passed down information among 
them, and output ct is produced by adding ct−1 passed from state and values of the 
previous step. RNN’s ht has larger difference among nodes usually.

8.4.4.2 � LSTM Architecture

xt and ht−1 are concatenated inputs from the state of the previous step to train with 
activations for four states as shown in Fig. 8.14.

z is input calculated by nated vector with weights w and converted into values 
0–1 through activation function tanh. zf

, zi
, zo are calculated by multiplying the con-

catenated vector with corresponding weights and converting to values 0–1 by a 
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Fig. 8.14  Four states 
of LSTM

Fig. 8.15  Calculations in 
memory cell of LSTM

sigmoid function σ to generate gate states. zf represents the forget gate, zi represents 
the input gate, and zo represents output gate. A memory cell of LSTM calculation is 
shown in Fig. 8.15.

Memory cells ct
, ht

, yt are calculated by gate states as equations below: (⊙ is the 
Hadamard product)

	

c z c z z

h z c

y W h

t f t i

t t

t t

= +

= ( )
= ( )′

−
 



1

0 tanh

σ
	

(8.4)

LSTM has (1) forget, (2) memory select, and (3) output stages.

	1.	 Forget stage
This stage retains important information passed in by previous node ct−1 (the 

previous cell state) and discards unimportant ones. The calculated zf is used 
as a forget gate to control what type of ct−1 information should be retained or 
discarded.

	2.	 Memory selection stage
This stage remembers input xt selectively to record important information. z 

refers to present input. zi is the input gate to control gating signals.
	3.	 Output stage
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Fig. 8.16  General 
architecture of the GRU

This stage determines what is considered as ht (the current state) to be passed 
down to the next layer. zo is the output gate to control this process before ct is 
scaled from the memory select stage (convert through a tanh function).

Each layer output yt is calculated by multiplying weights with ht and converting 
the product through an activation function like the RNN; the cell state ct is passed to 
the next layer at the end of each layer.

8.4.5 � Gate Recurrent Unit (GRU)

8.4.5.1 � What Is GRU?

Gate Recurrent Unit (GRU) can be considered as a kind of the RNN like LSTM but 
to manage backpropagation gradient problems (Chung et al. 2014; Dey and Salem 
2017). GRU proposed in 2014, and LSTM proposed in 1997 had similar perfor-
mances in many cases, but the former is often exercised due to simple calculation 
with comparable results than the latter.

GRU’s input and output structures are like the RNN. There are inputs xt and ht−1 
to contain relevant information of the prior node. Current outputs yt and ht are cal-
culated by combining xt and ht−1. A GRU architecture is shown in Fig. 8.16.

8.4.5.2 � GRU Inner Architecture

r is the reset gate, and z is the update gate. They are concatenated with input xt and 
hidden state ht−1 from the prior node and multiply results with weights as shown in 
Fig. 8.17.

When a gate control signal is available, apply r reset gate to obtain data 
ht−1 = ht−1 ⊙ r after reset, ht−1 is concatenated with xt Apply a tanh function to gener-
ate data that lies within range (−1,1) as shown in Fig. 8.18.

At this point, h′ contains current input xt; its selection memory stage is like LSTM.

8.4  Recurrent Neural Network (RNN)
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Fig. 8.17  Reset and 
update gates of GRU

Fig. 8.18  Computation of h

Finally, update memory stage is the most critical step where forget and remem-
ber steps are performed simultaneously. The gate z obtained earlier is applied as:

	
h z h z ht t= −( ) + ′−1 1 

	
(8.5)

where z (gate signal) is within the range 0~1. If it is close to 1 or 0, it signifies more 
data has remained or forgotten, respectively.

(1 − z) ⊙ ht−1 represents the calculation to forget the original hidden state 
selectively. (1  −  z) is considered as a forget gate to forget ht−1 unimportant 
information.

z ⊙  h′ represents h′ memory selective information of the present node. Like 
(1 −  z), it will forget h′ unimportant information or is considered as selective h′ 
information.

ht = (1 − z) ⊙ ht−1 + z ⊙ h′ is the calculation to forget ht−1 information from 
passed down and add information from the current node.

It is noted that forget z and select (1 − z) factors are linked, which means it will 
forget the passed in information selectively. When weights (z) are forgotten, it will 
apply weights in h′ to configurate (1 − z) at a constant state.

GRU’s input and output structures are like the RNN, and its internal concept is 
like LSTM. GRU has one less internal gate as compared to LSTM and fewer param-
eters but can achieve comparable satisfactory results with reduced time and compu-
tational resources. A GRU computation module is shown in Fig. 8.19.
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Fig. 8.19  Computation 
module of GRU

8.4.6 � Bidirectional Recurrent Neural Networks (BRNNs)

8.4.6.1 � What Is BRNN?

Bidirectional Recurrent Neural Network (BRNN) is a type with RNN layers in two 
directions (Singh et al. 2016). It links with previous and subsequent information 
outputs to perform inference against both RNN and LSTM to possess information 
from the previous one. For example, in text summarization, it is insufficient to con-
sider the information from the previous content; sometimes, it also requires subse-
quent text information for word prediction of a sentence. The BRNN is proposed to 
deal with these circumstances.

The BRNN consists of two RNNs superimposed on top of each other. The output 
is mutually generated by two RNN states. A BRNN structure is shown in Fig. 8.20.

BRNN training process is as follows:

	1.	 Begin forward propagation from time step 1 to time step T to calculate hidden 
layer’s output and save at each time step.

	2.	 Proceed from time step T to time step t to calculate backward hidden layer output 
and save at each time step.

	3.	 Obtain each moment final output according to forward and backward hidden 
layers after calculating all input moments from both forward and backward 
directions.
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Fig. 8.20  Structure of the BRNN

8.5 � Transformer Technology

8.5.1 � What Is Transformer?

The Transformer is a network architecture based on the attention mechanism, with-
out relying on recurrent or convolutional units (Vaswani et al. 2017). Transformer 
and LSTM models differ in their training processes. LSTM models are serial and 
iterative, which means they cannot proceed to the next word until the previous one 
has been processed. In contrast, the Transformer processes all words in parallel, 
allowing for simultaneous processing, which enhances computational efficiency. 
The structure of a Transformer system is illustrated in Fig. 8.21.

8.5.2 � Transformer Architecture

A transformer model has two parts: (1) encoder and (2) decoder. Language sequence 
extracts as input, encoder maps it into a hidden layer, and decoder maps the hidden 
layer inversely to a sequence as output.

8  Transfer Learning and Transformer Technology



189

Fig. 8.21  Transformer 
architecture

8.5.2.1 � Encoder

There are six identical encoder layers in the transformer with two sublayers: (1) 
self-attention and (2) feedforward in each encoder layer. The self-attention layer is 
the first sublayer to exercise attention mechanism, and a simple fully connected 
feedforward network is the second sublayer. There follow a residual connection and 
layer normalization from each of the sublayers. An encoder layer architecture is 
shown in Fig. 8.22.

8.5.2.2 � Decoder

There are six identical encoder layers in the transformer. In addition to identical two 
sublayers as each encoding layer, a third sublayer is added to the decoder to perform 
multi-head attention, taking the output of last encoder layer as input. Residual con-
nections and layer normalization are used sequentially for all sublayers, which is the 

8.5  Transformer Technology



190

Fig. 8.22  Architecture of 
an encoder layer

same as the encoder. The decoder’s self-awareness is modified by the mask to ensure 
that inference of the position can only use information from a known position, or in 
other words, its previous position.

8.5.3 � Deep into Encoder

8.5.3.1 � Positional Encoding

Since transformer has no iterative process, each word’s position information must 
be provided to ensure that it can recognize the position relationship in language. 
Linear transformation of sin and cos functions is applied to provide model position 
information as equation:

	

PE pos, pos ,

PE pos, pos ,

model2 10 000

2 1 10

2i

i

i d( ) = ( )
+( ) =
sin /

cos /

/

00002i d/ model( )
	

(8.6)

where pos represents a word’s position in a sentence, i represents word vector’s 
dimension number, and dmodel represents embedded dimension’s value. There is a set 
of formulas such as sets of 0, 1, or 2, 3 processed with the above sum function, 
respectively. As the dimension number increases, the period changes moderately to 
generate a texture containing position information.
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8.5.3.2 � Self-Attention Mechanism

For input sentence, the word vector of each word is obtained through word embed-
ding, and the position vector of all words is obtained in same dimensions through 
positional encoding that can be added directly to obtain the true vector representa-
tion. ith word’s vector is written as xi, X is the input matrix combined by all word 
vectors. ith row refers to the ith word vector.

WQ, WK, WV are matrices defined to perform three linear transformations with X 
to generate three matrices Q (queries), K (keys), and V (values), respectively.

	

Q X W
K X W
V X W

Q

K

V

= ⋅
= ⋅
= ⋅ 	

(8.7)

Attention mechanism computation can be described as:
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(8.8)

The dot products are calculated by multiplying query Q by keys K, dividing the 
result by dk ,  and applying a softmax function to obtain value scores V.

8.5.3.3 � Multi-head Attention

The previously defined set of Q, K, V allows a word to use the information of related 
words. Multiple Q, K, V defined groups can enable a word to represent subspaces at 
different positions with identical calculation process, except that the matrix of linear 
transformation has changed from one group (WQ, WK, WV ) to multiple groups (WQ

0 ,  
WK

0 , WV
0 ), (WQ

1 , WK
1 , WV

1 ) ... as equation:
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(8.9)

where WO is the weights of concatenated results.
Adding input with a sublayer (self-attention layer for example) to generate resid-

ual connections as equation:

	
X X Q K Vattention embedding Attention , ,= + ( ) 	

(8.10)
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8.5.3.4 � Layer Normalization of Attention Sublayer

Layer normalization is to standardize the distribution of hidden layers indepen-
dently to improve convergence and training processes effectively.

	
X Xattention attentionLayerNorm= ( ) 	

(8.11)

8.5.3.5 � Feedforward Layer

It is a two-layer linear map with an activation function, i.e., ReLU.

	
X Xhidden attentionLinear ReLU Linear= ( )( )( )

	

followed by residual connection and layer normalization scheme:

	

X X X
X X
hidden attention hidden

hidden hiddenLayerNorm
= +
= ( ) 	

(8.12)

8.6 � BERT

8.6.1 � What Is BERT?

BERT is a pretrained model of language representation called Bidirectional Encoder 
Representation from Transformers (Devlin et  al. 2018). It uses masked language 
model (MLM) to generate deep bidirectional linguistic representation instead of the 
traditional one-direction model or concatenated two one-direction models to pre-
train language.

8.6.2 � Architecture of BERT

BERT models are pretrained either by left-to-right or right-to-left language models 
previously; this unidirectional property restricts model structure to obtain unidirec-
tional context information only and propensity for representation. BERT adopted 
MLM in pretraining stage and a bidirectional transformer with deep layers to build 
the entire model; the representation generated integrates both left and right content 
information. A BERT system architecture is shown in Fig. 8.23.
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Fig. 8.23  System architecture of BERT

8.6.3 � Training of BERT

BERT has two training process steps: (1) pretraining and (2) fine-tuning.

8.6.3.1 � Pretraining BERT

BERT is not constrained by a one-way language model because it randomly replaces 
tokens in each training sequence with mask tokens ([MASK]) with 15% probability 
to predict the original word at position [MASK]. [MASK] do not appear in fine-
tuning of downstream tasks, leading to differences in pretraining and fine-tuning 
stages, because the pretraining objective improves language representation, being 
sensitive to [MASK] and to other insensitive tokens. BERT applies the following 
strategies:

First, in each training sequence, a token position is randomly selected for predic-
tion with a probability of 15%. If ith token is selected, it will be replaced by one of 
the following tokens:

	1.	 80% is [MASK]. For instance, the cat is adorable → the cat is [MASK].
	2.	 10% is a random token. For instance, the cat is adorable → the cat is ginger.
	3.	 10% is the original token (no change). For instance, his cat is adorable → his cat 

is adorable.

Second, apply Ti corresponding to the position, predict the original token through 
full connection, then apply softmax to output the probability of each token, and 
finally apply cross-entropy to evaluate loss.

This method causes BERT sensitive to [MASK] and all tokens to extract repre-
sentative information.
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8.6.3.2 � Next Sentence Prediction (NSP)

There are tasks such as question answering and natural language reasoning to 
understand the relationship between two sentences. Sentence-level representations 
cannot be captured directly, as MLM tasks tend to extract token-level representa-
tions. BERT applies NSP pretraining task to let the model understand the relation-
ships between sentences and predict whether they are connected.

For every training sample, select Set A and B from corpus to create a sample, 
where Set A is 50% of Set B (labeled “IsNext”), and Set B is 50% random. Next, 
training examples are put into the BERT model to generate binary classification 
predictions.

8.6.3.3 � Fine-Tuning BERT

It is necessary to add an additional output layer to fine-tune downstream tasks for 
satisfactory performance. It does not require task-specific structural modification in 
this process.

8.7 � Other Related Transformer Technology

8.7.1 � Transformer-XL

8.7.1.1 � Motivation

Transformers are widely used as a feature extractor in NLP but required to set a 
fixed length input sequence, i.e., the default length for BERT is 512. If text sequence 
length is shorter than fixed length, it must be solved by padding. If text sequence 
length exceeds fixed length, it can be divided into multiple segments. Each segment 
is processed at training separately as shown in Fig. 8.24.

Nevertheless, there are two problems: (1) segments are trained independently, 
the largest dependency between different tokens depends on the segment length; (2) 
segments are separated according to a fixed length without sentences’ natural 

Fig. 8.24  Segment training of standard transformer
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Fig. 8.25  Segment training of Transformer-XL

boundary consideration to produce semantically incomplete segments. Thus, trans-
former-XL (Dai et al. 2019) is proposed.

8.7.1.2 � Transformer-XL Technology

	1.	 Segment-level recurrence: When processing the current segment, 
Transformer-XL caches and applies hidden vector sequence to all layers from 
the previous segment. These sequences only participate in forward calculation 
without backpropagation called segment-level recurrence. Figure 8.25 shows the 
segment training of Transformer-XL.

	2.	 Relative position encodings: Each token has an embedding position to repre-
sent position relationship in standard transformer. This embedding position 
encoding is either generated by sin/cos function or learning, but it is impractical 
in Transformer-XL because positional relationship of different segments is 
unidentified if the same positional code is added to each segment. Transformer-XL 
applies relative position encoding instead of absolute position encoding, so when 
calculating the hidden vector of current position, it considers tokens’ relative 
position relationships to calculate attention score.

8.7.2 � ALBERT

BERT model has many parameters, but it is limited by GPU/TPU memory size as 
model size increases. Google proposed A Lite BERT (ALBERT) to solve this prob-
lem (Lan et al. 2019). ALBERT applies two techniques to reduce parameters and 
improve NSP pretraining task, which include:

	1.	 Parameter sharing—apply same weights to all 12 layers.
	2.	 Factorize embeddings—shorten initial embeddings to 128 features.
	3.	 Pretrain by LAMB Optimizer—replace ADAM Optimizer.
	4.	 Sentence order prediction (SOP)—replace BERT’s next sentence prediction 

(NSP) task.
	5.	 N-gram masking—modify MLM task to mask out words’ N-grams instead of 

single words.
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Exercises
	8.1.	 What is TL? Compare the major differences between TL and traditional 

ML in AI.
	8.2.	 Describe and explain how TL can be applied to NLP. Give two NLP applica-

tions as examples to support your answer.
	8.3.	 Compare the major differences between heterogeneous vs. homogeneous 

TL. Give two NLP applications/systems as examples to illustrate.
	8.4.	 What is RNN? State and explain why RNN is important for the building of 

NLP applications. Give two NLP applications as examples to support 
your answer.

	8.5.	 State and explain five major categories of RNNs. For each type, give an exam-
ple to illustrate.

	8.6.	 What is the LSTM network? State and explain how it works by using NLP 
applications such as text summarization.

	8.7.	 What is GRU? Using an NLP application as examples, state and explain the 
major differences between the GRU and standard RNN.

	8.8.	 State and explain the key functions and architecture of Transformer technol-
ogy. Using NLP application as examples, state briefly how it works.

	8.9.	 What is the BERT model? Using NLP application such as Q&A chatbot as 
examples, state and explain briefly how it works.
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Chapter 9
Major NLP Applications

9.1 � Introduction

This chapter will study three major NLP applications: (1) Information Retrieval 
Systems (IR), (2) TS, and (3) Question-&-Answering Chatbot System (QA Chatbot).

IR is the process of obtaining the required information from large-scale unstruc-
tured data relative to traditional structured database records from texts, images, 
audios, and videos. IR systems are not only common search engines but recommen-
dation systems like e-commerce sites, question and answer, or interactive systems.

Text Summarization is the process of diminishing a set of data computationally, 
creating a subset or summary to represent relevant information for NLP tasks such 
as text classification, question-answering, legal texts, news summarization, and 
headlines generation.

QA system represents human-machine interaction system with human natural 
language is the communication medium. It is a task-oriented system to deal with 
objectives or answer specific questions through dialogues with sentiment analysis.

9.2 � Information Retrieval Systems

9.2.1 � Introduction to IR Systems

NLP employs AI techniques such as N-grams, rule-based approaches, and Word2Vec 
to retrieve information but faces computational limitations when processing large 
volumes of corpus data. Challenges include defining text and model frameworks for 
domain-specific applications, utilizing GPU clusters, and incurring high costs to 
maintain rule sets due to standard modifications.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_9&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_9#DOI
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Corpora that support IR in open, machine-readable formats have grown exponen-
tially due to advancements in pre-trained models. IR models designed for generic 
language combine general terms with domain-specific terms; for example, “lease” 
can refer to a place or a leasehold. The objectives can be organized by abstract, 
formal, or colloquial language within a large narrative component, depending on the 
document type, to enhance retrieval results.

In IR research, text or document classification and clustering focus on two key 
aspects: (1) text representation and (2) clustering algorithms. Text representation 
involves converting unstructured text into a computer-processable data format. This 
process necessitates extracting and mining textual information. Semantic similarity 
computation serves as the link between text modeling and representation, with 
applications for potential information layers in the text. Clustering algorithms are 
used to extract semantic information, facilitating similarity calculations for effec-
tive text classification and clustering.

9.2.2 � Vector Space Model in IR

Vector Space Model (Salton et al. 1975) was a leading IR method from 1960 to 
1970. Queries and retrieved documents are represented as vectors with dimen-
sionality related to word list size in this model. A retrieved document D can be 
represented as a vector of lexical items: Di = (d1, d2, …, dn  ), where di, is the 
weight of a ith lexical item in Di. Query Q is expressed as a lexical item vector: 
Q = (q1, q2, …, qn ) where qi, is the weight of ith lexical item in query term. The 
relevance is determined by computing the distance between lexical item vectors 
of the retrieved document and query based on this representation. Although it 
cannot prove cosine relevance is superior to other similarity methods, it achieved 
satisfactory performance according to search engines evaluation results. Cosine 
similarity for angle between retrieved document and query calculation is 
expressed as
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(9.1)

Equation 9.1 is the weights for dot or inner product of all word terms in query 
matching documents. There are many words item weights for vector space models. 
Most of the weighting methods are based on Term-Frequency (TF) variation. 
Inverted document frequency (IDF) (Aizawa 2003) represents the number of term 
occurrences in retrieved document and reveals lexical term significance in the entire 
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document data set. A lexical item is insignificant with high occurrence frequency in 
multiple retrieved documents.

There are other text representation methods in addition to vector space model, 
e.g., phrase or concept representations. Although phrase representation can improve 
semantic contents, the reduced statistical quality of feature vector become sparse 
and difficult to extract statistical properties applying machine learning algorithms. 
Figures 9.1 and 9.2 show a text encoded by Sentence Transformers (Reimers and 
Gurevych 2019) to demonstrate and compute cosine similarity between embed-
dings. It uses a pre-trained model to encode two sentences and outperform other 
pre-train model like BERT (Vaswani et al. 2017).

It is natural to identify the combination with the highest cosine similarity score. 
By doing so, an intense ranking scheme is used as shown in Fig. 9.3 to identify the 
highest scoring pair with a secondary complexity. However, it may not work for 
long lists of sentences.

A chunking concept to divide corpus into smaller parts is shown in Figs. 9.4 
and 9.5. For example, parse 1000 sentences at a time to search the rest (all other 
sentences) of the corpus or search a list of 20k sentences to divide into 20 × 1000 
sentences. Each query is compared with 0–10k sentences first, and 10k–20k sen-
tences to reduce memory storage. The increases of these two values intensified 
speed and memory storage and then identified the pair with the highest similarity 
to extract top-K scores for each query as opposed to extract and sort scores for all 
n2 pairs.

Such method is faster than brute force methods due to fewer samples. In prac-
tical industrial scenarios, more attention is paid to the speed of pre-trained mod-
els, encoding methods, and data retrieval. For example, two-tower model (Yang 
et al. 2020), Wide&Deep model (Cheng et al. 2016), etc. are shown in Figs. 9.6 
and 9.7.

Fig. 9.1  Sentence transformers frame
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Fig. 9.2  BERT frame

Fig. 9.3  The singer example of vector space model

9.2.3 � Term Distribution Models in IR

Probabilistic Ranking Principle (PRP) models firstly proposed by Croft and Harper 
in 1979 (Croft and Harper 1979) to compute query relevance degrees and retrieval. 
PRP regards IR as a process of statistical inference, where an IR system predicts 
query relevance from retrieved documents and sorts in descending order based on 
predicted relevance scores. This approach is like Bayesian model machine learning. 
A PRP model combines relevant feedback information with IDF and estimates each 
item’s probabilities to optimize search engine retrieval performance. However, it is 
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Fig. 9.4  Multiple examples of vector space model

a difficult task to estimate each probability accurately in practical applications. 
Okapi BM25 (Whissell and Clarke 2011) retrieval model had solved the difficulties 
encountered by the PRP model with satisfactory performance in TREC retrieval 
experiments and commercial search engines. Many IR researchers had modifica-
tions based on the BM25 model resulting in many variations, the most common 
form is as follows:
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Fig. 9.5  Chunk multiple examples of vector space model

Fig. 9.6  Two-tower model (Yang et al. 2020)
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Fig. 9.7  Wide&Deep model (Cheng et al. 2016)

There are two approaches to consider which is the best BM25 method:

	1.	 BM25 + Word2Vec embedding across all documents.
	2.	 BM25 + BERT + Word2Vec embedding for each top-k documents, select the 

most similar sentence embedding across top-k paragraphs.

Word2vec (Church 2017) is about word occurrences proportions in relations 
holding in general over large text corpora and combines vectors of similar words 
into a vector space called distributional hypothesis. Word2vec embeddings are to 
compare query with sentence embeddings to select the one with higher cosine 
similarity.

Transformer-based neural network models are popular NLP research areas on 
enhanced parallelized processing capabilities. BERT is among those that use 
transformer-based deep bidirectional encoders to learn contextual semantic rela-
tionships between lexical items and performed satisfactory in many NLP tasks.

It began to retrieve documents with the most relevant document followed by 
paragraphs and extract sentences from selected paragraphs. BERT embeddings are 
used to compare query with paragraphs and select the one with higher cosine simi-
larity. Once relevant paragraphs are available, select sentence with answer by com-
paring sentence embeddings based on Word2Vec embeddings trained on the whole 
dataset, then average word embeddings in the paragraph with BM25 score calcula-
tion as shown in Fig. 9.8.

Common word queries occurred rarely in documents with a higher number of 
occurrences produce sparse distribution. Contrarily, there will be similar scores at 
many documents if common words with same frequency occurred across docu-
ments. Documents distribution with scores and codes are shown in Figs.  9.9 
and 9.10.

Since word2vec relies heavily on each occurrence frequency, thus, it may pro-
duce satisfactory performance on specific queries while the same for BERT on gen-
eral queries.

The results of two selected queries showed that query (Sentence 1) achieved 
satisfactory performance on specific/rare terminology while the second query 
(Sentence 2) achieved satisfactory performance on normal terminology. They 
depend on words specification level in the query. Queries have specific/rare termi-
nology performed satisfactorily with the most similar sentences across all docu-
ments. Queries have general terms, e.g., age, human, and climate performed 
satisfactorily with the most relevant documents instead of embeddings comparison 
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Fig. 9.8  Sample code for Word2vec embeddings with BM25 score calculation

Fig. 9.9  Documents distribution with scores and codes
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Fig. 9.10  BM25 results

across all of them. Thus, it is reasonable to compare each time the results of two 
approaches and select the appropriate one based on words distribution for each query.

9.2.4 � Latent Semantic Indexing in IR

Term Distribution Models in IR is a rapid and effective model. It uses topics to 
express the implicit semantics of a document as index to replace incomplete, unreli-
able search terms with reliable indicants based on two assumptions:

	1.	 Words have common topics in document.
	2.	 Words not in document less likely to be related

Topic is filtered out by keywords in the Doc. Thus, P = (ω/Doc) probability dis-
tribution table is introduced: the statistics of word frequency (frequency) in the 
document, i.e., the law of large numbers.

	
P w P w D tf w D DD|Topic ( | , len( ) ≈ = ( ) ( )) /

	
(9.3)

Topic is regarded as a language model, and P =  (ω/Doc) is the probability of 
word generation in this language model so the word not only occur in topic, but has 
probability generated.

There are two sorting methods according to statistical language model when 
query Q is given, which are (1) Query-likelihood and (2) Document-likelihood 
methods.
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9.2.4.1 � Query-Likelihood

Determine MD, corresponding to each Doc, user’s Query is denoted as Q  =  (q1, 
q2, …, qn ). Query probability will be generated under the language model of each 
document can be calculated as follows (Zhuang and Zuccon 2021):
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Search results are obtained by sorting all computed results. However, this method 
calculates the probability for each Doc independently from other Docs, and the 
relevant documents are not utilized.

9.2.4.2 � Document-Likelihood

Determine each Query corresponding MQ. Calculate the probability that any given 
document will be generated under the query’s language model (Zhuang and 
Zuccon 2021):
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The object of one-mode factor analysis traditionally is a matrix composed of 
identical object-pair types of relationships. An example is a document-document 
matrix. The matrix elements may be evaluated for similarity between documents 
manually. This symmetric square matrix is decomposed into two matrices by eigen-
analysis. The decomposed matrix is composed of linearly independent factors. 
Many of the factors are tiny that can be ignored usually producing an original matrix 
approximation.

Two-mode factor analysis object is a matrix consisting of object-pair relation-
ships. This matrix can be decomposed into term-term, document-document, and 
term-document matrices using singular-value decomposition (SVD) (Aharon et al. 
2006). SVD reconstructs spatial response to the main patterns association between 
data by ignoring less significant effects. Thus, a term that does not occur in a docu-
ment may be immediately adjacent to that document in semantic space based on 
identified association patterns. The information location in semantic space has a 
role in semantic index. SVD model test and lean with results in Latent Semantic 
Indexing in IR is shown in Fig. 9.11.

SVD and corresponding validation results are shown in Figs. 9.12 and 9.13.
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Fig. 9.11  SVD frame

Fig. 9.12  Example of SVD

9.2.5 � Discourse Segmentation in IR

Document contents combine with articulated parts such as paragraphs exalt auto-
matic documents segmentation according to meanings using machine learning 
methods to compare two adjacent sentences similarity in turn, and generate 
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Fig. 9.13  Validation results

segmentation point with the lowest similarity. This unsupervised method is called 
Text Tiling (Hearst 1997) as shown in Fig. 9.14. Further, supervised learning meth-
ods can also be used such as classifiers constructions (Florian 2002) or sequence 
models (Keneshloo et al. 2019) to detect segmentation point.

Rhetorical Structure Theory (RST) framework (Taboada and Mann 2006) is a 
commonly used framework for parsing discourse as shown in Fig. 9.15. RST com-
mon relations in English are conjunction, justify, concession, elaboration, etc. as 
shown in Figs. 9.16 and 9.17.

There are two approaches to identify relationships: (1) rule-based on iconic 
words such as but, so, for example, and (2) machine learning with commonly fea-
tures such as bag of words (BoW) (Zhang et al. 2010), Discourse markers (Fraser 
1999), Starting/ending N-grams (Robertson and Willett 1998), Location in the text 
(Rothkopf 1971), Syntax features (Sadler and Spencer 2001), Lexical and distribu-
tional similarities (Weeds et al. 2004).

Discourse segmentation task is a significant evaluation indicator for NLP devel-
opment directions. From application perspective, discourse segmentation can assist 
users rely on intelligence to improve productivity, its technology core value can 
convert semi-structured and unstructured data to specific description structured in 
turn to support substantial downstream applications.
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Fig. 9.14  Examples of discourse segmentation

Fig. 9.15  Example of 
rhetorical structure theory
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Fig. 9.16  Examples of relations

Fig. 9.17  Attention map
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9.3 � Text Summarization Systems

9.3.1 � Introduction to Text Summarization Systems

9.3.1.1 � Motivation

There is excess information from copious sources to obtain the latest information 
daily. Although automatic and accurate summarization systems can assist users in 
simplifying, identifying, and understanding key information quickly, the process 
remains laborious. This is due to the constant emergence of new words and complex 
text structures in documents.

9.3.1.2 � Task Definition

Text summarization process generates text (document or document) summaries by 
rewriting and summarizing long text into short form (Mahalakshmi and Fatima 
2022). It refers to extract or refine text or text set key points through technologies to 
display original text or text set main contents or general idea. Text generation task 
is an information compression technique whereas a summarization process is con-
sidered as a function where input is a document or documents, and output is an input 
texts summary. Hence, input and output are quintessential types to classify sum-
mary tasks.

9.3.1.3 � Basic Approach

Summarization approaches are mainly divided into extractive and abstractive (Chen 
and Zhuge 2018).

Extractive methods select important phrases from input text and combine them 
to form a summary like a copy and paste process. Many traditional text summariza-
tion methods use Extractive Text Summary (ETS) because it is simple to generate 
sentences without grammatical errors but cannot reflect exact sentences meanings. 
They are inflexible to apply novel expressions, words, or connectors outside text 
descriptions.

Abstractive Text Summary (ATS) methods apply language generation methods to 
re-organize contents, generate new words, and conclude the implied information as 
compared with ETS. They paraphrase text meanings composed of new words with 
original words summary (Agrawal 2020), and mimic human understanding to 
develop contents which may not be contained in actual document text (Malki 
et al. 2020).
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9.3.1.4 � Task Goals

Summarization task objectives are to assist users to understand raw text within a 
short period as shown in Fig. 9.18.

9.3.1.5 � Task Sub-processes

Summarization tasks are divided into the following modules as shown in Fig. 9.19.
Input document or documents are first combined and preprocessed from continu-

ous text form to split sentences. The sentences will be encoded into vectors form 
data to fit into a matrix for similarity scores calculation to obtain sentence rankings, 
followed by a summary with the highest possibility according to the ranking list.

Fig. 9.19  Summarization tasks sub-processes

Fig. 9.18  Summarization tasks objectives
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9.3.2 � Text Summarization Datasets

Text summarization datasets commonly used include DUC (2022), New York Times 
(NYT 2022), CNN/Daily Mail (CNN-DailyMail 2022), Gigaword (2022), and 
LCSTS datasets (LCSTS 2022).

DUC datasets (DUC 2022) are the most fundamental text summarization datas-
ets developed and used for testing purposes only. They consist of 500 news articles, 
each with 4 human-written summaries.

NYT datasets (NYT 2022) contain articles published in the New  York Times 
between 1996 and 2007 with abstracts compiled by experts. The abstract datasets 
are sometimes incomplete and sporadic short sentences with an average of 40 words.

CNN/Daily Mail datasets (CNN-DailyMail 2022) are widely used multi-sentence 
summary datasets often trained by generative summary system. They have (a) ano-
nymized version to include entity names and (b) non-anonymized version to replace 
entities with specific indexes.

Gigaword datasets (Gigaword 2022) are abstracts comprising the first sentence 
and article title with heuristic rules of approximately four million articles.

LCSTS datasets (LCSTS 2022) are Chinese short texts abstract datasets con-
structed by Sina Weibo (2022).

9.3.3 � Types of Summarization Systems

Text summarization task for input documents can be divided into two types:

	1.	 Single document summarization considers each input as one document.
	2.	 Multiple document summarization considers input has several documents

Text summarization task viewpoint can be divided into three classes:

	1.	 Query-focused summarization adds viewpoint to query.
	2.	 Generic summarization is generic.
	3.	 Update summarization is a special type which sets difference (update) viewpoint

Summarization systems based on contents can be divided into four types:

	1.	 Indicative Summarization describes contexts without revealing details especially 
the endings, it contains partial information only.

	2.	 Informative Summarization contains all information in a document or documents.
	3.	 Keyword Summarization reveals output generation is sporadic text which con-

tains phrases or words of input documents.
	4.	 Headline Summarization is usually a single line summary.

These summarization systems can be divided according to summary languages 
such as Arabic (Elsaid et al. 2022), Chinese (Yang et al. 2012), English and Spanish 
summarization systems, etc.
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9.3.4 � Query-focused vs. Generic Summarization Systems

Text summarization can be query-focused or generic. Summary associated with query 
shows that document contents are relative to initial search query. A query-related 
summary generation is a process of retrieving query-related sentences/paragraphs 
from a document that has a strong similarity to text retrieval process. Hence, abstracts 
relevant searches are often undertaken by extending traditional IR techniques with 
many text abstracts in the literature fall into this category. A general summary, on the 
other hand, provides an overall sense of the document’s contents. A proper general 
summary should cover the main topics and minimize redundancy. Since there are no 
queries or topics to feed into summarization process, it is difficult to develop a high-
quality general summarization method for evaluation (Gong and Liu 2001).

9.3.4.1 � Query-Focused Summarization Systems

Query-focused Summarization (QFS) is primarily addressed using extractive meth-
ods to produce text that lacks coherence. QFS applied abstractive methods can over-
come these limitations and improve incoherent texts availability. A Relevance 
Sensitive Abstractive QFS (RSA-QFS) framework (Baumel et al. 2018) is shown in 
Fig. 9.20.

This model assumes that a trained abstractive model includes reusable language 
knowledge to accomplish QFS tasks. Methods of enhancing this pre-trained single 
document abstraction model with explicit modeling of query dependencies are stud-
ied to improve multiple input documents operating ability and adjust generated 
abstractions lengths accordingly.

Fig. 9.20  RSA-QFS framework
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Fig. 9.21  Two stages of QFS

Further, a sequence-to-sequence (seq2seq) architecture is applied to obtain sum via 
an iterative extraction or abstraction pairs process: identify relevant content batches 
from multiple documents and abstract into a coherent text segments sequence.

QFS task includes two stages as shown in Fig. 9.21:

	1.	 A relevance model to determine passages relevance to input query from source 
documents and

	2.	 A generic summarization method to combine relevant passages into a coher-
ent summary

Query-related text summarization is practical for answering questions such as 
whether a whole or partial document has relevance to a user’s query. Query-related 
summaries do not provide an overall sense of the document’s content; they have 
query bias and are unsuitable for content summaries to answer questions such as 
document category, key points, and text summary.

9.3.4.2 � Generic Summarization Systems

A proper generic summarization should cover main topics as many as possible and 
minimize redundancy leading to fractious system generation and evaluation. It often 
lacks consensus on summary output and performance judgments without query pro-
visions and topics to summary task.

Typical generic summarization ranking models and selected sentences are based 
on relevance similarity values and other semantic analyses (Gong and Liu 2001).

9.3.5 � Single and Multiple Document Summarization

Single document extraction in journalism has developed to multi-document extrac-
tion since 1990. A variety of news articles, such as Google News (Google 2022), 
Columbia News Blaster (Columbia 2022), and News Essence (NewsInEssence 
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2022) are inspired by multi-document summaries. The reason is that individual 
documents always produce contradictory results through overlapping information 
from multiple documents (Alami et al. 2015) may affect the performance of sum-
marization results.

Single document summarization research method gradually faded in past decades 
(Svore et al. 2007) as mainstream research focused on multi-document summariza-
tion which could reduce text size, gather ideas, compare documents, and maintain 
syntactic and semantic relationships (Pervin and Haque 2013).

9.3.5.1 � Single Document Summarization

Single document summarization’s challenge is to identify or generate informative 
sentences significance of the document because it often has inconsistent and inter-
mittent information.

Salient features like sentence placement are early research (Baxendale 1958) 
where 200 paragraphs selected and identified paragraphs have topic sentences at the 
beginning and end of paragraphs with 85% and 7%, respectively.

A single document structure and a corpus with around 400 technical documents 
research focusing on word frequency and word position, and cue words and skele-
ton were proposed in 1969 (Edmundson 1969). Results showed that extracted sum-
mary to actual summary accuracy rate was about 44%.

Further, lexical indicators (Rath et al. 1961), cohesion (Hasan 1984), semantic 
relationships (Halliday and Hasan 1976), and algebraic methods such as naïve-
Bayes classifier processed features like uppercase words, lengths, words position 
(Kupiec et al. 1995), symbolic word knowledge (Hovy and Lin 1999), and human 
abstraction concept (Jing 2000) are research areas in this field.

9.3.5.2 � Multiple Document Summarization

Multiple document summarization similarity measures and extractive techniques 
are comparable to single document summarization.

It used clustering to identify common themes (Erkan and Radev 2004), compos-
ite sentences from clusters (Barzilay et  al. 1999), maximal marginal relevance 
(MMR) (Carbonell and Goldstein 1998) and concatenated to multilingual environ-
ment (Evans 2005).

Further, TFI X IDFI techniques (Salton 1989), TF/IDF (Fukumoto 2004), word 
hierarchical technique for frequent terms (You et al. 2009), graph-based methods 
(Mani and Bloedorn 1997; Wan 2008), sentence co-relation method (Hariharan 
et al. 2013), logical closeness (Zhu and Zhao 2012) and query-oriented approach 
(Agarwal et al. 2011) are well developed.
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9.3.6 � Contemporary Text Summarization Systems

9.3.6.1 � Contemporary Extractive Text Summarization (ETS) System

Text summarization research methods aim to (Dong 2018):

	1.	 Acquire important sentences.
	2.	 Predict sentence option according to ranking sentences.

The extractive summarization for proper sentences selection from original source 
text is required to:

	1.	 Include logical and consistent summary information from original text.
	2.	 Reduce similar and unimportant sentences information redundancy.

Lead 3 is a commonly used and effective method to extract the first three sen-
tences as topic titles of an article. When dealing with important sentences, docu-
ment equivalence to document topic and relevant sentences position characteristics 
are considered. Topic modeling, frequency-based models LSA, and Bayesian are 
methods applied (Farsi et al. 2021).

Extractive summarization produces incoherent summaries compared with man-
ual ones, its shortcomings include unresolved anaphora, unreadable sentence order, 
lacks textual cohesion to extract salient information from long sentences. When the 
system focuses on a sentence, it extracts the entire sentence (Nallapati et al. 2017).

9.3.6.2 � Graph-Based Method

Graph-based ranking algorithms are successfully used in citation analysis, link 
social networks’ structure analysis, and the World Wide Web.

They generate graphs from input document and summary by considering the 
relationships between nodes (units of text) (Chi and Hu 2021). TextRank (Mihalcea 
and Tarau 2004) is a typical graph-based approach that has developed many models. 
A summarization of TextRank system to extract keywords from a sample text and 
graph is shown in Figs. 9.22 and 9.23.

Fig. 9.22  Sample text
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Fig. 9.23  Sample graph for key phrase extraction in TextRank

This kind of system is based on PageRank algorithm (Langville and Meyer 2006) 
applied by Google’s search engine, its algorithm principle is linked pages are good, 
and even better if they come from multiple linked pages. Links between pages are 
represented by matrices like circular tables. This matrix can be converted to a transi-
tion probability matrix divided by the sum of links per page, and the page will be 
moved by the page viewer following a feature matrix in Fig. 9.24.

TextRank processes words and sentences as pages in PageRank, its algorithm 
defines text units and adds them as nodes in a graph with relations are defined 
between text units and added as edges in the graph. Generally, the weights of edges 
are set by similarity or score values.

Then, PageRank algorithm is used to solve the graph. There are other similar 
systems such as LexRank (Erkan and Radev 2004) to consider sentences as nodes 
and similarity as relations or weights, i.e., IDF-modified cosine similarity to calcu-
late similarity.
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Fig. 9.24  Page Rank algorithm process

9.3.6.3 � Feature-Based Method

Feature-based model extracts sentences feature and evaluates their significances. 
There are many representative studies including Luhn’s Algorithm (Luhn 1958), 
TextTeaser, and SummaRuNNer (Nallapati et al. 2017).

Luhn’s Algorithm is used to evaluate input words significance calculated by 
frequency. TextTeaser is an automatic feature-based summarization algorithm. 
SummaRuNNer is implemented by Deep Neural Networks (DNN) structure as 
shown in Fig. 9.25.

SummaRuNNer generates sentence feature (vector) by two layers bidirectional 
Gate Recurrent Unit-Recurrent Neural Network (GRU-RNN) from word embedding 
vectors. The lowest level classifies each sentence word level, while the highest level 
classifies sentence level. Double arrows indicate two-way RNN. The top layer num-
bered with 1s and 0s is a classification layer based on sigmoid activation to deter-
mine whether each sentence is a summary. Each sentence decision depends on 
substantial sentence contents, sentences to document relevance, sentences to cumu-
lative summary representation originality, and other positional characteristics.

9.3.6.4 � Topic-Based Method

Topic-based model considers document’s topic features and input sentences’ scores 
according to topic types contained as a major topic would obtain a high rate when 
scoring sentences.

Latent Semantic Analysis (LSA) is based on SVD to detect topics (Ozsoy et al. 
2011). An LSA-based sentence selection process is shown in Fig. 9.26 by topics 
represented by eigenvectors or principal axes with corresponding scores.
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Fig. 9.26  LSA-based sentence selection sample

Fig. 9.25  Network structure of SummaRuNNer

9.3.6.5 � Grammar-Based Method

Grammar-based model parses text and constructs a syntax structure, selects, or reor-
ders the substructure. A representation framework is shown in Fig. 9.27.

Grammar pattern can produce significant paraphrases based on grammatical 
structures. The above example in Fig. 9.27 showed how paraphrase extraction and 
replacement can be achieved by using such method. Analyzing grammatical struc-
ture feature is useful for semantic phrases reconstruction.
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NP

NNP/nn  JJ/amod  NNP/nn NNP/nn  NNP/- NNP/nn  NNP/-

ABC     dissident    Jack      Norman    Smith            Norman   Smith

NP

PP/Prep_in PP/Prep_in

IN/- DT/det  JJ/amod NN/- PP/prep_of IN/- NNP/nn  NNP/-

in       the     disputed territory                                in        GHI Island

IN/- NNP/nn  NNP/-

of        GHI Island

NP/dobj PP/Prep_in

DT/det    NN/- PP/prep_of NP/poss      NN/-

the     extradition   IN/- NNP/nn  NN/nn NNP/- DFG’s   extradition

of      XYZ    leader    Jones

Fig. 9.27  Grammar-based method sample network (Ozsoy et al. 2011)

9.3.6.6 � Contemporary Abstractive Text Summarization (ATS) System

Abstractive summarization often generates summary that maintains original intent 
completed by humans.

This process can generate words that are not in original input representations but 
to facilitate summaries characteristics and fluency. However, it is complex to gener-
ate coherent phrases and connectors.

Abstractive summarization systems applying deep learning methods, 
Reinforcement Learning (RL), Transfer Learning (TL), and Pre-Trained Language 
Models (PTLMs) had developed rapidly (Alomari et al. 2022) in recent years. These 
models use rules-based frameworks to consider significant events and summaries. 
Tree methods are ontology-related methods for abstractions (Jain et al. 2020).

9.3.6.7 � Aided Summarization Method

This method combines automatic computer model or algorithm to provide signifi-
cant document information for human decision.
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Fig. 9.28  Network framework of point generator baseline model

Machine translation model to text summarization was proposed (Banko et  al. 
2000) applying encoder-decoder framework as neural network model mainstream 
and used in abstractive summarization systems (Chopra et al. 2016).

9.3.6.8 � Contemporary Combined Text Summarization System

Pointer-Generator Networks (See et al. 2017) is a frequently used baseline network. 
It focuses on keywords and sentences with Attention technique (Vaswani et  al. 
2017), to lever generator and pointer network according to calculated probability. 
Vocabulary and attention with different weights distribution are then combined. A 
baseline pointer-generator network framework is depicted in Fig. 9.28.

It noted that article tokens are fed into an encoder layer, which is a single-layer 
bidirectional long short-term memory (LSTM) with encoder hidden states provided. 
Decoder consists of a single-layer unidirectional LSTM, processes word embedding 
of previous words on each step and output decoder state with attention 
distribution.

9.4 � Question-and-Answering Systems

9.4.1 � QA System and AI

A QA system is an impressive way to emulate human-to-human interaction through 
cutting-edge technological advancements. Unlike other classification or prediction 
tasks, a QA system is interdisciplinary, merging traditional linguistics with com-
puter science, computational linguistics, statistics, pattern recognition, data mining, 
machine learning, and deep learning methods to create an effective communication 
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Fig. 9.29  Flowchart of a typical QA system

system. It plays a vital role in applications such as autoresponders, personal assis-
tants, and sentiment chatbots today.

QA systems are a popular research topic in NLP and typically incorporate open 
domain common sense knowledge or specialized domain knowledge to function as 
qualified conversation partners. Dialogue realization depends on several compo-
nents, including automatic speech recognition (ASR), NLU, dialogue management 
(DM), NLG, and speech synthesis (SS). A flowchart illustrating the components of 
a QA system is shown in Fig. 9.29.

It is an integral part of system acumen. DM is the communication policy or dia-
logue strategy applied to large corpus for content organization. After transferring 
natural language to computer language in sequence-sequence data with character, 
word, or sentence level in NLU, machine intelligence selects suitable contents for 
language generation. Back-end technology with generated candidate answers is 
combined and re-ranked for optimization response in NLG. Apart from text aspect, 
ASR and TTS are procedures that resemble machine by human voice recognition 
and generation.

QA system research is divided into two categories: (1) pattern matching with 
rule-based and (2) language generated-based on IR and neural network. However, 
the back-end is equipped with more than one method to generate meaningful com-
munication and provide meaningful feedback. A QA system in a chatbot includes an 
open domain focus on (1) common sense/world knowledge and (2) task-oriented for 
special domain knowledge databases resemble expert system involving in-depth 
knowledge base to support appropriate responses.

