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Preface 

Statistical inference is the discipline that underpins stochastic modelling, which is 
that area of Mathematics where uncertainty is part of the model and object of interest 
in the study. Calculus, linear algebra, and probability are among the main subjects 
on which the theory of statistical inference is based, with its main objective being the 
estimation of quantities of interest such as, the parametric and non-parametric laws 
of stochastic models, their relative asymptotic distributions, etc. In this framework, 
the study of advanced statistical models, such as, linear regression models, analysis 
of variance (ANOVA), and generalised regression models, is essential both in 
research and in business. Consequently, the implementation of algorithms in a 
suitable statistical software is proposed as a natural completion of the book. 

This text was created with the aim of helping the students in the transition 
between the theoretical and methodological concepts of statistical inference and 
their software implementation. The first part of the text is mainly focused on 
exercises to be solved with with pen and paper, in order to apply notions derived 
from lemmas and theorems; while in the second part of the text we propose 
assignments, based on both the manual implementation of algorithms and the 
application of built-in tools for an effective analysis of datasets that are derived 
from real problems. 

To optimise the understanding of the selected topics, and to accompany the 
reader in their study, the text is organised into chapters, that are composed of 
an introductory part, in which the theoretical foundations of statistical inference 
are recalled, and a second part that is composed of exercises, accompanied by a 
comprehensive solution on paper and, if appropriate, on software. In particular, for 
a thorough treatment of the theoretical part, refer to [3] and [5]. 

Regarding the computational solutions, the use of the statistical software R [6] 
(version 3.5.1) is proposed. This choice was guided by the fact that R is available for 
various operating systems (Unix, GNU/Linux, Mac OS X, Microsoft Windows) and 
can be downloaded for free from the website http://cran.r-project.org/. Moreover, 
in R there is a wide choice of libraries (packages) distributed and appropriately 
described on the Comprehensive R Archive Network (CRAN).

v
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vi Preface

The text is organised into six main areas: a first area includes basic probability 
exercises (Chap. 1); a second area addresses the topic of point estimators (Chaps. 2, 
3, and 4); a third area is focused on hypothesis testing and confidence intervals 
(Chaps. 5, 6, and 7); a fourth area focuses on the asymptotic properties of 
estimators (Chap. 8); and a fifth area is focused on multiple linear regression models, 
generalised regression and analysis of variance (Chaps. 9, 10, and 11). Regarding 
these three chapters, supplementary material is available online, containing the 
datasets needed to carry out some exercises, further insights and exercises. Finally, 
there is a last chapter, containing summary exercises, through which the student can 
gain a global view of the data analysis techniques illustrated in the book. 

This text is written for students of undergraduate courses in Statistics, Mathemat-
ics, Engineering and for postgraduate courses in Data Science. Many of the exercises 
and laboratories proposed are derived from exercises and exam topics of the course 
Models and Methods for Statistical Inference taught in Mathematical Engineering 
at the Politecnico of Milan. We therefore thank the numerous colleagues and 
collaborators who have contributed, directly or indirectly, to the creation of the 
proposed material. In particular, an important contribution to the development of 
the Exercises and Laboratories must be recognised to Andrea Ghiglietti, Matteo 
Gregoratti, and Nicholas Tarabelloni. 

Milan, Italy Francesca Gasperoni 
January 2025 Francesca Ieva 

Anna Maria Paganoni 
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Part I 
Inferential Statistics



Chapter 1 
Fundamentals of Probability 
and Statistics 

1.1 Theory Recap 

1.1.1 Expected Value, Variance and Covariance 

Theorem 1.1 Let X be a real r.v. with distribution function FX(x).,  let Y = g(X)., 
let X = {x : f (x) > 0}. and let Y = {y : fY (y) > 0}.: 
• If g(·). is an increasing function in X., then FY (y) = FX(g−1(y)) ∀y ∈ Y..
 If g(·). is a decreasing function in X. and X is a continuous r.v. then FY (y) =

1 − FX(g−1(y)) ∀y ∈ Y..
 Suppose that fX(x). is continuous in X. and that g−1(·). has a continuous 

derivative in Y.. Then the density of Y is as follows:

. fY (y) =
{

fX(g−1(y))| dg−1(y)
dy | y ∈ Y;

0 otherwise.

Theorem 1.2 Let X be a r.v. with continuous distribution function FX(x).. Then the 
r.v. Y = FX(X). has law Y ∼ U(0, 1).. 

Definition 1.1 (Mean) The expected value or mean of a r.v. g(X). is defined as: 

. E[g(X)] =
{∫ +∞

−∞ g(x)fX(x) dx if X is a continuous r.v.;∑
x∈X g(x)fX(x) dx if X is a discrete r.v..

Theorem 1.3 Let X be a r.v.. Let a, b, c be scalars i n R.. Then for any functions 
g1(x). and g2(x). for which the mean exists, the following hold:

 E[ag1(X) + bg2(X) + c] =  aE[g1(X)] +  bE[g2(X)] + c..
 If g1(x) ≥ 0 ∀x ., then E[g1(X)] ≥ 0.. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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4 1 Fundamentals of Probability and Statistics

 If g1(x) ≥ g2(x) ∀x ., then E[g1(X)] ≥ E[g2(X)]..
 If a ≤ g1(x) ≤ b ∀x ., then a ≤ E[g1(X)] ≤ b.. 

Definition 1.2 (Variance) The variance of a r.v. X is defined as:

. V ar(X) = E[(X − E[X])2] = E[X2] − (E[X])2

and its square root is called the standard deviation. 

Theorem 1.4 Let X be a r.v. with finite variance. Let a, b, c be scalars i n R.. Then 
the following holds: 

. V ar(aX + b) = a2V ar(X).

Definition 1.3 (Covariance) Let X and Y be two r.v., then the covariance is defined
as:

. Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])].

Theorem 1.5 Let X and Y be two r.v. with finite variance and a and b be two
scalars. Then:

. V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y ).

Definition 1.4 (Correlation) Let X and Y be two r.v., then the correlation is 
defined as:

. ρX,Y = Cov(X, Y )√
V ar(X)V ar(Y )

.

Theorem 1.6 Let X and Y be two r.v. Then:

 ρX,Y ∈ [−1, 1 ]..
 |ρX,Y |  =  1. if and only if there exists a number a /= 0. and b such that P{Y =

aX + b} = 1..  If a > 0. then ρX,Y = 1.,  if a < 0. then ρX,Y = −1.. 

1.1.2 Joint and Marginal Laws 

Theorem 1.7 Let X = (X1, X2, . . . , Xn). be a vector of r.v. with joint density 
fX(x).. Then the marginal law of X1, . . . , Xk . is: 

.fX1,...,Xk
(x1, . . . , xk)=

∫
R

. . .

∫
R

fX(x) dxk+1dxk+2 . . . dxn if r.v. are continuous.
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. fX1,...,Xk
(x1, . . . , xk) =

∑
(xk+1,...,xn)∈Rn−k

fX(x) if r.v. are discrete.

Definition 1.5 (Conditional Laws) Let X = (X1, X2, . . . , Xn). be a vector of r.v. 
with joint density fX(x).. ∀(x1, . . . , xk) ∈ R

k
. such that fX1,...,Xk

(x1, . . . , xk) >

0., the conditional law of X . given (X1, . . . , Xk) = (x1, . . . , xk). is a function of 
(x1, . . . , xk)., fX1,...Xn|X1,..., Xk

(x1, . . . xn|x1, . . . , xk)., which is defined as: 

. fX1,...Xn|X1,..., Xk
(x1, . . . xn|x1, . . . , xk) = fXk+1,...Xn(xk+1, . . . xn)

fX1,...Xk
(x1, . . . xk)

.

Lemma 1.1 (Independence) Let X = (X1, X2, . . . , Xn). be a vector of r.v. with 
joint density fX(x).. X1, X2, . . . Xn . are mutually independent r.v. if and only if: 

. fX(x) =
n∏

i=1

fXi
(xi).

Theorem 1.8 (Independence) If X1 . and X2 . are independent r.v. then 
Cov(X1, X2) = 0.. 

1.1.3 Conditional Expected Values 

Theorem 1.9 (Double Conditional Expected Value) Let X and Y be two r.v .,
then:

. E[X] = E[E[X|Y ]]

if the expected values exist. 

Theorem 1.10 (Conditional Variance) Let X and Y be two r.v ., then:

. V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ])

if the expected values exist.
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1.1.4 Convergences 

Definition 1.6 (Almost Sure Convergence) A sequence of r.v. X1, X2, . . . . con-
verges almost surely to a r.v. X if ∀ε > 0. it holds: 

. P{ lim
n→+∞ |Xn − X| < ε} = 1

and it is denoted by Xn
q.c.→ X .. 

Definition 1.7 (Convergence in Probability) A sequence of r.v. X1, X2, . . . . con-
verges in probability to a r.v. X if ∀ε > 0. it holds: 

. lim
n→∞P{|Xn − X| ≥ ε} = 0

or equivalently 

. lim
n→∞P{|Xn − X| < ε} = 1

and it is denoted by Xn
p→ X .. 

Theorem 1.11 (Strong Law of Large Numbers, SLLN) Consider a sequence 
X1, X2, . . . . of i.i.d. r.v., such that E[Xi] = μ. and V ar(Xi) = σ 2 < +∞.. Consider 
Xn = ∑n

i=1 Xi/n.. Then ∀ε > 0. it holds: 

. P{ lim
n→+∞ |Xn − μ| < ε} = 1

that is, Xn . converges almost surely to μ. (Xn
q.c.→ μ.). 

Theorem 1.12 (Weak Law of Large Numbers) Consider a sequence X1, X2, . . . . 

of i.i.d. r.v., such that E[Xi] = μ. and V ar(Xi) = σ 2 < +∞.. Consider Xn =∑n
i=1 Xi/n.. Then ∀ε > 0. it holds: 

. lim
n→+∞P{|Xn − μ| < ε} = 1;

that is, Xn . converges in probability to μ. (Xn
p→ μ.). 

Theorem 1.13 Consider a sequence of r.v. X1, X2, . . . . that converges in probabil-
ity to a r.v. X and let h be a continuous function. Then h(X1), h(X2), . . . . converges 
in probability to h(X).. 

Definition 1.8 (Convergence in Distribution) A sequence of r.v. X1, X2, . . . . 

converges in distribution to a r.v. X if it holds:

. lim
n→+∞ FXn(x) = FX(x)
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∀x . where FX(x). is continuous and it is denoted Xn
L→ X .. 

Theorem 1.14 Consider a sequence of r.v. X1, X2, . . . . that converges to a r.v. X:

 Almost sure convergence implies convergence in probability.
 Convergence in probability implies convergence in distribution.
 Convergence in distribution implies convergence in probability only if 

X1, X2, . . . . converges to a constant. 

Theorem 1.15 (Slutsky’s Theorem) If Xn
L→ X . and Yn

p→ a ., where a is constant 
then: 

. XnYn
L→ aX.

. Xn + Yn
L→ a + X.

Theorem 1.16 (Central Limit Theorem, CLT) Consider a sequence X1, X2, . . . . 

of i.i.d. r.v.s, such that E[Xi] = μ. and V ar(Xi) = σ 2 < +∞.. Consider Xn =∑n
i=1 Xi/n.. Then it holds: 

. lim
n→+∞P

{√
n(Xn − μ)

σ
≤ x

}
= φ(x) =

∫ x

−∞
1√
2π

ey2/2 dy;

that is,
√

n(Xn−μ)
σ

L→ Z ∼ N(0, 1).. 

Theorem 1.17 (Delta Method) Consider a sequence X1, X2, . . . . of r.v.s, such that √
n(Xn − θ)

L→ X ∼ N(0, σ 2).. Consider a specific function g(·). and a specific 
value θ .. Suppose that g'(θ). exists and is non-zero. Then: 

. 
√

n(g(Xn) − g(θ))
L→ X ∼ N(0, σ 2[g'(θ)]2).

If g'(θ) = 0.: 

. 
√

n(g(Xn) − g(θ))
L→ X ∼ σ 2

2
g''(θ)χ2(1).

For further study, refer to Chapters 1, 2 and 4 [3]. 

1.2 Exercises 

Exercise 1.1 The joint law of the discrete random variables X and Y is partially 
described in Table 1.1.
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Table 1.1 Joint law of 
variables X and Y

Y=2  Y= 4  

X= 0 0.1 0.3 

X = 1  0.1 0.4 

X = 2  

0.6 

(a) Complete the table and state whether X and Y are independent.
(b) Calculate the law, the expected value and the conditional variance of Y give n

X = 0.. 
(c) Calculate the law, the expected value and the conditional variance of X give n

Y = 2.. 
(d) Calculate E[X|Y ].. 

Exercise 1.2 Let (X, Y ). be a continuous random vector with uniform distribution 
on the set 

. V =
{
(x, y) ∈ R

2 : x ≥ 0, y ≥ 0, x2 + y2 ≤ 9
}
.

(a) Write the density of (X, Y ).. Are the variables X and Y independent?
(b) Calculate E[X|Y ].. 
Exercise 1.3 Calculate E[Y |X]. for the pair of random variables (X, Y ). with joint 
density 

. f (x, y) =
{

4
5 (x + 3y) e−x−2y, x, y > 0;
0, otherwise.

Exercise 1.4 The concentration X of a certain pollutant in a given volume of 
exhaust gas from an industrial process is uniformly distributed between 0 and 
1mg/  m3

.. A purification process has been developed that allows to reduce the 
concentration of that substance: if x is the concentration of pollutant in a given 
volume of gas subjected to purification, the concentration Y after purification is 
uniformly distributed between 0 and px mg/m3

., where p ∈ (0, 1). is a given 
parameter. 

(a) Determine the joint distribution of X and Y .
(b) Determine the distribution of Y . 
(c) Are the two variables independent? 
(d) If the concentration Y of pollutant after purification is known, what is the 

expected value for the corresponding concentration X before purification?

Exercise 1.5 During the drafting of a book, a preliminary version of the work is 
read by the author. Knowing that the number of errors on a page is a random variable
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with a Poisson distribution of parameter λ = 3., and that each error is discovered (in 
one reading) with probability p = 0.7., calculate: 

(a) The law of the number of errors discovered on a page (e.g. the first one). 
(b) The expected number of errors discovered on a page. 
(c) The probability that two errors are discovered on the first page knowing that 

there are at most three. 

Exercise 1.6 Let X and Y be two independent Bernoulli random variables with 
parameter p. Let Z = I(X+Y=0) . be the indicator of the event X + Y = 0.. Calculate 
E[X|Z]. and E[Y |Z].. Are these random variables still independent? 

Exercise 1.7 Consider a random vector (X, Y ). such that X has a uniform distribu-
tion over the interval [0, 1]. and, conditionally on X = x ., Y has a Gaussian law with 
mean x and variance x2

.. 

(a) Explicitly write the conditional density f(Y |X)(y|x).. 
(b) Explicitly write the joint density f(X,Y )(x, y).. 
(c) Calculate E[Y |X].. 
(d) Calculate E[Y ].. 
(e) Calculate Var[Y |X].. 
(f) Calculate Var[Y ].. 
Exercise 1.8 Let (X, Y ). be a continuous random vector with 

. 

fY (y) =

⎧⎪⎨
⎪⎩

(1/2)1/2 y−1/2 e−y/2

r(1/2)
, y > 0;

0, y ≤ 0.

fX|Y (x|y) = (2π)−1/2 y1/2 e−yx2/2, x ∈ R.

(a) Show that for every y > 0. there exists E[X|Y = y].. 
(b) Show that there exists E

[
E[X|Y ]]. and calculate its value. 

(c) Show that however E[X]. does not exist. 
Exercise 1.9 Consider X1, . . . , Xn . independent Bernoulli variables all with param-
eter p, where n ≥ 2.. Let Z be their sum and let Y = X1+X2−X1X2 .be the variable 
that indicates if there has been at least one success in the first two trials. 

(a) Calculate E[X1|Z]. and E[X2|Z]. and their limits for n → ∞.. 
(b) Determine the law of Y , calculate E[Y |Z]. and its limit for n → ∞..
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Exercise 1.10 Let Xn .be a sequence of independent random variables such that, for 
every i 

. P (Xi > x) =
{
1, x ≤ 1,

x−λ, x > 1.

where λ > 1. 

(a) Calculate the density of the r.v. Xi .. 
(b) Calculate the mean of the r.v. Xi .. 
(c) Determine the law of the r.v. Yi = log(Xi).. 
(d) Study the convergence of the sequence of r.v.

{
(X1X2 . . . Xn)

1/n
}
.. 

Exercise 1.11 Let X1, . . . , Xn, . . . . be a sequence of independent and identically 
distributed r.v. with a uniform law in the interval [0, λ]., with λ > 0.. 

(a) Calculate, for each fixed n, the distribution function of the r.v. Tn =
nmin(X1, . . . , Xn).. 

(b) Prove that the sequence of r.v. T1, . . . , Tn, . . . . converges in law to a r.v. Y and 
identify the law of Y .

Exercise 1.12 Let (Xn). be a sequence of independent r.v. all with a Poisson law of 
parameter λ.. What is the value, varying λ., of the limit 

. lim
n→∞P(X1 + · · · + Xn < n)?

Exercise 1.13 Let {Xn}n∈N∗ . be a sequence of r.v. such that Xn ∼ χ2(n). for every 
n ∈ N

∗
.. Does the sequence Xn/n. admit a limit? In what sense? 

1.3 Solutions 

1.1 

(a) In the last column on the right we read the marginal law of X, P{X = x}.. 
In the last row at the bottom we read the marginal law of Y , P{Y = y}.. 
We can therefore complete the joint law, as reported in Table 1.2. 

Table 1.2 Joint law of the 
variables X and Y

Y=2  Y= 4  

X= 0  0.2 0.1 0.3 

X = 1  0.1 0.3 0.4 

X = 2  0.1 0.2 0.3 

0.4 0.6 1
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It is immediately apparent that they are not independent, as for example: 

. P{X = 0, Y = 2} = 0.2 /= P{X = 0}P{Y = 2} = 0.12.

(b) 

. 
Y |X = 0 2 4

2/3 1/3 1

. E[Y |X = 0] = 2 · 2/3 + 4 · 1/3 = 8/3.

. Var(Y |X = 0) = E[Y 2|X = 0]−(E[Y |X = 0])2 = 4·2/3+16·1/3−64/9 = 8/9.

(c) 

. 
X|Y = 2 0 1 2

1/2 1/4 1/4 1

. E[X|Y = 2] = 1 · 1/4 + 2 · 1/4 = 3/4.

. Var(X|Y = 2) = E[X2|Y = 2]−(E[X|Y = 2])2 = 1·1/4+4·1/4−9/16 = 11/16.

(d) 

. 
X|Y = 4 0 1 2

1/6 1/2 1/3 1

. E[X|Y = 4] = 1 · 1/2 + 2 · 1/3 = 7/6.

Therefore: 

. E[X|Y ] = 3

4
· I{Y=2} + 7

6
· I{Y=4}.

We note that E[X|Y ]. is a random variable function of Y . 

1.2 

(a) Given that the area of V is 9
4π ., the density of the vector (X, Y ). is: 

.fX,Y (x, y) = 4

9π
IV (x, y).
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X and Y are not independent given that:

. fX(x) =
∫ √

9−x2

0

4

9π
dx = 4

9π

√
9 − x2 I[0,3](x)

and by symmetry: 

. fY (y) = 4

9π

√
9 − y2 I[0,3](y).

Therefore: 

. f(X,Y )(x, y) /= fX(x) · fY (y).

The support of (X, Y )., V, is not factorisable. 
(b) 

. fX|Y (x|y) = 1√
9 − y2

I[
0,
√

9−y2
](x) ∀y : 0 ≤ y ≤ 3.

Therefore X|Y . has a uniform law on the interval [0,√9 − y2]. and therefore: 

. E[X|Y ] =
√

9 − y2

2
.

1.3 We exploit the definition: 

. E[Y |X = x] =
∫ +∞

0
y · fY |X(y|x)dy =

∫ +∞

0
y · fX,Y (x, y)

fX(x)
dy.

Given that: 

. fX(x) =
∫ +∞

0
fX,Y (x, y)dy =

∫ +∞

0

4

5
(x + 3y) e−x−2ydy =

= 4

5
xe−x ·

[
− e−2y

2

]+∞
0

+ 4

5
3e−x ·

∫ +∞

0
ye−2ydy =

= 4

5
xe−x 1

2
+ 4

5
3e−x 1

4
= 1

5
(2x + 3)e−x.

We obtain: 

.fY |X(y|x) =
4
5 (x + 3y) e−x−2y

1
5 (2x + 3)e−x

= 4
(x + 3y

2x + 3

)
e−2y.
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Substituting in the starting formula, we have: 

. E[Y |X = x] =
∫ +∞

0
y · 4

(x + 3y

2x + 3

)
e−2ydy = 4

2x + 3

∫ +∞

0
(xye−2y + 3y2e−2y) dy =

= 4

2x + 3
(x · 1/4 + 3 · 1/4) = x + 3

2x + 3
.

Hence E[Y |X] = X+3
2X+3 .. 

1.4 

(a) We know that: X ∼ U[0,1] . and Y |X = x ∼ U[0,px] .. Hence: 

. fY |X(y|x) = 1

px
I[0,px](y).

The joint law of (X, Y ). will therefore be: 

. fX,Y (x, y) = 1

px
I[0,px](y) · I[0,1](x).

(b) 

. fY (y) =
∫ 1

y/p

1

px
dx = − 1

p
log

y

p
I[0,p](y).

(c) We immediately observe that X and Y are not independent.
(d) We need to calculate E[X|Y ].. 

. fX|Y (x|y) =
1

px
· I[0,px](y) · I[0,1](x)

− 1
p

log
(

y
p

)
I[0,p](y)

=

= −1

x

1

log
(

y
p

) I[0,p](y) · I[y/p,1](x);

from which: 

.E[X|Y = y] =
∫ 1

y/p

− 1

log
(

y
p

) dx · I[0,p](y) =

= − 1

log
(

y
p

) ·
(
1 − y

p

)
I[0,p](y).
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. E[X|Y ] = − 1

log
(

Y
p

) ·
(
1 − Y

p

)
I[0,p](Y ).

1.5 

(a) We define the following r.v. and derive their distributions:

 E = ‘number of errors present on a page’, E ∼ P(λ)..
 S = ‘number of errors discovered on a page’.
 S|E = n ∼ Bin(n, p).. 

We calculate P{S = k}., using the theorem of total probabilities: 

. P{S = k} =
+∞∑
n=0

P{S = k|E = n} · P{E = n}

=
+∞∑
n=k

(
n

k

)
pk(1 − p)(n−k) · e−λλn

n!

= pke−λ

k! ·
+∞∑
n=k

λn−k+k

(n − k)! (1 − p)(n−k)

= (λp)ke−λ

k! ·
+∞∑
n=k

(λ(1 − p))n−k

(n − k)!

= (λp)ke−λ

k! · e(λ−λp) = (λp)ke−λp

k! k ≥ 0.

We can therefore say that: S ∼ P(λp).. 
(b) E[S] =  λp .. 
(c) 

.P{S = 2|E ≤ 3} = P{S = 2, E ≤ 3}
P{E ≤ 3} =

3∑
n=2

P{S = 2|E = n}P{E = n}

P{E ≤ 3} =

= p2 · e−λλ2

2! + (3
2

)
p2(1 − p)1 · e−λλ3

3!
e−λλ0

0! + e−λλ1

1! + e−λλ2

2! + e−λλ3

3!
=

= 0.1097 + 0.0988

0.6472
= 0.3223.
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1.6 

(a) Note that Z ∼ Be((1 − p)2).. 

. E[X|Z = 0] = P{X = 1|Z = 0} = P(X = 1, Z = 0)

P(Z = 0)
= P(X = 1)

P(Z = 0)
=

= p

1 − (1 − p)2
= p

p(2 − p)
= 1

2 − p
.

. E[X|Z = 1] = 0.

Hence: 

. E[X|Z] = 1

2 − p
I{0}(Z) = E[Y |Z];

where the last equality is due to obvious reasons of symmetry. 
Now E[X|Z] /⊥⊥ E[Y |Z]., in fact: 

. P

{
E[X|Z] = 1

2 − p
,E[Y |Z] = 1

2 − p

}
= P {Z = 0} = 2p−p2 /= (2p−p2)2.

1.7 

. X ∼ U [0, 1] Y |X = x ∼ N(x, x2).

(a) 

. f(Y |X)(y|x) = 1√
2πx2

e
− (y−x)2

2x2 .

(b) 

. f(X,Y )(x, y) = f(Y |X)(y|x)fX(x) = 1√
2πx2

e
− (y−x)2

2x2 I[0,1](x).

(c) 

.E[Y |X = x] = x =⇒ E[Y |X] = X.



16 1 Fundamentals of Probability and Statistics

(d) 

. E[Y ] = E[E[Y |X]] = E[X] = 1/2.

(e) 

. Var(Y |X) = X2.

(f) 

. Var(Y ) = Var(E[Y |X]) + E(Var[Y |X]) =
= Var(X) + E[X2] =
= 2 · Var(X) + (E[X])2 =

= 2 · 1

2
+ 1

4
= 5

12
.

1.8 

(a) y  >  0.. We calculate: 

. E[X|Y = y] =
∫ ∞

−∞
x

1√
2π

y1/2 exp
{− y · x2/2

}
dx = 0

for obvious reasons of symmetry. Therefore: E[X|Y ] = 0.. 
(b) E[E[X|Y ]] = 0.. 
(c) 

. fX(x) =
∫ +∞

0
fX|Y (x|y) · fY (y) =

=
∫ +∞

0

1√
2π

y1/2 exp{−yx2/2} · 1√
2

· y−1/2

r
(

1
2

) exp{−y/2} =

= 1

2
√

πr
(

1
2

) ·
∫ +∞

0
exp{−y/2(1 + x2)} dy =

= 1

2
√

πr
(

1
2

) · 1

1/2 · (1 + x2)
= 1

π(1 + x2)
.

Therefore X ∼ Cauchy . and E[X]. does not exist.
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1.9 

(a) 

. E[X1|Z = k] = P{X1 = 1, Z = k}
P{Z = k} = p · (n−1

k−1

)
pk−1(1 − p)n−k(

n
k

)
pk(1 − p)n−k

= k

n
.

Therefore: 

. E[X1|Z] = E[X2|Z] = Z

n
=
∑

Yi

n

q.c.−−−−→ p

by the strong law of large numbers. 
(b) 

. Y = X1 + X2 − X1 · X2.

Y can only take value 0 with probability (1−p)2 . or 1 with probability 1− (1−
p)2 = 2p − p2

.. 
Therefore: Y ∼ Be(2p − p2).. 

. E[Y |Z = k] = E[X1|Z = k] + E[X2|Z = k] − E[X1X2|Z = k] =

= 2k

n
− p2

(
n−2
k−2

)
pk−2(1 − p)n−k(

n
k

)
pk(1 − p)n−k

=

= 2k

n
− k(k − 1)

n(n − 1)
.

Therefore: 

. E[Y |Z] = 2Z

n
− Z(Z − 1)

n(n − 1)
q.c.−−−−→ 2p − p2;

always by the strong law of large numbers. 

1.10 

(a) 

. fXi
(x) = λ · x−(λ+1)

I{1,+∞}(x);

which is obtained by deriving the distribution function FXi
(x) = 1−P{Xi > x}.. 

(b) 

.E[X] =
∫ +∞

1
λx−λ dx = λ

λ − 1
.
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(c) 

. FYi
(y) = P{logXi ≤ y} = P{Xi ≤ ey} = 1 − e−λy ∀y > 0.

So Yi ∼ E(λ).. 
(d) Given that 1

n

∑
log(Xi)

a.s.−−−→ 1
λ
. by the strong law of large numbers, then: 

. 

(
n∏

i=1

Xi

)1/n

= exp

⎡
⎣log

(
n∏

i=1

Xi

)1/n
⎤
⎦ = exp

[∑
logXi

n

]
a.s.−−−→ e1/λ.

1.11 

(a) 

. P{Tn ≤ t} = P{nmin(X1, . . . , Xn) ≤ t} =
= 1 − P{min(X1, . . . , Xn) > t/n} =

= 1 −
n∏

i=1

P{Xi > t/n} =

= 1 −
n∏

i=1

(
1 − t

nλ

)
=

= 1 −
(
1 − t

nλ

)n

.

(b) 

. 1 −
(
1 − t

nλ

)n

→ 1 − e−t/λ.

So Y ∼ E(1/λ).. 

1.12 One can notice that: 

. lim
n→∞P(X1 + · · · + Xn < n) = lim

n→∞P(Xn < 1).

Given that E[Xi] < ∞. and V ar(Xi) < ∞., we can apply the strong law of large 
numbers, which guarantees: 

.Xn
a.s.−−→ E[Xi] = λ.
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The almost sure convergence implies convergence in distribution, therefore: 

. FXn
(t) → Fλ(t).

Considering that λ. is a constant, we can write Fλ(t) = I[λ,+∞)(t).. So we conclude 
that: 

. lim
n→∞P(Xn < 1) =

{
1 if λ < 1;
0 if λ > 1.

It remains to study the case λ = 1., as it is a point of discontinuity for Fλ(t).. If  
λ = 1., from the Central Limit Theorem we know that: 

. lim
n→∞

√
n · (Xn − E[Xi]) L−→ N(0,Var(Xi)).

In this specific case, given that λ = 1., we can write: 

. lim
n→∞

√
n · (Xn − 1)

L−→ N(0, 1).

Which translates to: 

. P{Xn < 1} = P{√n · (Xn − 1) < (1 − 1) · √
n} = P{√n · (Xn − 1) < 0}.

. P{√n · (Xn − 1) < 0} → P{Z < 0} = o(0) = 1/2.

So we conclude that: 

. lim
n→∞P(Xn < 1) =

⎧⎪⎪⎨
⎪⎪⎩

1 if λ < 1;
1/2 if λ = 1;
0 if λ > 1.

1.13 Given Xn ∼ χ2(n). then there exists a sequence of i.i.d. r.v. Y1, Y2, . . . , Yn . 

such that Xn = ∑
Yi . and Yi ∼ χ2(1)., or Yi ∼ r(1/2, 1/2).. 

We note that E[Yi] = 1 < ∞. and that Var(Yi) < ∞.. 
We can therefore apply the Strong Law of Large Numbers and conclude that: 

.
Xn

n
=
∑

Yi

n

a.s.−−→ E[Yi] = 1.



Chapter 2 
Sufficient, Minimal and Complete 
Statistics 

2.1 Theory Reminders 

Definition 2.1 (Statistic) Let X1, .., Xn . be a sample of r.v. We define a statistic 
T (X). as any function of the sample. 

Definition 2.2 (Sufficient Statistics) A statistic T (X). is sufficient for a parameter 
θ . if the conditional distribution of X . given T (X). does not depend on θ .. 

Theorem 2.1 (Factorisation) Let f (x; θ). be the joint distribution of a sample of 
r.v. X .. A statistic T (X). is sufficient for the parameter θ . if and only if there exist a 
function g(t; θ).and a function h(x). such that ∀. x .and ∀. θ ., the decomposition holds: 

. f (x; θ) = g(T (x); θ)h(x).

Theorem 2.2 Let X1, .., Xn . be a sample of i.i.d. r.v. such that Xi∼f (x; θ).. Let 
f (x; θ). belong to the exponential family, namely: 

. f (x; θ) = h(x)c(θ)exp

{
k∑

i=1

wi(θ)ti(x)

}
θ ∈ R

d , d ≤ k.

Then T (X) = (
∑n

j=1 t1(Xj ), . . . ,
∑n

j=1 tk(Xj )). is a sufficient statistic for θ .. 

Definition 2.3 (Minimal Sufficient Statistics) A sufficient statistic T (X). is said 
to be minimal for the parameter θ . if for any sufficient statistic T '(X)., T (X). is a 
function of T '(X).. 
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Theorem 2.3 (L-S) Let f (x; θ).be the joint density of the sample X .. Suppose there 
exists a function T (X). such that for every pair of sample realisations x . and y. it 
holds: 

. 
f (x; θ)

f (x; θ)
independent of θ ⇔ T (x) = T (y).

Then T (X). is a minimal sufficient statistic for θ .. 

Theorem 2.4 Let X1, .., Xn . be a sample of i.i.d. r.v. such that Xi∼f (x; θ).. Let 
f (x; θ). belong to the exponential family, namely: 

. f (x; θ) = h(x)c(θ)exp

{
k∑

i=1

wi(θ)ti(x)

}
θ ∈ R

d , d ≤ k.

If the image of (w1(θ), w2(θ), . . . , wk(θ)). contains at least an open set of Rk
., then 

the statistic T (X) = (
∑n

j=1 t1(Xj ), . . . ,
∑n

j=1 tk(Xj )). is a sufficient and complete 
statistic for θ .. 

Definition 2.4 (Complete Statistics) Let f (t; θ). be a family of distributions for 
the statistic T (X).. This family of distributions is said to be complete if ∀.measurable 
g it holds:

. Eθ [g(T )] = 0 ∀θ ⇒ Pθ {g(T ) = 0} = 1 ∀θ.

Equivalently, the statistic T (X). is said to be complete. 

Theorem 2.5 If a statistic T (X). is sufficient and complete for θ . then it is also 
minimal. 

For further study, refer to Chapter 6 [3]. 

2.2 Exercises 

Exercise 2.1 Let X1, . . . , Xn . be a random sample from a N(μ, σ 2)., with μ ∈ R. 

and σ 2 ∈ (0,+∞)..  Le  t

. X =
n∑

i=1

Xi

n
and S2 =

n∑
i=1

(Xi − X)2

n − 1

be the sample mean and variance. Prove that: 

(a) T  (X1,  .  .  .  ,  Xn) = (
∑n 

i=1 Xi,
∑n

i=1 X2
i ). is a sufficient, minimal and complete 

statistic for (μ, σ 2)..
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(b) T  (X1,  .  .  .  ,  Xn) = (X, S2). is a sufficient, complete and minimal statistic for 
(μ, σ 2).. 

Establish the law of the statistic considered at point (b).. 

Exercise 2.2 Given a random sample X1, . . . , Xn . from a N(μ, 1)., prove that T =∑n
i=1 X2

i . is not a sufficient statistic for a μ.. 

Exercise 2.3 Given a random sampleX1, X2 . from aP(λ)., show that T = X1+2X2 . 

is not a sufficient statistic for λ.. 

Exercise 2.4 Let X1, . . . , Xn . be a random sample from a U
([0, θ ])., where θ > 0.. 

Show that T = max{X1, . . . , Xn}. is a sufficient, minimal and complete statistic for 
θ .. 

Exercise 2.5 Given a random sample X1, . . . , Xn . from a U
([−θ/2, θ/2])., where 

θ > 0., show that T = (min{X1, . . . , Xn},max{X1, . . . , Xn}). is sufficient for θ .. 
Find a minimal sufficient statistic. 

Exercise 2.6 Given a random sample X1, . . . , Xn . of discrete type, determine 
whether the statistic T = (X1, . . . , Xn−1). is sufficient. 

Exercise 2.7 Given a random sample drawn from a population with a beta law of 
parameters α . and β ., find a sufficient, minimal and complete statistic for (α, β).. 

Exercise 2.8 Let X1, . . . , Xn . be a random sample from f (x; θ) = x

exp{−x2/2θ}/θ ., x > 0., θ > 0.. Show that
∑

i X2
i . is minimal sufficient for θ ., 

but that
∑

i Xi . is not sufficient for θ .. 

Exercise 2.9 Let X1, ..., Xn . be a random sample of real random variables having 
distribution Fθ . continuous with density known except for the value of the parameter 
θ ∈ o ⊆ R.. Let V = V (X1, ..., Xn). be a statistic, T = T (X1, ..., Xn). a sufficient 
statistic and U = U(X1, ..., Xn). a complete statistic. Verify that: 

(a) If W is a function of U, then W is a complete statistic.
(b) If T is a function of V, then V is a suf ficient statistic.

Exercise 2.10 Let X be a discrete random variable that takes the values 0, 1, 2.. 

(a) Let P(X = 0) = p ., P(X = 1) = 3p . and P(X = 2) = 1 − 4p . with 0 < p <

1/4.. Determine whether the family of distributions of X is complete.
(b) Let P(X = 0) = p ., P(X = 1) = p2

. and P(X = 2) = 1 − p − p2
. with 

0 < p < 1/2.. Determine whether the family of distributions of X is complete.
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2.3 Solutions 

2.1 

(a) X ∼ N(μ,  σ  2). belongs to the exponential family, so we study fX(x).. 

. fX(x) = 1√
2πσ 2

exp

l
− 1

2σ 2 (x − μ)2
l

We have: 

. 
1√
2πσ 2

exp
l
− μ

2σ 2

l
= c(μ, σ 2);

. − 1

2σ 2 x2 = w1(σ
2)t1(x); μ

σ 2 x = w2(μ, σ 2)t2(x).

Therefore: 

. T (x) = (T1(x), T2(x)) =
⎛
⎝ n∑

j=1

x2
j ,

n∑
j=1

xj

⎞
⎠

is a bivariate sufficient statistic for (μ, σ 2).. 
Furthermore: 

. (w1, w2) =
l

− 1

2σ 2 ,
μ

σ 2

l
: R+ xR → R

− xR.

The image space is an open set of R2
. then T (x). is a sufficient, complete and 

therefore also minimal statistic. 
(b) Given that: 

. Xn =
∑

Xi

n
S2 = n

n − 1

l∑
X2

i

n
−
l∑

Xi

n

l2
l

;

T 1(x) = (
Xn, S

2
)
. is an invertible function of T 1(x) = (∑

Xi,
∑

X2
i

)
.. 

Therefore T 1(x). is a sufficient, complete and minimal statistic. 

2.2 There are 2 ways to solve this exercise: 

Method 1: Lehmann-Scheffé 
We can use Lehmann-Scheffé, showing that there are two distinct realisations, x and 
y, such that: 

.T (x) = T (y).
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Take for example x = (1, 1, . . . , 1). and y = (−1,−1, . . . ,−1).. We immediately 
notice that T (x) = T (y).. Now evaluate: 

. 
fX(x;μ)

fX(y;μ)
= (2π)−n/2 exp{−∑

(xi − μ)2/2}
(2π)−n/2 exp{−∑

(yi − μ)2/2} =

= exp
l∑

[−(xi − μ)2 + (yi − μ)2]/2
l

= exp{2μn}.

Given that the ratio depends on μ., the statistic T(X) is not sufficient for μ.. 

Method 2: Sufficient and Minimal Statistic 
The idea is to find a statistic W that is sufficient and minimal for μ. and show that 
there is no function g(·;μ). such that W = g(T (X);μ).. This would prove that T(X) 
is not sufficient for μ.. 

Since the Normal belongs to the exponential family, it is immediately proven that 
W = ∑

Xi . is a sufficient and complete (therefore also minimal) statistic for μ.. 
It is seen that there is no g(·;μ). such that

∑
Xi = g(

∑
X2

i ;μ).. Therefore T (X). 

is not sufficient for μ.. 

2.3 Consider for example: 

. P {X1 = 0, X2 = 1|T = 2} = P {X1 = 0, X2 = 1}
T = 2

=

= λe−2λ

P {X1 = 0, X2 = 1} + P {X1 = 2, X2 = 0} =

= λe−2λ

λe−2λ + λ2e−2λ/2
=

= 1

1 + λ
2

.

Given that the law of (X1, X2)|T . depends on λ., T is not a sufficient statistic for λ.. 

2.4 X ∼ U [0, θ ]. does not belong to the exponential family because the Spt(X) 
depends on θ .. 

. f (x; θ) = 1

θn

n∏
i=1

I[0,θ](xi) = 1

θ
I[0,+∞](x(1))I[0,θ](x(n)).

Therefore, by the factorisation criterion, X(n) . is sufficient for θ .. 
Moreover, let g be such that E[g(T (X))] = 0 , ∀θ > 0.. Given that: 

.FT (t) =
l

t

θ

ln

I[0,θ](t) + I[θ,+∞](t);
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then: 

. fT (t) = n

θn
tn−1

I[0,θ](t).

We verify that T is a complete statistic by exploiting the definition.

. E[g(T )] =
l θ

0
g(t)

n

θn
tn−1 dt = 0 ∀θ.

Deriving with respect to θ .we obtain: 

. 0 = 1

θn
g(θ)θn−1 +

l
dθ−n

dθ

ll θ

0
g(t)

n

θn
tn−1 dt, ,, ,

=E[g(T )]=0

∀θ.

Therefore, we can conclude that: g(θ) = 0∀θ .. T is a complete and also minimal 
sufficient statistic for θ .. 

2.5 

. f (x; θ) = 1

θn
Il− θ

2 , θ
2

l(X(1))I
l
− θ

2 , θ
2

l(X(n)).

By the factorisation criterion T = (
X(1), X(n)

)
. is sufficient for θ .. 

We use Lehmann-Scheffé to find a minimal sufficient statistic: 

. 
f (x; θ)

f (y; θ)
= I{2·max{|x(1)|,|x(n)|},+∞}(θ)

I{2·max{|y(1)|,|y(n)|},+∞}(θ)
.

. 


. 2 · max
{llx(1)

ll , llx(n)

ll} = 2 · max
{lly(1)

ll , lly(n)

ll} .

Therefore we can conclude that 2 · max
{llX(1)

ll , llX(n)

ll}. is a minimal sufficient 
statistic for θ .. 

2.6 It can be proven that the statistic T = (X1, . . . , Xn−1). is not sufficient using 
the definition: 

. P{X = k|T = t} = P{X1 = k1, . . . , Xn−1 = kn−1, Xn = kn|X1 = k1, . . . , Xn−1 = kn−1} =
= P{Xn = kn}.

Indeed P{Xn = kn}. depends on the parameter of the distribution.
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2.7 The distribution Beta(α, β). belongs to the exponential family. 

. f (x;α, β) = 1

Beta(α, β)
xα−1(1 − x)β−1

I[0,1](x) =

= 1

Beta(α, β)
exp

l
(α − 1), ,, ,

w1(α)

log(x), ,, ,
t1(x)

+ (β − 1), ,, ,
w2(β)

log(1 − x), ,, ,
t2(x)

l
I[0,1](x).

. (w1, w2) : R+ xR → [−1,+∞] x [−1,+∞].

[−1,+∞] x [−1,+∞]. contains an open set of R2
.. 

This implies that the statistic: 

. 

(∑
log(Xi),

∑
log(1 − Xi)

)
=
(
log

(∏
Xi

)
, log

(∏
(1 − Xi)

))
is minimal and complete. 

2.8 To show that
∑

i X2
i . is minimal sufficient for θ ., we just need to observe that 

this density belongs to the exponential family. 

. fX(X; θ) =
n∏

i=1

xi exp{−x2
i /2θ}

θ
= (

∏
xi) exp{−∑

x2
i /2θ}

θn
.

We immediately recognise that W(X) = ∑
x2
i . is a sufficient statistic for θ .. 

Moreover, since − 1/2θ : R → R
−

. and R
−

. contains an open set of R., then 
W(X). is a complete sufficient statistic for θ . (thus it is also minimal). 

There are 2 ways to show that T (X) = ∑
xi . is not sufficient for θ .: 

Method 1: Lehmann-Scheffé 
We can use Lehmann-Scheffé, showing that there are two distinct realisations, x and 
y, such that: 

. T (x) = T (y) /=⇒ fX(x;μ)

fX(y;μ)
does not depend on θ.

Take for example x = (1, 1, . . . , 1). and y = (1/n, 1/n, . . . , 1/n, n − 1+ 1/n)..  We  
immediately notice that T (x) = T (y).. Now evaluate: 

.
fX(x;μ)

fX(y;μ)
=

(
∏

xi ) exp{−∑
x2i /2θ}

θn

(
∏

yi ) exp{−∑
y2i /2θ}

θn

=

=
∏

xi∏
yi

· exp
l∑ −x2

i + y2
i

2θ

l
=
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=
∏

xi∏
yi 

· exp
l∑ n3 − 2n2 + 2n − 1 

2θ

l
.

Since the ratio depends on θ ., the statistic T(X) is not sufficient for θ .. 

Method 2: Minimal Sufficient Statistic 
It is clear that there is no g(·; θ). such that

∑
X2

i = g(
∑

Xi; θ).. Therefore T (X). is 
not sufficient for θ .. 

2.9 

(a) W is a function of U , U is complete.

. g s.t. E[g(W)] = 0 ∀θ.

. ⇓

. E[g(h(U))] = 0 ∀θ.

. ⇓

. P{g(h(U)) = g(W) = 0} = 1.

. ⇓

. W is complete.

(b) 

. f (x; θ) = g(T (x; θ)) · h(x) = g(l(V (;θ))) · h(x) = r(V (x; θ)) · h(x).

Therefore V is a sufficient statistic.

2.10 

(a) 0 <  p  <  14 ., see Table 2.1. 
If E[g(X)] = 0. it means that: 

. p · g(0) + 3p · g(1) + (1 − 4p) · g(2) = 0.

Table 2.1 Distribution of X, 
if 0 < p < 1

4 . 
x f (x). 

0 p 
1 3p 
2 1 − 4p .
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Table 2.2 Distribution of X, 
if 0 < p < 1

2 . 
x f (x). 

0 p 
1 p2 . 

2 1 − p − p2 . 

Simply choose g(0) = −3g(1). and g(2) = 0. because E[g(X)] = 0. but 
P{g(X) = 0} /= 0.. Therefore, it is not complete. 

(b) 0 <  p  <  12 ., see Table 2.2. 
Similarly, we have: 

. 0 = g(0)p + g(1)p2 + g(2)(1 − p − p2)

= (g(1) − g(2))p2 + (g(0) − g(2))p + g(2) ∀p ∈ [0, 1/2].

. ⇓

. g(2)= 0 and therefore g(0)= g(1)= 0 being the coefficients of degree 2 in p.

Then X is a complete statistic.



Chapter 3 
Point Estimators 

3.1 Theory Recap 

Definition 3.1 (Point Estimators) A point estimator is any function W(X1, . . . ,

Xn). of the sample X1, . . . , Xn .. Every statistic is therefore a point estimator. 

Definition 3.2 (Method of Moments) Let X1, . . . , Xn . be a sample of random 
variables with probability density f (x; θ1, . . . , θk).. The estimators obtained with 
the method of moments can be derived from a system of k equations in which the 
first k moments of the sample (m1, . . . , mk .) are equated with the first k moments of 
the population (μ1, . . . , μk .). Therefore, the following system must be solved with 
respect to θ .: 

. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m1 = μ1; m1 := 1
n

En
i=1 Xi; μ1(θ) := E[X];

m2 = μ2; m2 := 1
n

En
i=1 X2

i ; μ2(θ) := E[X2];
...

mk = μk; mk := 1
n

En
i=1 Xk

i ; μk(θ) := E[Xk].

Definition 3.3 (MLE) Let X1, . . . , Xn . be a sample of i.i.d. random variables with 
probability density fXi

(x; θ1, . . . , θk).. The likelihood function is defined as follows: 

. L(θ; x) =
nl l

i=1

fXi
(x; θ1, . . . , θk);
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that is, it is the density of the sample seen as a function of θ . and considering 
the sample realization as known. For a given sample realization x ., the maximum 
likelihood estimator, or MLE, is defined as follows: 

. ̂θ = argsup
θ∈o

L(θ; x);

where o. is the parameter space. A method to find the MLE consists in studying 
the derivative of the log-likelihood, that is, the derivative of the logarithm of the 
likelihood. 

Theorem 3.1 (Invariance Principle) If θ̂ . is MLE for θ ., then τ(θ̂). is MLE for τ(θ)., 
whatever τ(·). is. 
Definition 3.4 (MSE) The mean squared error, or MSE, of an estimator T for the 
parameter θ . is: 

. Eθ [(T − θ)2].

Definition 3.5 (Bias) The bias of an estimator T for a parameter θ . is the difference 
between the expected value of T and the parameter θ .. 

. Biasθ (T ) = Eθ [T ] − θ.

An estimator is defined as unbiased if the bias is zero, that is, Eθ [T ] = θ .. 

We observe that the MSE can be expressed as follows: 

. Eθ [(T − θ)2] = V arθ (T ) + (Eθ [T ] − θ)2 = V arθ (T ) + (Biasθ (T ))2.

3.2 Exercises 

Exercise 3.1 Let X1, . . . , Xn . be a random sample from a uniform law on the 
interval [0, θ ]., θ > 0.. 

(a) Determine an estimator of θ . using the method of moments. 
(b) Is the found estimator unbiased? 
(c) Is it sufficient? 

Exercise 3.2 Let X1, . . . , Xn . be a random sample from a uniform law on the 
interval [a, b].. Estimate a and b using the method of moments.

Exercise 3.3 Let X1, . . . , Xn . be a sample of size n of independent random 
variables with density

.fX(x; θ) = θxθ−11(0,1)(x) ; θ > 0.
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(a) Calculate the maximum likelihood estimator θ̂n . of θ .. 
(b) Determine and recognise the laws of − logXk . and of − En

k=1 logXk .. 
(c) Is θ̂n . biased? 
(d) Calculate the mean squared error of θ̂n .. 

Exercise 3.4 Let X1, . . . , Xn . be a random sample from U
([θ − 1

2 , θ + 1
2 ]
)
., θ ∈ R.. 

Calculate the maximum likelihood estimator θ̂n . of θ .. 

Exercise 3.5 Let X1, . . . , Xn . be a family of independent random variables all 
distributed according to an exponential law of parameter λ.. Each Xi . represents the 
instant of disintegration of a nucleus of a certain radioactive element. For each fixed 
t ≥ 0. let: 

• Yi . be the random variable that is 1 if the i-th nucleus is still alive at time t and 0 
otherwise.

• Vn . be the proportion of nuclei still alive at time t ,  of  the  n present at time 0.

(a) Find the law of Yi . and that of Vn .. 
(b) Verify if the Law of Large Numbers can be applied to Vn . and state whether, and 

in what sense, the sequence Vn . converges for n → ∞. to a constant v.  In  this  
case, determine the constant v and express it in terms of the average lifetime τ . 

of the generic radioactive nucleus. 
(c) Assuming to observe the sample Y1, . . . , Yn ., propose an estimator of τ . based 

on this sample. 
(d) Assuming instead to observe the lifetimes X1, . . . , Xn ., propose an estimator of 

τ . based on this sample. 

Exercise 3.6 Let X be a discrete random variable that can only take the values -2, 
0, 2, respectively with probabilities:

. p(−2) = 1

2
− θ; p(0) = 2θ; p(2) = 1

2
− θ.

(a) For which θ . is the function p a density?
(b) Let X1, . . . , Xn . be a sample of independent random variables with the same 

density p. Determine the expression of the function f such that the likelihood 
function is written a s:

. (2θ)n−f (x1,...,xn)

(
1

2
− θ

)f (x1,...,xn)

.

(c) Calculate the maximum likelihood estimator for θ .. Is it unbiased? Is it consis-
tent?
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Exercise 3.7 Let X1, . . . , X3n . be a sample of 3n independent r.v. of which:

. X1, . . . , X2n of law P(λ);

. X2n+1, . . . , X3n of law P(2λ);

where λ. is an unknown parameter. 
Determine the maximum likelihood estimator for λ. and calculate its variance. Is 

it biased? 

Exercise 3.8 Let X1, . . . , Xn . be a random sample from a normal law N(μ, σ 2).. 
Show that the maximum likelihood estimators of μ. and σ 2

. are: 

. ~μ = 1

n

n7

i=1

Xi = Xn ; ~σ 2 = 1

n

n7

i=1

(Xi − Xn)
2.

Exercise 3.9 Consider the two independent random samples, X1, . . . , Xn . from a 
population N(μ1, σ

2). and Y1, . . . , Ym . from a population N(μ2, σ
2)., where the 

parameters μ1 ., μ2 . and σ 2
. are all unknown. Calculate the maximum likelihood 

estimator for θ = (μ1, μ2, σ
2).. 

Exercise 3.10 For θ ∈ [0, 1],. let fX(x; θ) = ( θ
2 )|x|(1− θ)1−|x|I{−1,0,1}(x)., x ∈ R., 

be the density of a random variable X.. 

(a) Is X a sufficient statistic? Is it a complete s tatistic?
(b) Is |X|. a sufficient statistic? Is it a complete statistic? 
(c) Is either X or |X|. a minimal sufficient statistic? 

Now consider the maximum likelihood estimator T1(X). and the estimator 
T2(X) = 2I{1}(X).. 

