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Preface 

The rapid advancement of artificial intelligence (AI), and more specifically gen-
erative AI and large language models (LLMs), is transforming various fields, and 
among them, there is growing interest in its potential application in information 
systems engineering (ISE). These technologies offer unprecedented opportunities 
to support the design, development, and reengineering of information systems 
(ISs). Despite their potential, a systematic and structured approach to integrating 
LLMs in IS engineering is still in its infancy. Recent studies have explored various 
applications, such as conceptual design, software development, business process 
extraction, and IS dimensioning using ChatGPT and similar models. However, these 
efforts remain fragmented, lacking a comprehensive and unified framework. In this 
book, we aim at providing a first attempt toward such a framework, fully aware that 
it might be a challenging and ephemeral effort, in a landscape in which a new paper 
about LLMs is published on https://arxiv.org/1 every 8 minutes. 

In March 2024, we started developing the tutorial Engineering Information Sys-
tems with LLMs and AI-based Techniques, which was accepted for presentation and 
presented at CAiSE 2024, 36th International Conference on Advanced Information 
Systems Engineering, in June 2024. The tutorial aimed to provide attendees with a 
foundational understanding of AI, generative AI, and LLMs from an IS engineering 
perspective, followed by an in-depth analysis of emerging methodologies and 
applications in IS design and development. The positive reception of the tutorial, 
combined with the growing academic and industrial interest in this field, led to the 
opportunity to expand its content into this instant book. 

The book is a collaborative effort of the research group in Processes, Services 
and Software Engineering at Sapienza Universitá di Roma, Italy. Each chapter is 
written by PhD students and postdocs actively working on applying LLMs to IS

1 arXiv is a free distribution service and an open-access archive, hosted by Cornell University, for 
over 2 million scholarly articles in various fields, including computer science. Materials are not 
peer reviewed by arXiv. Nowadays, researchers in computer science, AI, GenAI, and LLMs, in 
order to have a timely dissemination of their results before a peer-reviewed publication, are largely 
adopting this service. 
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engineering, with a deep and practical experience in LLMs and their adoption 
for building applications and systems. A careful revision of the chapters, and 
preliminarily the definition of contents of the single chapters, has been carried out 
by us editors in order to provide the unifying framework we are aiming at. 

Adopting an ISE perspective means we consider LLMs, as many other technolo-
gies, as black boxes and investigate how they can be adopted in a principled way 
in order to develop more complex information systems that can take advantage of 
LLMs. In contrast to other technologies, LLMs pose new challenges to IS engineers, 
as their behavior is in most cases scarcely explainable, scarcely repeatable, and 
forecastable. These challenges are not only relevant for IS engineers but also 
for researchers and practitioners in software engineering, BPM (Business Process 
Management), and software architectures (including service-oriented ones) and, 
more broadly, those working with digital technologies. These communities are the 
target of our book. 

As previously stated, we aimed at creating an instant book, i.e., a book that has 
been produced and published very quickly to meet a specific demand. We took 
utmost care to provide accurate and precise information, as well as a survey of the 
relevant literature. All references are up to date as till the end of 2024. Nevertheless, 
we hope that the book will not fade out as quickly as instant books generally do, as 
we strongly believe that the concepts here presented are more durable than the single 
technologies we are describing. Only the future, which luckily is not yet foreseeable 
by an LLM, will be able to witness whether our aim will be achieved. 

Rome, Italy Francesca De Luzi 
March 2025 Flavia Monti 

Massimo Mecella 



Acknowledgements We would like to acknowledge the following for financial 
support to our research:

• MICS (Made in Italy–Circular and Sustainable) Extended Partnership funded by 
the EU—NextGenerationEU PNRR MUR

• SPACE IT UP Extended Partnership funded from ASI (Agenzia Spaziale Ital-
iana) and MUR

• Thales Alenia Space and Regione Lazio, through the fellowships 35752-
22066DP000000040-A0627S0030 Utilizzo dell’Intelligenza Artificiale a 
supporto della progettazione e qualifica del prodotto spaziale and 35757-
22066DP000000041-A0627S0031 Advanced Software Based on Cloud 
Computing and Machine Learning for Space Systems

• Agreement on “Agile&Secure Digital Twins”
• Italian National PhD Program in Artificial Intelligence
• PhD fellowship Pubblica Amministrazione DM118 (CUP83C22003460006)
• Horizon Europe projects GenDAI and UPTAKERS

vii



Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Massimo Mecella 

2 History of Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
Francesca De Luzi 

3 Large Language Models for Dummies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 
Marco Calamo and Matteo Marinacci 

4 A Reference Framework for Information Systems . . . . . . . . . . . . . . . . . . . . .  61 
Francesca De Luzi and Massimo Mecella 

5 Exploring Large Language Models in Information Systems: 
A Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 
Filippo Bianchini and Matteo Marinacci 

6 Programming Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
Marco Calamo and Jacopo Rossi 

7 Retrieval-Augmented Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 
Filippo Bianchini 

8 Large Language Model Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 
Jerin George Mathew and Jacopo Rossi 

9 Applications of Large Language Models in Information Systems . . . .  207 
Jerin George Mathew and Flavia Monti 

10 Ethics and Governance of Large Language Models . . . . . . . . . . . . . . . . . . . .  233 
Gabriele Rendace Presta and Andrea Paolella 

11 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285 
Massimo Mecella

ix



List of Contributors 

Filippo Bianchini 
Sapienza Università di Roma, Rome, Italy 
e-mail: bianchini@diag.uniroma1.it 
Filippo Bianchini is a PhD student in Engineering in Computer Science. With a MSc 
in Management Engineering, his research explores advanced applications of large 
language models (LLMs), retrieval-augmented generation (RAG), and knowledge 
graphs (KG) within information systems. 

Marco Calamo 
Sapienza Università di Roma, Rome, Italy 
e-mail: calamo@diag.uniroma1.it 
Marco Calamo is a PhD student in Engineering in Computer Science. His research 
interests are Industry 4.0 and large language models. 

Francesca De Luzi 
Sapienza Università di Roma, Rome, Italy 
e-mail: deluzi@diag.uniroma1.it 
Francesca De Luzi is a postdoctoral researcher. She earned a BSc in Management 
Engineering at the University of Rome Tor Vergata and completed her MSc in 
Management Engineering at Sapienza. In 2024, she obtained her PhD in Industrial 
and Management Engineering, defending a thesis that highlighted the role of 
digital transformation in a hyper-connected world through the analysis of various 
application domains. Her recent research has focused on the impact of AI techniques 
in organizations.

xi

mailto:bianchini@diag.uniroma1.it
mailto:calamo@diag.uniroma1.it
mailto:deluzi@diag.uniroma1.it


xii List of Contributors

Matteo Marinacci 
Sapienza Università di Roma, Rome, Italy 
e-mail: marinacci@diag.uniroma1.it 
Matteo Marinacci is a PhD student. He earned an MSc in Engineering in Computer 
Science. His research focuses on Industry 4.0, with a particular emphasis on 
human-in-the-loop systems, optimization of real-world manufacturing processes, 
and error detection and recognition in production environments. Currently, he 
is exploring how extended reality technologies can assist operators during the 
assembly, integration, and testing of complex products, such as satellites, aiming 
to improve precision and efficiency in the space industry. 

Jerin George Mathew 
Sapienza Università di Roma, Rome, Italy 
e-mail: mathew@diag.uniroma1.it 
Jerin George Mathew is a postdoctoral researcher. He earned a PhD in Artificial 
Intelligence in 2025. His research focuses on applying AI techniques to data 
cleaning and data management, ranging from entity resolution to fairness. 

Flavia Monti 
Sapienza Università di Roma, Rome, Italy 
e-mail: monti@diag.uniroma1.it 
Flavia Monti is a postdoctoral researcher. She earned a PhD in Engineering in 
Computer Science in 2025. Her research interests focus on Industry 4.0 and smart 
manufacturing, particularly the integration of computer vision, machine learning, 
and artificial intelligence to improve production quality, reduce costs, increase 
machinery uptime, and achieve zero-defect manufacturing. 

Andrea Paolella 
Sapienza Università di Roma, Rome, Italy 
e-mail: and.paolella@gmail.com 
Andrea Paolella is a high school teacher of History and Philosophy. He studied 
History of Philosophy at Sapienza Universitá di Roma, where he obtained a PhD in 
Documentation Studies, Linguistics, and Literature in 2017. 

Gabriele Rendace Presta 
Sapienza Università di Roma, Rome, Italy 
e-mail: gabrielepresta.doc@gmail.com 
Gabriele Rendace Presta is a researcher in digital humanities and teacher of History 
and Classics. His main areas of interest include ethical and aesthetic issues related 
to digital technologies. He is currently exploring the potential philosophical impact 
of these technologies on policy decision-makers.

mailto:marinacci@diag.uniroma1.it
mailto:mathew@diag.uniroma1.it
mailto:monti@diag.uniroma1.it
mailto:and.paolella@gmail.com
mailto:gabrielepresta.doc@gmail.com


List of Contributors xiii

Jacopo Rossi 
Sapienza Università di Roma, Rome, Italy 
e-mail: j.rossi@diag.uniroma1.it 
Jacopo Rossi is a PhD student in Engineering in Computer Science. His research 
spans software engineering, information systems, and process mining techniques in 
constrained environments (such as satellites). 

Massimo Mecella 
Sapienza Università di Roma, Rome, Italy 
e-mail: mecella@diag.uniroma1.it 
Massimo Mecella is a full professor. He conducts research in the fields of infor-
mation systems engineering, service-oriented computing, mobile and pervasive 
computing, process management, data and process mining, big data analytics, and 
human-computer interaction, focusing on smart applications, environments, and 
communities. He was the General Chair of CAiSE 2019, BPM 2021, and ICSOC 
2023. In 2025 he became program co-chair of IEEE CAI 2025-IEEE Conference on 
Artificial Intelligence. He is currently a member of the Steering Committees of the 
conference series CAiSE, ICSOC, and SummerSOC.

mailto:j.rossi@diag.uniroma1.it
mailto:mecella@diag.uniroma1.it


Chapter 1 
Introduction 

Massimo Mecella 

In November 2022, OpenAI launched ChatGPT, a text-generating chatbot based 
on a large language model (LLM). This has been the start of a storm.1 OpenAI, 
an originally non-profit research organization started in 2015, later embracing a 
“capped” for-profit model, had worked on reinforcement learning and Generative 
Pre-trained Transformer (GPT) models, in order to develop “safe and beneficial 
artificial general intelligence.”2 

Since then, the landscape of information systems engineering has been changing. 
AI technologies, and specifically LLMs, offer unprecedented opportunities to 
support the design, development, and optimization of information systems. Recent 
studies have explored various applications, such as conceptual design, software 
development, business process extraction, and IS dimensioning using ChatGPT and 
similar models. However, these efforts remain fragmented, lacking a comprehensive 
and unified framework. 

The primary objective of this book is to bridge the existing gaps by offering a 
principled and structured perspective on how LLMs can be systematically leveraged 
for IS engineering. We present a unifying pipeline, integrating state-of-the-art 
research findings with case studies drawn from our research activities. Additionally, 

1 Cf. https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/ (link 
checked February 2025). 
2 A story of OpenAI can be read on https://en.wikipedia.org/wiki/OpenAI (link checked February 
2025). 

M. Mecella (�) 
Sapienza Università di Roma, Rome, Italy 
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2 M. Mecella

we provide a survey of the latest literature and practical implementations, offering 
readers a solid foundation to explore and apply these techniques in their own work. 

To facilitate practical application, we also provide access to a repository of code 
and examples on GitHub,3 allowing readers to experiment with and extend the 
methodologies and techniques presented in this book. 

Structured as a comprehensive guide, this book is intended for researchers, 
practitioners, and students in the fields of information systems, software engineering 
and architectures, and business process management. By exploring both theoretical 
foundations and practical applications, we aim to equip readers with the knowledge 
and tools necessary to harness the power of LLMs in designing, developing, and 
optimizing modern information systems. We hope this book serves as a valuable 
resource for those looking to navigate and contribute to this rapidly evolving 
domain. 

Interestingly, we can take ChatGPT and adopt the following prompt. 

Explanation Prompt 

I need to write an introduction, in English, for a book that originated 
from a tutorial, Engineering Information Systems with LLMs and 
AI-based Techniques, presented at the CAiSE 2024 conference. I 
would like also to have the table of contents of this book.

↪→
↪→
↪→ 
Here are some details: 

Massimo Mecella, PhD in Engineering in Computer Science, is a full 
professor at Sapienza, where he is conducting research in the 
fields of information systems engineering, software architectures, 
distributed middleware and service oriented computing, mobile and 
pervasive computing, process management, data and process mining, 
big data analytics, advanced interfaces, and human-computer
interaction, focusing on smart applications, environments, and
communities.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

We achieve the following introduction and table of contents (ToC) 

Introduction 
The rapid advancements in Artificial Intelligence (AI) -- and 

particularly the rise of Generative AI through Large Language 
Models (LLMs) -- are transforming the landscape of information 
systems engineering. LLMs are increasingly being adopted as 
powerful tools to support the design, development, and dimensioning 
of complex information systems (IS). This book originates from the 
tutorial Engineering Information Systems with LLMs and AI-based 
Techniques, presented at the CAiSE 2024 conference, which explored 
how AI and LLMs can be systematically integrated into the
engineering process of information systems.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

3 https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI. 
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The tutorial was delivered by Massimo Mecella, a prominent figure in 
the field of information systems engineering. Prof. Mecella holds a 
PhD in Engineering in Computer Science and is a full professor at 
Sapienza University of Rome. His research spans a wide range of 
areas, including software architectures, distributed middleware and 
service-oriented computing, mobile and pervasive computing, process 
management, data and process mining, big data analytics, advanced 
interfaces, and human-computer interaction -- with a particular 
focus on smart applications, environments, and communities. He is 
the author of approximately 250 papers, with an h-index of 42, and 
has been involved in numerous European and Italian research 
projects, including serving as the technical manager of the WORKPAD 
and SM4All projects. He has also played a key role in organizing 
major scientific events, including serving as the General Chair of 
CAiSE 2019, BPM 2021, and ICSOC 2023.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→ 

At present, the adoption of Generative AI for IS engineering remains 
fragmented. While there have been recent studies exploring how LLMs 
can assist in software development, system evaluation, and business 
process extraction, a unified framework is still lacking. The goal 
of this book is to provide a structured and comprehensive approach 
to integrating LLMs and AI-based techniques into the entire 
lifecycle of information systems -- from conceptual design to 
deployment and optimization. Drawing on both theoretical 
foundations and practical case studies, this book aims to equip 
researchers, practitioners, and students with a clear understanding 
of how to leverage AI to improve the efficiency, scalability, and 
adaptability of modern information systems. This book consolidates 
state-of-the-art research and practical insights to provide a 
structured and actionable framework for integrating AI and LLMs 
into information systems engineering. By bridging the gap between 
theory and practice, it offers a valuable resource for researchers, 
developers, and decision-makers looking to harness the power of AI 
for building more intelligent and adaptable information systems.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Table of Contents

1. Introduction
Background and Motivation
Scope and Objectives of the Book

2. Foundations of AI and LLMs for Information Systems
Overview of AI Techniques
Evolution and Capabilities of Large Language Models
Challenges and Opportunities in IS Engineering

3. LLMs for Information Systems Design
Conceptual Design of Information Systems with LLMs
Requirement Elicitation and Analysis
Design Automation and Optimization with AI
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4. LLMs for Software Development and Implementation 
Code Generation and Completion 
Testing and Debugging with LLMs 
AI-Assisted Refactoring and Performance Tuning 

5. Business Process Modeling and Analysis with LLMs 
Extraction of Process Models from Documents 
Process Optimization and Simulation with AI 
Automated Business Rule Generation 

6. Data and Process Mining with AI 
Pattern Recognition and Anomaly Detection 
Predictive Analytics and Decision Support 
Mining for Process Improvement and Automation 

7. Case Studies and Practical Applications 
Real-World Examples from Research and Industry 
Lessons Learned and Best Practices 

8. Ethical and Practical Considerations 
Bias and Fairness in AI-Based Systems 
Transparency and Interpretability 
Human-in-the-Loop and AI Governance

9. Future Directions and Open Challenges
Emerging Trends in Generative AI and IS Engineering
Research Gaps and Opportunities
Roadmap for Future Developments

10. Conclusions
Key Takeaways
Final Reflections and Next Steps

OnGemini (another chatbot based on LLMs, by Google), we achieve this answer: 

Introduction 

The dawn of Large Language Models (LLMs) has ushered in a paradigm 
shift across numerous domains, and Information Systems (IS) 
engineering stands poised to benefit immensely from this 
transformative technology. This book, stemming from the tutorial 
Engineering Information Systems with LLMs and AI-based Techniques 
presented at the CAiSE 2024 conference, aims to provide a 
comprehensive and practical guide to leveraging the power of LLMs 
in the design, development, and dimensioning of modern information
systems.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
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In an era defined by rapid technological evolution, the integration of 
AI, particularly LLMs, into the IS engineering lifecycle is no 
longer a futuristic concept but a present-day necessity. This book 
addresses the critical need for a structured and principled 
approach to this integration, filling a gap in the existing 
literature. While recent studies have explored the potential of 
LLMs like ChatGPT for specific IS tasks, a holistic framework that 
unifies these efforts has been conspicuously absent.

↪→
↪→
↪→
↪→
↪→
↪→
↪→ 

This work is grounded in the extensive research and practical 
experience of Massimo Mecella, a full professor at Sapienza 
University of Rome. Professor Mecella's expertise spans a broad 
spectrum of IS engineering, including software architectures, 
process management, data analytics, and human-computer interaction, 
with a focus on smart applications and environments. His deep 
understanding of these domains, coupled with his commitment to 
advancing the field, makes him uniquely qualified to guide readers 
through the intricacies of LLM-driven IS engineering.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→ 

This book builds upon the foundational knowledge shared during the 
CAiSE 2024 tutorial, offering a structured exploration of AI and 
Generative AI, with a specific focus on LLMs, through the lens of 
IS engineering. It presents recent approaches and applications for 
utilizing these technologies in IS design and development, 
complemented by real-world case studies from the author's research. 
Furthermore, it provides a systematic analysis of existing 
literature and practical applications, culminating in a cohesive 
pipeline for integrating LLMs into the IS engineering process.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→ 

This book is intended to serve as a valuable resource for researchers, 
practitioners, and students seeking to understand and harness the 
transformative potential of LLMs in the engineering of information 
systems. It provides a roadmap for navigating the evolving 
landscape of AI-driven IS development, empowering readers to 
leverage these powerful tools effectively.

↪→
↪→
↪→
↪→
↪→ 
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Introduction 
In the rapidly evolving landscape of information systems engineering, 

the integration of Large Language Models (LLMs) and AI-based 
techniques has emerged as a transformative force. These 
technologies are not only reshaping how we design, develop, and 
manage information systems but are also opening new frontiers in 
automation, decision-making, and user interaction. This book, 
Engineering Information Systems with LLMs and AI-based Techniques, 
is born out of a tutorial presented at the CAiSE 2024 conference, 
where leading experts and practitioners gathered to explore the 
cutting-edge advancements in this field.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→ 

Authored by Massimo Mecella, a distinguished full professor at Sapienza 
University, this book distills years of research and practical 
experience into a comprehensive guide. Professor Mecella's 
expertise spans a wide array of domains, including information 
systems engineering, software architectures, distributed 
middleware, service-oriented computing, mobile and pervasive 
computing, process management, data and process mining, big data 
analytics, and advanced human-computer interaction. His work has 
consistently focused on the development of smart applications, 
environments, and communities, making him a pivotal figure in the 
intersection of AI and information systems.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→ 

This book is designed to serve as both a foundational text and a 
practical resource for researchers, practitioners, and students 
alike. It provides a thorough exploration of the theoretical 
underpinnings of LLMs and AI-based techniques, while also offering 
actionable insights into their application in real-world 
information systems. Whether you are a seasoned professional 
looking to stay ahead of the curve or a newcomer eager to 
understand the potential of these technologies, this book will 
equip you with the knowledge and tools needed to navigate the 
complexities of modern information systems engineering.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
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4. Designing Information Systems with LLMs 
System Architecture and Design Principles 
Data Management and Processing 

User Interaction and Experience Design 

5. Applications of LLMs in Information Systems 
Automated Decision-Making and Support Systems 
Process Automation and Optimization 
Intelligent Data Analytics and Insights 

6. Case Studies and Real-World Applications 
Smart Environments and Communities 
Industry-Specific Applications (Healthcare, Finance, etc.) 
Lessons Learned and Best Practices 

7. Future Trends and Directions 
Emerging Technologies and Their Impact 
The Future of AI in Information Systems 
Research Opportunities and Open Challenges 

8. Conclusion 
Summary of Key Insights
The Path Forward for Information Systems Engineering

9. Appendices
Glossary of Terms
Additional Resources and References
Tools and Frameworks for LLM and AI Integration

The reader is invited to continue reading the book in order to discover the final 
table of contents, which has been defined beforehand trying such prompts. We 
anticipate that, in the end, most of the topics suggested by the three chatbots are 
somehow addressed, even if with different levels of details; specifically, the reader 
will notice that our case studies are deeply different from those considered by the 
chatbots. We will discuss these aspects in the Epilogue. The reader can be assured 
that in this book, we will address all the basic notions of the examples above, 
as prompt, text generation, etc. with the focus of an IS engineer, who wants to 
adopt such technologies in order to be assisted in the conceptualization, design, 
and development of an information system. 

Before concluding this introduction, by presenting the organization of the book, 
we would like to outline the value chain of generative AI, including LLMs, as shown 
in Fig. 1.1, as well as their location shown in Fig. 1.2. 

