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Preface

Statistical inference is the discipline that underpins stochastic modelling, which is
that area of Mathematics where uncertainty is part of the model and object of interest
in the study. Calculus, linear algebra, and probability are among the main subjects
on which the theory of statistical inference is based, with its main objective being the
estimation of quantities of interest such as, the parametric and non-parametric laws
of stochastic models, their relative asymptotic distributions, etc. In this framework,
the study of advanced statistical models, such as, linear regression models, analysis
of variance (ANOVA), and generalised regression models, is essential both in
research and in business. Consequently, the implementation of algorithms in a
suitable statistical software is proposed as a natural completion of the book.

This text was created with the aim of helping the students in the transition
between the theoretical and methodological concepts of statistical inference and
their software implementation. The first part of the text is mainly focused on
exercises to be solved with with pen and paper, in order to apply notions derived
from lemmas and theorems; while in the second part of the text we propose
assignments, based on both the manual implementation of algorithms and the
application of built-in tools for an effective analysis of datasets that are derived
from real problems.

To optimise the understanding of the selected topics, and to accompany the
reader in their study, the text is organised into chapters, that are composed of
an introductory part, in which the theoretical foundations of statistical inference
are recalled, and a second part that is composed of exercises, accompanied by a
comprehensive solution on paper and, if appropriate, on software. In particular, for
a thorough treatment of the theoretical part, refer to [3] and [5].

Regarding the computational solutions, the use of the statistical software R [6]
(version 3.5.1) is proposed. This choice was guided by the fact that R is available for
various operating systems (Unix, GNU/Linux, Mac OS X, Microsoft Windows) and
can be downloaded for free from the website http://cran.r-project.org/. Moreover,
in R there is a wide choice of libraries (packages) distributed and appropriately
described on the Comprehensive R Archive Network (CRAN).


http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/

vi Preface

The text is organised into six main areas: a first area includes basic probability
exercises (Chap. 1); a second area addresses the topic of point estimators (Chaps. 2,
3, and 4); a third area is focused on hypothesis testing and confidence intervals
(Chaps. 5, 6, and 7); a fourth area focuses on the asymptotic properties of
estimators (Chap. 8); and a fifth area is focused on multiple linear regression models,
generalised regression and analysis of variance (Chaps. 9, 10, and 11). Regarding
these three chapters, supplementary material is available online, containing the
datasets needed to carry out some exercises, further insights and exercises. Finally,
there is a last chapter, containing summary exercises, through which the student can
gain a global view of the data analysis techniques illustrated in the book.

This text is written for students of undergraduate courses in Statistics, Mathemat-
ics, Engineering and for postgraduate courses in Data Science. Many of the exercises
and laboratories proposed are derived from exercises and exam topics of the course
Models and Methods for Statistical Inference taught in Mathematical Engineering
at the Politecnico of Milan. We therefore thank the numerous colleagues and
collaborators who have contributed, directly or indirectly, to the creation of the
proposed material. In particular, an important contribution to the development of
the Exercises and Laboratories must be recognised to Andrea Ghiglietti, Matteo
Gregoratti, and Nicholas Tarabelloni.

Milan, Italy Francesca Gasperoni
January 2025 Francesca Ieva
Anna Maria Paganoni
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Part 1
Inferential Statistics



Chapter 1 ®
Fundamentals of Probability Qe
and Statistics

1.1 Theory Recap

1.1.1 Expected Value, Variance and Covariance

Theorem 1.1 Let X be a real r.v. with distribution function Fx(x), let Y = g(X),

let X={x:f(x)>0}landletY = {y: fy(y) > 0}:

 Ifg(-) is an increasing function in X, then Fy(y) = Fx(g~'(y)) Vy e V.

e If g(-) is a decreasing function in X and X is a continuous r.v. then Fy(y) =
- Fx(g~'(y) Vyed.

* Suppose that fx(x) is continuous in X and that g~'(-) has a continuous
derivative in Y. Then the density of Y is as follows:

otherwise.

) — !fx(g_l(y))ldgd—ly(y)l ey,

Theorem 1.2 Let X be a r.v. with continuous distribution function Fx (x). Then the
. Y = Fx(X) has lawY ~ U0, 1).

Definition 1.1 (Mean) The expected value or mean of a r.v. g(X) is defined as:

jo? g(x) fx(x)dx if X is a continuous r.v.;

Elg(X)] = e
D orex 8() fx(x)dx if X is a discrete r.v..

Theorem 1.3 Let X be a r.v.. Let a, b, ¢ be scalars in R. Then for any functions

g1(x) and g, (x) for which the mean exists, the following hold:

* Elagi(X) + bg2(X) + c]l = aE[g1(X)] + bE[g2(X)] + c.
* Ifgi(x) =0 Vx, then E[g1(X)] = 0.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 3
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4 1 Fundamentals of Probability and Statistics

o Ifg1(x) > g2(x) Vx, then E[g1(X)] > E[g2(X)].
o Ifa<gi(x) <b Vx, thena <E[g1(X)] <b.

Definition 1.2 (Variance) The variance of ar.v. X is defined as:
Var(X) = E[(X — E[X])*] = E[X*] — (E[X])*

and its square root is called the standard deviation.

Theorem 1.4 Let X be a r.v. with finite variance. Let a, b, ¢ be scalars in R. Then
the following holds:

Var(aX + b) = aZVar(X).

Definition 1.3 (Covariance) Let X and Y be twor.v., then the covariance is defined
as:

Cov(X,Y) = E[(X — E[X])(Y — E[Y]].

Theorem 1.5 Let X and Y be two rv. with finite variance and a and b be two
scalars. Then:

Var(@aX + bY) = a*Var(X) + b*Var(Y) + 2abCov(X, Y).

Definition 1.4 (Correlation) Let X and Y be two r.v., then the correlation is
defined as:

_ Cov(X,Y)
PXY = ar X Var(h)

Theorem 1.6 Let X and Y be two r.v. Then:

* pxy €[—11]
* |px.y| = 1if and only if there exists a number a # 0 and b such that P{Y =
aX+b}=1.1fa>0then pxy =1, ifa < 0then pxy = —1.

1.1.2 Joint and Marginal Laws

Theorem 1.7 Let X = (X1, X2, ..., Xy) be a vector of r.v. with joint density
fx (x). Then the marginal law of X1, ..., Xy is:

Ixiox O, x0) = / ... / fx(x) dxg1dxp4o ... dx, if rv. are continuous.
R R
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Ixi o x (X, o x0) = Z fx(x) ifrv. are discrete.

(Xk+1 s---axn)ERnik

Definition 1.5 (Conditional Laws) Let X = (X, X», ..., X;) be a vector of r.v.

with joint density fx(x). V(x1,...,xt) € RF such that fx,  x, (x1,...,x) >
0, the conditional law of X given (Xi,..., X}) = (x1,...,xx) is a function of
(X1, ooy XKy X0 Xl X, X (X1, « oo Xn X1, ..., Xk), Which is defined as:

SXpsro Xn Kkt 15 -+« Xn)
fX],.‘.Xk(xl, . .Xk)

IX 0 XX, X (X1, o XX, o, X)) =

Lemma 1.1 (Independence) Let X = (X1, X2, ..., X)) be a vector of r.v. with
Jjoint density fx(x). X1, Xa, ... X,, are mutually independent r.v. if and only if:

fx@) =[] fx 6o
i=1

Theorem 1.8 (Independence) If X; and X, are independent rv. then
Cov(Xy, X)) =0.

1.1.3 Conditional Expected Values

Theorem 1.9 (Double Conditional Expected Value) Let X and Y be two rv.,
then:

E[X] = E[E[X[Y]]

if the expected values exist.

Theorem 1.10 (Conditional Variance) Ler X and Y be two r.v., then:
Var(X) = E[Var(X|Y)] + Var(E[X]|Y])

if the expected values exist.
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1.1.4 Convergences

Definition 1.6 (Almost Sure Convergence) A sequence of r.v. X1, X5, ... con-
verges almost surely to ar.v. X if Ve > 0 it holds:

P{ lim |X,—X|<¢}=1
n—-+00

and it is denoted by X, < x.

Definition 1.7 (Convergence in Probability) A sequence of r.v. X1, X», ... con-
verges in probability to a r.v. X if Ve > 0 it holds:

lim P{|X, — X|>¢}=0
n—oo

or equivalently
Iim P{|X, — X|<¢e}=1
n—oo

and it is denoted by X, 2 x.

Theorem 1.11 (Strong Law of Large Numbers, SLLN) Consider a sequence
K], X, ... of i.i.d. rv, such that E[X;] = n and Var(X;) = 02 < +o0. Consider
Xn=>1_,Xi/n. ThenVe > 0 it holds:

P{ lim |X, —u|l<e}=1

n——+o00

that is, X, converges almost surely to i (X, s W)

Theorem 1.12 (Weak Law of Large Numbers) Consider a sequence X1, X, . ..
of i.i.d. rv., such that E[X;] = pn and Var(X;) = 6% < +oo. Consider X, =
Y ' Xi/n. ThenVe > 0 it holds:

lim P{X, —pu| <e}=1;
n——+00

that is, X, converges in probability to pu (X, LS W)

Theorem 1.13 Consider a sequence of rv. X1, X2, ... that converges in probabil-
ity to a rv. X and let h be a continuous function. Then h(X1), h(X3), ... converges
in probability to h(X).

Definition 1.8 (Convergence in Distribution) A sequence of rv. X, Xo,...
converges in distribution to a r.v. X if it holds:

lim Fyx,(x) = Fx(x)
n—-+00
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. . .. L
Vx where Fy (x) is continuous and it is denoted X,, = X.
Theorem 1.14 Consider a sequence of r.v. X1, X3, ... that convergestoarv. X:

e Almost sure convergence implies convergence in probability.

e Convergence in probability implies convergence in distribution.

e Convergence in distribution implies convergence in probability only if
X1, Xo, ... converges to a constant.

Theorem 1.15 (Slutsky’s Theorem) If X, i:> Xandy, LS a, where a is constant
then:

X,Y, 5 ax.

X, +Y, 5 a+X

Theorem 1.16 (Central Limit Theorem, CLT) Consider a sequence X1, Xl’ ...
of i.i.d. rv.s, such that E[X;] = w and Var(X;) = 02 < 4o00. Consider X, =
>i_1 Xi/n. Then it holds:

. (X, — ) . N R Y
lim Pifgx}—qﬁ(x)_/ «/Z_e} dy;

n——+00o —00 T

that is, Y2520 5 7 N0, 1),
Theorem 1.17 (Delta Method) Consider a sequence X1, X3, ... of r.v.s, such that
Vn(X, — 6) X X ~ N(0,c?). Consider a specific function g(-) and a specific

value 0. Suppose that g’ (0) exists and is non-zero. Then:
Va(gXy) — g0) 5 X ~ N©.0>[g'@)1).
Ifg' () =0:
v £ 0-2 " 2
Vn(g(X,) —g@) > X ~ X @) x=(D).

For further study, refer to Chapters 1, 2 and 4 [3].

1.2 Exercises

Exercise 1.1 The joint law of the discrete random variables X and Y is partially
described in Table 1.1.
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Table 1.1 Joint law of Y=2 |vy=4
variables X and Y
X=0 0.1 0.3
X=1 |0.1 0.4
X=2
0.6

(a) Complete the table and state whether X and Y are independent.

(b) Calculate the law, the expected value and the conditional variance of Y given
X =0.

(c) Calculate the law, the expected value and the conditional variance of X given
Y =2.

(d) Calculate E[X|Y].

Exercise 1.2 Let (X, Y) be a continuous random vector with uniform distribution
on the set

V:{(x,y)€R2:xZO,yZO,x2+y2§9}.

(a) Write the density of (X, Y). Are the variables X and Y independent?
(b) Calculate E[X|Y].

Exercise 1.3 Calculate E[Y|X] for the pair of random variables (X, Y) with joint
density

Flxy) = {%‘ (r+30)e™ 7, Xy >0;
’ 0

, otherwise.

Exercise 1.4 The concentration X of a certain pollutant in a given volume of
exhaust gas from an industrial process is uniformly distributed between 0 and
1 mg/m3. A purification process has been developed that allows to reduce the
concentration of that substance: if x is the concentration of pollutant in a given
volume of gas subjected to purification, the concentration Y after purification is
uniformly distributed between 0 and px mg/m3, where p € (0, 1) is a given
parameter.

(a) Determine the joint distribution of X and Y.

(b) Determine the distribution of Y.

(c) Are the two variables independent?

(d) If the concentration Y of pollutant after purification is known, what is the
expected value for the corresponding concentration X before purification?

Exercise 1.5 During the drafting of a book, a preliminary version of the work is
read by the author. Knowing that the number of errors on a page is a random variable
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with a Poisson distribution of parameter A = 3, and that each error is discovered (in
one reading) with probability p = 0.7, calculate:

(a) The law of the number of errors discovered on a page (e.g. the first one).

(b) The expected number of errors discovered on a page.

(c) The probability that two errors are discovered on the first page knowing that
there are at most three.

Exercise 1.6 Let X and Y be two independent Bernoulli random variables with
parameter p. Let Z = I(x1y—o) be the indicator of the event X + Y = 0. Calculate
E[X|Z] and E[Y|Z]. Are these random variables still independent?

Exercise 1.7 Consider a random vector (X, Y) such that X has a uniform distribu-
tion over the interval [0, 1] and, conditionally on X = x, Y has a Gaussian law with

mean x and variance x2.

(a) Explicitly write the conditional density f(y|x)(y|x).
(b) Explicitly write the joint density f(x y)(x, y).

(c) Calculate E[Y|X].

(d) Calculate E[Y].

(e) Calculate Var[Y|X].

(f) Calculate Var[Y].

Exercise 1.8 Let (X, Y) be a continuous random vector with

(1/2)1/2 y71/2 efy/2

fr(y) = '(1/2)
0, y <0.

, y>0;

Fxyr (xly) = @)~ 12y1/2 e 2y eR.

(a) Show that for every y > O there exists E[X|Y = y].
(b) Show that there exists E[E[X|Y]] and calculate its value.
(c) Show that however [E[ X | does not exist.

Exercise 1.9 Consider X1, ..., X, independent Bernoulli variables all with param-
eter p, where n > 2. Let Z be their sum and let Y = X+ X, — X| X be the variable
that indicates if there has been at least one success in the first two trials.

(a) Calculate E[X|Z] and E[X>|Z] and their limits for n — oo.
(b) Determine the law of Y, calculate E[Y|Z] and its limit for n — oo.
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Exercise 1.10 Let X, be a sequence of independent random variables such that, for
every i

1, <1,
P(X; >x) = t=
x’)‘, x > 1.

where A > 1

(a) Calculate the density of the r.v. X;.

(b) Calculate the mean of the r.v. X;.

(c) Determine the law of the r.v. ¥; = log(X;).

(d) Study the convergence of the sequence of r.v. {(X|X2...X,)!/"}.

Exercise 1.11 Let Xy,..., X;;,... be a sequence of independent and identically
distributed r.v. with a uniform law in the interval [0, 1], with A > 0.

(a) Calculate, for each fixed n, the distribution function of the rv. 7, =
nmin(Xq, ..., Xp).

(b) Prove that the sequence of r.v. T1, ..., T, ... converges in law to ar.v. Y and
identify the law of Y.

Exercise 1.12 Let (X,,) be a sequence of independent r.v. all with a Poisson law of

parameter . What is the value, varying A, of the limit

Iim P(X| +---+ X, <n)?
n—oo

Exercise 1.13 Let {X,},cn+ be a sequence of r.v. such that X, ~ x2(n) for every
n € N*, Does the sequence X, /n admit a limit? In what sense?

1.3 Solutions

1.1

(a) In the last column on the right we read the marginal law of X, P{X = x}.
In the last row at the bottom we read the marginal law of Y, P{Y = y}.
We can therefore complete the joint law, as reported in Table 1.2.

Tal?le 1.2 Joint law of the Y=2 |v=4
variables X and Y
0.2 0.1 0.3

0.1 0.3 0.4
0.1 0.2 0.3
0.4 0.6 1

X<
il
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It is immediately apparent that they are not independent, as for example:
P{X =0,Y =2} =02 #P{X =0}P{Y =2} =0.12.
(b)

YIX=0 2 4
2/31/31

E[Y|X=0]=2-2/3+4-1/3=28/3.
Var(Y|X = 0) = E[Y2|X = 0]—(E[Y|X = 0])% = 4-2/3+16-1/3—64/9 = 8/9.
©

Xly=2/0 1 2
1/21/41/41

E[X|Y =2]=1-1/4+2-1/4=23/4.
Var(X|Y =2) = E[X?|Y = 2]—(E[X|Y =2])* = 1-1/4+4-1/4—9/16 = 11/16.
(d)

Xl[y=40 1 2
1/6 1/21/3 1

E[X|Y =4]=1-1/242-1/3=1/6.

Therefore:

7
Tyy=2) + = - Liy—4).

E[X|Y] = ‘

TN

We note that [E[ X |Y] is a random variable function of Y.
1.2
(a) Given that the area of V is %n, the density of the vector (X, Y) is:

4
Ixyx,y) = o Iy (x, y).
T
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12
X and Y are not independent given that:
A/ 9—x2 4 4
fx(x) = / —dx = —+v9 —x2 I[o,31(x)
0 o o
and by symmetry:
4 2
fr(y) = o 9 = y~Io,31(»)-
T
Therefore:
Jaxny(x,y) # fx() - fr(y).
The support of (X, Y), V, is not factorisable.
()

(x) Vy:0=<y<=3.

1
=——1
Therefore X|Y has a uniform law on the interval [0, v/9 — y2] and therefore:

9—vy

EIX|Y] = ¥

1.3 We exploit the definition:

o0 +o00
E[Y|X = x] =/ v frix(yIndy =/ y XD,
0 0 fx(x)

Given that:

400 +00 4 v
= [ sty = [ 2 rane Py -

4 —2Yq+00 4 +o0
- [— e_] + =3¢ / ye Pdy =
0

= —X¢
5 2 o 5
4 1 4 1 1
= gxe_xi =+ §3C_XZ = §(2x + 3)€_x.

We obtain:

2(xr43y)e _ 4<x + 3y)e_2y_
L@x +3)e~ 2x+3

frix(lx) =
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Substituting in the starting formula, we have:

+00 3
IE[YIX:x]:/ y_4(x+ )’)e—Zydy_
0

+o0
/o (xye ™ +3y%e ) dy =

2x 4+ 3 T 2x+3

x+3

- 1/4+3-1/4) = )
g3 VA =5

_ X+3
Hence E[Y|X] = X513
14
(a) We know that: X ~ Ujg 1) and Y|X = x ~ Ujg, px]. Hence:

1

fYIX(y|x) = X H[O,p)c](y)~

The joint law of (X, Y) will therefore be:
Frr( ) = —Tio ) - To.1(0)
xX,y)=— . X).
X,Y y px [0, px]\Y [0,1]
(b)
U | 1.y
fr(y) = —dx = ——log = Ijo, p1 (»).
y X p p

/p

(c) We immediately observe that X and Y are not independent.
(d) We need to calculate E[X|Y].

pLx T, px1 ) - Lo ()
—L10g (3) Lio.p1(»

1
—————Ij0,p1(¥) - Iy p, 11 (X);
X log (%)

fxiy(xly) =

from which:

1
1
]E[X|Y=y]=/ ————dx - Ijo, p(y) =
y/p  log (%)

1 y
- _log (%) . <1 - ;) 0.
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1 Y
E[X|Y] = — : (1 - ;)H[O,p](Y).

a )

=~

1.5
(a) We define the following r.v. and derive their distributions:

* FE = ‘number of errors present on a page’, E ~ P(A).
* S = ‘number of errors discovered on a page’.
* S|E =n~ Bin(n, p).

We calculate P{S = k}, using the theorem of total probabilities:

+00

P{S =k} =Y P{S=k|E =n} PE =n)
n=0
~+00

n _ e A"
2 )ra-pr—=
k n!

n=k

pke—)» +00 )\’n—k-i-k

k! = (n —k)!

(1= p)=®

_opfe Rl —pyrt

K e b
_Opte™ gy _ Gt 0.
k! k!

We can therefore say that: S ~ P(Ap).
(b) E[S]= Ap.
(©

3

Z]P’{S =2|E = n}P{E =n)
P{S=2E<3} ,=
P =2 =3 ="pp 5 = P(E <3) -

—x32 3 —x33
_pZ_eZ!A +(2)p2(1_p)1.63!)» B

e—)L)LO e—kkl e—A)\Z e—k)hf&
o Tt

~0.1097 4 0.0988
- 0.6472

= (0.3223.



1.3

1.6

Solutions 15

(a) Note that Z ~ Be((1 — p)?).

1.7

(a)

(b)

(©)

PX=1,Z=0 PX=1) _

EX|Z=0]=P{X =1|Z=0} =

P(Z = 0) ST P(Z=0)
1-(1-p? pR2-p 2-p
E[X|Z=1]=0.
Hence:
1
E[X|Z] = > Loy (Z) = E[Y|Z];
-p

where the last equality is due to obvious reasons of symmetry.
Now E[X|Z] L E[Y]|Z], in fact:

1 1
P {E[X|Z] =5 ElY|IZ] = zp} =P{Z =0} =2p—p* # 2p-p>)~.

X ~U[0,1] Y|X =x~ N(x,x?).

_ -2
e 2 |

1
forxoQlx) = Norrs

_=x?
e 22 H[(), 1] (x).

fxrx, ) = foxOlx) fx(x) =

[\S}

2w x

E[Y|X = x] =x = E[Y|X] = X.
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(d
E[Y] = E[E[Y|X]] = E[X] = 1/2.
(e
Var(Y|X) = X°.
69)
Var(Y) = Var(E[Y|X]) + E(Var[Y|X]) =
= Var(X) + E[X?] =
=2 Var(X) + (E[X])* =
1 1 5
=2 —4+-=_
2 4712
1.8

(a) y > 0. We calculate:

1
21

for obvious reasons of symmetry. Therefore: E[X|Y] = 0.
(b) E[E[X[Y]] =0.
(©)

o0
]E[X|Y=y]=/ X v exp{ —y-x*/2}dx =0
—00

+00

fx(x) = A fxy&ly) - fr(y) =

_/%OL 172 exp{— ﬁ/ﬁ.i.ﬂex {(—y/2} =

+o00

- / exp{—y/2(1 + )} dy =
()

— 1 . 1 = l

Cayar(y) V204 A

Therefore X ~ Cauchy and E[X] does not exist.



1.3 Solutions

1.9
(a)

P{X1=1,Z=k
E[X,|Z = k] = -] |

_p(Ty)pta—p

)n—k

P{Z = k}

Therefore:

E[X|Z] =E[X»2]|Z] = = =

by the strong law of large numbers.

(b)

Y=X1+X,— X1 Xo.

() pr — pyn=*

2%
n

q.c.

k

17

Y can only take value O with probability (1 — p)? or 1 with probability 1 — (1 —

p)?*=2p—p*.
Therefore: Y ~ Be(2p — p?).

E[Y|Z = k] =E[X1|Z = k] + E[X2]|Z = k]

_%_ p (k 2) 21— py
n (k)p (I —pyn=k
_ % B k(k —1)
T on nin—1)
Therefore:
E[Y|Z] = ZZ Z(Z 1) g
n n(n -1

always by the strong law of large numbers.

1.10
()

——2p—p%

fx; () = A x AT g (x0);

—E[X1X2|Z =k] =

which is obtained by deriving the distribution function Fy, (x) = 1-P{X; > x}.

(b)

+00
Hﬂ=/ Axrdx =
1

A—1
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©
Fy,(y) =P{logX; <y} =P{X; <e’}=1—¢e" Vy>D0.

So Y; ~ E(A).
(d) Given that % > log(X;) SN /—{ by the strong law of large numbers, then:

n I/n n 1/n
log X;
(1—[ Xi) =exp | log (1_[ Xi) = exp I:Z 0og z:| a.s. el/)\..
i=1 n

i=1

1.11
(@)

P{T, <t} = Plnmin(Xy, ..., X,) <t} =
=1 —P{min(Xy,..., X,) > t/n} =
=1-[[PX; > t/n} =

i=1
. t
:1_[1](1_J>:
t n
=1—-(1-—] .
(1-3%)
(b)

So Y ~ &(1/A).

1.12 One can notice that:
lim P(X; 4+ - 4+ X, <n) = lim P(X, < 1).
n—oo n—00

Given that E[X;] < oo and Var(X;) < oo, we can apply the strong law of large
numbers, which guarantees:
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The almost sure convergence implies convergence in distribution, therefore:
Fyg (1) — F(1).

Considering that A is a constant, we can write F) () = I3 100)(#). So we conclude
that:

1 ifx<1;

lim P(X, < 1) =
n—00 0 ifa>1.

It remains to study the case A = 1, as it is a point of discontinuity for Fj (¢). If
A =1, from the Central Limit Theorem we know that:

lim 7 - (X, — E[X;]) 5 N, Var(X))).

n—o00

In this specific case, given that A = 1, we can write:
Tim /- (X, = 1) £ N, 1.
Which translates to:
PX, <1} =P{/n- X, = 1) < (=1 -/n} =P{/n- (X, — 1) <0},
P{/n (X, —1) <0} - P{Z < 0} = ®(0) = 1/2.

So we conclude that:

1 ifA <1;
lim P(X, <) =1{1/2 ifr=1;
n— oo
0 if A > 1.
1.13 Given X, ~ Xz(n) then there exists a sequence of i.i.d. r.v. Y1, Y2, ..., Y,

such that X, = Y ¥; and ¥; ~ x2(1), or ¥; ~ I'(1/2,1/2).
We note that E[Y;] = 1 < oo and that Var(Y;) < oo.
We can therefore apply the Strong Law of Large Numbers and conclude that:

n

X _ XY as gy
_ =1
n



Chapter 2 ®
Sufficient, Minimal and Complete ST
Statistics

2.1 Theory Reminders

Definition 2.1 (Statistic) Let X, .., X,, be a sample of r.v. We define a statistic
T (X) as any function of the sample.

Definition 2.2 (Sufficient Statistics) A statistic 7(X) is sufficient for a parameter
0 if the conditional distribution of X given 7 (X) does not depend on 6.

Theorem 2.1 (Factorisation) Let f(x; 0) be the joint distribution of a sample of
rv. X. A statistic T (X) is sufficient for the parameter 0 if and only if there exist a
function g(t; 0) and a function h(x) such that¥ x andV 0, the decomposition holds:

f(x;0) =g(T(x); O)h(x).

Theorem 2.2 Let X1, .., X, be a sample of i.i.d. rv. such that X;~ f(x; ). Let
f(x; 0) belong to the exponential family, namely:

k
f(x;0) = h(x)c(@)exp {Z w; (0)1; (x)} R, d<k.

i=1

Then T (X) = (Z’}zl n(X;,..., Z;f:] (X j)) is a sufficient statistic for .

Definition 2.3 (Minimal Sufficient Statistics) A sufficient statistic 7(X) is said
to be minimal for the parameter @ if for any sufficient statistic 7'(X), T(X) is a
function of 7/(X).
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Theorem 2.3 (L-S) Let f(x; 0) be the joint density of the sample X. Suppose there
exists a function T (X) such that for every pair of sample realisations x and y it
holds:

f(x;0)
S (x5 6)
Then T (X) is a minimal sufficient statistic for 0.

Theorem 2.4 Let Xy, .., X,, be a sample of i.i.d. rv. such that X;~ f(x;0). Let
f(x; @) belong to the exponential family, namely:

independent of 0 < T(x)=T\(y).

k
F(x:0) = h(x)c(@)exp {Z w; (0)1; (x)} 0 R d<k.

i=1

If the image of (w1 (0), wa(0), ..., wi(0)) contains at least an open set oka, then
the statistic T (X) = (Z;le nXj,..., Z?’:l (X)) is a sufficient and complete
statistic for 0.

Definition 2.4 (Complete Statistics) Let f(¢;0) be a family of distributions for
the statistic 7' (X). This family of distributions is said to be complete if V measurable
g it holds:

Eolg(T)]=0 Y0 = Pyig(T)=0}=1 Vo.

Equivalently, the statistic 7'(X) is said to be complete.

Theorem 2.5 If a statistic T (X) is sufficient and complete for 6 then it is also
minimal.

For further study, refer to Chapter 6 [3].

2.2 Exercises

Exercise 2.1 Let X1, ..., X, be a random sample from a N (i, %), with u € R
and 02 € (0, +00). Let
n 2
— X; Xi — X)
X = — and
25 Z pa—

i=1 i=1
be the sample mean and variance. Prove that:

@ T(X1,....Xn) = Q1 Xiu Yl Xl.z) is a sufficient, minimal and complete
statistic for (u, 0'2).
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(b) T(X1,...,X,) = (X, 5?) is a sufficient, complete and minimal statistic for
(1, 07).

Establish the law of the statistic considered at point (b).

Exercise 2.2 Given a random sample X, ..., X, from a N(u, 1), prove that T =
>, X7 is not a sufficient statistic for ap.

Exercise 2.3 Given arandom sample X1, X» from a (1), show that T = X;142X>,
is not a sufficient statistic for A.

Exercise 2.4 Let X1, ..., X,, be a random sample from a U([O, 0]), where 6 > 0.
Show that T = max{X1, ..., X,} is a sufficient, minimal and complete statistic for
6.

Exercise 2.5 Given a random sample X1, ..., X, from a U([—9/2, 9/2]), where
6 > 0, show that T = (min{X7y, ..., X,}, max{Xy, ..., X,}) is sufficient for 6.
Find a minimal sufficient statistic.

Exercise 2.6 Given a random sample Xp,..., X, of discrete type, determine
whether the statistic T = (X1, ..., X,,_1) is sufficient.

Exercise 2.7 Given a random sample drawn from a population with a beta law of
parameters « and B, find a sufficient, minimal and complete statistic for («, §).

Exercise 2.8 Let Xi{,...,X, be a random sample from f(x;6) = x
exp{—x2/20}/6, x > 0,6 > 0. Show that > Xl2 is minimal sufficient for 9,
but that ), X; is not sufficient for 6.

Exercise 2.9 Let X1, ..., X,, be a random sample of real random variables having
distribution Fy continuous with density known except for the value of the parameter
fe®CR. Let V=V(Xy, ..., X,) be astatistic, T = T(Xy, ..., X,,) a sufficient
statisticand U = U (X1, ..., X;) a complete statistic. Verify that:

(a) If W is a function of U, then W is a complete statistic.
(b) If T is a function of V, then V is a sufficient statistic.

Exercise 2.10 Let X be a discrete random variable that takes the values 0, 1, 2.

@ Let P(X=0=p,PX=1)=3pand P(X =2)=1—-4pwithO < p <
1/4. Determine whether the family of distributions of X is complete.

(b) Let P(X =0) = p, P(X = 1) = p>and P(X =2) = 1 — p — p? with
0 < p < 1/2. Determine whether the family of distributions of X is complete.



24 2 Sufficient, Minimal and Complete Statistics

2.3 Solutions

2.1

(@ X ~ N(u, o) belongs to the exponential family, so we study fx (x).

1 1 5
fx(x) = Wexp {—F(x ) }
We have:
! H 2y.
o 5] et
1 1z
— = =wi@Hn () Sx =wyp, o0 (x).
20 o
Therefore:

T(x) = (Ti(x), Tax) = [ Y x7, > x;
j=1 j=1

is a bivariate sufficient statistic for (i, o).
Furthermore:

I n
202’ o2

(wl,w2)=< >:IR+XR—>]R‘XIR<.

The image space is an open set of R? then T'(x) is a sufficient, complete and
therefore also minimal statistic.
(b) Given that:

Yn:ZXi g2 _" (ZX%_(ZX')Z);

n n—1 n n

T (x)= (Y,,, 52) is an invertible function of T'|(x) = (Z Xi, Y Xlz)
Therefore T'|(x) is a sufficient, complete and minimal statistic.

2.2 There are 2 ways to solve this exercise:

Method 1: Lehmann-Scheffé
We can use Lehmann-Scheffé, showing that there are two distinct realisations, x and
y, such that:

Tx) =T(y).
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Take for example x = (1,1,...,1) andy = (-1, —1, ..., —1). We immediately
notice that 7 (x) = T (y). Now evaluate:

fx(xsp) _ @m) 7" expl= Y (i — w)?/2}
Ay @m)T 2 exp(= (i — w)?/2)

= exp { Y l=0x — 0 + (i = w1/2} = expl2pn).

Given that the ratio depends on p, the statistic T(X) is not sufficient for x.

Method 2: Sufficient and Minimal Statistic

The idea is to find a statistic W that is sufficient and minimal for x« and show that
there is no function g(-; i) such that W = g(7 (X); ). This would prove that T(X)
is not sufficient for .

Since the Normal belongs to the exponential family, it is immediately proven that
W =" X; is a sufficient and complete (therefore also minimal) statistic for u.

It is seen that there is no g(-; w) such that >~ X; = g(3_ Xl.z; w). Therefore T (X)
is not sufficient for .

2.3 Consider for example:

P{X1=0,X,=1}

P{X;=0,X,=1|T =2} =

T=2
)\’e—Zk
TPX =0.X, =1} +P{X; =2 X, =0}
)\.E_Z)L

- re—2h 4 )\28_2)‘/2 -

Given that the law of (X, X2)|T depends on A, T is not a sufficient statistic for A.

24 X ~ UJO0, 6] does not belong to the exponential family because the Spt(X)
depends on 6.

1 { 1
foe:0) =2 [ [Io.e1Gi) = 5]1[0,+oo] eI, o (o))
i=l

Therefore, by the factorisation criterion, X, is sufficient for 6.
Moreover, let g be such that E[g(T(X))] =0, V6 > 0. Given that:

Fr(t) = (é) T0,01(#) + Tjo,+001(F);
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then:
n o ._
fr@) = 9_"tn 0,01 (1)
We verify that T is a complete statistic by exploiting the definition.
o n
Elg(T)] = / e a =0 ve.
0 o"

Deriving with respect to 6 we obtain:

1 do—" o n
0=—g(®o"! / H—t""ldr ve.
578 +(d9>0g(>9n

=E[g(T)]=0

Therefore, we can conclude that: g(6) = 0V6. T is a complete and also minimal
sufficient statistic for 6.

2.5
1
f(x;0) = e_n]l[_%%}(X(l))H[_%,%](X(n))-

By the factorisation criterion 7 = (X (1), X()) is sufficient for 6.
‘We use Lehmann-Scheffé to find a minimal sufficient statistic:

F:0) _ Homar(fr | bxan ). +00) @)
TG0 Tamax{|ya Ly ). +00} @)

¢

2 - max {|xq) Yy} -

, x(n)‘} =2~max{|y(1) ,

Therefore we can conclude that 2 - max{|X 0 X(n)|} is a minimal sufficient

statistic for 6.

’

2.6 It can be proven that the statistic 7 = (X1, ..., X,,—1) is not sufficient using
the definition:

P{X:le:t}:P{Xl :klv"-’X}’L—l :kn—lvxn :knlxl =ki,..., Xn1 :kn—l}:
=P{X, = k}.

Indeed P{X,, = k,} depends on the parameter of the distribution.
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2.7 The distribution Beta(a, B) belongs to the exponential family.

1 _ _
fxsa,B) = Wx“ "1 =) (x) =

1

= e O @ Dlog@ + (B~ Dlog(l — ) JTon.

wi(a) i (x) w2(B) 1 (x)
(wi, wp) : RT xR — [—1, +oo] x[—1, +o0].

[—1, 4o00] x [—1, +00] contains an open set of R2.
This implies that the statistic:

(Do t0g(x0). Y tog1 = Xp)) = (1og ([ X ) . og (TT(1 = x0)) )

is minimal and complete.

2.8 To show that Zi Xl.2 is minimal sufficient for 6, we just need to observe that
this density belongs to the exponential family.

(X 0) = l—[ xi exp{—x7/20} _ ([1x) expl— ¥ x7/20}

Pl % on

We immediately recognise that W(X) = lez is a sufficient statistic for 6.
Moreover, since — 1/260 : R — R~ and R™ contains an open set of R, then
W (X) is a complete sufficient statistic for 6 (thus it is also minimal).

There are 2 ways to show that 7 (X) = Y _ x; is not sufficient for 6:

Method 1: Lehmann-Scheffé
We can use Lehmann-Scheffé, showing that there are two distinct realisations, x and
y, such that:

Tx)=Ty == Sx@ ) does not depend on 6.

A

Take for examplex = (1, 1,..., 1) andy = (1/n, 1/n, ..., 1/n,n—141/n). We
immediately notice that 7' (x) = T (y). Now evaluate:

([T x:) exp{— Y x7/26}
X&) o

iy (Hyi)exp{—zy,?/zo} =

l_[yz {Z_x +yl}:
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_ ITxi -eXpiZn3_2n2+2n_l}.
[Ty 20

Since the ratio depends on 6, the statistic T(X) is not sufficient for 6.

Method 2: Minimal Sufficient Statistic
It is clear that there is no g(-; ) such that > Xl2 = g(>_ X;; 0). Therefore T'(X) is
not sufficient for 6.

2.9

(a) W is a function of U, U is complete.
g st E[gW)]=0 V6.
U
E[g(h(U)]=0 V0.
U
P{g(h(U)) = g(W) =0} = 1.
U
W is complete.
(b)
fx:0) =g(T(x;0)) - h(x) =gU(V(0)))-h(x)=r(V(x;0)) - h(x).

Therefore V is a sufficient statistic.

2.10

@ 0<p< %,see Table 2.1.

If E[g(X)] = 0 it means that:

p-g0)+3p-g()+(1—4p)-g(2)=0.

Table 2.1 ]l)lstrlbutlon of X, )
if0<p<gy
3p

1—4p

N = O =
S
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Table 2.2 Distribution of X, X £(x)
if0<p< % :
0 |p
1 p2
2 |1-p-—p*
Simply choose g(0) = —3g(1) and g(2) = O because E[g(X)] = O but

P{g(X) = 0} # 0. Therefore, it is not complete.
(b) 0 < p <1, see Table 2.2.
Similarly, we have:

0=g0)p+gHp*+g2)1—p—p?
= (g(1) — g2 p*+ (g(0) — g2)p +g(2) ¥pe[0,1/2].

U
g(2) =0 and therefore g(0) = g(1) =0 being the coefficients of degree 2 in p.

Then X is a complete statistic.



Chapter 3 )
Point Estimators Chock or

3.1 Theory Recap

Definition 3.1 (Point Estimators) A point estimator is any function W (X1, ...,
X,) of the sample X1, ..., X,. Every statistic is therefore a point estimator.

Definition 3.2 (Method of Moments) Let Xi,..., X,, be a sample of random
variables with probability density f(x; 61, ..., 6r). The estimators obtained with
the method of moments can be derived from a system of k equations in which the
first kK moments of the sample (m1, ..., my) are equated with the first kK moments of
the population (@1, ..., ug). Therefore, the following system must be solved with
respect to 6:

my o=p; omp=iYT X w0 =EX];
my = mpi=iYT X% un0) =E[X2];
mp =g omgc= g g X5 w(®) == E[XF].

Definition 3.3 (MLE) Let X1, ..., X,, be a sample of i.i.d. random variables with
probability density fx, (x; 01, ..., 6). The likelihood function is defined as follows:

LO:;x) =[] fx(x: 01, ..., 00
i=1
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that is, it is the density of the sample seen as a function of 6 and considering
the sample realization as known. For a given sample realization x, the maximum
likelihood estimator, or MLE, is defined as follows:

6 = argsup L(0; x);
0c®

where © is the parameter space. A method to find the MLE consists in studying
the derivative of the log-likelihood, that is, the derivative of the logarithm of the
likelihood.

Theorem 3.1 (Invariance Principle) If 6 is MLE for 6, then t 0) is MLE for T(6),
whatever T (-) is.

Definition 3.4 (MSE) The mean squared error, or MSE, of an estimator 7 for the
parameter 6 is:

Eg[(T — 6)2].

Definition 3.5 (Bias) The bias of an estimator T for a parameter 6 is the difference
between the expected value of T and the parameter 6.

Biasg(T) = Eg[T] —6.

An estimator is defined as unbiased if the bias is zero, that is, Eg[T] = 6.

We observe that the MSE can be expressed as follows:

Eg[(T — 0)%] = Varg(T) + (Bg[T] — 0)* = Varg(T) + (Biasg(T))>.

3.2 Exercises

Exercise 3.1 Let X{,..., X,, be a random sample from a uniform law on the
interval [0, 6], 6 > O.

(a) Determine an estimator of 6 using the method of moments.
(b) Is the found estimator unbiased?
(c) Is it sufficient?

Exercise 3.2 Let X{,..., X,, be a random sample from a uniform law on the
interval [a, b]. Estimate a and b using the method of moments.

Exercise 3.3 Let Xi,..., X, be a sample of size n of independent random
variables with density

fx(x;0) =0x" 01y (x); 6 > 0.
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(a) Calculate the maximum likelihood estimator 6, of 6.

(b) Determine and recognise the laws of — log Xy and of — > }_, log X.
(c) Is 6, biased?

(d) Calculate the mean squared error of én

Exercise 3.4 Let X1, ..., X, be arandom sample from U([O — l, 0+ %]), 6 e R.
Calculate the maximum likelihood estimator én of 6.

Exercise 3.5 Let X{,..., X;, be a family of independent random variables all
distributed according to an exponential law of parameter A. Each X; represents the
instant of disintegration of a nucleus of a certain radioactive element. For each fixed
t > 0let:

e Y; be the random variable that is 1 if the i-th nucleus is still alive at time ¢ and O
otherwise.
* V, be the proportion of nuclei still alive at time ¢, of the n present at time 0.

(a) Find the law of Y; and that of V,,.

(b) Verify if the Law of Large Numbers can be applied to V,, and state whether, and
in what sense, the sequence V,, converges for n — oo to a constant v. In this
case, determine the constant v and express it in terms of the average lifetime t
of the generic radioactive nucleus.

(c) Assuming to observe the sample Y1, ..., Y,, propose an estimator of T based
on this sample.
(d) Assuming instead to observe the lifetimes X1, ..., X, propose an estimator of

T based on this sample.

Exercise 3.6 Let X be a discrete random variable that can only take the values -2,
0, 2, respectively with probabilities:

1 1
P =5-0;  p0)=20; pQ)=5-0.

(a) For which 6 is the function p a density?

(b) Let Xy,..., X, be a sample of independent random variables with the same
density p. Determine the expression of the function f such that the likelihood
function is written as:

[, Xn)
20y~ () (% - 9) o

(c) Calculate the maximum likelihood estimator for 6. Is it unbiased? Is it consis-
tent?
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Exercise 3.7 Let X1, ..., X3, be a sample of 3n independent r.v. of which:
X1, ..., Xy, oflaw P(L);
Xon+1s ..., X3n of law P(21);

where A is an unknown parameter.
Determine the maximum likelihood estimator for A and calculate its variance. Is
it biased?

Exercise 3.8 Let X, ..., X,, be a random sample from a normal law N (u, 02).
Show that the maximum likelihood estimators of x and o2 are:

| « ~ 1<
A== Xi=Xy; o2 ==Y (X; — X»)%.
n “ n*
i=1 i=1
Exercise 3.9 Consider the two independent random samples, X1, ..., X,, from a
population N (i1, 02) and Yi,...,Y, from a population N(u», 02), where the

parameters 1, 12 and o2 are all unknown. Calculate the maximum likelihood
estimator for 6 = (1, na, 0'2).

Exercise 3.10 For 6 € [0, 1], let fx(x;0) = (HFI(A1 - ) "F1_y 01y(x), x € R,
be the density of a random variable X.

(a) Is X asufficient statistic? Is it a complete statistic?

(b) Is | X| a sufficient statistic? Is it a complete statistic?

(c) Iseither X or | X| a minimal sufficient statistic?
Now consider the maximum likelihood estimator 77(X) and the estimator
Tr(X) = 211y (X).

(d) Calculate bias and mean squared error of 77 and of 7>.

(e) Which estimator would you prefer between 77 and 7,7

Exercise 3.11 Consider a discrete variable X described by the statistical model
f(x;60) where 8 =0, 1, 2 (see Table 3.1).

(a) Determine the maximum likelihood estimator é\l(X 1) of 6 based on a single
observation X;.

(b) Calculate bias and mean squared error of /9\1

(c) Determine the maximum likelihood estimator é\z(X 1, Xp) of 6 based on the
sample X1, X».

Table 3.1 Density of X X 0 1 2

arying the parameter 6
varying the parameter 7(x:0) 2 2 0

feo 13 (13 13
f;2) (4 e e
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(d) Calculate bias and mean squared error of 52
(e) Given the sample x; = 0, xp = 2, how would you estimate 6?