(d) Calculate bias and mean squared error of T1 . and of T2.. 
(e) Which estimator would you prefer between T1 . and T2?. 

Exercise 3.11 Consider a discrete variable X described by the statistical model
f (x; θ).where θ = 0, 1, 2. (see Table 3.1). 

(a) Determine the maximum likelihood estimator ~θ1(X1). of θ . based on a single 
observation X1 .. 

(b) Calculate bias and mean squared error of ~θ1 .. 
(c) Determine the maximum likelihood estimator ~θ2(X1, X2). of θ . based on the 

sample X1, X2 .. 

Table 3.1 Density of X 
varying the parameter θ . 

x 0 1 2 

f (x; 0). 1/2 1/2 0 

f (x; 1). 1/3 1/3 1/3 

f (x; 2). 1/4 1/4 1/2
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(d) Calculate bias and mean squared error of ~θ2 .. 
(e) Given the sample x1 = 0., x2 = 2., how would you estimate θ .? 

Exercise 3.12 The coefficient of variation 

. CV = σ

|μ|
is an index introduced by Karl Pearson to study the relative variability of a 
distribution. 

Suppose we have observed a sample of size n from a Normal distribution 
with unknown mean and variance and we only know the number Tn . of sample 
observations that are greater than zero. 

(a) Based solely on the information Tn,. is it possible to provide an estimate of the 
coefficient of variation of the distribution? 

(b) If n = 1000,. for which values of T1000 . will we estimate that the standard 
deviation of the distribution is less than 1/3 of the mean? 

Exercise 3.13 Let X1, . . . , Xn . be the results of n measurements, independent and 
affected by random error, of the same unknown quantity μ., for which: 

. Xi = μ + ei ; e1, . . . , en i.i.d.

In the case of error e ∼ N(0, σ 2).: 

(a) Determine the law of Xi .. 
(b) Show that the sample mean Xn . is the maximum likelihood estimator for μ.. 

In the case of error e ∼ f (s; σ 2) = e−2|s|/σ2
σ 2 .: 

(c) Determine the law of Xi .. 
(d) Show that the median m(X1, . . . , Xn). is a maximum likelihood estimator for μ.. 

Exercise 3.14 Let X1, . . . , Xn . be a random sample from: 

. f (x; θ) = θ

x2 I[θ,+∞)(x) ; θ > 0.

(a) Prove that there is no moment estimator for θ .. 
(b) Determine the maximum likelihood estimator θ̂ . for θ .. 
(c) Show that θ̂ . is a minimal sufficient statistic. 

Exercise 3.15 Let X1, . . . , Xn . be a random sample from a population with a 
uniform law on the interval [θ, 2θ ]., where θ > 0.. 

(a) Determine the moment estimator of θ .. 
(b) Determine the maximum likelihood estimator of θ .. 
(c) Determine a minimal sufficient statistic for θ ..
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Exercise 3.16 Consider the statistical model: 

. fX(x;α, β) = 1

β
e−(x−α)/β I[α,+∞)(x), α ≥ 0, β > 0.

(a) Calculate the meanμ(α, β). and the variance σ 2(α, β).of a random variable with 
density fX(x;α, β).. 
Let now X1, . . . , Xn . be a random sample from the density f (x;α, β).. 

(b) Calculate the maximum likelihood estimator (~αn,~βn). of (α, β). based on 
X1, . . . , Xn .. 

(c) Is the statistic (~αn,~βn). sufficient for (α, β).? 
(d) Calculate the maximum likelihood estimator ~μn . of μ. based on X1, . . . , Xn .. 
(e) What is the mean square error of ~μn .? 

3.3 Solutions 

3.1 

(a) Given that E[Xi] = θ/2., the estimator of θ . calculated with the method of 
moments is: 

. θ̂MOM = 2Xn.

(b) The estimator is unbiased, in fact: 

. E[θ̂MOM ] = 2E[Xn] = 2 · θ

2
= θ.

(c) X(n) . is a minimal sufficient statistic for θ . and since there is no function r such 
that X(n) = r(2Xn)., then θ̂MOM . is not sufficient. 

3.2 

. E[Xi] = a + b

2
;

.V ar(X) = (b − a)2

12
⇒ E[X2] = a2 + b2 − 2ab + 3a2 + 3b2 + 6ab

12

= 1

3
(a2 + b2 + ab);
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therefore: 

. 

l
a = 2E[X] − b;
3E[X2] = 4(E[X])2 + b2 − 4bE[X] + b2 + 2bE[X] − b2;

from which we obtain: 

. b2 − 2bE[X] + (4(E[X])2 − 3E[X2]) = 0.

. a = E[X] −
/
3E[X2] − 3(E[X])2; b = E[X] +

/
3E[X2] − 3(E[X])2.

From which we conclude that: 

. a = Xn −
/

3
E

i (Xi − Xn)2

n
; b = Xn +

/

3
E

i (Xi − Xn)2

n
.

The choice of signs is dictated by the fact that a ≤ b.. 

3.3 

(a) We calculate the likelihood and the log-likelihood: 

. L(θ; x) =
nl l

i=1

θxθ−1
i I[0,1](xi) = θn (xi)

θ−1
l l

[0,1]
(xi).

l(θ; x) = n log(θ) + (θ − 1)
n7

i=1

log(xi).

We derive the log-likelihood: 

. 
∂l(θ; x)

∂θ
= n

θ
+

n7

i=1

log(xi).

Therefore: 

. 
∂l(θ; x)

∂θ
≥ 0 ⇐⇒ n

θ
≤ −

n7

i=1

log(xi).

.θ̂MLE = − n
E

log(xi)
.
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(b) 

. Y = − log(Xi) ⇒ FY (t) = P{− log(Xi) ≤ t} = P{log(Xi) ≥ −t}
= P{X ≥ e−t }.

. FX(t) =
/ t

0
θxθ−1 dx = tθ I(0,1)(t) + I[1,+∞)(t).

. FY (t) = 1−e−tθ ⇒ − log(Xi) ∼ E(θ); −
n7

k=1

log(Xk) ∼ r(n, θ).

(c) 

. E[θ̂MLE] = E

l

− n
E

log(Xi)

l

= nθ

n − 1
.

where the last equality is due to the fact that if Y ∼ r(n, θ)., then E
ll
1
Y

l
= θ

n−1 .. 

Therefore θ̂MLE . is biased. 
(d) 

. MSE(θ̂n) = V ar(θ̂n) + (bias)2.

E[θ̂2n ] = n2θ2

(n − 1)(n − 2)
.

V ar(θ̂n) = n2θ2

(n − 1)2(n − 2)
.

MSE(θ̂n) = θ2(n + 2)

(n − 1)(n − 2)
.

3.4 

. L(θ; x) =
nl l

1

I[θ−1/2,θ+1/2](xi) = I[X(1)−1/2,X(n)+1/2](θ).

We can equally choose θ̂MLE = X(1) − 1/2. or θ̂MLE = X(n) + 1/2., or any point of 
the form θ̂MLE = α(X(1) − 1/2) + (1 − α)(X(n) + 1/2)., with α ∈ [0, 1].. 
3.5 

(a) 

.Yi = I[Xi≥t] ⇒ Yi ∼ Be(e−λt ).
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Vn . as the proportion of present nuclei is
En

i=1 Yi

n
., therefore nVn ∼ Bi(n, e−λt ).. 

. P{Vn = k/n} =
(

n

k

)

(e−λt )k(1 − e−λt )n−k.

(b) By the Strong Law of Large Numbers: 

. Vn
q.c.→ E[Yi] = e−λt = e−t/τ ;

where τ = 1/λ.. 
(c) Ȳn . is MLE estimator of p = e−t/τ

. and also τ = − t
logp

.. By the principle of 

invariance~τMLE = − t
logVn

.. 

(d) τ = 1 /λ. therefore the MLE estimator for the mean of exponentials is Xn .. 

3.6 

(a) It must be 0 ≤ θ ≤ 1/2.. Also note that: 

. p(x) =
(
1

2
− θ

) 1
2 |x|

· (2θ)1−
1
2 |x| .

(b) 

. L(θ; x) =
(
1

2
− θ

) 1
2

E
i |xi |

· (2θ)1−
1
2

E
i |xi | .

therefore f (x) = 1
2

E
i |xi |.. Note that |Xi |

2 ∼ Be(1 − 2θ).. 

(c) Therefore ~(1 − 2θ) =
E |Xi |
2n . and by the principle of invariance: 

. θ̂MLE = 2n − E
i |Xi |

4n
;

which is unbiased. It is also consistent by the Strong Law of Large Numbers. 

3.7 We calculate the likelihood, the log-likelihood and we calculate the derivative 
of the latter with respect to the parameter. 

.L(λ; x) = e−2nλλ
E2n

i=1 xi

x1! . . . x2n! · e−2nλ(2λ)
E3n

i=2n xi

x2n+1! . . . x3n! ∝ e−4nλλ
E3n

i=1 xi .

l(λ; x) ∝ −4nλ +
3n7

i=1

xi log(λ).

∂l(λ; x)

∂λ
= −4n +

E3n
i=1 xi

λ
.
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From which we conclude that: 

. ~λMLE =
E3n

i=1 Xi

4n
.

. V ar(~λMLE) = 1

16n2
(2nλ + n2λ) = λ

4n
.

Furthermore, the MLE estimator turns out to be unbiased, in fact: 

. E[~λMLE] = 1

4n
[2nλ + n2λ] = λ.

3.8 We write the likelihood and the log-likelihood: 

. L(μ, σ ; x) = 1

(2πσ 2)n/2
exp{− 1

2σ 2

7

i

(xi − μ)2}.

l(μ, σ ; x) = −n

2
log σ 2 − 1

2σ 2

7
(xi − μ)2.

We derive the log-likelihood to find the MLEs: 

. 

l
∂l
∂μ

= 1
2σ 2 2

E
i (xi − μ) =

E
i (xi−μ)

σ 2 ;
∂l

∂σ 2 = − n
2σ 2 + 1

2σ 4

E
i (xi − μ)2.

By setting the two equations of the system equal to 0, we obtain: 

. 

l
~μMLE = Xn;
~σ 2

MLE =
E

i (Xi−Xn)2

n
.

It can be shown that the stationary point found is a maximum. 

3.9 We calculate the likelihood and the log-likelihood: 

. L(μ1, μ2, σ
2; x, y) = 1

(2πσ 2)(n+m)/2

× exp

l

− 1

2σ 2

l
7

i

(xi − μ1)
2 +

7

i

(yi − μ2)
2

ll

.

l(μ1, μ2, σ
2; x, y) ∝ −n + m

2
log σ 2 − 1

2σ 2

l
7

i

(xi − μ1)
2 +

7

i

(yi − μ2)
2

l

.

By setting ∂l
∂μ1

= ∂l
∂μ2

= 0., we get ~μ1 = Xn . and ~μ2 = Yn ..
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By setting ∂l
∂σ 2 = 0., we get: 

. 
∂l

∂σ 2 = −n + m

2

1

σ 2 + 1

2σ 4

l
7

i

(xi − μ1)
2 +

7

i

(yi − μ2)
2

l

= 0.

Therefore: 

. ~σ 2 =
E

i (Xi −~μ1)
2 + E

i (Yi −~μ2)
2

n + m
.

3.10 

(a) X is a sufficient statistic by the factorisation theorem, but it is not a complete 
statistic, in f act:

. 0 = E[g(X)] = θ

2
g(−1) + (1 − θ)g(0) + θ

2
g(1) =

= g(0) + θ

(
g(−1)

2
+ g(1)

2
− g(0)

)

.

Choosing g(0) = 0. and g(−1) = g(1).,  we  have E[g(X)] = 0., therefore X is 
not a complete statistic for θ .. 

(b) |X|. is a sufficient statistic by the factorisation theorem, and it is also a complete 
statistic, in fact: 

. 0 = E[g(|X|)] = (1 − θ)g(0) + θg(1) =
= g(0) + θ (g(1) − g(0)) .

E[g(|X|)] = 0 ⇐⇒ g(0) = g(1) = 0., that is P(g(|X|) = 0) = 1.. 
(c) |X|. is minimal sufficient, while X is not minimal sufficient because, if it were, 

it should be a function of |X|.. 
(d) We write the likelihood and the log-likelihood to find the MLE: 

. L(θ; x) =
(

θ

2

)|x|
(1 − θ)1−|x| =

=
l

L(θ; 0) = 1 − θ ⇒ θ̂ = 0;
L(θ;±1) = θ

2 ⇒ θ̂ = 1.

So T1(X) = |X|..
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Let’s calculate the bias of the two estimators: 

. E[T1(X)] = θ.

E[T2(X)] = 2P{X = 1} = θ.

Both are unbiased estimators for θ .. 
To calculate the MSE of the two estimators, it is therefore sufficient to calculate 
their variance: 

. V ar(T1(X)) = θ(1 − θ).

V ar(T2(X)) = 4P{X = 1} − θ2 = θ(2 − θ).

(e) Among two unbiased estimators, the one with the lower variance is preferred, 
so T1 .. 

3.11 

(a) We note that: X1 ∈ {0, 1, 2}. and θ ∈ {0, 1, 2}.. We apply the definition of MLE: 

. ~θ1(X1) = argsup
θ∈{0,1,2}

L(θ; x1) =

⎧
⎪⎪⎨

⎪⎪⎩

argsupθ∈{0,1,2}{1/2, 1/3, 1/4} if x1 = 0;
argsupθ∈{0,1,2}{1/2, 1/3, 1/4} if x1 = 1;
argsupθ∈{0,1,2}{0, 1/3, 1/2} if x1 = 2.

So we get: 

. ~θ1(X1) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x1 = 0;
0 if x1 = 1;
2 if x1 = 2.

(b) Calculate bias and mean squared error of ~θ1 .. 

. E[~θ1] = 2 · P{X1 = 2} =

⎧
⎪⎪⎨

⎪⎪⎩

2 · 0 = 0 if θ = 0;
2 · 1/3 = 2/3 if θ = 1;
2 · 1/2 = 1 if θ = 2.

.Bias(~θ1; θ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 − 0 = 0 if θ = 0;
1 − 2/3 = 1/3 if θ = 1;
2 − 1 = 1 if θ = 2.
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. E[~θ21 ] = 4 · P{X1 = 2} =

⎧
⎪⎪⎨

⎪⎪⎩

0 if θ = 0;
4/3 if θ = 1;
2 if θ = 2.

. V ar(~θ1) = E[~θ21 ] − (E[~θ1])2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 − 0 = 0 if θ = 0;
4/3 − 4/9 = 8/9 if θ = 1;
2 − 1 = 1 if θ = 2.

. MSE[~θ1; θ ] = V ar(~θ1) + (Bias(~θ1; θ))2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if θ = 0;
1 if θ = 1;
2 if θ = 2.

(c) We construct Table 3.2: 
We apply the definition of MLE: 

. ~θ2(X1, X2) = argsup
θ∈{0,1,2}

L(θ; (x1, x2)) =

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argsupθ∈{0,1,2}{1/4, 1/9, 1/16} if (x1; x2) = (0; 0);
argsupθ∈{0,1,2}{1/2, 2/9, 1/8} if (x1; x2) = (0; 1);
argsupθ∈{0,1,2}{0, 2/9, 1/4} if (x1; x2) = (0; 2);
argsupθ∈{0,1,2}{1/4, 1/9, 1/16} if (x1; x2) = (1; 1);
argsupθ∈{0,1,2}{0, 2/9, 1/4} if (x1; x2) = (1; 2);
argsupθ∈{0,1,2}{0, 1/9, 1/4} if (x1; x2) = (2; 2).

~θ2(X1, X2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if (x1; x2) = (0; 0);
0 if (x1; x2) = (0; 1);
2 if (x1; x2) = (0; 2);
0 if (x1; x2) = (1; 1);
2 if (x1; x2) = (1; 2);
2 if (x1; x2) = (2; 2).

=

Table 3.2 Joint density of X1 . and X2 . as the parameter varies 

(x1; x2). (0;0) (0;1) (0;2) (1;1) (1;2) (2;2) 

f (x1, x2; 0). 1/4 1/2 0 1/4 0 0 

f (x1, x2; 1). 1/9 2/9 2/9 1/9 2/9 1/9 

f (x1, x2; 2). 1/16 1/8 1/4 1/16 1/4 1/4
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=
l
0  if  (x1; x2) ∈ {(0; 0); (0; 1); (1; 1)}; 
2  if  (x1; x2) ∈ {(0; 2); (1; 2); (2; 2)}.

(d) 

. E[~θ2] = 2P{(X1; X2) ∈ {(0; 2); (1; 2); (2; 2)}} =

⎧
⎪⎪⎨

⎪⎪⎩

2 · 0 = 0 if θ = 0;
2 · 5/9 = 10/9 if θ = 1;
2 · 3/4 = 3/2 if θ = 2.

. Bias(~θ2; θ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 − 0 = 0 if θ = 0;
1 − 10/9 = −1/9 if θ = 1;
2 − 3/2 = 1/2 if θ = 2.

. E[~θ22 ] = 4P{(X1;X2) ∈ {(0; 2); (1; 2); (2; 2)}} =

⎧
⎪⎪⎨

⎪⎪⎩

4 · 0 = 0 if θ = 0;
4 · 5/9 = 20/9 if θ = 1;
4 · 3/4 = 3 if θ = 2.

. V ar(~θ2) = E[~θ22 ] − (E[~θ2])2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if θ = 0;
80/81 if θ = 1;
3/4 if θ = 2.

. MSE[~θ2; θ ] = V ar(~θ2) + (Bias(~θ2; θ))2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if θ = 0;
1 if θ = 1;
1 if θ = 2.

(e) ~θ2 = 2.. 

3.12 

(a) We define the following r.v.: 

. Yi = I{Xi>0} ; Yi ∼ Be(p).

. Tn =
n7

1

Yi ; Tn ∼ Bin(n, p).

.p = P{Yi = 1} = P{Xi > 0} = P

l
Xi − μ

σ
> −μ

σ

l

= 1−φ
l
− μ

σ

l
= φ

lμ

σ

l
.
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We know that: 

. ~pMLE = Ȳn = Tn

n
.

By the invariance principle of the MLE we obtain: 

. 
Tn

n
= φ

lμ

σ

l
;

=⇒ φ−1
lTn

n

l
= μ

σ
;

=⇒ |φ−1
lTn

n

l
| = |μ|

σ
;

=⇒ |φ−1
lTn

n

l
|−1 = CV.

(b) 

. |φ−1
lTn

n

l
|−1 = CV < 1/3 =⇒ φ−1

lTn

n

l
> 3 =⇒ Tn

n
> φ(3).

Tn

n
> φ(3) =⇒ T1000 > 1000 · 0.9987 = 998.7.

3.13 

(a) Xi ∼ N(μ,  σ  2).. 
(b) 

. L(μ; x) =
l l 1

(2πσ 2)1/2
exp

l
− (xi − μ)2

2σ 2

l
=

= 1

(2πσ 2)n/2 exp
l

−
7 (xi − μ)2

2σ 2

l
.

l(μ; x) = −n

2
log(2πσ 2) −

7 (xi − μ)2

2σ 2 .

dl(μ; x)
dμ

=
7 2(xi − μ)

2σ 2
=

E
xi − nμ

σ 2
= 0.

Therefore: 

. ~μMLE =
E

Xi

n
= Xn.

In the case of error e ∼ f (s; σ 2) = e−2|s|/σ2
σ 2 ..
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(c) 

. fX(x;μ) = e−2|x−μ|/σ 2

σ 2 .

(d) show that the median m(X1, . . . , Xn). is a maximum likelihood estimator for μ.. 

. L(μ; x) =
nl l

1

e−2|xi−μ|/σ 2

σ 2 = e−2
E |xi−μ|/σ 2

σ 2n .

. m(x1, .., xn) = arginf
μ∈R

7
|xi − μ|.

Then it can be inferred that ~μMLE = m(X1, . . . , Xn).. 

3.14 

(a) It is immediately proven that the theoretical mean, E[X]., does not exist, since l∞
θ

θ
x
dx . diverges. Therefore, the method of moments is not applicable. 

(b) We calculate L(θ; x).: 

. L(θ; x) =
nl l

i=1

θ

x2
i

I[θ,+∞)(xi) = θn

l l
xi

I[0,x(1)](θ).

By drawing L(θ; x)., it is immediately seen that the maximum is reached for 
X(1) ., therefore θ̂MLE = X(1) .. 

(c) To prove that θ̂MLE . is a minimal sufficient statistic, we use the Lehmann-
Scheffé theorem. 
We denote T (x) = θ̂MLE . and verify that the hypotheses are respected: 

⇒. 

. given x and y different,
fX(x; θ)

fX(y; θ)
does not depend on θ ⇒ T (x) = T (y).

Proof 
We know that the following quantity does not depend on θ . by hypothesis: 

. 

θn
l l

xi
I[0,x(1)](θ)

θn
l l

yi
I[0,y(1)](θ)

.

Then it must hold: I[0,x(1)](θ) = I[0,y(1)](θ)., therefore x(1) = y(1) ., that is 
T (x) = T (y)..
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⇐. 

. given x and y different, T (x) = T (y) ⇒ fX(x; θ)

fX(y; θ)
does not depend on θ.

Proof 
We know by hypothesis that x(1) = y(1) .. Then the following ratio does not 
depend on θ .: 

. 

θn
l l

xi
I[0,x(1)](θ)

θn
l l

yi
I[0,y(1)](θ)

.

Since the L-S hypotheses hold, we can say that T (X). is a minimal sufficient 
statistic for θ .. 

3.15 

(a) 

. E[Xi] = 3θ

2
=

E
Xi

n
=⇒ θ̂MOM = 2

3
Xn.

(b) 

. L(θ; x) =
l l 1

θ
I[θ,2θ ](xi) = 1

θn

l l
I[θ,2θ ](xi) = 1

θn
I[X(n)/2,X(1)](θ).

Since L(θ; x). is monotonically decreasing, it can be concluded that θ̂MLE =
X(n)/2.. 

(c) From the factorisation theorem we can identify in the L(θ; x)., g(T (x); θ) =
1
θn I[X(n)/2,X(1)](θ). and h(x) = 1.. Therefore T (x) = (X(1), X(n)). is a sufficient 
statistic. 
To prove that it is complete we use the L-S theorem. We verify the hypotheses: 

⇒. 

. given different x and y,
fX(x; θ)

fX(y; θ)
does not depend on θ ⇒ T (x) = T (y).

Proof 
We know that the following quantity does not depend on θ . by hypothesis: 

.

1
θn I[x(n)/2,x(1)](θ)

1
θn I[y(n)/2,y(1)](θ)

.
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Then it must hold: I[x(n)/2,x(1)](θ) = I[y(n)/2,y(1)](θ)., thus x(n) = y(n) . and 
x(1) = y(1) . , i.e. T (x) = T (y).. 

⇐. 

. given different x and y, T (x) = T (y) ⇒ fX(x; θ)

fX(y; θ)
does not depend on θ.

Proof 
We know by hypothesis that x(n) = y(n) . and x(1) = y(1) .. Then the following 
ratio does not depend on θ .: 

. 

1
θn I[x(n)/2,x(1)](θ)

1
θn I[y(n)/2,y(1)](θ)

.

Since the hypotheses of the theorem are satisfied we can say that T (X). is a 
sufficient and complete statistic. 

3.16 

(a) We note that X is a shifted exponential: X = α + W ., where W ∼ E(1/β).. 

. E[X] = E[α + W ] = α + β.

. V ar(X) = V ar(α + W) = α2 + V ar(W) = α2 + β2.

Let now X1, . . . , Xn . be a random sample from the density f (x;α, β).. 
(b) 

. L(α, β; x) =
nl l

1

1

β
e−(xi−α)/β I[α,+∞)(xi) = 1

βn
e−E

(xi−α)/β I[α,+∞)(x(1)) =

= 1

βn
e−E

(xi−α)/β I[0,x(1)](α).

We evaluate α . and β . separately. I fix β . and see that α . varies as 
exp{α}I[0,x(1)](α)., which is a monotonically increasing function. Therefore: 

. ~αMLE = X(1).

To evaluate ~βMLE .we calculate and derive the log-likelihood: 

.l(α, β; x) = −n · log(β) −
E

(xi − α)

β
.
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. 
∂l(α, β; x)

∂β
= − n

β
+

E
(xi − α)

β2 = 0.

. ~βMLE = X − α

n
= X − X(1)

n
.

(c) The statistic (~αn,~βn). is sufficient for (α, β). by the factorisation theorem. 
(d) By the principle of maximum likelihood: 

. ~μn = X − X(1)

n
+ X(1) = X + (n − 1)

n
X(1).

(e) 

. E[~μn] = E

ll
X + (n − 1)

n
X(1)

l
= α + β + n − 1

n

l
α + β

n

l
.

. V ar[~μn] = V ar
l
X + (n − 1)

n
X(1)

l
= α2 + β2

n
+ (n − 1)2

n2

l
α2 + β2

n2

l
.

.MSE(~μn) = V ar[~μn] − (E[~μn] − μ)2 =

= α2 + β2

n
+ (n − 1)2

n2

l
α2 + β2

n2

l
−
(

n − 1

n

l
α + β

n

l)2

=

= α2 + β2

n
− (n − 1)2

n2

2αβ

n
.



Chapter 4 
Uniform Minimum Variance Unbiased 
Estimators (UMVUEs) 

4.1 Theory Recap 

Definition 4.1 (UMVUE) An estimator T ∗
. is said to be an unbiased estimator of 

uniformly minimum variance, UMVUE, for τ(θ). if it satisfies Eθ [T ∗] = τ(θ). ∀θ . 

and if ∀. unbiased estimator T for τ(θ)., it holds: 

. V arθ (T
∗) ≤ V arθ (T ) ∀θ.

Theorem 4.1 (Cramér-Rao Inequality) Let X1, . . . , Xn . be a sample of r.v. with 
density fX(x; θ). and let T (X) = T (X1, . . . , Xn). be any estimator that satisfies: 

. 
d

dθ
Eθ [T (X)] =

l
χ

∂

∂θ
[T (x)fX(x; θ)] dx

and 

. V arθ (T (X)) < ∞.

Then: 

. V arθ (T (X)) ≥
l d
dθ Eθ [T (X)]l2

E

ll
∂
∂θ

fX(x; θ)
l2l =

l d
dθ Eθ [T (X)]l2

In(θ)
;

where In(θ) = E

ll
∂
∂θ

fX(x; θ)
l2l

. is called Fisher information. 
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In the case where X1, . . . , Xn . are i.i.d. r.v., In(θ) = nI1(θ).. 

Lemma 4.1 If fX(x; θ). satisfies: 

. 
d

dθ
Eθ

l
∂

∂θ
log fX(x; θ)

l
=
l

∂

∂θ

ll
∂

∂θ
log fX(x; θ)

l
fX(x; θ)

l
dx;

then: 

. E

ll
∂

∂θ
fX(x; θ)

l2l
= −Eθ

l
∂

∂θ2
log fX(x; θ)

l
.

It is important to note that the hypothesis of this Lemma is always satisfied by 
densities belonging to the exponential family. 

Theorem 4.2 (Rao-Blackwell) Let W be any unbiased estimator for τ(θ). and let 
T be a sufficient statistic for θ .. We define φ(T ) = E[W |T ].. Then Eθ [φ(T )] = τ(θ). 

and V arθ (φ(T )) ≤ V arθ (W). ∀θ ., that is, φ(T ). is a uniformly better unbiased 
estimator than W for τ(θ).. 

Theorem 4.3 Let T be a sufficient and complete statistic for θ . and let φ(T ). be any 
estimator based only on T . Then φ(T ). is UMVUE for E[φ(T )].. 
Theorem 4.4 (Uniqueness of UMVUE) If W is UMVUE for τ(θ)., then W is 
unique .

4.2 Exercises 

Exercise 4.1 Consider the statistical model given by the exponential laws E(ν)., 
ν > 0., (family of laws regular according to Fréchet, Cramér and Rao) and let 
X1, . . . , Xn . be a random sample drawn from a population described by such a 
model. 

(a) Calculate the lower limit for the variance of an unbiased estimator of Eν[X] =
1/ν . based on the sample. 

(b) Show that Xn . is a UMVUE for Eν[X] = 1/ν .. 
(c) Starting from the statistic min{X1, . . . , Xn}. construct another correct estimator 

for Eν[X] = 1/ν . and calculate its mean square error. 
(d) Compare the two estimators. 

Exercise 4.2 Let X1, . . . , Xn . be a random sample from a uniform law on the 
interval [0, θ ]., θ > 0.. 

(a) Determine the maximum likelihood estimator of θ . and calculate its bias. 
(b) Deduce from (a) a correct estimator for θ . and calculate its mean square error. 
(c) Is the statistic found in (b) a UMVUE for θ .?
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Table 4.1 Estimators for the 
parameters μ., σ . and σ 2 . 

Parameter UMVUE 

μ. Xn = 1

n

n7
i=1

Xi . 

σ 2 . S2
n = 1

n − 1

n7
i=1

(Xi − Xn)
2 . 

σ .

/
n − 1

2

r[(n − 1)/2]
r[n/2] Sn . 

Exercise 4.3 Let X1, . . . , Xn . be a random sample from a normal law N(μ, σ 2). 

with unknown parameters. Show that the UMVUEs for the following parameters 
are precisely the estimators indicated in Table 4.1. 

Exercise 4.4 Given a random sample X1, . . . , Xn . (n ≥ 1.) drawn from a population 
B(p)., p ∈ [0, 1]., find the UMVUE for p and p2

.. 

Exercise 4.5 Given a random sample X1, ..., Xn . from a distribution N(μ, 1).,  we  
want to estimate τ(μ) = μ2

.. 

(a) Find Tn . the maximum likelihood estimator for μ2
.. 

(b) Find ~τn ., the uniformly minimum variance unbiased estimator for μ2
.. 

(c) Calculate the variance of ~τn .. (It may be useful to remember that the fourth 
moment of a random variable Y ∼ N(m, s2). is E[Y 4] = m4 + 6m2s2 + 3s4..) 

(d) Show that the variance of ~τn . is strictly greater than the Cramér–Rao limit. 

Exercise 4.6 Given a random sample X1, . . . , Xn ., n ≥ 2., drawn from a population 
N(μ, σ 2)., find the estimator of σ 2

. of the form αS2
. with minimum mean square 

error. 

Exercise 4.7 Given X ∼ P(λ)., λ > 0., consider the estimator of τ(λ) = Pλ(X =
0) = e−λ

. defined by T = I{0}(X).. 

(a) Show that T is the UMVUE of e−λ
.. 

(b) Show that the mean square error of T does not reach the lower limit of Cram’er-
Rao.

Exercise 4.8 Let X1, . . . , Xn . be a sample of rank n of independent random 
variables with density:

. fX(x; θ) = θxθ−11(0,1)(x), θ > 0.

(a) Find the maximum likelihood estimator θ̂n . of θ . and calculate its bias. 
(b) Deduce from (a) a corrected estimator for θ . and calculate its mean square error. 
(c) Does it satisfy the Cramér-Rao inequality? 
(d) Is it the UMVUE?
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Exercise 4.9 Let (X1, ..., Xn). be a random sample drawn from a distribution with 
density: 

. f (x; θ) = θ(1 + x)−(1+θ)I(0,+∞)(x), x ∈ R, θ > 0.

(a) In the case where θ > 1,. estimate θ .with the method of moments. 
(b) Find, if they exist, the maximum likelihood estimators of θ . and of 1/θ.. 

(c) Find, if it exists, a sufficient and complete statistic and determine its distribution. 
(d) Find, if they exist, the UMVUE of θ . and of 1/θ.. 

(e) Determine the Cramér-Rao lower limit for unbiased estimators of 1/θ.. 

Compare this quantity with the mean square error of the UMVUE for 1/θ.. 

Exercise 4.10 Let (X1, ..., Xn). be a random sample drawn from a Poisson distri-
bution with parameter λ > 0.. Let τ(λ) = e−λ(1 + λ).. 

(a) Find a maximum likelihood estimator for τ(λ).. 

(b) Find an unbiased estimator of τ(λ).. 

(c) Find the UMVUE of τ(λ).. 

Exercise 4.11 Let X1, ..., Xn . be a random sample from a r(2, 1/θ). with θ > 0.. 
Therefore, we have: 

. f (x; θ) = θ−2 x e−x/θ I(0,+∞)(x).

(a) Determine a sufficient and complete statistic for θ.. 

(b) Determine the maximum likelihood estimator θ̂n . for θ .. 
(c) Show that θ̂n . coincides with the estimator θ̄n . obtained by the method of 

moments. 
(d) What is the law of θ̂n .? 
(e) Is θ̂n . biased? 
(f) Is θ̂n .UMVUE? 
(g) Determine the maximum likelihood estimator ~σ 2

n . for the variance of X1.. 

Exercise 4.12 Let X be a random variable with values in (0,∞). such that log(X). 

has a N(μ, 1). distribution with μ. as an unknown real parameter. In other words, X 
has a log-normal distribution. For n ≥ 1,. let X1, ..., Xn . be a random sample from 
the distribution of X.. 

(a) Calculate the mean θ . of X.. 

(b) Determine the maximum likelihood estimator Tn = Tn(X1, ..., Xn). for θ.. 

(c) Calculate the bias of Tn . for estimating θ.. 

(d) Starting from Tn,. determine an estimator Wn . that is UMVUE for θ.. 

(e) Calculate the Fisher information I (θ)..
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N.B. It may be helpful to remember the moment generating function of aN(μ, σ 2).: 

. m(t) = exp(μt + σ 2t2

2
) ∀t ∈ R.

Exercise 4.13 Let X1, . . . , Xn . be a random sample of size n ≥ 3. drawn from a 
Bernoulli population with parameter p ∈ [0, 1]..  Let  T be the product of the first 
three observations, t hat is

. T = X1X2X3.

(a) Show that T is a correct estimator of p3
.. 

(b) Calculate the mean square error of T and compare it with the Cramér-Rao lower 
bound for correct estimators o f p3

. based on a sample of size n ≥ 3.. 
(c) Starting from T , find the UMVUE for p3

. based on a sample of size n ≥ 3.. 

Exercise 4.14 Given a random sample X1, . . . , Xn . from a Bernoulli distribution 
B(p)., consider the statistic: 

. T (X1, . . . , Xn) =
l
1, if X1 = 1, X2 = 0;
0, otherwise.

(a) Verify that T (X1, . . . , Xn). is an unbiased estimator of the variance σ 2
. of the 

distribution. 
(b) Do you find the estimates provided by T (X1, . . . , Xn). interesting? 
(c) Starting from T (X1, . . . , Xn)., construct the UMVUE V (X1, . . . , Xn). for σ 2.. 

4.3 Solutions 

4.1 

(a) Let T be a generic unbiased estimator for 1/ν .. We calculate the Cramér-Rao 
bound. We need to calculate In(ν) = nI1(ν).. 

.I1(ν) = E

ll
∂

∂ν
log fX(x; ν)

l2l
=

= E

ll
∂(log ν − νX)

∂ν

l2l
=

= E[(1/ν − X)2] = V ar(X) = 1/ν2.
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The Cramér-Rao inequality states that: 

. V ar(T ) ≥ ( d
dν

(1/ν))2

In(ν)
= (− 1

ν2
)2

n
ν2

= 1

nν2
.

(b) Xn . is an unbiased estimator of E[X] = 1
ν
.. 

Furthermore, V ar(Xn) = 1/(nν2). which reaches the Cramér-Rao bound, 
therefore Xn . is UMVUE for E[X] = 1/ν .. 

(c) We define the following random variable W: 

. W = min{X1, . . . , Xn}.

We calculate the law of W : 

. P{W ≥ t} = (P{Xi ≥ t})n = e−νtn ⇒ W ∼ E(nν).

Therefore: 

. E[W ] = 1

nν
;

so nW is an unbiased estimator for 1/ν .. 

. MSE(nW) = V ar(nW) = n2 · 1

n2ν2
= 1

ν2
.

(d) 

. MSE(nW) = 1

ν2
>

1

nν2
= MSE(Xn) ∀ν.

This implies that Xn . is the best estimator. 

4.2 

(a) 

. L(θ; x) =
l 1

θ
I[0,θ](xi) = 1

θn

l
I[0,θ](xi) = 1

θn
I[X(n),+∞](θ).

. θ̂MLE = X(n).

We calculate its distribution and bias: 

.FX(n)
(t) =
l

t

θ

ln

⇒ fX(n)
(t) = n

θn
tn−1

I[0,θ](t).
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E[θ̂MLE] =
l θ 

0 

n 
θn t

n dt = 
n 

n + 1 
θ.  

Bias = E[θ̂ MLE] − θ = − 1

n + 1
θ.

(b) Hence: 

. 

l
n + 1

n

l
θ̂MLE =

l
n + 1

n

l
X(n)

is an unbiased estimator for θ .. 

. MSE

ll
n + 1

n

l
θ̂MLE

l
=
l

n + 1

n

l2
V ar(X(n)) =

=
l

n + 1

n

l2
· n

(n + 1)2(n + 2)
· θ = θ2

n(n + 2)
.

(c)
l

n+1 
n

l
θ̂MLE . is a minimal and complete sufficient statistic (see Chap. 2, 

Exercise 2.4), therefore it is UMVUE for θ .. 

4.3 

(a) 

. E[Xn] = μ.

Xn . is an unbiased estimator for μ.. And being a function of a complete and 
minimal sufficient statistic, it is UMVUE of μ.. 

(b) 

. 
n − 1

σ 2
S2

n ∼ χ2(n − 1) = r

l
n − 1

2
,
1

2

l
.

. E

l
n − 1

σ 2 S2
n

l
= n − 1

σ 2 E[S2
n] = n − 1 =⇒ E[S2

n] = σ 2.

S2
n . is an unbiased estimator for σ 2

.. And being a function of a complete and 
minimal sufficient statistic, it is UMVUE of σ 2

..
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(c) 

. E

l/
n − 1

σ 2
S2

n

l
=
/

n − 1

σ 2
E

l
Sn

l
=
l +∞

0
t1/2t

n−1
2 −1e−t/2(1/2)

n−1
2

1

r(n−1
2 )

dt =

=
l +∞

0
t

n
2−1e−t/2(1/2)

n−1
2

1

r(n−1
2 )

dt =

= r(n
2 )

r(n−1
2 )

(1/2)−
1
2

l +∞

0
t

n
2−1e−t/2(1/2)

n
2

1

r(n
2 )

dt =

= r(n
2 )

r(n−1
2 )

√
2.

. 

/
n − 1

σ 2
E

l
Sn

l
= r(n

2 )

r(n−1
2 )

√
2.

. E

l
Sn

l
= σ√

n − 1

r(n
2 )

r(n−1
2 )

√
2.

Therefore: 

. 

/
n − 1

2

r(n−1
2 )

r(n
2 )

Sn

is unbiased for σ .. And being a function of a complete and minimal sufficient 
statistic, it is UMVUE of σ .. 

4.4 Xn . is an unbiased estimator for p and is a minimal and complete sufficient 
statistic for p and therefore is UMVUE for p.

. E[(Xn)
2] = p(1 − p)

n
+ p2 = p

n
+ p2
l
1 − 1

n

l
.

Hence: 

. T =
l
X

2
n − Xn

n

l
· n

n − 1

is an unbiased estimator for p2
. and a function of Xn .. Therefore, T is UMVUE for

p2
..
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4.5 

(a) Xn . is MLE for μ.. Therefore, by the invariance principle Tn = X
2
n . is MLE for 

μ2
.. 

(b) 

. E[X2
n] = 1

n
+ μ2 ⇒ ~τn = X

2
n − 1

n

is UMVUE for μ2
.. 

(c) 

. V ar(~τn) = V ar(X
2
n) = E[X4

n] −
l
E[X2

n]
l2 =

= μ4 + 6
μ2

n
+ 3

n2
− μ4 − 1

n2
− 2μ2

n
= 4

n
μ2 + 2

n2
.

To calculate the variance of the estimator we have taken into account that: Xn ∼
N(μ, 1/n).. 

(d) 

. I1 = Eμ

ll
∂

∂μ
log fX(x;μ)

l2l
= Eμ

ll
∂

∂μ
[−(xμ)2/2]

ll
= E[(X − μ)2] = 1.

So the Cramér-Rao limit is 4μ2

n
. and the following inequality holds: 

. 
(τ '(μ))2

n − 1
= 4μ2

n
<

4

n
μ2 + 2

n2
= V ar(~τn) ∀n.

4.6 

. X1, . . . , Xn ∼ N(μ, σ 2).

. MSE(αS2) = V ar(αS2) +
l
E[αS2] − σ 2

l2 =

= α2 2σ 4

n − 1
+
l
(α − 1)σ 2

l2 = σ 4
l

2α2

n − 1
+ α2 + 1 − 2α

l
.

.

∂
l
σ 4
l

2α2

n−1 + α2 + 1 − 2α
ll

∂α
= 2α

l
2

n − 1
+ 1

l
− 2 ≤ 0.
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α ≤ 
n − 1 
n + 1

.

So MSE(αS2). is minimum for T = n−1
n+1S

2
.. 

4.7 

(a) 

. τ(λ) = e−λ; T = I{0}(X); T ∼ Be(e−λ).

τ (λ). is unbiased. 

. E[T |X] = T ⇒ T is UMVUE for e−λ.

(b) 

. MSE(τ) = V ar(τ) = e−λ(1 − e−λ).

. I1(λ) = Eλ

ll
∂

∂λ
log fX(x; λ)

l2l
= Eλ

ll
∂

∂λ
[−λ + X log λ]

l2l
=

= Eλ

ll
−1 + X

λ

l2l
= 1

λ2
V ar(X) = 1

λ
.

The Cramér-Rao limit is: 

. 
(τ '(λ))2

n/λ
= (−e−λ)2

1/λ
= λe−2λ.

So we can conclude that: 

. e−λ(1−e−λ) ≥ λe−2λ ⇐⇒ (1−e−λ) ≥ λe−λ ⇐⇒ (eλ −1) ≥ λ.

∀λ > 0. MSE(τ(λ)). is greater than the Cramér-Rao limit. 

4.8 

(a) 

. L(θ; x) =
l

θxθ−1
i I(0,1)(xi) = θn

ll
xi

lθ−1l
I(0,1)(xi).

.l(θ; x) = n log(θ) + (θ − 1)
7

log(xi) +
7

log I(0,1)(xi).



4.3 Solutions 61

. 
d l(θ; x)

dθ
= n/θ +

7
log(xi) = 0 =⇒ θ̂MLE = − nE

log xi

.

To calculate its bias, I investigate the distribution of Yi = −logXi .. 

. P{Yi ≤ y} = P{− logXi ≤ y} = P{Xi ≥ exp(−y)} = 1 − P{Xi < exp(−y)} =

= 1 −
l e−y

0
θxθ−11(0,1)(x) dx = 1 − xθ

llle
−y

0
= 1 − e−θy .

So FY (y; θ) = (1− e−θy)I[0,+∞](y).. We recognise the exponential distribu-
tion, Yi = −log(Xi) ∼ E(θ).. Due to the link between exponential and gamma, 
we can say: Yn = −E logXi ∼ r(n, θ).. 

. E[θ̂MLE] = E

l
− nE

log xi

l
= nE
l

− 1E
log xi

l
= nE
l

− 1

Yn

l
.

So we calculate: 

. E

l
− 1

Yn

l
=
l +∞

0

1

y

θnyn−1e−θy

r(n)
dy = r(n − 1)

r(n)
θ

l +∞

0

θn−1yn−2e−θy

r(n − 1)
dy =

= r(n − 1)

r(n)
θ = (n − 2)!

(n − 1)!θ = θ

(n − 1)
.

So E[θ̂MLE] = nθ
(n−1) .. 

(b) 

. T = n − 1

n
θ̂MLE = − (n − 1)E

log(Xi)
.

T is unbiased for θ .. 

. MSE(T ) = V ar(T ) = θ2

(n − 2)
.

(c) We calculate In(θ) = nI1(θ).. 

.I1(θ) = E

ll
∂

∂θ
(log θ + (θ − 1) logX)

l2l
= E

ll
1

θ
+ logX

l2l

= V ar(− logX) = 1

θ2
.
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Hence, the Cramér-Rao bound is: 

. 
θ2

n
<

θ2

(n − 2)
= V ar(T ).

(d) Given that
E

logXi . is a minimal and complete sufficient statistic for θ ., T is 
UMVUE for θ .. 

4.9 

(a) 

. X1, . . . , Xn ∼ fX(x; θ) = θ(1 + x)−(1+θ)
I[0,+∞)(x) x ∈ R, θ > 0.

Let θ > 1., we apply the method of moments: 

. Eθ [X] =
l +∞

0
xθ(1 + x)−(1+θ) dx

x+1=t=

=
l +∞

1
θ(t − 1)t−(1+θ) dt = θ

l +∞

1
t−θ dt + θ

l +∞

1
t−(1+θ) dt =

= θ

l
t−θ+1

−θ + 1

l+∞

1
− θ

l
t−θ

−θ

l+∞

1
=

= θ

l
− 1

1 − θ

l
− θ

l
1

θ

l
=

= −1 − θ

1 − θ
= −1 + θ − θ

1 − θ
= − 1

1 − θ
=

= 1

θ − 1
.

Then, by the method of moments, we obtain: 

. Xn = 1

θ − 1
⇒ θ̂MOM = 1 + 1

Xn

.

(b) We study the likelihood of the sample: 

. L(θ; x) = θn

ll
i

(1 + xi)

l−(1+θ)

.

.l(θ; x) = n log θ − (1 + θ)
7

i

log(1 + xi).
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. 
∂l(θ; x)

∂θ
= n

θ
−
7

i

log(1 + xi) ≥ 0 ⇐⇒ θ ≤ nE
log(1 + xi)

.

Then: 

. θ̂MLE = nE
log(1 + Xi)

;

and by the invariance principle: 

. 
 l1
θ

l
MLE

=
E

log(1 + Xi)

n
.

(c) 

. fX(x; θ) = θ exp{−(1 + θ) log(1 + x)}I[0,+∞)(x)

belongs to the exponential family, therefore T = Ei log(1 + Xi). is sufficient 
by the factorisation criterion. 
Moreover, given that: 

. w : θ → −(1 + θ) w : R+ → (−∞, 1) ⊃ open in R;

T is also complete.
Y = log(1 + X).. We calculate the law of Y : 

. FY (t) = P{Y ≤ t} = P{log(1 + X) ≤ t} = P{(1 + X) ≤ et } = P{X ≤ et − 1} =

=
l et−1

0
θ(1 + x)−(1+θ) dx

x+1=t=

=
l et

1
θt−(1+θ) dt = θt−θ

−θ

llll
et

1

= 1 − e−tθ .

then Y ∼ E(θ)., therefore T =Ei log(1 + Xi) ∼ r(n, θ).. 
(d) We observe: 

. E

l
T

n

l
= 1

n

7
E
l
log(1 + Xi)

l = 1

θ
⇒ T

n
is UMVUE for 1/θ.

E

l
1

T

l
= θ

n − 1
⇒ T̃ = n − 1E

log(1 + Xi)
⇒ T̃ is UMVUE for θ.

The equality E

l
1
T

l
= θ

n−1 . is obtained through the properties of the gamma 

(see Chap. 3,  Exercis  e 3.3).
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(e) We calculate the Cramér-Rao lower bound, keeping in mind that In(θ) =
nI1(θ).. 

. I1(θ) = Eθ

ll
∂

∂θ

l2l
= Eθ

ll
∂

∂θ

l2l
=

= Eθ

ll
1

θ
− log(1 + X)

l2l
= V ar(Y )

Y∼E(θ)= 1

θ2
.

The Cramér-Rao bound is therefore: 

. 
(τ '(θ))2

n/θ2
= (− 1

θ2
)2

n 1
θ2

= 1

nθ2
.

Let’s calculate the MSE(T̃ ).. 

. MSE(T̃ ) = V ar

lE
log(1 + Xi)

n

l
= 1

nθ2
.

Therefore, T̃ . reaches the Cramér-Rao limit. 

4.10 

(a) 

. τ(λ) = e−λ(1 + λ).

~λMLE = Xn.

Therefore, by the principle of invariance: 

. ~τ(λ)MLE = e−Xn(1 + Xn).

(b) 

. e−λ(1 + λ) = P{X ≤ 1}.

If we introduce the r.v. Yi = I[0,1](Xi)., Yi ∼ Be(e−λ(1 + λ))., we observe that: 

.Yn = 1

n

n7
i=1

I[0,1](Xi) is an unbiased estimator for τ(λ).
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(c) Let’s calculate the UMVUE for τ(λ).: 

. T = Eλ

l
Yn

llll
n7

i=1

Xi

l
.

. Eλ

l
Y1

llll
n7

i=1

Xi = k

l
=

= Pλ

l
Y = 1

llll
n7

i=1

Xi = k

l
= Pλ

l
X1 ≤ 1

llll
n7

i=1

Xi = k

l
=

= Pλ

l
X1 = 0

llll
n7

i=1

Xi = k

l
+ Pλ

l
X1 = 1

llll
n7

i=1

Xi = k

l
=

= Pλ

{
X1 = 0,

En
i=1 Xi = k

}
Pλ

{En
i=1 Xi = k

} + Pλ

{
X1 = 1,

En
i=1 Xi = k

}
Pλ

{En
i=1 Xi = k

} =

= Pλ {X1 = 0}Pλ

{En
i=2 Xi = k

}+ Pλ {X1 = 1}Pλ

{En
i=2 Xi = k − 1

}
Pλ

{En
i=1 Xi = k

} =

=
l

e−λe−(n−1)λ ((n − 1)λ)k

k! + λe−λe−(n−1)λ ((n − 1)λ)k−1

(k − 1)!
l

· k!
e−nλ(nλ)k

=

=
l

n − 1

n

lk

+ k
(n − 1)k

nk
=
l

n − 1

n

lk

·
l
1 + k

n − 1

l
.

Then: 

. Eλ

l
X1

llll
n7

i=1

Xi

l
=
l

n − 1

n

lE
i Xi

·
l
1 +
E

i Xi

n − 1

l

=
l
1 − 1

n

lXn

·
l
1 + Xn

n

n − 1

l

is UMVUE for τ(λ).. 

4.11 

(a) 

.X1, . . . , Xn ∼ r(2, 1/θ) θ > 0; ⇒ fX(x; θ) =
l
1

θ

l2
xe−x/θ

I[0,+∞)(x).
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fX(x; θ). belongs to the exponential family, therefore
En

i=1 Xi . is a sufficient 
statistic. Since w : R+ → (−∞, 0). contains an open set of R.,

En
i=1 Xi . is a 

sufficient and complete statistic, therefore also minimal. 
(b) Let’s calculate the likelihood: 

. L(θ; x) = 1

θ2n

l
i=1

xie
−
E

Xi
θ

l
i

I[0,+∞)(xi).

. l(θ; x) ∝ −2n log θ −
E

Xi

θ
.

. 
∂l(θ; x)

∂θ
= −2n

θ
+
E

xi

θ2
≥ 0 θ ≤

E
xi

2n
.

Therefore, θ̂MLE = Xn

2 .. 
(c) Let’s calculate the mean of X: 

. E[X] = 1

θ
⇒ θ̂MOM = Xn

2
.

(d) Given that: 

. Xi ∼ r(2, 1/θ) ⇒
7

Xi ∼ r(2n, 1/θ) ⇒ θ̂n =
E

Xi

2n
∼ r(2n, 2n/θ).

(e) Given that E
l
θ̂n

l
= θ ., then θ̂n . is an unbiased estimator for θ .. 

(f) θ̂n . is UMVUE as it is an unbiased estimator and a function of a sufficient and 
complete statistic. 

(g) 

. V ar(Xi) = 2θ2 ⇒ ~σ 2
MLE = 2

X
2
n

4
= X

2
n

2

by the invariance principle. 

4.12 

(a) 

.θ = E[X] = E[eY ] = mY (1) = eμ+1/2.
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(b) 

. fX(x;μ) = 1√
2π

1

x
exp

;
−1

2
(log x − μ)2

l
I[0,+∞)(x).

L(μ; x) = 1

(2π)n/2
·
ll

i

xi

l
exp

l
−1

2

7
i

(log xi − μ)2

ll
i

I[0,+∞)(xi).

l(μ; x) ∝ −1

2

7
i

(log xi − μ)2.

∂l(μ; x)

∂μ
= 1

2
2
7

i

(log xi − μ)

=
7

i

(log xi) − nμ ≥ 0 ⇐⇒ μ ≤
E

log xi

n
.