Figure 1.1 shows the main entities involved in the GenAI ecosystem, categorized 
into regulatory bodies, computing/infrastructure providers (such as NVIDIA, Intel, 
AMD), model developers (like OpenAI, Meta, and Anthropic), code libraries 
(e.g., TensorFlow, PyTorch), applications (such as ChatGPT, DALLE 2, Bard), 
and services (like Uber and Morgan Stanley). The diagram also highlights the 
flow of transactions and information across these different layers. Information 
systems engineers (practitioners and researchers) should consider the applications
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Fig. 1.1 Players across the GenAI value chain4 

Fig. 1.2 Location of major players across GenAI value chain5 

and services layer, by investigating either new tools leveraging models for building 
new applications (cf. Epilogue) or directly new type of applications and services. 

Figure 1.2 provides a geographical distribution of major players in the GenAI 
value chain, indicating key hubs like San Francisco (home to OpenAI, Midjourney, 
and others), also called “The Cerebral Valley,” Seattle (Microsoft), New York (Hug-
ging Face, Synthesia), London (Stability AI), and Beijing (Baidu). A note mentions 
that Europe lags behind the USA in funding, talent pool, and regulatory flexibility. 
Both figures emphasize the complex network of companies, organizations, and 
services that drive the GenAI landscape globally.

4A. Meige, Z. Huczok, R. Eagar, et al., Generative artificial intelligence: Toward a new civiliza-
tion? Arthur D. Little, 2023. Available at: https://www.adlittle.com/en/insights/report/generative-
artificial-intelligence-toward-new-civilization. 
5Cf. previous footnote.
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The book can be read in multiple ways. The reader interested solely in an 
introduction to LLMs and a survey of relevant literature can consider Chaps. 2, 3, 
4, and 5. Conversely, the researcher and/or practitioner more interested in practical 
notions and code development can consider Chaps. 6, 7, 8, and 9. Those readers 
interested in our specific research vision and outcomes can consider Chaps. 9 and 
11, in which also case studies investigated by us are considered. Multidisciplinary 
approaches are considered in Chap. 10, in which ethics and governance of LLMs 
are discussed. 

Specifically, the chapters are organized as follows: 

• Chapter 2, “History of Large Language Models,” presents a historical analysis 
of AI evolution, from symbolic AI to generative AI. The chapter explores 
key milestones in natural language processing (NLP) and the rise of LLMs. It 
presents a timeline of innovations leading to modern language models. 

• Chapter 3, “Large Language Models,” for dummies, explains fundamental 
concepts behind LLMs in an accessible way. It covers the attention mechanism, 
deep learning foundations, and pre-training methods. It also introduces advanced 
topics such as fine-tuning and retrieval-augmented generation (RAG). 

• Chapter 4, “A Reference Framework for Information Systems,” details the IS 
life cycle, from planning to maintenance. It also discusses data analytics and 
knowledge management in ISs. 

• Chapter 5, “Exploring Large Language Models in Information Systems: A 
Survey,” presents a review on LLM applications in ISs. It categorizes research 
findings based on the IS life cycle. The chapter identifies emerging trends and 
gaps in the current adoption of LLMs. 

• Chapter 6, “Programming Large Language Models,” covers the technical aspects 
of working with LLMs. It introduces tools and libraries, fine-tuning techniques, 
and prompt engineering. The chapter also explores efficient training methods for 
LLM-based applications. 

• Chapter 7, “Retrieval Augmented Generation,” provides an in-depth explana-
tion of RAG, a technique that combines information retrieval with language 
generation. The chapter details the retrieval phase, generation mechanisms, and 
real-world applications. It includes practical implementations using LlamaIndex 
and LangChain. 

• Chapter 8, “Large Language Model Agents,” covers key components like 
memory, planning, and tools. It also presents multi-agent systems. 

• Chapter 9, “Applications of Large Language Models in Information Systems,” 
presents our applications of LLMs in IS Engineering, including industrial data 
retrieval and process automation. The chapter introduces architectures such as 
COSMADS and NL2ProcessOps. Practical case studies illustrate the impact of 
LLMs in different domains. 

• Chapter 10, “Ethics and Governance of Large Language Models,” provides a 
discussion on the ethical implications and governance frameworks for LLMs. 
The chapter analyzes different regulatory approaches across countries. It also 
covers key principles for responsible AI deployment.
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• Chapter 11, “Epilogue,” is a reflective conclusion summarizing the book’s 
insights and key takeaways. The chapter discusses open challenges in IS 
Engineering with LLMs. It also provides future research directions and final 
thoughts from the authors.



Chapter 2 
History of Large Language Models 

Francesca De Luzi 

Abstract This chapter explores the historical development of artificial intelligence 
(AI) and natural language processing (NLP), focusing on the evolution of language 
modeling. We begin by outlining the foundations of AI, from symbolic approaches 
to the emergence of sub-symbolic approaches such as machine learning (ML) 
and deep learning (DL). We examine NLP advancements, distinguishing between 
natural language understanding (NLU) and natural language generation (NLG) and 
highlighting the innovative role of the transformers architectures. The chapter then 
delves into the progression of language models (LMs), from early statistical LMs 
to neural LMs and the modern era of large language models (LLMs). We present a 
historical timeline of key LLMs—including GPT, PaLM, and LLaMA—alongside 
their technological milestones, shedding light on their increasing scale, capabilities, 
and impact. 

2.1 Artificial Intelligence 

The term artificial intelligence (AI) originated in the summer of 1956 when the 
congress titled “The Dartmouth Summer Research Project on Artificial Intelligence” 
organized by John McCarthy took place in Hanover. AI was defined as the science 
and engineering of making intelligent machines, especially intelligent computer 
programs. It is related to the similar task of using computers to understand human 
intelligence, but AI does not have to confine itself to methods that are biologically 
observable [30]. 

Since then, the history of AI has been characterized by many ups and downs. 
Significant accelerations have been observed in the development of increasingly 
sophisticated mathematical models designed to mimic certain brain functions. 
However, progress was hindered by challenges related to hardware development. 
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In 1966, Joseph Weizenbaum published ELIZA,1 which is considered a mile-
stone in the evolution of AI. However, during its development, natural language 
processing was a challenging task, requiring substantial effort and innovation. In 
the same year, researchers developed “Shakey,” the first mobile robot capable of 
perceiving and reasoning about its surroundings. Despite the successes achieved 
by early artificial neural networks, to which he himself had contributed, Marvin 
Minsky, together with Seymour Papert, highlighted their limitations in 1969, as was 
also the case with ELIZA. Subsequently, there was a significant reduction in funding 
for research on artificial neural networks, marking the beginning of the first so-called 
AI winter. 

The evolution of AI continued, with a particular focus on symbolic logic. 
During the 1970s, the first expert systems, characterized by if-then and rule-based 
reasoning approaches, were created, gaining significant traction in the following 
decades where computers from Apple and IBM outperformed them also being more 
affordable, aligning with Moore’s Law.2 

By the end of the 1980s, the collapse of the entire sector occurred, initiating 
the second “AI winter.” Interest in AI research significantly declined until the 
2000s, which was marked by substantial improvements in computer performance. 
Specifically, renewed interest in neural networks and machine learning emerged, 
driven by the availability of more powerful hardware and abundant data. Computers 
have become increasingly powerful, more affordable, and equipped with access to 
public clouds and, most importantly, superior GPUs (graphics processing units) 
that enable significant computational capacity to process the huge amount of data 
exponentially growing nowadays. 

Nowadays, we are living in the boom of AI (also known as the “AI spring”), 
which refers to the ongoing period of unprecedented development in the AI 
field. Central to this boom is the rapid advancement in generative AI, an area 
of AI gaining popularity with the development of new deep learning models. 
Figure 2.1 illustrates the categorization of AI into two main branches: symbolic 
and sub-symbolic AI. Symbolic AI relies on rule-based systems to derive logical 
conclusions, while sub-symbolic AI focuses on learning patterns from data. Sub-
symbolic AI encompasses machine learning (ML), its subset deep learning (DL), 
and the more recent generative AI (GAI), as explained in the following sections.

1 ELIZA is a chatbot, i.e., software designed to simulate a conversation with a human, intended to 
behave like a psychotherapist (https://web.njit.edu/~ronkowit/eliza.html). 
2 Proposed by Gordon Moore, co-founder of Intel, in 1965, the law observes that the number of 
transistors on a microchip doubles approximately every two years, leading to exponential growth 
in computing power while reducing relative costs. 

https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
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2.1.1 Symbolic AI 

The classical approach to AI involves the use of formal languages that automatically 
apply logical inference rules. This approach aimed to build intelligent machines 
through programs that employ logical rules [36]. The focus was initially on tasks 
similar to those performed by humans using computers to understand human 
intelligence. Techniques falling into this category rely on explicit symbolic methods, 
such as formal methods and programming languages, and are primarily used for 
deductive knowledge. They involve first-order logic rules, as well as other methods 
like ontologies, decision trees, planning, and reasoning. Symbolic AI is often 
associated with knowledge bases and expert systems. One key feature of symbolic 
methods is their ability to explain and reason about conclusions, with intermediate 
steps being easily understandable. The human-readable computation flow makes 
these systems easier to debug, explain, and control. Furthermore, thanks to the 
modular structure of rules, they allow the insertion or removal of discrete and 
autonomous knowledge units from a knowledge base, promoting rule modularity. 
Knowledge interoperability in closely related applications is also facilitated, and 
they are suitable for abstract problems, as they are not highly dependent on input 
data. 

However, symbolic methods face challenges in cases where datasets exhibit 
data quality issues and noise, leading to suboptimal results and weaknesses, in 
addition to difficulties in maintaining rule bases that require complex verification 
and validation processes. In terms of applications, symbolic methods excel in well-
defined and static problems, but they struggle with real-time dynamic assessments 
and handling massive empirical data streams. Examples of symbolic AI include 
logic [35], planning [10], and gameplay [15]. 

2.1.2 Sub-symbolic AI 

Over time, it became apparent that AI’s real challenge was acquiring knowledge by 
extracting patterns from raw external data. This capacity for automatic learning was 
termed machine learning (ML). ML is defined as software that creates algorithms 
that improve its performance over time, measured within a specific task, after 
undergoing a series of experiences. The goal was for AI to learn to solve problems 
that humans intuitively solve automatically, such as recognizing words or faces in 
images, activities that cannot be precisely described mathematically. Sub-symbolic 
AI includes statistical learning methods, such as Bayesian learning, deep learning 
(DL), backpropagation, and genetic algorithms.
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2.1.2.1 Machine Learning 

ML refers to a set of mechanisms within the realm of AI that enable an intelligent 
machine to learn and optimize their performance autonomously by creating self-
adaptive algorithms that derive knowledge from data [34]. These algorithms are 
designed to adapt and improve their performance as they process increasing 
amounts of data. Training data is crucial for ML, and its quality determines the 
system’s accuracy and resilience to biases or distortions. There are three basic ML 
paradigms [34]: 

• Supervised learning: it relies on algorithms trained to provide desired results 
by learning from a set of input labeled data, where each input is paired with a 
corresponding output. It is commonly used for classification tasks or to predict 
specific behaviors. Once trained, the algorithm can generalize from the provided 
data to make accurate predictions on new, unseen data. 

• Unsupervised learning: in this approach, algorithms operate without explicit 
guidance from humans regarding the desired output. Instead, it autonomously 
identifies patterns, structures, and relationships within the data. The primary 
objective is to discover hidden or previously unknown relationships that may go 
over human deductive abilities. While unsupervised learning still relies on data, 
it differs from supervised learning as the input data is unlabeled, meaning it lacks 
annotations. 

• Reinforcement learning: this technique enables a machine to make sequential 
decisions to solve a problem. In this case, algorithms function much like a game, 
where each action is associated with a reward or penalty based on feedback from 
its environment. While the system receives feedback, it is not provided with 
explicit instructions on how to achieve its objective. Instead, it learns through 
trial and error, gradually discovering strategies to maximize cumulative rewards. 
This approach is particularly effective in scenarios with limited data, where the 
system’s current state influences future decisions. 

2.1.2.2 Deep Learning 

DL is a subcategory of ML and refers to a family of techniques within AI that are 
inspired by the structure and function of the brain [23]. These techniques are widely 
applied in areas such as computer vision, audio and speech recognition, and natural 
language processing. 

A key feature of DL is the usage of algorithms with multiple layers of non-
linear hidden units. These layers are used in cascade to perform tasks that can be 
classified as problems of transforming features extracted from the data. Each layer 
uses the output of the preceding layer as input. They incorporate multiple layers of 
representation, which can be conceptualized as various levels of abstraction, thereby 
forming a hierarchy of concepts.



18 F. De Luzi

DL algorithms simulate certain mechanisms of the human brain, enabling 
machines not only to learn autonomously and not only as ML systems do but also at 
multiple levels of abstraction. While DL systems require significant computational 
resources, their ability to scale with increasing data and complexity distinguishes 
them from traditional ML, which often reach limitations in performance despite 
additional data. DL systems improve their performance as data increases, whereas 
ML applications, once a certain level of performance is reached, are not scalable 
even with additional examples and training data added to the neural network. 

Training a DL system typically involves the use of labeled data, which helps 
guide the learning process by providing clear examples of inputs and corresponding 
desired outputs. 

DL is already applied in various fields today. Examples include self-driving cars, 
drones, and robots used for parcel delivery or emergency management. Furthermore, 
facial recognition [16] and predictive maintenance [41] are among the most relevant 
emerging applications. 

2.1.3 Toward Generative AI 

Generative artificial intelligence (GAI) represents a major step further in machines’ 
ability to create innovative content autonomously. Unlike traditional approaches 
such as ML and DL, which focus on modeling the relationship between input 
features and output labels, GAI learns the intrinsic data structure and generation 
processes [17]. As defined by [51], GAI consists of a set of algorithms designed 
to learn the distribution of a dataset so that its underlying patterns can be 
characterized and samples that resemble the original data can be generated. One  
distinctive feature of GAI is its reliance on prompts as a means of interaction. Users 
can engage with these models using natural language, instructing them to produce 
desired outputs. This encourages users to employ a trial-and-error approach, refining 
their input to achieve the intended results. Prompt engineering, an emerging field, 
focuses on systematically designing and refining prompts to optimize the quality 
and relevance of generated outputs. These systems, often embodied by models such 
as LLMs, possess the capability to generate diverse and creative outputs. 

The applications of GAI span across various domains, revolutionizing sectors 
such as education, healthcare, manufacturing, retailing, and banking. In addition, 
it is not confined to a singular modality; instead, GAI can create diverse content, 
including text, images, videos, code, sound, and even complex structures like 
molecules or 3D renderings. In the context of content creation, tools like ChatGPT3 

are pivotal, in efficiently producing text. Image generation capabilities span from 
creating abstract art to enhancing image quality by reducing noise. Notably, GAI

3 ChatGPT is an AI-based chatbot model developed by OpenAI that specializes in conversations 
with a human user. 
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extends to code generation, automating tasks such as developing Website templates 
or entire software applications. Additionally, it plays a role in speech-to-speech 
conversion, facilitating real-time language translation, and contributes to audio 
generation, enabling the creation of music, sound effects, and voice-overs. In 
addition, GAI is valuable in generating synthetic data, especially when authentic 
data is limited, providing unique datasets for training ML models. 

2.2 Natural Language Processing (NLP) 

Natural language processing (NLP) forms the foundation for GAI in language 
understanding and generation. While NLP focuses on analyzing, interpreting, and 
processing human language, GAI builds on these advancements to autonomously 
produce coherent and contextually relevant text. The evolution of NLP techniques, 
particularly through DL, has led to powerful language models that drive modern 
generative systems. This synergy has enabled breakthroughs in applications such as 
machine translation, text summarization, and conversational agents. 

Specifically, NLP is the field of research and application concerning the under-
standing and production of written texts in natural language. According to [26], 
NLP is defined as a theoretically motivated range of computational techniques 
for analyzing and representing naturally occurring texts, at one or more levels of 
linguistic analysis for the purpose of achieving humanlike language processing 
for a range of tasks or applications. Impressive progress has been made in NLP, 
surpassing what many previously thought was impossible. The pivotal shift in 
NLP occurred with the introduction of methods capable of acquiring robust, 
versatile representations of text from extensive self-supervised textual datasets. This 
breakthrough enabled the transfer of such representations to various tasks, leading to 
significant strides in both language understanding and generation. These techniques 
rely on the fundamental principle that the meaning of a word is intricately linked to 
the context in which it appears. This principle underpins learning tasks that do not 
require annotated data and is closely tied to the challenge of language modeling. 

As mentioned, NLP enables the understanding and generation of natural lan-
guage. Techniques for understanding human language are referred to as natural 
language understanding (NLU), while generative techniques are called natural 
language generation (NLG) [21]. 

2.2.1 Natural Language Understanding (NLU) 

The primary goal of NLU is to process and interpret natural language contained in 
documents and texts. NLU encompasses a set of techniques and methodologies to 
extract meaning, structured information, and semantic relationships from unstruc-
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tured texts. Below are among the most commonly used NLU techniques we can 
find: 

• Part-of-speech tagging: identifies parts of speech (nouns, verbs, adjectives) 
within sentences. 

• Named entity recognition: identifies and classifies entities such as person names, 
locations, organizations, dates, and more. 

• Text classification: assigns a document or a sentence to one or more categories. 
For example, this technique is used for emotion detection, identifying the main 
topic of a speech, and recognizing spam emails. 

2.2.2 Natural Language Generation (NLG) 

The primary goal of NLG, also referred to as text generation, is to create an end-
to-end solution with minimal human intervention by automatically learning an 
input-to-output mapping from the data [25]. In essence, NLG involves the process 
of finding the optimal sequence of words or tokens that can be generated based 
on a given source of information. This is typically achieved by determining the 
conditional probability of each token in the generated sequence, given the previous 
tokens and the source sequence. The final goal is to find the sequence that maximizes 
the probability of generating the desired output. 

2.2.2.1 Language Modeling 

Given the importance of tokens’ conditional distribution in text generation, the (pre-
trained) language model has acquired a central role in NLG in the last decade [25]. 
A language model is a statistical model whose objective is to learn a function to 
estimate the probability of a particular sequence of tokens. After the training of 
a language model is completed, the learned probability distributions can be used 
directly for text generation, which involves generating the next word in a sentence 
based on the probabilities estimated by the language model [39]. Alternatively, 
the language model can be fine-tuned on a small dataset to adapt it for a specific 
supervised task. The latter is the main idea behind the usage of the PLM [25]. 

2.2.2.2 Transformers 

The paradigm of NLG has been deeply influenced by encoder-decoder models 
[9]: the encoder maps the input sequence into fixed-size low-dimensional vectors, 
known as input embeddings; the decoder then generates a target text based on 
these embeddings. Unlike earlier statistical approaches that relied heavily on 
explicit feature engineering, encoder-decoder architecture can extract the important
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features automatically during training [25]. This makes it easier to capture complex 
relationships between inputs and outputs, resulting in better performance on text 
generation tasks. 

Among the various encoder-decoder architectures, transformers [52] have proven 
to be particularly successful in learning precise latent feature representations4 for 
language modeling [9]. Both the encoder and decoder of the original transformer 
can be described as composed by the repetition of identical blocks. The encoder’s 
block has a multi-head self-attention module and a position-wise feed-forward net-
work [27]. The encoder has the task of mapping the input to a latent representation 
of the whole sequence [52]. The decoder block has cross-attention modules added 
between the multi-head self-attention modules and the position-wise feed-forward 
networks (FFNs), and its task is to transform the latent representation in the desired 
target [27]. A key mechanism in transformers is the attention mechanism.5 This 
mechanism enables the model to dynamically weigh different words in the input 
sequence, improving its ability to capture long-range dependencies and contextual 
information effectively. 

2.3 Stages of LMs 

In this section, we explore the stages of LMs, providing a brief introduction to the 
different models. Figure 2.2 illustrates a visual representation of the history of LMs 
development [7, 54]. 

2.3.1 Statistical Language Models 

Statistical Language Models (SLM) [18, 40, 43] emerged in the 1990s, leveraging 
statistical learning methods to predict word sequences based on Markov’s assump-
tion. This principle states that the prediction of the next word depends only on the 
most recent context. The resulting models, known as n-gram models, define fixed-
length contexts for their predictions. They suffer from a fundamental limitation 
known as the “curse of dimensionality.” As the model order increases, the number of 
possible word combinations grows exponentially, making it challenging to estimate 
transition probabilities accurately and store them.

4 A latent feature representation refers to the underlying, hidden characteristics or variables within 
a dataset that are not directly observed but are inferred from the available data through patterns, 
relationships, or statistical methods. 
5 Attention is a technique that allows the model to focus on the most relevant parts of the 
input sequence while processing it. In transformers, self-attention computes attention scores that 
determine how much each word in the input should contribute to the representation of another 
word, enabling the model to capture dependencies regardless of distance. 
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2.3.2 Neural Language Models 

Neural language models (NLM) represented a paradigm shift by incorporating 
neural networks to model the probability of word sequences [22, 32]. A significant 
contribution in this field was the introduction of distributed word representations 
[3], which enabled the prediction function to be conditioned on aggregated context 
features, represented as distributed vectors. This approach allowed the development 
of unified, end-to-end solutions for a broad range of NLP tasks. Another example is 
the word2vec model [33], which used a shallow neural network to learn distributed 
word representations. These word vectors demonstrated great effectiveness in 
capturing both the meaning and structure of language, representing a significant 
advancement in NLP applications. 

2.3.3 Pre-trained Language Models 

Pre-trained Language Models (PLM) revolutionized NLP by introducing the “pre-
training and fine-tuning” paradigm. The advent of models like ELMo [37] and 
ULMFiT [14], based on long short-term memory (LSTM) networks [13], pioneered 
this approach. ELMo introduced dynamic, task-specific word representations, while 
ULMFiT focused on layer-wise fine-tuning of the language model, adding classifier 
layers. These models highlighted the power of using large pre-training datasets 
along with flexible architectures. This foundational work paved the way for later 
innovations like BERT [8], which further refined the paradigm with transformer 
architectures and novel pre-training tasks such as masked language modeling 
(MLM), establishing a new standard for representation learning in NLP. 