Exercise 3.12 The coefficient of variation

o

CV=—
[l

is an index introduced by Karl Pearson to study the relative variability of a
distribution.

Suppose we have observed a sample of size n from a Normal distribution
with unknown mean and variance and we only know the number 7, of sample
observations that are greater than zero.

(a) Based solely on the information 7;,, is it possible to provide an estimate of the
coefficient of variation of the distribution?

(b) If n = 1000, for which values of Tjgop Will we estimate that the standard
deviation of the distribution is less than 1/3 of the mean?

Exercise 3.13 Let X1, ..., X, be the results of » measurements, independent and
affected by random error, of the same unknown quantity w, for which:

Xi=u-+e; €1, ..., €, 1.1.d.

In the case of error € ~ N (0, 02):

(a) Determine the law of X;.

(b) Show that the sample mean X, is the maximum likelihood estimator for .
e—2lsl /o2 )

In the case of error € ~ f(s; 02) =
(c) Determine the law of X;.
(d) Show that the median m (X1, ..., X,,) is a maximum likelihood estimator for (.

o2

Exercise 3.14 Let X, ..., X, be a random sample from:

0
fi0) = S logo @) >0,

(a) Prove that there is no moment estimator for 9.
(b) Determine the maximum likelihood estimator 6 for 6.
(c) Show that 6 is a minimal sufficient statistic.

Exercise 3.15 Let X{,..., X, be a random sample from a population with a
uniform law on the interval [0, 26], where 6 > 0.

(a) Determine the moment estimator of 6.
(b) Determine the maximum likelihood estimator of 6.
(c) Determine a minimal sufficient statistic for 6.
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Exercise 3.16 Consider the statistical model:

1
fx(xa, B) = Ee—“—“)/ﬂ Lo +00) (%), a>0, B>0.

(a) Calculate the mean (e, 8) and the variance o (e, B) of a random variable with
density fx(x; o, B).
Let now X1, ..., X, be arandom sample from the density f(x; ¢, B).

(b) Calculate the maximum likelihood estimator (o, B\,,) of (a, B) based on
X1,..., Xy

(c) Is the statistic (c,, B\n) sufficient for (o, 8)?

(d) Calculate the maximum likelihood estimator i, of  based on X1, ..., X,,.

(e) What is the mean square error of 1, ?

3.3 Solutions

31

(a) Given that E[X;] = 6/2, the estimator of 6 calculated with the method of
moments is:

Oyom = 2X,.
(b) The estimator is unbiased, in fact:

N — 0
El0pmom] = 2E[X,] =2 - 5= 6.
(c) X(») is a minimal sufficient statistic for  and since there is no function r such

that X(,) = r(2X,), then éMO M 1s not sufficient.

3.2
a+b
E[X;] = 7
b—a)? 2 4 b2 —2ab + 3a* + 3b* + 6ab
Var(X):% = E[XZ]:a + a ‘i‘lza + + 6a

1
= g(a2 + b* + ab);
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therefore:

a =2E[X] —
3E[X?] = 4(E[X])? + b® — 4bE[X] + b? + 2bE[X] —

from which we obtain:

b — 2bE[X] + (4(E[X])? — 3E[X?]) = 0.

a =E[X] - V3E[X2] - 3(E[X])2; b =E[X]+3E[X2] — 3E[X])2

From which we conclude that:

_ (X — X,)? _ (X —X,)?
a:Xn—/3Zl(’ n); b=X"+/3Z,(l n).
n n

The choice of signs is dictated by the fact thata < b.
33
(a) We calculate the likelihood and the log-likelihood:

L©;x) =[]0x o) = 0" )" T ).

i=l1 [0,1]

1(0: x) = nlog(6) + (0 — 1) > log(x;).
i=1

We derive the log-likelihood:

A s Y ot

Therefore:

E:x) _
0

Z log(x;).

QDIE

n

> log(xi)

OMLE = —
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(b)
Y =—log(X;) = Fy@)=P{-log(X;) <t} ="P{log(X;) > —1}
=P{X > e ')
t
Fx(r) = / 62~ dx = "1 (1) + Tj1 o0y (1.
0
Fy(t) =1—¢ " = —log(X;) ~ &O); - Zlog(Xk) ~T(n,6).
k=1

©

A n no
Homel =B [_Zlog(x,»)} T

where the last equality is due to the fact thatif Y ~ I'(n, 0), then E [%] =0

— n-—1

Therefore éM LE 18 biased.

(d
MSE6,) = Var©,) + (bias)>.
202
E[62] = et
(n—=10mn-2)
A n262
Var(@n) = m
Ao 02 +2)
34

n
L©;x) = HH[9—1/2,9+1/2](Xi) = Iix ) —1/2, X +1/21(0).
1

We can equally choose éMLE =Xm—1/20r éMLE = X () + 1/2, or any point of
the form Oy g = aXay—1/2) + (1 — )Xy + 1/2), with o € [0, 1].

3.5

(a)

Y; = ljx,>1 = Y; ~ Be(e ™).
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i Yi

—At

V,, as the proportion of present nuclei is , therefore nV,, ~ Bi(n, e

P{V, = k/n} = <Z> (e (1 — e My,
(b) By the Strong Law of Large Numbers:
Vo R = e = e/7;

where T = 1/A.

(c) Y, is MLE estimator of p = ¢~ /* and also T = !

~Togp" By the principle of

invariance Ty g = — @.
(d) © = 1/ therefore the MLE estimator for the mean of exponentials is X,,.
3.6

(a) Itmustbe 0 <6 < 1/2. Also note that:

1 3 lx] 1
px) = <— - 9) -o) 2k
2
()
33 Il
L0;x) = (%—9)2 .(29)1—%2,- il

therefore f(x) = %Zl |x;|. Note that % ~ Be(l — 20).
(c) Therefore (1—/70) = % and by the principle of invariance:

2n— 31Xl

é\MLE = 4n

which is unbiased. It is also consistent by the Strong Law of Large Numbers.
3.7 We calculate the likelihood, the log-likelihood and we calculate the derivative

of the latter with respect to the parameter.

e—ZnAAZ?il Xi 6_2”}‘ (2)\‘)2132211 Xi

x1!.. . x! Xon41! ... x3,!

3n
L x)= e~ it X

3n
I(h; x) o< —4ni + in log(A).
i=1
A x) Sk
—_— ==

—4
an n
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From which we conclude that:

~ 1
Var(AyrLeg) = ——= 2nA +n2)) = —
16n2
Furthermore, the MLE estimator turns out to be unbiased, in fact:
~ 1
E[Apyrel = —[2nk +n2X] = A.
4n
3.8 We write the likelihood and the log-likelihood:

1 1
L(pu,0;x) = Wﬁp{_@ Zi:(xi — )2

ey — 1 2 ! ‘ 2
I(n,0;x) = —Eloga — WZ()C, — w-.
We derive the log-likelihood to find the MLEs:
,'( i )
{— = g2 Lyt~ = B,
W ="t Z,»(xi -’

By setting the two equations of the system equal to 0, we obtain:

uMLE = Xy
52 _ LiXi—Xw)?
OMLE = n .

It can be shown that the stationary point found is a maximum.

3.9 We calculate the likelihood and the log-likelihood:

2. —
L(py, n2,075x,y) = Gnod)armi

1
X exp {—ﬁ (Z(xi — )’ + Y (i — ,u2)2> } :
m 2 1 2
logo® — -— Z(x, w1’ + Z(y, n)* |

l(,U«I»,U«Z»Uz;st) X _n+

By setting % = % =0,wegetil; = X, and [i; = Y.
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By setting % =0, we get:

ol n+m 1 1 2 2
= ;ﬁr@(% (xl'—m)+§i (yi —m2)7 ) =0.
Therefore:

s N =)+ Y (Y — )
n—+m

3.10

(a) X is a sufficient statistic by the factorisation theorem, but it is not a complete
statistic, in fact:

0 0
0=E[g(X)] = Eg(—l) + (1 -0)g(0) + Eg(l) =

—1 1
— 5(0) +6 (¥+¥ —g(0>).

Choosing g(0) = 0 and g(—1) = g(1), we have E[g(X)] = 0, therefore X is
not a complete statistic for 6.

(b) |X] is a sufficient statistic by the factorisation theorem, and it is also a complete
statistic, in fact:

0=E[g(XD]=(1-0)g(0)+06g(1) =
=g0)+ 06 (g(1) —g(0).
E[g(IXD] =0 <= g(0) =g(1) =0, thatis P(g(|X]) =0) = L.
(c) |X| is minimal sufficient, while X is not minimal sufficient because, if it were,

it should be a function of | X]|.
(d) We write the likelihood and the log-likelihood to find the MLE:

2] x|
L(@;x):(z) 1—0)lk =

Lo =
e+ =

-0 = 6=0;

SIS

So Ti(X) = |X|.
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Let’s calculate the bias of the two estimators:

E[T1(X)] = 0.
E[T,(X)] =2P{X =1} = 6.
Both are unbiased estimators for 6.
To calculate the MSE of the two estimators, it is therefore sufficient to calculate
their variance:
Var(T\ (X)) =0(1 — 0).
Var(Th(X)) = 4P{X = 1} — 6> = 6(2 — 0).
(e) Among two unbiased estimators, the one with the lower variance is preferred,
so 7.
3.11
(a) We note that: X1 € {0, 1,2} and 6 € {0, 1, 2}. We apply the definition of MLE:

argsup9€{0,1’2}{1/2, 1/3,1/4} if x; =0;
61(X1) = argsup L(0; x1) = | argsuppe(o1.2){1/2.1/3,1/4} if x1=1;

0€(0,1,2}) .
argsupge(o, 1,210, 1/3, 1/2} if xp=2.
So we get:
0 if x1=0;
(XD =10 if x =1
2 if xp=2.

(b) Calculate bias and mean squared error of é\l

2.0=0 if 6=0;
E6i]1=2-P(X; =2)=12.1/3=2/3 if 0=1;
2-12=1 if 6=2.

0-0=0 if 6=0;
Bias(@1;0) =11-2/3=1/3 if 0=1;
2-1=1 it 6=2.
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0 if 60=0;

0 if 6=0;
E[67] =4-P{X; =2} = 14/3 if 0=1;
2 if 6=2.
0-0=0 if 6=0;
Var®) = E[6}1— B> = {4/3-4/9=8/9 if 0=1;
2-1=1 if
MSE[B; 0] = Var@) + Bias@; 0))* = {1 if 6=1;

2 if 6=2.

(c) We construct Table 3.2:
We apply the definition of MLE:

0:(X1, X2) = argsup L(8; (x1,x2)) =
6€{0,1,2}

it (x1;x2) = (0; 0);
it (x1;x2) = (0; D);
it (x1;x2) = (0; 2);
it (x1;x2) = (1; D);
it (x1;x2) = (1; 2);
it (x5 x2) = (2;2).

6r(X1, X2) =

NN O NN O O

Table 3.2 Joint density of X and X, as the parameter varies

(x15 x2) (0;0) (0;1) (0;2) (1;1)
f(x1,x2;0) 1/4 172 0 1/4
fx1,x2; 1) 1/9 2/9 2/9 1/9

f(x1,x2;2) 1/16 1/8 1/4 1/16

43

argsuPee{o,Lz}{l/“a 1/9,1/16} if (x1;x2) = (0; 0);
argsupgeo,1,2)11/2,2/9,1/8} if  (x15x2) = (0; 1);
argsupy (o, 1,210, 2/9, 1/4} if (x5 x2) = (0;2);
argsuppeo.1.211/4, 1/9,1/16} if  (x15x2) = (15 1);
argsupgeqo, 1,210, 2/9, 1/4} if (3 x2) = (1;2);
argsupgeo,1,2){0, 1/9, 1/4} if  (x1;x2) = (2;2).

(2:2)

1/9
1/4
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)0 if (e x2) € {(050); (05 1); (1; D}
2 i (s x) € {(052); (15 2); (2: 2)).

(d)

2:0=0 if 6=0;
E[6y] = 2P{(X1: X2) € {(0:2): (1;2); 2: )} = {2-5/9=10/9 if 6=1;
2-3/4=3/2 if 6=2.

Bias(é\z; 0)=191-10/9=-1/9 if 6=1;
2-3/2=1/2 if 6=2.

4.0=0 if 6=0;
E[03] = 4P{(X; X2) € {(0;2); (1;2); )N = {4.5/9=20/9 if 6=1;
4.3/4=3 if 6=2.

0 if 6=0;
Var(®) = E[07] — (E[6:))* = 180/81 if 6 =1;
3/4 if 6 =2.
0 if 0=0;
MSE[B); 0] = Var(®) + (Bias@: ))* = {1 if 6=1;
1 if 6=2.
@ 6 =2.
3.12
(a) We define the following r.v.:
Yi =Iix;>01 5 Y; ~ Be(p).
n
T,=) Yi: T~ Bin(,p).
1

p=PY; = 1) = P(X; >0}:P{¥ > _S} =1-¢(-%) =9(%).
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‘We know that:

By the invariance principle of the MLE we obtain:

Eool2)
— o(B)=t
— (-t

— |¢—1(%)|—1 —cv.

()
T, T, T,
|¢>—1(—”)|—1 —CV <1/3 = ¢—1(—”) >3 = >0
n n n
T,
L > $(3) = Tigoo > 1000 - 0.9987 = 998.7.
n
3.13
@ Xi~ N(u,o?).
(b)
) — 1 i —mw?y
bl x) = l_[ (2ro?)1/2 exp{ 202 } -
. 1 (xi — w)?
- Qro2)n/2 exp{ o Z 202 }
, n 5 (xi — p)?
I(M, X) = —E 10g(27TU ) — Z T
dI(u; x) 206 — ) Do xi—np
du Z 202 o2
Therefore:
~ Xi =
UMLE = —— = X,
n
o2sl/o?
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(©)
e~ 2lx—pl/o?
fx(xip) = ———.
o
(d) show that the median m (X1, ..., X,) is a maximum likelihood estimator for (.
no—2lxi—pl/o? -2 |xi—pl/o?
e e
L(u;x) = =
(14: %) H — 5
m(xy, .., Xy) = arginfz [x; —
neR
Then it can be inferred that iy g = m(Xq, ..., X,).
3.14

(a) It is immediately proven that the theoretical mean, E[ X ], does not exist, since
/: 900 %dx diverges. Therefore, the method of moments is not applicable.
(b) We calculate L(6; x):

n

= 110,x11(6).

0
L(6;x) = 1‘[—2 0400 (¥) = =

By drawing L(6; X), it is immediately seen that the maximum is reached for
X (1), therefore Oy g = X(1)-

(c) To prove that éML £ 1s a minimal sufficient statistic, we use the Lehmann-
Scheffé theorem.
We denote T (x) = 67 g and verify that the hypotheses are respected:

=

. . JSx(x; 0)
given x and y different, ———— does not depend on 6 = T (x) = T (y).

fx(y:0)
Proof
We know that the following quantity does not depend on 8 by hypothesis:
0" g )
e [0,x(1)]
o oy
o L0.y0,1(0)

Then it must hold: Ijo,x,1(0) = [[0,y,,1(0), therefore x(1) = y(), that is
T(x)=T(y).
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Y
. . Jx(x;0)
given x and y different, T'(x) = T (y) = ————— does not depend on 6.
Ix(y: 0)
Proof
We know by hypothesis that x(;y = y(1y. Then the following ratio does not
depend on 6:

gn

= 110.x0)1(6)
on '
T I[O,y(l)](e)

Since the L-S hypotheses hold, we can say that 7'(X) is a minimal sufficient
statistic for 6.

3.15
(@)
3 X A 2
Exl =2 = 25 g0y = 2%,
n 3
(b)
L(0;x) = l_[ —l19.201(xi) = on 1_[]1 0.201(xi) = —1Ix,/2,x,1(0)-

Since L(60; x) is monotonically decreasing, it can be concluded that éM LE =
X(n)/2.

(c) From the factorisation theorem we can identify in the L(0; x), g(T(x); 0) =
GITH[X(H)/Q,X(”](Q) and h(x) = 1. Therefore T'(x) = (X(1), X(»)) is a sufficient
statistic.

To prove that it is complete we use the L-S theorem. We verify the hypotheses:

=

Jx(x;6)

———— does notdepend on 6 = T(x) = T (y).
x(y:0) P

given different x and y,

Proof
We know that the following quantity does not depend on 6 by hypothesis:

1

g_n]I[X(n)/Z,X(l)] (9)
T
77y /2.y0)1(0)
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Then it must hold: ]I[x(n)/z,x(l)](e) = H[y(n)/Z,ym](@)v thus x4,y = y@u) and
X1y =ym,ie. Tx) =T(y).

<=

fx(x; 0)

given different x andy, T(x) = T(y) =
fx(y; 0)

does not depend on 6.

Proof
We know by hypothesis that x(,) = y(,) and x(1y = y(1). Then the following
ratio does not depend on 6:

1
Q_n]I[X(,,)/Z,X(])] (9)
T .
Q_HI[[}’(n)/zs)'(l)] )

Since the hypotheses of the theorem are satisfied we can say that 7(X) is a
sufficient and complete statistic.

3.16
(a) We note that X is a shifted exponential: X = « + W, where W ~ &(1/8).

E[X] =Ela + W] =a + B.
Var(X) = Var(a + W) = o + Var(W) = o + ,32.

Let now X1, ..., X, be arandom sample from the density f(x; «, 8).

(b)

n

| 1 _ o
L(a, B; x) =HEC /P [y too) (i) = ﬁe Lxi—e)/p Iig,+00)(xX(1)) =

1
> i-ayp
= Ee 110,x1)1(@).

We evaluate « and S separately. I fix B and see that o varies as
exp{e}jo x 1 («), which is a monotonically increasing function. Therefore:

amre = Xy
To evaluate EM L we calculate and derive the log-likelihood:

>o(xi — Ot).

[ , B; = —n-1 —
(a, B5 x) n - log(B) 5



3.3 Solutions

Ol pix)  _m 2 Li—a)

p B B o

Bure=X——=X—-—.
n n

(c) The statistic (o, B\,,) is sufficient for (o, 8) by the factorisation theorem.
(d) By the principle of maximum likelihood:

(n=1

~ = X -
Mn:X_T+X(1):X+ X1).

(e)

B[] = E[X + (n - D

X(])] =a+ﬂ+nn;l(0l+§).

_ 1 2 2 —1)2 2
Var[ﬁn]=Var<X+(nn )Xu)):a :ﬂ +(n n2) (a2+%>.

MSE(fin) = Var[fia] — (E[ft,] — w)* =

=a2+,82+(n—1)2<a2+§_§)_(n;1<a+é>)2_

n n?

o+ B> (n—1)*2aB
2 — .

n n n



Chapter 4 )
Uniform Minimum Variance Unbiased Creck o
Estimators (UMVUEs)

4.1 Theory Recap

Definition 4.1 (UMVUE) An estimator 7* is said to be an unbiased estimator of
uniformly minimum variance, UMVUE, for t(0) if it satisfies Eg[T*] = 7(8) VO
and if V unbiased estimator T for t(0), it holds:

Varg(T*) < Varyg(T) vé.

Theorem 4.1 (Cramér-Rao Inequality) Let X1, ..., X, be a sample of r.v. with
density fx(x;0)andlet T(X) = T(Xq, ..., X,) be any estimator that satisfies:

d 9
— [T (X)] = / @[T(x)fx(x; 0)]dx
X

db
and
Varg(T (X)) < oo.
Then:
S

2

where I1,,(0) = E [(% fx(x; 0)) ] is called Fisher information.
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In the case where X1, ..., X, are i.id. rv., 1,(0) = nl(0).
Lemma 4.1 If fx(x; 0) satisfies:

dE 0 1 :0) | = 9 9 1 00 :0) | dx;
‘ 9[@ og fx (x; )}—/@[(% o fx (x; )) Fe(x: )} v

then:

d ? 0
E [<£fx(x; 9)) } = —Ey [@log Ix(x; 9)} :

It is important to note that the hypothesis of this Lemma is always satisfied by
densities belonging to the exponential family.

Theorem 4.2 (Rao-Blackwell) Ler W be any unbiased estimator for t(0) and let
T be a sufficient statistic for 0. We define ¢ (T) = E[W|T]. Then Ey[¢p(T)] = 7(0)
and Varg(¢(T)) < Varg(W) V0, that is, ¢(T) is a uniformly better unbiased
estimator than W for 7(0).

Theorem 4.3 Let T be a sufficient and complete statistic for 6 and let ¢ (T) be any
estimator based only on T. Then ¢ (T) is UMVUE for E[¢(T)].

Theorem 4.4 (Uniqueness of UMVUE) If W is UMVUE for t(0), then W is
unique.

4.2 Exercises

Exercise 4.1 Consider the statistical model given by the exponential laws &(v),
v > 0, (family of laws regular according to Fréchet, Cramér and Rao) and let
X1, ..., X, be a random sample drawn from a population described by such a
model.

(a) Calculate the lower limit for the variance of an unbiased estimator of E,[X] =
1/v based on the sample.

(b) Show that X, isa UMVUE for E,[X] = 1/v.

(c) Starting from the statistic min{X1, ..., X,} construct another correct estimator
for E,[X] = 1/v and calculate its mean square error.

(d) Compare the two estimators.

Exercise 4.2 Let Xi,..., X,, be a random sample from a uniform law on the
interval [0, 8], 0 > 0.

(a) Determine the maximum likelihood estimator of 6 and calculate its bias.
(b) Deduce from (a) a correct estimator for 6 and calculate its mean square error.
(c) Is the statistic found in (b) a UMVUE for 6?
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Table 4.1 Estimators for the

parameters . o and o Parameter | UMVUE

o 1 n
Xpn=— X
m - ;
1 < -
2 2 _ . 2
o Si=-— ,;(Xl X,)
n—1T[(n—-1)/2]
o — S,
) I'ln/2]
Exercise 4.3 Let X1, ..., X,, be a random sample from a normal law N (u, o2)

with unknown parameters. Show that the UMVUEs for the following parameters
are precisely the estimators indicated in Table 4.1.

Exercise 4.4 Given arandom sample X1, ..., X, (n > 1) drawn from a population
B(p), p € [0, 1], find the UMVUE for p and p>.

Exercise 4.5 Given a random sample X1, ..., X,, from a distribution N(u, 1), we

want to estimate 7(p) = p?.

(a) Find T, the maximum likelihood estimator for 2.

(b) Find T,,, the uniformly minimum variance unbiased estimator for 2.

(¢) Calculate the variance of T,. (It may be useful to remember that the fourth
moment of a random variable Y ~ N(m, s2) is E[Y*] = m* + 6m2s? + 3s%)

(d) Show that the variance of T, is strictly greater than the Cramér—Rao limit.

Exercise 4.6 Given a random sample X1, ..., X,, n > 2, drawn from a population
N(u, 02), find the estimator of o2 of the form «S? with minimum mean square
error.

Exercise 4.7 Given X ~ P(1), A > 0, consider the estimator of t(A) = Py (X =
0) = e~* defined by T = I{o}(X).

(a) Show that T is the UMVUE of e .
(b) Show that the mean square error of 7' does not reach the lower limit of Cram’er-
Rao.

Exercise 4.8 Let Xi,..., X, be a sample of rank n of independent random
variables with density:

Fx(x;0) =60x9" 0.1y (x), 6 > 0.

(a) Find the maximum likelihood estimator én of 6 and calculate its bias.

(b) Deduce from (a) a corrected estimator for # and calculate its mean square error.
(c) Does it satisfy the Cramér-Rao inequality?

(d) Is it the UMVUE?
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Exercise 4.9 Let (X1, ..., X,) be a random sample drawn from a distribution with
density:

f:0)=004+x)" "0 )(x), xeR, 6>0.

(a) In the case where 6 > 1, estimate 0 with the method of moments.

(b) Find, if they exist, the maximum likelihood estimators of # and of 1/6.

(c) Find, if it exists, a sufficient and complete statistic and determine its distribution.

(d) Find, if they exist, the UMVUE of 8 and of 1/6.

(e) Determine the Cramér-Rao lower limit for unbiased estimators of 1/6.
Compare this quantity with the mean square error of the UMVUE for 1/6.

Exercise 4.10 Let (X1, ..., X;;) be a random sample drawn from a Poisson distri-
bution with parameter A > 0. Let (1) = ¢~ *(1 4 1).

(a) Find a maximum likelihood estimator for t(1).
(b) Find an unbiased estimator of t(}).
(c) Find the UMVUE of t(1).

Exercise 4.11 Let X1, ..., X,, be a random sample from a I'(2, 1/0) with 6 > O.
Therefore, we have:

F:0) =07 xe™ I o0 ().

(a) Determine a sufficient and complete statistic for 6.

(b) Determine the maximum likelihood estimator 6, for 0.

(c) Show that 6, coincides with the estimator §, obtained by the method of
moments.

(d) What is the law of 0,7

(e) Is 6, biased?

() Is 6, UMVUE?

(g) Determine the maximum likelihood estimator ’a\,% for the variance of X.

Exercise 4.12 Let X be a random variable with values in (0, co) such that log(X)
has a N (u, 1) distribution with ¢ as an unknown real parameter. In other words, X
has a log-normal distribution. For n > 1, let Xy, ..., X,, be a random sample from
the distribution of X.

(a) Calculate the mean 6 of X.

(b) Determine the maximum likelihood estimator 7,, = T,,(X1, ..., X,) for 6.
(c) Calculate the bias of 7,, for estimating 6.

(d) Starting from T7,,, determine an estimator W,, that is UMVUE for 6.

(e) Calculate the Fisher information 7 (6).
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N.B. It may be helpful to remember the moment generating function of a N (i, 0-2):

2,2
m(t) = exp(ut + T) vt e R.

Exercise 4.13 Let X1,..., X;, be a random sample of size n > 3 drawn from a
Bernoulli population with parameter p € [0, 1]. Let T be the product of the first
three observations, that is

T = X1 X2 X3.

(a) Show that T is a correct estimator of p3.

(b) Calculate the mean square error of 7' and compare it with the Cramér-Rao lower
bound for correct estimators of p> based on a sample of size n > 3.

(c) Starting from 7, find the UMVUE for p> based on a sample of size n > 3.

Exercise 4.14 Given a random sample X1, ..., X,, from a Bernoulli distribution
B(p), consider the statistic:

1, ifX;=1, X, =0;
T(Xy,...,Xy) = )
0, otherwise.
(a) Verify that T (X1, ..., X;) is an unbiased estimator of the variance o2 of the
distribution.
(b) Do you find the estimates provided by T(X7y, ..., X,) interesting?
(c) Starting from T (X1, ..., X;), construct the UMVUE V (X1, ..., X}, for o2,

4.3 Solutions

4.1

(a) Let T be a generic unbiased estimator for 1/v. We calculate the Cramér-Rao
bound. We need to calculate I,,(v) = nl{(v).

9 2
Ii(v) =E|:(a—10gfx(x;v)> i| =
v
2
:E|:<3(logv—vX)> }:
av

=E[(1/v — X)?] = Var(X) = 1/v2.
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The Cramér-Rao inequality states that:

Eam? (=7 1

— )%
1,(v) 5 nv?’

Var(T) >

(b) X, is an unbiased estimator of E[X] = 1
Furthermore, Var(X,) = 1/(mv?) which reaches the Cramér-Rao bound,

therefore X, is UMVUE for E[X] = 1/v.
(c) We define the following random variable W:
W = min{Xy, ..., X,;}.
We calculate the law of W:
PW>t}=CX; >t)'=e """ = W ~Env).
Therefore:

E[W] = —

so nW is an unbiased estimator for 1/v.

1 1
MSEnW) = Var(nW) = n? - =—.
v
(d)
1 1 _
MSEmW) = — > — = MSE(X,) V.
v nv

This implies that X, is the best estimator.
4.2

(@)
1
L:x) = H ~Tjo,01(x;) = ennﬂ[oe](xz = 2210 4001 ©)-

Omre = Xn)-

We calculate its distribution and bias:

t\" n o,
Fx,, () = g = fx(n)(t)=9—nt Tj0.01(2).



4.3 Solutions 57

0

A n
E[0 = —"dr = 0.
[OmLE] o .
~ 1
Bias = E[0 —0 =— 0.
ias [OmLE] T

(b) Hence:

is an unbiased estimator for 6.

1\ » 1\?
MSEKi) eMLE} - (’” ) Var(Xe) =
n n

. n-+1 2 n g — 02
_< n ) T+ 12 +2)  nm+2)

(c) (”nil Oyre is a minimal and complete sufficient statistic (see Chap. 2,
Exercise 2.4), therefore it is UMVUE for 6.

4.3
()

E[X,] = p.
X, is an unbiased estimator for x. And being a function of a complete and
minimal sufficient statistic, it is UMVUE of .

(b)

n—

1S2 2( =T n—1 1
~xm-1)=T—1,=|.
o2 n X 2 2

-1 -1
]E[n 5 S,%:| :”_]E[Sg]:n_1 — E[S$?] =02

o O'2

S2 is an unbiased estimator for 2. And being a function of a complete and
minimal sufficient statistic, it is UMVUE of 6.
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(©
n—1g n—1 T s it 1
E TS” = =" E| S, :/0 terT e 7(1/2) 2 F(%)dt:

/+oot'51 1212y — L4

= e =
0 rsh

_ F(%) 1 +oo 11 —t)2 a1 _

_F(%)(I/Z) 2/0 t27 e (1/2)2I‘(%)dt_

_ r'(3)
resh

28 I
o r¢s)

2

o T3
E[S,| = 2
[ } V=1 r(%>f

Therefore:

fn=Tresh
n
NG
is unbiased for o. And being a function of a complete and minimal sufficient
statistic, it is UMVUE of o.

4.4 X, is an unbiased estimator for p and is a minimal and complete sufficient
statistic for p and therefore is UMVUE for p.

— 1— 1
E[(Xn)2]=¥+p2=§+p2(l—;>.

Hence:

is an unbiased estimator for p? and a function of X,,. Therefore, T is UMV UE for

P>
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4.5
(a) X, is MLE for . Therefore, by the invariance principle 7,, = YZ is MLE for
2
.

()
-2 1 ) 1
E[Xn]=_+l'b2 = TnZXn__
n n
is UMVUE for u2.
(©
_ _ 2
Var(@) = Var(Xo) = E[X.] — (]E[Xﬁ]) -
2 2
3 1 ou? 4 2
=,u4+6u—+—2—u4——2—L=—u2+—2.
n n n n n n

To calculate the variance of the estimator we have taken into account that: X,, ~
N(w, 1/n).
(d

3 2 3
L =E, [(M log fx (x; u)) } =E, [(a[—(xu)z/z])] =E[(X - w?l=1.

So the Cramér-Rao limit is 4nL2 and the following inequality holds:

1 2 2
4 4 2
T )” = . —u? 4+ — = Var(t,) vn.
n—1 n n n

4.6

Xi,..., Xy ~ N(u,02).

MSE(@S?) = Var(@S?) + (]E[aSz] — 02)2 =

20 2 202
= o? Gl—}—((oz—l)oz) =04( a1+a2+1—2a>.

n —

8[04<%+a2+1—2a)] )
5 :2a< 1—1—1)—250.
a n—
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n—1
o < .
“n+1
So M SE(«S?) is minimum for T = %Sz.
4.7
(a)

() =e’; T =T (X); T ~ Be(e™).
7(A) is unbiased.
E[T|X]=T = T is UMVUE for e ™.
(b)

MSE(x) = Var(z) = e *(1 —e™).

) 2 9 2
L) =E, [<ﬁlogfx(x; A)) } =E, [(a[—wxmgx]) } =
X\2 1 1

The Cramér-Rao limit is:

(T'W)?  (—e)?
n/x  1/x

re

So we can conclude that:
etl—eM>re? = (l-eMH>r? & (=1 >

VYA > 0 MSE(t())) is greater than the Cramér-Rao limit.
4.8

(a)

L% = [6x/ " Tan e =6"([ =) [[Lon.

10:%) = nlog(®) + (0 — 1) Y _log(x) + ) _loglio,1)(x:).
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dl(8;x) A n
—— =n/0 1 i)=20 0 =—
70 n/0+ Z og(x;) = OMLE S log
To calculate its bias, I investigate the distribution of ¥; = —logX;.

P{Y; =y} =P{—log Xi = y} = P{X; Z exp(—y)} = 1 = P{X; < exp(—y)} =

-y —y

€ e
=1 —/ 0x’ M) dx =1—x° . =1—e.
0

So Fy(y;0) = (1 — e_gy)]l[o,+oo] (y). We recognise the exponential distribu-
tion, ¥; = —log(X;) ~ &(0). Due to the link between exponential and gamma,
we cansay: ¥, = — > log X; ~ I'(n, 0).

E[éMLE] = IE[— ﬁ] =nE[— Zl(l)gx,'] =nE[— Yin]

So we calculate:

/+oo 1 Gnyn—le—Qy Cn—1) 400 en—lyn—2e—0y
o y T I'(n) 0 F(n—1)
Pa-D, (=2t 6

T(n) n—D" -1

&
—
|
=
[
Il

SoE[fyre]l = 524

(n

5-
(b)

n—1ax _ n—1)
- Ylog(Xi)'

T is unbiased for 6.

92
(n—-2)

MSE(T) = Var(T) =

(c) We calculate 1,,(0) = nl ().

2 2
L(6)=E |:<a%(log9 + (6 — l)logX)) ] =K |:(é +10gX> :|

1
= Var(—logX) = 7
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Hence, the Cramér-Rao bound is:

62 62
— <
n (n—2)

= Var(T).

(d) Given that ) log X; is a minimal and complete sufficient statistic for 0, T is
UMVUE for 6.

4.9
(@)
X, Xy~ fx(x;0) =01 +x) " oy(x)  xeR, 6>0.
Let 0 > 1, we apply the method of moments:

+oo x+1=t
Ey [X]:/ x0(1 +x)" 1D gy "=
0

+00 +o00 +00
= / 0@t — 1~ 1+ gr = 0/ =9 dr +0/ U+ g4 =
1 1 1
—6+1 o0 -+
t t
-0 —o|— -
—0+1], —0 |,

o)

_ 6 _-lte-6 1

1-6 1-6 1-6

_ A 1
Xp=— = 9M0M=1+Y_-

n

(b) We study the likelihood of the sample:

—(1+6)
L#;x) =0" <H(l +x,~)) .

1

1(0:x) =nlogh — (1+6) Y _log(l +x,).

1
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n

al(0; x) _n 0 < .
— X log(1 + x;)

——Zlog(l—i—xi)zO —
20 % p

Then:

n

brp = —
MEE = S log(1 + X))

and by the invariance principle:

(’f) _ Ylog(l+ X))
0/ mLE n
(©
Fx(x;0) = 0 exp{—(1 + ) log(1 + x)}Ifo 100 (x)
belongs to the exponential family, therefore 7 = _; log(1 + X;) is sufficient
by the factorisation criterion.
Moreover, given that:

w:l > —(14+6) w:RT — (=00, 1) D openinR;

T is also complete.
Y =log(1 + X). We calculate the law of Y:

Fy(t) =P{Y <t} =Pllog(1+ X) <t} =P{(1+X) <} =P{X < -1} =

—1
- / 01 +x)~ 10 dx
0

! 79 g’
- /e o119 qr = o =1-—e".
1 Y h

then Y ~ &(9), therefore T = ), log(1 + X;) ~ I'(n, 9).
(d) We observe:

T 1 1 T
IE[;] = ;ZE[log(l—i-Xi)] = = — s UMVUE for 1/6.
o [ O Pk = T isUMVUEforg
)" n-1 = Slog(l + X;) . o
The equality E [%] = n’%l is obtained through the properties of the gamma

(see Chap. 3, Exercise 3.3).
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(e) We calculate the Cramér-Rao lower bound, keeping in mind that 7,,(#) =

-2 [(2)]-+[)]

1 2 &0 1
—E, [(5 — log(1 +X)> } — Var(y) "2 o

The Cramér-Rao bound is therefore:

@©)? (—? 1

/0>~ ank T et

Let’s calculate the M SE (f).

MSE(T) = Var <M> — :

n no?’

Therefore, T reaches the Cramér-Rao limit.

4.10
(a)

T(A) = e M1+ ).

wmLE = X
Therefore, by the principle of invariance:
TOImLE = e X (1+X,).
(b)
e H(14+2) =P{X < 1}.

If we introduce the r.v. ¥; = Ijo,17(X;), ¥; ~ Be(e™*(1 + 1)), we observe that:

— 1 &
Y,=— Z o, 11(X:) is an unbiased estimator for 7 (1).
n
i=1
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(c) Let’s calculate the UMVUE for 7(A):

T =E, [Yn

E, |:Y1

:]PJ)L

|
:]P’AHX]:O
{

n
> X =k} =
i=1
n
ZX,':]{} ZIP’)L{Xl <1
i=1
n
in =k} + Py {xl =1
i=1

Y=1

n
>x=

i=1

k

65

}z

i=1

Po{X1 =027 Xi =k} Pu{Xi=1,2",Xi =k}

P {0 Xi =k} Py {X i) Xi =k}

_ Py {X1 :O}PK{Z?ZZXI' Zk} + P, {X1 =1}y, {Z;’:zxi =k— 1}

Py {200 Xi = k]

k k—1
_ (e—ke—(n—l)k((n _k'l)k) 4 rete-t-nr (=DM > k!

k= 1)!

(n—l)k (n — D <n—1)k ( k
= th— = 1+ —
n n n n—1

Then:

is UMVUE for t(}).
4.11
(a)

1
Xty X, ~T(2,1/6) 6 >0, = fx(x;9)=<

)

0

’ e i (n)\)k =

2
) xe_x/g]l[o’+oo) (x).
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fx(x; 0) belongs to the exponential family, therefore Y 7_, X; is a sufficient
statistic. Since w : Rt — (—o00, 0) contains an open set of R, Z,’-':l X;isa
sufficient and complete statistic, therefore also minimal.

(b) Let’s calculate the likelihood:

I _rx
LO;x0) = o [ Trie™ 7 [ [T o0 (60,
i=1 i

X.
1(0; x) x —2nlogh — %.
UOxX) XXy g 2N
20 0 02 2n
A . Yn
Therefore, Oy g = 5
(c) Let’s calculate the mean of X:
1 A X,
[X] 7 = mom = —

(d) Given that:

~ X;
X;~TQ2.1/0) = > X;~T@n 1/0) = 6,= LXi I'(2n, 2n/6).
2n
(e) Given that E [én] =0, then én is an unbiased estimator for 6.

) én is UMVUE as it is an unbiased estimator and a function of a sufficient and
complete statistic.

()
=2 =2
X X
Var(X;) = 26° =  Gihip= 27" = 7

by the invariance principle.
4.12
()

0 = E[X] = E[e'] = my(1) = e*t1/2,
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(b)

fx(x; )—Llex {—1(10 x — )2}]1 (x)

x(X; () = \/Ex p ) g M [0,400) (X).

L(u; x) = n )n/z <1_[xz> eXP{——Z(Ing, )2}1_[]1[0,+oo>(Xi).

(s x) o = Z(Ingi — W

al(“’ *) _ 2 Z(log xXi —

1 .
= (ogxj) —npu >0 o 2loexi,
- n
By the invariance principle of MLEs:
log X;
T, —9MLE—€XP{2 Z 2 }
n
©)
~ log X;
E[0mre]l =E [GXP{Z + 2 ng ” =

. 1 + 1 " 1 n 1 .
=exp) 5 (| exp Py =expysrl\expynt o) =
n 1 1
=ex —texpy—r -
U Y R P
(d) The UMVUE W, is simply obtained by correcting the estimator 7,:

W, =e /O,

Indeed, by the Lehmann-Scheffé theorem, W, is a function of a sufficient and
complete statistic for 6, so it is the unique UMVUE of 6.
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() Let Y = logX ~ N(u, 1). The definition of /(6) for an i.i.d. sample is as
follows:

d log fy(y))z].

TR [

. 1 1 5
fr(y) = Eexp{—z(y -t

1 1
log fy (logx) = —5 log(2m) — 5(y = w? =

) ) 1( 1 0+1)2
=——log@2n) — -(y—1lo =)°.
2 0% VT Rv Ty

dlog fr(y) 1

1
= —(y —logh + -).
29 Q(y og +2)

160)=n- ]E[(;—Z(Y “log6 + %)2] —n. (%E[(Y “logf + %)2] =
_—_ QLZIE[(Y - M)z] - %Var(Y) = %.
4.13
(@)
X1,...,X, ~ Be(p); T =2X1X2X3; T ~ Be(p>).
E[T] = p°.
(b) We calculate the MSE(T):
MSE(T) = Var(T) = p*(1 = p*) = p>(1 = p)(1 + p + p°).

We calculate the Cramér-Rao limit:

a( : 2
Li(p) =E, |:< (Og];);(x p))) :|

[(aoc log p + (1 — x) log(1 — p)))z]
= Ep =

ap
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x  1-x)\? (x — px — p+ px)?
8 [(p 1_p) } ”[ (p(1 — p))? ]

3 [ (x — p)? }_ 1
P Lpa=pn2] pl—p)

The Cramér-Rao limit is therefore:

Gp? _9ptp—p) 99’0 —p)

1
_ n n
npa=p

9
MSE(T) = p*(1 - p*) = p>(0 = p)(1 + p + p?) > ;psa -p)
A+p+pH> (2—1);72 9/n < 3).

(c) Iknow that Zi X; is a sufficient and complete statistic for p.
T = X1 X»X3 is correct for p3.
Then E[T| ¥, X, is UMVUE for p°.

1P - pyrk

p(
E[T‘Xi:xi — K] =IP{T - 1‘;&- =k} ST T

=3k kk—1)(k—2)
T k=3 nn—Dm-=2)

Then the UMVUE estimator is defined as follows:

{o if YX; <2
YXOCXi-DEXi-Y) . )
T E) if Y X; > 2.

4.14
(a)

E[T]=P{X1 =1, X =0} = p(1 - p).

(b) No, since Var(T) and therefore MSE(T) do not depend on n.
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(c) T exploit the Lehmann-Scheffé theorem, considering that Y X; is a sufficient
and complete statistic for p:

V(Xi,...,Xn) =E[T|ZX,- =kl=1-P{X; =1, X2=0|in =k} =
O PX; =1, X=0Y4X;=k—1}
B P{} 1 X; =k} B
_p(=p)(T) P = pyr
(Z)Pk(l _ p)nfk

_ () _ k=i
) nin—1)

Therefore:

Y Xin—-Y X)) nX(1-X)

V(X1,..., X») pym— pa




Chapter 5 ®
Likelihood Ratio Test Chock or

5.1 Theory Recap

Definition 5.1 (Errors in Hypothesis Testing) Consider the following hypothesis
test:

Hy:0 € 0 Vs Hy : 0 € O,

We then define:

* Type I error: Hy is true, i.e. 0 € ©g, and we decide to reject Hp.
* Type Il error: Hy is false, i.e. 0 € OF, and we decide to accept H.

See Table 5.1.
We define the Rejection Region, R. Then:

probability of committing Type I error if 6 € Oo;
Po{X € R} =
1 — probability of committing Type Il error if 6 € @

Definition 5.2 (Power of the Test) The power function of a hypothesis test with
rejection region R is a function of 6 defined as follows:

B(0) =Fo{X € R}.

Definition 5.3 (Size of the Test) The size « of a test with power function () is
defined as follows:

sup B(0) = a;
0e®
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Table 5.1 Errors in

. . Decision
hypothesis testing Accept Ho Reject Ho
Truth | Hy | Correct Type I error

H; | Type Il error | Correct

where o € [0, 1].

Definition 5.4 (Level of the Test) The level « of a test with power function 8(9)
is defined as follows:

sup B(0) < a;
96@0

where o € [0, 1].
Definition 5.5 (Unbiased Test) A test with power function §(6) is unbiased if:
B©O) > BO" Vo e®, 6" €0y.
Definition 5.6 (Likelihood Ratio Test, LRT) Consider the following test:
Hy:0 € O Vs Hi : 0 € 6.

The test statistic based on the likelihood ratio is defined as follows:

sup L(9; x)
B
sup L(0; x)°
5)

AMx) =

The likelihood ratio test, LRT, is any test whose rejection region has the following
form {x : A(x) < ¢}, where c € (0, 1).

5.2 Exercises

Exercise 5.1 Given a random sample Xi,..., X5 from a law B(p), with p
unknown and 0 < p < 1, we want to test the null hypothesis Hy : p = 1/2
against the alternative hypothesis H; : p # 1/2. We intend to use a critical region
of the type
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(a) Find the values of ¢ that give a test of size o« = 10%.
(b) Find the values of c that give a test of level o = 10%.

Exercise 5.2 A sample of size 1 is extracted from a population P(A). To verify
Ho : & = 1 against H; : A = 2, consider the critical region R = {x > 3}. Find the
probabilities of Type I and Type II errors and the power of the test against A = 2.