First rule-based human-computer interaction as in Fig. 9.30 pattern recognition 
system challenged the Turing test in 1950s, reaching a milestone where humans 
could not recognize whether the opposite was a machine or human. After a long 
period of data collection, database used for dialogue pattern matching is large 
enough to rank appropriate feedbacks and give the highest scoring answers, which 
is a process of selection from a database of human answers regardless of the 
machine. After decades of development, search engines and data crawlers have sup-
ported sources for building knowledge bases, including IR, enabling search engines 
to retrieve relevant and up-to-date data for structured processing to form answers 
from QA systems. The advent of AI era enhanced QA systems mainstream can 
focus on cognitive science than big data feeds of neural networks on systems gen-
erations. Gradually, traditional QA system is replaced by AI machine communica-
tion as rule-based matching RNN training to realize large knowledge base to support 
the AI brain to imitate human reasoning called NLU.
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Fig. 9.30  Human and machine interaction via QA system

The main source of knowledge base in a typical QA system comes from: (1) 
human-human dialogue collection with handcraft is the answer from human lan-
guage in linguistic and meaning where database consist of pairs dialogues. Without 
any imitation or learning ability, this first version rule-based QA system relies on 
pattern matching to measure the distance between proposed question and question-
answer pattern stored pair in database. For example, artificial intelligence markup 
language (AIML) can answer most of daily or even professional dialogues based on 
large and classified handcraft database without intelligence; (2) building database 
focus on search engine for IR-based knowledge base. The feature of IR-based QA 
system is the combination of knowledge building from up-to-date knowledge bases. 
An IR-based QA system uses domain knowledge such as expert system to extract 
and generate knowledge. The procedure of unstructured data extraction and reorga-
nization depends on NLU for reasoning. NLG includes knowledge engineering 
analysis for reasoning and rerank candidates’ answers optimization.

The latest database used big data for data-driven model to realize machine intel-
ligence. When neural network had fed with sufficient data, sequence-to-sequence 
model like RNN and its related Long-Short-Term Memory naturally model as in 
Fig. 9.31 skilled in sequential data processing (Cho et al. 2014). A neural network 
model is considered as the black box producing learning ability with accuracy but 
cannot be comprehended by humans. Prior to preprocessing data was fed to neural 
model, and they were required to transform data format from natural word to vector 
for data training (Mikolov et al. 2013). Tokenization has three levels: (1) character, 
(2) word, and (3) sentence. The input format decides output outcomes in encoder-
decoder framework. RNN generated words may not be meaningful in the English 
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Fig. 9.31  LSTM structure

dictionary because the character level training lacked enough corpus for a well-
trained model. Further, TL with enormous data pre-trained Transformer model 
required to select the intended decoder for training target. For example, Dialogue 
GPT from OpenAI focuses on formatted dialogue training to generate responses.

Neural network system transformed natural language to word vectors for math-
ematical computation to acquire response in NLP.  Neural network can generate 
their own natural language as compared with traditional techniques.

Traditional RNN of seq2seq language model response generation performed 
lesser than big data-oriented TL such as Google’s BERT and Open AI’s GPT.

Pre-trained unsupervised learning language model achieved satisfactory perfor-
mance in fine-tuning with small dataset than traditional ones, their performances 
were attributed to self-attention mechanism (Vaswani et  al. 2017) and identified 
relations in sequences with fluent and syntactic response for task execution based on 
GPT with fine-tuned model (Wolf et al. 2018).

9.4.1.1 � Rule-Based QA Systems

Rule-based QA systems were proposed at the same time as Turing test in 1950s. 
However, original QA systems only followed rules set by humans without self-
improvement capabilities like machine learning; number of dialogue pairs is stored 
in database prior to the system provided a concrete answer. The simplest but most 
efficient way to measure similarity of two groups is the cosine distance of two vec-
tors. It is undeniable that rule-based systems have collected huge dialogue corpora 
over decades, giving system confidence when relying on new problems with high 
vector similarity. To date, mature rule-based systems are quintessential for all com-
mercial QA systems, as the accumulation of corpora can avoid meaningless 
responses that compensate for insufficient domain knowledge with appropriate and 
specific human feedback.
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9.4.1.2 � Information Retrieval (IR)-Based QA Systems

The knowledge base for IR is typically an unstructured data source, obtained through 
data mining methods from websites, WordNet, and other sources, which differ from 
paired dialogue systems. The Question-Answering System based on Knowledge 
Base (KBQA) is a significant branch of IR-based QA systems. Its effectiveness 
depends on the size of the unstructured data knowledge base used for storage. This 
is closely related to the process of knowledge base construction, which aims to 
extract useful knowledge from large datasets. There are two primary methods for 
processing natural language: (1) property-based and (2) relation-based methods. 
Property refers to the definition or concept of one thing in an English-English dic-
tionary, used to explain another concept.

Relations refers to the relationship between two entities, where a Name Entity 
Recognition (NER) and idea from Ontology with Subject-Predicate-Object (SPO) 
triple must be used to extract relation. KBQA extension is ontology or knowledge 
graph (KG) in research. When entities are linked, the knowledge for one entity can 
be extracted according to questions during Natural Language Understanding 
(NLU). A typical KBQA with domain knowledge about ontology is shown in 
Fig. 9.32, its fundamental question is about who and what corresponds to name and 
relations entities (Cui et al. 2020).

9.4.1.3 � Neural Network-Based QA Systems

Neural Network structure in a QA-generated-based system is considered as machine 
brain imitated by human. Encoder-Decoder framework is a sequence-to-sequence 
model like RNN has natural memory recalling priority and context with an attention 
mechanism. Dialogue system has identical requirements to represent dialogue his-
tory and avoid meaningless responses to improve users’ experiences.

Deep learning frameworks such as TensorFlow and Pytorch, RNN is easy to 
implement for text generation as language model. Google proposed masked lan-
guage model to generate language representation called BERT), focusing on encoder 
part trained by magnitude unlabeled data in 2017. Neural network feeds data for 
training according to network advantages due to different NLP tasks in long 

Fig. 9.32  KBQA system demo
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sentences. BERT can solve such problem because it deals with 11 common NLP 
tasks initially. Language model pre-trained by magnitude data to understand com-
mon knowledge in NLP. Fine-tuned should be applied to training specific NLP tasks 
based on fundamental ability (Vaswani et al. 2017).

Open AI released another Transformer framework with unsupervised learning 
for pre-trained model directing decoder scheme based on GPT, Open AI GPT-2, and 
GPT-3 (Brown et al. 2020). GPT with masked self-attention focuses on known text 
so that the word preceding is predicated as different from BERT context self-
attention. GPT-3 can do inference and synonym replacement in addition to normal 
function for bilingual translation, text generation, and question-answer. It seems 
that BERT can handle more NLP tasks than GPT, but GPT text generation prowess 
for pre-trained model is widely used in many commercial QA systems and text 
summarization.

9.4.2 � Overview of Industrial QA Systems

An industrial QA system contains an automatic dialogue system assembling chatbot 
internal technologies. They have several back-end composited control system 
responses to equip them with the necessary knowledge. Meanwhile, QA system 
evaluation is proposed during the training period for language model performance 
(Chen et al. 2017) and on system design sufficient for both language generations.

Since the encoder-decoder framework is proposed as an end-to-end system and a 
sequential language model, RNN is a popular generated-based model in commer-
cial and academics. However, its applications are mainly focused on casual scenar-
ios at open domain without proposed question details. Thus, the response from a 
generated-based QA system is appropriate in pairs but lacks contents due to the 
data-driven model considered basic linguistic and excluded facts from knowledge 
base which are identical to traditional dialogue system with meaningless answers. A 
knowledge-grounded neural conversation model (Ghazvininejad et al. 2018) is pro-
posed based on the sequence-to-sequence RNN model and combined dialogue his-
tory with facts related to current contexts as shown in Fig. 9.33.

Microsoft extended its industrial conversation system to achieve useful conver-
sational applications on knowledge grounded with conversation history and external 
facts in 2018. It has significant progress in real situations according to conversation 
history in Dialog-Encoder, word, and contextually relevant facts in Facts Encoder to 
responses as compared with baseline seq2seq model.

The data-driven model of QA system divided source data into conversation data 
and non-conversational text which means the conversation pairs are used to training 
system in linguistic, on the other hand, non-conversational text is the knowledge 
base to be filled including real-world information related to system target usage.

The performance of versatility and scalability in open domain with external 
information knowledge combined with textual and structured data of QA system is 
shown in Table 9.1. Datasets like Wikipedia, IMDB, and TripAdvisor are used to 
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Fig. 9.33  Architecture of knowledge-grounded model

Table 9.1  Response from conversation model knowledge grounded (Ghazvininejad et al. 2018)

A: Looking forward to trying @pizzalibretto tonight! my expectations are high
B: Get the rocco salad. Can you eat calamari?
A: Anyone in Chi have a dentist office they recommend? I’m never going back to /.../ and 
would love a reco!
B: Really looved Ora in Wicker Park

A: I’m at California Academy of Sciences

B: Make sure you catch the show at the Planetarium. Tickets are usually limited
A: I’m at New Wave Cafe

B: Try to get to Dmitri’s for dinner. Their pan fried scallops and shrimp scampi are to die for
A: I just bought: [...] 4.3-in. portable GPS navigator for my wife, shh, don’t tell her
B: I heard this brand loses battery power

generate conversation with real-world information and include a recommendation 
system function.

After fact-based encoder, the response from this system becomes more meaning-
ful with related information and logical content. Based on this framework, 23 mil-
lion open domains Twitter conversations and 1.1 million Foursquare tips are used to 
achieve a significant improvement over the previous seq2seq model, and different 
from the traditional content filling which add the predefined content and fill the 
space in sentences.

It is well known that industrial QA systems are not limited to one model, many 
models have been assembled into a language model for end-to-end dialogue. In this 
architecture, the dialogue encoder is independent of fact encoder in the system, but 
it is complementary to fact encoder when applied because facts require information 
from dialogue history, especially to match context-dependent information bands. 
There is intentional information as part of the response. From implementation per-
spective, multi-task learning is used to handle factual, non-factual, and autoencoder 
tasks depending on the intended work of the system. Multi-task learning can 

9  Major NLP Applications



231

separate two encoders independently while training the model, and after training on 
the dialogue dataset, the factual encoder part uses IR to expand knowledge base for 
more meaningful answers. In a way, a fact encoder is like a memory network, which 
uses a store of relevant facts relevant to a particular problem. Once the query con-
tains a specific entity in the sentence, the sentence has been assigned a specific name 
entity, the name entity recognizes (NER) by matching keywords or linked entities, 
or even named entities and calculates its weight on input and dialogue history to 
generate a response. The original storage network model uses a BoW, but in this 
model, the encoder directly converts input set to a vector unlike storage net-
work model.

Since the system is a fully neural-based data-driven model, they created an end-
to-end RNN system using a traditional seq2seq model, including (LSTM) and Gate 
Recurrent Unit (GRU) model. For ensemble structures such as two-class RNNs, 
constructing a simple GRU is usually faster than LSTM model. The implementation 
of GRU means that the system does not have Transformer’s attention mechanism or 
other invariants for neural network computation.

9.4.2.1 � AliMe QA System

AliMe is a module of Taobao app commercial QA product. The answer consists of 
IR and sequence-to-sequence-based generation models (Qiu et al. 2017). The sys-
tem reorders candidate’s response and uses attention mechanism with context to 
select the best feedback to users. Using AliMe to replace online human customer 
service for most known questions become a trend since it released the first version. 
AliMe is a typical customer service QA system in e-commerce industry that answers 
millions of questions automatically per day. According to a survey of daily ques-
tions suggested by Taobao app users on shopping problems, statistical data revealed 
that except most are business questions, 5% of the remaining questions are chitchat. 
The 5% questions on genuine demands motivate AliMe to add a common sense 
open-domain chat function. It has satisfactory performance as both IR and 
generation-based system since the pre-trained seq2seq model is used twice for 
response generation and re-ranked with attention to a set of responses from IR with 
knowledge originate based and seq2seq previously generated. Figure 9.34 shows 
the Seq2Seq model with attention learning.

Since AliMe has two parts in generation that use different formats to obtain infor-
mation as abovementioned. IR-based models use a natural language word matching 
knowledge base, Seq2seq generative model, and a scoring model to re-score output 
responses as they are generated is word embeddings with vectors. The IR-based 
dataset consists of 9,164,834 QA pairs conversations by real customers from busi-
ness domain. Researchers used an inverted index to match these nine million con-
versations with input sentences containing the same words and used BM25 to 
measure the similarity between input sentences and the selected questions to obtain 
answers to the most similar questions as answers to input questions. Traditional 
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Fig. 9.34  Seq2Seq model with attention

IR-based systems avoid problems where the system cannot answer common sense-
type questions.

Microsoft used GRU to reduce computational power and response time span as 
well as AliMe selected RNN GRU to improve response efficiency. During optimiza-
tion, beam search in decoder assisted to identify the highest conditional probability 
to obtain optimizer response sentence within parameters. The performance showed 
that IR + generation + rerank approach by seq2seq model and mean probability 
scoring function evaluation obtained the highest score as compared with other 
methods.

9.4.2.2 � Xiao Ice QA System

Xiao Ice (Zhou et al. 2020) is an AI companion sentient chatbot with more than 660 
million users worldwide, which takes intelligent quotient (IQ) and emotional quo-
tient (EQ) in system design as shown in Fig. 9.36. It focused on chitchat compared 
with other commonly used QA systems. According to conversation-turns per ses-
sion (CPS) evaluation score, its grade is 23 higher than most chatbots. Figure 9.35 
shows a system architecture of Xiao Ice.

Xiao Ice exists on 11 social media platforms including WeChat, Tencent QQ, 
Weibo, and Facebook as an industrial application. It has equipped with two-way 
text-to-speech voice and can process text, images, voice, and video clips for 
message-based conversations. Also, its core chat function can distinguish common 
or specific domain topic chat types so that it can change topics easily and automati-
cally provide users with deeper domain knowledge. A dialogue manager is like an 
NLP general pipeline with dialogue management to path conversation states such as 
core chat contents for open or special domains to process data from different sources 
that are tractable. The Global State Tracker is a vector of Xiao Ice’s responses to 
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Fig. 9.36  RNN-based neural response generator

Fig. 9.35  Xiao Ice system architecture

analyze text strings for entities and empathy. It is vacant and gradually filled with 
rounds of conversations. Dialogue strategies are primarily designed for long-term 
users, based on their feedbacks to enhance interactions engagement, optimize per-
sonality with two or three levels of achievements. A trigger mechanism is to change 
a topic when the chatbot repeats or answers information that are always valid, or 
when a user’s feedback is mundane within three words. Once the user’s input has a 
predefined format, a skill selection part is activated to process different inputs. For 
example, images can be categorized into different task-oriented scenarios. If an 
image is food related, the user will be taken to a restaurant display, like a task 
completion by personal assistants in advising weather information or making reser-
vations, etc.
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Xiao Ice has a few KGs in the data layer as its original datasets come from popu-
lar forums such as Instagram in English or Douban in Chinese. These datasets are 
categorized as multiple topics with a small knowledge base as possible answers. It 
also follows the rules of updating the knowledge base through machine learning 
when new topics emerge. It is noted that not all new entities or topics are collected 
unless the entity is contextually relevant, or a topic has higher popularity or fresh-
ness in the news for rankings. User’s personal interests can be adjusted 
individually.

However, with so many features that can include the core part Empathetic 
Computing as an add-on, it is not a mandatory part of a full chatbot, but a functional 
and compelling feature to compete with the industry. The core of Xiao Ice is an 
RNN language model that creates open and special domain knowledge. Figures 9.36 
and 9.37 show an RNN-based neural response generator with examples of inconsis-
tent responses generated by seq2seq model in Xiao Ice QA system, respectively.

In general, response generation in AliMe uses seq2seq model to generate natural 
language and rerank the optimizer for user’s answer whereas Xiao Ice also has a 
candidate generator and candidate ranking list. For the generator, one is a sequential 
model trained by a pair of datasets learning the dialogue format, the other is query-
ing the knowledge graph to obtain entities for related information stored in knowl-
edge base. Candidate ranking includes semantic computation and Xiao Ice 
personality for answer optimization with IR, neural model, and KG selection.

9.4.2.3 � TransferTransfo Conversational Agents

A QA system consisted of traditional and current mainstream methods, the above 
systems used Seq2Seq model responsible for both language model and candidate 
response optimizer. Since neural network is a data-driven model, its performance 
relies on huge amount of big data. Transformer is a model architecture forgone 
recurrence but entrusted in attention mechanism entirely to draw global dependen-
cies between input and output based on attention mechanism.

Open AI GPT-2 TL architecture has an outstanding feature to include decoder 
part layers advantages for response generation. The masked self-attention imple-
mented on GPT-2 can generate the next word based on acquired information, under-
stand the known text, predict, or use experience to fill up the blank for next word to 
match with the whole article meaning.

Fig. 9.37  Examples of inconsistent responses generated using a seq2seq model
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GPT-2 fine-tune 40G pure text to learn natural language semantics, syntax with 
target usage, and suitable dataset scalability for specific NLP tasks. TransferTransfo 
(Wolf et al. 2018) is a GBP-2 variant using persona-chat dataset to fine-tune the 
original model, its generated utterance changes from long text to dialogue format. 
TransferTransfo prototype is a pre-trained model on document-level continuous 
sequence and paragraphs with a wide range of information. After that, fine-tune 
strengthen input representation and use a multi-task learning scheme for adjust-
ments. Every input token included word and position embedding during input 
representation.

For TL system dialogue example as in Fig. 9.38, personal-chat datasets in the 
real world can define users’ backgrounds and their interests as topics during com-
munications. The contexts contained are meaningful conversation that can reveal 
empirical improvements in discriminative language understanding tasks. Thus, 
Transformer is an evolutional system to imitate human behavior and promote neural 
network model.

Exercises
	 9.1.	 What is IR in NLP? State and explain why IR is vital for the implementation 

of NLP applications. Give two NLP applications to illustrate.
	 9.2.	 In terms of implementation technology of IR systems, what are the major dif-

ference between traditional and latest IR systems. Give one IR system imple-
mentation example to support your answer.

	 9.3.	 What is Discourse Segmentation? State and explain why Discourse 
Segmentation is critical for the implementation of IR systems.

	 9.4.	 What is Text Summarization (TS) in NLP? State and explain the relationship 
and differences between TS system and IR systems.

Fig. 9.38  Example dialogue from PERSONA-CHAT dataset

9.4 � Question-and-Answering Systems



236

	 9.5.	 What are two basic approaches of Text Summarization (TS)? Give examples 
of TS systems to discuss how they work by using these two approaches.

	 9.6.	 What are the major differences between Single vs. Multiple documentation 
summarization systems? State and explain briefly the related technologies 
being used in these TS systems.

	 9.7.	 What are the major characteristics of contemporary Text Summarization (TS) 
systems as compared with traditional TS systems in the past century? Give 
example(s) to support your answer.

	 9.8.	 What is a QA system in NLP? State and explain why QA system is critical to 
NLP. Give two examples to support your answer.

	 9.9.	 Choose any two industrial used QA systems and compare their pros and cons 
in terms of functionality and system performance.

	9.10.	 What is Transformer technology? State and explain how it can be used for the 
implementation of QA system. Give an example to support your answer.
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Chapter 10
Large Language Models (LLMs) 
and Generative Artificial Intelligence 
(GenAI)

10.1 � Introduction to LLM and GenAI

10.1.1 � What Is a Large Language Model (LLM)?

Large Language Models (LLMs) are innovative machine learning models designed 
to learn from textual data, understand language patterns such as grammar, syntax, 
context, semantics; and process by models’ sophisticated architectures to generate 
relevant coherent and contextual text; translate languages; summarize content and 
answer questions in NLP.

They are derived from advancements in neural networks, with the Transformer 
architecture now dominating the field, having surpassed recurrent neural networks 
(RNNs) and long short-term memory (LSTM) networks. However, RNNs have 
limitations to process long text sequences and often incur vanishing gradients prob-
lems to capture long-term dependencies in language (Choi et al. 2017).

The Transformer model proposed by Vaswani et al. (2017) has revolutionized 
language models’ training and deployment techniques. Transformers use self-
attention mechanisms to weigh the importance of different words in a sentence 
regardless of their positions to overcome RNNs’ and LSTMs’ limitations. This 
breakthrough has guided the subsequent foundational models’ innovations such as 
BERT and Generative Pretrained Transformers (GPT) in the LLM domain (Devlin 
et al. 2019).

For example, Generative Pretrained Transformer 3 (GPT-3) by OpenAI (OpenAI 
2024) was proposed by Brown et al. (2020). It generates human-like text ranging 
from essays composition to code snippets creation with over 175 billion parameters 
to capture intricate linguistic nuances than lesser models’ endeavors. Other promi-
nent LLMs such as BERT were proposed by Devlin et  al. (2019) for language 
understanding rather than generation, and its deep bidirectional training has achieved 
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exceptional results including question answering and sentence prediction tasks on 
various NLP benchmarks.

LLMs’ generalization abilities can be fine-tuned with minimal additional data 
once trained, making them versatile and applicable to a wide range of tasks across 
industries. Pretrained models such as BERT (BERT 2024) and GPT (ChatGPT 
2024) have significantly reduced the computational cost and development time for 
language-based AI systems to become central in today’s AI ecosystem (Kocijan and 
Djuric 2020).

Figure 10.1 shows a timeline of LLM evolution from RNNs, LSTM networks, 
Transformers, BERT, and GPT to ChatGPT.

10.1.2 � Understanding Generative Artificial 
Intelligence (GenAI)

GenAI refers to AI systems that can generate new content regardless of text, images, 
music, or other forms of media based on the learnt patterns from vast datasets. 
Unlike traditional AI systems perform classification, regression, or decision-making 
tasks based on given data, GenAI systems can create original outputs that resemble 
human-generated content.

Generative Adversarial Network (GAN) proposed by Goodfellow et al. (2014) is 
a foundational technique that underpinned many GenAI systems. It consists of two 
neural networks (1) a generator to create new data instances and (2) a discriminator 
to evaluate them against real-world data. This adversarial process complemented 

Fig. 10.1  Timeline for the evolution of LLMs (2010–2024)
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the generator to learn and create realistic new content outputs progressively 
(Creswell et  al. 2018). Figure  10.2 shows a GAN schematic diagram for image 
generation.

In NLP, GenAI manifests language models to generate human-like text. GPT-3 is 
a prime example of how GenAI produces coherent text that can engage in conversa-
tions, write stories, or even simulate different personas (Brown et al. 2020). It relies 
on vast amounts of training data and robust neural networks to generate content in 
alignment with human linguistic and cognitive patterns.

Generative AI (GenAI) extends beyond text generation. The DALL·E system 
developed by OpenAI, is a model that generates detailed images from textual 
descriptions by determining the intersection between vision and language. Similarly, 
tools like StyleGAN are used to generate highly realistic human faces, artworks, 
and other types of media, showcasing the creative potentiality of GenAI (Elgammal 
et al. 2017).

10.1.3 � The Intersection of LLM and GenAI

The convergence of LLMs and GenAI represents a fascinating area in modern AI, 
as LLMs provide the necessary linguistic and contextual understanding for genera-
tive models, enabling them to train on massive datasets and produce human-like text 
(Liu and Lapata 2019). These models serve as the foundation of many GenAI sys-
tems, particularly in natural language generation (NLG). GPT-3, for example, has 
demonstrated remarkable potential to interpret complex texts and summarize them 
to generate highly coherent and contextually relevant responses. This dual capabil-
ity reflects the synergy between LLMs and GenAI (Yang et al. 2019).

Multimodal models represent another area of intersection to combine textual, 
visual, and auditory data. Contrastive Language–Image Pretraining (CLIP) by 
OpenAI in addition to DALL·E, further emphasizes the growing intersection 
between language and vision. CLIP enables language models to interpret and 

Fig. 10.2  GAN for image generation

10.1  Introduction to LLM and GenAI



244

generate visual content based on textual descriptions, highlighting the potential of 
language models can extend beyond text-based tasks into vision (Lu and Tzu 2020).

10.1.4 � The Importance of LLMs in Modern AI

LLMs capabilities to generate coherent text, interpret complex language structures, 
and integrate contextual information are imperative to many modern AI-powered 
systems by their widespread applications, transformative impacts, and potentiality.

	1.	 Applications Across Industries: LLMs can automate complex tasks required by 
human expertise previously. In healthcare, LLMs are adopted to analyze medical 
texts, summarize patient records, and assist in drug discovery (Choi et al. 2017). 
In finance, they support sentiment analysis, fraud detection, and report automa-
tion. In legal, they support contract analysis and documents research for rapid 
summarization and interpretation. These applications have underscored the 
LLMs’ significance to enhance productivity and decision-making across differ-
ent domains (Raghavan et al. 2020).

	2.	 Conversational AI and Customer Service: Conversational AI systems such as 
chatbots and virtual assistants are visible LLMs applications. They adopt LLMs 
to understand, generate human-like responses in real-time conversations, and 
provide personalized assistance to users. Siri, Alexa, and Google Assistant are 
examples to interact with users in natural language (Brown et al. 2020).

	3.	 Enhancing Creativity and Content Generation: LLMs have driven a surge of AI-
enhanced creativity. In media and entertainment industries, OpenAI’s GPT mod-
els are adopted to generate articles, scripts, and stories by writers, marketers, and 
content creators to brainstorm ideas, generate drafts, and create engaging con-
tent (Ghazvinian et al. 2021).

	4.	 Multilingual and Cross-Cultural Communication: LLMs have advanced in 
machine translation for accurate and nuanced translations between languages 
(Zhang and Chai 2020). Google Translate and Microsoft Translator adopted 
LLMs to interpret and translate text in real time to remove language barriers. 
This has profound implications for business, diplomacy, education, and tourism.

	5.	 The Future of Human-Machine Interaction: LLMs have the potentiality of trans-
forming human-machine interaction. As they become sophisticated, they enable 
machines to engage in deeper, meaningful conversations with humans 
(Summerville et al. 2018). This can lead to intuitive interfaces interaction devel-
opment for AI systems accessible and user-friendly.

LLMs are not without challenges. The computational training cost and models 
deployment require vast amounts of data and processing power (Khan et al. 2021). 
They can also sometimes generate biased or harmful content and reflect them in the 
training data. Hence, ongoing research is focused on ethical and societal implica-
tions improvements (Blasi et al. 2021).
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10.2 � Foundations of LLMs

10.2.1 � Neural Network Architectures

Neural networks are the foundation of machine learning and NLP in LLMs develop-
ment to mimic the cognitive functions of the human brain. Artificial neural net-
works (ANNs) have layers of nodes (neurons), where each node in a layer is 
connected to nodes in the subsequent layer. These neural networks aim to process 
and interpret input data such as text, images, or sounds through multiple abstrac-
tion stages.

Multi-Layer Perceptron (MLP) is one of the earliest neural networks restrained 
by capturing temporal dependencies in data for language tasks. RNNs have extended 
loops advancement in the network to handle data sequences for NLP tasks such as 
text generation, translation, and sentiment analysis to understand context over time. 
However, they contend with learning long-term dependencies due to vanishing or 
exploding gradients and limited scalability for large-scale language modeling tasks 
(Hochreiter and Schmidhuber 1997).

To address these issues, LSTM networks and Gated Recurrent Units (GRUs) are 
developed. LSTMs introduced memory cells to store information over longer time 
spans, promoting the models’ capabilities to retain and adopt contextual informa-
tion from an earlier sequence (Hochreiter and Schmidhuber 1997). GRUs simplified 
LSTM by merging certain gates, making them computationally efficient while 
maintaining performance (Cho et  al. 2014). These architectures have formulated 
modern language models’ progression to exercise sequential data but are still 
restrained by scalability and parallelization.

Convolutional Neural Networks (CNNs) primarily used in computer vision tasks 
have accessed to NLP through sentence classification and character-level modeling 
applications. CNNs extracted hierarchical features from input data to capture local 
dependencies and promote efficiency (Kim 2014). However, their fixed-size recep-
tive fields have insufficient long-term dependencies recognition in text.

Despite the contributions of RNNs, LSTMs, GRUs, and CNNs, none of these 
architectures can prove ideal in handling large-scale sequential data or learning 
global dependencies across long sequences that are crucial for machine translation, 
summarization, and text generation tasks leading to the attention mechanisms and 
the Transformer architecture development.

10.2.2 � Attention Mechanisms

Attention mechanisms have revolutionized NLP by allowing models to selectively 
focus on relevant parts of the input sequence when making predictions. They weigh 
the importance of different input tokens dynamically and process longer texts 
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without disregarding earlier parts of the sequence to solve the limitations of earlier 
neural network models.

The seminal paper by Bahdanau et al. (2014) proposed the attention concept in 
machine translation. The encoder, in traditional sequence-to-sequence models, pro-
cesses the input sequence into a fixed-size representation, and the decoder generates 
the output sequence. It compels the entire input sequence to a fixed-size vector in 
dealing with long sentences complications, allowing the decoder “attends” to differ-
ent parts of the input sequence at each step during the decoding process to assign 
different weights on each input token. This dynamic approach has significantly 
improved machine translation and other NLP tasks.

It computes a weighted sum of all input vectors (hidden states), where these 
weights represent the importance of each token relative to others in the sequence. 
These weights are determined by a scoring function such as dot-product or additive 
attention to assess the similarity between the current decoder state and each encoder 
state (Luong et al. 2015). This method allowed models to capture more global infor-
mation in the sequence, adapt dynamically based on the context, mitigate the van-
ishing gradient problem, and handle long-range dependencies.

Self-attention is a variant of attention mechanisms to expand NLP models’ capa-
bilities. Unlike traditional attention mechanisms that required separate encoder and 
decoder layers, self-attention allowed each token in the sequence attends to every 
other token in the same sequence. This concept is crucial for building models that 
can parallelize computation to process long sequences (Vaswani et al. 2017).

10.2.3 � The Transformer Architecture

The Transformer architecture proposed by Vaswani et  al. (2017) has signified a 
fundamental shift in LLMs design by building upon the self-attention concept and 
discarded RNNs’ sequential processing nature for fully parallelizable training and 
inference. This shift is crucial for scaling up language models to handle larger data-
sets and longer sequences to models’ creation capable of human-like text genera-
tion. Figure 10.3 shows the original Transformer architecture.

The Transformer’s core component is a multi-head self-attention mechanism 
focusing on different parts of the input sequence simultaneously. Each attention 
head processes a different sequence representation to capture diverse aspects of the 
information. The outputs of all attention heads are then concatenated and traversed 
in a feed-forward network to generate the final output (Vaswani et al. 2017). This 
architecture can learn both local and global dependencies in text for translation, 
summarization, and text generation tasks.

It has other key components. The position encoding compensates for the lack of 
sequential structure as self-attention is order-agnostic. They inject information 
about the tokens order into the model to understand the relative position of words in 
a sentence (Vaswani et al. 2017). The residual connections and layer normalization 
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Fig. 10.3  Transformer architecture
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improve training stability and large models’ performance without vanishing gradi-
ent problem (He et al. 2016).

It also uses its attention’s stacked layers and feed-forward networks for hierar-
chical learning representations. This layered structure can capture abstract features 
rigorously as the data traverse the network to its robust language modeling 
capabilities.

The Transformer architecture has led to widespread adoption in NLP and beyond 
with variations and improvements over the years. It is the foundation for successful 
LLMs such as BERT, GPT, and T5 are the new benchmarks in various language tasks.

10.2.4 � Scaling Up: From BERT to GPT

The Transformer architecture has inspired researchers to explore the potentiality of 
scaling up language models to new heights. BERT and GPT are two landmark mod-
els to represent different approaches for language tasks.

BERT is a Transformer-based model proposed by Devlin et al. (2018) to under-
stand the contextual relationships between words in a sentence. Unlike previous 
models that processed text either from left to right or right to left, BERT proposed 
bidirectional training to learn from both directions simultaneously. This approach 
allowed BERT to capture abundant contextual information and improve perfor-
mance on a wide range of NLP tasks such as question answering and sentence clas-
sification (Devlin et al. 2018).

BERT’s training process consists of two major steps: pretraining and fine-tuning. 
During pretraining, the model is trained on a large corpus using two unsupervised 
tasks—masked language modeling (MLM) and next sentence prediction (NSP). In 
MLM, random words in a sentence are masked, and the model is tasked with pre-
dicting the missing words. NSP, on the other hand, trains the model to understand 
relationships between sentences. Once pretrained, BERT can be fine-tuned on spe-
cific downstream tasks using relatively small task-specific datasets making it highly 
versatile and efficient.

GPT is another proposed by Radford et al. (2021). It took a different approach by 
focusing on generative tasks. GPT is a unidirectional model that processed text from 
left to right effective for language generation tasks such as text completion, story 
generation, and dialogue systems. Unlike BERT, GPT is trained by an auto-
regressive approach to predict the next word in a sequence based on the previous 
words. This generative capability has become the foundation for GPT-2 and GPT-3 
models to demonstrate remarkable coherent and contextually text generation 
(Radford et al. 2021).

As researchers scaled up the size of GPT models, they discovered that larger 
models not only improve performance on language tasks but also exhibit emergent 
capabilities that are absent in smaller models. GPT-3, with its 175 billion parame-
ters, is one of the largest language models to perform a wide range of tasks with 
little to no task-specific training (Brown et al. 2020). This phenomenon, known as 
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few-shot learning, allows GPT-3 to generalize across tasks and generate human-like 
text with impressive fluency.

The scaling of language models from BERT to GPT-3 has uplifted the boundar-
ies of what was possible with AI and NLP. As these models continued to grow, they 
raised important questions about the ethical implications of large-scale language 
generation such as the potentiality of generating misinformation, reinforcing biases, 
and the environmental impact of training massive models (Bender et al. 2021).

10.3 � Key Players in the LLM Landscape

10.3.1 � ChatGPT by OpenAI (Current Version: GPT-4)

The GPT (ChatGPT 2024) series by OpenAI (OpenAI 2024) represented a break-
through in LLMs and NLP. These models are designed to generate human-like text 
by leveraging a Transformer-based architecture and vast datasets. Each generation 
from GPT-1 to recent GPT-4 has demonstrated increasing complexity, performance, 
and applicability levels.

10.3.1.1 � Evolution of GPT Models

GPT models have evolved from GPT-1 (117 M parameters), GPT-2 (1.5B parame-
ters), and GPT-3 (175B parameters) to GPT-4, with each iteration has improved in 
size, performance, and training strategies. They pretrained on a diverse corpus of 
internet data including articles, books, websites, and other content available for 
public, and fine-tuned for specific tasks to optimize accuracy.

10.3.1.2 � System Architecture

The GPT series’ core system architecture is based on the Transformer model by 
Vaswani et al. (2017). It consists of an encoder-decoder mechanism, though GPT 
used only the decoder part to focus on language generation tasks. The main compo-
nents of GPT’s architecture include:

	1.	 Multi-Head Attention Mechanism: This allowed the model to focus on different 
parts of a sentence simultaneously and improve its understanding of linguistic 
patterns, contexts, and relationships within the input text.

	2.	 Layer Normalization and Residual Connections: These techniques stabilized the 
training process to ensure that the gradient can traverse the network smoothly 
and reduce vanishing or exploding gradients problems in deeper layers.
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	3.	 Feed-Forward Neural Networks: Each transformer block contains a feed-forward 
neural network (FFN) that processed the output of the multi-head attention to 
capture nonlinear dependencies.

	4.	 Positional Encoding: Since transformers lack inherent sequence awareness, 
GPT is incorporated with positional encodings to understand word order within 
input sequences.

10.3.1.3 � Applications and Usage

GPT models undergo a two-stage training process: pretraining and fine-tuning. It 
learnt language representations from a large corpus by predicting the next token in 
a sequence to pre-train the model and fine-tune it with task-specific datasets to spe-
cialize in targeted applications such as answering questions, summarizing text, or 
generating creative content.

The GPT series have revolutionized NLP for seamless interaction through chat-
bots, translation, creative writing, and more. However, bias mitigation, computa-
tional costs, and responsible deployment are areas for research and development.

10.3.2 � Pathways Language Model (PaLM) by Google 
DeepMind (Current Version: PaLM 2)

The Pathways Language Model (PaLM) by Google DeepMind (Google 2024) is a 
next-generation LLM. It is built on Google’s Pathways framework to demonstrate 
exceptional performance across various tasks such as reasoning, natural language 
understanding, translation, question answering, and code generation. PaLM empha-
sized on scale and efficiency leveraging billions of parameters to overcome earlier 
models’ limitations.

PaLM is introduced as a large-scale multitask learning solution to improve 
energy efficiency, its Pathways framework enabled a single model to process mul-
tiple tasks simultaneously instead of being restrained by a narrow domain. The 
model incorporated sparsity and dense training techniques to focus on scaling and 
balance between performance and resources consumption.

It is trained on a massive, multilingual corpus containing diverse sources from 
books, Wikipedia, online articles, and code repositories to handle complex linguis-
tic nuances across languages and specialized domains including programming.

10.3.2.1 � System Architecture

PaLM’s architecture is built on the Transformer model but with Pathways approach 
extension. The main components include:
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	1.	 Sparse Activation Mechanism: Unlike dense models where all neurons are acti-
vated for every input, PaLM uses sparsity through Mixture of Experts (MoE) 
layers. These layers selectively activate only a subset of neurons to scale billions 
of parameters without increasing computational costs.

	2.	 Multitask Pathways Framework: The Pathways architecture allowed to route 
data dynamically through network’s specific parts based on the task at hand so 
that the model is adaptive to perform diverse tasks such as text generation, sum-
marization, and translation efficiently.

	3.	 Multi-Head Attention and Positional Encoding: Like other Transformer models, 
PaLM used multi-head self-attention to understand the relationships between 
tokens in a sequence. Positional encodings provided the model to track word 
order and context for accurate text generation.

	4.	 Layer Normalization and Residual Connections: These features maintain the 
model’s stability during training to facilitate convergence in large networks with 
many layers.

10.3.2.2 � Applications and Usage

PaLM training involves supervised and self-supervised learning on massive datasets 
to generalize across languages, domains, and tasks, its Pathways framework allowed 
the model to scale for high-stakes applications like medical diagnosis, complex cod-
ing problems, and advanced conversational agents.

PaLM has progressed scalable, multitask AI and aligned with Google DeepMind’s 
vision to create efficient, versatile models for broad ranges of real-world solutions. 
However, challenges related to bias, interpretability, and ethical deployment remain 
ongoing research.

10.3.3 � Large Language Model Meta AI (LLaMA) by Meta 
(Current Version: LLaMA 2)

The Large Language Model Meta AI (LLaMA) (LLaMa 2024) developed by Meta 
(Meta 2024) is an advanced LLM to provide efficient and scalable natural language 
processing capabilities.

LLaMA has flexible parameter sizes ranging from 7B to 65B for task require-
ments and resources. One of its motivations is to develop a model that can match or 
exceed performance like GPT-3’s with lower computational overheads cost. Meta 
encourages open research and analysis in NLP and AI ethics by making the models 
accessible for non-commercial use.
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10.3.3.1 � System Architecture

LLaMA’s architecture is based on the Transformer model by Vaswani et al. (2017) 
but incorporated several optimizations for training efficiency. LLaMA models focus 
on architectural efficiency showing that larger datasets and well-tuned training strat-
egies can be achieved with fewer parameters. The main components include:

	1.	 Tokenization and Positional Encoding: It uses Byte pair encoding (BPE) to split 
input text into tokens, improve the handling of diverse languages, and Positional 
Encoding to recognize word order within input sequences.

	2.	 Multi-Head Self-Attention Mechanism: This core Transformer component cap-
tures the relationships across words and phrases within a context window essen-
tial for coherent and contextually appropriate text generation.

	3.	 Layer Normalization and Residual Connections: These architectural features 
stabilize training to ensure the model’s deep layers maintain effective in large 
networks.

	4.	 Training on Diverse Datasets: The model is pretrained on a diverse corpus 
including books, research articles, and open-source web content for generaliza-
tion across multiple languages and domains.

10.3.3.2 � Applications and Usage

Meta designed LLaMA model for efficiency and accessibility by leveraging data 
quality with better pretraining strategies than model size increment excessively, 
making it viable to operate on modest hardware, and foster research in fine-tuning, 
transfer learning, and multilingual NLP.

LLaMA represented an upsurge in scalable, efficient, and open-access 
AI. However, like LLMs, it also has bias, misuse of information, and responsible 
deployment challenges in real-world applications.

10.3.4 � Claude by Anthropic (Current Version: Claude 2)

Claude (Claude 2024), developed by Anthropic (Anthropic 2024) is an LLM 
designed for safety, alignment, and usability. The model is named after Prof. Claude 
Shannon (1916–2001), a pioneer in information theory. Claude represents 
Anthropic’s commitment to prioritize ethical considerations in its AI systems design.

Claude is built to perform a variety of NLP tasks including conversational AI, 
text summarization, translation, question answering, and content generation. What 
distinguished Claude from other models is its emphasis on alignment with human 
intent through reinforcement learning from human feedback (RLHF). Anthropic 
leverages Constitutional AI is an innovative approach where the model can learn 
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and adhere to safety and fairness principles without constant human supervision to 
minimize harmful behaviors and improve performance.

10.3.4.1 � System Architecture

Claude is based on a Transformer architecture like other LLMs but incorporates 
unique enhancements to reflect Anthropic’s focuses. The main components include:

	1.	 Transformer Layers with Self-Attention: Claude uses multi-head self-attention 
mechanisms to process text sequences on modeling complex relationships within 
the language and generate coherent responses.

	2.	 Constitutional AI Framework: This approach embeds ethical constraints into the 
model’s learning process. Claude is trained using a set of guiding principles (a 
“constitution”) to evaluate and correct responses without extensive post-
deployment modification.

	3.	 RLHF: Claude undergoes fine-tuning through human feedback are in alignment 
with user intent to avoid toxic or biased content generation, making it reliable for 
tasks where safety is critical, i.e., customer service or education.

	4.	 Layer Normalization and Residual Connections: These are standard components 
in Transformer models to maintain stability during training for smoother gradi-
ents and performance consistency across deeper networks.

10.3.4.2 � Applications and Usage

Claude is trained on large-scale, multi-domain datasets like other LLMs, but empha-
sis on filtering harmful or biased content, its architecture is optimized for safety and 
adaptability, making it suitable for applications in business, education, and public 
discourse. Claude exemplifies a forward-thinking approach to responsible LLM 
design and prioritizes ethical principles in high-quality generative AI systems 
development.

10.3.5 � ERNIE 3.0 Titan by Baidu

ERNIE 3.0 Titan (Ernie 2024) developed by Baidu (Baidu 2024) is a flagship LLM 
in natural language understanding, generation, and machine translation. It is one 
of the largest models in China boasting 260 billion parameters competitive with 
other global LLMs such as GPT-4. It attempts to progress pretraining techniques 
and knowledge graphs integration.

ERNIE 3.0 Titan is designed to outperform traditional language models by com-
bining auto-regressive and auto-encoding architectures to capture the structure and 
meaning of language. It uses multilingual capabilities in English and Chinese 
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benchmarks to provide applications in education, finance, and customer service 
industries.

10.3.5.1 � System Architecture

ERNIE 3.0 Titan’s architecture is based on the Transformer framework with several 
innovations to improve performance and efficiency. The main components include:

	1.	 Hybrid Model Design: Unlike many LLMs that follow either an auto-regressive 
(like GPT) or auto-encoding (like BERT) architecture, ERNIE 3.0 Titan com-
bines both approaches. This enables it to handle a broader range of tasks, includ-
ing generation and understanding tasks.

	2.	 Knowledge-Enhanced Pretraining: One of its defining features is the integration 
of knowledge graphs, which provide structural information to enhance semantic 
understanding. This is particularly useful for tasks like machine translation and 
question answering.

	3.	 Layer Normalization and Residual Connections: Like other Transformer-based 
models, ERNIE 3.0 Titan uses layer normalization and residual connections to 
stabilize training and facilitate gradient propagation across multiple layers.

	4.	 Parallel Training: The model adopts progressive distributed training techniques 
across multiple GPUs, allowing it to scale effectively without sacrificing speed 
or accuracy.

10.3.5.2 � Applications and Usage

ERNIE 3.0 Titan is optimized for tasks such as text summarization, machine transla-
tion, knowledge-based question answering, and chatbots. It has multilingual envi-
ronments to provide solutions in a variety of services including search engines, 
virtual assistants, and enterprise AI platforms. It is a dynamic tool for business and 
research applications beyond traditional NLP tasks in domains that require sophis-
ticated reasoning and multilingual understanding.

10.4 � Applications of LLMs in GenAI

GenAI has significant advancements due to LLMs development and deployment. 
This section will explore its key LLMs applications to creative writing, content 
generation, language translation, conversational AI, chatbots, and text 
summarization.
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10.4.1 � Creative Writing and Content Generation

Creative writing and content generation are some of the prominent LLMs applica-
tions in GenAI, i.e., GPT-3 and its successors have demonstrated remarkable profi-
ciency in producing high-quality creative text ranging from poetry, short stories to 
full-length novels. These models have been trained on vast corpora to understand 
diverse genres and styles for creative output (Brown et al. 2020). Figure 10.4 shows 
a mind map automatically generated by ChatGPT-4o on how LLMs are used on 
content generation.

LLMs facilitate the content creation process by providing writers with prompts, 
completing sentences, or drafting the entire text sections. Authors and content cre-
ators can use these models to overcome writer’s block, brainstorm new ideas, or 
generate large content volumes rapidly. For instance, OpenAI’s GPT-3 has been 
used to co-author blog posts and even screenplays. This text generation capability 

Fig. 10.4  Mind map of how LLMs used for content generation
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adheres to various tones and themes for LLMs facilitation in diverse creative indus-
tries (Ghazvinian et al. 2021).

It also expands avenues for interactive storytelling, where users can collaborate 
with AI to co-create stories in real time, making the creative process a dynamic 
engagement by responding to user input and progressing the narrative. However, 
challenges persist to maintain narrative coherence over extended text, and the gen-
erated content is aligned with ethical standards (Bender et al. 2021).

LLMs are used for automated content creation areas such as digital marketing 
where personalized product descriptions and advertisements are generated based on 
customers’ preferences. These applications streamline content production, reduce 
costs, and improve efficiency in content-rich industries (Khan et al. 2021).

10.4.2 � Language Translation

Language translation has been revolutionized by LLMs to translate text between 
numerous languages with high accuracy and fluency. Traditional machine transla-
tion models relied on rule-based systems or statistical models often resulted in rigid 
and unnatural translations. LLMs, on the other hand, leverage their vast training 
data and attention mechanisms to produce translations that are contextually appro-
priate and grammatically sound (Vaswani et al. 2017).

Transformer-based models, i.e., Google’s BERT and OpenAI’s GPT are break-
throughs in this domain using attention mechanisms to focus on relevant parts of the 
input text when generating translations to capture the nuances of language including 
idiomatic expressions, cultural references, and subtle shifts in tone often missed by 
earlier systems (Brown et al. 2020).

LLMs allow multilingual models to perform translation tasks across a wide 
range of languages without the separation of each language pair. This has significant 
implications for global communication and information access. For example, 
Google Translate is benefited by these models to provide users with higher transla-
tions accuracy across diverse languages. Additionally, LLMs facilitate real-time 
translation like video conferencing and cross-border customer service to remove 
language barriers in global business and collaboration (Khan et al. 2021).

However, challenges persist to languages translation with limited available train-
ing data. Efforts are being made to train LLMs on multilingual datasets to include 
underrepresented languages, but progress is still required for equitable access to 
high-quality machine translation across all linguistic communities (Vaswani 
et al. 2017).