2.3.4 Large Language Models 

Large language models represent the latest evolution of PLMs, with a focus on 
scalability both in terms of model size and the volume of training data. Based 
on observed trends, increasing the number of model parameters and the size 
of the dataset leads to notable improvements in performance on various tasks. 
For example, GPT-3 [5], with its 175 billion parameters, demonstrated emergent 
abilities such as in-context learning, which allows it to perform tasks without 
requiring explicit task-specific training, solving complex problems with minimal 
instructions. These capabilities set LLMs apart from their smaller predecessors, like 
GPT-2 [39] or BERT, and have garnered significant attention within the AI research 
community. The popularity of LLMs has been further increased with practical 
applications like ChatGPT, which fine-tuned the GPT series for conversational tasks. 
The main LLMs so far are shown in Fig. 2.3. We present below the three most
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Fig. 2.3 Popular LLMs 

popular LLMs families currently used by users, as well as an overview of their 
features in Table 2.1. 

2.3.4.1 Generative Pre-trained Transformer (GPT) Family 

Developed by OpenAI, GPT was first introduced with GPT-1 [38] in 2018 and had 
117 million parameters. In 2019 it was followed by GPT-2 [39], which boasted 
1.5 billion parameters, significantly surpassing the learning capabilities of GPT-1, 
thanks also to training on a much larger dataset. In 2020 OpenAI releases GPT-3 
[5], which has revolutionized AI reaching 175 billion parameters. The GPT models 
are based on the Transformer architecture and are designed as generative language 
models. As the series progressed, the models grew in size and capabilities. GPT-3 
quickly became the focal point for research on LLMs and served as the foundation 
of ChatGPT software, released in November 2022 by OpenAI. Released in March 
2022, GPT-3.5 augmented the system’s capabilities, becoming more streamlined 
and less costly.
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Table 2.1 Overview of popular LLM families 

Type Model #Parameters Release Open source Training dataset 

GPT 
family 

GPT-1 120M 2018 � BooksCorpus 

GPT-2 1.5B 2019 � Reddit outbound 

GPT-3 125M, 350M, 
760M, 1.3B, 
2.7B, 6.7B, 
13B, 175B 

2020 X Common Crawl 
(filtered), 
WebText2, 
Books1, Books2, 
Wikipedia 

GPT-4 1.76T 2023 X – 

PaLM 
family 

PaLM 8B, 62B, 540B 2022 X Web documents, 
books, Wikipedia, 
conversations, 
GitHub code 

PaLM-2 340B 2023 � Web documents, 
books, code, 
mathematics, 
conversational 
data 

Med-PaLM 540B 2022 X HealthSearchQA, 
MedicationQA, 
LiveQA 

LLaMA 
family 

LLaMA1 7B, 13B, 33B, 
65B 

2023 � Online sources 

LLaMA2 7B, 13B, 34B, 
70B 

2023 � Online sources 

Alpaca 7B 2023 � GPT-3.5 

Vicuna 13B 2023 � GPT-3.5 

LLaMA3 8B, 70B 2024 � Online sources 

LLaMA3.1 8B, 70B, 405B 2024 � Online sources 

LLaMA3.2 1B, 3B 2024 � Online sources 

LLaMA3.3 70B 2024 � Online sources 

Other 
LLMs 

DeepSeek-Coder 1.3B, 6.7B, 
33B 

2023 � GitHub’s 
Markdown and 
StackExchange 

DeepSeek–LLM 7B, 67B 2024 � GitHub’s 
Markdown and 
StackExchange 

DeepSeek-V2 236B (total), 
21B (active) 

2024 � Internet data 

DeepSeek-V3-Base 671B (total), 
37B (active) 

2024 �

DeepSeek-R1 671B (total), 
37B (active) 

2025 �

(continued)
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Table 2.1 (continued)

Type Model #Parameters Release Open source Training dataset 

Mistral-7B 7B 2023 � Instruction dataset 

Mixtral-8x7B 46.7B 2024 � Instruction dataset 

Gemma 1 2B, 7B 2024 � English data from 
Web documents, 
mathematics, and 
code 

Gemma 2 2B, 9B, 27B 2024 � English data from 
Web documents, 
code, and science 
articles 

Qwen 1.8B, 7B, 14B 2023 � Public Web 
documents, 
encyclopedia, 
books, codes 

Qwen2.5-Max 0.5B, 1.5B, 3B, 
7B, 14B, 32B, 
72B 

2025 � Qwen2.5-
Math, Qwen2.5-
Coder, synthetic 
data (mathematics, 
code) 

More recently, OpenAI presented GPT-4 [1] in March 2023. Unlike previous 
models, OpenAI has not publicly stated the number of parameters of the GPT-4, 
which is estimated at about one trillion. In addition to a larger number of parameters, 
this model has been trained on an even more diversified and extended dataset, 
through the introduction of zero-shot and one-shot learning capabilities, allowing 
the model to perform tasks with few or no examples provided, thus making GPT-4 
more humanlike than any previous GPT model. In addition, GPT-4 has the ability 
to use computer vision to interpret visual data and accepts both text and images 
as input. GPT-4o, released in May 2024, represents the latest advance in OpenAI 
language models and offers more concise and disciplined answers, better structured 
explanations, and a particular improvement in creative writing activities. 

2.3.4.2 Pathways Language Model (PaLM) Family 

The PaLM family are developed by Google and are largely closed source, offering 
limited public access but contributing significantly to advancements in few-shot 
learning and complex reasoning tasks. PaLM was trained using a combination of 
English and multilingual data, including high-quality Web pages, books, Wikipedia, 
conversations, and code from GitHub. 

The first PaLM [6] model was launched in 2022 (540 billion parameters), but 
only thanks to PaLM-2 [2] (340 billion parameters), the model behind Google Bard, 
the provider proves able to offer conversational features similar to ChatGPT. Google 
Bard is an experimental conversational AI service, previously based on the LaMDA
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[48] model (137 billion parameters), and released in March 2023. After LaMDA, 
Google decided to move to the more advanced PaLM-2 model for its AI products. 
Bard was renamed to Gemini on February 8, 2024 (Gemini was already the LLM 
that powered Bard). With the move from Gemini 1.0 [44] to Gemini 1.5 [45], the 
model has improved its ability to handle extended contexts and optimized language 
performance. The latest version, Gemini 2.0,6 represents a significant technological 
leap, with improvements in speed, accuracy, and functionality. 

Google also introduced Minerva [24], a language model based on PaLM that 
solves mathematical and scientific problems by explaining the process through 
formulas and text. Another model from the PaLM family is Med-PaLM [42], a 
variant of PaLM-2 trained on a set of medical data, previously verified and screened, 
which Google plans to implement in a product dedicated to providing medical 
information. 

2.3.4.3 Large Language Model Meta AI (LLaMA) Family 

LLaMA is a collection of open-source language models developed by Meta. Unlike 
GPT models, these models’ weights are published to the research community 
in a non-commercial, licensed format. The LLaMA models are auto-regressive 
decoder-only models, and they are based on transformer architecture with some 
modifications and were trained using 15 trillion text tokens collected from public 
sources. The first group of LLaMA models was released in 2023, starting with 
LLaMA 1 [49] (65 billion parameters), LLaMA 2 [50] (70 billion parameters), and 
LLaMA 3 [31] in 2024 (70 billion parameters). The latest version is Llama 3.3,7 

released in December 2024, and it is a text-only instruction tuned model that offers 
improved performance compared to previous Llama 3.1 and Llama 3.2, especially 
when used for text-only applications. Llama 3.3 is therefore only provided as an 
instruction-tuned model; a pretrained version is not available. The main feature is 
that all the LLaMA models are open source, anyone can download LLaMA and use 
it locally, and developers and researchers can access the source code and customize 
it to meet specific needs. 

2.3.4.4 Other Representative LLMs 

In addition to the models discussed in the previous sections, other popular LLMs do 
not belong to these three families but have achieved remarkable performance and 
pushed the LLM field forward. We briefly describe these LLMs in this subsection.

6 https://blog.google/technology/google-deepmind/. 
7 https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/. 

https://blog.google/technology/google-deepmind/
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• DeepSeek-R1 is an open-source model based on reinforcement learning tech-
niques, developed by the Chinese company DeepSeek, and offers emerging 
self-reflection capabilities, making it a valuable resource, thanks to its acces-
sibility and flexibility. In 2023 DeepSeek released the first series of models, 
DeepSeek-Coder [12] and DeepSeek-LLM [4], while in 2024 it released the 
series DeepSeek-V2 [28], DeepSeek-V3-Base [29], and DeepSeek-R1 [11]. In 
January 2025, it released its first free chatbot app, based on the DeepSeek-R1 
model, surpassing ChatGPT as the most downloaded free app on the iOS App 
Store in the USA. 

• Mixtral-8x7B [20] is the second LLM released by mistral.ai, after Mistral-7B 
[19], a decoder-only transformer trained on a smaller set of data (7 billion 
parameters). Instead, Mixtral is a Mixture-of-Experts (MoE) model that activates 
only part of the parameters during inference, making it more efficient than models 
of the same size. 

• Gemma is a new set of open models based on a decoder transformer and has 
been pre-trained on large datasets. Gemma 2 [47] is available in sizes 9B and 
27B, while Gemma 1 [46] is available in sizes 2B and 7B. It is text-to-text LLM, 
decoders with pre-trained and tuned variants on the instructions. Gemma is not 
as large and powerful as the popular AI models (like OpenAI’s ChatGPT-4 and 
Google’s Gemini), but it is a lightweight compact model that can work on laptops 
or desktops because they have faster inference speeds and lower computational 
demands. 

• Qwen is a series of open-source decoder-only models, pre-trained on over 
2.2 trillion tokens and consisting of different model sizes. The Qwen models 
are developed by Chinese giant Alibaba and feature new neural architectures 
that improve written and spoken language processing as well as reasoning 
and contextual understanding. The latest model, Qwen2.5-Max [53], stands out 
for its multimodality, so it is able to understand both text and images and 
generate video content, and it has been pre-trained on over 20 trillion tokens and 
further post-trained with reinforcement learning from human feedback (RLHF) 
methodologies. 
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Chapter 3 
Large Language Models for Dummies 

Marco Calamo and Matteo Marinacci 

Abstract The rapid expansion of interconnected systems and the increasing need 
for intelligent data processing have driven the evolution of artificial intelligence, 
particularly in the field of natural language processing (NLP). Large language 
models (LLMs) represent a significant leap in AI capabilities, surpassing traditional 
machine learning approaches by leveraging deep neural networks and transformer 
architectures. This chapter explores the foundation of LLMs, beginning with deep 
learning principles and the evolution from recurrent neural networks (RNNs) 
to the transformer model. Key advancements such as attention mechanisms and 
pre-training strategies are discussed, highlighting their role in enabling LLMs to 
understand, generate, and manipulate humanlike text. Furthermore, the chapter 
examines fine-tuning techniques, prompt engineering, retrieval-augmented gener-
ation, and LLM-based agents, which enhance model performance across diverse 
applications. Additionally, computational efficiency and alignment with human 
values are addressed. By providing a comprehensive overview of LLM develop-
ment, optimization, and deployment, this chapter aims to equip researchers and 
practitioners with insights into the current state and future potential of LLMs. 

3.1 Introduction 

In recent years, the growing and continuous flow of information resulting from the 
expansion of interconnected systems over the Internet, combined with the increase 
in hardware and software platforms capable of generating vast amounts of raw data 
within seconds, has led to the need to develop technologies that can surpass the 
capabilities offered by traditional machine learning (ML) algorithms. 

ML has emerged as a fundamental paradigm within the field of artificial 
intelligence (AI) research, addressing data analysis problems where humans are 
unable to define the governing rules of a phenomenon [22]. This paradigm provides 
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algorithms capable of learning from data and improving performance over time 
without explicit knowledge of the domain rules under analysis. Traditional ML 
algorithms leverage statistical theory to recognize common patterns within datasets, 
encompassing methods such as decision trees and support vector machines [16]. 
However, classic ML struggles to efficiently handle raw datasets due to their size, 
complexity, and lack of explicit semantics. For this reason, the field of deep learning 
(DL) has been introduced as a subfield of ML. 

The innovative work of Rosenblatt in 1958 [36] introduced the concept of 
artificial neurons, providing the fundamentals for modern deep neural networks 
(DNN) that can be composed of thousands or millions of interconnected neurons. 
DL uses DNNs, which are specifically designed to process raw data and store 
large amounts of information within the interconnections between the network 
layers. Since the work of Rosenblatt, the implementation of neurons and DNNs has 
become increasingly complex, involving functions such as non-linear operations, 
convolution, attention, and skip connections. This allowed the development of 
high-performing systems for various tasks like games [29, 40], vision [35, 42], 
robotics [23, 26], and natural language processing [5, 45]. While DNN architectures 
like recurrent neural network (RNN) and convolutional neural network (CNN) 
improved our ability to model complex data, they struggle with understanding 
and maintaining long-range dependencies, especially in sequential data like natural 
language. To address these limitations, the attention mechanism was introduced, and 
subsequently transformers, which allow models to weigh the importance of different 
parts of an input sequence, making it possible to understand the entire context. This 
mechanism laid the foundation for the development of large language model (LLM), 
significantly advancing the field and the concept of AI. 

3.1.1 Deep Neural Network 

The goal of a neural network (NN) is to learn how to solve a task based on data 
observations. A data observation is composed of several elements identified as 
features. The collection of observations forms the training set, which is then used 
to train the NN in a process known as the training process. In particular cases, each 
observation is associated with a ground truth label, which denotes the desired output 
and is used as feedback during the learning process. 

A NN is a hierarchical mathematical model composed of multiple layers of 
interconnected artificial neurons. It takes an input observation and produces an 
output referred to as a prediction. The layers of an NN can be categorized based on 
their position within the architecture: input, hidden, and output layers (see Fig. 3.1). 
The lowest layer in the hierarchy is the input layer, which feeds input features to 
subsequent layers. Following this are one or more hidden layers, where each layer 
receives the output of neurons from the previous layer and provides input to the 
next. The outputs of a hidden layer form the latent representation of the input, and 
the collection of all such representations constitutes the latent space. At the top of
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Fig. 3.1 Structure of a neural network 

Fig. 3.2 Artificial neuron 

the hierarchy is the output layer, which takes the output of the preceding layers and 
generates the final prediction. A network with at least two hidden layers is referred 
to as a DNN. 

Each neuron between layers is connected via edges called weights, with each 
weight assigned a specific value. An artificial neuron (see Fig. 3.2) processes the 
outputs of all neurons from the preceding layer. Each neuron’s output is multiplied 
by the weight corresponding to its connection to the current neuron. An aggregation 
function, such as summation, then combines the weighted outputs from the previous 
layer. Finally, an activation function is applied to the aggregated value to compute 
the neuron’s output. 

In the absence of hidden layers, the weights, which are adjusted during the 
training process to achieve the desired output [36], are updated using the error-
correction learning rule, expressed as: 

. wi(t + 1) = wi(t) + r(dj − yj (t))xj,i

Here, wi . represents the i-th weight of the vector w, t is the training iteration, 
dj . is the desired output for the feature vector xj . in the training set D =
(x1, d1), . . . , (xs, da)., and xj,i . is the individual feature. The parameter r ∈ [0, 1]. is 
the learning rate, controlling the magnitude of the update. A small value of r results 
in gradual adjustments, averaging past inputs, while a large value of r enables rapid 
adaptation but with less consideration for past errors.



36 M. Calamo and M. Marinacci

In the case of hidden layers, where no predefined desired output exists (i.e., no 
ground truth), the backpropagation algorithm updates the weights of each neuron in 
the hidden layers. The algorithm computes the error for each neuron j as follo ws: 

. δj = �′(zj )
∑

k

δkwjk

Here, δj . is the error for the j -th neuron in the current layer, �′(zj ). is the 
derivative of the activation function with respect to the input zj ., δk . is the error of 
the k-th neuron in the next layer, and wjk . is the weight connecting hidden neuron j 
to neuron k in the next l ayer. 

Once the error terms δ . are computed for all neurons, the weights are updated 
using gradient descent. Specifically, the gradient of the loss L with respect to a 
weight wjk ., which connects neuron j in layer l to neuron k in layer l + 1.,  is  give  n  
by: 

. 
∂L

∂wjk

= δkȧj

Here, δk . is the error term of the k-th neuron in the current layer, and aj . is the 
activation of the j -th neuron in the previous layer. The set of partial derivatives for 
all the weights in the network forms the gradient vector ∇L., which is used to update 
the weights as follows: 

. wt+1 = wt − r∇L

These equations are further extended by optimization algorithms (e.g., 
Adam [20], AdaGrad [11], RMSProp). Each optimizer differs in how weights 
are updated at each step and in its learning schedule. The interconnected structure 
and training process enable each neuron to specialize in detecting particular feature 
correlations, allowing the network to represent virtually any function. 

The training process of a network is divided into epochs, in which the whole 
training set is fed to the network to update weights. As the dataset may be too large 
to be stored in memory, it could be divided into batches of samples progressively fed 
during the epoch. At each step, the optimizer computes the loss associated with the 
prediction and accordingly updates the weights. Depending on the task in analysis, 
different loss functions can be employed. 

When using a DNN for a particular task, there are two common approaches, i.e., 
training a new model from scratch or leveraging a pre-trained model. Pre-trained 
models are trained on large corpora to capture fundamental features shared across 
multiple tasks. These models serve as starting configurations for training models 
on smaller, task-specific datasets, a process often referred to as transfer learning. 
The foundation of transfer learning lies in the observation that most DNNs can be 
decomposed into two primary components: the feature extraction function f and 
the decision-making function g. Mathematically, this can be expressed as:
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. h = f (x, θf )

. y = g(h, θg) = g(f (x, θf ), θg) = (g ◦ f )(x)

On the one hand, the feature extraction function f maps the input x into a 
meaningful representation in a latent space h, capturing feature relations. The latent 
space denotes the output, and θf . denotes the parameters, i.e., the weights, of the 
feature extraction layers. On the other hand, the feature representation h is fed to 
the decision-making function g together with the parameters of the decision-making 
layers θg .. For novel tasks, pre-trained models can be trained in two different ways, 
i.e., feature freezing or fine-tuning. In the feature freezing approach, the parameters 
of the feature extraction function θf . are kept frozen, and only the parameters of 
the decision-making function θg . are adjusted. In the fine-tuning approach, the pre-
trained model’s parameters θf . are used to initialize the network, and the entire 
model is fine-tuned for the new task by updating all associated weights. 

At the end of the training process, the network’s performance is evaluated using 
a set of samples unseen during training, known as the testing dataset. The quality of 
the learning process is assessed through various metrics, such as accuracy or ROC-
AUC, that summarize the network’s performance on the testing dataset. Accuracy, 
which ranges from 0 (no correct predictions) to 1 (all predictions correct), is defined 
as the ratio between the number of correctly predicted samples and the total number 
of samples in the dataset. ROC-AUC, on the other hand, considers the ratio between 
true positive (e.g., the model predicts 1 when the ground truth is 1) and false positive 
(e.g., the model predicts 1 when the ground truth is 0), and it is useful when the 
dataset is unbalanced in the number of samples per class. 

In a DNN, it is possible to connect layers and neurons in various ways, 
and the output of neurons can be computed by exploiting multiple activation 
functions. Depending on the configuration of neurons and layers, different families 
of architectures can be identified, each suited to solve specific types of tasks. Among 
these architectures, we mention long short-term memory (LSTM), which excels 
at processing sequential data and capturing long-term dependencies. Similarly, the 
attention mechanisms allow models to focus dynamically on the most relevant parts 
of input data, enhancing their ability to solve complex tasks such as natural language 
understanding and image captioning. 

Long Short-Term Memory (LSTM) 
LSTM [18] is a specific type of RNN designed to handle sequential data. Sequential 
data consists of data points that have temporal dependencies with one another, which 
are organized into structures called sequences. Each sequence represents a chain 
of data points linked by temporal relationships, with each item corresponding to a 
specific timestep. LSTM processes one timestep at a time, using both the current 
input and the output of the previous cell to generate a prediction. Thus, for a 
sequence with n timesteps, the LSTM produces n predictions. 

In LSTMs, each cell acts as a memory unit with its own state s. At each timestep, 
the cell processes three inputs: the current element of the sequence xt ., the hidden
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Fig. 3.3 LSTM cell 

state ht−1 ., and the previous cell state st−1 .. The purpose of the cell is to store, 
update, and propagate information across timesteps, enabling the model to capture 
long-term dependencies. This is achieved through the use of gates that manage the 
flow of information (see Fig. 3.3), including the forget gate ft . that determines what 
information to discard from the cell state, the input gate it . that determines what new 
information to add to the cell state, and the output gate ot . that determines how much 
of the cell state contributes to the output. 

The information that needs to be analyzed is obtained from the forget gate as 
follows: 

. ft = σ(Wf · [xt , ht−1] + bf )

where σ . is the activation function applied to the weighted matrix Wf . between 
the current input xt . and the previous hidden state ht−1 . plus the bias vector bf . at t . 

The input gate performs the following operations needed to update the cell status: 

. it = σ(Wi · [xt , ht−1] + bi)

. ̂st = tanh (Ws · [xt , ht−1] + bs)

where σ . is the activation function applied to the weighted matrix Wi . between the 
input xt . and the previous hidden state ht−1 . plus the bias vector bi . at t and tanh. is 
the activation function applied to the weighted matrix Ws . between the input xt . and 
the previous hidden state ht−1 . plus the bias vector bs . at t . 

The cell state is then updated with the information from the forget and input gate: 

. st = ft st−1 + it ŝt

with ft . as forget gate, st−1 . as previous cell state, is . as input gate, and ŝt . as value 
generated by tanh..
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Finally, the output is obtained by multiplying the output gate ot . and the candidate 
output computed from the updated cell state: 

. ot = σ(Wo · [xt , ht−1] + bo)

. ht = ot tanh (st )

where σ . is the activation function applied to the weighted matrix Wo . between 
the input xt . and the previous hidden state ht−1 . plus the bias vector bo . at t . 