By the invariance principle of MLEs: 

. Tn = θ̂MLE = exp

;
1

2
+
E

logXi

n

l
.

(c) 

. E[θ̂MLE] = E

l
exp

;
1

2
+
E

logXi

n

ll
=

= exp

;
1

2

ll
exp

;
μ

n
+ 1

2n2

lln

= exp

;
1

2

ll
exp

;
μ + 1

2n

ll
=

= exp

;
μ + 1

2

l
exp

;
1

2n

l
.

(d) The UMVUE Wn . is simply obtained by correcting the estimator Tn .: 

. Wn = e−1/(2n)Tn.

Indeed, by the Lehmann-Scheffé theorem, Wn . is a function of a sufficient and 
complete statistic for θ ., so it is the unique UMVUE of θ ..
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(e) Let Y = logX ∼ N(μ, 1).. The definition of I (θ). for an i.i.d. sample is as 
follows: 

. I (θ) = n · E
ll∂ log fY (y)

∂θ

l2l
.

. fY (y) = 1√
2π

exp{−1

2
(y − μ)2}.

. log fY (log x) = −1

2
log(2π) − 1

2
(y − μ)2 =

= −1

2
log(2π) − 1

2
(y − log θ + 1

2
)2.

. 
∂ log fY (y)

∂θ
= 1

θ
(y − log θ + 1

2
).

. I (θ) = n · E
l 1
θ2

(Y − log θ + 1

2
)2
l

= n · 1

θ2
E

l
(Y − log θ + 1

2
)2
l

=

= n · 1

θ2
E

l
(Y − μ)2

l
= n

θ2
V ar(Y ) = n

θ2
.

4.13 

(a) 

. X1, . . . , Xn ∼ Be(p); T = X1X2X3; T ∼ Be(p3).

. E[T ] = p3.

(b) We calculate the MSE(T ).: 

. MSE(T ) = V ar(T ) = p3(1 − p3) = p3(1 − p)(1 + p + p2).

We calculate the Cramér-Rao limit: 

.I1(p) = Ep

ll
∂(log fX(x;p))

∂p

l2l

= Ep

ll
∂(x logp + (1 − x) log(1 − p))

∂p

l2l
=



4.3 Solutions 69

= Ep

ll
x 
p 

− 
1 − x 
1 − p

l2l
= Ep

l
(x − px − p + px)2 

(p(1 − p))2

l
= 

= Ep

l
(x − p)2 

(p(1 − p))2

l
= 1

p(1 − p)
.

The Cramér-Rao limit is therefore: 

. 
(3p2)2

n 1
p(1−p)

= 9p4p(1 − p)

n
= 9p5(1 − p)

n
.

. MSE(T ) = p3(1 − p3) = p3(1 − p)(1 + p + p2) ≥ 9

n
p5(1 − p)

(1 + p + p2) ≥
l
9

n
− 1

l
p2 (9/n ≤ 3).

(c) I know that
E

i Xi . is a sufficient and complete statistic for p. 
T = X1X2X3 . is correct for p3

.. 

Then E[T
lllEi Xi]. is UMVUE for p3

.. 

. E[T
lll7

i

Xi = k] = P

l
T = 1
lll7

i

Xi = k

l
= p3
l
n−3
k−3

l
pk−3(1 − p)n−k

l
n
k

l
pk(1 − p)n−k

=

= (n − 3)!k!
(k − 3)!n! = k(k − 1)(k − 2)

n(n − 1)(n − 2)
.

Then the UMVUE estimator is defined as follows: 

. 

l
0 if

E
Xi ≤ 2;E

Xi(
E

Xi−1)(
E

Xi−2)
n(n−1)(n−2) if

E
Xi > 2.

4.14 

(a) 

. E[T ] = P{X1 = 1, X2 = 0} = p(1 − p).

(b) No, since Var(T) and therefore MSE(T) do not depend on n.
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(c) I exploit the Lehmann-Scheffé theorem, considering that
E

Xi . is a sufficient 
and complete statistic for p: 

. V (X1, . . . , Xn) = E[T |
7

Xi = k] = 1 · P{X1 = 1, X2 = 0|
7

Xi = k} =

= P{X1 = 1, X2 = 0,
En

3 Xi = k − 1}
P{En

1 Xi = k} =

= p(1 − p)
l
n−2
k−1

l
pk−1(1 − p)n−2−k+1

l
n
k

l
pk(1 − p)n−k

=

=
l
n−2
k−1

l
l
n
k

l = k(n − k)

n(n − 1)
.

Therefore: 

.V (X1, . . . , Xn) =
E

Xi(n −EXi)

n(n − 1)
= nX(1 − X)

n − 1
.



Chapter 5 
Likelihood Ratio Test 

5.1 Theory Recap 

Definition 5.1 (Errors in Hypothesis Testing) Consider the following hypothesis 
test: 

. H0 : θ ∈ o0 vs H0 : θ ∈ oc
0.

We then define: 

• Type I error: H0 . is true, i.e. θ ∈ o0 ., and we decide to reject H0 .. 
• Type II error: H0 . is false, i.e. θ ∈ oc

0 ., and we decide to accept H0 .. 

See Table 5.1. 
We define the Rejection Region, R. Then: 

. Pθ {X ∈ R} =
l
probability of committing Type I error if θ ∈ o0;
1 − probability of committing Type II error if θ ∈ oc

0.

Definition 5.2 (Power of the Test) The power function of a hypothesis test with 
rejection region R is a function of θ . defined as follows: 

. β(θ) = Pθ {X ∈ R}.

Definition 5.3 (Size of the Test) The size α . of a test with power function β(θ). is 
defined as follows: 

. sup
θ∈o0

β(θ) = α;
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Table 5.1 Errors in 
hypothesis testing 

Decision 

Accept H0 . Reject H0 . 

Truth H0 . Correct Type I error 

H1 . Type II error Correct 

where α ∈ [0, 1].. 
Definition 5.4 (Level of the Test) The level α . of a test with power function β(θ). 

is defined as follows: 

. sup
θ∈o0

β(θ) ≤ α;

where α ∈ [0, 1].. 
Definition 5.5 (Unbiased Test) A test with power function β(θ). is unbiased if: 

. β(θ ') ≥ β(θ '') ∀θ ' ∈ oc
0, θ '' ∈ o0.

Definition 5.6 (Likelihood Ratio Test, LRT) Consider the following test: 

. H0 : θ ∈ o0 vs H1 : θ ∈ oc
0.

The test statistic based on the likelihood ratio is defined as follows: 

. λ(x) =
sup
o0

L(θ; x)

sup
o

L(θ; x)
.

The likelihood ratio test, LRT, is any test whose rejection region has the following 
form {x : λ(x) ≤ c}., where c ∈ (0, 1).. 

5.2 Exercises 

Exercise 5.1 Given a random sample X1, . . . , X5 . from a law B(p)., with p 
unknown and 0 ≤ p ≤ 1., we want to test the null hypothesis H0 : p = 1/2. 
against the alternative hypothesis H1 : p /= 1/2.. We intend to use a critical region 
of the type 

.R =
llllx5 − 1

2

lll > c

l
.
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(a) Find the values of c that give a test of size α . = 10%. 
(b) Find the values of c that give a test of lev el α . = 10%. 

Exercise 5.2 A sample of size 1 is extracted from a population P(λ)..  To  veri  fy
H0 : λ = 1. against H1 : λ = 2., consider the critical region R = {x > 3}..  Find  the  
probabilities of Type I and Type II errors and the power of the test against λ = 2.. 

Exercise 5.3 Consider the statistical model given by the exponential laws E(ν)., 
ν > 0., and let X1, . . . , Xn . be a random sample drawn from a population described 
by this model. Find the tests of size α . based on the likelihood ratio for: 

(a) ν = ν 0 . against ν /= ν0 .. 
(b) ν ≤ ν 0 . against ν > ν0 .. 

Exercise 5.4 Given X ∼ Bi(n, p)., with n known and p unknown in [0, 1].: 
(a) Find a level α . test based on the likelihood ratio for H0 : p ≤ p0 . against H1 :

p > p0 .. 
(b) Explicitly write the rejection region in the case n = 5., p0 = 0.3., α = 0.03.. 

Exercise 5.5 Given a random sample X1, . . . , Xn ., n ≥ 2., drawn from a population 
N(μ, σ 2). with μ. and σ . both unknown, find the tests based on the likelihood ratio 
for H0 : σ = σ0 . against H1 : σ /= σ0 .. 

Exercise 5.6 Let X1, . . . , Xn . be a random sample from a uniform law on 
{1, . . . , N}., where N ∈ N.. Find tests based on the likelihood ratio, also determining 
the level α .,  for  :

(a) N ≤ N 0 . against N > N0 .. 
(b) N = N 0 . against N /= N0 .. 

Exercise 5.7 Let X1, . . . , Xn . be a random sample from a uniform law on the 
interval [0, θ ]., θ > 0.. Find the tests based on the likelihood ratio, also determining 
the level α .,  for  :

(a) θ ≤ θ 0 . against θ > θ0 ., 
(b) θ = θ 0 . against θ /= θ0 .. 
(c) In the case θ0 = 1., find the minimum sample size n for which the test of s ize

α .= 5% found in (b) has a power of at least 0.8 against θ = 3/2.. 

Exercise 5.8 Let X be a sample of unit size from a distribution with density:

. f (x; θ) = 2

θ2
(θ − x)I(0,θ)(x)

with θ ∈ (0,∞)..Consider the hypothesis test: 

.H0 : θ = 1 vs. H1 : θ > 1.
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(a) Let δ0 . be the test with critical region: 

. R0 = {X > 1}.

Calculate its level and its power function. 
(b) Repeat the reasoning in the previous point in the case: 

. H0 : θ ≤ 1 vs. H1 : θ > 1.

Exercise 5.9 Let X1, . . . , Xn . be a random sample from 

. fX(x; θ) = θ

x2 I[θ,+∞)(x), θ > 0.

(a) Determine the critical region of the size α . test based on the likelihood ratio for: 

. H0 : θ ≤ 1 vs H1 : θ > 1.

(b) Calculate the power function of the test found in (a) and draw its graph. 
(c) How large must n be if the test found in (a) of size α = 0.04. is to have power 1 

against θ = 3.? 

Exercise 5.10 Let X1, . . . , Xn . be a random sample from a Normal population 
(θ, σ 2).. Consider the test: 

. H0 : θ ≤ θ0 vs H1 : θ > θ0.

(a) Assuming σ 2
. is known, show that the test for which H0 . is rejected if 

. X > θ0 + z1−α

l
σ 2/n

has size α .. Also show that this test is equivalent to the one obtained from the 
likelihood ratios. 

(b) Assuming σ 2
. is unknown, show that the test that rejects H0 . if 

. X > θ0 + tn−1,1−α

l
S2/n

has size α .. Also show that this test is equivalent to the one obtained from the 
likelihood ratios.



5.3 Solutions 75

5.3 Solutions 

5.1 

(a) 

. α = P 1
2

llllX5 − 1

2

lll > c

l
= P 1

2

l 
Xi

5
− 1

2
> c

l
+ P 1

2

l 
Xi

5
− 1

2
< −c

l
=

= P 1
2

l 
Xi >

ll1
2

+ c
l

· 5
l

+ P 1
2

l 
Xi <

ll1
2

− c
l

· 5
l
.

We know that, under H0 .,
 

Xi ∼ Bin(5, 1/2).. We define k =
ll
1
2 + c

l
· 5. and 

k̃ =
ll
1
2 − c

l
· 5. and investigate how these values vary with c (c ∈ [0, 1].). We 

immediately observe that 2.5 ≤ k ≤ 7.5. and − 2.5 ≤ k̃ ≤ 2.5.. For a complete 
study, see Table 5.2. 

In Table 5.3 the possible values of α . are reported. We immediately observe 
that the test never reaches a size of 10%.. 

(b) From Table 5.3 it is immediately clear that to have a test of level α . = 10%, we 
must choose c ≥ 3/10.. 

5.2 

. R = {x : X > 3}.

. P {Type I error} = Pλ=1 {X > 3} = 1 − Pλ=1 {X ≤ 3} =

= 1 − e−1
l
1 + 1 + 1

2
+ 1

6

l
= 1 − e−1

l
16

6

l
= 1 − 8

3e
= 0.019.

Table 5.2 Possible values of 
k, c and k̃ . 

k c k̃ . 

2.5 ≤ k ≤ 3. 0 ≤ c ≤ 1/10. 2 ≤ k̃ ≤ 2.5. 

3 ≤ k ≤ 4. 1/10 ≤ c ≤ 3/10. 1 ≤ k̃ ≤ 2. 

4 ≤ k ≤ 5. 3/10 ≤ c ≤ 1/2. 0 ≤ k̃ ≤ 1. 

k > 5. 1/2 < c ≤ 1. k̃ > 0. 

Table 5.3 Possible values of c and corresponding values of P{x ∈ R}. 

c 
P 1

2

l 
Xi > k

l
. P 1

2

l 
Xi < k̃

l
. 

Total 

0 ≤ c ≤ 1/10. 1/2 1/2 1 

1/10 ≤ c ≤ 3/10. 6/32 6/32 3/8 = 0.375 

3/10 ≤ c ≤ 1/2. 1/32 1/32 1/16 = 0.0625 

c > 1/2. 0 0 0
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P {Type II error} = Pλ=2 {X ≤ 3} = 

= e−2
l
1 + 2 + 

4 

2 
+ 

8 

6

l
= e−2

l
19 

3

l
= 0.86.

The power against λ = 2. is 1 − Pλ=2 {X > 3} = 0.14.. 

5.3 

(a) 

. H0 : ν = ν0 vs H1 : ν /= ν0.

We calculate L(ν; x). and apply the LRT: 

. L(ν; x) = νn exp
l

− ν
 

xi

l 
I[0,+∞](xi).

. λ(x) = L(ν0; x)

sup
ν>0

L(ν; x)
=

νn
0 exp

l
− ν0

 
xi

l 
I[0,+∞](xi)

sup
ν>0

νn exp
l

− ν
 

xi

l 
I[0,+∞](xi)

.

The sup of the denominator corresponds to the L(ν; x). evaluated in correspon-
dence with ν̂MLE = 1/Xn .. 

. λ(x) =
νn
0 exp

l
− ν0

 
xi

l 
I[0,+∞](xi)ll

1
Xn

ln
exp
l

−
ll

1
Xn

l 
xi

l 
I[0,+∞](xi)

=

=
ll
ν0Xn

ln
exp
l
n − ν0

 
xi

l
=

=
ll
ν0Xn exp

l
1 − ν0Xn

lln
.

We then define the critical region as: R = {x : λ(x) ≤ c}. and c ∈ [0, 1]..  In  
extreme cases, we find trivial r esults:

. c = 0 -⇒ R = ∅ -⇒ never reject -⇒ P{Type II error} = 1.

. c = 1 -⇒ R = R
n -⇒ always reject -⇒ P{Type I error} = 1.

We then focus on c ∈ (0, 1).. 

.R =
l
x :
ll
ν0Xn exp

l
1 − ν0Xn

lln ≤ c
l

=

=
l
x : ν0Xn exp

l
1 − ν0Xn

l
≤ c1/n = k

l
.
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Fig. 5.1 Representation of λ(x).,  where g(t) = t ·(1−et ).and the dashed horizontal line represents 
k. The maximum of g(t). is 1 and is reached at t = 1. (the maximum is identified with a cross) 

Refer to Fig. 5.1, where t = ν0Xn .. We can say that: R =
l
x : ν0Xn ≤ t̄1

l
∪
l
x :

ν0Xn ≥ t̄2

l
.. To define t̄1 . and t̄2 ., we set the test level to α .: 

. α = Pν0{Type I error} = Pν0{x ∈ R} = Pν0{ν0Xn ≤ t̄1} + Pν0{ν0Xn ≥ t̄2}.

We study the distribution of ν0Xn .: 

. Xi ∼ E(ν0) = r(1, ν0) -⇒
 

Xi ∼ r(n, ν0) -⇒ ν0Xn ∼ r(n, n).

Then, a possible choice is given by: t̄1 = γα/2(n, n). and t̄2 = γ1−α/2(n, n).. 
(b) 

.H0 : ν ≤ ν0 vs H1 : ν > ν0.
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We carry out a procedure similar to that of point (a). 

. λ(x) =
sup

0<ν≤ν0

L(ν0; x)

sup
ν>0

L(ν; x)
=

sup
0<ν≤ν0

νn exp
l

− ν
 

xi

l
sup
ν>0

νn exp
l

− ν
 

xi

l

=
sup

0<ν≤ν0

νn exp
l

− ν
 

xi

l
ll

1
Xn

ln
exp
l

−
ll

1
Xn

l 
xi

l .

We study the derivative of the numerator to see where (and if) the sup is 
reached:

. 
d

dν
νn exp

l
− ν
 

xi

l
≥ 0

νn−1 exp
l

− ν
 

xi

l ll
n − ν

 
xi

l
≥ 0

ν ≤ 1/Xn.

The numerator has a maximum at ν̂MLE = 1/Xn .. 
Therefore, we need to distinguish two cases, based on whether ν̂MLE = 1/Xn . 

falls within the interval (0, ν0].: 

. λ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ll
1

Xn

ln

exp

l
−
ll

1
Xn

l 
xi

l
ll

1
Xn

ln

exp

l
−
ll

1
Xn

l 
xi

l = 1, if ν0 ≥ 1/Xn;

νn
0 exp

l
−ν0

 
xi

l
ll

1
Xn

ln

exp

l
−
ll

1
Xn

l 
xi

l =
ll
ν0Xn exp

l
1 − ν0Xn

lln
, if ν0 < 1/Xn.

.R =
l
x : 1 ≤ c, ν0Xn ≥ 1

l
∪
l
x :
ll
ν0Xn exp

l
1 − ν0Xn

lln ≤ c, ν0Xn < 1
l

= ∅ ∪
l
x : ν0Xn exp

l
1 − ν0Xn

l
≤ k, ν0Xn < 1

l
=

=
l
x : ν0Xn ≤ t̄1

l
.
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Xn . has a r(n, nν). distribution, so νXn ∼ r(n, n). and: 

. α = sup
0<ν≤ν0

P

l
ν0Xn ≤ t̄1

l
= sup

0<ν≤ν0

P

l
νXn ≤ ν

ν0
t̄1

l
= Pν0

l
ν0Xn ≤ ν

ν0
t̄1

l
.

The last equality is due to the fact that the sup is reached for ν = ν0 .. Then 
ν
ν0

t̄1 = γα(n, n).. 

5.4 

(a) We calculate L(p; x). and apply the LRT: 

. L(p; x) =
l

n

x

l
pk(1 − p)n−x.

. λ(x) =
sup

0≤p≤p0

L(p; x)

sup
p∈[0,1]

L(p; x)
=

sup
0≤p≤p0

l
n
x

l
px(1 − p)n−x

sup
p∈[0,1]

l
n
x

l
px(1 − p)n−x

.

The sup of the denominator corresponds to L(p; x). evaluated at p̂MLE = x/n. 

(see Fig. 5.2). 

. λ(x) =
sup

0≤p≤p0

px(1 − p)n−x

ll
x
n

lx
(1 − x

n
)n−x

=
l
1, if x/n ≤ p0 ≤ 1;
(
n·p0

x
)x(

n(1−p0)
n−x

)n−x, if 0 ≤ p0 < x/n.

.R =
l
x : 1 ≤ c, x/n ≤ p0 ≤ 1

l

∪
l
x :
lln · p0

x

lxlln(1 − p0)

n − x

ln−x ≤ c, 0 ≤ p0 < x/n
l

=

= ∅ ∪
l
x : x log

lln · p0

x

l

+ (n − x) log
lln(1 − p0)

n − x

l
≤ log c, 0 ≤ p0 < x/n

l
=

=
l
x : x log (n · p0) − x log x + (n − x) log [n(1 − p0)]

− (n − x) log (n − x) ≤ log c, 0 ≤ p0 < x/n
l
.



80 5 Likelihood Ratio Test

Fig. 5.2 Representation of L(p; x).. The maximum of L(p; x). is reached for p = x
n
. (in this case 

0.5., since we arbitrarily chose x = 5. and n = 10.) 

We try to express in function of x. We therefore study the derivative of f (x) =
x log (n · p0) − x log x + (n − x) log [n(1 − p0)] − (n − x) log (n − x).. 

. f '(x) = log(n · p0) − log(x) − 1 − log [n(1 − p0)] + log (n − x) + 1 =

= log
ll n · p0

n(1 − p0)

l
+ log

lln − x

x

l
=

= log
ll p0

1 − p0

l
+ log

lln − x

x

l
=

= log
ll p0

1 − p0

n − x

x

l
= log

llp0

x

n − x

1 − p0

l
≤ 0 for p0 ≤ x

n
.

So we conclude that: 

. R =
l
x : x ≥ c̃

l
.

That is, if we record a high number of successes, we reject H0 ..
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To make explicit c̃., requiring that the test has level α .: 

. α = sup
0≤p≤p0

P{X ≥ c̃} = sup
0≤p≤p0

1 − P{X < c̃}

= sup
0≤p≤p0

1 −
c̃−1 
x=0

l
n

x

l
px(1 − p)(n−x)

It can be shown that the sup is realised for p = p0 . and consequently calculate 
numerically c̃ .. 

(b) 

. ̃c = 0 -⇒
l
5

0

l
0.30(1 − 0.3)(5−0) = 1.

c̃ = 1 -⇒
l
5

1

l
0.31(1 − 0.3)(5−1) = 0.8319.

c̃ = 2 -⇒
l
5

2

l
0.32(1 − 0.3)(5−2) = 0.3087.

c̃ = 3 -⇒
l
5

3

l
0.33(1 − 0.3)(5−3) = 0.1631.

c̃ = 4 -⇒
l
5

4

l
0.34(1 − 0.3)(5−4) = 0.0308.

c̃ = 5 -⇒
l
5

5

l
0.35(1 − 0.3)(5−5) = 0.0024.

The test never reaches size α = 0.03.,  but  level α = 0.03. yes: R = {x > 4}.. 
5.5 Let’s calculate the LRT statistic, knowing that S2

0 . is MLE for σ 2
.: 

.λ(x) =
(2πσ 2

0 )− n
2 exp

l
− 1

2σ 2
0

 
i (xi − X)2

l

(2πS2
0)

− n
2 exp

l
− 1

2S2
0

 
i (xi − X)2

l =

=
l

S2
0

σ 2
0

l n
2

exp

l
−1

2

l 
i (xi − X)2

σ 2
0

− n

ll
=

=
l

S2
0

σ 2
0

l n
2

exp

l
n

2

l
1 − S2

0

σ 2
0

ll
.
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We obtain as rejection region (or critical region) R: 

. R = {λ ≤ c} ⇐⇒
l

S2
0

σ 2
0

exp

l
1 − S2

0

σ 2
0

l
≤ n

√
c = k

l
.

Let t = S2
0

σ 2
0
.. We therefore need to study the function g(t) = t exp(1 − t). (see 

Fig. 5.1). 

. g'(t) = exp{1 − t} − t exp{1 − t} = exp{1 − t}(1 − t);

therefore g(t). is monotonically increasing in [0, 1]. and monotonically decreasing in 
[1,+∞).. 

. R =
l

S2
0

σ 2
0

< s1

l
∪
l

S2
0

σ 2
0

> s2

l
.

Given that under H0 .:
S2
0

σ 2
0

= n−1
n

S2

σ 2
0

∼ 1
n
χ2(n − 1)., we can write R as: 

. R =
l

(n − 1)
S2

σ 2
0

< χ2
α/2(n − 1)

l
∪
l

(n − 1)
S2

σ 2
0

> χ2
1−α/2(n − 1)

l
.

5.6 

(a) N ≤ N 0 . against N > N0 .. 

. L(N; x) =
n 
1

1

N
I{1,..,N}(xi) = 1

Nn
I{x(n),+∞}(N).

. λ(x) =
sup

N≤N0

L(N; x)

sup
N∈{1,+∞)

L(N; x)
=

sup
N≤N0

1
Nn I{x(n),+∞}(N)

sup
N∈{1,+∞)

1
Nn I{x(n),+∞}(N)

=
l
0, if x(n) > N0;
1, if x(n) ≤ N0.

We set up the R, focusing on c ∈ (0, 1).. 

.R =
l
x : 1 ≤ c, x(n) ≤ N0

l
∪
l
x : 0 ≤ c, x(n) > N0

l
=

= ∅ ∪
l
x(n) > N0

l
.
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We choose a R of level α .: 

. α = sup
N≤N0

P

l
X(n) > N0

l
= 0.

(b) N = N 0 . against N /= N0 .. 

. λ(x) =
sup

N=N0

L(N; x)

sup
N∈{1,+∞)

L(N; x)
=

sup
N=N0

1
Nn I{x(n),+∞}(N)

sup
N∈{1,+∞)

1
Nn I{x(n),+∞}(N)

=

=
l
0, if x(n) > N0;
(x(n)/N0)

n, if x(n) ≤ N0.

We set the R, focusing on c ∈ (0, 1).: 

. R =
l
x : (x(n)/N0)

n ≤ c, x(n) ≤ N0

l
∪
l
x : 0 ≤ c, x(n) > N0

l
=

=
l
x(n) ≤ c1/nN0

l
∪
l
x(n) > N0

l
.

We choose an R of leve l α .: 

. α = sup
N=N0

P

l
X(n) ≤ c1/nN0

l
+ P

l
X(n) > N0

l
=
llc1/nN0l

N0

ln

;

where lal., a ∈ R., indicates the lower integer part of a. 

5.7 

(a) We calculate L(θ; x). (see Fig. 5.3): 

. L(θ; x) =
n 
1

1

θ
I[0,θ](xi) = 1

θn
I[x(n),+∞](θ).

. λ(x) =
sup

0≤θ≤θ0

L(θ; x)

sup
θ∈[0,+∞)

L(θ; x)
=

sup
0≤θ≤θ0

1
θn I[x(n),+∞](θ)

sup
θ∈[0,+∞)

1
θn I[x(n),+∞](θ)

.

The sup of the denominator corresponds to L(θ; x). evaluated at θ̂MLE = X(n) ..
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Fig. 5.3 Representation of L(θ; x).. The maximum of L(θ; x)., highlighted in the graph with a 
cross, is reached at θ = X(n) . (in this case equal to 10) 

. λ(x) =
sup

0≤θ≤θ0

1
θn I[x(n),+∞](θ)

1
xn
(n)

=
l
1, if x(n) ≤ θ0;
0, if x(n) > θ0.

We set the R, focusing on c ∈ (0, 1).: 

. R =
l
x : 1 ≤ c, x(n) ≤ θ0

l
∪
l
x : 0 ≤ c, x(n) > θ0

l
=

= ∅ ∪
l
x(n) > θ0

l
.

We choose an R of level α .: 

.α = sup
0≤θ≤θ0

P

l
X(n) > θ0

l
= sup

0≤θ≤θ0

1 − P

l
X(n) ≤ θ0

l
=

= sup
0≤θ≤θ0

1 −
l
P

l
X1 ≤ θ0

lln

= sup
0≤θ≤θ0

1 − (θ0/θ)n = 0.
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(b) We set up the LRT: 

. λ(x) =
sup
θ=θ0

L(θ; x)

sup
θ∈[0,+∞)

L(θ; x)
=

1
θn
0
I[x(n),+∞](θ0)

sup
θ∈[0,+∞)

1
θn I[x(n),+∞](θ)

.

The sup of the denominator corresponds to L(θ; x). evaluated at θ̂MLE = X(n) .. 

. λ(x) =
1
θn
0
I[x(n),+∞](θ0)

1
xn
(n)

=
l

(x(n)/θ0)
n, if x(n) ≤ θ0;

0, if x(n) > θ0.

We set the R, focusing on c ∈ (0, 1).: 

. R =
l
x : (x(n)/θ0)

n ≤ c, x(n) ≤ θ0

l
∪
l
x : 0 ≤ c, x(n) > θ0

l
=

=
l
x(n) ≤ θ0

n
√

c
l

∪
l
x(n) > θ0

l
.

We choose a R of level α .: 

. α = sup
θ=θ0

P

l
X(n) ≤ θ0

n
√

c
l

+ P

l
X(n) > θ0

l

= P

l
X(n) ≤ θ0

n
√

c
l

+ 1 − P

l
X(n) ≤ θ0

l
=

=
l
P

l
X1 ≤ θ0

n
√

c
lln

+ 1 −
l
P

l
X1 ≤ θ0

lln

= (θ0
n
√

c/θ0)
n + 1 − (θ0/θ0)

n = c.

So: Rα =
l
x(n) ≤ θ0

n
√

α
l

∪
l
x(n) > θ0

l
.. 

(c) 

. β(θ) = P{x ∈ Rα} = P{X(n) ≤ θ0
n
√

α} + P{X(n) > θ0} =
= (θ0

n
√

α/θ)n + 1 − (θ0/θ)n.

Substituting α = 5%. and θ0 = 1., we obtain the following power function: 

. β(θ) = (
n
√
0.05/θ)n + 1 − (1/θ)n.

We evaluate the function at θ = 3/2. and require it to exceed 80%.. 

.β(3/2) = 0.05 · (2/3)n + 1 − (2/3)n ≥ 0.8
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. − 0.95 · (2/3)n ≥ −0.2

. (2/3)n ≤ 0.211

. n ≥ log(0.211)

log(2/3)
= 3.84 -⇒ n ≥ 4.

5.8 

(a) 

. α = sup
θ∈o0

P{X ∈ R} = sup
θ=1

P{X > 1} = sup
θ=1

1 − P{X ≤ 1} = 1 − P1{X ≤ 1} =

= 1 −
l 1

0
2(1 − x) dx = 1 − (2x − x2)

lll1
0

= 1 − 2 + 1 = 0.

. β(θ) = P{X ∈ R} = sup
θ=1

P{X > 1} =
l θ

1

2

θ2
(θ − x) dx =

l
2

θ
x − 2

θ2

x2

2

lllll
θ

0

=

= 2 − 2

θ
− 1 + 1

θ2
= 1 − 2

θ
+ 1

θ2
=
l
1 − 1

θ

l2
=
l

θ − 1

θ

l2
.

The power function β(θ). is represented in Fig. 5.4. 
(b) 

. H0 : θ ≤ 1 vs. H1 : θ > 1.

. α = sup
θ∈o0

P{X ∈ R} = sup
θ≤1

P{X > 1} = sup
θ≤1

1 − P{X ≤ 1} =

= sup
θ≤1

1 −
l 1

0

2

θ2
(θ − x)I(0,θ)(x) dx = 1 −

l θ

0

2

θ2
(θ − x) dx = 0.

. β(θ) = P{X ∈ R} = P{X > 1} = 1 − P{X ≤ 1} =

= 1 −
l 1

0

2

θ2
(θ − x)I(0,θ)(x) dx =

=
l
1 − l θ

0
2
θ2

(θ − x) dx = 1 − 1 = 0 if θ < 1;
1 − l 10 2

θ2
(θ − x) dx = 1 − 2

θ
+ 1

θ2
if θ ≥ 1.

The power function β(θ). is represented in Fig. 5.5.
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Fig. 5.4 Representation of β(θ) =
ll

θ−1
θ

l2
.. It can be noted that β(θ) → +∞.,  for θ → 0.;  whil  e

β(θ) → 1.,  for θ → +∞. 

5.9 

(a) Let’s calculate L(θ; x). (see Fig. 5.6). 

. L(θ; x) = θn 
x2
i

 
I[0,+∞](xi) = θn 

x2
i

I[0,X(1)](θ).

We apply the definition of LRT. 

. λ(x) =
sup

0<θ≤1
L(θ; x)

sup
θ>0

L(θ; x)
.

The sup of the denominator corresponds to L(θ; x). evaluated at θ̂MLE = X(1) ..
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Fig. 5.5 Representation of β(θ) =
ll
1 − 2

θ
+ 1

θ2

l
1{θ>=1} . 

. λ(x) =

⎧⎪⎨
⎪⎩

Xn
(1) 
x2i

/
Xn

(1) 
x2i

= 1, if 1 ≥ X(1);
1 
x2i

/
Xn

(1) 
x2i

=
ll

1
X(1)

ln
, if 1 < X(1).

We impose that the R is of level α . and focus on c ∈ (0, 1).: 

. R = {x : λ(x) ≤ c} = {x : 1 ≤ c,X(1) ≤ 1} ∪ {x :
ll 1

X(1)

ln ≤ c,X(1) > 1} =

= ∅ ∪ {x : X(1) ≥ 1/c1/n = 1/k,X(1) > 1} = {x : X(1) ≥ 1/k}.

.α = sup
0<θ≤1

P{x ∈ R} = sup
0<θ≤1

P{X(1) ≥ 1/k} = sup
0<θ≤1

ll l +∞

1/k

θ/x2 dx
ln =

= sup
0<θ≤1

ll
θ · −1

x

lll+∞
1/k

ln = sup
0<θ≤1

ll
kθ
ln = kn -⇒ k = n

√
α.
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Fig. 5.6 Representation of L(θ; x).. The maximum of L(θ; x). is represented with a cross and is 
reached at θ = X(1) . (10 in this case) 

. Rα = {x : X(1) ≥ 1/ n
√

α}.

(b) Let’s calculate the power function of the test found in (a): 

. β(θ) = P{x ∈ R} =
ll l +∞

1/ n
√

α

θ/x2 dx
ln =

l
1, if θ ≥ 1/ n

√
α;

αθn, if θ < 1/ n
√

α.

The function β(θ). is represented in Fig. 5.7. 
(c) Let’s calculate the minimum value of n such that the test of size α = 0.04. found 

in (a) has power 1 against θ = 3.. 

. β(θ) = 1 -⇒ θ ≥ 1/ n
√

α -⇒ α ≥ 1/θn -⇒ logα ≥ −n log θ

-⇒ n ≥ − logα

log θ
= − log 0.04

log 3
= 2.93.

We conclude that n ≥ 3..
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Fig. 5.7 Representation of β(θ).. The angular point is recorded at θ = 1/ n
√

α . (in this case about 
1.82., since we chose n = 5. and α = 0.05.) 

5.10 

(a) We show that the size of R is indeed α ., remembering that X ∼ N(θ, σ 2/n).: 

.α = sup
θ≤θ0

P{x ∈ R} = sup
θ≤θ0

P{X > θ0 + z1−α

l
σ 2/n} =

= sup
θ≤θ0

P

l
X − θl
σ 2/n

>
θ0 + z1−α

l
σ 2/n − θl

σ 2/n

l
=

= sup
θ≤θ0

1 − o

l
θ − θ0l
σ 2/n

+ z1−α

l
=

= 1 − o(z1−α) = 1 − (1 − α) = α.
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We now show that the same R can be obtained through LRT: 

. λ(x) =
sup
θ≤θ0

L(θ; x)

sup
θ∈R

L(θ; x)
=

sup
θ≤θ0

(2πσ 2)−n/2 exp{−
 

(xi−θ)2

2σ 2 }

sup
θ∈R

(2πσ 2)−n/2 exp{−
 

(xi−θ)2

2σ 2 }
.

The sup of the denominator corresponds to L(θ; x). evaluated at θ̂MLE = X .. 

. λ(x) =
sup
θ≤θ0

exp{−
 

(xi−θ)2

2σ 2 }

exp{−
 

(xi−X)2

2σ 2 }
=

sup
θ≤θ0

exp{−
 

(xi−X+X−θ)2

2σ 2 }

exp{−
 

(xi−X)2

2σ 2 }
=

=
sup
θ≤θ0

exp{−
 

(xi−X)2+(X−θ)2+2(xi−X)(X−θ)

2σ 2 }

exp{−
 

(xi−X)2

2σ 2 }
=

=
sup
θ≤θ0

exp{−
 

(xi−X)2+(X−θ)2

2σ 2 }

exp{−
 

(xi−X)2

2σ 2 }
= sup

θ≤θ0

exp
l

−
 

(X − θ)2

2σ 2

l
.

We can conclude that: 

. λ(x) =
⎧⎨
⎩1, if X < θ0;
exp
l

− n·(Xn−θ0)
2

2σ 2

l
, if X ≥ θ0.

We set the R, focusing on c ∈ (0, 1).: 

.R = {x : λ(x) ≤ c} =

= {x : 1 ≤ c,X < θ0} ∪ {x : exp
l

− n · (X − θ0)
2

2σ 2

l
≤ c,X ≥ θ0} =

= ∅ ∪ {x : exp
l

− n · (X − θ0)
2

2σ 2

l
≤ c,X ≥ θ0} =

= {x : X ≥
l

−2σ 2

n
log c + θ0, X ≥ θ0}.
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Now we impose the size of R equal to α .: 

. α = sup
θ≤θ0

P{x ∈ R} = sup
θ≤θ0

P

l
X ≥

l
−2σ 2

n
log c + θ0

l
=

= sup
θ≤θ0

P

l
X − θl
σ 2/n

≥
l

− 2σ 2

n
log c + θ0 − θl
σ 2/n

l
=

= sup
θ≤θ0

1 − o

l
θ0 − θ +

l
− 2σ 2

n
log cl

σ 2/n

l
=

= 1 − o

ll−2 log c

l
-⇒ l−2 log c = z1−α -⇒ c = e− z21−α

2 .

Then Rα = {x : X > θ0 + z1−α

l
σ 2/n}.. 

(b) We show that the size of this R is indeed α ., remembering that X−θ√
S2/n

∼ tn−1 .. 

. α = sup
θ≤θ0

P{x ∈ R} = sup
θ≤θ0

P{X > θ0 + tn−1,1−α

l
S2/n} =

= sup
θ≤θ0

P

l
X − θl
S2/n

>
θ0 + tn−1,1−α

l
S2/n − θl

S2/n

l
=

= sup
θ≤θ0

1 − tn−1

l
θ0 − θl

S2/n
+ tn−1,1−α

l
= 1 − (1 − α) = α.

We now show that the same R can be obtained through LRT: 

. λ(x) =
sup

θ≤θ0, σ
2>0

L(θ; x)

sup
θ∈R, σ 2>0

L(θ; x)
=

sup
θ≤θ0, σ

2>0
(2πσ 2)−n/2 exp{−

 
(xi−θ)2

2σ 2 }

sup
θ∈R, σ 2>0

(2πσ 2)−n/2 exp{−
 

(xi−θ)2

2σ 2 }
.

The sup of the denominator corresponds to L(θ; x). evaluated at θ̂MLE = X . and 

σ̂ 2
MLE = σ̂ 2 =

 
(xi−X)2

n
= n−1

n
S2

.. 

.λ(x) =
sup

θ≤θ0, σ
2>0

σ−n exp{−
 

(xi−θ)2

2σ 2 }

σ̂−n exp{−
 

(xi−X)2

2σ̂ 2 }



5.3 Solutions 93

= 
sup 

θ≤θ0,  σ 2>0 
σ−n exp{−

 
(xi−X+X−θ)2 

2σ 2 } 

σ̂−n exp{−
 

(xi−X)2 

2σ̂ 2 } 
= 

= 
sup 

θ≤θ0,  σ 2>0 
σ−n exp{−

 
(xi−X)2+(X−θ)2+2(xi−X)(X−θ)  

2σ 2 } 

σ̂−n exp{−
 

(xi−X)2 

2σ̂ 2 } 
= 

= 
sup 

θ≤θ0,  σ 2>0 
σ−n exp{−

 
(xi−X)2+(X−θ)2 

2σ 2 } 

σ̂−n exp{−
 

(xi−X)2

2σ̂ 2 }
.

Writing σ̂ 2
0 =

 
(xi−θ0)

2

n
= S2

0 = (X − θ0)
2 + n−1

n
S2

., we can conclude that: 

. λ(x) =

⎧⎪⎪⎨
⎪⎪⎩
1, if X < θ0;
σ̂−n
0 exp{−

 
(xi−X)2+(X−θ0)2

2σ̂20
}

σ̂−n exp{−
 

(xi−X)2

2σ̂2
}

=
ll

σ̂ 2

σ̂ 2
0

ln/2
, if X ≥ θ0.

We set the R, focusing on c ∈ (0, 1).: 

.R = {x : λ(x) ≤ c} = {x : 1 ≤ c,X < θ0} ∪ {x :
ll σ̂ 2

σ̂ 2
0

ln/2 ≤ c,X ≥ θ0} =

= ∅ ∪ {x : σ̂ 2

σ̂ 2
0

≤ c2/n = k,X ≥ θ0} =

= {x :
n−1
n

S2

(X − θ0)2 + n−1
n

S2
≤ k, X ≥ θ0} =

= {x : (X − θ0)
2

S2 + n − 1

n
≥ n − 1

nk
, X ≥ θ0} =

= {x :
l

X − θ0

S

l2
≥ n − 1

k
− n − 1

n
, X ≥ θ0} =

= {x :
l

X − θ0

S/
√

n

l2
≥ n − 1

k
− (n − 1), X ≥ θ0} =

= {x : X − θ0

S/
√

n
≥
l

n − 1

k
− (n − 1) = k̃, X ≥ θ0} =

= {x : X ≥ θ0 + S√
n

· k̃}.
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Now we impose the size of R equal to α .: 

. α = sup
θ≤θ0

P{x ∈ R} = sup
θ≤θ0

P

l
X ≥ θ0 + S√

n
· k̃
l

=

= sup
θ≤θ0

1 − P

l
X − θl
S2/n

≤
θ0 + S√

n
· k̃ − θl

S2/n

l
=

= sup
θ≤θ0

1 − tn−1

lθ0 + S√
n

· k̃ − θl
S2/n

l
=

= 1 − tn−1(k̃) -⇒ tn−1(k̃) = tn−1,1−α.

Then Rα = {x : X > θ0 + tn−1,1−α

l
S2/n}..



Chapter 6 
Uniformly Most Powerful Test 

6.1 Theory Recap 

Definition 6.1 (Uniformly Most Powerful (UMP) Test) Let C. be a class of tests 
H0 : θ ∈ o0 . vs H1 : θ ∈ oc

0 .. A test of the class C. with power function β(θ). is the 
uniformly most powerful test, UMP, of the class C., if:  

. β(θ) ≥ β '(θ) ∀θ ∈ oc
0, ∀β ' power function associated with a test in C.

Theorem 6.1 (Neyman-Pearson) Consider the following class of tests: 

. 

l
H0 : θ = θ0;
H1 : θ = θ1;

where the probability density associated with X . is f (X; θi). with i ∈ {0, 1}..  If  we  
use a test whose rejection region satisfies:

.

x ∈ R if f (x; θ1) > kf (x; θ0)

and
x ∈ Rc if f (x; θ1) < kf (x; θ0)

(6.1) 

for some k ≥ 0. and 

.α = Pθ0{X ∈ R}. (6.2) 

Then: 

• Every test that satisfies Eq. (6.1), (6.2) is a UMP test of level α .. 
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Table 6.1 Karlin-Rubin Theorem (Theorem 6.2) varying the hypotheses and the MLR 

TEST MLR R 

H0 : θ ≤ θ0 . against H1 : θ > θ0 . Non-decreasing R = {T > t0}. 
H0 : θ ≤ θ0 . against H1 : θ > θ0 . Non-increasing R = {−T > t0}. 
H0 : θ ≥ θ0 . against H1 : θ < θ0 . Non-decreasing R = {T < t0}. 
H0 : θ ≥ θ0 . against H1 : θ < θ0 . Non-increasing R = {−T < t0}.

 If there exists a test that satisfies Eq. (6.1), (6.2) with k > 0., then every UMP test 
of level α . is also a test of size α . (satisfies Eq. (6.2)), and every UMP test of level 
α . satisfies Eq. (6.1) except for a set A, which satisfies Pθ0{X ∈ A} = Pθ1{X ∈
A} = 0.. 

Definition 6.2 (Monotone Likelihood Ratio) A family of probability densities 
{g(t; θ) : θ ∈ o ⊂ R}. for a r.v. T has a monotone likelihood ratio, MLR, if, ∀ θ2 . 

and ∀ θ1 . such that θ2 > θ1 ., g(t; θ2)/g(t; θ1). is a monotone function (non-increasing 
or non-decreasing) of t . 

Theorem 6.2 (Karlin-Rubin) Consider the following class of tests: 

. 

l
H0 : θ ≤ θ0;
H1 : θ > θ0.

Suppose that T is a sufficient statistic for θ . and that the family of probability 
densities {g(t; θ) : θ ∈ o}. of T has a non-decreasing MLR. Then for every t0 ., 
the test that rejects H0 . if and only if T > t0 . is a UMP test of level α ., where 
α = Pθ0{T > t0}.. The other cases are reported in Table 6.1. 

6.2 Exercises 

Exercise 6.1 Given the family of laws: 

. fX(x; θ) = 2

θ2

l
θ − x

l
I(0,θ)(x) ;

we want to test H0 : θ = θ0 . against H1 : θ = θ1 ., with 0 < θ1 < θ0 .. 

(a) Find a most powerful test of level α . based on a sample of size 1. 
(b) Calculate the power of the test in the previous point against θ1 .. 

Exercise 6.2 Find a most powerful test of level α . based on a sample of size 1 to 
verify H0 : X ∼ N(0, 1). against H1 : X ∼ C(0, 1)., i.e., X is a Cauchy variable 
with median 0.
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Exercise 6.3 Let X1, . . . , Xn . be a random sample from a population N(μ, σ 2
0 )., 

with μ ∈ R. unknown and σ 2
0 > 0. known. 

(a) Find a most powerful test of level α . for H0 : μ = μ0 . against H1 : μ = μ1 ., with 
μ1 > μ0 .. 

(b) Deduce from (a) a uniformly most powerful test of level α . for H0 : μ = μ0 . 

against H1 : μ > μ0 .. 

Exercise 6.4 For a variable X, consider the statistical model defined by: 

. f (x; θ) = θ xθ−1, 0 < x < 1.

(a) Find a Neyman-Pearson test of size α . (based on a sample of size 1) for H0 :
θ = 1. against H1 : θ = θ1 ., with θ1 > 1.. 

(b) Is the test found in (a) biased? 
(c) For the statistical hypotheses of point (a), given θ1 > 1., calculate the maximum 

power that an arbitrary test of size α . can have. 
(d) Deduce from (a) a uniformly most powerful test of level α . for H0 : θ = 1. 

against H1 : θ > 1.. 

Exercise 6.5 Find a most powerful test of level α . based on a sample of size 1 to 
verify H0 : X ∼ f0 . against H1 : X ∼ f1 ., where: 

. f0(x) = e−x2/2

√
2π

, f1(x) = e−|x|

2
.

Exercise 6.6 Show that the statistical model defined by 

. f (x; θ) = 1

π [1 + (x − θ)2] , θ ∈ R,

does not have a likelihood ratio that is monotonic in X. 

Exercise 6.7 Given two natural numbers n < N ., show that the hypergeometric 
statistical model G(N,M, n)., 0 ≤ M ≤ N ., has a monotonic likelihood ratio. 

Exercise 6.8 Given the family of exponential laws E(λ)., λ > 0., find a uniformly 
most powerful test of level α . for H0 : λ ≤ λ0 . against H1 : λ > λ0 . based on a 
sample of size n. 

Exercise 6.9 Consider a random sample X1, . . . , Xn . from a population U
l[0, θ ]l., 

θ > 0.. To test H0 : θ ≤ θ0 . against H1 : θ > θ0 ., consider the rejection region: 

.Rα =
l
x(n) > (1 − α)1/nθ0

l
.
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(a) Verify that Rα . has size α . and calculate its power function. 
(b) Is the test given by Rα . biased? 
(c) Show that the model has a likelihood ratio that is monotonic with respect to 

T = X(n) .. 
(d) Deduce from (c) that Rα . defines a uniformly most powerful test of any test of 

level α . for H0 : θ ≤ θ0 . against H1 : θ > θ0 .. 

Exercise 6.10 Let X be a sample of size one from a distribution with density:

. fX(x; θ) = 2

θ2
(θ − x)I(0,θ)(x)

with θ ∈ (0,∞).. Consider the problem of testing the hypotheses: 

. H0 : θ = 1 vs. H1 : θ > 1.

Given α ∈ (0, 1),. construct the rejection region of the uniformly most powerful test 
δ1 . of level α . and calculate its power function. 

Exercise 6.11 Consider a single variable X described by the statistical model:

. fX(x; θ) = ex−θl
1 + ex−θ

l2 , −∞ < x < +∞, −∞ < θ < +∞.

Let α ∈ (0, 1).. 

(a) Find a most powerful test of level α . for H0 : θ = 0. against H1 : θ = 1.. 
(b) Find a uniformly most powerful test of level α . for H0 : θ = 0. against H1 : θ >

0.. 
(c) Show that the model has a likelihood ratio that is monotonic in X. 
(d) Find a UMP test of level α . for H0 : θ ≤ 0. against H1 : θ > 0.. 
(e) Calculate the power of the test in (a) in the case α = 0.3.. 

Exercise 6.12 For n ≥ 1,. let X1, ..., Xn . be a random sample from a distribution 
having density: 

. fX(x; θ) =

⎧⎪⎪⎨
⎪⎪⎩

1

θ
mxm−1e− xm

θ if x > 0;

0 otherwise;

where m is a known natural number and θ . is an unknown positive parameter. Given 
θ0 > 0,. determine the rejection region of the level test α ∈ (0, 1). uniformly most 
powerful for testing the hypotheses: 

.H0 : θ = θ0 against H1 : θ > θ0.
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6.3 Solutions 

6.1 

(a) To find a more powerful level α . test based on a sample of size 1, we apply N-P 
(Theorem 6.1). 
We calculate the rejection region: 

. R = {x : f (x; θ1) > k · f (x; θ0)} =

=
l

x : 2

θ2
1

l
θ1 − x

l
I(0,θ1)(x) > k · 2

θ2
0

l
θ0 − x

l
I(0,θ0)(x)

l

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l
x : 2

θ2
1
(θ1 − x) > k · 2

θ2
0

l
θ0 − x

l
I(0,θ0)(x)

l
if 0 < x < θ1;l

x : 0 > k · 2
θ2
0

l
θ0 − x

l
I(0,θ0)(x)

l
= ∅ if θ1 ≤ x ≤ θ0;l

x : 0 > 0
l

= ∅ if x > θ0.

We consider the only non-trivial case, namely x ∈ (0, θ1).. Then: 

. R =
l

x :
l
θ1 − x

l
l
θ0 − x

l > k · θ2
1

θ2
0

= k̃

l
.

We define g(x) =
l
θ1−x
ll

θ0−x
l .. This is a homographic function that has x = θ1 . as 

a vertical asymptote and y = 1. as a horizontal asymptote (see Fig. 6.1, first 
graph from the left). In the right graph of Fig. 6.1, g(x). is represented in its real 
domain, i.e., x ∈ (0, θ1)., while the dashed line corresponds to a possible value 
of k̃ .. We can therefore conclude that the rejection region is of the form {X < c}., 
where c ∈ (0, θ1).. 
We then impose that the test is of level α .: 

.α = Pθ0{X ∈ R} = Pθ0{X < c} =

=
l c

0

2

θ2
0

l
θ0 − x

l
dx = 2

θ0
x − x2

θ2
0

llll
c

0

=

= c

θ0

l
2 − c

θ0

l
⇒ c = θ0(1 − √

1 − α).
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Fig. 6.1 Representation of g(x) =
l
θ1−x
ll

θ0−x
l .. In the left graph, the function is represented on R. and 

the asymptotes are highlighted. In the right graph, the function is evaluated only on x ∈ (0, θ1)., 
which is the real domain of our function. The dashed line in the right graph represents a possible 
value of y = k̃ . 

(b) 

. β(θ1) = Pθ1{X < θ0(1 − √
1 − α)} =

=
l θ0(1−

√
1−α)

0

2

θ2
1

l
θ1 − x

l
dx = 2

θ1
x − x2

θ2
1

llll
θ0(1−

√
1−α)

0

=

= θ0(1 − √
1 − α)

θ1

l
2 − θ0(1 − √

1 − α)

θ1

l
.

6.2 In this case we can apply N-P (Theorem 6.1). 

.R =
l
x : f1(x) > k · f0(x)

l
k ≥ 0.
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We calculate R: 

. R =
l
x : f1(x) > k · f0(x)

l
=
l
x : 1

π(1 + x2)
>

1√
2π

ke−x2/2
l

=

=
l
x : ex2/2

(1 + x2)
>

π√
2π

k = k̃

l
.

We observe that g(x) = ex2/2

(1+x2)
. is a non-negative even function, defined on all R.. 

Given that g(x). is even, it is sufficient to study g(t) = et/2

(1+t)
. with t = x2 ≥ 0.. 

. g'(t) = et/2

(1 + t)

t − 1

2
.