Figure 10.5 shows the performance comparison of LLM-based models in trans-
lating different languages to earlier models, i.e., statistical and neural net-
work models.
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Fig. 10.5  Performance comparison of LLM-based models in translating different languages to 
earlier models such as statistical and neural network models

10.4.3 � Conversational AI and Chatbots

Conversational AI powered by LLMs has transformed to natural, coherent, and con-
textually aware interactions between humans and machines in recent years. LLMs 
such as GPT-3, Google’s LaMDA, and Facebook’s BlenderBot have set new stan-
dards for chatbot capabilities for deeper understanding and more fluid conversations 
(Brown et al. 2020).

LLM-powered chatbots in customer service have become indispensable tools to 
handle a wide range of queries, troubleshoot issues, and provide information in real 
time. These chatbots use LLMs to understand the intent behind user messages for 
more personalized and accurate responses compared to rule-based chatbots. They 
also allow systems to engage in follow-up questions, handle ambiguous queries, and 
maintain context over long interactions (Summerville et al. 2018).

The versatility of LLMs in conversational AI extends beyond customer service. 
These models are now used at Siri and Google Assistant, therapy bots, and even as 
companion’s applications. Conversational agent’s LLMs in therapy and well-being 
contexts offer emotional support by empathetic responses, mindfulness practices, or 
motivational dialogue (Bender et al. 2021).

Despite these advancements, ethical concerns persist. The possibility that the 
models can generate bias or inappropriate responses is a significant issue as they 
learn from large datasets that may contain such content. To ensure transparency, 
fairness, and safety in conversational AI is a critical challenge for developers must 
address moving forward (Ghazvinian et al. 2021).
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Figure 10.6 shows a mind map automatically generated by ChatGPT-4.0, illus-
trating a typical conversational AI model including input text, LLM processing, and 
response generation.

10.4.4 � Text Summarization and Content Curation

Text summarization is another domain where LLMs have proven to be highly effec-
tive. LLMs enable users to quickly digest information by condensing lengthy docu-
ments, articles, or reports into concise summaries without sacrificing important 
content. The ability to generate both extractive (selecting key sentences from the 
text) and abstractive (creating new sentences that summarize the content) 

Fig. 10.6  A typical conversational AI model, showing input text, LLM processing, and response 
generation
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summaries makes LLMs particularly robust in this application (Liu and Lapata 
2019). Figure 10.7 shows a mind map automatically generated by ChatGPT-4.0 on 
the visual representation of text summarization using LLMs.

Text summarization tools powered by LLMs in the news and media industries 
facilitate editors and journalists by providing summaries of long articles, news 
briefs, or even scientific papers instantaneously. They enhance productivity by auto-
mating the initial steps on content curation and summarization for professionals to 
focus on in-depth analysis and reporting (Raghavan et al. 2020).

Content curation is closely related to text summarization as LLMs are to filter 
and organize vast amounts of information. Platforms that aggregate news or research 
data use LLMs to automatically curate relevant articles, reports, or posts based on 
user’s preferences. This capability also exists in recommendation systems which 

Fig. 10.7  A visual representation of text summarization using LLMs
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suggests that content is based on past behavior or stated interests to improve user 
engagement and personalization (Zhang and Chai 2020).

The challenge on text summarization is to ensure that the generated summaries 
can accurately reflect the original text’s meaning on complex or technical docu-
ments. While LLMs can handle general summarization tasks well, domain-specific 
content may require additional training or fine-tuning for accuracy (Khan et al. 2021).

10.5 � Ethical Considerations and Challenges

The advent of LLMs and GenAI has revolutionized various industries, but the rapid 
proliferation of these technologies also raised substantial ethical challenges. This 
section delves into the key ethical issues including bias detection and mitigation, 
privacy and data security, the spread of misinformation, and the establishment of 
ethical guidelines for responsible LLM deployment.

10.5.1 � Detecting and Mitigating Bias

LLMs train on vast datasets from a multitude of sources across the Internet often 
including biased, discriminatory, or harmful content leading to LLMs can inadver-
tently generate outputs to reflect bias and ethical concerns.

10.5.1.1 � Origins of Bias in LLMs

The bias in LLMs can arise at multiple stages including data collection, algorithmic 
design, and human oversight. Data collection is often the original source. LLMs are 
trained on data scraped from the Internet including social media posts, news arti-
cles, and blogs, many of which may contain gender, racial, and cultural biases 
(Bender et al. 2021). For instance, if a model is trained on a dataset that overrepre-
sents a particular viewpoint, it may marginalize the perspectives of other viewpoints 
leading to biased outputs.

Algorithmic bias is another critical issue. Even if the training data is relatively 
balanced, the design of machine learning algorithms can skew results. For instance, 
the use of certain optimization techniques can reinforce existing biases in the data 
to prioritize popular or majority viewpoints (Buolamwini and Gebru 2018). Human 
oversight during fine-tuning and LLMs development may intensify the potentiality 
of unintentional bias especially if the team lacks diversity.

10  Large Language Models (LLMs) and Generative Artificial Intelligence (GenAI)



261

10.5.1.2 � Mitigation Strategies

Mitigating bias in LLMs is a multi-faceted endeavor. It begins with conscientious 
curation of training data. Companies such as OpenAI and Google have incorporated 
more diverse datasets to balance different viewpoints with filters to exclude explic-
itly harmful or biased content (Solaiman et al. 2019).

Another approach involves algorithmic fairness techniques such as adversarial 
training, where a secondary model is used to detect and correct biased outputs from 
the primary model (Zhao et al. 2019). Post-processing techniques include debiasing 
can also modify or flag biased outputs after generation.

Human-in-the-loop systems are increasingly used to mitigate bias where human 
experts review and adjust outputs for fairness, accuracy, and inclusiveness. Despite 
these efforts, mitigating bias persists particularly given the subjective nature of fair-
ness across different cultures and societies.

10.5.2 � Privacy and Data Security

LLMs raise significant privacy and data security concerns about how they collect, 
store, and use data. Since these models are trained on vast data amounts including 
personal information from public and sometimes private sources, questions about 
consent, ownership, and security naturally arise.

10.5.2.1 � Data Collection and Consent

LLMs have fundamental issues in the ways they collect data. GPT-4 and BERT 
models are trained on publicly available data from the internet, but much of this 
information are not explicitly provided for training AI models (Hoffmann et  al. 
2022). Users whose data information is included in these datasets often have no 
knowledge of them being used without consent.

The regulatory frameworks such as the General Data Protection Regulation 
(GDPR) in Europe mandate that individuals have control over their personal data 
and how they are used. LLMs’ deployment, particularly when training datasets with 
personal information must navigate to these regulations accordingly. However, data 
anonymity to comply with privacy laws is often insufficient as LLMs can some-
times “memorize” specific pieces of information and unintentionally reproduce sen-
sitive data during inference (Carlini et al. 2021).
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10.5.2.2 � Data Security Risks

LLMs pose security risks especially when integrated into platforms that have access 
to sensitive data such as customer service bots or healthcare applications. These 
models can be targets by adversarial attacks designed to manipulate outputs or 
extract confidential information (Brown et al. 2020).

Model inversion attacks are an example where an attacker uses the model’s out-
put to reverse-engineer sensitive data for training. Data protection measures for sys-
tems that use LLMs include encryption and regular audits are critical. Organizations 
that deploy LLMs must also use privacy-preserving techniques like differential pri-
vacy which adds noise to the data to prevent individual data points distinguishable 
(Dwork 2008).

10.5.3 � The Spread of Misinformation

The spread of misinformation is one of the most pressing ethical challenges associ-
ated with LLMs. Since these models generate text based on patterns learnt from 
data, they can produce convincing yet factually incorrect or misleading information. 
This poses significant risks, particularly when LLMs are used in high-stakes 
domains such as journalism, politics, and healthcare.

10.5.3.1 � Challenges of Verifying Information

Unlike humans, LLMs lack an inherent understanding of truth or facts. For exam-
ple, GPT-3 has been shown to generate plausible-sounding medical advice that 
could be harmful if followed without proper verification (Marcus and Davis 2020). 
Additionally, LLMs can generate content at scale, which may inadvertently contrib-
ute to the proliferation of fake news, conspiracy theories, and propaganda (Zellers 
et al. 2019).

Verifying information generated by LLMs is particularly challenging because 
they do not provide sources for their outputs. This “black-box” nature makes it dif-
ficult for users to assess whether the information is trustworthy, thereby increasing 
the risk of misinformation.

10.5.3.2 � Combating Misinformation

Addressing misinformation generated by LLMs requires both technological and 
regulatory solutions. Researchers are developing models that can cite sources and 
distinguish between factual and opinion-based content. For instance, Google’s T5 
model is designed to improve factuality in text generation (Raffel et  al. 2020). 
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Fact-checking systems integrated with LLMs can also flag or correct misleading 
outputs in real time.

Additionally, governments and organizations are exploring policies to hold AI 
developers accountable for the spread of misinformation. These measures include 
imposing fines on platforms that allow unchecked AI-generated misinformation to 
disseminate and developing transparency standards for AI-generated content. 
Transparency initiatives would require LLM-generated content to be clearly labeled, 
allowing users to scrutinize the information more effectively.

10.5.4 � Ethical Guidelines for LLM Deployment

Ethical guidelines for deployment are critical as LLMs become increasingly inte-
grated into the society. They should address the abovementioned ethical challenges 
to ensure that LLMs are developed for benefits and minimize harm.

10.5.4.1 � Principles of Responsible AI

There are several organizations including the European Union and major tech com-
panies such as Google and Microsoft have published ethical principles for AI. These 
principles typically include guidelines for fairness, transparency, accountability, 
and human oversight (Floridi and Cowls 2019). A central principle is to ensure that 
LLMs are designed to respect human rights including privacy, freedom from dis-
crimination, and access to reliable information.

10.5.4.2 � Human Oversight and Accountability

Human oversight is critical in LLM deployment particularly in sensitive domains 
such as healthcare, law, and education. Human experts are involved to review, con-
trol LLMs outputs to mitigate bias, misinformation, and privacy violations risks 
(Whittlestone et al. 2019). The human-in-the-loop (HITL) systems principle ensures 
that LLMs serve as tools for human decision-making rather than autonomous sys-
tems that operate without oversight.

Accountability is another key aspect of ethical LLM deployment. Developers and 
organizations that deploy LLMs should be held accountable for usage consequences. 
This includes establishing clear reporting and addressing harms measures caused by 
LLMs and providing users with recourse when AI-generated content leads to nega-
tive outcomes (Jobin et al. 2019).
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10.5.4.3 � Transparency and Explainability

Transparency in AI refers to making LLMs’ processes, data, and decision-making 
mechanisms clear and understandable to users. This is particularly important where 
outputs affect human rights such as legal judgments or medical advice. However, 
one of the trials is that they are often opaque, meaning users cannot easily trace how 
a particular output is generated (Lipton 2018).

LLMs’ explainability is an emerging research focus on making AI systems inter-
pretable. Techniques such as attention mechanisms highlight which parts of the 
input data are influential in generating a particular output is promising to improve 
transparency. However, it remains a conundrum due to their complex architecture.

Hence, detect and mitigate bias, safeguard privacy and data security, withstand 
misinformation, and establish ethical guidelines for deployment are necessary plus 
ongoing research, regulation, and public discourse will be critical to navigate these 
challenges effectively.

10.6 � Future Outlook and Research

LLMs and GenAI have been instrumental in driving a wide range of applications in 
recent years. As AI continues to evolve, it brings with immense possibilities and 
significant challenges. This section explores the current trends in LLMs and GenAI, 
the creative potential of AI, the ethical considerations of LLMs along with key 
research and development.

10.6.1 � Current Trends in LLMs and GenAI

LLMs and GenAI advancements have led to transformative applications across vari-
ous industries. However, it is equally important to examine the underlying trends 
driving this progress.

10.6.1.1 � Multimodal Models

Multimodal models are designed to integrate text, images, audio, video, and prog-
ress beyond just textual data. Projects such as OpenAI’s GPT-4 and Google’s 
Pathways exemplify how LLMs are evolving to handle a broader range of inputs 
and outputs (Ramesh et al. 2021). These capabilities allow LLMs to tackle complex 
real-world problems such as generating images from text prompts or interpreting 
visual and audio cues with written language.
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10.6.1.2 � Increasing Model Sizes and Capabilities

LLMs have advanced significantly from GPT-2 with 1.5 billion parameters to GPT-4 
with hundreds of billions of parameters. However, this rapid growth raises sustain-
ability concerns due to the high energy consumption and environmental impact of 
training these models (Patterson et al. 2021). The current research is focused on 
improving efficiency in terms of computation and energy usage.

10.6.1.3 � Specialized LLMs for Domain-Specific Applications

Specialized LLMs are domain-specific models that can be fine-tuned for industries 
such as medicine, law, or finance. For example, BioGPT is designed to process bio-
medical data (Luo et al. 2022), demonstrating how LLMs can be tailored to solve 
specialized tasks in expert fields more efficiently.

10.6.1.4 � Few-Shot and Zero-Shot Learning

Few-shot and zero-shot learning refer to LLMs’ capabilities to perform tasks with 
minimal or no task-specific data. These have advanced significantly in recent mod-
els with profound implications for AI’s flexibility and adaptability (Brown et  al. 
2020). These models no longer require massive datasets for every new task; instead, 
they generalize learning across various tasks and reduce the cost and time to deploy 
AI in new applications. Figure 10.8 illustrates the relationship between LLM model 
sizes (e.g., parameter count) and performance across various tasks.

10.6.2 � The Future of Creativity in AI

Generative AI has exceeded traditional creativity notions to produce content rang-
ing from visual art, poetry, and music, to even full-length novels. AI’s creativity will 
likely expand in the future, but it raises opportunities and existential questions about 
the nature of human creativity.

10.6.2.1 � Collaborative Creativity

Collaborative creativity has become one of the most promising AI’s creative arena. 
OpenAI’s DALL·E, DeepMind’s AlphaFold, and AI music generators have already 
demonstrated that AI can serve as a creative partner rather than merely a tool 
(Ramesh et al. 2021). It is plausible that writers, artists, and musicians will regularly 
co-create with AI to augment their work beyond simple automation in the future. 

10.6  Future Outlook and Research



266

Fig. 10.8  A graph showing the relationship between LLM model size (e.g., parameter count) and 
their performance on various tasks

This could democratize access to creative expression for individuals to produce 
high-quality creative work without traditional artistic training.

10.6.2.2 � The Blurring Line Between Human and Machine Creativity

Since AI is increasingly proficient in generating human-like content, the distinction 
between human-created and AI-generated works may become blurred. AI-generated 
content has entered the mainstream of digital art and design. The rise of NFTs (Non-
Fungible Tokens) has AI-generated artwork sold for millions of dollars, further 
complicates the discussion about what constitutes authentic creativity (Bommasani 
et al. 2021).

10.6.2.3 � Challenges of Authorship and Ownership

Authorship and intellectual property are a critical issue with AI-driven creativity. If 
a machine generates a piece of art or music, who owns it? The current legal frame-
works are not well equipped to handle these complexities leading to new conun-
drums for copyright laws. Future discussions around creativity in AI will need to 
establish clear guidelines on how to attribute authorship and handle intellectual 
property when humans and machines work together (Floridi and Cowls 2019).
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10.6.3 � The Role of LLMs in AI Ethics

LLMs thrive in AI are inclined to be the spotlight for AI ethics discussions on bias, 
misinformation, privacy, and accountability.

10.6.3.1 � Addressing Bias in LLMs

LLMs train on large datasets derived from internet sources often have incorporated 
racial, gender, ideological biases, and among others in their training data. The cur-
rent research and development are actively working to mitigate these biases by fil-
tering data, training ethical AI, and implementing bias detection tools (Metzinger 
2022). However, eliminating bias entirely seems to be elusive. Future research will 
need to focus on creating more transparent and explainable models for continuous 
monitoring and corrections.

10.6.3.2 � AI in Decision-Making

LLMs are increasingly involved in decision-making process, whether through chat-
bots in customer service or algorithms to assess loan applications or job candidates. 
These raise ethical questions about accountability. Who is responsible if an LLM 
makes a biased or erroneous decision? There is also an over-reliance risk on these 
systems potentially leading to decisions that may not align with human values. 
Establishing ethical guidelines and regulatory frameworks that govern LLMs 
deployment in decision-making roles will be a critical step for the future (Floridi 
and Cowls 2019).

10.6.3.3 � Combating Misinformation

LLMs’ capabilities to generate convincing and coherent text can have malicious 
effects of spreading misinformation and creating fake news. There are concerns 
about how generative models can be misused to create deepfakes or misleading 
articles indistinguishable from legitimate content. Withstanding misinformation is 
an acute ethical issue that will require model transparency advancements and stron-
ger detection systems to flag misleading content (Thoppilan et al. 2021).
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10.6.3.4 � Privacy

LLMs operate on vast amounts of sensitive personal data present significant ethical 
concerns. Future LLMs will need to adopt more stringent data privacy measures, 
potentially incorporating decentralized training methods that do not depend on large 
and centralized datasets vulnerable to data breaches (Metzinger 2022).

10.6.4 � The Path Forward: Research and Development

Explore model interpretability, efficiency, ethical frameworks, and new applications 
are some of the key research and development to shape the future of LLMs 
and GenAI.

10.6.4.1 � Model Interpretability and Explainability

Dynamic LLMs can generate complex outputs for interpretability and explainability 
improvements. The current research on LLMs is more transparent for users to inter-
pret the formation of a particular output (Gunning and Aha 2019) in addition to 
developing models that can offer insights into decision-making processes without 
performance concession.

10.6.4.2 � Energy Efficiency

Training LLMs are highly resource-intensive and energy-efficient initiatives. A 
competent models’ development and sustainable AI practices implementation are 
prime focuses for future research. These include greater efficiency algorithms opti-
mization, lesser specialized models, and computational power to sustain high per-
formance (Patterson et al. 2021).

Figures 10.9 and 10.10 show the energy consumption and carbon footprint of 
GPT-3 and GPT-4 with environmental impact reduction strategies. They indicated 
that GPT-4 consumed energy at 4560 megawatt-hours (MWh), nearly four times 
more than GPT-3’s at 1287 MWh resulting in 2100 tons carbon footprint compared 
to GPT-3’s 552 tons. This intensified the environmental costs of dynamic models’ 
development.

To mitigate this impact, several strategies offer substantial reductions. The most 
effective solution is to use renewable energy which can cut emissions by 40%. This 
approach directly undertakes carbon footprint consumption during training. Other 
techniques include optimizing model efficiency by efficient algorithms (30% reduc-
tion), data pruning (20% reduction), and model compression (25% reduction). They 
streamline processes and reduce the computational workload without performance 
concession.
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Fig. 10.9  Energy consumption and carbon footprint of GPT3 vs. GPT4

Fig. 10.10  Strategies for reducing energy consumption and carbon footprint
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Dynamic models such as GPT-4 deliver remarkable advancements, but carbon 
footprint must be addressed. Hence, renewable energy, algorithmic efficiency, and 
model optimization are the combined strategies for continual innovation and 
sustainability.

10.6.4.3 � Exploring New Applications

The swift versatility of LLMs means that new applications constantly emerged. 
Healthcare, education, and entertainment are among industries that can benefit con-
siderably. For example, in healthcare it can be used for accurate diagnostics and 
personalized medicine. In education, they can offer tailor-made learning experi-
ences, and in entertainment, they can produce AI-generated movies, video games, 
and virtual worlds. The potential is vast, and research is an integral part to open new 
opportunities (Bommasani et al. 2021).

Exercises
	 10.1.	 What are LLMs? How do they differ from traditional NLP models?
	 10.2.	 Explain the significance of the Transformer architecture in LLMs develop-

ment. How did it improve on RNNs and LSTM networks?
	 10.3.	 Describe the key components of GANs. How can they contribute to 

Generative AI success in producing realistic content?
	 10.4.	 What are the main applications of LLMs in creative writing and content 

generation? How can LLMs assist to overcome writer’s block and enhance 
creativity?

	 10.5.	 How can LLMs handle language translation tasks? Discuss how attention 
mechanisms contribute to translation accuracy and fluency.

	 10.6.	 Explain LLMs’ role in conversational AI and chatbots. What advantages do 
they provide compared to traditional rule-based systems?

	 10.7.	 What are the primary ethical concerns associated with the deployment of 
LLMs in real-world applications? Discuss bias, privacy, and misinformation 
challenges.

	 10.8.	 How can bias arise in LLMs during data collection and training? What strat-
egies can be used to detect and mitigate bias in these models?

	 10.9.	 Discuss LLMs’ impact of spreading misinformation. What measures can be 
taken to ensure the AI-generated content accuracy and trustworthiness?

	10.10.	 What are “few-shot” and “zero-shot” learning? How can they make LLMs 
adaptable to new tasks with minimal training data?

	10.11.	 Describe the importance of text summarization in LLMs. How can these 
models balance extractive and abstractive summarization techniques?

	10.12.	 What are the privacy and data security risks posed by LLMs, especially 
when they access sensitive data? How can organizations mitigate these risks?

	10.13.	 Explain the concept of multimodal models LLMs and Generative AI. How 
can they integrate text, images, and other forms of media to generate content?
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	10.14.	 How can LLMs role in human-machine interaction contribute to intuitive AI 
systems development? What challenges remain in this domain?

	10.15.	 What are the potential future research directions for LLMs and Generative 
AI? Discuss trends such as increasing model size, energy efficiency, and 
ethical AI frameworks.
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Chapter 11
Workshop#1: Basics of Natural Language 
Toolkit (Hour 1–2)

11.1 � Introduction

Part II of this book will provide seven Python programming workshops on how each 
NLP core component operates and integrates with Python-based NLP tools includ-
ing NLTK, spaCy, BERT and Transformer Technology to construct a Q&A chatbot.

Workshop 1 will explore NLP basics including:

	1.	 Concepts and installation procedures
	2.	 Text processing function with examples using NLTK
	3.	 Text analysis lexical dispersion plot in Python
	4.	 Tokenization in text analysis
	5.	 Statistical tools for text analysis

Note: To ensure all NLP-based Python tools compatibility for all workshops can 
run smoothly, please check the list of requirements shown in Table 11.1.

In this workshop, all demonstrations use Python 3.11.9 as the running environ-
ment. It is highly recommended to create an independent virtual environment for 
these workshops in the book. The command for setting up a virtual environment 
with any version of pre-installed Anaconda is:

Please ensure the following Python packages are installed before starting the 
workshop:

•	 python (demo version 3.11.9)
•	 tensorflow (demo version 2.17.0)
•	 nltk (demo version 3.9.1)

 conda create -n your_virtual_environment_name python=3.11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_11&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_11#DOI
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If these packages are not installed on PC/laptop, use pip install xxx command. 
The detailed requirements list and Python package version used in this workshop 
can be found in the requirements.txt file stored in the NLP GitHub repository 
(NLPGitHub 2024).

11.2 � What Is Natural Language Toolkit (NLTK)?

NLTK (Natural Language Toolkit 2024) is one of the earliest Python-based NLP 
development tools invented by Prof. Steven Bird and Dr. Edward Loper in the 
Department of Computer and Information Science of the University of Pennsylvania 
with their classical book Natural Language Processing with Python published by 
O’Reilly Media Inc. in 2009 (Bird et al. 2009). There are over 30 universities in the 
US and 25 countries using NLTK for NLP-related courses until present. This book 

Table 11.1  Requirement list for all NLP workshops

#python 3.11.9 (Release Date: 2.4.2024) with all latest version 
test in Sep 2024.
#Workshop 1
tensorflow==2.17.0
nltk==3.9.1
#Workshop 2
# spacy model (sm) offline package already existed in zip
spacy==3.4.4
#Workshop 3
matplotlib==3.9.2
wordcloud==1.9.3
svgling==0.5.0
svgwrite==1.4.3
scikit-learn==1.5.1
#Workshop 4
# spacy model (md) offline package can be found as zip file in 
the file folder
#Workshop 5
pandas==2.2.2
#Workshop 6
#spacy model (trf) offline package can be found as zip file in 
the file folder
transformers==4.44.2
tf-keras==2.17.0
torch==2.4.1
torchvision==0.19.1
spacy-transformers==1.3.5
#Workshop 7
keras=3.3.3
transformers==4.44.2
tensorflow==2.17.0
tensorflow_datasets==4.9.6
pydot==3.0.1
graphviz==0.20.3
pydot-ng==2.0.0
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is considered as bible for anyone who wishes to learn and implement NLP applica-
tions using Python.

NLTK offers user-oriented interfaces with over 50 corpora and lexical resources 
such as WordNet (2024), a large lexical database of English. Nouns, verbs, adjec-
tives, and adverbs are grouped into sets of cognitive synonyms (synsets); each 
expresses a distinct concept which is an important lexical database in NLP devel-
oped by Princeton University since 1980.

Other lexical databases and corpora are Penn Treebank Corpus, Open Multilingual 
Wordnet, Problem Report Corpus, and Lin’s Dependency Thesaurus.

NLTK contains statistical-based text processing libraries of five fundamental 
NLP enabling technologies and basic semantic reasoning tools including (Albrecht 
et  al. 2020; Antic 2021; Arumugam and Shanmugamani 2018; Hardeniya et  al. 
2016; Kedia and Rasu 2020; Perkins 2014):

•	 Word tokenization.
•	 Stemming.
•	 POS tagging.
•	 Text classification.
•	 Semantic analysis.

11.3 � A Simple Text Tokenization Example Using NLTK

Let’s look at NLTK text tokenization using Jupyter Notebook (Jupyter 2024; 
Wintjen and Vlahutin 2020) as below:

[1] # Import NLTK package
import nltk

[2] # Create a sample utterance 1 (utt1)
utt1 = "At every weekend, early in the morning. I drive 
my car to the car center for car washing. Like 
clock-work."

[3] # Display utt1
utt1
'At every weekend, early in the morning. I drive my car to the car center for car 
washing. Like clock-work.'

[4] # Create utterance tokens (utokens)
utokens = nltk.word_tokenize(utt1)

11.3  A Simple Text Tokenization Example Using NLTK
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Fig. 11.1  Screenshot of NLTK installation process

[5] # Display utokens
utokens
['At', 'every', 'weekend', ',', 'early', 'in', 'the', 'morning', '.', 'I', 'drive', 'my', 'car', 'to', 
'the', 'car', 'center', 'for', 'car', 'washing', '.', 'Like', 'clock-work', '.']

11.4 � How to Install NLTK?

Step 1 Install Python 3.11.9
Step 2 Install NLTK

2.1 Start CMD or other command line tool
2.2 Type pip install nltk

Figure 11.1 shows a screenshot of NLTK installation process.
Step 3 Install NLTK Data

Once NLTK is installed into Python, download NLTK data.

3.1 Run Python
3.2 Type the following to activate an NLTK downloader

•	 import nltk
•	 nltk.download()

Note: nltk.downloader() will invoke NLTK downloader automatically, a separate 
window-based downloading module for users to download four NLP databanks into 
their Python machines. They include (1) Collection libraries, (2) Corpora, (3) Modules, 
and (4) other NLP packages. Figures 11.2, 11.3 and 11.4 show screenshots of the 
NTLK downloader for Collection, Corpora, and NTLK models installations.
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Fig. 11.2  Screenshot of NTLK downloader of collection library

Fig. 11.3  Screenshot of NTLK downloader of Corpora library

Fig. 11.4  Screenshot of NTLK downloader of NLTK models

11.5 � Why Using Python for NLP?

Python toolkit and packages overtook C, C++, Java especially in data science, AI, 
and NLP software development since 2000 (Albrecht et al. 2020; Kedia and Rasu 
2020). There are several reasons to drive the changes because:

	1.	 It is a generic language without a specific area unlike other languages such as 
Java and JavaScript specifically designed for web applications and website 
development.

11.5  Why Using Python for NLP?
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	2.	 It is easier to learn and user-friendly compared with C and C++ especially for 
non-computer science students and scientists.

	3.	 Its lists and list-processing datatypes provide an ideal environment for NLP 
modeling and text analysis.

A Python program performs a tokenization task to process text as shown below:

[6] # Define utterance 2 (utt2)
utt2 = "Hello world. How are you?"

[7] # Using split() method to split it into word tokens
utt2.split()
['Hello', 'world.', 'How', 'are', 'you?']

[8] # Check the no of word tokens
nwords = len(utt2.split())
print ("'Hello world. How are you?' contains ",nwords," 
words.")
'Hello world. How are you?' contains 5 words.

Python codes perform word number counts from literature Alice’s Adventures in 
Wonderland by Lewis Carroll (1832–1898) as below:

[9] # Define method to count the number of word tokens in 
text file (cwords)
def cwords(literature):
 �� try:
 ��   with open(literature, encoding='utf-8') as f_lit:
 ��     c_lit = f_lit.read()
 �� except FileNotFoundError:
 ��   err = "Sorry, the literature " + literature + " does 
not exist."

 ��   print(err)
 �� else:
 ��   w_lit = c_lit.split()
 ��   nwords = len(w_lit)
 ��   print("The literature " + literature + " contains " 
+ str(nwords) + " words.")

literature = 'alice.txt'
cwords(literature)
The literature alice.txt contains 29465 words
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This workshop has extracted four famous literatures from Project Gutenberg 
(Gutenberg 2024):
1. Alice’s Adventures in Wonderland by Lewis Carroll (1832–1898) (alice.txt)
2. Little Women by Louisa May Alcott (1832–1888) (little_women.txt)
3. Moby Dick by Herman Melville (1819–1891) (moby_dick.txt)
4. The Adventures of Sherlock Holmes by Sir Arthur Conan Doyle (1859–1930) 
(Adventures_Holmes.txt)

[10] cwords('Adventures_Holmes.txt')
The literature Adventures_Holmes.txt contains 107411 words.

11.6 � NLTK with Basic Text Processing in NLP

NLTK are Python tools and methods to learn and practice starting from basic text 
processing in NLP. They include:

•	 Text processing as lists of words.
•	 Statistics on text processing.
•	 Simple text analysis.

NLTK provides 9 different types of text documents from classic literatures, Bible 
texts, famous public speeches, news, and articles with personal corpus for text pro-
cessing. Let’s start and load these text documents.

[11] # Let's load some sample books from the nltk databank
import nltk
from nltk.book import *
*** Introductory Examples for the NLTK Book ***
Loading text1, …, text9 and sent1, …, sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G. K. Chesterton 1908

[12] # Display the list of sample books
texts()

11.6  NLTK with Basic Text Processing in NLP
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text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G. K. Chesterton 1908

[13] # Check text1
text1
<Text: Moby Dick by Herman Melville 1851>

[14] # To know more about text1, check this
text1?

[15] # Import word_tokenize as wtoken
from nltk.tokenize import word_tokenize
# Open Adventures_Holmes.txt and performs tokenization
fholmes = open("Adventures_Holmes.
txt","r",encoding="utf-8").read()
wtokens = word_tokenize(fholmes)
tholmes=nltk.text.Text(wtokens)

11.7 � Simple Text Analysis with NLTK

Text analysis is used to study a particular word or phrase that occurs in a text docu-
ment such as literature or public speeches. NLTK has a “concordance()” function 
different from the ordinary search function. It does not only indicate occurrence but 
also reveal neighboring words and phrases. Let’s try text examples from The 
Adventures of Sherlock Holmes (Doyle 2019).

[16] # Check concordance of word "Sherlock "
tholmes.concordance("Sherlock")
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Displaying 25 of 98 matches:
The Adventures of Sherlock Holmes by Arthur Conan Doyle Conte
es I . A SCANDAL IN BOHEMIA I . To Sherlock Holmes she is always _the_ 
woman.
ust such as I had pictured it from Sherlock Holmes ’ succinct description , bu
ssing said : “ Good-night , Mister Sherlock Holmes. ” There were several peopl
lly got it ! ” he cried , grasping Sherlock Holmes by either shoulder and look
stepped from the brougham . “ Mr . Sherlock Holmes , I believe ? ” said she .
ss for the Continent. ” “ What ! ” Sherlock Holmes staggered back , white with
, the letter was superscribed to “ Sherlock Holmes , Esq . To be left till cal
nd ran in this way : “ MY DEAR MR. SHERLOCK HOLMES , —You really did it 
very w
of interest to the celebrated Mr. Sherlock Holmes . Then I , rather imprudent
possess ; and I remain , dear Mr. Sherlock Holmes , “ Very truly yours , “ IR
ia , and how the best plans of Mr. Sherlock Holmes were beaten by a woman ’ s
I had called upon my friend , Mr. Sherlock Holmes , one day in the autumn of
and discontent upon his features . Sherlock Holmes ’ quick eye took in my occu
t as I have been telling you , Mr. Sherlock Holmes , ” said Jabez Wilson , mop
e of this obliging youth ? ” asked Sherlock Holmes . “ His name is Vincent Spa
IS DISSOLVED . October 9 , 1890. ” Sherlock Holmes and I surveyed this curt an
d client carried on his business . Sherlock Holmes stopped in front of it with
own stupidity in my dealings with Sherlock Holmes . Here I had heard what he
” “ I think you will find , ” said Sherlock Holmes , “ that you will play for
and I will follow in the second. ” Sherlock Holmes was not very communicative
jump , and I ’ ll swing for it ! ” Sherlock Holmes had sprung out and seized t
IDENTITY “ My dear fellow , ” said Sherlock Holmes as we sat on either side of
ant-man behind a tiny pilot boat . Sherlock Holmes welcomed her with the easy
nsult me in such a hurry ? ” asked Sherlock Holmes , with his finger-tips toge
The above example shows all Sherlock occurrences indicating that Sherlock is a 
special word linked with the surname Holmes in the text document

Let’s look at the word usage of extreme from the same literature:

[17] # Check concordance of word "extreme"
tholmes.concordance("extreme")
Displaying 9 of 9 matches:
may trust with a matter of the most extreme importance . If not , I should much
ng red head , and the expression of extreme chagrin and discontent upon his fea
ternately asserted itself , and his extreme exactness and astuteness represente
e swing of his nature took him from extreme languor to devouring energy ; and ,
olice reports realism pushed to its extreme limits , and yet the result is , it
of an English provincial town . His extreme love of solitude in England suggest
ion , and that in his haste and the extreme darkness he missed his path and wal
for my coming at midnight , and his extreme anxiety lest I should tell anyone o
like one who has been driven to the extreme limits of his reason . Then , sudde
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Concordance techniques are means to learn grammars, words or phrases called Use 
of English, also called Learn by Examples. In this example, we learnt how to use 
the word extreme in various situations and scenarios.

[18] tholmes.similar("extreme")
dense gathering

[19] # Check concordance of word "extreme" in text2
text2.concordance("extreme")
Displaying 4 of 4 matches:
n another day or two perhaps ; this extreme mildness can hardly last longer --
ng her that he was kept away by the extreme affection for herself , which he co
of his brother , and lamenting the extreme GAUCHERIE which he really believed
y which had been leading her to the extreme of languid indolence and selfish re

[20] # Check similar word "extreme" in text2
text2.similar("extreme")
family centre good opinion life death loss house society children
attachment wishes interest goodness heart comfort cheerfulness
existence marriage son

[21] # Check concordance word "extreme" in text4
text4.concordance ("extreme")
Displaying 3 of 3 matches:
vigilance no Administration by any extreme of wickedness or folly can very ser
ent , and communication between the extreme limits of the country made easier t
the politics of petty bickering and extreme partisanship they plainly deplore .

[22] # Check similar word "extreme" in text4
text4.similar("extreme")
one other just hope motives act people agency system right form loss
length knowledge science portion quarter narrowest requisite member
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It shows that word usage of extreme varies by authors and text types, e.g., it has 
different styles in The Adventures of Sherlock Holmes as compared with usage in 
Sense and Sensibility by Jane Austin (1775–1817) which is more vivid but has 
standard and fixed usage in Inaugural Address Corpus.

The common_contexts() method is to examine contexts shared by two or more 
words. The Adventures of Sherlock Holmes is used with common contexts of two 
words extreme and huge.

First, call common contexts() function from object tholmes.

[23] # Check common contexts on tholmes
tholmes.common_contexts(["extreme","huge"])
No common contexts were found

which means after analyzing extreme and huge in The Adventures of Sherlock 
Holmes, no common context meaning can be found.

Call concordance() function of these two words and check against the extracted 
patterns as shown below:

[24] # Check concordance word "extreme" in tholmes
tholmes.concordance("extreme")
Displaying 9 of 9 matches:
may trust with a matter of the most extreme importance . If not , I should much
ng red head , and the expression of extreme chagrin and discontent upon his fea
ternately asserted itself , and his extreme exactness and astuteness represente
e swing of his nature took him from extreme languor to devouring energy ; and ,
olice reports realism pushed to its extreme limits , and yet the result is , it
of an English provincial town . His extreme love of solitude in England suggest
ion , and that in his haste and the extreme darkness he missed his path and wal
for my coming at midnight , and his extreme anxiety lest I should tell anyone o
like one who has been driven to the extreme limits of his reason . Then , sudde

[25] # Check concordance word "huge" in tholmes
tholmes.concordance("huge")

11.7  Simple Text Analysis with NLTK
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Displaying 11 of 11 matches:
used and refreshed his memory with a huge pinch of snuff . “ Pray continue you
after opening a third door , into a huge vault or cellar , which was piled al
ed . All will come well . There is a huge error which it may take some little
a small , office-like room , with a huge ledger upon the table , and a teleph
en suddenly dashed open , and that a huge man had framed himself in the apertu
, and bent it into a curve with his huge brown hands . “ See that you keep yo
r. Grimesby Roylott drive past , his huge form looming up beside the little fi
side and lay listless , watching the huge crest and monogram upon the envelope
, ” said I ruefully , pointing to a huge bundle in the corner . “ I have had
th hanging jowl , black muzzle , and huge projecting bones . It walked slowly
r hurrying behind us . There was the huge famished brute , its black muzzle bu

Can you see how important it is in
1. NLP?
2. Use of English and technical writing?

Workshop 1.1 Simple Text Processing using NLTK
1. Try to use concordance(), similar(), and common_contexts() functions to look 
for two more frequently used words usage.
2. Compare their usages from four sources: Moby Dick, Sense and Sensibility, 
Inaugural Address Corpus, and Wall Street Journal.
3. Are there any pattern(s)?
4. What are their differences in the Use of English?

11.8 � Text Analysis Using Lexical Dispersion Plot

Text analysis was learnt to study word patterns and common contexts in the previ-
ous workshop.

Dispersion Plot in Python NLTK is to identify occurrence frequencies of key-
words from the whole document.

11.8.1 � What Is a Lexical Dispersion Plot?

Dispersion is the quantification of each point deviation from the mean value in basic 
statistics.

NLTK Dispersion Plot produces a plot showing words distribution throughout 
the text. Lexical dispersion is used to indicate homogeneity of words (word tokens) 
that occurred in the corpus (text document) achieved by the dispersion_plot() 
in NLTK.
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To start, let’s use NLTK book object to call function dispersion_plot().
Note: requires pylab installation prior to this function.
The following example uses text1 to verify basic information about 

dispersion_plot().

[26] text1.dispersion_plot?
Signature: text1.dispersion_plot(words)
Docstring:
Produce a plot showing the distribution of the words through the text.
Requires pylab to be installed.
:param words: The words to be plotted
:type words: list(str)
:seealso: nltk.draw.dispersion_plot()
File:    d:\anaconda3\envs\py311nlp\lib\site-packages\nltk\text.py
Type:    method

11.8.2 � Lexical Dispersion Plot over Context Using Sense 
and Sensibility

Are there any lexical patterns for positive words such as good, happy, and strong 
versus negative words such as bad, sad, or weak in literature?

Workshop 1.2 Lexical Dispersion Plot over Context using Sense and 
Sensibility
Use dispersion_plot to plot Lexical Dispersion Plot keywords: good, happy, 
strong, bad, sad, and weak from Sense and Sensibility.
1. Study any lexical pattern between positive and negative keywords.
2. Check these patterns against Moby Dick to see if this pattern occurs and 
explain.
3. Choose two other sentiment keywords to see if this pattern remains valid.

[27] text2.dispersion_plot(["good", "happy", "strong", 
"bad", "sad", "weak"])

11.8  Text Analysis Using Lexical Dispersion Plot
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11.8.3 � Lexical Dispersion Plot Over Time Using Inaugural 
Address Corpus

Lexical usage is to analyze word pattern changes in written English over time. The 
Inaugural Address Corpus addressed by US presidents of the past 220 years is a text 
document in NLTK book library to study lexical dispersion plot patterns changes on 
keywords war, peace, freedom, and united for this workshop.

Workshop 1.3 Lexical Dispersion Plot over Time using Inaugural Address 
Corpus
1. Use dispersion_plot to invoke Lexical Dispersion Plot for Inaugural Address 
Corpus.
2. Study and explain lexical pattern changes for keywords America, citizens, 
democracy, freedom, war, peace, equal, united.
3. Choose any two meaningful keywords and check for lexical pattern changes.

[28] text4.dispersion_plot(["America" ,"citizens" 
,"democracy", "freedom", "war", "peace", "equal", 
"united"])

11.9 � Tokenization in NLP with NLTK

11.9.1 � What Is Tokenization in NLP?

A token can be words, part of a word, characters, numbers, punctuations, or sym-
bols. It is a principal constituent and complex NLP task due to every language has 
its own grammatical constructions to generate grammatic and syntactic rules.
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Fig. 11.5  Tokenization example of a sample utterance “Jane lent $100 to Peter early this morning”

Tokenization is an NLP process of dividing sentences/utterances from a text, 
document, or speech into chunks called tokens. By using tokenization, vocabulary 
from a document or corpus can be formed. Tokenization for sentence/utterances 
Jane lent $100 to Peter early this morning is shown in Fig. 11.5.

NLTK provides flexibility to tokenize any string of text using tokenize() function 
as shown below:

[29] # Create utterance 3 (utt3) and performs tokenization
utt3 = 'Jane lent $100 to Peter early this morning.'
wtokens = nltk.word_tokenize(utt3)

wtokens
['Jane', 'lent', '$', '100', 'to', 'Peter', 'early', 'this', 'morning', '.']

11.9.2 � Different Between Tokenize() vs Split()

Python provides split() function to split a sentence of text into words as recalled in 
Sect. 11.1. Let’s see how it works with Tokenize() function.

[30] # Use split() to perform word tokenization
words = utt3.split()
words
['Jane', 'lent', '$100', 'to', 'Peter', 'early', 'this', 'morning.']

Why are they different?
How is it important in
1. NLP?
2. Meanings?

11.9  Tokenization in NLP with NLTK
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Workshop 1.4 Tokenization on The Adventures of Sherlock Holmes with 
NLTK
1. Read Adventures_Holmes.txt text file.
2. Save contents into a string object "holmes_doc".
3. Use split() to cut it into list object "holmes".
4. Count total number of words in the document.
5. Tokenize document using NLTK tokenize() function.
6. Count total number of tokens.
7. Compare the two figures.
(The file open part is provided to start with.)

[31] # Workshop 1.4 Solution
with open('Adventures_Holmes.txt', encoding='utf-8') as 
f_lit:
 ��   dholmes = f_lit.read()
 ��   # Count number of words in the literature
…
NLTK provides a simple way to count total number of tokens in a Text Document 
using len() in NLTK package.
Try len(tholmes) will notice:

[32] len(tholmes)
128367

11.9.3 � Count Distinct Tokens

Text analysis is to study distinct words or vocabulary that occurs in a text document.
When text document is tokenized as token objects, Python can group them easily 

into a set of distinct objects using Set() method.
Set() in Python is to extract distinct objects of any type from a list of objects with 

repeated instances.
Try the following using The Adventures of Sherlock Holmes will notice:

[33] tholmes?
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Type:    Text
String form:    <Text: The Adventures of Sherlock Holmes by Arthur Conan…>
Length:    128367
File:    d:\anaconda3\envs\py311nlp\lib\site-packages\nltk\text.py
Docstring:
A wrapper around a sequence of simple (string) tokens, which is
intended to support initial exploration of texts (via the
interactive console). Its methods perform a variety of analyses
on the text's contexts (e.g., counting, concordancing, collocation
discovery), and display the results. If you wish to write a
program which makes use of these analyses, then you should bypass
the ''Text'' class, and use the appropriate analysis function or
class directly instead.
A ''Text'' is typically initialized from a given document or
corpus. E.g.:
>>> import nltk.corpus
>>> from nltk.text import Text
>>> moby = Text(nltk.corpus.gutenberg.words('melville-moby_dick.txt'))
Init docstring:
Create a Text object.
:param tokens: The source text.
:type tokens: sequence of str

[34] set(tholmes)
{'madness', 'thirty-nine', 'inches', 'fuss', 'dense', 'exchange', 'swim', 'alive.',
'geese.', 'straw', 'whipcord', 'ill-kempt', 'ungrateful', 'law', 'distorted',
'chemical', 'autumn', 'landscape', 'discontent', 'Atkinson', 'acts', 'snakish',
'start', 'words.', 'brothers', 'handle', 'green-room', 'ruffians', 's—your', 'trip',
'briefly', 'ladies.', 'tragedy', 'Spaulding', 'tailing', 'bearded', 'when', …}

[35] len(set(tholmes))
10047

This example shows that The Adventures of Sherlock Holmes contains 128,366 
tokens i.e. words and punctuations, and 10,048 distinct tokens, or types. Try other 
literatures and see vocabulary can be learnt from these great literatures.

The following example shows how to sort distinct tokens using sorted() function.

[36] sorted(set(tholmes)
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['!', '$', '%', '&', "'", "''", "'AS-IS", "'s", '(', ')', '*', ',', '-', '--', '-the-wisp',
'.', '1', '1,100', '1.A', '1.B', '1.C', '1.D', '1.E', '1.E.1', '1.E.2', '1.E.3', '1.E.4',
'1.E.5', '1.E.6', '1.E.7', '1.E.8', '1.E.9', '1.F', '1.F.1', '1.F.2', '1.F.3', '1.F.4',
'1.F.5', '1.F.6', '10', '100', '1000', '10_s_', '10_s_.', '10th', '117', …]

Since books are tokenized in NLTK as a list book object, contents can be accessed 
by using list indexing method as below:

[37] # Access the First 20 tokens
tholmes[1:20]
['Adventures', 'of', 'Sherlock', 'Holmes', 'by', 'Arthur', 'Conan', 'Doyle',
'Contents', 'I', '.', 'A', 'Scandal', 'in', 'Bohemia', 'II', '.', 'The', 'Red-Headed']

[38] # Access the MIDDLE content
tholmes[100:150]
['IN', 'BOHEMIA', 'I', '.', 'To', 'Sherlock', 'Holmes', 'she', 'is', 'always',
'_the_', 'woman', '.', 'I', 'have', 'seldom', 'heard', 'him', 'mention', 'her',
'under', 'any', 'other', 'name', '.', 'In', 'his', 'eyes', 'she', 'eclipses', 'and',
'predominates', 'the', 'whole', 'of', 'her', 'sex', '.', 'It', 'was', 'not', 'that',
'he', 'felt', 'any', 'emotion', 'akin', 'to', 'love', 'for']

[39] # Aceess from the END
tholmes[-20:]
['the', 'main', 'PG', 'search', 'facility', ':', 'www.gutenberg.org' , 'This',
'website', 'includes', 'information', 'about', 'Project', 'Gutenberg-tm', ',',
'including', 'how', 'to', 'make', 'donations', 'to', 'the', 'Project', 'Gutenberg',
'Literary', 'Archive', 'Foundation', ',', 'how', 'to', 'help', 'produce', 'our',
'new', 'eBooks']

11.9.4 � Lexical Diversity

11.9.4.1 � Token Usage Frequency (Lexical Diversity)

Token usage frequency, also called Lexical Diversity is to divide the total number of 
tokens by total number of token types as shown:

[40] len(text1)/len(set(text1))
13.502044830977896

[41] len(text2)/len(set(text2))
20.719449729255086
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[42] len(text3)/len(set(text3))
16.050197203298673

[43] len(text4)/len(set(text4))
15.251970074812968

Python codes above analyze token usage frequency of four literatures: Moby Dick, 
Sense and Sensibility, Book of Genesis, and Inaugural Address Corpus. It has 
usage frequency range from 13.5 to 20.7. What are the implications?