Exercise 5.3 Consider the statistical model given by the exponential laws &E(v),
v > 0, and let X1, ..., X, be arandom sample drawn from a population described
by this model. Find the tests of size o based on the likelihood ratio for:

(a) v = v against v # vy.
(b) v < g against v > vy.
Exercise 5.4 Given X ~ Bi(n, p), with n known and p unknown in [0, 1]:

(a) Find a level « test based on the likelihood ratio for Hy : p < po against Hj :
P = po-

(b) Explicitly write the rejection region in the case n = 5, pgp = 0.3, « = 0.03.

Exercise 5.5 Given a random sample X1, ..., X,, n > 2, drawn from a population

N (1, 0?) with  and o both unknown, find the tests based on the likelihood ratio

for Hy : 0 = og against Hj : o # 0yp.

Exercise 5.6 Let X{,...,X, be a random sample from a uniform law on
{1,..., N}, where N € N. Find tests based on the likelihood ratio, also determining
the level «, for:

(a) N < Ng against N > Np.
(b) N = Ny against N # Np.

Exercise 5.7 Let Xi,..., X,, be a random sample from a uniform law on the
interval [0, 6], & > 0. Find the tests based on the likelihood ratio, also determining
the level «, for:

(a) 8 < 6y against 6 > 6,

(b) 6 = 6y against 8 # 6.

(c) In the case 6y = 1, find the minimum sample size n for which the test of size
a =5% found in (b) has a power of at least 0.8 against 6 = 3/2.

Exercise 5.8 Let X be a sample of unit size from a distribution with density:

2
f(x;0) = 9—2(9 = x)1(0,6)(x)
with 6 € (0, 0o0). Consider the hypothesis test:

Hy:60=1 vs. H :0>1.
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(a) Let dp be the test with critical region:
Ry={X>1}.

Calculate its level and its power function.
(b) Repeat the reasoning in the previous point in the case:

Hy:6<1 vs. H{:0>1.
Exercise 5.9 Let X1, ..., X,, be a random sample from

0
fx(x;0) = ) Iip, 400) (), 6 > 0.

(a) Determine the critical region of the size « test based on the likelihood ratio for:
Hy:0<1 'S H:0 > 1.

(b) Calculate the power function of the test found in (a) and draw its graph.
(c) How large must n be if the test found in (a) of size @ = 0.04 is to have power 1
against 6 = 3?

Exercise 5.10 Let Xy,..., X, be a random sample from a Normal population
(6, o'2). Consider the test:

Hy:60 <6 VS Hi:0 > 6.

(a) Assuming 0% is known, show that the test for which Hy is rejected if

X > 6o —|—Z]_O”/02/n

has size «. Also show that this test is equivalent to the one obtained from the
likelihood ratios.
(b) Assuming o2 is unknown, show that the test that rejects H if

X > 60 + ta—1,1—ay/ S?/n

has size «. Also show that this test is equivalent to the one obtained from the
likelihood ratios.



5.3 Solutions 75

5.3 Solutions

5.1
(a)

We know that, under Hy, Y X; ~ Bin(5, 1/2). We define k = (% + c) -5 and

k= (% - c) - 5 and investigate how these values vary with ¢ (c € [0, 1]). We

immediately observe that 2.5 <k <7.5and — 2.5 < k < 2.5. For a complete
study, see Table 5.2.
In Table 5.3 the possible values of « are reported. We immediately observe
that the test never reaches a size of 10%.
(b) From Table 5.3 it is immediately clear that to have a test of level @ = 10%, we
must choose ¢ > 3/10.

5.2

R={x:X>3}.

P{Typelerror} =P;_1{X >3} =1—-P,_1 {X <3} =

11 16 8
:1—e_l<1+1+7+7)=1—e_l<—>:1——20.019.

2 6 6 3e
Table 5.2 Possible values of K c i
k, dk =
can 25<k<3 0<c<1/10 |2<k<25
3<k<4 [1/10<c¢<3/10 [1<k<2
4<k<5 |3/10<c<1/2 |0<k<l
k>5 12<c<1 k>0
Table 5.3 Possible values of ¢ and corresponding values of P{x € R}
c P%{in>k} P%{in<k} Total
0<c<1/10 12 12 1
1/10 < ¢ <3/10 6/32 6/32 3/8=0.375
3/10<c<1/2 1/32 1/32 1/16 = 0.0625

c>1)2 0 0 0
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P {Type Il error} = P {X <3} =

4 8 19
-2 -2
= 1 2 — — = —_— =086
e < +2+ > + 6) e ( 3 )

The power against . =2is 1 — Py—» {X > 3} = 0.14.
53
(a)

Hy:v=uy Vs Hy v # .

We calculate L(v; x) and apply the LRT:

Lv;x)=V" exp{ - in} l_[]l[o,+oo](xi).

Ax) = L(vg; x) _ V(’)l €Xp { — Vo in} [1 T0,+001 (xi)
iu%L(v; X)  supv”exp { —v Zx,-} [T50, 4001 (xi)
= v>0

The sup of the denominator corresponds to the L (v; x) evaluated in correspon-
dence with Dy g = 1/X,,.

v €Xp { — g Zx,-} [ 10, +00) (xi)
Ax) = =

(%)n xp [ - (YLH) in} [ 1110, +001 (i)

J— n
= (voX,,) exp [n — 1 x,-} =
n

= (vofn exp {1 — vofn}) .

We then define the critical region as: R = {x : A(x) < c} and c € [0, 1]. In
extreme cases, we find trivial results:

¢c=0 = R=0 = neverreject — P{Type Il error} = 1.
¢c=1 = R=R" — alwaysreject — P{Type Lerror}=1.
We then focus on ¢ € (0, 1).
J— R n
R = {x : (voXn exp{l — voXn}) < c} =

= {x : vofnexp{l —vofn} <cl/n =k}.
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—
-

a(t)
0.6

0.4

0.2

t

Fig. 5.1 Representation of A(x), where g(¢) = ¢-(1 —e') and the dashed horizontal line represents
k. The maximum of g(¢) is 1 and is reached at = 1 (the maximum is identified with a cross)

Refer to Fig. 5.1, where t = Vo X . We can say that: R = {x VX, < f]}U{x :

VX, > t_z}. To define #; and 7, we set the test level to o:
a =P, {Type Lerror} = Py {x € R} = Py {voX, < 11} + Py {vo X, > B2}
We study the distribution of Vo X
Xi ~ &) =T(1,v9) => > X; ~T(n,v0) => wX, ~(n.n).

Then, a possible choice is given by: fj = yu/2(n, n) and 1o = y1_g/2(n, ).

(b)

Hpy:v <y VS Hy:v > .
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We carry out a procedure similar to that of point (a).

sup L(vg; x) sup V" exp{ -V Zx,»}

O<v=<yy O<v=<yy
AMx) = - =
sup L(v; x) supv"exp{—vai}
v>0 >0
sup v"exp[—va,-}
O<v<yg

() e |- ()25}

X)) SPLTA\R )&

We study the derivative of the numerator to see where (and if) the sup is
reached:

d n
av exp{ —vai} >0
vn*] CXP{ —vle'} (l’l—vle') >0
v<1/X,.
The numerator has a maximum at Dy g = 1 /7,1.

Therefore, we need to distinguish two cases, based on whether Dy p = 1/X,
falls within the interval (0, vg]:

(&) ool -(e)ze] | i w1/
_ ﬁ) in}

} (onn exp {1 — vOY,,Dn, if vy <1/X,.

—_ —_ n —_
U {x : (voX,, exp{l — voX,,D <c, VX, < l}
=@U{x:v0Ynexp[1—v0Yn}§k, UOY,,<1]=

= {x VX, < t_l}.
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X, has a I'(n, nv) distribution, so vX, ~ I'(n, n) and:
_ — Vo - v
a = sup P{voantl}z sup ]P’{vX,,f—tl}szo{voX,,f—tl}.
O<v<wvy O<v<vp 0] 0]

The last equality is due to the fact that the sup is reached for v = vy. Then
wh = ya(n, n).
vy

54

(a) We calculate L(p; x) and apply the LRT:

n k n—x
L(p;x) = (x)p (I—=p".

sup L(p;x) sup (N)p*d—p)*

a(x) = 2=PERO _ 0=p=po
(x) = s L) Drr——
up L(p;x sup (7)p*(1 = p)
pel0,1] pel0,1]

The sup of the denominator corresponds to L(p; x) evaluated at py;r g = x/n
(see Fig.5.2).

1, ifx/n < po <1

(Lo yx (PUpyn=x - if O < py < x/n.

0<p=po

(5) 0=

sup p*(1—p)"™*
Ax) = = {

R:{x:lfc, x/nfpofl}

U {x : (n.pO)x(n(l —P0)>n—x <c, 0<py< x/n} _

X n—x
:QU{X :xlog(n .xp0>
—i—(n—x)log(%) <loge, 0<po <x/n} =

= {x :xlog(n- pg) — xlogx + (n — x)log [n(1 — po)]

—(m—x)log(n —x) <loge, 0=<py< x/n}.
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1e-03

pi(1-p)™

0e+00 2e-04 4e-04 6e-04 8e-04

p

Fig. 5.2 Representation of L(p; x). The maximum of L(p; x) is reached for p = = (in this case
0.5, since we arbitrarily chose x = 5 and n = 10)

We try to express in function of x. We therefore study the derivative of f(x) =
xlog (n- pg) — xlogx + (n — x) log [n(1 — pp)] — (n — x) log (n — x).

f'(x) =log(n - po) —log(x) — 1 —log [n(1 — po)]l +log(n —x) + 1 =
. n- po n—xy
= log (n(l—po))+log( X ) -

=108 (125,) 1o () =

Po n—x)
1—po x

= og<@n_x)§0 forpogf.
x 1—po n

= log (
So we conclude that:
R = {x x> E].

That is, if we record a high number of successes, we reject Hp.
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To make explicit ¢, requiring that the test has level a:

a= sup P{X>c}= sup 1—-P{X <}
0=<p=po 0<p=<po

c—1
= sup 1Y (Z)pxu —p

0<p=<po x=0

It can be shown that the sup is realised for p = po and consequently calculate
numerically c.

(b)
5
0

5
1

=0 = 0.3°1-0.3)079 =1,

0.3'(1 —0.3)07D = 0.8319.

Y
1
—_

2

9}

0.33(1 —0.3)07¥ = 0.1631.

o
I
w

(9}
Il
S
AN TN TN TN N

1N

5
4

5
5

4 0.3*(1 — 0.3)0™ = 0.0308.

l

5)0.32(1 —0.3)%72 = 0.3087.

¢

5 = < )0.35(1 —0.3)%79 = 0.0024.

The test never reaches size « = 0.03, but level @ = 0.03 yes: R = {x > 4}.

5.5 Let’s calculate the LRT statistic, knowing that Sg is MLE for o2:

(Znoo) 2 exp{ 77 Do (xi —Y)z}
Alx) = % =

(ZnSg)_% exp {—# Yoixi — Y)2}
0

2\ 2 T2
=<S_g) exp{_}(Zi(x,Q %) _n)}:
o) 2 e
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82
‘We obtain as rejection region (or critical region) R:
52 53
R={A§c}<:>{—gexp{1——}<f k}
0 %
2
Lett = j—% We therefore need to study the function g(t) = texp(l — ¢) (see
0
Fig.5.1).

g (t) =exp{l —t} —texp{l —t} =exp{l —t}(1 —1);

therefore g(¢) is monotonically increasing in [0, 1] and monotonically decreasing in

[1, +00).

2
Given that under Hy: —‘; = Tls_2 ~ % 2(n — 1), we can write R as:
% 9

52 sz,

R = (n—l)— <Xa/2(”_1) (n—l)—2 >X1_a/2(”_1) .
0 90

5.6

(a) N < Ng against N > Np.

n

1 1
L(N;x) = l_[ ~Tu, vy (xi) = — Iy, +00} (V).
: N N

sup L(N;x) SUp 3 L 400} (V) .
Ax) = N<Np _ N=No _ 0, if x() > No;
sup  L(N;x) Sup 3 L o0} (V) 1, if xp) < No.
Nefl,+00) Nefl,+00)

We set up the R, focusing on ¢ € (0, 1).
R:{x:lfc, X(n)SN()}U{XZOSC, x(n)>N0}=

=gy ixm) > N()}.
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We choose a R of level a:

o = sup IP’[X(”) > No] =0.

N<Ny
(b) N = Ny against N # Ny.
Sup L(Nv x) Sup %H{x(,l),-i-oo} (N)
N=Ny N=Ny
Ax) = = i -
sup  L(N;x) sup i lixg,).+o0) (V)
Nefl,+00) Nefl,+00)
_ o, if x() > No;
(xX@)/No)",  if x(z) < No.

We set the R, focusing on ¢ € (0, 1):
R = {x C(xmy/No)" <¢, xm < No} U {x 0<¢, xm > No} =
= {x(n) < C]/nNo} U {X(n) > N()}.

We choose an R of level o:

l/nN n
o = sup P{X(n) < Cl/nN()} —l—P{X(n) > N()} = <u> ;
N=Ny No
where |a], a € R, indicates the lower integer part of a.
5.7
(a) We calculate L(6; x) (see Fig.5.3):
Gy | 1
L©:x) = H l0010) = i) 400 ©)-
sup L(6; x) Sup g Ly 001 (6)
0<6<6y 0<6<6y
Ax) = : = I .
sup  L(6; x) sup 9_'!]1[)6(”),4-00] )
6¢€[0,400) 0€[0,400)

The sup of the denominator corresponds to L(9; x) evaluated at éM LE = X@m)-
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1e-05

1/0"
4e-06 6e-06 8e-06

I [ I I I I I
8 10 12 14 16 18 20

0e+00
|

0

Fig. 5.3 Representation of L(0; x). The maximum of L(0; x), highlighted in the graph with a
cross, is reached at = X, (in this case equal to 10)

0<0<6y I, ifxg) <0o;

AMx) = T

)

sup H%H[x(n),+oo] ) {

0, ifxy > 6.
We set the R, focusing on ¢ € (0, 1):
R:[x:lfc, x(n)geo}u{x:OSC, x(n)>6‘0}=
=gy lx(n) > 90}.
We choose an R of level a:

o = Ssup P{X(n) > 90} = sup I—P{X(n) < 90} =
0=<6<6o 0<6<69

n
= sup 1-— <P[X1 < 9()}) = sup 1—(6p/0)" =0.
0<6<6y 0=<6<69
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(b) We set up the LRT:

L(O;
Qsig) (©;x) QL"H[X(,,),-&—OO](@O)
AMx) = = 0 )
sup  L(0; x) Sup gl +o01 (6)
96[0,+OO) 96[0,+OO)

The sup of the denominator corresponds to L(9; x) evaluated at éM LE = X(n).

Ax) = 1

o
Xn)

1
7 Mo +00160) [ (i /60)", i xny < o3
0, ifJC(n) > 9().

We set the R, focusing on ¢ € (0, 1):
R= [x xay/00)" <¢, xp) < 60} U [x :0<e¢, xp > 90} =
= {x(n) < 6’0%} U {x(n) > 90]~
We choose a R of level a:

o = sup ]P’{X(n) < 90\"/;} +]P’!X(n) > 9()}
0=0o

= ]P’{X(n) < 90%} +1- IP’{X(,,) < 90} =

= (P{Xl < 90%})n +1- (IP{X1 < 00}>n
= (60/c/60)" + 1 — (60/60)" = c.
So: Ry = [x(,,) < 90(‘/&} U {x(n) > 90].
(©
B©6) =P{x € Ry} = P{X(n) < 6o/} +P(X(n) > b0} =
= (Bo/a/0)" + 1 — (60/6)".
Substituting @ = 5% and 6y = 1, we obtain the following power function:
B(6) = (V0.05/6)" + 1~ (1/6)".
We evaluate the function at 6 = 3/2 and require it to exceed 80%.

B(3/2) = 0.05-(2/3)" +1— (2/3)" > 0.8
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—0.95-(2/3)" = -0.2

(2/3)" <0.211

_ log(0.211)

=384 = n>4.
l0g(2/3) "=

5.8
(a)

o = sup IP’{XGR}—supIP’{X> 1}—supl —PX<l}=1-P{X <1} =
0e®q

1 1
:l—f 2(1—x)dx=1—(2x—x2)‘0:1—2+1=O.
0

) 2 2x2\/
BO) =P{X € R} =supP{X > 1} =/; ﬁ(G —x)dx = <—x — 9—27> .

=1 %

o 2 2 1\’ (o-1\
) 2 0 02 o) \ o )’
The power function B(0) is represented in Fig. 5.4.
(b)

Hy:6<1 vs. H{:0>1.

a=sup P{X e R} =supP{X > 1}=supl —P{X <1} =
0e®g o<1 0<1

12 o2
= 11— — (@ —x)1 dx=1- — (@ —x)dx=0
sup /0 92( x) 10,6y (x) dx /o 92( x) dx

0<l1

BO)=P{XeR}=PX>1}=1-PX <1} =
L)
=1 —/0 9—2(9 —x)0,6)(x)dx =

—fZO-x)dx=1-1=0 if 6<I;
~foZO-xdx=1-2+L% if 6>1.

The power function B(0) is represented in Fig. 5.5.
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2
—

0.8

B(6)

0.4

0.2

0
2
Fig. 5.4 Representation of 8(6) = (%%]) . It can be noted that 8(6) — +o0, for 6 — 0; while

BO) — 1,for 6 — +o0o

5.9
(a) Let’s calculate L(0; x) (see Fig. 5.6).

91‘1

2
X

9”
L;x) = HH[O,+oo](xi) = WH[O,XM(@)-

L

We apply the definition of LRT.

sup L(8;x)
_ 0<6<1

Ax) = ————.
sup L(0; x)
6>0

The sup of the denominator corresponds to L(6; x) evaluated at éM LE = X(1).
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(o 0]
2 -
©
Q-
>«
= o |
N
o
o
S
I T T T T I
0 2 4 6 8 10
0

Fig. 5.5 Representation of f(6) = (1 24 giz) 1o-—1)

X7 X7
O EsONES | if 1= Xa;
7 7 ) > X);
ry = { T I

R Ly
nx?/l_IXZz:(m) , if 1T < X(qy.

We impose that the R is of level « and focus on ¢ € (0, 1):
1 n
R=f{x:ix)<c)=f{r:1<c Xy < 1}u{x:(X—) <o Xy > 1) =
1
=@U{x:Xq > 1/ =1/k, Xq) > 1} = {x: Xq) > 1/k}.

+00 n
a= sup P{x e R} = sup P{X)>1/k} = sup (/ G/xzdx) =
0<6<1 0<6<1 0<6<1 1/k

—1 +oo\n n
= sup (9~— ) = sup (k@) =k" = k= a.
0<6<1 X 1/k 0<6<1
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o
o
+ —
<))
[e0)
C® <
o
+ —
(V)
<
o
o
> :
S 1 T T T T f T
0 2 4 6 8 10 12
0

Fig. 5.6 Representation of L(0; x). The maximum of L(6; x) is represented with a cross and is
reached at § = X1y (10 in this case)

Ry ={x: X =1/}

(b) Let’s calculate the power function of the test found in (a):

+o0 w1, ife > 1Y
0) =P R} = 0/x*dx) =
B(0) = Pix  R) </1/f /i dx) {aen’ o o

The function S(6) is represented in Fig. 5.7.
(c) Let’s calculate the minimum value of n such that the test of size « = 0.04 found
in (a) has power 1 against 6 = 3.

BO) =1 = 0>1/Ya = a>1/0" = loga > —nlogh

- logx log 0.04 )93
= n>- =— = 2.93.
—  log6 log3

We conclude that n > 3.
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1.0

0.8

B(6)
04 0.6

0.2

0.0
l

0 1 2 3

0

Fig. 5.7 Representation of 8(0). The angular point is recorded at & = 1/ (in this case about
1.82, since we chose n = 5 and o = 0.05)

5.10
(a) We show that the size of R is indeed «, remembering that X ~N(@®,o? /n):
o = sup P{x € R} = sup P{X > Oy + z1_ay/02/n} =
6<6y 6<6y

{7—9 00 + z1-« oZ/n—e}

Voi/n ” Voi/n

6 — 6o
=supl —P| ——+z1-¢ ) =

0<6o Vo?/n

=1-d(z1_y)=1-(1—-0a)=0a.

=sup P
0<6y




5.3 Solutions

We now show that the same R can be obtained through LRT:

a2
sup L(6; x) sup Qro?)—n/2 exp{— Z(;z 29) )
6=<6 <6y o
)\.(x) = su L(9 x) = Z(x.ig)z .
P ’ sup(2mwa?)~"/2 exp{— 2;2_}

feR 0eR

The sup of the denominator corresponds to L(0; x) evaluated at éM e = X.

Sup exp{_ Z( i — } Sup exp{_w——"_xe)}
<69 6<6o
)\,(x) = = =
exp{— 3202’“ } exp{— 20X
24 (X—0)2 X (X —
sup exp{— Y —X)2+(X 29;2+2(x, X)(X 9)}
_ b=bp —
= — =
exp(— 20X
=X+ (X-0)?
sup exp{—=—"—"—=>"—"} _
6<60 20 (X —6)?
= X) :supexp[—T}.
R o
We can conclude that:
AE) , if X < 6o;
X) = - _
exp{ — "'(Xz"g—_f")z}, if X > 6.
We set the R, focusing on ¢ € (0, 1):
R={x:Ax)<c}=
- X600
={x:1<c,X<6}U{x:expj— <c, X >0y} =
202
(X = 6)2 _
=Q)U{x:exp{—¥] <c, X >0} =
20

_ 202 _
={x:XZ,/—%logc+00, X > 6p).
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Now we impose the size of R equal to a:

202
a = sup P{x € R} = sup ]P’{ > ——10gc+90} =
6<6y 0<6y
J— 202
{ X—0 . ,/—%logc—l-Qo—O}
Vo?/n JVol/n

(90 -0 +,/—2‘n’—210gc>

o2/n

=1—(I>(~/—210gc> — J2logc=2z1—¢q — c:e;lT_a'

=sup P
6<6y

=supl—
6<6y

Then Ry = {x : X > 0y + 21—/ 02/n}. B
(b) We show that the size of this R is indeed o, remembering that j;z_in ~th_1.

o = sup P{x € R} = sup P{X > 0y + ty_1.1-ay/ S?/n} =
6<6y 0<6y

{7—9 00 + th—1.1—-« 52/n—9}
=supP > =
0<60 | +/S%/n VS%/n

= sup 1 —zn_1<—_ +r,,_1,1_a> =1-(l-a)=a.

We now show that the same R can be obtained through LRT:

_N\2
sup  L(6; x) sup Q2ro?)—n/2 exp{—Z(;Te)}

)\(x) _ 0<6p, 02>0 _ 0<6p, 02>0
sup  L(@;x) sup Q2ra2)=1/2 exp{— Z(xl 9) }

6<R, 0?>0 9€R, 62>0

The sup of the denominator corresponds to L(0; x) evaluated at éM 1 = X and

A2 _ _ Z(x, _n=1¢
OMLE = & =55
sup o "exp{— Z(;:Tz@)}
<6y, 02>0
Ax) = =097~

& expl— T
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Y AY_0)2
sup o " exp{——z(x’ ;f;;x %) }
9590,02>0

5—n exp{— Z( X) }

XV (XY _p)2 X)X —
sup o " eXp{—Z(x’ X)2+(X 2032+2(x, XX 9)}

6<6p, 52>0

6" exp{— Z(ZUZX) }

._¥Y)2 _n\2
SU.p O‘7n exp{_Z(xt X) +(X 0) }

202
0<6p, 02>0
N - (x; —X)?
&1 exp(— =GN
Writing 6, ZQC’TGO) =X —6p)% + ";152, we can conclude that:
1, if X < 6;
T2 (X—t)2
Alx) = &O’"eXp{fW} 2\ =
. o -X)2 = (_2> » IEX > 6.
o exp{—T} 0

We set the R, focusing on ¢ € (0, 1):

&2\ n/2 _
Re=f{x:2(x)<cl={r:1<e,X <8 Uifx: (—2) <e, X > 6
g,
0

Q>
)

< CZ/I’L — k,

|

S

&
Il

=0U{x:

A

S

nls2

<
T =
X — 60+ + =282
- A\ B B
x:(X 6o) +n 1>n 1

s2 n ~ nk’ Z b}
2
X — 69 n—1 n—1 —
_ > — ’X>9 =
x ( S >_ k n z b}
2
x X — 6y _n 1 ( 1. X > 6)
pa— —n y =
Siyn) Tk 0
X — 6o n— - —
={x: —(n—1) =k, X >0y} =
{x N r (n—=1) > 6o}
S
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Now we impose the size of R equal to a:

— S -
a=supP{x e R} =supP Xz@o—i——ok}:
6<6o 0<6o v

— s 7
X_9 OGo+--k—0
=sup1—]P’{ < Vi }:
6<6o V8%/n S2/n
s -
(Ho-i- Wi -k—@) B
VS%/n

=1 —ty1(k) = ty—1(k) = ty—1.1—q-

=supl—1t,1
6<6y

Then Ry = {x : X > 0y + ty—1.1-av/S?/n}.



Chapter 6 ®
Uniformly Most Powerful Test ST

6.1 Theory Recap

Definition 6.1 (Uniformly Most Powerful (UMP) Test) Let C be a class of tests
Hy: 0 € ©gvs Hy : 0 € ©F. A test of the class C with power function 8(6) is the
uniformly most powerful test, UMP, of the class C, if:

B®) = B (9) VO € ®5, VB’ power function associated with a test in C.

Theorem 6.1 (Neyman-Pearson) Consider the following class of tests:

Hy : 0 = 06p;
Hy:0 =0y

where the probability density associated with X is f(X; 0;) withi € {0, 1}. If we
use a test whose rejection region satisfies:

xeR if f(x:01)>kf(x:60)

6.1)
and
x €RY if  f(x;01) <kf(x:60)

for some k > 0 and

a =P {X € R}. (6.2)
Then:
e Every test that satisfies Eq. (6.1), (6.2) is a UMP test of level «.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 95
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Table 6.1 Karlin-Rubin Theorem (Theorem 6.2) varying the hypotheses and the MLR

TEST MLR R

Hp : 6 < 6p against H; : 6 > 6y Non-decreasing R ={T > 1o}
Hy : 0 < 0y against H : 0 > 0y Non-increasing R={-T > 1y}
Hy : 0 > 0y against H] : 0 < 6y Non-decreasing R={T <1}
Hp : 6 > 0y against Hy : 0 < 6y Non-increasing R={-T <1t}

o [fthere exists a test that satisfies Eq. (6.1), (6.2) with k > 0, then every UMP test
of level o is also a test of size « (satisfies Eq. (6.2)), and every UMP test of level
o satisfies Eq. (6.1) except for a set A, which satisfies Pg,{X € A} = Pg {X €
A} =0.

Definition 6.2 (Monotone Likelihood Ratio) A family of probability densities
{g(t;0) : 0 € ® C R} for ar.v. T has a monotone likelihood ratio, MLR, if, V 6,
and V 6; such that 6, > 01, g(t; 62)/g(t; 61) is a monotone function (non-increasing
or non-decreasing) of ¢.

Theorem 6.2 (Karlin-Rubin) Consider the following class of tests:

Hy : 6 < 6y;

Hy:0 > 6.
Suppose that T is a sufficient statistic for 6 and that the family of probability
densities {g(t;0) : 0 € O} of T has a non-decreasing MLR. Then for every t,

the test that rejects Hy if and only if T > to is a UMP test of level a, where
a =Py {T > to}. The other cases are reported in Table 6.1.

6.2 Exercises

Exercise 6.1 Given the family of laws:

2
fx(x;0) = 63(9 —x) L0,0)(x);

we want to test Hy : 6 = 6y against Hy : = 61, with 0 < 01 < 6.

(a) Find a most powerful test of level « based on a sample of size 1.
(b) Calculate the power of the test in the previous point against 0.

Exercise 6.2 Find a most powerful test of level o based on a sample of size 1 to
verify Hy : X ~ N(0, 1) against H; : X ~ C(0, 1), i.e., X is a Cauchy variable
with median 0.
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Exercise 6.3 Let Xy, ..., X, be a random sample from a population N (u, 002),
with ¢ € R unknown and og > (0 known.

(a) Find a most powerful test of level « for Hy : u = po against Hy : u = g, with
U1 > Ko-

(b) Deduce from (a) a uniformly most powerful test of level o for Hy : n = o
against Hy : u > po.

Exercise 6.4 For a variable X, consider the statistical model defined by:
fx;0) =0x71, 0<x<l1.

(a) Find a Neyman-Pearson test of size o (based on a sample of size 1) for Hy :
0 = 1 against Hy : 0 = 01, with 61 > 1.

(b) Is the test found in (a) biased?

(c) For the statistical hypotheses of point (a), given 61 > 1, calculate the maximum
power that an arbitrary test of size o can have.

(d) Deduce from (a) a uniformly most powerful test of level « for Hy : 6 = 1
against Hy : 6 > 1.

Exercise 6.5 Find a most powerful test of level & based on a sample of size 1 to
verify Hy : X ~ fp against H; : X ~ f], where:

e ¥/2 el
o(x) = ; 1(x) = .
J T f 5
Exercise 6.6 Show that the statistical model defined by
1
f(x;0) = 0 € R,

[l +&x—0)?"
does not have a likelihood ratio that is monotonic in X.

Exercise 6.7 Given two natural numbers n < N, show that the hypergeometric
statistical model G(N, M, n), 0 < M < N, has a monotonic likelihood ratio.

Exercise 6.8 Given the family of exponential laws E(X), A > 0, find a uniformly
most powerful test of level o for Hy : A < X against H; : A > )¢ based on a
sample of size n.

Exercise 6.9 Consider a random sample X1, ..., X, from a population U ([0, 6]),
0 > 0. To test Hy : 0 < 6y against H; : 6 > 6, consider the rejection region:

R, = {x(n) > —a)l/”eo}.
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(a) Verify that R, has size o and calculate its power function.

(b) Is the test given by R, biased?

(c) Show that the model has a likelihood ratio that is monotonic with respect to
T =X

(d) Deduce from (c) that R, defines a uniformly most powerful test of any test of
level o for Hy : 6 < 6y against Hy : 0 > 6.

Exercise 6.10 Let X be a sample of size one from a distribution with density:

2
fx(x;0) = 6_2(9 — x)1(0,0)(x)
with 6 € (0, 0o). Consider the problem of testing the hypotheses:
Hy:0=1 vs. H :0>1.

Given o € (0, 1), construct the rejection region of the uniformly most powerful test
381 of level « and calculate its power function.

Exercise 6.11 Consider a single variable X described by the statistical model:

exfe

—_— . —00 < X < 400, —0 < 0 < 4o00.
(1+e-7)

fx(x;0) =

Leta € (0, 1).

(a) Find a most powerful test of level o for Hy : € = 0 against Hy : 6 = 1.

(b) Find a uniformly most powerful test of level « for Hy : 6 = 0 against H : 6 >
0.

(c¢) Show that the model has a likelihood ratio that is monotonic in X.

(d) Find a UMP test of level « for Hy : 6 < 0 against Hy : 6 > 0.

(e) Calculate the power of the test in (a) in the case o« = 0.3.

Exercise 6.12 For n > 1, let X1, ..., X,, be a random sample from a distribution

having density:

1 M
Zmx™ le 9

Sx(x;0) =

0 otherwise;

if x > 0;

where m is a known natural number and 6 is an unknown positive parameter. Given
6p > 0, determine the rejection region of the level test « € (0, 1) uniformly most
powerful for testing the hypotheses:

Hp:0 =6y against Hj:60 > 6.
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6.3 Solutions

6.1

(a) To find a more powerful level « test based on a sample of size 1, we apply N-P
(Theorem 6.1).
We calculate the rejection region:

R={x:f(x;01) >k- f(x;600)} =
2 2

={x: —2(91 —x) I(O’QI)(x) > k- —2(90 —x) 1(0,90)(X)}
h %

L2 2 : .
{x. Q(Ql—x)>k~%(90—x) 1(0,90)(x)} if 0<x<6y;
- {x:0>k.%(90—x)1(0,90)(x)}=(2J if 6 <x <6y

{x:0>0}=@ it x> 60

We consider the only non-trivial case, namely x € (0, 81). Then:

R:{x:u>k 012—/2}.

6o—x) " 6

6 —
We define g(x) = E"l x; . This is a homographic function that has x = 6 as
o—x

a vertical asymptote and y = 1 as a horizontal asymptote (see Fig. 6.1, first
graph from the left). In the right graph of Fig. 6.1, g(x) is represented in its real
domain, i.e., x € (0, 81), while the dashed line corresponds to a possible value
of k. We can therefore conclude that the rejection region is of the form {X < ¢},
where ¢ € (0, 67).

We then impose that the test is of level a:

a=Pyp{X € R} =Py{X <} =

c9 2 2¢
:/ —2(90—)5)d)c:—x—x—2 =
0 6 b 65ly

:i<2—ﬁ) = =6 —-vI—a).
% %
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10
|
1.0

a(x)

[ I [ I T T 1T 1T T
-10 0 5 10 00 10 20 3.0

X X

61—
Fig. 6.1 Representation of g(x) = (9] Xg . In the left graph, the function is represented on R and
0—X

the asymptotes are highlighted. In the right graph, the function is evaluated only on x € (0, 0;),

which is the real domain of our function. The dashed line in the right graph represents a possible
value of y = k

(b)

BO1) =Py {X <Op(1 —~1—-0a)} =

Op(1—v/1—a) 2 o) x2 Op(1—+/1—a)
Z/ —2(91—x)dx:9—x——2 =
0 o 1 6ilo
(1 — VT —a) <2 90(1—M)>
B 91 91 '

6.2 In this case we can apply N-P (Theorem 6.1).

R:{x:fl(x)>k-f0(x)} k>0.
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We calculate R:

1 1 2
_ . . _ . —x°/20 _
R_{x.f1(x)>k fo(x)}_{x.ﬂ(l+x2)>mke }_
x2/2 ~
={x:e—>Lk=k}.

22 . . .
(le+_xz) is a non-negative even function, defined on all R.

Given that g(x) is even, it is sufficient to study g(¢) = (ft—ft) with t = x% > 0.

We observe that g(x) =

et r—1

(1+1) 2

g =

Then g () is increasing for # > 1, while it is decreasing for < 1.

max (g(xz)) = 1, reached at x = 0 (note: local maximum); min(g(xZ)) =
exp{1/2}/2, reached at x = %1 (note: global minima).

We represent the function g(x2) in Fig. 6.2, highlighting three different possible
k with different lines. To define the rejection region we must distinguish based on &:

2
er /2 T -
R={x:—> —k=k; =
(1+x2) "~ 2n }
R if k< exp{l1/2}/2;
=1{—aa<x<c}Ux < -} U{x >y} if exp{l1/2}/2 < k<1;
{x < —c}U{x > ¢} if k>1.

We then set the significance level of the test.
The first case is trivial. Let’s focus on the second and third case.

Case 2: expf{l/2}/2 < k<1.

o =Phi{—c1 <X <1} +PrlX < —c2} + Prp{X > 2} =
=¢(c1) —p(—c1) +d(—=c2) + 1 —p(c2) =
=2¢(c1) —1+2(1 — ¢(c2)) =
=2¢(c1) = 1+2-2¢(c2) =
=1+42¢(c1) — 2¢(c2).
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-2 -1 0 1 2
X
x2/2 ~
Fig. 6.2 Representation of g(x) = ﬁ In particular: —————— k < exp{l/2}/2
___________ exp(1/2})2 <k <1 —e—me—-ik>1

We can find ¢; and c;, by numerically solving the following system:

{a =1+42¢(c1) — 2¢(c2);

(6.3)
glc1) = g(c).
Case3: k> 1.

a =Pp{X < —c2} + Ppy{X > 2} =2(1 — ¢(c2)). = 2 =21-q)2-
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6.3
(a) We apply N-P (Theorem 6.1):

n

1 1
flip) = eXP |5 i —w?t =
VJ2ma} %0 =1

1 - 5 nx, nuz
= > eXp —P in - €Xp 02 — ? .
\/ﬁ 0 i=1 0 0
h(x) G
We apply N-P (Theorem 6.1) for sufficient statistics.
Observation

ntpy npd ntpy g

g(t; w1) > kg(t; po) &= —5 — — >logk + >

o 20y o 20y

n
& nt(uy — po) > logk’ + E(uf — 1d)

2 2
1> Ho t> 210gk’ +n(/’“1 — “’0).
n(y — Ko)

Then R = {x : X > c}. We then impose that the test is of level a:

oo/ oo/ YN AR

X, — _ _
mrren-p|Bte el L e

We can therefore write the rejection region of the UMP test of level « as:

— o)
Ry = 1 Xy > po + _nZl—a .

7

(b) Given that the likelihood ratio is monotonic and X is a sufficient statistic, then
the test characterised by R, = {Yn > o + ;—%zl_a} is still UMP at level «.

6.4

(a) We apply N-P (Theorem 6.1). We derive the rejection region:

R={x:f(x;01)>k-flx; D} ={x: 0 x" o 1y(x) > k-To.1y(x)} =

={x:x> (%)le_l)

k) ={x:x > k).
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Q]
—
@ _]
o
© _]
~ ©
D
eod
<=
<
o
N
o

0 50 100 150 200

0

Fig. 6.3 Representation of the power function 8(6) associated with the test (6 > 1)

We set the test level equal to «.
~ 1 ~ ~
oz:IP’l{XeR}zPl{X>k}=ﬁ dx=1-k — k=1-0.
k

So: Ry ={X >1—a}.
(b) To answer the question we calculate the power function:

1
g x0-! dx:xe‘ —1-(—a).

1
ﬁ(0)=Pe{X>1—a}=/

-«

We immediately notice that the power function is monotonically increasing
therefore it satisfies the requirement to be an unbiased test:

FICHO BN ICA) Vo' >1,60" =1.
See Fig. 6.3.
(c) Since N-P (Theorem 6.1) guarantees us to have found a UMP test, by definition
of UMP, we can affirm that:

BO)<1—(1—a),
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B’ is the power function associated with a generic test of the same class as the
considered test (level « test).

(d) Since R, does not depend on 61, we can affirm that: the level « test, associated
with the test Hy : € = 1 against H; : 6 > 1, is UMP at level «.

6.5

—x2)2
Hy: X~ fo fo(x):eﬁ;

—lxl

Hi: X~ fi f1(X)=eﬁ~

We apply N-P (Theorem 6.1):

R={f1>kfo}= «/§>k.\/ﬂ

e Vam }

2
ef\xl e /2 }

V2 . e—x2/2 =k
e~ 1%l

= _— > C =
e—*2/2 }

= {ex2/2—|x| > c} =

= {x2/2 — x| > c’}.

The function g(x) = x2/2 — |x| is even, and exists on all R. In Fig.6.4 g(x) is
represented and the lines relative to different possible values of ¢’.
We therefore have to distinguish 4 cases:

CASE1¢ < —-0.5 = R=R;
CASE2¢ =-05 = R=R\{£l}
CASE3 —05<c <0 = R={X] <x1}U{IX]| > x2}
d0<x1 <1 <x <2
CASE4c >0 =  R={X]> x3} x3 > 2.
CASEla =1,
CASE2a =1;

CASE3 a =1=2[¢(x2) —d(x1];
a=2(1—-¢(x3)).
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o
Al
v _
—
S
~—

X v

S ©
S
o
L
o
1
S
-

[ [ I [ [
-4 2 0 2 4
X
Fig. 6.4 Representation of g(x) = x2/2 — |x| and different values of ¢’. In particular:
——————— ¢ < =05 =-==m-mc-n-n /= 05 —-—-—-—- -05<cd <0
>0

6.6 Let 0 < 0;.
S@x:01) 1+ (x—6y)?
f@xi6) 1+ (x =6

1+ (x —6)?
im —— =
x—+o0 1 4+ (x — 6;)2

Therefore it cannot be monotonic in x.

6.7
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Consider M and M + 1 and calculate the likelihood ratio:

faoem+n  (IHCET) M+l N-M-ntx

FosMy T (MM T TN M M+ 1—x

which is increasing in Xx.
6.8 We apply the K-R Theorem (Theorem 6.2).

(a) We derive a sufficient statistic for 6. We write the joint density:
fex:0) = A"eH 2,

We immediately notice that the density & belongs to the exponential family,
therefore:

T(X)= Z X;
is a sufficient statistic (it can be seen immediately that it is also complete

because A € (0, +00), which contains an open set of R).
(b) We derive the law of T: T(X) ~ g(t; A).

Xi~EM) L1, — T= Xi~Tnh.

(c) We verify that T has MLR (Monotone Likelihood Ratio).
Let Ay > Aj.

g(t; A2) _ l/l"(n)e—kzt .A% gl _ o ()L_2>n
gty 1) 1/T(m)e ™13 ! A

The likelihood ratio is monotonically decreasing.

Given the assumptions for the application of K-R (Theorem 6.2), we can say that:
R={-T > 1)) ={T < —ty =1fp}.
We set the test level:

a= sup P{T < iy} =P {T <o} = 0=V 1,
0<A<Ag ’
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6.9

(a) We calculate the law of X;):

_ . n_ (L) — (LY
(X = 1) = (B =1)" = () Loa® = (5) Lot ©).
Then we calculate «:

o = sup P(X € Ry} = sup P{ Xy > (1 —a)l/"eo] -

6<6y 0<6y

= sup 1 —P{X(n) <@ —Ot)l/n@()} =
6<6y

1 n
= sup [1 — (—(1 —a)l/”eo) ] =
0=<6o 0
=1-(0-o)]=0a.
The sup is reached for 6 = 6y. We then calculate the power function 8(6):
B6) = PolX € Ro) = P{X() > (1 - )"/t | =
— —IP’{X(,,) < —a)‘/”eo} _

[(1—)'/"6p)" \
=1 los (1 —a)"6).

(b) We immediately notice that the power function is monotonically increasing
therefore it satisfies the requirement to be an undistorted test:

B > BB Vo' > 6y, 8" < 6.
(c) From point (a) we immediately derive that:

Sn=1)
Sfx @) = ne—nﬂ(o,a)(l)

Let’s calculate the MLR, considering 8, > 0;:

(=1 n
60 " lom®  onree @) (Z—;) . ifr <6
g(t;01) nt('?l)]l(o‘gl)(t) 03 Loon@® | +oo,  ifr> 6.

[4

We immediately notice that the MLR is monotonically increasing.
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(d) Let’s consider the following test: Hy : 6 < 6y against H; : 6 > 6.
Since the test is not simple, to find the UMP of level «, we try to apply K-R
(Theorem 6.2). We know that T = X, is a sufficient statistic for ¢ and that it
has a monotonically increasing MLR. Given the assumptions for the application
of K-R (Theorem 6.2), we can say that the UMP test has the following rejection
region:

R = {X(n) > 1o}.

Furthermore, from the previous points we can conclude that:

R, = {X(,,) = —a)l/"eo}.

6.10 To answer the question we set up the following test, in order to apply N-P
(Theorem 6.1).

Hy:0=1 vs. H :0=0; 6 > 1.

We define the rejection region:
R=x:f(x;01)>k- flx; 1)}

2
=1{x: E(Ql —x)0,6,)(x) > k- 2(1 —x)I(o’l)(x)} =
1

{x:e%(el—x)>k-2(1—x)}={x:?%§>k02} if 0<x<1;

1

= {x:e%(Ql—x)>0}={l<x§91} it 1<x<6:
1

{x:0>0}:® if x> 0.
6—x

We focus on the only non-trivial case and notice that g(x) = 7= is monotoni-
cally increasing and has as codomain [67, +o00]. Therefore:

R ={X > c}.
We impose that the level of the test is «.
a=sup P{X > c} =P{X >c} =
0e®g

1 1
:/ 2(1—x)dx=2x—x2 =
C

c

=2—-1-Q2c—c*)=(-0c)>
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We can conclude that: ¢ = 1 — /.
Ry ={X >1-u}.