The architecture of LSTMs, combined with their memory cells and gating 
mechanisms, allows them to retain information over longer sequences compared 
to classical RNNs. This capability enables LSTMs to achieve superior performance 
on tasks involving sequential data, such as time-series analysis, language modeling, 
and speech recognition. 

Attention Mechanism 
Attention [3] is a mechanism designed to model and leverage long-range corre-
lations between features. The attention mechanism is characterized by three main 
components: the queries Q, the keys K , and the values V . These components can 
either be vectors or linear projections of the same input [45]. The output of the 
attention mechanism is computed by comparing each query q ∈ Q.with the keys to 
generate a score value for each pair: 

. eq,ki
= fscoring(q, ki)

The score value eq,ki
. is obtained using a scoring function fscoring ., which varies 

based on the type of attention being implemented. Then, the scores are normalized 
using the softmax function to compute the attention weights: 

. wq,ki
= σsof t (eq,ki

)

Finally, the layer produces the output as a weighted sum of the values, with the 
weights determined by the attention weights: 

. y = Attention(q,K, V ) =
∑

i

wq,ki
vi

Different variants of the attention mechanism can be implemented by modifying 
the scoring function [28, 47], projection [4], or computational steps. For example, 
the transformer architecture [45], which comprises multiple attention layers, forms 
the backbone of several state-of-the-art models.
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Fig. 3.4 Transformer 

3.1.2 From the Attention Mechanism Toward Large Language 
Models 

RNNs, including LSTMs, are foundational for sequence modeling and transduction 
tasks, such as language modeling and machine translation [3, 7, 41]. However, 
their sequential nature prevents parallel processing during the training process. 
This significantly limits computational efficiency, especially when dealing with 
large sequences, where processing an entire sequence in a single memory batch 
becomes excessively costly. To address such limitations, systems that support 
parallel processing are essential. 

The attention mechanism has played a crucial role in overcoming the limitations 
of RNNs. In 2017, the Transformer architecture [45] was introduced (see Fig. 3.4), 
relying exclusively on the attention mechanism to capture global dependencies 
between input and output. This innovation eliminated the intrinsic sequentiality of 
RNNs, enabling parallel data processing and significantly improving computational 
efficiency. 

The transformer employs an encoder-decoder structure, where both the encoder 
and decoder are composed of a stack of N = 6. identical layers. The encoder takes 
as input a sequence of symbol representations (x1, · · · , xn). and transforms it into 
a sequence of continuous representations z = (z1, · · · , zn).. The decoder uses z
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along with the previously generated symbols as additional input, to produce an 
output sequence (y1, · · · , ym).of symbols one element at a time in an autoregressive 
manner. This means that each token is generated sequentially, conditioned on the 
tokens generated so far and the encoder’s output. 

Both the encoder and decoder begin with a learned embedding layer that converts 
input and output tokens into dense vector representations of fixed dimension dmodel .. 
These embeddings allow the model to work in a continuous, high-dimensional space 
where semantic relationships between tokens can be effectively captured. To encode 
positional information, positional embeddings are added to the token embeddings. 
These embeddings, having the same dimension dmodel ., ensure that the model 
can leverage sequential information despite lacking recurrence or convolutional 
structures. Positional embeddings can be implemented in various ways, such as 
fixed sinusoidal functions, learned embeddings, or relative encodings, each suited 
to different tasks and sequence characteristics. 

We can now examine the structure of the encoder and decoder layer stacks. 
The encoder consists of two sub-layers: (i) a multi-head self-attention mechanism 
and (ii) a fully connected feed-forward network. On the opposite, the decoder is 
composed of three sub-layers: (i) a masked multi-head self-attention mechanism, 
also referred to as encoder-decoder attention, which prevents each position from 
attending to future positions, ensuring predictions for position i depend only on 
outputs from earlier positions, (ii) a multi-head attention applied to the output of the 
encoder stack, and (iii) a fully connected feed-forward network. Each multi-head 
attention layer processes keys, values, and queries as its input, with the exception of 
the encoder-decoder attention layer. In this case, the queries come from the previous 
decoder layer, while the keys and values are derived from the encoder’s output. 

The attention mechanism used in the transformer, known as Scaled Dot-Product 
Attention, simultaneously computes the attention function on the keys K , values V , 
and a set of queries stored Q. The queries and keys have a dimension of dk ., while the 
values have a dimension of dv .. The attention mechanism determines the relevance 
of each key-value pair to a query by computing a dot product between the queries 
and keys, scaling it by

√
dk . (to stabilize gradients), and applying a softmax function 

to obtain the attention weights. The matrix of outputs is determined as: 

. Attention(Q,K, V ) = sof tmax

(
QKT

√
dk

)
V

Instead of performing a single attention function, the transformer utilizes h 
parallel execution of the attention mechanism, each yielding dv .-dimensional output 
values. Each head uses different learned linear projections to dk ., dk ., and dv . for 
the queries, keys, and values, respectively. These outputs are concatenated and 
linearly projected to produce the final values. This mechanism, known as multi-head 
attention, allows the model to analyze information from different representation 
subspaces at different positions, and its final result is computed as: 

.MultiHead(Q,K, V ) = Concat (head1, · · · , headn)W
O
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. with headi = Attention(QW
Q
i ,KWK

i , V WV
i )

The projection matrices are W
Q
i ∈ R

dmodel×dk ., WK
i ∈ R

dmodel×dk ., WV
i ∈ R

dmodel×dv ., 
and WO ∈ R

hdv×dmodel .. This mechanism enables the model to process to multiple 
representation subspaces simultaneously, enhancing its capacity to capture complex 
dependencies in the input. 

In each encoder and decoder layer, the final sub-layer consists of a fully 
connected feed-forward network, applied independently and identically to each 
position in the sequence. The network is characterized by two linear transformations 
with a ReLU activation in between: 

. FFN(x) = max(0, xW1 + b1)W2 + b2

where W1 . and W2 . are the weight matrices and b1 . and b2 . are the bias vectors. 
Each sub-layer includes a residual connection [15] followed by a normaliza-

tion [2]. The output of each sub-layer is computed as: 

. LayerNorm(x + Sublayer(x))

where Sublayer(x). represents the function implemented by the respective sub-
layer (e.g., multi-head attention or feed-forward network). 

Since 2017, the transformer architecture, originally composed of an encoder-
decoder structure, has been adapted into various models. In 2018, Generative 
Pre-Training (GPT) was introduced [33], leveraging only the transformer decoder. 
GPT employs a multi-layer transformer decoder [27] that applies multi-headed self-
attention on input context tokens and position-wise feedforward layers to generate 
an output distribution over target tokens. 

In the same year, another variant of the original transformer architecture 
was introduced, i.e., Bidirectional Encoder Representations from Transformers 
(BERT) [9]. BERT leverages only the transformer encoder. In contrast to GPT, 
which uses a left-to-right architecture where each token can only attend to previous 
tokens in self-attention layers, BERT employs a masked language model (MLM) 
pre-training objective. The MLM objective involves randomly masking a subset 
of input tokens and training the model to predict the masked tokens based on the 
surrounding context. This enables BERT to create a deep bidirectional transformer, 
allowing each token to attend to both its left and right contexts. This bidirectional 
approach enhances the ability to capture relationships within the entire sequence. 
Additionally, BERT incorporates a next sentence prediction task during pre-training, 
which jointly learns representations for text-pair relationships. Together, these 
objectives make BERT highly effective for tasks like question answering and 
natural language inference. 

In 2019, a model combining Bidirectional and Auto-Regressive Transformers 
(BART) was introduced [24]. BART is a denoising auto-encoder based on a 
sequence-to-sequence architecture. During pre-training, BART corrupts text using
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a noising function, such as randomly shuffling the order of sentences or applying 
an in-filling scheme, where spans of text are replaced with a single mask token, and 
then trains a sequence-to-sequence model to reconstruct the original text. BART 
combines a bidirectional encoder, like BERT, with a left-to-right autoregressive 
decoder, like GPT. However, there are key differences between BART and its 
predecessors. Unlike GPT, BART uses GeLU [17] activation functions instead 
of ReLU. Unlike BERT, its decoder layers perform cross-attention over the final 
hidden states of the encoder and do not include an additional feed-forward network 
before word prediction. The introduction of BART marked a return to the original 
transformer structure (i.e., encoder-decoder), demonstrating the versatility and 
power of this architecture for complex text reconstruction and generation tasks. 
Moreover, recent advancements in transformer-based models have increasingly 
shifted their focus toward scalability and multi-tasking, aiming to create general-
purpose systems capable of excelling across a wide range of natural language 
processing tasks. 

The development of models like BERT and BART constitutes the basis for 
modern large language models (LLMs). These models leverage modern architec-
tural innovations, such as attention mechanisms and pre-training objectives, and 
scale them with significantly larger datasets and parameter counts. LLMs like 
GPT-3, PaLM, and LLaMA extend the autoregressive and bidirectional principles 
introduced by earlier models to perform well across diverse tasks with little to no 
fine-tuning. By leveraging pre-training and fine-tuning, LLMs are capable of under-
standing and generating humanlike text, transforming fields like conversational AI, 
text summarization, and machine translation. 

3.2 Pre-training of Large Language Models 

Nowadays, there are many available LLMs already trained on large corpora, capable 
of processing data and generating valuable and understandable responses [8]. The 
pre-training phase is a fundamental step in the development of a LLM. This phase 
has the role of establishing the basis of the skills of an LLM. In this step, many 
variables need to be addressed, such as the scale and the quality of the pre-training 
corpus. 

The first and most important aspect that needs to be considered while pre-training 
an LLM is the quality of the data. The performances and capacities of a LLM heavily 
depend on how data has been preprocessed and the sources from which they are 
considered. The steps necessary in preparing data include: 

1. Collect a large amount of natural language data. These data can be obtained from 
many sources that could be categorized as general and specialized data. General 
data comprehend sources like Web pages, books [13], and conversational text 
[49]. These sources are used to improve the generalization abilities of an LLM 
due to their large and diverse nature. Conversely, specialized data involving, for
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instance, multilingual [6], scientific, and code [6] data are adopted to enhance 
specific task-solving capabilities of LLMs [30, 44]. 

2. Clean collected data from noisy, redundant, irrelevant, and toxic data, which may 
reduce the performance of an LLM. To clean data is possible to apply multiple 
techniques, each of which aims to address a specific problem. To remove low-
quality data, it is possible to apply filtering and selection through two different 
approaches named classifier and heuristic respectively. The former involves the 
training of a selection classifier based on high-quality texts to identify and 
remove low-quality data [10]. The latter relies on a set of well-designed filtering 
rules based on Language, Metric (e.g., perplexity), Statistic (e.g., punctuation 
distribution, symbol-to-word ratio, sentence length), and Keyword (e.g., HTML 
tags, hyperlinks, boilerplates, offensive words). To remove duplicates, it is 
necessary to apply a technique called de-duplication that may operate at different 
levels, including sentences, documents, and datasets. To remove personally 
identifiable information is possible to employ approaches based on rules like 
keyword spotting. Furthermore, the cleaning step involves also preparing data 
for the input of a LLM. To prepare data, the text is segmented into sequences 
of individual tokens, and this method is called Tokenization. There exist many 
specializations of this method, which are called subword tokenizers, like Byte-
Pair Encoding (BPE) [12, 39], WordPiece [38], and Unigram [21]. 

3. Schedule data to pre-training a LLM. The data schedule foresees data mixture 
(i.e., how much data from each source needs to be used) and data curriculum 
(i.e., which is the submission order of each data source). 

Once the data are successfully preprocessed, they have to be encoded into the 
massive model parameters through the pre-training phase. To train a LLM, it is 
possible to adopt various approaches, among which there are: 

• Language modeling (LM): a fundamental task in natural language processing 
that predicts the next tokens in a sequence based on their history. It is the 
main pre-training task when talking about LLMs. From a sequence of tokens 
w = {w1, · · · , wn}., it autoregressively predicts the target tokens wi . based on the 
preceding tokens w < i . in a sequence. The objective of this approach can be 
formalized as: 

. LLM(w) =
n∑

i=1

logP(wi |w < i)

This approach is commonly used in decoder-only models and, thanks to its 
autoregressive nature, allows for learning various tasks, often without the need 
for task-specific fine-tuning. 

• Denoising autoencoding (DAE) [34]: a task in which the model is trained to 
recover the original parts of the input text that are intentionally corrupted. From 
corrupted text inputs w\w∼ . with random replaced spans, the language model is
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trained to recover the replaced tokens w∼
.. The objective of this approach can be 

formalized as: 

. LDAE(w) = logP(w∼|w \ w∼)

Commonly used in encoder-only or encoder-decoder models. 
• Mixture-of-Denoisers (MoD): a combination of both LM and DAE [43]. Depend-

ing on the initial special tokens in input sentences, different types of denoisers 
could be used. The types of denoisers are S-denoiser whose objective is similar to 
LM, R-denoiser that is a variant of DAE where short parts of text are corrupted, 
and X-denoiser that is a variant of DAE with longer parts of text corrupted or 
more frequent corruption. Commonly used in encoder-decoder models. 

3.3 Advanced Usage of Large Language Models 

Baseline LLMs obtained from pre-training are not inherently specialized for 
solving complex tasks in specific target domains, such as chatting or document 
summarization. While pre-training enables the model to generate the most probable 
token sequence given an input, additional instructions are required to solve domain-
specific tasks. Fine-tuning (cf. Sect. 3.3.1), retrieval-augmented generation1 (cf. 
Sect. 3.3.2), prompt engineering (cf. Sect. 3.3.3), and agents2 (cf. Sect. 3.3.4)  are  
the main tools to specialize an LLM. Each of these techniques is orthogonal to each 
other (using one does not exclude using others), but each one comes with upsides 
and downsides based on the dataset availability and time constraints. Table 3.1 
reports the consumption of resources and the advantages of using each technique. 

Table 3.1 Comparison of methods in terms of dataset size, time consumed, and performance 
increase 

Method Dataset size Time consumed Increase in performance 

Fine-tuning High High Moderate/High 

Prompt engineering Low Low Low/Moderate 

Retrieval-augmented generation Low/Moderate Low Moderate 

Agent Variable High High

1 For further details on retrieval-augmented generation, see Chap. 7. 
2 For further details on Agents, see Chap. 9. 
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3.3.1 Fine-Tuning 

Most LLMs today excel in general performance but often struggle with specific 
task-oriented problems. Fine-tuning provides significant benefits, such as reduced 
computational costs and the ability to leverage state-of-the-art models without 
developing one from scratch. Transformers-based models offer access to a wide 
range of pre-trained models designed for various tasks. Fine-tuning these models 
enhances their accuracy for specific applications like sentiment analysis, question 
answering, or document summarization. 

Fine-tuning is the process of taking a pre-trained model and further training it 
on a domain-specific dataset. Different fine-tuning techniques on different datasets 
can lead to different outputs depending on the goal [32]. There are four kinds of 
fine-tuning: 

• Unsupervised fine-tuning 
• Supervised fine-tuning 
• Instruction fine-tuning 
• Alignment fine-tuning 

Of these, only the last two steps are necessary to fine-tune a base LLM to obtain 
a model that is fully capable of solving complex tasks aligned to human requests 
and standards. The first two steps are important for extending the model knowledge 
to specific domains that were not present (or present in little parts) in the original 
training dataset. Table 3.2 highlights the key differences between these techniques. 
In the next sections, each fine-tuning step will be analyzed, explaining how it works 
and its ideal use cases. 

3.3.1.1 Unsupervised Fine-Tuning 

The most straightforward type of fine-tuning is the unsupervised fine-tuning. It 
consists of repeating the same training method presented in Sect. 3.2 using new 
data. This allows the LLM to acquire domain specific knowledge (e.g., medical, 
legal). 

Table 3.2 Comparison of fine-tuning methods in terms of dataset kind and goal 

Method Dataset kind Goal 

Unsupervised fine-tuning Plain text Learn a new domain (e.g., medical) 

Supervised fine-tuning Plain text with labels Learn a new task (e.g., text classification) 

Instruction fine-tuning Instruction dataset Learn to follow instructions (e.g., chat) 

Alignment fine-tuning Instruction dataset Learn to follow guidelines (alignment)
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3.3.1.2 Supervised Fine-Tuning 

Supervised fine-tuning is the first approach that requires a specific dataset. It is used 
to train a model for a new downstream task (e.g., sentiment analysis). It requires 
an annotated dataset that exposes comprehensively the new task. Since creating 
a high-quality rich dataset for each new task is often unfeasible in terms of time 
and resources, in-prompt learning [31] (cf. Sect. 3.3.3) is frequently preferred as an 
alternative. 

3.3.1.3 Instruction Fine-Tuning 

To address the gap between the next-word prediction objective of LLMs and 
user-specific tasks, instruction tuning (IT), a particular type of supervised fine-
tuning (SFT), is employed. This technique involves further training LLMs using 
pairs of instructions and corresponding outputs, enhancing their capabilities and 
controllability. It offers benefits such as aligning models with user objectives, 
improving controllability for domain-specific tasks, and enabling computationally 
efficient adaptation without significant architectural changes. 

Despite its advantages, instruction fine-tuning faces challenges, such as crafting 
diverse and high-quality instruction datasets, the risk of overfitting to tasks present 
in the training data, and the critique that SFT may focus on superficial patterns 
rather than true task comprehension. Addressing these limitations requires further 
research into optimizing fine-tuning techniques and understanding the behavior 
of instruction-tuned LLMs. Figure 3.5 illustrates the architecture underlying this 
approach. 

3.3.1.4 Alignment Fine-Tuning 

Alignment fine-tuning is an approach that involves training language models 
through interactions with human feedback, aligning the model to human expecta-

Fig. 3.5 Instruction fine-tuning general pipeline [48]
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tions. This involves techniques like reinforcement learning from human feedback 
(RLHF), which integrates human judgment into the learning process. RLHF 
facilitates the continuous enhancement of language models so they produce more 
accurate and contextually appropriate responses. This approach not only leverages 
the expertise of human evaluators but also enables the model to adapt and evolve 
based on real-world feedback, ultimately leading to more effective and refined 
capabilities. Several techniques are employed in this context: 

• Reward modeling: In this technique, the model generates several possible 
outputs or actions, and human evaluators rank or rate these outputs based on 
their quality. The model then learns to predict these human-provided rewards 
and adjusts its behavior to maximize the predicted rewards. Reward modeling 
provides a practical way to incorporate human judgment into the learning 
process, allowing the model to learn complex tasks that are difficult to define 
with a simple function. This method enables the model to learn and adapt based 
on human-provided incentives, ultimately enhancing its capabilities. 

• Proximal policy optimization (PPO): It is an iterative algorithm that updates 
the language model’s policy to maximize the expected reward. The core idea of 
PPO is to take actions that improve the policy while ensuring the changes are not 
too drastic from the previous policy. This balance is achieved by introducing a 
constraint on the policy update that prevents harmful large updates while still 
allowing beneficial small updates. This constraint is enforced by introducing 
a surrogate objective function with a clipped probability ratio that serves as 
a constraint. This approach makes the algorithm more stable and efficient 
compared to other reinforcement learning methods. 

• Comparative ranking: Comparative ranking is similar to reward modeling, 
but in comparative ranking, the model learns from relative rankings of multi-
ple outputs provided by human evaluators, focusing more on the comparison 
between different outputs. In this approach, the model generates multiple outputs 
or actions, and human evaluators rank these outputs based on their quality or 
appropriateness. The model then learns to adjust its behavior to produce outputs 
that are ranked higher by the evaluators. By comparing and ranking multiple 
outputs rather than evaluating each output in isolation, comparative ranking 
provides more nuanced and relative feedback to the model. This method helps 
the model understand the task subtleties better, leading to improved results. 

• Preference learning: It is also known as reinforcement learning with preference 
feedback and focuses on training models to learn from human feedback in the 
form of preferences between states, actions, or trajectories. In this approach, the 
model generates multiple outputs, and human evaluators indicate their preference 
between pairs of outputs. The model then learns to adjust its behavior to produce 
outputs that align with the human evaluators’ preferences. This method is useful 
when it is difficult to quantify the output quality with a numerical reward but 
easier to express a preference between two outputs. Preference learning allows 
the model to learn complex tasks based on nuanced human judgment, making it 
an effective technique for fine-tuning the model on real-life applications.
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3.3.1.5 Efficient Fine-Tuning 

Fine-tuning an LLM can be a very computationally expensive process. To mitigate 
this cost there exist two kinds of major optimization: optimizing the numbers of 
parameters trained (parameter efficient fine-tuning) and optimizing the memory 
footprint of the model (quantization). 

Parameter-Efficient Fine-Tuning 
Parameter-efficient fine-tuning (PEFT) is a technique used to improve the perfor-
mance of pre-trained LLMs on specific downstream tasks while minimizing the 
number of trainable parameters. It offers a more efficient approach by updating only 
a minor fraction of the model parameters during fine-tuning. 

PEFT selectively modifies only a small subset of the LLM’s parameters, typically 
by adding new layers or modifying existing ones in a task-specific manner. This 
approach significantly reduces the computational and storage requirements while 
maintaining comparable performance to full fine-tuning. 

Figure 3.6 depicts the set of PEFT techniques. Here we briefly focus on repa-
rameterized PEFT and, more specifically, on LoRA [19] for its wide diffusion and 
implementation. Reparameterization stands for equivalently transforming a model’s 
architecture from one to another via transforming its parameters. In the context of 
PEFT, this often means constructing a low-rank parameterization to achieve the goal 
of parameter efficiency during training. For inference, the model can be converted 
to its original weight parameterization, ensuring unchanged inference speed. Earlier 
research studies [1] have shown that common pre-trained models exhibit an 
exceptionally low intrinsic dimensionality. Intrinsic SAID [1] is the pioneering work 
in investigating the intrinsic dimension feature during the fine-tuning of LLMs. 
However, the most widely recognized reparameterization technique is LoRA, which 
freezes the pre-trained model weights and injects trainable rank decomposition 
matrices into each layer of the transformer architecture, greatly reducing the number 
of trainable parameters for downstream tasks. 