11.9.4.2 � Word Usage Frequency

There are many commonly used words in English. The following example shows 
the pattern of word usage frequency for the from above literatures.

[44] text1.count('the')
13721

[45] text1.count('the')/len(text1)*100
5.260736372733581

[46] text2.count('the')/len(text2)*100
2.7271571452788606

[47] text3.count('the')/len(text3)*100
5.386024483960325

[48] text4.count('the')/len(text4)*100
6.2491416014283745
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1. Are there any patterns found from these literatures?
2. Use other words of, a, I to study if there exists other pattern(s).

11.10 � Basic Statistical Tools in NLTK

11.10.1 � Frequency Distribution—FreqDist()

Text analysis is an NTLK tool that can tokenize a string or a book of text document.
Frequency Distribution—FreqDist() is an initial built-in method in NLTK to ana-

lyze the frequency distribution of every token type in a text document.
Inaugural Address Corpus is used as an example to show how it works.

[49] text4
<Text: Inaugural Address Corpus>

[50] FreqDist?
Init signature: FreqDist(samples=None)
Docstring:
A frequency distribution for the outcomes of an experiment. A
frequency distribution records the number of times each outcome of
an experiment has occurred. For example, a frequency distribution
could be used to record the frequency of each word type in a
document. Formally, a frequency distribution can be defined as a
function mapping from each sample to the number of times that
sample occurred as an outcome.
…

[51] fd4 = FreqDist(text4)

[52] fd4
FreqDist({'the': 9555, ',': 7275, 'of': 7169, 'and': 5226, '.': 5011, 'to': 4477, 'in': 2604, 
'a': 2229, 'our': 2062, 'that': 1769, …})
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11.10.1.1 � FreqDist() as Dictionary Object

It is noted that FreqDist() will return key-value pairs from Dictionary object to 
reflect the Key that store Token Type name and the Value which are corresponding 
frequency of occurrence in a text. Since FreqDist() returns a Dictionary object, 
keys() can be used to return the list of all Token Types as shown below.

[53] token4 = fd4.keys()
token4
dict_keys(['Fellow', '-', 'Citizens', 'of', 'the', 'Senate', 'and', 'House', 'Representatives', 
':', 'Among', 'vicissitudes', 'incident', 'to', 'life', 'no', 'event', 'could', 'have', 'filled', 
'me', 'with', 'greater', 'anxieties', 'than', 'that', 'which', 'notification', 'was', 
'transmitted', 'by', 'your', 'order', ',', 'received', 'on', '14th', 'day', 'present', 'month', '.', 
'On', 'one', 'hand', 'I', 'summoned', 'my', 'Country', 'whose', 'voice', 'can', 'never', 
'hear', 'but', 'veneration', 'love', 'from', 'a', 'retreat', 'had', 'chosen', 'fondest', 
'predilection', 'in', 'flattering', 'hopes', 'an', 'immutable', 'decision', 'as', 'asylum', 
'declining', 'years', '--', 'rendered', 'every', 'more', 'necessary', 'well', 'dear', 'addition', 
'habit', 'inclination', 'frequent', 'interruptions', 'health', 'gradual', 'waste', 'committed', 
'it', 'time', 'other', 'magnitude', 'difficulty', 'trust', 'country', 'called', 'being', 
'sufficient', 'awaken', 'wisest', 'most', 'experienced', 'her', …])

11.10.1.2 � Access FreqDist of Any Token Type

Use list item access method to obtain frequency distribution of any token type. FD 
value of token type for the is shown below.

[54] fd4['the']
9555

1. What are the five common word types (token types without punctuation) in any 
text document?
2. Use FreqDist() to verify.

11.10.1.3 � Frequency Distribution Plot from NLTK

NLTK is a useful tool to study the top frequency distribution token types for any 
document using plot() function with FreqDist() method. FreqDist.plot() can also 
plot the top XX frequently used token types in a text document.

Use fd3 to study FreqDist.plot() documentation using fd3.plot().

11.10  Basic Statistical Tools in NLTK
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Plot top 30 frequently used token types from the Book of Genesis (Non-
Cumulative mode).

11.11 � Do the Same Plot with Cumulative Mode

[55] fd4.plot?
Signature:
fd4.plot(
 ��   *args,
 ��   title='',
 ��   cumulative=False,
 ��   percents=False,
 ��   show=False,
 ��   **kwargs,
)
Docstring:
Plot samples from the frequency distribution
displaying the most frequent sample first. If an integer
parameter is supplied, stop after this many samples 
have been
plotted. For a cumulative plot, specify cumulative=True. 
Additional
''**kwargs'' are passed to matplotlib's plot function.
(Requires Matplotlib to be installed.)
…

[56] fd4.plot (30,cumulative=False)
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[57] fd4.plot (30,cumulative=True)

Workshop 1.5 Frequency Distribution Analysis on Classics Literatures
1. What are the top 5 frequently used word types in the Book of Genesis (ignore 
punctuations)?
2. Will it be the same with other great literatures?
3. Verify against (1) Moby Dick, (2) Sense and Sensibility, and (3) Inaugural 
Address Corpus to see if they have the same patterns. Why or why not?
4. Why the study of common word types is also important in cryptography?

11.11.1 � Rare Words—Hapax

Hapaxes are words that occur only once in a body of work whether it is a publication 
or an entire language.

Ancient texts are full of hapaxes. For instance, in Shakespeare’s Love’s Labour’s 
Lost contains hapax honorificabilitudinitatibus which means able to achieve honors.

NLTK provides method hapaxes() under FreqDist object to list out all word types 
that occurred once in text document.

Try FreqDist() with The Adventures of Sherlock Holmes and see how useful it is.

[58] tholmes
<Text: The Adventures of Sherlock Holmes by Arthur Conan…>

[59] fd = FreqDist(tholmes)
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[60] hap = fd.hapaxes()
hap[1:50]
['Adventures', 'Conan', 'Doyle', 'Contents', 'Red-Headed', 'Case', 'Identity',
'Mystery', 'Orange', 'Pips', 'Twisted', 'Lip', 'Blue', 'Carbuncle', 'Speckled',
'Band', 'Engineer', 'Thumb', 'Noble', 'Bachelor', 'SCANDAL', 'BOHEMIA',
'eclipses', 'predominates', 'sex', 'emotions', 'abhorrent', 'balanced', 'softer',
'passions', 'gibe', 'observer—excellent', 'intrusions', 'finely', 'temperament', 
'distracting', 'mental', 'Grit', 'sensitive', 'instrument', 'high-power', 'lenses',
'disturbing', 'dubious', 'home-centred', 'establishment', 'absorb', 'loathed',
'alternating']

Workshop 1.6 Learn Vocabulary using Hapaxes
Hapaxes are helpful to learn vocabulary containing more than 12 characters. The 
following example uses hapaxes() with Python in-line function to implement [w 
for w in hap1 if len(w) > 12]:
1. Run Python script and extract vocabulary containing more than 12 characters 
from Moby Dick.
2. Select five meaningful vocabularies with their meanings.
3. Check with The Adventures of Sherlock Holmes to learn another five 
vocabularies.
(Python script to generate vocabulary with over 12 characters is given.)

[61] # Workshop 1.6 Solutions
voc12 = [w for w in hap if len(w) > 12]
voc12
['observer—excellent', 'establishment', 'well-remembered', 'boot-slitting',
'Peculiar—that', 'Eglonitz—here', 'German-speaking', 'glass-factories',
'authoritative', 'double-breasted', 'Cassel-Felstein', 'staff-commander',
'Contralto—hum', 'indiscretion.', 'reproachfully', 'Saxe-Meningen',
'drunken-looking', 'side-whiskered', 'half-and-half', 'moustached—evidently', 
'expostulating', 'arrangements.', 'co-operation.', 'unpleasantness',
'self-lighting', 'simple-minded', 'Nonconformist', 'ill—gentlemen', …]

11.11.2 � Collocations

11.11.2.1 � What Are Collocations?

A collocation is a work grouping for a set of words usually appeared together to 
convey semantic meanings. The word collocation is originated from the Latin word 
meaning place together and was first introduced by Prof. John R Firth (1890–1960) 
with his famous quote “You shall know a word by the company it keeps.”

There are many collocations cases in English where strong collocations are word 
pairings always appear together such as make and do, e.g., You make a cup of cof-
fee, but you do your work.
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Collocations are frequently used in business settings when nouns are combined 
with verbs or adjectives, e.g., setup an appointment, conduct a meeting, set the 
price, etc.

11.11.2.2 � Collocations in NLTK

NLTK also provides a build-in method to handle collocations using NLTK 
method—collocations().

The following example is to generate collocations lists from Moby Dick, Sense 
and Sensibility, Book of Genesis, and Inaugural Address Corpus.

Let’s look at some extracted collocation terms:

[62] text1.collocations()
Sperm Whale; Moby Dick; White Whale; old man; Captain Ahab; sperm
whale; Right Whale; Captain Peleg; New Bedford; Cape Horn; cried Ahab;
years ago; lower jaw; never mind; Father Mapple; cried Stubb; chief
mate; white whale; ivory leg; one hand

[63] text2.collocations()
Colonel Brandon; Sir John; Lady Middleton; Miss Dashwood; every thing;
thousand pounds; dare say; Miss Steeles; said Elinor; Miss Steele;
every body; John Dashwood; great deal; Harley Street; Berkeley Street;
Miss Dashwoods; young man; Combe Magna; every day; next morning

[64] text3.collocations()
said unto; pray thee; thou shalt; thou hast; thy seed; years old;
spake unto; thou art; LORD God; every living; God hath; begat sons;
7 years; shalt thou; little ones; living creature; creeping thing;
savoury meat; 30 years; every beast

[65] text4.collocations()
United States; fellow citizens; years ago; 4 years; Federal
Government; General Government; American people; Vice President; God
bless; Chief Justice; one another; fellow Americans; Old World;
Almighty God; Fellow citizens; Chief Magistrate; every citizen; Indian
tribes; public debt; foreign nations
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Chaper 12
Workshop#2: N-Grams Modeling 
with Natural Language Toolkit (Hour 3–4)

12.1 � Introduction

Workshop 2 consists of two parts:
Part I will introduce N-gram language model using NLTK in Python and N-grams 

class to generate N-gram statistics on any sentence, text objects, whole document, 
literature to provide a foundation technique for text analysis, parsing, and semantic 
analysis in subsequent workshops.

Part II will introduce spaCy, the second important NLP Python implementation 
tools not only for teaching and learning (like NLTK), but widely used for NLP 
applications including text summarization, information extraction, and Q&A chat-
bot. It is a critical mass to integrate with Transformer technology in subsequent 
workshops.

Please ensure that the following Python packages are installed before starting the 
workshop:

•	 Python (demo version 3.11.9)
•	 tensorflow (demo version 2.17.0)
•	 NLTK (demo version 3.9.1)
•	 spacy (demo version 3.4.4)

If these packages are not installed on PC/laptop, use pip install xxx command. 
The detailed requirements list and Python package version used in this workshop 
can be found in the requirements.txt file stored in the NLP GitHub repository 
(NLPGitHub 2024).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_12&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_12#DOI
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12.2 � What Is N-Gram?

N-gram is an algorithm based on a statistical language model (Bird et  al. 2009; 
Perkins 2014; Arumugam and Shanmugamani 2018), its basic idea is that contents 
such as phonemes, syllables, letters, words, or base pairs in texts are operated by a 
sliding window of size N to form a byte fragments sequence of length N 
(Sidorov 2019).

N can be 1, 2, or another positive integer, although usually large N is not consid-
ered because they rarely occur.

Each byte fragment is called a gram, and the frequency of all grams is counted 
and filtered according to a pre-set threshold to form a list of key grams, which is the 
text’s vector feature space, and each kind of gram in the list is a feature vector 
dimension.

12.3 � Applications of N-Grams in NLP

N-gram models are widely used (Albrecht et al. 2020; Arumugam and Shanmugamani 
2018; Hardeniya et al. 2016; Kedia and Rasu 2020) in:

•	 Speech recognition where phonemes and sequences of phonemes are modeled 
using an N-gram distribution.

•	 Parsing on words is modeled so that each N-gram is composed of N words. For 
language identification, sequences of characters/graphemes (e.g., letters of the 
alphabet) are modeled for different languages.

•	 Auto sentences completion.
•	 Auto spell-check.
•	 Semantic analysis.

12.4 � Generation of N-Grams in NLTK

NLTK (NLTK 2024; Bird et  al. 2009; Perkins 2014) offers useful tools in NLP 
processing.

Ngrams() function in NLTK facilitates N-gram operation.
Python code uses N-grams in NLTK to generate N-grams for any text string. Try 

it and study how it works.
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The following example is the first sentence of A Scandal in Bohemia from The 
Adventures of Sherlock Holmes (Doyle 2019): To Sherlock Holmes she is always 
The Woman. I have seldom heard him mention her under any other name. 
Demonstrating how N-gram generator works in NLTK.

[1] import nltk
from nltk import ngrams
sentence = input( "Enter the sentence: " )
n = int(input( "Enter the value of n: " ))
n_grams = ngrams(sentence.split(), n)
for grams in n_grams:
 ��   print(grams)
Enter the sentence: To Sherlock Holmes she is always "The Woman". I have seldom 
heard him mention her under any other name.
Enter the value of n: 2
('To', 'Sherlock')
('Sherlock', 'Holmes')
('Holmes', 'she')
('she', 'is')
('is', 'always')
('always', '"The')
('"The', 'Woman".')
('Woman".', 'I')
('I', 'have')
('have', 'seldom')
('seldom', 'heard')
('heard', 'him')
('him', 'mention')
('mention', 'her')
('her', 'under')
('under', 'any')
('any', 'other')
('other', 'name.')

Here are the Bigrams. Let’s try Trigrams N = 3.

[2] import nltk
from nltk import ngrams
sentence = input( "Enter the sentence: " )
n = int(input( "Enter the value of n: " ))
n_grams = ngrams(sentence.split(), n)
for grams in n_grams:
 ��   print(grams)

12.4  Generation of N-Grams in NLTK
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Enter the sentence: To Sherlock Holmes she is always "The Woman". I have seldom 
heard him mention her under any other name.
Enter the value of n: 3
('To', 'Sherlock', 'Holmes')
('Sherlock', 'Holmes', 'she')
('Holmes', 'she', 'is')
('she', 'is', 'always')
('is', 'always', '"The')
('always', '"The', 'Woman".')
('"The', 'Woman".', 'I')
('Woman".', 'I', 'have')
('I', 'have', 'seldom')
('have', 'seldom', 'heard')
('seldom', 'heard', 'him')
('heard', 'him', 'mention')
('him', 'mention', 'her')
('mention', 'her', 'under')
('her', 'under', 'any')
('under', 'any', 'other')
('any', 'other', 'name.')

How about Quadrigram N = 4? Let’s use the same sentence.

[3] import nltk
from nltk import ngrams
sentence = input( "Enter the sentence: " )
n = int(input( "Enter the value of n: " ))
n_grams = ngrams(sentence.split(), n)
for grams in n_grams:
 ��   print(grams)
Enter the sentence: To Sherlock Holmes she is always "The Woman". I have seldom 
heard him mention her under any other name.
Enter the value of n: 4
('To', 'Sherlock', 'Holmes', 'she')
('Sherlock', 'Holmes', 'she', 'is')
('Holmes', 'she', 'is', 'always')
('she', 'is', 'always', '"The')
('is', 'always', '"The', 'Woman".')
('always', '"The', 'Woman".', 'I')
('"The', 'Woman".', 'I', 'have')
('Woman".', 'I', 'have', 'seldom')
('I', 'have', 'seldom', 'heard')
('have', 'seldom', 'heard', 'him')
('seldom', 'heard', 'him', 'mention')
('heard', 'him', 'mention', 'her')
('him', 'mention', 'her', 'under')
('mention', 'her', 'under', 'any')
('her', 'under', 'any', 'other')
('under', 'any', 'other', 'name.')
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NLTK offers an easy solution to generate N-gram of any N-number which 
are useful in N-gram probability calculations and text analysis

Workshop 2.1 N-Grams on The Adventures of Sherlock Holmes
1. Read Adventures_Holmes.txt text file.
2. Save contents into a string object "holmes_doc."
3. Extract favorite paragraph from "holmes_doc" into "holmes_para."
4. Use above Python code to generate N-grams for N=3, N=4 and N=5.

12.5 � Generation of N-Grams Statistics

Once N-grams are generated, the next step is to calculate the term frequency (TF) 
of each N-gram from a document to list out top items.

NLTK-based Python codes extend previous example to create N-grams statistics 
to list out top 10 N-grams.

Let’s try first two sentences of A Scandal in Bohemia from The Adventures of 
Sherlock Holmes.

[4] sentence
'To Sherlock Holmes she is always "The Woman". I have seldom heard him mention her 
under any other name.'

Import RE package to do some simple text pre-processing:

[5] import re, string
# get rid of all the XML markup
sentence = re.sub ('<.*>', ' ', sentence)
# get rid of punctuation (except periods!)
punctuationNoPeriod = "[" + re.sub("\.","",string.
punctuation) + "]"
sentence = re.sub(punctuationNoPeriod, "", sentence)
# first get individual words
tokenized = sentence.split()
# and get a list of all the bi-grams
Bigrams = ngrams(tokenized, 2)
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Review N-grams to see how they work:

[6] ngrams?
Signature: ngrams(sequence, n, **kwargs)
Docstring:
Return the ngrams generated from a sequence of items, as an iterator.
For example:
 ��   >>> from nltk.util import ngrams
 ��   >>> list(ngrams([1,2,3,4,5], 3))
 ��   [(1, 2, 3), (2, 3, 4), (3, 4, 5)]
Wrap with list for a list version of this function. Set pad_left
or pad_right to true in order to get additional ngrams:
 ��   >>> list(ngrams([1,2,3,4,5], 2, pad_right=True))
 ��   [(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]
 ��   >>> list(ngrams([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
 ��   [(1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
 ��   >>> list(ngrams([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
 ��   [('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5)]
 ��   >>> list(ngrams([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_

symbol='<s>', right_pad_symbol='</s>'))
 ��   [('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
…

To generate N-gram statistics, first import “collections” class and invoke 
Counter() method over Bigrams.

[7] import collections
# get the frequency of each bigram in our corpus
BigramFreq = collections.Counter(Bigrams)
# what are the ten most popular ngrams in this corpus?
BigramFreq.most_common(10)
[(('To', 'Sherlock'), 1),
(('Sherlock', 'Holmes'), 1),
(('Holmes', 'she'), 1),
(('she', 'is'), 1),
(('is', 'always'), 1),
(('always', 'The'), 1),
(('The', 'Woman'), 1),
(('Woman', 'I'), 1),
(('I', 'have'), 1),
(('have', 'seldom'), 1)]

It is noted that the top 10 bigram frequency are all with count 1.
This is because the sample sentence is short and doesn’t contain any bigram(s) 
with a frequent bigram statistic. To sort out this problem, let's try a longer text. 
The following example uses the whole first paragraph of A Scandal in Bohemia 
from The Adventures of Sherlock Holmes and see whether it has a preferable 
result.
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The first paragraph looks like this:

[8] first_para = "To Sherlock Holmes she is always the woman I 
have seldom heard him mention her under any other name In 
his eyes she eclipses and predominates the whole of her sex 
It was not that he felt any emotion akin to love for Irene 
Adler All emotions and that one particularlywere abhorrent 
to his cold precise but admirably balanced mind He was I 
take it the most perfect reasoning and observing machine 
that the world has seen but as a lover he would have placed 
himself in a false position He never spoke of the softer 
passions save with a gibe and a sneer They were admirable 
things for the observer—excellent for drawing the veil from 
men’s motives and actions But for the trained reasoner to 
admit such intrusions into his own delicate and finely 
adjusted temperament was to introduce a distracting factor 
which might throw a doubt upon all his mental results Grit 
in a sensitive instrument or a crack in one of his own 
highpower lenses would not be more disturbing than a strong 
emotion in a nature such as his And yet there was but one 
woman to him and that woman was the late Irene Adler of 
dubious and questionable memory."

Let’s review this first paragraph:

[9] first_para
'To Sherlock Holmes she is always the woman I have seldom heard him mention her under 
any other name In his eyes she eclipses and predominates the whole of her sex It was not 
that he felt any emotion akin to love for Irene Adler All emotions and that one 
particularlywere abhorrent to his cold precise but admirably balanced mind He was I take 
it the most perfect reasoning and observing machine that the world has seen but as a lover 
he would have placed himself in a false position He never spoke of the softer passions save 
with a gibe and a sneer They were admirable things for the observer—excellent for 
drawing the veil from men’s motives and actions But for the trained reasoner to admit such 
intrusions into his own delicate and finely adjusted temperament was to introduce a 
distracting factor which might throw a doubt upon all his mental results Grit in a sensitive 
instrument or a crack in one of his own highpower lenses would not be more disturbing 
than a strong emotion in a nature such as his And yet there was but one woman to him and 
that woman was the late Irene Adler of dubious and questionable memory.'

Use Python script to remove punctuation marks and tokenize the first_para object:

[10] import re, string
# get rid of all the XML markup
first_para = re.sub ('<.*>', ' ', first_para)
# get rid of punctuation (except periods!)
punctuationNoPeriod = "[" + re.sub("\.","",string.
punctuation) + "]"
first_para = re.sub(punctuationNoPeriod, "", first_para)
# first get individual words
tokenized = first_para.split()
# and get a list of all the bi-grams
Bigrams = ngrams(tokenized, 2)
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Use Counter() method of collections class to calculate bigram statistics of 
first_para:

[11] import collections
# get the frequency of each bigram in our corpus
BigramFreq = collections.Counter(Bigrams)
# what are the ten most popular ngrams in this corpus?
BigramFreq.most_common(10)
[(('in', 'a'), 3),
(('Irene', 'Adler'), 2),
(('and', 'that'), 2),
(('for', 'the'), 2),
(('his', 'own'), 2),
(('To', 'Sherlock'), 1),
(('Sherlock', 'Holmes'), 1),
(('Holmes', 'she'), 1),
(('she', 'is'), 1),
(('is', 'always'), 1)]

The results are satisfactory. It is noted that bigram in a has the most occurrence 
frequency, i.e., three times while four other bigrams: Irene Adler, and that, for 
the, his own have occurred twice each within the paragraph. Bigram in a, and that 
and for the are frequently used English phrases which occurred in almost every 
text document. How about to Sherlock and Irene Adler? There are two N-gram 
types frequently used in N-gram language model studied in Chap. 2. One is the 
frequently used N-gram phrase in English like in a, and that and for that in our 
case. These bigrams are common phrases in other documents and literature 
writings. Another is domain-specific N-grams. These types are only frequently 
used in specific domain, documents, and genre of literatures. Hence, to Sherlock 
and Irene Adler are frequently used related to this story only and not in other 
situations

Workshop 2.2 N-grams Statistics on The Adventures of Sherlock Holmes
1. Read Adventures_Holmes.txt text file.
2. Save contents into a string object "holmes_doc."
3. Generate a representative N-gram statistic using the whole holmes_doc.
4. Generate a top 10 N-grams summary for N=3, N=4 and N=5.
5. Review results and comments on pattern(s) found.

Bigram analysis is required to examine which bigrams are commonly used not 
only in a single paragraph but for the whole document or literature. Remember in 
Workshop 1 NLTK has a built-in list of tokenized sample literatures in nltk.book. 
Let’s refer to them first by using the nltk.book import statement.
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[12] # Let's load some sample books from the nltk databank
import nltk
from nltk.book import *
*** Introductory Examples for the NLTK Book ***
Loading text1, …, text9 and sent1, …, sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G. K. Chesterton 1908

Check with text1 to see what they are:

[13] text1
<Text: Moby Dick by Herman Melville 1851>

or download using nltk.corpus.gutenberg.words() from Project Gutenberg of 
copyright clearance classic literature (Gutenberg 2024). Let’s use this method to 
download Moby Dick (Melville 2006).

[14] import nltk.corpus
from nltk.text import Text
moby = Text(nltk.corpus.gutenberg.words( 'melville-moby_
dick.txt' ))

[15] moby
<Text: Moby Dick by Herman Melville 1851>

Review the first 50 elements of Moby Dick text object to see whether they are 
tokenized.

[16] moby [1:50]
['Moby', 'Dick', 'by', 'Herman', 'Melville', '1851', ']', 'ETYMOLOGY', '.', '(',
'Supplied', 'by', 'a', 'Late', 'Consumptive', 'Usher', 'to', 'a', 'Grammar', 'School',
')', 'The', 'pale', 'Usher', '--', 'threadbare', 'in', 'coat', ',', 'heart', ',', 'body', ',', 'and',
'brain', ';', 'I', 'see', 'him', 'now', '.', 'He', 'was', 'ever', 'dusting', 'his', 'old', 'lexicons', 'and']

Use collections class and ngrams() method for bigram statistics to identify the 
top 20 most frequently bigrams occurred for the entire Moby Dick literature.
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[17] import collections
# and get a list of all the bi-grams
Bigrams = ngrams(moby, 2)
# get the frequency of each bigram in our corpus
BigramFreq = collections.Counter(Bigrams)
# what are the 20 most popular ngrams in this corpus?
BigramFreq.most_common(20)
[((',', 'and'), 2607),
(('of', 'the'), 1847),
(("'", 's'), 1737),
(('in', 'the'), 1120),
((',', 'the'), 908),
((';', 'and'), 853),
(('to', 'the'), 712),
(('.', 'But'), 596),
((',', 'that'), 584),
(('.', '"'), 557),
((',', 'as'), 523),
((',', 'I'), 461),
((',', 'he'), 446),
(('from', 'the'), 428),
((',', 'in'), 402),
(('of', 'his'), 371),
(('the', 'whale'), 369),
(('.', 'The'), 369),
(('and', 'the'), 357),
((';', 'but'), 340)]

Workshop 2.3 N-grams Statistics with removal of unnecessary 
punctuations
The results are average and unsatisfactory. It is noted that and, of the, s and in 
the are the top 4 bigrams occurred in the entire Moby Dick literature. It is 
average since these bigrams are common English usage but original bigram 
statistics in simple sentences required to remove all punctuations by:
1. List out all punctuations required to remove.
2. Revise the above Python script to remove these punctuation symbols from 
the token list.
3. Generate a top 20 bigram summary for Moby Dick without punctuations.
4. Use sample method to generate (cleaned) bigram statistics from Moby 
Dick, Adventures of Sherlock Holmes, Sense and Sensibility, Book of Genesis, 
Inaugural Address Corpus, and Wall Street Journal.
5. Verify results and comments of any pattern(s) found.
6. Try the same analysis for Trigram (N=3) and Quadrigram (N=4) to find 
any pattern(s).
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12.6 � spaCy in NLP

12.6.1 � What Is spaCy?

SpaCy (spaCy 2024) is a free, open-source library for advanced NLP written in 
Python and Cython programming languages.

The library is published under an MIT license developed by Dr. Matthew 
Honnibal and Dr. Ines Montani, founders of the software company Explosion.

SpaCy is designed specifically for production use and build NLP applications to 
process large volumes of text (Altinok 2021; Srinivasa-Desikan 2018; Vasiliev 
2020) different from NLTK focused on teaching and learning perspective.

It also provides workflow pipelines for machine learning and deep learning tools 
that can integrate with common platforms such as PyTorch, MXNet, and TensorFlow 
with its machine learning library called Thinc. spaCy provides recurrent neural 
models such as convolution neural networks (CNN) by adopting Thinc for NLP 
implementation such as dependency parsing (DP), named entity recognition (NER), 
POS tagging and text classification, and other advanced NLP applications such as 
natural language understanding (NLU) systems, information retrieval (IR), infor-
mation extraction (IE) systems, and question-and-answer chatbot systems.

A spaCy system architecture is shown in Fig. 12.1, its major features support:

•	 NLP-based statistical models for over 19 commonly used languages.
•	 tokenization tools implementation for over 60 international languages.
•	 NLP pipeline components include NER, POS Tagging, DP, text classification, 

and chatbot implementation.
•	 integration with common Python platforms such as TensorFlow, PyTorch, and 

other high-level frameworks.
•	 integration with the latest Transformer and BERT technologies.
•	 user-friendly modular system packaging, evaluation, and deployment tools.

Fig. 12.1  System architecture of spaCy
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Fig. 12.2  Screenshot of spaCy configuration selection

12.7 � How to Install spaCy?

SpaCy can be installed in MacOS/OSX, MS Windows, and Linux platforms (spaCy 
2024) as per other Python-based development tools like NLTK.

spaCy.io provides a one-stop-process for users to select their own spaCy (1) 
language(s) as trained pipelines, (2) optimal target in system efficiency vs. accuracy 
for NLP applications development based a large dataset and lexical database, and 
(3) download appropriate APIs and modules to maximize efficiency under CPU and 
GPU hardware configuration. Figure 12.2 shows a Windows-based PIP download 
environment using CUDA 11.3 GPU in English as trained pipelines and target for 
speed efficiency over accuracy.

12.8 � Tokenization Using spaCy

Tokenization is an operation in NLP. spaCy provides an easy-to-use scheme to 
tokenize any text document into sentences like NLTK, and further tokenize sen-
tences into words.

This section uses Adventures_Holmes.txt as example to demonstrate tokeniza-
tion in spaCy.
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Step 1: Import spaCy module

Step 2: Load spaCy module "en_core_web_sm"

[18] import spacy

Use en_core_web_md-3.2.0 package for English pipeline optimized for CPU in 
the current platform with components include: tok2vec, tagger, parser, senter, ner, 
attribute_ruler, lemmatizer.

[19] nlp = spacy.load( "en_core_web_sm" )

Step 3: Open and read text file "Adventures_Holmes.txt" into file_handler 
"fholmes"

Note: Since text file already exists, skip the try-except module to save program-
ming steps

[20] fholmes = open( "Adventures_Holmes.txt", "r", 
encoding="utf-8")

Step 4: Read Adventures of Sherlock Holmes

Use read() method to read whole text document as a complex string object 
"holmes."

[21] holmes = fholmes.read()
holmes
'\ufeffThe Adventures of Sherlock Holmes\n\nby Arthur Conan Doyle\n\n\nContents\n\n 
I. A Scandal in Bohemia\n II. The Red-Headed League\n III. A Case of Identity\n IV. The 
Boscombe Valley Mystery\n V. The Five Orange Pips\n VI. The Man with the Twisted 
Lip\n VII. The Adventure of the Blue Carbuncle\n VIII. The Adventure of the Speckled 
Band\n IX. The Adventure of the Engineer’s Thumb\n X. The Adventure of the Noble 
Bachelor\n XI. The Adventure of the Beryl Coronet\n XII. The Adventure of the Copper 
Beeches\n\n\n\n\nI. A SCANDAL IN BOHEMIA\n\n\nI.\n\nTo Sherlock Holmes she is 
always _the_ woman. I have seldom heard him\nmention her under any other name. In his 
eyes she eclipses and\npredominates the whole of her sex. It was not that he felt any 
emotion\nakin to love for Irene Adler. All emotions, and that one particularly,\nwere 
abhorrent to his cold, precise but admirably balanced mind. He\nwas, I take it, the most 
perfect reasoning and observing machine that\nthe world has seen, but as a lover he would 
have placed himself in a\nfalse position. …

Step 5: Replace all newline symbols

Replace all newline characters "\n" into space characters.

[22] holmes = holmes.replace( "\n", " " )
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Step 6: Simple counting

Review total number of characters in The Adventures of Sherlock Holmes and 
examine the result document.

[23] len (holmes)
580632

[24] holmes
'\ufeffThe Adventures of Sherlock Holmes by Arthur Conan Doyle Contents I. A Scandal 
in Bohemia II. The Red-Headed League III. A Case of Identity IV. The Boscombe Valley 
Mystery V. The Five Orange Pips VI. The Man with the Twisted Lip VII. The Adventure 
of the Blue Carbuncle VIII. The Adventure of the Speckled Band IX. The Adventure of 
the Engineer’s Thumb X. The Adventure of the Noble Bachelor XI. The Adventure of the 
Beryl Coronet XII. The Adventure of the Copper Beeches I. A SCANDAL IN BOHEMIA 
I. To Sherlock Holmes she is always _the_ woman. I have seldom heard him mention her 
under any other name. In his eyes she eclipses and predominates the whole of her sex. It 
was not that he felt any emotion akin to love for Irene Adler. All emotions, and that one 
particularly, were abhorrent to his cold, precise but admirably balanced mind. He was, I 
take it, the most perfect reasoning and observing machine that the world has seen, but as a 
lover he would have placed himself in a false position. …

Step 7: Invoke nlp() method in spaCy

SpaCy nlp() method is an important Text Processing Pipeline to initialize nlp 
object (English in our case) for NLP processing such as tokenization. It will convert 
any text string object into an NLP object.

Study nlp() docstring to see how it works.

[25] nlp?
Signature:
nlp(
 ��   text: Union[str, spacy.tokens.doc.Doc],
 ��   *,
 ��   disable: Iterable[str] = [],
 ��   component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
) -> spacy.tokens.doc.Doc
Type: English
String form: <spacy.lang.en.English object at 0x000001A70F4CCDD0>
File: d:\anaconda3\envs\py311nlp\lib\site-packages\spacy\lang\en\__init__.py
Docstring: <no docstring>
Class docstring:
A text-processing pipeline. Usually you'll load this once per process,
and pass the instance around your application.
…
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[26] holmes_doc = nlp(holmes)

[27] holmes_doc
The Adventures of Sherlock Holmes by Arthur Conan Doyle Contents I. A Scandal in 
Bohemia II. The Red-Headed League III. A Case of Identity IV. The Boscombe Valley 
Mystery V. The Five Orange Pips VI. The Man with the Twisted Lip VII. The Adventure 
of the Blue Carbuncle VIII. The Adventure of the Speckled Band IX. The Adventure of 
the Engineer’s Thumb X. The Adventure of the Noble Bachelor XI. The Adventure of the 
Beryl Coronet XII. The Adventure of the Copper Beeches I. A SCANDAL IN BOHEMIA 
I. To Sherlock Holmes she is always _the_ woman. I have seldom heard him mention her 
under any other name. In his eyes she eclipses and predominates the whole of her sex. It 
was not that he felt any emotion akin to love for Irene Adler. All emotions, and that one 
particularly, were abhorrent to his cold, precise but admirably balanced mind. He was, I 
take it, the most perfect reasoning and observing machine that the world has seen, but as a 
lover he would have placed himself in a false position. He never spoke of the softer 
passions, save with a gibe and a sneer. They were admirable things for the observer—
excellent for drawing the veil from men’s motives and actions. But for the trained reasoner 
to admit such intrusions into his own delicate and finely adjusted temperament was to 
introduce a distracting factor which might throw a doubt upon all his mental results. Grit 
in a sensitive instrument, or a crack in one of his own high-power lenses, would not be 
more disturbing than a strong emotion in a nature such as his. And yet there was but one 
woman to him, and that woman was the late Irene Adler, of dubious and questionable 
memory.
…

Step 8: Convert text document into sentence object

SpaCy is practical for text document tokenization to convert text document 
object into (1) sentence objects and (2) tokens.

This example uses for-in statement to convert the whole Sherlock Holmes docu-
ment into holmes_sentences.

[28] holmes_sentences = [sentence.text for sentence in holmes_doc.
sents]
holmes_sentences
['\ufeffThe Adventures of Sherlock Holmes by Arthur Conan Doyle Contents I. A Scandal 
in Bohemia II. ',
'The Red-Headed League III. ',
'A Case of Identity IV. ',
'The Boscombe Valley Mystery V. The Five Orange Pips VI. ',
'The Man with the Twisted Lip VII. ',
'The Adventure of the Blue Carbuncle VIII. ',
'The Adventure of the Speckled Band IX. ',
'The Adventure of the Engineer’s Thumb X. The Adventure of the Noble Bachelor XI. ',
'The Adventure of the Beryl Coronet XII. ',
'The Adventure of the Copper Beeches I. A SCANDAL IN BOHEMIA I. To Sherlock 
Holmes',
'she is always _the_ woman.', …
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Examine the structure of spaCy sentences and see what can be found.

[29] holmes_sentences?
Type: list
String form: ['\ufeffThe Adventures of Sherlock Holmes by Arthur Conan Doyle 
Contents I. A Scandal <…> oduce our new eBooks, and how to subscribe to our email 
newsletter to hear about new eBooks.']
Length: 6625
Docstring:
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Check how many sentences Adventures of Sherlock Holmes contains.

Study the number of sentences contained in The Adventures of Sherlock Holmes.

[30] len (holmes_sentences)
6625

List out sentence numbers 50th–59th to review.

[31] holmes_sentences[50:60]
['“My dear Holmes,” said I, “this is too much.',
'You would certainly have been burned, had you lived a few centuries ago.',
'It is true that I had a country walk on Thursday and came home in a dreadful mess, but as 
I have changed my clothes I can’t imagine how you deduce it.',
'As to Mary Jane, she is incorrigible, and my wife has given her notice, but there, again, I 
fail to see how you work it out.” ',
'He chuckled to himself and rubbed his long, nervous hands together. ',
'“It is simplicity itself,” said he; “my eyes tell me that on the inside of your left shoe, just 
where the firelight strikes it, the leather is scored by six almost parallel cuts.',
'Obviously they have been caused by someone who has very carelessly scraped round the 
edges of the sole in order to remove crusted mud from it.',
'Hence, you see, my double deduction that you had been out in vile weather, and that you 
had a particularly malignant boot-slitting specimen of the London slavey.',
'As to your practice, if a gentleman walks into my rooms smelling of iodoform, with a 
black mark of nitrate of silver upon his right forefinger, and a bulge on the right side of his 
top-hat to show where he has secreted his stethoscope, I must be dull, indeed, if I do not 
pronounce him to be an active member of the medical profession.” ',
'I could not help laughing at the ease with which he explained his process of deduction.']

Step 9: Directly tokenize text document

Tokenize text document into word tokens by using “token” object in spaCy 
instead of text document object extraction into sentence list object. Study how it 
operates.
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[32] holmes_words = [token.text for token in holmes_doc]
holmes_words [130:180]
['To', 'Sherlock', 'Holmes', 'she', 'is', 'always', '_', 'the', '_', 'woman', '.', 'I',
'have', 'seldom', 'heard', 'him', 'mention', 'her', 'under', 'any', 'other', 'name',
'.', 'In', 'his', 'eyes', 'she', 'eclipses', 'and', 'predominates', 'the', 'whole', 'of',
'her', 'sex', '.', 'It', 'was', 'not', 'that', 'he', 'felt', 'any', 'emotion', 'akin', 'to',
'love', 'for', 'Irene', 'Adler']

[33] holmes_words?
Type: list
String form: ['\ufeffThe', 'Adventures', 'of', 'Sherlock', 'Holmes', ' ', 'by', 'Arthur', 'Conan', 
'Doyle', '<…> ubscribe', 'to', 'our', 'email', 'newsletter', 'to', 'hear', 'about', 'new', 'eBooks', '.', 
' ']
Length: 133749
Docstring:
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

[34] len (holmes_words)
133749

[35] nltk_homles_tokens = nltk.word_tokenize(holmes)

[36] nltk_homles_tokens [104:153]
['To', 'Sherlock', 'Holmes', 'she', 'is', 'always', '_the_', 'woman', '.', 'I', 'have',
'seldom', 'heard', 'him', 'mention', 'her', 'under', 'any', 'other', 'name', '.', 'In',
'his', 'eyes', 'she', 'eclipses', 'and', 'predominates', 'the', 'whole', 'of', 'her', 'sex',
'.', 'It', 'was', 'not', 'that', 'he', 'felt', 'any', 'emotion', 'akin', 'to', 'love', 'for', 'Irene',
'Adler', '.']

According to the extracted tokens, they seem to be identical
1. Are they 100% identical?
2. What is/are the difference(s)?
3. Which one is better?
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Workshop 2.4 SpaCy or NLTK - Which one is Faster?
In many applications, especially in AI and NLP applications, speed (i.e., 
efficiency) is one of the most important considerations because:
1. Many AI and NLP applications involve a huge data/database/databank for 
system training with a huge population size, e.g., Lexical database of English 
and Chinese. So, whether an NLP engine/application is fast enough in every 
NLP operation such as tokenization, tagging, POS tagging, and parsing is an 
important factor.
2. In many AI-based related NLP applications such as Deep Learning for 
real-time information extraction, it involves tedious network training and 
learning process, how efficient of every NLP operation is a critical process to 
decide whether NLP application can be used in real-world scenario.
This workshop studies how efficient NLTK vs. spaCy in terms of text document 
Tokenization.
To achieve this, integrate Python codes of NTLK/spaCy document tokenization 
with Timer object-time.
1. Implement tokenization codes in NTLK and spaCy to time tokenization time 
by using a time object, the following codes can be used as reference.
2. Examine time taken for Tokenization process of "Adventures_Holmes.txt" 
using NTLK vs. spaCy methods.
3. Which one is faster? or are they similar? Why?
4. How about Document→Text efficiency? Compare NTLK vs. spaCy on 
Doc→Text efficiency.
Hint: Like spaCy, NLTK can also implement Document→Text by two simple 
codes:
nltk_tokenizer = nltk.data.load("tokenizers/punkt/english.pickle")
nltk_sentences = tokenizer.tokenize(holmes) # holmes is the text document 
string object

[37] # Sample code for Efficiency Performance of the NLP Engine
import nltk # or spacy
import time
start = time.time()
#
# YOUR NTLK or spaCy Tokenization codes
#
print( "Time taken: %s s" % (time.time() - start))
Time taken: 0.0 s
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Chapter 13
Workshop#3: Part-of-Speech Tagging 
Using Natural Language Toolkit  
(Hour 5–6)

13.1 � Introduction

In Chap. 3, we studied basic concepts and theories related to Part-of-Speech (POS) 
and various POS tagging techniques. This workshop will explore how to implement 
POS tagging using NLTK by starting from a simple recap on tokenization tech-
niques and two fundamental processes in word-level progressing: stemming and 
stop-word removal. There are two types of stemming techniques: Porter Stemmer 
and Snowball Stemmer that can be integrated with WordCloud commonly used in 
data visualization followed by the main theme of this workshop, and introduce 
PENN Treebank Tagset to create your own POS tagger.

Please ensure that the following Python packages are installed before starting the 
workshop:

•	 Python (demo version 3.11.9)
•	 NLTK (demo version 3.9.1)
•	 matplotlib (demo version 3.9.2)
•	 WordCloud (demo version 1.9.3)
•	 svgling (demo version 0.5.0)
•	 svgwrite (demo version 1.4.3)
•	 scikit-learn (demo version 1.5.1)
•	 spacy (demo version 3.4.4)

If these packages are not installed on PC/laptop, use pip install xxx command. 
The detailed requirements list and Python package version used in this workshop 
can be found in the requirements.txt file stored in the NLP GitHub repository 
(NLPGitHub 2024).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_13&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_13#DOI
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13.2 � A Revisit on Tokenization with NLTK

Text sentences are divided into subunits first and map into vectors in most NLP 
tasks. These vectors are fed into a model to encode where output is sent to a down-
stream task for results. NLTK (2024) provides methods to divide text into subunits 
as tokenizers. Twitter sample corpus is extracted from NLTK to perform tokeniza-
tion (Hardeniya et  al. 2016; Kedia and Rasu 2020; Perkins 2014) in procedures 
below (Albrechit et al. 2020; Antic 2021, Bird et al. 2009):

	1.	 Import NLTK package
	2.	 Import twitter sample data
	3.	 List out fields
	4.	 Get Twitter string list
	5.	 List out first 15 Twitters
	6.	 Tokenize the twitter

Let’s start with the import of NLTK package and download twitter samples pro-
vided by NLTK platform.

[1] # Import NLTK
import nltk
# Download twitter_samples
# nltk.download('twitter_samples')

Import twitter samples dataset as twtr and check file id using fileids() method:

[2] # Import twitter samples from NTLK corpus (twtr)
from nltk.corpus import twitter_samples as twtr

[3] # Display Field IDs
twtr.fileids()
['negative_tweets.json','positive_tweets.json', 'tweets.20150430-23406.json']

Review first 5 twitter messages:

[4] # Assign sample twitters (stwtr)
stwtr = twtr.strings('tweets.20150430-223406.json')

[5] # Display the first 5 sample twitters
stwtr[:5]
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['RT @KirkKus: Indirect cost of the UK being in the EU is estimated to be costing 
Britain £170 billion per year! #BetterOffOut #UKIP',
'VIDEO: Sturgeon on post-election deals http://t.co/BTJwrpbmOY',
'RT @LabourEoin: The economy was growing 3 times faster on the day David 
Cameron became Prime Minister than it is today.. #BBCqt http://t.co…',
'RT @GregLauder: the UKIP east lothian candidate looks about 16 and still has an 
msn addy http://t.co/7eIU0c5Fm1',
"RT @thesundaypeople: UKIP's housing spokesman rakes in £800k in housing 
benefit from migrants. http://t.co/GVwb9Rcb4w http://t.co/c1AZxcLh…"]

Import word_tokenize method from NLTK, name as w_tok to perform tokeniza-
tion on 5th twitter message:

[6] # Import NLTK word tokenizer
from nltk.tokenize import word_tokenize as w_tok

[7] # tokenize stwtr[4]
w_tok(stwtr[4])
['RT', '@', 'thesundaypeople', ':', 'UKIP', "'s", 'housing', 'spokesman', 'rakes',
'in', '£800k', 'in', 'housing', 'benefit', 'from', 'migrants', '.', 'http', ':', //t.co/
GVwb9Rcb4w', 'http', ':', '//t.co/c1AZxcLh…']

NLTK offers tokenization for punctuation and spaces wordpunct_tokenize. Let’s 
use the 5th twitter message to see how it works.