N-P (Theorem 6.1) guarantees that this test is UMP of level .
We evaluate the power function:

o 2 2 x2
IB(Q)ZPG{X>1—\/&}=/1_ﬁ9—2(0—x)dx=5x—9—2 =

2 1
:2_1_5(1_“5”6?(1_*@2:

2 1
=1-2( =V + (1= Vo)’ =

2
I C))
= . .
This is valid if 1 — \/a < 6, otherwise 8(#) = 0.
6.11
(a)
Hy:60=0;
H;:0=1.

We apply N-P (Theorem 6.1):

ex—l e
R={x:fx; 1) >kf(x;0)} = {(1 +€x_1)2 > k(l _|_ex)2} =

. (1+ex)2 e ,
= {x ' (1 +ex71)2 = kexfl =k (=

14¢" ~
= x:—>k =
1+ et

={x:1+eX>1€(1+ex—1)}=

} |

So the rejection region is of the form: {X > y}.

o | =

={x:eX(1—12)>1€—1+
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We therefore impose that the test level is equal to «:

O e I R 1
a:]P’o{X>y}=/ 2dx:— = =a.
y (1+e%) l—l—e"y 1+er
Hence:
l—«
Ry ={X > log
o
is a UMP test of level .
(b) Given that R, in the case of simple hypotheses, does not depend on Hj:
l—«o
R=1{x:X >log .
o
(c) Let6 > 6;:
—g\ 2
f(x;62) _ i 02 mxtl) 1+ ex 0
f(x:01) 14 et
d 1+ ex—0| ex—«91 (1 +ex—(92) _ (1 _ ex—0|)gx—92 eX—91 _ ex—@g
- = = 0.
dx (1 + ex—92> (1+ ex—02)2 (14 ex—92)2 =

The likelihood ratio is monotonically increasing in x.
(d) UMP test of level « for the following hypotheses:

Hy:60 <0;
H129>0.

is of the form R = {X > k}, according to K-R (Theorem 6.2) We therefore
impose that Po{X € R} = «. Then:

e frem(59)

(e)

0.7
a=03 = {X > log (ﬁ) = 0.8473} .

+00 ex—l

=P 8473} = ——dx =
B1(6) = P1{X > 0.8473) /0‘8473 Temy &
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I 1

_ = —+«—— ~(0.5381.
4 0.8473—1
I+e ™ ogars 1+e

6.12 I proceed using N-P (Theorem 6.1) on the following test:
Hy:0=6y vs H;:0=0 01 > 09.

If the rejection region does not depend on 61, then we can say we have found the
UMP test of level «.

R = x:f(x;91)>k-f(x;90)}=

am 1 _am
=lx:—mx" le @ L0, 400)(x) > k - %mxmfle % ]I(o,+oo)(x)} =

N
={x:x>|loglk - — =cy.
6o/ 01 — 6

So the rejection region is of the form: R = {x : x > c}.
We therefore impose that it is of level «:

a=sup =P{X>c}=1-P{X <c}=

0=0o
c o om | € omn omn
=1- —mx" e dx=14¢ | =1+e ® —1=¢ .
0o 6o 0
Then:
¢ = (—bploga)'/™.

So Ry = {X > (—6plog o)™} Given that it does not depend on 601, we conclude
that this rejection region is also the rejection region of level o of the UMP test:

Hy:0=6y vs Hj:0 > 6.

N.B. The exercise can also be carried out using 7 = ) ; X; as a sufficient statistic.



Chapter 7 ®
Confidence Intervals Creck o

7.1 Theory Recap

Definition 7.1 (Interval Estimation) The interval estimation of a real parameter
0 is constituted by any pair of statistics L(X) and U(X) of the sample X that
satisfy L(X) < U (X). The random interval [L(X), U (X)] is said to be the interval
estimate, or confidence interval, for 6.

Definition 7.2 (Coverage Probability) The coverage probability of an interval
estimate [L(X), U(X)] for 6 is defined as:

Py (6 € [L(X), U(X))]).

Definition 7.3 (Confidence Level) The confidence level of an interval estimate
[L(X), U(X)] for 6 is defined as:

iIglf]P’,g(O e [L(X), UX)].

Theorem 7.1 (Confidence Interval and Acceptance Region) For each 9y € O,
let A(6p) be the acceptance region of level a of the test Hy : 0 = 6y. For each
x € X, define an interval IC (x) as:

IC(x) ={6g:x € A(6y)}.

Then the random interval 1 C(X) is a confidence interval of level 1 —«. Alternatively,
let IC(X) be a confidence interval of level 1 — a. For every 6y € O, define:

A(By) ={x:6p € C(x)}.

Then A(0y) is the acceptance region of level o associated with the test Hy : 0 = 0.
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Definition 7.4 (Pivotal Quantity) A random variable Q(X; 0) is a pivotal quantity
(or pivot) if the distribution of Q(X; ) does not depend on 6.

Theorem 7.2 (Pivoting of the Distribution Function) Ler T be a statistic with a
continuous distribution function Fr(t; 0). Let a1 and an be two fixed values, such
that a1 + ap = « and a € (0, 1). Suppose that Yt € T, the functions 0y (t) and
Oy (t) can be defined as follows:

o If Fr(t; 0) is a decreasing function of 0 Vt, we define 0y (t) and 0y (t) as:
Fr(t; 0y @) = ai, Fr(t;00(1) =1 —a.
o If Fr(t; 0) is an increasing function of 6 Vt, we define 01 (t) and Oy (t) as:

Fr; 0y() =1—ay, Fr(t;0L(1)) = ay.

Then the random interval [01,(t), Oy (t)] is a confidence interval of level 1 — « for 6.

Theorem 7.3 (Minimum Length and Unimodality of the Density) Let fx(x)
be a unimodal probability density. If the interval [a, b] satisfies the following
characteristics:

o [Pixde=1-0
* fl@=fb)>0;

* a < xx < b, where xx is the mode of fx(x).

Then [a, b] is the interval of minimum length among those that satisfy the first
condition.

7.2 Exercises

Exercise 7.1 Consider the statistical model given by the exponential laws E(v),
v > 0, and let X1, ..., X, be a random sample drawn from a population described
by this model. Find the confidence intervals for v of level y = 1 — & constructed
based on:

(a) LRT for v = vg against v # vy.
(b) Pivotal quantity Q =2v ) 7, X;.

Exercise 7.2 For a sample of size 1 from the law:

2
f(x;9)=9—2(9—x), 0<x<0;
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find the confidence intervals for 6 of level y = 1 — « constructed through:

(a) LRT for 68 = 6y against 6 # 6.

(b) Pivotal quantity Fy(X).

(c) Pivotal quantity X /6, choosing that of the type (x, f(x)).

(d) Which interval would you choose for an interval estimation of 6 at a level y =
0.95?

Exercise 7.3 Let Xy,..., X;, be a random sample from a population N (u, o).
Find a confidence interval for o2 of level y = 1 — « in the cases:

(a) u known.

(b) w unknown.

Exercise 7.4 Consider the random samples Xi,..., X, from a population
N(u1, 02) and Y1, ..., Y, from a population N (u7, 02). Find a confidence interval

for w1 — wo atlevel y = 1 — « in the cases:

(a) o2 known.
(b) o2 unknown.

Exercise 7.5 Let X be a single observation from a Beta(9,1):

Fx:0) =0x"" g1y (x), 6 > 0.

(a) Find the law of ¥ = —

Y
(—, Y) for 6.
2

(b) Show that X is a pivotal quantity and use it to construct a confidence interval
for 6 at an arbitrary level 1 — «, o« € (0, 1), choosing the one with the smallest
width.

Y
(c) Compare the interval (E Y ) with the interval found in (b) at the same level.

and calculate the confidence level of the interval

log X

Exercise 7.6 Consider the statistical model:
U e
f(x;u):ie m —00 <X < +00, —00 < i < —+00.

Given X a sample of size 1:

(a) Verify that the quantity Q = X — u is pivotal.
(b) Determine for u the confidence interval based on Q at level 1 — « and of
minimum length.
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7.3 Solutions

7.1

(a) Comparing with the result of Exercise 5.3, the rejection region of level « of the
test:

Hy:v =y Vs Hy v # v

turns out to be:

Choosing 11 = yy/2(n, n) and tr = y1_q/2(n, n) we get:

3

IC(1 —a) = [Va/zy(n, n) Vl—a%(n, n)i| '

(b) Consider the r.v. Q = 2v ) _ X; and observe that:

Y Xi~Tnv) = 2 Xi~T 1/2) < 0.

We then define the IC based on Q, with confidence level 1 — «:

1C :[avaZX,-gb];
Pla<Q<b} =1—-a.

Choosing a = X§/2(2n) and b = X12_a/2(2n), we obtain:

2 2
Xory2(2n) Xi—a(2n)
1C<1a)=[ e

2% X; 23 X;

2
Observation Remember that y, (n, n) = £ 2(3”)
In fact, let X ~ I'(n, n), then:

a=P{X <yy(n,n)} =P{2nX < 2ny,(n,n)}

and n2X ~ T(n, 1/2) £ x2@n).
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2
Therefore y, (n, n) = %}3") and

IC(] _ 0{) N n)/a/z(n, n) nyl,a/z(n, Vl) . X§/2(2n) Xlzfa/Z(zn)
XX T XX T2y X 2y X

We conclude that the two ICs obtained in point (a) and point (b) coincide.
7.2

(a) Observe that on a sample of size 1 we have:

2
L(O;x) = 270 — X 00) (6)-

oL 2 4x N

50 92+93 = MLE

From here, the LRT for Hy : 6 = 6y vs H; : 6 # 6p:

9%(90 — )0, 601 (%)

Ax) = 0 L(zx o = Q(QO — x)H[o,go](x).
4x2

R=0(x)<c}={x >90}U{:—)2C(00—x) <c} =
0

= {4x(fp — x) < k'} = {4x0) — 4x? < K/} =

0o+ ,/62—4h ¢
= {x? = fox +h > 0} = x=— VO =

2

(SPpS:

970-1-5 2
Ol:l_,/;,O,;, O—g(Qo—x)dx=

2

6 ~
1 ,12+h
—1-— [—(90 —x) ]@_ﬁ -

1 - 2h - 6
=1— —[26h]=1-"— h=—=(1—a).
03[01 % = 2( a)

Raz{X<%90a}UIX>90(1—%)}.
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From which:
Ic | 2x << 2X
=0 =12-¢ T |
(b) O = Fx(x;0)~ Up,:
0 x <0;

Fx@ =12 (0x-%) 0<x=0;

_—

x> 0.

Then Fx(X) = 2 (ex - X—z)

We observe that:

20%x —20(0x — x%/2)  2x(x —6)
= <

/
g0) = o <.
2 x2
g(9)=k<:>ﬁ Qx—? =k
x x+Vx2(1 —k)
<:>9—2(29—x)=k<:>0= .
Therefore:

o (07
IC—a) = [5 < F(x)<1- 5]

[ (=) ()]

. . . X
(c) We consider the pivotal quantity 0 = 4.

X 202 6%
FQ(Q)=P{§SCI} =P{X§94}=0—2—0—2=6](2—4)'
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Since we are looking for an IC of the type [X; f(X)] of level 1 — &, we impose
that:

Plce<Q<l1}=1-aq.

1
=l—a & 1-2c+P=@Cc-1)*=1-0

2q — ¢*

c

c=1—+1—-a.

Therefore, we conclude that:

X
ICh—gy=|X <0 < ———|.
(= [ - m]
(d) 1 —« = 0.95. Substituting this value into the ICs calculated in the previous

points, we obtain:

(a) L =3897X;
(b) L=7831X;
(©) L =3849X.

We therefore choose the IC found in point (c).

7.3
(a) If w is known:

Xi —w)?
T := 2L X 3 ~ Xz(n).
o
T is a pivotal quantity. We are therefore looking for an IC with a confidence
level of 1 — a:

ic =la<T <b]
Pla<T<b} =1-aq.

We can choose a = onl/z(”) and b = X]zfa/z(n) so that:

1Ci1u = (X —w)? (X — p)?
R PN BN N
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(b) If u is unknown:

—1)s? X; — X,)?
(n 2) _2( _ )~X2(n—1).

o o

So, similarly to the previous point, we obtain:

c (n—1)82 (n—1)82
l—a) = ; .
0 K app =1 K2y = 1)

7.4

(a) If 62 is known, we observe that:

— 1 1
Xn_YnNN(Ml_H2»0'2<—+—)>-
n m

By standardising, we obtain:

_ Yn _Yn — (u1 — p12)
N

Q is a pivotal quantity. Therefore:

- = /1 1
IC(l—a):|:X,,—Y,,iz1_aa —+—i|,
2 n m

(b) If 0% is unknown, we recall the definition of SIZJ (pooled estimator of the
variance):

0 ~ N, 1).

o _ = 1)S%+(m—1)S%.
p n+m-=2)

_ Yn_Yn_(Ml_MZ)
1 1
Sp\/z"‘ﬁ

Q is a pivotal quantity. Therefore:

_ T 1
IC(1 —a) = [Xn—Yn:ttl_g(n+m—2)Sp,/—+—:|.
n m

0 ~tn4m—2).
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7.5
(a)
T logX §(X).
—l =log X.
Y
X = e_%.

gr () = fxe ' oNlg o).

0

_1\0-1 e_% ey
gy(y) =0 (e ~") 7 10, 400)(¥) = 97 10, +00) (Y).-

We consider:

and calculate its confidence level:

Y
igf]P’g <5 <9<Y>=igf]P’g(6<Y<29)=

y
26
. -8 _1 -1
= infe 7 =e 2 —e¢  =0.2333.
o 0

Note that it does not depend on 6.
(b) O = X? is a pivotal quantity, indeed:

0=hX) =x"’.
X=h"'(Q) = Q7.

1-0 o-11 1-0

1
EQT zeng 7 =1 0<gqg <.

fo@) = fx(g?)

0 ~ Up,1-
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We write the confidence interval with a confidence level of 1 — «::

IC =la <X’ <b] [loga<910gX<logb]
log b log .
- [logX <9<log?(j|’
b—a =1-oq.

We minimise the length of the IC, L « (loga — log b):

ming, 4y (logb — loga);
a=b—(1—a).

)

in (logb —log(b — (1 — =
bgf(l)fll]( og og(b — (1 —a)))

b
= min log| —— | =
bel0,1] b—(1—aw)

l —«
= max log <1 — )
bel0,1] b

The minimum length is reached for b = 1.
Therefore, the IC of minimum length and confidence level equal to 1 — « is:

logx
"logX |’

IC(1 —a) = |:0

(©)

Ic (Y v) - 1 1
- =\2"" )~ 2log X’ logX

is of the same type as the IC calculated in point (b), with:
{logb = —% — b= e_%;

loga=—-1 <= a=¢'.

Since the ICs calculated in point (a) and point (b) are of the same type and the
IC in point (b) is of minimum length, the IC in point (a) certainly has a length
greater than the IC in point (b).



7.3 Solutions

7.6

(a) X is a sample of size 1. Let’s calculate the law of Q:

fo@=P{X-—pn=<qg}=P{X <g+nu}l=

+
= /q : le_l)‘_“| dx 7= /q le_‘yl dy.
o 2 0 2

Therefore, Q is a pivotal quantity (Q ~ fx(x; 0)).
(b)

CI
l—a = %fabe_wdx.

[a<X—-—pu<bl = [X-b<pu<X-—-al;

123

The length of the interval is b — a. Moreover, fx(x; 0) is a unimodal density.
Therefore, the minimum length is obtained for |a| = |b|, a = —b. We then

impose that the confidence level of the interval is equal to 1 — «:

1 [P b 1
1—a=—/ e_lxldxzf eFdr=1-e? = b=—log(a)=1log—.
—b 0 o

2

We therefore obtain:

1
Cl(l_a) = [X :|:10g (;i| .
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8.1 Theory Recap

Definition 8.1 (Consistency) A sequence of estimators W,, = W, (X) is consistent
for the parameter 6 if, Ve > 0 and VO € O, it holds:

lim Py (|W, — 0| <¢) =1;
n—-+400

that is W,, 2.
Theorem 8.1 Let W, be a sequence of estimators consistent for 6, such that:

e lim Eg[W,]=6;

n—+0o
e lim Varg(W,) =0;
n——+00

then W), is a consistent estimator for 6.

Theorem 8.2 (Consistency for MLE) Let X1, ..., X, be i.i.d. random variables
such that X; ~ fx(x;0) and L(0; x) the corresponding likelihood. Let 0 be the
MLE of 6 and t(0) a continuous function of 0. Under suitable regularity conditions
for fx(x;0) and L(0; x) (see Miscellaneous 10.6.2 [3]), then Ve > 0 and VO € O:

lim Po{lz(6) — t(8)| > e} = 0.

Then r(é) is a consistent estimator for T (0).
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Definition 8.2 (Limit Variance) Consider an estimator 7},. If, given a sequence k,,,
it holds:

lim k,Var(T,) = t° < 400;
n——+00

then 72 is called limit variance.

Definition 8.3 (Asymptotic Variance) Consider an estimator 7},, such that:

Ky (T, — 7(0)) 5 N(0, 02).

Then o2 is called the asymptotic variance of 7j,.

Definition 8.4 (Asymptotic Efficiency) A sequence of estimators W, is asymptot-
ically efficient for the parameter 7 () if:

S (W, —1(0)) 5 N0, v(0)):;
where:

(t'(0))?
Eo [ ( log fx(x:0))’]

v(0) =

Therefore, the asymptotic variance coincides with the Cramér-Rao limit.

Theorem 8.3 (Asymptotic Efficiency for MLE) Ler X1, ..., X, be i.i.d. random
variables such that X; ~ fx(x; 0) and let O be the MLE of 6 and t(0) a continuous
function of 6. Under suitable regularity conditions for fx(x;0) and L(0;x) (see
Miscellaneous 10.6.2 [3]), it holds:

NG (r(é) - r(G)) 5 N O, v(6));

where v(0) is the Cramér-Rao lower limit. Therefore, r(é) is a consistent and
asymptotically efficient estimator for 7(0).

Definition 8.5 (Asymptotic Relative Efficiency) Consider two estimators W, and
V,, for t(0) such that:

i (W, —1(0)) 5 N0, 02);

S (Vy — 1)) 5 N, o2).
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The Asymptotic Relative Efficiency (ARE) is defined as the following ratio:

2
Ow

ARE(Vy, W) = %

Oy

8.2 Exercises

Exercise 8.1 The response time of a computer to the input of a terminal is modelled
by a random variable of exponential law &(0), with 6 unknown. We measure
n response times 71, ..., T, to estimate the expected response time 1/6 and to
estimate the parameter 6.

LetT, = % >% | T; be the estimator of 1/6.

i=1

(a) Show that it is an unbiased estimator.

(b) Determine its law.

(c) Study its asymptotic normality, consistency and asymptotic efficiency.
Now consider the estimation of 6.

(d) Derive from 1 /T,, an unbiased estimator én of 6.

(e) Study its asymptotic normality, consistency and asymptotic efficiency.

(f) Construct a critical region of level (approximately) « to test Hy : 0 = 6y against
Hy : 0 # 6.

(g) Deduce from 6, an asymptotically pivotal quantity with which to construct a
confidence interval for 6 level (approximately) 1 — «.

(h) Find a transformation g : [0, +00) — R that stabilises the asymptotic variance
of g(én), i.e. such that the asymptotic variance of g(én) is independent of 6.

(i) Propose a confidence interval for 6 of level (approximately) 1 — « constructed
based on g(én). Compare this confidence interval with the one obtained in point

(9).

Exercise 8.2 Let X1,..., X,, be a random sample from a uniform law on the
interval [0, 8], 0 > 0.

(a) Study the consistency of X (), the maximum likelihood estimator of 6, and of
X(ny(n + 1)/n, the unbiased estimator of 6.

(b) For the confidence interval for 6 of level 1 — « of minimum length that can be
constructed with the pivotal quantity X,)/0, study the limit of this length for
n — oQ.

Exercise 8.3 Let X{,..., X;, be a family of independent random variables all
distributed according to an exponential law with mean t. Each X; represents the
disintegration time of a nucleus of a certain radioactive element. For each fixed
t > 0, let Y; be the random variable that is 1 if the i-th nucleus is still alive at time ¢
and 0 otherwise.
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Consider the following estimators of 7:

e V,, MLE based on the sample Y1, ..., Y.
e W, =n min{Xy,..., X,}.
e T,, UMVUE based on the sample X1, ..., X,.

Answer the following questions:

(a) Determine the laws of the estimators W), and 7.
(b) Study the asymptotic normality and consistency of V,,, W,, and T,.
(c) Which is the best estimator?

Exercise 8.4 Let (X1, ..., X;) be a random sample drawn from a Poisson distribu-
tion with parameter A > 0. Let 7(A) = e *(1+41). To estimate 7, consider the MLE
and the UMVUE. Determine if they are consistent estimators.

Exercise 8.5 Let X, ..., X,, be a sample of independent random variables with
beta(d, 1) density,
fx(e;0) = 0x7 "o,y (x), 6 > 0;

and let én and éM L be the UMVUE and MLE estimators of 9, respectively.

(a) Discuss the consistency, asymptotic normality and asymptotic efficiency of the
two estimators.

(b) Construct the critical regions of level (approximately) « to test Hy : 0 = 6
against Hy : 6 > 6.

Exercise 8.6 Let X1, ..., X, be a random sample from a I"(2, 1/9) with 6§ > 0. We
therefore have

fx(;0) =072 xe ™7 I o) (x).

Let én be the maximum likelihood estimator for 6.

(a) Verify that én is consistent.

(b) Determine the asymptotic distribution of 6.

(c¢) Determine the maximum likelihood estimator 8,,2 for the variance of X.
(d) Determine the asymptotic distribution of 8”2.

Exercise 8.7 Let X1, ..., X,, be a random sample from
1
fxe:0) = S(14+6x) Icin@). 0 el-1.1]

(a) Using the method of moments, determine an estimator 6, of 6.
(b) Determine the asymptotic distribution of 6.
(c) Propose an asymptotic confidence interval of level 1 — « for 6.
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Exercise 8.8 Given a random_ sample_ Xi,..., X, from a Bernoulli distribution
Be(p), consider V,(X) = nX,(1 — X,)/(n — 1) the UMVUE estimator of the
variance o2 of the distribution.

(a) Show that V,,(X) is consistent for o2
(b) Determine the asymptotic law of V,,(X).

8.3 Solutions

8.1

(a)
E[T,] =+ Y BT = -
[n]—n; (7= .

Hence, Tn is an unbiased estimator for é

(b)
> T ~T(n.0) = T, ~T(n,no).
i=l1

(c) By the CLT (Theorem 1.16):

ﬁ(ﬂ-é)i‘;N(o,eiz).

Asymptotic Normality implies consistency.
We calculate the Cramér-Rao Limit, considering that t(0) = 0%

@) o B
hO)  E[(f1og f(x:0)7]
J— 1 —
~ PE[2 (logh —6x)?]
1
_ -
El(X - 1))
1 6> 1

T 0%Var(T) 6% 62

Hence, T, is asymptotically efficient.
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(d)

(e)

®

8 Asymptotic Statistics

— | =n — | = .
Tn Z Tl n—1
Hence, an unbiased estimator for 6 is:

"o T, YT

~ n—11 n—1
0 _

Starting from the results of point (c), we apply the delta method (Theorem 1.17)
with g(r) = 1/t and g’(r) = —1/12 and we obtain:

2
1 L 1 1 2
()
Applying the Slutsky Theorem (1.15), we conclude that:

A n—11
n T,

is asymptotically normal, that is:

b, —6) 5 N©,6?).

The Cramér Rao Limit is:

1 _n2.
Var(T;))

hence 6, is also asymptotically efficient.
We consider the test:

Hy:0=069 vs Hp:0 #0.

Given that 6, ~ N (6, 62), the rejection region of approximately level « is:

18, — 6ol X 6
Ry = { ! >zi—2 ¢ = 10 — 6ol > 212 .

Oo/v/n NG
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8.3 Solutions

(g) Similarly to the previous point, given that:

A

On

the asymptotic CI is:
ICi_o = d
e = 14+z— .

. n
o/J/n’ 1 —zi_a/n
(h) g(én) has asymptotic variance 02g'(9)> (according to the Delta Method 1.17).
We impose that the asymptotic variance is equal to 1, therefore g’'(9) = é, or

g(0) = logh. We define:
W, = log én;

which is such that:
(W, —logd) 5 N, 1).

(i) The asymptotic CI based on W,, can be constructed by observing that asymptot-

ically:
l—a= [Wn —zj_g¢/v/n <logh < W, +zl_%/ﬁ];

therefore:
IC|_q = [eW”eZI%/ﬁ; eW”ezlg/ﬁ;} .

Developing the extremes of this CI to the I order, we find the one obtained in

point (g).

8.2
(a) For the calculation of the MLE and its mean and variance, see Exercise 4.2.

n
—0;

E[Xm] =
[ (n)] n+1
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n 2
Var(X =
Clr( (l’l)) (n+ 1)2(n+2)
The MLE law is:
0 t <0
Fx,, ) =1(5)" 0<t=<o;
1 t>0.

Therefore X ;) —£> 0 and since 6 is constant, X ) £ .
We now consider T, = X,)(n + 1)/n.

T, is an unbiased estimator for 6, in fact: E[7,,] = 6.
Then:

1)2 62
MSE(T,) = Var(T,) = D n 6% =

— = 0.
n?2  (m+1D%2m+2) nn+2)

Therefore, by Theorem 8.1, 7T}, is consistent.
(b) O = X()/0 is a pivotal quantity since:

0 <O
Fo(t) =P(X(/0 <1} =P{X@y <10} = 1" 0<r<1;
1 t>1.

We therefore calculate a CI that has a confidence level equal to 1 — .

cl =[a=Xw/o=b] =522

a
l—a =b"—-ad".

The length of the CI is proportional to 1/a — 1/b. We therefore identify the pair
(a, b) that allows us to have the CI of minimum length. We solve the following
constrained optimal problem:

o1 1
min — — —;
a,b a b

l—a=0"—-a".

We derive both expressions with respect to a:

aL 1 1 db 1 1 (a\n—1 _ g'tl_pntl .

W = etra N {—a—z 2 (5 =T <0
_ pn—1db _  n—1 db _ (a\"—

0 =nb da na da - (b) .
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Therefore the minimum length is obtained at the maximum value of a, so b = 1
and a = /a. The Cl is:

n——+00

o
whose length is 7% 1 0.

8.3
(a) From the text we deduce that:
1

Xl,...,X,,~8<
T

) , Yi = ix,=y = Yi ~ Be(e™"/").

Since Y, is MLE for e~*/T, by the principle of invariance the following
estimator V,:

t

- log?,

is MLE for t.
We consider the estimator W,,, defined as follows:

Wn =n min{Xl, e X"} = l’lX(])

Let’s calculate its law.
We know that: X (1) ~ & (%), therefore:

P{W, >t} =P{nXq) >t} =P{X) > t/n} = e /7.

1
wo~e (1),
T

We consider the estimator 7,,, UMVUE for t:

Therefore:

T, = 7,1.

Let’s calculate its law.
We know that: X1 ~ & <%), therefore:

1 n
> Xi~T(n, - :>T,,~F(n,—>.
T T
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(b) We evaluate the asymptotic normality of V,,, W,, and T7,,. For the CLT (1.16) we
know that:

Vi (Vy—e 7)) 5 N (0,77 (1 — /7)) .

To evaluate the asymptotic normality of V,, = _logt? , we exploit the delta
method (Theorem 1.17), with g(Y,,) = _1og'? )
(x) ) = —
X) = — X)) = ——5—,
& log x § (log x)2 x
therefore:

l2
4e2t/t
(%)

T4 t/t —t/t
:N<O’t_2€ (1—e )).

JiVe—1) 5N <0, T — ety

W, is not asymptotically normal and is not consistent.

(T, — 1) 5 N©, 72).
(c¢) To evaluate the best estimator, we calculate the ARE between V,, and T,:

7242

ARE(Ty, Vy) = eIt (1 —e1/7)’

The ARE depends on 7, so we cannot identify a better estimator.

8.4
X; ~ P()), (W) = e *(1+ ).

By the principle of invariance, the MLE of t(A) is (1 + Yn)e_y".
By the SLLN 1.11, it holds:

(1+Xe % B2 (a);

therefore the MLE is consistent.
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‘We consider the UMVUE:
1 VLY,, _
(1——) <1+Xn n >—>e—k(1+x).
n n—1
— (e~ 1)* —(1+21)

Therefore the UMVUE is consistent. For the calculation of the UMVUE, refer to
Exercise 4.10.

8.5
(a)

X ~ 9)69_1]1(0)1)()6) , 6 > 0.

In Exercise 4.8 the UMVUE 6, and its expected value and variance were
calculated. We report the results obtained below:

A n—1
oY log X
E[6,] = 6.
. 62
Var(6,) = .
n—2

Using Theorem 8.1, we conclude that én is consistent.
We now evaluate the asymptotic normality.

S
Y = —log X; ~ &) L ﬁ(y,,—-> iiN(o,—).

Through the delta method (Theorem 1.17):

n
> log X;

Therefore, by Slutsky’s Theorem (1.15):

— ﬁ(%—@).i‘;N(o,ez)

n

ﬁ(é,, _ 9) £ N, 6.

6, is asymptotically efficient 9n—2 =
(b) We consider the test:

nl0)"

Hy:0=606y vs Hj:0 > 0.
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The critical region is:

. 6
R, = {9,, > 90+zl_a7%}.

8.6
(a)

Fx:0) =072 xe N0 4o0) (x).

i M0

_ _Xi%i
LO:;x) = 072" [ [xie™ ™7 Lo, +00) (x:).

1(6: x) & —2nlog 6 — %

al(0; x) 2n > Xi
B T L N | =)
96 ot 7 =

X,
Therefore én = % is the MLE for 6.
By the SLLN (1.11) it holds:

X, I B[] = 26.

Therefore én is consistent for 6.
(b) The CLT (1.16) guarantees that:

Vi (-0) 5 n (0.5) = (0.%).

(©)
Var(X;) = 207

therefore by the principle of invariance it holds:

—2

~2 A2 n

os =207 =—".
n n 2

(d) We use the delta method (Theorem 1.17), considering g(x) = %xz and g'(x) =
X:

Jn (&,3 - 292) AN (o, 202 . (29)2) — N(0, 86%).
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8.7
(a)

1

1 ! ] 02 6
E[X;] = - 1 +6x)xdx = — 2dx = == = —.
[X:1 2/_I(er)xx 2/_1xx 23 =3

Therefore, the estimator obtained by the method of moments is:

0, = 3X,
Note that én 1< 0.
(b)
1! 2 1 6% 3-¢2
Var(X;) = E[X?] — (E[X; 2=_/ 2 - =~ _ 7 _
ar(X;) [X;1— E[X:] 3 71x Y=g =375 5

Then, the CLT (1.16) ensures that:
b, —6) 5 N@©,3 6.
(c) Using the Slutsky’s Theorem (1.15), we obtain:

~

O —

N

~ N, 1).

2

Therefore

. 362 - 3-9X.
ICa—a) = |0 :i:zl,% . = |3X, :Ezlf% —
8.8

(a) For the SLLN (1.11):

Vo(X) = nX,(1 = X,)/(n — 1) L5 p(1 = p) =02

Therefore V,, is a consistent estimator for o2

(b) For the CLT (1.16):

Vi (X = p) 5 N©. p(1 = p)).
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To prove the asymptotic normality of V,, we use Slutsky’s Theorem (1.15) with
gx)=x(1—-x),g(x) =1—2xand g’ (x) = 2.
Ifp+#1/2:

— 2 _
Vi (X=X - pd—p) 5 N (O’ a 2p>np<1 p>>.
Ifp=1/2:
—_ — 1 L 1 )
ﬁ(Xna —Xu) ~ Z) = =%,

Therefore V,, '—E> % - ﬁx2(1)~
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Chapter 9 ®
Linear Regression Qe

9.1 Theory Recap

We tackle the statistical study of the behaviour of a random variable Y (called
response or dependent variable) with respect to other quantities X1, X, .., X,
(called predictors or independent variables) which in this study will be assumed
deterministic.

We assume that the following relationship may exist:

Y=0+BX1+.+8X +¢ 9.1)

where ¢ is a random variable with zero mean and variance o2, Bo, Bi1,...Br and o2
are real and unknown parameters.

Assuming we have a sample of n joint observations Y; and their relative x;;,
j=1,.,randi =1, .., n, then for each observation it holds:

Yi=po+ Bixit +..+ Brxir +& i=1,.,m 9.2)
Equation (9.2) can be written compactly as:
Y =XB +¢; 9.3)

where:

Y € R" is the vector of random responses, y are the relative realisations y =
V15 yn)

X € R™C+D g the design matrix, in which the first column is the unit vector
a, .., l)T and the subsequent columns are the vectors x; = (xyj, .., xnj)T.

B € R"*! is the vector of unknown regression parameters.
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Fig. 9.1 Graphical representation of the least squares method

e € R" is the vector of errors, random and unknown, such that E[e] = 0 and
Var(e) = o21,.

The model described in Eq. (9.2) is called linear, as it is linear with respect to f.

9.1.1 Estimators of the Unknown Parameters of the
Regression: Least Squares Method

The least squares (LS) method is an approach used to obtain the estimator of 8. This
method is based on the minimisation of the square of the error, namely:

n
[} = arg minZsi2 = arg min ele = arg min(y — xp)T (y — XB). 9.4)
B o B B

Differentiating with respect to 8 and setting the differential to 0, we obtain the
estimator:

B =xX"'x)"'xTy. 9.5)

The estimates obtained with the least squares method are the projection of y onto
the column space of the design matrix X, Col(X) (see Fig.9.1).



9.1 Theory Recap 143

Furthermore, we can define the following quantities:

y, the estimated responses: y = XB = X(XTX)"'XTy = Hy, where H is the
projection matrix onto the space Col(X). )
&, the estimated error vector: & =y —y =y — XB.

Theorem 9.1 (Gauss-Markov) Given the linear model in Eq. (9.3), the estimators
obtained with the least squares method are unbiased and have minimum variance
(BLUE, Best Linear Unbiased Estimator).

Theorem 9.2 Given the linear model in Eq. (9.3), assume that the rank of X is
p =r +1, ie., the design matrix has full rank, then:

- E[B1=8
e Cov(B) =o2(XTX)~ .
. E[g]=0.

e Cov(8) =c%(1— H).
. EeTe]=02(n - D).

Theorem 9.3 Given the linear model in Eq. (9.3), assume that the rank of X is
p =r+ 1, i.e, the design matrix has full rank, and € ~ N(0, 1), then:

. [} = (XTX)~'X"y is the maximum likelihood estimator for B.

AT ~
.« 52 = &£ is the maximum likelihood estimator for o? (often calculated using
AT ~
2 _ & &
§¢ == o)

* B~ NPT,
© &~ N(0,0*1— H)).

« &l
e n62=8Te~0o2x2(n - p)
Corollary
1 . .
—B=BTXXEB - )~ Xp (9.6)
~2
'% ~ X, 9.7)
2 _ TXTX 2 _
B—B) = B-—B _ Fon: ©8)

9.1.2 Inference

Assuming the hypotheses of Theorem 9.3 are valid, we can perform the following
three types of tests:

* Significance of all predictors.
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* Significance of a single predictor.
» Difference in significance between nested models.

9.1.3 Confidence Regions and Intervals for Predictors

Starting from Eq. (9.8) we define the confidence region of level (1 — «) for § as:
Ra-(B) = {ﬂ €ER”:(B—B)'X"X(B~B) < pS*Fpu-p(l - a>};

where F) ,—,(1 — a) indicates the quantile of order (1 — o) of a Fisher distribution
of parameters p, n — p. The confidence region has an ellipsoidal shape and does not
correspond to the Cartesian product of the marginal confidence intervals, i.e., those
related to the individual 8;, i € {0, .., r}.

Using the results of Theorem 9.3, we can write the confidence interval of level
(1 — @) for the individual §;, i € {0, .., r}, as:

1C1-a)(Bi) = [Bi £ t—p(1 — /2)S/ (XTX) ;']

where 7, (1 — a/2) is the quantile of level 1 — «/2 of a Student’s ¢ withn — p
degrees of freedom.

9.1.4 Confidence Intervals for Prediction

In the case of a new data point Xy, the first quantity of interest to calculate is the
point prediction o, as:

So=x(B+e.  e0~N@O.0?) A elp. 9.9)
We can also calculate the variability associated with y:
Var(§o) = Var(xh B+ e0) = x} (XTX)"'xp0% + o2, (9.10)

Given the variance, we can define the prediction interval of level 1 — « for the point
value given xq:

IP($0; X0) = 90 = ta—p(1 — @/2)Sy/xT (XTX)"Ixg + 1. ©.11)
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‘We can define the confidence interval of level 1 — « for the mean of the predicted
values given Xq:

IC(30; X0) = Yo £ ta—p(1 — a/Z)S,/xg(XTX)—lxo. 9.12)

It is immediately observed that the prediction interval in Eq. (9.11) is wider than
the confidence interval Eq. (9.12).

9.1.5 Model Goodness of Fit (GOF)

A measure of the goodness of the model is the R? coefficient, also known as
the coefficient of determination, and in the case of multiple linear regression, the
adjusted R,

Definition 9.1 R” and adjusted R?

Z:’:]()A’i - yi)z 1 SSres'
Z?:] (i — )_’i)z SStot ’

RP=1-

where:

SSror = SSreg + 58res;
n n n _
Y 0i=P=) G-+ ) i -9
i=1 i=1 i=1

It can be shown that if the design matrix has a constant column then RZ € [0, 1].
R? can also be expressed as S Sreq/SS10r and represents the percentage of variability
explained by the regressors, so the closer it is to 1, the more the model explains the
response variable.

We can define Ri 4> @ measure of the goodness of the model that also takes into
account its complexity:

SSres n—1
SSiogrn—r—1"

2
Radj =1

Rg dj by definition is always less than or equal to R%. It is used to evaluate the
goodness of the model in the case of multiple linear regression, because it allows to
take into account the complexity of the model.
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Online Supplementary Material

9 Linear Regression

A supplement to this chapter is available online,
containing data, further insights and exercises.

9.1.6 Libraries

library( car )

## Loading required package: carData

library( ellipse )

##

## Attaching package: ’ellipse’

## The following object is masked from ’package:car’:
##

## Attaching package: ’faraway’

## The following objects are masked from ’package:car’:
##

#i# logit, vif

library( leaps )

library( qpcR )

## Loading required package: MASS

## Loading required package: minpack.lm
## Loading required package: rgl

## Loading required package: robustbase
##

## Attaching package: ’robustbase’

##
## epilepsy
## Loading required package: Matrix

## ellipse

## The following object is masked from ’package:graphics’:
##

## pairs

library( faraway )

##

## The following object is masked from ’package:faraway’:

9.2 Exercises

Exercise 9.1 Manually calculate the estimate of the § in the following cases:

(a) No predictors are considered.
(b) Only one predictor is considered.

Exercise 9.2 Derive the test that evaluates the significance of all predictors, under

the assumptions of Theorem 9.3.
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Exercise 9.3 Derive the test that evaluates the significance of the single predictor,
under the assumptions of Theorem 9.3.

Exercise 9.4 Describe the main steps of the study of a regression model, highlight-
ing the R commands to use.

Exercise 9.5 Consider the savings dataset in the faraway package. This dataset
contains information about 50 US states. The covariates are:

* sris personal savings divided by disposable income.

e popl5 is the percentage of the population under 15 years old.

* pop75 is the percentage of the population over 75 years old.

e dpi is per-capita income in dollars, net of taxes.

e ddpi is purchasing power—an aggregate economic index, expressed as a
percentage.

These data are averaged over the period 1960—1970, to remove any short-term
cycles or fluctuations.
Answer the following questions:

(a) Load the dataset and perform a graphical exploration.

(b) Propose a complete linear model to explain personal savings and comment on
all the items in the model.

(c) Explicitly perform the F test on the significance of the model.

(d) Explicitly perform the test on the significance of a regression coefficient related
to pop15.

(e) Calculate the 95% confidence interval for the regression coefficient related to
pop75.

(f) Calculate the 95% confidence interval for the regression coefficient related to
ddpi.

(g) Represent the 95% confidence region for the regression coefficients associated
with pop15 and pop75, adding the point (0, 0).

(h) Identify any influential points in the dataset using: H projection matrix,
standardised residuals, studentised residuals and Cook’s distance.

(i) Compare the influential points identified with the techniques proposed above,
using the commands influencePlot and influence.measures.

(j) Evaluate the impact of the different influential points on the model.

(k) Assess the homoscedasticity of the residuals.

(1) Assess the normality of the residuals.

Exercise 9.6 Load the dataset data_es2.RData, available in the online supple-
mentary material. This dataset is related to rocks found in the Casentino forests.
The dataset contains the following information:

¢ height: height of the rock [m].
e iron: percentage of iron in a cubic millimetre of rock.
e calcium: percentage of calcium in a cubic millimetre of rock.
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Researchers are interested in assessing whether the percentage of these two
elements can be predictive of the height of the rock.
Answer the following questions:

(a) Load the dataset and perform a graphical exploration of the variables.

(b) Propose a model to answer the researchers’ question.

(c) Verify the assumptions of the model.

(d) Evaluate a possible transformation of the response variable and redo all the
analyses.

Exercise 9.7 Consider the dataset state, available in R, in which data related to
50 US states are collected. The variables are estimated in July 1975:

e Income: per capita income (1974).

e Tlliteracy: illiteracy (1970, % of population).

e Life Exp: life expectancy in years (1969-71).

e Murder: murder rate per 100,000 inhabitants (1976).

e HS Grad: percentage of high school graduates (1970).

* Frost: average number of days with minimum temperature equal to 32° (1931—
1960).

e in capital or large city.

e Area: area (in square miles).

Consider 1ife expectancy as the response variable and answer the following
questions:

(a) Analyse the data with graphical methods.

(b) Evaluate and comment on a complete linear model.
(c) Assess the validity of the model assumptions.

(d) Evaluate an appropriate model reduction.

Exercise 9.8 We want to study a possible relationship between the height of tomato
plants and the average weight in grams of the tomatoes harvested.
The available data are as follows:

weight = c( 60, 65, 72, 74, 77, 81, 85, 90 )
height = c( 160, 162, 180, 175, 186, 172, 177, 184 )

Answer the following questions:

(a) Represent the data.

(b) Evaluate a simple linear model that predicts the average weight of the tomatoes
as the response variable.

(c) Calculate the confidence interval for the prediction of the mean responses,
considering 15 elements that have height within the range of the dataset values.

(d) Calculate the prediction interval of the responses, considering the elements from
the previous point.

(e) Compare the intervals obtained in points (c) and (d).
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9.3 Solutions

9.1

(a) The model we want to consider in this case is the following:
y=po+e 9.13)
in which the design matrix is constituted by the unit vector alone (X = T).
. 1 " yi
fo= T30 1Ty = Lty = 22 g
n n

therefore, in the absence of information, the best estimate we can provide is the
sample mean.
(b) The model we want to consider in this case is the following:

y = Bo+ Bix +&; 9.14)
The design matrix is:
1 x1
1 x;
X=1.. (9.15)
1 x,
Let’s then calculate:
n
xTX = [ noo e xi] : (9.16)
Y X iy X}
YhxE
xTx)! = ! ST [—1 —x} . 9.17)
i=1X; —
R L

We solve Eq. (9.5).

= 2. XiYi = i Xiyi/n _ Sy 9.18)
! Zn 2 i x) Sux’ .
n

i=1%
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~ 1 _ (Z, xi)2
S

9.2 The test we want to perform is the following:

Hy:fo=Pi=.=B,=0 vs H:3ic{l, . p}lp#0.

The test statistic to answer this test is based on the total variability SSro7 and
the residual variability SS;s:

n
SSror =Y (i — %
i=1

n
SSres = Y _(Fi — yi)*.
i=1

The test statistic is the following:

_ SStor — SSres/(p — 1)'
SSres/(n — p) ’

and it is distributed as a Fisher with parameters p — 1 and n — p.
If the p-value associated with F is less than 5%, we reject the null hypothesis,
i.e., there is at least one regression coefficient different from zero.

9.3 The test we want to perform is the following:
Hy:8, =0 vs Hj:pBi #0.
To perform the test, we construct the following test statistic T:

1B — 0|

se(B)



9.3

Solutions 151

where se(,éi) is the standard error of the coefficient estimate:

se(Bi) =+/62 - (XTX); .

Considering the assumptions of Theorem 9.3, it can be shown that T ~ ¢ (n — p).
We then calculate the p-value of the two-sided test and if it is less than 5% we

can conclude that the regression coefficient is different from zero.

9.4 The steps to be performed are:

(@)

(b)

©

Visualisation of the dataset using the pairs command. To correctly analyse this
graph, one must focus on three elements: (1) observe the trend of the response
variable with respect to the other variables in the dataset and determine whether
these trends suggest a linear regression model; (2) observe the relationship
between the variables in the dataset that we would like to use as regressors, if the
correlation is high probably, one of the two will be redundant and superfluous
within the model. The correlation can be measured with the cor command. (3)
Notice the possible presence of influential points in the dataset.

If the response variable is continuous and a linear trend can be assumed between
this and the predictors, then we can proceed with a linear regression model.
Evaluation of a linear regression model using the mod = 1m(y ~ x; 4+ x3 +
..+ x;) command. The parameters to analyse are: (1) the goodness of the model
through R? and Rg dj and (2) the significance of the regressors through the F
test and T test on the individual regressors. These elements can be obtained
automatically through the summary (mod) command.