Memory-Efficient Fine-Tuning—Quantization 
Quantization refers to dividing a quantity into discrete parts, often as integral multi-
ples of a common value. Initially studied as a rounding-off process, quantization has 
evolved to play a pivotal role in modern computer science and machine learning. 
It can influence data precision and entropy, as changes in precision affect the 
uncertainty quantified by Shannon Entropy. 

A widely used technique in this domain is 8-bit quantization, which converts 
floating-point data into integer format. Although 32-bit single-precision floating 
point has traditionally dominated deep learning applications, lower-precision for-
mats like 16-bit floating point (e.g., fp16 or bfloat16) have gained popularity due to 
their compatibility with most deep learning accelerators. For inference, even lower-
precision formats, including floating-point, fixed-point, and integer representations, 
are employed.
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Low-precision formats offer significant performance benefits. They leverage 
optimized hardware pipelines for reduced bit widths, accelerating computations like 
convolutions and matrix multiplications. Additionally, smaller word sizes mitigate 
memory bandwidth constraints and improve cache utilization, enhancing the overall 
efficiency of computation-intensive tasks. 

3.3.2 Retrieval-Augmented Generation (RAG) 

When considering external data access, retrieval-augmented generation (RAG) [25] 
is likely a superior option for applications needing to access external data sources. 
Fine-tuning, on the other hand, is more suitable if you require the model to adjust 
its behavior, and writing style, or incorporate domain-specific knowledge. In terms 
of suppressing hallucinations and ensuring accuracy, RAG systems tend to perform 
better as they are less prone to generating incorrect information. If you have large 
domain-specific, labeled training data, fine-tuning can result in a more tailored 
model behavior, whereas RAG systems are robust alternatives when such data is 
scarce. RAG systems provide an advantage with dynamic data retrieval capabilities 
for environments where data frequently updates or changes. Additionally, it is 
crucial to ensure the transparency and interpretability of the model’s decision-
making process. In that case, RAG systems offer insight that is typically not 
available in models that are solely fine-tuned. 

Large pre-trained language models have been shown to store factual knowledge 
in their parameters and achieve state-of-the-art results when fine-tuned on down-
stream NLP tasks. However, their ability to access and precisely manipulate knowl-
edge is still limited, and hence on knowledge-intensive tasks, their performance 
lags behind task-specific architectures. Additionally, providing provenance for their 
decisions and updating their world knowledge remain open research problems. Pre-
trained models with a differentiable access mechanism to explicit nonparametric 
memory can overcome this issue but have so far been only investigated for extractive 
downstream tasks. Even though the RAG techniques have advanced since it was 
envisioned the first time, the base architecture stayed the same as in Fig. 3.7. 

3.3.3 Prompt Engineering 

Prompt engineering is a powerful technique for expanding the functionality of 
LLMs. By employing task-specific instructions, or prompts, this method enables 
models to perform a variety of tasks without altering their core parameters. Prompts, 
whether in the form of natural language instructions or learned vector representa-
tions, guide the model to produce desired behaviors, making them indispensable 
for tasks ranging from question-answering to commonsense reasoning. There are
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Fig. 3.8 Prompt engineering techniques [37] 

several approaches to prompt engineering that are summarized in Fig. 3.8.  The  most  
relevant to us will be presented in detail in the recall of this s ection. 

3.3.3.1 New Tasks Without Extensive Training 

To present a new task to the LLM via prompting, we can leverage in-context 
learning. It is obtained by describing the new task directly in the prompt. Depending 
on whether some examples are presented or not, we have zero-shot or few-shot 
prompting. 

Zero-Shot Prompting 
Zero-shot prompting eliminates the need for extensive training data, instead relying 
on carefully designed prompts to guide the model in performing new tasks. The
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model processes task descriptions within the prompt without using labeled data 
for training, leveraging its pre-existing knowledge to generate predictions. This 
approach significantly reduces the overhead of data preparation while enabling 
models to generalize effectively across various tasks. 

Few-Shot Prompting 
Few-shot prompting involves providing models with a limited number of input-
output examples to help them understand a given task. Unlike zero-shot prompting, 
this technique offers concrete demonstrations, improving model performance on 
complex tasks. However, it requires additional tokens for examples, which may limit 
usability for longer inputs, and careful curation of examples is essential to mitigate 
biases and optimize results. 

3.3.3.2 Reasoning and Logic 

In the following paragraphs, we will present some techniques to enable some 
simulated reasoning and logical thinking by prompting. 

Chain-of-Thought (CoT) Prompting 
Chain-of-Thought (CoT) prompting enhances the reasoning capabilities of LLMs 
by guiding them to generate step-by-step solutions. This approach fosters struc-
tured and logical responses, especially for multi-step problems, by mimicking 
human problem-solving processes. CoT prompting has demonstrated state-of-the-
art performance in reasoning benchmarks, such as math and commonsense tasks, 
showcasing its effectiveness for complex reasoning challenges. 

Automatic Chain-of-Thought (Auto-CoT) Prompting 
Auto-CoT addresses the labor-intensive nature of manual CoT example creation by 
automating the process. Using prompts like “Let’s think step by step," the model 
generates diverse reasoning chains, enhancing robustness through sampling. This 
automated approach improves performance on reasoning tasks while reducing the 
need for manual effort, making it a practical enhancement over traditional CoT 
methods. 

Self-Consistency 
Self-consistency improves reasoning performance in CoT prompting by generat-
ing diverse reasoning chains and identifying the most consistent solution. This 
method acknowledges the diversity of valid reasoning paths for complex problems, 
marginalizing over sampled chains to determine the final answer. The combination 
of self-consistency and CoT prompting significantly boosts accuracy across bench-
marks, making it an effective strategy for enhancing logical reasoning tasks.
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3.3.4 LLM Agent 

LLM agents are artificial entities capable of sensing their environment, making deci-
sions, and taking actions. While significant progress has been made in advancing 
algorithms and training strategies to enhance specific capabilities, the community 
still lacks a general, adaptable model that can serve as a foundation for designing 
agents suitable for diverse scenarios. 

LLMs, due to their broad capabilities, are increasingly seen as potential building 
blocks for artificial general intelligence (AGI). Many researchers have harnessed 
LLMs as a foundation for creating AI agents, achieving remarkable progress. A 
conceptual framework for LLM-based agents can be envisioned with three primary 
components: brain, perception, and action. This framework is flexible and can be 
tailored to different applications, enabling agents to adapt and excel in various 
environments. 

In Fig. 3.9, it is presented the generic agent architecture that we will briefly 
discuss in the following paragraphs. 

The brain module serves as the controller, handling tasks like memory, reasoning, 
and decision-making. The perception module processes multimodal information 
from the external environment, translating it into a format understandable by LLMs. 
The action module executes tasks using tools and interacts with the surroundings. 

To illustrate how the whole agent workflow, consider an example where a human 
asks whether it will rain. The perception module interprets the query and transforms 
it into a representation the LLM can process. The brain module reasons using 
current weather data and forecasts, and the action module provides a response, 

Fig. 3.9 LLM agent [46]
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such as handing an umbrella to the human. Through continuous feedback and 
interaction, such agents can refine their functionality and adapt dynamically to their 
environment. 
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Chapter 4
A Reference Framework for Information
Systems

Francesca De Luzi and Massimo Mecella

Abstract This chapter presents a comprehensive exploration of information sys-
tems (IS), analyzing their role, structure, and life cycle. First, we clarify key
concepts such as data, information, and knowledge and explain their interconnec-
tions within organizations. The discussion thus defines IS from both a technological
and an organizational point of view, underlining its importance in modern business
environments. In this chapter, we describe the IS life cycle in detail, covering the
planning, design, development, testing, and maintenance phases. We also introduce
the information and knowledge management layer, highlighting data analysis and
information extraction as critical components for turning raw data into useful
information. Finally, the chapter discusses information systems engineering (ISE)
as an interdisciplinary approach integrating technical and business considerations,
addressing the challenges of big data, automation, and security. By examining
methodologies, technologies, and best practices, this chapter provides a structured
framework for understanding and optimizing IS in dynamic organizational contexts.

4.1 Introduction

In today’s digital economy, businesses increasingly rely on information systems to
drive efficiency, innovation, and competitiveness. Changes in strategy, rules, and
business processes increasingly require updates to hardware, software, databases,
communication networks, and user interfaces [22]. Information systems serve as a
crucial link between business strategy and IT capabilities, enabling organizations
to adapt to changing market conditions and operational demands. However, orga-
nization’s capabilities are often limited by what its information system allows it to
accomplish.

In this context, the Internet and the World Wide Web have become fun-
damental pillars upon which organizations build information systems to create
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an information-driven economy. Among the various approaches to address the
challenges of a global economy is the need to acquire more information while
also leveraging the value of existing data. Web-based platforms and applications
are an effective response, as they allow the collection, correlated management, and
distribution of large amounts of data from heterogeneous information sources. In
such contexts, immediate and effective access to critical data extracted from vast
datasets becomes both strategic and essential.

Information systems supported by information technology (IT), encompass
software applications, data management systems, user interfaces, and communica-
tion networks. These systems support organizations in managing information and
involve complexities in design, control, and management. These complexities stem
from diverse information sources, databases differing in models and technologies,
communication networks based on various protocols, and processes and corporate
actors distributed and interconnected in cooperation.

Therefore, design and implementing an information system is a complex dis-
cipline. On one hand, it must address future challenges such as the exponential
growth of data (i.e., Big Data) and the increasing availability of low-cost, high-speed
computational power (i.e., Cloud Computing). On the other hand, it must enable
integration among heterogeneous system, and managing the resulting complexity is
a crucial task. To address these challenges, various methodologies, techniques, and
tools have been developed to support the design and implementation of information
systems.

In the following sections, we will explore key concepts in detail to better
understand how an information system works and the different perspectives from
which it can be analyzed.

4.1.1 Data, Information, and Organization

Before defining an information system and its components, it is important to clarify
key terms. The terms “data” and “information” are often used interchangeably. To
illustrate their differences, we reference the so-called knowledge pyramid shown in
Fig. 4.1, also known as DIKW (Data, Information, Knowledge, Wisdom) [13].

Fig. 4.1 The knowledge
pyramid



4 A Reference Framework for Information Systems 63

At the base of the pyramid lies data, which represents facts or measurements—
something considered true by definition and representing a portion of the reality to
be depicted. Every piece of data is always associated with its type, which defines the
range of possible values it can assume. Additionally, data may be characterized by
its unit of measure. Given the vast amount of collected data, database management
provides methods and tools to structure, store, and retrieve it efficiently.

Following the hierarchy suggested by the knowledge pyramid, above data lies
information, which is constructed from data and can be defined as the interpretation
of one or more data points. Indeed, a single data point, without any reference
context, is often not useful. For data to become useful, it must be combined with
other data to define a context that better characterizes the represented reality.
Therefore, information can be seen as the output of queries applied to a set of data.

Ascending further up the pyramid, above information, we find knowledge,
obtained by integrating information with experience. While information provides
a comprehensive representation of reality, knowledge informs decision-making and
influences outcomes. It is worth noting that knowledge is acquired over time through
an individual’s experience and generally cannot be transferred to others. In contrast,
information—and, to a certain extent, experience—can be transferred, although
formalizing the latter can be challenging.

Finally, we reach wisdom, which represents an extension of the traditional
knowledge pyramid. Wisdom can be defined as the application of experience to
knowledge, guiding an individual to take the most appropriate action in a given
moment. This structure shows that at the bottom, data is highly numerous and fine-
grained, while at the top, wisdom is represented by fewer elements, which are more
synthetic and coarse-grained.

The use of information systems requires an understanding not only of data and
information but also of the business entity, its management, and the role of IT within
it. An information system creates value by providing organizational and managerial
solutions to the challenges posed by the environment. Specifically, in the field of
information systems, the key concepts are resources and processes. Therefore, the
organization of a business entity defines the actions required to implement business
processes, determines their distribution across different levels of the structure, and
coordinates their execution to optimize resource utilization.

A resource refers to anything an organization operates with (both tangible and
intangible) to pursue its objectives. Data and information are examples of resources
and represent the fundamental elements of an information system. A process is the
set of activities an organization carries out to manage the life cycle of a resource
in order to achieve a defined and measurable result. Processes can be classified
according to various classification models. Below we go into the hierarchical model
of the organization given by Anthony’s pyramid.
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Fig. 4.2 Anthony pyramid

4.1.1.1 Anthony’s Pyramid

Anthony’s pyramid [3] is a foundational framework for understanding organi-
zational processes and their relationship with decision-making levels. Robert
Anthony’s model categorizes organizational activities into three hierarchical levels,
as shown in Fig. 4.2: strategic planning, management control, and operational
control.

• The strategic planning level focuses on long-term goals and policies that shape
the organization’s direction. Decisions at this level—such as market expansion
or launching significant initiatives—are based on aggregated data and high-level
insights. The strategic layer considers both external and internal factors that
influence organizational objectives.

• The management control level bridges strategic decisions with daily operations.
It involves allocating resources, monitoring performance, and ensuring alignment
with strategic goals. Examples include budget planning, resource scheduling, and
performance evaluation, all crucial for maintaining efficiency and effectiveness.

• The operational control level handles day-to-day activities and tasks critical
to the organization’s functioning. It encompasses routine processes such as
transaction recording, inventory management, and service delivery. The emphasis
here is on precision and adherence to established procedures.

Anthony’s pyramid illustrates the varying information needs and decision-
making complexity at each level. Operational decisions are based on detailed,
real-time data, while strategic decisions are based on synthesized insights and
forecasts. Modern information systems—especially those that utilize business intel-
ligence (BI) and data warehousing—support these diverse needs, ensuring seamless
organizational function across all levels.

4.1.2 Information System

After clarifying what information is and how fundamental it is for an organization,
we can accurately define an information system. An information system is, first
and foremost, a system—an organized set of diverse elements that interact in a
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coordinated manner. It highlights the fact that there is an organized set of elements
of different natures, which interact in a coordinated manner.

Laudon and Laudon [17] define an information systems as a set of interrelated
components that collect, process, store, and distribute information within an orga-
nization. Hirschheim et al. [14] emphasize the importance of the human factor in
information systems and define them as:

Traditionally, an information system has been defined in terms of two perspectives: one
relating to its function; the other, to its structure. From a structural perspective, an
information system consists of a collection of people, process, data, models, technology and
partly formalized language, forming a cohesive structure, which serves some organizational
purpose or function. From a functional perspective, an information system is a techno-
logically implemented medium for the purpose of recorded, storing, and disseminating
linguistic expressions as well as for the supporting of inference making. Through perform-
ing these elementary functions, IS facilitates the creation and the exchange of meanings that
serve socially defined purposes such as control, sensemaking, and argumentation (i.e. the
formulation and justification of claims). In either of these two perspectives on information
systems, it should be noted that humans are included within its boundaries which means that
the services provided by an IS in part depend upon human capabilities and contributions.

Information systems can be viewed from multiple perspectives, but two pri-
mary approaches emerge: a human- or information-centered perspective and a
technology-centered perspective.

In general, information systems involve computerized as well as manual routines
and include people involved as agents manipulating and conveying information
that concern the things that are dealt with in the organization. The reduction in
IT costs has widely expanded the possibility to automatically elaborate information,
making procedures more accurate and faster while enhancing the ways information
is processed. The term automated information system or computer system refers
to that part of the information system implemented using IT: information is
collected, processed, stored, and exchanged through the use of information and
communication technologies.

There is a significant difference between an information system and a computer
system: the former includes hardware, software, and the set technical and organi-
zational knowledge of a business entity within which it operates, while the latter
consists solely of hardware and software, as illustrated in Fig. 4.3.

Fig. 4.3 Representation of a
business entity
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4.1.2.1 Representation of an IS

An information system is a complex entity that cannot be fully captured by a
single model and can be analyzed from multiple perspectives. The most widely
used modeling in the literature involves three different levels of representation:
organizational model, functional model, and computer model. In particular, the
functional model will be examined.

In general, at the functional level, an information system performs three main
activities [17]: input of information, i.e., a set of data entering the system, which
can be collected in various ways (textual input, sensor input, etc.); data processing,
where the data is aggregated, transformed, and stored to be output; and data output,
where the data is distributed to system users, including individuals working within
the organization, external individuals, or other information systems. The output
generated by the information system indirectly produces feedback. Essentially, users
will make decisions based on the output, and their actions will, in turn, generate
additional input for the information system. Therefore, an information system
not only monitors internal organizational activities but also interacts with and is
influenced by external factors.

To be more specific, an information system is fed by events, represented as data,
that occur within an organization as illustrated in Fig. 4.4. It transforms these data
into information, which must be appropriately modeled and represented depending
on who will use it. These events can trigger organizational processes, which form the
foundation of an organization. Therefore, the key aspects of an information system
revolve around managing the information resource according to business rules and
objectives, utilizing technology for one or more organizations.

In line with these aspects, the design of information systems aims to understand
and model, starting from organizational needs, how data and processes can be

Fig. 4.4 Representation of an information system



4 A Reference Framework for Information Systems 67

supported by technology. The information system is often associated with the
technological aspect alone, which is in fact a part, identified as IT, which processes,
stores, and manages the exchange of information, and changes over time with the
evolution of the business entity and technologies. Therefore, the key points of the
information system become the management of the information resource according
to rules and business objectives (business rules) with the use of technologies for one
(or more) organizations.

The design and development of information systems involve multiple aspects,
including data, processes, and user interaction. Structuring the project into key
areas—data, business logic, and user interface—helps manage complexity effec-
tively.

4.2 Information Systems Life Cycle

The life cycle of an information system is represented by its development plan,
structured into various phases that form a complex process often spanning several
years. Since the 1960s, researchers have investigated the ultimate methodology for
developing information systems [20], and several research-based methodologies
have been introduced [6]. The methodologies vary significantly, but in general, they
give guidelines for how to control and coordinate the process of developing and
implementing information systems. The life cycle, shown in Fig. 4.5, is iterative.
The design process follows a planning and requirements analysis phase. After
designing the system, we move on to its implementation and customer-side testing.
The system is then deployed and monitored. New requirements may emerge during
these phases, which is why the development of the system is iterative. In the
following, we provide a description of each phase.

4.2.1 Planning

The first phase involves planning, during which strategic guidelines, organizational
roles, and operational instructions for implementation are outlined. At this level,

Fig. 4.5 IS life cycle
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once the objectives requiring IT solutions have been identified (strategic planning),
the costs of various alternatives are assessed, and the priorities for implementing the
different components of the information system are established (feasibility study).

Strategic planning helps assess the current state of the organization and identify
areas and processes that require IT interventions, ensuring alignment between IT
and business objectives. Key activities in strategic planning include (i) analyzing
opportunities for information system development, including technologies, strate-
gies, and processes that shape future system evolution, and (ii) assessing information
needs, leading to the modeling and structuring information flows necessary for
organizational operations.

The feasibility study leads to the selection of the most suitable solution by eval-
uating multiple viable options from both technical and organizational perspectives.
Cost-effectiveness is also considered when comparing alternatives. Once a solution
is chosen, system implementation begins.

During this phase, one or more system analysts collaborate with stakeholders to
define the specific requirements of the new system. Procedures are documented, key
users are interviewed, and data requirements are analyzed to gain a comprehensive
understanding of the system’s objectives. The outcome of this phase is a formal
system requirements document.

4.2.2 Design

Once a solution is identified—whether it involves modifying the existing informa-
tion system or implementing a new one—it requires a dedicated design phase. The
feasibility study defines what the system needs to do, while the design phase focuses
on how it will achieve this. There are three fundamental aspects to the design of an
information system: data, which is the basis for conceptual modeling; process flows,
which are the basis for process modeling; and user-system interactions, the basis for
interaction modeling.

In the conceptual modeling phase, an abstract representation of the information
system is defined (conceptual design), serving as a reference for the subsequent
implementation phase. The objective of this phase is to identify types of information
and classes and to describe how logical connections between them occur through
relationships. Conceptual modeling is typically performed using a specialized
modeling language that describes the analyzed reality and defines the system to
be implemented. Some of the main languages used for the various design stages
include:

• E/R Diagrams (Entity/Relationship): a graphical formalism used to document
data structures based on the relational model.

• IDEF (Integration Definition) Languages: a family of graphical languages that
emerged in the 1970s, with IDEF1X being the most well-known for data
documentation.
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• UML (Unified Modeling Language): a set of standard diagrams and graphical
formalisms for describing various aspects of an information system. The func-
tionalities are modelable in UML through use case diagrams, representing the
functional requirements of a system from the user’s point of view, identifying the
actors involved in the system and the functions they are authorized to perform.

• BPMN (Business Process Model and Notation): a graphical language for describ-
ing and defining business processes.

The main output of the design phase provides a detailed description of system
outputs, inputs, controls, and user interfaces. It also outlines hardware, software,
databases, telecommunications, personnel, and procedures, illustrating how these
components interrelate. A project specification document is then prepared, con-
taining formal descriptions of the system and software architecture. Databases are
designed based on specific models (schemas). The duration of the design phase
varies depending on the solution: modifying an existing system may take several
months, whereas designing a new system could take several years.

4.2.3 Development

In the development phase, the process of creating a system produces an operational
solution through programming, that is, the creation of a set of logical instructions
that a digital device must follow using a programming language. Developers write
the code and build the app based on final requirements and specification documents.
In particular, the development process consists of the actual implementation of
the information system design in its various components through the acquisition
of hardware and communication platforms and the development and installation
of software applications. Developing good software is not easy; it requires a
lot of resources and involves different groups of people in an organization. To
do this effectively, the groups agree to follow a specific software development
methodology.

Today, iterative and incremental software development methods, influenced by
the principles outlined in the Agile Manifesto [4], referred to as Agile software
development methods, are widely adopted due to their flexibility and adaptabil-
ity. These approaches contrast with more traditional methodologies, such as the
waterfall model [5], which emphasize extensive planning and structured phases.
While traditional methods remain suitable for certain projects requiring strict
documentation and predictability, Agile methodologies have gained prominence
for their ability to accommodate changing requirements and foster continuous
collaboration.