[8] from nltk.tokenize import wordpunct_tokenize as wp_tok
wp_tok(stwtr[4])
['RT', '@', 'thesundaypeople', ':', 'UKIP', "'", 's', 'housing', 'spokesman', 'rakes',
'in', '£', '800k', 'in', 'housing', 'benefit', 'from', 'migrants', '.', 'http', '://', 't', '.',
'co', '/', 'GVwb9Rcb4w', 'http', '://', 't', '.', 'co', '/', 'c1AZxcLh', '…']

It can also tokenize words between hyphens and other punctuations. Further, 
NLTK‘s regular expression (RegEx) tokenizer can build custom tokenizers:

13.2  A Revisit on Tokenization with NLTK
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Fig. 13.1  Stemming of Compute

[9] # Import the RegEx tokenizer
from nltk import regexp_tokenize as rx_tok
rx_pattern1 = '\w+'
rx_tok(stwtr[4],rx_pattern1)
['RT', 'thesundaypeople', 'UKIP', 's', 'housing', 'spokesman', 'rakes', 'in', '800k',
'in', 'housing', 'benefit', 'from', 'migrants', 'http', 't', 'co', 'GVwb9Rcb4w',
'http', 't', 'co', 'c1AZxcLh']

A simple regular expression filtered out words with alphanumeric characters only, 
but not punctuations in previous code. Another regular expression can detect and 
filter out both words containing alphanumeric characters and punctuation marks in 
the following code:

[10] # Create Rx pattern2 and perform the RX tokenize again
rx_pattern2 = '\w+|[!,\-,]'
rx_tok(stwtr[4],rx_pattern2)
['RT', 'thesundaypeople', 'UKIP', 's', 'housing', 'spokesman', 'rakes', 'in', '800k',
'in', 'housing', 'benefit', 'from', 'migrants', 'http', 't', 'co', 'GVwb9Rcb4w', 'http', 't', 
'co', 'c1AZxcLh']

13.3 � Stemming Using NLTK

After tokenization has sentences divided into words, stemming is a procedure to 
unify words and extract the root, base form of each word, e.g., stemming of word 
compute is shown in Fig. 13.1.
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13.3.1 � What Is Stemming?

Stemming usually removes prefixes or suffixes such as -er, -ion, -ization from words 
to extract the base or root form of a word, e.g., computers, computation, and com-
puterization. Although these words are spelled differently but share identical con-
cepts related to compute, so compute is the stem of these words.

13.3.2 � Why Stemming?

It is needless to extract every single word in a document but only the concept or 
notion they represent such as information extraction and topic summarization in 
NLP applications. It can save computational capacity and preserve the overall 
meaning of the passage. The stemming technique is to extract the overall meaning 
or words’ base form instead of distinct words.

Let’s look at how to perform stemming on text data.

13.3.3 � How to Perform Stemming?

NLTK provides a practical solution to implement stemming without sophisticated 
programming. Let’s try two commonly used methods (1) Porter Stemmer and (2) 
Snowball Stemmer in NLP.

13.3.3.1 � Porter Stemmer

Porter Stemmer is the earliest stemming technique used in 1980s, its key procedure 
is to remove words common endings and parse into generic forms. This method is 
simple and used in many NLP applications effectively.

Import Porter Stemmer from NLTK library:

[11] # Import PorterStemmer as p_stem
from nltk.stem.porter import PorterStemmer as p_stem

Try to stem words like computer.

[12] p_stem().stem("computer")
'comput'
PorterStemmer simply removes suffix -er when processing computer to acquire 
compute which is incorrect. Hence this stemmer is basic.

13.3  Stemming Using NLTK
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Next, try to stem dogs to see what happens.

[13] p_stem().stem("dogs")
'dog'

For the above code, dogs are converted from plural to singular, remove suffix -s 
and convert to dog

Let’s try more, say traditional.

[14] p_stem().stem("traditional")
'tradit'

Stemmer may output an invalid word when dealing with special words, e.g., tradit 
is acquired if suffix -ional is removed. Tradit is not a word in English, it is a root 
form.

Let’s work on words in plural form. There are 26 words extracted from a to z in 
plural form to perform PorterStemming:

[15] # Define some plural words
w_plu = ['apes','bags','computers','dogs','egos','fresc
oes','generous','hats','igloos','jungles', 'kites','lea
rners','mice','natives','openings','photos','queries','
rats','scenes', 'trees','utensils','veins','wells','xyl
ophones','yoyos','zens']

[16] from nltk.stem.porter import PorterStemmer as p_stem
w_sgl = [p_stem().stem(wplu) for wplu in w_plu]
print(' '.join(w_sgl))
ape bag comput dog ego fresco gener hat igloo jungl kite learner mice nativ open 
photo queri rat scene tree utensil vein well xylophon yoyo zen
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Porter stemming will remove suffixes -s or -es to extract root form, that may result 
in single form such as apes, bags, dogs, etc. but in some cases, it will generate 
non-English words such as gener, jungl and queri.

Workshop 3.1 Try to stem a paragraph from The Adventures of Sherlock 
Holmes
1. Read Adventures_Holmes.txt text file from The Adventures of Sherlock Holmes 
(Doyle 2019; Gutenberg 2024).
2. Save contents into a string object "holmes_doc."
3. Extract a paragraph and tokenize it.
4. Use porter stemming and output a list of stemmed words.

13.3.3.2 � Snowball Stemmer

Snowball Stemmer provides improvement in stemming results as compared with 
Porter Stemmer and provides multi-language stemming solution. One can check 
languages using languages() method. Import from NLTK package to invoke 
Snowball Stemmer:

[17] # Import Snowball Stemmer as s_stem
from nltk.stem.snowball import SnowballStemmer as s_stem

Review what languages Snowball Stemmer can support:

[18] # Display the s_stem language set
print(s_stem.languages)
('arabic', 'danish', 'dutch', 'english', 'finnish', 'french', 'german', 'hungarian', 'italian', 
'norwegian', 'porter', 'portuguese', 'romanian', 'russian', 'spanish', 'swedish')

Snowball Stemmer provides a variety of solutions in commonly used languages 
from Arabic to Swedish.

13.3  Stemming Using NLTK
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[19] # Import Snowball Stemmer as s_stem and assign to 
English language
from nltk.stem.snowball import SnowballStemmer as s_stem
s_stem_ENG = s_stem(language="english")

Use same list of plural words (w_plu) to check how it works in Snowball 
Stemmer for comparison:

[20] # Display the list of plural words
w_plu
['apes', 'bags', 'computers', 'dogs', 'egos', 'frescoes', 'generous', 'hats',
'igloos', 'jungles', 'kites', 'learners', 'mice', 'natives', 'openings', 'photos',
'queries', 'rats', 'scenes', 'trees', 'utensils', 'veins', 'wells', 'xylophones',
'yoyos', 'zens']

[21] # Apply Snowball Stemmer onto the plural words
sgls = [s_stem_ENG.stem(wplu) for wplu in w_plu]
print(' '.join(sgls))
Ape bag comput dog ego fresco generous hat igloo jungl kite learner mice nativ 
open photo queri rat scene tree utensil vein well xylophon yoyo zen

Try to compare with previous stemmer. What are the differences?

1. Snowball Stemmer achieved similar results as porter Stemmer in most cases 
except in generously where snowball stemmer came up with a meaningful root 
form generous instead of gener in porter stemmer.
2. Try some plural words to compare performance between porter Stemmer vs 
snowball stemmer.

13.4 � Stop-Words Removal with NLTK

13.4.1 � What Are Stop-Words?

There are input words and utterances to filter out impractical stop-words in NLP 
preprocessing such as a, is, the, of, etc.

NLTK already provides a built-in stop-words package for this function. Let’s see 
how it works.
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13.4.2 � NLTK Stop-Words List

Import stop-words module and call stopwords.words() method to list out all stop-
words in English.

[22] # Import NLTK stop-words as wstops
from nltk.corpus import stopwords as wstops
print(wstops.words('english'))
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", 
"you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 
'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 
'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 
'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 
'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 
'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 
'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 
'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 
'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 
'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 
"don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 
'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', 
"hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', 
"mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', 
"wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]

1. Stop-words corpus size is not large.
2. All stop-words are commonly used in many documents. They affect storage and 
system efficiency in NLP applications if they are not removed.
3. This stop-word corpus is incomplete and subjective. There may be words 
considered as stop-words not included in this databank.

Use stopwords.fileids() function to review how many languages library of stop-
words NLTK contains.

[23] # Import NLTK stop-words as wstops and display the 
FILE_IDs
from nltk.corpus import stopwords as wstops
print(wstops.fileids())
['arabic', 'azerbaijani', 'basque', 'bengali', 'catalan', 'chinese', 'danish', 'dutch', 
'english', 'finnish', 'french', 'german', 'greek', 'hebrew', 'hinglish', 'hungarian', 
'indonesian', 'italian', 'kazakh', 'nepali', 'norwegian', 'portuguese', 'romanian', 
'russian', 'slovene', 'spanish', 'swedish', 'tajik', 'turkish']
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13.4.3 � Try Some Texts

The above list shows all stop-words. Let’s use a simple utterance:

[24] # Import NLTK stop-words as wstops
from nltk.corpus import stopwords as wstops
wstops_ENG = wstops.words('english')
utterance = "Try to test for the stop word remove 
function to see how it works."
utterance_clean =[w for w in utterance.split()

if w not in wstops_ENG]

Review results:

[25] # Display the cleaned utterance
utterance_clean
['Try', 'test', 'stop', 'word', 'remove', 'function', 'see', 'works.']

1. All commonly used stop-words such as to, for, the, it, are removed as shown in 
the example.
2. It has little effect on the overall meaning of the utterance.
3. It requires the same computational time and effort.

The following example uses Hamlet from The Complete Works of Shakespeare to 
demonstrate how stop-words are removed from text processing in NLP.

[26] # Import the Gutenberg library from NLTK
from nltk.corpus import gutenberg as gub
hamlet = gub.words('shakespeare-hamlet.txt')
hamlet_clean = [w for w in hamlet if w not in wstops_ENG]

[27] len(hamlet_clean)*100.0/len(hamlet)
69.26124197002142
This classic literature contains deactivated words. Nevertheless, these stop-words 
are unmeaningful in many NLP tasks that may affect results, so most of them are 
removed during preprocessing
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13.4.4 � Create your Own Stop-Words

Stop-word corpus can extract a list of strings that can add any stop-words with 
simple append() function, but it is advisable to create a new stop-word library object 
name to begin.

Step 1: Create own stop-word library list.

Step 2: Check object type and just see it has a simple list

[28] My_sws = wstops.words('english')

[29] My_sws?
Type: list
String form: ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", 
"you've", "you'll" <…> houldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 
'won', "won't", 'wouldn', "wouldn't"]
Length: 179
Docstring:
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

Step 3: Study stop-word list

Step 4: Add new stop-word "sampleSW" using append()

[30] My_sws
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've",
"you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 
'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them',
'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', …

[31] My_sws.append('sampleSW')
My_sws[160:]
['ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan',
"shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won',
"won't", 'wouldn', "wouldn't", 'sampleSW']
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Try this to see how it works.

[32] # Import word_tokenize as w_tok
from nltk.tokenize import word_tokenize as w_tok
# Create the sample utterance
utterance = "This is a sample utterance which consits 
of eg as stop word sampleSW."
# Tokenize the utterance
utt_toks = w_tok(utterance)
# Stop word removal
utt_nosw = [w for w in utt_toks if not w in My_sws]
# Display utterance without My stopwords
print(utt_nosw)
['This', 'sample', 'utterance', 'consits', 'eg', 'stop', 'word', '.']

Workshop 3.2 Stop-word Filtering on The Adventures of Sherlock Holmes
Use stop-word filtering technique for The Adventures of Sherlock Holmes:
1. Read Adventures_Holmes.txt text file.
2. Save contents into a string object "holmes_doc."
3. Use stop-word technique just learnt to tokenize holmes_doc.
4. Generate a list of word tokens with stop-words removed.
5. Check any 3 possible stop-words to add into own stop-word list.
6. Regenerate a new token list with additional stop-word removed.

13.5 � Text Analysis with NLTK

When text data has been processed and tokenized, basic analysis is required to cal-
culate words or tokens, their distribution and usage frequency in NLP tasks. This 
allows understanding of main contents and topics accuracy in the document. Import 
a sample web text (Firefox.txt) from NLTK library.

[33] # Import webtext as wbtxt
from nltk.corpus import webtext as wbtxt
# Create sample webtext
wbtxt_s = wbtxt.sents('firefox.txt')
wbtxt_w = wbtxt.words('firefox.txt')
# Display total nos of webtext sentences in firefox.txt
len(wbtxt_s)
1144

Review the number of words as well.

[34] # Display total nos of webtext words in firefox.txt
len(wbtxt_w)
102457
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FireFox.Txt contains sample texts extracted from the Firefox discussion forum to 
serve as a useful dataset for basic text-level analysis in NLP.

It can also obtain vocabulary size by passing through a set as shown in the fol-
lowing code:

[35] # Define vocabulary object (vocab)
vocab = set(wbtxt_w)
# Display the size of Vocab
len(vocab)
8296

nltk.FreqDist() function is used to generate words frequency distribution occurred 
in the whole text as shown:

[36] # Define Frequency Distribution object
fdist = nltk.FreqDist(wbtxt_w)

[37] sorted(fdist, key=fdist.__getitem__,reverse=True)
[0:30]
['.', 'in', 'to', '"', 'the', "'", 'not', '-', 'when', 'on', 'a', 'is', 't', 'and', 'of', '(', 'page',
'for', 'with', ')', 'window', 'Firefox', 'does', 'from', 'open', ':', 'menu', 'should',
'bar', 'tab']

The above code generates the top 30 frequently used words and punctuations in 
the whole text. In, to and the are top 3 on the list like other literatures as Firefox.
Txt text is the collection of users’ discussion messages and contents about Firefox 
browser like conversations.

To exclude stop-words such as the, and not, use the following code to see f words 
frequency distribution longer than 3.

[38] # Import Matplotlib pyplot object
import matplotlib.pyplot as pyplt
pyplt.figure(figsize=(20, 8))
lwords = dict([(k,v) for k,v in fdist.items() if len(k)>3])
fdist = nltk.FreqDist(lwords)
fdist.plot(50,cumulative=False)
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Exclude stop-words such as the, and, is, and create a tuple dictionary to record 
words frequency. Visualize and transform them into an NLTK frequency 
distribution graph based on this dictionary as shown above

Workshop 3.3 Text Analysis on The Adventures of Sherlock Holmes
1. Read Adventures_Holmes.txt text file.
2. Save contents into a string object "holmes_doc."
3. Use stop-word technique from tokenize holmes_doc.
4. Generate a word tokens list with stop-words removed.
5. Use the technique learnt to plot the first 30 frequently occurred words from this 
literature.
6. Identify any special pattern related to word distribution. If not, try the first 50 
ranking words.

13.6 � Integration with WordCloud

13.6.1 � What Is WordCloud?

Wordcloud, also known as tag cloud, is a data visualization method commonly used 
in many web statistics and data analysis scenarios. It is a graphical representation of 
all words and keywords in sizes and colors. A word has the largest and bold in word 
cloud means it occurs frequently in the text (dataset), as illustrated in Fig. 13.2.

To generate frequency distribution of all words that occur in a text document, the 
most natural way is to generate statistics in a WordCloud.

Python provides a built-in WordCloud package "WordCloud."
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Fig. 13.2  A sample WordCloud (Tuchong 2024)

It can obtain an intuitive visualization of words used in the text from the fre-
quency distribution.

Install WordCloud package first using the pip install command:

 pip install WordCloud

Once WordCloud package is installed, import WordCloud package using import 
command and invoke the frequency generator with generate_from frequen-
cies() method:

[39] # Import WordCloud as wCloud
from wordcloud import WordCloud as wCloud

[40] wcld = wCloud().generate_from_frequencies(fdist)

[41] Import matplotlib.pyplot as pyplt
pyplt.figure(figsize=(20, 8))
pyplt.imshow(wcld, interpolation='bilinear')
pyplt.axis("off")
pyplt.show()

13.6  Integration with WordCloud



338

Workshop 3.4 WordCloud for The Adventures of Sherlock Holmes
1. Read Adventures_Holmes.txt text file.
2. Save contents into a string object "holmes_doc."
3. Use stop-word technique from tokenize holmes_doc.
4. Generate word tokens list with stop-words removed.
5. Extract the top 100 frequent words that occurred from this literature.
6. Generate WordCloud for this literature.

13.7 � POS Tagging with NLTK

The earlier part of this workshop had studied several NLP preprocessing tasks: 
tokenization, stemming, stop-word removal, word distribution in text corpus, and 
data visualization using WordCloud. This section will explore POS tagging 
in NLTK.

13.7.1 � What Is POS Tagging?

POS refers to the process of classifying words in a sentence/utterance into specific 
syntactic or grammatical functions.

There are nine major POS in English: Nouns, Pronouns, Adjectives, Verbs, 
Prepositions, Adverbs, Determiners, Conjunctions and Interjections. POS tagging is 
to assign POS tags into each word token in the sentence/utterance.

NTLK supports commonly used tagset such as PENN Treebank (Treebank 2024) 
and Brown Corpus to create own tags used for specific NLP applications.
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Table 13.1  Table of Universal POS Tagset in English

Tag Meaning English Examples

ADJ adjective new, good, high, special, big, local

ADP adposition on, of, at, with, by, into, under

ADV adverb really, already, still, early, now

CONJ conjunction and, or, but, if, while, although

DET determiner, article the, a, some, most, every, no, which

NOUN noun year, home, costs, time, Africa

NUM numeral twenty-four, fourth, 1991, 14:24

PRT particle at, on, out, over, per, that, up, with

PRON pronoun he, their, her, its, my, I, us

VERB verb is, say, told, given, playing, would

. punctuation marks . , ; !

x other ersatz, esprit, dunno, qr8, university

13.7.2 � Universal POS Tagset

A tagset consists of 12 universal POS categories and is constructed to facilitate 
future requirements for unsupervised induction of syntactic structure. When com-
bined with original treebank data, this universal tagset and mapping produce a data-
set consisting of common POS in 22 languages (Albrechit et al. 2020; Antic 2021, 
Bird et al. 2009).

Table 13.1 shows a table of universal POS tagset in English.

13.7.3 � PENN Treebank Tagset (English & Chinese)

English PENN Treebank Tagset is used with English corpora developed by Prof. 
Helmut Schmid in TC project at the Institute for Computational Linguistics of the 
University of Stuttgart (TreeBank 2024). Table  13.2 shows an original 45 used 
PENN Treebank Tagset.

A recent version of this English POS Tagset can be found at Sketchengine.eu 
(Sketchengine 2024a), and Chinese POS Tagset (Sketchengine 2024b).

NLTK provides direct mapping from tagged corpus such as Brown Corpus 
(NLTK 2024) to universal tags for implementation, e.g., tags VBD (for past tense 
verb) and VB (for base form verb) map to VERB only in universal tag set.

[42] # Import Brown Corpus as bwn
from nltk.corpus import brown as bwn
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Table 13.2  Original 45 used PENN Treebank Tagset

No POS Tag Description Example No POS Tag Description Example

1 CC coordinating 
conjunction

and, but, or 24 SYM Symbol $ / [ = *

2 CD cardinal number 1, third 25 TO infinitive ‘to’ to
3 DT determiner a, the 26 UH interjection haha, oops
4 EX existential there there is 27 VB verb - base form drink
5 FW foreign word les 28 VBD verb - past tense drank
6 IN preposition, 

sub-conj
in, of, by, like 29 VBG verb - gerund drinking

7 JJ adjective big, wide, 
green

30 VBN verb - past 
participle

drunk

8 JJR adjective, 
comparative

bigger, wider, 
greener

31 VBP verb - non-3sg 
pres

drink

9 JJS adjective, 
superlative

biggest, 
wildest, 
greenest

32 VBZ verb - 3sg pres drinks

10 LS list marker 1), One, i 33 WDT wh-determiner which, that
11 MD modal can, could, 

shall, will
34 WP wh-pronoun who, what

12 NN noun, singular or 
mass

table, shop 35 WP$ possessive 
wh-pronoun

whose, 
those

13 NNS noun plural tables, shops 36 WRB wh-abverb where, 
when, how

14 NNP proper noun, 
singular

Samsung 37 # # #

15 NNPS proper noun, 
plural

Vikings 38 $ $ $

16 PDT predeterminer all/both the 
students

39 " Left quotation ‘ “

17 POS possessive 
ending

friend’s 40 `` right quotation ‘ “

18 PP personal pronoun I, he, it, you 41 ( Opening 
brackets

( {

19 PPZ possessive 
pronoun

my, his, your, 
one's

42 ) Closing brackets ) }

20 RB adverb however, 
quickly, here

43 , Comma ,

21 RBR adverb, 
comparative

better, quicker 44 : Sent-final punc . ! ?

22 RBS adverb, 
superlative

best, quickest 45 : Mid-sentence 
punc

: ; … -

23 RP particle of, up (e.g. 
give up)
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[43] bwn.tagged_words()[0:30]
[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ('Grand', 'JJ-TL'),
('Jury', 'NN-TL'), ('said', 'VBD'), ('Friday', 'NR'), ('an', 'AT'),
('investigation', 'NN'), ('of', 'IN'), ("Atlanta's", 'NP$'), ('recent', 'JJ'),
('primary', 'NN'), ('election', 'NN'), ('produced', 'VBD'), ('``', '``'),
('no', 'AT'), ('evidence', 'NN'), ("''", "''"), ('that', 'CS'), ('any', 'DTI'),
('irregularities', 'NNS'), ('took', 'VBD'), ('place', 'NN'), ('.', '.'), ('The', 'AT'),
('jury', 'NN'), ('further', 'RBR'), ('said', 'VBD'), ('in', 'IN')]

Fulton is tagged as NP-TL in example code above, a proper noun (NP) appears in 
a title (TL) context in Brown corpus that mapped to noun in universal tag set. 
These sub-categories are to be considered instead of generalized universal tags in 
NLP application

13.7.4 � Applications of POS Tagging

POS tagging is commonly used in many NLP applications ranging from IE and 
NER to sentiment analysis and question-&-answering systems.

Try the following and see how it works:

[44] # Import word_tokenize and pos_tag as w_tok and p_tag
from nltk.tokenize import word_tokenize as w_tok
from nltk import pos_tag as p_tag
# Create and tokenizer two sample utterances utt1 and 
utt2
utt1 = w_tok("Give me a call")
utt2 = w_tok("Call me later")

Review these two utterances’ POS tags:

[45] p_tag(utt1, tagset='universal' )
[('Give', 'VERB'), ('me', 'PRON'), ('a', 'DET'), ('call', 'NOUN')]

[46] p_tag(utt2, tagset='universal' )
[('Call', 'VERB'), ('me', 'PRON'), ('later', 'ADV')]
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1. The word call is a noun in text 1 and a verb in text 2.
2. POS tagging is used to identify a person, a place, or a location, based on the 
tags in NER.
3. NLTK also provides a classifier to identify such entities in text as shown in the 
following code:

[47] utt_untag = w_tok("My dad was born in South America")
utt_untag
['My', 'dad', 'was', 'born', 'in', 'South', 'America']

[48] utt_tagged = p_tag(utt_untag)
utt_tagged
[('My', 'PRP$'),
('dad', 'NN'),
('was', 'VBD'),
('born', 'VBN'),
('in', 'IN'),
('South', 'NNP'),
('America', 'NNP')]

[49] # Import svgling package
import svgling
# Import NLTK.ne_chunk as chunk
from nltk import ne_chunk as chunk
# Display POS Tags chunk
chunk(utt_tagged)
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NLTK chunk() function is applied to NER to identify the chunker South America 
as a geopolitical entity (GPE) in this example. So far, there are examples using 
NLTK’s built-in taggers. The next section will look at how to develop own POS 
tagger

[50] # Try another example
utt_tok = w_tok("Can you please buy me Haagen-Dazs 
Icecream? It's $30.8.")
print("Tokens are: ", utt_tok)
Tokens are: ['Can', 'you', 'please', 'buy', 'me', 'Haagen-Dazs', 'Icecream', '?', 'It', "'s", 
'$', '30.8', '.']

[51] utt_tagged = p_tag(utt_tok)
chunk(utt_tagged)

1. The system treats '$', '30.8', and '.' as separate tokens in this example. It is 
crucial because contractions have their own semantic meanings and own POS 
leading to the ensuing part of NLTK library POS tagger.
2. POS tagger in NLTK library outputs specific tags for certain words.
3. However, it makes a mistake in this example. Where is it?
4. Compare POS Tagging for the following sentence to identify problem. Explain.

[52] # Try one more example
utt_tok = w_tok("Can you please buy me New-Zealand 
Icecream? It's $30.8.")
print("Tokens are: ", utt_tok)
utt_tagged = nltk.pos_tag(utt_tok)
chunk(utt_tagged)
Tokens are: ['Can', 'you', 'please', 'buy', 'me', 'New-Zealand', 'Icecream', '?', 'It', 
"'s", '$', '30.8', '.']
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Workshop 3.5 POS Tagging on The Adventures of Sherlock Holmes
1. Read Adventures_Holmes.txt text file.
2. Save contents into a string object "holmes_doc."
3. Extract three typical sentences from three stories of this literature.
4. Use POS Tagging to these sentences.
5. Use ne_chunk function to display POS tagging tree for these three sentences.
6. Compare POS Tags among these example sentences and examine on how they 
work.

13.8 � Create Own POS Tagger with NLTK

This section will create own POS tagger using NLTK’s tagged set corpora and 
sklearn Random Forest machine learning model.

The following example demonstrates a classification task to predict POS tag for 
a word in a sentence using NLTK treebank dataset for POS tagging, and extract 
word prefixes, suffixes, previous and neighboring words as features for system 
training.

Import all necessary Python packages as below:

[53] # Import all necessary Python packages
import nltk
import numpy as np
from nltk import word_tokenize as w_tok
import matplotlib.pyplot as pyplt
%matplotlib inline
from sklearn.feature_extraction import DictVectorizer as 
DVect
from sklearn.model_selection import train_test_split as 
tt_split
from sklearn.ensemble import RandomForestClassifier as 
RFClassifier
from sklearn.metrics import accuracy_score as a_score
from sklearn.metrics import confusion_matrix as c_matrix
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[54] # Define the ufeatures() class
def ufeatures(utt, idx):
 ��   ftdist = {}
 ��   ftdist['word'] = utt[idx]
 ��   ftdist['dist_from_first'] = idx - 0
 ��   ftdist['dist_from_last'] = len(utt) - idx
 ��   ftdist['capitalized'] = utt[idx][0].upper() == 
utt[idx][0]

 ��   ftdist['prefix1'] = utt[idx][0]
 ��   ftdist['prefix2'] = utt[idx][:2]
 ��   ftdist['prefix3'] = utt[idx][:3]
 ��   ftdist['suffix1'] = utt[idx][-1]
 ��   ftdist['suffix2'] = utt[idx][-2:]
 ��   ftdist['suffix3'] = utt[idx][-3:]
 ��   ftdist['prev_word'] = '' if idx==0 else utt[idx-1]
 ��   ftdist['next_word'] = '' if idx==(len(utt)-1) else 
utt[idx+1]

 ��   ftdist['numeric'] = utt[idx].isdigit()
 ��   return ftdist

[55] # Define the Retreive Untagged Utterance (RUutterance) 
class
def RUutterance(utt_tagged):
 ��   [utt,t] = zip(*utt_tagged)
 ��   return list(utt)

Function ufeatures() converts input text into a dict object of features, whereas 
each utterance is passed with corresponding index of current token word from 
which features are extracted. Let’s use treebank tagged utterances with universal 
tags to label and train data:

[56] utt_tagged = nltk.corpus.treebank.tagged_
sents(tagset='universal')

[57] utt_tagged
[[('Pierre', 'NOUN'), ('Vinken', 'NOUN'), (',', '.'), ('61', 'NUM'), ('years', 'NOUN'), 
('old', 'ADJ'), (',', '.'), ('will', 'VERB'), ('join', 'VERB'), ('the', 'DET'), ('board', 
'NOUN'), ('as', 'ADP'), ('a', 'DET'), ('nonexecutive', 'ADJ'), ('director', 'NOUN'), 
('Nov.', 'NOUN'), ('29', 'NUM'), ('.', '.')], [('Mr.', 'NOUN'), ('Vinken', 'NOUN'), ('is', 
'VERB'), ('chairman', 'NOUN'), ('of', 'ADP'), ('Elsevier', 'NOUN'), ('N.V.', 
'NOUN'), (',', '.'), ('the', 'DET'), ('Dutch', 'NOUN'), ('publishing', 'VERB'), ('group', 
'NOUN'), ('.', '.')], …]
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1. In this example, universal tags are used for simplicity.
2. Of course, one can also use fine-grained treebank POS tags for implementation.
3. Once do so, can now extract the features for each tagged utterance in corpus 
with training labels.
Use the following code to extract the features:

[58] # Define Extract Feature class (exfeatures)
def exfeatures(utt_tag):
 ��   utt, tag = [], []
 ��   for ut in utt_tag:
 ��       for idx in range(len(ut)):
 ��           utt.append(ufeatures(RUutterance(ut), idx))
 ��           tag.append(ut[idx][1])
 ��   return utt, tag

[59] X,y = exfeatures(utt_tagged)

This example uses DVect to convert feature-value dictionary into training vectors.
If the number of possible values for suffix3 feature is 40, there will be 40 features 

in output. Use following code to DVect:

[60] # Define sample size
nsize = 10000
# Invoke Dict Vectorizer
dvect = DVect(sparse=False)
Xtran = dvect.fit_transform(X[0:nsize])
ysap = y[0:nsize]

This example has a sample size of 10,000 utterances which 80% of the dataset is 
used for training and the other 20% is used for testing. Random forecast (RF) 
classifier is used as POS tagger model as shown:

[61] Xtrain,Xtest,ytrain,ytest = tt_split(Xtran, ysap, 
test_size=0.2,
random_state=123)
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[62] rfclassifier = RFClassifier(n_jobs=4)
rfclassifier.fit(Xtrain,ytrain)

After system training, can perform POS Tagger validation by using some sample 
utterances. But before passing to ptag_predict() method, extract features are 
required by ufeatures() method as shown:

[63] # Define the POS Tags Predictor class (ptag_predict)
def ptag_predict(utt):
 ��   utt_tagged = []
 ��   fts = [ufeatures(utt, idx) for idx in range(len(utt))]
 ��   fts = dvect.transform(fts)
 ��   tgs = rfclassifier.predict(fts)
 ��   return zip(utt, tgs)

Convert utterance into corresponding features with ufeatures() method. The 
features dictionary extracted from this method is vectorized using previously 
trained dvect:

[64] # Test with a sample utterance (utt3)
utt3 = "It is an example for POS tagger"
for utt_tagged in ptag_predict(utt3.split()):

 ��   print(utt_tagged)
('It', 'PRON')
('is', 'VERB')
('an', 'DET')
('example', 'NOUN')
('for', 'ADP')
('POS', 'NOUN')
('tagger', 'NOUN')
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Use a sample utterance “utt3” and invoke ptag_predict() method to output tags for 
each word token inside utt3 and review for accuracy afterward.

[65] predict = rfclassifier.predict(Xtest)

[66] a_score(ytest,predict)
0.9365

The overall a_score has approximately 93.6% accuracy rate and satisfactory. Next, 
let’s look at confusion matrix (c-mat) to check how well can POS tagger perform

[67] c_mat = c_matrix(ytest,predict)

[68] pyplt.figure(figsize=(10,10))
pyplt.xticks(np.arange(len(rfclassifier.
classes_)),rfclassifier.classes_)
pyplt.yticks(np.arange(len(rfclassifier.
classes_)),rfclassifier.classes_)
pyplt.imshow(c_mat, cmap=pyplt.cm.Blues)
pyplt.colorbar()
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Use classes from RF classifier as x and y labels to create a c-mat (confusion 
matrix). These labels are POS tags used for system training. The plot that follows 
shows a pictorial representation of the confusion matrix

Use classes from Random Forest classifier as x and y labels in the code for plot-
ting confusion matrix.

It looks like the tagger performs relatively well for nouns, verbs, and determiners 
in sentences reflected in dark regions of the plot. Let’s look at some top features of 
the model from the following code:

[69] flist = zip(dvect.get_feature_names_out(),
rfclassifier.feature_importances_)
sfeatures = sorted(flist,key=lambda x: x[1], 
reverse=True)
print(sfeatures[0:20])
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[('prefix1=*', 0.018027666774656427), ('capitalized', 0.014560536843271387), 
('dist_from_last', 0.013067122358738224), ('prefix2=th', 
0.011508009921371423), ('suffix2=he', 0.010995137232578216), ('prefix2=,', 
0.010843292840402313), ('suffix2=ed', 0.01065544048464163), ('prefix1=.', 
0.010442335119192925), ('suffix1=d', 0.010042966512875777), ('dist_from_
first', 0.010020085126011984), ('word=the', 0.009518771614554129), ('numeric', 
0.008902146191801517), ('prefix1=t', 0.008316132993197207), ('suffix1=s', 
0.008264535100812235), ('word=,', 0.00802534859280316), ('suffix3=,', 
0.007825258495661055), ('prefix3=the', 0.007328831604325926), ('prefix2=.', 
0.007323771203933977), ('suffix3=the', 0.006992438126037274), ('prefix1=,', 
0.006974723571575362)]

1. The RF feature importance is stored in the python feature_importances list. 
Some of the suffix features have higher importance scores than others.
2. For instances, words ending with -ed are usually verbs in past tense which 
make sense in many situations, and punctuations like commas may affect POS 
tagging performance in some situations.

Workshop 3.6 Revisit POS Tagging on The Adventures of Sherlock Holmes 
with Additional Tagger
1. Read Adventures_Holmes.txt text file.
2. Save contents into a string object "holmes_doc."
3. Extract three typical sentences from three stories of this literature.
4. Use method learnt to create own POS taggers. What are the new POS tags to 
add or use?
5. Try new POS taggers for these three typical sentences and compare results with 
previous workshop.
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Chapter 14
Workshop#4 Semantic Analysis and Word 
Vectors Using spaCy (Hour 7–8)

14.1 � Introduction

In Chaps. 5 and 6, we studied the basic concepts and theories related to meaning 
representation and semantic analysis. This workshop will explore how to use spaCy 
technology to perform semantic analysis starting from a revisit on word vectors 
concept, implement and pretrain them followed by the study of similarity method 
and other advanced semantic analysis.

Please ensure that the following Python packages are installed before starting the 
workshop:

•	 Python (demo version 3.11.9)
•	 NLTK (demo version 3.9.1)
•	 matplotlib (demo version 3.9.2)
•	 scikit-learn (demo version 1.5.1)
•	 spacy (demo version 3.4.4)

If these packages are not installed on PC/laptop, use pip install xxx command. 
The detailed requirements list and Python package version used in this workshop 
can be found in the requirements.txt file stored in the NLP GitHub repository 
(NLPGitHub 2024).

14.2 � What Are Word Vectors?

Word vectors (Albrecht et al. 2020; Bird et al. 2009; Hardeniya et al. 2016; Kedia 
and Rasu 2020; NLTK 2024) are practical tools in NLP.

A word vector is a dense representation of a word. Word vectors are important 
for semantic similarity applications like similarity calculations between words, 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_14&domain=pdf
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phrases, sentences, and documents, e.g., they provide information about synonym-
ity, semantic analogies at word level.

Word vectors are produced by algorithms to reflect similar words that appear in 
similar contexts. This paradigm captures target word meaning by collecting infor-
mation from surrounding words is called distributional semantics.

They are accompanied by associative semantic similarity methods including 
word vector computations such as distance, analogy calculations, and visualization 
to solve NLP problems.

This workshop will cover the following topics (Altinok 2021; Arumugam and 
Shanmugamani 2018; Perkins 2014; spaCy 2024; Srinivasa-Desikan 2018; 
Vasilev 2020):

•	 Understanding word vectors
•	 Using spaCy’s pretrained vectors
•	 Advanced semantic similarity methods

14.3 � Understanding Word Vectors

Word vectors, or word2vec are important quantity units in statistical methods to 
represent text in statistical NLP algorithms. There are several ways of text vector-
ization to provide words semantic representation.

14.3.1 � Example: A Simple Word Vector

Let’s look at a basic way to assign words vectors:

•	 Assign an index value to each word in vocabulary and encode this value into a 
sparse vector.

•	 Consider tennis as vocabulary and assign an index to each word according to 
vocabulary order as in Table 14.1.

Table 14.1  A basic word 
vector example consists of 
nine words

1 a
2 go
3 I
4 tennis
5 play
6 outside
7 hot
8 swim
9 rest
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Table 14.2  Word Vectors corresponding index value consists of nine words

word

a 1 0 0 0 0 0 0 0 0
go 0 1 0 0 0 0 0 0 0
I 0 0 1 0 0 0 0 0 0
tennis 0 0 0 1 0 0 0 0 0
play 0 0 0 0 1 0 0 0 0
outside 0 0 0 0 0 1 0 0 0
hot 0 0 0 0 0 0 1 0 0
swim 0 0 0 0 0 0 0 1 0
today 0 0 0 0 0 0 0 0 1

Table 14.3  Word Vector matrix for I play tennis today

word

I 0 0 1 0 0 0 0 0 0
play 0 0 0 0 1 0 0 0 0

tennis 0 0 0 1 0 0 0 0 0
today 0 0 0 0 0 0 0 0 1

Vocabulary word vector will be 0, except for word corresponding index value 
position as in Table 14.2.

Since each row corresponds to one word, a sentence represents a matrix, e.g., I 
play tennis today is represented by a matrix as in Table 14.3.

Vectors length is equal to word numbers in vocabulary as shown above. Each 
dimension is apportioned to one word explicitly. When applying this encoding vec-
torization to text, each word is replaced by its vector, and the sentence is trans-
formed into a (N, V) matrix, where N is words number in sentence and V is 
vocabulary size.

This text representation is easy to compute, debug, and interpret. It looks good so 
far but there are potential problems:

•	 Vectors are sparse. Each vector contains many 0 s but has one 1. If words have 
similar meanings and can group to share dimensions, this vector will deplete 
space. Also, numerical algorithms don’t accept high dimension and sparse vec-
tors in general.

14.3  Understanding Word Vectors
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•	 A sizeable vocabulary is comparable to high dimensions vectors are impractical 
for memory storage and computation.

•	 Similar words do not assign with similar vectors resulting unmeaningful vectors, 
e.g., cheese, topping, salami, and pizza have related meanings but have unrelated 
vectors. These vectors depend on corresponding word’s index and assign ran-
domly in vocabulary, indicating that one-hot encoded vectors are incapable to 
capture semantic relationships and against word vectors’ purpose to answer pre-
ceding list concerns.

14.4 � A Taste of Word Vectors

A word vector is a fixed-size, dense, and real-valued vector. It is a learnt representa-
tion of text where semantic similar words correspond to similar vectors and a solu-
tion to preceding problems.

the 0.418 0.24968 -0.41242 0.1217 0.34527 -0.044457 -0.49688 - 
0.17862 -0.00066023 -0.6566 0.27843 -0.14767 -0.55677 0.14658 - 
0.0095095 0.011658 0.10204 -0.12792 -0.8443 -0.12181 -0.016801 - 
0.33279 -0.1552 -0.23131 -0.19181 -1.8823 -0.76746 0.099051 - 
0.42125 -0.19526 4.0071 -0.18594 -0.52287 -0.31681 0.00059213 
0.0074449 0.17778 -0.15897 0.012041 -0.054223 -0.29871 -0.15749 - 
0.34758 -0.045637 -0.44251 0.18785 0.0027849 -0.18411 -0.11514 - 
0.78581

This is a 50-dimensional vector for word the, these dimensions have floating points
1. What do dimensions represent?
2. These individual dimensions don’t have inherent meanings typically but instead 
they represent vector space locations, and the distance between these vectors 
indicates the similarity of corresponding words’ meanings.
3. Hence, a word’s meaning is distributed across dimensions.
4. This type of word’s meaning representation is called distributional semantics.

Use word vector visualizer for TensorFlow from (TensorFlow 2024) Google 
offers word vectors for 10,000 words. Each vector is 200-dimensional and projected 
into three dimensions for visualization. Let’s look at the representation of tennis as 
in Fig. 14.4.
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357

Fig. 14.4  Vector representation of tennis and semantic similar words

tennis is semantically grouped with other sports i.e. hockey, basketball, chess etc. 
Words in proximity are calculated by their cosine distances as shown in Fig. 14.5

Word vectors are trained on a large corpus such as Wikipedia which included to 
learn proper nouns representations, e.g., Alice is a proper noun represented by vec-
tor as in Fig. 14.6.

14.4  A Taste of Word Vectors
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Fig. 14.5  tennis proximity 
words in three-dimensional 
space

It showed that all vocabulary input words are in lower cases to avoid multiple 
representations of the same word. Alice and Bob are person names to be listed. In 
addition, lewis and carroll have relevance to Alice because of the famous literature 
Alice’s Adventures in Wonderland written by Lewis Carroll. Further, it also showed 
syntactic category of all neighboring words are nouns but not verbs.

Word vectors can capture synonyms, antonyms, and semantic categories such as 
animals, places, plants, names, and abstract concepts.

14  Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7–8)
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Fig. 14.6  Vector representation of alice

14.5 � Analogies and Vector Operations

Word vectors capture semantics, support vector addition, subtraction, and analo-
gies. A word analogy is a semantic relationship between a pair of words. There are 
many relationship types such as synonymity, anonymity, and whole-part relation. 
Some example pairs are (King—man, Queen—woman), (airplane—air, ship - sea), 
(fish—sea, bird - air), (branch—tree, arm—human), (forward—backward, absent—
present), etc.

For example, gender mapping represents Queen and King as Queen—
Woman + Man = King. If woman is subtracted by Queen and add Man instead to 
obtain King. Then, this analogy interprets queen is attributed to king as woman is 
attributed to man. Embeddings can generate analogies such as gender, tense, and 
capital city as shown in Fig. 14.7.

14.5  Analogies and Vector Operations
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Fig. 14.7  Analogies created by word vectors

14.6 � How to Create Word Vectors?

There are many ways to produce and pretrained word vectors:

	1.	 word2vec is a name of statistical algorithm created by Google to produce word 
vectors. Word vectors are trained with a neural network architecture to process 
windows of words and predict each word vector depending on surrounding 
words. These pretrained word vectors can be downloaded from Synthetic (2024).

	2.	 Glove vectors are invented by Stanford NLP group. This method depends on 
singular value decomposition used in word co-occurrences matrix. The pre-
trained vectors are available at nlp.stanford.edu (Stanford 2024).

	3.	 fastText (FastText 2024) was created by Facebook Research like word2vec. 
word2vec predicts words based on their surrounding context, while fastText pre-
dicts subwords, i.e., character N-grams. For example, the word chair generates 
the following subwords:

ch, ha, ai, ir, cha, hai, air

14.7 � spaCy Pretrained Word Vectors

Word vectors are part of many spaCy language models. For instance, en_core_web_
md model ships with 300-dimensional vectors for 20,000 words, while en_core_
web_lg model ships with 300-dimensional vectors with a 685,000 words vocabulary.

Typically, small models (names end with sm) do not include any word vectors 
but context-sensitive tensors. Semantic similarity calculations can perform but 
results will not be as accurate as word vector computations.

14  Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7–8)
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A word’s vector is via token.vector method. Let’s look at this method using code 
query word vector for banana:

[1] # Import spaCy and load the en_core_web_md model
import spacy
nlp = spacy.load("en_core_web_md")
# Create a sample utterance (utt1)
utt1 = nlp("I ate a banana.")

[2] import en_core_web_md
nlp = en_core_web_md.load()

Use the following script to show Word Vector for banana:

[3] utt1[3].vector
array([ 0.20778, −2.4151, 0.36605, 2.0139, −0.23752, −3.1952,
 ��    −0.2952, 1.2272, −3.4129, −0.54969, 0.32634, −1.0813,
 ��   0.55626, 1.5195, 0.97797, −3.1816, −0.37207, −0.86093,
 ��   2.1509, −4.0845, 0.035405, 3.5702, −0.79413, −1.7025,
 ��    −1.6371, −3.198, −1.9387, 0.91166, 0.85409, 1.8039,
 ��    −1.103, −2.5274, 1.6365, −0.82082, 1.0278, −1.705,
 ��   1.5511, −0.95633, −1.4702, −1.865, −0.19324, −0.49123,
 ��   2.2361, 2.2119, 3.6654, 1.7943, −0.20601, 1.5483,
 ��    −1.3964, −0.50819, 2.1288, −2.332, 1.3539, −2.1917,
 ��   …
 ��    −1.354, 2.6261, 1.9156, −1.5651, 1.8315, −1.4257,
 ��    −1.6861, −0.51953, 1.7635, −0.50722, 1.388, −1.1012 ],
 ��   dtype=float32)

In this example, token.vector returns a NumPy ndarray.
Use the following command to call NumPy methods for result.

[4] type(utt1[3].vector)
numpy.ndarray

14.7  spaCy Pretrained Word Vectors
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[5] utt1[3].vector.shape
(300,)

Query Python type of word vector in this code segment. Then, invoke shape() 
method of NumPy array on the vector.

Doc and Span object also have vectors. A sentence vector or a span is the average 
of words’ vectors. Run the following code and see results:

[6] # Create second utterance (utt2)
utt2 = nlp("I like a banana,")
utt2.vector
utt2[1:3].vector
array([ −5.84815, 3.9533, −4.2019, 1.851645,
 ��   4.2339, −3.74201, 2.1273, 6.0418997,
 ��   2.7598, 0.40665, 11.029249, 2.792575,
 ��   −5.2807, −0.47160006, 2.38658, 2.2019,
 ��   4.65584, 0.33210003, 0.76987505, 0.72405005,
 ��   1.9154, 2.24705, −0.748515, −1.29685,
 ��   1.0118049, −5.3013496, −5.97755, −1.618835,
 ��   −0.23785007, −2.2115, −0.61186, −3.56615,
 ��   ….
 ��   −1.32008, −4.63445, −2.8069, 1.747215,
 ��   7.172359, −2.6399, 1.54486, −1.320575,
 ��   −5.26095, 5.7922, −5.7227497, −0.20825005,
 ��   0.47510207, 2.4512, −1.01646, 4.55843,
 ��   1.4716, 4.96085, −4.954, 1.50534 ],
 ��   dtype=float32)

Only words in model’s vocabulary have vectors, words that are not in vocabulary 
are called out-of-vocabulary (OOV) words. token.is_oov and token.has_vector 
are two methods to query whether a token is in the model’s vocabulary and has a 
word vector:

[7] # Create the utterance 3
utt3 = nlp("You went there afskfsd.")

14  Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7–8)
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[8] for token in utt3:
 ��   print( "Token is: ",token, "OOV: ", token.is_oov, 
"Token has vector:", token.has_vector)

Token is: You OOV: False Token has vector: True
Token is: went OOV: False Token has vector: True
Token is: there OOV: False Token has vector: True
Token is: afskfsd OOV: True Token has vector: False
Token is: OOV: False Token has vector: True

This is basically how to use spaCy’s pretrained word vectors. Next, discover how 
to invoke spaCy’s semantic similarity method on Doc, Span, and Token objects.

14.8 � Similarity Method in Semantic Analysis

Every container type object has a similarity method to calculate the semantic simi-
larity of other container objects by comparing word vectors in spaCy. Semantic 
similarity between two container objects is different container types. For instance, a 
Token object to a Doc object and a Doc object to a Span object.