Then g(t). is increasing for t ≥ 1., while it is decreasing for t < 1.. 
max(g(x2)) = 1., reached at x = 0. (note: local maximum); min(g(x2)) =

exp{1/2}/2., reached at x = ±1. (note: global minima). 
We represent the function g(x2). in Fig. 6.2, highlighting three different possible 

k̃ .with different lines. To define the rejection region we must distinguish based on k̃ .: 

. R =
l
x : ex2/2

(1 + x2)
>

π√
2π

k = k̃

l
=

=

⎧⎪⎪⎨
⎪⎪⎩
R if k̃ < exp{1/2}/2;
{−c1 < x < c1} ∪ {x < −c2} ∪ {x > c2} if exp{1/2}/2 < k̃ < 1;
{x < −c2} ∪ {x > c2} if k̃ > 1.

We then set the significance level of the test. 
The first case is trivial. Let’s focus on the second and third case. 

Case 2: exp{1/2}/2 < k̃ < 1.. 

.α = PH0{−c1 < X < c1} + PH0{X < −c2} + PH0{X > c2} =
= φ(c1) − φ(−c1) + φ(−c2) + 1 − φ(c2) =
= 2φ(c1) − 1 + 2(1 − φ(c2)) =
= 2φ(c1) − 1 + 2 − 2φ(c2) =
= 1 + 2φ(c1) − 2φ(c2).



102 6 Uniformly Most Powerful Test

Fig. 6.2 Representation of g(x) = ex2/2

(1+x2)
.. In particular: k̃ < exp{1/2}/2. 

exp{1/2}/2 < k̃ < 1. k̃ > 1. 

We can find c1 . and c2 ., by numerically solving the following system: 

.

l
α = 1 + 2φ(c1) − 2φ(c2);
g(c1) = g(c2).

(6.3) 

Case 3: k̃ > 1.. 

.α = PH0{X < −c2} + PH0{X > c2} = 2(1 − φ(c2)). =⇒ c2 = z1−α/2.
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6.3 

(a) We apply N-P (Theorem 6.1): 

. f (x;μ) =
⎛
⎝ 1ll

2πσ 2
0

⎞
⎠

n

exp

l
− 1

2σ 2
0

nl
i=1

(xi − μ)2

l
=

=
⎛
⎝ 1ll

2πσ 2
0

⎞
⎠

n

exp

l
− 1

2σ 2
0

nl
i=1

x2
i

l

l ,, ,
h(x)

· exp
l

nxnμ

σ 2
0

− nμ2

σ 2
0

l
l ,, ,

g(t;μ)

.

We apply N-P (Theorem 6.1) for sufficient statistics. 
Observation 

. g(t;μ1) > kg(t;μ0) ⇐⇒ ntμ1

σ 2
0

− nμ2
1

2σ 2
0

> log k +
l

ntμ0

σ 2
0

− nμ2
0

2σ 2
0

l

⇐⇒ nt (μ1 − μ0) > log k' + n

2
(μ2

1 − μ2
0)

μ1>μ0⇐⇒ t >
2 log k' + n(μ2

1 − μ2
0)

n(μ1 − μ0)
.

Then R = {x : X > c}.. We then impose that the test is of level α .: 

. α = PH0 {X ∈ R} = P

l
Xn − μ0

σ0/
√

n
>

c − μ0

σ0/
√

n

l
⇐⇒ c − μ0

σ0/
√

n
= z1−α.

We can therefore write the rejection region of the UMP test of level α . as: 

. Rα =
l
Xn > μ0 + σ0√

n
z1−α

l
.

(b) Given that the likelihood ratio is monotonic and X . is a sufficient statistic, then 

the test characterised by Rα =
l
Xn > μ0 + σ0√

n
z1−α

l
. is still UMP at level α .. 

6.4 

(a) We apply N-P (Theorem 6.1). We derive the rejection region: 

.R = {x : f (x; θ1) > k · f (x; 1)} = {x : θ1 xθ1−1
I(0,1)(x) > k · I(0,1)(x)} =

= {x : x >
( k

θ1

)1/(θ1−1) = k̃} = {x : x > k̃}.
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Fig. 6.3 Representation of the power function β(θ). associated with the test (θ ≥ 1.) 

We set the test level equal to α .. 

. α = P1{X ∈ R} = P1{X > k̃} =
l 1

k̃

dx = 1 − k̃ =⇒ k̃ = 1 − α.

So: Rα = {X > 1 − α}.. 
(b) To answer the question we calculate the power function: 

. β(θ) = Pθ {X > 1 − α} =
l 1

1−α

θ xθ−1 dx = xθ
lll1
1−θ

= 1 − (1 − α)θ .

We immediately notice that the power function is monotonically increasing 
therefore it satisfies the requirement to be an unbiased test: 

. β(θ ') ≥ β(θ '') ∀θ ' > 1, θ '' = 1.

See Fig. 6.3. 
(c) Since N-P (Theorem 6.1) guarantees us to have found a UMP test, by definition 

of UMP, we can affirm that: 

.β '(θ) ≤ 1 − (1 − α)θ1 .
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β '
. is the power function associated with a generic test of the same class as the 

considered test (level α . test). 
(d) Since Rα . does not depend on θ1 ., we can affirm that: the level α . test, associated 

with the test H0 : θ = 1. against H1 : θ > 1., is UMP at level  α .. 

6.5 

. 

⎧⎨
⎩H0 : X ∼ f0 f0(x) = e−x2/2√

2π
;

H1 : X ∼ f1 f1(x) = e−|x|√
2

.

We apply N-P (Theorem 6.1): 

. R = {f1 > kf0} =
l

e−|x|
√

2
> k · e−x2/2

√
2π

l
=

=
l

e−|x|
√

2
·

√
2π

e−x2/2
> k

l
=

=
l

e−|x|

e−x2/2
> c

l
=

=
l
ex2/2−|x| > c

l
=

=
l
x2/2 − |x| > c'l .

The function g(x) = x2/2 − |x|. is even, and exists on all R.. In Fig. 6.4 g(x). is 
represented and the lines relative to different possible values of c'

.. 
We therefore have to distinguish 4 cases: 

. CASE 1 c' < −0.5 ⇒ R = R;
CASE 2 c' = −0.5 ⇒ R = R \ {±1};
CASE 3 − 0.5 < c' < 0 ⇒ R = {|X| ≤ x1} ∪ {|X| > x2}

d0 ≤ x1 ≤ 1 < x2 < 2;
CASE 4 c' ≥ 0 ⇒ R = {|X| > x3} x3 > 2.

.CASE 1 α = 1;
CASE 2 α = 1;
CASE 3 α = 1 − 2[φ(x2) − φ(x1)];
CASE 4 α = 2(1 − φ(x3)).
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Fig. 6.4 Representation of g(x) = x2/2 − |x|. and different values of c' .. In particular: 
c' < −0.5. c' = −0.5. − 0.5 < c' < 0. 
c' ≥ 0. 

6.6 Let θ1 < θ2 .. 

. 
f (x; θ1)

f (x; θ2)
= 1 + (x − θ2)

2

1 + (x − θ1)2
.

lim
x→±∞

1 + (x − θ2)
2

1 + (x − θ1)2
= 1.

Therefore it cannot be monotonic in x. 

6.7 

. n < N, G(N,M, n), 0 ≤ M ≤ N.

.X ∼ G(N,M, n) f (x;M) =
l
M
x

ll
N−M
n−x

l
l
N
n

l .
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Consider M and M + 1. and calculate the likelihood ratio: 

. 
f (x;M + 1)

f (x;M)
=
l
M+1

x

ll
N−M−1

n−x

l
l
M
x

ll
N−M
n−x

l = M + 1

N − M
· N − M − n + x

M + 1 − x
;

which is increasing in x. 

6.8 We apply the K-R Theorem (Theorem 6.2). 

(a) We derive a sufficient statistic for θ .. We write the joint density: 

. fx(x; θ) = λne−λ
E

xi .

We immediately notice that the density E. belongs to the exponential family, 
therefore: 

. T (X) =
l

Xi

is a sufficient statistic (it can be seen immediately that it is also complete 
because λ ∈ (0,+∞)., which contains an open set of R.). 

(b) We derive the law of T: T (X) ∼ g(t; λ).. 

. Xi ∼ E(λ)
d= r(1, λ) =⇒ T =

l
Xi ∼ r(n, λ).

(c) We verify that T has MLR (Monotone Likelihood Ratio). 
Let λ2 > λ1 .. 

. 
g(t; λ2)

g(t; λ1)
= 1/r(n)e−λ2t · λ2

2 · tn−1

1/r(n)e−λ1t · λ2
1 · tn−1

= e(λ1−λ2)t ·
(λ2

λ1

)n
.

The likelihood ratio is monotonically decreasing. 

Given the assumptions for the application of K-R (Theorem 6.2), we can say that: 

. R = {−T > t0} = {T < −t0 = t̃0}.

We set the test level: 

.α = sup
0<λ≤λ0

P{T < t̃0} = Pλ0{T < t̃0} =⇒ t̃0 = γ α
n,λ0

.
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6.9 

(a) We calculate the law of X(n) .: 

. P{X(n) ≤ t} = (P{Xi ≤ t})n =
( t

θ

)n
I(0,θ)(t) =

( t

θ

)n
I(t,+∞)(θ).

Then we calculate α .: 

. α = sup
θ≤θ0

P{X ∈ Rα} = sup
θ≤θ0

P

l
X(n) > (1 − α)1/nθ0

l
=

= sup
θ≤θ0

1 − P

l
X(n) ≤ (1 − α)1/nθ0

l
=

= sup
θ≤θ0

l
1 −
l

1

θ
(1 − α)1/nθ0

lnl
=

= [1 − (1 − α)] = α.

The sup is reached for θ = θ0 .. We then calculate the power function β(θ).: 

. β(θ) = Pθ {X ∈ Rα} = P

l
X(n) > (1 − α)1/nθ0

l
=

= 1 − P

l
X(n) ≤ (1 − α)1/nθ0

l
=

= 1 − [(1 − α)1/nθ0]n
θn

I(0,θ)((1 − α)1/nθ0).

(b) We immediately notice that the power function is monotonically increasing 
therefore it satisfies the requirement to be an undistorted test: 

. β(θ ') ≥ β(θ '') ∀θ ' > θ0, θ '' ≤ θ0.

(c) From point (a) we immediately derive that: 

. fX(n)
(t) = n

t(n−1)

θn
I(0,θ)(t).

Let’s calculate the MLR, considering θ2 > θ1 .: 

. 
g(t; θ2)

g(t; θ1)
=

n t(n−1)

θn
2

I(0,θ2)(t)

n t(n−1)

θn
1

I(0,θ1)(t)
= θn

1

θn
2

I(0,θ2)(t)

I(0,θ1)(t)
=
⎧⎨
⎩
(

θ1
θ2

)n
, if t ≤ θ1;

+∞, if t > θ1.

We immediately notice that the MLR is monotonically increasing.
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(d) Let’s consider the following test: H0 : θ ≤ θ0 . against H1 : θ > θ0 .. 
Since the test is not simple, to find the UMP of level α ., we try to apply K-R 
(Theorem 6.2). We know that T = X(n) . is a sufficient statistic for θ . and that it 
has a monotonically increasing MLR. Given the assumptions for the application 
of K-R (Theorem 6.2), we can say that the UMP test has the following rejection 
region: 

. R = {X(n) > t0}.

Furthermore, from the previous points we can conclude that: 

. Rα =
l
X(n) > (1 − α)1/nθ0

l
.

6.10 To answer the question we set up the following test, in order to apply N-P 
(Theorem 6.1). 

. H0 : θ = 1 vs. H1 : θ = θ1 θ1 > 1.

We define the rejection region: 

. R =
l
x : f (x; θ1) > k · f (x; 1)

l

=
l
x : 2

θ2
1

(θ1 − x)I(0,θ1)(x) > k · 2(1 − x)I(0,1)(x)

l
=

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l
x : 2

θ2
1
(θ1 − x) > k · 2(1 − x)

l
= {x : θ−x

1−x
> kθ2} if 0 < x ≤ 1;l

x : 2
θ2
1
(θ1 − x) > 0

l
= {1 < x ≤ θ1} if 1 < x ≤ θ1;l

x : 0 > 0
l

= ∅ if x > θ1.

We focus on the only non-trivial case and notice that g(x) = θ−x
1−x

. is monotoni-
cally increasing and has as codomain [θ1,+∞].. Therefore: 

. R = {X > c}.

We impose that the level of the test is α .. 

.α = sup
θ∈o0

P{X > c} = P1{X > c} =

=
l 1

c

2(1 − x) dx = 2x − x2
llll
1

c

=

= 2 − 1 − (2c − c2) = (1 − c)2.
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We can conclude that: c = 1 − √
α .. 

. Rα = {X > 1 − √
α}.

N-P (Theorem 6.1) guarantees that this test is UMP of level α .. 
We evaluate the power function: 

. β(θ) = Pθ

l
X > 1 − √

α

l
=
l θ

1−√
α

2

θ2 (θ − x)dx = 2

θ
x − x2

θ2

llll
θ

1−√
α

=

= 2 − 1 − 2

θ
(1 − √

α) + 1

θ2 (1 − √
α)2 =

= 1 − 2

θ
(1 − √

α) + 1

θ2 (1 − √
α)2 =

=
l
1 − (1 − √

α)

θ

l2

.

This is valid if 1 − √
α < θ ., otherwise β(θ) = 0.. 

6.11 

(a) 

. 

l
H0 : θ = 0;
H1 : θ = 1.

We apply N-P (Theorem 6.1): 

. R = {x : f (x; 1) > kf (x; 0)} =
l

ex−1

(1 + ex−1)2
> k

ex

(1 + ex)2

l
=

=
l
x : (1 + ex)2

(1 + ex−1)2
> k

ex

ex−1 = k'
l

=

=
l
x : 1 + ex

1 + ex−1
> k̃

l
=

=
l
x : 1 + ex > k̃(1 + ex−1)

l
=

=
l

x : ex(1 − k̃) > k̃ − 1 + k̃

c

l
.

So the rejection region is of the form: {X > γ }..
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We therefore impose that the test level is equal to α .: 

. α = P0{X > γ } =
l +∞

γ

ex

(1 + ex)2
dx = − 1

1 + ex

llll
+∞

γ

= 1

1 + eγ
= α.

Hence: 

. Rα =
l
X > log

l
1 − α

α

ll

is a UMP test of level α .. 
(b) Given that R, in the case of simple hypotheses, does not depend on H1 .: 

. R =
l
x : X > log

l
1 − α

α

ll
.

(c) Let θ2 > θ1 .: 

. 
f (x; θ2)

f (x; θ1)
= ex−θ2e−x+θ1

l
1 + ex−θ1

1 + ex−θ2

l2

.

d

dx

l
1 + ex−θ1

1 + ex−θ2

l
= ex−θ1(1+ ex−θ2)− (1− ex−θ1)ex−θ2

(1 + ex−θ2)2
= ex−θ1 − ex−θ2

(1+ ex−θ2)2
> 0.

The likelihood ratio is monotonically increasing in x. 
(d) UMP test of level α . for the following hypotheses: 

. 

l
H0 : θ ≤ 0;
H1 : θ > 0.

is of the form R = {X > k}., according to K-R (Theorem 6.2) We therefore 
impose that P0{X ∈ R} = α .. Then: 

. Rα =
l
X > log

l
1 − α

α

ll
.

(e) 

. α = 0.3 ⇒
l
X > log

l
0.7

0.3

l
= 0.8473

l
.

.β1(θ) = P1{X > 0.8473} =
l +∞

0.8473

ex−1

(1 + ex−1)2
dx =
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= − 1 

1 + ex−1

llll
+∞ 

0.8473 

= 1 

1 + e0.8473−1 ~ 0 .5381.

6.12 I proceed using N-P (Theorem 6.1) on the following test: 

. H0 : θ = θ0 vs H1 : θ = θ1 θ1 > θ0.

If the rejection region does not depend on θ1 ., then we can say we have found the 
UMP test of level α .. 

. R =
l
x : f (x; θ1) > k · f (x; θ0)

l
=

=
l
x : 1

θ1
mxm−1e

− xm

θ1 I(0,+∞)(x) > k · 1

θ0
mxm−1e

− xm

θ0 I(0,+∞)(x)

l
=

=
l
x : e

xm

θ0
− xm

θ1 > k · θ1

θ0

l
=

=
l
x : xm

l
1

θ0
− 1

θ1

l
> log

l
k · θ1

θ0

ll
=

=
l
x : x >

l
log

l
k · θ1

θ0

l
θ0θ1

θ1 − θ0

l1/m

= c

l
.

So the rejection region is of the form: R = {x : x > c}.. 
We therefore impose that it is of level α .: 

. α = sup
θ=θ0

= P{X > c} = 1 − P{X ≤ c} =

= 1 −
l c

0

1

θ0
mxm−1e

− xm

θ0 dx = 1 + e
− xm

θ0

llll
c

0

= 1 + e
− cm

θ0 − 1 = e
− cm

θ0 .

Then: 

. c = (−θ0 logα)1/m.

So Rα = {X > (−θ0 logα)1/m}.. Given that it does not depend on θ1 ., we conclude 
that this rejection region is also the rejection region of level α . of the UMP test: 

. H0 : θ = θ0 vs H1 : θ > θ0.

N.B. The exercise can also be carried out using T =Ei Xi . as a sufficient statistic.



Chapter 7 
Confidence Intervals 

7.1 Theory Recap 

Definition 7.1 (Interval Estimation) The interval estimation of a real parameter 
θ . is constituted by any pair of statistics L(X). and U(X). of the sample X . that 
satisfy L(X) ≤ U(X).. The random interval [L(X), U(X)]. is said to be the interval 
estimate, or confidence interval, for θ .. 

Definition 7.2 (Coverage Probability) The coverage probability of an interval 
estimate [L(X), U(X)]. for θ . is defined as: 

. Pθ (θ ∈ [L(X), U(X)]).

Definition 7.3 (Confidence Level) The confidence level of an interval estimate 
[L(X), U(X)]. for θ . is defined as: 

. inf
θ
Pθ (θ ∈ [L(X), U(X)]).

Theorem 7.1 (Confidence Interval and Acceptance Region) For each θ0 ∈ o., 
let A(θ0). be the acceptance region of level α . of the test H0 : θ = θ0 .. For each 
x ∈ X., define an interval IC(x). as: 

. IC(x) = {θ0 : x ∈ A(θ0)}.

Then the random interval IC(X). is a confidence interval of level 1−α .. Alternatively, 
let IC(X). be a confidence interval of level 1 − α .. For every θ0 ∈ o., define: 

. A(θ0) = {x : θ0 ∈ C(x)}.

Then A(θ0). is the acceptance region of level α . associated with the test H0 : θ = θ0 .. 
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Definition 7.4 (Pivotal Quantity) A random variableQ(X; θ). is a pivotal quantity 
(or pivot) if the distribution of Q(X; θ). does not depend on θ .. 

Theorem 7.2 (Pivoting of the Distribution Function) Let T be a statistic with a 
continuous distribution function FT (t; θ).. Let α1 . and α2 . be two fixed values, such 
that α1 + α2 = α . and α ∈ (0, 1).. Suppose that ∀t ∈ T., the functions θL(t). and 
θU (t). can be defined as follows: 

• If FT (t; θ). is a decreasing function of θ . ∀t ., we define θL(t). and θU (t). as: 

. FT (t; θU (t)) = α1, FT (t; θL(t)) = 1 − α2.

• If FT (t; θ). is an increasing function of θ . ∀t ., we define θL(t). and θU (t). as: 

. FT (t; θU (t)) = 1 − α2, FT (t; θL(t)) = α1.

Then the random interval [θL(t), θU (t)]. is a confidence interval of level 1−α . for θ .. 

Theorem 7.3 (Minimum Length and Unimodality of the Density) Let fX(x). 

be a unimodal probability density. If the interval [a, b]. satisfies the following 
characteristics: 

•
∫ b 
a fX(x) dx = 1 − α .; 

• f  (a)  = f  (b) > 0.; 
• a ≤ x∗ ≤ b., where x∗. is the mode of fX(x).. 

Then [a, b]. is the interval of minimum length among those that satisfy the first 
condition. 

7.2 Exercises 

Exercise 7.1 Consider the statistical model given by the exponential laws E(ν)., 
ν > 0., and let X1, . . . , Xn . be a random sample drawn from a population described 
by this model. Find the confidence intervals for ν . of level γ = 1 − α . constructed 
based on: 

(a) LRT for ν = ν0 . against ν /= ν0 .. 
(b) Pivotal quantity Q = 2ν

∑n
i=1 Xi .. 

Exercise 7.2 For a sample of size 1 from the law: 

.f (x; θ) = 2

θ2
(θ − x), 0 < x < θ;
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find the confidence intervals for θ . of level γ = 1 − α . constructed through: 

(a) LRT for θ = θ0 . against θ /= θ0 .. 
(b) Pivotal quantity Fθ(X).. 
(c) Pivotal quantity X/θ ., choosing that of the type

(
x, f (x)

)
.. 

(d) Which interval would you choose for an interval estimation of θ . at a level γ =
0.95.? 

Exercise 7.3 Let X1, . . . , Xn . be a random sample from a population N(μ, σ 2).. 
Find a confidence interval for σ 2

. of level γ = 1 − α . in the cases: 

(a) μ. known. 
(b) μ. unknown. 

Exercise 7.4 Consider the random samples X1, . . . , Xn . from a population 
N(μ1, σ

2). and Y1, . . . , Ym . from a population N(μ2, σ
2).. Find a confidence interval 

for μ1 − μ2 . at level γ = 1 − α . in the cases: 

(a) σ 2
. known. 

(b) σ 2
. unknown. 

Exercise 7.5 Let X be a single observation from a Beta(θ .,1): 

. f (x; θ) = θ xθ−1 I(0,1)(x), θ > 0.

(a) Find the law of Y = − 1

logX
. and calculate the confidence level of the interval 

(
Y

2
, Y

)

. for θ .. 

(b) Show that Xθ
. is a pivotal quantity and use it to construct a confidence interval 

for θ . at an arbitrary level 1 − α, α ∈ (0, 1)., choosing the one with the smallest 
width. 

(c) Compare the interval

(
Y

2
, Y

)

.with the interval found in (b) at the same level. 

Exercise 7.6 Consider the statistical model: 

. f (x;μ) = 1

2
e−|x−μ|, −∞ < x < +∞, −∞ < μ < +∞.

Given X a sample of size 1 :

(a) Verify that the quantity Q = X − μ. is pivotal. 
(b) Determine for μ. the confidence interval based on Q at level 1 − α . and of 

minimum length.
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7.3 Solutions 

7.1 

(a) Comparing with the result of Exercise 5.3, the rejection region of level α . of the 
test: 

. H0 : ν = ν0 vs H1 : ν /= ν0;

turns out to be: 

. R = {Xn < t̄1/ν0
} ∪ {Xn > t̄2/ν0

}

⇓
{

t̄1

ν
≤ Xn ≤ t̄2

ν

}

=
{

t̄1

Xn

≤ ν ≤ t̄2

Xn

}

.

Choosing t̄1 = γα/2(n, n). and t̄2 = γ1−α/2(n, n).we get: 

. IC(1 − α) =
[
γα/2(n, n)

Xn

; γ1−α/2(n, n)

Xn

]

.

(b) Consider the r.v. Q = 2ν
∑

Xi . and observe that: 

. 
∑

Xi ∼ r(n, ν) ⇒ 2ν
∑

Xi ∼ r(n, 1/2)
d= χ2(2n).

We then define the IC based on Q, with confidence level 1 − α .: 

. 

{
IC = [a ≤ 2ν

∑
Xi ≤ b

] ;
P{a ≤ Q ≤ b} = 1 − α.

Choosing a = χ2
α/2(2n). and b = χ2

1−α/2(2n)., we obtain: 

. IC(1−α) =
[

χ2
α/2(2n)

2
∑

Xi

≤ ν ≤ χ2
1−α/2(2n)

2
∑

Xi

]

.

Observation Remember that γα(n, n) = χ2(2n)
2n .. 

In fact, let X ∼ r(n, n)., then: 

. α = P {X ≤ γα(n, n)} = P {2nX ≤ 2nγα(n, n)}

and n2X ∼ r(n, 1/2)
d= χ2(2n)..
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Therefore γα(n, n) = χ2(2n)
2n . and 

. IC(1 − α) =
[
nγα/2(n, n)
∑

Xi

; nγ1−α/2(n, n)
∑

Xi

]

=
[

χ2
α/2(2n)

2
∑

Xi

; χ2
1−α/2(2n)

2
∑

Xi

]

.

We conclude that the two ICs obtained in point (a) and point (b) coincide. 

7.2 

(a) Observe that on a sample of size 1 we have: 

. L(θ; x) = 2

θ2
(θ − x)I[x;+∞)(θ).

∂L

∂θ
= − 2

θ2
+ 4x

θ3
= 0 ⇒ θ̂MLE = 2X.

From here, the LRT for H0 : θ = θ0 . vs H1 : θ /= θ0 .: 

. λ(x) =
2
θ20

(θ0 − x)I[0;θ0](x)

2
4x2

(2x − x)
= 4x

θ20

(θ0 − x)I[0,θ0](x).

. R = {λ(x) ≤ c} = {x > θ0} ∪
{
4x

θ20

(θ0 − x) < c

}

=

= {4x(θ0 − x) < k'} = {4xθ0 − 4x2 < k'} =

= {x2 − θ0x + h > 0} ⇒ x =
θ0 ±

√
θ20 − 4h

2
= θ0

2
± h̃.

. α = 1 −
∫ θ0

2 +h̃

θ0
2 −h̃

2

θ20

(θ0 − x) dx =

= 1 − 1

θ20

[
−(θ0 − x)2

] θ0
2 +h̃

θ0
2 −h̃

=

= 1 − 1

θ20

[2θ0h̃] = 1 − 2h̃

θ0
⇒ h̃ = θ0

2
(1 − α).

.Rα =
{

X <
1

2
θ0α

}

∪
{
X > θ0

(
1 − α

2

)}
.
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From which: 

. IC(1−α) =
[

2X

2 − α
≤ θ ≤ 2X

α

]

.

(b) Q = FX(x; θ)  ∼ U[0 ,1] .: 

. FX(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 x ≤ 0;
2
θ2

(
θx − x2

2

)
0 < x ≤ θ;

1 x > θ.

Then FX(X) = 2
θ2

(
θX − X2

2

)
.. 

We observe that: 

. g(θ) = 2

θ2

(

θx − x2

2

)

.

g'(θ) = 2θ2x − 2θ(θx − x2/2)

θ4
= 2x(x − θ)

θ3
< 0.

g(θ) = k ⇐⇒ 2

θ2

(

θx − x2

2

)

= k

⇐⇒ x

θ2
(2θ − x) = k ⇐⇒ θ = x +√x2(1 − k)

k
.

Therefore: 

. IC(1−α) =
[α

2
≤ Fθ(x) ≤ 1 − α

2

]

=
[

X

(
1 + √

α/2

1 − α/2

)

;X

(
1 + √

1 − α/2

α/2

)]

.

(c) We consider the pivotal quantity Q = X
θ

.. 

.FQ(q) = P

{
X

θ
≤ q

}

= P {X ≤ θq} = 2θ2q

θ2
− θ2q2

θ2
= q(2 − q).
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Since we are looking for an IC of the type [X; f (X)]. of level 1− α ., we impose 
that: 

. P{c < Q < 1} = 1 − α.

2q − q2
∣
∣
∣
∣

1

c

= 1 − α ⇐⇒ 1 − 2c + c2 = (c − 1)2 = 1 − α.

c = 1 − √
1 − α.

Therefore, we conclude that: 

. IC(1−α) =
[

X ≤ θ ≤ X

1 − √
1 − α

]

.

(d) 1 − α = 0 .95.. Substituting this value into the ICs calculated in the previous 
points, we obtain: 

. 

⎧
⎪⎪⎨

⎪⎪⎩

(a) L = 38.97X;
(b) L = 78.31X;
(c) L = 38.49X.

We therefore choose the IC found in point (c). 

7.3 

(a) If μ. is known: 

. T :=
∑

(Xi − μ)2

σ 2 ∼ χ2(n).

T is a pivotal quantity. We are therefore looking for an IC with a confidence 
level of 1 − α .: 

. 

{
IC = [a < T < b];
P{a < T < b} = 1 − α.

We can choose a = χ2
α/2(n). and b = χ2

1−α/2(n). so that: 

.IC(1−α) =
[∑

(Xi − μ)2

χ2
1−α/2(n)

;
∑

(Xi − μ)2

χ2
α/2(n)

]

.
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(b) If μ. is unknown: 

. 
(n − 1)S2

σ 2 =
∑

(Xi − Xn)
2

σ 2 ∼ χ2(n − 1).

So, similarly to the previous point, we obtain: 

. IC(1−α) =
[

(n − 1)S2

χ2
1−α/2(n − 1)

; (n − 1)S2

χ2
α/2(n − 1)

]

.

7.4 

(a) If σ 2
. is known, we observe that: 

. Xn − Yn ∼ N

(

μ1 − μ2, σ
2
(
1

n
+ 1

m

))

.

By standardising, we obtain: 

. Q = Xn − Yn − (μ1 − μ2)

σ

√
1
n

+ 1
m

∼ N(0, 1).

Q is a pivotal quantity. Therefore: 

. IC(1 − α) =
[

Xn − Yn ± z1− α
2
σ

√
1

n
+ 1

m

]

.

(b) If σ 2
. is unknown, we recall the definition of S2

p . (pooled estimator of the 
variance): 

. S2
p = (n − 1)S2

1 + (m − 1)S2
2

(n + m − 2)
.

. Q = Xn − Yn − (μ1 − μ2)

Sp

√
1
n

+ 1
m

∼ t (n + m − 2).

Q is a pivotal quantity. Therefore: 

.IC(1 − α) =
[

Xn − Yn ± t1− α
2
(n + m − 2)Sp

√
1

n
+ 1

m

]

.
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7.5 

(a) 

. Y = − 1

logX
= g(X).

− 1

Y
= logX.

X = e− 1
Y .

gY (y) = fX(g−1(y))|g−1(y)|.

gY (y) = θ
(
e
− 1

y

)θ−1 e
− 1

y

y2
I(0,+∞)(y) = θ

e
− θ

y

y2
I(0,+∞)(y).

We consider: 

. IC =
(

Y

2
, Y

)

;

and calculate its confidence level: 

. inf
θ
Pθ

(
Y

2
< θ < Y

)

= inf
θ
Pθ (θ < Y < 2θ) =

= inf
θ

∫ 2θ

θ

θ
e
− θ

y

y2
dy =

= inf
θ

e
− θ

y

∣
∣
∣
∣

2θ

θ

= e− 1
2 − e−1 = 0.2333.

Note that it does not depend on θ .. 
(b) Q = X θ . is a pivotal quantity, indeed: 

.Q = h(X) = Xθ .

X = h−1(Q) = Q
1
θ .

fQ(q) = fX(q
1
θ )

∣
∣
∣
1

θ
q

1−θ
θ

∣
∣
∣ = θq

θ−1
θ

1

θ
q

1−θ
θ = 1 0 < q < 1.

Q ∼ U[0,1].
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We write the confidence interval with a confidence level of 1 − α .: 

. 

⎧
⎪⎪⎨

⎪⎪⎩

IC = [a < Xθ < b] ⇐⇒ [
log a < θ logX < log b

]

⇐⇒
[
log b
logX

< θ <
log a
logX

]
;

b − a = 1 − α.

We minimise the length of the IC, L ∝ (log a − log b).: 

. 

{
min(b,a)(log b − log a);
a = b − (1 − α).

. ⇓

. min
b∈[0,1](log b − log(b − (1 − α))) =

= min
b∈[0,1] log

(
b

b − (1 − α)

)

=

= max
b∈[0,1] log

(

1 − 1 − α

b

)

.

The minimum length is reached for b = 1.. 
Therefore, the IC of minimum length and confidence level equal to 1 − α . is: 

. IC(1 − α) =
[

0,
logα

logX

]

.

(c) 

. IC(1−α) =
(

Y

2
, Y

)

=
(

− 1

2 logX
,− 1

logX

)

is of the same type as the IC calculated in point (b), with: 

. 

{
log b = − 1

2 ⇐⇒ b = e− 1
2 ;

log a = −1 ⇐⇒ a = e−1.

Since the ICs calculated in point (a) and point (b) are of the same type and the 
IC in point (b) is of minimum length, the IC in point (a) certainly has a length 
greater than the IC in point (b).
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7.6 

(a) X is a sample of size 1. Let’s calculate the law of Q :

. fQ(q) = P {X − μ ≤ q} = P {X ≤ q + μ} =

=
∫ q+μ

−∞
1

2
e−|x−μ| dx y=x−μ=

∫ q

−∞
1

2
e−|y| dy.

Therefore, Q is a pivotal quantity (Q ∼ fX(x; 0).). 
(b) 

. 

{
CI = [a < X − μ < b] ⇒ [X − b < μ < X − a] ;
1 − α = 1

2

∫ b

a
e−|x| dx.

The length of the interval is b − a .. Moreover, fX(x; 0). is a unimodal density. 
Therefore, the minimum length is obtained for |a| = |b|., a = −b.. We then 
impose that the confidence level of the interval is equal to 1 − α .: 

. 1−α = 1

2

∫ b

−b

e−|x| dx =
∫ b

0
e−x dx = 1−e−b ⇒ b = − log(α) = log

1

α
.

We therefore obtain: 

.CI(1−α) =
[

X ± log
1

α

]

.



Chapter 8 
Asymptotic Statistics 

8.1 Theory Recap 

Definition 8.1 (Consistency) A sequence of estimators Wn = Wn(X). is consistent 
for the parameter θ . if, ∀ε > 0. and ∀θ ∈ �., it holds: 

. lim
n→+∞Pθ (|Wn − θ | < ε) = 1;

that is Wn
p→ θ .. 

Theorem 8.1 Let Wn . be a sequence of estimators consistent for θ ., such that: 

• lim 
n→+∞ 

Eθ [Wn] =  θ .;

• lim 
n→+∞ 

Varθ (Wn) = 0.; 

then Wn . is a consistent estimator for θ .. 

Theorem 8.2 (Consistency for MLE) Let X1, . . . , Xn . be i.i.d. random variables 
such that Xi ∼ fX(x; θ). and L(θ; x). the corresponding likelihood. Let θ̂ . be the 
MLE of θ . and τ(θ). a continuous function of θ .. Under suitable regularity conditions 
for fX(x; θ). and L(θ; x). (see Miscellaneous 10.6.2 [3]), then ∀ε > 0. and ∀θ ∈ �.: 

. lim
n→+∞Pθ {|τ(θ̂) − τ(θ)| ≥ ε} = 0.

Then τ(θ̂). is a consistent estimator for τ(θ).. 
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Definition 8.2 (Limit Variance) Consider an estimator Tn .. If, given a sequence kn ., 
it holds: 

. lim
n→+∞ knV ar(Tn) = τ 2 < +∞;

then τ 2
. is called limit variance. 

Definition 8.3 (Asymptotic Variance) Consider an estimator Tn ., such that: 

. kn(Tn − τ(θ))
L→ N(0, σ 2).

Then σ 2
. is called the asymptotic variance of Tn .. 

Definition 8.4 (Asymptotic Efficiency) A sequence of estimators Wn . is asymptot-
ically efficient for the parameter τ(θ). if: 

. 
√

n (Wn − τ(θ))
L→ N(0, v(θ));

where: 

. v(θ) = (τ ′(θ))2

Eθ

[(
∂
∂θ

log fX(x; θ)
)2] .

Therefore, the asymptotic variance coincides with the Cramér-Rao limit. 

Theorem 8.3 (Asymptotic Efficiency for MLE) Let X1, . . . , Xn . be i.i.d. random 
variables such that Xi ∼ fX(x; θ). and let θ̂ . be the MLE of θ . and τ(θ). a continuous 
function of θ .. Under suitable regularity conditions for fX(x; θ). and L(θ; x). (see 
Miscellaneous 10.6.2 [3]), it holds: 

. 
√

n
(
τ(θ̂) − τ(θ)

) L→ N(0, v(θ));

where v(θ). is the Cramér-Rao lower limit. Therefore, τ(θ̂). is a consistent and 
asymptotically efficient estimator for τ(θ).. 

Definition 8.5 (Asymptotic Relative Efficiency) Consider two estimators Wn . and 
Vn . for τ(θ). such that: 

.
√

n (Wn − τ(θ))
L→ N(0, σ 2

W);
√

n (Vn − τ(θ))
L→ N(0, σ 2

V ).
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The Asymptotic Relative Efficiency (ARE) is defined as the following ratio: 

. ARE(Vn,Wn) = σ 2
W

σ 2
V

.

8.2 Exercises 

Exercise 8.1 The response time of a computer to the input of a terminal is modelled 
by a random variable of exponential law E(θ)., with θ . unknown. We measure 
n response times T1, . . . , Tn . to estimate the expected response time 1/θ . and to 
estimate the parameter θ .. 

Let T n = 1
n

∑n
i=1 Ti . be the estimator of 1/θ .. 

(a) Show that it is an unbiased estimator. 
(b) Determine its law. 
(c) Study its asymptotic normality, consistency and asymptotic efficiency. 

Now consider the estimation of θ .. 
(d) Derive from 1/T n . an unbiased estimator θ̂n . of θ .. 
(e) Study its asymptotic normality, consistency and asymptotic efficiency. 
(f) Construct a critical region of level (approximately) α . to test H0 : θ = θ0 . against 

H1 : θ 
= θ0 .. 
(g) Deduce from θ̂n . an asymptotically pivotal quantity with which to construct a 

confidence interval for θ . level (approximately) 1 − α .. 
(h) Find a transformation g : [0,+∞) → R. that stabilises the asymptotic variance 

of g(θ̂n)., i.e. such that the asymptotic variance of g(θ̂n). is independent of θ .. 
(i) Propose a confidence interval for θ . of level (approximately) 1 − α . constructed 

based on g(θ̂n).. Compare this confidence interval with the one obtained in point 
(g). 

Exercise 8.2 Let X1, . . . , Xn . be a random sample from a uniform law on the 
interval [0, θ ]., θ > 0.. 

(a) Study the consistency of X(n) ., the maximum likelihood estimator of θ ., and of 
X(n)(n + 1)/n., the unbiased estimator of θ .. 

(b) For the confidence interval for θ . of level 1 − α . of minimum length that can be 
constructed with the pivotal quantity X(n)/θ ., study the limit of this length for 
n → ∞.. 

Exercise 8.3 Let X1, . . . , Xn . be a family of independent random variables all 
distributed according to an exponential law with mean τ .. Each Xi . represents the 
disintegration time of a nucleus of a certain radioactive element. For each fixed 
t ≥ 0., let  Yi . be the random variable that is 1 if the i-th nucleus is still alive at time t 
and 0 otherwise.
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Consider the following estimators of τ .:

• Vn ., MLE based on the sample Y1, . . . , Yn ..
• Wn = n min{X1, . . . , Xn}..
• Tn ., UMVUE based on the sample X1, . . . , Xn .. 

Answer the following questions: 

(a) Determine the laws of the estimators Wn . and Tn .. 
(b) Study the asymptotic normality and consistency of Vn ., Wn . and Tn .. 
(c) Which is the best estimator? 

Exercise 8.4 Let (X1, ..., Xn). be a random sample drawn from a Poisson distribu-
tion with parameter λ > 0.. Let τ(λ) = e−λ(1+λ).. To estimate τ ., consider the MLE 
and the UMVUE. Determine if they are consistent estimators. 

Exercise 8.5 Let X1, . . . , Xn . be a sample of independent random variables with 
beta(θ, 1). density, 

. fX(x; θ) = θxθ−1
I(0,1)(x), θ > 0;

and let θ̂n . and θ̂ML . be the UMVUE and MLE estimators of θ ., respectively. 

(a) Discuss the consistency, asymptotic normality and asymptotic efficiency of the 
two estimators. 

(b) Construct the critical regions of level (approximately) α . to test H0 : θ = θ0 . 

against H1 : θ > θ0 .. 

Exercise 8.6 Let X1, ..., Xn . be a random sample from a 
(2, 1/θ). with θ > 0.. We  
therefore have 

. fX(x; θ) = θ−2 x e−x/θ I(0,+∞)(x).

Let θ̂n . be the maximum likelihood estimator for θ .. 

(a) Verify that θ̂n . is consistent. 
(b) Determine the asymptotic distribution of θ̂n.. 

(c) Determine the maximum likelihood estimator σ̂ 2
n . for the variance of X1.. 

(d) Determine the asymptotic distribution of σ̂ 2
n .. 

Exercise 8.7 Let X1, . . . , Xn . be a random sample from 

. fX(x; θ) = 1

2

(
1 + θ x

)
I(−1,1)(x), θ ∈ [−1, 1].

(a) Using the method of moments, determine an estimator θ̂n . of θ .. 
(b) Determine the asymptotic distribution of θ̂n .. 
(c) Propose an asymptotic confidence interval of level 1 − α . for θ ..
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Exercise 8.8 Given a random sample X1, . . . , Xn . from a Bernoulli distribution 
Be(p)., consider Vn(X) = nXn(1 − Xn)/(n − 1). the UMVUE estimator of the 
variance σ 2

. of the distribution. 

(a) Show that Vn(X). is consistent for σ 2
.. 

(b) Determine the asymptotic law of Vn(X).. 

8.3 Solutions 

8.1 

(a) 

. E[T n] = 1

n

n∑
i=1

E[Ti] = 1

θ
.

Hence, T n . is an unbiased estimator for 1
θ
.. 

(b) 

. 

n∑
i=1

Ti ∼ 
(n, θ) �⇒ T n ∼ 
(n, nθ).

(c) By the CLT (Theorem 1.16): 

. 
√

n

(
T n − 1

θ

)
L→ N

(
0,

1

θ2

)
.

Asymptotic Normality implies consistency. 
We calculate the Cramér-Rao Limit, considering that τ(θ) = 1

θ
.: 

. 
(τ ′(θ))2

I1(θ)
=

1
θ4

E

[(
∂
∂θ

log f (x; θ)
)2] =

= 1

θ4E
[

∂
∂θ

(log θ − θx)2] =

= 1

θ4E[
(
X − 1

θ

)2]
=

= 1

θ4V ar(Ti)
= θ2

θ4
= 1

θ2
.

Hence, T n . is asymptotically efficient.
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(d) 

. E

[
1

T n

]
= nE

[
1∑
Ti

]
= n

n − 1
θ.

Hence, an unbiased estimator for θ . is: 

. θ̂n = n − 1

n

1

T n

= n − 1∑
Ti

.

(e) Starting from the results of point (c), we apply the delta method (Theorem 1.17) 
with g(t) = 1/t . and g′(t) = −1/t2

. and we obtain: 

. 
√

n

(
1

T n

− θ

)
L→ N

⎛
⎜⎝0,

1

θ2

⎛
⎜⎝− 1(

1
θ2

)2

⎞
⎟⎠

2⎞
⎟⎠ = N

(
0, θ2

)
.

Applying the Slutsky Theorem (1.15), we conclude that: 

. θ̂n = n − 1

n

1

T n

is asymptotically normal, that is: 

. 
√

n(θ̂n − θ)
L→ N(0, θ2).

The Cramér Rao Limit is: 

. 
1

V ar(Ti)
= θ2;

hence θ̂n . is also asymptotically efficient. 
(f) We consider the test: 

. H0 : θ = θ0 vs H1 : θ 
= θ0.

Given that θ̂n ≈ N(θ, θ2)., the rejection region of approximately level α . is: 

.Rα =
{

|θ̂n − θ0|
θ0/

√
n

> z1− α
2

}
=
{
|θ̂n − θ0| > z1− α

2

θ0√
n

}
.
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(g) Similarly to the previous point, given that: 

. 
θ̂n − θ

θ/
√

n
≈ N(0, 1);

. 1 − α = P

{
−z1− α

2
≤ θ̂n − θ

θ/
√

n
≤ z1− α

2

}
=

= P

{
θ
(

1 − z1− α
2
/
√

n
)

≤ θ̂n ≤ θ
(

1 + z1− α
2
/
√

n
)}

;

the asymptotic CI is: 

. IC1−α =
[

θ̂n

1 + z1− α
2
/
√

n
; θ̂n

1 − z1− α
2
/
√

n

]
.

(h) g(θ̂n). has asymptotic variance θ2g′(θ)2
. (according to the Delta Method 1.17). 

We impose that the asymptotic variance is equal to 1, therefore g′(θ) = 1
θ
., or  

g(θ) = log θ .. We define: 

. Wn = log θ̂n;

which is such that: 

. 
√

n (Wn − log θ)
L→ N(0, 1).

(i) The asymptotic CI based on Wn . can be constructed by observing that asymptot-
ically: 

. 1 − α =
[
Wn − z1− α

2
/
√

n ≤ log θ ≤ Wn + z1− α
2
/
√

n
]
;

therefore: 

. IC1−α =
[
eWne

−z1− α
2
/
√

n; eWne
z1− α

2
/
√

n;
]

.

Developing the extremes of this CI to the I order, we find the one obtained in 
point (g). 

8.2 

(a) For the calculation of the MLE and its mean and variance, see Exercise 4.2. 

.E[X(n)] = n

n + 1
θ;
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V  ar(X(n)) = n 
(n + 1)2(n + 2)

θ2.

The MLE law is: 

. FX(n)
(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0 t < 0;(
t
θ

)n 0 ≤ t ≤ θ;
1 t > θ.

Therefore X(n)
L→ θ . and since θ . is constant, X(n)

p→ θ .. 
We now consider Tn = X(n)(n + 1)/n.. 
Tn . is an unbiased estimator for θ ., in fact: E[Tn] = θ .. 
Then: 

. MSE(Tn) = V ar(Tn) = (n + 1)2

n2

n

(n + 1)2(n + 2)
θ2 = θ2

n(n + 2)
→ 0.

Therefore, by Theorem 8.1, Tn . is consistent. 
(b) Q = X(n)/θ . is a pivotal quantity since: 

. FQ(t) = P{X(n)/θ ≤ t} = P{X(n) ≤ tθ} =

⎧⎪⎪⎨
⎪⎪⎩

0 t < 0;
tn 0 ≤ t ≤ 1;
1 t > 1.

We therefore calculate a CI that has a confidence level equal to 1 − α .. 

. 

⎧
⎨
⎩

CI = [a ≤ X(n)/θ ≤ b
] =

[
X(n)

b
; X(n)

a

]
;

1 − α = bn − an.

The length of the CI is proportional to 1/a − 1/b.. We therefore identify the pair 
(a, b). that allows us to have the CI of minimum length. We solve the following 
constrained optimal problem: 

. 

⎧⎨
⎩

min
a,b

1

a
− 1

b
;

1 − α = bn − an.

We derive both expressions with respect to a: 

.

{
∂L
∂a

= − 1
a2 + 1

b2
db
da

0 = nbn−1 db
da

− nan−1
⇒

{
− 1

a2 + 1
b2

(
a
b

)n−1 = an+1−bn+1

a2bn+1 < 0;
db
da

= ( a
b

)n−1
.
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Therefore the minimum length is obtained at the maximum value of a, so  b = 1. 

and a = n
√

α .. The CI is:  

. CI1−α =
[
X(n); X(n)

n
√

α

]
;

whose length is 1
n
√

α
− 1

n→+∞→ 0.. 

8.3 

(a) From the text we deduce that: 

. X1, . . . , Xn ∼ E
(

1

τ

)
, Yi = I{Xi>t} �⇒ Yi ∼ Be(e−t/τ ).

Since Yn . is MLE for e−t/τ
., by the principle of invariance the following 

estimator Vn .: 

. Vn := − t

log Yn

is MLE for τ .. 
We consider the estimator Wn ., defined as follows: 

. Wn := n min{X1, . . . , Xn} = nX(1).

Let’s calculate its law. 
We know that: X(1) ∼ E (n

τ

)
., therefore: 

. P{Wn > t} = P{nX(1) > t} = P{X(1) > t/n} = e−t/τ .

Therefore: 

. Wn ∼ E
(

1

τ

)
.

We consider the estimator Tn ., UMVUE for τ .: 

. Tn := Xn.

Let’s calculate its law. 
We know that: X1 ∼ E

(
1
τ

)
., therefore: 

.

∑
Xi ∼ 


(
n,

1

τ

)
�⇒ Tn ∼ 


(
n,

n

τ

)
.
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(b) We evaluate the asymptotic normality of Vn ., Wn . and Tn .. For the CLT (1.16) we  
know that: 

. 
√

n
(
Yn − e−t/τ

) L→ N
(
0, e−t/τ (1 − e−t/τ )

)
.

To evaluate the asymptotic normality of Vn = − t

log Yn
., we exploit the delta 

method (Theorem 1.17), with g(Y n) = − t

log Yn
.. 

. g(x) = − t

log x
g′(x) = t

(log x)2

1

x
,

therefore: 

. 
√

n (Vn − τ)
L→ N

(
0, e−t/τ (1 − e−t/τ ) · t2

(− t
τ

)4 e2t/τ

)

= N

(
0,

τ 4

t2
et/τ (1 − e−t/τ )

)
.

Wn . is not asymptotically normal and is not consistent. 

. 
√

n(Tn − τ)
L→ N(0, τ 2).

(c) To evaluate the best estimator, we calculate the ARE between Vn . and Tn .: 

. ARE(Tn, Vn) = τ 2t2

τ 4et/τ (1 − e−t/τ )
.

The ARE depends on τ ., so we cannot identify a better estimator. 

8.4 

. Xi ∼ P(λ), τ (λ) = e−λ(1 + λ).

By the principle of invariance, the MLE of τ(λ). is (1 + Xn)e
−Xn .. 

By the SLLN 1.11, it holds: 

. (1 + Xn)e
−Xn

q.c.→ τ(λ);

therefore the MLE is consistent.
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We consider the UMVUE: 

. 

(
1 − 1

n

)nXn

︸ ︷︷ ︸
→(e−1)λ

(
1 + Xn

n

n − 1

)

︸ ︷︷ ︸
→(1+λ)

→ e−λ(1 + λ).

Therefore the UMVUE is consistent. For the calculation of the UMVUE, refer to 
Exercise 4.10. 

8.5 

(a) 

. Xi ∼ θxθ−1
I(0,1)(x) , θ > 0.

In Exercise 4.8 the UMVUE θ̂n . and its expected value and variance were 
calculated. We report the results obtained below: 

. θ̂n = − n − 1∑
i log Xi

.

E[θ̂n] = θ.

V ar(θ̂n) = θ2

n − 2
.

Using Theorem 8.1, we conclude that θ̂n . is consistent. 
We now evaluate the asymptotic normality. 

. Yi = − log Xi ∼ E(θ)
CLT�⇒ √

n

(
Yn − 1

θ

)
L→ N

(
0,

1

θ2

)
.

Through the delta method (Theorem 1.17): 

. − n∑
log Xi

�⇒ √
n

(
1

Yn

− θ

)
.
L→ N

(
0, θ2

)

Therefore, by Slutsky’s Theorem (1.15): 

. 
√

n
(
θ̂n − θ

) L→ N(0, θ2).

θ̂n . is asymptotically efficient θ2

n
= 1

nI (θ)
.. 

(b) We consider the test: 

.H0 : θ = θ0 vs H1 : θ > θ0.
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The critical region is: 

. Rα =
{
θ̂n > θ0 + z1−α

θ0√
n

}
.

8.6 

(a) 

. f (x; θ) = θ−2 x e−x/θ
I(0,+∞)(x).

L(θ; x) = θ−2n
∏

xie
−
∑

i xi
θ I(0,+∞)(xi).

l(θ; x) ∝ −2n log θ −
∑

i xi

θ
.

∂l(θ; x)

∂θ
= −2n

θ
+
∑

i xi

θ2 > 0 ⇐⇒ θ <
Xn

2
.

Therefore θ̂n = Xn

2 . is the MLE for θ .. 
By the SLLN (1.11) it holds: 

. Xn
q.c.→ E[Xi] = 2θ.

Therefore θ̂n . is consistent for θ .. 
(b) The CLT (1.16) guarantees that: 

. 
√

n
(
θ̂n − θ

) L→ N

(
0,

2θ2

4

)
= N

(
0,

θ2

2

)
.

(c) 

. V ar(Xi) = 2θ2;

therefore by the principle of invariance it holds: 

. σ̂ 2
n = 2θ̂2

n = X
2
n

2
.