The design, build-up, and population of the database, which will be the essential
part of the computer system, is of fundamental importance. The result of this phase
is an initial working program that meets the requirements specified in the system
planning phase and the design developed in the system design phase.
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4.2.4 Testing and Validation

In the testing phase, the software program developed in the previous phase is put
through a series of structured tests. The first is a unit test, which evaluates individual
parts of the code for errors or bugs. This is followed by a system test in which
the different components of the system are tested to ensure that they work together
properly. Finally, the user acceptance test allows those that will be using the software
to test the system to ensure that it meets their standards. Any bugs, errors, or
problems found during testing are resolved, and then the software is tested again.

Typically, design and testing are typically conducted concurrently. For each
change, testing must be done to ensure the system works as anticipated. There
are different levels of testing that occur. IT staff will do the initial testing for bugs
(coding errors) and glitches (sudden malfunction). Users may be asked to test for
accuracy of the content, ease of use, or satisfaction with the feature, workflow, or
other tasks.

4.2.5 Monitoring and Maintenance

After the implementation of a new system, it enters the monitoring and maintenance
phase, where it remains in production and is actively used by the organization.
Although no longer in development, continuous improvements and adjustments are
necessary to fix bugs, accommodate new business requirements, and ensure long-
term functionality. Maintenance includes [9] corrective maintenance (resolving
errors not detected during implementation), perfective maintenance (adapting to
changing user needs and regulations), and adaptive maintenance (aligning with
technological advancements).

A crucial aspect of this phase is system monitoring, which ensures the system
operates efficiently, securely, and in alignment with business needs. Monitoring
involves tracking system performance, detecting anomalies, analyzing usage data,
and identifying potential risks or failures before they impact operations. IT teams
use automated tools and real-time analytics to oversee system health, optimize
resources, and implement proactive measures to prevent downtime.

Regular system updates, backups, and structured support processes help maintain
efficiency and reliability. Additionally, IT management must ensure that the system
continues to align with business priorities while optimizing operational costs. Over
time, significant upgrades or even a complete system overhaul may be required,
particularly when integrating with newer technologies. A well-maintained and well-
monitored system remains scalable, secure, and capable of supporting evolving
business needs.
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4.3 The Information and Knowledge Management Layer

As discussed in the introductory section, information systems are complex systems
through which an organization can achieve its goals and improve its products or
services, making them competitive in the market. However, an information system is
not isolated from what happens outside the organization, and the way it is designed,
as well as its capabilities, is influenced by the technologies used to develop it.
The emergence of new technologies and their adoption within an organization’s
information system bring numerous advantages and can significantly impact the
company’s objectives.

In this modern data-driven environment, effective management of information
and knowledge becomes essential. The relationship between Knowledge Manage-
ment (KM) and Information Management (IM) plays a crucial role in this landscape:
while IM focuses on ensuring the efficient collection, processing, storage, and
distribution of information, KM leverages this structured information to generate
insights and knowledge. A multi-layered approach, such as the one depicted in
Fig. 4.6, illustrates this relationship effectively. The key components are described
below.

• Data sources [12] represent different types of data according to a classification
proposed by UNECE [26] (United Nations Economic Commission for Europe).
There are three main types of data sources that can be viewed as Big Data: human
sourced (e.g., blog comments), process mediated (e.g., banking records), and
machine generated (e.g., sensor measurements).

• Transactional databases form the foundation by storing raw operational data.
These interactions, or transactions, are named as such due to the type of data
they host (e.g., data derived from an interaction between two or more parties)
rather than the type of database they are. There are various types of databases
that can function as transactional databases, including relational databases and
NoSQL databases.

• ETL [10] (extraction, transformation, loading) processes ensure data quality and
standardization before integration into structured repositories. In particular, this
ETL process helps the data warehouse achieve enhanced system performance
and business intelligence by making data more reliable, accurate, and easily
accessible. This enables timely data access and a higher return on investment,
as it allows for more efficient analysis and reporting.

– Extraction: involves connecting systems and collecting the data needed for
analytical processing.

– Transformation: extracts data and converts it into a standard format.
– Loading: transformed data are imported into a large data warehouse.

• Data warehouses [16] and data lakes [11] act as centralized storage solutions,
with the former providing structured data for analytical purposes and the latter
offering flexible storage for all types of data (structured, semi-structured, and
unstructured data). Data lakehouse [21] combines the best elements of data lakes
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Fig. 4.6 The information and knowledge management layer

and data warehouses. It is a novel architecture based on low-cost and directly
accessible storage that provides traditional analytical DBMS management and
performance features. Data can be stored in a single location and supports ML,
BI, and data streaming. In data lakehouses, data warehouse-like structures and
schemas can be used for unstructured data like in a data lake.

• Analytics and dashboarding represent the final stage, where processed data is
transformed into meaningful insights, supporting decision-making and strategic
planning (c.f., Sect. 4.3.1).

By integrating KM and IM principles, organizations bridge the gap between
raw data and actionable knowledge, facilitating a seamless transition from data
management to strategic insight generation. Therefore, once data has been collected,
processed, and stored through the aforementioned layers, the next crucial step is to
extract valuable insights and transform raw data into actionable knowledge. This
phase is essential for organizations aiming to leverage their information assets for
strategic decision-making.

In the current landscape, two processes play a key role: data analytics, which
focuses on analyzing and visualizing data to support business intelligence, and
information extraction, which involves retrieving relevant knowledge from struc-
tured and unstructured data sources. The following sections provide an in-depth
discussion of these two critical components.
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4.3.1 Data Analytics

Data analytics serves as a critical component within the information and knowl-
edge management layer, enabling organizations to process, analyze, and interpret
large-scale datasets. In recent years, advancements in computational power and
algorithmic efficiency have facilitated the application of sophisticated analytical
techniques to extract valuable insights from data.

There are four essential types of analysis [24]: exploratory, descriptive, senti-
ment, and predictive. Exploratory analysis investigates data for patterns, relation-
ships, and anomalies without making initial assumptions. It helps in understanding
the structure of the data and generating hypotheses for further examination.
Descriptive analysis summarizes historical data to provide insights into past trends
and performance. For example, it transforms raw data into reports that monitor an
organization’s operations in real time. Sentiment analysis examines subjective data,
measuring opinions or emotions expressed in textual content. It is often used to
understand customer feedback. Predictive analytics leverages historical data and
statistical models to forecast future outcomes. Therefore, mining and extracting
meaningful patterns from massive input data for decision-making, prediction, and
other inferencing is at the core of Big Data analytics [19].

Moreover, in the context of KM, data analytics plays a pivotal role in trans-
forming unstructured textual data into structured knowledge [15]. By leveraging
techniques such as sentiment analysis, topic modeling, and entity recognition,
organizations can gain deeper insights into textual information, enabling better
information utilization. The application of real-time analytics also enhances respon-
siveness, allowing organizations to adapt swiftly to emerging trends and dynamic
market conditions.

4.3.2 Information Extraction

Information extraction (IE) refers to the automatic extraction of structured informa-
tion, such as entities, their attributes, relationships, and events, from unstructured
text [2, 18, 23]. It is a fundamental task in natural language understanding and plays
a crucial role in transforming raw text into structured knowledge.

IE encompasses a wide range of downstream tasks, such as named entity
recognition (NER) [30], which identifies and classifies entities; entity typing (ET)
[8], which assigns specific categories to entities; relation extraction (RE) and event
extraction (EE) [27], which respectively determine the connections between entities
and identify events and their arguments; and knowledge graph construction [29]. In
addition, Aspect-Based Sentiment Analysis (ABSA) [7] is often considered part of
IE, as it extracts opinions and sentiments related to specific aspects of entities.

Given its role in structuring raw data, IE is deeply connected to KM. By
efficiently extracting and organizing knowledge, IE systems help enhance the
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efficiency and effectiveness of data analysis, particularly in context-aware analytical
systems [1]. This improves data-driven decision-making and knowledge manage-
ment, ultimately facilitating the development of intelligent systems.

4.4 Information Systems Engineering

In the introduction, we clarified key terms to understand the concept of information
systems. In particular, we have come to define ISs by distinguishing the concepts of
data, information, knowledge, and wisdom. To complete our discussion and define
information systems engineering (ISE), we still need to analyze the concept of
engineering, both in absolute terms and in relation to a system. The approach taken
to define ISE has followed the perspective outlined in [28], giving the fundamental
terms that constitute ISE and finally its definition.

The field of engineering has been defined by the Engineers Council for Pro-
fessional Development as the creative application of scientific principles to design
or develop structures, machines, apparatus, or manufacturing processes, or work
utilizing them singly or in combination; or to construct or operate the same with full
cognizance of their design; or to forecast their behaviour under specific operating
conditions; all as respects and intended function, economics of operation and safety
to life and property.

Therefore, engineering involves systematic analysis, problem-solving, and inno-
vation to create functional and optimized solutions across various disciplines, from
mechanical and civil engineering to software and information systems engineering.
Notably, in the context of ISs, this definition highlights that engineering encom-
passes both the creative application of manufacturing processes and the operation
of systems [28].

Systems engineering [25] is an interdisciplinary approach that focuses on design-
ing, integrating, and managing complex systems over their life cycles. It ensures that
all components—technical, operational, and human—function together cohesively
to meet user needs and system requirements. Systems engineering emphasizes a
holistic view, addressing aspects such as performance, reliability, cost, scalability,
and sustainability while considering the interactions between system elements and
their environment. However, there is much more to systems engineering than this
definition alone suggests. Its scope is broad and can be described from a variety of
perspectives, including participants, total life cycle impact, and the roles played by
both industry and researchers.

As a result, the field of information systems engineering (ISE) should focus not
only on implementation technologies and development methodologies but also on
the engineering process itself and the study of system usage and maintenance in
a broader sense. Both engineering and systems engineering are at the core of ISE,
an interdisciplinary approach that integrates technical and business considerations
throughout the life cycle of an information system. ISE applies formal analytical
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methods to design, develop, and maintain complex systems that efficiently process,
analyze, and protect large amounts of data.

In particular, with the advent of the widely discussed Big Data and the need for
fast and reliable decisions, modern ISs must support operational and informational
functions while facing challenges such as scalability, automation, and security. In
such a context, advanced methodologies are emerging, such as agile software devel-
opment, cognitive engineering, and automated decision-making systems, which
promise to improve system adaptability, user experience, and resilience. In addition,
the integration of user-centered and multimedia design principles ensures that
ISs are not only functionally robust but also intuitive and engaging, facilitating
seamless interaction between man and computer. By managing complexity and
promoting innovation, ISE enables the development of high-performance systems
that align with technological and organizational needs in an increasingly fast-
evolving landscape.

In this chapter, we have detailed each phase of the IS life cycle to establish
a sound conceptual basis. By defining ISE and its interdisciplinary nature, we
provide the necessary context for understanding the methodologies, challenges, and
principles that guide the development and management of ISs.

This basic knowledge ensures that the subsequent investigation can be
approached with a clear understanding of the engineering processes and systemic
considerations that influence each stage of the life cycle.
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30. Žukov-Gregorič, A., Bachrach, Y., Coope, S.: Named entity recognition with parallel recurrent
neural networks. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 69–74 (2018)

http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF


Chapter 5 
Exploring Large Language Models in 
Information Systems: A Survey 

Filippo Bianchini and Matteo Marinacci 

Abstract The integration of large language models (LLMs) into the life cycle of 
information systems (ISs) is transforming traditional methodologies across multiple 
phases, from planning and design to monitoring and maintenance. This chapter 
provides a comprehensive survey of the most impactful research on LLMs in key 
IS life cycle stages, analyzing their applications, benefits, and limitations. Through 
a literature review, we examine how LLMs are utilized and can be leveraged across 
different phases of the IS life cycle: planning, design, development, testing and 
validation, and monitoring and maintenance. Additionally, we analyze their role in 
tasks that, while not strictly part of the IS life cycle, are increasingly relevant, such as 
information extraction and data analytics. This chapter provides an in-depth analysis 
of recent LLMs applications in each phase, evaluating their impact on traditional 
methodologies and assessing their effectiveness in automating processes, improving 
decision-making, and enhancing overall system efficiency. 

5.1 Introduction 

This chapter serves as a comprehensive survey of the most impactful studies on 
the application of large language models (LLMs) within the realm of information 
systems (ISs), specifically on how LLMs are leveraged to address challenges 
across the entire life cycle of an IS, highlighting state-of-the-art methodologies, 
innovations, and practical applications. The life cycle of an IS1 encompasses several 
phases: planning, design, development, testing and validation, and monitoring 
and maintenance. For each of these phases, this survey identifies and evaluates 

1 For a detailed overview of the phases of an IS life cycle, see Chap. 4. 
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Table 5.1 Survey summary of IS life cycle phases 

Phase Studies Description 

Planning 4 Focuses on strategic alignment, requirements 
elicitation, and techniques such as SWOT analysis to 
define objectives and align IS goals with 
organizational needs 

Design 5 Involves creating abstract representations of systems, 
such as UML diagrams, Entity-Relationship 
diagrams, and process flows. Topics include 
quantitative and qualitative evaluation of LLM 
performance for accuracy, scalability, and adherence 
to constraints 

Development 4 Defines the technical framework of the system, 
including components, interactions, and platforms. 
Key topics include scalability, security, and 
technological standardization 

Testing and Validation 6 Ensures the system meets functional and 
non-functional requirements. Topics include iterative 
evaluation, correctness verification, and performance 
optimization 

Monitoring and Maintenance 7 Focuses on continuous oversight of system 
performance, security, and compliance. Includes 
techniques such as log analysis, anomaly detection, 
and performance tracking 

Other areas 

Data Analytics 6 Leverages LLMs for predictive modeling, trend 
analysis, and multi-source data integration to extract 
actionable insights 

Information Extraction 6 Focuses on deriving structured information from 
unstructured data sources, including text and 
multimedia, to enrich the system’s knowledge base 

significant research contributions, offering a detailed view of how LLMs are 
reshaping IS workflows. 

To identify relevant studies, this survey conducts a literature review using 
advanced academic article retrieval tools such as Publish or Perish2 and by referring 
to the main guidelines proposed in the literature [33, 66]. Queries were designed 
to target highly specific intersections of IS and LLM applications. In cases where 
the queries yielded zero or very few results—reflecting the scarcity of direct 
applications of LLMs in certain IS life cycle phases—the selected studies focused on 
frameworks, techniques, or methodologies relevant to the respective phase, where 
LLMs could plausibly be utilized. This approach ensured comprehensive coverage 
of the literature, capturing both foundational studies and innovative applications.

2 https://harzing.com/resources/publish-or-perish 

https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
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Each study underwent a detailed analysis, assessing both its specific contribu-
tions and its placement within the broader state-of-the-art landscape. Particular 
attention was given to the LLM models employed during the testing and validation 
phases, as these models are critical to understanding the practical implications and 
limitations of the research. Evaluation methodologies were also analyzed, highlight-
ing how researchers assessed the performance and effectiveness of their proposed 
approaches. This dual focus on LLM models and evaluation methodologies ensures 
that the survey not only captures theoretical advancements but also provides insights 
into their practical applicability. 

5.2 Results of the Literature Review 

The life cycle of an IS encompasses multiple phases, each addressing specific 
objectives and challenges in the development and management of the system. 

• Planning phase: focuses on defining strategic objectives and gathering require-
ments to ensure alignment with organizational goals and stakeholder expectations 
(Table 5.2). 

• Design phase: an abstract representation of the system is then provided through 
tools such as Entity-Relationship diagrams, UML models, or process flows, 
which serve as blueprints for structuring and refining system requirements 
(Table 5.3). 

• Development phase: establishes the technical framework of the system, including 
the definition of components, their interactions, and the underlying technological 
platforms. This phase ensures the scalability, security, and standardization of the 
system (Table 5.4). 

• Testing and validation phase: verifies that the system meets its functional and 
non-functional requirements, employing rigorous evaluation to ensure reliability 
and correctness (Table 5.5). 

• Monitoring and maintenance phase: addresses the continuous oversight of the 
system’s performance, security, and compliance through techniques such as log 
analysis and anomaly detection (Table 5.6). 

Although the deployment phase is not addressed separately, it is considered an 
integral part of the transition process between development, testing, and main-
tenance. Deployment activities, including system configuration and release, are 
closely linked to the testing and validation phases, as well as monitoring and 
maintenance operations, to ensure the system’s stability and effectiveness in pro-
duction. Any studies addressing deployment-related topics will be discussed within 
the relevant phases of the IS life cycle, depending on the specific context in which 
they are analyzed. In addition to these life cycle phases, LLMs also play a significant 
role in areas closely connected to information systems, such as data analytics and 
information extraction (c.f. Sect. 5.2.6).
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• Data analytics helps in extracting actionable insights from the data generated by 
the system, enabling predictive modeling and trend analysis (Table 5.7). 

• Information extraction focuses on structuring unstructured data from diverse 
sources, such as text or multimedia, to enrich the system’s knowledge base and 
support decision-making processes (Table 5.8). 

For each of these phases, a summary table is provided to present key findings, 
including the LLMs used for testing and validation, as well as the evaluation 
methodologies applied. In Table 5.1, the analyzed phases are reported along with 
number of selected papers and a brief description for each phase. 

Table 5.2 Planning for information systems 

Source LLM Evaluation methodology 

Ataei et al. [6] GPT-4-turbo 
text-embedding-ada-002 

User agent diversity, evaluated using 
computational metrics and clustering, 
showing serial method as most diverse; Latent 
Need Identification, simulated user scenarios 
with LLM agents, assessed with F1-scores 
and predefined criteria; Latent Need 
Detection, different detection methods were 
compared, including zero-shot and 
criteria-based approaches (evaluated on 
precision, recall, and F1 score) 

Ronanki et al. [53] GPT-3.5 Expert-based comparative evaluation, attribute 
scoring methodology (scale on 0 to 10 for 
selected quality attributes), controlled context 
testing using standardized questions on 
Trustworthy AI principles 

Kenyon et al. [46] all-MiniLM-L12-v2 
all-MiniLM-L6-v2 
all-mpnet-base-v2 
msmarco-bert-base-dot-
v5 
msmarco-MiniLM-L6-
cos-v5 
multi-qa-MiniLM-L6-
co-v1 
multi-qa-mpnet-base-
dot-v1 

Semantic validation, semantic similarity 
analysis using cosine distance between text 
embeddings, accuracy analysis (spot checking 
with Damerau-Levenshtein distance metric), 
quantitative evaluation, out-of-sample return 
analysis to evaluate the effectiveness of the 
SWOT-based portfolios against traditional 
methods 

Arora et al. [4] GPT-3.5 Comparative analysis, customized metric 
evaluation (full match, partial match, or no 
match), automatic metric evaluation (precision 
and recall), human evaluation
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Table 5.3 Design for information systems 

Source LLM Evaluation methodology 

Klievtsova et al. [34] GPT-1 
(text-davinci-001), 
GPT-2 
(text-davinci-002), 
GPT-3 
(text-davinci-003), 
GPT-3.5 (gpt-3.5-turbo), 
GPT-4 

Quantitative Evaluation (Jaccard Index, 
Precision and Recall, Key Performance 
Indicators (KPIs)), Qualitative Evaluation 
(human experts), surveys 

Kourani et al. [35] GPT-4, Gemini LLMs effectiveness, comparison with 
existing frameworks (e.g., ) 

Cámara et al. [16] GPT (OpenAI, February 
2023 release) 

Syntactic and semantic accuracy, 
scalability, concepts modeling, prompt 
sensitivity 

Fill et al. [22] GPT-3, GPT-4 correctness, completeness, adherence to 
constraints 

Conrardy et al. [15] GPT-4V, Gemini Pro, 
Gemini Ultra, CogVLM 

Accuracy, Completeness, Syntax Errors, 
Impact of Complexity, Effect of Prompt 
Detail, Semantic Understanding 

Table 5.4 Development for information systems 

Source LLM Evaluation Methodology 

Rahman et al. [52] GPT-4.0 Effectiveness tested on seven RE documents, 
user evaluation based on RUST framework, 
quantitative and qualitative evaluation 

Dong et al. [20] GPT-3.5 Comparison against other models on 
different benchmarks using two 
experimental settings (i.e., one combining 
NL descriptions, function signatures, and 
public test cases and another relying only on 
NL descriptions) using Pass@1 metric 

Jiang et al. [28] code-davinci-002 Comparison against other models on 
different benchmarks using different metrics 
(i.e., Pass@1, Pass@k, AvgPassRatio, 
CodeBLEU), user evaluation 

Li et al. [41] gpt-3.5-turbo-0301 
code-davinci-002 

Comparison against other standard 
prompting methods on different benchmarks 
using Pass@k metric, user evaluation, 
ablation studies
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Table 5.5 Testing and validation for information systems 

Source LLM Evaluation methodology 

Liu et al. [42] GPT-3 Comparison with existing state-of-the-art 
approaches, user evaluation, usefulness 

Feng et al. [21] GPT-3.5 Comparison against existing approaches (e.g., 
and ablation models) on performances 
reproducibility and computational time, user 
evaluation 

Chen et al. [14] Codex 
(code-davinci-002) 
GPT-3.5-turbo GPT-4 
StarCoder 

Evaluation against benchmark datasets, 
comparison with existing approaches (e.g., 
Coder-Reviewer) 

Wei et al. [67] CodeT5-large 
InCoder-6.7B 

Comparison against existing traditional 
NMT-based and LLM-based approaches, 
bug-fixing capabilities, compilation rate, 
generalizability 

Schäfer et al. [58] GPT-3.5-turbo 
Code-Cushman-002 
StarCoder 

Comparison against employed LLMs and 
state-of-the-art methods, quality of generated 
tests, coverage, similarity with already 
existing results 

Joshi et al. [30] Codex Comparison against other repair engines, 
repair accuracy, multilingual capabilities, error 
localization
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Table 5.6 Monitoring and maintenance for information systems 

Source LLM Evaluation methodology 

Gu et al. [29] gpt-3.5-turbo Evaluation against benchmark datasets, template 
accuracy (F1 score), performance comparison 
with state-of-the-art parsers, efficiency 
assessment 