The following example computes two Span objects similarity:

[9] # Create utt4 and utt5 and measure the similarity
utt4 = nlp("I visited England.")
utt5 = nlp("I went to London.")
utt4[1:3].similarity(utt5[1:4])
0.45464012026786804

Compare two Token objects, London and England:

[10] utt4[2]
England

[11] utt4[2].similarity(utt5[3])
0.6339874267578125

14.8  Similarity Method in Semantic Analysis
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The sentence’s similarity is computed by calling similarity() on Doc objects:

[12] utt4.similarity(utt5)
0.8206949942253569

1. The preceding code segment calculates semantic similarity between two 
sentences I visited England and I went to London.
2. Similarity score is high enough to consider both sentences are similar 
(similarity degree ranges from 0 to 1, 0 represents unrelated and 1 represents 
identical).

similarity() method returns 1 compare an object to itself unsurprisingly:

[13] utt4.similarity(utt4)
1.0

Judge the distance with numbers is complex but review vectors on paper can 
understand how vocabulary word groups are formed.

Code snippet below visualizes a vocabulary of two graphical semantic classes. 
The first word class is for animals and the second class is for food.

[14] import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import numpy as np
import spacy
nlp = spacy.load( "en_core_web_md" )
vocab = nlp( "cat dog tiger elephant bird monkey lion 
cheetah burger pizza food cheese wine salad noodles 
macaroni fruit vegetable" )
words = [word.text for word in vocab]

Create Word Vector vecs:

[15] vecs = np.vstack([word.vector for word in vocab if word.
has_vector])

14  Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7–8)
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Use principal component analysis (PCA) similarity analysis and plot similarity 
results with plt class.

[16] pca = PCA(n_components=2)
vecs_transformed = pca.fit_transform(vecs)
plt.figure(figsize=(20,15))
plt.
scatter(vecs_transformed[:,0], vecs_transformed[:,1])
for word, coord in zip(words, vecs_transformed):
 ��   x,y = coord
 ��   plt.text(x,y,word, size=15)
plt.show()

1. Import matplotlib library to create a graph.
2. Next two imports are for vectors calculation.
3. Import spaCy and create a nlp object.
4. Create a Doc object from vocabulary.
5. Stack word vectors vertically by calling np.vstack.
6. Project vectors into a two-dimensional space for visualization since they are 
300-dimensional. Extract two principal components via PCA for projection.
7. Create a scatter plot for rest of the code to deal with matplotlib function calls.

It shows that spaCy word vectors can visualize two semantic classes are grouped. 
The distance between animals is reduced and uniformly distributed, while food 
class formed groups within the group.

14.8  Similarity Method in Semantic Analysis
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Workshop 4.1 Word Vector Analysis on The Adventures of Sherlock Holmes
In this workshop, we have just learnt how to use spaCy to produce word vector to 
compare the similarity of two text objects/document. Try to use The Adventures of 
Sherlock Holmes (Doyle 2019; Gutenberg 2024) to select two "presentative" texts 
from this detective story:
1. Read Adventures_Holmes.txt text file.
2. Save contents into a string object "holmes_doc."
3. Plot Semantic Graphs for these two texts.
4. Perform Similarity text for these two documents. See what can be found.

14.9 � Advanced Semantic Similarity Methods with spaCy

It has learnt that spaCy‘s similarity method can calculate semantic similarity to 
obtain scores but there are advanced semantic similarity methods to calculate words, 
phrases, and sentences similarity.

14.9.1 � Understanding Semantic Similarity

It is necessary to identify examples characteristics when collecting data or text data 
(any sort of data), i.e., calculate two text similarity scores. Semantic similarity is a 
metric to define the distance between texts based on semantics texts.

Metrics in mathematics are basically distance functions. Each metric produces a 
topology on the vector space. Word vectors are vectors that can be used to calculate 
the distance between them as a similarity score.

There are two commonly used distance functions (1) Euclidian distance and (2) 
cosine distance.

14.9.2 � Euclidean Distance

Euclidian distance counts on vector magnitude and disregards orientation. If a vec-
tor is drawn from an origin, let’s call it a dog vector to another point, call a cat vector 
and subtract one vector from and other, the distance represents the magnitude of 
vectors is shown in Fig. 14.8.

If two more semantically similar words (canine, terrier) to dog and make it a text 
of three words, i.e., dog canine terrier. Obviously, the dog vector will now grow in 
magnitude, possibly in the same direction. This time, the distance will be much big-
ger due to geometry, although the semantics of first piece of text (now dog canine 
terrier) remain the same.

14  Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7–8)
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Fig. 14.9  Distance between dog and cat, as well as the distance between dog canine terrier and cat

Fig. 14.8  Euclidian distance between two vectors: dog and cat

This is the main drawback of using Euclidian distance for semantic similarity as 
the orientation of two vectors in the space is not considered. Figure 14.9 illustrates 
the distance between dog and cat, and the distance between dog canine terrier 
and cat.

How can we fix this problem? There’s another way of calculating similarity 
called cosine similarity to address this problem.

14.9  Advanced Semantic Similarity Methods with spaCy
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I purchased a science fiction book last week.

I loved everything related to this fragrance: Light, floral and feminine …

I purchased a bottle of wine.

Fig. 14.10  The angle between dog and cat vectors. Here, the semantic similarity is calculated 
by cos(θ)

14.9.3 � Cosine Distance and Cosine Similarity

Contrary to Euclidian distance, cosine distance is more concerned with the orienta-
tion of two vectors in the space. The cosine similarity of two vectors is basically the 
cosine angle created by these two vectors. Figure 14.10 shows the angle between 

dog and cat vectors.
The maximum similarity score that’s allowed by cosine similarity is 1. This is 

obtained when the angle between two vectors is 0 degree (hence, the vectors coin-
cide). The similarity between two vectors is 0 when the angle between them is 90 
degrees.

Cosine similarity provides scalability when vectors grow in magnitude. If one of 
the input vectors is expanded as in Fig. 14.10, the angle between them remains the 
same and so is the cosine similarity score.
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Note that here is to calculate semantic similarity score and not distance. The highest 
possible value is 1 when vectors coincide, while the lowest score is 0 when two vectors 
are perpendicular. The cosine distance is 1—cos(θ) which is a distance function.

spaCy uses cosine similarity to calculate semantic similarity. Hence, calling the 
similarity method helps to perform cosine similarity calculations.

So far, we’ve learnt to calculate similarity scores, but still haven’t discovered 
words meaning. Obviously, not all words in a sentence have the same impact on the 
semantics of sentence. The similarity method will only calculate the semantic simi-
larity score, but the right keywords are required for calculation results comparison.

Consider the following text snippet:

If interested in finding the biggest mammals on the planet, the phrases biggest 
mammals and in the world will be keywords. Comparing these phrases with the 
search phrases largest mammals and on the planet should give a high similarity 
score. But if is interested in finding out about places in the world, California will be 
a keyword. California is semantically like word geography and more suitably, the 
entity type is a geographical noun.

Since we have learnt how to calculate similarity score, the next section will learn 
about where to look for the meaning. It will cover a case study on text categorization 
before improving task results via key phrase extraction with similarity score 
calculations.

Blue whales are the biggest mammals in the world. They’re observed in 
California coast during spring.

A dog

My dog

My beautiful dog

A beautiful dog

A beautiful and happy dog

My happy and cute dog

14.9  Advanced Semantic Similarity Methods with spaCy
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14.9.4 � Categorizing Text with Semantic Similarity

Determining two sentences’ semantic similarity can categorize texts into predefined 
categories or spot only the relevant texts. This case study will filter users’ comments 
in an e-commerce website related to the word perfume. Suppose to evaluate the fol-
lowing comments:

Here, it is noted that only the second sentence is related. This is because it contains 
the word fragrance and adjectives describing scents. To understand which sentences 
are related, can try several comparison strategies.

To start, compare perfume to each sentence. Recall that spaCy generates a word 
vector for a sentence by averaging the word vector of its tokens. The following code 
snippet compares preceding sentences to perfume search key:

[17] utt6 = nlp( "I purchased a science fiction book last 
week. I loved everything related to this fragrance: 
light, floral and feminine… I purchased a bottle of 
wine. " )
key = nlp( "perfume" )
for utt in utt6.sents:
 ��   print(utt.similarity(key))
0.2950337433100861
0.4292321445243577
0.4216416633742172

The following steps are performed:
Create a Doc object with three preceding sentences. For each sentence, calculate 

similarity score with perfume and print the score by invoking similarity() method on 
the sentence. The degree of similarity between perfume and the first sentence is 
minute, indicating that this sentence is irrelevant to the search key. The second sen-
tence looks relevant which means that semantic similarity is correctly identified.

How about the third sentence? The script identified that the third sentence is 
relevant somehow, most probably because it includes the word bottle, and perfumes 
are sold in bottles. The word bottle appears in similar contexts with the word per-
fume. For this reason, the similarity score of this sentence and search key is not 
small enough; also, the scores of second and third sentences are not distant enough 
to make the second sentence significant.

In practice, long texts such as web documents can be dealt with but averaging 
over them diminishes the importance of keywords.

Let’s look at how to identify key phrases in a sentence to improve performance.
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14.9.5 � Extracting Key Phrases

Semantic categorization is effective to extract important words phrases and compare 
them to the search key. Instead of comparing the key to different parts of speech, we 
can compare the key to noun phrases. Noun phrases are subjects, direct objects, and 
indirect objects of sentences that convey high percentages of sentences semantics.

For example, in sentence Blue whales live in California, focuses will likely be on 
blue whales, whales, California, or whales in California.

Similarly, in the preceding sentence about perfume, the focus is to pick out fra-
grance as the noun. Different semantic tasks may need other context words such as 
verbs to decide what the sentence is about, but for semantic similarity, noun phrases 
convey significant weights.

What is a noun phrase? A noun phrase (NP) is a group of words that consist of a 
noun and its modifiers. Modifiers are usually pronouns, adjectives, and determiners. 
The following phrases are noun phrases:

spaCy extracts noun phases by parsing the output of the dependency parser. It can 
identify noun phrases of a sentence by using doc.noun_chunks method:

[18] utt7 = nlp( "My beautiful and cute dog jumped over 
the fence" )

[19] utt7.noun_chunks
<generator at 0x1be166595a0>

[20] list(utt7.noun_chunks)
[My beautiful and cute dog, the fence]

Let’s modify the preceding code snippet. Instead of comparing the search key 
perfume to the entire sentence, this time will only compare it with sentence’s 
noun chunks:

[21] for utt in utt7.sents:
 ��   nchunks = [nchunk.text for nchunk in utt.noun_chunks]
 ��   nchunk_utt = nlp(" ".join(nchunks))
 ��   print(nchunk_utt.similarity(key))
0.28984869889342174

14.9  Advanced Semantic Similarity Methods with spaCy
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The following is performed for the preceding code:
1. Iterate over sentences.
2. Extract noun chunks and store them in a python list for each sentence.
3. Join noun chunks in the list into a python string and convert it into a doc object.
4. Compare this doc object of noun chunks to search key perfume to determine 
semantic similarity scores.

If these scores are compared with previous scores, it is noted that the first sen-
tence remains irrelevant, so its score decreased marginally but the second sentence’s 
score increased significantly. Also, the second and third sentences scores are distant 
from each other to reflect that second sentence is the most related sentence.

14.9.6 � Extracting and Comparing Named Entities

In some cases, it can focus on extracting proper nouns instead of every noun. Hence, 
it is required to extract named entities. Let’s compare the following paragraphs:

 

The codes should be able to recognize that first two paragraphs are about large 
technology companies and their products whereas the third paragraph is about a 
geographic location.

Comparing all noun phrases in these sentences may not be helpful because many 
of them such as volume are irrelevant to categorization. The topics of these para-
graphs are determined by phrases within them, that is, Google Search, Google, 
Microsoft Bing, Microsoft, Windows, Dead Sea, Jordan Valley, and Israel. spaCy 
can identify these entities:

[22] utt8 = nlp( "Google Search, often referred as Google, 
is the most popular search engine nowadays. It answers 
a huge volume of queries every day." )
utt9 = nlp( "Microsoft Bing is another popular search 
engine. Microsoft is known by its star product 
Microsoft Windows, a popular operating system sold over 
the world." )
utt10 = nlp( "The Dead Sea is the lowest lake in the 
world, located in the Jordan Valley of Israel. It is 
also the saltiest lake in the world." )
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[23] utt8.ents
(Google Search, Google, every day)

[24] utt9.ents
(Microsoft Bing, Microsoft, Microsoft Windows)

[25] utt10.ents
(The Dead Sea, the Jordan Valley, Israel)

Since words are extracted for comparison, let’s calculate similarity scores:

[26] ents1 = [ent.text for ent in utt8.ents]
ents2 = [ent.text for ent in utt9.ents]
ents3 = [ent.text for ent in utt10.ents]
ents1 = nlp(" ".join(ents1))
ents2 = nlp(" ".join(ents2))
ents3 = nlp(" ".join(ents3))

[27] ents1.similarity(ents2)

0.5618316156902609

[28] ents1.similarity(ents3)
0.12924407611214866

[29] ents2.similarity(ents3)
0.11911278371814159

These figures revealed that the highest level of similarity exists between first and 
second paragraphs, which are both about large tech companies. The third 
paragraph is unlike other paragraphs. How can this calculation be obtained by 
using word vectors only? It is probably because words Google and Microsoft often 
appear together in news and other social media text corpora, hence producing 
similar word vectors

This is the conclusion of advanced semantic similarity methods section with dif-
ferent ways to combine word vectors with linguistic features such as key phrases 
and named entities.

14.9  Advanced Semantic Similarity Methods with spaCy
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Workshop 4.2 Further Semantic Analysis on The Adventures of Sherlock 
Holmes
It has learnt to further improve Semantic Analysis results on document similarity 
comparison by extracting (1) key phrases; (2) and comparing names entities. Try 
to use these techniques on The Adventures of Sherlock Holmes:
1. Extract three "representative texts" from this novel.
2. Perform key phrases extraction to improve the similarity rate as compared with 
Workshop 4.1 results.
3. Extract and compare name entities to identify significant name entities from 
this literature to further improve semantic analysis performance.
4. Remember to plot semantic diagram to show how these entities and keywords 
are related.
5. Discuss and explain what can be found.
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Chapter 15
Workshop#5: Sentiment Analysis and Text 
Classification (Hour 9–10)

15.1 � Introduction

NLTK and spaCy are two major NLP Python implementation tools for basic text 
processing, N-gram modeling, POS tagging, and semantic analysis introduced in 
the last four workshops. Workshop 5 will explore how to position these NLP imple-
mentation techniques into two important NLP applications: text classification and 
sentiment analysis. TensorFlow and Kera are two vital components to implement 
LSTM, a commonly used RNN on machine learning, especially in NLP applications.

This workshop will:

	1.	 Study text classification concepts in NLP and how spaCy NLP pipeline works on 
text classifier training.

	2.	 Use movie reviews as a problem domain to demonstrate how to implement senti-
ment analysis with spaCy.

	3.	 Introduce Artificial Neural Networks (ANN) concepts, TensorFlow, and Kera 
technologies.

	4.	 Introduce sequential modeling scheme with LSTM technology using movie 
reviews domain as example to integrate these technologies for text classification 
and movie sentiment analysis.

15.2 � Text Classification with spaCy and LSTM Technology

Text classification is a vital component in sentiment analysis application.
TextCategorizer is a spaCy‘s text classifier component applied in dataset for sen-

timent analysis to perform text classification with two vital Python frameworks (1) 
TensorFlow Keras API and (2) spaCy technology.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_15&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_15#DOI
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Neural networks basics, sequential data modeling with LSTM technology to pro-
cess text for machine learning tasks with Keras‘s text preprocessing module and 
implement a neural network with tf.keras.

This workshop will cover the following topics:

•	 Basic concept and knowledge of text classification
•	 Model training of spaCy text classifier
•	 Sentiment Analysis with spaCy
•	 Sequential modeling with LSTM Technology

15.3 � Technical Requirements

Please ensure that the following Python packages are installed before starting the 
workshop:

•	 Python (demo version 3.11.9)
•	 spacy (demo version 3.4.4)
•	 keras (demo version 3.5.0)
•	 tensorflow (demo version 2.17.0)
•	 numPy (demo version 1.26.4)
•	 pandas (demo version 2.2.2)
•	 matplotlib (demo version 3.9.2)

If these packages are not installed on PC/laptop, use pip install xxx command. 
The detailed requirements list and Python package version used in this workshop 
can be found in the requirements.txt file stored in the NLP GitHub repository 
(NLPGitHub 2024).

15.4 � Text Classification in a Nutshell

15.4.1 � What Is Text Classification?

Text Classification (Albrecht et  al. 2020; Bird et  al. 2009; George 2022; Sarkar 
2019; Siahaan and Sianipar 2022; Srinivasa-Desikan 2018) is the task of assigning 
a set of predefined labels to text.

They are classified by manual tagging, but machine learning techniques are 
applied progressively to train classification system with known examples, or train 
samples to classify unseen cases. It is a fundamental task of NLP (Perkins 2014, 
Sarkar 2019) using various machine learning method such as LSTM technology 
(Arumugam and Shanmugamani 2018; Géron 2019; Kedia and Rasu 2020).

Text classification types are (Agarwal 2020; George 2022; Pozzi et al. 2016):
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Fig. 15.1  Example of top detection for customer complaint in customer service automation sys-
tem (CSAS)

•	 Language detection is the first step of many NLP systems, i.e., machine 
translation.

•	 Topic generation and detection are the process of summarization, or classifica-
tion of a batch of sentences, paragraphs, or texts into certain topic of interest 
(TOI) or topic titles, e.g., customers’ email request refund or complaints about 
products or services.

•	 Sentiment analysis to classify or analyze users’ responses, comments, and mes-
sages on a particular topic attribute to positive, neutral, or negative sentiments. It 
is an essential task in e-commerce and social media platforms.

Text classifiers can emphasize overall text sentiments, text language detection, 
and words levels, i.e., verbs. A text classifier of a customer service automation sys-
tem is shown in Fig. 15.1.

15.4.2 � Text Classification as AI Applications

Text classification is considered as supervised-learning (SL) task in AI which means 
that the classifier can predict the class label of a text based on sample input text-
class label pairs. It must require sufficient input (text)-output (classified labels) pairs 
databank for network training, testing, and validation. Hence, a labeled dataset is a 
list of text-label pairs required to train a text classifier. An example dataset of five 
training sentences with sentiment labels is shown in Table 15.1.

When a classifier encounters a new text not in the training text, it predicts a class 
label of this unseen text based on examples during the training phase to induce a text 
classifier output is always a class label.

Text classification can also be divided into (1) binary, (2) multi-class, and (3) 
multi-label categories:

	1.	 Binary text classification refers to categorizing text into two classes.
	2.	 Multi-class text classification refers to categorizing texts with more than two 

classes. Each class is mutually exclusive where one text is associated with a 
single class, e.g., rating customer reviews are represented by a 1–5 stars category 
single class label.

15.4 � Text Classification in a Nutshell
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Table 15.1  Sample input 
texts and their corresponding 
output class labels

This TV has brought me so much joy. Pos
This is the best soccer game I have ever 
seen.

Pos

This dress is so ordinary not worth this 
expensive selling price.

Neg

Mom makes the best dinners. Pos
Shut up, you can't talk to me like that. Neg

	3.	 Multi-label text classification system is to generalize its multi-class counterpart 
assigned to each example text, e.g., toxic, severe toxic, insult, threat, obscenity 
levels of negative sentiment. What are Labels in Text Classification?

Labels are class names for output. A class label can be categorical (string) or 
numerical (a number).

Text classification has the following class labels:

•	 Sentiment analysis has positive and negative class labels abbreviated by pos and 
neg where 0 represents negative sentiment and 1 represents positive sentiment. 
Binary class labels are popular as well.

•	 The identical numeric representation applies to binary classification problems, 
i.e., use 0–1 for class labels.

•	 Class labeled with a meaningful name for multi-class and multi-label problems, 
e.g., movie genre classifier has labels action, scifi, weekend, Sunday movie, etc. 
Numbers are labels for a five-class classification problem, i.e., 1–5.

15.5 � Text Classifier with spaCy NLP Pipeline

TextCategorizer (tCategorizer) is spaCy‘s text classifier component (Altinok 2021; 
SpaCy 2024; Vasiliev 2020). It required class labels and examples in NLP pipeline 
to perform training procedure as shown in Fig. 15.2.

TextCategorizer provides user-friendly and end-to-end approaches to train clas-
sifier so that it does not need to deal with neural network architecture directly.

15.5.1 � TextCategorizer Class

Import spaCy and load nlp component from "en_core_web_md":

[1] # Load and import spacy package
import spacy
# Load the en_core_web_md module
nlp = spacy.load( "en_core_web_md" )

15  Workshop#5: Sentiment Analysis and Text Classification (Hour 9–10)



379

Fig. 15.2  TextCategorizer in the spaCy NLP pipeline

Import TextCategorizer from spaCy pipeline components:

[2] # Import the Single Text Categorizer Model
from spacy.pipeline.textcat import 
DEFAULT_SINGLE_TEXTCAT_MODEL

TextCategorizer consists of (1) single-label and (2) multi-label classifiers.
A multi-label classifier can predict more than a single class. A single-label clas-

sifier predicts an individual class for each example and classes are mutually 
exclusive.

The preceding import line imports single-label classifier, and the following code 
imports multi-label classifier:

[3] # Import the Multiple Text Categorizer Model
from spacy.pipeline.textcat_multilabel import 
DEFAULT_MULTI_TEXTCAT_MODEL

There are two parameters (1) a threshold value and (2) a model name (either 
Single or Multi depends on classification task) required for a TextCategorizer com-
ponent configuration.

TextCategorizer generates a probability for each class and a class is assigned to 
text if the probability of this class is higher than the threshold value.

A traditional threshold value for text classification is 0.5, however, if prediction 
is required for a higher confidence, it can adjust threshold to 0.6–0.8.

A single-label TextCategorizer (tCategorizer) component is added to nlp pipe-
line as follows:

[4] # Import the Single Text Categorizer Model
# Define the model parameters: threshold and model
from spacy.pipeline.textcat import 
DEFAULT_SINGLE_TEXTCAT_MODEL
config = {
 ��   "threshold": 0.5,
 ��   "model": DEFAULT_SINGLE_TEXTCAT_MODEL
}

15.5 � Text Classifier with spaCy NLP Pipeline
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[5] # Define the Text Categorizer object (tCategorizer)
tCategorizer = nlp.add_pipe("textcat", config=config)

Let’s look at Text Categorizer object (tCategorizer):

[6] tCategorizer
<spacy.pipeline.textcat.TextCategorizer at 0x278850c0830>

Add a multilabel component to nlp pipeline:

[7] # Import the Multiple Text Categorizer Model
# Define the model parameters: threshold and model
from spacy.pipeline.textcat_multilabel import 
DEFAULT_MULTI_TEXTCAT_MODEL
config = {
 ��   "threshold": 0.5,
 ��   "model": DEFAULT_MULTI_TEXTCAT_MODEL
}

[8] tCategorizer = nlp.add_pipe( "textcat_multilabel", 
config=config)

[9] tCategorizer
<spacy.pipeline.textcat_multilabel.MultiLabel_TextCategorizer at 0x278850c26f0>

Add a TextCategorizer pipeline component to nlp pipeline object at the last line of 
each preceding code blocks. The newly created TextCategorizer component is 
captured by textcat variable and set for training

15.5.2 � Formatting Training Data for the TextCategorizer

Let’s prepare a customer sentiment dataset for binary text classification.
The label (category) will be called sentiment to obtain two possible values, 0 and 

1 corresponding to negative and positive sentiments.
There are six examples from IMDB with three each of positive and negative 

as below:

15  Workshop#5: Sentiment Analysis and Text Classification (Hour 9–10)
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[10] movie_comment1 = [
 ��   ("This movie is perfect and worth watching. ",
{"cats": {"Positive Sentiment": 1}}),
 ��   ("This movie is great, the performance of Al Pacino 
is brilliant.", {"cats": {"Positive Sentiment": 1}}),

 ��   ("A very good and funny movie. It should be the best 
this year!", {"cats": {"Positive Sentiment": 1}}),

 ��   ("This movie is so bad that I really want to leave 
after the first hour watching.", {"cats": {"Positive 
Sentiment": 0}}),

 ��   ("Even free I won't see this movie again. Totally 
failure!",

{"cats": {"Positive Sentiment": 0}}),
 ��   ("I think it is the worst movie I saw so far this 
year.",

{"cats": {"Positive Sentiment": 0}})
]]

Check on any movie comment1 element:

[11] movie_comment1 [1]
('This movie is great, the performance of Al Pacino is brilliant.',
{'cats': {'Positive Sentiment': 1}})

• Each training example (movie_coment1) is a tuple object consists of a text and a 
nested dictionary.
• The dictionary contains a class category in a format recognized by spaCy.
• The cats field means categories.
• Include class category sentiment and its value. The value should always be a 
floating-point number.

The code will introduce a class category selected for TextCategorizer component.

[12] import random
import spacy
from spacy.training import Example
from spacy.pipeline.textcat import 
DEFAULT_SINGLE_TEXTCAT_MODEL

• Import a built-in library random to shuffle dataset.
• Import spaCy as usual, then import example to prepare training samples in spaCy 
format.
• Import TextCategorizer model in the final statement.

15.5 � Text Classifier with spaCy NLP Pipeline
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Initialize pipeline and TextCategorizer component.
When a new TextCategorizer component tCategorizer is created, use calling 

add_label method to introduce category sentiment to TextCategorizer component 
with examples.

The following code adds label to TextCategorizer component and initializes 
TextCategorizer model’s weights with training samples:

[13] import random
import spacy
from spacy.training import Example
from spacy.pipeline.textcat import 
DEFAULT_SINGLE_TEXTCAT_MODEL
# Load the spaCy NLP model
nlp = spacy.load('en_core_web_md')
# Set the threshold and model
config = {
 ��   "threshold": 0.5,
 ��   "model": DEFAULT_SINGLE_TEXTCAT_MODEL
}
# Define TextCategorizer object (tCategorizer)
tCategorizer = nlp.add_pipe("textcat", config=config)

Let’s look at pipe_names:

[14] nlp.pipe_names
['tok2vec',
'tagger',
'parser',
'attribute_ruler',
'lemmatizer',
'ner',
'textcat']

When a new TextCategorizer component textcat is created, use calling add_label 
method to introduce label sentiment to the TextCategorizer component and initialize 
this component with examples.

The following code adds a label to TextCategorizer component and initializes 
TextCategorizer model’s weights with training samples (movie_comment_exp):

[15] # Create the two sentiment categories
tCategorizer.add_label("Positive Sentiment")
tCategorizer.add_label("Negative Sentiment")
# Create the movie comment samples
movie_comment_exp = [Example.from_dict(nlp.make_
doc(comments), category) for comments,category in 
movie_comment1]
tCategorizer.initialize(lambda: movie_comment_exp, 
nlp=nlp)
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Let’s look at movie_comment_exp:

[16] movie_comment_exp
[{'doc_annotation': {'cats': {'Positive Sentiment': 1}, 'entities': ['O', 'O', 'O', 'O', 'O', 
'O', 'O', 'O'], 'spans': {}, 'links': {}}, 'token_annotation': {'ORTH': ['This', 'movie', 
'is', 'perfect', 'and', 'worth', 'watching', '.'], 'SPACY': [True, True, True, True, True, 
True, False, True], 'TAG': ['', '', '', '', '', '', '', ''], 'LEMMA': ['', '', '', '', '', '', '', ''], 'POS': 
['', '', '', '', '', '', '', ''], 'MORPH': ['', '', '', '', '', '', '', ''], 'HEAD': [0, 1, 2, 3, 4, 5, 6, 7], 
'DEP': ['', '', '', '', '', '', '', ''], 'SENT_START': [1, 0, 0, 0, 0, 0, 0, 0]}},
{'doc_annotation': {'cats': {'Positive Sentiment': 1}, 'entities': ['O', 'O', 'O', 'O', 'O', 
'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], 'spans': {}, 'links': {}}, 'token_annotation': 
{'ORTH': ['This', 'movie', 'is', 'great', ',', 'the', 'performance', 'of', 'Al', 'Pacino', 'is', 
'brilliant', '.'], 'SPACY': [True, True, True, False, True, True, True, True, True, True, 
True, False, False], 'TAG': ['', '', '', '', '', '', '', '', '', '', '', '', ''], 'LEMMA': ['', '', '', '', '', '', '', 
'', '', '', '', '', ''], 'POS': ['', '', '', '', '', '', '', '', '', '', '', '', ''], 'MORPH': ['', '', '', '', '', '', '', '', '', '', 
'', '', ''], 'HEAD': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 'DEP': ['', '', '', '', '', '', '', '', '', '', 
'', '', ''], 'SENT_START': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}},
{'doc_annotation': {'cats': {'Positive Sentiment': 1}, 'entities': ['O', 'O', 'O', 'O', 'O', 
'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], 'spans': {}, 'links': {}}, 'token_annotation': 
{'ORTH': ['A', 'very', 'good', 'and', 'funny', 'movie', '.', 'It', 'should', …

15.5.3 � System Training

Training loop is all set to be defined.
First, disable other pipe components to allow only textcat to be trained.
Second, create an optimizer object by calling resume_training to keep the 

weights of existing statistical models.
Examine each epoch training example one by one and update the weights of 

textcat. Examine data for 20 epochs.
Try the whole program with training loop:

[17] movie_comment1
[('This movie is perfect and worth watching. ',
{'cats': {'Positive Sentiment': 1}}),
('This movie is great, the performance of Al Pacino is brilliant.',
{'cats': {'Positive Sentiment': 1}}),
('A very good and funny movie. It should be the best this year!',
{'cats': {'Positive Sentiment': 1}}),
('This movie is so bad that I really want to leave after the first hour watching.',
{'cats': {'Positive Sentiment': 0}}),
("Even free I won't see this movie again. Totally failure!",
{'cats': {'Positive Sentiment': 0}}),
('I think it is the worst movie I saw so far this year.',
{'cats': {'Positive Sentiment': 0}})]

15.5 � Text Classifier with spaCy NLP Pipeline
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[18] # Full implementation of the Movie Sentiment Analysis 
System
import random
import spacy
from spacy.training import Example
from spacy.pipeline.textcat import 
DEFAULT_SINGLE_TEXTCAT_MODEL
# Load the spaCy NLP model
nlp = spacy.load('en_core_web_md')
# Set the threshold and model
config = {
 ��   "threshold": 0.5,
 ��   "model": DEFAULT_SINGLE_TEXTCAT_MODEL
}
# Create the TextCategorizer object (tCategorizer)
tCategorizer = nlp.add_pipe("textcat", config=config)
# Add the two movie sentiment categories
tCategorizer.add_label("Positive Sentiment")
tCategorizer.add_label("Negative Sentiment")
# Create the movie sample comments
movie_comment_exp = [Example.from_dict(nlp.make_
doc(comments), category) for comments,category in 
movie_comment1]
tCategorizer.initialize(lambda: movie_comment_exp, 
nlp=nlp)
# Set the training epochs and loss values
epochs=20
losses = {}
# Main program loop
with nlp.select_pipes(enable="textcat"):
 ��   optimizer = nlp.resume_training()
 ��   for i in range(epochs):
 ��       random.shuffle(movie_comment1)
 ��       for comments, category in movie_comment1:
 ��           mdoc = nlp.make_doc(comments)
 ��           exp = Example.from_dict(mdoc, category)
 ��           nlp.update([exp], sgd=optimizer, 
losses=losses)

 ��       print("Epoch #",i, "Losses: ",losses)
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Epoch # 0 Losses: {'textcat': 1.4457833915948868}
Epoch # 1 Losses: {'textcat': 2.6075984984636307}
Epoch # 2 Losses: {'textcat': 3.502597125247121}
Epoch # 3 Losses: {'textcat': 4.506776508176699}
Epoch # 4 Losses: {'textcat': 5.337087038293248}
Epoch # 5 Losses: {'textcat': 6.35534223607101}
Epoch # 6 Losses: {'textcat': 7.171283801217214}
Epoch # 7 Losses: {'textcat': 8.18715655813412}
Epoch # 8 Losses: {'textcat': 8.992988994691586}
Epoch # 9 Losses: {'textcat': 10.04922488262389}
Epoch # 10 Losses: {'textcat': 10.843044139094673}
Epoch # 11 Losses: {'textcat': 11.831995705193918}
Epoch # 12 Losses: {'textcat': 12.701028650988377}
Epoch # 13 Losses: {'textcat': 13.476843157594317}
Epoch # 14 Losses: {'textcat': 14.474409362490363}
Epoch # 15 Losses: {'textcat': 15.255843693623234}
Epoch # 16 Losses: {'textcat': 16.088656657451878}
Epoch # 17 Losses: {'textcat': 16.996663642346313}
Epoch # 18 Losses: {'textcat': 17.76832411575554}
Epoch # 19 Losses: {'textcat': 18.6191813947854}

15.5.4 � System Testing

Let’s test a new text categorizer component, doc.cats property holds the class labels:

[19] # Test 1: This movie sucks
test1 = nlp("This movie sucks and the worst I ever 
saw.")
test1.cats
{'Positive Sentiment': 0.8156227469444275,
'Negative Sentiment': 0.18437722325325012}

[20] # Test 2: I'll watch it again, how amazing.
test2 = nlp("This movie really very great!")
test2.cats
{'Positive Sentiment': 0.8716222047805786,
'Negative Sentiment': 0.1283777952194214}

The small dataset trained spaCy text classifier successfully for a binary text 
classification problem to perform correct sentiment analysis. Now, let’s perform 
multi-label classification

15.5 � Text Classifier with spaCy NLP Pipeline
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15.5.5 � Training TextCategorizer for Multi-Label Classification

Multi-label classification means the classifier can predict more than single-label for 
an example text. Naturally, the classes are not mutually exclusive.

Provide training samples with at least more than two categories to train a multi-
ple labeled classifier.

Construct a small training set to train spaCy‘s TextCategorizer for multi-label 
classification. This time will form a set of movie reviews, where the multi-
category is:

•	 ACTION
•	 SCIFI
•	 WEEKEND

Here is a small sample dataset (movie_comment2):

[21] movie_comment2 = [
 ��   ("This movie is great for weekend watching.",
{"cats": {"WEEKEND": True}}),
 ��   ("This a 100% action movie, I enjoy it.",
{"cats": {"ACTION": True}}),
 ��   ("Avatar is the best Scifi movie I ever seen!",
{"cats": {"SCIFI": True}}),
 ��   ("Such a good Scifi movie to watch during the 
weekend!",

{"cats": {"WEEKEND": True, "SCIFI": True}}),
 ��   ("Matrix a great Scifi movie with a lot of action. 
Pure action, great!", {"cats": {"SCIFI": True, 
"ACTION": True}})

]

Check dataset first:

[22] movie_comment2
[('This movie is great for weekend watching.', {'cats': {'WEEKEND': True}}),
('This a 100% action movie, I enjoy it.', {'cats': {'ACTION': True}}),
('Avatar is the best Scifi movie I ever seen!', {'cats': {'SCIFI': True}}),
('Such a good Scifi movie to watch during the weekend!',
{'cats': {'WEEKEND': True, 'SCIFI': True}}),
('Matrix a great Scifi movie with a lot of action. Pure action, great!',
{'cats': {'SCIFI': True, 'ACTION': True}})]

[23] movie_comment2[1]
('This a 100% action movie, I enjoy it.', {'cats': {'ACTION': True}})
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Provide examples with a single-label, such as first example (the first sentence of 
movie_comment2, the second line of preceding code block), and examples with 
more than single-label, such as fourth example of movie_comment2.

Import after the training set is formed.

[24] import random
import spacy
from spacy.training import Example
from spacy.pipeline.textcat_multilabel import 
DEFAULT_MULTI_TEXTCAT_MODEL
# Load spaCy NLP model
nlp = spacy.load( 'en_core_web_md' )

Note that the last line has different code than the previous section. Import multi-
label model instead of single-label model.

Next, add multi-label classifier component to nlp pipeline.
Also note that pipeline component name is textcat_multilabel as compared with 

previous section’s textcat:

[25] # Set the threshold and model
config = {
 ��   "threshold": 0.5,
 ��   "model": DEFAULT_MULTI_TEXTCAT_MODEL
}
# Create the TextCategorizer object (tCategorizer)
tCategorizer = nlp.add_pipe( "textcat_multilabel", 
config=config)

Add categories to TextCategorizer component and initialize model like previous 
text classifier section.

Add three labels instead of one:

[26] # Create the categorizer object with 3 categories
categories = ["SCIFI", "ACTION", "WEEKEND"]
# Using For Loop to add the 3 categories
for category in categories:
 ��   tCategorizer.add_label(category)
# Create the movie comment sample for training
movie_comment_exp = [Example.from_dict(nlp.make_
doc(comments), category) for comments,category in 
movie_comment2]
# Initializer the tCategorizer
tCategorizer.initialize(lambda: movie_comment_exp, 
nlp=nlp)

Training loop is all set to be defined.
Code functions are like previous section’s code, the only difference is component 

name textcat_multilabel in the first line:
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[27] # Set the training epochs and loss values
epochs=20
losses = {}
# Main Loop of the program
with nlp.select_pipes(enable="textcat_multilabel"):
 ��   optimizer = nlp.resume_training()
 ��   for i in range(epochs):
 ��       random.shuffle(movie_comment2)
 ��       for comments, category in movie_comment2:
 ��           mdoc = nlp.make_doc(comments)
 ��           exp = Example.from_dict(mdoc, category)
 ��           nlp.update([exp], sgd=optimizer, 
losses=losses)

 ��       print(losses)
{'textcat_multilabel': 0.6435152161866426}
{'textcat_multilabel': 0.6444572633295138}
{'textcat_multilabel': 0.644508911859063}
{'textcat_multilabel': 0.6445386177332972}
{'textcat_multilabel': 0.6445531247200567}
{'textcat_multilabel': 0.6445633990291366}
{'textcat_multilabel': 0.6445710929335524}
{'textcat_multilabel': 0.6445779604009196}
{'textcat_multilabel': 0.6445835611851201}
{'textcat_multilabel': 0.644588678256226}
{'textcat_multilabel': 0.6445934303342438}
{'textcat_multilabel': 0.6445977886109024}
{'textcat_multilabel': 0.6446017611581358}
{'textcat_multilabel': 0.644605454090792}
{'textcat_multilabel': 0.6446089753232687}
{'textcat_multilabel': 0.6446123319626418}
{'textcat_multilabel': 0.6446155674397027}
{'textcat_multilabel': 0.6446186350310477}
{'textcat_multilabel': 0.6446215542191567}
{'textcat_multilabel': 0.644624413417668

The output should look like the output of the previous section but use multiple 
categories for system training. Let’s test the new multi-label classifier:

[28] test3 = nlp("Definitely in my weekend scifi movie night 
list")
test3.cats
{'SCIFI': 0.9721231460571289,
'ACTION': 0.6180852055549622,
'WEEKEND': 0.9213110208511353}

[29] test4 = nlp("Go to watch action scifi movie this 
weekend.")
test4.cats
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{'SCIFI': 0.9883644580841064,
'ACTION': 0.9022844433784485,
'WEEKEND': 0.9972347617149353}

Although sample size is small, the multiple text categorizer can classify two IMDB 
user comments correctly into three categories: SCIFI, ACTION, and 
WEEKEND. Note that over thousands of IMDB, user comments are required to 
perform satisfactory sentiment analysis in real situations

This section has learnt how to train a spaCy’s TextCategorizer component for 
binary and multi-label text classifications.

Now, TextCategorizer will be trained on a real-world dataset for a sentiment 
analysis using IMDB user comments dataset.

Workshop 5.1 Movie comments from IMDB.com
Movie comments is a significant classification in social media. This workshop 
constructs a simple movie comment classification with millions of user comments 
from IMDB.com, the world biggest movie social media platform
1. Try to collect 900 comments with 300 Good, 300 Average, and 300 Bad 
comments to train the system. Make sure they make sense or the system won’t 
function.
2. Construct a Multi-label Classification System to create three movie comments: 
Good, average, or bad.
3. Train system with at least 100 epochs.
4. Use 10 examples to test and see whether it works.

15.6 � Sentiment Analysis with spaCy

15.6.1 � IMDB Large Movie Review Dataset

This section will work on a real-world dataset using IMDB (2024) Large Movie 
Reviews Dataset from Kaggle (2024).

The original imdb_sup.csv dataset has 50,000 rows. They need to down-size and 
select the first 5000 records into datafile imdb_5000.csv to speed up training. This 
movie reviews dataset consists of movie reviews, reviews sizes, IMDB Ratings 
(1–10), and Sentiment Ratings (0 or 1).

The dataset can be downloaded from workshop directory namely: imdb_sup.csv 
(complete dataset) or imdb_5000.csv (5000 records).
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15.6.2 � Explore the Dataset

Let’s have some understanding from dataset prior to sentiment analysis.

	1.	 First, import to read and visualize dataset:

[30] import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

	2.	 Read imdb_5000.csv datafile into a pandas DataFrame (mcommentDF) and out-
put the shape of DataFrame:

[31] mcommentDF=pd.read_csv( 'imdb_5000.csv' )

[32] mcommentDF.shape
(5000, 3)

Note: This IMDB movie reviews dataset contains 5000 records, each record has 
three fields’ attributes: Review, Rating, and Sentiment

	3.	 Examine rows and columns of dataset by printing the first few rows using 
head() method:

[33] mcommentDF.head()

	4.	 Use Review and Sentiment columns only in this workshop. Hence, drop other 
columns that won't use, and call dropna() method to drop the rows with miss-
ing values:

[34] mcommentDF_clean = mcommentDF[[ 'Review', 'Sentiment' 
]].dropna()

15  Workshop#5: Sentiment Analysis and Text Classification (Hour 9–10)



391

[35] mcommentDF_clean.head()

	5.	 Let’s look at how review scores are distributed:

[36] axplot=mcommentDF.Rating.value_counts().plot
(kind='bar', colormap='Paired')
plt.show()

1. Users prefer to give a high rating, i.e., 8 or above, and 10 is the highest as 
shown.
2. It is better to select a sample set with an even distribution to balance sample data 
rating.
3. Check system performance first. If it is not as good as predicted, can use 
fine-tune sampling method to improve system performance.
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Here use the sentiments already labeled.

	6.	 Plot ratings distribution:

[37] axplot=mcommentDF.Sentiment.value_counts().plot (kind= 
'bar', colormap='Paired')
plt.show()

Note that rating distribution has better results than the previous one, it has higher 
number of positive reviews, but negative reviews is also significant as shown

After the dataset is processed, it can be reduced to a two-column dataset with 
negative and positive ratings. So, call mcommentDF.head() again and the following 
result is obtained:

[38] mcommentDF.head()
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Complete dataset exploration and display review scores with class categories 
distribution. The dataset is ready to be processed. Drop unused columns and 
convert review scores to binary class labels. Let’s begin with the training procedure

15.6.3 � Training the TextClassfier

Use a multi-label classifier to train a binary text classifier this time.

	1.	 Import spaCy classes as follows:

[39] import spacy
import random
from spacy.training import Example
from spacy.pipeline.textcat_multilabel import 
DEFAULT_MULTI_TEXTCAT_MODEL

	2.	 Create a pipeline object nlp, define classifier configuration, and add 
TextCategorizer component to nlp with the following configuration:

[40] # Load the spaCy NLP model
nlp = spacy.load( "en_core_web_md" )
# Set the threshold and model
config = {
 ��   "threshold": 0.5,
 ��   "model": DEFAULT_MULTI_TEXTCAT_MODEL
}
# Create the TextCategorizer object (tCategorizer)
tCategorizer = nlp.add_pipe("textcat_multilabel", 
config=config)
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	3.	 When TextCategorizer object is available, create movie comment sample object 
as a list and load all user comments and categories into it.

[41] # Create the IMDB movie comment sample object
movie_comment_exp = []
# Load all the IMDB user comments and categories
for idx, rw in mcommentDF.iterrows():
 ��   comments = rw["Review"]
 ��   rating = rw["Sentiment"]
 ��   category = {"POS": True, "NEG": False} if rating == 1 
else

{"NEG": True, "POS": False}
 ��   movie_comment_exp.append(Example.from_dict(nlp.
make_doc(comments), {"cats": category}))

	4.	 Let’s check movie_comment_exp:

[42] movie_comment_exp[0]
{'doc_annotation': {'cats': {'NEG': True, 'POS': False}, 'entities': ['O', 'O', 'O', 'O', 
'O', 'O'], 'spans': {}, 'links': {}}, 'token_annotation': {'ORTH': ['*', '*', 'Possible', 
'Spoilers', '*', '*'], 'SPACY': [False, False, True, False, False, False], 'TAG': ['', '', '', '', 
'', ''], 'LEMMA': ['', '', '', '', '', ''], 'POS': ['', '', '', '', '', ''], 'MORPH': ['', '', '', '', '', ''], 
'HEAD': [0, 1, 2, 3, 4, 5], 'DEP': ['', '', '', '', '', ''], 'SENT_START': [1, 0, 0, 0, 0, 0]}}

	5.	 Use POS and NEG labels for positive and negative sentiment respectively. 
Introduce these labels to the new component and initialize it with examples.

[43] # Add the two sentiment categories into tCategorizer
tCategorizer.add_label("POS")
tCategorizer.add_label("NEG")
tCategorizer.initialize(lambda: movie_comment_exp, 
nlp=nlp)

[44] tCategorizer
<spacy.pipeline.textcat_multilabel.MultiLabel_TextCategorizer at 0x2791f978d70>

	6.	 Define training loop by examining the training set for two epochs but can exam-
ine further if necessary. The following code snippet will train the new text cate-
gorizer component:
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[45] # Set the training epochs to 2 to save time
epochs = 2
# Main program loop
with nlp.select_pipes(enable="textcat_multilabel"):
 ��   optimizer = nlp.resume_training()
 ��   for i in range(epochs):
 ��       random.shuffle(movie_comment_exp)
 ��       for exp in movie_comment_exp:
 ��           nlp.update([exp], sgd=optimizer)

	7.	 Test how text classifier component works for two example sentences:

[46] test5 = nlp("This is the best movie that I have ever 
watched")

[47] test5.cats
{'POS': 0.9747582674026489, 'NEG': 0.017647745087742805}

[48] test6 = nlp("This movie is so bad")

[49] test6.cats
{'POS': 0.11307813227176666, 'NEG': 0.8834090828895569}

Note both NEG and POS labels appeared in prediction results because it used a 
multi-label classifier. The results are satisfactory, but it can improve if the numbers 
for training epochs are increased. The first sentence has a high positive probability 
output, and the second sentence has predicted as negative with a high probability

SpaCy’s text classifier component training is completed.
The next section will explore Kera, a popular deep leaning library, and how to 

write Keras code for text classification with another machine learning library—
TensorFlow‘s Keras API.
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Fig. 15.3  System 
architecture of ANN

15.7 � Artificial Neural Network in a Nutshell

This workshop section will learn how to incorporate spaCy technology with ANN 
technology using TensorFlow and its Keras package (Géron 2019; Kedia and Rasu 
2020; TensorFlow 2024).

A typical ANN has:

	1.	 Input layer consists of input neurons, or nodes
	2.	 Hidden layer consists of hidden neurons, or nodes
	3.	 Output layer consists of output neurons, or nodes

ANN will learn knowledge by its network weights update through network train-
ing with sufficient sample inputs and target outputs pairs. The network can predict 
or match unseen inputs to corresponding output result after it had sufficient training 
to a predefined accuracy. A typical ANN architecture is shown in Fig. 15.3.