(d) We use the delta method (Theorem 1.17), considering g(x) = 1
2x2

. and g′(x) =
x .: 

.
√

n
(
σ̂ 2

n − 2θ2
) L→ N

(
0, 2θ2 · (2θ)2

)
= N(0, 8θ4).
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8.7 

(a) 

. E[Xi] = 1

2

∫ 1

−1
(1 + θx)x dx = θ

2

∫ 1

−1
x2 dx = θ

2

2

3
= θ

3
.

Therefore, the estimator obtained by the method of moments is: 

. θ̂n = 3Xn.

Note that θ̂n
q.c.→ θ .. 

(b) 

. V ar(Xi) = E[X2
i ] − (E[Xi])2 = 1

2

∫ 1

−1
x2 dx − θ2

9
= 1

3
− θ2

9
= 3 − θ2

9
.

Then, the CLT (1.16) ensures that: 

. 
√

n(θ̂n − θ)
L→ N(0, 3 − θ2).

(c) Using the Slutsky’s Theorem (1.15), we obtain: 

. 
θ̂n − θ√

3−θ̂2
n

n

≈ N(0, 1).

Therefore 

. IC(1−α) =
⎡
⎣θ̂n ± z1− α

2

√
3 − θ̂2

n

n

⎤
⎦ =

⎡
⎣3Xn ± z1− α

2

√
3 − 9X

2
n

n

⎤
⎦ .

8.8 

(a) For the SLLN (1.11): 

. Vn(X) = nXn(1 − Xn)/(n − 1)
q.c.→ p(1 − p) = σ 2.

Therefore Vn . is a consistent estimator for σ 2
.. 

(b) For the CLT (1.16): 

.
√

n
(
Xn − p

) L→ N(0, p(1 − p)).
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To prove the asymptotic normality of Vn . we use Slutsky’s Theorem (1.15) with 
g(x) = x(1 − x)., g′(x) = 1 − 2x . and g′′(x) = −2.. 
If p 
= 1/2.: 

. 
√

n
(
Xn(1 − Xn) − p(1 − p)

) L→ N

(
0,

(1 − 2p)2p(1 − p)

n

)
.

If p = 1/2.: 

. 
√

n

(
Xn(1 − Xn) − 1

4

)
L→ −1

4
χ2(1).

Therefore Vn
L→ 1

4 − 1
4n

χ2(1)..



Part II 
Regression Models and Analysis 

of Variance



Chapter 9 
Linear Regression 

9.1 Theory Recap 

We tackle the statistical study of the behaviour of a random variable Y (called 
response or dependent variable) with respect to other quantities X1, X2, .., Xr . 

(called predictors or independent variables) which in this study will be assumed 
deterministic. 

We assume that the following relationship may exist: 

.Y = β0 + β1X1 + .. + βrXr + ε; (9.1) 

where ε . is a random variable with zero mean and variance σ 2
.. β0 ., β1 .,.., βr . and σ 2

. 

are real and unknown parameters. 
Assuming we have a sample of n joint observations Yi . and their relative xij ., 

j = 1, .., r . and i = 1, .., n., then for each observation it holds: 

.Yi = β0 + β1xi1 + .. + βrxir + εi i = 1, .., n; (9.2) 

Equation (9.2) can be written compactly as: 

.Y = Xβ + ε; (9.3) 

where: 

Y ∈ R
n
. is the vector of random responses, y. are the relative realisations y =

(y1, .., yn)
T

.. 
X ∈ R

n×(r+1)
. is the design matrix, in which the first column is the unit vector 

(1, .., 1)T . and the subsequent columns are the vectors xj = (x1j , .., xnj )
T

.. 
β ∈ R

r+1
. is the vector of unknown regression parameters. 
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Fig. 9.1 Graphical representation of the least squares method 

ε ∈ R n . is the vector of errors, random and unknown, such that E[ε] = 0. and 
V ar(ε) = σ 2

In .. 

The model described in Eq. (9.2) is called linear, as it is linear with respect to β .. 

9.1.1 Estimators of the Unknown Parameters of the 
Regression: Least Squares Method 

The least squares (LS) method is an approach used to obtain the estimator of β ..  This  
method is based on the minimisation of the square of the error, namely:

.β̂ = argmin
β

n∑

i=1

ε2i = argmin
β

εT ε = argmin
β

(y − Xβ)T (y − Xβ). (9.4) 

Differentiating with respect to β . and setting the differential to 0., we obtain the 
estimator: 

.β̂ = (XT
X)−1

X
T y. (9.5) 

The estimates obtained with the least squares method are the projection of y. onto 
the column space of the design matrix X., Col(X). (see Fig. 9.1).
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Furthermore, we can define the following quantities: 

ŷ., the estimated responses: ŷ = Xβ̂ = X(XT
X)−1

X
T y = Hy., where H is the 

projection matrix onto the space Col(X).. 
ε̂ ., the estimated error vector: ε̂ = y − ŷ = y − Xβ̂ .. 

Theorem 9.1 (Gauss-Markov) Given the linear model in Eq. (9.3), the estimators 
obtained with the least squares method are unbiased and have minimum variance 
(BLUE, Best Linear Unbiased Estimator). 

Theorem 9.2 Given the linear model in Eq. (9.3), assume that the rank of X. is 
p = r + 1., i.e., the design matrix has full rank, then: 

• E[β̂] =  β .. 
• Cov(β̂) = σ 2(XT 

X) −1
.. 

• E[ε̂] =  0.. 
• Cov(ε̂) = σ 2(I − H).. 
• E[ε̂ T 

ε̂] =  σ 2(n − p).. 

Theorem 9.3 Given the linear model in Eq. (9.3), assume that the rank of X. is 
p = r + 1., i.e., the design matrix has full rank, and ε ∼ N(0, σ 2

In)., then: 

• β̂ = (XT 
X)−1

X
T y. is the maximum likelihood estimator for β .. 

• σ̂ 2 = ε̂T ε̂ 
n

. is the maximum likelihood estimator for σ 2
. (often calculated using 

S2 = ε̂T ε̂
n−p

.). 

• β̂ ∼ N(  ̂β,  σ 2(XT
X)−1).. 

• ε̂ ∼ N(0,  σ 2(I − H)).. 
• ε̂ |� β̂ .. 
• nσ̂ 2 = ε̂ T 

ε̂ ∼ σ 2χ2(n − p).. 

Corollary 

.
1

σ 2 (β̂ − β)T XT
X(β̂ − β) ∼ χ2

p.. (9.6) 

nσ̂ 2 

σ 2 
∼ χ2 

n−p .. (9.7) 

(β̂ − β)T 
X

T 
X( ̂β − β) 

pS 2
∼ Fp,n−p. (9.8) 

9.1.2 Inference 

Assuming the hypotheses of Theorem 9.3 are valid, we can perform the following 
three types of tests: 

• Significance of all predictors.
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• Significance of a single predictor. 
• Difference in significance between nested models. 

9.1.3 Confidence Regions and Intervals for Predictors 

Starting from Eq. (9.8) we define the confidence region of level (1 − α). for β . as: 

. R(1−α)(β) =
{
β ∈ R

p : (β̂ − β)T XT
X(β̂ − β) ≤ pS2Fp,n−p(1 − α)

}
;

where Fp,n−p(1− α). indicates the quantile of order (1− α). of a Fisher distribution 
of parameters p, n−p .. The confidence region has an ellipsoidal shape and does not 
correspond to the Cartesian product of the marginal confidence intervals, i.e., those 
related to the individual βi ., i ∈ {0, .., r}.. 

Using the results of Theorem 9.3, we can write the confidence interval of level 
(1 − α). for the individual βi ., i ∈ {0, .., r}.,  as  :

. IC(1−α)(βi) = [β̂i ± tn−p(1 − α/2)S
√

(XT X)−1
ii ];

where tn−p(1 − α/2). is the quantile of level 1 − α/2. of a Student’s t with n − p . 

degrees of freedom. 

9.1.4 Confidence Intervals for Prediction 

In the case of a new data point x0 ., the first quantity of interest to calculate is the 
point prediction ŷ0 .,  as  :

.ŷ0 = xT
0 β̂ + ε0, ε0 ∼ N(0, σ 2) ∧ ε0 |� β̂. (9.9) 

We can also calculate the variability associated with ŷ0 .: 

.V ar(ŷ0) = V ar(xT
0 β̂ + ε0) = xT

0 (XT
X)−1x0σ 2 + σ 2. (9.10) 

Given the variance, we can define the prediction interval of level 1− α . for the point 
value given x0 .: 

.IP(ŷ0; x0) = ŷ0 ± tn−p(1 − α/2)S
√
xT
0 (XT X)−1x0 + 1. (9.11)
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We can define the confidence interval of level 1−α . for the mean of the predicted 
values given x0 .: 

.IC(ŷ0; x0) = ŷ0 ± tn−p(1 − α/2)S
√
xT
0 (XT X)−1x0. (9.12) 

It is immediately observed that the prediction interval in Eq. (9.11) is wider than 
the confidence interval Eq. (9.12). 

9.1.5 Model Goodness of Fit (GOF) 

A measure of the goodness of the model is the R2 . coefficient, also known as 
the coefficient of determination, and in the case of multiple linear regression, the 
adjusted R2 .. 

Definition 9.1 R2 . and adjusted R2 . 

. R2 = 1 −
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − ȳi )2

= 1 − SSres

SStot

;

where: 

. SST OT = SSreg + SSres;
n∑

i=1

(yi − y)2 =
n∑

i=1

(ŷi − y)2 +
n∑

i=1

(yi − ŷ)2.

It can be shown that if the design matrix has a constant column then R2 ∈ [0, 1].. 
R2 . can also be expressed as SSreg/SStot . and represents the percentage of variability 
explained by the regressors, so the closer it is to 1, the more the model explains the 
response variable. 

We can define R2adj ., a measure of the goodness of the model that also takes into 
account its complexity: 

. R2adj = 1 − SSres

SStot

n − 1

n − r − 1
.

R2adj . by definition is always less than or equal to R2 .. It is used to evaluate the 
goodness of the model in the case of multiple linear regression, because it allows to 
take into account the complexity of the model.
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Online Supplementary Material 

A supplement to this chapter is available online, 
containing data, further insights and exercises.

9.1.6 Libraries 

library( car ) 
## Loading required package: carData 
library( ellipse ) 
## 
## Attaching package: ’ellipse’ 
## The following object is masked from ’package:car’: 
## 
## ellipse 
## The following object is masked from ’package:graphics’: 
## 
## pairs 
library( faraway ) 
## 
## Attaching package: ’faraway’ 
## The following objects are masked from ’package:car’: 
## 
## logit, vif 
library( leaps ) 
library( qpcR ) 
## Loading required package: MASS
## Loading required package: minpack.lm
## Loading required package: rgl
## Loading required package: robustbase
##
## Attaching package: ’robustbase’
## The following object is masked from ’package:faraway’:
##
## epilepsy
## Loading required package: Matrix

9.2 Exercises

Exercise 9.1 Manually calculate the estimate of the β . in the following cases: 

(a) No predictors are considered. 
(b) Only one predictor is considered. 

Exercise 9.2 Derive the test that evaluates the significance of all predictors, under 
the assumptions of Theorem 9.3.
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Exercise 9.3 Derive the test that evaluates the significance of the single predictor, 
under the assumptions of Theorem 9.3. 

Exercise 9.4 Describe the main steps of the study of a regression model, highlight-
ing the R commands to use. 

Exercise 9.5 Consider the savings dataset in the faraway package. This dataset 
contains information about 50 US states. The cova riates are:

• sr is personal savings divided by disposable i ncome.
• pop15 is the percentage of the population under 15 years o ld.
• pop75 is the percentage of the population over 75 years o ld.
• dpi is per-capita income in dollars, net of taxe s.
• ddpi is purchasing power—an aggregate economic index, expressed as a 

percentage.

These data are averaged over the period 1960–1970, to remove any short-term 
cycles or fluctuations. 

Answer the following questions: 

(a) Load the dataset and perform a graphical exploration. 
(b) Propose a complete linear model to explain personal savings and comment on 

all the items in the model. 
(c) Explicitly perform the F test on the significance of the model. 
(d) Explicitly perform the test on the significance of a regression coefficient related 

to pop15. 
(e) Calculate the 95%. confidence interval for the regression coefficient related to 
pop75. 

(f) Calculate the 95%. confidence interval for the regression coefficient related to 
ddpi. 

(g) Represent the 95% confidence region for the regression coefficients associated 
with pop15 and pop75, adding the point (0, 0).. 

(h) Identify any influential points in the dataset using: H projection matrix, 
standardised residuals, studentised residuals and Cook’s distance. 

(i) Compare the influential points identified with the techniques proposed above, 
using the commands influencePlot and influence.measures .

(j) Evaluate the impact of the different influential points on the model. 
(k) Assess the homoscedasticity of the residuals. 
(l) Assess the normality of the residuals. 

Exercise 9.6 Load the dataset data_es2.RData, available in the online supple-
mentary material. This dataset is related to rocks found in the Casentino forests. 
The dataset contains the following information: 

• height: height of the rock [m]. 
• iron: percentage of iron in a cubic millimetre of rock. 
• calcium: percentage of calcium in a cubic millimetre of rock.
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Researchers are interested in assessing whether the percentage of these two 
elements can be predictive of the height of the rock. 

Answer the following questions: 

(a) Load the dataset and perform a graphical exploration of the variables. 
(b) Propose a model to answer the researchers’ question. 
(c) Verify the assumptions of the model. 
(d) Evaluate a possible transformation of the response variable and redo all the 

analyses. 

Exercise 9.7 Consider the dataset state, available in R, in which data related to 
50 US states are collected. The variables are estimated in July 1975: 

• Income: per capita income (1974). 
• Illiteracy: illiteracy (1970, %. of population). 
• Life Exp: life expectancy in years ( 1969–71).
• Murder: murder rate per 100,000 inhabitants (1976). 
• HS Grad: percentage of high school graduates (1970).
• Frost: average number of days with minimum temperature equal to 32◦

. (1931– 
1960). 

• in capital or large city.
• Area: area (in square miles). 

Consider life expectancy as the response variable and answer the follo wing
questions:

(a) Analyse the data with graphical methods. 
(b) Evaluate and comment on a complete linear model. 
(c) Assess the validity of the model assumptions. 
(d) Evaluate an appropriate model reduction. 

Exercise 9.8 We want to study a possible relationship between the height of tomato 
plants and the average weight in grams of the tomatoes harvested. 

The available data are as follows: 

weight = c( 60, 65, 72, 74, 77, 81, 85, 90 ) 
height = c( 160, 162, 180, 175, 186, 172, 177, 184 )

Answer the following questions:

(a) Represent the data. 
(b) Evaluate a simple linear model that predicts the average weight of the tomatoes 

as the response variable. 
(c) Calculate the confidence interval for the prediction of the mean responses, 

considering 15 elements that have height within the range of the dataset values. 
(d) Calculate the prediction interval of the responses, considering the elements from 

the previous point. 
(e) Compare the intervals obtained in points (c) and (d).
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9.3 Solutions 

9.1 

(a) The model we want to consider in this case is the following: 

.y = β0 + ε; (9.13) 

in which the design matrix is constituted by the unit vector alone (X = I.). 

. β̂0 = (XT
X)−1

X
T y = 1

n
I
T y =

∑n
i yi

n
= ȳ;

therefore, in the absence of information, the best estimate we can provide is the 
sample mean. 

(b) The model we want to consider in this case is the following: 

.y = β0 + β1x + ε; (9.14) 

The design matrix is: 

.X =

⎡

⎢⎢⎢⎣

1 x1

1 x2
...

...

1 xn

⎤

⎥⎥⎥⎦ (9.15) 

Let’s then calculate: 

.X
T
X =

[
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x2

i

]
. (9.16) 

.(XT
X)−1 = 1

∑n
i=1 x2

i − (
∑n

i=1 x2i )

n

[∑n
i=1 x2i
n

−x̄

−x̄ 1

]
. (9.17) 

We solve Eq. (9.5). 

.β̂1 =
∑

i xiyi − ∑
i xiyi/n

∑n
i=1 x2

i − (
∑n

i=1 x2i )

n

= Sxy

Sxx

; (9.18)
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. β̂0 = 1
∑n

i=1 x2
i − (

∑n
i=1 x2i )

n

[
ȳ

(
∑

i

x2
i − (

∑
i xi)

2

n

)

+
∑

xi

n

∑

i

xi ȳ − x̄
∑

i

Xiyi

]
=

= 1

Sxx

[
ȳSxx − x̄

(
∑

i

xiyi − xiyi

n

)]
=

= 1

Sxx

[
ȳSxx − x̄Sxy

] =

= ȳ − x̄β̂1.

9.2 The test we want to perform is the following: 

. H0 : β0 = β1 = .. = βp = 0 vs H1 : ∃i ∈ {1, .., p}|βi 	= 0.

The test statistic to answer this test is based on the total variability SST OT . and 
the residual variability SSres .: 

. SST OT =
n∑

i=1

(yi − y)2;

SSres =
n∑

i=1

(ŷi − yi)
2.

The test statistic is the following: 

. F = SST OT − SSres/(p − 1)

SSres/(n − p)
;

and it is distributed as a Fisher with parameters p − 1. and n − p .. 
If the p-value associated with F is less than 5%., we reject the null hypothesis, 

i.e., there is at least one regression coefficient different from zero. 

9.3 The test we want to perform is the following: 

. H0 : βi = 0 vs H1 : βi 	= 0.

To perform the test, we construct the following test statistic T: 

.T = |β̂i − 0|
se(β̂i)

;
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where se(β̂i). is the standard error of the coefficient estimate: 

. se(β̂i) =
√

σ̂ 2 · (XT X)−1
ii .

Considering the assumptions of Theorem 9.3, it can be shown that T ∼ t (n−p).. 
We then calculate the p-value of the two-sided test and if it is less than 5%. we 

can conclude that the regression coefficient is different from zero. 

9.4 The steps to be performed are: 

(a) Visualisation of the dataset using the pairs command. To correctly analyse this 
graph, one must focus on three elements: (1) observe the trend of the response 
variable with respect to the other variables in the dataset and determine whether 
these trends suggest a linear regression model; (2) observe the relationship 
between the variables in the dataset that we would like to use as regressors, if the 
correlation is high probably, one of the two will be redundant and superfluous 
within the model. The correlation can be measured with the cor command. (3) 
Notice the possible presence of influential points in the dataset. 
If the response variable is continuous and a linear trend can be assumed between 
this and the predictors, then we can proceed with a linear re gression model.

(b) Evaluation of a linear regression model using the mod = lm(y ∼ x1 + x2 +
..+xr .) command. The parameters to analyse are: (1) the goodness of the model 
through R2

. and R2
adj . and (2) the significance of the regressors through the F 

test and T test on the individual regressors. These elements can be obtained 
automatically through the summary(mod) command. 

(c) Verification of the model assumptions. The assumptions to verify are: 
(1) homoscedasticity of the residuals and (2) normality of the residuals. 
Homoscedasticity can be evaluated graphically through a scatterplot of the 
residuals, which sees the residuals on the y-axis and the ŷ ., the responses 
estimated by the model on the x-axis, command plot(mod$fit, mod$res). 
If the points are scattered around zero, we conclude that the assumption 
of homoscedasticity is valid, if instead we observe a particular pattern the 
assumption is violated. 
The normality assumption can be verified both graphically (through qqplot 
using the commands qqnorm(mod$res) and qqline(g$res)) and mathemat-
ically through the Shapiro-Wilks test, shapiro.test(mod$res).

These are the main steps for constructing and analysing a regression model. 
However, we may encounter some issues: 

• Presence of influential points. 
• Violation of the normality assumption. 
• Predictors to which a parameter β . is associated for which there is no statistical 

evidence that it is different from 0.
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These issues are identified through: 

• Analysis of the projection matrix H , standardised residuals or Cook’s distance. 
• Shapiro test and qqplot. 
• Analysis of the p-values of the t-tests associated with the regressor βi .. 

Finally, they can be resolved: 

• By removing from the dataset those points defined as influential. 
• By transforming the response variable (for example through Box-Cox transfor-

mation). 
• By reducing the model. 

Every time one of these three operations is performed, it is very important to 
reconsider the validity of the model assumptions. 

9.5 

(a) Load the dataset. 

data( savings ) 

# Dimensions 
dim( savings ) 
## [1] 50 5 

# Overview of the first rows 
head( savings ) 
## sr pop15 pop75 dpi ddpi 
## Australia 11.43 29.35 2.87 2329.68 2.87 
## Austria 12.07 23.32 4.41 1507.99 3.93 
## Belgium 13.17 23.80 4.43 2108.47 3.82
## Bolivia 5.75 41.89 1.67 189.13 0.22
## Brazil 12.88 42.19 0.83 728.47 4.56
## Canada 8.79 31.72 2.85 2982.88 2.43

In Fig. 9.2, we visualise the dataset using the pairs command, which presents 
a  matrix  of  r+1 x r+1 plots, where r represents the number of regressors (4 in this 
case). 

pairs(savings[ , c( ’sr’, ’pop15’, ’pop75’, ’dpi’, ’ddpi’ )]) 

Let’s focus on the first row of the pairs output. On the y axis of all 4 graphs, 
the values of sr, which is the response variable, are plotted against pop15, pop75, 
dpi and ddpi, which are the predictors. 

It is possible to notice a linear trend of sr with respect to pop75 and ddpi, while 
there is no evident trend with respect to pop15 and dpi. 

Observing also the other plots, we can say that pop15 and pop75 have a strong 
negative correlation; pop75 and dpi present a positive linear relationship, while
pop15 and dpi seem to present a quadratic relationship. Finally, there do not appear
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Fig. 9.2 Data visualisation 

to be evident relationships between the variable ddpi and the other considered 
variables. 

It is important to note that there are influential points, possible outliers (see the 
last column of plots related to ddpi ).

(b) Evaluate a complete linear model. To do this, we use the lm command and set 
sr as the response variable.

g = lm( sr ~ pop15 + pop75 + dpi + ddpi, data = savings ) 
#g = lm( sr ~ ., savings ) 
summary( g ) 
## 
## Call: 
##lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -8.2422 -2.6857 -0.2488 2.4280 9.7509 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
## pop15 -0.4611931 0.1446422 -3.189 0.002603 **
## pop75 -1.6914977 1.0835989 -1.561 0.125530
## dpi -0.0003369 0.0009311 -0.362 0.719173
## ddpi 0.4096949 0.1961971 2.088 0.042471 *
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
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## Residual standard error: 3.803 on 45 degrees of freedom 
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797 
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904 

gs = summary( g )

#names( g )

From the complete model, we deduce that β1 	= 0. and β4 	= 0., therefore pop15 
and ddpi are predictive with respect to sr. 

An indication of the goodness of the model (GOF) is given by the R2
. index 

(33.85%.) and R2
adj . (27.97%.). The values obtained in this model are low, we 

probably should consider a model reduction. 
We now evaluate the estimated regression coefficients, both from the model 

output and by calculating them explicitly. 

X = model.matrix(g) 
round( g$coefficients, 3 ) #beta_hat 
## (Intercept) pop15 pop75 dpi ddpi 
## 28.566 -0.461 -1.691 0.000 0.410 
stopifnot(all.equal(solve(t(X)%*%X)%*%t(X)%*% savings$sr, 

as.matrix( g$coefficients  )  )  )  

We have used the stopifnot command to verify that the outcome of the explicit
calculation of the β̂ . is identical (all.equal) to the output of the lm model. 

We evaluate the ŷ ., both manually and from the model output. 

y_hat_man = X %*% g$coefficients 

stopifnot(all.equal(y_hat_man, as.matrix(g$fitted.values))) 

The residuals of the model can be obtained through g$residuals. We find 
p=r+1 , with the command g$rank.

(c) The F statistic and the related test are represented in the model output. The test 
performed is the following: 

. H0 : βi = 0 ∀i vs H1 : ∃i| βi 	= 0.

We calculate the F test manually: 

# SStot = Sum ( yi-ybar )^2 
SS_tot = sum( ( savings$sr-mean( savings$sr ) )^2 ) 

# SSres = Sum ( residuals^2 )
SS_res = sum( g$res^2 )

p = g$rank # p = 5
n = dim(savings)[1] # n = 50



9.3 Solutions 155

f_test = ( ( SS_tot - SS_res )/(p-1) )/( SS_res/(n-p) ) 

1 - pf( f_test, p - 1,  n - p  )  
## [1] 0.0007903779 

We observe that the p-value is equal to 0.0007904 (the same value we read in the 
last line of summary(g)). 

We therefore conclude that for standard confidence values we reject the null 
hypothesis, so there is at least one regression coefficient that is not null.

(d) We manually evaluate the significance of β1 . (the parameter associated with 
pop_15), that is, we perform: 

. H0 : β1 = 0 vs H1 : β1 	= 0.

There are various ways to perform this test: 

• t-test. 

X = model.matrix( g ) 

sigma2 = (summary( g )$sigma)^2 
#manually 
sigma2 = sum( ( savings$sr - g$fitted.values )^2  )  /  (  n -p  )  

se_beta_1 = summary( g )$coef[ 2, 2 ] 
#manually 
se_beta_1 = sqrt( sigma2 * diag( solve( t ( X ) %*% X ) )[2] )

T.0 = abs( ( g$coefficients[ 2 ] - 0 )/ se_beta_1 )

2*( 1-pt( T.0, n-p ) )
## pop15
## 0.002603019

• F-test on nested models. 

To perform this test, we evaluate the nested model that includes all the variables 
considered in the model g except for the variable whose effect we are evaluating. 
Then we perform an F test on the residuals of the two models. 

The test statistic we want to evaluate is the follo wing:

. F0 =
SSres (complete_model)−SSres (nested_model)

df (complete_model)−df (nested_model)
SSres (complete_model)
df (complete_model)

.

.F0 ∼ F(df (complete_model) − df (nested_model), df (complete_model));



156 9 Linear Regression

where df are the degrees of freedom. 

g2 = lm( sr ~ pop75 + dpi + ddpi, data = savings ) 
summary( g2 ) 
## 
## Call: 
## lm(formula = sr ~ pop75 + dpi + ddpi, data = savings) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -8.0577 -3.2144 0.1687 2.4260 10.0763 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 5.4874944 1.4276619 3.844 0.00037 *** 
## pop75 0.9528574 0.7637455 1.248 0.21849 
## dpi 0.0001972 0.0010030 0.197 0.84499 
## ddpi 0.4737951 0.2137272 2.217 0.03162 * 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 4.164 on 46 degrees of freedom
## Multiple R-squared: 0.189, Adjusted R-squared: 0.1361
## F-statistic: 3.573 on 3 and 46 DF, p-value: 0.02093
SS_res_2 = sum( g2$residuals^2 )

f_test_2 = ( ( SS_res_2 - SS_res ) / 1 )/( SS_res / (n-p) )

1 - pf( f_test_2, 1, n-p )
## [1] 0.002603019

NB It is not the F test that is reported in the last line of summary(g). 

• ANOVA between the two nested models. 

anova( g2, g ) 
## Analysis of Variance Table 
## 
## Model 1: sr ~ pop75 + dpi + ddpi 
## Model 2: sr ~ pop15 + pop75 + dpi + ddpi 
## Res.Df RSS Df Sum of Sq F Pr(>F) 
## 1 46 797.72 
## 2 45 650.71 1 147.01 10.167 0.002603 **
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1

We observe that the results obtained in all three ways lead us to assert that β1 . is 
significantly different from 0. 

(e) We calculate the 95%. confidence interval for the regression coefficient related 
to pop75.
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The interval we want to calculate is: 

. IC(1−α)(β2) = [β̂2 ± t1−α/2(n − p) · se(β̂2)] ,

where α = 5%. and df = n − p = 45.. 

alpha = 0.05 
t_alpha2 = qt( 1-alpha/2, n-p ) 
beta_hat_pop75 = g$coefficients[3] 
se_beta_hat_pop75 = summary( g )[[4]][3,2] 

IC_pop75 = c( beta_hat_pop75 - t_alpha2 * se_beta_hat_pop75, 
beta_hat_pop75 + t_alpha2 * se_beta_hat_pop75 )

IC_pop75
## pop75 pop75
## -3.8739780 0.4909826

We observe that IC(1−α)(β2). includes 0, so we have no evidence to reject H0 :
β2 = 0., with a confidence level of 5%.. This result is in line with what was obtained 
in the model output (p-value equal to 12.5%.). 

(f) We calculate the 95%. confidence interval for the regression parameter associ-
ated with ddpi. 

alpha = 0.05 
t_alpha2 = qt( 1-alpha/2, n-p ) 
beta_hat_ddpi = g$coefficients[5] 
se_beta_hat_ddpi = summary( g )[[4]][5,2] 

IC_ddpi = c( beta_hat_ddpi - t_alpha2 * se_beta_hat_ddpi, 
beta_hat_ddpi + t_alpha2 * se_beta_hat_ddpi )

IC_ddpi
## ddpi ddpi
## 0.01453363 0.80485623

In this case, we observe that IC(1−α)(β4). does not include 0, we have evidence 
to reject H0 : β4 = 0.,  at 5%. confidence. However, the lower limit of the interval 
IC(1−α)(β4). is very close to 0. We can see in fact from the output that the p-value 
is equal to 4.2%., slightly less than 5%., which confirms the above. 

Furthermore, the confidence interval is quite wide, given that the upper limit is 
80 times the lower limit. This testifies a high level of variability relative to the effect 
of ddpi on the response variable.
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Fig. 9.3 95% confidence region for the regression coefficients associated with pop15 and pop75. 
The black diamond represents the centre of the ellipse, while the circle with the black border the 
null hypothesis that is to be t ested

(g) We construct in Fig. 9.3 the confidence region at 95%. for the regression 
coefficients associated with pop15 and pop75 .

#help( ellipse ) 
plot( ellipse( g, c( 2,  3  )  ),  type = "l", xlim = c( -1, 0 ) ) 

#vector we are testing in the null hypothesis 
points( 0, 0 ) 
points( g$coef[ 2 ] , g$coef[ 3 ] , pch = 18, col = 1 )

The coordinates of the centre of the ellipse, represented by a black square, are
(β̂1 ., β̂2 .). The circle with the black border represents the null hypothesis tested, 
namely (0,0), and is outside the confidence region. 

We are interested in evaluating this test: 

. H0 : (β1, β2) = (0, 0) vs H1 : (β1, β2) 	= (0, 0).

Since the point (0, 0). is outside the confidence region, we reject H0 . with a 
level equal to 5%.. This means that at least one of the two regression coefficients 
is different from 0. 

Observation It is important to underline that the confidence region is different 
from the Cartesian product of the two individual confidence intervals: IC(1−α)(β1). 

X IC(1−α)(β2).. We represent in Fig. 9.4 the Cartesian product of the marginal 
confidence intervals.
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Fig. 9.4 95% confidence region for the regression coefficients associated with pop15 and pop75. 
The 95% confidence intervals for the individual predictors are highlighted with dashed lines

beta_hat_pop15 = g$coefficients[2] 
se_beta_hat_pop15 = summary( g )[[4]][2,2] 

IC_pop15 = c( beta_hat_pop15 - t_alpha2 * se_beta_hat_pop15, 
beta_hat_pop15 + t_alpha2 * se_beta_hat_pop15 ) 

IC_pop15 
## pop15 pop15 
## -0.7525175 -0.1698688 

plot( ellipse( g, c( 2,  3  )  ),  type = "l", xlim = c( -1, 0 ) ) 

points( 0, 0 )
points( g$coef[ 2 ] , g$coef[ 3 ] , pch = 18 )

#new part
abline( v = c( IC_pop15[1], IC_pop15[2] ), lty = 2 )
abline( h = c( IC_pop75[1], IC_pop75[2] ), lty = 2 )

Observation The 0. is included in the interval IC(1−α)(β2). and is not included in 
the interval IC(1−α)(β1)., as one might expect from the previous point. 

Observation It may happen to accept the null hypothesis that you want to test, 
analysing the Cartesian product of the marginal ICs and to reject, considering the 
joint confidence region (case represented by the grey triangle in Fig. 9.5). It may 
happen to reject the null hypothesis that you want to test, analysing the Cartesian 
product of the marginal ICs and to accept, considering the joint confidence region 
(case represented by the grey circle in Fig. 9.5). In these ambiguous situations, we



160 9 Linear Regression

Fig. 9.5 95% confidence region for the regression coefficients associated with pop15 and pop75. 
The 95% confidence intervals for the individual predictors are highlighted with dashed lines. The 
grey circle and triangle represent two possible null hypotheses that you want to test

must always refer to the joint confidence region, because it takes into account the 
possible dependence present between the estimators of the two tested coefficients. 

plot( ellipse( g, c( 2,  3  )  ),  type = "l", xlim = c( -1, 0 ) ) 

points( 0, 0 ) 
points( g$coef[ 2 ] , g$coef[  3  ]  ,  pch  =  18  )  

abline( v = c( IC_pop15[1], IC_pop15[2] ), lty  =  2  )  
abline( h = c( IC_pop75[1], IC_pop75[2] ), lty  =  2  )  

#new part 
points( -0.22, 0.7, col = "gray60", pch = 16, lwd  =  2  )  
points( -0.71, 0, col = "gray60", pch = 17, lwd = 2 )

cor( savings$pop15, savings$pop75 )
## [1] -0.9084787

In this case, the ellipse has high eccentricity, which makes us think of a strong
correlation between the two variables pop15 and pop75. This intuition is confirmed
by the correlation coefficient very close to − 1.. 

Observation This intuition was also reported in the comment to the pairs plot. 

(h) We evaluate the presence of any influential points in the dataset through the 
following techniques:
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• H projection matrix (leverage points). 
• Standardised Residuals. 
• Studentised Residuals. 
• Cook’s Distance. 
• The leverage points are defined as the elements of the diagonal of the projection 

matrix H = X(XT X)−1XT
.. 

X = model.matrix( g ) 

lev = hat( X ) 
round( lev, 3 ) 

# similarly 
lev = hatvalues( g ) 

#manually 
H = X %*% solve( t(  X  )  %  *% X ) %*% t( X )
lev = diag( H )

#trace
sum(lev)
## [1] 5

Observation The trace of the matrix H (tr(H) = ∑
i hii .) is equal to the rank of 

the matrix X, which is p = r + 1., assuming that the covariates are uncorrelated 
with each other and p < n.. p is the dimension of the column space of X 
(col(X).). According to the geometric interpretation of the least squares estimate 
of the coefficients, H is the projection matrix onto col(X).. In fact, the estimates ŷ. 

are obtained as Hy.. 

Rule of Thumb A data point is defined as a leverage point if: 

. hii > 2 · p

n
.

plot( g$fitted.values, lev, xlab = ’Fitted values’, 
ylab = "Leverages", pch = 16, col = ’black’ ) 

abline( h = 2 * p/n, lty = 2, col  =  1  )  

watchout_points_lev = lev[ which( lev  >  2  *  p/n ) ]
watchout_ids_lev = seq_along( lev )[ which( lev > 2 * p/n ) ]
points( g$fitted.values[ watchout_ids_lev ],

watchout_points_lev,
col = ’gray60’, pch = 16 )
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Fig. 9.6 Identification of leverage points in grey. The dashed line is y = 2p/n 

sum( lev ) # check: sum_i hat( x )_i  =  r  +  1  
## [1] 5 

lev  [  lev  >  2  *  5  /  50  ]  
## Ireland Japan United States Libya
## 0.2122363 0.2233099 0.3336880 0.5314568
sum( lev [ lev > 2 * 5 / 50 ] )
## [1] 1.300691

In Fig. 9.6 we therefore identify Ireland, Japan, the USA and Libya as leverage 
points. 

We visualise the leverage points using pairs in Fig. 9.7 and notice that these 
points are indeed at the extremes of the plots. 

colors = rep( ’black’, nrow( savings ) ) 
colors[ watchout_ids_lev ] = rep(’gray60’, 

length( watchout_ids_lev ) ) 

pairs( savings[ , c( ’sr’, ’pop15’, ’pop75’, ’dpi’, ’ddpi’ ) ], 
pch = 16, col = colors,
cex = 1 + 0.5 * as.numeric( colors != ’black’ ) )

• We now evaluate the influential points through the standardised residuals. 

We define the standardised residuals as: 

.rstd
i = yi − ŷi

S
.
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Fig. 9.7 Visualisation of the data under analysis. Influential points are represented in light grey 

Rule of Thumb We define influential points as the data for which the following 
inequality holds: 

. |rstd
i | > 2.

We represent the standardised residuals (on the y-axis) and the ŷ. (on the x-axis) 
and highlight the influential points in Fig. 9.8 based on the standardised residuals 
and the leverages. 

gs = summary(g) 
res_std = g$res/gs$sigma 
watchout_ids_rstd = which( abs( res_std  )  >  2  )  
watchout_rstd = res_std[watchout_ids_rstd ] 
watchout_rstd 
## Chile Zambia 
## -2.167486 2.564229 

# Standardised residuals (not studentised) 
par( xpd = T, mar = par()$mar + c(0,0,1,0)) 
plot( g$fitted.values, res_std, 

xlab = ’Fitted values’, 
ylab = "Standardised residuals")

segments( 5, -2, 16, -2, lty = 2, col = 1 )
segments( 5, 2, 16, 2, lty = 2, col = 1 )
points( g$fitted.values[watchout_ids_rstd],

res_std[watchout_ids_rstd],
col = ’grey60’, pch = 16 )

points( g$fitted.values[watchout_ids_lev],
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res_std[watchout_ids_lev], 
col = ’gray60’, pch = 17 ) 

legend("top", inset=c(0,-0.2), horiz = T, 
col = rep(’gray70’,3), 
c(’Std. Residuals’, ’Leverages’), 
pch = c( 16, 17 ), bty = ’n’ ) 

#sort( g$res/gs$sigma ) 
sort( g$res/gs$sigma ) [ c( 1, 50 ) ] 
## Chile Zambia 
## -2.167486 2.564229 

#countries = row.names( savings ) 
#identify( 1:50, g$res/gs$sigma, countries ) 

The identify command allows you to identify the points of the graph, in fact 
by double-clicking on a certain point the label attached to it appears. 

Representing the residuals on the y-axis simply in the order in which they appear
in the dataset, allows us to say if there is a particular trend with respect to the
sampling order. This graph is represented in Fig. 9.9. 

plot( g$res/gs$sigma, xlab = "Order of appearance", 
ylab = "Standardised residuals" )

Fig. 9.8 Representation of the standardised residuals. The grey circles represent the influential 
points identified according to the criterion of standardised residuals. The grey triangles represent 
the influential points identified according to the leverages
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Fig. 9.9 Standardised Residuals in order of appearance in the dataset 

summary( g$res/gs$sigma ) 
## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## -2.16749 -0.70628 -0.06543 0.00000 0.63850 2.56423 

#countries = row.names( savings ) 
#identify( 1:50, g$res/gs$sigma, countries ) 

We do not identify any particular trend with respect to the sampling order.

• We define the studentised residuals ri . as: 

. ri = ε̂i

S · √
(1 − hii)

.

It can be shown that ri . are distributed as t (n − p).. Since the distribution of ri . 
is known, we can calculate the p-value to test if the i-th data point is an influential 
point. In reality, we would like to simultaneously test if there are multiple influential 
points, hence it is important to adjust the significance level of the tests. There are 
various methods of correcting the significance level in the case of multiple tests, 
including the Bonferroni correction. 

gs = summary( g ) 

gs$sigma 
## [1] 3.802669 

#manually 
stud = g$residuals / ( gs$sigma * sqrt( 1 - lev ) )
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#automatically 
stud = rstandard( g ) 

watchout_ids_stud = which( abs( stud  )  >  2  )  
watchout_stud = stud[ watchout_ids_stud ] 
watchout_stud 
## Chile Zambia 
## -2.209074 2.650915 

par( xpd = T, mar = par()$mar + c(0,0,1,0)) 
plot( g$fitted.values, stud, 

ylab = "Studentised residuals", 
xlab = "Fitted values", pch = 16 ) 

points( g$fitted.values[watchout_ids_stud], 
stud[watchout_ids_stud], 
col = ’gray70’, pch = 16 ) 

points( g$fitted.values[watchout_ids_rstd], 
stud[watchout_ids_rstd], 
col = ’gray70’, pch = 17 ) 

points( g$fitted.values[watchout_ids_lev], 
stud[watchout_ids_lev], 
col = ’gray70’, pch = 18 )

segments( 5, -2, 16, -2, lty = 2, col = 1 )
segments( 5, 2, 16, 2, lty = 2, col = 1 )
legend( "top", inset=c(0,-0.2),

horiz = T, xpd = T, col = rep(’gray70’,3),
c(’Studentised Res.’,
’Standardised Res.’, ’Leverages’),

pch = c( 16, 17,18 ), bty = ’n’ )

In Fig. 9.10, Chile and Zambia are identified as influential points. 
In the graph, we do not identify any pink points (influential points according 

to the studentised residuals), because the studentised and standardised residuals 
identify the same influential points. 

• Cook’s distance is defined as follows: 

. Ci = r2i

p
·
[ hii

1 − hii

]
;

where ri . are the studentised residuals. We observe that this measure is a 
combination of the concept of leverage point (through hii .) and the concept of 
influential point given by the residuals (through ri .). 

Rule of Thumb A point is defined as influential, if the following inequality holds: 

.Ci >
4

n − p
.
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Fig. 9.10 Representation of the studentised residuals. Those data identified as influential points 
based on the leverages (grey diamonds), standardised residuals (grey triangles) and studentised 
residuals (grey circles) are highlighted 

We represent in Fig. 9.11 Cook’s distance for each point and highlight in 
light grey the points defined as influential (i.e., those exceeding the threshold 
y = 4/(n  −.p)). 

Cdist = cooks.distance( g ) 

watchout_ids_Cdist = which( Cdist > 4/(n-p) ) 
watchout_Cdist = Cdist[ watchout_ids_Cdist ] 
watchout_Cdist 
## Japan Zambia Libya 
## 0.14281625 0.09663275 0.26807042 

plot( g$fitted.values, Cdist, pch=16, xlab=’Fitted values’, 
ylab = ’Cook\’s distance’ ) 

points( g$fitted.values[ watchout_ids_Cdist ],
Cdist[ watchout_ids_Cdist ],
col = ’gray70’, pch = 16 )

abline( h = 4/(n-p), lty = 2, col = 1 )

In Fig. 9.11, we identify as influential points according to Cook’s distance: Japan, 
Zambia and Libya. 

(i) One way to directly and effectively evaluate influential points in the dataset is 
given by the command influence.Plot. The graph depicts the studentised 
residuals on the y-axis, the leverages ( hii .) on the x-axis and each point of the 
graph is depicted as a circle, the radius of which is proportional to Cook’s 
distance.
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Fig. 9.11 Representation of Cook’s distance for each statistical unit. The dashed line is y = 4/(n-
p). The grey points are influential points according to Cook’s distance 

Fig. 9.12 Influence plot 

influencePlot( g, id=list(method="identify")) 

In Fig. 9.12 the influence plot of the dataset under examination is represented and 
Zambia, Japan, USA, Libya and Chile are highlighted as influential points. 

Another technique to get an immediate idea of the influential points present in 
the graph, is to apply the command influential.measures, which represents 
in matrix form various methods of diagnosing influential points (such as hii . and 
Cook’s distance).
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The DFBETAs (first r columns of the matrix) represent the impact of the single 
statistical unit in the estimation of β .. In particular, the DFBETA associated with the 
regressor j is:

. 
β̂j − β̂j (i)√
σ̂ 2

(i)(X
T X)−1

jj

;

where the subscript (i). indicates that we are neglecting the i-th observation. 
The DFFITs (column r + 1.) represent the impact of the single statistical unit in 

the estimation of ŷ .. In particular, the DFFIT associated with observation i is:

. 
ŷi − ŷi(i)

σ̂ 2
(i)

√
hii

.

The larger the values of DFBETAs and DFFITs associated with the i-th observa-
tion, the more inclined we are to declare the i-th observation as an influential point. 

Data that are anomalous according to all criteria are marked with an asterisk 
(Chile, USA, Zambia and Libya in this case). 

infl_point_overview = influence.measures( g ) 
summary( infl_point_overview ) 
## Potentially influential observations of 
## lm(formula = sr~pop15 + pop75 + dpi + ddpi,data = savings): 
## 
## dfb.1_ dfb.pp15 dfb.pp75 dfb.dpi dfb.ddpi 
## Chile -0.20 0.13 0.22 -0.02 0.12 
## United States 0.07 -0.07 0.04 -0.23 -0.03 
## Zambia 0.16 -0.08 -0.34 0.09 0.23 
## Libya 0.55 -0.48 -0.38 -0.02 -1.02_* 
## dffit cov.r cook.d hat
## Chile -0.46 0.65_* 0.04 0.04
## United States -0.25 1.66_* 0.01 0.33_*
## Zambia 0.75 0.51_* 0.10 0.06
## Libya -1.16_* 2.09_* 0.27 0.53_*

(j) To evaluate the effect of influential points on the outcome of the model, two 
quantities can be considered: 

• The variation of β̂ . in the case of evaluating a model using the entire dataset 
and in the case of evaluating a model using the entire dataset minus the i−.th 
observation: 

.

∣∣∣∣
β̂ − β̂(i)

β̂

∣∣∣∣.
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• The variation of the estimated responses ŷ. in the case of evaluating a model using 
the entire dataset and in the case of evaluating a model using the entire dataset 
minus the i-th observation: 

. ̂y − ŷ(i) = XT (β̂ − β̂(i)).

Let’s now evaluate how the model coefficients vary, in the case where the 
influential points are removed from the dataset according to the values of hii . and 
Cook’s distance. 

• Leverage points. 

gl = lm( sr ~ pop15 + pop75 + dpi + ddpi, savings, 
subset = ( lev < 0.2 ) ) 

summary( gl ) 
## 
## Call: 
## lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data=savings, 
## subset = (lev < 0.2)) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -7.9632 -2.6323 0.1466 2.2529 9.6687 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 2.221e+01 9.319e+00 2.384 0.0218 * 
## pop15 -3.403e-01 1.798e-01 -1.893 0.0655 . 
## pop75 -1.124e+00 1.398e+00 -0.804 0.4258 
## dpi -4.499e-05 1.160e-03 -0.039 0.9692 
## ddpi 5.273e-01 2.775e-01 1.900 0.0644 . 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
##
## Residual standard error: 3.805 on 41 degrees of freedom
## Multiple R-squared: 0.2959, Adjusted R-squared: 0.2272
## F-statistic: 4.308 on 4 and 41 DF, p-value: 0.005315

abs( ( g$coefficients - gl$coefficients ) / g$coefficients )
## (Intercept) pop15 pop75 dpi ddpi
## 0.2223914 0.2622274 0.3353998 0.8664714 0.2871002

The leverage points significantly influence the estimates, in fact, a variation of at
least 22%. (relative variation to β̂0 .) is recorded. 

• Cook’s distance. 

#id_to_keep = (1:n)[ - watchout_ids_Cdist ] 
id_to_keep = !( 1:n %in% watchout_ids_Cdist ) 

gl = lm( sr ~ pop15 + pop75 + dpi + ddpi,
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savings[ id_to_keep, ] ) 

abs( ( gl$coef - g$coef )/g$coef ) 
## (Intercept) pop15 pop75 dpi ddpi 
## 0.305743704 0.339320881 0.820854095 0.642906116 0.009976742 

In this case too, there is a strong variation of the estimated coefficients, except
for ddpi.

(k) We evaluate the homoscedasticity of the residuals through scatterplot analysis. 

We start by evaluating the homoscedasticity through a scatterplot, Fig. 9.13, 
where ε̂ . are reported on the y-axis and ŷ. are reported on the x-axis. 

plot( g$fit, g$res, xlab = "Fitted values", 
ylab = "Residuals", 
pch  =  16  )  

abline( h = 0, lwd = 2, lty = 2, col = 1 )

In Fig. 9.13 we observe that the residuals are quite scattered around 0, but there 
are extreme points in the graph. It would be appropriate to redo this analysis after 
setting the model on a subset of the dataset that does not contain leverage points. 

(l) We evaluate the normality of the residuals through: 

• QQ-plot. 
• Shapiro-Wilk test. 

Fig. 9.13 Scatterplot of residuals
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Fig. 9.14 QQ-plot of residuals 

qqnorm( g$res, ylab = "Residuals", 
xlab = "Theoretical quantiles", 
main = NULL, pch = 16 ) 

qqline( g$res ) 

shapiro.test( g$res ) 
## 
## Shapiro-Wilk normality test 
##
## data: g$res
## W = 0.98698, p-value = 0.8524

From the QQ-plot in Fig. 9.14 we observe that the empirical quantiles of the 
residuals (reported on the y-axis) are well approximated by the theoretical quantiles 
of a standard Gaussian (reported on the x-axis). 

From the Shapiro test we obtain a p-value of 0.8524, so we can accept the null 
hypothesis, i.e. the normality of the residuals. 

9.6 

(a) We import the dataset and visualise it in Fig. 9.15. 

load("data_es2.RData") 
pairs(data_es2)
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Fig. 9.15 Data visualisation 

From the pairs plot we infer a linear relationship between height and iron and 
between height and calcium. There seems to be no correlation between iron and 
calcium.

(b) We evaluate a multiple linear regression model to answer the researchers: 

mod = lm(altezza ~ ferro + calcio, data = data_es2) 

summary(mod) 
## 
## Call: 
## lm(formula = altezza ~ ferro + calcio, data = data_es2) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.2277 -0.2160 0.0025 0.2415 0.7597 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.40856 0.13889 10.14 <2e-16 *** 
## ferro 0.36849 0.03148 11.71 <2e-16 *** 
## calcio 0.13818 0.01353 10.21 <2e-16 *** 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
## Residual standard error: 0.3148 on 97 degrees of freedom
## Multiple R-squared: 0.7156, Adjusted R-squared: 0.7098
## F-statistic: 122.1 on 2 and 97 DF, p-value: < 2.2e-16
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Fig. 9.16 Standardised residuals 

The model is quite good (R2 = 71.56%.) and both predictors are significant. 
Moreover, the estimated β .s are positive, so as the percentages of iron and calcium 
increase, there is an increase in the height of the rock. 

(c) We evaluate the validity of the model assumptions: 

• Homoscedasticity. 
• Normality. 

mod_res = mod$residuals/summary(mod)$sigma 
plot( mod$fitted, mod_res, 

xlab = ’Fitted values’, 
ylab = ’Standardised residuals’ ) 

From the scatterplot of residuals in Fig. 9.16, we infer that The assumption of 
homoscedasticity is respected, although there seem to be some leverage points. 
Before investigating these extreme points, we proceed to verify normality. 

qqnorm( mod_res, ylab = "Standardised residuals", 
xlab = "Theoretical quantiles", 
main = NULL, pch = 16 )

qqline( mod_res, col = 1, lty = 2 )
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Fig. 9.17 QQ-plot of residuals 

shapiro.test( mod_res ) 
## 
## Shapiro-Wilk normality test 
## 
## data: mod_res 
## W = 0.97051, p-value = 0.0242

Observing the residuals in Fig. 9.17, we notice that the assumption of normality 
is violated, as there are heavy and negative tails. Furthermore, the p-value of the 
Shapiro test is less than 5%.. Therefore we conclude that the assumption of normality 
is violated. 

(d) Given that the assumption of normality is violated and that the response variable 
can only take positive values, we evaluate the Box-Cox transformation of the 
response variable. 

b = boxcox( height ~ iron + calcium, 
lambda = seq(0.3, 5, by=0.01), data = data_es2) 

names(b) 
## [1] "x" "y" 
#y likelihood evaluation 
#x lambda evaluated
best_lambda_ind = which.max( b$y )
best_lambda = b$x[ best_lambda_ind ]
best_lambda
## [1] 2.28



176 9 Linear Regression

Fig. 9.18 Box-Cox type transformation 

The best transformation that emerges from Fig. 9.18 is the one associated with the 
maximum of the curve. The estimates are obtained through maximum likelihood. 
According to this method, the best transformation is associated with λ = 2.28.. 
Despite this, we would like an interpretable transformation, so we opt for λ = 2. and 
calculate the square of the y.. 