Xu et al. [72] Codex, GPT-3 Comparison against state-of-the-art accuracy 
benchmarks in all logging tasks, evaluated on 
parameter tuning time (UniLog required < 4%. 
of the time compared to SOTA methods) 

Ma et al. [44] Flan-T5-small 
Flan-T5-base 
LLaMA-7B 
ChatGLM-6B 

Evaluations on a benchmark dataset of logs, 
parsing accuracy (PA), Grouping accuracy 
(GA), analysis of training data size effects, 
pre-training effect analysis, efficiency testing 

Jia et al. [25] GPT-3.5 BERT Precision, recall, and F1-score, Comparison 
across multiple datasets (HDFS, BGL, and 
Thunderbird), few-shot learning evaluation with 
varying proportions of labeled training data 
( 5%., 10%., 20%.,  and 30%.), generalization 
scenario testing, evaluation against 
state-of-the-art unsupervised, semi-supervised, 
and supervised models 

Ali et al. [2] gpt-3.5-turbo Comparison against traditional machine 
learning models, analysis of privacy and 
computational efficiency challenges, assessment 
of known attack type identification accuracy, 
evaluation of effectiveness against zero-day 
attacks, investigation of LLM adaptability and 
generalization capabilities 

Wu et al. [70] GPT-4 Llama Simulating scenario to evaluate the tool’s 
reasoning capabilities, use of metrics such as 
precision, recall, and F1-score, to quantify the 
accuracy while metrics as time to detect 
vulnerabilities and time to execute 
countermeasures to perform benchmark tests, 
real-world attack simulation 

Deng et al. [18] GPT-4 GPT-3.5 BARD Automated reasoning tests, generation and 
parsing accuracy (syntactic correctness, logical 
coherence), context retention evaluation, 
performance benchmarking (time-to-detection 
and time-to-mitigation), real-world attack 
simulation



84 F. Bianchini and M. Marinacci

Table 5.7 Data analytics for information systems 

Source LLM Evaluation Methodology 

Wang et al. [65] PaLM 2 GPT-3.5 Benchmark evaluation across several datasets 
(WikiTQ for table QA, TabFact for table fact 
verification, and FeTaQA for 
free-form-table-based QA), comparison 
existing reasoning frameworks 
(chain-of-thought and text-to-SQL), 
evaluation of tabular operations (sorting, 
filtering) against gold standard 

Nguyen et al. [11] GPT-3.5 GPT-4 Accuracy and interpretability evaluation with 
datasets (TabFact, WikiTQ, and FeTaQA), 
comparison with other frameworks 
(text-to-SQL, Chain-of-Table, and DATER) 
for both accuracy and user interpretability, 
human evaluation coherence and clarity, 
efficiency analysis by several metrics (query 
reduction rate and computational cost savings) 

Parisi et al. [49] T5 BM25-Based Knowledge-oriented QA evaluation (F1 
scores), reasoning-oriented evaluation (Math 
QA), iterative self-play validation, comparison 
against human-curated answers and baseline 
LLM predictions 

Liu et al. [26] GPT-4o 
GPT-3.5-Turbo-0613 
GPT-4-0613 

Benchmark evaluation (InfiAgent-DABench, 
ML-Benchmark, MATH Dataset), metrics 
evaluation (accuracy; Normalized 
Performance Score, NPS; and Comprehensive 
Score, CS), comparative baselines against 
other framework (AutoGen, OpenInterpreter, 
and OpenDevin) 

Qiao et al. [51] GPT-4 GPT-3.5 Benchmark evaluation (DS-100, 
InfiAgent-DABench, DSEval), metrics 
evaluation (overall task success rates, pass rate 
against ground-truth code), comparison with 
existing framework (LangChain, AutoGPT) 
through accuracy, efficiency, and stateful 
execution 

Wang et al. [69] GPT-4 GPT-3.5-Turbo Benchmark evaluation (MATH, AFLWord, 
Natural Questions), metrics evaluation 
(success ratio, F1 score, recall), baselines 
comparison against AutoGPT, ChatGPT, 
Langchain ReAct, Multi-Agent Debate
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Table 5.8 Information extraction for information systems 

Source LLM Evaluation methodology 

Zhang et al. [78] GPT-3 GPT-4 BERT Comparison against baseline methods 

Li et al. [38] GPT-3.5-turbo GPT-4 
T5-XXL 

Comparison against state-of-the-art DocRE 
models and under different configurations 
(i.e., zero-shot document-level RE, training 
with the augmented dataset) considering 
metrics like precision, recall, F1 score 

Guo et al. [24] OPT (Open Pre-trained 
Transformer) BLOOM 
GPT-J GPT-NEO 

Comparison against VQA methods and 
different LLMs, generalization and ablation 
studies 

Li et al. [40] OPT Flan-T5 CLIP 
EVA-CLIP Florence 
Flamingo 

Comparison against state-of-the-art models on 
different visual-language tasks 

Liu et al. [43] LLaMA 2 MU-LLaMA 
MERT AudioLDM 2 
MusicGen ViT (Vision 
Transformer) ViViT 
(Video Vision 
Transformer) 

Comparison of music generation and 
understanding tasks against state-of-the-art 
models on different benchmarks, user 
evaluation on music generation task 

Zhang et al. [77] LLaMA/Vicuna 
ViT-G/14 ImageBind 

Comparison against existing models, 
empirical evaluation 

5.2.1 Planning 

The requirements elicitation phase is a critical component of the planning stage in 
the life cycle of an information system. This phase lays the foundation for the entire 
development process by identifying user needs, system constraints, and functional 
requirements [80]. Effective requirements elicitation ensures that the resulting 
system aligns with organizational goals and user expectations while mitigating 
potential risks related to misunderstandings or incomplete specifications. Several 
relevant studies on the use of LLMs in the requirements elicitation process are 
presented below. 

Authors in [6] propose Elicitron, a framework designed to leverage LLMs 
for simulating diverse user agents and uncovering both explicit and latent needs 
during the requirements elicitation process. The framework employs a multi-stage 
approach, starting with the generation of user agents using GPT-based models, 
where agents are created either serially to maintain contextual diversity or in 
parallel with clustering techniques to ensure variability. These agents then simulate 
interactions with a hypothetical product, providing structured feedback in terms of 
actions, observations, and challenges. Simulated interviews are conducted to gather 
detailed insights, which are subsequently analyzed by the LLM to identify latent 
needs requiring innovative design solutions. The framework is validated through 
experiments that demonstrate its ability to identify more diverse and latent needs



86 F. Bianchini and M. Marinacci

compared to traditional methods, showcasing the potential of LLMs like GPT-4-
turbo to improve the scalability and depth of requirements elicitation processes. 

The second study [53] focuses on exploring ChatGPT’s capabilities in eliciting 
requirements for Trustworthy AI systems. Using the GPT-3.5 model, the authors 
developed a controlled methodology to compare ChatGPT-generated requirements 
with those formulated by human experts. The study employs six carefully crafted 
questions aimed at eliciting requirements related to key attributes of Trustworthy AI, 
such as accuracy, transparency, and privacy. ChatGPT’s responses were evaluated 
alongside 30 requirements collected from domain experts by a separate group 
of evaluators, who assessed them across seven quality attributes: abstraction, 
atomicity, consistency, correctness, unambiguity, understandability, and feasibility. 
The findings reveal that ChatGPT excels in abstraction, consistency, and under-
standability, often outperforming human experts in these dimensions. However, the 
model showed limitations in producing unambiguous and feasible requirements, 
highlighting challenges in its ability to address domain-specific complexity and 
practicality. Despite these limitations, the study underscores the potential of LLMs 
to support and enhance the requirements elicitation process by reducing time and 
effort while improving quality in key areas. 

Moving on to other analysis techniques for the initial phases of planning ISs, 
the authors in [46] propose an interesting approach to automate and validate SWOT 
analysis,3 using LLMs. This approach focuses on portfolio construction, extracting 
SWOT elements from company reports (10-K filings) using tools like ChatPDF. 
A key component of the methodology is prompt engineering, avoiding reliance on 
general knowledge. This iterative process improves the extraction quality, ensuring 
that each SWOT element is supported by specific evidence. Each feature is assigned 
a weighted score (high, medium, or low), allowing for an assessment of its 
significance. For validation, the authors use LLMs and embedding models to verify 
the extracted features. The semantic alignment of the extracted SWOT elements 
is assessed through cosine distance between text embeddings, which measures 
similarity and ensures the accuracy of the extracted data. Additional spot-checking 
using metrics like Damerau-Levenshtein4 distance further ensures consistency and 
accuracy, addressing potential hallucination issues in MLM outputs. The authors 
demonstrate the methodology by constructing and validating portfolios for 471 S&P 
500 companies. These portfolios, based on SWOT analysis, are compared with those 
constructed using traditional Sharpe ratio metrics. 

Finally, in [4], authors propose a study that highlights how LLMs, particularly 
ChatGPT, can streamline requirements elicitation while using SWOT analysis as a 
structured approach to assess their impact across different stages of requirements

3 A SWOT analysis is a strategic planning tool used to assess the internal and external factors 
that can impact a business, project, or organization. It consists of four key elements, Strengths, 
Weaknesses, Opportunities, and Threats [37, 56]. 
4 Damerau-Levenshtein metric calculates the minimum number of edits (insertions, deletions, 
substitutions, or transpositions) required to transform one string into another. 
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engineering (RE). They focus on using LLMs like ChatGPT (GPT-3.5) to address 
challenges in four key RE stages: requirements elicitation, specification, analysis, 
and validation. The authors emphasize the potential of LLMs to enhance efficiency, 
bridge communication gaps, and improve the accuracy of requirements-related tasks 
through automated and interactive capabilities. The study outlines a vision for an 
LLM-driven RE process that integrates LLM agents for various RE tasks. These 
agents use advanced prompting techniques, such as zero-shot, few-shot, and chain-
of-thought prompting, to assist stakeholders in generating, refining, and validating 
requirements. The methodology is tested on a real-world project (ActApp), designed 
to assist patients with type 2 diabetes, to evaluate the feasibility of LLMs in 
requirements elicitation. The evaluation involves analyzing how ChatGPT generates 
user-story-style requirements and comparing them against expert-identified require-
ments. For each RE stage, SWOT analysis is performed, identifying strengths (e.g., 
efficient data processing, domain knowledge assimilation), weaknesses (e.g., lack of 
empathy, risk of misinterpretation), opportunities (e.g., real-time feedback, human-
centric elicitation), and threats (e.g., data privacy concerns, potential biases). 

The use of LLMs in the IS planning phase is expanding to cover various 
tasks, in particular requirements elicitation and SWOT analysis support. Their 
use relies on identifying explicit and latent needs by simulating user interactions 
and refining requirements through iterative analysis. Their capabilities are further 
enhanced through advanced prompting techniques, embedding models, and valida-
tion methods that improve accuracy and reduce errors and inconsistencies. LLMs 
also facilitate automated SWOT analysis, extracting and verifying strategic insights 
from official company documents. 

5.2.2 Design 

The concept of Conversational Process Modeling (ConverMod) was introduced 
in [34] to transform traditional business process modeling practices by leveraging 
the potential of conversational AI. This interactive and iterative approach supports 
domain experts in extracting, modeling, and refining business process descriptions 
with the assistance of LLMs. Cooperation between domain experts and process ana-
lysts is essential to bridge the gap between these roles and facilitate the generation 
of Business Process Model and Notation (BPMN) diagrams. Starting from prompts 
designed with textual process description and additional context (e.g., a list of tasks 
extracted from it, a set of custom rules for textual graph representation), the LLMs 
are guided to generate the desired output. To ensure compatibility with the limited 
token context of LLMs, ConverMod exploits intermediary textual notation (TN) of 
BPMN such as Mermaid.js (MER) to represent BPMN diagrams in their textual 
definition. The result of MER is then converted into the graphical representation 
(GR) with the BPMN2Constraints tool. The final model generated by LLMs is 
then reviewed and corrected to align with BPMN standards. The textual description 
from which the model is generated is contained in the PET dataset that is used as
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standard. Using the PET dataset as the ground truth, the performances of LLMs in 
task extraction and process model generation are evaluated both quantitatively and 
qualitatively. 

In [35] has been proposed a framework to generate process models exploiting 
LLMs. This framework transforms textual descriptions into structured, standard 
formats such as BPMN and Petri nets. A key component is the iterative feedback 
loop, which is based on user’s feedback to refine the generated process model pro-
gressively. The framework starts with prompt engineering techniques, where textual 
descriptions are enhanced with additional information to guide the LLM in the 
most effective way. These techniques include role prompting, knowledge injection, 
few-shot learning, and negative prompting. After querying the LLM, it generates 
an intermediate process representation in Partially Ordered Workflow Language 
(POWL). The model in POWL goes under the error-handling and refinement step 
that categorizes the errors as critical (i.e., which disrupts the system’s functionality 
or compromises security) and adjustable (i.e., which affects qualitative aspects). 
This step incorporates iterative refinements to be aligned with user expectations. 
Generated models in POWL are then converted into BPMN or Petri nets for display 
and export purposes. The framework’s evaluation focuses on the effectiveness of 
integrating LLMs and its performances against existing approaches. 

The authors in [16] explored the application of LLMs in software modeling 
tasks, specifically focusing on realizing UML class diagrams enriched with Object 
Constraint Language (OCL) constraints. The implemented approach unfolds in two 
different phases: (i) exploration and (ii) focused experiments. In the former, a con-
versational prompt-based approach was performed to identify modeling capabilities 
and limitations. During this phase, there were no constraints on the content of 
the prompts. In the latter, a more specific modeling task was performed in order 
to highlight concepts like inheritance, enumerations, determinism, abstraction, and 
OCL constraints. In this phase, the prompts were limited only to a set of predefined 
model arguments. Each model, which has been generated starting from user intent 
used as initial prompt, went through a refinement stage to test the adaptability of 
LLMs to corrections. The evaluation of LLMs applications in software modeling 
tasks spanned on their syntactic and semantic accuracy, scalability, handling of 
modeling concepts, and prompt sensitivity. 

The study conducted in [22] explores the capabilities of LLMs for conceptual 
modeling tasks. The modeling languages analyzed are Entity-Relationship (ER) 
diagrams, BPMN, UML class diagrams, and Heraklit models. The approach 
employed relies on the use of different prompts carefully designed to generate 
models in the desired language format. This process exploits a combination of few-
shot learning (i.e., providing some examples in the prompt) and zero-shot learning 
(i.e., relying on only instruction contained in the prompt). The prompts also include 
specifics of the output’s format such as JSON for ER and BPM, PlantUML for 
UML class diagrams, or custom JSON-based representation for Heraklit models. 
Moreover, the proposed approach also shows the interpretation capabilities of LLMs 
by extracting textual descriptions from pre-defined diagrams in a simplified custom
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textual notation. The generated results of this approach were assessed based on 
correctness, completeness, and adherence to the format and prompt constraints. 

Authors in [15] demonstrate the capabilities of several multimodal LLMs to 
transform images of hand-drawn UML class diagrams into corresponding computer-
readable PlantUML notation. The implemented approach foresees the use of four 
hand-drawn UML diagrams and three different prompts. The first three UML 
diagrams are of increasing complexity (e.g., specifying relationships, attributes, and 
cardinalities), and the last one is a diagram with correct syntax but semantically 
unrealistic. Each prompt has been designed to increase the level of detail used to 
describe the task. Each LLM was fed with each diagram using all three prompts, 
and each prompt-model combination was tested three times to assess consistency. 
The final results were evaluated on accuracy and completeness with respect to the 
original hand-drawn UML diagrams. 

LLMs are increasingly used in the design phase of software and process 
modeling to extract structured representations such as UML diagrams, BPMN 
models, and Petri nets from textual descriptions or images. Their capability to 
interpret and refine models is enhanced through prompt engineering techniques, 
iterative feedback loops, and intermediate notations like POWL or MER. These 
models demonstrate adaptability in handling errors, improving semantic and syn-
tactic accuracy through user interaction and refinement processes. Furthermore, 
LLMs exhibit multimodal capabilities, transforming hand-drawn UML diagrams 
into structured digital representations, enabling seamless integration with standard 
modeling tools. 

5.2.3 Development 

In [52], the authors proposed a framework called GeneUS, designed to automate 
the generation of user stories and associated test case specifications directly from 
software requirements documents—the output of the requirements engineering (RE) 
phase. The framework leverages the natural language understanding and generation 
capabilities of LLMs. The outputs generated by GeneUS are in JSON format to 
facilitate the integration with popular project management tools such as Jira and 
Azure DevOps. The core of this framework is Refine and Thought (RaT), an opti-
mized version of Chain of Thought (CoT) prompting. RaT operates in two stages: 
a Refinement Step, where redundant or non-textual information (e.g., diagrams, 
symbols) is filtered to clean the input text, and Thought Step, where the refined 
input text is used to generate structured outputs (i.e., user stories and associated test 
cases). GeneUS functionalities can be summarized in three main steps, requirement 
extraction in which functional and non-functional requirements are extracted from 
the input document, user story generation in which these extracted requirements 
are converted into structured user stories with clear objectives and deliverables, and 
test case generation in which for each user story associated test case are generated. 
The framework functionalities are assisted with sequential RaT prompts to ensure
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accuracy and completeness. The effectiveness of the framework has been tested on 
seven mid-sized RE documents, and a survey based on the RUST framework has 
also been conducted. 

The authors of [20] proposed a self-collaboration framework for code generation, 
which utilizes multiple specialized LLMs-based agents to simulate a collaborative 
software development team. The aims of this framework is to improve the quality 
and correctness of the generated code by assigning specific software engineering 
roles (e.g., Analyst, Coder, and Tester), with each role assigned to a separate 
LLM agent. To ensure effective role execution, each LLM agent operates under 
specifically designed role instructions, guiding task execution in their domain. 
The framework is structured around two key components, (i) Division of Labor 
(DOL) and (ii) Collaboration. In the DOL the division of the software development 
tasks happens—in particular, the Analyst decomposes high-level requirements into 
detailed subtasks and formulates a high-level plan for coding, the Coder implements 
code according to the analyst’s plan and refines the code based on feedback, and the 
Tester evaluates the generated code by identifying bugs and providing structured 
feedback through test reports. In the Collaboration phase, agents interact through a 
shared blackboard mechanism in which outputs are shared and iteratively refined, 
first from Analyst to Coder and then in iterative cycles between Coder to Tester 
until the Tester’s feedback is fully addressed by the Coder. The framework adopts 
real-world development methodologies, specifically the waterfall model, where 
the process is sequential but allows for feedback loops to enable refinement. Its 
performance has been evaluated on benchmark datasets, such as HumanEval [13], 
HumanEval-ET [19], MBPP [8], and MBPP-ET, and compared against other LLMs 
using the Pass@1 metric, which measures the correctness of the top-1 generated 
code after execution. Two experimental settings were considered, one combining 
natural language descriptions, function signatures, and public test cases and another 
relying solely on natural language, simulating real-world scenarios with only textual 
requirements. 

The study presented in [28] introduces a self-planning code generation frame-
work designed to enhance the performances of LLMs in handling complex pro-
gramming tasks. The framework is composed of a two-phase approach that guides 
LLMs through the code generation process. The first phase is the Planning phase, 
in which the LLM generates a high-level plan containing a sequence of steps to 
solve the given programming task. This generated plan simplifies the problem into 
manageable subproblems used to guide the LLM during the code generation phase. 
Through few-shot prompting, the model is fed with examples of how to convert 
problem descriptions into solution steps. The second step is the Implementation 
phase, where the model generates code step by step according to the plan produced 
in the previous phase. The high-level plan is appended to the original problem 
statement and used as input to the model to guide the code generation process. 
The framework was evaluated on multiple code generation benchmarks (e.g., 
HumanEval, MBPP-ET) against different LLMs. Evaluation metrics used for the 
evaluation include Pass@1, Pass@k, AvgPassRatio, and CodeBLEU. Moreover, a
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human evaluation on correctness, readability, and robustness criteria was performed 
against direct generation and CoT prompting. 

In [41] has been proposed a prompting technique called structured chain-of-
thought (SCoT) to increase the performance of LLMs in code generation tasks. 
SCoT aims to improve code generation by aligning intermediate reasoning with 
program structures (i.e., sequence, branch, and loop structures) to guide LLMs more 
effectively during code generation. These structures mirror how human developers 
logically approach coding tasks. This technique uses a two-step generation pipeline. 
In the first step, the LLM generates a structured reasoning process (i.e., SCoT) 
that decomposes the problem using program structures and defines input-output 
parameters. In the second step, the LLM uses the generated SCoT as a soft template 
to produce the final code. This two-step approach helps mitigate errors in SCoT 
generation and allows for refinements. Moreover, to further assist the LLM in code 
generation, SCoT includes explicit input-output (I/O) specifications. To evaluate 
the performances of the proposed technique, experiments have been conducted on 
three code generation benchmarks (i.e., HumanEval, MBPP, MBCPP [7]) against 
different standard prompting methods (i.e., zero-shot, few-shot, CoT) using as 
evaluation metric Pass@k. Human evaluation and ablation studies5 have also been 
performed. 

The use of LLMs in the development phase of IS has rapidly increased. They are 
employed in various tasks, in particular to automate code generation, requirement 
analysis, and test case specification, improving efficiency and reducing manual 
effort. Their performance is enhanced through structured reasoning techniques 
and multi-step prompting strategies that refine outputs iteratively, to improve 
code correctness, readability, and robustness. Furthermore, they facilitate seamless 
integration with project management tools by structuring outputs in standardized 
formats. Through iterative refinement and self-planning methodologies, LLMs 
continue to bridge the gap between natural language understanding and high-quality 
software development. 