15.8 � An Overview of TensorFlow and Keras

TensorFlow (Géron 2019; TensorFlow 2024) is a popular Python tool widely used 
for machine learning. It has huge community support and great documentation 
available at TensorFlow official site (TensorFlow 2024), while Keras (2024) is a 
Python-based deep learning tool that can be integrated with Python platforms such 
as TensorFlow, Theano, and CNTK.

TensorFlow 1 was disagreeable to symbolic graph computations and other low-
level computations, but TensorFlow 2 initiated great changes in machine learning 
methods allowing developers to use Keras‘with TensorFlow’s low-level methods. 
Keras is popular in R&D because it supports rapid prototyping and user-friendly 
API to neural network architectures (Kedia and Rasu 2020; Srinivasa-Desikan 2018).

Neural networks are commonly used for computer vision and NLP tasks includ-
ing object detection, image classification, scene understanding, text classification, 
POS tagging, text summarization, and natural language generation.

15  Workshop#5: Sentiment Analysis and Text Classification (Hour 9–10)



397

TensorFlow 2 will be used to study the details of a neural network architecture 
for text classification with tf.keras implementation throughout this section.

15.9 � Sequential Modeling with LSTM Technology

LSTM is one of the significant recurrent networks used in various machine learning 
applications such as NLP applications nowadays (Ekman 2021; Korstanje 2021).

RNNs are special neural networks that can process sequential data in steps.
All inputs and outputs are independent but not for text data in neural networks. 

Every word’s presence depends on neighboring words, e.g., a word is predicted by 
considering all preceding predicted words and stored the past sequence token of 
words within an LTSM cell in a machine translation task. An LSTM is showed in 
Fig. 15.4.

An LSTM cell is moderately complex than an RNN cell, but computation logic 
is identical. A diagram of an LSTM cell is shown in Fig. 15.5. Note that input and 
output steps are identical to RNN counterparts:

Fig. 15.4  RNN with LSTM technology

Fig. 15.5  Architecture of LSTM cell
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Keras has extensive support for RNN variations GRU, LSTM and simple API for 
training RNNs. RNN variations are crucial for NLP tasks as language data’s nature 
is sequential, i.e., text is a sequence of words, speech is a sequence of sounds, 
and so on.

Since the type of statistical model has been identified in the design, it can trans-
form a sequence of words into a word IDs sequence and build vocabulary with 
Keras preprocessing module simultaneously.

15.10 � Keras Tokenizer in NLP

Text is a sequence of words or characters data. A sentence can be fed by a tokens 
sequence. Hence, tokens are to be vectorized first by the following steps:

	1.	 Tokenize each utterance and turn these utterances into a sequence of tokens.
	2.	 Build a vocabulary from set of tokens presented in Step 1. These are tokens to be 

recognized by neural network design.
	3.	 Create a vocabulary and assign ID to each token.
	4.	 Map token vectors with corresponding token-IDs.

Let’s look at a short example of a corpus for three sentences:

[50] testD = [ "I am going to buy a gift for Christmas 
tomorrow morning.",
"Yesterday my mom cooked a wonderful meal.",
"Jack promised he would remember to turn off the 
lights." ]

[51] testD
['I am going to buy a gift for Christmas tomorrow morning.',
'Yesterday my mom cooked a wonderful meal.',
'Jack promised he would remember to turn off the lights.']

Let’s tokenize words into utterances:

[52] import spacy
# Load the NLP model
nlp = spacy.load("en_core_web_md")
# Create the utterances object
utterances = [[token.text for token in nlp(utterance)] for 
utterance in testD]
for utterance in utterances:
 ��   utterance
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All tokens of Doc object generated by calling nlp(sentence) are iterated in the 
preceding code. Note that punctuation marks have not been filtered as this filtering 
depends on the task, e.g., punctuation marks such as '!', correlate to the result in 
sentiment analysis, they are preserved in this example

Build vocabulary and token sequences into token-ID sequences using Tokenizer 
as shown:

[53] # Import Tokenizer
from tensorflow.keras.preprocessing.text import Tokenizer
# Create tokenizer object (ktoken)
ktoken = Tokenizer(lower=True)

[54] ktoken.fit_on_texts(testD)
ktoken
<keras.src.legacy.preprocessing.text.Tokenizer at 0x278fbd58c90>

[55] ktoken.word_index
{'to': 1, 'i': 2, 'am': 3, 'going': 4, 'buy': 5, 'some': 6, 'gift': 7, 'for': 8, 'christmas': 9, 
'tomorrow': 10, 'morning': 11, 'yesterday': 12, 'my': 13, 'mom': 14,
'cooked': 15, 'a': 16, 'wonderful': 17, 'meal': 18, 'john': 19, 'promised': 20,
'he': 21, 'would': 22, 'remember': 23, 'turn': 24, 'off': 25, 'the': 26, 'lights': 27}

The following are performed in the above codes:
1. Import tokenizer from Keras text preprocessing module.
2. Create a tokenizer object (ktoken) with parameter lower = true, which means 
tokenizer should lower all words for vocabulary formation.
3. Call ktoken.fit_on_texts on data to form vocabulary. fit_on_text work on a tokens 
sequence; input should always be a list of tokens.
4. Examine vocabulary by printing ktoken.word_index. Word_index is a dictionary 
where keys are vocabulary tokens and values are token-IDs.

Call ktoken.texts_to_sequences() method to retrieve a token-ID.
Notice that the input to this method should always be a list, even if a single 

token is fed.
Feed one-word input as a list (notice list brackets) in the following code segment:

[56] ktoken.texts_to_sequences(["Christmas"])
[[9]]
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[57] ktoken.texts_to_sequences(["cooked", "meal"])
[[15], [18]]

1. Note token-IDs start from 1 and not 0. 0 is a reserved value, which means a 
padding value with specific meaning.
2. Keras cannot process utterances of different lengths, hence need to pad all 
utterances.
3. Pad each sentence of dataset to a maximum length by adding padding utterances 
either at the start or end of utterances.
4. Keras inserts 0 for the padding which means it’s a padding value without a 
token.

Let’s understand how padding works with a simple example.

[58] # Import the pad_sequences package
from tensorflow.keras.preprocessing.sequence import 
pad_sequences
# Create the utterance sequences
seq_utterance = [[7], [8,1], [9,11,12,14]]
# Define Maximum Length (MLEN)
MLEN=4
# Pad the utterance sequences.
pad_sequences(seq_utterance, MLEN, padding="post")
array([[ 7, 0, 0, 0],
 ��   [ 8, 1, 0, 0],
 ��   [ 9, 11, 12, 14]])

[59] pad_sequences(seq_utterance, MLEN, padding="pre")
array([[ 0, 0, 0, 7],
 ��   [ 0, 0, 8, 1],
 ��   [ 9, 11, 12, 14]])

Call pad_sequences on this sequences list and every sequence is padded with 
zeros so that its length reaches MAX_LEN = 4 which is the length of the longest 
sequence. Then pad sequences from the right or left with post and pre options. 
Sentences with post option are padded in the preceding code, hence the sentences 
are padded from the right.

When these sequences are organized, the complete text preprocessing steps are 
as follows:
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[60] # Import the Tokenizer and pad sequences package
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import 
pad_sequences
# Create the token object
ktoken = Tokenizer(lower=True)
ktoken.fit_on_texts(testD)
# Create the sequence utterance object
sutterance = ktoken.texts_to_sequences(testD)
MLEN=7
# Pad the utterance sequences
pseq_utterance = pad_sequences(sutterance, MLEN, 
padding="post")
pseq_utterance
array([[ 5, 6, 7, 8, 9, 10, 11],
 ��   [12, 13, 14, 15, 16, 17, 18],
 ��   [22, 23, 1, 24, 25, 26, 27]])

Transform utterances into a token-IDs sequence for tokens vectorization so that 
utterances will be ready to feed into neural network

15.10.1 � Embedding Words

Tokens can be transformed into token vectors. Embedding tokens into vectors 
occurred via a lookup embedding table. Each row holds a token vector indexed by 
token-IDs, hence the flow of obtaining a token vector is as follows:

	1.	 token->token-ID: A token-ID is assigned with each token with Keras‘Tokenizer 
in previous section. Tokenizer holds all vocabularies and maps each vocabulary 
token to an ID.

	2.	 token-ID->token vector: A token-ID is an integer that can be used as an index to 
embed table’s rows. Each token-ID corresponds to one row and when a token 
vector is required, first obtain its token-ID and lookup in the embedding table 
rows with this token-ID.

A sample of embedding words into token vectors is shown in Fig. 15.6.
Remember when a list of utterances began in the previous section:

	1.	 Each utterance is divided into tokens and built a vocabulary with Keras‘Tokenizer.
	2.	 The Tokenizer object held a token index with a token->token-ID mapping.
	3.	 When a token-ID is obtained, lookup to embedding table rows with this token-

ID to acquire a token vector.
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Fig. 15.6  A sample of embedding words into token vectors

	4.	 This token vector is fed to neural network.

There are several steps to transform sentences into vectors as training a neural 
network is complex.

An LSTM neural network architecture can be designed to perform model train-
ing after these preliminary steps.

15.11 � Movie Sentiment Analysis with LTSM Using Keras 
and spaCy

This section will demonstrate the design of LSTM-based RNN text classifier for 
sentiment analysis with steps below:

	1.	 Data retrieval and preprocessing.
	2.	 Tokenize review utterances with padding.
	3.	 Create utterances pad sequence and put it into input layer.
	4.	 Vectorize each token and verify by token-ID in embedding layer.
	5.	 Input token vectors into LSTM.
	6.	 Train LSTM network.

Let’s start by recalling the dataset again.

Step 1: Dataset

IMDB movie reviews identical dataset from sentiment analysis with spaCy sec-
tion will be used. They had already been processed with pandas and condensed into 
two columns with binary labels.

Reload reviews table and perform data preprocessing as done in previous section 
to ensure the data is up to date:
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[61] import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
# Create the movie comment DataFrame and display the 
statistics
mcommentDF=pd.read_csv('imdb_5000.csv')
mcommentDF = mcommentDF[['Review','Sentiment']].
dropna()
axplot=mcommentDF.Sentiment.value_counts().
plot(kind='bar', colormap='Paired')
plt.show()

Here is how mcommentDF dataset should look:

[62] mcommentDF.head()

Next, extract review text and review label from each dataset row and add them 
into Python lists:
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[63] # Import spaCy
import spacy
# Load the spaCy NLP model
nlp = spacy.load("en_core_web_md")

[64] # Create movie comment sample and categories objects
movie_comment_exp = []
categories = []
# Perform Tokenization
for idx, rw in mcommentDF.iterrows():
 ��   comments = rw["Review"]
 ��   rating = rw["Sentiment"]
 ��   categories.append(rating)
 ��   mtoks = [token.text for token in nlp(comments)]
 ��   movie_comment_exp.append(mtoks)

[65] movie_comment_exp[0]
['*', '*', 'Possible', 'Spoilers', '*', '*']

Note that a list of words to movie_comment_exp has been added, hence each 
element of this list is a list of tokens. Next, invoke Keras‘tokenizer on this tokens 
list to build vocabulary

Step 2: Data and vocabulary preparation

Since the dataset had already been processed, tokenize dataset sentences and 
build a vocabulary.

	1.	 Import necessary Python packages.

[66] # Import Tokenizer, pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import 
pad_sequences
import numpy as np
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	2.	 Feed ktoken into token list and convert them into IDs by calling 
texts_to_sequences:

[67] # Create ktoken and perform tokenization
ktoken = Tokenizer(lower=True)
ktoken.fit_on_texts(movie_comment_exp)
# Create utterance sequences object
seq_utterance = ktoken.texts_to_sequences(movie_
comment_exp)

	3.	 Pad short utterance sequences to a maximum length of 50. This will truncate 
long reviews to 50 words:

[68] # Set the max length to 50
MLEN = 50
# Create pad utterance sequence object
ps_utterance = pad_sequences(seq_utterance, MLEN, 
padding="post")

	4.	 Convert this list of reviews and labels to numpy arrays:

[69] # Convert the ps_utterance into numpy arrays
ps_utterance = np.array(ps_utterance)
# Create the category list (catlist)
catlist = np.array(categories)

[70] catlist = catlist.reshape(catlist.shape[0], 1)

[71] catlist.shape
(5000, 1)

All basic preparation works are completed at present to create an LSTM network 
and input data.

Load TensorFlow Keras related modules:

[72] # Import the LSTM model and the optimizers
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense, 
Embedding
from tensorflow.keras import optimizers
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Step 3: Implement the Input Layer

[73] utterance_input = Input(shape=(None,))

Don’t confuse None as input shape. Here, None means that the dimension can be 
any scalar number. So, use this expression when Keras infers the input shape

Step 4: Implement the Embedding Layer

Create an Embedding Layer as follows:

[74] # Create the Embedding_Layer
embedding = Embedding(input_dim = len(ktoken.word_
index)+1, output_dim = 100)(utterance_input)

1. When defining embedding layer, input dimension should always be tokens 
number in the vocabulary (+1 because the indices start from 1 and not 0. Index 0 is 
reserved for padding value).
2. Here, 100 is selected as the output shape, hence token vectors for vocabulary 
tokens will be 100-dimensional. Popular numbers for token vector dimensions are 
50, 100, and 200 depending on task complexity.

15.11.1 � Step 5: Implement the LSTM Layer

Create LSTM_Layer:

[75] # Create the LSTM_Layer
LSTM_layer = LSTM(units=256)(embedding)

Here, units = 256 is the dimension of hidden state. LSTM output shape and hidden 
state shape are identical due to LSTM architecture.
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15.11.2 � Step 6: Implement the Output Layer

When a 256-dimensional vector from LSTM layer has obtained, it will be con-
densed into a 1-dimensional vector (possible values of this vector are 0 and 1, which 
are class labels):

[76] # Create the Output Layer
outlayer = Dense(1, activation='sigmoid')(LSTM_layer)

A sigmoid function is an S-shaped function used as an activation function to map 
its input to a [0–1] range in output layer. It is commonly used in many neural 
networks

15.11.3 � Step 7: System Compilation

After the model has defined, it is required to compile with an optimizer, a loss func-
tion, and an evaluation metric:

[77] # Create the IMDB User Review LSTM Model (imdb_mdl)
imdb_mdl = Model(inputs=[utterance_
input],outputs=[outlayer])

Let’s look at an imdb_mdl model setup:

[78] imdb_mdl.summary()
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Next, invoke model compilation:

[79] imdb_mdl.compile(optimizer="adam", loss="binary_
crossentropy", metrics=["accuracy"])

1. Use adaptive moment estimation (ADAM) as optimizer for LSTM training for 
imdb_mdl LSTM model.
2. Use binary cross-entropy as loss function.
3. A list of supported performance metrics can be found in Keras official site 
(Keras 2024).

Step 8: Model Fitting and Experiment Evaluation

Feed imdb_mdl model to data with 5 epochs to reduce time:

[80] # Model fitting by using 5 epochs
imdb_mdl.fit(x=ps_utterance,
 ��     y=catlist,
 ��     batch_size=64,
 ��     epochs=5,
 ��     validation_split=0.3)
Epoch 1/5
55/55 _______________________5s 63ms/step - accuracy: 0.5956 - loss: 
0.6616 - val_accuracy: 0.7520 - val_loss: 0.5091
Epoch 2/5
55/55 _______________________ 3s 60ms/step - accuracy: 0.8932 - loss: 
0.2779 - val_accuracy: 0.7907 - val_loss: 0.4508
Epoch 3/5
55/55_______________________ 3s 60ms/step - accuracy: 0.9634 - loss: 
0.1304 - val_accuracy: 0.7953 - val_loss: 0.4469
Epoch 4/5
55/55 _______________________ 3s 61ms/step - accuracy: 0.9791 - loss: 
0.0845 - val_accuracy: 0.7587 - val_loss: 0.7780
Epoch 5/5
55/55_______________________3s 61ms/step - accuracy: 0.9955 - loss: 
0.0204 - val_accuracy: 0.7507 - val_loss: 0.9288
[51]:
<keras.src.callbacks.history.History at 0x1e7345f4690>
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1. x is a list of ps_utterance for network training and y is the list of categories 
(catlist). The epochs parameter is set to 5 to process 5 passes over the data,
2. Data has been processed 5 times in parameter batch_size = 64 means a batch of 
64 training utterances are fed into the memory at a time due to memory limitations.
3. The validation_split = 0.3 means 70% of the dataset is used for training and 30% 
is used for system validation.
4. An experiment validation accuracy rate of 0.7793 is acceptable for a basic LSTM 
network training for 5 epochs only.

Workshop 5.2 Further Exploration of LSTM model on Movie Sentiment 
Analysis
1. Follow Workshop 15.1 logic and use rating (0–10) field of IMDB movie 
reviews dataset to reconstruct an LSTM for sentiment analysis into three 
categories: Positive, neutral, and negative.
2. Verify training performance.
3. Experiment with the code further by placing dropout layers at different 
locations such as after embedding layer or, after LSTM layer.
4. Try different values for embedding dimensions such as 50, 150, and 200 to 
observe change in accuracy.
5. Experiment with different values instead of 256 at LSTM layer’s hidden 
dimension. Try different parameters for each to perform simulations and see 
whether the best configuration can be found.
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Chapter 16
Workshop#6 Transformers with spaCy 
and TensorFlow (Hour 11–12)

16.1 � Introduction

In Chap. 8, the basic concept about transfer learning, its motivation, and related 
background knowledge such as RNN with Transformer Technology and BERT 
model are introduced.

This workshop will learn about the latest topic Transformers in NLP, and how to 
use them with TensorFlow and spaCy. First, will learn about Transformers and 
Transfer learning. Second, will learn about a commonly used Transformer architec-
ture—Bidirectional Encoder Representations from Transformers (BERT) as well as 
how BERT Tokenizer and WordPiece algorithms work.

Further, will learn how to start with pre-trained transformer models of 
HuggingFace library (HuggingFace 2024) and practice to fine-tune HuggingFace 
Transformers with TensorFlow and Keras (TensorFlow 2024; Keras 2024) followed 
by how spaCy v3.0 (spaCy 2024) integrates transformer models as pre-trained pipe-
lines. These techniques and tools will be used in the last workshop for building a 
Q&A chatbot.

Hence, this workshop will cover the following topics:

•	 Transformers and Transfer Learning
•	 Understanding BERT
•	 Transformers and TensorFlow
•	 Transformers and spaCy

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_16&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_16#DOI
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16.2 � Technical Requirements

In this workshop, Transformers, TensorFlow, and spaCy (TensorFlow 2024; spaCy 
2024) are to be installed in own PC/notebook computer. Please ensure that the fol-
lowing Python packages are installed before starting the workshop:

•	 Python (demo version 3.11.9)
•	 spacy (demo version 3.4.4)
•	 keras (demo version 3.3.3)
•	 transformers (demo version 4.44.2)
•	 tensorflow (demo version 2.17.0)
•	 tf-keras (demo version 2.17.0)
•	 torch (demo version 2.4.1)
•	 torchvision (demo version 0.19.1)
•	 spacy-transformers (demo version 1.3.5)
•	 numPy (demo version 1.26.4)
•	 pandas (demo version 2.2.2)
•	 matplotlib (demo version 3.9.2)

If these packages are not installed on PC/laptop, use pip install xxx command. 
The detailed requirements list and Python package version used in this workshop 
can be found in the requirements.txt file stored in the NLP GitHub repository 
(NLPGitHub 2024).

16.3 � Transformers and Transfer Learning in a Nutshell

Transformer in NLP is an innovative idea which aims to solve sequential modeling 
tasks and target problems introduced by Long-Short-Term-Memory (LSTM) archi-
tecture (Ekman 2021; Korstanje 2021).

It is a contemporary machine learning concept and architecture introduced by 
Vaswani et al. (2017) in a research paper Attention Is All You Need. It explained that 
“The Transformer is the first transduction model relying entirely on self-attention to 
compute representations of its input and output without using sequence-aligned 
RNNs or convolution.”

Transduction in this context means transforming input words to output words by 
transforming input words and sentences into vectors. A transformer is trained on a 
large corpus such as Wiki or news. These vectors will be used to convey information 
regarding word semantics, sentence structures, and sentence semantics for down-
stream tasks.

Word vectors like Glove and FastText are already trained on Wikipedia corpus 
that can be used in semantic similarity calculations, hence, Transfer Learning means 
to import knowledge from pre-trained word vectors or pre-trained statistical models.
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Fig. 16.1  Sample Input Texts and their corresponding Output Class Labels

Transformers offer many pre-trained models to perform NLP tasks such as text 
classification, text summarization, question answering, machine translation, and 
natural language generation in over 100 languages. It aims to make state-of-the-art 
NLP accessible to everyone (Bansal 2021; Rothman 2022; Tunstall et  al. 2022; 
Yıldırım and Asgari-Chenaghlu 2021).

A list of Transformer models provided by HuggingFace (2024) is shown in 
Fig. 16.1. Each model is named with a combination of architecture names such as 
BERT or DistilBert, possibly a language code, i.e., en, de, multilingual, which is 
located at the left side of the figure, and information regarding whether the model is 
cased or uncased, i.e., distinguish between uppercase and lowercase characters.

Task names are also listed on the left-hand side. Each model is labeled with a 
task name such as text classification or machine translation for the Q&A chatbot.

16.4 � Why Transformers?

Let’s review text classification with spaCy in LSTM architecture.
LSTMs work for modeling text effectively, but there are shortcomings:
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•	 LSTM architecture has difficulties in learning long texts sometimes. Statistical 
dependencies in a long text have problems represented by LSTM because it can 
fail to recall words processed earlier as time steps progress.

•	 LSTMs are sequential which means that a single word can process at each time 
step but is impossible to parallelize learning process causing bottleneck.

Transformers address these problems by not using recurrent layers at all; their 
architecture is different from LSTM architecture (Bansal 2021; Rothman 2022; 
Tunstall et al. 2022; Yıldırım and Asgari-Chenaghlu 2021). A Transformer architec-
ture has an input encoder block at the left, called encoder, and an output decoder at 
the right, called decoder as shown in Fig. 16.2.

The architecture is catered for a machine translation task, input is a sequence of 
words from source language, and output is a sequence of words in the target lan-
guage. Encoder generates a vector representation of input words and passes them to 
decoder where the word vector transfer is represented by an arrow from encoder 

Fig. 16.2  Transformer architecture
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block to decoder block direction. The decoder extracts input word vectors, trans-
forms output words into word vectors, and generates the probability of each out-
put word.

There are feedforward layers, which are dense layers in encoder and decoder 
blocks used for text classification with spaCy. The innovative transformers can 
place in a Multi-Head Attention block to create a dense representation for each word 
with self-attention mechanism. This mechanism relates each word in input sentence 
to other words in the input sentence. Word embedding is calculated by taking a 
weighted average of other words’ embeddings, and each word significance can be 
calculated in input sentence to enable the architecture focus on each input word 
sequentially.

A self-attention mechanism of how input words at the left-hand side attend input 
word it at the right-hand side is shown in Fig.  16.3. Dark colors represented 

Fig. 16.3  Illustration of the self-attention mechanism
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relevance, phrase the animal are related to it than other words in the sentence. This 
signified transformer can resolve many semantic dependencies in a sentence and is 
used in different tasks such as text classification and machine translation since they 
have several architectures depending on tasks. BERT is a popular architecture to 
be used.

16.5 � An Overview of BERT Technology

16.5.1 � What Is BERT?

BERT is introduced in a Google’s original research paper published by Devlin et al. 
(2019), the complete Google BERT model can be downloaded from Google’s 
GitHub archive (GoogleBert 2024).

It has the following output features (Bansal 2021; Rothman 2022; Tunstall et al. 
2022; Yıldırım and Asgari-Chenaghlu 2021):

•	 Bidirectional: Each input sentence text data training is processed from left to 
right and from right to left.

•	 Encoder: An encoder encodes input sentence.
•	 Representations: A representation is a word vector.
•	 Transformers: A transformer-based architecture.

BERT is a trained transformer encoder stack. The input is a sentence, and the 
output is a sequence of word vectors. Word vectors are contextual which means that 
a word vector is assigned to a word based on an input sentence. In short, BERT 
outputs contextual word representations as shown in Fig. 16.4.

It is noted that word bank has different meanings in these two sentences, word 
vectors are the same because Glove and FastText are static. Each word has only one 
vector and vectors are saved to a file after training. Then, these pre-trained vectors 
can be downloaded to our application. BERT word vectors are dynamic on the con-
trary. It can generate different word vectors for the same word depending on input 
sentence. Word vectors generated by BERT are shown in Fig. 16.5 against the coun-
terpart shown in Fig. 16.4.

Fig. 16.4  Word vector for the word “bank”
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Fig. 16.5  Two distinct word vectors generated by BERT for the same word bank in two different 
contexts

Fig. 16.6  BERT Base and Large architectures (having 12 and 24 encoder layers respectively)

16.5.2 � BERT Architecture

BERT is a transformer encoder stack, which means several encoder layers are 
stacked on top of each other. The first layer initializes word vectors randomly, and 
then each encoder layer transforms output of the previous encoder layer. Figure 16.6 
illustrates two BERT model sizes: BERT Base and BERT Large.

BERT Base and BERT Large have 12 and 24 encoder layers to generate word 
vectors sizes of 768 and 1024 comparatively.

BERT outputs word vectors for each input word. A high-level overview of BERT 
inputs and outputs is illustrated in Fig. 16.7. It showed that BERT input should be 
in a special format to include special tokens such as CLS.

16.5  An Overview of BERT Technology
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Fig. 16.7  BERT model input word and output word vectors

16.5.3 � BERT Input Format

After learning BERT basic architecture, let’s look at how to generate output vectors 
using BERT.

BERT input format can represent a single sentence and a pair of sentences in a 
single sequence of tokens (for tasks such as question answering and semantic simi-
larity, we input two sentences to the model).

BERT works with a special tokens class and a special tokenization algorithm 
called WordPiece.

There are several types of special tokens [CLS], [SEP], and [PAD]:

•	 [CLS] is the first special token type for every input sequence. This token is a 
quantity of input sentences for classification tasks but disregard non-
classification tasks.
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•	 [SEP] is a sentence separator. If the input is a single sentence, this token will be 
placed at the end of sentence, i.e., [CLS] sentence [SEP], or to separate two sen-
tences, i.e., [CLS] sentence1 [SEP] sentence2 [SEP].

•	 [PAD] is a special token for padding. The padding values can generate sentences 
from dataset with equal length. BERT receives sentences with fixed length only, 
hence, padding short sentences is required prior feeding to BERT. The tokens 
maximum length can feed to BERT is 512.

It was learnt that a sentence can feed to Keras model one word at a time, input 
sentences can be tokenized into words using spaCy tokenizer, but BERT works dif-
ferently as it uses WordPiece tokenization. A word piece is literally a piece of a word.

WordPiece algorithm breaks down words into several subwords, its logic behind 
is to break down complex/long tokens into tokens, e.g., the word playing is tokenized 
as play + ##ing. A ## character is placed before every word piece to indicate that 
this token is not a word from language’s vocabulary but is a word piece.

Let’s look at some examples:

It can concise language vocabulary as WordPiece groups common subwords.
WordPiece tokenization can divide rare/unseen words into their subwords.
After input sentence is tokenized and special tokens are added, each token is 

converted to its ID and feed token ID sequences to BERT.
An input sentence transformed into BERT input format is illustrated in Fig. 16.8.
BERT Tokenizer has several methods to perform above tasks, but it has an encod-

ing method that combines these steps into a single step.

playing play, ##ing

played play, ##ed

going go, ##ing

vocabulary = [play,go, ##ing, ##ed]
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Fig. 16.8  Transforming an input sentence into BERT input format

16.5.4 � How to Train BERT?

BERT originators stated that “We then train a large model (12-layers to 24-layers 
Transformer) on a large corpus (Wikipedia + BookCorpus) for a long time (1 M 
update steps), and that’s BERT.” in Google Research’s BERT GitHub repository 
(GoogleBert 2024).

BERT is trained by masked language model (MLM) and NSP.
Language modeling is the task of predicting the next token given the sequence of 

previous tokens. For example, given the sequence of words Yesterday I visited, a 
language model can predict the next token as one of the tokens church, hospital, 
school, and so on.

MLM is different. A percentage of tokens are masked randomly to replace a 
[MASK] token and presume MLM predicts the masked words.

BERT’s MLM is implemented as follows:

	1.	 Select 15 input tokens randomly.
	2.	 About 80% of selected tokens are replaced by [MASK].
	3.	 About 10% of selected tokens are replaced by another token from vocabulary.
	4.	 About 10% remain unchanged.
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A training sentence to LMM example is as follows:

NSP is the task of predicting the next sentence given by an input sentence. There 
are two sentences fed to BERT and presume BERT predicts sentences order if sec-
ond sentence is followed by first sentence.

An input of two sentences separated by a [SEP] token to NSP example is as 
follows:

It showed that the second sentence can follow the first sentence; hence, the pre-
dicted label is IsNext.

Here is another example:

This example showed that the pair of sentences generate a NotNext label without 
contextual or semantical relevance.

16.6 � Transformers with TensorFlow

Pre-trained transformer models are provided to program developers in open sources 
by many organizations including Google (GoogleBert 2024), Facebook (Facebook-
transformer 2024), and HuggingFace (HuggingFace-transformer 2024).

HuggingFace is an AI company that focuses on NLP apportioned to open source.
These pre-trained models and agreeable interfaces can integrate transformers 

into Python code, as interfaces are compatible with either PyTorch or TensorFlow 

[CLS] Yesterday I [MASK] my friend at [MASK] house [SEP]

[CLS] A man robbed a [MASK] yesterday [MASK] 8 o'clock [SEP] He 
[MASK] the bank with 6 million dollars [SEP]

Label = IsNext

[CLS] Rabbits like to [MASK] carrots and [MASK] leaves [SEP] [MASK] 
Schwarzenegger is elected as the governor of [MASK] [SEP]

Label= NotNext
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or both. HuggingFace‘s pre-trained transformers and their TensorFlow interface to 
transformer models will be used in this workshop.

16.6.1 � HuggingFace Transformers

This section will explore HuggingFace‘s pre-trained models, TensorFlow interface, 
and its conventions. HuggingFace offers several models as in Fig. 16.1. Each model 
is dedicated to tasks such as text classification, question answering, and sequence-
to-sequence modeling.

A HuggingFace documentation of a distilbert-base-uncased-distilled-squad 
model is shown in Fig. 16.9. A Question Answering task tag is assigned to the upper 
left corner in the documentation followed by supporting deep learning libraries 
PyTorch, TensorFlow, TFLite, TFSavedModel, training dataset, e.g., squad, model 
language, e.g., en for English; the license and base model’s name, e.g., DistilBERT.

Some models are trained with similar algorithms that belong to an identical 
model family. For example, the DistilBERT family has many models such as 
distilbert-base-uncased and distilbert-multilingual-cased. Each model name 
includes information such as casing to distinguish uppercase/lowercase or model 
language such as en, de, or multilingual.

HuggingFace documentation provides information about each model family 
with individual model’s API in detail. Lists of available models and BERT model 
architecture variations are shown in Fig. 16.10.

BERT model has many task variations such as text classification, question 
answering, and NSP.

Each of these models is obtained by placing extra layers atop of BERT output as 
these outputs are a sequence of word vectors for each word of input sentences.

Fig. 16.9  Documentation of the distilbert-base-uncased-distilled-squad model
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Fig. 16.10  Lists of the available models (left-hand side) and BERT model variations (right-
hand side)

For example, a BERTForSequenceClassification model is obtained by placing a 
dense layer atop of BERT word vectors.

16.6.2 � Using the BERT Tokenizer

BERT uses the WordPiece algorithm for tokenization to ensure that each input word 
is divided into subwords.

Let’s look at how to prepare input data with HuggingFace library.

[1] # Import transformer package
from transformers import BertTokenizer
# Create bert_tokenizer and sample utterance (utt1) and 
tokens (tok1)
btokenizer 
= BertTokenizer.from_pretrained('bert-base-uncased')
utt1 = "He lived characteristically idle and romantic."
utt1 = "[CLS] " + utt1 + " [SEP]"
tok1 = btokenizer.tokenize(utt1)

[2] # Display bert tokens
tok1
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['[CLS]',
'he',
'lived',
'characteristic',
'##ally',
'idle',
'and',
'romantic',
'.',
'[SEP]']

[3] # Convert bert tokens to ids (id1)
id1 = btokenizer.convert_tokens_to_ids(tok1)
id1
[101, 2002, 2973, 8281, 3973, 18,373, 1998, 6298, 1012, 102]

1. Import BertTokenizer. Note that different models have different tokenizers, e.g., 
XLNet model’s tokenizer is called XLNetTokenizer.
2. Call from_pretrained method on tokenizer object and provide model’s name. 
Needless to download pre-trained bert-base-uncased (or model) as this method 
downloads model by itself.
3. Call tokenize method. It tokenizes sentences by dividing all words into subwords.
4. Print tokens to examine subwords. The words he, lived, idle, exist in Tokenizer’s 
vocabulary are to be remained. Characteristically is a rare word that does not exist 
in Tokenizer’s vocabulary. Thus, tokenizer splits this word into subwords 
characteristic and ##ally. Notice that ##ally starts with characters ## to emphasize 
that this is a piece of word.
5. Call convert_tokens_to_ids.

Since [CLS] and [SEP] tokens must add to the beginning and end of input sen-
tence, it is required to add them manually for the preceding code, but these prepro-
cessing steps can perform in a single step.

BERT provides a method called encode that can:

•	 add CLS and SEP tokens to input sentence
•	 tokenize sentence by dividing tokens into subwords
•	 converts tokens to their token IDs
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Call encode method on input sentence directly as follows:

[4] from transformers import BertTokenizer
btokenizer 
= BertTokenizer.from_pretrained('bert-base-uncased')
utt2 = "He lived characteristically idle and romantic."
id2 = btokenizer.encode(utt2)
print(id2)
[101, 2002, 2973, 8281, 3973, 18,373, 1998, 6298, 1012, 102]

This code segment outputs token IDs in a single step instead of step-by-step. The 
result is a python list

Since all input sentences in a dataset must have equal length because BERT can-
not process variable-length sentences, padding the longest sentence from dataset 
into short sentences is required using the parameter "padding='longest'".

Writeup conversion codes are also required if a TensorFlow tensor is used instead 
of a plain list. HuggingFace library provides encode_plus to combine all these steps 
into the single method as follows:

[5] from transformers import BertTokenizer
btokenizer 

= BertTokenizer.from_pretrained('bert-base-uncased')
utt3 = "He lived characteristically idle and romantic."
encoded = btokenizer.encode_plus(

 ��   text=utt3,
 ��   add_special_tokens=True,

 ��   padding='longest',
 ��   return_tensors="tf"

)
id3 = encoded["input_ids"]

print(id3)
tf.Tensor([[ 101 2002 2973 8281 3973 18373 1998 6298 1012 102]], shape=(1, 
10), dtype=int32)
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Call encode_plus to input sentence directly. It is padded to a length of 10 includ-
ing special tokens [CLS] and [SEP]. The output is a direct TensorFlow tensor with 
token IDs.

Verify parameter list of encode_plus() by:

[6] btokenizer.encode_plus?
Signature:
btokenizer.encode_plus(
 ��   text: Union[str, List[str], List[int]],
 ��   text_pair: Union[str, List[str], List[int], NoneType] = None,
 ��   add_special_tokens: bool = True,
 ��   padding: Union[bool, str, transformers.utils.generic.PaddingStrategy] = False,
 ��   truncation: Union[bool, str, transformers.tokenization_utils_

base.TruncationStrategy] = None,
 ��   max_length: Optional[int] = None,
 ��   stride: int = 0,
 ��   is_split_into_words: bool = False,
 ��   pad_to_multiple_of: Optional[int] = None,
 ��   return_tensors: Union[str, transformers.utils.generic.TensorType, NoneType] 

= None,
 ��   return_token_type_ids: Optional[bool] = None,
 ��   return_attention_mask: Optional[bool] = None,
 ��   return_overflowing_tokens: bool = False,
 ��   return_special_tokens_mask: bool = False,
 ��   return_offsets_mapping: bool = False,
 ��   return_length: bool = False,
 ��   verbose: bool = True,
 ��   **kwargs,
) -> transformers.tokenization_utils_base.BatchEncoding
…

BERT tokenizer provides several methods on input sentences. Data preparation is 
not straightforward, but practice makes perfect. Try out code examples with own 
text

It is ready to process transformed input sentences to BERT model and obtain 
BERT word vectors.
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16.6.3 � Word Vectors in BERT

This section will examine BERT model output as they are a sequence of word vec-
tors assigned by one vector per input word. BERT has a special output format. Let’s 
look at the code first.

[7] from transformers import BertTokenizer, TFBertModel
btokenizer 
= BertTokenizer.from_pretrained('bert-base-uncased')
bmodel 
= TFBertModel.from_pretrained("bert-base-uncased")
utt4 = "He was idle."
encoded = btokenizer.encode_plus(
 ��   text=utt4,
 ��   add_special_tokens=True,
 ��   padding='longest',
 ��   max_length=10,
 ��   return_attention_mask=True,
 ��   return_tensors="tf"
)
id4 = encoded["input_ids"]
outputs = bmodel(id4)

• Import TFBertModel.
• Initialize BERT model with a BERT-base-uncased pre-trained model.
• Transform input sentence to BERT input format with encode_plus, and capture 
result tf.Tensor in the input variable.
• Feed sentence to BERT model and capture output with the output’s variables.

BERT model output is a tuple of two elements. Let’s print the shapes of out-
put pair:

[8] print(outputs[0].shape)
(1, 6, 768)

[9] print(outputs[1].shape)
(1, 768)
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1. Shape, i.e., batch size, sequence length, and hidden size is the first element of 
output. A batch size is the number of sentences that can feed to model instantly. 
When one sentence is fed, the batch size is 1. The sequence length is 10 because 
sentence is fed max_length=10 to the tokenizer and padded to length of 10. 
hidden_size is a BERT parameter. BERT architecture has 768 hidden layers size to 
produce word vectors with 768 dimensions. Hence, the first output element 
contains 768-dimensional vectors per word means it contains 10 words x 
768-dimensional vectors.
2. The second output is only one vector of 768-dimension. This vector is the word 
embedding of [CLS] token. Since [CLS] token is an aggregate of the whole 
sentence, this token embedding is regarded as embeddings pooled version of all 
words in the sentence. The shape of output tuple is always the batch size, hidden_
size. It is to collect [CLS] token's embedding per input sentence basically.

When BERT embeddings are extracted, they can be used to train text classifica-
tion model with TensorFlow and tf.keras.

16.7 � Revisit Text Classification Using BERT

Some of the codes will be used from the previous workshop, but this time the code 
is shorter because the embedding and LSTM layers will be replaced by BERT to 
train a binary text classifier and tf.keras.

This section will use an email log dataset emails.csv for spam mail classification 
found in the NLP Workshop6 GitHub repository (NLPGitHub 2024).

16.7.1 � Data Preparation

Before Text Classification model using BERT is created, let’s prepare the data first 
just like being learnt in the previous workshop:

	1.	 Import related modules:

[10] import pandas as pd
import numpy as np
import tensorflow
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model

	2.	 Read eamils.csv datafile.

[11] emails=pd.read_csv("emails.csv",encoding='ISO-8859-1')
emails.head()
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	3.	 Use dropna() to remove records with missing contents.

[12] emails=emails.dropna()
emails=emails.reset_index(drop=True)
emails.columns = ['text','label']
emails.head()

16.7.2 � Start the BERT Model Construction

	4.	 Import BERT models and tokenizer:

[13] from transformers import BertTokenizer, TFBertModel, 
BertConfig, TFBertForSequenceClassification
bert_tokenizer = BertTokenizer.from_pretrained 
("bert-base-uncased")
bmodel 
= TFBertModel.from_pretrained("bert-base-uncased")
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1. Import BertTokenizer and BERT model, TFBertModel.
2. Initialize both tokenizer and BERT model with a pre-trained bert-base-uncased 
model. Note that model’s name starts with TF as names of all HuggingFace 
pre-trained models for TensorFlow start with TF. Please pay attention to this when 
using other transformer models.

	5.	 Process input data with BertTokenizer:

[14] emails.head()

	6.	 Double check databank to see whether data has:

[15] messages=emails['text']
labels=emails['label']
len(messages),len(labels)
(5728, 5728)

	7.	 Use BERT Tokenizer:

[16] input_ids = []
attention_masks = []
for msg in messages:
 ��   bert_inp = bert_tokenizer.encode_plus(
 ��       msg,
 ��       add_special_tokens=True,
 ��       max_length=64,
 ��       padding='max_length',
 ��       truncation=True,
max_length
 ��       return_attention_mask=True
 ��   )
 ��   input_ids.append(bert_inp['input_ids'])
 ��   attention_masks.append(bert_inp['attention_mask'])
input_ids = np.asarray(input_ids)
attention_masks = np.array(attention_masks)
labels = np.array(labels)
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Note: This snippet will generate token IDs for each input sentence of the dataset 
and append them to a list. Tags are a list of category labels, consisting of 0 and 1. 
We then convert the python lists, input_ids, and labels into numpy arrays to feed 
them to the Keras model

	8.	 Define Keras model using the following lines:

[17] # Custom BERT Layer to handle input/output properly
class BertLayer(Layer):
 ��   def __init__(self, bert_model):
 ��       super(BertLayer, self).__init__()
 ��       self.bert_model = bert_model
 ��   def call(self, inputs):
 ��       input_ids, attention_mask = inputs
 ��       return self.bert_model(input_ids=input_ids, 
attention_mask=attention_mask)[1] # Pooled output 
(CLS token)

# Define the model architecture
input_ids_layer = Input(shape=(64,), dtype=tf.int32, 
name="input_ids")
attention_mask_layer = Input(shape=(64,), dtype=tf.
int32, name="attention_mask")
# Pass inputs to the custom BERT layer
bert_outputs = BertLayer(bmodel)([input_ids_layer, 
attention_mask_layer])
# Add a classification layer
outputs 
= Dense(units=1, activation="sigmoid")(bert_outputs)
# Create the model
model = Model(inputs=[input_ids_layer, attention_mask_
layer], outputs=outputs)
# Compile the model
adam = tf.keras.optimizers.Adam(learning_rate=2e-5, 
epsilon=1e-08)
model.compile(loss="binary_crossentropy", 
metrics=["accuracy"], optimizer=adam)

	9.	 Perform model fitting and use 1 epoch to save time:

[18] # Summary of the model
model.summary()
# Train the model
model.fit([input_ids, attention_masks], labels, 
epochs=1, batch_size=1)
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A BERT-based text classifier using less than 10 lines of code is to:
1. Define input layer to input sentences to model. The shape is 64 because each 
input sentence has 64 tokens in length. Pad each sentence to 64 tokens when 
encode_plus method is called.
2. Feed input sentences to BERT model.
3. Extract second output of BERT output at the third line. Since BERT model’s 
output is a tuple, the first element of output tuple is a sequence of word vectors, 
and the second element is a single vector that represents the whole sentence called 
pooled output vector. Bert[1] extracts pooled output vector which is a vector of 
shape (1, 768).
4. Squash pooled output vector to a vector of shape 1 by a sigmoid function which 
is the class label.
5. Define Keras model with inputs and outputs.
6. Compile model.
7. Fit Keras model.

BERT model accepts one line only but can transfer enormous knowledge of Wiki 
corpus to model. This model obtains an accuracy of 0.96 at the end of the training. 
A single epoch is usually fitted to the model due to BERT overfits a moderate 
size corpus.

The rest of the code handles compiling and fitting Keras model as BERT has a 
huge memory requirement as can be seen by RAM requirements of Google 
Research’s GitHub archive (GoogleBert-Memory, 2024).

The training code operates for about an hour on a local machine, where bigger 
datasets require more time even for one epoch.

This section will learn how to train a Keras model with BERT from scratch.

16.8 � Transformer Pipeline Technology

HuggingFace Transformers library provides pipelines to assist program developers 
and benefit from transformer code immediately without custom training. A pipeline 
is a combination of a tokenizer and a pre-trained model.
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HuggingFace provides models for various NLP tasks, its HuggingFace pipe-
lines offer:

•	 Sentiment analysis (Agarwal 2020; Siahaan and Sianipar 2022).
•	 Question answering (Rothman 2022; Tunstall et al. 2022).
•	 Text summarization (Albrecht et al. 2020; Kedia and Rasu 2020).
•	 Translation (Arumugam and Shanmugamani 2018; Géron 2019).

This section will explore pipelines for sentiment analysis and question answering.

16.8.1 � Transformer Pipeline for Sentiment Analysis

Let’s start examples on sentiment analysis:

[19] from transformers import pipeline
nlp = pipeline("sentiment-analysis")
utt5 = "I hate I am being a worker in the desert."
utt6 = "I like you who are beautiful and kind."

result1 = nlp(utt5)
result2 = nlp(utt6)

The following steps are taken in the preceding code snippet:
1. Import pipeline function from transformers’ library. This function creates 
pipeline objects with task name given as a parameter. Hence, a sentiment analysis 
pipeline object nlp is created by calling this function on the second line.
2. Define two example sentences with negative and positive sentiments. Then feed 
these sentences to the pipeline object nlp.

Check outputs:

[20] result1
[{'label': 'NEGATIVE', 'score': 0.9276903867721558}]

[21] result2
[{'label': 'POSITIVE', 'score': 0.9998767375946045}]

16.8.2 � Transformer Pipeline for QA System

Next, will perform a question answering. Let’s see the code:
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Fig. 16.11  Vector-based spaCy pipeline components

[22] from transformers import pipeline
nlp = pipeline("question-answering")
res = nlp({
 ��   'question': 'What is the name of this book ?',
 ��   'context': "I'll publish my new book Natural 
Language Processing soon."

})
print(res)
{'score': 0.9857430458068848, 'start': 25, 'end': 52, 'answer': 'Natural Language 
Processing'}

Again, import pipeline function to create a pipeline object nlp. A context which has 
identical background information for the model is required for question-answering 
tasks to the model
• Request the model about this book’s name after giving information of this new 
publication will be available soon.
• The answer is natural language processing, as expected.
• Try your own examples as simple exercise.

HuggingFace transformers studies are completed. Let’s move on to the final sec-
tion to see what spaCy offers on transformers.

Workshop 6.1 Revisit Sentiment Analysis using Transformer Technology
1. Use either previous workshop databank or another to import databank for 
sentiment analysis.
2. Try to implement sentiment analysis using previous and Transformer 
technology learnt in this workshop.
3. Compare performances and analysis (bonus).