We retrace the analyses. 

mod1 = lm( ( height )^2 ~ iron + calcium, data = data_es2 ) 
summary(mod1) 
## 
## Call: 
## lm(formula = (height)^2 ~ iron + calcium, data = data_es2) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -4.6364 -1.3311 -0.0558 1.3655 6.4870 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -1.01712 0.84971 -1.197 0.234 
## iron 2.39617 0.19256 12.443 <2e-16 *** 
## calcium 0.89183 0.08276 10.776 <2e-16 *** 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
## Residual standard error: 1.926 on 97 degrees of freedom
## Multiple R-squared: 0.7385, Adjusted R-squared: 0.7332
## F-statistic: 137 on 2 and 97 DF, p-value: < 2.2e-16

mod1_res = mod1$residuals/summary( mod1 )$sigma
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plot( mod1$fitted, mod1_res, 
xlab = ’Fitted values’, 
ylab = ’Standardised residuals’ )

In Fig. 9.19 we can see that the residuals have a cloud-like behaviour around 
zero, so the assumption of homoscedasticity is valid. However, there remains an 
influential point that should be further investigated. 

qqnorm( mod1_res, ylab = "Standardised residuals", 
xlab = "Theoretical quantiles", 
main = NULL, pch = 16 ) 

abline( 0, 1, col = 1, lty = 2) 

shapiro.test( residuals( mod1 ) ) 
## 
## Shapiro-Wilk normality test
##
## data: residuals(mod1)
## W = 0.98644, p-value = 0.401

The QQ-plot in Fig. 9.20 and the Shapiro test confirm the normality of the 
residuals. 

9.7 

(a) We represent the data using the pairs command in Fig. 9.21. 

Fig. 9.19 Scatterplot of standardised residuals
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Fig. 9.20 QQ-plot of standardised residuals 

Fig. 9.21 Data visualisation 

data( state ) 
statedata = data.frame( state.x77, row.names = state.abb, 

check.names  =  T  )

#head( statedata )

pairs( statedata )
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X = statedata [ , -4 ] #we do not consider the response variable 
cor( X ) 
## Population Income Illiteracy Murder 
## Population 1.00000000 0.2082276 0.10762237 0.3436428 
## Income 0.20822756 1.0000000 -0.43707519 -0.2300776 
## Illiteracy 0.10762237 -0.4370752 1.00000000 0.7029752 
## Murder 0.34364275 -0.2300776 0.70297520 1.0000000 
## HS.Grad -0.09848975 0.6199323 -0.65718861 -0.4879710 
## Frost -0.33215245 0.2262822 -0.67194697 -0.5388834 
## Area 0.02254384 0.3633154 0.07726113 0.2283902 
## HS.Grad Frost Area 
## Population -0.09848975 -0.3321525 0.02254384
## Income 0.61993232 0.2262822 0.36331544
## Illiteracy -0.65718861 -0.6719470 0.07726113
## Murder -0.48797102 -0.5388834 0.22839021
## HS.Grad 1.00000000 0.3667797 0.33354187
## Frost 0.36677970 1.0000000 0.05922910
## Area 0.33354187 0.0592291 1.00000000

Observation It is important to pay attention to spurious correlations between two 
variables, i.e., entirely random correlations, in which there is no plausible logical-
causal mechanism that relates them. On these sites, you can find some amusing 
examples of spurious correlations: 

http://www.tylervigen.com/spurious-correlations 
http://guessthecorrelation.com 

From the graphical representation of the data, we intuit an evident positive 
linear dependence between the outcome variable Life Exp and HS.Grad, Frost 
and Income (although the last two less evidently). There is also a negative linear 
dependence between Life Exp and the variables Murder and Illiteracy. 

There m ay be some influential points present.

(b) We investigate the complete model. 

g = lm( Life.Exp ~ ., data = statedata ) 
summary( g ) 
## 
## Call: 
## lm(formula = Life.Exp ~ ., data = statedata) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.48895 -0.51232 -0.02747 0.57002 1.49447 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.094e+01 1.748e+00 40.586 < 2e-16 ***
## Population 5.180e-05 2.919e-05 1.775 0.0832 .
## Income -2.180e-05 2.444e-04 -0.089 0.9293

http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://guessthecorrelation.com
http://guessthecorrelation.com
http://guessthecorrelation.com
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## Illiteracy 3.382e-02 3.663e-01 0.092 0.9269 
## Murder -3.011e-01 4.662e-02 -6.459 8.68e-08 *** 
## HS.Grad 4.893e-02 2.332e-02 2.098 0.0420 * 
## Frost -5.735e-03 3.143e-03 -1.825 0.0752 . 
## Area -7.383e-08 1.668e-06 -0.044 0.9649 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## Residual standard error: 0.7448 on 42 degrees of freedom
## Multiple R-squared: 0.7362, Adjusted R-squared: 0.6922
## F-statistic: 16.74 on 7 and 42 DF, p-value: 2.534e-10

We observe that the model represents the data well (R2
.equal to 0.7362), although 

only the variables murder and HS.grad seem to be significant. An increase in 
the murder rate (murder) leads to a decrease in life expectancy (Life Exp). This 
statement is motivated by the fact that β̂murder = −0.3. is negative. On the contrary 
β̂HS.grad = 0.048. is positive, so an increase in the percentage of high school 
graduates (HS.grad) leads to an increase in Life Exp .

(c) We verify the hypothesis of homoscedasticity. 

plot( g$fitted, g$residuals/summary(g)$sigma, 
xlab = ’Fitted values’, 
ylab = ’Standardised residuals’ )

In Fig. 9.22 we observe that the residuals are scattered around zero, so the 
hypothesis of homoscedasticity seems to be respected. 

We evaluate the normality of the residuals. 

Fig. 9.22 Scatterplot of residuals
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Fig. 9.23 QQ-plot of residuals 

qqnorm( g$residuals/summary(g)$sigma, 
ylab = "Standardised residuals", 
xlab = "Theoretical quantiles", 
main = NULL, pch = 16 ) 

abline( 0, 1, col = 1, lty  =  2  )  

shapiro.test( residuals(  g  )   )
##
## Shapiro-Wilk normality test
##
## data: residuals(g)
## W = 0.97926, p-value = 0.5212

From the QQ-plot in Fig. 9.23, we observe that the empirical quantiles of the 
standardised residuals are very close to the theoretical quantiles of a standard 
normal, moreover the p-value of the Shapiro test is much higher than 5%., therefore 
we conclude that the residuals are normal. 

(d) We proceed with a selection of the variables in the model with: 

• Manual backward selection. 
• Automatic selection. 

Manual Backward Selection 
At each step, we remove the predictor associated with the lowest significance (i.e., 
highest p-value). 

We select the model that has all predictors with p-value below 5%..
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We therefore start by removing Area. 

# remove Area 
g1 = update( g,  .  ~  . - Area ) 
summary( g1 ) 
## 
## Call: 
## lm(formula = Life.Exp ~ Population + Income + Illiteracy + 
## + Murder + HS.Grad + Frost, data = statedata) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.49047 -0.52533 -0.02546 0.57160 1.50374 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 7.099e+01 1.387e+00 51.165 < 2e-16 *** 
## Population 5.188e-05 2.879e-05 1.802 0.0785 . 
## Income -2.444e-05 2.343e-04 -0.104 0.9174 
## Illiteracy 2.846e-02 3.416e-01 0.083 0.9340 
## Murder -3.018e-01 4.334e-02 -6.963 1.45e-08 *** 
## HS.Grad 4.847e-02 2.067e-02 2.345 0.0237 * 
## Frost -5.776e-03 2.970e-03 -1.945 0.0584 . 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## Residual standard error: 0.7361 on 43 degrees of freedom 
## Multiple R-squared: 0.7361, Adjusted R-squared: 0.6993 
## F-statistic: 19.99 on 6 and 43 DF, p-value: 5.362e-11 
#help(’update’) 
#help(’update.formula’) 

We remove Illiteracy. 

# remove Illiteracy
g2 = update( g1, . ~ . - Illiteracy )
summary( g2 )
##
## Call:
## lm(formula = Life.Exp ~ Population + Income + Murder +
## + HS.Grad + Frost, data = statedata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4892 -0.5122 -0.0329 0.5645 1.5166
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.107e+01 1.029e+00 69.067 < 2e-16 ***
## Population 5.115e-05 2.709e-05 1.888 0.0657 .
## Income -2.477e-05 2.316e-04 -0.107 0.9153
## Murder -3.000e-01 3.704e-02 -8.099 2.91e-10 ***
## HS.Grad 4.776e-02 1.859e-02 2.569 0.0137 *
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## Frost -5.910e-03 2.468e-03 -2.395 0.0210 * 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## Residual standard error: 0.7277 on 44 degrees of freedom 
## Multiple R-squared: 0.7361, Adjusted R-squared: 0.7061 
## F-statistic: 24.55 on 5 and 44 DF, p-value: 1.019e-11 

We remove Income. 

# Remove Income 
g3 = update( g2,  .  ~  . - Income ) 
summary( g3 ) 
## 
## Call: 
## lm(formula = Life.Exp ~ Population + Murder + HS.Grad + 
## + Frost, data = statedata) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.47095 -0.53464 -0.03701 0.57621 1.50683 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 7.103e+01 9.529e-01 74.542 < 2e-16 *** 
## Population 5.014e-05 2.512e-05 1.996 0.05201 . 
## Murder -3.001e-01 3.661e-02 -8.199 1.77e-10 *** 
## HS.Grad 4.658e-02 1.483e-02 3.142 0.00297 ** 
## Frost -5.943e-03 2.421e-03 -2.455 0.01802 * 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## Residual standard error: 0.7197 on 45 degrees of freedom
## Multiple R-squared: 0.736, Adjusted R-squared: 0.7126
## F-statistic: 31.37 on 4 and 45 DF, p-value: 1.696e-12

We remove Population.

# remove Population
g4 = update( g3, . ~ . - Population )
summary( g4 )
##
## Call:
## lm(formula = Life.Exp ~ Murder + HS.Grad + Frost,
## data = statedata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5015 -0.5391 0.1014 0.5921 1.2268
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 71.036379 0.983262 72.246 < 2e-16 ***
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## Murder -0.283065 0.036731 -7.706 8.04e-10 *** 
## HS.Grad 0.049949 0.015201 3.286 0.00195 ** 
## Frost -0.006912 0.002447 -2.824 0.00699 ** 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## Residual standard error: 0.7427 on 46 degrees of freedom 
## Multiple R-squared: 0.7127, Adjusted R-squared: 0.6939 
## F-statistic: 38.03 on 3 and 46 DF, p-value: 1.634e-12

The decision to remove or retain Population should also be guided by the
interpretation and importance of the variable. Without additional information, we
can remove it since this leads to a slight decrease in R2

. (from 0.736. to 0.713.). 

Automatic Selection 
To perform an automatic model selection, the command step is used. Various 
criteria can be used to proceed in the s election:

• AIC. 
• BIC. 
• R2 

adj .. 

Furthermore, a selection can be used: 

• backward (start from the complete model and reduce); 
• forward (start from the model with only intercept and add variables). 

The default criterion used is AIC and the method is backward. 

#help( step ) 
g = lm( Life.Exp ~ ., data = statedata ) 

step( g ) 
## Start: AIC=-22.18 
## Life.Exp ~ Population + Income + Illiteracy + Murder + 
## + HS.Grad + Frost + Area 
## 
## Df Sum of Sq RSS AIC 
## - Area 1 0.0011 23.298 -24.182 
## - Income 1 0.0044 23.302 -24.175 
## - Illiteracy 1 0.0047 23.302 -24.174 
## <none> 23.297 -22.185 
## - Population 1 1.7472 25.044 -20.569 
## - Frost 1 1.8466 25.144 -20.371 
## - HS.Grad 1 2.4413 25.738 -19.202 
## - Murder 1 23.1411 46.438 10.305
##
## Step: AIC=-24.18
## Life.Exp ~ Population + Income + Illiteracy + Murder +
## + HS.Grad + Frost
##
## Df Sum of Sq RSS AIC
## - Illiteracy 1 0.0038 23.302 -26.174
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## - Income 1 0.0059 23.304 -26.170 
## <none> 23.298 -24.182 
## - Population 1 1.7599 25.058 -22.541 
## - Frost 1 2.0488 25.347 -21.968 
## - HS.Grad 1 2.9804 26.279 -20.163 
## - Murder 1 26.2721 49.570 11.569 
## 
## Step: AIC=-26.17 
## Life.Exp ~ Population + Income + Murder + HS.Grad + Frost 
## 
## Df Sum of Sq RSS AIC 
## - Income 1 0.006 23.308 -28.161 
## <none> 23.302 -26.174 
## - Population 1 1.887 25.189 -24.280 
## - Frost 1 3.037 26.339 -22.048 
## - HS.Grad 1 3.495 26.797 -21.187 
## - Murder 1 34.739 58.041 17.456 
## 
## Step: AIC=-28.16 
## Life.Exp ~ Population + Murder + HS.Grad + Frost 
## 
## Df Sum of Sq RSS AIC 
## <none> 23.308 -28.161 
## - Population 1 2.064 25.372 -25.920 
## - Frost 1 3.122 26.430 -23.877 
## - HS.Grad 1 5.112 28.420 -20.246 
## - Murder 1 34.816 58.124 15.528 
## 
## Call: 
## lm(formula = Life.Exp ~ Population + Murder + HS.Grad + 
## + Frost, data = statedata) 
## 
## 
## Coefficients: 
## (Intercept) Population Murder HS.Grad Frost 
## 7.103e+01 5.014e-05 -3.001e-01 4.658e-02 -5.943e-03 

AIC( g1 ) 
## [1] 119.7116 
AIC( g2 )
## [1] 117.7196
AIC( g3 )
## [1] 115.7326
AIC( g4 )
## [1] 117.9743

With the backward selection method based on AIC, the best model is g3, which
includes Population + Murder + HS.Grad + Frost. The algorithm starts from the
AIC relative to the complete model and removes at each step the variable associated
with the smallest increase in AIC.

We now apply a backward model selection based on BIC.
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g = lm( Life.Exp ~ ., data = statedata ) 

AIC( g ) 
## [1] 121.7092 
BIC( g ) 
## [1] 138.9174 

g_AIC_back = step( g, direction = "backward",  k  =  2  )  
## Start: AIC=-22.18 
## Life.Exp ~ Population + Income + Illiteracy + Murder + 
## + HS.Grad + Frost + Area 
## 
## Df Sum of Sq RSS AIC 
## - Area 1 0.0011 23.298 -24.182 
## - Income 1 0.0044 23.302 -24.175 
## - Illiteracy 1 0.0047 23.302 -24.174 
## <none> 23.297 -22.185 
## - Population 1 1.7472 25.044 -20.569 
## - Frost 1 1.8466 25.144 -20.371 
## - HS.Grad 1 2.4413 25.738 -19.202 
## - Murder 1 23.1411 46.438 10.305 
## 
## Step: AIC=-24.18 
## Life.Exp ~ Population + Income + Illiteracy + Murder + 
## + HS.Grad + Frost 
## 
## Df Sum of Sq RSS AIC 
## - Illiteracy 1 0.0038 23.302 -26.174 
## - Income 1 0.0059 23.304 -26.170 
## <none> 23.298 -24.182 
## - Population 1 1.7599 25.058 -22.541 
## - Frost 1 2.0488 25.347 -21.968 
## - HS.Grad 1 2.9804 26.279 -20.163 
## - Murder 1 26.2721 49.570 11.569 
## 
## Step: AIC=-26.17 
## Life.Exp ~ Population + Income + Murder + HS.Grad + Frost
##
## Df Sum of Sq RSS AIC
## - Income 1 0.006 23.308 -28.161
## <none> 23.302 -26.174
## - Population 1 1.887 25.189 -24.280
## - Frost 1 3.037 26.339 -22.048
## - HS.Grad 1 3.495 26.797 -21.187
## - Murder 1 34.739 58.041 17.456
##
## Step: AIC=-28.16
## Life.Exp ~ Population + Murder + HS.Grad + Frost
##
## Df Sum of Sq RSS AIC
## <none> 23.308 -28.161
## - Population 1 2.064 25.372 -25.920
## - Frost 1 3.122 26.430 -23.877
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## - HS.Grad 1 5.112 28.420 -20.246 
## - Murder 1 34.816 58.124 15.528 
g_BIC_back = step( g, direction = "backward", k = log(n) ) 
## Start: AIC=-6.89 
## Life.Exp ~ Population + Income + Illiteracy + Murder + 
## HS.Grad + Frost + Area 
## 
## Df Sum of Sq RSS AIC 
## - Area 1 0.0011 23.298 -10.7981 
## - Income 1 0.0044 23.302 -10.7910 
## - Illiteracy 1 0.0047 23.302 -10.7903 
## - Population 1 1.7472 25.044 -7.1846 
## - Frost 1 1.8466 25.144 -6.9866 
## <none> 23.297 -6.8884 
## - HS.Grad 1 2.4413 25.738 -5.8178 
## - Murder 1 23.1411 46.438 23.6891 
## 
## Step: AIC=-10.8 
## Life.Exp ~ Population + Income + Illiteracy + Murder 
## + HS.Grad + Frost 
## 
## Df Sum of Sq RSS AIC 
## - Illiteracy 1 0.0038 23.302 -14.7021 
## - Income 1 0.0059 23.304 -14.6975 
## - Population 1 1.7599 25.058 -11.0691 
## <none> 23.298 -10.7981 
## - Frost 1 2.0488 25.347 -10.4960 
## - HS.Grad 1 2.9804 26.279 -8.6912 
## - Murder 1 26.2721 49.570 23.0406 
## 
## Step: AIC=-14.7 
## Life.Exp ~ Population + Income + Murder + HS.Grad + Frost 
## 
## Df Sum of Sq RSS AIC 
## - Income 1 0.006 23.308 -18.601 
## - Population 1 1.887 25.189 -14.720
## <none> 23.302 -14.702
## - Frost 1 3.037 26.339 -12.488
## - HS.Grad 1 3.495 26.797 -11.627
## - Murder 1 34.739 58.041 27.017
##
## Step: AIC=-18.6
## Life.Exp ~ Population + Murder + HS.Grad + Frost
##
## Df Sum of Sq RSS AIC
## <none> 23.308 -18.601
## - Population 1 2.064 25.372 -18.271
## - Frost 1 3.122 26.430 -16.228
## - HS.Grad 1 5.112 28.420 -12.598
## - Murder 1 34.816 58.124 23.176

BIC(g1)
## [1] 135.0077
BIC(g2)
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## [1] 131.1038 
BIC(g3) 
## [1] 127.2048 
BIC(g4) 
## [1] 127.5344 

Even using a selection method based on the BIC, the best model turns out to be
g3.

Finally, we evaluate R2
. and R2

adj . as selection criteria. 

help( leaps ) 

# only matrix of predictors without column of 1 
x = model.matrix( g  )  [  , -1  ]  
y = statedata$Life 

adjr = leaps( x, y, method = "adjr2" ) 
names( adjr ) 
## [1] "which" "label" "size" "adjr2" 

bestmodel_adjr2_ind = which.max( adjr$adjr2 ) 
g$coef[ which( adjr$which[ bestmodel_adjr2_ind, ] ) + 1 ]
## Population Murder HS.Grad Frost
## 5.180036e-05 -3.011232e-01 4.892948e-02 -5.735001e-03

help( maxadjr )
maxadjr( adjr, 5 )
## 1,4,5,6 1,2,4,5,6 1,3,4,5,6 1,4,5,6,7 1,2,3,4,5,6
## 0.713 0.706 0.706 0.706 0.699

Even considering R2
adj . as a selection criterion, g3 turns out to be the best model, 

with the highest R2
adj . (71.26%.). 

R2 = leaps( x, y, method = "r2" ) 

bestmodel_R2_ind = which.max( R2$r2 ) 
R2$which[ bestmodel_R2_ind, ] 
## 1 2 3 4 5 6 7  
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE

As expected, using R2
. as the selection criterion, the best model turns out to be 

the complete one. 

Observation The variable selection process can be contaminated by the presence 
of influential points. 

9.8 

(a) We graphically represent the data in Fig. 9.24. Since there is only one predictive 
variable, it is not necessary to use the pairs command.
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Fig. 9.24 Data visualisation 

plot( altezza, peso ) 

The data are very few, however, a linear trend of weight with respect to height
can be inferred.

(b) We set up a simple linear regression model. 

mod = lm( peso ~ altezza ) 
summary( mod ) 
## 
## Call: 
## lm(formula = peso ~ altezza) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -7.860 -4.908 -1.244 7.097 7.518 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -62.8299 49.2149 -1.277 0.2489 
## altezza 0.7927 0.2817 2.814 0.0306 * 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
## Residual standard error: 7.081 on 6 degrees of freedom
## Multiple R-squared: 0.569, Adjusted R-squared: 0.4972
## F-statistic: 7.921 on 1 and 6 DF, p-value: 0.03058
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Fig. 9.25 Confidence intervals for the mean response. The continuous black line represents the 
values estimated through the model under consideration. The dashed black lines represent the 95% 
confidence bands for the mean response 

The model seems mediocre, since R2
. is equal to 56.9%.. Height seems significant 

in predicting the average weight of tomatoes (p-value of 3%.). Further information 
is missing to better define the model. 

(c) To answer the question we define a grid of values in the range of the available 
data (in order to have reliable estimates). 

We calculate the predicted values: 

. ŷnew = xnewβ̂;

and the relative standard errors: 

. se(E[ynew]) = Ŝ ·
√

xT
new(XT X)−1xnew.

We construct the graph shown in Fig. 9.25. 

point_grid = 15 
grid = seq( min( altezza ), max( altezza ), 
length.out = point_grid ) 

#automatically 
y.pred = predict( mod, data.frame( altezza = grid ),

interval = "confidence", se = T )

names( y.pred )
## [1] "fit" "se.fit" "df" "residual.scale"
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y.pred$fit[ ,1 ] # predicted values $\hat{y}_{new}$. 

y.pred$fit[ ,2  ]  #  LI  confidence interval for $y_{new}$. 

y.pred$fit[ ,3  ]  #  LS  confidence interval for $y_{new}$. 

# manually 
ndata = cbind( rep( 1, length( grid ) ), grid ) 
y.pred_fit = ndata %*% mod$coefficients 
y.pred_fit 
## [,1] 
## [1,] 64.00554 
## [2,] 65.47774 
## [3,] 66.94993 
## [4,] 68.42213 
## [5,] 69.89433 
## [6,] 71.36652 
## [7,] 72.83872 
## [8,] 74.31092 
## [9,] 75.78311 
## [10,] 77.25531 
## [11,] 78.72751 
## [12,] 80.19971 
## [13,] 81.67190 
## [14,] 83.14410 
## [15,] 84.61630 

#standard error 
y.pred$se 

y.pred_se = rep( 0, point_grid ) 
X = model.matrix( mod )
for( i in 1:point_grid )
{
y.pred_se[ i ] = summary( mod )$sigma * sqrt( t( ndata[i,] )

%*% solve( t(X) %*% X ) %*% ndata[i,] )
}
y.pred_se

# n - p = 8 - 2 = 6
y.pred$df
## [1] 6

tc = qt( 0.975, length( altezza ) - 2 )
y = y.pred$fit[ ,1 ]
y.sup = y.pred$fit[ ,1 ] + tc * y.pred$se
y.inf = y.pred$fit[ ,1 ] - tc * y.pred$se

IC = cbind( y, y.inf, y.sup )

IC
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## y y.inf y.sup 
## 1 64.00554 52.28376 75.72731 
## 2 65.47774 54.82621 76.12926 
## 3 66.94993 57.31735 76.58252 
## 4 68.42213 59.73909 77.10517 
## 5 69.89433 62.06616 77.72249 
## 6 71.36652 64.26427 78.46877 
## 7 72.83872 66.29041 79.38703 
## 8 74.31092 68.09839 80.52345 
## 9 75.78311 69.65227 81.91396 
## 10 77.25531 70.94217 83.56845 
## 11 78.72751 71.98949 85.46553 
## 12 80.19971 72.83610 87.56332 
## 13 81.67190 73.52812 89.81569 
## 14 83.14410 74.10549 92.18271 
## 15 84.61630 74.59890 94.63370 
y.pred$fit 
## fit lwr upr 
## 1 64.00554 52.28376 75.72731 
## 2 65.47774 54.82621 76.12926 
## 3 66.94993 57.31735 76.58252 
## 4 68.42213 59.73909 77.10517 
## 5 69.89433 62.06616 77.72249 
## 6 71.36652 64.26427 78.46877 
## 7 72.83872 66.29041 79.38703 
## 8 74.31092 68.09839 80.52345
## 9 75.78311 69.65227 81.91396
## 10 77.25531 70.94217 83.56845
## 11 78.72751 71.98949 85.46553
## 12 80.19971 72.83610 87.56332
## 13 81.67190 73.52812 89.81569
## 14 83.14410 74.10549 92.18271
## 15 84.61630 74.59890 94.63370

matplot( grid, cbind( y, y.inf, y.sup ), lty = c( 1, 4, 4 ),
col = rep( "black", 3 ), type = "l", xlab = "height",
ylab = "weight")

points( height, weight, col = "black", pch = 16 )

Observation The predict command expects as input the data for which you want 
to calculate the forecast (xnew .) in the form of a data.frame that has as column names, 
the same names of the predictors used in the model. 

(d) Let’s calculate the prediction interval for the grid values considered in the 
previous point.

In this case the standard errors are: 

. se(ynew) = Ŝ ·
√
1 + xT

new(XT X)−1xnew.

We represent the calculated intervals in Fig. 9.26.
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Fig. 9.26 Prediction intervals for individual observations 

y.pred2 = predict( mod, data.frame( height = grid ), 
interval = "prediction", se  =  T  )  

y.pred2$fit[ ,1 ] # predicted values $\hat{y}_{new}$. 
y.pred2$fit[ ,2  ]  #  LI  prediction interval for $y_{new}$. 
y.pred2$fit[ ,3  ]  #  LS  prediction interval for $y_{new}$. 

#manually 
ndata = cbind( rep( 1, length( grid ) ), grid ) 
y.pred_fit = ndata %*% mod$coefficients 
y.pred_fit 
## [,1] 
## [1,] 64.00554
## [2,] 65.47774
## [3,] 66.94993
## [4,] 68.42213
## [5,] 69.89433
## [6,] 71.36652
## [7,] 72.83872
## [8,] 74.31092
## [9,] 75.78311
## [10,] 77.25531
## [11,] 78.72751
## [12,] 80.19971
## [13,] 81.67190
## [14,] 83.14410
## [15,] 84.61630
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# standard error 
y.pred2$se.fit 

#manually 
y.pred2_se = rep( 0, point_grid ) 

for( i in 1:point_grid ) 
{ 
y.pred2_se[ i ] = summary( mod )$sigma * 

sqrt( 1 + t( ndata[i,] ) %*% 
solve( t(X) %*% X ) %*% ndata[i,] ) 

} 
y.pred2_se 

#In this case y.pred2_se != y.pred2$se.fit 

tc = qt( 0.975, length( height  ) - 2  )  
y = y.pred2$fit[,1] 
y.sup = y.pred2$fit[,1] + tc * y.pred2_se 
y.inf = y.pred2$fit[,1] - tc * y.pred2_se 

IP = cbind( y, y.inf, y.sup ) 
y.pred2$fit 
## fit lwr upr 
## 1 64.00554 43.08632 84.92475 
## 2 65.47774 45.13889 85.81658 
## 3 66.94993 47.12570 86.77417 
## 4 68.42213 49.04150 87.80276 
## 5 69.89433 50.88134 88.90732 
## 6 71.36652 52.64072 90.09232 
## 7 72.83872 54.31592 91.36152
## 8 74.31092 55.90415 92.71769
## 9 75.78311 57.40375 94.16248
## 10 77.25531 58.81434 95.69628
## 11 78.72751 60.13680 97.31822
## 12 80.19971 61.37323 99.02619
## 13 81.67190 62.52680 100.81700
## 14 83.14410 63.60158 102.68662
## 15 84.61630 64.60225 104.63034

matplot( grid, y.pred2$fit, lty = c( 1, 2, 2 ),
col = rep(’black’, 3),
type = "l", xlab = "height", ylab = "weight")

points( height, weight, col = "black", pch = 16 )
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Fig. 9.27 95% confidence intervals for the mean (inner dashed line) and 95% prediction intervals 
for individual observations (outer dashed line) 

(e) Let’s compare the intervals obtained at points (c) and (d) in Fig. 9.27. 

matplot( grid, y.pred2$fit, lty = c( 1, 2, 2 ), 
col = rep( "black", 3 ), 
type = "l", xlab = "height", ylab = "weight") 

lines( grid, y.pred$fit[  ,  2  ]  ,  col  =  "black", lty  =  4  )  
lines( grid, y.pred$fit[  ,  3  ]  ,  col  =  "black", lty  =  4  )  
points( height, weight, col = "black", pch = 16 )

As predicted by the theory, the prediction interval is wider than the confidence
interval (compare the standard errors). Moreover, all the points of the dataset fall
within the prediction interval, but only some also fall within the confidence interval.



Chapter 10 
Generalised Linear Models 

10.1 Theory Recap 

We extend regression models to the case where the dependent variable does not 
follow a normal distribution but belongs to the exponential family. 

These models are characterised by three components: 

• Y : random response variable, of which we observe N realisations {y1, .., yN }., 
whose distribution falls within the exponential family: 

. fY (yi; θi) = a(θi)b(yi) exp{yiQ(θi)}, i ∈ {1, .., N};

where θi . is the parameter that characterises the distribution, and Q(θi). is called 
the natural parameter.

• ηi = ∑r 
j=1 βjxij .: linear predictor.

• g: link function that connects the random response with the linear predictors. 
Given μi = e[Yi], i = 1, .., N ., the model predicts that: 

. g(μi) = ηi �⇒ g(μi) =
∑

j=1

βjxij .

If g(μ) = μ., then we say that the link function g is the identity and we find the 
linear regression model shown in Chap. 9. 
If g = Q., the natural parameter then we say that g is the canonical link function 
because it transforms the mean of the random variable into the natural parameter 
of its distribu tion.
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10.1.1 Logistic Model for Binary Outcomes 

Consider the case where the response variable is binary, i.e. Y ∼ Be(π).. The  
Bernoulli distribution is part of the exponential family, in fact: 

. fY (y;π) = πy(1 − π)1−y = (1 − π) exp

{

y log

(
π

1 − π

)}

I(0,1)(y);

where θ = π ., a(θ) = 1 − π ., b(y) = 1., Q(θ) = log
(

π
1−π

)
= logit (π).. The logit 

is the canonical link function. 

10.1.2 Models for Count Outcomes 

To model count data, the Poisson distribution is generally used, Y ∼ Poisson(μ).. 
The Poisson distribution is part of the exponential family, in fact: 

. fY (y;μ) = e−μμy

y! = exp{−μ} 1

y! exp{y log(μ)}IN(y);

where θ = μ., a(θ) = e−μ
., b(y) = 1/y!., Q(θ) = log(μ).. 

In the case where a certain dispersion of the response variable is observed, Y. can 
be modelled as a Negative Binomial: 

. fY (y; k, μ) = �(y + k)

�(k)�(y + 1)

(
k

μ + k

)k (

1 − k

μ + k

)y

;

e[Y ] = μ;

V ar(Y ) = μ + μ2

k
;

1

k
→ 0 �⇒ V ar(Y ) → μ Y

d→ Poisson;

where 1/k . is a dispersion parameter. 

10.1.3 Other Link Functions 

Other common link functions are:

• π(x) = F(x) �⇒ F−1(π(x)) = βx.; F generic distribution function.
• π(x) = φ(x) �⇒ φ−1(π(x)) = βx.; probit link function.
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10.1.4 Interpretation of Parameters 

The sign of βj . determines whether π(x). increases or decreases as x increases. Let’s 
focus on a single covariate x and define the odds ratio as:

. 

π(x+1)
1−π(x+1)

π(x)
1−π(x)

= exp{β0 + β1(x + 1)}
exp{β0 + β1x} = exp{β1}.

If Y ∼ Be(π)., the logistic model is logit (π) = ηi ., from which: 

. π(x) = exp{βx}
1 + exp{βx} .

Typically, numerical methods are used to identify the maximum likelihood estima-
tors β̂ . for β .. We will denote: 

. μ̂i = g−1(η̂i) = g−1

⎛

⎝
r∑

j=0

β̂j xij

⎞

⎠ .

The quantity that is usually studied is the log-odds ratio, i.e. log exp{β1} = β1 ., 
which measures the relative risk increase (ratio between positive outcome and 
negative outcome) corresponding to a unit increase in the regressor. 

10.1.5 Inference for Regression Parameters 

Consider the following test, related to the parameter βj .: 

. H0 : βj = β0 vs H1 : βj �= β0.

It can be shown that asymptotically: 

. Z = β̂j − β0

s.e.(β̂)
∼ N(0, 1);

Z is defined as the Wald statistic.



200 10 Generalised Linear Models

10.1.6 Model Selection 

There are several methods to evaluate the optimal model. The two most well-known 
approaches in the literature are based respectively on deviance and on the AIC 
(Chapter 6 [1]). 

Definition 10.1 Deviance Let l(μ̂; y). be the log-likelihood of the estimated model. 
Among all possible models, the maximum of the log-likelihood is reached at l(y; y)., 
where we consider a parameter for each observation of the model. The model 
associated with l(y; y). is called the saturated model [1]. 

We define the deviance as: 

. − 2
[
l(μ̂; y) − l(y; y)] .

The deviance is the statistic derived from the likelihood ratio to evaluate whether the 
model characterised by l(μ̂; y). is better than the saturated model. The deviance is 
asymptotically distributed as a χ2

(N−p) ., where N is the sample size (which coincides 
with the number of parameters in the case of a saturated model) and p is the number 
of parameters of t he model.

The deviance is used for model selection. In particular, it is possible to compare 
two models, characterised respectively by p1 . and p2 . parameters (p1 > p2 .), by 
performing a Chi-square test with p1 − p2 . degrees of freedom. 

A second approach to model selection involves evaluating the model with the 
lowest AIC, in line with linear regression models, Chap. 9. 

10.1.7 Model Goodness 

To evaluate the goodness of the model (Goodness Of Fit), a comparison is made 
between observed values ( yi .) and values predicted ( ̂yi .) by the model. To define the 
ŷi . we compare the estimated values π̂i . with a limit value π0 . (generally equal to 0.5.). 

Table 10.1 is defined as the misclassification table. 
We define sensitivity (or sensibility) as: 

. P{Ŷ = 1|Y = 1} = a

a + b
.

P{Ŷ = 0|Y = 0} = d

c + d
.

Table 10.1 Misclassification 
table 

ŷ = 1. ŷ = 0. 

y = 1. a b 

y = 0. c d
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Sensitivity and sensibility are generally represented together in the ROC curve. 
To represent the ROC curve we report the sensibility on the y-axis, and 1−. 

specificity on the x-axis. A good model is associated with a ‘sharp’ ROC curve, 
with high levels of sensitivity and specificity. 

Online Supplementary Material 

An online supplement to this chapter is available, 
containing data, further insights and exercises.

10.1.8 Libraries 

library( rms ) 
## Warning: package ’rms’ was built under R version 3.5.2 
## Loading required package: Hmisc 
## Warning: package ’Hmisc’ was built under R version 3.5.2 
## Loading required package: lattice 
## Loading required package: survival 
## Loading required package: Formula 
## Loading required package: ggplot2 
## Warning: package ’ggplot2’ was built under R version 3.5.2 
## 
## Attaching package: ’Hmisc’ 
## The following objects are masked from ’package:base’: 
## 
## format.pval, units
## Loading required package: SparseM
##
## Attaching package: ’SparseM’
## The following object is masked from ’package:base’:
##
## backsolve

library( ResourceSelection )
## Warning: package ’ResourceSelection’ was built
## under R version 3.5.2
## ResourceSelection 0.3-4 2019-01-08

10.2 Exercises

Exercise 10.1 Consider the dataset related to a clinical study on patients suffering 
from coronary disorders (CHDAGE_data.txt in the online supplementary material). 
In particular, the aim of the study is to explain the presence or absence of significant
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coronary disorders based on the patients’ age. The data refer to 100 patients. The 
variables in the database are:

• CHD binary variable: 1 if the coronary disorder is present, 0 if the disorder is
absent.

• AGE continuous va riable.

These data are taken from the site: http://www.umass.edu/statdata/statdata/ 
Answer the following questions: 

(a) Graphically represent the dataset and comment on it. 
(b) In order to have a better intuition of the relationship that binds CHD and 
AGE, transform the AGE variable into a categorical variable with 8 levels. The 
levels are: [20,29); [29,34); [34,39); [39,44); [44,49); [49,54); [54,59); [59,70]. 
Calculate the mean of CHD for each level and represent the 8 new pairs of values 
in the graph constructed in point a).

(c) Identify the most suitable model to describe the data and apply it. Also write 
the estimated model. 

(d) Extract the linear.predictors and the fitted.values from the model. 
What is the relationship between these quantities?

(e) Represent the model used, using the graph produced at point (a). 
(f) Give the definition of Odds Ratio in the simplest case of simple logistic 

regression with a binary dependent variable. Therefore, calculate the Odds Ratio 
corresponding to an age increase of 10 years. 

(g) Calculate the 95% confidence interval for the Odds Ratio for a 10-year age 
increase. 

(h) Calculate and represent the 95% confidence bands for each age value from 29 
to 69. 

(i) Evaluate the goodness of the model. 

Exercise 10.2 In this exercise, we will analyse a clinical dataset related to the 
weight of newborns. The aim of the study is to identify the risk factors associated 
with giving birth to children weighing less than 2500 grams (low birth weight). The 
data refers to a sample of n = 189 women. 

The variables in the database are described in the file LOWBWTdata.txt (see the 
online supplementary material):

• LOW: binary dependent variable (1 if the newborn weighs less than 2500 grams, 
0 otherwise).

• AGE: mother’s age in years.
• LWT: mother’s weight in pounds before the start of pregnancy.
• FTV: number of medical visits during the last trimester of pregnancy.
• RACE discrete independent variable with 3 lev els.

This dataset was investigated in [4].

http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
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Please answer the following questions: 

(a) Graphically represent the data and comment on the graphs. 
(b) Evaluate the most appropriate model to explain the binary variable LOW. 
(c) Calculate the Odds Ratios related to the different levels of the variable RACE and 

comment on them.
(d) Evaluate the goodness of the chosen model at point b). 
(e) Calculate the misclassification table and report the percentage of misclassified, 

using a threshold of 50%.. 
(f) Calculate the sensitivity and specificity of the model. 
(g) Calculate the ROC curve to evaluate the GOF of the model. 

Exercise 10.3 A group of financial engineers wants to investigate the factors that 
can influence the detection of bank fraud. In a preliminary analysis, the following 
variables are considered:

• update_sito: average annual time the site has been in maintenance.
• media_mov_mens average of monthly movements of the individual customer.
• type_client: type of client, 0 if standard client, 1 if silver client and 2 if gold 

client. 

The event of interest is the fraud recorded by the individual customer (fraud 
equal to 1 if a fraud has been recorded in the last year and 0 otherwise). Therefore, 
answer the following questions after loading the file fraud.txt (see the online 
supplementary material).

(a) Graphically explore the relationship between media_mov_mens and fraud. Fit  
a suitable model to estimate the probability that a generic customer will suffer 
a fraud, using all available information. Comment on the fitted m odel.

(b) If deemed appropriate, propose a reduced model and/or with transformation. 
Compare the two models and justify the choice made. 

(c) Explicitly write the chosen fitted model among the two proposed. 
(d) Provide an interpretation of the odds ratio related to an increase in the average 

of monthly movements equal to 1. 
(e) Compare the predictions that can be obtained through this model with the actual 

data (misclassification table, misclassification error, sensitivity, specificity). 

Exercise 10.4 The dataset TITANIC.txt (see the online supplementary material) 
contains data related to the Titanic disaster, which sank on the night between 14 and 
15 April 1912. For 1046 passengers, the following information is reported:

• Sex (sex, categorical variable with levels male and female).
• Age (age).
• Class (pclass, variable that takes the values 1,2,3) in which they were travelling. 

The outcome of interest is whether the passengers survived or not the disaster, 
information reported within the binary variable survived (= 1 if the passenger 
survived, = 0 otherwise). A statistical investigation is to be carried out in order to
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assess how and to what extent the previously described covariates have influenced 
the survival probability of the Titanic passengers. 

Perform the data analysis highlighting the following steps: 

(a) Preliminary descriptive analysis: examine the contingency table of survival with 
respect to sex and comment on the result; also perform the boxplot of age with 
respect to survival and comment on the result. 

(b) Fit a logistic regression model to explain the survival of passengers based on all 
available covariates and comment on the regression output: are the signs of the 
coefficients consistent with what was reasonably expected? 

(c) Fit the previous logistic regression model without using the age regressor and 
compare the two models. 

(d) Calculate the Odds Ratio of the survival probability of women compared to 
men. 

(e) Calculate the survival probability (with its prediction interval) of a 76-year-old 
woman travelling in first, second and third class (specify in the command type 
= response). 

(f) Calculate the misclassification table related to the model and the corresponding 
sensitivity. 

10.3 Solutions 

10.1 

(a) Import the data. 

chd = read.table( "CHDAGE_data.txt", head = TRUE ) 

str( chd ) 
## ’data.frame’: 100 obs. of 3 variables: 
##  $  ID  :  int  1  2  3  4  5  6  7  8  9  10  ...  
## $ AGE: int 20 23 24 25 25 26 26 28 28 29 ... 
## $ CHD: int 0  0  0  0  1  0  0  0  0  0  ...

head( chd )
## ID AGE CHD
## 1 1 20 0
## 2 2 23 0
## 3 3 24 0
## 4 4 25 0
## 5 5 25 1
## 6 6 26 0

attach( chd )
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Fig. 10.1 Data visualisation. For each statistical unit, we represent the age on the x-axis, while on 
the y-axis the presence or absence of coronary disorders 

Visualise the data in Fig. 10.1. 

plot( AGE, CHD, pch = ifelse( CHD == 1, 3, 4 ), 
col = ifelse( CHD == 1, ’gray30’, ’gray70’ ), 
xlab = ’Age’, ylab = ’CHD’, main = ’CHD vs. Age’, 
lwd = 2, cex = 1.5 )

From this graph, it can already be observed that as age increases, a higher number
of patients suffering from coronary diseases seem to be recorded.

(a) Transform the AGE variable into a categorical variable with 8 levels. The levels 
are: [20,29); [29,34); [34,39); [39,44); [44,49); [49,54); [54,59); [ 59,70].

The choice of these classes is not random, but has been proposed based on the 
distribution of the AGE variable. 

Insert in the x vector the limits of the age classes that you want to create (this 
step is arbitrary, and should be executed with good sense). 

min( AGE ) 
## [1] 20 
max( AGE ) 
## [1] 69 

x = c( 20, 29, 34, 39, 44, 49, 54, 59, 70 )
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# Calculate the midpoints of the intervals we have created 
mid  =  c(  (  x  [  2:9  ]  +  x  [  1:8  ]  )/2  )  

# Divide the data into the classes we have created 
GRAGE = cut( AGE, breaks = x, include.lowest = TRUE,

right = FALSE )
#GRAGE

We then calculate the average of coronary disorders with respect to each layer of
the AGE variable and represent the obtained values in Fig. 10.2. 

y = tapply( CHD, GRAGE, mean ) 
#y 

plot( AGE, CHD, pch = ifelse( CHD == 1, 3, 4 ), 
col = ifelse( CHD == 1, ’gray30’, ’gray70’), 
xlab = ’Age’, ylab = ’CHD’, main = ’CHD vs. Age’, 
lwd = 2, cex = 1.5 ) 

points( mid, y, col = 1, pch = 16 )

Dividing patients into age classes and calculating the average of the dependent
variable in each class, helps us to understand more clearly the nature of the
relationship between AGE and CHD.

Fig. 10.2 Visualisation of the dataset with light and dark grey crosses. The black points represent 
the percentages of coronary disorders observed for each layer of the AGE variable
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(b) We identify a model that adequately describes our data. The most suitable model 
is a generalised linear model with a logit link f unction.

help( glm ) 

mod = glm( CHD ~ AGE, family = binomial( link = logit ) ) 
summary( mod ) 
## 
## Call: 
## glm(formula = CHD ~ AGE, family = binomial(link = logit)) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -1.9718 -0.8456 -0.4576 0.8253 2.2859 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) -5.30945 1.13365 -4.683 2.82e-06 *** 
## AGE 0.11092 0.02406 4.610 4.02e-06 *** 
## ---
## Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 136.66 on 99 degrees of freedom
## Residual deviance: 107.35 on 98 degrees of freedom
## AIC: 111.35
##
## Number of Fisher Scoring iterations: 4

The estimated model is therefore:

. logit(π) = −5.30945 + 0.11092 · AGE;

where π . is the probability that CHD equals 1. From the estimates obtained, we 
deduce that an increase in age leads to an increased risk of coronary disorders, as 
we had guessed graphically in the previous points. 

(c) We investigate the linear.predictors and the fitted.values. First of  
all, the linear.predictors are the estimated values for the logit of the 
probability of having coronary disorders, logit(π̂i .). These values take values 
in R.. 

mod$linear.predictors 

The fitted.values are the estimated values for the probability of having 
coronary disorders, π̂i .. These values take values in [0, 1].. 

mod$fitted.values
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Fig. 10.3 Visualisation of the dataset (with light and dark grey crosses) and prediction obtained 
from the model (grey line). The black circles represent the percentages of CHD observed in relation 
to the different strata of AGE, calculated in point (b)

The two quantities are linked by the logit function. 

(d) In Fig. 10.3 we represent the prediction of the model, starting from the graph 
proposed in point (a). 

plot( AGE, CHD, pch = ifelse( CHD == 1, 3, 4 ), 
col = ifelse( CHD == 1, ’gray30’, ’gray70’), 
xlab = ’Age’, ylab = ’CHD’, main = ’CHD vs. Age’, 
lwd = 2, cex = 1.5 ) 

points( mid, y, col = 1, pch = 16 )
lines( AGE, mod$fitted, col = ’gray10’ )

The estimated sigmoid is monotonically increasing, as we could guess from the
estimate of βAGE .. 

(e) One of the reasons why logistic regression technique is widely used, especially 
in the clinical field, is that the coefficients of the model have a natural 
interpretation in terms of odds ratio (hereafter OR).
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Consider a dichotomous predictor x at levels 0 and 1. The odds that y = 1 among 
individuals with x = 0 is defined as: 

. 
P(y = 1|x = 0)

1 − P(y = 1|x = 0)
.

Similarly for subjects with x = 1, the odds that y = 1 is: 

. 
P(y = 1|x = 1)

1 − P(y = 1|x = 1)
.

The OR is defined as the ratio of the odds for x = 1 and x = 0. 
Given that: 

. P(y = 1|x = 1) = exp(β0 + β1 · x)

1 + exp(β0 + β1 · x)

. P(y = 1|x = 0) = exp(β0)

1 + exp(β0)

This implies: 

. OR = exp(β1)

Confidence intervals and generalisations to the case of variable x with more 
categories can be constructed immediately. 

We therefore calculate the OR relative to AGE. 

summary( mod ) 
## 
## Call: 
## glm(formula = CHD ~ AGE, family = binomial(link = logit)) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -1.9718 -0.8456 -0.4576 0.8253 2.2859 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) -5.30945 1.13365 -4.683 2.82e-06 *** 
## AGE 0.11092 0.02406 4.610 4.02e-06 *** 
## ---
## Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 136.66 on 99 degrees of freedom
## Residual deviance: 107.35 on 98 degrees of freedom
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## AIC: 111.35 
## 
## Number of Fisher Scoring iterations: 4 

The coefficient of the AGE variable is 0.111. Therefore, the OR for a 10-year 
increase in age is: 

exp( 10 * coef( mod  )  [  2  ]  )  
## AGE 
## 3.031967 

for every 10-year increase in age, the risk of coronary disorder increases by about 3
times.

Observation The model assumes that the logit is linear in the age variable, i.e., the 
OR between people aged 20 versus 30 years is the same as between individuals aged 
40 versus 50 years. 

(f) We calculate a 95% confidence interval for the OR for a 10-year increase in age. 

alpha = 0.05 
qalpha = qnorm( 1 - alpha/2 ) 
qalpha 
## [1] 1.959964 

IC.sup = exp( 10 * coef( mod  )  [  2  ]  +  qalpha * 10 * 
summary( mod )$coefficients[ 2,  2  ]  )  

IC.inf = exp( 10 * coef( mod ) [ 2 ] - qalpha * 10 *
summary( mod )$coefficients[ 2, 2 ] )

c( IC.inf, IC.sup )
## AGE AGE
## 1.892025 4.858721

(g) First, we set a grid of points from 29 to 69. Then, we calculate and represent in 
Fig. 10.4 the 95% confidence bands for each age value from 29 to 69. 

# grid of x values at which to evaluate the regression 
grid = ( 20:69 ) 

se = predict( mod, data.frame( AGE = grid ), se = TRUE ) 
# standard errors corresponding to the grid values 

help( binomial ) 
gl = binomial( link = logit ) # link function used

plot( mid, y, col = 1, pch = 3, ylim = c( 0, 1 ),
ylab = "Probability of CHD",
xlab = "AGE", main = "IC for Logistic Regression" )

lines( grid, gl$linkinv( se$fit ) )
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lines( grid, gl$linkinv( se$fit - qnorm( 1-0.025 ) * se$se ), 
col  =  1,  lty  =  2  )  

lines( grid, gl$linkinv( se$fit + qnorm( 1-0.025 ) * se$se ),
col = 1, lty = 2 )

Observation The function gl$linkinv allows obtaining the value of probabilities 
from the link function ( logit).

(h) In order to evaluate the goodness of the model, we calculate sensitivity and 
specificity. 

threshold = 0.5 
real.values = CHD 
estimated.values = as.numeric( mod$fitted.values > 0.5 ) 
tab = table( real.values, estimated.values ) 
tab 
## estimated.values 
## real.values 0 1 
## 0  45  12  
## 1  14  29  

sensitivity = tab[ 2,  2  ]  /  (  t  ab [ 2, 1 ] + tab [ 2, 2 ] )
sensitivity
## [1] 0.6744186

specificity = tab [ 1, 1 ] /( tab [ 1, 2 ] + tab [ 1, 1 ] )
specificity
## [1] 0.7894737

Fig. 10.4 Confidence intervals calculated for each new predicted point
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Fig. 10.5 Visualisation of the dataset 

We conclude that it is a good model, given the high values of sensitivity and 
specificity. 

10.2 

(a) We import the data. 

lw = read.table( "LOWBWTdata.txt", head = TRUE ) 
attach( lw ) 
## The following objects are masked from chd: 
## 
## AGE, ID

We visualise the data in Fig. 10.5. 

# treat the RACE variable as categorical 
RACE = factor( RACE ) 

par( mfrow = c( 2,  2  )  )  
plot( LWT, LOW, pch = ifelse( LOW == 1, 3, 4 ), 

col = ifelse( LOW == 1, ’gray30’, ’gray70’ ),
xlab = ’LWT’, ylab = ’LOW’, main = ’LOW vs. LWT’,
lwd = 2, cex = 1.5 )

counts_race <- table( LOW, RACE )
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barplot( counts_race, col = c( ’gray30’, ’gray70’ ), 
xlab = ’RACE’, ylab = ’Number of patients’, 
main = ’LOW vs. RACE’, beside = T) 

plot( AGE, LOW, pch = ifelse( LOW == 1, 3, 4 ), 
col = ifelse( LOW == 1, ’gray30’, ’gray70’ ), 
xlab = ’AGE’, ylab = ’LOW’, main = ’LOW vs. AGE’, 
lwd = 2, cex = 1.5 ) 

counts_FTV <- table( LOW, FTV ) 
barplot( counts_FTV, c( ’gray30’, ’gray70’ ), 

xlab = ’FTV’, ylab = ’Number of patients’, 
main = ’LOW vs. FTV’, beside = T) 

From the graphs, we assume that LWT could be significant, w ith a negative
regression coefficient. AGE does not appear to be significant, nor does FTV. The
variable RACE could be significant, as in the white race (RACE = 1) there is a strong
presence of normal weight newborns, while in the other two categories there is a
higher percentage of underweight newborns (LOW = 1, dark grey column).