Verification of the model assumptions. The assumptions to verify are:
(1) homoscedasticity of the residuals and (2) normality of the residuals.
Homoscedasticity can be evaluated graphically through a scatterplot of the
residuals, which sees the residuals on the y-axis and the j, the responses
estimated by the model on the x-axis, command plot(mod$fit, mod$res).
If the points are scattered around zero, we conclude that the assumption
of homoscedasticity is valid, if instead we observe a particular pattern the
assumption is violated.

The normality assumption can be verified both graphically (through gqplot
using the commands qqnorm(mod$res) and qqline(g$res)) and mathemat-
ically through the Shapiro-Wilks test, shapiro.test(mod$res).

These are the main steps for constructing and analysing a regression model.

However, we may encounter some issues:

Presence of influential points.

Violation of the normality assumption.

Predictors to which a parameter § is associated for which there is no statistical
evidence that it is different from 0.
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These issues are identified through:

* Analysis of the projection matrix H, standardised residuals or Cook’s distance.
» Shapiro test and qgplot.
* Analysis of the p-values of the t-tests associated with the regressor §;.

Finally, they can be resolved:

* By removing from the dataset those points defined as influential.

* By transforming the response variable (for example through Box-Cox transfor-
mation).

* By reducing the model.

Every time one of these three operations is performed, it is very important to
reconsider the validity of the model assumptions.

9.5

(a) Load the dataset.

data( savings )

# Dimensions
dim( savings )
## [1] 50 5

# Overview of the first rows

head( savings )

## sr popl5 pop75 dpi ddpi
## Australia 11.43 29.35 2.87 2329.68 2.87
## Austria 12.07 23.32 4.41 1507.99 3.93
## Belgium 13.17 23.80 4.43 2108.47 3.82
## Bolivia 5.75 41.89 1.67 189.13 0.22
## Brazil 12.88 42.19 0.83 728.47 4.56
## Canada 8.79 31.72 2.85 2982.88 2.43

In Fig. 9.2, we visualise the dataset using the pairs command, which presents
a matrix of r+1 x r+1 plots, where r represents the number of regressors (4 in this
case).

pairs(savings[ , c( ’sr’, ’'popl5’, ’pop75’, ’dpi’, ’'ddpi’ )1)

Let’s focus on the first row of the pairs output. On the y axis of all 4 graphs,
the values of sr, which is the response variable, are plotted against popl5, pop75,
dpi and ddpi, which are the predictors.

It is possible to notice a linear trend of sr with respect to pop75 and ddpi, while
there is no evident trend with respect to pop15 and dpi.

Observing also the other plots, we can say that pop15 and pop75 have a strong
negative correlation; pop75 and dpi present a positive linear relationship, while
popl5 and dpi seem to present a quadratic relationship. Finally, there do not appear
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Fig. 9.2 Data visualisation

to be evident relationships between the variable ddpi and the other considered
variables.

It is important to note that there are influential points, possible outliers (see the
last column of plots related to ddpi).

(b) Evaluate a complete linear model. To do this, we use the 1m command and set
sr as the response variable.

= Im( sr ~ popl5 + pop75 + dpi + ddpi, data = savings )
#g = lm( sr ~ ., savings )
summary( g )
##
## Call:
##lm(formula = sr ~ popl5 + pop75 + dpi + ddpi, data = savings)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.2422 -2.6857 -0.2488 2.4280 9.7509
##
## Coefficients:
## Estimate Std. Error t value Pr(G|t])
## (Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
## popl5S -0.4611931 ©.1446422 -3.189 0.002603 **
## pop75 -1.6914977 1.0835989 -1.561 0.125530
## dpi -0.0003369 0.0009311 -0.362 0.719173
## ddpi 0.4096949 0.1961971 2.088 0.042471 *
## ——-
##Signif. codes:0 ’***’ §.001 '**’ 0.01 '*’ .05 '.’ 0.1 ' 1
##
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## Residual standard error: 3.803 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904

gs = summary( g )

#names( g )

From the complete model, we deduce that 81 # 0 and B4 # 0, therefore pop15
and ddpi are predictive with respect to sr.

An indication of the goodness of the model (GOF) is given by the R” index
(33.85%) and Rc%dj (27.97%). The values obtained in this model are low, we
probably should consider a model reduction.

We now evaluate the estimated regression coefficients, both from the model
output and by calculating them explicitly.

X = model.matrix(g)

round( g$coefficients, 3 ) #beta_hat

## (Intercept) popl5 pop75 dpi ddpi

## 28.566 -0.461 -1.691 0.000 0.410

stopifnot(all.equal(solve(t(X)%*%X)%*%t (X)%*% savings$sr,
as.matrix( g$coefficients ) ) )

We have used the stopifnot command to verify that the outcome of the explicit
calculation of the $ is identical (all.equal) to the output of the 1m model.
We evaluate the y, both manually and from the model output.

y_hat_man = X %*% g$coefficients

stopifnot(all.equal(y_hat_man, as.matrix(g$fitted.values)))

The residuals of the model can be obtained through g$residuals. We find
p=r+1, with the command g$rank.

(c) The F statistic and the related test are represented in the model output. The test
performed is the following:

Hy:8,=0 Vi vs H;:3i| Bi #0.

We calculate the F test manually:

# SStot = Sum ( yi-ybar )42
SS_tot = sum( ( savings$sr-mean( savings$sr ) )42 )

# SSres = Sum ( residuals’2 )
SS_res = sum( g$res+2 )

g$rank # p = 5
dim(savings)[1] # n = 50

p
n
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f_test = ( ( SS_tot - SS_res )/(p-1) )/( SS_res/(n-p) )

1 - pf( f_test, p-1, n-p)
## [1] 0.0007903779

We observe that the p-value is equal to 0.0007904 (the same value we read in the
last line of summary(g)).

We therefore conclude that for standard confidence values we reject the null
hypothesis, so there is at least one regression coefficient that is not null.

(d) We manually evaluate the significance of f; (the parameter associated with
pop_15), that is, we perform:

Hy:81=0 vs Hy: B #0.

There are various ways to perform this test:

* [-test.

X = model.matrix( g )

sigma2 = (summary( g )$sigma)A2
#manually
sigma2 = sum( ( savings$sr - g$fitted.values )*2 ) / (n -p )

se_beta_1 = summary( g )$coef[ 2, 2 ]
#manually
se_beta_l = sqrt( sigma2 * diag( solve( t( X ) %*% X ) )[2] )

T.0 = abs( ( g$coefficients[ 2 ] - ® )/ se_beta_l )
2*(C 1-pt( T.0, n-p ) )

## popl5
## 0.002603019

e F-test on nested models.

To perform this test, we evaluate the nested model that includes all the variables
considered in the model g except for the variable whose effect we are evaluating.
Then we perform an F test on the residuals of the two models.

The test statistic we want to evaluate is the following:

S Sres (complete_model) — S S, (nested_model)
df (complete_model)—d f (nested_model)
SSes (complete_model)
df (complete_model)

Fy =

Fy ~ F(df (complete_model) — df (nested_model), d f (complete_model));
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where df are the degrees of freedom.

g2 = 1Im( sr ~ pop75 + dpi + ddpi, data = savings )
summary( g2 )

##

## Call:

## lm(formula = sr ~ pop75 + dpi + ddpi, data = savings)
##

## Residuals:

## Min 1Q Median 3Q Max

## -8.0577 -3.2144 0.1687 2.4260 10.0763

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 5.4874944 1.4276619 3.844 0.00037 ***
## pop75 0.9528574 0.7637455 1.248 0.21849

## dpi 0.0001972 0.0010030 0.197 0.84499

## ddpi 0.4737951 0.2137272 2.217 0.03162 *
## ---

##Signif. codes:® '***’ 0.001 ’**’ .01 '*’ 0.05 .’ 0.1 * 1
##

## Residual standard error: 4.164 on 46 degrees of freedom
## Multiple R-squared: 0.189, Adjusted R-squared: 0.1361
## F-statistic: 3.573 on 3 and 46 DF, p-value: 0.02093
SS_res_2 = sum( g2%residuals’2 )

f test_2 = ( ( SS_res_2 - SS_res ) / 1)/(C SS_res / (n-p) )

1 - pf( f_test_2, 1, n-p )
## [1] 0.002603019

NB It is not the F test that is reported in the last line of summary(g).

e ANOVA between the two nested models.

anova( 92, g )

## Analysis of Variance Table

##

## Model 1: sr ~ pop75 + dpi + ddpi

## Model 2: sr ~ popl5 + pop75 + dpi + ddpi

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 46 797.72

## 2 45 650.71 1 147.01 10.167 0.002603 **

##H -—-

##Signif. codes:® ’***’ 0.001 ’**’ .01 '*’ 0.05 .’ 0.1 * 1

We observe that the results obtained in all three ways lead us to assert that 8 is
significantly different from 0.

(e) We calculate the 95% confidence interval for the regression coefficient related
to pop75.
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The interval we want to calculate is:

1C1-a)(B2) = [B2 £ t1—ajp(n — p) - se(B2)],

where « = 5% and df =n — p = 45.

alpha = 0.05

t_alpha2 = qt( 1-alpha/2, n-p )
beta_hat_pop75 = g$coefficients[3]
se_beta_hat_pop75 = summary( g )[[4]1]1[3,2]

IC_pop75 = c( beta_hat_pop75 - t_alpha2 * se_beta_hat_pop75,
beta_hat_pop75 + t_alpha2 * se_beta_hat_pop75 )

IC_pop75

## pop75 pop75

## -3.8739780 0.4909826

We observe that 1C(1_q)(B2) includes 0, so we have no evidence to reject Hp :
B> = 0, with a confidence level of 5%. This result is in line with what was obtained
in the model output (p-value equal to 12.5%).

(f) We calculate the 95% confidence interval for the regression parameter associ-
ated with ddpi.

alpha = 0.05

t_alpha2 = qt( l-alpha/2, n-p )
beta_hat_ddpi = g$coefficients[5]
se_beta_hat_ddpi = summary( g )[[4]1]1[5,2]

IC_ddpi = c( beta_hat_ddpi - t_alpha2 * se_beta_hat_ddpi,
beta_hat_ddpi + t_alpha2 * se_beta_hat_ddpi )

IC_ddpi

## ddpi ddpi

## 0.01453363 0.80485623

In this case, we observe that 1 C(1_q)(B4) does not include 0, we have evidence
to reject Hy : Ba = 0, at 5% confidence. However, the lower limit of the interval
IC1—q)(Bs) is very close to 0. We can see in fact from the output that the p-value
is equal to 4.2%, slightly less than 5%, which confirms the above.

Furthermore, the confidence interval is quite wide, given that the upper limit is
80 times the lower limit. This testifies a high level of variability relative to the effect
of ddpi on the response variable.
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Fig. 9.3 95% confidence region for the regression coefficients associated with pop15 and pop75.
The black diamond represents the centre of the ellipse, while the circle with the black border the
null hypothesis that is to be tested

(g) We construct in Fig.9.3 the confidence region at 95% for the regression
coefficients associated with pop15 and pop75.

#help( ellipse )
plot( ellipse( g, c(C 2, 3 ) ), type = "1", xlim = c(C -1, 0 ) )

#vector we are testing in the null hypothesis
points( 0, 0 )
points( g$coef[ 2 ] , g$coef[ 3 ], pch =18, col =1)

The coordinates of the centre of the ellipse, represented by a black square, are
(31, /§2). The circle with the black border represents the null hypothesis tested,
namely (0,0), and is outside the confidence region.

We are interested in evaluating this test:

Ho: (B1,f2) =(0,0)  wvs  Hi:(Br1.p2) # (0,0).

Since the point (0, 0) is outside the confidence region, we reject Hy with a
level equal to 5%. This means that at least one of the two regression coefficients
is different from 0.

Observation It is important to underline that the confidence region is different
from the Cartesian product of the two individual confidence intervals: 1C1—q)(81)
X IC—q)(B2). We represent in Fig.9.4 the Cartesian product of the marginal
confidence intervals.
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Fig. 9.4 95% confidence region for the regression coefficients associated with pop15 and pop75.
The 95% confidence intervals for the individual predictors are highlighted with dashed lines

beta_hat_popl5 = g$coefficients[2]
se_beta_hat_popl5 = summary( g )[[4]1]1[2,2]

IC_popl5 = c( beta_hat_popl5 - t_alpha2 * se_beta_hat_popl5,
beta_hat_popl5 + t_alpha2 * se_beta_hat_popl5 )

IC_popl5

## popl5 popl5

## -0.7525175 -0.1698688
plot( ellipse( g, c(C 2, 3 ) ), type = "1", xlim = c( -1, 0 ) )

points( 0, 0 )
points( g$coef[ 2 ] , g$coef[ 3 ] , pch = 18 )

#new part
abline( v = c( IC_popl5[1], IC_popl5[2] ), lty
abline( h = c¢( IC_pop75[1], IC_pop75[2] ), lty =

NN
(SN

Observation The 0 is included in the interval 1C(1—q)(f2) and is not included in
the interval I C(1—q)(B1), as one might expect from the previous point.

Observation It may happen to accept the null hypothesis that you want to test,
analysing the Cartesian product of the marginal ICs and to reject, considering the
joint confidence region (case represented by the grey triangle in Fig.9.5). It may
happen to reject the null hypothesis that you want to test, analysing the Cartesian
product of the marginal ICs and to accept, considering the joint confidence region
(case represented by the grey circle in Fig. 9.5). In these ambiguous situations, we
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Fig. 9.5 95% confidence region for the regression coefficients associated with pop15 and pop75.
The 95% confidence intervals for the individual predictors are highlighted with dashed lines. The
grey circle and triangle represent two possible null hypotheses that you want to test

must always refer to the joint confidence region, because it takes into account the
possible dependence present between the estimators of the two tested coefficients.

plot( ellipse( g, c(C 2, 3 ) ), type = "1", xlim = cC -1, 0 ) )

points( 0, 0 )
points( g$coef[ 2 ] , g$coef[ 3 ] , pch = 18 )

abline( v = c¢( IC_popl5[1], IC_popl5[2] ), 1ty
abline( h c( IC_pop75[1], IC_pop75[2] ), lty

1
NN
(N

#new part
points( -0.22, 0.7, col = "gray60", pch = 16, 1lwd = 2 )
points( -0.71, 0, col = "gray60", pch = 17, lwd = 2 )

cor( savings$popl5, savings$pop75 )
## [1] -0.9084787

In this case, the ellipse has high eccentricity, which makes us think of a strong
correlation between the two variables pop15 and pop75. This intuition is confirmed
by the correlation coefficient very close to — 1.

Observation This intuition was also reported in the comment to the pairs plot.

(h) We evaluate the presence of any influential points in the dataset through the
following techniques:
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* H projection matrix (leverage points).

o Standardised Residuals.

» Studentised Residuals.

* Cook’s Distance.

e The leverage points are defined as the elements of the diagonal of the projection
matrix H = X(XTX)"1x7T.

X = model.matrix( g )

lev = hat( X )
round( lev, 3 )

# similarly
lev = hatvalues( g )

#manually
H =X %*% solve( t( X ) %*% X ) %*% t( X )
lev = diag( H )

#trace
sum(lev)
## [1] 5

Observation The trace of the matrix H (tr(H) = ) _; hi;) is equal to the rank of
the matrix X, which is p = r + 1, assuming that the covariates are uncorrelated
with each other and p < n. p is the dimension of the column space of X
(col(X)). According to the geometric interpretation of the least squares estimate
of the coefficients, H is the projection matrix onto col (X). In fact, the estimates y
are obtained as HYy.

Rule of Thumb A data point is defined as a leverage point if:

h“ >2-

S|

plot( g$fitted.values, lev, xlab = ’Fitted values’,
ylab = "Leverages", pch = 16, col = ’black’ )

abline( h =2 * p/n, 1ty = 2, col =1)

watchout_points_lev = lev[ which( lev > 2 * p/n ) ]
watchout_ids_lev = seq_along( lev )[ which( lev > 2 * p/n ) ]
points( g$fitted.values[ watchout_ids_lev ],
watchout_points_lev,
col = ’'gray60’, pch = 16 )
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Fig. 9.6 Identification of leverage points in grey. The dashed line is y =2p/n

sum( lev ) # check: sum_i hat( x )_i =r + 1
## [1] 5

lev [ lev > 2 * 5/ 50 ]

## Ireland Japan United States Libya
## 0.2122363 0.2233099 0.3336880 0.5314568
sum( lev [ lev > 2 * 5 /50 1)

## [1] 1.300691

In Fig. 9.6 we therefore identify Ireland, Japan, the USA and Libya as leverage
points.

We visualise the leverage points using pairs in Fig.9.7 and notice that these
points are indeed at the extremes of the plots.

colors = rep( ’black’, nrow( savings ) )
colors[ watchout_ids_lev ] = rep(’gray60’,
length( watchout_ids_lev ) )

pairs( savings[ , c( ’sr’, ’popl5’, ’'pop75’, ’dpi’, ’ddpi’ ) 1,
pch = 16, col = colors,
cex = 1+ 0.5 * as.numeric( colors != ’black’ ) )

*  We now evaluate the influential points through the standardised residuals.

We define the standardised residuals as:

A

std_yi_yi
M=

r
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Fig. 9.7 Visualisation of the data under analysis. Influential points are represented in light grey

Rule of Thumb We define influential points as the data for which the following

inequality holds:

sid| > 2,

|rl

We represent the standardised residuals (on the y-axis) and the y (on the x-axis)
and highlight the influential points in Fig. 9.8 based on the standardised residuals

and the leverages.

gs = summary(g)
res_std = g$res/gs$sigma

watchout_rstd = res_std[watchout_ids_rstd ]
watchout_rstd

## Chile Zambia

## -2.167486 2.564229

# Standardised residuals (not studentised)
par( xpd = T, mar = par()$mar + c(0,0,1,0))
plot( g$fitted.values, res_std,
xlab = 'Fitted values’,
ylab = "Standardised residuals")
segments( 5, -2, 16, -2, 1ty = 2, col = 1)
segments( 5, 2, 16, 2, 1ty = 2, col =1 )
points( g$fitted.values[watchout_ids_rstd],
res_std[watchout_ids_rstd],
col = 'grey60’, pch = 16 )
points( g$fitted.values[watchout_ids_lev],

watchout_ids_rstd = which( abs( res_std ) > 2 )
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res_std[watchout_ids_lev],
col = ’gray60’, pch = 17 )
legend("top", inset=c(®,-0.2), horiz =T,
col = rep(’gray70’,3),
c(’Std. Residuals’, ’Leverages’),
pch = c( 16, 17 ), bty = 'n’ )

9 Linear Regression

#sort( g$res/gs$sigma )
sort( g$res/gs$sigma ) [ c(C 1, 50 ) ]
#i# Chile Zambia
## -2.167486 2.564229

#countries = row.names( savings )
#identify( 1:50, g$res/gs$sigma, countries )

The identify command allows you to identify the points of the graph, in fact
by double-clicking on a certain point the label attached to it appears.

Representing the residuals on the y-axis simply in the order in which they appear
in the dataset, allows us to say if there is a particular trend with respect to the

sampling order. This graph is represented in Fig. 9.9.

plot( g$res/gs$sigma, xlab = "Order of appearance",
ylab = "Standardised residuals" )

¢ Std. Residuals “ Leverages
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Fig. 9.8 Representation of the standardised residuals. The grey circles represent the influential
points identified according to the criterion of standardised residuals. The grey triangles represent

the influential points identified according to the leverages
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Fig. 9.9 Standardised Residuals in order of appearance in the dataset

summary( g$res/gs$sigma )
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.16749 -0.70628 -0.06543 0.00000 0.63850 2.56423

#countries = row.names( savings )
#identify( 1:50, g$res/gs$sigma, countries )

We do not identify any particular trend with respect to the sampling order.

¢ We define the studentised residuals r; as:

&
=
LS VTR
It can be shown that r; are distributed as #(n — p). Since the distribution of r;
is known, we can calculate the p-value to test if the i-th data point is an influential
point. In reality, we would like to simultaneously test if there are multiple influential
points, hence it is important to adjust the significance level of the tests. There are
various methods of correcting the significance level in the case of multiple tests,
including the Bonferroni correction.

gs = summary( g )

gs$sigma
## [1] 3.802669

#manually
stud = g¥residuals / ( gs$sigma * sqrt( 1 - lev ) )
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#automatically
stud = rstandard( g )

watchout_ids_stud = which( abs( stud ) > 2 )
watchout_stud = stud[ watchout_ids_stud ]
watchout_stud

## Chile Zambia

## -2.209074 2.650915

par( xpd = T, mar = par()$mar + c(0,0,1,0))
plot( g$fitted.values, stud,
ylab = "Studentised residuals",
xlab = "Fitted values", pch = 16 )
points( g$fitted.values[watchout_ids_stud],
stud[watchout_ids_stud],
col = ’'gray70’, pch = 16 )
points( g$fitted.values[watchout_ids_rstd],
stud[watchout_ids_rstd],
col = ’gray70’, pch = 17 )
points( g$fitted.values[watchout_ids_lev],
stud[watchout_ids_lev],
col = ’'gray70’, pch = 18 )
segments( 5, -2, 16, -2, 1ty = 2, col
segments( 5, 2, 16, 2, 1ty = 2, col =
legend( "top", inset=c(0,-0.2),
horiz = T, xpd = T, col = rep(’gray70’,3),
c(’Studentised Res.’,
’Standardised Res.’, ’Leverages’),
pch = c(C 16, 17,18 ), bty = 'n’ )

=1)
1)

In Fig. 9.10, Chile and Zambia are identified as influential points.

In the graph, we do not identify any pink points (influential points according
to the studentised residuals), because the studentised and standardised residuals
identify the same influential points.

¢ Cook’s distance is defined as follows:

C__ﬁ.[ i),
I — ’
p L1—h

where r; are the studentised residuals. We observe that this measure is a
combination of the concept of leverage point (through #%;;) and the concept of
influential point given by the residuals (through ;).

Rule of Thumb A point is defined as influential, if the following inequality holds:

4
n—p

C; >
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Fig. 9.10 Representation of the studentised residuals. Those data identified as influential points
based on the leverages (grey diamonds), standardised residuals (grey triangles) and studentised
residuals (grey circles) are highlighted

We represent in Fig.9.11 Cook’s distance for each point and highlight in
light grey the points defined as influential (i.e., those exceeding the threshold

y=4/(n —p)).

Cdist = cooks.distance( g )

watchout_ids_Cdist = which( Cdist > 4/(n-p) )
watchout_Cdist = Cdist[ watchout_ids_Cdist ]
watchout_Cdist

## Japan Zambia Libya

## 0.14281625 0.09663275 0.26807042

plot( g$fitted.values, Cdist, pch=16, xlab="Fitted values’,
ylab = ’Cook\’s distance’ )
points( g$fitted.values[ watchout_ids_Cdist ],
Cdist[ watchout_ids_Cdist ],
col = ’'gray70’, pch = 16 )
abline( h = 4/(n-p), 1ty = 2, col =1)

In Fig. 9.11, we identify as influential points according to Cook’s distance: Japan,
Zambia and Libya.

(i) One way to directly and effectively evaluate influential points in the dataset is
given by the command influence.Plot. The graph depicts the studentised
residuals on the y-axis, the leverages (h;;) on the x-axis and each point of the
graph is depicted as a circle, the radius of which is proportional to Cook’s
distance.
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Fig. 9.12 Influence plot

influencePlot( g, id=list(method="identify"))

In Fig. 9.12 the influence plot of the dataset under examination is represented and
Zambia, Japan, USA, Libya and Chile are highlighted as influential points.

Another technique to get an immediate idea of the influential points present in
the graph, is to apply the command influential.measures, which represents
in matrix form various methods of diagnosing influential points (such as &;; and
Cook’s distance).
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The DFBETAs (first » columns of the matrix) represent the impact of the single
statistical unit in the estimation of B. In particular, the DFBETA associated with the
regressor j is:

Bi—Bjo .
N Tya—1
VO X X);

where the subscript (i) indicates that we are neglecting the i-th observation.
The DFFITs (column r + 1) represent the impact of the single statistical unit in
the estimation of y. In particular, the DFFIT associated with observation i is:

)A’i - )A’i(i)

6 Vhii

The larger the values of DFBETAs and DFFITs associated with the i-th observa-
tion, the more inclined we are to declare the i-th observation as an influential point.

Data that are anomalous according to all criteria are marked with an asterisk
(Chile, USA, Zambia and Libya in this case).

infl_point_overview = influence.measures( g )
summary ( infl_point_overview )

## Potentially influential observations of

## lm(formula = sr~popl5 + pop75 + dpi + ddpi,data = savings):
##

## dfb.1_ dfb.ppl5 dfb.pp75 dfb.dpi dfb.ddpi
## Chile -0.20 0.13 0.22 -0.02 0.12

## United States 0.07 -0.07 0.04 -0.23  -0.03

## Zambia 0.16 -0.08 -0.34 0.09 0.23

## Libya 0.55 -0.48 -0.38 -0.02 -1.02_%*
## dffit cov.r cook.d hat

## Chile -0.46 0.65_* 0.04 0.04

## United States -0.25 1.66_* 0.01 0.33_%

## Zambia 0.75 0.51_* 0.10 0.06

## Libya -1.16_* 2.09_* 0.27 0.53_%

(j) To evaluate the effect of influential points on the outcome of the model, two
quantities can be considered:

e The variation of /§ in the case of evaluating a model using the entire dataset
and in the case of evaluating a model using the entire dataset minus the i —th
observation:

)
p
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* The variation of the estimated responses ¥ in the case of evaluating a model using
the entire dataset and in the case of evaluating a model using the entire dataset
minus the i-th observation:

¥—30 = X" (B - Bay-

Let’s now evaluate how the model coefficients vary, in the case where the
influential points are removed from the dataset according to the values of h;; and
Cook’s distance.

* Leverage points.

gl = Im( sr ~ popl5 + pop75 + dpi + ddpi, savings,
subset = ( lev < 0.2 ) )
summary( gl )

##

## Call:

## Im(formula = sr ~ popl5 + pop75 + dpi + ddpi, data=savings,
##t subset = (lev < 0.2))

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.9632 -2.6323 0.1466 2.2529 9.6687

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t]|)

## (Intercept) 2.221e+01 9.319e+00 2.384 0.0218 *

## popls -3.403e-01 1.798e-01 -1.893 0.0655 .

## pop75 -1.124e+00 1.398e+00 -0.804 0.4258

## dpi -4.499%e-05 1.160e-03 -0.039 0.9692

## ddpi 5.273e-01 2.775e-01 1.900 0.0644 .

## -—-

##Signif. codes:0 ’***’ §.001 '**’ 0.01 '*’ 0.05 ’.’ 0.1 ' 1
##

## Residual standard error: 3.805 on 41 degrees of freedom
## Multiple R-squared: 0.2959, Adjusted R-squared: 0.2272
## F-statistic: 4.308 on 4 and 41 DF, p-value: 0.005315

abs( ( g$coefficients - gl$coefficients ) / g$coefficients )
## (Intercept) popl5 pop75 dpi ddpi
## 0.2223914 0.2622274 0.3353998 0.8664714 0.2871002

The leverage points significantly influence the estimates, in fact, a variation of at
least 22% (relative variation to Bp) is recorded.

e Cook’s distance.

#id_to_keep = (1:n)[ - watchout_ids_Cdist ]
id_to_keep = !( 1:n %in% watchout_ids_Cdist )

gl = Im( sr ~ popl5 + pop75 + dpi + ddpi,
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savings[ id_to_keep, ] )

abs( ( gl$coef - g$coef )/g$coef )
## (Intercept) popl5 pop75 dpi ddpi
## 0.305743704 0.339320881 0.820854095 0.642906116 0.009976742

In this case too, there is a strong variation of the estimated coefficients, except
for ddpi.

(k) We evaluate the homoscedasticity of the residuals through scatterplot analysis.

We start by evaluating the homoscedasticity through a scatterplot, Fig.9.13,
where ¢ are reported on the y-axis and § are reported on the x-axis.

plot( g$fit, g$res, xlab = "Fitted values",
ylab = "Residuals",
pch = 16 )

abline( h = 0, lwd = 2, 1ty = 2, col =1 )

In Fig. 9.13 we observe that the residuals are quite scattered around 0, but there
are extreme points in the graph. It would be appropriate to redo this analysis after
setting the model on a subset of the dataset that does not contain leverage points.

(1) We evaluate the normality of the residuals through:

* QQ-plot.
¢ Shapiro-Wilk test.
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Fig. 9.13 Scatterplot of residuals
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Fig. 9.14 QQ-plot of residuals

qgnorm( g$res, ylab = "Residuals",
xlab = "Theoretical quantiles",
main = NULL, pch = 16 )
qqline( g$res )

shapiro.test( g$res )

##

## Shapiro-Wilk normality test
##

## data: g$res

## W = 0.98698, p-value = 0.8524

From the QQ-plot in Fig.9.14 we observe that the empirical quantiles of the
residuals (reported on the y-axis) are well approximated by the theoretical quantiles
of a standard Gaussian (reported on the x-axis).

From the Shapiro test we obtain a p-value of 0.8524, so we can accept the null
hypothesis, i.e. the normality of the residuals.

9.6

(a) We import the dataset and visualise it in Fig. 9.15.

load("data_es2.RData")
pairs(data_es2)
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Fig. 9.15
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From the pairs plot we infer a linear relationship between height and iron and
between height and calcium. There seems to be no correlation between iron and
calcium.

(b) We evaluate a multiple linear regression model to answer the researchers:

##
##

Multiple R-squared:
F-statistic:

mod = Im(altezza ~ ferro + calcio, data = data_es2)
summary (mod)

##

## Call:

## 1lm(formula = altezza ~ ferro + calcio, data = data_es2)
##

## Residuals:

## Min 1Q Median 3Q Max

## -1.2277 -0.2160 0.0025 0.2415 0.7597

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 1.40856 0.13889 10.14 <2e-16 ***
## ferro 0.36849 0.03148 11.71 <2e-16 ***
## calcio 0.13818 0.01353 10.21 <2e-16 ***
##H -—-

##Signif. codes:® ’***’ 0.001 ’**’ .01 '*’ 0.05 .’ 0.1 ’ 1
##

## Residual standard error: 0.3148 on 97 degrees of freedom
0.7156, Adjusted R-squared:
122.1 on 2 and 97 DF,

0.7098
p-value: < 2.2e-16
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Fig. 9.16 Standardised residuals

The model is quite good (R?> = 71.56%) and both predictors are significant.
Moreover, the estimated Bs are positive, so as the percentages of iron and calcium
increase, there is an increase in the height of the rock.

(c) We evaluate the validity of the model assumptions:

* Homoscedasticity.
e Normality.

mod_res = mod$residuals/summary(mod) $sigma
plot( mod$fitted, mod_res,

xlab = 'Fitted values’,

ylab = ’Standardised residuals’ )

From the scatterplot of residuals in Fig.9.16, we infer that The assumption of
homoscedasticity is respected, although there seem to be some leverage points.
Before investigating these extreme points, we proceed to verify normality.

qgqnorm( mod_res, ylab = "Standardised residuals",
xlab = "Theoretical quantiles",
main = NULL, pch = 16 )

qgqline( mod_res, col =1, 1ty = 2 )
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Fig. 9.17 QQ-plot of residuals

shapiro.test( mod_res )

##

## Shapiro-Wilk normality test
##

## data: mod_res

## W = 0.97051, p-value = 0.0242

Observing the residuals in Fig. 9.17, we notice that the assumption of normality
is violated, as there are heavy and negative tails. Furthermore, the p-value of the
Shapiro test is less than 5%. Therefore we conclude that the assumption of normality
is violated.

(d) Given that the assumption of normality is violated and that the response variable
can only take positive values, we evaluate the Box-Cox transformation of the
response variable.

b = boxcox( height ~ iron + calcium,
lambda = seq(0.3, 5, by=0.01), data = data_es2)

names (b)

## [1] "x" "y"

#y likelihood evaluation

#x lambda evaluated

best_lambda_ind = which.max( b$y )
best_lambda = b$x[ best_lambda_ind ]
best_lambda

## [1] 2.28
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log-Likelihood

Fig. 9.18 Box-Cox type transformation

The best transformation that emerges from Fig. 9.18 is the one associated with the
maximum of the curve. The estimates are obtained through maximum likelihood.
According to this method, the best transformation is associated with A = 2.28.
Despite this, we would like an interpretable transformation, so we opt for A = 2 and
calculate the square of the y.

We retrace the analyses.

modl = 1lm( ( height )42 ~ iron + calcium, data = data_es2 )
summary (mod1)

##

## Call:

## Im(formula = (height)A2 ~ iron + calcium, data = data_es2)
##

## Residuals:

## Min 1Q Median 3Q Max

## -4.6364 -1.3311 -0.0558 1.3655 6.4870

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) -1.01712 0.84971 -1.197 0.234

## iron 2.39617 0.19256 12.443 <2e-16 ***
## calcium 0.89183 0.08276 10.776 <2e-16 ***
## -—-

##Signif. codes:0® ’***’ §.001 '**’ 0.01 '*’ 0.05 ’.’ 0.1 ' 1
##

## Residual standard error: 1.926 on 97 degrees of freedom
## Multiple R-squared: 0.7385, Adjusted R-squared: 0.7332
## F-statistic: 137 on 2 and 97 DF, p-value: < 2.2e-16

modl_res = modl$residuals/summary( modl )$sigma
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plot( modl$fitted, modl_res,
xlab = ’Fitted values’,
ylab = ’Standardised residuals’ )

In Fig.9.19 we can see that the residuals have a cloud-like behaviour around
zero, so the assumption of homoscedasticity is valid. However, there remains an
influential point that should be further investigated.

qgnorm( modl_res, ylab = "Standardised residuals",
xlab = "Theoretical quantiles"”,
main = NULL, pch = 16 )

abline( 0, 1, col =1, 1ty = 2)

shapiro.test( residuals( modl ) )
##

## Shapiro-Wilk normality test
##

## data: residuals(modl)

## W = 0.98644, p-value = 0.401

The QQ-plot in Fig.9.20 and the Shapiro test confirm the normality of the
residuals.

9.7

(a) We represent the data using the pairs command in Fig. 9.21.
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Fig. 9.19 Scatterplot of standardised residuals
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Fig. 9.21 Data visualisation

data( state )
statedata = data.frame( state.x77, row.names = state.abb,
check.names = T )

#head( statedata )

pairs( statedata )




9.3 Solutions 179

X = statedata [ , -4 ] #we do not consider the response variable
cor( X )

## Population Income Illiteracy Murder
## Population 1.00000000 0.2082276 0.10762237 0.3436428
## Income 0.20822756 1.0000000 -0.43707519 -0.2300776
## Illiteracy 0.10762237 -0.4370752 1.00000000 0.7029752
## Murder 0.34364275 -0.2300776 0.70297520 1.0000000
## HS.Grad -0.09848975 0.6199323 -0.65718861 -0.4879710
## Frost -0.33215245 0.2262822 -0.67194697 -0.5388834
## Area 0.02254384 0.3633154 0.07726113 0.22839602
## HS.Grad Frost Area

## Population -0.09848975 -0.3321525 0.02254384

## Income 0.61993232 0.2262822 0.36331544

## Illiteracy -0.65718861 -0.6719470 0.07726113

## Murder -0.48797102 -0.5388834 0.22839021

## HS.Grad 1.00000000 0.3667797 0.33354187

## Frost 0.36677970 1.0000000 0.05922910

## Area 0.33354187 0.0592291 1.00000000

Observation It is important to pay attention to spurious correlations between two
variables, i.e., entirely random correlations, in which there is no plausible logical-
causal mechanism that relates them. On these sites, you can find some amusing
examples of spurious correlations:

http://www.tylervigen.com/spurious-correlations
http://guessthecorrelation.com

From the graphical representation of the data, we intuit an evident positive
linear dependence between the outcome variable Life Exp and HS.Grad, Frost
and Income (although the last two less evidently). There is also a negative linear
dependence between Life Exp and the variables Murder and I1literacy.

There may be some influential points present.

(b) We investigate the complete model.

g = Im( Life.Exp ~ ., data = statedata )

summary( g )

##

## Call:

## Im(formula = Life.Exp ~ ., data = statedata)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.48895 -0.51232 -0.02747 0.57002 1.49447

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])
## (Intercept) 7.094e+01 1.748e+00 40.586 < 2e-16 ***
## Population 5.180e-05 2.919e-05 1.775 0.0832 .
## Income -2.180e-05 2.444e-04 -0.089 0.9293


http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
http://guessthecorrelation.com
http://guessthecorrelation.com
http://guessthecorrelation.com
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## Illiteracy 3.382e-02 3.663e-01 0.092 0.9269

## Murder -3.011e-01 4.662e-02 -6.459 8.68e-08 ***

## HS.Grad 4.893e-02 2.332e-02 2.098 0.0420 *

## Frost -5.735e-03 3.143e-03 -1.825 0.0752 .

## Area -7.383e-08 1.668e-06 -0.044 0.9649

## -—-

##Signif. codes:0 ’***’ §.001 '**’ 0.01 '*’ 0.05 .’ 0.1 ' 1
##

## Residual standard error: 0.7448 on 42 degrees of freedom
## Multiple R-squared: 0.7362, Adjusted R-squared: 0.6922
## F-statistic: 16.74 on 7 and 42 DF, p-value: 2.534e-10

We observe that the model represents the data well (R? equal to 0.7362), although
only the variables murder and HS.grad seem to be significant. An increase in
the murder rate (murder) leads to a decrease in life expectancy (Life Exp). This
statement is motivated by the fact that ﬁmurd” = —0.3 is negative. On the contrary
BHS.grad = 0.048 is positive, so an increase in the percentage of high school
graduates (HS.grad) leads to an increase in Life Exp.

(c) We verify the hypothesis of homoscedasticity.

plot( g$fitted, g$residuals/summary(g)$sigma,
xlab = 'Fitted values’,
ylab = ’Standardised residuals’ )

In Fig.9.22 we observe that the residuals are scattered around zero, so the
hypothesis of homoscedasticity seems to be respected.
We evaluate the normality of the residuals.
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Fig. 9.22 Scatterplot of residuals
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Fig. 9.23 QQ-plot of residuals

qgnorm( g$residuals/summary(g) $sigma,
ylab = "Standardised residuals",
x1lab "Theoretical quantiles”,
main = NULL, pch = 16 )

abline( 0, 1, col =1, 1ty = 2 )

shapiro.test( residuals( g ) )
##

## Shapiro-Wilk normality test
##

## data: residuals(g)

## W = 0.97926, p-value = 0.5212

From the QQ-plot in Fig.9.23, we observe that the empirical quantiles of the
standardised residuals are very close to the theoretical quantiles of a standard
normal, moreover the p-value of the Shapiro test is much higher than 5%, therefore
we conclude that the residuals are normal.

(d) We proceed with a selection of the variables in the model with:

e Manual backward selection.
¢ Automatic selection.

Manual Backward Selection
At each step, we remove the predictor associated with the lowest significance (i.e.,
highest p-value).

We select the model that has all predictors with p-value below 5%.
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We therefore start by removing Area.

# remove Area

gl = update( g, . ~ . - Area )

summary( gl )

##

## Call:

## Im(formula = Life.Exp ~ Population + Income + Illiteracy +
## + Murder + HS.Grad + Frost, data = statedata)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.49047 -0.52533 -0.02546 0.57160 1.50374

##

## Coefficients:

## Estimate Std. Error t value Pr(G|t])

## (Intercept) 7.099e+01 1.387e+00 51.165 < 2e-16 ***

## Population 5.188e-05 2.879%e-05 1.802 0.0785 .

## Income -2.444e-05 2.343e-04 -0.104 0.9174

## Illiteracy 2.846e-02 3.416e-01 0.083 0.9340

## Murder -3.018e-01 4.334e-02 -6.963 1.45e-08 ***

## HS.Grad 4.847e-02 2.067e-02 2.345 0.0237 *

## Frost -5.776e-03 2.970e-03 -1.945 0.0584 .

## -—-

##Signif. codes:® ’'***’ 0.001 ’**’ §.01 '*’ 0.605 .’ 0.1 ’ 1
##

## Residual standard error: 0.7361 on 43 degrees of freedom
## Multiple R-squared: 0.7361, Adjusted R-squared: 0.6993
## F-statistic: 19.99 on 6 and 43 DF, p-value: 5.362e-11
#help(’update’)

#help('update.formula’)

We remove Illiteracy.

# remove Illiteracy

g2 = update( g1, . ~ . - Illiteracy )

summary( g2 )

##

## Call:

## lm(formula = Life.Exp ~ Population + Income + Murder +
## + HS.Grad + Frost, data = statedata)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.4892 -0.5122 -0.0329 0.5645 1.5166

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t]|)

## (Intercept) 7.107e+01 1.029e+00 69.067 < 2e-16 ***
## Population 5.115e-05 2.709e-05 1.888 0.0657 .
## Income -2.477e-05 2.316e-04 -0.107 0.9153

## Murder -3.000e-01 3.704e-02 -8.099 2.91e-10 ***
## HS.Grad 4.776e-02 1.859e-02 2.569 0.0137 *
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## Frost -5.910e-03 2.468e-03 -2.395 0.0210 *

## -—-

##Signif. codes:® ’***’ 0.001 ’**’ §.01 '*’ 0.05 ’.” 0.1 ' ’'1
##

## Residual standard error: 0.7277 on 44 degrees of freedom
## Multiple R-squared: 0.7361, Adjusted R-squared: 0.7061
## F-statistic: 24.55 on 5 and 44 DF, p-value: 1.019e-11

We remove Income.

# Remove Income

g3 = update( g2, . ~ . - Income )

summary( g3 )

##

## Call:

## Im(formula = Life.Exp ~ Population + Murder + HS.Grad +
## + Frost, data = statedata)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.47095 -0.53464 -0.03701 0.57621 1.50683

##

## Coefficients:

##t Estimate Std. Error t value Pr(>|t])

## (Intercept) 7.103e+01 9.529e-01 74.542 < 2e-16 ***
## Population 5.014e-05 2.512e-05 1.996 0.05201 .

## Murder -3.001e-01 3.661e-02 -8.199 1.77e-10 ***

## HS.Grad 4.658e-02 1.483e-02 3.142 0.00297 **

## Frost -5.943e-03 2.421e-03 -2.455 0.01802 *

## -—-

##Signif. codes:® ’***’ 0.001 ’**’ 0.01 '*’ 0.05 ’.’ 0.1 ' ’'1
##

## Residual standard error: 0.7197 on 45 degrees of freedom
## Multiple R-squared: 0.736, Adjusted R-squared: 0.7126
## F-statistic: 31.37 on 4 and 45 DF, p-value: 1.696e-12

We remove Population.

# remove Population

g4 = update( g3, . ~ . - Population )

summary( g4 )

##

## Call:

## lm(formula = Life.Exp ~ Murder + HS.Grad + Frost,
## data = statedata)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.5015 -0.5391 0.1014 0.5921 1.2268

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])
## (Intercept) 71.036379  0.983262 72.246 < 2e-16 ***
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## Murder -0.283065 0.036731 -7.706 8.04e-10 ***

## HS.Grad 0.049949 0.015201 3.286 0.00195 **

## Frost -0.006912 0.002447 -2.824 0.00699 **

## -—-

##Signif. codes:® ’***’ 0.001 ’**’ 0.01 '*’ 0.05 ’.’ 0.1 ' ’'1
##

## Residual standard error: 0.7427 on 46 degrees of freedom
## Multiple R-squared: 0.7127, Adjusted R-squared: 0.6939
## F-statistic: 38.03 on 3 and 46 DF, p-value: 1.634e-12

The decision to remove or retain Population should also be guided by the
interpretation and importance of the variable. Without additional information, we
can remove it since this leads to a slight decrease in R? (from 0.736 to 0.713).

Automatic Selection
To perform an automatic model selection, the command step is used. Various
criteria can be used to proceed in the selection:

* AIC.
» BIC.

2
. Radj.

Furthermore, a selection can be used:

* backward (start from the complete model and reduce);
» forward (start from the model with only intercept and add variables).

The default criterion used is AIC and the method is backward.