16.9 � Transformer and spaCy

SpaCy v3.0 had released new features and components. It has integrated transform-
ers into spaCy NLP pipeline to introduce one more pipeline component called 
Transformer. This component allows users to use all HuggingFace models with 
spaCy pipelines. A spaCy NLP pipeline without transformers is illustrated in 
Fig. 16.11.
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Fig. 16.12  Transformed-based spaCy pipeline components

Fig. 16.13  spaCy English transformer-based language models

A transformer-based pipeline component is illustrated in Fig. 16.12.
Transformer-based models and v2 style models are listed under Models page of 

the documentation (spaCy-model 2024) in English model for each supported lan-
guage. Transformer-based models have various sizes and pipeline components like 
v2 style models. Also, each model has corpus and genre information like v2 style 
models. An example of an English transformer-based language model from Models 
page is shown in Fig. 16.13.

It showed that the first pipeline component is a transformer that generates word 
representations and deals with WordPiece algorithm to tokenize words into sub-
words. Word vectors are fed to the rest of the pipeline.

Downloading, loading, and using transformer-based models are identical to v2 
style models.
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English has two pre-trained transformer-based models, en_core_web_trf and 
en_core_web_lg currently. Let’s start by downloading the en_core_web_trf model:

Import spaCy module and transformer-based model:

[23] import spacy
import torch
import spacy_transformers
nlp = spacy.load("en_core_web_trf")

After loading model and initializing pipeline, use this model the same way as in 
v2 style models:

[24] utt7 = nlp("I visited my friend Betty at her house.")
utt7.ents
(Betty,)

[25] for word in utt7:
 ��   print(word.pos_, word.lemma_)
PRON I
VERB visit
PRON my
NOUN friend
PROPN Betty
ADP at
PRON her
NOUN house
PUNCT .

These features related to the transformer component can be accessed by ._trf_
data.trf_data which contain word pieces, input ids, and vectors generated by the 
transformer.

Let’s examine the features one by one:

[26] utt8 = nlp("It went there unwillingly.")

python3 -m spacy download en_core_web_trf
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[27] utt8._.trf_data.wordpieces
WordpieceBatch(strings=[['<s>', 'It', 'Ġwent', 'Ġthere', 'Ġunw', 'ill', 'ingly', '.', '</
s>']], input_ids=array([[ 0, 243, 439, 89, 10963, 1873, 7790, 4, 2]]), attention_
mask=array([[1., 
1., 1., 1., 1., 1., 1., 1., 1.]], dtype=float32), lengths=[9], token_type_ids=None)

There are five elements: word pieces, input IDs, attention masks, lengths, and 
token type IDs in the preceding output.

Word pieces are subwords generated by WordPiece algorithm. The word pieces 
of this sentence are as follows:

The first and last tokens are special tokens used at the beginning and end of the 
sentence. The word unwillingly is divided into three subwords—unw, ill, and 
ingly. A G character is used to mark word boundaries. Tokens without G are 
subwords, such as ill and ingly in the preceding word piece list, except first word 
in the sentence marked by <‘s’ > .

Input IDs have identical meanings which are subword IDs assigned by the trans-
former’s tokenizer.

The attention mask is a list of 0 s and 1 s for pointing the transformer to tokens 
it should notice. 0 corresponds to PAD tokens, while all other tokens should have a 
corresponding 1.

Lengths refer to the length of sentence after dividing it into subwords. Here is 9 
but notice that len(doc) outputs is 5, while spaCy always operates on linguis-
tic words.

token_type_ids are used by transformer tokenizers to mark sentence boundaries 
of two sentences input tasks such as question and answering. Since there is only one 
text provided, this feature is inapplicable.

Token vectors are generated by transformer, doc._.trf_data.tensors which contain 
transformer output, a sequence of word vectors per word, and the pooled output 
vector. Please refer to Obtaining BERT word vectors section if necessary.

[28] utt8._.trf_data.tensors[0].shape
(1, 9, 768)

<s>
It
Gwent
Gthere
Gunw
Ill
ingly
.
</s>
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[29] utt8._.trf_data.tensors[1].shape
(1, 768)

The first element of tuple is the vectors for tokens. Each vector is 768-dimensional; 
hence 9 words produce 9 × 768-dimensional vectors. The second element of tuple 
is the pooled output vector which is an aggregate representation for input sentence, 
and the shape is 1 × 768

spaCy provides user-friendly API and packaging for complicated models such as 
transformers. Transformer integration is a validation of using spaCy for NLP.
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Chapter 17
Workshop#7 Building Chatbot 
with TensorFlow and Transformer 
Technology (Hour 13–14)

17.1 � Introduction

In the previous 6 NLP workshops, we studied NLP implementation tools and tech-
niques ranging from tokenization, N-gram generation to semantic and sentiment 
analysis with various key NLP Python enabling technologies: NLTK, spaCy, 
TensorFlow and contemporary Transformer Technology. This final workshop will 
explore how to integrate them for the design and implementation of a domain-based 
chatbot system on a movie domain.

This workshop will explore:

	1.	 Technical requirements for chatbot system.
	2.	 Knowledge domain—the Cornell Large Movie Conversation Dataset is a well-

known conversation dataset with over 200,000 movie dialogues of 10,000+ 
movie characters (Cornell 2024; Cornell_Movie_Corpus 2024).

	3.	 A step-by-step Movie Chatbot system implementation which involve movie dia-
logue preprocessing, model construction, attention learning, system integration 
with spaCy, TensorFlow, Keras and Transformer Technology, an important tool 
in NLP system implementation (Bansal 2021; Devlin et al. 2019; Géron 2019; 
Rothman 2022; Tunstall et al. 2022; Yıldırım and Asgari-Chenaghlu 2021).

	4.	 Evaluation metrics with real-time chat examples.

17.2 � Technical Requirements

In this workshop, transformers, TensorFlow, and spaCy (TensorFlow 2024; spaCy 
2024) are to be installed in PC/notebook computer. Please ensure that the following 
Python packages are installed before starting the workshop:

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_17&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_17#DOI
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•	 Python (demo version 3.11.9)
•	 spacy (demo version 3.4.4)
•	 keras (demo version 3.3.3)
•	 transformers (demo version 4.44.2)
•	 tensorflow (demo version 2.17.0)
•	 tensorflow_datasets (demo version 4.9.6)
•	 tf-keras (demo version 2.17.0)
•	 numPy (demo version 1.26.4)
•	 pandas (demo version 2.2.2)
•	 matplotlib (demo version 3.9.2)
•	 pydot (demo version 3.0.1)
•	 graphviz (demo version 0.20.3)
•	 pydot-ng (demo version 2.0.0)

If these packages are not installed on PC/laptop, use pip install xxx command. 
The detailed requirements list and Python package version used in this workshop 
can be found in the requirements.txt file stored in the NLP GitHub repository 
(NLPGitHub 2024).

17.3 � AI Chatbot in a Nutshell

17.3.1 � What Is a Chatbot?

Conversational artificial intelligence (conversational AI) is a field of machine learn-
ing that aims to create technology and enables users to have text or speech-based 
interactions with machines. Chatbots, virtual assistants, and voice assistants are 
typical conversational AI products (Batish 2018; Freed 2021; Janarthanam 2017; 
Raj 2018).

A chatbot is a software application designed to make conversations with humans.
Chatbots are widely used in human resources, marketing and sales, banking, 

healthcare, and non-commercial areas such as personal conversations. They include:

–– Amazon Alexa is a voice-based virtual assistant to perform tasks per user re-
quests or inquiries, i.e., play music, podcasts, set alarms, read audiobooks, pro-
vide real-time weather, traffic, other information, etc. Alexa Home can connect 
smart home devices to oversee premises, electrical appliances, etc.

–– Facebook Messenger and Telegram instant messaging services provide inter-
faces and API documentations (Facebook 2024, Telegram 2024) for developers 
to connect bots.
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–– Google Assistant provides real-time weather, flight, traffic information, send and 
receive text messages, email services, device information, set alarms, and inte-
grate with smart home devices, etc. available on Google Maps, Google Search, 
and standalone Android and iOS applications.

–– IKEA provides customer service chatbot called Anna, AccuWeather, and FAQ 
chatbots.

–– Sephora has virtual make-up artist and customer service chatbots at Facebook 
messenger.

–– Siri integrates with iPhone, iPad, iPod, and macOS to initiate, answer calls, send, 
receive text messages and WhatsApp messages on iPhone.

Other virtual assistants include AllGenie, Bixby, Celia, Cortana, Duer, and 
Xiaowei.

17.3.2 � What Is a Wake Word in Chatbot?

A wake word is the gateway between user and user’s digital assistant/Chatbot. Voice 
assistants such as Alexa and Siri are powered by AI with word detection abilities to 
queries response and commands, as illustrated in Fig. 17.1.

Common wake words include Hey, Google, Alexa, and Hey Siri.
Today’s wake word performance and speech recognition are operated by machine 

learning or AI with cloud processing.
Sensory’s wake word and phrase recognition engines use deep neural networks 

to provide an embedded or on-device wake word and phrase recognition engine.

Fig. 17.1  Wake word to invoke Chatbot (Tuchong 2024)
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17.3.2.1 � Tailor-Made Wake Word

Wake words like Alexa, Siri, and Google are associated with highly valued and 
technical products experiences, other companies had created tailor-made wake 
word and uniqueness to their products, i.e., Hi Toyota had opened a doorway to 
voice user interface to strengthen the relationship between customers and the brand.

17.3.2.2 � Why Embedded Word Detection?

Wake word technology has been used in cases beyond mobile applications. Some 
battery powered devices like Bluetooth headphones, smart watches, cameras, and 
emergency alert devices.

Chatbot allow users to utter commands naturally. Queries like what time is it? or 
how many steps have I taken? are phrases examples that a chatbot can process zero 
latency with high accuracy.

Wake word technology can integrate with voice recognition applications like 
touch screen food ordering, voice-control microwaves, or user identification set-
tings at televisions or vehicles.

17.3.3 � NLP Components in a Chatbot

A typical chatbot consists of major components:

	1.	 Speech-to-text converts user speech into text. The input is a wav/mp3 file, and 
the output is a text file containing user’s utterance.

	2.	 Conversational NLU performs intent recognition and entity extraction on user’s 
utterance text. The output is the user’s intent with a list of entities. Resolving 
references in the current to previous utterances is processed by this component.

	3.	 Dialogue manager retains conversation memory to generate a meaningful and 
coherent chat. This component is regarded as dialogue memory in conversa-
tional state hitherto entities and intents appeared. Hence, the input is the previ-
ous dialogue state for the current user to parse intent and entities to a new 
dialogue state output.

	4.	 Answer generator gives all inputs from previous stages to generate answers to 
user’s utterance.

	5.	 Text-to-speech generates a speech file (WAV or mp3) from system’s answers.

Each of these components is trained and evaluated separately, e.g., speech-to-
text training is performed by speech files and corresponding transcriptions on an 
annotated speech corpus.
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17.4 � Building Movie Chatbot by Using TensorFlow 
and Transformer Technology

This workshop will integrate the learnt technologies including: TensorFlow (Bansal 
2021; Ekman 2021; TensorFlow 2024), Keras (Géron 2019; Keras 2024a), 
Transformer technology with Attention Learning Scheme (Ekman 2021; Kedia and 
Rasu 2020; Rothman 2022; Tunstall et al. 2022; Vaswani et al. 2017; Yıldırım and 
Asgari-Chenaghlu 2021) to build a domain-based chatbot system. The Cornell 
Large Movie Dialog Corpus (Cornell 2024) will be used as conversation dataset for 
system training. The movie dataset can be downloaded from either Cornell data-
bank (2024) or Kaggle’s Cornell Movie Corpus archive (2024).

Use pip install command to invoke TensorFlow package and install its dataset:

[1] import tensorflow as tflow
tflow.random.set_seed(1234)
# !pip install tensorflow-datasets==1.2.0
import tensorflow_datasets as tflowDS
import re
import matplotlib.pyplot as pyplt

1. Install and import tensorflow-datasets in addition to TensorFlow package. Please 
use pip install command as script if not installed already.
2. Use random.set_seed() method to set all random seeds required to replicate 
TensorFlow codes.

17.4.1 � The Chatbot Dataset

The Cornell Movie Dialogues corpus is used in this project. This dataset, movie_
conversations.txt contains lists of conversation IDs and movie_lines.txt associative 
conversation ID. It has generated 220,579 conversations and 10,292 movie charac-
ters among movies.

17.4.2 � Movie Dialogue Preprocessing

The maximum numbers of conversations (MAX_CONV) and the maximum length 
of utterance (MLEN) are set for 50,000 and 40 for system training respectively.

Preprocessing data procedure (PP) involves the following steps:
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	1.	 Obtain 50,000 movie dialogue pairs from dataset.
	2.	 PP each utterance by special and control characters removal.
	3.	 Construct tokenizer.
	4.	 Tokenize each utterance.
	5.	 Cap the max utterance length to MLEN.
	6.	 Filter and pad utterances.

[2] # Set the maximum number of training conversation
MAX_CONV = 50000
# Preprocess all utterances
def pp_utterance(utterance):
 ��   utterance = utterance.lower().strip()
 ��   # Add a space to the following special characters
 ��   utterance = re.sub(r"([?.!,])", r" \1 ", utterance)
 ��   # Delete extrac spaces
 ��   utterance = re.sub(r'[" "]+', " ", utterance)
 ��   # Other than below characters, the other character 
replace by spaces

 ��   utterance = re.sub(r"[^a-zA-Z?.,!]+", " ", 
utterance)

 ��   utterance = utterance.strip()
 ��   return utterance
def get_dialogs():
 ��   # Create the dialog object (dlogs)
 ��   id2dlogs = {}
 ��   # Open the movie_lines text file
 ��   with open('data/movie_lines.txt', encoding = 'utf-8', 
errors = 'ignore') as f_dlogs:

 ��       dlogs = f_dlogs.readlines()
 ��   for dlog in dlogs:
 ��       sections = dlog.replace('\n', '').split(' +++$+++ 
')

 ��       id2dlogs[sections[0]] = sections[4]
 ��   query, ans = [], []
 ��   with open('data/movie_conversations.txt',
 ��           encoding = 'utf-8', errors = 'ignore') as 
f_conv:

 ��       convs = f_conv.readlines()
 ��   for conv in convs:
 ��       sections = conv.replace('\n', '').split(' +++$+++ 
')

 ��   # Create movie conservation object m_conv as a list
 ��   m_conv = [conv[1:-1] for conv in sections[3][1:-1].
split(', ')]

 ��   for i in range(len(m_conv) - 1):
 ��       query.append(pp_utterance(id2dlogs[m_conv[i]]))
 ��       ans.append(pp_utterance(id2dlogs[m_conv[i + 1]]))
 ��       if len(query) >= MAX_CONV:
 ��       return query, ans
 ��   return query, ans
queries, responses = get_dialogs()
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Select query 13 and verify response:

[3] print('Query 13: {}'.format(queries[13]))
print('Response 13: {}'.format(responses[13]))
Query 13: that s because it s such a nice one.
Response 13: forget french.

Select query 100 and verify response:

[4] print('Query 100: {}'.format(queries[100]))
print('Response 100: {}'.format(responses[100]))
Query 100: you set me up.
Response 100: i just wanted

Verify queries (responses) size to see whether it situates within MAX_CONV:

[5] len(queries)
50000

[6] Len(responses)
50000

1. After max 50,000 movie conversations had obtained to perform basic 
preprocessing, it is sufficient for model training.
2. Perform tokenization procedure to add START and END tokens using commands 
below.

17.4.3 � Tokenization of Movie Conversation

[7] # Define the Movie Token object
m_token =
tflowDS.
deprecated.text.SubwordTextEncoder.build_from_corpus
(queries + responses, target_vocab_size = 2**13)
# Define the Start and End tokens
START_TOKEN, END_TOKEN =
[m_token.vocab_size], [m_token.vocab_size + 1]
# Define the size of Vocab (SVCAB)
SVCAB = m_token.vocab_size + 2
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Verify movie token lists for conv 13 and 100:

[8] print('The movie token of conv 13: {}'.format(m_token.
encode
(queries[13])))
The movie token of conv 13: [15, 8, 151, 12, 8, 354, 10, 347, 188, 1]

[9] print('The movie token of conv 100: {}'.format(m_token.
encode
(queries[100])))
The movie token of conv 100: [5, 539, 36, 119, 1]

17.4.4 � Filtering and Padding Process

Cap utterance max length (MLEN) to 40, perform filtering and padding:

[10] # Set the maximum length of each utterance MLEN to 40
MLEN = 40
# Performs the filtering and padding of each utterance
def filter_pad (qq, aa):
 ��   m_token_qq, m_token_aa = [], []
 ��   for (utterance1, utterance2) in zip(qq, aa):
 ��       utterance1 = START_TOKEN + m_token.
encode(utterance1) + END_TOKEN

 ��       utterance2 = START_TOKEN + m_token.
encode(utterance2) + END_TOKEN

 ��       if len(utterance1) <= MLEN and len(utterance2) <= 
MLEN:

 ��       m_token_qq.append(utterance1)
 ��       m_token_aa.append(utterance2)
 ��   # pad tokenized sentences
 ��   m_token_qq = tflow.keras.preprocessing.sequence.
pad_sequences(m_token_qq, maxlen=MLEN, padding = 
'post')

 ��   m_token_aa = tflow.keras.preprocessing.sequence.
pad_sequences(m_token_aa, maxlen=MLEN, padding = 
'post')

 ��   return m_token_qq, m_token_aa
queries, responses = filter_pad (queries, responses)

Review the size of movie vocab (SVCAB) and total number of conversa-
tion (conv):

[11] print('Size of vocab: {}'.format(SVCAB))
print('Total number of conv: {}'.format(len(queries)))
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Size of vocab: 8333
Total number of conv: 44095

1. Note that the total number of conversations after the filtering and padding 
process is 44,095 which is less than the previous max conv size of 50,000 as some 
conversations are filtered out.
2. SVCAB size is around 8000 which makes sense as the total numbers of 
conversation is around 44,000 lines, and the number of vocabulary used is between 
5000 and 10,000.

17.4.5 � Creation of TensorFlow Movie Dataset Object (mDS)

TensorFlow dataset object is created by using Dataset.from_tensor_slices() method 
of TensorFlow Data class as below:

[12] tflow.data.Dataset.from_tensor_slices?

[13] # Define the Batch and Buffer size
sBatch = 64
sBuffer = 20000
# Create mDS object from TensorFlow class
mDS 
= 
tflow.
data.Dataset.from_tensor_slices(({'inNodes':queries,
'decNodes':responses[:, :-1]},{'outNodes':responses[:, 
1:]}))
mDS = mDS.cache()
mDS = mDS.shuffle(sBuffer)
mDS = mDS.batch(sBatch)
mDS = mDS.prefetch(tflow.data.experimental.AUTOTUNE)

1. Create a TensorFlow dataset object first to define batch and buffer size
2. Define three layers of Transformer model:
a. input node layer (inNodes)—Queries
b. decoder input node layer (decNodes)—Responses
c. output node layer (outNodes)—Responses
3. Define prefetch scheme—AUTOTUNE in our project.
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Fig. 17.2  Attention learning with transformer technology

17.4.6 � Calculate Attention Learning Weights

The main concept of transformer technology is the Attention Learning technique, 
which aimed at network capability to focus attention to various parts of the training 
sequence during recurrent network learning. AI chatbot corresponds to self-attention 
learning on movie dialogs, in which the network has attention ability to different 
positions of dialogue token sequences to compute utterances representation. A sys-
tem architecture of the Attention Learning model with Transformer technology is 
illustrated in Fig.  17.2. Implement Attention Equation to calculate the attention 
weight is given by:
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Attention Equation is a typical scaled-dot-product attention function in trans-
former object Query (Q), K (Key), and V (Value) Value and Python implementation 
is given below:

[14] # Calculate the Attention Weight, Query (q), Key(k), 
Value(v), Mask(m)
def calc_attention(q, k, v, m):
 ��   qk = tflow.matmul(q, k, transpose_b = True)
 ��   dep = tflow.cast(tflow.shape(k)[-1], tflow.float32)
 ��   mlogs = qk / tflow.math.sqrt(dep)
 ��   # Use the masking for padding
 ��   if m is not None:
 ��       mlogs += (m * -1e9)
 ��   # Apply softmax on the final axis of the utterance 
sequence

 ��   att_wts = tflow.nn.softmax(mlogs, axis = -1)
 ��   # Apply matmul() operation
 ��   out_wts = tflow.matmul(att_wts, v)
 ��   return out_wts
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17.4.7 � Multi-Head-Attention (MHAttention)

Multi-Head-Attention (MHAttention) consists of the following steps:

	1.	 Construct linear layers
	2.	 Perform head-splitting
	3.	 Calculate attention weights
	4.	 Combine heads
	5.	 Condense layers

MHAttention is implemented as follows:

[15] class MHAttention(tflow.keras.layers.Layer):
def__init__(self, dm, nhd, name="MHAttention"):
 ��   super(MHAttention, self).__init__(name=name)
 ��   self.nhd = nhd
 ��   self.dm = dm
 ��   assert dm % self.nhd == 0
 ��   self.dep = dm // self.nhd
 ��   self.qdes = tflow.keras.layers.Dense(units=dm)
 ��   self.kdes = tflow.keras.layers.Dense(units=dm)
 ��   self.vdes = tflow.keras.layers.Dense(units=dm)
 ��   self.des = tflow.keras.layers.Dense(units=dm)
def sheads(self, inNodes, bsize):
 ��   inNodes = tflow.reshape(
 ��       inNodes, shape=(bsize, -1, self.nhd, self.dep))
 ��   return tflow.transpose(inNodes, perm=[0, 2, 1, 3])
def call(self, inNodes):
 ��   q, k, v, m = inNodes['q'], inNodes['k'], 
inNodes['v'], inNodes['m']

 ��   bsize = tflow.shape(q)[0]
 ��   # 1. Construct Linear-layers
 ��   q = self.qdes(q)
 ��   k = self.kdes(k)
 ��   v = self.vdes(v)
 ��   # 2. Perform Head-splitting
 ��   q = self.sheads(q, bsize)
 ��   k = self.sheads(k, bsize)
 ��   v = self.sheads(v, bsize)
 ��   # 3. Calculate Attention Weights
 ��   sattention = calc_attention(q, k, v, m)
 ��   sattention = tflow.transpose(sattention, perm=[0, 2, 
1, 3])

 ��   # 4. Head Combining
 ��   cattention = tflow.reshape(sattention,
 ��       (bsize, -1, self.dm))
 ��   # 5. Layer Condensation
 ��   outNodes = self.des(cattention)
 ��   return outNodes
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17.4.8 � System Implementation

Step 1. Implement Masking

Implement (1) Padding Mask and (2) Look_ahead Mask to mask token sequences.

[16] # Generate Padding Mask (gen_pmask)
def gen_pmask(p):
 ��   pmask = tflow.cast(tflow.math.equal(p, 0), tflow.
float32)

 ��   return pmask[:, tflow.newaxis, tflow.newaxis, :]

[17] # Generate Look_Ahead Mask (gen_lamask)
def gen_lamask(x):
 ��   slen = tflow.shape(x)[1]
 ��   lamask = 1- tflow.linalg.band_part(tflow.ones((slen, 
slen)), -1, 0)

 ��   pmask = gen_pmask(x)
 ��   return tflow.maximum(lamask, pmask)

Review lamask with a sample matrix:

[18] print(gen_lamask(tflow.constant([[1, 2, 0, 4, 5]])))
tf.Tensor(
[[[[0. 1. 1. 1. 1.]
 ��   [0. 0. 1. 1. 1.]
 ��   [0. 0. 1. 1. 1.]
 ��   [0. 0. 1. 0. 1.]
 ��   [0. 0. 1. 0. 0.]]]], shape=(1, 1, 5, 5), dtype=float32)

Step 2. Implement Positional Encoding

The main function of positional encoding is to provide model with information 
about the relative position of word tokens within utterance for attention learning 
given by the following formula:
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[19] # Implementation of Positional Encoding Class 
(PEncoding)
class PEncoding(tflow.keras.layers.Layer):
 ��   def __init__(self, pos, dm):
 ��       super(PEncoding, self).__init__()
 ��       self.pencode = self.pencods(pos, dm)
 ��   def gdeg(self, pos, i, dm):
 ��       deg = 1 / tflow.pow(10000,(2 * (i // 2)) /
tflow.cast(dm, tflow.float32))
 ��       return pos * deg
 ��   def pencods(self, pos, dm):
 ��       deg_rads = self.gdeg(pos = tflow.range(pos, 
dtype=tflow.float32)[:, tflow.newaxis], i=tflow.range(dm, 
dtype=tflow.float32)[tflow.newaxis, :], dm = dm)

 ��       m_sin = tflow.math.sin(deg_rads[:, 1::2])
 ��       m_cos = tflow.math.cos(deg_rads[:, 1::2])
 ��       pencode = tflow.concat([m_sin, m_cos], axis = -1)
 ��       pencode = pencode[tflow.newaxis,…]
 ��       return tflow.cast(pencode, tflow.float32)
 ��   def call(self, inNodes):
 ��       # Convert SparseTensor to DenseTensor if 
necessary

 ��       if isinstance(inNodes, tflow.sparse.SparseTensor):
 ��       inNodes = tflow.sparse.to_dense(inNodes)
 ��       # Add positional encoding to input nodes
 ��       return inNodes + self.pencode[:, :tflow.
shape(inNodes)[1], :]

Try to plot PositionalEncoding diagram:

[20] # Create PositionalEncoding Sample
pencoding_sample = PEncoding(50, 512)
pyplt.pcolormesh(pencoding_sample.pencode.numpy()[0], 
cmap = 'RdBu')
pyplt.xlabel('Depth')
pyplt.xlim((0, 512))
pyplt.ylabel('Position')
pyplt.colorbar()
pyplt.show()
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Step 3. Implement Encoder Layer

Encoder Layer (enclayer) implementation involves:

	1	 Create MHAttention object
	2	 Two dense layers

Details as shown below:
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[21] # Implementation of Encoder Layer (enclayer)
def enclayer(i, dm, nhd, drop, name="enclayer"):
inNodes = tflow.keras.Input(shape=(None, dm), 
name="inNodes")
pmask = tflow.keras.Input(shape=(1, 1, None), 
name="pmask")
att = MHAttention(
 ��   dm, nhd, name="att")({
 ��       'q': inNodes,
 ��       'k': inNodes,
 ��       'v': inNodes,
 ��       'm': pmask
 ��   })
att = tflow.keras.layers.Dropout(rate=drop)(att)
att = tflow.keras.layers.LayerNormalization(
 ��   epsilon=1e-6)(inNodes + att)
outNodes = tflow.keras.layers.Dense(units=i, 
activation='relu')(att)
outNodes = tflow.keras.layers.Dense(units=dm)(outNodes)
outNodes = tflow.keras.layers.Dropout(rate=drop)
(outNodes)
outNodes = tflow.keras.layers.LayerNormalization(
 ��   epsilon=1e-6)(att + outNodes)
return tflow.keras.Model(
 ��   inputs=[inNodes, pmask], outputs=outNodes, 
name=name)

1. An attention learning object is defined and used at encoder layer implementation 
class.
2. relu function is used as default setting for encoder layer activation function. 
Current research includes the modification (or change) of activation function for 
system enhancement.

Try to display a sample encoder layer using Keras plot model():

[22] # Create a sample Encoder Layer and display object 
diagram
enclayer_sample = enclayer(i = 512, dm = 128, nhd = 4, 
drop = 0.3, name = "enclayer_sample")
tflow.keras.utils.plot_model(enclayer_sample, to_file = 
'enclayer.png', show_shapes = True)
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Step 4. Implement Encoder

Encoder implementation involves the following processes:

	1.	 Embed inputs
	2.	 Perform positional encoding scheme
	3.	 Encode Num Layers
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[23] # Implementation of Encoder Class (encoder)
def encoder(svcab,
 ��       nlayers,
 ��       x,
 ��       dm,
 ��       nhd,
 ��       drop,
 ��       name="encoder"):
inNodes = tflow.keras.Input(shape=(None,), 
name="inNodes")
pmask = tflow.keras.Input(shape=(1, 1, None), 
name="pmask")
embeddings = tflow.keras.layers.Embedding(svcab, dm)
(inNodes)
embeddings *= tflow.math.sqrt(tflow.cast(dm, tflow.float32))
embeddings = PEncoding(svcab, dm)(embeddings)
outNodes = tflow.keras.layers.Dropout(rate=drop)
(embeddings)
for i in range(nlayers):
 ��   outNodes = enclayer(
 ��       i=x,
 ��       dm=dm,
 ��       nhd=nhd,
 ��       drop=drop,
 ��       name="enclayer_{}".format(i),
 ��   )([outNodes, pmask])
return tflow.keras.Model(
 ��   inputs=[inNodes, pmask], outputs=outNodes, 
name=name)

Display a sample encoder using Keras plot model:

[24] # Create a sample Encoder Sample and display object 
diagram
encoder_sample = encoder(svcab = 8192,
 ��       nlayers = 2,
 ��       x = 512,
 ��       dm = 128,
 ��       nhd = 4,
 ��       drop = 0.3,
 ��       name = "encoder_sample")
tflow.keras.utils.plot_model
(encoder_sample, to_file='encoder_sample.png', show_
shapes = True)
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Step 5. Implement Decoder Layer

Decoder Layer implementation involves the following steps:

	1.	 MHAttention
	2.	 2 Dense Decoder Layers with dropout
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[25] # Implementation of Decoder Layer (declayer)
def declayer(i, dm, nhd, drop, name = "declayer"):
 ��   inNodes = tflow.keras.Input(shape=(None, dm), name 
="inNodes")

 ��   encouts = tflow.keras.Input(shape=(None, dm), 
name="encouts")

 ��   lamask = tflow.keras.Input(shape=(1, None, None), 
name = "lamask")

 ��   pmask = tflow.keras.Input(shape=(1, 1, None), name = 
"pmask")

 ��   att1 = MHAttention(dm, nhd, name="att1")
(inNodes={'q':inNodes,

 ��           'k':inNodes,
 ��           'v':inNodes,
 ��           'm':lamask})
 ��   att1 = tflow.keras.layers.LayerNormalization(epsilon
=1e-6)

(att1 + inNodes)
 ��   att2 = MHAttention(dm,nhd, name = "att2")
(inNodes={'q':att1,

 ��           'k':encouts,
 ��           'v':encouts,
 ��           'm':pmask})
 ��   att2 = tflow.keras.layers.Dropout(rate=drop)(att2)
 ��   att2 = tflow.keras.layers.LayerNormalization(epsilon 
= 1e-6)(att2 + att1)

 ��   outNodes = tflow.keras.layers.Dense(units=i, 
activation='relu')(att2)

 ��   outNodes = tflow.keras.layers.Dense(units=dm)
(outNodes)

 ��   outNodes = tflow.keras.layers.Dropout(rate=drop)
(outNodes)

 ��   outNodes = tflow.keras.layers.
LayerNormalization(epsilon=1e-6)(outNodes + att2)

 ��   return tflow.keras.Model(inputs=[inNodes, encouts, 
lamask, pmask],

 ��       outputs = outNodes,
 ��       name = name)

1. Encoder layer implements single attention learning object, and decoder layer 
implements two attention learning objects att1 and att2 according to transformer 
learning model.
2. Again, relu function is used as activation function. It can modify or adopt 
different activation function to improve network performance as studied in Sect. 
17.1.

Display sample decoder layer using Keras plot_model():
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[26] # Create a decoder layer sample and show object 
association diagram
declayer_sample = declayer(i = 512, dm = 128, nhd = 4, 
drop = 0.3,
name = "declayer_sample")
tflow.keras.utils.plot_model
(declayer_sample, to_file='declayer_sample.png', show_
shapes=True)

Step 6. Implement Decoder

Decoder implementation involves the following processes:

	1.	 Embed network outputs
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	2.	 Look ahead and pad masking
	3.	 Positional encoding scheme
	4.	 Perform N-decoder layers

[27] # Implementation of Decoder class (decoder)
def decoder(svcab,
 ��       nlayers,
 ��       x,
 ��       dm,
 ��       nhd,
 ��       drop,
 ��       name='decoder'):
 ��   inNodes = tflow.keras.Input(shape=(None,), name="inNodes")
 ��   encouts = tflow.keras.Input(shape=(None, dm), 
name="encouts")

 ��   lamask = tflow.keras.Input(shape=(1, None, None), 
name="lamask")

 ��   pmask = tflow.keras.Input(shape=(1, 1, None), 
name="pmask")

 ��   embeddings = tflow.keras.layers.Embedding(svcab, dm)
(inNodes)

 ��   embeddings *= tflow.math.sqrt(tflow.cast(dm, tflow.float32))
 ��   embeddings = PEncoding(svcab, dm)(embeddings)
 ��   outNodes = tflow.keras.layers.Dropout(rate=drop)
(embeddings)

 ��   for i in range(nlayers):
 ��       outNodes = declayer(i = x,
 ��           dm=dm,
 ��           nhd=nhd,
 ��           drop=drop,
 ��           name = 'declayer_{}'.format(i),)(inputs=[outNodes, 
encouts, lamask, pmask])

 ��       return tflow.keras.Model(inputs=[inNodes, encouts, 
lamask, pmask],

 ��           outputs = outNodes,
 ��           name = name)

Display sample decoder using Keras plot_model:

[28] # Create a decoder sample and show object association 
diagram
decoder_sample = decoder(svcab=8192,
 ��       nlayers=2,
 ��       x = 512,
 ��       dm = 128,
 ��       nhd = 4,
 ��       drop = 0.3,
 ��       name = "decoder_sample")
tflow.keras.utils.plot_model(decoder_sample,
to_file='decoder_sample.png', show_shapes = True)
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Step 7. Implement Transformer

Transformer involves implementing encoder, decoder, and the final linear layer.
Transformer decoder output is input to linear layer as a recurrent neural network 

(RNN) and output model is returned.
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[29] # Implementation of Transformer Class
def transformer(svcab, nlayers, x, dm, nhd, drop, 
name="transformer"):
 ��   queries = tflow.keras.Input(shape=(None,), name="inNodes")
 ��   dec_queries = tflow.keras.Input(shape=(None,), 
name="decNodes")

 ��   enc_pmask = tflow.keras.layers.Lambda(
 ��   gen_pmask, output_shape=(1, 1, None),
 ��   name="enc_pmask")(queries)
 ��   # Perform Look Ahead Masking for Decoder Input for the 
Att1

 ��   lamask = tflow.keras.layers.Lambda(gen_lamask,
 ��           output_shape=(1, None, None),
 ��           name = "lamask")(dec_queries)
 ��   # Perform Padding Masking for Encoder Output for the Att2
 ��   dec_pmask = tflow.keras.layers.Lambda(gen_pmask,
 ��           output_shape=(1, 1, None),
 ��           name="dec_pmask")(queries)
 ��   encouts = encoder(svcab=svcab,
 ��       nlayers = nlayers,
 ��       x = x,
 ��       dm = dm,
 ��       nhd = nhd,
 ��       drop = drop,)(inputs = [queries, enc_pmask])
 ��   decouts = decoder(svcab=svcab,
 ��       nlayers = nlayers,
 ��       x = x,
 ��       dm = dm,
 ��       nhd = nhd,
 ��       drop=drop,)(inputs=[dec_queries, encouts, lamask, 
dec_pmask])

 ��   responses =
tflow.keras.layers.Dense(units=svcab, name="outNodes")
(decouts)
 ��   return tflow.keras.Model(inputs=[queries, dec_queries],
outputs=responses, name=name)

Display sample transformer object using Keras plot_model:

[30] # Create a transformer sample and display object diagram
transformer_sample = transformer(svcab=8192, nlayers=4, 
x=512,
 ��   dm=128, nhd = 4, drop=0.3, name="transformer_sample")
tflow.keras.utils.plot_model(transformer_sample,
to_file="transformer_sample.png", show_shapes=True)
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Step 8. Model Training

Parameters for nLayers, dm and units (x) had reduced to speed up training 
process.

[31] # Create Transformer Model
tflow.keras.backend.clear_session()
model = transformer(svcab = SVCAB,
 ��           nlayers=2,
 ��           x=512,
 ��           dm=256,
 ��           nhd=8,
 ��           drop=0.1)

1. A movie Chatbot Transformer model consists of two layers with 512 units, 
data-model size 256, head number 8, and dropout rate 0.1 according to transformer 
model as in Fig. 17.2.
2. It is recommended to modify these parameter settings to improve network 
performance as discussed in Sect. 17.1.

Step 9. Implement Model Evaluation Function

A loss function is implemented for system evaluation. It is important to use a 
padding mask when calculating the loss since target sequences are padded.
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[32] # Implementation of Evaluation Function (Loss Function)
def Eval_function(xtrue, xpred):
 ��   # Reshape xtrue
 ��   xtrue = tflow.reshape(xtrue, shape=(-1, MLEN - 1))
 ��   # Compute sparse categorical crossentropy loss
 ��   loss_val = tflow.keras.losses.SparseCategoricalCrossentropy(
 ��       from_logits=True, reduction='none')(xtrue, xpred)
 ��   # Mask padding values (assuming 0 is the padding value)
 ��   mask_val = tflow.cast(tflow.not_equal(xtrue, 0), tflow.float32)
 ��   loss_val = tflow.multiply(loss_val, mask_val)
 ��   return tflow.reduce_mean(loss_val)

Step 10. Implement Customized Learning Rate

Adam_Optimizer with a customized learning rate is used with the formula below:

	
I drate model step num ,step num warmup steps= ∗ ∗( )− − −5 0 5 1 5min _ _ _. .

	
(17.3)

[33] # Implementation of Customized Learning Rate
class CLearning(tflow.keras.optimizers.schedules.LearningRateSchedule):
 ��   def __init__(self, dm, warmup_steps=4000):
 ��       super(CLearning, self).__init__()
 ��       self.dm = dm
 ��       self.dm = tflow.cast(self.dm, tflow.float32)
 ��       self.warmup_steps = warmup_steps
 ��   def __call__(self, step):
 ��   # arg1 = tflow.math.rsqrt(step)
 ��       arg1 = tflow.math.rsqrt(tflow.cast(step, tflow.float32))
 ��       arg2 = tflow.cast(step, tflow.float32) * (tflow.cast(self.warmup_steps, 

tflow.float32)**-1.5)
 ��       return tflow.math.rsqrt(self.dm) * tflow.math.minimum(arg1, arg2)

Plot customized learning rate:

[34] # Create customized learning rate object and display 
performance
CLearning_sample = CLearning(dm=128)
pyplt.plot(CLearning_sample(tflow.range(200000, 
dtype=tflow.float32)))
pyplt.ylabel("Learning Rate")
pyplt.xlabel("Train Step")
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Step 11. Compile Chatbot Model

Step 12. System Training (Model Fitting)

[35] # Compile Movie Chatbot Model
# Set the Customized Learning Rate
cLRate = CLearning(256)
# Set Adam Optimizers
optimizer = tflow.keras.optimizers.Adam(learning_
rate=cLRate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)
# Implement Accuracy Evaluation Scheme
def accuracy(xtrue, xpred):
 ��   xtrue = tflow.reshape(xtrue, shape=(-1, MLEN - 1))
 ��   xpred = xpred[:, :tflow.shape(xtrue)[1], :] # Slice 
to match time steps

 ��   return tflow.keras.metrics.sparse_categorical_
accuracy(xtrue, xpred)

# Compile Chatbot Model
model.compile(optimizer=optimizer, loss=Eval_function,
metrics=[accuracy])

Train Chatbot transformer model by calling model.fit() for 20 epochs to save time.

[36] EPOCHS = 20
model.fit(mDS, epochs = EPOCHS)
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Epoch 1/20
689/689 ___ 211s 299ms/step - accuracy: 0.0240 - loss: 2.5178
Epoch 2/20
689/689 ___ 249s 361ms/step - accuracy: 0.0765 - loss: 1.5446
Epoch 3/20
689/689 ___ 257s 373ms/step - accuracy: 0.0857 - loss: 1.4137
Epoch 4/20
689/689 ___ 255s 371ms/step - accuracy: 0.0903 - loss: 1.3390
Epoch 5/20
689/689 ___ 161s 233ms/step - accuracy: 0.0951 - loss: 1.2668
Epoch 6/20
689/689 ___ 162s 235ms/step - accuracy: 0.0986 - loss: 1.2131
Epoch 7/20
689/689 ___ 161s 234ms/step - accuracy: 0.1031 - loss: 1.1636
Epoch 8/20
689/689 ___ 162s 235ms/step - accuracy: 0.1088 - loss: 1.0969
Epoch 9/20
689/689 ___ 179s 260ms/step - accuracy: 0.1148 - loss: 1.0374
Epoch 10/20
689/689 ___ 180s 261ms/step - accuracy: 0.1202 - loss: 0.9825
Epoch 11/20
689/689 ___ 178s 258ms/step - accuracy: 0.1268 - loss: 0.9476
Epoch 12/20
689/689 ___ 176s 256ms/step - accuracy: 0.1326 - loss: 0.9058
Epoch 13/20
689/689 ___ 177s 257ms/step - accuracy: 0.1381 - loss: 0.8731
Epoch 14/20
689/689 ___ 177s 256ms/step - accuracy: 0.1428 - loss: 0.8378
Epoch 15/20
689/689 ___ 176s 256ms/step - accuracy: 0.1476 - loss: 0.8064
Epoch 16/20
689/689 ___ 182s 264ms/step - accuracy: 0.1522 - loss: 0.7809
Epoch 17/20
689/689 ___ 179s 260ms/step - accuracy: 0.1556 - loss: 0.7551
Epoch 18/20
689/689 ___ 175s 254ms/step - accuracy: 0.1609 - loss: 0.7331
Epoch 19/20
689/689 ___ 174s 253ms/step - accuracy: 0.1644 - loss: 0.7117
Epoch 20/20
689/689 ___ 175s 254ms/step - accuracy: 0.1663 - loss: 0.6878
[36]: <keras.src.callbacks.history.History at 0x22eeb101b50>

Step 13. System Evaluation and Live Chatting

System evaluation and live chatting implementation involve the following steps:

	1.	 Create Mining() method by performing data preprocessing of all utterances.
	2.	 Perform tokenization of utterances and padded with START and END tokens.
	3.	 Perform LookAhead and Padding Masks.
	4.	 Construct Transformer model with attention learning.
	5.	 Implement chatting() method by decoder scheme.
	6.	 Combine chatted word sequences to decoder input.
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	7.	 Use transformer model for system to predict responses based on previous train-
ing epochs.

[37] # Implementation of Movie Chatting class - mchat
def mchat(utterance):
 ��   # Utterance Preprocessing and add START AND END 
TOKENS

 ��   utterance = pp_utterance(utterance)
 ��   utterance = tflow.expand_dims(START_TOKEN +
m_token.encode(utterance) + END_TOKEN, axis = 0)
 ��   # Create response object
 ��   response = tflow.expand_dims(START_TOKEN, 0)
 ��   for i in range(MLEN):
 ��       chatting = model(inputs = [utterance, response], 
training = False)

 ��   # Choose last_word from token sequence
 ��   chatting = chatting[:, -1:, :]
 ��   chatted_id = tflow.cast(tflow.argmax(chatting, axis=-
1), tflow.int32)

 ��   # Return with chattedID with ENDTOKEN
 ��   if tflow.equal(chatted_id, END_TOKEN[0]):
 ��       break
 ��   # Combine CHATTEDID with utterance response
 ��   response = tflow.concat([response, chatted_id], 
axis=-1)

 ��   return tflow.squeeze(response, axis = 0)
# 
Implementation 
of main class for Movie Chatting - mchatting
def mchatting(utterance):
 ��   mchatting = mchat(utterance)
 ��   chatted_utterance =
m_token.decode([i for i in mchatting if i < m_token.
vocab_size])
 ��   print('Query: {}'.format(utterance))
 ��   print('Response: {}'.format(chatted_utterance))
 ��   return chatted_utterance

Try some movie conversations to see whether it works:

[38] output = mchatting("Where have you been?")
Query: Where have you been?
Response: i m going to see you.

[39] output = mchatting("It's a trap")
Query: It’s a trap
Response: you re not going anywhere !
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[40] output = mchatting("Do you need help?")
Query: Do you need help?
Response: i don t know.

[41] output = mchatting("What do you think?")
Query: What do you think?
Response: i don t know. i don t know. i m not sure. i just had to see what i m saying.

[42] output = mchatting("Are you happy?")
Query: Are you happy?
Response: yes. i m very happy.

1. Training showed that epochs 1–20 are rather slow but increased in accuracy and 
decreased in loss rate.
2. Two chatbots experiments with one used 2 epochs and the other used 20 epochs. 
Results showed that performance on 20 epochs has satisfactory performance than 
the one with 2 epochs.
3. Increase epochs, say, up to 50 epochs to review whether accuracy has continuous 
improvement. It is natural to require more time unless there are sufficient GPUs.

Workshop 7.1 Fine-tune Chatbot Model
TensorFlow and Transformer technology are used to develop a domain-based 
Chatbot system
There are rooms to fine-tune model performance like any AI model. It can be 
conducted by:
1. Dataset Level
- Enhance preprocessing process.
- Improve data record selection scheme, e.g., sample size, utterance MLEN, etc.
2. Network Model Level
- Fine-tune system parameters, e.g., learning rate and method, etc.
- Fine-tune Transformer Model by modifying Attention Function, etc. Compare 
performances (MUST) and analysis (bonus).
Fine-tune Movie Chatbot model and compare with the original version

Workshop 7.2 Mini Project - Build a Semantic-Level AI Chatbot System
Extend character-level and word-level NLU to a semantic-level NLU
1. Modify codes of AI Chatbot learnt in this section to implement a semantic-
level AI Chatbot system.
2. Compare system performance of this revised system with previous character-
level and word-level AI Chatbot system.
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17.5 � Related Works

This workshop had integrated all NLP related implementation techniques including 
TensorFlow and Keras with Transformer Technology to design an AI-based NLP 
application chatbot system. It is a step-by-step implementation consisting of data 
preprocessing, model construction, system training, testing evaluation process; and 
Attention Learning and Transformer Technology with TensorFlow and Keras imple-
mentation platform easily applied to other chatbot domain and interactive QA sys-
tems using Cornell Large Movie dataset with over 200,000 movie conversations 
with 10,000+ movie characters.

Nevertheless, it is only the dawn of the journey. There are regular new R&D 
prevalence and usage in NLP applications. Below are lists of renowned domains and 
resources related to chatbot systems for reference.

Datasets for Chatbot Systems
•	 Taskmaster from Google Research (Google Research 2024a).
•	 Simulated Dialogue dataset from Google Research (GoogleResearch 2024b).
•	 Dialogue Challenge dataset from Microsoft (MicrosoftDialog 2024).
•	 Dialogue State Tracking Challenge dataset (DSTC 2024).

Keras Modules and Optimizer
•	 Keras layers (Keras 2024a).
•	 Keras optimizers (Keras 2024b).
•	 An overview of optimizers (Ruder 2024).
•	 Adam optimizer (Adam 2024).

Famous Chatbot System
•	 Amazon Alexa developer blog (Alexa 2024).
•	 Apple Siri Developer (AppleSiri 2024).
•	 Duer from Baidu (Duer 2024).
•	 Google Assistant (GoogleAssistant 2024).
•	 Microsoft Cortana Developer (MicrosoftCortana 2024).
•	 Samsung Bixby Developer (SamsungBixby 2024).
•	 Xiaowei from Tencent (Xiaowei 2024).
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