(b) We set up a multiple logistic regression model to explain the variable LOW, 
including all available variables. 

mod.low = glm( LOW ~ LWT + RACE + AGE + FTV, 
family = binomial( link = logit ) ) 

summary( mod.low ) 
## 
## Call: 
## glm(formula = LOW ~ LWT + RACE + AGE + FTV, 
## family = binomial(link = logit)) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -1.4163 -0.8931 -0.7113 1.2454 2.0755 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 1.295366 1.071443 1.209 0.2267 
## LWT -0.014245 0.006541 -2.178 0.0294 * 
## RACE2 1.003898 0.497859 2.016 0.0438 * 
## RACE3 0.433108 0.362240 1.196 0.2318 
## AGE -0.023823 0.033730 -0.706 0.4800 
## FTV -0.049308 0.167239 -0.295 0.7681 
## ---
## Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 234.67 on 188 degrees of freedom
## Residual deviance: 222.57 on 183 degrees of freedom
## AIC: 234.57
##
## Number of Fisher Scoring iterations: 4
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From this initial analysis, we conclude that the variables LWT and RACE are 
influential. In particular, a higher mother’s weight is associated with a lower risk 
of underweight newborns and mothers of colour have a higher risk of having 
underweight children compared to white mothers. 

If we stick to statistical significance alone, we conclude that it is possible to fit 
a reduced model, containing only the independent variable LWT. However, as in the 
case of multiple linear regression, the inclusion of a variable in the model can occur 
for different reasons. For example, in this case, the variable RACE is considered in 
the literature as important in predicting the effect in question, so it is included in the 
reduced model. 

We evaluate a reduced model. 

mod.low2 = glm( LOW ~ LWT + RACE, 
family = binomial( link = logit ) ) 

summary( mod.low2 ) 
## 
## Call: 
## glm(formula = LOW ~ LWT + RACE, 
## family = binomial(link = logit)) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -1.3491 -0.8919 -0.7196 1.2526 2.0993 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 0.805753 0.845167 0.953 0.3404 
## LWT -0.015223 0.006439 -2.364 0.0181 * 
## RACE2 1.081066 0.488052 2.215 0.0268 * 
## RACE3 0.480603 0.356674 1.347 0.1778 
## ---
## Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 234.67 on 188 degrees of freedom
## Residual deviance: 223.26 on 185 degrees of freedom
## AIC: 231.26
##
## Number of Fisher Scoring iterations: 4
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We note that AIC decreases and also RACE gains significance. We compare the 
two models using a Chi-square test. 

anova( mod.low2, mod.low, test = "Chisq" ) 
## Analysis of Deviance Table 
## 
## Model 1: LOW ~ LWT + RACE 
## Model 2: LOW ~ LWT + RACE + AGE + FTV 
## Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
## 1 185 223.26 
## 2 183 222.57 2 0.68618 0.7096

We conclude that we can consider the two tested models equally informative.
Therefore, the best model is the simpler one, which contemplates LWT and RACE as
variables.

(c) The RACE predictor is a 3-level discrete variable. In this case, level 1 (RACE = 
White) is assumed as the reference category .

model.matrix( mod.low2 ) [ 1:15, ] 
## (Intercept) LWT RACE2 RACE3 
## 1 1 182 1 0 
## 2 1 155 0 1 
## 3 1 105 0 0 
## 4 1 108 0 0 
## 5 1 107 0 0 
## 6 1 124 0 1 
## 7 1 118 0 0 
## 8 1 103 0 1 
## 9 1 123 0 0 
## 10 1 113 0 0 
## 11 1 95 0 1 
## 12 1 150 0 1 
## 13 1 95 0 1 
## 14 1 107 0 1 
## 15 1 100 0 0 

# OR 2 vs 1 ( Black vs White ) 
exp( coef( mod.low2  )  [  3  ]  )  
## RACE2 
## 2.947821 

Black women are a category with a risk of premature birth almost 3 times higher
than white women.

# OR 3 vs 1 ( Other vs White )
exp( coef( mod.low2 ) [ 4 ] )
## RACE3
## 1.61705

Women of other ethnicities are a category with a risk of premature birth about
1.5 times higher than white women.
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(d) We perform tests to evaluate the GOF of the model. 

mod.low2lrm = lrm( LOW ~ LWT + RACE, x = TRUE, y = TRUE ) 
residuals( mod.low2lrm, "gof" ) 
## Sum of squared errors Expected value|H0 SD 
## 38.2268160 38.2138614 0.1733477 
## Z P 
## 0.0747321 0.9404279 

hoslem.test( mod.low2$y, fitted( mod.low2 ),  g  =  6  )  
## 
## Hosmer and Lemeshow goodness of fit (GOF) test 
## 
## data: mod.low2$y, fitted(mod.low2) 
## X-squared = 3.1072, df = 4, p-value = 0.5401
#g > 3

In this case too, we can conclude that the model provides a good fit of the
data. For further details on the Hosmer-Lemeshow test, please refer to the online
supplementary material.

(e) A frequently used way to present the results of a fit using logistic regression 
are classification tables. In these tables, the data are classified according to two 
keys:

• The value of the dichotomous dependent variable y.
• The value of a dichotomous variable ymod ., which is derived from the probability 

estimate obtained from the model. The values of this variable are obtained by 
comparing the value of the probability with a threshold (usual value 0.5). 

We calculate ymod . (predicted.values). 

threshold = 0.5 

actual.values = lw$LOW 
predicted.values = as.numeric(mod.low2$fitted.values > threshold) 
# 1 if > threshold, 0 if <= threshold 
table( predicted.values ) 

We then compare the actual values with the predicted values, constructing a 
misclassification table. 

tab = table( actual.values, predicted.values ) 

tab 
## predicted.values
## actual.values 0 1
## 0 124 6
## 1 53 6

# % of cases correctly classified:
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round( sum( diag( tab  )  )  /  sum( tab ), 2 ) 
## [1] 0.69 

# % of cases misclassified: 
round( ( tab [ 1, 2 ] + tab [ 2, 1 ] ) / sum( tab ), 2 )
## [1] 0.31

31%. of the data is misclassified. 

(f) We calculate the sensitivity. 

sensitivity = tab [ 2,  2  ]  /(  tab  [  2,  1  ]  +  tab  [  2,  2  ]  )  
sensitivity 
## [1] 0.1016949 

We calculate the specificity:

specificity = tab [ 1, 1 ] /( tab [ 1, 2 ] + tab [ 1, 1 ] )
specificity
## [1] 0.9538462

(g) We construct the ROC curve from the predicted values for the response from 
the mod.low2 model of the LOW va riable analysis.

fit2 = mod.low2$fitted 

#sample mean of the survival probability in the sample 

roc_threshold = seq( 0, 1, length.out = 2e2 ) 
lens = length( roc_threshold )-1 
roc_abscissa = rep( NA, lens ) 
roc_ordinate = rep( NA, lens ) 

for  (  k  in  1  :  lens ) 
{ 
threshold = roc_threshold  [  k  ]  
classification = as.numeric( sapply( fit2, 

function( x ) ifelse( x < threshold, 0, 1 ) ) )

# CAUTION, I want the true on the rows
# and the predicted on the columns
# t.misc = table( lw$LOW, classification )

roc_ordinate[ k ] = sum(
classification[ which( lw$LOW == 1 ) ] == 1 )/
length( which( lw$LOW == 1 ) )

roc_abscissa[ k ] = sum(
classification[ which( lw$LOW == 0 ) ] == 1 )/
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length( which( lw$LOW ==  0  )  )  

#roc_ordinate[k]=t.misc[1, 1]/(t.misc [1, 1] + t.misc[1, 2]) 
# 
#roc_abscissa[k]=t.misc[2, 1]/(t.misc [2, 1] + t.misc[2, 2])

}

We visualise the ROC curve in Fig. 10.6. 

plot(roc_abscissa, roc_ordinate, type = "l", 
xlab = "1 - Specificity", ylab = "Sensitivity", 
main = "ROC Curve", lwd = 2, col = ’black’, 
ylim = c( 0, 1 ), xlim = c( 0,  1  )  )  

abline(h = c( 0, 1 ),  v  =  c(  0,  1  ),  lwd  =  1,  lty  =  2,  
col = ’gray70’) 

abline(a = 0, b = 1, lty = 2, col = ’gray70’ )

# we identify our levels of
# specificity and significance
abline( v = 1 - specificity, h = sensitivity, lty = 3,

col = ’gray30’ )
points( 1 - specificity, sensitivity, pch = 4, lwd = 3,

cex = 1.5, col = ’gray30’)

Fig. 10.6 Representation of the ROC curve, through a continuous black line. The light grey 
dashed lines delimit the domain and codomain of the Curve: [0,1] ×.[0,1]. The dark grey cross 
and the dark grey dashed lines identify how the model under analysis is positioned within the 
curve
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Fig. 10.7 Visualisation of the dataset through a boxplot. In dark grey are represented the 
movements that are the result of frauds, while in light grey those that are not the result of frauds 

The ROC curve is not optimal, since it is quite flattened on the diagonal (the 
optimum is a curve that near zero has a positive and very high derivative). 

10.3 

(a) We graphically explore the relationship between average_monthly_mov and 
fraud .

data_fraud = read.table(’fraud.txt’, header = T) 

boxplot( data_fraud$average_monthly_mov ~ data_fraud$fraud, 
col = c(’gray30’, ’gray70’ ), 
ylab = ’Average monthly movements’, xlab = ’Fraud’)

In Fig. 10.7 there seems to be a relationship between the two variables. In 
particular, those who make more movements on average per month seem to have 
a higher risk of being a victim of fraud. 

We fit a logistic regression model to explain the variable fraud, including all 
available variables. 

mod_1 = glm( fraud ~ site_update + average_monthly_mov + 
client_type, data = data_fraud, 
family="binomial") 

summary( mod_1 ) 
## 
## Call: 
## glm(formula = fraud ~ site_update + average_monthly_mov +
## client_type,
## family = "binomial", data = data_fraud)
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## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -1.93612 -0.07841 -0.00916 0.00009 1.99906 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 3.2459 5.3508 0.607 0.544104 
## site_update -0.3729 0.1026 -3.636 0.000277 *** 
## average_monthly_mov 2.5748 0.6072 4.241 2.23e-05 *** 
## client_type -1.2787 0.8463 -1.511 0.130804 
## ---
## Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 179.95 on 159 degrees of freedom
## Residual deviance: 43.45 on 156 degrees of freedom
## AIC: 51.45
##
## Number of Fisher Scoring iterations: 9

From the model, both site_update and average_monthly_mov seem to be
significant (as we had guessed from the graph).

(b) We propose a reduced model that includes both site_update and 
average_monthly_mov .

mod_2 = glm( fraud ~ site_update + average_monthly_mov, 
data = data_fraud, family="binomial") 

summary( mod_2 ) 
## 
## Call: 
## glm(formula = fraud ~ site_update + average_monthly_mov, 
## family = "binomial", data = data_fraud) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -1.79424 -0.09903 -0.01291 0.00013 2.02351 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 1.95243 5.28468 0.369 0.711791 
## update_sito -0.33912 0.09313 -3.641 0.000271 *** 
## media_mov_mens 2.30649 0.51141 4.510 6.48e-06 *** 
## ---
## Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 179.947 on 159 degrees of freedom
## Residual deviance: 45.933 on 157 degrees of freedom
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## AIC: 51.933 
## 
## Number of Fisher Scoring iterations: 8

(c) Let’s compare the two tested models, using a Chi-square test. 

anova( mod_1, mod_2, test = "Chisq" ) 
## Analysis of Deviance Table 
## 
## Model 1: fraud ~ update_sito + media_mov_mens + type_client 
## Model 2: fraud ~ update_sito + media_mov_mens 
## Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
## 1 156 43.450 
## 2 157 45.933 -1 -2.483 0.1151

From the test, there does not seem to be a significant difference between the two
models, so we opt for the reduced model.

(d) Let’s calculate the OR relative to an increase of one point on the average of 
monthly movements. 

exp( 1*mod_2$coefficients[3] ) 
## media_mov_mens 
## 10.03909 

An increase of one point leads to a risk 10 times greater of suffering a fraud.

(e) Let’s calculate the misclassification table, significance and specificity. 

pred_val = ifelse( mod_2$fitted.values >= 0.5, 1, 0 ) 

tab = table( pred_val, data_fraud$fraud ) 
tab 
## 
## pred_val 0 1 
## 0 115 6 
## 1 5 34 

sensitiv = tab [ 2,  2  ]  /(  tab  [  2,  1  ]  +  tab  [  2,  2  ]  )  
sensitiv 
## [1] 0.8717949 

specif = tab [ 1, 1 ] /( tab [ 1, 2 ] + tab [ 1, 1 ] )
specif
## [1] 0.9504132

Considering the low number of misclassified, and the high levels of specificity
and significance, we can conclude that the reduced model fits well to the analysed
data.
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10.4 

(a) Let’s import the data. 

data = read.table( ’TITANIC.txt’, header = TRUE ) 

dim( data ) 
## [1] 1046 4 

#str( data ) 

names( data ) 
## [1] "survived" "sex" "age" "pclass" 
head( data ) 
## survived sex age pclass 
## 1 1 female 29.0000 1 
## 2 1 male 0.9167 1 
## 3 0 female 2.0000 1 
## 4 0 male 30.0000 1 
## 5 0 female 25.0000 1 
## 6 1 male 48.0000 1 

Let’s set the survival variable as a factor. 

data$survived = factor( data$survived ) 
#data$pclass = factor( data$pclass ) 

Let’s calculate the contingency table of survival with respect to sex. 

table( data$sex, data$survived ) 
## 
## 0 1
## female 96 292
## male 523 135

From the contingency table we observe that, proportionally, more men died than
women. There might be a correlation between these two variables.

Let’s represent in Fig. 10.8 a boxplot to investigate the trend of survival with 
respect to age. 

boxplot( data$age ~ data$survived, xlab = ’survivors’, 
ylab = ’age’, col = c(’gray30’, ’gray70’ ) ) 

From the g raph, there does not seem to be an effect of age on survival.

(b) Let’s fit a logistic regression model to explain survival, including all the 
variables in the dataset.



10.3 Solutions 223

Fig. 10.8 Data visualisation through boxplot. In dark grey we represent the age of those who 
died, while in green we represent the age of those who survived 

# glm model with all covariates 
mod.glm = glm( survived ~ ., data = data, 

family = binomial( link = logit ) ) 
summary( mod.glm ) 
## 
## Call: 
## glm(formula = survived ~ ., family = binomial(link = logit), 
## data = data) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -2.6159 -0.7162 -0.4321 0.6572 2.4041 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 4.58927 0.40572 11.311 < 2e-16 *** 
## sexmale -2.49738 0.16612 -15.034 < 2e-16 *** 
## age -0.03388 0.00628 -5.395 6.84e-08 *** 
## pclass -1.13324 0.11173 -10.143 < 2e-16 ***
## ---
## Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1414.62 on 1045 degrees of freedom
## Residual deviance: 983.02 on 1042 degrees of freedom
## AIC: 991.02
##
## Number of Fisher Scoring iterations: 4
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All variables appear to be significant, moreover being male, older and being in 
second, third class decreases the risk of survival. 

(c) We fit a logistic regression model excluding the variable age. 

mod.glm.red = update( mod.glm,  .  ~  . - age  )  
summary( mod.glm.red ) 
## 
## Call: 
## glm(formula = survived ~ sex + pclass, 
## family = binomial(link = logit), data = data) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -2.1248 -0.7134 -0.4816 0.6976 2.1033 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 3.00428 0.25591 11.740 <2e-16 *** 
## sexmale -2.52785 0.16326 -15.484 <2e-16 *** 
## pclass -0.85747 0.09511 -9.016 <2e-16 *** 
## ---
## Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 1414.6 on 1045 degrees of freedom 
## Residual deviance: 1013.8 on 1043 degrees of freedom 
## AIC: 1019.8 
## 
## Number of Fisher Scoring iterations: 4 

As expected, all variables are significant. 

anova( mod.glm, mod.glm.red, test = "Chisq" ) 
## Analysis of Deviance Table 
##
## Model 1: survived ~ sex + age + pclass
## Model 2: survived ~ sex + pclass
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 1042 983.02
## 2 1043 1013.85 -1 -30.822 2.829e-08 ***
## ---
## Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1

1 - pchisq( 1013.85 - 983.02, 1 )
## [1] 2.816499e-08

Given the p-value of the test, we can conclude that the full model is more
informative than the reduced model.
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(d) We calculate the OR of the survival probability of men compared to women. 

exp( -mod.glm$coefficients[ 2 ] ) 
## sexmale 
## 12.15057 

Women have a survival probability 12 times higher than that of men.

(e) We calculate the survival probability of a 76-year-old woman who travelled in 
first, second and third class. 

mod_pred.conf1 = predict( mod.glm, 
data.frame(age = 76, sex = ’female’, 

pclass  =  1  ),  
type = ’response’, se.fit  =  T  )  

mod_pred.conf2 = predict( mod.glm, 
data.frame(age = 76, sex = ’female’, 

pclass  =  2  ),  
type = ’response’, se.fit  =  T  )  

mod_pred.conf3 = predict( mod.glm, 
data.frame(age = 76, sex = ’female’, 

pclass  =  3  )  ,
type = ’response’, se.fit = T )

mod_pred.conf1$fit
## 1
## 0.7069811
mod_pred.conf2$fit
## 1
## 0.4372139
mod_pred.conf3$fit
## 1
## 0.2000918

As expected, the lower the class, the lower the survival probability.

(f) We calculate the misclassification table and calculate the sensitivity. 

threshold = 0.5 
actual.values = data$survived 
estimated.values = as.numeric( mod.glm$fitted.values > 0.5 ) 
tab = table( actual.values, estimated.values ) 
tab 
## estimated.values 
## actual.values 0 1 
## 0 523 96 
## 1 126 301 

# Sensitivity = True Positive Rate,
# e.g. empirical probability of classifying a
# positive as such
tab[ 2, 2 ] / sum( tab[ 2, ] )
## [1] 0.704918



Chapter 11 
ANOVA: Analysis of Variance 

11.1 Theory Recap 

The analysis of variance, also known by the acronym ANOVA (ANalysis Of 
VAriance), is a statistical technique that aims to compare the means of a random 
phenomenon among different groups of statistical units. This analysis is approached 
through the decomposition of variance. 

11.1.1 ANOVA 

Consider a random variable Yij . related to the statistical unit i ∈ {1, . . . , nj }. 
belonging to the group j ∈ {1, . . . , g}.. Suppose that Yij . can be modelled in the 
following way: 

.Yij = μ + τj + εij , i = 1, .., nj j = 1, ..., g; (11.1) 

where μ. is the overall mean, while τj . represents the average deviation from μ. in 
group g. Furthermore, it is assumed: 

• Normality: εij ∼ N(0, σ 2
j )..

• Homoscedasticity: σ 2
j = σ 2 ∀j ..

• Independence: εij |� εi′j ′ ∀i �= i′, j �= j ′
.. 

The model described in Eq. (11.1) is a one-way ANOVA, as we are considering 
a single factor. If we were considering two factors, we would have: 

. Yijk = μ + τj + γk + αjk + εijk, i = 1, .., njk k = 1, .., K j = 1, ..., J ;
(11.2) 
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where one factor consists of K levels and the second factor is at J levels. In this 
case, we would talk about two-way ANOVA. For simplicity, we consider only the 
one-way ANOVA model in the theory recap.

Theorem 11.1 (Decomposition of Variance) Denote yij . the realisations of the 
random variable Yij ., i ∈ {1, .., nj }. and j ∈ {1, .., g}., where the total sample size is 
N = ∑g

j=1 nj .. It can be shown that: 

.

g∑

j=1

nj∑

i=1

(yij − y)2 =
g∑

j=1

nj · (yj · − y)2 +
g∑

j=1

nj∑

i=1

(yij − yj ·)2; (11.3) 

where: 

. yj · = 1

nj

nj∑

i=1

yij ;

. y =
∑g

j=1

∑nj

i=1 yij
∑g

j=1 nj

.

Equation (11.3) can be succinctly rewritten as: 

. SST OT = SSB + SSW ;

where SST OT . represents the total variance, SSB . represents the variance between 
different groups (between groups) and SSW . represents the variance within groups 
(within groups). 

Given the assumptions of the model, it can be shown that: 

. 
1

σ 2

g∑

j=1

nj∑

i=1

(Yij − Y j ·)2 ∼ χ2
N−g.

. 
1

σ 2

g∑

j=1

nj · (Y j · − Y)2 ∼ χ2
g−1.

.
1

σ 2

g∑

j=1

nj∑

i=1

(Yij − Y )2 ∼ χ2
N−1.
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Table 11.1 ANOVA table 

Variance d.f. Sum of squares Mean F statistic 

Between g-1 SSB = ∑g

j=1 nj · (yj · − y)2 . MSB = SSB

(g−1)
. MSB/MSW . 

Within N-g SSW = ∑g

j=1

∑nj

i=1(yij − y·j )2 . MSW = SSW

(N−g)
. 

Total N-1 SST OT = ∑g

j=1

∑nj

i=1(yij − y)2 . MST OT = SST OT

(N−1)
. 

When we are interested in performing an ANOVA, we want to carry out the 
following hypothesis test: 

. H0 : τ1 = τ2 = .. = τg vs H1 : ∃ i t.c. τi �= τj j ∈ {1, .., g} \ i.

Under H0 . the test statistic MSB/MSW . is distributed as a Fisher with parameters 
g − 1. and N − g . (see Table 11.1). A low p-value leads us to reject H0 . and therefore 
conclude that not all groups have the same mean. 

Online Supplementary Material 

An online supplement to this chapter is available, 
containing data, further insights and exercises.

11.1.2 Libraries 

library( MASS ) 
library( car ) #for LEVENE TEST 
## Loading required package: carData 
library( faraway ) 
## 
## Attaching package: ’faraway’ 
## The following objects are masked from ’package:car’: 
## 
## logit, vif
library( Matrix )
library( RColorBrewer ) #for color palette
library( ggplot2 )
## Warning: package ’ggplot2’ was built under R version 3.5.2
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11.2 Exercises 

Exercise 11.1 Write the ANOVA model, specifying the assumptions. Can the one-
way ANOVA model be seen as a linear regression model? If so, specify the design 
matrix and the analogy between ANOVA tests and linear regression tests. 

Exercise 11.2 Record the height for N individuals, coming from three different 
regions: a maritime region (10 individuals), a mountainous region (15 individuals) 
and a hilly region (12 individuals). Describe the hypothesis test that must be 
performed to test whether the average height is different based on the region of 
origin and write the necessary R commands to solve the problem.

Exercise 11.3 (Visualisation of Variance Decomposition) In order to visualise 
the theorem on variance decomposition, carry out the following points: 

(a) Generate a dataset composed of three variables: ‘Measures’ (the quantity of 
interest), ‘Group’ (the group variable) and the ‘ids’ variable (which is a count 
of the rows). Choose N = 200. statistical units, divided into 4 balanced groups 
(‘A’, ‘B’, ‘C’, ‘D’). Generate the dataset taking into account the assumptions of 
the ANOVA model. 

(b) Visualise, using the ‘ggplot2’ library, the theorem on variance decomposition. 

Exercise 11.4 (One-Way ANOVA) Analyse the chickwts data, available in R, 
related to the weight of chickens subjected to different diets and determine if there 
is a difference between the average weights of the chickens among the different 
groups. The chickwts dataset is composed of two variables:

• weight: response variable ( Yij .), weight of chicken i, under diet j .
• feed: categorical variable at g levels indicating the type of diet.

Import the chickwts data. We want to investigate whether the weight of the 
chickens is influenced by the type of diet.

Exercise 11.5 (Identifiability of the ANOVA Model) Provide the definition of 
model identifiability. Discuss two formulations of the test on the difference of means 
in the case where there is a single categorical variable at 7 levels, each with a count 
of {3,2,3,2,3,2,3}. Specify the design matrix of each model. 

Exercise 11.6 (One-Way ANOVA) Consider the coagulation dataset [2] , in the 
faraway library:

• coag: coagulation time (continuous, positive variable).
• diet: type of diet followed (categorical variable at 4 levels). 

The dataset is 24 × 2.. Prove that the diet impacts the average coagulation time. 

Exercise 11.7 (Two-Ways ANOVA) Consider the rats dataset in the faraway 
package. Investigate the effect of the type of poison and the type of treatment
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administered to 48 rats. The object of evaluation is the survival time (in tens of 
hours) of the 48 rats. The dataset contains the following variables:

• time (survival time): continuous.
• poison (poison): categorical at 3 levels (I, II, III).
• treat (treatment): categorical at 4 levels (A, B, C, D).

11.3 Solutions 

11.1 The answer is affirmative: ANOVA models can be seen as linear regression 
models. For simplicity, let’s consider a one-way ANOVA model. 

On one hand, the ANOVA model can be expressed as follows: 

.Yij = μ + τj + εij i ∈ {1, .., nj } j ∈ {1, .., g}. (11.4) 

This model is analogous to: 

. Yi = μ + μ1Xi1 + μ2Xi2 + .. + μgXig + εi, i ∈
⎧
⎨

⎩
1, .., N =

g∑

j=1

nj

⎫
⎬

⎭
;

(11.5) 

a linear regression model with g + 1. parameters, where the covariates Xil . are worth 
1 if the statistical unit i is associated with the l-th level of the group and 0 o therwise.

In both models, the assumptions of homoscedasticity and normality must hold 
(among all elements, therefore also within the groups). 

The model in Eq. (11.5) is not the only acceptable one, indeed in this case it 
can be easily proven that the design matrix is not invertible. For a more in-depth 
reflection on the subject, refer to Exercise 11.5. 

11.2 To answer this question, an ANOVA test must be performed. In the dataset, 
we have a total of N = 37. individuals, a factor at three levels, g = 3.. The groups 
are unbalanced, as they do not have the same number. 

We can start with a graphical exploration of the data using the boxplot com-
mand and juxtaposing the boxplots relative to the different groups. If the boxplots 
are at different heights, we expect an effect of the factor on the response variable. If 
the boxplots are asymmetric, the assumption of normality might be violated. If the 
boxplots are of very different sizes, the assumption of homoscedasticity might be 
violated. 

We verify that the assumption of normality is satisfied using the shapiro.test() 
command, which performs a Shapiro test. The test must be repeated on each group 
separately, or it can be used simultaneously using the tapply command. If the 
p-values are high, I accept H0 ., i.e., I accept the assumption of normality for each 
group.
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I verify the assumption of homoscedasticity among the groups, through the 
Bartlett or Levene test. If the p-value is high, I accept H0 ., i.e., I accept the 
assumption of homogeneity of variance. For further study on these tests, refer to 
the online material. 

If the model assumptions are respected, we proceed with our analysis with the 
anova, aov or lm command. In all three cases, we look at the p-value related to the 
Fisher test. If the p-value is low, I reject H0 ., i.e., there is a difference in the mean of 
the variable of interest due to the factor (the region in this case). 

11.3 

(a) We generate the dataset as required by the text. Since the groups are balanced, 
we have 50 observations per group. Also, since the assumptions of the ANOVA 
model are valid, we must generate the data from a normal distribution with the 
same variance for each group. The mean is at the reader’s discretion. 

N  =  50  
set.seed(1000) 
group_1 = rnorm( N, 10, 3 ) 
group_2 = rnorm( N, 5, 3 ) 
group_3 = rnorm( N, 20, 3 ) 
group_4 = rnorm( N, 50, 3 ) 

groups = rep( c(’A’,’B’,’C’,’D’), each  =  N  )  
data_oneway_aov = cbind( 
c( group_1, group_2, group_3, group_4 ), 
groups, 
1:(N*4) ) 

data_oneway_aov = as.data.frame( data_oneway_aov ) 
colnames( data_oneway_aov ) = c(’Measures’, ’Group’, ’ids’) 

Before proceeding, let’s check that Measures and ids are variables of type 
numeric, while Group should be a variable of type factor. If not, we convert 
the type of these variables. This step is important for later visualisation.

is( data_oneway_aov$Measures )[1]
## [1] "factor"
is( data_oneway_aov$Group )[1]
## [1] "factor"

cast = data_oneway_aov$Measures
data_oneway_aov$Measures = as.numeric(levels(cast))[cast]

is( data_oneway_aov$Measures )[1]
## [1] "numeric"

cast = data_oneway_aov$ids
data_oneway_aov$ids = as.numeric(levels(cast))[cast]

is( data_oneway_aov$ids )[1]
## [1] "numeric"
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Let’s make a first graph to verify that we have correctly generated the data. 

ggplot(data_oneway_aov, aes( x = Group, y = Measures, 
fill = Group  )  )  +  

geom_boxplot() + scale_fill_grey() + 
scale_colour_grey() + theme_bw() + 
geom_segment( aes( x = 0.5, y = 10, xend = 1.5, yend = 10, 

colour = ’Real mean’), linetype  =  2  )  +  
geom_segment( aes(  x  =  1.5,  y  =  5,  xend = 2.5, yend = 5,

colour = ’Real mean’), linetype = 2 ) +
geom_segment( aes( x = 2.5, y = 20, xend = 3.5, yend = 20,

colour = ’Real mean’), linetype = 2 ) +
geom_segment( aes( x = 3.5, y = 50, xend = 4.5, yend = 50,

colour = ’Real mean’), linetype = 2 )

Observing Fig. 11.1, we conclude that the dataset is correctly generated, in fact 
we see that the means used to generate the data (dashed lines), are very close to the 
medians and the boxplots are symmetric (as is correct for the Normal distribution). 

(a) We then proceed to the visualisation of the theorem on the decomposition of 
variance. 

Fig. 11.1 Boxplot of the quantity of interest ‘Measures’, recorded in the 4 groups ‘A’, ‘B’, ‘C’ 
and ‘D’
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We start by calculating the quantities of interest. In particular, we create a dataset 
that contains the previously created dataset, the means of Measures for each group 
and the global mean of Measures. 

mean_per_group = tapply( data_oneway_aov$Measures, 
data_oneway_aov$Group, mean ) 

mean_tot = mean( data_oneway_aov$Measures ) 

data_lines = cbind( data_oneway_aov, 
rep( mean_per_group, each  =  N  ),  

rep( mean_tot, 4*N) ) 
data_lines = as.data.frame( data_lines ) 
colnames( data_lines  )  =  c(  ’Measures’, ’Group’, ’ids’, 

’mean_per_group’, ’mean_tot’ ) 

head( data_lines ) 
## Measures Group ids mean_per_group mean_tot 
## 1 8.662665 A 1 9.52411 21.42521 
## 2 6.382430 A 2 9.52411 21.42521
## 3 10.123379 A 3 9.52411 21.42521
## 4 11.918165 A 4 9.52411 21.42521
## 5 7.640337 A 5 9.52411 21.42521
## 6 8.843532 A 6 9.52411 21.42521

We draw our first quantity of interest, the components of SSW ., in Fig. 11.2: 

. Yij − Y j · i ∈ {1, .., nj } j ∈ {1, ..,G}.

ggplot( data_oneway_aov, aes( ids, Measures  )  )  +  
geom_point( aes(color= Group)) + scale_fill_grey() + 
scale_colour_grey() + theme_bw() + 
geom_segment( x = 1, y = mean_per_group[1], xend = 50, 

yend = mean_per_group[1], colour  =  1  )  +  
geom_segment( x = 51, y = mean_per_group[2], xend = 100, 

yend = mean_per_group[2], colour  =  1  )  +  
geom_segment( x = 101, y = mean_per_group[3], xend = 150,

yend = mean_per_group[3], colour = 1 ) +
geom_segment( x = 151, y = mean_per_group[4], xend = 200,

yend = mean_per_group[4], colour = 1 ) +
geom_segment( data = data_lines,

aes( x = ids, y = mean_per_group,
xend = ids, yend = Measures),

colour = "gray" ) +
theme( axis.title.x=element_blank(),

axis.text.x=element_blank(),
axis.ticks.x=element_blank() )
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Fig. 11.2 Representation of the different components of SSW ., i.e., the distance of each point from 
the mean of the group to which it belongs 

We draw our second quantity of interest, the components of SSB ., in Fig. 11.3: 

. Y j · − Y j ∈ {1, ..,G}.

ggplot( data_oneway_aov, aes( ids, Measures  )  )  +  
geom_point( aes(color= Group)) + scale_fill_grey() + 
scale_colour_grey() + theme_bw() + 
geom_segment( x = 1, y = mean_per_group[1], xend = 50, 

yend = mean_per_group[1], colour  =  1  )  +  
geom_segment( x = 51, y = mean_per_group[2], xend = 100, 

yend = mean_per_group[2], colour  =  1  )  +  
geom_segment( x = 101, y = mean_per_group[3], xend = 150, 

yend = mean_per_group[3], colour  =  1  )  +
geom_segment( x = 151, y = mean_per_group[4], xend = 200,

yend = mean_per_group[4], colour = 1 ) +
geom_segment( x = 1, y = mean_tot, xend = 200,

yend = mean_tot, colour = 1 ) +
geom_segment( x = 25, y = mean_per_group[1], xend = 25,

yend = mean_tot, colour = "gray" ) +
geom_segment( x = 75, y = mean_per_group[2], xend = 75,

yend = mean_tot, colour = "gray" ) +
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geom_segment( x = 125, y = mean_per_group[3], xend = 125, 
yend = mean_tot, colour = "gray" ) + 

geom_segment( x = 175, y = mean_per_group[4], xend = 175, 
yend = mean_tot, colour = "gray" ) +

theme( axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank() )

We draw our third quantity of interest, the components of SST OT ., in Fig. 11.4: 

. Yij − Y i ∈ {1, .., nj } j ∈ {1, ..,G}.

Fig. 11.3 Representation of the different components of SSB ., i.e., the distance of the mean of 
each group from the global mean
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Fig. 11.4 Representation of the different components of SST OT ., that is, the distance of each point 
from the global mean 

ggplot( data_oneway_aov, aes( ids, Measures  )  )  +  
geom_point( aes(color= Group)) + scale_fill_grey() + 
scale_colour_grey() + theme_bw() + 
geom_segment( x = 1, y = mean_tot, xend = 200, 

yend = mean_tot, 
colour  =  1  )  +  

geom_segment( data = data_lines,
aes( x = ids, y = mean_tot,

xend = ids, yend = Measures),
colour = "gray" ) +

theme( axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank() )

11.4 To solve this exercise, we need to proceed as follows: 

(a) Import the dataset. 
(b) Visualise the dataset. 
(c) Set up the model.
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(d) Verify the model’s assumptions. 
(e) Check the difference between the means (through testing). 

(a) Import the dataset. 

head( chickwts ) 
## weight feed 
## 1 179 horsebean 
## 2 160 horsebean 
## 3 136 horsebean 
## 4 227 horsebean 
## 5 217 horsebean 
## 6 168 horsebean 
tail( chickwts ) 
## weight feed 
## 66 352 casein 
## 67 359 casein 
## 68 216 casein 
## 69 222 casein 
## 70 283 casein 
## 71 332 casein 

attach( chickwts ) 

The dataset consists of N = 71 observations, div ided into 6 groups (g = 6).

tapply( chickwts$weight, chickwts$feed, length )
##casein horsebean linseed meatmeal soybean sunflower
## 12 10 12 11 14 12

The groups appear to be quite balanced.
(b) Visualise the dataset. 

We visualise the data through boxplots, so as to get an intuition about the 
presence of any differences in the response between chickens that follow 
different diets. 

summary( chickwts ) 
## weight feed 
## Min. :108.0 casein :12 
## 1st Qu.:204.5 horsebean:10 
## Median :258.0 linseed :12 
## Mean :261.3 meatmeal :11 
## 3rd Qu.:323.5 soybean :14 
## Max. :423.0 sunflower:12 

boxplot( weight ~ feed, xlab = ’feed’, ylab = ’weight’,
main = ’Chicken weight according to feed’,
col = gray.colors(6) )

abline( h = mean( weight ) )



11.3 Solutions 239

Fig. 11.5 Representation of the weight of chickens according to different diets 

From the comparison of the boxplots in Fig. 11.5, it seems that there is some 
effect, the means appear different depending on the diet followed. 

(c) Set up the model. 
We want to investigate the following one-way ANOVA model: 

. yij = μ + τj + εij ;

in which i ∈ {1, .., nj }. is the index of the statistical unit within the group j , 
while j ∈ {1, .., g}. is the group index. 
We are interested in performing the following test: 

. H0 : τi = τj ∀i, j ∈ {1, .., 6} vs H1 : ∃ (i, j) |τi �= τj .

Paraphrasing, H0 . assumes that all chickens belong to a single population, while 
H1 . assumes that the chickens belong to 2, 3, 4, 5 or 6 populations with different 
means. In Fig. 11.6 we have graphically represented what we would record if H0 . 

were true (the means in the different groups would coincide) in the left panel, 
and what we actually record in our dataset in the right panel.
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Fig. 11.6 Representation of what we would observe if H0 . were true in the left panel. Representa-
tion of the average weight of chickens in different diets in the right panel 

par( mfrow = c( 1,  2  )  )  

barplot( rep( mean( weight ), 6 ), 
names.arg = levels( feed ), 
ylim = c( 0, max( weight ) ), main = "H0 true", 
col = ’grey’ ) 

barplot( tapply( weight, feed, mean ),
names.arg = levels( feed ),
ylim = c( 0, max( weight ) ),
main = "Dataset under examination",
col = gray.colors(6) )

(d) Verify the model’s assumptions. 
We verify that the ANOVA assumptions are met:

• Normality within the group (through Shapiro test).
• Homoscedasticity between the groups (through Bartlett or Levene test). 

n = length( feed ) 
ng = table( feed ) 
treat = levels( feed ) 
g = length( treat ) 

# Normality of data in groups 
Ps = c( shapiro.test( weight [ feed == treat [ 1 ] ] )$p,

shapiro.test( weight [ feed == treat [ 2 ] ] )$p,
shapiro.test( weight [ feed == treat [ 3 ] ] )$p,
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shapiro.test( weight [ feed == treat  [  4  ]  ]  )$p, 
shapiro.test( weight [ feed == treat  [  5  ]  ]  )$p, 
shapiro.test( weight [ feed == treat  [  6  ]  ]  )$p  )  

#Ps 

# In a more compact and elegant way: 
Ps = tapply( weight, feed, 

function(  x  )  (  shapiro.test( x )$p ) ) 
Ps 
## casein horsebean linseed meatmeal 
## 0.2591841 0.5264499 0.9034734 0.9611795 
## soybean sunflower 
## 0.5063768 0.3602904 

The p-value vector of the Shapiro test (Ps) are all high, so I accept the 
hypothesis of normality in all groups. 
Let’s verify the hypothesis of homoscedasticity. 

Var = c( var( weight [ feed == treat [ 1  ]  ]  ),  
var( weight [ feed == treat [ 2  ]  ]  ),  
var( weight [ feed == treat [ 3  ]  ]  ),  
var( weight [ feed == treat [ 4  ]  ]  ),  
var( weight [ feed == treat [ 5  ]  ]  ),
var( weight [ feed == treat [ 6 ] ] ) )

#Var

# In a more compact and elegant way:
Var = tapply( weight, feed, var )
#Var

# Uniformity test of variances
bartlett.test( weight, feed )
##
## Bartlett test of homogeneity of variances
##
## data: weight and feed
## Bartlett’s K-squared = 3.2597, df = 5, p-value = 0.66

# Alternative: Levene-Test
leveneTest( weight, feed )
## Levene’s Test for Homogeneity of Variance
## (center = median)
## Df F value Pr(>F)
## group 5 0.7493 0.5896
## 65

The tests agree, we conclude that the hypothesis of variance homogeneity is
respected.

(e) Verify difference between means (through test).



242 11 ANOVA: Analysis of Variance

Now that we have verified that the hypotheses are satisfied we can proceed with 
a one-way ANOVA. 

. F0 = SST REAT /r

SSRES/(n − p)
∼ F(r, n − p);

in which: 

. SST REAT =
g∑

j=1

τ 2
j · nj .

In the one-way ANOVA the number of regressors r = g − 1.. 
In R we can perform an ANOVA test in three ways: 
1. Performing a manual F test. 

Media = mean( weight ) 
Mediag = tapply( weight, feed, mean ) 

SStot = var( weight  )  *  (  n-1  )  
SStreat = sum( ng * ( Mediag-Media )^2 ) 
SSres = SStot - SStreat 

alpha = 0.05 
Fstatistic = ( SStreat  /  (  g-1  )  )  /  (  SSres  /  (  n-g  )  )  

# "small" values do not lead us to reject
cfr.fisher = qf( 1-alpha, g-1, n-g )
Fstatistic > cfr.fisher
## [1] TRUE
Fstatistic
## [1] 15.3648
cfr.fisher
## [1] 2.356028

P = 1-pf( Fstatistic, g-1, n-g )
P
## [1] 5.93642e-10

Observing our F statistic (Fstatistic), we notice that we are well beyond the 5%. 

threshold. So I have strong evidence to reject the null hypothesis (confirmed by 
the p-value equal to 5.94e−10

.. 
2. Running the aov command. 

help( aov ) 

fit = aov( weight ~ feed ) 
# or anova( mod ) 
summary( fit )
# Df Sum Sq Mean Sq F value Pr(>F)
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# feed 5 231129 46226 15.37 5.94e-10 *** 
# Residuals 65 195556 3009 
# ---
#Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 

The aov command shows the decomposition of variance and the outcome of the
ANOVA test. In this case SSB = 231129. and SSW = 195556.. The p-value of 
the test is 5.94e−10

., so we reject the null hypothesis. 
3. Running the lm command. 

mod = lm( weight ~ feed ) 
summary( mod ) 
## 
## Call: 
## lm(formula = weight ~ feed) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -123.909 -34.413 1.571 38.170 103.091 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 323.583 15.834 20.436 < 2e-16 *** 
## feedhorsebean -163.383 23.485 -6.957 2.07e-09 *** 
## feedlinseed -104.833 22.393 -4.682 1.49e-05 *** 
## feedmeatmeal -46.674 22.896 -2.039 0.045567 * 
## feedsoybean -77.155 21.578 -3.576 0.000665 *** 
## feedsunflower 5.333 22.393 0.238 0.812495 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

Through the lm command, we model our response variable using a linear model.
The test that interests us is the one related to the global significance of the model
reported in the last line of the summary (see Chap. 9). 
Through all three proposed approaches, we reject H0 . and conclude that there is 
a difference between the means of the different groups. 

11.5 We are in the case of one-way ANOVA. This model can be represented as: 

.Yij = τ + μj + εij , i ∈ {1, .., nj } j ∈ {1, .., g}.
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Alternatively, we can consider a linear regression model with a categorical 
variable X (dummy variable) at g levels. 

. Y = Xβ + ε.

Non-invertible Design Matrix 

. Yij = β0 + β1Xi1 + β2Xi2 + · · · + βgXig + εij .

Observation 

. β0 = μβj = μj ∀j = 1, .., g.

In this model, the design matrix X has dimension N × (g + 1).. Each row of 
X, xi . is a binary vector of length g + 1., in which one appears at the first element 
(corresponding to the intercept) and in the j + 1-th element, where j represents the 
group of membership of the element i. 

Considering 7 groups with sizes {3,2,3,2,3,2,3} respectively, the design matrix 
X described abov e is:

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This design matrix (X.full in the code) is singular, i.e. not invertible (to invert it 
manually we must resort to the Moore-Penrose pseudoinverse).
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In other words, the model described in Eq. (11.5) is not identifiable. 
Invertible Design Matrix 
Alternatively, we can consider the following model: 

. Yij = β0 + β1Xi1 + β2Xi2 + · · · + βg−1Xig−1 + εij .

In this model, the design matrix X has dimension N×g ., the elements of which are 
{−1, 0, 1}.. The first column, as in the previous case, is made up of all 1s (elements 
related to the intercept). While, the rows related to the statistical units of the first 
g − 1. groups are composed of all zeros, except the first element and the j -th 
element, where j represents the group of membership. Finally, the rows related to 
the statistical units belonging to the group g are made up of all − 1., except the first 
element which is 1. This design matrix is also called a contrast matrix. 

This design matrix X in our case becomes: 

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 1 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We immediately notice that this matrix is similar to the previous one but it is 
non-singular and therefore invertible.
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Observation If we execute the command tapply( feed, feed, length ), R 
calculates the group sizes and reorders them in alphabetical order by group name. 
If we want to use the group sizes in the order in which they appear in the dataset 
( feed), we must do:

n 
## [1] 71 

group_names = unique( as.character( feed ) ) 
ng = tapply( feed, feed, length )[ group_names ]

Non-invertible Design Matrix in R 
We construct the matrix X.full, that is a design matrix where we consider all the 
groups (dimension = N × (g + 1). ). In particular, we create g + 1. columns and 
assemble them using the cbind command. 

# group 1 (in the order of the data in ( weight,feed ) 
x1.full = c( rep( 1, ng  [  1  ]  ),  

rep( 0,  n - ng  [  1  ]  )  )  

# group 2 (in the order of the data in ( weight,feed ) 
x2.full = c( rep( 0, ng  [  1  ]  ),  

rep( 1, ng  [  2  ]  ),  
rep( 0,  n - ng  [  1  ] - ng  [  2  ]  )  )  

# group 3 (in the order of the data in ( weight,feed ) 
x3.full = c( rep( 0, ng  [  1  ]  +  ng  [  2  ]  ),  

rep( 1, ng  [  3  ]  ),  
rep( 0,  n - ng  [  1  ] - ng  [  2  ] - ng [ 3 ] ) )

# group 4 (in the order of the data in ( weight,feed )
x4.full = c( rep( 0, n - ng [ 6 ] - ng [ 5 ] - ng [ 4 ] ),

rep( 1, ng [ 4 ] ),
rep( 0, ng [ 5 ] + ng [ 6 ] ) )

# group 5 (in the order of the data in ( weight,feed )
x5.full = c( rep( 0, n - ng [ 6 ] - ng [ 5 ] ),

rep( 1, ng [ 5 ] ),
rep( 0, ng [ 6 ] ) )

# group 6 (in the order of the data in ( weight,feed )
x6.full = c( rep( 0, n - ng [ 6 ] ),

rep( 1, ng [ 6 ] ) )

X.full = cbind( rep( 1, n ),
x1.full,
x2.full,
x3.full,
x4.full,
x5.full,
x6.full )
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To prove that X.full does not have full rank, we observe that one column is a 
linear combination of other columns of the matrix. 

stopifnot( length( 
which( X.full[ ,  1  ] - rowSums( X.full[  , - 1  ]  )  ==  0  )  )  
== dim( X.full )[1] )

We now estimate the β̂ .. Remember that X is singular, so H will be calculated as 
follows: 

. H = X · (XT · X)† · XT

where (XT · X)†
. indicates the Moore-Penrose pseudo-inverse. And the β̂ . will be 

calculated as: 

. β̂ = (XT · X)† · XT · y

# H.full = X.full%*%solve(t(X.full)%*%X.full)%*%t(X.full) 
# R gives an error, because it’s singular! 

H.full = X.full%*%ginv(t(X.full)%*%X.full)%*%t(X.full) 

y = weight 

betas.full = as.numeric( 
ginv(t(X.full)%*%X.full)%*%t(X.full) %*% y)

The mean in the j -th group is:

. E[Yj ] = μ + τj = β0 + βj , j = {1, .., g}.

means_by_group = betas.full[  1  ]  +  
betas.full[ 2:length( betas.full ) ] 

names( means_by_group ) = group_names 

means_by_group 
## horsebean linseed soybean sunflower meatmeal casein 
## 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833 

tapply( weight, feed, mean )[ unique( as.character( feed ) ) ]
## horsebean linseed soybean sunflower meatmeal casein
## 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833
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The global mean is: 

. μ =
g∑

j=1

nj · μj

N
.

global_mean = ng %*% means_by_group / n 
global_mean 
## [,1] 
## [1,] 261.3099 

mean( weight ) 
## [1] 261.3099 

Invertible Design Matrix in R 

x1.red = c( rep( 1, ng  [  1  ]  ),  
rep( 0,  n - ng  [  1  ] - ng  [  6  ]  ),  
rep( -1, ng  [  6  ]  )  )  

stopifnot( sum( x1.red - ( x1.full - x6.full  )  )  ==  0  )  

x2.red = c( rep( 0, ng  [  1  ]  ),  
rep( 1, ng  [  2  ]  ),  
rep( 0, 
n - ng  [  1  ] - ng  [  2  ] - ng  [  6  ]  ),  
rep( -1, ng  [  6  ]  )  )  

stopifnot( sum( x2.red - ( x2.full - x6.full  )  )  ==  0  )  

x3.red = c( rep( 0, ng  [  1  ]  +  ng [ 2 ] ),
rep( 1, ng [ 3 ] ),

\begin{Verbatim}[frame = single,fontsize=\small\ttfamily]
rep( 0,

n - ng [ 1 ] - ng [ 2 ] - ng [ 3 ] - ng [ 6 ] ),
rep( -1, ng [ 6 ] ) )

stopifnot( sum( x3.red - ( x3.full - x6.full ) ) == 0 )

x4.red = c( rep( 0, n - ng [ 6 ] - ng [ 5 ] - ng [ 4 ] ),
rep( 1, ng [ 4 ] ),
rep( 0, ng [ 5 ] ),
rep( -1, ng [ 6 ] ) )

stopifnot( sum( x4.red - ( x4.full - x6.full ) ) == 0 )

x5.red = c( rep( 0, n - ng [ 6 ] - ng [ 5 ] ),
rep( 1, ng [ 5 ] ),
rep( -1, ng [ 6 ] ) )

stopifnot( sum( x5.red - ( x5.full - x6.full ) ) == 0 )

X.red = cbind( rep( 1, n ),
x1.red,
x2.red,
x3.red,
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x4.red, 
x5.red ) 

We now estimate the β̂. 

H.red = X.red %*% solve( t( X.red ) %*% X.red ) %*% t(X.red) 

betas.red = as.numeric( 
solve( t( X.red ) %*% X.red ) %*% t( X.red ) %*% y )

The mean in the j -th group is obtained as follows:

. μj = β0 + βi i = 1, . . . , g − 1.

. μg = β0 − (β1 + ... + βg−1).

means_by_group = betas.red[  1  ]  +  betas.red[ -1 ] 
means_by_group = c( means_by_group, betas.red[  1  ] -

sum( betas.red[ -1  ]  )  )  

names( means_by_group ) = group_names 
means_by_group 
## horsebean linseed soybean sunflower meatmeal casein 
## 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833 
tapply( weight, feed, mean )[ group_names ] 
## horsebean linseed soybean sunflower meatmeal casein 
## 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833 

Therefore, with both the singular and non-singular design matrix, we arrive at 
the same result. 
Observation What does R do automatically? 

To answer this question, let’s revisit the previous exercise on the chickwts data 
and extract, using the model.matrix command, the design matrix of the tested 
models. 

mod_aov = aov( weight ~ feed )
X_aov = model.matrix( mod_aov )

We see that the design matrix created by the ANOVA is of dimensions N × g.
We note that the variable (level) casein is missing and is used as a baseline. The
considered regression model then becomes:

. Yij = β0 + β2Xi2 + · · · + βgXig + εij .

mod_lm = lm( weight ~ feed ) 
X_lm = model.matrix( mod_lm )
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The same applies in the case of a linear model. 

Observation The first group (in the alphanumeric order of the levels of the 
stratification variable, feed, and NOT in the order of appearance of the data) is 
suppressed and taken as a reference (baseline). 

We now calculate the β̂. 

betas.lm = coefficients( mod_lm ) 

The mean in the j -th group is obtained as follows:

. μbaseline = β0.

. μj = β0 + βj , j �= baseline.

means_by_group = c( betas.lm[ 1 ], 
betas.lm[  1  ]  +  betas.lm[ -1 ] ) 

names( means_by_group ) = levels( feed ) 

means_by_group 
## casein horsebean linseed meatmeal soybean sunflower 
## 323.5833 160.2000 218.7500 276.9091 246.4286 328.9167
tapply( weight, feed, mean )
## casein horsebean linseed meatmeal soybean sunflower
## 323.5833 160.2000 218.7500 276.9091 246.4286 328.9167

11.6 We import the dataset. 

data( coagulation ) 

dim( coagulation ) 
## [1] 24 2 
names( coagulation ) 
## [1] "coag" "diet" 
head( coagulation ) 
## coag diet 
## 1 62 A 
## 2 60 A 
## 3 63 A 
## 4 59 A 
## 5 63 B 
## 6 67 B 

To answer the exercise question, we would like to set up a one-way ANOVA.
Before carrying out the analyses, we check the assumptions of the model:

1. Normality; 
2. Homoscedasticity. 

Elements that violate the assumptions, are:
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Fig. 11.7 Boxplot of coagulation time depending on the type of diet 

1. Skewness (see asymmetric group-specific boxplots). 
2. Heteroscedasticity (see different sizes of group-specific boxplots). 