#help( step )
g = Im( Life.Exp ~ ., data = statedata )

step( g )
## Start: AIC=-22.18
## Life.Exp ~ Population + Income + Illiteracy + Murder +

## + HS.Grad + Frost + Area

##

## Df Sum of Sq RSS AIC
## - Area 1 0.0011 23.298 -24.182
## - Income 1 0.0044 23.302 -24.175
## - Illiteracy 1 0.0047 23.302 -24.174
## <none> 23.297 -22.185
## - Population 1 1.7472 25.044 -20.569
## - Frost 1 1.8466 25.144 -20.371
## - HS.Grad 1 2.4413 25.738 -19.202
## - Murder 1 23.1411 46.438 10.305
##

## Step: AIC=-24.18

## Life.Exp ~ Population + Income + Illiteracy + Murder +
## + HS.Grad + Frost

##

## Df Sum of Sq RSS AIC

## - Illiteracy 1 0.0038 23.302 -26.174
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##

##

##

##

Solutions

- Income 1 0.0059
<none>

- Population 1 1.7599
- Frost 1 2.0488
- HS.Grad 1 2.9804
- Murder 1 26.2721

Step: AIC=-26.17

Life.Exp ~ Population + Income +

Df Sum of Sq
- Income 1 0.006
<none>
- Population 1 1.887
- Frost 1 3.037
- HS.Grad 1 3.495
- Murder 1 34.739
Step: AIC=-28.16

Life.Exp ~ Population + Murder +

Df Sum of Sq RSS

<none> 23.308 -28.
- Population 1 2.064 25.372 -25.
- Frost 1 3.122 26.430 -23.
- HS.Grad 1 5.112 28.420 -20.
- Murder 1 34.816 58.124 15.
Call:

Im(formula = Life.Exp ~ Population +

23
23
25
25
26
49

23.
23.
25.
26.
26.
58.

.304 -
.298 -
.058 -
.347 -
.279 -
.570

RSS

308 -
302 -
189 -
339 -
797 -
041

Murder

+ Frost, data = statedata)
Coefficients:
(Intercept) Population

7.103e+01 5.014e-05 -3.001e-01

AICC g1 )

[1] 119.7116

AICC g2 )

[1] 117.7196

AIC( g3 )

[1] 115.7326

AIC( g4 )

[1] 117.9743

26.
.182
22.
21.
20.
11.

24

28.
26.
.280
22.
21.
17.

24

4.

170

541
968
163
569

Murder + HS.Grad + Frost

AIC
161
174

048
187
456

HS.Grad + Frost

AIC
161
920
877
246
528

Murder + HS.Grad +

HS.Grad Frost
658e-02 -5.943e-03

185

With the backward selection method based on AIC, the best model is g3, which
includes Population + Murder + HS.Grad + Frost. The algorithm starts from the
AIC relative to the complete model and removes at each step the variable associated
with the smallest increase in AIC.

We now apply a backward model selection based on BIC.
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g = Im( Life.Exp ~ ., data = statedata )

AICC g )
## [1] 121.7092
BIC(C g )
## [1] 138.9174

g_AIC_back = step( g, direction = "backward", k = 2 )
## Start: AIC=-22.18
## Life.Exp ~ Population + Income + Illiteracy + Murder +

## + HS.Grad + Frost + Area

##

## Df Sum of Sq RSS AIC
## - Area 1 0.0011 23.298 -24.182
## - Income 1 0.0044 23.302 -24.175
## - Illiteracy 1 0.0047 23.302 -24.174
## <none> 23.297 -22.185
## - Population 1 1.7472 25.044 -20.569
## - Frost 1 1.8466 25.144 -20.371
## - HS.Grad 1 2.4413 25.738 -19.202
## - Murder 1 23.1411 46.438 10.305
#i#

## Step: AIC=-24.18
## Life.Exp ~ Population + Income + Illiteracy + Murder +
## + HS.Grad + Frost

##

## Df Sum of Sq RSS AIC
## - Illiteracy 1 0.0038 23.302 -26.174
## - Income 1 0.0059 23.304 -26.170
## <none> 23.298 -24.182
## - Population 1 1.7599 25.058 -22.541
## - Frost 1 2.0488 25.347 -21.968
## - HS.Grad 1 2.9804 26.279 -20.163
## - Murder 1 26.2721 49.570 11.569
##

## Step: AIC=-26.17

## Life.Exp ~ Population + Income + Murder + HS.Grad + Frost

##

## Df Sum of Sq RSS AIC
## - Income 1 0.006 23.308 -28.161
## <none> 23.302 -26.174
## - Population 1 1.887 25.189 -24.280
## - Frost 1 3.037 26.339 -22.048
## - HS.Grad 1 3.495 26.797 -21.187
## - Murder 1 34.739 58.041 17.456
##

## Step: AIC=-28.16
## Life.Exp ~ Population + Murder + HS.Grad + Frost
##

## Df Sum of Sq RSS AIC
## <none> 23.308 -28.161
## - Population 1 2.064 25.372 -25.920

## - Frost 1 3.122 26.430 -23.877
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## - HS.Grad 1
## - Murder 1

5.112 28.420
34.816 58.124

## Start: AIC=-6.89
## Life.Exp ~ Population + Income +

#i# HS.Grad + Frost + Area
#i#

## Df Sum of Sq RSS
## - Area 1 0.0011 23.298
## - Income 1 0.0044 23.302
## - Illiteracy 1 0.0047 23.302
## - Population 1 1.7472 25.044
## - Frost 1 1.8466 25.144
## <none> 23.297
## - HS.Grad 1 2.4413 25.738
## - Murder 1 23.1411 46.438
#i#

## Step: AIC=-10.8
## Life.Exp ~ Population + Income +

## + HS.Grad + Frost

##

## Df Sum of Sq RSS
## - Illiteracy 1 0.0038 23.302
## - Income 1 0.0059 23.304
## - Population 1 1.7599 25.058
## <none> 23.298
## - Frost 1 2.0488 25.347
## - HS.Grad 1 2.9804 26.279
## - Murder 1 26.2721 49.570
##

## Step: AIC=-14.7
## Life.Exp ~ Population + Income +
##

## Df Sum of Sq RSS
## - Income 1 0.006 23.308
## - Population 1 1.887 25.189
## <none> 23.302
## - Frost 1 3.037 26.339
## - HS.Grad 1 3.495 26.797
## - Murder 1 34.739 58.041
##

## Step: AIC=-18.6
## Life.Exp ~ Population + Murder +
##

## Df Sum of Sq RSS
## <none> 23.308
## - Population 1 2.064 25.372
## - Frost 1 3.122 26.430
## - HS.Grad 1 5.112 28.420
## - Murder 1 34.816 58.124

BIC(gl)
## [1] 135.0077
BIC(g2)

-20.246
15.528

g_BIC_back = step( g, direction = "backward", k = log(n) )

Illiteracy + Murder +

AIC
-10.7981
-10.7910
-10.7903

-7.1846
-6.9866
-6.8884
-5.8178
23.6891

Illiteracy + Murder

AIC
-14.7021
-14.6975
-11.0691
-10.7981
-10.4960

-8.6912
23.0406

Murder + HS.Grad + Frost

AIC
-18.601
-14.720
-14.702
-12.488
-11.627

27.017

HS.Grad + Frost

AIC
-18.601
-18.271
-16.228
-12.598

23.176

187
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## [1] 131.1038
BIC(g3)
## [1] 127.2048
BIC(g4)
## [1] 127.5344

Even using a selection method based on the BIC, the best model turns out to be

g3.
Finally, we evaluate R? and RZ 4j a8 selection criteria.

help( leaps )

# only matrix of predictors without column of 1
x = model.matrix( g ) [, -1 ]
y = statedata$lLife

adjr = leaps( x, y, method = "adjr2" )
names( adjr )
## [1] "which" "label" "size" "adjr2"

bestmodel_adjr2_ind = which.max( adjr$adjr2 )

g$coef[ which( adjr$which[ bestmodel_adjr2_ind, ] ) + 1 ]
#i# Population Murder HS.Grad Frost
## 5.180036e-05 -3.011232e-01 4.892948e-02 -5.735001e-03

help( maxadjr )
maxadjr( adjr, 5 )
## 1,4,5,6 1,2,4,

4,5,6 1,3,
## 0.713 0.706

Even considering Rg 4j 52 selection criterion, g3 turns out to be the best model,

with the highest R?, ; (71.26%).

R2 = leaps( x, y, method = "r2" )

bestmodel_R2_ind = which.max( R2%r2 )
R2$which[ bestmodel_R2_ind, ]

## 1 2 3 4 5 6 7
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE

As expected, using R? as the selection criterion, the best model turns out to be
the complete one.

Observation The variable selection process can be contaminated by the presence
of influential points.

9.8

(a) We graphically represent the data in Fig. 9.24. Since there is only one predictive
variable, it is not necessary to use the pairs command.
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Fig. 9.24 Data visualisation

plot( altezza, peso )

The data are very few, however, a linear trend of weight with respect to height
can be inferred.

(b) We set up a simple linear regression model.

mod = Im( peso ~ altezza )

summary ( mod )

##

## Call:

## Im(formula = peso ~ altezza)

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.860 -4.908 -1.244 7.097 7.518

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) -62.8299 49.2149 -1.277 0.2489

## altezza 0.7927 0.2817 2.814 0.0306 *

## -—-

##Signif. codes:0® ’***’ §.001 '**’ 0.01 '*’ .05 .’ 0.1 ' 1
##

## Residual standard error: 7.081 on 6 degrees of freedom
## Multiple R-squared: 0.569, Adjusted R-squared: 0.4972
## F-statistic: 7.921 on 1 and 6 DF, p-value: 0.03058
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Fig. 9.25 Confidence intervals for the mean response. The continuous black line represents the

values estimated through the model under consideration. The dashed black lines represent the 95%
confidence bands for the mean response

The model seems mediocre, since R? is equal to 56.9%. Height seems significant
in predicting the average weight of tomatoes (p-value of 3%). Further information
is missing to better define the model.

(c) To answer the question we define a grid of values in the range of the available
data (in order to have reliable estimates).

We calculate the predicted values:

Ynew = XnewpB:

and the relative standard errors:

se(Elynen]) = S : \/xnrew(XTX)ilxnew~

We construct the graph shown in Fig. 9.25.

point_grid = 15
grid = seq( min( altezza ), max( altezza ),
length.out = point_grid )

#automatically
y.pred = predict( mod, data.frame( altezza = grid ),
interval = "confidence", se = T )

names( y.pred )
## [1] "fit" "se.fit" "df" "residual.scale"
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y.pred$fit[ ,1 ] # predicted values $\hat{y}_{new}$.

y.pred$fit[ ,2 ] # LI confidence interval for $y_{new}$.

y.pred$fit[ ,3 ] # LS confidence interval for $y_{new}S$.

# manually

ndata = cbind( rep( 1, length( grid ) ), grid )
y.pred_fit = ndata %*% mod$coefficients
y.pred_fit

## [,1]

## [1,] 64.00554

## [2,] 65.47774

## [3,] 66.94993

## [4,] 68.42213

## [5,] 69.89433

## [6,] 71.36652

## [7,] 72.83872

## [8,] 74.31092

## [9,] 75.78311

## [10,] 77.25531

## [11,] 78.72751

## [12,] 860.19971

## [13,] 81.67190

## [14,] 83.14410

## [15,] 84.61630

#standard error
y.pred$se

y.pred_se = rep( 0, point_grid )

X = model.matrix( mod )

for( i in 1:point_grid )

{

y.pred_se[ i ] = summary( mod )$sigma * sqrt( t( ndata[i,] )
%*% solve( t(X) %*% X ) %*% ndatal[i,] )

}

y.pred_se

#n-p=8-2=26
y.pred$df
## [1] 6

tc qt( 0.975, length( altezza ) - 2 )
y = y.pred$fit[ ,1 ]

y.sup = y.pred$fit[ ,1 ] + tc * y.pred$se
y.inf = y.pred$fit[ ,1 ] - tc * y.pred$se

IC = cbind( y, y.inf, y.sup )

IC




192

##
#i#
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

00 NO VT WN -

©

10
11
12
13
14
15

00N UV WN R

O

10
11
12
13
14
15

64.
65.
66.
68.
69.
71.
.83872
74.
75.
77.
78.
80.
81.
83.
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y.pred$fit

72

64.
65.
66.
68.
69.
71.
72.
74.
75.
77.
78.
80.
81.
83.
84.

matplot(

y
00554
47774
94993
42213
89433
36652

31092
78311
25531
72751
19971
67190
14410
61630

fit
00554
47774
94993
42213
89433
36652
83872
31092
78311
25531
72751
19971
67190
14410
61630

grid,
col =

52.
54.
57.
59.
62.
64.
66.
68.
69.
70.
71.
72.
73.
74.
74.

52.
54.
57.
59.
62.
64.
66.
68.
69.
70.
71.
72.
73.
74.
74.

cbind( vy, vy.
rep( "black", 3 ), type = "1", xlab = "height",

y.inf
28376
82621
31735
73909
06616
26427
29041
09839
65227
94217
98949
83610
52812
10549
59890

lwr
28376
82621
31735
73909
06616
26427
29041
09839
65227
94217
98949
83610
52812
10549
59890

75.
76.
76.
77.
77.
78.
79.
80.
81.
83.
85.
87.
89.
92.
94.

75.
76.
76.
77.
77.
78.
79.
80.
81.
83.
85.
87.
89.
92.
94.

ylab = "weight™)

points( height, weight, col = "black", pch = 16 )

9 Linear Regression

y.sup
72731
12926
58252
10517
72249
46877
38703
52345
91396
56845
46553
56332
81569
18271
63370

upr
72731
12926
58252
10517
72249
46877
38703
52345
91396
56845
46553
56332
81569
18271
63370

inf, y.sup ), 1ty = c( 1, 4, 4),

Observation The predict command expects as input the data for which you want
to calculate the forecast (x,.y,) in the form of a data.frame that has as column names,
the same names of the predictors used in the model.

(d) Let’s calculate the prediction interval for the grid values considered in the

previous point.

In this case the standard errors are:

se(Ynew) = S ' \/1 +xgew(XTX)_1xnew-

We represent the calculated intervals in Fig. 9.26.
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Prediction intervals for individual observations

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

(1,1
2,1
(3,1
4,1
(5,1
(6,1
(7,1
[8,1
(9,1
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]

y.pred2$fit[ ,
y.pred2$fit[ ,
y.pred2$fit[ ,

#manually
ndata = cbind( rep( 1, length( grid ) ), grid )
y.pred_fit = ndata %*% mod$coefficients

y.pred_fit

64.
65.
66.
68.
69.
71.
72.
74.
75.
77.
78.
80.
81.
83.
84.

[,1]
00554
47774
94993
42213
89433
36652
83872
31092
78311
25531
72751
19971
67190
14410
61630

1] #p
2] #L
3] #L

y.pred2 = predict( mod, data.frame( height = grid ),
interval = "prediction", se =T )

redicted values $\hat{y}_{new}$.
I prediction interval for $y_{new}$.
S prediction interval for $y_{new}$.
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# standard error
y.pred2$se.fit

#manually
y.pred2_se = rep( 0, point_grid )

for( i in 1l:point_grid )

{

y.pred2_se[ i ] = summary( mod )$sigma *
sqrt( 1 + t( ndata[i,] ) %*%
solve( t(X) %*% X ) %*% ndatal[i,] )

}

y.pred2_se

#In this case y.pred2_se != y.pred2$se.fit

tc qt( 0.975, length( height ) - 2 )
y y.pred2$fit[,1]

y.sup = y.pred2$fit[,1] + tc * y.pred2_se
y.inf = y.pred2$fit[,1] - tc * y.pred2_se

IP = cbind( y, y.inf, y.sup )
y.pred2$fit
## fit lur upr

## 1 64.00554 43.08632 84.92475
## 2 65.47774 45.13889 85.81658
## 3 66.94993 47.12570 86.77417
## 4 68.42213 49.04150 87.80276
## 5 69.89433 50.88134 88.90732
## 6 71.36652 52.64072 90.09232
## 7 72.83872 54.31592 91.36152
## 8 74.31092 55.90415 92.71769
## 9 75.78311 57.40375 94.16248

## 10 77.25531 58.81434 95.69628
## 11 78.72751 60.13680 97.31822
## 12 80.19971 61.37323 99.02619
## 13 81.67190 62.52680 100.81700
## 14 83.14410 63.60158 102.68662
## 15 84.61630 64.60225 104.63034

matplot( grid, y.pred2$fit, 1ty = c(C 1, 2, 2 ),

col = rep(’black’, 3),

type = "1", xlab = "height", ylab = "weight")
points( height, weight, col = "black", pch = 16 )
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Fig. 9.27 95% confidence intervals for the mean (inner dashed line) and 95% prediction intervals
for individual observations (outer dashed line)

(e) Let’s compare the intervals obtained at points (c) and (d) in Fig. 9.27.

matplot( grid, y.pred2$fit, 1ty = c(C 1, 2, 2 ),

col = rep( "black", 3 ),

type = "1", xlab = "height", ylab = "weight")
lines( grid, y.pred$fit[ , 2 ] , col = "black", 1ty
lines( grid, y.pred$fit[ , 3 ] , col = "black", lty =
points( height, weight, col = "black", pch = 16 )

4)
4)

As predicted by the theory, the prediction interval is wider than the confidence
interval (compare the standard errors). Moreover, all the points of the dataset fall
within the prediction interval, but only some also fall within the confidence interval.



Chapter 10 ®
Generalised Linear Models Chock or

10.1 Theory Recap

We extend regression models to the case where the dependent variable does not
follow a normal distribution but belongs to the exponential family.

These models are characterised by three components:

Y: random response variable, of which we observe N realisations {y1, .., yn},
whose distribution falls within the exponential family:

fr (i 0;) = a(9;)b(y;) exply; Q(6:)}, ie{l,.,N}

where 6; is the parameter that characterises the distribution, and Q(6;) is called
the natural parameter.

ni = Y1 Bjxij: linear predictor.

g: link function that connects the random response with the linear predictors.
Given u; =elY;], i =1,.., N, the model predicts that:

gwi)=n = gwi) = Z,Bjxij~
j=1

If g(u) = u, then we say that the link function g is the identity and we find the
linear regression model shown in Chap. 9.

If g = Q, the natural parameter then we say that g is the canonical link function
because it transforms the mean of the random variable into the natural parameter
of its distribution.
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10.1.1 Logistic Model for Binary Qutcomes

Consider the case where the response variable is binary, i.e. ¥ ~ Be(w). The
Bernoulli distribution is part of the exponential family, in fact:

friimy =" (1 —m)'™ = (1 —m)exp {ylog (&) } To.1) ()3

where 0 = 7, a(6) = 1 — 7, b(y) = 1, Q@) = log (%) — logit (). The logit
is the canonical link function.

10.1.2 Models for Count Qutcomes
To model count data, the Poisson distribution is generally used, ¥ ~ Poisson(u).
The Poisson distribution is part of the exponential family, in fact:

—i,,y

1
fryimw =° y,“ =eXP{—M}; exp{y log(1) M (y);

where 0 = 1, a(0) = e™", b(y) = 1/y!, Q(0) = log(w).
In the case where a certain dispersion of the response variable is observed, Y can
be modelled as a Negative Binomial:

r k k¥ ko\Y
Fr(vi ko) = (y+)< )(1 >;

TTWTGO+1) \u+k otk
elY] = w;
2
Var(y) = p+

1
% -0 = Var(Y) > u Y —d> Poisson;

where 1/k is a dispersion parameter.

10.1.3 Other Link Functions

Other common link functions are:

e 71(X)=F(x) = F~'(m(x)) = Bx; F generic distribution function.
e T(X)=¢(x) = ¢ (7(x)) = Bx; probit link function.
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10.1.4 Interpretation of Parameters

The sign of 8; determines whether 7 (x) increases or decreases as x increases. Let’s
focus on a single covariate x and define the odds ratio as:

(x+1)
Crean _ oplfot A DY
s exp{Bo + Pix} '

If Y ~ Be(m), the logistic model is logit () = n;, from which:

exp{Bx}

T = BN

Typically, numerical methods are used to identify the maximum likelihood estima-
tors B for B. We will denote:

.
pi=g ' =g | D Bixij
i=0

The quantity that is usually studied is the log-odds ratio, i.e. logexp{f1} = b1,
which measures the relative risk increase (ratio between positive outcome and
negative outcome) corresponding to a unit increase in the regressor.

10.1.5 Inference for Regression Parameters

Consider the following test, related to the parameter §;:

Hy: B; = Bo vs Hy : B # Bo-

It can be shown that asymptotically:

z=Pi=P Ny,
s.e.(B)

Z is defined as the Wald statistic.
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10.1.6 Model Selection

There are several methods to evaluate the optimal model. The two most well-known
approaches in the literature are based respectively on deviance and on the AIC
(Chapter 6 [1]).

Definition 10.1 Deviance Let [(ji; y) be the log-likelihood of the estimated model.
Among all possible models, the maximum of the log-likelihood is reached at [(y; y),
where we consider a parameter for each observation of the model. The model
associated with /(y; y) is called the saturated model [1].

We define the deviance as:

—2[l; y) =1y y)] -

The deviance is the statistic derived from the likelihood ratio to evaluate whether the
model characterised by /(ft; y) is better than the saturated model. The deviance is
asymptotically distributed as a X(zN_ ) where N is the sample size (which coincides
with the number of parameters in the case of a saturated model) and p is the number
of parameters of the model.

The deviance is used for model selection. In particular, it is possible to compare
two models, characterised respectively by p; and p, parameters (p; > p2), by
performing a Chi-square test with p; — p» degrees of freedom.

A second approach to model selection involves evaluating the model with the
lowest AIC, in line with linear regression models, Chap. 9.

10.1.7 Model Goodness

To evaluate the goodness of the model (Goodness Of Fit), a comparison is made
between observed values (y;) and values predicted (3;) by the model. To define the
9i we compare the estimated values 77; with a limit value 7 (generally equal to 0.5).
Table 10.1 is defined as the misclassification table.
We define sensitivity (or sensibility) as:

PP =1y =1} = —~
a+b

. d
P =0y =0} = ——.
c+d

Table 10.1 Misclassification
table
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Sensitivity and sensibility are generally represented together in the ROC curve.
To represent the ROC curve we report the sensibility on the y-axis, and 1—
specificity on the x-axis. A good model is associated with a ‘sharp’ ROC curve,
with high levels of sensitivity and specificity.

Online Supplementary Material

An online supplement to this chapter is available,
containing data, further insights and exercises.

10.1.8 Libraries

library( rms )

## Warning: package ’'rms’ was built under R version 3.5.2
## Loading required package: Hmisc

## Warning: package 'Hmisc’ was built under R version 3.5.2
## Loading required package: lattice

## Loading required package: survival

## Loading required package: Formula

## Loading required package: ggplot2

## Warning: package ’'ggplot2’ was built under R version 3.5.2
##

## Attaching package: ’Hmisc’

## The following objects are masked from ’package:base’:

##

## format.pval, units

## Loading required package: Sparsel
##

## Attaching package: ’SparseM’

## The following object is masked from ’package:base’:
##

## backsolve

library( ResourceSelection )

## Warning: package ’'ResourceSelection’ was built
## under R version 3.5.2

## ResourceSelection 0.3-4 2019-01-08

10.2 Exercises

Exercise 10.1 Consider the dataset related to a clinical study on patients suffering
from coronary disorders (CHDAGE_data. txt in the online supplementary material).
In particular, the aim of the study is to explain the presence or absence of significant
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coronary disorders based on the patients’ age. The data refer to 100 patients. The
variables in the database are:

e CHD binary variable: 1 if the coronary disorder is present, O if the disorder is
absent.
¢ AGE continuous variable.

These data are taken from the site: http://www.umass.edu/statdata/statdata/
Answer the following questions:

(a) Graphically represent the dataset and comment on it.

(b) In order to have a better intuition of the relationship that binds CHD and
AGE, transform the AGE variable into a categorical variable with 8 levels. The
levels are: [20,29); [29,34); [34,39); [39,44); [44,49); [49,54); [54,59); [59,70].
Calculate the mean of CHD for each level and represent the 8 new pairs of values
in the graph constructed in point a).

(c) Identify the most suitable model to describe the data and apply it. Also write
the estimated model.

(d) Extract the linear.predictors and the fitted.values from the model.
What is the relationship between these quantities?

(e) Represent the model used, using the graph produced at point (a).

(f) Give the definition of Odds Ratio in the simplest case of simple logistic
regression with a binary dependent variable. Therefore, calculate the Odds Ratio
corresponding to an age increase of 10 years.

(g) Calculate the 95% confidence interval for the Odds Ratio for a 10-year age
increase.

(h) Calculate and represent the 95% confidence bands for each age value from 29
to 69.

(i) Evaluate the goodness of the model.

Exercise 10.2 In this exercise, we will analyse a clinical dataset related to the
weight of newborns. The aim of the study is to identify the risk factors associated
with giving birth to children weighing less than 2500 grams (low birth weight). The
data refers to a sample of n=189 women.

The variables in the database are described in the file LOWBWTdata.txt (see the
online supplementary material):

* LOW: binary dependent variable (1 if the newborn weighs less than 2500 grams,
0 otherwise).

* AGE: mother’s age in years.

e LWT: mother’s weight in pounds before the start of pregnancy.

e FTV: number of medical visits during the last trimester of pregnancy.

* RACE discrete independent variable with 3 levels.

This dataset was investigated in [4].


http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
http://www.umass.edu/statdata/statdata/
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Please answer the following questions:

(a) Graphically represent the data and comment on the graphs.

(b) Evaluate the most appropriate model to explain the binary variable LOW.

(c) Calculate the Odds Ratios related to the different levels of the variable RACE and
comment on them.

(d) Evaluate the goodness of the chosen model at point b).

(e) Calculate the misclassification table and report the percentage of misclassified,
using a threshold of 50%.

(f) Calculate the sensitivity and specificity of the model.

(g) Calculate the ROC curve to evaluate the GOF of the model.

Exercise 10.3 A group of financial engineers wants to investigate the factors that
can influence the detection of bank fraud. In a preliminary analysis, the following
variables are considered:

* update_sito: average annual time the site has been in maintenance.

* media_mov_mens average of monthly movements of the individual customer.

* type_client: type of client, O if standard client, 1 if silver client and 2 if gold
client.

The event of interest is the fraud recorded by the individual customer (fraud
equal to 1 if a fraud has been recorded in the last year and O otherwise). Therefore,
answer the following questions after loading the file fraud.txt (see the online
supplementary material).

(a) Graphically explore the relationship between media_mov_mens and fraud. Fit
a suitable model to estimate the probability that a generic customer will suffer
a fraud, using all available information. Comment on the fitted model.

(b) If deemed appropriate, propose a reduced model and/or with transformation.
Compare the two models and justify the choice made.

(c) Explicitly write the chosen fitted model among the two proposed.

(d) Provide an interpretation of the odds ratio related to an increase in the average
of monthly movements equal to 1.

(e) Compare the predictions that can be obtained through this model with the actual
data (misclassification table, misclassification error, sensitivity, specificity).

Exercise 10.4 The dataset TITANIC. txt (see the online supplementary material)
contains data related to the Titanic disaster, which sank on the night between 14 and
15 April 1912. For 1046 passengers, the following information is reported:

¢ Sex (sex, categorical variable with levels male and female).
* Age (age).
e Class (pclass, variable that takes the values 1,2,3) in which they were travelling.

The outcome of interest is whether the passengers survived or not the disaster,
information reported within the binary variable survived (= 1 if the passenger
survived, = 0 otherwise). A statistical investigation is to be carried out in order to
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assess how and to what extent the previously described covariates have influenced
the survival probability of the Titanic passengers.
Perform the data analysis highlighting the following steps:

()

(b)

(©)
(d)
(e)

®

Preliminary descriptive analysis: examine the contingency table of survival with
respect to sex and comment on the result; also perform the boxplot of age with
respect to survival and comment on the result.

Fit a logistic regression model to explain the survival of passengers based on all
available covariates and comment on the regression output: are the signs of the
coefficients consistent with what was reasonably expected?

Fit the previous logistic regression model without using the age regressor and
compare the two models.

Calculate the Odds Ratio of the survival probability of women compared to
men.

Calculate the survival probability (with its prediction interval) of a 76-year-old
woman travelling in first, second and third class (specify in the command type
= response).

Calculate the misclassification table related to the model and the corresponding
sensitivity.

10.3 Solutions

10.1

(a)

Import the data.

chd = read.table( "CHDAGE_data.txt", head = TRUE )

str( chd )

## ’data.frame’: 100 obs. of 3 variables:
## $ ID : int 12345678910 ...

## $ AGE: int 20 23 24 25 25 26 26 28 28 29 ...
## $ CHD: int 00 00 100000 ...
head( chd )

## ID AGE CHD

# 1 1 20 O

# 2 2 23 0

## 3 3 24 0

## 4 4 25 0

## 5 5 25 1

## 6 6 26 O

attach( chd )
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Fig. 10.1 Data visualisation. For each statistical unit, we represent the age on the x-axis, while on
the y-axis the presence or absence of coronary disorders

Visualise the data in Fig. 10.1.

plot( AGE, CHD, pch = ifelse( CHD == 1, 3, 4 ),
col = ifelse( CHD == 1, ’gray30’, ’gray70’ ),
xlab = ’Age’, ylab = CHD’, main = ’CHD vs. Age’,

Iwd = 2, cex = 1.5 )

From this graph, it can already be observed that as age increases, a higher number
of patients suffering from coronary diseases seem to be recorded.

(a) Transform the AGE variable into a categorical variable with 8 levels. The levels
are: [20,29); [29,34); [34,39); [39,44); [44,49); [49,54); [54,59); [59,70].

The choice of these classes is not random, but has been proposed based on the
distribution of the AGE variable.

Insert in the x vector the limits of the age classes that you want to create (this
step is arbitrary, and should be executed with good sense).

min( AGE )
## [1] 20
max( AGE )
## [1] 69

x = c( 20, 29, 34, 39, 44, 49, 54, 59, 70 )



206 10 Generalised Linear Models

# Calculate the midpoints of the intervals we have created
mid =cC (x[2:9] +x[1:81]1)/2)

# Divide the data into the classes we have created

GRAGE = cut( AGE, breaks = x, include.lowest = TRUE,
right = FALSE )

#GRAGE

We then calculate the average of coronary disorders with respect to each layer of
the AGE variable and represent the obtained values in Fig. 10.2.

y = tapply( CHD, GRAGE, mean )
#y

plot( AGE, CHD, pch = ifelse( CHD == 1, 3, 4 ),
col = ifelse( CHD == 1, ’gray30’, ’gray70’),
xlab = ’Age’, ylab = 'CHD’, main = 'CHD vs. Age’,
lwd = 2, cex = 1.5 )

points( mid, y, col = 1, pch = 16 )

Dividing patients into age classes and calculating the average of the dependent
variable in each class, helps us to understand more clearly the nature of the
relationship between AGE and CHD.

CHD vs. Age

o
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o' — [ ]

Age

Fig. 10.2 Visualisation of the dataset with light and dark grey crosses. The black points represent
the percentages of coronary disorders observed for each layer of the AGE variable
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(b)

We identify a model that adequately describes our data. The most suitable model
is a generalised linear model with a 1ogit link function.

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

help( glm )

mod = glm( CHD ~ AGE, family = binomial( link = logit ) )
summary ( mod )

Call:
glm(formula = CHD ~ AGE, family = binomial(link = logit))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9718 -0.8456 -0.4576 0.8253  2.2859
Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***
AGE 0.11092 0.02406 4.610 4.02e-06 ***
Signif. codes:® ’***’ §.001 '**’ §.01 '*’ 0.65 ’.’ 6.1 " ’'1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 107.35 on 98 degrees of freedom
AIC: 111.35
Number of Fisher Scoring iterations: 4

The estimated model is therefore:

logit(r) = —5.30945 + 0.11092 - AGE,;

where 7 is the probability that CHD equals 1. From the estimates obtained, we
deduce that an increase in age leads to an increased risk of coronary disorders, as
we had guessed graphically in the previous points.

(©)

We investigate the linear.predictors and the fitted.values. First of
all, the linear.predictors are the estimated values for the logit of the
probability of having coronary disorders, logit(s7;). These values take values
inR.

|mod$1inear.predictors

The fitted.values are the estimated values for the probability of having
coronary disorders, 77;. These values take values in [0, 1].

|mod$fitted.va1ues
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Fig. 10.3 Visualisation of the dataset (with light and dark grey crosses) and prediction obtained
from the model (grey line). The black circles represent the percentages of CHD observed in relation
to the different strata of AGE, calculated in point (b)

The two quantities are linked by the 1ogit function.

(d) In Fig. 10.3 we represent the prediction of the model, starting from the graph
proposed in point (a).

plot( AGE, CHD, pch = ifelse( CHD == 1, 3, 4 ),
col = ifelse( CHD == 1, ’gray30’, ’gray70’),
xlab = 'Age’, ylab = 'CHD’, main = 'CHD vs. Age’,
lwd = 2, cex = 1.5 )

points( mid, y, col = 1, pch = 16 )

lines( AGE, mod$fitted, col = ’'grayl®’ )

The estimated sigmoid is monotonically increasing, as we could guess from the
estimate of BAGE.

(e) One of the reasons why logistic regression technique is widely used, especially
in the clinical field, is that the coefficients of the model have a natural
interpretation in terms of odds ratio (hereafter OR).
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Consider a dichotomous predictor x at levels 0 and 1. The odds that y = 1 among

individuals with x = 0 is defined as:

P(y =1lx =0)
1—-P(y=1x=0)

Similarly for subjects with x = 1, the odds that y = 1 is:

Py=1x=1)
1-Phy=1x=1)

The OR is defined as the ratio of the odds for x = 1 and x = 0.
Given that:

exp(Bo + B1 - x)

PO =T =D = oGt B -
o exp(Bo)
FO=T=0= 1 o6
This implies:
OR = exp(B1)

Confidence intervals and generalisations to the case of variable x with more

categories can be constructed immediately.

We therefore calculate the OR relative to AGE.

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

summary ( mod )

Call:
glm(formula = CHD ~ AGE, family = binomial(link = logit))

Deviance Residuals:

Min 1Q Median 3Q Max
-1.9718 -0.8456 -0.4576 0.8253 2.2859
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***
AGE 0.11092 0.02406 4.610 4.02e-06 ***
Signif. codes:® ’***’ §.601 '**’ §.01 '*’ 0.65 ’.’ 6.1 " ’'1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 107.35 on 98 degrees of freedom
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## AIC: 111.35
##
## Number of Fisher Scoring iterations: 4

The coefficient of the AGE variable is 0.111. Therefore, the OR for a 10-year
increase in age is:

exp( 10 * coef(mod ) [ 2 1)
## AGE
## 3.031967

for every 10-year increase in age, the risk of coronary disorder increases by about 3
times.

Observation The model assumes that the logit is linear in the age variable, i.e., the
OR between people aged 20 versus 30 years is the same as between individuals aged
40 versus 50 years.

(f) We calculate a 95% confidence interval for the OR for a 10-year increase in age.

alpha = 0.05
gqalpha = gnorm( 1 - alpha/2 )
galpha

## [1] 1.959964

IC.sup = exp( 10 * coef(mod ) [ 2 ] + qgalpha * 10 *
summary( mod )$coefficients[ 2, 2 ] )

IC.inf = exp( 10 * coef( mod ) [ 2 ] - galpha * 10 *
summary ( mod )$coefficients[ 2, 2 ] )

c( IC.inf, IC.sup )

## AGE AGE

## 1.892025 4.858721

(g) First, we set a grid of points from 29 to 69. Then, we calculate and represent in
Fig. 10.4 the 95% confidence bands for each age value from 29 to 69.

# grid of x values at which to evaluate the regression
grid = ( 20:69 )

se = predict( mod, data.frame( AGE = grid ), se = TRUE )
# standard errors corresponding to the grid values

help( binomial )
gl = binomial( link = logit ) # link function used

plot( mid, y, col =1, pch = 3, ylim = c( 0, 1),

ylab = "Probability of CHD",

xlab = "AGE", main = "IC for Logistic Regression" )
lines( grid, gl$linkinv( se$fit ) )
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e

lines( grid, gl$linkinv( se$fit - gnorm( 1-0.025 ) * se$se ),
col =1, 1ty = 2 )

lines( grid, gl$linkinv( se$fit + gnorm( 1-0.025 ) * se$se ),
col =1, 1ty = 2 )

Observation The function gl$1inkinv allows obtaining the value of probabilities
from the link function (logit).

(h) In order to evaluate the goodness of the model, we calculate sensitivity and
specificity.

threshold = 0.5

real.values = CHD

estimated.values = as.numeric( mod$fitted.values > 0.5 )
tab = table( real.values, estimated.values )

tab

## estimated.values
## real.values 0 1

## 0 45 12

## 114 29

sensitivity =tab[ 2, 2] / (Ctab [ 2, 1] +tab[2,21])
sensitivity
## [1] 0.6744186

specificity =tab [ 1, 1] /Ctab [ 1, 2 ] +tab [ 1, 117)
specificity
## [1] 0.7894737

IC for Logistic Regression

Probability of CHD

AGE

Fig. 10.4 Confidence intervals calculated for each new predicted point
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Fig. 10.5 Visualisation of the dataset

FTV

We conclude that it is a good model, given the high values of sensitivity and

specificity.
10.2

(a) We import the data.

1w = read.table( "LOWBWTdata.txt", head = TRUE )
attach( 1w )

## The following objects are masked from chd:
##

## AGE, ID

We visualise the data in Fig. 10.5.

# treat the RACE variable as categorical
RACE = factor( RACE )

par( mfrow = c( 2, 2 ) )

plot( LWT, LOW, pch = ifelse( LOW == 1, 3, 4 ),
col = ifelse( LOW == 1, ’gray30’, ’gray70’ ),
xlab = 'LWT’, ylab = 'LOW’, main = ’LOW vs. LWT’

lwd = 2, cex = 1.5 )

counts_race <- table( LOW, RACE )
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barplot( counts_race, col = c( ’gray30’, ’'gray70’ ),

xlab = 'RACE’, ylab = ’Number of patients’,
main = 'LOW vs. RACE’, beside = T)

plot( AGE, LOW, pch = ifelse( LOW == 1, 3, 4 ),

col = ifelse( LOW == 1, ’gray30’, ’gray70’ ),
xlab = "AGE’, ylab = ’LOW’, main = ’LOW vs. AGE’,
lwd = 2, cex = 1.5 )

counts_FTV <- table( LOW, FTV )
barplot( counts_FTV, c( ’gray30’, ’'gray70’ ),

xlab = 'FTV’, ylab = ’'Number of patients’,
main = 'LOW vs. FTV’, beside = T)
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From the graphs, we assume that LWT could be significant, with a negative
regression coefficient. AGE does not appear to be significant, nor does FTV. The
variable RACE could be significant, as in the white race (RACE = 1) there is a strong
presence of normal weight newborns, while in the other two categories there is a

higher percentage of underweight newborns (LOW = 1, dark grey column).

(b) We set up a multiple logistic regression model to explain the variable LOW,

including all available variables.

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

mod.low = glm( LOW ~ LWT + RACE + AGE + FTV,

family = binomial( link = logit ) )

summary( mod.low )

Call:
glm(formula = LOW ~ LWT + RACE + AGE + FTV,
family = binomial(link = logit))

Deviance Residuals:

Min 1Q Median 3Q Max
-1.4163 -0.8931 -0.7113 1.2454  2.0755
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.295366 1.071443 1.209 0.2267
LWT -0.014245 0.006541 -2.178 0.0294 *
RACE2 1.003898 0.497859 2.016 ©.0438 *
RACE3 0.433108 0.362240 1.196 0.2318
AGE -0.023823 0.033730 -0.706 0.4800
FTV -0.049308 0.167239 -0.295 0.7681
Signif. codes:® ’***’ 9.001 '**’ §.01 '*’ 0.65 ’.’ 6.1 " ’'1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 222.57 on 183 degrees of freedom
AIC: 234.57

Number of Fisher Scoring iterations: 4
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From this initial analysis, we conclude that the variables LWT and RACE are
influential. In particular, a higher mother’s weight is associated with a lower risk
of underweight newborns and mothers of colour have a higher risk of having
underweight children compared to white mothers.

If we stick to statistical significance alone, we conclude that it is possible to fit
a reduced model, containing only the independent variable LWT. However, as in the
case of multiple linear regression, the inclusion of a variable in the model can occur
for different reasons. For example, in this case, the variable RACE is considered in
the literature as important in predicting the effect in question, so it is included in the
reduced model.

We evaluate a reduced model.

mod.low2 = glm( LOW ~ LWT + RACE,
family = binomial( link = logit ) )

summary ( mod.low2 )

##

## Call:

## glm(formula = LOW ~ LWT + RACE,
## family = binomial(link = logit))

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.3491 -0.8919 -0.7196 1.2526  2.0993

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z]|)
## (Intercept) 0.805753 0.845167 0.953 0.3404
## LWT -0.015223 0.006439 -2.364 0.0181 *
## RACE2 1.081066 0.488052 2.215 0.0268 *
## RACE3 0.480603 0.356674 1.347 0.1778
## -—-

## Signif. codes:® '***’ 0.001 ’**’ 0.01 ’'*’ 0.05 '.’ 0.1 ’ ’1
##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 234.67 on 188 degrees of freedom
## Residual deviance: 223.26 on 185 degrees of freedom
## AIC: 231.26

##

## Number of Fisher Scoring iterations: 4
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We note that AIC decreases and also RACE gains significance. We compare the
two models using a Chi-square test.

anova( mod.low2, mod.low, test = "Chisq" )

## Analysis of Deviance Table

##

## Model 1: LOW ~ LWT + RACE

## Model 2: LOW ~ LWT + RACE + AGE + FTV

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 185 223.26

## 2 183 222.57 2 0.68618 0.7096

We conclude that we can consider the two tested models equally informative.
Therefore, the best model is the simpler one, which contemplates LWT and RACE as
variables.

(c) The RACE predictor is a 3-level discrete variable. In this case, level 1 (RACE =
White) is assumed as the reference category.

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##

0O NO VT WN -

©o

10
11
12
13
14
15

model.matrix( mod.

(Intercept)
1

R R R R RRRRRRBRRRR

RACE2

## 2.947821

low2 ) [ 1:15, ]
LWT RACE2 RACE3

182
155
105
108
107
124
118
103
123
113

95
150

95
107
100

1

(= — I — I — R — R — R — R — R — R — I — I~ I~ N~

(= N e = =R o — R i — I — I — R — )

# OR 2 vs 1 ( Black vs White )
exp( coef( mod.low2 ) [ 3] )

Black women are a category with a risk of premature birth almost 3 times higher
than white women.

##

RACE3

## 1.61705

# OR 3 vs 1 ( Other vs White )
exp( coef( mod.low2 ) [ 4] )

Women of other ethnicities are a category with a risk of premature birth about
1.5 times higher than white women.



216 10 Generalised Linear Models

(d) We perform tests to evaluate the GOF of the model.

mod.low2lrm = lrm( LOW ~ LWT + RACE, x = TRUE, y = TRUE )
residuals( mod.low2lrm, "gof" )

## Sum of squared errors Expected value|HO SD

## 38.2268160 38.2138614 0.1733477
## Z P

## 0.0747321 0.9404279

hoslem.test( mod.low28y, fitted( mod.low2 ), g = 6 )
##

## Hosmer and Lemeshow goodness of fit (GOF) test
##

## data: mod.low2%y, fitted(mod.low2)

## X-squared = 3.1072, df = 4, p-value = 0.5401
#g > 3

In this case too, we can conclude that the model provides a good fit of the
data. For further details on the Hosmer-Lemeshow test, please refer to the online
supplementary material.

(e) A frequently used way to present the results of a fit using logistic regression
are classification tables. In these tables, the data are classified according to two
keys:

¢ The value of the dichotomous dependent variable y.

¢ The value of a dichotomous variable y,,,4, which is derived from the probability
estimate obtained from the model. The values of this variable are obtained by
comparing the value of the probability with a threshold (usual value 0.5).

We calculate y,,;,q (predicted.values).

threshold = 0.5

actual.values = lw$LOW

predicted.values = as.numeric(mod.low2$fitted.values > threshold)
# 1 if > threshold, 0 if <= threshold

table( predicted.values )

We then compare the actual values with the predicted values, constructing a
misclassification table.

tab = table( actual.values, predicted.values )

tab

## predicted.values
## actual.values 0 1

## ® 124 6

## 1 53 6

# % of cases correctly classified:
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round( sum( diag( tab ) ) / sum( tab ), 2 )
## [1] 0.69

# % of cases misclassified:
round( (tab [ 1, 2] +tab [ 2, 1] ) / sum( tab ), 2 )
## [1] 0.31

31% of the data is misclassified.