Observation Graphical analyses have a purely exploratory purpose, especially 
when dealing with small-sized datasets (like coagulation). Indeed, even in the 
case of homogeneous variances among the groups, we can expect variability 
between the groups. We draw the group-specific boxplots in Fig. 11.7. 

plot( coag ~ diet, data = coagulation, col = grey.colors(4) ) 

It seems that the assumptions are respected. We find skewness only in group 
C, where however only 4 observations are recorded, one of which is significantly 
distant from the others. 

table( coagulation$diet ) 
## 
##  A  B  C  D  
##  4  6  6  8  

coagulation$coag[ coagulation$diet == ’C’ ] 
## [1] 68 66 71 67 68 68 
unique( coagulation$coag[ coagulation$diet == ’C’ ] )
## [1] 68 66 71 67

The observations of coagulation in group C are all very close.
We now analyse the ANOVA model.
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mod = lm( coag ~ diet, coagulation ) 
summary( mod ) 
## 
## Call: 
## lm(formula = coag ~ diet, data = coagulation) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -5.00 -1.25 0.00 1.25 5.00 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 6.100e+01 1.183e+00 51.554 < 2e-16 *** 
## dietB 5.000e+00 1.528e+00 3.273 0.003803 ** 
## dietC 7.000e+00 1.528e+00 4.583 0.000181 *** 
## dietD 2.991e-15 1.449e+00 0.000 1.000000 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## Residual standard error: 2.366 on 20 degrees of freedom 
## Multiple R-squared: 0.6706, Adjusted R-squared: 0.6212 
## F-statistic: 13.57 on 3 and 20 DF, p-value: 4.658e-05 

We see the design matrix used by R. 

dim( model.matrix( mod ) ) 
## [1] 24 4
model.matrix( mod )[1:5, ] #n x g
## (Intercept) dietB dietC dietD
## 1 1 0 0 0
## 2 1 0 0 0
## 3 1 0 0 0
## 4 1 0 0 0
## 5 1 1 0 0

Group ‘A’ is taken as the reference (or baseline) group (first according to
alphanumeric order). The effects must be interpreted as differences compared to
the baseline group. We can read the model output in the following way:

• Group A: mean = 61.
• Group B: mean = 61 + 5.
• Group C: mean = 61 + 7.
• Group D: mean = 61 + 0. 

Thanks to the F statistic of the analysed model, we can conclude that there is an 
effect of the diet on coagulation. 

We now try to fit the same model, removing the intercept and see how the 
following quantities change: design matrix, estimates of β and p-value of the F
test.
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mod_i = lm( coag ~ diet - 1, coagulation ) 

summary( mod_i ) 
## 
## Call: 
## lm(formula = coag ~ diet - 1, data = coagulation) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -5.00 -1.25 0.00 1.25 5.00 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## dietA 61.0000 1.1832 51.55 <2e-16 *** 
## dietB 66.0000 0.9661 68.32 <2e-16 *** 
## dietC 68.0000 0.9661 70.39 <2e-16 *** 
## dietD 61.0000 0.8367 72.91 <2e-16 *** 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## Residual standard error: 2.366 on 20 degrees of freedom 
## Multiple R-squared: 0.9989, Adjusted R-squared: 0.9986 
## F-statistic: 4399 on 4 and 20 DF, p-value: < 2.2e-16 

model.matrix( mod_i )[1:5,]
## dietA dietB dietC dietD
## 1 1 0 0 0
## 2 1 0 0 0
## 3 1 0 0 0
## 4 1 0 0 0
## 5 0 1 0 0

We can immediately observe that the design matrix is still invertible, but it has
changed. This leads to a different interpretation of the β. In fact, we now have:

. βj = τ + μj , j ∈ {1, .., g};

that is, we can directly read from the output the means of the coagulation times in 
the individual groups. 

Observation As highlighted in Chap. 9, in models without an intercept R2 loses 
its meaning. 

We then proceed with the model diagnostics, i.e. the verification (quantitative) of 
the assumptions. 

par( mfrow = c(1,2) ) 

qqnorm(mod$res, pch=16, col=’black’, 
main=’QQ-norm of residuals’) 

qqline( mod$res, lwd = 2, col = 1 ,lty = 2 )
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shapiro.test( mod$res ) 
## 
## Shapiro-Wilk normality test 
## 
## data: mod$res 
## W = 0.97831, p-value = 0.8629 

plot( mod$fit, mod$res, xlab = "Fitted", ylab = "Residuals", 
main = "Residual-Fitted plot", pch = 16 )

From the Shapiro test on the residuals and the graph on the left in Fig. 11.8, we  
conclude that the normality assumption is respected. 

bartlett.test( coagulation$coag, coagulation$diet ) 
## 
## Bartlett test of homogeneity of variances 
## 
## data: coagulation$coag and coagulation$diet 
## Bartlett’s K-squared = 1.668, df = 3, p-value = 0.6441 
leveneTest( coagulation$coag, coagulation$diet ) 
## Levene’s Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 0.6492 0.5926
## 20

From the Bartlett test and the graph on the right in Fig. 11.8, we can consider the 
homoscedasticity assumption to be valid. 

Fig. 11.8 QQ-norm of the model residuals in the left panel. Representation of residuals vs fitted 
values from the model in the right panel
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In both graphs of Fig. 11.8 we recognise typical patterns of discrete data (both 
the response variable and the predictive variable are discrete). The response variable 
is recorded in a discrete manner (probably these are truncated values), but in itself 
it is a continuous variable, so it is not wrong to evaluate an ANOVA model. 

11.7 To answer the question it is necessary to set up a two-way ANOVA. To do this, 
we try to get a graphical intuition of the effect of the two factors and their interaction 
on the variable of interest (survival time). We verify the model assumptions and 
evaluate the results obtained. 

We load the rats data. 

data( rats ) 

dim( rats ) 
## [1] 48 3 

head( rats ) 
## time poison treat 
## 1 0.31 I A 
## 2 0.82 I B 
## 3 0.43 I C 
## 4 0.45 I D 
## 5 0.45 I A 
## 6 1.10 I B 
tail( rats ) 
## time poison treat 
## 43 0.24 III C 
## 44 0.31 III D 
## 45 0.23 III A
## 46 0.29 III B
## 47 0.22 III C
## 48 0.33 III D
names( rats )
## [1] "time" "poison" "treat"

We visualise the data in Fig. 11.9 and in Fig. 11.10. 

ggplot(rats, aes( x = treat, y = time, fill = treat  )  )  +  
geom_boxplot() + scale_fill_grey() + 
scale_colour_grey() + theme_bw() 

ggplot(rats, aes( x = poison, y = time, fill = poison  )  )  +  
geom_boxplot() + scale_fill_grey() + 
scale_colour_grey() + theme_bw() 

From these initial graphs, we can infer an effect of both the treatment and the
poison on the survival time of the rats. It is not certain whether the assumption of
homoscedasticity among the groups is respected, however appropriate tests must be
performed.
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Fig. 11.9 Boxplot of the survival time of rats in relation to the type of treatment received 

Since we are dealing with two factors, it is necessary to understand if it is appro-
priate to consider in the model also the interaction of these. A tool to investigate 
the possible presence of interaction between the factors is the interaction.plot 
command in Fig. 11.11 and in Fig. 11.12. 

help(interaction.plot) 
interaction.plot( rats$treat, rats$poison, rats$time ) 

interaction.plot( rats$poison, rats$treat, rats$time ) 

Parallel lines suggest the absence of an interaction effect between the two factors 
on the variable of interest (survival time of the rats). However, it is not correct to 
exclude the effect of the interaction of the two factors only through a graphical 
exploration. We therefore start from the complete model (which contemplates both 
factors and their interaction). 

Before applying a two-way ANOVA, we must test the validity of the hypotheses
of:

• Normality (in all 12 groups).
• Homogeneity of variance (between groups).
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Fig. 11.10 Boxplot of the survival time of rats in relation to the type of poison administered 

Fig. 11.11 Interaction plot to evaluate the interaction of the two factors
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Fig. 11.12 Interaction plot to evaluate the interaction of the two factors 

tapply( rats$time, rats$treat:rats$poison, 
function( x ) shapiro.test( x )$p ) 

## A:I A:II A:III 
## 0.07414486 0.84756406 0.57735490 
## B:I B:II B:III 
## 0.69983383 0.70083721 0.17057001 
## C:I C:II C:III 
## 0.40503490 0.92091109 0.97187706 
## D:I D:II D:III 
## 0.42739119 0.90650963 0.68893644 

By running the Shapiro test, we can conclude that the normality hypothesis is 
respected in all groups (although the first group, A-I, should be further investigated). 

leveneTest( rats$time, rats$treat:rats$poison ) 
## Levene’s Test for Homogeneity of Variance (center = median) 
## Df F value Pr(>F) 
## group 11 4.1323 0.0005833 *** 
## 36 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
bartlett.test( rats$time, rats$treat:rats$poison )
##
## Bartlett test of homogeneity of variances
##
## data: rats$time and rats$treat:rats$poison
## Bartlett’s K-squared = 45.137, df = 11, p-value = 4.59e-06
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The hypothesis of homogeneity of variances is widely violated (observe the p-
value of the Levene test and the Bartlett test). 

We can consider a transformation of the variables. We opt for a Box-Cox type 
transformation, considering the complete model. 

g = lm( time ~ poison * treat, rats ) 
#"*" gives the full model: linear effect AND interaction 
#g = lm( time ~ poison + treat + poison : treat , rats ) 

b = boxcox( g, lambda = seq(-3,3,by=0.01), plotit = F )
best_lambda = b$x[ which.max( b$y ) ]
best_lambda
## [1] -0.82

The boxcox command also returns the graph in Fig. 11.13 (to obtain it, simply 
set plotit = T). 

plot( b$x, b$y, xlab = expression(lambda), 
ylab = ’log-likelihood’)

From Fig. 11.13 we deduce that the optimal λ is −0.82, however, as already 
mentioned in the chapter related to linear regression, we round λ to ensure greater 
interpretability. We therefore opt for λ = −1. 

We then recheck the model assumptions.

Fig. 11.13 Box-Cox type transformation: investigation of the optimal λ
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tapply( (rats$time)^(-1), rats$treat:rats$poison, 
function( x ) shapiro.test( x )$p ) 

## A:I A:II A:III 
## 0.03115001 0.65891022 0.38884991 
## B:I B:II B:III 
## 0.95061185 0.79724850 0.17554581 
## C:I C:II C:III 
## 0.38264156 0.87818060 0.96578666 
## D:I D:II D:III 
## 0.16801940 0.84342484 0.78353223 

leveneTest( (rats$time)^(-1), rats$treat:rats$poison ) 
## Levene’s Test for Homogeneity of Variance (center = median) 
## Df F value Pr(>F) 
## group 11 1.1272 0.3698 
## 36 
bartlett.test( (rats$time)^(-1), rats$treat:rats$poison ) 
## 
## Bartlett test of homogeneity of variances 
## 
## data: (rats$time)^(-1) and rats$treat:rats$poison 
## Bartlett’s K-squared = 9.8997, df = 11, p-value = 0.5394 

The model assumptions are respected, apart from the normality of group A-I. 
We can use a two-way ANOVA model, bearing in mind that in the presence of 
interaction the assumptions are not fully respected. 

g1 = lm( 1/time ~ poison * treat, data = rats ) 
summary( g1 ) 
## 
## Call: 
## lm(formula = 1/time ~ poison * treat, data = rats) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -0.76847 -0.29642 -0.06914 0.25458 1.07936 
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.48688 0.24499 10.151 4.16e-12 ***
## poisonII 0.78159 0.34647 2.256 0.030252 *
## poisonIII 2.31580 0.34647 6.684 8.56e-08 ***
## treatB -1.32342 0.34647 -3.820 0.000508 ***
## treatC -0.62416 0.34647 -1.801 0.080010 .
## treatD -0.79720 0.34647 -2.301 0.027297 *
## poisonII:treatB -0.55166 0.48999 -1.126 0.267669
## poisonIII:treatB -0.45030 0.48999 -0.919 0.364213
## poisonII:treatC 0.06961 0.48999 0.142 0.887826
## poisonIII:treatC 0.08646 0.48999 0.176 0.860928
## poisonII:treatD -0.76974 0.48999 -1.571 0.124946
## poisonIII:treatD -0.91368 0.48999 -1.865 0.070391 .
## ---
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##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 
## 
## Residual standard error: 0.49 on 36 degrees of freedom 
## Multiple R-squared: 0.8681, Adjusted R-squared: 0.8277 
## F-statistic: 21.53 on 11 and 36 DF, p-value: 1.289e-12 
anova( g1 ) 
## Analysis of Variance Table 
## 
## Response: 1/time 
## Df Sum Sq Mean Sq F value Pr(>F) 
## poison 2 34.877 17.4386 72.6347 2.310e-13 *** 
## treat 3 20.414 6.8048 28.3431 1.376e-09 *** 
## poison:treat 6 1.571 0.2618 1.0904 0.3867 
## Residuals 36 8.643 0.2401 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1 

From the model, it is clear that both the type of poison and the type of treatment 
influence the survival time of the mice. However, the interaction of the two factors 
is not significant. 

We will therefore examine the reduced model and re-evaluate the hypotheses. 

g1_red = lm( 1/time ~ poison + treat, data = rats ) 
summary( g1_red ) 
## 
## Call: 
## lm(formula = 1/time ~ poison + treat, data = rats) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -0.82757 -0.37619 0.02116 0.27568 1.18153 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 2.6977 0.1744 15.473 < 2e-16 *** 
## poisonII 0.4686 0.1744 2.688 0.01026 *
## poisonIII 1.9964 0.1744 11.451 1.69e-14 ***
## treatB -1.6574 0.2013 -8.233 2.66e-10 ***
## treatC -0.5721 0.2013 -2.842 0.00689 **
## treatD -1.3583 0.2013 -6.747 3.35e-08 ***
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1
##
## Residual standard error: 0.4931 on 42 degrees of freedom
## Multiple R-squared: 0.8441, Adjusted R-squared: 0.8255
## F-statistic: 45.47 on 5 and 42 DF, p-value: 6.974e-16
anova( g1_red )
## Analysis of Variance Table
##
## Response: 1/time
## Df Sum Sq Mean Sq F value Pr(>F)
## poison 2 34.877 17.4386 71.708 2.865e-14 ***
## treat 3 20.414 6.8048 27.982 4.192e-10 ***
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## Residuals 42 10.214 0.2432 
## ---
##Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’1

We evaluate normality in three ways:

• Graphical evaluation of the residuals of the reduced model (see Fig. 11.14).
• Shapiro test on the residuals of the reduced model.
• Shapiro test on the response variable. 

#1) 
qqnorm( g1_red$res/summary( g1_red )$sigma, pch = 16, 

main = ’QQ-norm of residuals’ ) 
abline( 0, 1, lwd = 2, lty = 2, col = 1 )

Fig. 11.14 QQ-norm of standardised residuals
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#2) 
shapiro.test( g1_red$res ) 
## 
## Shapiro-Wilk normality test 
## 
## data: g1_red$res 
## W = 0.97918, p-value = 0.5451 

#3) 
tapply( 1/rats$time, rats$poison, 

function( x ) shapiro.test( x )$p ) 
## I II III 
## 0.1672488 0.8944364 0.3944087 

tapply( 1/rats$time, rats$treat, 
function( x ) shapiro.test( x )$p ) 

## A B C D  
## 0.2221106 0.1021497 0.3632241 0.2712347 

In all three ways, we arrive at the same conclusion. 
Finally, we evaluate the homogeneity of variance between the groups. 

leveneTest( 1/rats$time, rats$poison ) 
## Levene’s Test for Homogeneity of Variance (center = median) 
## Df F value Pr(>F) 
## group 2 1.715 0.1915 
## 45 
leveneTest( 1/rats$time, rats$treat ) 
## Levene’s Test for Homogeneity of Variance (center = median) 
## Df F value Pr(>F) 
## group 3 0.614 0.6096 
## 44 

bartlett.test( 1/rats$time, rats$poison ) 
## 
## Bartlett test of homogeneity of variances
##
## data: 1/rats$time and rats$poison
## Bartlett’s K-squared = 3.1163, df = 2, p-value = 0.2105
bartlett.test( 1/rats$time, rats$treat )
##
## Bartlett test of homogeneity of variances
##
## data: 1/rats$time and rats$treat
## Bartlett’s K-squared = 1.5477, df = 3, p-value = 0.6713

The Levene and Bartlett tests confirm the hypothesis.
Therefore, we conclude that rats given different poisons or treatments have

different survival times.



Chapter 12 
Summary Exercises 

12.1 Exercises 

Exercise 12.1 Let X1, ..., Xn . be a random sample of size n from a Gaussian law 
with mean ln θ . and variance 4, with θ . a positive unknown parameter. 

(a) Given Un = cn

∑n
i=1 e

Xi ., determine the constant cn . so that Un . is an unbiased 
estimator of θ .. 
Hint: use the fact that, if Y ∼ N(m, σ 2). then, for t ∈ R., E

[
etY
] = etm+ 1

2 t2σ 2
.. 

(b) Calculate Var [Un]. for cn . determined in the previous point. Determine whether 
the estimator Un . is consistent and asymptotically normal. 

(c) Construct another unbiased estimator Vn . of θ ., starting from the one obtained 
with the method of moments. Determine whether Vn . is consistent and determine 
its asymptotic law. 

(d) Determine which of the two estimators Un . and Vn . of θ . is preferable and justify 
the choice. 

(e) Construct an asymptotic confidence interval of level 1 − α . for θ . based on Vn .. 

Exercise 12.2 Let X1, . . . , Xn . be a random sample from a distribution with law: 

. f (x; θ) = 4
(x − 1)3

(θ − 1)4
I(1,θ)(x);

where θ . is a positive unknown parameter, θ > 1.. 

(a) Determine a statistic T sufficient for θ .. 
(b) Using the definition of completeness, determine whether T is complete f or θ .. 
(c) Find the UMVUE for θ .. 
(d) Construct a pivot quantity Q for θ .. 
(e) Construct the minimum length confidence interval of level 1 − α . based on Q. 
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Exercise 12.3 Let X1, .., Xn .be a random sample of size n ≥ 1.where each variable 
has law: 

. f (x; θ) = θ

x2
e− θ

x I(0,+∞)(x);

where θ . is a positive real parameter θ > 0.. 

(a) Find W a sufficient, minimal and complete statistic for θ .. 
(b) Construct the maximum likelihood estimator θ̂ . for θ .. 
(c) Determine whether θ̂ . is consistent for θ .. 
(d) Construct the UMVUE for θ .. 

Now consider a sample of size n = 1.. 

(e) Construct the UMP test of level α . for the verification of the hypotheses: 

. H0 : θ = θ0 vs H1 : θ = θ1;

with θ1 > θ0 .. 
(f) Construct the UMP test of level α . for the verification of the hypotheses: 

. H0 : θ = θ0 vs H1 : θ > θ0.

Exercise 12.4 Let X1, .., Xn .be a random sample of size n ≥ 1.where each variable 
has law: 

. f (x; θ) = x

K
I{1,2,...,θ}(x);

where θ . is an integer parameter such that θ ≥ 1.. 

(a) Calculate the constant K as a function o f θ .. 
(b) Construct the moments estimator θ̄ . for θ . and determine whether it is consistent. 

Does it always provide admissible estimates? (Hint: it may be useful to 
remember that

∑n
j=1 j2 = n(n + 1)(2n + 1)/6.). 

(c) Construct the maximum likelihood estimator θ̂ . for θ . and determine whether it 
is consistent. Does it always provide admissible estimates? 

(d) Construct the critical region based on the likelihood ratio for the hypothesis test: 

.H0 : θ ≤ θ0 vs H1 : θ > θ0.
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Exercise 12.5 Let X1, .., Xn .be a random sample of size n ≥ 1.where each variable 
has law 

. f (x; θ) = 2x

θ2
I(0,θ)(x);

with parameter θ > 0.. 

(a) Find a statistic T sufficient and minimal f or θ .. 
(b) Calculate the moments estimator θ . for θ .. 
(c) Calculate the mean square error of θ .. 
(d) Now consider the parameter θ = θ0 . known and fix n = 1.. Construct the UMP 

test of level α ∈ (0, 1). for the hypothesis test: 

. H0 : X ∼ f (x; θ0) vs H1 : X ∼ U(0, θ0).

(e) Calculate the power of the test constructed in point (d) and determine whether 
the test is unbiased. 

Exercise 12.6 Let X1, . . . , Xn . be a random sample from a distribution with the 
following probability density: 

. f (x; θ) = 2
θ2

x3 I(θ,∞)(x), θ > 0.

(a) Calculate the maximum likelihood estimator θ̂ . for θ .. 
(b) Calculate the probability density of θ̂ .. 
(c) Find the critical region of level α ∈ (0, 1). based on the likelihood ratio for the 

hypothesis test: H0 : θ = θ0 . vs H1 : θ �= θ0 ., θ0 > 0.. 
(d) Using the critical region constructed in point (c), find a confidence interval for 

θ . of level (1 − α).. 
(e) Using the pivotal quantity Q = θ̂/θ ., find the constant c > 0. such that the 

confidence interval (0, θ̂c). for θ . is of level (1 − α).. 

Exercise 12.7 Let X1, . . . , Xn . be a random sample from a distribution with law: 

. f (x; θ, b) = θxθ−1

bθ
I(0,b)(x);

where θ . and b are two unknown positive parameters, θ > 0, b > 0.. 

(a) Find a sufficient and minimal statistic for (θ, b).. 
(b) Assume that θ . is known. Determine the maximum likelihood estimator b̂ML . for 

b. 
(c) Determine the law of b̂ML . and study its consistency. 
(d) Determine a pivotal quantity Q for b.
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(e) Determine the confidence interval of level 1 − α . for b based on Q of minimum
length.

Exercise 12.8 Let X be a random variable with density

. f (x; θ) = θkekxe−θex

�(k)
I(−∞,+∞)(x);

where k is a known positive parameter and θ . is an unknown positive parameter, 
θ > 0.. 

(a) Prove that W = ∑n
i=1 e

Xi . is a sufficient, minimal and complete statistic for θ .. 
(b) Calculate the law of eX

.. 
(c) Calculate and recognise the law of W . 
(d) Construct a UMP test of level α . for H0 .: θ ≤ θ0 . vs H1 .: θ > θ0 .. 
(e) Construct a pivotal quantity for θ . based on W , and derive a Confidence Interval 

of level 1 − α . for θ .. 

Exercise 12.9 Let X1, . . . , Xn . be a random sample from a distribution with law: 

. f (x; θ) = 2θx exp{(−θx2)}I[0,+∞)(x);

where θ . is an unknown positive parameter, θ > 0.. 

(a) Calculate the mean of Xi .. 
(b) Determine, using the method of moments, the estimator θ̂MOM . for θ .. 
(c) Determine a statistic T sufficient minimal and complete f or θ .. 
(d) Determine the law of T . 
(e) Determine the maximum likelihood estimator θ̂ML . for θ .. 
(f) Establish whether θ̂MOM . and θ̂ML . are consistent for θ .. 
(g) Determine the asymptotic law of θ̂ML .. 
(h) Knowing that Var[Xi] = 0.21

θ
. determine, using the Delta Method 1.17,  the  

asymptotic law of θ̂MOM .. 
(i) Calculate the asymptotic relative efficiency of θ̂ML . with respect to θ̂MOM ., i.e. 

ARE(θ̂ML .;θ̂MOM .). 

Exercise 12.10 Consider the following family of functions defined for every θ ∈ R. 

. f (x; θ) = c
(
1 − (x − θ)2

)
1[θ,θ+1](x).

(a) Determine the constant c so that the function fθ (x). is a probability density for 
every θ ∈ R.. 

Consider a sample X of unit size with probability distribution f (x; θ). with c 
determined in point (a).

(b) Calculate the maximum likelihood estimator θ̂ML . for θ ..
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(c) Prove that Q = 1 − (θ̂ML − θ)2 . is a pivotal quantity. 
(d) Calculate a confidence interval for θ . based on the pivotal quantity Q,  using  the  

quantiles of Q a = 0.5. and b = 0.9.. 
(e) Determine the confidence level 1 − α ., of the interval constructed in point (d). 
(f) Determine the critical region, of level α . calculated in point (e), of the test H0 .: 

θ = θ0 . vs H1 .: θ �= θ0 .. 

Exercise 12.11 Let X1, ..., Xn .be a random sample from a Gamma(2,1/ θ .) with θ >

0.. We then have 

. f (x; θ) = θ−2 x e−x/θ I(0,+∞)(x).

(a) Determine a sufficient and complete statistic for θ.. 

(b) Determine the maximum likelihood estimator θ̂n . for θ .. 
(c) Show that θ̂n . coincides with the estimator θ̄n . obtained by the method of 

moments. 
(d) What is the law of θ̂n .? 
(e) Is θ̂n . biased? 
(f) Is θ̂n .UMVUE? 
(g) Propose a confidence interval for θ . of level 0.99. 

12.2 Solutions 

12.1 

(a) Let 

. Un = cn

n∑

i=1

eXi .

We calculate the mean of Un .: 

. E[Un] = cn

n∑

i=1

E[eXi ] = cn

n∑

i=1

elog(θ)+2 = cnne2θ;

where we have exploited the following relation: 

. E

[
etY
]

= etm+ 1
2 t2σ 2;

choosing t = 1., m = log(θ). and σ 2 = 4.. This relation holds because Y is a 
Gaussian random variable.
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Imposing E[Un] = θ ., we get: cn = 1
ne2

.. 
(b) 

. Var [Un] = 1

n2e4

n∑

i=1

(
E[e2Xi ] − (e2θ)2

)
=

= 1

n2e4

n∑

i=1

(
e2 log θ+ 1

2 4·4 − e4θ2
)

=

= 1

n2e4
n
(
θ2(e8 − e4)

)
= θ2

n
(e4 − 1).

Therefore, since Un . is unbiased and V ar(Un) → 0., we can conclude that Un . is 
a consistent estimator (see Theorem 8.1). 
Furthermore, by the CLT: 

. 
√

n (Un − θ) → N
(
0, θ2(e4 − 1)

)
.

So Un . is asymptotically normal. 
(c) 

. E[X] = log(θ) 
⇒ θ̂MOM = eXn.

Given that: 

. Xn ∼ N

(

log(θ),
4

n

)

;

then: 

. E[θ̂MOM ] = E[eXn ] = elog θ+ 1
2
4
n = θe

2
n .

Therefore: 

. Vn = e− 2
n eXn.

Given that Xn
q.c.→ log(θ).we have that Vn

q.c.→ θ . and therefore it is consistent. 
Furthermore, given that: 

.
√

n
(
Xn − log(θ)

) L→ N(0, 4);
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using the Delta Method 1.17 with g(x) = ex
.we have that: 

. 
√

n
(
eXn − θ

) L→ N(0, 4θ2).

Now: 

. 
√

n (Vn − θ) = √
n

(
Vn − eXn

)

︸ ︷︷ ︸

=√
n

(

eXn

(

e− 2
n −1

))

︸ ︷︷ ︸
q.c.→θ

+√
n
(
eXn − θ

)

︸ ︷︷ ︸
L→N(0,4θ2)

.

Therefore: 

. 
√

n (Vn − θ)
L→ N(θ, 4θ2).

(d) We need to compare θ2(e4 − 1).with 4θ2 .. Since 4 < (e4 − 1)., we prefer Vn .. 
(e) Using the Slutsky Theorem 1.15, we can state that: 

. IC1−α =
[

Vn ± 2Vn√
n

z1− α
2

]

.

12.2 

(a) Consider the density: 

. f (x; θ) = 4
(x − 1)3

(θ − 1)4
I[1,θ](x), θ > 1.

Given that the joint law is: 

. f (x; θ) = 4n
∏n

i=1(xi − 1)3

(θ − 1)4n
I(0,θ)(X(n));

we can conclude, thanks to Theorem 2.1, that the statistic T = X(n) . is sufficient 
for θ .. 

(b) 

.FX(n)
(t) = (P{Xi ≤ t})n =

[∫ t

1
4
(x − 1)3

(θ − 1)4
dx

]n

=

=
(

t − 1

θ − 1

)4n

t ∈ [1, θ ];
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from which 

. fX(n)
(t) = 4n(t − 1)4n−1

(θ − 1)4n
I[1,θ](t).

Using the definition of completeness, we obtain: 

. 0 = E[g(T )] =
∫ θ

1
4n

(t − 1)4n−1

(θ − 1)4n
g(t) dt.

This holds ∀θ . if and only if g(t) = 0.. Therefore T is a complete s tatistic.
(c) Let’s calculate E[T ].: 

. E[T ] =
∫ θ

1
t
4n(t − 1)4n−1

(θ − 1)4n
= t (t − 1)4n

(θ − 1)4n

∣
∣
∣
∣

θ

1

− 1

(θ − 1)4n

∫ θ

1
(t − 1)4n dt =

= θ − θ − 1

4n + 1
= 4nθ + 1

4n + 1
;

therefore UMVUE will be: 

. 
X(n)(4n + 1) − 1

4n
.

(d) Considering: 

. Q = X(n) − 1

θ − 1
.

. FQ(t) = P{X(n) ≤ 1+t (θ−1)} =
(
1 + t (θ − 1) − 1

(θ − 1)

)4n

= t4n t ∈ [0, 1].

We conclude that Q is a pivot quantity .
(e) 

. P {a ≤ Q ≤ b} = b4n − a4n = 1 − α.

Now: 

. a ≤ X(n) − 1

θ − 1
≤ b ⇐⇒ 1 + X(n) − 1

b
≤ θ ≤ 1 + X(n) − 1

a
.

Therefore the length, l, of the IC is proportional to 1
a

− 1
b
.. 

.
∂l

∂a
= − 1

a2
− b′(a)

b2
= 0.
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Moreover, deriving the constraint, we get: 

. 4nb4n−1b′(a) − 4nan−1 = 0.

Therefore b′(a) = (
a
b

)4n−1
., from which: 

. 
∂l

∂a
= − 1

a2
+ 1

b2

(a

b

)4n−1 = a4n+1 − b4n+1

a2b4n+1 < 0.

The minimum length is obtained for maximum a i.e. b = 1.. Hence: 1 − a4n =
1 − α 
⇒ a = 4n

√
α .. 

. IC =
[

X(n); 1 + X(n) − 1
4n
√

α

]

.

12.3 

(a) Given that: 

. f (x; θ) = θ

x2
e− θ

x I[0,+∞)(x)

belongs to the exponential family, 

. T (X) =
n∑

i=1

1

Xi

is a sufficient statistic for θ .. Moreover, given that: 

. w(θ) = −θ : R+ → R
−

and R
−

. contains an open set of R., we can conclude that T (X). is a sufficient 
and complete statistic for θ .. Consequently, it is also minimal. 

(b) 

.L(θ; x) = θn

∏n
i=1 x2

i

e
−θ

∑ 1
xi

n∏

i=1

I[0,+∞)(xi).

l(θ; x) ∝ n log(θ) − θ
∑ 1

xi

.

∂l(θ; x)

∂θ
≥ 0 ⇐⇒ n

θ
≥
∑ 1

xi

⇐⇒ θ ≤ n
∑ 1

xi

.
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Therefore: 

. θ̂MLE = n
∑ 1

Xi

.

(c) Let Y = 1
X

., fY (y) = θy2e−θy 1
y2

∼ E(θ).. Therefore: 

. 

∑ 1
xi

n

q.c.→ 1

θ

⇒ θ̂MLE

q.c.→ θ.

θ̂MLE . is a consistent estimator. 
(d) E[θ̂MLE]. turns out to be n

n−1θ . (the properties of the gamma distribution are 

exploited). Then n−1
n

θ̂MLE . is UMVUE, as it is an unbiased estimator of θ .,  a  
function of sufficient and minimal s tatistic.

(e) Let’s consider the test: 

. H0 : θ = θ0 vs H1 : θ = θ1;

with θ1 > θ0 .. To construct the rejection region of the test, we apply the N-P 
Theorem 6.1. 

. R =
{

θ1e
− θ1

x
1

x2 > kθ0e
− θ0

x
1

x2

}

=

=
{

e− 1
x
(θ1−θ0) > k

θ0

θ1

}

=

= {x > h}.

The last equality is justified by the fact that e− 1
x
(θ1−θ0) . is increasing in x. 

Therefore, imposing: 

. α = Pθ0{X > h} =
∫ +∞

h

θ0

x2
e− θ0

x dx = −e− θ0
x

∣
∣
∣
∣

+∞

h

= 1 − e− θ0
h ;

we have that: 

. h = − θ0

log (1 − α)
.

Therefore the rejection region is: 

.R =
{

x > − θ0

log (1 − α)

}

.
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(f) From the previous point we can observe that the rejection region does not 
depend on θ1 ., therefore the rejection region for the test at point (f )., coincides 
with that calculated at point (e).. 

12.4 

(a) We impose that: 

. 1 =
θ∑

x=1

x

k
= 1

k

θ∑

x=1

x = 1

k

θ(θ + 1)

2
.

Therefore k = θ(θ+1)
2 .. 

(b) 

. E[X] = 2

θ(θ + 1)

θ∑

x=1

x2 = 2

θ(θ + 1)

θ(θ + 1)(2θ + 1)

6
= 2θ + 1

3
.

Therefore: 

. Xn = 2θ̂MOM + 1

3

⇒ θ̂MOM = 3Xn − 1

2
.

Furthermore: 

. Xn
q.c.→ 2θ + 1

3
.

Therefore θ̂MOM . is a consistent estimator and the estimates are always reliable 
since θ ∈ N.. 

(c) 

. L(θ; x) = 2n

θn(θ + 1)n

n∏

i=1

xi

n∏

i=1

I{1,...,θ}(xi) =

= 2n

θn(θ + 1)n

n∏

i=1

xiI{X(n),+∞}(θ).

The likelihood is decreasing in θ ., therefore: 

.θ̂MLE = X(n).



276 12 Summary Exercises

We now evaluate the consistency of the estimator. 

. FX(n)
(t) = (

FXi
(t)
)n =

(
n∑

i=1

2i

θ(θ + 1)

)n

−
(

t (t + 1)

θ(θ + 1)

)n

.

Therefore FX(n)
. is piecewise constant and: 

. FX(n)
(t) → δθ (t) 
⇒ X(n)

q.c.→ θ.

The values of X(n) . are always admissible. 
(d) We consider the following test: 

. H0 : θ ≤ θ0 vs H1 : θ > θ0.

We identify the rejection region of the test through LRT: 

. λ(x) =
sup
θ≤θ0

L(θ; x)

L(θ̂MLE; x)
.

. sup
θ≤θ0

L(θ; x)

∣
∣
∣
∣
θ≤θ0

=
{

X(n) if X(n) ≤ θ0;
0 if X(n) > θ0.

Therefore: 

. λ(x) =
{
1 if X(n) ≤ θ0;
0 if X(n) > θ0.

Then the rejection region is: 

. R = {
X(n) > θ0

}
.

12.5 

(a) 

. f (x; θ) = 2n

θ2n

n∏

i=1

xi I(0,θ)(x(n)).

Therefore X(n) . is a sufficient statistic and, using the L-S Theorem 2.3,  we  
conclude that X(n) . is a minimal sufficient statistic.
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(b) 

. E[X] =
∫ θ

0

2x2

θ2
dx = 2

θ2

x3

3

∣
∣
∣
∣

θ

0

= 2

3
θ.

Therefore θ̂MOM = 3
2Xn .. 

(c) 

. Var(θ̂MOM) = 9

4
Var(Xn) = 9

4n
Var(Xi) =

= 9

4n

(∫ θ

0

2x3

θ2
dx −

(
2

3
θ

)2
)

=

= 9

4n

(
2

θ2

θ4

4
− 4

9
θ2
)

= 9

4n

(
θ2

2
− 4

9
θ2
)

=

= 9

4n

(
9θ2 − 8θ2

18

)

= θ2

8n
.

Therefore: 

. MSE(θ̂MOM) = θ2

8n
.

(d) Let’s consider the test: 

. H0 : X ∼ f (x; θ0) vs H1 : X ∼ U(0, θ0).

Applying the N-P Theorem 6.1: 

. R =
{
1

θ0
I(0,θ0)(x) > k

2x

θ20

I(0,θ0)(x)

}

⇐⇒
{
x < k̃

}
.

By imposing: 

. α = PH0(X ∈ R) =
∫ k̃

0

2x

θ20

dx = k̃2

θ20

,

we obtain k̃ = θ
√

α .. 
(e) The power of the test is given by: 

. PH1

{
X <

√
αθ0

} = √
α.

Since:
√

α > α ., we conclude that the test is unbiased.
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12.6 

(a) 

. L(θ; x) = 2nθ2n
∏n

i=1 x3
i

I(0,x(1))(θ).

Therefore: 

. θ̂MLE = X(1).

(b) 

. FX(1) (t) = P
{
X(1) ≤ t

} = 1 − P
{
X(1) > t

} = 1 − (P {Xi > t})n .

. P {Xi > t} =
∫ +∞

t

2θ2

x3 dx =
{
1, t ≤ θ;
(

θ
t

)2
, t > θ.

From which: 

. FX(1) (t) =
{
0, t ≤ θ;
1 − (

θ
t

)2n
, t > θ.

. fX(1) (t) = 2nθ2n

t2n+1 I(θ,+∞)(t).

(c) Let’s consider the test: 

. H0 : θ = θ0 vs H1 : θ �= θ0, θ0 > 0.

We construct the LRT: 

. λ(x) = 2nθ2n0∏
x3
i

I(0,x(1))(θ0) ·
∏

x3
i

2nx2n
(1) I(0,x(1))(x(1))

=

=
(

θ0

x(1)

)2n

I(θ0,+∞)(x(1));

from which: 

.R = {λ(x) ≤ c} ⇐⇒ {
X(1) ≤ θ0

} ∪ {X(1) ≥ k
}
.



12.2 Solutions 279

By imposing: 

. α = Pθ0{X ∈ R} = P{X(1) ≤ θ0} + Pθ0{X(1) ≥ k} =
(

θ0

k

)2n

;

from which k = θ0
2n√α

.. 

The rejection region is therefore: 

. R =
{

X(1) ≥ θ0
2n
√

α

}

.

(d) We observe that: 

. RC =
{

θ0 ≤ X(1) ≤ θ0
2n
√

α

}

;

from which: 

. IC(1−α)(θ) = {
X(1)

2n
√

α ≤ θ ≤ X(1)
}

is a confidence interval of level 1 − α .. 
(e) Let Q = X(1)

θ
.: 

. FQ(t) = P{X(1) ≤ t} =
⎧
⎨

⎩

0 t ≤ 1;
1 −

(
1
t

)2n
t > 1.

Let: 

. IC = [0; cX(1)] 
⇒ (1 − α) = inf
θ≥0

Pθ (θ ≤ cX(1)) = inf
θ≥0

(

Q ≥ 1

c

)

= c2n.

We impose the confidence level equal to 1 − α ., that is c2n = 1 − α 
⇒ c =
2n
√
1 − α .. 

We conclude that: 

. IC1−α(θ) =
[
0; 2n

√
1 − αX(1)

]
.

12.7 

(a) 

.f (x; θ, b) = θn

bnθ

(∏
xθ−1
i

)
I(0,b)(X(n));
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hence, exploiting the L-S Theorem 2.3, we conclude that
(
X(n);∏Xi

)
. is a 

sufficient and minimal statistic for (b, θ).. 
(b) Let θ . be known. 

. L(b; x, θ) = θn

bnθ

(∏
xθ−1
i

)
I(X(b),+∞)(b)

is decreasing in b, hence: 

. b̂MLE = X(n).

(c) 

. FX(n)
(t) = (

FXi
(t)
)n =

⎧
⎪⎪⎨

⎪⎪⎩

0 t ∈ (−∞; 0);
(

t
b

)nθ
t ∈ [0; b];

1 t ∈ (b;+∞).

Therefore X(n)
L→ b. and is consistent for b.. 

(d) Let Q = X(n)

b
., then: 

. P {Q ≤ t} = tnθ .

Therefore Q is a pivotal quantity .
(e) CI for b: 

. IC(b) =
[

a ≤ Xn

b
≤ c

]


⇒
[
X(n)

c
; X(n)

a

]

;

with constraint: 1 − α = cnθ − anθ
.. 

The length of the interval is proportional to
(
1
a

− 1
c

)
.. 

Consider c = c(a).. Differentiating the constraint we get: 

. 0 = nθcnθ−1c′(a) − nθanθ−1;

from which c′(a) = (
a
c

)nθ−1
.. 

We differentiate the length of the interval as a function of a: 

. 
∂l

∂a
= − 1

a2
+ c′(a)

c2
= anθ+1 − cnθ+1

a2cnθ+1 < 0.

Then the minimum length is for c = 1., from which: 

.1 − α = 1 − anθ 
⇒ a = α1/(nθ).
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We conclude that: 

. IC(1−α) =
[

X(n); X(n)

α1/(nθ)

]

.

12.8 

(a) The density of X: 

. f (x; θ) = θkekxe−θex

�(k)
IR(x)

belongs to the exponential family. Then: W(X) =
n∑

i=1

eXi . is a sufficient 

statistic. Moreover: 

. w(θ) = −θ : R+ → R
−

and R
−

. contains an open set of R.. Therefore, W(X). is a sufficient, complete 
and minimal statistic for θ .. 

(b) Y = e X ., X = logY .. 

. fY (y) = θkek log ye−θ log y

�(k)

1

y
= θkyk−1e−θy

�(k)
∼ �(k, θ).

(c) W ∼ �(nk, θ ).. 
(d) Let θ2 > θ1 .: 

. 
θnk
2 ynk−1e−θ2y

θnk
1 ynk−1e−θ1y

=
(

θ2

θ1

)nk

e−(θ2−θ1)y;

which is decreasing in y. Therefore −∑ eXi .has an increasing MLR in y. Then: 

. R =
{∑

exi < t0

}
with t0 = γα(nk, θ0).

(e) We know that: 

.θW ∼ �(nk, 1).

2θW ∼ �

(
2nk

2
,
1

2

)
d= χ2(2nk).
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Therefore: 

. IC(1−α)(θ) =
⎡

⎣
χ2

α
2
(2nk)

2W
;
χ2
1− α

2
(2nk)

2W

⎤

⎦ .

12.9 

(a) 

. E[X] = 2θ
∫ +∞

0
x2 exp{−θx2} dx =

= θ

∫ +∞

−∞
x2 exp

{

−1

2
2θx2

}

dx =

= θ

√
2π√
2θ

√
2θ√
2π

∫ +∞

−∞
x2 exp

{

−1

2
2θx2

}

dx =
[

law N

(

0,
1

2θ

)]

= θ

√
π

θ

1

2θ
= 1

2

√
π√
θ

.

(b) 

. Xn =
√

π

2
√

θ
⇐⇒ θ̂MOM = 1

4

π

X
2
n

.

(c) Exploiting the properties of the exponential family, we have that: T (X) =∑
X2

i . is a sufficient, minimal and complete statistic for θ .. 
(d) 

. fX2
i
(y) = 2θ

√
y exp{−θy} 1

2
√

y
= θ exp{−θy};

meaning that X2
i ∼ E(θ). and therefore T ∼ �(n, θ).. 

(e) 

.L(θ; x) = 2nθn
∏

xi exp
{
−θ

∑
x2
i

}
.

l(θ; x) ∝ n log θ − θ
∑

x2
i .

∂l(θ; x)

∂θ
= n

θ
−
∑

x2
i .
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Then: 

. θ̂MLE = n
∑

X2
i

.

(f) The SLLN guarantees us that: 

. θ̂MOM
q.c.→ θ and θ̂MLE

q.c.→ θ.

Therefore, both estimators are consistent. 
(g) 

. In(θ) = nI1(θ) = nE

[(
∂

∂θ

)2
]

= nVar(X2) = n

θ2
.

Therefore: 

. 
√

n
(
θ̂MLE − θ

) L→ N(0, θ2).

(h) Var(Xi) = 0.21
θ

., therefore: 

. 
√

n

(

Xn −
√

π

2
√

θ

)
L→ N

(

0,
0.21

θ

)

.

Consider the Delta Method 1.17 with: 

. g(t) = π

4

1

t2
.

g′(t) = −2
π

4

1

t3
.

g

( √
π

2
√

θ

)

= θ.

So it holds: 

. 
√

n
(
θ̂MOM − θ

) L→ N

(

0,
0.21

θ
g′
(√

π

θ

1

2

)2
)

;

where: 

.g′
( √

π

2
√

θ

)2

=
(

4√
π

θ
√

θ

)2

= 16

π
θ3.
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Therefore, we conclude that: 

. 
√

n
(
θ̂MOM − θ

) L→ N

(

0,
0.21

π
16θ2

)

.

(i) 

. ARE(θ̂ML; θ̂MOM) = 0.21 · 16
π

= 1.07

Therefore, I conclude that θ̂MLE . is better. 

12.10 

(a) We impose that the integral of the density is equal to 1: 

. c

∫ θ+1

θ

(1 − (x − θ)2) dx = c

∫ θ+1

θ

dx − c

∫ θ+1

θ

(x − θ)2dx =

c − c
(x − θ)3

3

∣
∣
∣
∣

θ+1

θ

= c
2

3
= 1.

We therefore conclude that c = 3/2.. 
(b) 

. L(θ; x) = 3

2

(
1 − (x − θ)2

)
I(θ,θ+1)(x) = 3

2

(
1 − (x − θ)2

)
I(x−1,x)(θ).

which is an increasing function in θ ., therefore: 

. θ̂MLE = X.

(c) Let Q = 1 − (X − θ)2 .. We observe that: 

. Q = 1 − (X − θ)2 ⇐⇒ (1 − Q) = (X − θ)2 ⇐⇒ X = θ +√
1 − Q.

The density of Q is: 

. fQ(q) = 3

2

(

1 −
(
θ +√

1 − q − θ
)2
)
1

2

1√
1 − q

I(0,1)(q)

= 3

4

q√
1 − q

I(0,1)(q).

Therefore, Q is a pivotal quantity for θ ..
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(d) 

. IC(1−α)(θ) = [a ≤ Q ≤ b] =
=
[
a ≤ 1 − (X − θ)2 ≤ b

]
=

=
[
1 − b ≤ (X − θ)2 ≤ 1 − a

]
=

=
[√

1 − b ≤ X − θ ≤ √
1 − a

]
=

=
[
X − √

1 − a ≤ θ ≤ X − √
1 − b

]
.

(e) To determine the confidence level of the interval constructed in point (d), I need 
to calculate: 

. P {0.5 ≤ Q ≤ 0.9} = FQ(0.9) − FQ(0.5).

Specifically: 

. FQ(t) = P

{
(1 − (X − θ))2 ≤ t

}
=

= P

{
(X − θ)2 ≥ 1 − t

}
=

= P

{
X ≥ θ + √

1 − t
}

=

= 1 − P

{
X < θ + √

1 − t
}

=

= 1 − 3

2

∫ θ+√
1−t

θ

(1 − (x − θ)2) dx =

= 1 − 3

2

√
1 − t + 3

2

(x − θ)3

3

∣
∣
∣
∣

θ+√
1−t

θ

=

= 1 − 3

2

√
1 − t + 1

2
(1 − t)3/2.

So: 

. FQ(0.9) − FQ(0.5) = 3

2
(
√
0.5 − √

0.1) + 1

2

(
0.13/2 − 0.53/2

)
= 0.425.

(f) Consider the test: 

.H0 : θ = θ0 vs H1 : θ �= θ0.
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The  rejection  region  i  s:

. R =
{
X ≤ θ0 + √

0.1
}

∪
{
X ≥ θ0 + √

0.5
}

.

12.11 

(a) 

. f (x; θ) =
n∏

i=1

xiθ
−2n exp

{

−1

θ

∑
xi

}

I[0,+∞)(xi).

The density of X . belongs to the exponential family, so
∑

Xi . is a sufficient 
statistic. 
Moreover, since w(θ) = − 1

θ
: (0,+∞) → (−∞, 0). and (−∞, 0). contains an 

open set of R.,
∑

Xi . is a sufficient and complete statistic. 
(b) 

. l(θ; x) ∝ −2n log θ − 1

θ

∑
xi.

∂l

∂θ
= −2n

θ
+
∑

xi

θ2
≥ 0 ⇐⇒

∑
xi

θ2
≥ 2n

θ
⇐⇒ θ ≤ Xn

2
.

So: 

. θ̂n = Xn

2
.

(c) 

. e[X] = 2θ ⇒ θ̄n = Xn

2
.

(d) 

. Xi ∼ �

(

2,
1

θ

)

⇒
∑

Xi ∼ �

(

2n,
1

θ

)

⇒ Xn

2
∼ �

(

2n,
2n

θ

)

.

(e) 

. E[θ̂n] = θ.

θ̂n . is an unbiased estimator. 
(f) θ̂n . is UMVUE because it is unbiased and a function of a sufficient and complete 

statistic for θ ..
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(g) Q = θ̂n 
θ ∼ �(2n, 2n). is a pivotal quantity. We therefore look for a and b such 

that:

. P {a ≤ Q ≤ b} = 0.99

We therefore propose as a 0.99 level CI: 

. IC(0.99) =
(

θ̂n

b
,
θ̂n

a

)

;

with b = γ0.995(2n, 2n). and a = γ0.005(2n, 2n)..



Appendix A 
Probability Distributions 

A.1 Continuous Distributions 

Normal Distribution 

. X ∼ N(μ, σ 2), μ ∈ R, σ ∈ R
+.

fX(x;μ, σ 2) = 1√
2πσ 2

exp

{
− (x − μ)2

2σ 2

}
.

E[X] = μ.

V ar(X) = σ 2.

Uniform Distribution 

. X ∼ U[a,b], a, b ∈ R, a < b.

fX(x; a, b) = 1

b − a
I[a,b](x).

E[X] = b + a

2
.

V ar(X) = (b − a)2

12
.

Exponential Distribution 

. X ∼ E(λ), λ ∈ R
+.

fX(x; λ) = λ exp{−λx} I[0,+∞)(x).
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E[X] =  
1 

λ 
. 

V  ar(X)  = 
1

λ2 .

Gamma Distribution 

. X ∼ �(α, λ), α, λ ∈ R
+.

fX(x;α, λ) = λαxα−1 exp{−λx}
�(α)

I[0,+∞)(x).

E[X] = α

λ
.

V ar(X) = α

λ2
.

Properties of the Gamma Distribution 
If X1, . . . , Xn . are i.i.d. such that Xi ∼ �(α, λ)., then: 

. 

n∑
i=1

Xi ∼ �(nα, λ).

Xi

n
∼ �(α, nλ).

χ2
.Distribution 

. X ∼ χ2(λ), λ ∈ N\{0}

fX(x; λ) = 1

2λ/2�(λ/2)
xλ/2−1 exp{−x/2} I[0,+∞)(x).

E[X] = λ.

V ar(X) = 2λ.

Properties of the χ2
.Distribution 

If X1 ∼ χ2(λ1)., X2 ∼ χ2(λ2)., . . .., Xn ∼ χ2(λn)., then: 

.

n∑
i=1

Xi ∼ χ2

(
n∑

i=1

λi

)
.
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Relations Between Distributions 

• Normal  and χ2
.: If X1, . . . , Xn . are i.i.d. such that Xi ∼ N(0, 1)., then: 

.

n∑
i=1

X2
i ∼ χ2(n).

• Gamma and χ2
.: 

.�

(
k

2
,

1

2

)
L= χ2(k).

• Exponential and Gamma :

. E(λ)
L= �(1, λ).

A.2 Discrete Distributions 

Bernoulli Distribution 

. X ∼ Be(p), p ∈ [0, 1].
fX(x;p) = px(1 − p)1−x

I{0,1}(x).

E[X] = p.

V ar(X) = p(1 − p).

Binomial Distribution 

. X ∼ Bin(n, p), p ∈ [0, 1] n ∈ N.

fX(x; n, p) =
(

n

x

)
px(1 − p)n−x

I{0,...,n}(x).

E[X] = np.

V ar(X) = np(1 − p).

Uniform Distribution 

.X ∼ U{a,b}, a, b ∈ R, a < b.

fX(x; a, b) = 1

n
I{a,b}(x).
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E[X] =  
b + a 

2 
. 

V  ar(X)  = 
n2 − 1 

12 
. 

n is the number of natural numbers between a and b.

Poisson Distribution 

. X ∼ P(λ), λ ∈ R
+.

fX(x; λ) = λx · exp{−λ}
x! IN(x).

E[X] = λ.

V ar(X) = λ.

Properties of the Poisson Distribution 
If X1, . . . , Xn . are independent random variables such that Xi ∼ P(λi)., then: 

.

n∑
i=1

Xi ∼ P
(

n∑
i=1

λi

)
.
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