(f) We calculate the sensitivity.

sensitivity = tab [ 2, 2] /Ctab [ 2, 1] +tab [ 2, 21])
sensitivity
## [1] 0.1016949

We calculate the specificity:

specificity =tab [ 1, 1] /Ctab [ 1, 2 ] +tab [ 1, 117 )
specificity
## [1] 0.9538462

(g) We construct the ROC curve from the predicted values for the response from
the mod. low2 model of the LOW variable analysis.

fit2 = mod.low2$fitted

#sample mean of the survival probability in the sample

roc_threshold = seq( 0, 1, length.out = 2e2 )
lens = length( roc_threshold )-1

roc_abscissa = rep( NA, lens )

roc_ordinate = rep( NA, lens )

for (kin 1 : lens )
{
threshold = roc_threshold [ k ]
classification = as.numeric( sapply( fit2,
function( x ) ifelse( x < threshold, 0, 1) ) )

# CAUTION, I want the true on the rows
# and the predicted on the columns
# t.misc = table( 1lw$LOW, classification )

roc_ordinate[ k ] = sum(
classification[ which( 1lw$§LOW == 1 ) ] ==1 )/
length( which( 1w$LOW == 1 ) )

roc_abscissal k ] = sum(
classification[ which( 1w$LOW == 0 ) ] == 1 )/
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length( which( 1w$LOW == 0 ) )

#

}

#roc_ordinate[k]=t.misc[1, 1]/(t.misc [1, 1] + t.misc[1, 2])

#roc_abscissalk]=t.misc[2, 1]/(t.misc [2, 1] + t.misc[2, 2])

We visualise the ROC curve in Fig. 10.6.

plot(roc_abscissa, roc_ordinate, type = "1",
xlab = "1 - Specificity", ylab = "Sensitivity",
main = "ROC Curve", lwd = 2, col = ’black’,
ylim = c( 0, 1), xlim=cC 0, 1) )
ablineth = c(®, 1), v=c(0, 1), lwd =1, 1ty = 2,
col = ’gray70’)
abline(a =0, b =1, 1ty = 2, col = ’gray70’ )

# we identify our levels of
# specificity and significance
abline( v = 1 - specificity, h = sensitivity, 1ty
col = ’gray30’ )
points( 1 - specificity, sensitivity, pch = 4, 1lwd = 3,
cex = 1.5, col = ’gray30’)

Il
w

ROC Curve

Sensitivity

1 - Specificity

Fig. 10.6 Representation of the ROC curve, through a continuous black line. The light grey
dashed lines delimit the domain and codomain of the Curve: [0,1] x [0,1]. The dark grey cross
and the dark grey dashed lines identify how the model under analysis is positioned within the

curve
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Fig. 10.7 Visualisation of the dataset through a boxplot. In dark grey are represented the
movements that are the result of frauds, while in light grey those that are not the result of frauds

The ROC curve is not optimal, since it is quite flattened on the diagonal (the
optimum is a curve that near zero has a positive and very high derivative).

10.3

(a) We graphically explore the relationship between average_monthly_mov and
fraud.

data_fraud = read.table(’ fraud.txt’, header = T)

boxplot( data_fraud$average_monthly_mov ~ data_fraud$fraud,
col = c(’gray30’, ’'gray70’ ),
ylab = ’Average monthly movements’, xlab = ’Fraud’)

In Fig.10.7 there seems to be a relationship between the two variables. In
particular, those who make more movements on average per month seem to have
a higher risk of being a victim of fraud.

We fit a logistic regression model to explain the variable fraud, including all
available variables.

mod_1 = glm( fraud ~ site_update + average_monthly mov +
client_type, data = data_fraud,
family="binomial™)

summary( mod_1 )

##

## Call:

## glm(formula = fraud ~ site_update + average_monthly_mov +
#i# client_type,

## family = "binomial", data = data_fraud)
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##
#i#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##

10 Generalised Linear Models

Deviance Residuals:

Min 1Q Median 3Q Max
-1.93612 -0.07841 -0.00916 0.00009 1.99906
Coefficients:

Estimate Std. Error z value Pr(>|z]|)

(Intercept) 3.2459 5.3508 0.607 0.544104
site_update -0.3729 0.1026 -3.636 0.000277 ***
average_monthly _mov  2.5748 0.6072  4.241 2.23e-05 ***
client_type -1.2787 0.8463 -1.511 0.130804
Signif. codes:0 '***’ §.001 '**’ §.01 ’*’ .05 ’.’ 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 179.95 on 159 degrees of freedom
Residual deviance: 43.45 on 156 degrees of freedom
AIC: 51.45

Number of Fisher Scoring iterations: 9

From the model, both site_update and average_monthly_mov seem to be
significant (as we had guessed from the graph).

(d)

We propose a reduced model that includes both site_update and
average_monthly_mov.

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

mod_2 = glm( fraud ~ site_update + average_monthly_mov,

summary( mod_2 )

data = data_fraud, family="binomial")

Call:

glm(formula = fraud ~ site_update + average_monthly_mov,
family = "binomial", data = data_fraud)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.79424 -0.09903 -0.01291 0.00013 2.02351
Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 1.95243 5.28468 0.369 0.711791

update_sito -0.33912 0.09313 -3.641 0.000271 ***
media_mov_mens 2.30649 0.51141 4.510 6.48e-06 ***

Signif. codes:0 ’***’ §.001 '**’ .01 ’*’ 0.05 .’ 0.1 " '1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 179.947 on 159 degrees of freedom
Residual deviance: 45.933 on 157 degrees of freedom
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## AIC: 51.933
##
## Number of Fisher Scoring iterations: 8

(c) Let’s compare the two tested models, using a Chi-square test.

anova( mod_1, mod_2, test = "Chisq" )

## Analysis of Deviance Table

##

## Model 1: fraud ~ update_sito + media_mov_mens + type_client
## Model 2: fraud ~ update_sito + media_mov_mens

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 156 43.450

## 2 157 45.933 -1  -2.483 0.1151

From the test, there does not seem to be a significant difference between the two
models, so we opt for the reduced model.

(d) Let’s calculate the OR relative to an increase of one point on the average of
monthly movements.

exp( 1*mod_2$coefficients[3] )
## media_mov_mens
## 10.03909

An increase of one point leads to a risk 10 times greater of suffering a fraud.

(e) Let’s calculate the misclassification table, significance and specificity.

pred_val = ifelse( mod_2$fitted.values >= 0.5, 1, 0 )

tab = table( pred_val, data_fraud$fraud )

tab
##
## pred_val 0 1
## 0 115 6
## 1 5 34

sensitiv=tab [ 2, 2] /Ctab [ 2, 1] +tab [ 2, 21])
sensitiv
## [1] 0.8717949

specif = tab [ 1, 1] /Ctab [ 1, 2] +tab [ 1, 117])
specif
## [1] 0.9504132

Considering the low number of misclassified, and the high levels of specificity
and significance, we can conclude that the reduced model fits well to the analysed
data.
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104

(a) Let’s import the data.

data = read.table( 'TITANIC.txt’, header = TRUE )
dim( data )

## [1] 1046 4

#str( data )

names( data )

## [1] "survived" "sex" "age" "pclass”
head( data )

##  survived sex age pclass

## 1 1 female 29.0000 1

## 2 1 male 0.9167 1

## 3 0 female 2.0000 1

## 4 ® male 30.0000 1

## 5 0® female 25.0000 1

## 6 1 male 48.0000 1

Let’s set the survival variable as a factor.

data$survived = factor( data$survived )
#data$pclass = factor( data$pclass )

Let’s calculate the contingency table of survival with respect to sex.

table( data$sex, data$survived )
##

## 0 1

## female 96 292

## male 523 135

From the contingency table we observe that, proportionally, more men died than
women. There might be a correlation between these two variables.

Let’s represent in Fig. 10.8 a boxplot to investigate the trend of survival with
respect to age.

boxplot( data$age ~ data$survived, xlab = ’survivors’,
ylab = ’age’, col = c(’gray30’, ’gray70’ ) )

From the graph, there does not seem to be an effect of age on survival.

(b) Let’s fit a logistic regression model to explain survival, including all the
variables in the dataset.
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age

Fig. 10.8 Data visualisation through boxplot. In dark grey we represent the age of those who
died,
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while in green we represent the age of those who survived

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

# glm model with all covariates
mod.glm = glm( survived ~ ., data = data,

family = binomial( link = logit ) )

summary ( mod.glm )

Call:

glm(formula = survived ~ ., family = binomial(link = logit),

data = data)

Deviance Residuals:
Min 1Q  Median 3Q Max
-2.6159 -0.7162 -0.4321 0.6572 2.46041

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 4.58927 0.40572 11.311 < 2e-16 ***
sexmale -2.49738 0.16612 -15.034 < 2e-16 ***

age -0.03388 0.00628 -5.395 6.84e-08 ***
pclass -1.13324 0.11173 -10.143 < 2e-16 ***
Signif. codes:® '***’ §.001 '**’ .01 ’*’ §.05 ’.’ 0.1’
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1414.62 on 1045 degrees of freedom
Residual deviance: 983.02 on 1042 degrees of freedom
AIC: 991.02

Number of Fisher Scoring iterations: 4

1
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All variables appear to be significant, moreover being male, older and being in
second, third class decreases the risk of survival.

(c) We fit a logistic regression model excluding the variable age.

mod.glm.red = update( mod.glm, . ~ . - age )

summary ( mod.glm.red )

##

## Call:

## glm(formula = survived ~ sex + pclass,

## family = binomial(link = logit), data = data)
##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.1248 -0.7134 -0.4816 0.6976 2.1033

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.00428 0.25591 11.740 <2e-16 ***
## sexmale -2.52785 0.16326 -15.484 <2e-16 ***
## pclass -0.85747 0.09511 -9.016 <2e-16 ***
## ---

## Signif. codes:0 ’***’ 9.001 '**’ 0.01 '*’ 0.05 '.’ 0.1 * ’1
##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 1414.6 on 1045 degrees of freedom
## Residual deviance: 1013.8 on 1043 degrees of freedom
## AIC: 1019.8

##

## Number of Fisher Scoring iterations: 4

As expected, all variables are significant.

anova( mod.glm, mod.glm.red, test = "Chisq" )
## Analysis of Deviance Table

##

## Model 1: survived ~ sex + age + pclass

## Model 2: survived ~ sex + pclass

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 1042 983.02

## 2 1043 1013.85 -1 -30.822 2.829e-08 ***

## -—-

## Signif. codes:0 ’***’ §.001 ’'**’ .01 '*’ 0.05 '.’ 0.1 " '1

1 - pchisq( 1013.85 - 983.02, 1)
## [1] 2.816499e-08

Given the p-value of the test, we can conclude that the full model is more
informative than the reduced model.
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(d) We calculate the OR of the survival probability of men compared to women.

exp( -mod.glm$coefficients[ 2 ] )
## sexmale
## 12.15057

Women have a survival probability 12 times higher than that of men.

(e) We calculate the survival probability of a 76-year-old woman who travelled in
first, second and third class.

mod_pred.confl = predict( mod.glm,
data.frame(age = 76, sex = ’female’,
pclass =1 ),
type = ’'response’, se.fit = T )
mod_pred.conf2 = predict( mod.glm,
data.frame(age = 76, sex = ’female’,
pclass = 2 ),
type = ’response’, se.fit =T )
mod_pred.conf3 = predict( mod.glm,
data.frame(age = 76, sex = ’'female’,
pclass = 3 ),
type = ’'response’, se.fit =T )
mod_pred.confl§fit
## 1
## 0.7069811
mod_pred.conf2§fit
## 1
## 0.4372139
mod_pred.conf3§fit
## 1
## 0.2000918

As expected, the lower the class, the lower the survival probability.

(f) We calculate the misclassification table and calculate the sensitivity.

threshold = 0.5

actual.values = data$survived

estimated.values = as.numeric( mod.glm$fitted.values > 0.5 )
tab = table( actual.values, estimated.values )

tab

## estimated.values
## actual.values 0 1

## ® 523 96

## 1 126 301

# Sensitivity = True Positive Rate,

# e.g. empirical probability of classifying a
# positive as such

tab[ 2, 2 1 / sum( tab[ 2, 1)

## [1] 0.704918




Chapter 11 ®
ANOVA: Analysis of Variance ST

11.1 Theory Recap

The analysis of variance, also known by the acronym ANOVA (ANalysis Of
VAriance), is a statistical technique that aims to compare the means of a random
phenomenon among different groups of statistical units. This analysis is approached
through the decomposition of variance.

11.1.1 ANOVA

Consider a random variable Y;; related to the statistical unit i € {1,...,n;}
belonging to the group j € {I1,..., g}. Suppose that Y;; can be modelled in the
following way:

Y,‘j=/,L+‘Ej+€ij, i=1,..,l’lj j=1..,g (11.1)
where w is the overall mean, while 7; represents the average deviation from  in

group g. Furthermore, it is assumed:

* Normality: &;; ~ N (0, 012).

* Homoscedasticity: UJZ =02 Vj.

* Independence: &;; Il eyjr Vi #1i', j # j'.

The model described in Eq. (11.1) is a one-way ANOVA, as we are considering
a single factor. If we were considering two factors, we would have:

lejkzl»‘l/—i_fj—i_yk—i_a‘]k—‘f_sl‘]ks i=]3"7njk k=17"1K j=1,...,.’;
(11.2)
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where one factor consists of K levels and the second factor is at J levels. In this
case, we would talk about two-way ANOVA. For simplicity, we consider only the
one-way ANOVA model in the theory recap.

Theorem 11.1 (Decomposition of Variance) Denote y;; the realisations of the
random variable Y;j, i € {1,..,nj} and j € {1, .., g}, where the total sample size is
N = Z§:1 nj. It can be shown that:

g N nj

8 8
Y= =D o G DY i =305 (11.3)
: p

1i=1 j=1i=l

J

where:

1 &
V.= — ) vijs
A

8 nj ..
j=1 2ily vij

Z§=1 nj

y=

Equation (11.3) can be succinctly rewritten as:
SStor = SSp + SSw;

where SSToT represents the total variance, SSp represents the variance between
different groups (between groups) and SSw represents the variance within groups
(within groups).

Given the assumptions of the model, it can be shown that:

1 g nj — 5
722 =Y~ ai

j=li=l1

1 S v V\2 2
G—Zan-(Yj.—Y) ~ Xg—1-
j=1

n;

8
D ) MO

j=li=l
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Table 11.1 ANOVA table

Variance d.f. Sum of squares Mean F statistic
Between gl | SSp=2%_ n; (5. —3)> MSp = (gfﬁ) MSg/MSw
Within N-g [ SSw=35_ 2L =) | MSw= 3%

Total N-1 SSror = Z§:1 S i = 3)? MSror = %

When we are interested in performing an ANOVA, we want to carry out the
following hypothesis test:

Hy:ti=n=.=1t vs Hi:3i tc. 5#7; jefl,.,g}\i

Under Hj the test statistic M Sp/M Sw is distributed as a Fisher with parameters
g —1and N — g (see Table 11.1). A low p-value leads us to reject Hp and therefore
conclude that not all groups have the same mean.

Online Supplementary Material

An online supplement to this chapter is available,
containing data, further insights and exercises.

11.1.2 Libraries

library( MASS )

library( car ) #for LEVENE TEST

## Loading required package: carData

library( faraway )

##

## Attaching package: ’faraway’

## The following objects are masked from ’package:car’:
##

## logit, vif

library( Matrix )

library( RColorBrewer ) #for color palette

library( ggplot2 )

## Warning: package ’ggplot2’ was built under R version 3.5.2
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11.2 Exercises

Exercise 11.1 Write the ANOVA model, specifying the assumptions. Can the one-
way ANOVA model be seen as a linear regression model? If so, specify the design
matrix and the analogy between ANOVA tests and linear regression tests.

Exercise 11.2 Record the height for N individuals, coming from three different
regions: a maritime region (10 individuals), a mountainous region (15 individuals)
and a hilly region (12 individuals). Describe the hypothesis test that must be
performed to test whether the average height is different based on the region of
origin and write the necessary R commands to solve the problem.

Exercise 11.3 (Visualisation of Variance Decomposition) In order to visualise
the theorem on variance decomposition, carry out the following points:

(a) Generate a dataset composed of three variables: ‘Measures’ (the quantity of
interest), ‘Group’ (the group variable) and the ‘ids’ variable (which is a count
of the rows). Choose N = 200 statistical units, divided into 4 balanced groups
(‘A’, ‘B’, ‘C’, ‘D’). Generate the dataset taking into account the assumptions of
the ANOVA model.

(b) Visualise, using the ‘ggplot2’ library, the theorem on variance decomposition.

Exercise 11.4 (One-Way ANOVA) Analyse the chickwts data, available in R,
related to the weight of chickens subjected to different diets and determine if there
is a difference between the average weights of the chickens among the different
groups. The chickwts dataset is composed of two variables:

* weight: response variable (Y;;), weight of chicken i, under diet j.
e feed: categorical variable at g levels indicating the type of diet.

Import the chickwts data. We want to investigate whether the weight of the
chickens is influenced by the type of diet.

Exercise 11.5 (Identifiability of the ANOVA Model) Provide the definition of
model identifiability. Discuss two formulations of the test on the difference of means
in the case where there is a single categorical variable at 7 levels, each with a count
of {3,2,3,2,3,2,3}. Specify the design matrix of each model.

Exercise 11.6 (One-Way ANOVA) Consider the coagulation dataset [2], in the
faraway library:

* coag: coagulation time (continuous, positive variable).
e diet: type of diet followed (categorical variable at 4 levels).

The dataset is 24 x 2. Prove that the diet impacts the average coagulation time.

Exercise 11.7 (Two-Ways ANOVA) Consider the rats dataset in the faraway
package. Investigate the effect of the type of poison and the type of treatment
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administered to 48 rats. The object of evaluation is the survival time (in tens of
hours) of the 48 rats. The dataset contains the following variables:

e time (survival time): continuous.
* poison (poison): categorical at 3 levels (I, II, III).
* treat (treatment): categorical at 4 levels (A, B, C, D).

11.3 Solutions

11.1 The answer is affirmative: ANOVA models can be seen as linear regression
models. For simplicity, let’s consider a one-way ANOVA model.
On one hand, the ANOVA model can be expressed as follows:

Yij=n+71j+¢g; iel{l,.,n;} jell, . g} (11.4)

This model is analogous to:

8

Yi =+ mXi 4+ mXo+ .+ pugXig+e,  iedl.N=) njt:
j=1

(11.5)

a linear regression model with g 4 1 parameters, where the covariates X;; are worth
1 if the statistical unit i is associated with the /-th level of the group and 0 otherwise.
In both models, the assumptions of homoscedasticity and normality must hold
(among all elements, therefore also within the groups).
The model in Eq. (11.5) is not the only acceptable one, indeed in this case it
can be easily proven that the design matrix is not invertible. For a more in-depth
reflection on the subject, refer to Exercise 11.5.

11.2 To answer this question, an ANOVA test must be performed. In the dataset,
we have a total of N = 37 individuals, a factor at three levels, g = 3. The groups
are unbalanced, as they do not have the same number.

We can start with a graphical exploration of the data using the boxplot com-
mand and juxtaposing the boxplots relative to the different groups. If the boxplots
are at different heights, we expect an effect of the factor on the response variable. If
the boxplots are asymmetric, the assumption of normality might be violated. If the
boxplots are of very different sizes, the assumption of homoscedasticity might be
violated.

We verify that the assumption of normality is satisfied using the shapiro.test()
command, which performs a Shapiro test. The test must be repeated on each group
separately, or it can be used simultaneously using the tapply command. If the
p-values are high, I accept Hy, i.e., I accept the assumption of normality for each

group.
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I verify the assumption of homoscedasticity among the groups, through the
Bartlett or Levene test. If the p-value is high, I accept Hy, i.e., I accept the
assumption of homogeneity of variance. For further study on these tests, refer to
the online material.

If the model assumptions are respected, we proceed with our analysis with the
anova, aov or 1m command. In all three cases, we look at the p-value related to the
Fisher test. If the p-value is low, I reject Hy, i.e., there is a difference in the mean of
the variable of interest due to the factor (the region in this case).

11.3

(a) We generate the dataset as required by the text. Since the groups are balanced,
we have 50 observations per group. Also, since the assumptions of the ANOVA
model are valid, we must generate the data from a normal distribution with the
same variance for each group. The mean is at the reader’s discretion.

N = 50

set.seed(1000)

group_1 = rnorm( N, 10, 3 )
group_2 = rnorm( N, 5, 3 )
group_3 = rnorm( N, 20, 3 )
group_4 = rnorm( N, 50, 3 )

groups = rep( c(’A’,’B’,’C’,’D’), each = N )
data_oneway_aov = cbind(
c( group_1, group_2, group_3, group_4 ),
groups,
1: (N*4) )

data_oneway_aov = as.data.frame( data_oneway_aov )
colnames( data_oneway_aov ) = c(’Measures’, ’'Group’, ’ids’)

Before proceeding, let’s check that Measures and ids are variables of type
numeric, while Group should be a variable of type factor. If not, we convert
the type of these variables. This step is important for later visualisation.

is( data_oneway_aov$Measures )[1]
## [1] "factor"

is( data_oneway_aov$Group )[1]

## [1] "factor"

cast = data_oneway_aov$Measures
data_oneway_aov$Measures = as.numeric(levels(cast))[cast]

is( data_oneway_aov$Measures )[1]
## [1] "numeric"

cast = data_oneway_aov$ids
data_oneway_aov$ids = as.numeric(levels(cast))[cast]

is( data_oneway_aov$ids )[1]
## [1] "numeric"
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Let’s make a first graph to verify that we have correctly generated the data.

ggplot(data_oneway_aov, aes( x = Group, y = Measures,
fill = Group ) ) +
geom_boxplot() + scale_fill grey() +
scale_colour_grey() + theme_bw() +
geom_segment( aes( x = 0.5, y = 10, xend = 1.5, yend = 10,
colour = ’Real mean’), linetype =2 ) +
geom_segment( aes( x = 1.5, y =5, xend = 2.5, yend = 5,
colour = ’Real mean’), linetype =2 ) +
geom_segment( aes( x = 2.5, y = 20, xend = 3.5, yend = 20,
colour = ’Real mean’), linetype =2 ) +
geom_segment( aes( x = 3.5, y = 50, xend = 4.5, yend = 50,
colour = ’Real mean’), linetype = 2

Observing Fig. 11.1, we conclude that the dataset is correctly generated, in fact
we see that the means used to generate the data (dashed lines), are very close to the
medians and the boxplots are symmetric (as is correct for the Normal distribution).

(a) We then proceed to the visualisation of the theorem on the decomposition of

variance.
colour
] - = Real mean
3
; Group
S A
= 2 BE s
°
=R
g . B3 o
0-
°
A B c D

Group

Fig. 11.1 Boxplot of the quantity of interest ‘Measures’, recorded in the 4 groups ‘A’, ‘B’, ‘C’
and ‘D’
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We start by calculating the quantities of interest. In particular, we create a dataset
that contains the previously created dataset, the means of Measures for each group
and the global mean of Measures.

mean_per_group = tapply( data_oneway_aov$Measures,
data_oneway_aov$Group, mean )
mean_tot = mean( data_oneway_aov$Measures )

data_lines = cbind( data_oneway_aov,
rep( mean_per_group, each = N ),
rep( mean_tot, 4*N) )
data_lines = as.data.frame( data_lines )
colnames( data_lines ) = c( ’'Measures’, ’'Group’, ’ids’,
'mean_per_group’, ’mean_tot’ )

head( data_lines )

## Measures Group ids mean_per_group mean_tot
## 1 8.662665 A 1 9.52411 21.42521
## 2 6.382430 A 2 9.52411 21.42521
## 3 10.123379 A 3 9.52411 21.42521
## 4 11.918165 A 4 9.52411 21.42521
## 5 7.640337 A 5 9.52411 21.42521
## 6 8.843532 A 6 9.52411 21.42521

We draw our first quantity of interest, the components of SSw, in Fig. 11.2:

Y,“-Yj. iE{l,--ynj} Jjefl,..,GhL

ggplot( data_oneway_aov, aes( ids, Measures ) ) +
geom_point( aes(color= Group)) + scale_fill grey() +
scale_colour_grey() + theme_bw() +
geom_segment( x = 1, y = mean_per_group[l], xend = 50,

yend = mean_per_group[l], colour = 1 ) +
geom_segment( x = 51, y = mean_per_group[2], xend = 100,
yend = mean_per_group[2], colour = 1 ) +

0

geom_segment( x = 101, y = mean_per_group[3], xend = 150,
yend = mean_per_group[3], colour = 1 ) +
geom_segment( x = 151, y = mean_per_group[4], xend = 200,

yend = mean_per_group[4], colour = 1 ) +
geom_segment( data = data_lines,
aes( x = ids, y = mean_per_group,
xend = ids, yend = Measures),
colour = "gray" ) +
theme( axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank() )
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Fig. 11.2 Representation of the different components of SSy, i.e., the distance of each point from

the mean of the group to which it belongs

We draw our second quantity of interest, the components of SSg, in Fig. 11.3:

Y, -Y je{l, .,G}

ggplot( data_oneway_aov, aes( ids, Measures ) ) +
geom_point( aes(color= Group)) + scale_fill grey() +
scale_colour_grey() + theme_bw() +
geom_segment( x = 1, y = mean_per_group[1l], xend =

yend = mean_per_group[l], colour = 1 ) +
geom_segment( x = 51,
yend = mean_per_group[2], colour = 1 ) +
geom_segment( x = 101, y = mean_per_group[3], xend =
yend

y = mean_per_group[2], xend = 100,

150,

geom_segment( x = 151,

geom_segment( x = 1, y
yend =
geom_segment( x = 25,

geom_segment( x = 75,
yend =

yend = mean_tot, colour =

y = mean_per_group[4], xend

= mean_tot, xend = 200,

mean_tot, colour =1 ) +
y = mean_per_group[1l], xend =

"gray" ) +

y = mean_per_group[2], xend =
mean_tot, colour =

"gray" ) +

= mean_per_group[3], colour =1 ) +

200,

yend = mean_per_group[4], colour = 1 ) +

5,
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geom_segment( x = 125, y = mean_per_group[3], xend = 125,
yend = mean_tot, colour = "gray" ) +

geom_segment( x = 175, y = mean_per_group[4], xend = 175,
yend = mean_tot, colour = "gray" ) +

theme( axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank() )

We draw our third quantity of interest, the components of SStor7, in Fig. 11.4:

Yij—Y ief(l,..n;} jefl,., G

40 -
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Fig. 11.3 Representation of the different components of SSp, i.e., the distance of the mean of
each group from the global mean
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Fig. 11.4 Representation of the different components of SS7 o7, that is, the distance of each point
from the global mean

ggplot( data_oneway_aov, aes( ids, Measures ) ) +
geom_point( aes(color= Group)) + scale_fill grey() +
scale_colour_grey() + theme_bw() +
geom_segment( x = 1, y = mean_tot, xend = 200,

yend = mean_tot,
colour = 1) +
geom_segment( data = data_lines,
aes( x = ids, y = mean_tot,
xend = ids, yend = Measures),
colour = "gray" ) +
theme( axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank() )

11.4 To solve this exercise, we need to proceed as follows:

(a) Import the dataset.
(b) Visualise the dataset.
(c) Set up the model.
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(d) Verify the model’s assumptions.
(e) Check the difference between the means (through testing).

(a) Import the dataset.

head( chickwts )
##  weight feed

## 1 179 horsebean
## 2 160 horsebean
## 3 136 horsebean
## 4 227 horsebean
## 5 217 horsebean

## 6 168 horsebean
tail( chickwts )

## weight  feed
## 66 352 casein
## 67 359 casein
## 68 216 casein
## 69 222 casein
## 70 283 casein
## 71 332 casein

attach( chickwts )

The dataset consists of N = 71 observations, divided into 6 groups (g = 6).

tapply( chickwts$weight, chickwts$feed, length )
##casein horsebean linseed meatmeal soybean sunflower
## 12 10 12 11 14 12

The groups appear to be quite balanced.

(b) Visualise the dataset.
We visualise the data through boxplots, so as to get an intuition about the
presence of any differences in the response between chickens that follow
different diets.

summary( chickwts )

## weight feed
## Min. :108.0 casein 112
## 1st Qu.:204.5 horsebean: 10
## Median :258.0 linseed :12
## Mean :261.3 meatmeal :11
## 3rd Qu.:323.5 soybean :14
## Max. 1423.0 sunflower:12

boxplot( weight ~ feed, xlab = ’'feed’, ylab = ’weight’,
main = ’Chicken weight according to feed’,
col = gray.colors(6) )

abline( h = mean( weight ) )
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11.5 Representation of the weight of chickens according to different diets

From the comparison of the boxplots in Fig. 11.5, it seems that there is some
effect, the means appear different depending on the diet followed.

Set up the model.

We want to investigate the following one-way ANOVA model:

Yij = K+ Tj + &ij;

in which i € {1,..,n;} is the index of the statistical unit within the group j,
while j € {1, .., g} is the group index.
We are interested in performing the following test:

Hy:7=71; Vi,jell, ., 6} vs Hy 3G, j)|u #15.

Paraphrasing, Hp assumes that all chickens belong to a single population, while
H assumes that the chickens belong to 2, 3, 4, 5 or 6 populations with different
means. In Fig. 11.6 we have graphically represented what we would record if Hy
were true (the means in the different groups would coincide) in the left panel,
and what we actually record in our dataset in the right panel.
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Fig. 11.6 Representation of what we would observe if Hy were true in the left panel. Representa-
tion of the average weight of chickens in different diets in the right panel

par( mfrow = c( 1, 2 ) )

barplot( rep( mean( weight ), 6 ),
names.arg = levels( feed ),
ylim = c( 0, max( weight ) ), main = "H® true",
col = ’'grey’ )

barplot( tapply( weight, feed, mean ),
names.arg = levels( feed ),
ylim = c¢( 0, max( weight ) ),
main = "Dataset under examination",
col = gray.colors(6) )

(d) Verify the model’s assumptions.
We verify that the ANOVA assumptions are met:

* Normality within the group (through Shapiro test).
* Homoscedasticity between the groups (through Bartlett or Levene test).

n = length( feed )
ng = table( feed )
treat = levels( feed )
g = length( treat )

# Normality of data in groups

Ps = c( shapiro.test( weight [ feed == treat [ 1 ] ]
shapiro.test( weight [ feed == treat [ 2 ] ] )$p,
shapiro.test( weight [ feed == treat [ 3 ] ]
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shapiro.test( weight [ feed == treat [ 4 ] ] )

shapiro.test( weight [ feed == treat [ 51 ] )$p,

shapiro.test( weight [ feed == treat [ 6 ] ] )
#Ps

# In a more compact and elegant way:
Ps = tapply( weight, feed,
function( x ) ( shapiro.test( x )$p ) )
Ps
#i# casein horsebean linseed meatmeal
## 0.2591841 0.5264499 0.9034734 0.9611795
## soybean sunflower
## 0.5063768 0.3602904

The p-value vector of the Shapiro test (Ps) are all high, so I accept the
hypothesis of normality in all groups.
Let’s verify the hypothesis of homoscedasticity.

Var = c( var( weight [ feed == treat [ 1] ] ),
var( weight [ feed == treat [ 2 ] ] ),
var( weight [ feed == treat [ 3] 1),
var( weight [ feed == treat [ 4 ] ] ),
var( weight [ feed == treat [ 5] 1),
var( weight [ feed == treat [ 6 ] ] ) )

#Var

# In a more compact and elegant way:

Var = tapply( weight, feed, var )

#Var

# Uniformity test of variances

bartlett.test( weight, feed )

##

## Bartlett test of homogeneity of variances

##

## data: weight and feed

## Bartlett’s K-squared = 3.2597, df = 5, p-value = 0.66

# Alternative: Levene-Test

leveneTest( weight, feed )

## Levene’s Test for Homogeneity of Variance

## (center = median)

##t Df F value Pr(>F)

## group 5 0.7493 0.5896

## 65

The tests agree, we conclude that the hypothesis of variance homogeneity is
respected.
(e) Verify difference between means (through test).
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Now that we have verified that the hypotheses are satisfied we can proceed with
a one-way ANOVA.

SSTREAT/T

= OOTREATIT . Ern — p);
0= SSkas/n—py TnTP

in which:
8
2
SSTREAT = Z‘L'j “nj.
Jj=1

In the one-way ANOVA the number of regressors r = g — 1.
In R we can perform an ANOVA test in three ways:
1. Performing a manual F test.

Media = mean( weight )
Mediag = tapply( weight, feed, mean )

SStot = var( weight ) * ( n-1)
SStreat = sum( ng * ( Mediag-Media )*2 )
SSres = SStot - SStreat

alpha = 0.05
Fstatistic = ( SStreat / (g-1) ) / ( SSres / ( n-g ) )

# "small" values do not lead us to reject
cfr.fisher = qf( 1l-alpha, g-1, n-g )
Fstatistic > cfr.fisher

## [1] TRUE

Fstatistic

## [1] 15.3648

cfr.fisher

## [1] 2.356028

P = 1-pf( Fstatistic, g-1, n-g )
P
## [1] 5.93642e-10

Observing our F statistic (Fstatistic), we notice that we are well beyond the 5%
threshold. So I have strong evidence to reject the null hypothesis (confirmed by
the p-value equal to 5.94¢~10,
2. Running the aov command.

help( aov )

fit = aov( weight ~ feed )

# or anova( mod )

summary( fit )

# Df Sum Sq Mean Sq F value Pr(>F)
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# feed 5 231129 46226 15.37 5.94e-10 ***

# Residuals 65 195556 3009

# -

#Signif. codes:® ’***’ §.001 ’**’ 0.01 '*’ 0.05 .’ 0.1’ 1

The aov command shows the decomposition of variance and the outcome of the
ANOVA test. In this case SSp = 231129 and SSw = 195556. The p-value of
the test is 5.94¢ 710, so we reject the null hypothesis.

3. Running the 1Im command.

mod = 1lm( weight ~ feed )

summary( mod )

##

## Call:

## Im(formula = weight ~ feed)

##

## Residuals:

## Min 1Q Median 3Q Max

## -123.909 -34.413 1.571 38.170 103.091

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 323.583 15.834 20.436 < 2e-16 ***
## feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
## feedlinseed -104.833 22.393 -4.682 1.49e-05

## feedmeatmeal -46.674 22.896 -2.039 0.045567 *

## feedsoybean -77.155 21.578 -3.576 0.000665 ***
## feedsunflower 5.333 22.393 0.238 0.812495

## -—-

##Signif. codes:0® ’***’ §.001 '**’ 0.01 '*’ .05 .’ 0.1 ' 1
##

## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

Through the 1m command, we model our response variable using a linear model.
The test that interests us is the one related to the global significance of the model
reported in the last line of the summary (see Chap. 9).

Through all three proposed approaches, we reject Hy and conclude that there is
a difference between the means of the different groups.

11.5 We are in the case of one-way ANOVA. This model can be represented as:

Yij =1+ u; + ¢&ij, iefl,..n;} jefl, ., g}
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Alternatively, we can consider a linear regression model with a categorical
variable X (dummy variable) at g levels.

Y=XB+e.
Non-invertible Design Matrix
Yij = PBo+ B1Xi1 + BoXio + - + B Xig + &ij.
Observation

In this model, the design matrix X has dimension N x (g 4+ 1). Each row of
X, xj is a binary vector of length g 4+ 1, in which one appears at the first element
(corresponding to the intercept) and in the j + 1-th element, where j represents the
group of membership of the element i.

Considering 7 groups with sizes {3,2,3,2,3,2,3} respectively, the design matrix
X described above is:

[11000000]
11000000
11000000
10100000
10100000
10010000
10010000
10010000
10001000
10001000
10000100
10000100
10000100
10000010
10000010
10000001
10000001

10000001 |

This design matrix (X.full in the code) is singular, i.e. not invertible (to invert it
manually we must resort to the Moore-Penrose pseudoinverse).
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In other words, the model described in Eq. (11.5) is not identifiable.
Invertible Design Matrix
Alternatively, we can consider the following model:

Yii=PBo+ P1Xi1 +PoXio+ -+ Bg—1Xig—1 + &ij.

In this model, the design matrix X has dimension N x g, the elements of which are
{—1, 0, 1}. The first column, as in the previous case, is made up of all 1s (elements
related to the intercept). While, the rows related to the statistical units of the first
g — 1 groups are composed of all zeros, except the first element and the j-th
element, where j represents the group of membership. Finally, the rows related to
the statistical units belonging to the group g are made up of all — 1, except the first
element which is 1. This design matrix is also called a contrast matrix.

This design matrix X in our case becomes:

e e e e e e
S OO OO OO OO OO ==
S OO OO O, R, OOOo OO
S OO O = = OO OO oo oo
= el eNelele ool Nl

— —_— O OO0 O OO0 OO0 oo oo o

[N eleoloBoloBeolNeolelh T k=R ==

1000 0 0
=1 —1-1-1-1-1
=1 —1-1-1-1-1
-1 —1—1—-1-1-1|

We immediately notice that this matrix is similar to the previous one but it is
non-singular and therefore invertible.
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Observation If we execute the command tapply( feed, feed, length ), R
calculates the group sizes and reorders them in alphabetical order by group name.
If we want to use the group sizes in the order in which they appear in the dataset
(feed), we must do:

n
## [1] 71

group_names = unique( as.character( feed ) )
ng = tapply( feed, feed, length )[ group_names ]

Non-invertible Design Matrix in R

We construct the matrix X. full, that is a design matrix where we consider all the
groups (dimension = N x (g + 1) ). In particular, we create g + 1 columns and
assemble them using the cbind command.

# group 1 (in the order of the data in ( weight, feed )
x1.full = cCrep( 1, ng[11]),
rep( ®, n -ng [ 1 1))

# group 2 (in the order of the data in ( weight, feed )
x2.full = cCrep(® ng [ 11]),

rep( 1, ng [ 2 1),

rep( O, n-ng [ 1]1-ngl[21))

# group 3 (in the order of the data in ( weight, feed )
x3.full = cCrep(® ng [ 1] +ng[21]),

rep( 1, ng [ 3 1),

rep( O, n-ng [ 1] -ng[2]1-ng[31))

# group 4 (in the order of the data in ( weight, feed )
x4.full = cCrep(0®, n-ng [ 6] -ng[5]-ngl[41]),
rep( 1, ng [ 41,
rep( O, ng [ 5] +ng[61]1))

# group 5 (in the order of the data in ( weight, feed )
x5.full = cCrep(® n-ng[6]-ng[5]),

rep( 1, ng [ 51,

rep( ®, ng [ 6 1))
# group 6 (in the order of the data in ( weight,feed )
x6.full = cCrep(® n-ng[61]),

rep( 1, ng [ 6 1))

X.full = cbind( rep( 1, n ),
x1.full,
x2.full,
x3.full,
x4.full,
x5.full,
x6.full )
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To prove that X. full does not have full rank, we observe that one column is a
linear combination of other columns of the matrix.

stopifnot( length(
which( X.full[ , 1 ] - rowSums( X.full[ , - 1] ) ==0) )
== dim( X.full )[1] )

We now estimate the /§ . Remember that X is singular, so H will be calculated as
follows:

H=Xx -xT.x) . xT

where (X7 - X)T indicates the Moore-Penrose pseudo-inverse. And the B will be
calculated as:

B=xT.-x)".xT.y

# H.full = X.full%*%solve(t(X.full)%*%X.full)%*%t(X.full)
# R gives an error, because it’s singular!

H.full = X.full%*%ginv(t(X.full)%*%X.full)%*%t(X.full)
y = weight

betas.full = as.numeric(
ginv(t(X. ful)%*%X. ful1)%*%t (X. full) %*% y)

The mean in the j-th group is:

means_by_group = betas.full[ 1 ] +
betas.full[ 2:length( betas.full ) ]
names( means_by_group ) = group_names

means_by_group
## horsebean linseed soybean sunflower meatmeal casein
## 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833

tapply( weight, feed, mean )[ unique( as.character( feed ) ) ]
## horsebean linseed soybean sunflower meatmeal casein
## 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833
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The global mean is:

8
-y nj - Kj
"= N
j=1

global_mean = ng %*% means_by_group / n
global_mean

## [,1]

## [1,] 261.3099

mean( weight )
## [1] 261.3099

Invertible Design Matrix in R

xl.red = cCrep( 1, ng [ 1] ),
rep(0®, n-ng [ 1] -ngl[61),
rep( -1, ng [ 6] D))
stopifnot( sum( xl.red - ( x1.full - x6.full ) ) == 0 )

x2.red = cC rep( ®, ng [ 1] ),
rep( 1, ng [ 21 ),
rep( 0,
n-ng[1]-ngl[2]-ng[61),
rep( -1, ng [ 6 1))

stopifnot( sum( x2.red - ( x2.full - x6.full ) =0 )

x3.red = cCrep(®, ng [ 1] +ng[21]),
rep( 1, ng [ 3 1),
\begin{Verbatim}[frame = single, fontsize=\small\ttfamily]
rep( 0,
n-ng[1]-ng[2]-ng[3]-ngl61]D),
rep( -1, ng [ 6 1))
stopifnot( sum( x3.red - ( x3.full - x6.full ) ) == 0 )
x4.red = c(rep(®, n-ng[ 6] -ng[5]-ngl[41]),
rep( 1, ng [ 41,
rep( 8, ng [ 51,
rep( -1, ng [ 6 1))
stopifnot( sum( x4.red - ( x4.full - x6.full ) ) == 0 )

x5.red = cCrep(O®, n-ng[6]-ng[5171),
rep( 1, ng [ 51,
rep( -1, ng [ 6 1) )
stopifnot( sum( x5.red - ( x5.full - x6.full ) ) == 0 )

X.red = cbind( rep( 1, n ),
x1.red,
x2.red,
x3.red,
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x4.red,
x5.red )

We now estimate the [9

H.red = X.red %*% solve( t( X.red ) %*% X.red ) %*% t(X.red)

betas.red = as.numeric(
solve( t( X.red ) %*% X.red ) %*% t( X.red ) %*% y )

The mean in the j-th group is obtained as follows:
wj = Po+ Bi i=1,...,g—1.

g =PHBo—(B1+ ...+ Bg-1)-

means_by_group = betas.red[ 1 ] + betas.red[ -1 ]
means_by_group = c( means_by_group, betas.red[ 1 ] -
sum( betas.red[ -1 1 ) )

names ( means_by_group ) = group_names

means_by_group

## horsebean linseed soybean sunflower meatmeal casein
## 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833
tapply( weight, feed, mean )[ group_names ]

## horsebean linseed soybean sunflower meatmeal casein
## 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833

Therefore, with both the singular and non-singular design matrix, we arrive at
the same result.
Observation What does R do automatically?

To answer this question, let’s revisit the previous exercise on the chickwts data
and extract, using the model.matrix command, the design matrix of the tested
models.

mod_aov = aov( weight ~ feed )
X_aov = model.matrix( mod_aov )

We see that the design matrix created by the ANOVA is of dimensions N x g.
We note that the variable (level) casein is missing and is used as a baseline. The
considered regression model then becomes:

Yij = Po+ BoXio+ -+ Bg Xig +¢ij.

mod_lm = Im( weight ~ feed )
X_1Im = model.matrix( mod_Ilm )
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The same applies in the case of a linear model.

Observation The first group (in the alphanumeric order of the levels of the
stratification variable, feed, and NOT in the order of appearance of the data) is
suppressed and taken as a reference (baseline).

We now calculate the [9

betas.lm = coefficients( mod_Ilm )

The mean in the j-th group is obtained as follows:

Wbaseline = Bo-

wj = PBo+ B, J # baseline.

means_by_group = c( betas.Ilm[ 1 ],
betas.Ilm[ 1 ] + betas.Im[ -1 ] )
names ( means_by_group ) = levels( feed )

means_by_group

## casein horsebean linseed meatmeal soybean sunflower
## 323.5833 160.2000 218.7500 276.9091 246.4286 328.9167
tapply( weight, feed, mean )

## casein horsebean linseed meatmeal soybean sunflower
## 323.5833 160.2000 218.7500 276.9091 246.4286 328.9167

11.6 We import the dataset.

data( coagulation )

dim( coagulation )
## [1] 24 2

names( coagulation )
## [1] "coag" "diet"
head( coagulation )
## coag diet

## 1 62 A
## 2 60 A
## 3 63 A
## 4 59 A
## 5 63 B
## 6 67 B

To answer the exercise question, we would like to set up a one-way ANOVA.
Before carrying out the analyses, we check the assumptions of the model:

1. Normality;
2. Homoscedasticity.

Elements that violate the assumptions, are:
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Fig. 11.7 Boxplot of coagulation time depending on the type of diet

1. Skewness (see asymmetric group-specific boxplots).
2. Heteroscedasticity (see different sizes of group-specific boxplots).

Observation Graphical analyses have a purely exploratory purpose, especially
when dealing with small-sized datasets (like coagulation). Indeed, even in the
case of homogeneous variances among the groups, we can expect variability
between the groups. We draw the group-specific boxplots in Fig. 11.7.

plot( coag ~ diet, data = coagulation, col = grey.colors(4) )

It seems that the assumptions are respected. We find skewness only in group
C, where however only 4 observations are recorded, one of which is significantly
distant from the others.

table( coagulation$diet )
##

## A B CD

## 4 6 6 8

coagulation$coag[ coagulation$diet == ’C’ ]

## [1] 68 66 71 67 68 68

unique( coagulation$coag[ coagulation$diet == ’C’ ] )
## [1] 68 66 71 67

The observations of coagulation in group C are all very close.
We now analyse the ANOVA model.
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mod = Im( coag ~ diet, coagulation )
summary( mod )

##

## Call:

## Im(formula = coag ~ diet, data = coagulation)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.00 -1.25 0.00 1.25 5.00

##

## Coefficients:

##t Estimate Std. Error t value Pr(>|t])

## (Intercept) 6.100e+01 1.183e+00 51.554 < 2e-16 ***
## dietB 5.000e+00 1.528e+00 3.273 0.003803 **
## dietC 7.000e+00 1.528e+00 4.583 0.000181 ***
## dietD 2.991e-15 1.449e+00 0.000 1.000000

## ——-

##Signif. codes:0® ’***’ §.001 '**’ 0.01 '*’ 0.05 '.’ 0.1 ' 1
##

## Residual standard error: 2.366 on 20 degrees of freedom
## Multiple R-squared: 0.6706, Adjusted R-squared: 0.6212
## F-statistic: 13.57 on 3 and 20 DF, p-value: 4.658e-05

We see the design matrix used by R.

dim( model.matrix( mod ) )

## [1] 24 4

model.matrix( mod )[1:5, 1 #n x ¢
## (Intercept) dietB dietC dietD

## 1 1 0 0 0
## 2 1 0 0 0
## 3 1 0 0 0
## 4 1 0 0 0
## 5 1 1 0 0

Group ‘A’ is taken as the reference (or baseline) group (first according to
alphanumeric order). The effects must be interpreted as differences compared to
the baseline group. We can read the model output in the following way:

e Group A: mean=61.

* Group B: mean=61+5.
* Group C: mean=61+7.
* Group D: mean=61+0.

Thanks to the F statistic of the analysed model, we can conclude that there is an
effect of the diet on coagulation.

We now try to fit the same model, removing the intercept and see how the
following quantities change: design matrix, estimates of 8 and p-value of the F
test.
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mod_i = 1lm( coag ~ diet - 1, coagulation )

summary( mod_i )

##

## Call:

## lm(formula = coag ~ diet - 1, data = coagulation)
##

## Residuals:

## Min 1Q Median 3Q Max

## -5.00 -1.25 0.00 1.25 5.00

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t]|)

## dietA 61.0000 1.1832 51.55 <2e-16 ***
## dietB 66.0000 0.9661 68.32 <2e-16

## dietC 68.0000 0.9661 70.39 <2e-16

## dietD 61.0000 0.8367 72.91 <2e-16 ***

## —--

##Signif. codes:0 ’***’ §.001 '**’ 0.01 '*’ .05 .’ 0.1 ' 1
##

## Residual standard error: 2.366 on 20 degrees of freedom
## Multiple R-squared: 0.9989, Adjusted R-squared: 0.9986
## F-statistic: 4399 on 4 and 20 DF, p-value: < 2.2e-16

model .matrix( mod_i )[1:5,]
##  dietA dietB dietC dietD

## 1 1 0 0 0
## 2 1 0 0 0
## 3 1 0 0 0
## 4 1 0 0 0
## 5 0 1 0 0

We can immediately observe that the design matrix is still invertible, but it has
changed. This leads to a different interpretation of the f. In fact, we now have:

Bi=t+un;, Jjell,..gh
that is, we can directly read from the output the means of the coagulation times in
the individual groups.

Observation As highlighted in Chap. 9, in models without an intercept R? loses
its meaning.

We then proceed with the model diagnostics, i.e. the verification (quantitative) of
the assumptions.

par( mfrow = c(1,2) )

qgnorm(mod$res, pch=16, col="black’,
main="QQ-norm of residuals’)
qqline( mod$res, lwd = 2, col =1 ,1ty = 2 )
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shapiro.test( mod$res )

##

## Shapiro-Wilk normality test
##

## data: modS$res

## W = 0.97831, p-value = 0.8629

plot( mod$fit, mod$res, xlab = "Fitted", ylab = "Residuals",
main = "Residual-Fitted plot", pch = 16 )

From the Shapiro test on the residuals and the graph on the left in Fig. 11.8, we
conclude that the normality assumption is respected.

bartlett.test( coagulation$coag, coagulation$diet )

##

## Bartlett test of homogeneity of variances

##

## data: coagulation$coag and coagulation$diet

## Bartlett’s K-squared = 1.668, df = 3, p-value = 0.6441
leveneTest( coagulation$coag, coagulation$diet )

## Levene’s Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)

## group 3 0.6492 0.5926

## 20

From the Bartlett test and the graph on the right in Fig. 11.8, we can consider the
homoscedasticity assumption to be valid.
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Fig. 11.8 QQ-norm of the model residuals in the left panel. Representation of residuals vs fitted
values from the model in the right panel
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In both graphs of Fig. 11.8 we recognise typical patterns of discrete data (both
the response variable and the predictive variable are discrete). The response variable
is recorded in a discrete manner (probably these are truncated values), but in itself
it is a continuous variable, so it is not wrong to evaluate an ANOVA model.

11.7 To answer the question it is necessary to set up a two-way ANOVA. To do this,
we try to get a graphical intuition of the effect of the two factors and their interaction
on the variable of interest (survival time). We verify the model assumptions and
evaluate the results obtained.

We load the rats data.

data( rats )

dim( rats )
## [1] 48 3

head( rats )
##  time poison treat

## 1 0.31 I A
## 2 0.82 I B
## 3 0.43 I C
## 4 0.45 I D
## 5 0.45 I A
## 6 1.10 I B
tail( rats )

## time poison treat
## 43 0.24 I11 C
## 44 0.31 I1T D
## 45 0.23 I11 A
## 46 0.29 I1T B
## 47 0.22 I11 C
## 48 0.33 I1T D
names( rats )

## [1] "time" "poison" "treat"

We visualise the data in Fig. 11.9 and in Fig. 11.10.

ggplot(rats, aes( x = treat, y = time, fill = treat ) ) +
geom_boxplot() + scale_fill grey() +
scale_colour_grey() + theme_bw()

ggplot(rats, aes( x = poison, y = time, fill = poison ) ) +
geom_boxplot() + scale_fill grey() +
scale_colour_grey() + theme_bw()

From these initial graphs, we can infer an effect of both the treatment and the
poison on the survival time of the rats. It is not certain whether the assumption of
homoscedasticity among the groups is respected, however appropriate tests must be
performed.
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Fig. 11.9 Boxplot of the survival time of rats in relation to the type of treatment received

Since we are dealing with two factors, it is necessary to understand if it is appro-
priate to consider in the model also the interaction of these. A tool to investigate
the possible presence of interaction between the factors is the interaction.plot
command in Fig. 11.11 and in Fig. 11.12.

help(interaction.plot)
interaction.plot( rats$treat, rats$poison, rats$time )

interaction.plot( rats$poison, rats$treat, rats$time )

Parallel lines suggest the absence of an interaction effect between the two factors
on the variable of interest (survival time of the rats). However, it is not correct to
exclude the effect of the interaction of the two factors only through a graphical
exploration. We therefore start from the complete model (which contemplates both
factors and their interaction).

Before applying a two-way ANOVA, we must test the validity of the hypotheses
of:

* Normality (in all 12 groups).
* Homogeneity of variance (between groups).
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Fig. 11.10 Boxplot of the survival time of rats in relation to the type of poison administered
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Fig. 11.11 Interaction plot to evaluate the interaction of the two factors
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Fig. 11.12 Interaction plot to evaluate the interaction of the two factors

tapply( rats$time, rats$treat:rats$poison,
function( x ) shapiro.test( x )$p )

#i# A:I A:II A:III
## 0.07414486 0.84756406 0.57735490
#i# B:I B:II B:III
## 0.69983383 0.70083721 0.17057001
## C:I C:II C:III
## 0.40503490 0.92091109 0.97187706
#i# D:I D:II D:III

## 0.42739119 0.90650963 0.68893644

By running the Shapiro test, we can conclude that the normality hypothesis is
respected in all groups (although the first group, A-I, should be further investigated).

leveneTest( rats$time, rats$treat:rats$poison )

## Levene’s Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)

## group 11 4.1323 0.0005833 ***

## 36

## ——-

##Signif. codes:® '***’ 0.001 ’**’ 0.01 '*’ 0.605 .’ 0.1 ’ '1
bartlett.test( rats$time, rats$treat:rats$poison )

##

## Bartlett test of homogeneity of variances

##

## data: rats$time and rats$treat:rats$poison
## Bartlett’s K-squared = 45.137, df = 11, p-value = 4.59e-06
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The hypothesis of homogeneity of variances is widely violated (observe the p-
value of the Levene test and the Bartlett test).

We can consider a transformation of the variables. We opt for a Box-Cox type
transformation, considering the complete model.

%

g = Im( time ~ poison treat, rats )
#"*" gives the full model: linear effect AND interaction
#g = 1lm( time ~ poison + treat + poison : treat , rats )

b = boxcox( g, lambda = seq(-3,3,by=0.081), plotit = F )
best_lambda = b$x[ which.max( b$y ) ]

best_lambda

## [1] -0.82

The boxcox command also returns the graph in Fig. 11.13 (to obtain it, simply
set plotit = T).

plot( b$x, b$y, xlab = expression(lambda),
ylab = 'log-likelihood’)

From Fig. 11.13 we deduce that the optimal A is —0.82, however, as already
mentioned in the chapter related to linear regression, we round A to ensure greater
interpretability. We therefore opt for A = —1.

We then recheck the model assumptions.

o
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O o
g ¥
£
£ 34
é’ 1
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-3 -2 -1 0 1 2 3
A

Fig. 11.13 Box-Cox type transformation: investigation of the optimal A
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tapply( (rats$time)*(-1), rats$treat:rats$poison,
function( x ) shapiro.test( x )$p )

## A:I A:II A:III
## 0.03115001 0.65891022 0.38884991
## B:I B:II B:III
## 0.95061185 0.79724850 0.17554581
## C:I C:II C:III
## 0.38264156 0.87818060 0.96578666
## D:I D:II D:III

## 0.16801940 0.84342484 0.78353223

leveneTest( (rats$time)r(-1), rats$treat:rats$poison )

## Levene’s Test for Homogeneity of Variance (center = median)
##t Df F value Pr(>F)

## group 11 1.1272 0.3698

## 36

bartlett.test( (rats$time)A(-1), rats$treat:rats$poison )
##

## Bartlett test of homogeneity of variances

##

## data: (rats$time)A(-1) and rats$treat:rats$poison

## Bartlett’s K-squared = 9.8997, df = 11, p-value = 0.5394

The model assumptions are respected, apart from the normality of group A-I.
We can use a two-way ANOVA model, bearing in mind that in the presence of
interaction the assumptions are not fully respected.

gl = Im( 1/time ~ poison * treat, data = rats )

summary( gl )

##

## Call:

## Im(formula = 1/time ~ poison * treat, data = rats)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.76847 -0.29642 -0.06914 0.25458 1.07936

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 2.48688 0.24499 10.151 4.16e-12 ***
## poisonII 0.78159 0.34647 2.256 0.030252 *
## poisonIII 2.31580 0.34647 6.684 8.56e-08 ***
## treatB -1.32342 0.34647 -3.820 0.000508 ***
## treatC -0.62416 0.34647 -1.801 0.080010 .
## treatD -0.79720 0.34647 -2.301 0.027297 *
## poisonII:treatB -0.55166 0.48999 -1.126 0.267669

## poisonIII:treatB -0.45030 0.48999 -0.919 0.364213

## poisonII:treatC 0.06961 0.48999 0.142 0.887826

## poisonIII:treatC 0.08646 0.48999 0.176 0.860928

## poisonII:treatD -0.76974 0.48999 -1.571 0.124946

## poisonIII:treatD -0.91368 0.48999 -1.865 0.070391 .
## ——-
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##Signif. codes:® ’'***’ 0.001 ’**’ §.01 '*’ 0.605 .’ 0.1 ’ 1
##

## Residual standard error: 0.49 on 36 degrees of freedom

## Multiple R-squared: 0.8681, Adjusted R-squared: 0.8277
## F-statistic: 21.53 on 11 and 36 DF, p-value: 1.289%e-12
anova( gl )

## Analysis of Variance Table

##

## Response: 1/time

## Df Sum Sq Mean Sq F value Pr(>F)

## poison 2 34.877 17.4386 72.6347 2.310e-13 ***
## treat 3 20.414 6.8048 28.3431 1.376e-09 ***

## poison:treat 6 1.571 0.2618 1.0904 0.3867

## Residuals 36 8.643 0.2401

## -—-

##Signif. codes:0 ’***’ @.001 '**’ §.01 '*’ .05 .’ 0.1 ' 1

From the model, it is clear that both the type of poison and the type of treatment
influence the survival time of the mice. However, the interaction of the two factors
is not significant.

We will therefore examine the reduced model and re-evaluate the hypotheses.

gl_red = Im( 1/time ~ poison + treat, data = rats )
summary( gl_red )

##

## Call:

## Im(formula = 1/time ~ poison + treat, data = rats)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.82757 -0.37619 0.02116 0.27568 1.18153

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 2.6977 0.1744 15.473 < 2e-16 ***
## poisonII 0.4686 0.1744 2.688 0.01026 *
## poisonIII 1.9964 0.1744 11.451 1.69e-14 ***
## treatB -1.6574 0.2013 -8.233 2.66e-10 ***
## treatC -0.5721 0.2013 -2.842 0.00689 **
## treatD -1.3583 0.2013 -6.747 3.35e-08 ***
## -—-

##Signif. codes:0® ’***’ §.001 '**’ 0.01 '*’ 0.05 '.’ 0.1 ' 1
##

## Residual standard error: 0.4931 on 42 degrees of freedom
## Multiple R-squared: 0.8441, Adjusted R-squared: 0.8255
## F-statistic: 45.47 on 5 and 42 DF, p-value: 6.974e-16
anova( gl_red )

## Analysis of Variance Table

##

## Response: 1/time

## Df Sum Sq Mean Sq F value Pr(>F)

## poison 2 34.877 17.4386 71.708 2.865e-14 ***

## treat 3 20.414 6.8048 27.982 4.192e-10 ***
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## Residuals 42 10.214 0.2432

## -
##Signif. codes:® ’#**’ .001 ’**’ 0.01 '*’ 0.05 .’ 0.1 ’ ’'1

We evaluate normality in three ways:

* Graphical evaluation of the residuals of the reduced model (see Fig. 11.14).
* Shapiro test on the residuals of the reduced model.
* Shapiro test on the response variable.

#1)

qgnorm( gl_red$res/summary( gl_red )$sigma, pch = 16,
main = ’QQ-norm of residuals’ )

abline( 0, 1, 1wd = 2, 1ty = 2, col =1)

QQ-norm of residuals
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Fig. 11.14 QQ-norm of standardised residuals
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#2)

shapiro.test( gl_red$res )

##

## Shapiro-Wilk normality test
##

## data: gl_red$res

## W = 0.97918, p-value = 0.5451

#3)
tapply( 1/rats$time, rats$poison,
function( x ) shapiro.test( x )$p )
## I II III
## 0.1672488 0.8944364 0.3944087

tapply( 1/rats$time, rats$treat,

function( x ) shapiro.test( x )$p )
##t A B C D
## 0.2221106 0.1021497 0.3632241 0.2712347

In all three ways, we arrive at the same conclusion.
Finally, we evaluate the homogeneity of variance between the groups.

leveneTest( 1/rats$time, rats$poison )

## Levene’s Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)

## group 2 1.715 0.1915

## 45

leveneTest( 1/rats$time, rats$treat )

## Levene’s Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)

## group 3 0.614 0.6096

## 44

bartlett.test( 1/rats$time, rats$poison )

##

## Bartlett test of homogeneity of variances

##

## data: 1/rats$time and rats$poison

## Bartlett’s K-squared = 3.1163, df = 2, p-value = 0.2105
bartlett.test( 1/rats$time, rats$treat )

##

## Bartlett test of homogeneity of variances

##

## data: 1/rats$time and rats$treat

## Bartlett’s K-squared = 1.5477, df = 3, p-value = 0.6713

The Levene and Bartlett tests confirm the hypothesis.
Therefore, we conclude that rats given different poisons or treatments have
different survival times.
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Summary Exercises ST

12.1 Exercises

Exercise 12.1 Let X1, ..., X, be a random sample of size n from a Gaussian law
with mean In 6 and variance 4, with 6 a positive unknown parameter.

(a) Given U, = ¢, Z?:l e%i, determine the constant ¢, so that U,, is an unbiased
estimator of 6.

Hint: use the fact that, if ¥ ~ N (m, 0'?) then, forr € R,E[e''] = etmtiiio?,

(b) Calculate Var [U,] for ¢, determined in the previous point. Determine whether
the estimator U, is consistent and asymptotically normal.

(c) Construct another unbiased estimator V,, of 6, starting from the one obtained
with the method of moments. Determine whether V), is consistent and determine
its asymptotic law.

(d) Determine which of the two estimators U,, and V,, of 6 is preferable and justify
the choice.

(e) Construct an asymptotic confidence interval of level 1 — « for 8 based on V,,.

Exercise 12.2 Let Xy, ..., X, be arandom sample from a distribution with law:
(x—1)°
fx;0) = 4mﬂ(1,0)(x);

where 6 is a positive unknown parameter, 6 > 1.

(a) Determine a statistic T sufficient for 6.

(b) Using the definition of completeness, determine whether T is complete for 6.
(¢) Find the UMVUE for 6.

(d) Construct a pivot quantity Q for 6.

(e) Construct the minimum length confidence interval of level 1 — « based on Q.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 265
F. Gasperoni et al., Exercise Book of Statistical Inference, La Matematica
per il 3+2 173, https://doi.org/10.1007/978-3-031-86670-8_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-86670-8protect T1	extunderscore 12&domain=pdf
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12
https://doi.org/10.1007/978-3-031-86670-8_12

266 12 Summary Exercises

Exercise 12.3 Let X1, .., X, be arandom sample of size n > 1 where each variable
has law:

0 _e
f(x;@) = x—ze X]I(O,-}-oo)(x);

where 6 is a positive real parameter 6 > 0.

(a) Find W a sufficient, minimal and complete statistic for 6.
(b) Construct the maximum likelihood estimator 6 for 6.

(c) Determine whether 6 is consistent for 6.

(d) Construct the UMVUE for 6.

Now consider a sample of size n = 1.

(e) Construct the UMP test of level « for the verification of the hypotheses:
Hy: 6 =6y VS H|:0 =0y

with 01 > 6.
(f) Construct the UMP test of level « for the verification of the hypotheses:

Hy: 6 =6y VS Hi: 0 > 6.

Exercise 12.4 Let X1, .., X, be arandom sample of size n > 1 where each variable
has law:

f(x;0) = %H{l,z,..A,e}(X);

where 6 is an integer parameter such that 6 > 1.

(a) Calculate the constant K as a function of 6.

(b) Construct the moments estimator 6 for 6 and determine whether it is consistent.
Does it always provide admissible estimates? (Hint: it may be useful to
remember that Z?:l 2 =nm+1)2n+1)/6).

(c) Construct the maximum likelihood estimator 6 for 6 and determine whether it
is consistent. Does it always provide admissible estimates?

(d) Construct the critical region based on the likelihood ratio for the hypothesis test:

Hy: 60 <6y VS Hy:0 > 6.
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Exercise 12.5 Let X1, .., X, be arandom sample of size n > 1 where each variable
has law

2x
f(x;0) = 9—2]1(0,9)(96);

with parameter 6 > 0.

(a) Find a statistic T sufficient and minimal for 6.

(b) Calculate the moments estimator 8 for 6.

(c) Calculate the mean square error of 0.

(d) Now consider the parameter & = 6y known and fix n = 1. Construct the UMP
test of level « € (0, 1) for the hypothesis test:

Hy: X ~ f(x;6p) Vs H; : X ~U(0,6y).

(e) Calculate the power of the test constructed in point (d) and determine whether
the test is unbiased.

Exercise 12.6 Let X1, ..., X, be a random sample from a distribution with the
following probability density:

92
f@ 0 =25Tpm @, 00,

(a) Calculate the maximum likelihood estimator 9 for 6.

(b) Calculate the probability density of 0.

(c) Find the critical region of level a € (0, 1) based on the likelihood ratio for the
hypothesis test: Hy : 6 = 6y vs Hy : 8 # 6y, g > 0.

(d) Using the critical region constructed in point (c), find a confidence interval for
6 of level (1 — ).

(e) Using the pivotal quantity Q = @\/9, find the constant ¢ > 0 such that the
confidence interval (0, é\c) for 6 is of level (1 — «).

Exercise 12.7 Let X, ..., X, be a random sample from a distribution with law:
exG—l
f(x;0,b) = 0 Lo,y (x);

where 6 and b are two unknown positive parameters, 0 > 0, b > 0.

(a) Find a sufficient and minimal statistic for (6, b).

(b) Assume that 6 is known. Determine the maximum likelihood estimator b, for
b.

(¢) Determine the law of b7 and study its consistency.

(d) Determine a pivotal quantity Q for b.
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(e) Determine the confidence interval of level 1 — « for b based on Q of minimum
length.

Exercise 12.8 Let X be a random variable with density

ekekxe—He‘

fx;0) = Wﬂ(—oo,+oo)(x)§

where k is a known positive parameter and 6 is an unknown positive parameter,
6 > 0.

(a) Provethat W =", eXi is a sufficient, minimal and complete statistic for 6.

(b) Calculate the law of eX.

(c) Calculate and recognise the law of W.

(d) Construct a UMP test of level « for Hy: 8 < 69 vs Hi: 6 > 6.

(e) Construct a pivotal quantity for 8 based on W, and derive a Confidence Interval
of level 1 — « for 6.

Exercise 12.9 Let X, ..., X,, be a random sample from a distribution with law:

f(x:0) = 20x exp{(—0x7) [0, 400) (X);

where 0 is an unknown positive parameter, 6 > 0.

(a) Calculate the mean of X;.

(b) Determine, using the method of moments, the estimator éMO m for 6.

(c) Determine a statistic T sufficient minimal and complete for 6.

(d) Determine the law of 7.

(e) Determine the max1mum llkehhood estimator QM 1, for 6.

(f) Establish whether 9M0 M and GM L are consistent for 6.

(g) Determine the asymptotic law of Omr.

(h) Knowing that Var[X;] = % determine, using the Delta Method 1.17, the
asymptotic law of Ovom.

@) Calculate the asymptotic relative efficiency of QM 1, with respect to 9M0 M, 1.€.
ARE@wmr:0mom).

Exercise 12.10 Consider the following family of functions defined for every 6 € R
fi0) = ¢ (1= @ = 0)%) L g4 ).

(a) Determine the constant ¢ so that the function fy(x) is a probability density for
every 0 € R.

Consider a sample X of unit size with probability distribution f(x;0) with ¢
determined in point (a).

(b) Calculate the maximum likelihood estimator éM 1, for 6.
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(c) Provethat 0 =1 — (éM L — 9)2 is a pivotal quantity.

(d) Calculate a confidence interval for 6 based on the pivotal quantity Q, using the
quantiles of Q a = 0.5 and b = 0.9.

(e) Determine the confidence level 1 — «, of the interval constructed in point (d).

(f) Determine the critical region, of level « calculated in point (e), of the test Hp:
6 =6y vs Hy: 0 # 0.

Exercise 12.11 Let X1, ..., X,, be a random sample from a Gamma(2,1/6) with 6 >
0. We then have

Fx:0) =0"2xe I 100 (x).

(a) Determine a sufficient and complete statistic for 6.

(b) Determine the maximum likelihood estimator én for 6.

(¢) Show that én coincides with the estimator 6, obtained by the method of
moments.

(d) What is the law of 6,?

(e) Is 6, biased?

(f) Is 6, UMVUE?

(g) Propose a confidence interval for 6 of level 0.99.

12.2 Solutions

12.1
(a) Let

n
U, =cy Zex".
i=1

We calculate the mean of U,;:

n n
Bt = 0 3B = 0 30 = e

i=1 i=1

where we have exploited the following relation:
E I:etY] — otmty1io,

choosing t = 1, m = log(h) and o> = 4. This relation holds because Y is a
Gaussian random variable.
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Imposing E[U,] = 6, we get: ¢, = ﬁ

(b)

Var[U,] = ﬁ 3 (JE[eZXf] - (629)2> =
i=1

1 < 1
— Z (e2log9+7444 _ 8492) _
n<e- ~ 1
1=

o1 2,8 4 _92 4
—mn@(e —e))_z(e—l).

Therefore, since U, is unbiased and Var(U,) — 0, we can conclude that U, is
a consistent estimator (see Theorem 8.1).
Furthermore, by the CLT:

Jn (U, —6) = N (0, 62 (e* — 1)) .

So U, is asymptotically normal.

©
E[X] = log(d) = Opom = e*n.
Given that:
X, ~ N (logw), ‘—‘) ;
n
then:
Elfyon) = EleX] = 20713 = ger .
Therefore:
V, = e_%ex".

Given that X, 5 log(6) we have that V,, < 6 and therefore it is consistent.
Furthermore, given that:

Vi (X, — log(®)) 5 N(0, 4);
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using the Delta Method 1.17 with g(x) = e* we have that:

Jn (eY" - 9) £ N(0, 462).

Now:
AV, —0) = (vn —ey”) +\/ﬁ<efn —9).
- n(eYn (e—%—l)) 5 N(0.462)
T
Therefore:

Jn(V, —0) 5 N, 46).

(d) We need to compare 02(e* — 1) with 462. Since 4 < (¢* — 1), we prefer V,,.
(e) Using the Slutsky Theorem 1.15, we can state that:

2V,
ICi o= |V £ ﬁzl_% .

12.2

(a) Consider the density:

3

-1
Fn =4S ), 61,
6 — D+ 1ol
Given that the joint law is:
AT g = 1)3
fx:0) = l_gle_i—llwﬂ(o,a)(X(n));

we can conclude, thanks to Theorem 2.1, that the statistic T = X, is sufficient
for 6.

(b)

n ! (X — 1)3 "
FX(n)(t) = (P{Xi = t}) = |:/; 4m dx} =

_ (=" el o;
- 6—1 £ £
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from which

An(t — 1)¥n=1

WH[LG]O)'

fX(,,)(t) =

Using the definition of completeness, we obtain:

0 & — 1)4n71

This holds V6 if and only if g(¢) = 0. Therefore T is a complete statistic.
(c) Let’s calculate E[T]:

I R I L G Vi
B = [ e =

6—1  4no+1
dn+1 4dn+1°

0 1 0 A
— t—D"dr =
1 (9—1)4"/1 )

therefore UMV UE will be:
X(n)(4l’l + 1) -1
4n '
(d) Considering:
X(l’l) - 1
0= 0—1 "

14+:t0—1)—1\"
L) — 4 te[o,1].

Fo(t) =P{X@ < 14+1(6-1)} = ( =

We conclude that Q is a pivot quantity.
(e)

Pla<Q<bl=b"—a""=1-0.

Now:

X — 1 X — 1 X — 1
S Uy PN R U R [ e iy

<
=" b a
Therefore the length, /, of the IC is proportional to % — %.

o 1 V@

— = 0.
da a? b2
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Moreover, deriving the constraint, we get:
4nb* b (a) — 4na™ ' = 0.

Therefore b’ (a) = (%)4"_1, from which:

< 0.

9l 1 1 (a 4n—1 a4n+1 _b4n+l
_ b) _

da - a? b2 a2pin+l

The minimum length is obtained for maximum a i.e. b = 1. Hence: 1 — a*" =
l—a = a= YYo.

X — 1
IC:[X(n);1+L]

Wa

12.3

(a) Given that:

0 _o
f(x:6) = ¢ 110, 4-00) (X)

belongs to the exponential family,

n
1
TX)= —
X =2 5
i=1
is a sufficient statistic for 6. Moreover, given that:
w@) = —0:RT - R~

and R~ contains an open set of R, we can conclude that 7 (X) is a sufficient
and complete statistic for 6. Consequently, it is also minimal.

(b)

n

n
-y L
PR l_[ T0, 400 (%)-

LO;x)= 3
1_[?=1 X i=1

1(0; x) o nlog(6) — 60 ) xi

IA

dal(0; x) n 1 n
>0 & - > — = 0 .
00 — G_in ZXL
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Therefore:

n

_
X%

éMLE =
© LetY =+, fr(y) = eyze—“’yyl—2 ~ &(0). Therefore:

1
Z X q-c-

-

~ q.c.
= Oy — 0.

| =

n

Oy E 18 a consistent estimator.

Summary Exercises

(d) E[OprE] turns out to be n”TlQ (the properties of the gamma distribution are

exploited). Then ”n;léML g is UMVUE, as it is an unbiased estimator of 6, a

function of sufficient and minimal statistic.
(e) Let’s consider the test:

Hy: 0 =6 VS Hy:0 =0,

with 67 > 6p. To construct the rejection region of the test, we apply the N-P

Theorem 6.1.
R 6 -2l kO, -2l
= e xX — > e xX — =
_ {e—r(el—ew k9_0} _
01

The last equality is justified by the fact that o3 @1=00) g increasing in x.

Therefore, imposing:

too g o o | T o
a:]P’gO{X>h}:/ —ge_Tde:—e_T(') :1—6_7?;
h X h
we have that:
 log(l—a)

Therefore the rejection region is:

el
R={x>—-——"—¥——1.
log(1 — )
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(f) From the previous point we can observe that the rejection region does not
depend on 61, therefore the rejection region for the test at point (f), coincides
with that calculated at point (e).

12.4
(a) We impose that:

x=1

??‘Ik

1 19(9+1)
_EZ '

Therefore k = w.

(b)
0
2 2 60+ 1)26 +1 20 + 1
]E[X]:—szz @+ 1)( +)= + .
00 +1) o 06 +1) 6 3
Therefore:
— 20mom +1 A 3X, —1
n = Omom =
3 2
Furthermore:
_ 20 +1
X, 25 3+

Therefore éMO M 18 a consistent estimator and the estimates are always reliable
since 6 € N.

(©
L®;x) = - ﬁxz' ﬁﬂ{l oy (xi) =
G

x; 1 0).
6”(9—’-]) l:[ {X(n),+00}( )

The likelihood is decreasing in 6, therefore:

Omre = Xn)-
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We now evaluate the consistency of the estimator.
o2\ e+
X ® = (P ) (;e(eﬂ)) (9(9+1))

Therefore Fx,, is piecewise constant and:

q.c.
FX(,L)(I) — 8(t) = X(n) — 0.

The values of X, are always admissible.
(d) We consider the following test:

Hy: 6 <6 Vs Hi:6 > 6.
We identify the rejection region of the test through LRT:

sup L(6; x)
0<6y

PYC ) P S—
LOmLE; x)

sup L(0; x)
6<6y

Xy if Xy = 6o;
<6y 0 if X(n) > 9().

Therefore:

1 if Xy < 6o;
AMx) =
0 if X(n) > 90.

Then the rejection region is:

R = {X(n) > 9()}.

12.5
(a)

p L
f(x;0) = g2 ]_[xz' L0.6)(x(n))-

i=1

Therefore X, is a sufficient statistic and, using the L-S Theorem 2.3, we
conclude that X, is a minimal sufficient statistic.
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(b)

0 2x2 2 x3 2
]E[X]:/ D=2 = Zp,
) 3

Therefore éMO M= %Y,,.

(©)
N 9 — 9
Var(@pyom) = —Var(X,,) = —Var(X;) =
4 4n
9 [ 7243 2 \?
— / Xae—(20) ) =
4n \Jo 62 3
9 (26% 4, 9 (6% 4,
= — -0 )=—|——=0
4n\624 9 4n\2 9
9 (997 —80%\ 62
~ dn 18 "~ 8n
Therefore:
. 62
MSEOpmom) = 5—-
8n
(d) Let’s consider the test:
Hy: X ~ f(x;6p) Vs H; : X ~ U, 6y).
Applying the N-P Theorem 6.1:
1 2x -
R =1—T0,6)x) > k—z L0,60)(x) { = {x < k} .
o 05
By imposing:
Py, (X € R) / f2x £
o = = —_— = —,
o 0o 62 62

we obtain k = 6./a.
(e) The power of the test is given by:

PH] {X < ﬁ@o} = \/&

Since: /o > a, we conclude that the test is unbiased.

2717
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12.6
(a)
np2n
L(O;x) = mﬂ(o,x(”)(@)
Therefore:
OuLe = Xy.
(b)
Fx,, (1) = P{Xy <t}=1-P{Xq >t} =1—-P{X; >})".
+00 292 1 t<6;
P{Xi>t}=/ —3dx= ’92 -
t X (7) , > 6.
From which:
0, t <6;
Fx.,, @) = -
» 1= (&)™, t>o0.
2n
Sfxq, (®) = T [, +00) (2)-
(c) Let’s consider the test:
Hy:0 =6y Vs Hy:0 #6y, 6p>0.
We construct the LRT:
np2n ]_[x3
A(x) = == T0,x0)) (B0) - ’ =
[Txp 217 10, x0y) (K1)
90 2n
= (—) L9y, +-00) (X(1))3
X(1)
from which:

R={x)<c} < {Xq <6}U{Xq =k}.
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By imposing:
0o 2n
a =P {X € R} =P{X1) <6} +Py{ X1y =k} = <;> ;
from which k = 2200{'

The rejection region is therefore:

Oy
R = X(I)Z % .

(d) We observe that:

o
R¢ =16y < X < :
{0— “)—%}

from which:
IC1-w(®) = [X(1) ¥ <6 < X}

is a conﬁd)?nce interval of level 1 — «.
(e) Let Q = =

FQ(I)Z]P{X(]) <t}= 1 2n
1=(1)" =1

Let:

. : : 1 2n
IC=[0;cX] = (1 —a)= érzlg]P’g(@ <cXqy) _ég (Q > ;> —

We impose the confidence level equal to 1 — «, that is M=1—g = c=
2)1/1 — .

We conclude that:

1C1-®) = [0: ¥T=aX)).

12.7
(a)

n

re0. = 2 (T Tom o
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hence, exploiting the L-S Theorem 2.3, we conclude that (X OF I Xi) is a
sufficient and minimal statistic for (b, 0).
(b) Let 6 be known.

6" o1
L(b;x,0) = il (l_[xl- - ) (X ), 400) (D)

is decreasing in b, hence:

byre = X@my-
(©)
0 t € (—o0; 0);
Fx,, ) = (Fx,0)" =1 (&) 1 €[0;];
1 t € (b; +00).

Therefore X ) 5 b and is consistent for b.

(d) Let Q0 = X[g”),then:

P{Q <1t} =",

Therefore Q is a pivotal quantity.
(e) CIfor b:

IC(b) = [a <X ci| — [Xm); X(n)}
b c a

0 0

with constraint: 1 —a = "% —a™’.
The length of the interval is proportional to (% - l)
&

Consider ¢ = c(a). Differentiating the constraint we get:
0=noc" "' (a) — nva™";

from which ¢/(a) = (%)"971.
We differentiate the length of the interval as a function of a:

ol 1 C/(a) anG-H _ Cl’l9+l
da  a? + 2 T @2eerl T 0

Then the minimum length is for ¢ = 1, from which:

l—a=1-a"" = a=0a/",
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We conclude that:
. X(n)
IC(1—a) = |:X(")’ al/@) |-

12.8
(a) The density of X:

ekekxe—ee"

f(x;0) = T Ir(x)

n

belongs to the exponential family. Then: W(X) = Zexi is a sufficient
i=1

statistic. Moreover:

w@) =—-0:RT - R~

and R™ contains an open set of R. Therefore, W(X) is a sufficient, complete
and minimal statistic for 6.
(b) Y =eX, X =logY.

ekeklogyefelogy 1 ekykflefey

N =y T T T

~T'(k,6).

(c) W ~T'(nk,0).
(d) Let6, > 0y:

nk \,nk—1,—6y nk
Oy e (0 e 020y,
Q]Vlkynk—le—(ﬂy 91

which is decreasing in y. Therefore —Y_ X/ has an increasing MLR in y. Then:

R = {Ze"" < to} with to = yo (nk, p).
(e) We know that:

OW ~ I'(nk, 1).

20W ~T | —, - | = 2nk).
(2,2> x°(2nk)
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Therefore:

X2 @2nk) x}_o(2nk)
2 . 2
2w 2w

I1C1-o)(0) =

12.9
(a)

+o00
E[X] = 29/ xZ exp{—6x?}dx =
0

+00 1
= 9/ x2exp{——29x2} dx =
s 2

*/\/:\/*/: ep{—%29x2}dx= [lawN(O ;9)}
Tl _1Jm
020 2.5

(b)

_ JT N 1 7
an— —_—2.
2./6 44X,

(c) Exploiting the properties of the exponential family, we have that: T(X) =
> X7 is a sufficient, minimal and complete statistic for .

(d)

fx2(y) =260/yexp{—6y}-— 2[ = 0 exp{—0y};

meaning that Xl2 ~ &(O) and therefore T ~ I'(n, 0).
(e

L(6; x) = 2"6" [ [ xi exp {—9 fo} .
1(0; x) < nlogh —ezxf.

81(9 x) n_Z 3
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Then:

n

.
2 X

éMLE =
(f) The SLLN guarantees us that:

~ q.c. ~ q.c.
QMOM —> 0 and ‘9MLE — 0.

Therefore, both estimators are consistent.

(€9)

P 2
I,(0) =nl1 () = nE |:(8_9> :| = nVaI'(XZ) = %

Therefore:
ﬁ(éMLE _ 9) £ N, 6.

(h) Var(X;) = 0%, therefore:

() S (02

Consider the Delta Method 1.17 with:

(l)_nl
sU= g
) = 2711
W=7y n
(%)
gl—=)=6.
20
So it holds:
Vi (won—8) £ v (0. 220 ([ZLY
n - — —= ;
MoM ' g 03
where:

283
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Therefore, we conclude that:
N 0.21
ﬁ(eMOM _ 9) AN (0, —1692) .
b1d

@

o ~ 0.21-16
AREOumr; Omom) = —— = 1.07
T

Therefore, I conclude that éM LE 1S better.
12.10

(a) We impose that the integral of the density is equal to 1:

6+1 6+1 0+1
c/ (1—(x—9)2)dx:c/ dx — ¢ (x —6)%dx =
0 6 [

0+1
+ 2

=c—=1.

3

(x —6)°
3

0

We therefore conclude that ¢ = 3/2.
(b)

L0 =3 (1= =0) oo = 3 (1= @~ 07) T 100
which is an increasing function in 6, therefore:
OmrLe = X.
(c) LetQ=1—-(X — 0)2. We observe that:
0=1-(X-0? & (1-0)=X-072 < X=0+/1-0.
The density of Q is:

1
1=

fo(q) =

N

1-(9+ﬂ—9)2)

q
1—

T0.1)(q)

| =
]

Lo.1)(q)-

AW N|W
]

Therefore, Q is a pivotal quantity for 6.
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(d)

Il
| —
—
|
S
IA
~~
D
|
)
N’
o
IA
—_
|
Q
—_
Il

285

(e) To determine the confidence level of the interval constructed in point (d), I need

to calculate:

P{0.5 < Q <09} = Fp(0.9) — Fp(0.5).

Specifically:

FQ(t):IP’{(l—(X—Q))zft}:
=P{(X—9)231—t}=
:P’Xz@—i—«/l—t}:
=1—P{X<9+\/1—t}=

3 O+/1—1
:1——/ 11— (x—0)dx =
2 Js
30Tt
P Yy i) =
2 2 3 |,
=1-VI—1+=-(1-12
2 2
So:

3 1
Fp(0.9) — Fp(0.5) = 5(\/0. —40.1) + 3 (0.13/2 — 0.53/2) = 0.425.
(f) Consider the test:

Hy:0 =6 VS Hip : 6 # 6.
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The rejection region is:

R={X590+x/ﬁ}u{xzeo+\/ﬁ}.

12.11
(a)

n o 1
fe:0)=]]x07 exp{—gzxi}ﬂ[o,m)(xi).

i=1

The density of X belongs to the exponential family, so Y X; is a sufficient

statistic.
Moreover, since w(f) = —(% : (0, 4+00) = (—00,0) and (—o0, 0) contains an
open set of R, > X; is a sufficient and complete statistic.
(b)
1
[(6;x) o« —2nlog6 — g Zx,-.
al 2n > x; > xi _ 2n X,
— =+ = > ()= = > — & 0 < —.
a0 0 + 02 - 02 — 0 -2
So:
~ X
On = 7”
©
_ X,
(d)
1 X 2n
X,~F<2,—) = Zx,wr(zn,—) = 7"~F<2n,?)
©)

én is an unbiased estimator.
(f) 6, is UMVUE because it is unbiased and a function of a sufficient and complete
statistic for 6.
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(g 0= % ~ I'(2n, 2n) is a pivotal quantity. We therefore look for a and b such
that:

P{a < Q <b} =099

We therefore propose as a 0.99 level CI:

0, 6
1C(0.99) = (3 —") :
a

with b = y9.995(2n, 2n) and a = yp.005(2n, 2n).



Appendix A
Probability Distributions

A.1 Continuous Distributions

Normal Distribution

XNN(M,UZ), nweR, o e RT.

{u—mj
eXpy—————~¢( -

202

1
R N
o) = e
E[X] = .

Var(X) = o’
Uniform Distribution
X~Upqp, abeRa<b.

1
fx(x:a,b) = i g, p7(x).

b
b+a
E[X] = 7
_ (b—a)?
VGV(X) = T

Exponential Distribution

X ~8M), reRT.
Sx (x5 &) = Aexp{—Ax} [0, +00) (X).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. Gasperoni et al., Exercise Book of Statistical Inference, La Matematica
per il 342 173, https://doi.org/10.1007/978-3-031-86670-8

289


https://doi.org/10.1007/978-3-031-86670-8
https://doi.org/10.1007/978-3-031-86670-8
https://doi.org/10.1007/978-3-031-86670-8
https://doi.org/10.1007/978-3-031-86670-8
https://doi.org/10.1007/978-3-031-86670-8
https://doi.org/10.1007/978-3-031-86670-8
https://doi.org/10.1007/978-3-031-86670-8
https://doi.org/10.1007/978-3-031-86670-8
https://doi.org/10.1007/978-3-031-86670-8
https://doi.org/10.1007/978-3-031-86670-8

290 A Probability Distributions

1
E[X] = —.
[X] 3
1
Var(X) = 7
Gamma Distribution

X ~T(a,A), o, reRT.

A%x% L exp{—ix}

fxx o) = T @) I, +00) ().
o
EIX] = .
o
Var(X) = 7z

Properties of the Gamma Distribution
If Xy, ..., X,, areii.d. such that X; ~ I'(«, A), then:

n
Zx,- ~ T'(na, 1).

i=1
X
— ~ I'(a, nA).
n
x? Distribution

X~ x2(0), »eN\{0}

S0 = =2 exp(—x/2) T ooy ()
’ 22T (1/2) [0,+00) L%/
E[X] = A.
Var(X) = 2.

Properties of the x2 Distribution
If X1 ~ x2(h), X2 ~ x*>(A2), - X ~ X (), then:

n n
in ~x* (ZM) .
i=1 i=1
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Relations Between Distributions

e Normal and XZ: If Xq,..., X, arei.i.d. such that X; ~ N (0, 1), then:
n
D OX7~ ).
i=1
* Gamma and x*:
k 1\ ¢
r (- -) = x2(k).

e Exponential and Gamma:

M ET, ).

A.2 Discrete Distributions
Bernoulli Distribution
X ~ Be(p), pel0,1].

fx(x; p) = p* (1 — p)' ™ Lo 1y (x).
E[X] = p.

Var(X) = p(1 — p).
Binomial Distribution

X ~ Bin(n,p), pe€l0,1]neN.

E[X] = np.
Var(X) =np(1 — p).

Uniform Distribution
X~Upqp, abelR,a<b.

1
fx(x;a,b) = - Lig,py (x).
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b
E[x] = 219
2
Var(X) n?—1
r =
a 12

n is the number of natural numbers between a and b.
Poisson Distribution

X ~P(H), reRT.

A% - exp{—A
ftes = SR
E[X] = A.
Var(X) = A.

Properties of the Poisson Distribution
If X1, ..., X,, are independent random variables such that X; ~ P(A;), then:

ZX,‘ ~ P (Z )»,‘) .
i=1 i=1
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