5.2.4 Testing and Validation 

In [42], QTypist was introduced as a novel approach based on LLMs to automate 
text input generation according to the GUI context. QTypist requires two types 
of information to generate a valid text response: one extracted directly from the 
UI page with the text input and another from pre-existing data sources. At first, 
QTypist extracts context information from the view hierarchy file of a GUI page. 
The extracted context information is composed of three types: input widget, local 
context, and global context. Based on this extracted context, 14 linguistic patterns

5 The contribution of a component in an AI system is determined by removing it and then analyzing 
the performance of the system after the removal. 
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are designed to construct precise prompts for the LLM. Furthermore, exploiting 
the Rico dataset [17] and other sources, three types of input widgets are identified, 
which include search list, popup menu, and filled content. These types of input 
widgets and their associated candidate input contents are used to generate pairs of 
prompts and answers for model tuning. Finally, the prompt-tuned LLM, using the 
prompts generated from the GUI page’s context information, generates responses 
to enhance automated GUI testing tasks. The QTypist approach was evaluated 
considering the effectiveness of text input generation and the quality of generated 
inputs. 

The authors of [21] proposed AdbGPT, a framework for automating Android bug 
replay tasks from bug reports. This framework employs LLMs through prompt engi-
neering and techniques such as few-shot learning and chain-of-thought reasoning to 
reproduce bugs. AdbGPT is splitted in two main phases, Steps-to-Reproduce (S2R) 
extraction and Guided Replay, both of which exploit LLMs to accomplish their task. 
The former has the task of extracting S2R entities from bug reports, such as action 
types, target components, input values, and scroll directions. The extraction process 
occurs by exploiting a prompt composed of available actions, action primitives, 
input examples, chain-of-thought reasoning, and output examples. The latter has the 
task of matching the extracted S2R entities with a sequence of GUI events needed 
to dynamically replicate the bug steps. The first step is to encode the GUI into a 
custom HTML-like syntax, which is derived from the Android view hierarchy, to be 
processed by the LLM. Finally, the LLM is prompted with the encoded GUI, input 
example, chain-of-thought reasoning, and output example in order to reproduce the 
step. The performance of AdbGPT was evaluated in terms of accuracy, efficiency, 
and practical usefulness. 

The study made in [14] highlights the capabilities of LLMs in code generation 
and debugging tasks. They developed SELF-DEBUGGING framework, which is 
designed to enhance pre-trained LLMs capabilities without any further fine-tuning 
relying on prompt-based instructions. This framework enables LLMs to debug their 
own generated code through an iterative approach. One single execution of the 
framework consists of three steps, Generation, in which LLM generates candidate 
programs relying solely on the problem description; Explanation, in which the 
generated code is described in detail via a line-by-line approach (i.e., rubber duck 
debugging), and in some cases, this explanation also includes execution traces; and 
Feedback, in which the model generates a feedback message indicating whether the 
code is correct or needs revision. The debugging process terminates when the code 
is correct or a maximum iteration limit is reached. The framework capabilities are 
evaluated across multiple benchmarks such as Spider for text-to-SQL generation 
[75], TransCoder for code translation [54], and MBPP for text-to-python generation 
[8]. Furthermore, SELF-DEBUGGING is compared also against other baseline 
approaches like MBR-Exec [59] and Coder-Reviewer [76]. 

In [67] has been proposed Repilot, a novel framework that combines LLMs 
and Completion Engines for Automated Program Repair (APR). This approach 
aims to remove tokens generated by the LLM under the guidance of a Completion 
Engine in order to produce more valid and accurate patches during the repair
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process. In detail, the LLM provides probabilistic predictions for the next token 
during patch generation, and the Completion Engine verifies the feasibility of 
the suggested tokens. Authors consider the repair problem as a cloze-style task 
[71] in which the buggy code is replaced with a masked token ( <.SPAN >.), 
and the LLM is used to generate the patch based on the surrounding context. 
Repilot iteratively generates patches through a feedback loop in which the LLM 
produces candidate tokens and probabilities. Infeasible tokens are removed from the 
search space and rejected by the Completion Engine. Instead, accepted tokens are 
appended to the patch, allowing the loops to continue until the patch is complete. 
To store previously rejected or accepted tokens, a prefix tree data structure (Trie) 
is used in order to reduce the overhead to the Completion Engine. Repilot’s 
effectiveness has been compared against 19 APR tools across traditional, Neural 
Machine Translation-based (NMT), and LLM-based, using the Defects4J dataset 
(versions 1.2 and 2.0) [31] containing buggy Java programs. Evaluation metrics of 
the results of the proposed approach cover bug-fixing capabilities, compilation rate, 
and generalizability. 

An interesting study proposed in [58] evaluates the use of the tool TESTPILOT, 
which incorporates LLMs for automated unit test generation for JavaScript projects. 
This tool relies on five distinct components (i.e., API explorer, documentation 
miner, prompt generator, test validator, prompt refiner) organized in four phases. 
TESTPILOT starts by using dynamic analysis to explore the API of the Package 
Under Test (PUT) in order to identify elements such as methods, constants, and 
signatures. Moreover, in this first phase, it also records the API’s structure and 
gathers, from documentation, metadata like comments and usage examples if 
available. In the second phase, the prompt is constructed using up to five elements, 
the function signature, the function definition if available, the documentation 
comments, the usage examples if available, and failing tests and error messages if 
generated in a successive phase of this approach. The initial results that are obtained 
from the LLM using this prompt are validated for syntax correctness, and if they 
are syntactically valid, they are executed to identify errors or assertion failures. 
If a test fails, the fourth and last phase is in charge of refining the prompt by 
including the failing test and error response to assist the LLM in correcting the 
test. TESTPILOT’s effectiveness has been compared using a benchmark of 25 npm 
packages with Nessie [5], a state-of-the-art feedback-directed test generator. The 
involved metrics are the quality of generated tests in terms of contained assertions, 
coverage of tests that include non-trivial assertions, and similarity with generated 
tests and already existing ones. Furthermore, a study has also been conducted to 
compare employed LLMs. 

The study presented in [30] introduces RING, a multilingual repair engine that 
is powered by LLMs. The LLM chosen by the authors is used for its ability to 
perform few-shot learning and adapt to multilingual program repair tasks. RING 
program repair operation is divided into three key stages, fault localization, code 
transformation, and candidate ranking. The first step exploits compiler diagnostics, 
static analyzers, and linters to locate syntactic and semantic errors. Error messages 
are normalized to enforce consistency across languages. The middle step, leveraging
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few-shot learning, uses a collection of buggy-fixed code pairs to guide the repair 
process by selecting programs with similar mistakes. Similar examples are selected 
based on error similarity using error vector selection and message embedding 
selection according to the selected language. The selected pairs are embedded into 
the prompt to show potential fixes for similar errors, allowing the LLM to generate 
more accurate candidate repairs. The last phase is in charge of ranking LLM’s output 
candidates based on the average log probabilities of the tokens generated. Finally, 
this study compares RING against language-specific repair engines (e.g., LaMirage 
[9], TFix [10], and BIFI [74]) across different programming languages (i.e., Excel, 
Power Fx, Python, JavaScript, C, and PowerShell). 

The use of LLMs in the testing and validation phase of the IS is growing, 
particularly in automated debugging, bug reproduction, and unit test generation. 
The accuracy and efficiency of these tasks are enhanced by leveraging prompt 
engineering, few-shot learning, and iterative feedback mechanisms to refine the 
outputs. LLMs also assist in program repair by integrating probabilistic token 
prediction, multilingual fault localization, and error-driven correction techniques. 
Moreover, they are also used in GUI testing and automated test case generation to 
improve coverage and validation, reducing manual effort. 

5.2.5 Monitoring and Maintenance 

Monitoring is a critical phase in the life cycle of information systems, ensuring 
their reliability, security, and performance over time. We identified three key areas 
of monitoring: log parsing, anomaly detection, and Intrusion Detection Systems 
(IDS). Log parsing focuses on extracting meaningful information from unstructured 
log files, a task essential for diagnosing system issues, tracking performance, 
and ensuring compliance. Anomaly detection involves identifying deviations from 
expected system behavior, which could indicate issues ranging from performance 
bottlenecks to security breaches. Finally, IDS safeguards information systems by 
identifying and mitigating potential security threats. 

In [72], authors propose UniLog, an innovative approach that leverages LLMs 
and in-context learning (ICL)6 to enhance the automatic generation of logging 
statements in software systems. They identify the limitations of existing logging 
tools, which often address only specific sub-problems related to logging, such 
as determining verbosity levels or suggesting log messages, without providing a 
comprehensive solution that simultaneously tackles the determination of logging 
positions, generation of log messages, and setting of verbosity levels. By utilizing 
the ICL paradigm, UniLog circumvents the need for extensive training on large 
datasets, instead relying on the LLM’s ability to infer appropriate logging statements

6 ICL is a paradigm that allows language models to learn tasks given only a few examples in the 
form of demonstration [2]. 
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from provided code examples. This method not only improves the practicality 
of logging in real-world scenarios but also aligns with the fast deployment and 
interpretability needs of software engineering, ultimately achieving state-of-the-
art performance in logging tasks. The evaluation of UniLog involved testing 
its automated logging capabilities on a dataset comprising 12,012 code snippets 
extracted from 1,465 GitHub repositories. 

Gu et al. [29] and Ma et al. [44] focus on the use of LLMs for log parsing, aiming 
to improve the extraction of log templates and parameters from log messages. 

In the first study, the authors propose LILAC, a log parsing framework designed 
to address the challenges of current log parsing techniques, such as dependency on 
handcrafted rules and limited training data. LILAC leverages an in-context learning 
(ICL) approach and enhances LLM capabilities through a hierarchical candidate 
sampling algorithm to select high-quality log message demonstrations. Additionally, 
the authors introduce an adaptive parsing cache that stores and refines generated 
log templates, enabling faster and more consistent parsing. LILAC is extensively 
evaluated on large-scale public datasets, achieving a 69.5%. improvement in tem-
plate accuracy F1 score over state-of-the-art methods while maintaining comparable 
efficiency to traditional parsers. The second study introduces LLMParser, a frame-
work that approaches log parsing as a text-to-text or text generation task, utilizing 
LLMs such as FLAN-T5-SMALL,  FLAN-T5-BASE,  LLAMA-7B, and CHATGLM-
6B. The authors employ few-shot tuning to adapt the models for translating raw 
logs into structured log templates. Evaluations on a benchmark dataset of logs from 
16 open-source systems reveal that LLMParser achieves a parsing accuracy of u p 
to 96%., outperforming traditional parsers like Drain, Logram, and LogPPT. The 
study also examines the effects of training size, model architecture, and pre-training 
on performance, finding that smaller models like Flan-T5-base provide similar 
accuracy to larger models with reduced computational overhead. Additionally, 
the authors explore limitations and propose future directions for enhancing the 
adaptability and efficiency of LLM-based log parsers. 

Authors in [25] propose LLMeLog, a novel approach for anomaly detection that 
utilizes LLMs to enhance log event representations by addressing three identified 
anti-patterns: content missing, semantic deflection, and tendency lacks. LLMeLog 
employs a structured prompt designed for in-context learning to enrich log events 
with domain knowledge, including anomaly tendencies. Enriched events are then 
used to fine-tune a pre-trained BERT model through a hierarchical semantic fine-
tuning process, which incorporates a novel hierarchical metric loss to jointly encode 
semantic information and anomaly tendencies into event embeddings. Finally, these 
embeddings are fed into a transformer-based anomaly detection model that captures 
temporal patterns for effective anomaly detection. Experimental evaluations on three 
public datasets (HDFS, BGL, and Thunderbird) demonstrate LLMeLog’s superior 
performance, achieving F1-scores consistently exceeding 99%., even when trained 
on as little as 10%. of labeled data. 

Focusing on another critical aspect of IS monitoring, specifically Intrusion 
Detection Systems (IDS), the authors in [32] investigate the potential of large 
language models (LLMs) to enhance cybersecurity through advanced log analysis
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and intrusion detection. The study compares the performance of general-purpose 
LLMs, fine-tuned task-specific LLMs, and traditional machine learning models 
using real-world commercial deployment data. Key strategies explored include few-
shot prompting, retrieval-augmented generation, and a decoupled framework where 
LLMs are employed to classify attack types and generate detailed incident reports. 
The findings reveal that while general-purpose LLMs face challenges related 
to privacy concerns and computational efficiency, fine-tuned LLMs demonstrate 
strong performance in identifying known attack patterns. However, their limited 
effectiveness against zero-day threats underscores the need for further research to 
improve LLM adaptability and robustness in dynamic cybersecurity environments. 
Several recent works have proposed innovative approaches that integrate LLMs 
into cybersecurity frameworks to improve intrusion detection, penetration testing, 
and threat analysis. HuntGPT [2] integrates explainable AI techniques with LLM, 
using a Random Forest classifier alongside SHAP and Lime frameworks to improve 
interpretability. GPT-3.5 Turbo is used to generate comprehensible threat insights, 
which assists cybersecurity analysts in decision-making. Moreover, SecGPT [70] 
introduces an interactive LLM agent designed to streamline penetration testing. 
This system leverages a Generative Adversarial Network (GAN) architecture to 
synthesize data for model retraining, enabling the generation of new attack profiles 
and enhancing adaptability against evolving threats. Finally, PentestGPT [18]  is  
a penetration testing tool that uses LLMs to automate reasoning, generation, and 
parsing tasks. It addresses key challenges such as context loss and inaccurate result 
generation, providing a more efficient and intelligent penetration testing p rocess. 

The use of LLMs in the monitoring and maintenance phase of IS is increasing in 
tasks such as log parsing, anomaly detection, and intrusion detection. The ability of 
LLMs to extract meaningful insights from unstructured logs enhances system diag-
nostics, performance tracking, and compliance monitoring. Log-analysis accuracy 
and anomaly detection are improved through in-context learning, hierarchical fine-
tuning, and structured prompting. Through continuous advancements, LLMs are 
becoming a fundamental component in system monitoring, strengthening reliability 
and security in dynamic IT environments. 

5.2.6 Beyond the IS Life Cycle: Other Areas Enhanced by 
LLMs 

Tasks like information extraction and data analytics are not traditionally consid-
ered part of the IS life cycle, even though the use of LLMs has shown many 
advantages in these kinds of areas, introducing many benefits beyond conventional 
applications. Their ability to process vast amounts of structured and unstructured 
data allows them to extract meaningful insights, automate complex reasoning 
tasks, and improve decision-making processes. In detail, in data analytics tasks, 
LLMs facilitate seamless interaction with structured repositories through natural 
language interfaces, improving accessibility to large-scale data sources while
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ensuring interpretability and efficiency. In information extraction tasks, LLMs 
enhance annotation, relation extraction, and multi-modal understanding by lever-
aging advanced prompting strategies and alignment techniques, reducing manual 
effort and improving accuracy. The possibility to integrate LLMs with external tools, 
domain-specific frameworks, and multi-modal architectures further improves their 
versatility across different tasks and domains, spacing from tabular reasoning to 
video comprehension, bridging the gaps in data-driven workflows and enhancing 
automation, augmentation, and analysis capabilities. 

5.2.6.1 Data Analytics 

In the context of data analytics for information systems, large language models 
have shown several capabilities that can be categorized into three main areas: first, 
data analytics on sample data, which includes tasks like tabular question answering 
(Tabular QA) to extract insights from structured datasets; second, data analytics on 
external data sources, where LLMs are used with relational databases through text-
to-SQL models or with knowledge graphs via text-to-SPARQL interfaces, enabling 
seamless querying and integration with large-scale, structured repositories; and 
finally, data analytics on multiple external data sources involving the use of LLM 
agents and sophisticated frameworks that leverage LLMs to interact with diverse 
datasets, perform reasoning across different domains, and synthesize actionable 
insights. These categories represent the versatility of LLMs in addressing a wide 
range of data-driven challenges within the monitoring phase of information systems. 

In [65] authors propose a novel framework, Chain-of-Table, designed to improve 
table-based reasoning tasks, such as question answering and fact verification, by 
integrating evolving tabular transformations into the reasoning process of large 
language models. The framework extends the concept of chain-of-thought (CoT) 
prompting [55], transforming tables through iterative, structured operations to better 
align intermediate reasoning steps with the final answer. The approach introduces a 
dynamic mechanism where LLMs iteratively apply pre-defined tabular operations, 
including adding columns, selecting rows, grouping, and sorting. At each step, the 
model dynamically plans the next operation based on the current state of the table, 
the reasoning history, and the question or task. This sequence forms a chain of 
tables, representing the logical steps of reasoning through intermediate transforma-
tions. By explicitly encoding these operations, the framework provides structured 
intermediate results that improve prediction accuracy and transparency compared to 
free-form reasoning approaches. To validate the proposed methodology, the authors 
conduct experiments on three established benchmarks for table understanding: 
WikiTQ [50] (table-based question answering), TabFact [12] (table-based fact 
verification), and FeTaQA [48] (free-form table-based question answering). The 
framework demonstrates state-of-the-art performance across these datasets, surpass-
ing existing generic reasoning methods (e.g., chain-of-thought) and program-aided 
reasoning approaches (e.g., text-to-SQL). Notably, it achieves superior results with 
fewer steps required to arrive at the correct answer, showcasing its efficiency. The
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study also analyzes the robustness of the method across different table sizes and 
the complexity of the required operations. The results highlight the framework’s 
ability to handle large tables and multi-step reasoning tasks more gracefully than 
competing methods. The proposed approach uses LLMs such as PaLM 2 and GPT-
3.5, leveraging their in-context learning capabilities to dynamically plan and execute 
operations while reducing query inefficiencies. The authors conclude that Chain-
of-Table provides a significant advancement in LLM-driven table understanding, 
enabling more reliable and interpretable results by explicitly encoding intermediate 
reasoning steps into structured tabular transformations. 

Moreover, in [11], Plan-of-SQLs (POS) is proposed, a novel framework for Table 
Question Answering (Table QA) that emphasizes interpretability, efficiency, and 
competitive accuracy. The study addresses a critical gap in Table QA literature: 
while recent advances using large language models (LLMs) have significantly 
improved performance, their decision-making processes often remain opaque, 
particularly in high-stakes industries like finance and healthcare. POS aims to 
bridge this gap by decomposing complex queries into a sequence of simple, atomic 
SQL operations, enabling transparency in reasoning and facilitating user trust. 
The POS framework operates in three primary stages. First, a Natural Language 
Atomic Planner takes an input query and generates a sequence of sub-queries 
in natural language, breaking down complex tasks into atomic steps. Each step 
corresponds to a minimal SQL operation, such as filtering rows or sorting columns, 
ensuring traceability and interpretability. Second, the Step-to-SQL Module converts 
each atomic step into an SQL command, executing the operation on the input 
table. The resulting intermediate tables are then used as inputs for subsequent 
steps, forming a sequential chain of transformations. Finally, the output of the last 
SQL operation provides the answer to the query, along with detailed attribution 
maps that highlight the specific rows and columns contributing to the answer. 
To evaluate POS, the authors conduct experiments on three benchmark datasets: 
TabFact, WikiTQ, and FeTaQA. POS demonstrates competitive or superior accuracy 
compared to existing Table QA methods, including text-to-SQL, Chain-of-Table, 
and DATER. Notably, it achieves higher interpretability scores in human and LLM-
based evaluations, with users consistently preferring POS explanations due to 
their clarity and coherence. The framework also outperforms baseline methods in 
efficiency, requiring significantly fewer LLM calls and database queries per task, 
thereby reducing computational costs. The study highlights POS’s robustness in 
handling complex queries and its alignment with human reasoning. The findings 
suggest that POS not only enhances the accuracy and efficiency of Table QA but 
also addresses key interpretability challenges, making it particularly valuable for 
applications in domains where accountability and transparency are critical. 

Another notable study is TALM: Tool Augmented Language Models [49]. The 
authors propose a framework for enhancing LLMs with external tools to address 
limitations in handling dynamic, private, or computationally intensive data sources. 
This approach integrates LLMs with external tools through a text-to-text API 
interface, enabling the models to generate tool queries, process tool outputs, 
and incorporate the results into final answers. The study highlights the frame-
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work’s application to two distinct domains: knowledge-oriented question answering 
using the Natural Questions (NQ) dataset and reasoning tasks using the MathQA 
dataset [3]. TALM operates in two stages. First, the model generates a tool input 
based on the task’s context and calls the relevant tool via an API. Once the tool 
outputs the results, these are appended to the input sequence, allowing the model 
to generate an informed response. To improve performance on tasks with limited 
tool-use demonstrations, the authors employ an iterative self-play mechanism. This 
involves bootstrapping tool-use datasets from a few labeled examples and iteratively 
refining the dataset by validating generated outputs against task-specific metrics. 
The iterative self-play process improves TALM’s ability to generalize and handle 
multi-step reasoning tasks. The evaluation demonstrates TALM’s effectiveness 
across domains. For Natural Questions (NQ)[36], TALM accesses a BM25-based 
retriever tool to extract answer spans from indexed documents, outperforming non-
augmented LLMs in knowledge-heavy QA tasks. In MathQA, TALM interacts with 
a custom math solver API to evaluate formulas and generate correct solutions 
for math word problems, achieving significant performance improvements over 
baseline LLMs. TALM also showcases robustness in handling out-of-distribution 
tasks, such as changing world knowledge or operations involving large numbers, 
where traditional LLMs fail. The study concludes that TALM enables smaller 
models to outperform larger non-augmented LLMs by leveraging external tools and 
iterative self-play, offering a scalable and cost-effective approach to enhancing LLM 
capabilities for complex, multi-source data analytics tasks. 

Here [26] a framework for automating end-to-end data science workflows using 
a LLM-based agent is presented. This framework introduces two core modules: (i) 
Hierarchical Graph Modeling and (ii) Programmable Node Generation. The former 
decomposes complex data science workflows into a structured graph, where tasks 
are represented as nodes and dependencies as edges. This approach dynamically 
adjusts to evolving data and task requirements by iteratively refining the graph 
structure. The latter ensures each subproblem is accurately defined, refined, and 
verified by dynamically generating and optimizing task-specific code snippets. 
These nodes integrate external tools and libraries for robust task execution. The 
system uses contextual feedback to refine both task and action graphs iteratively, 
enabling adaptive execution and debugging in real-time. The Data Interpreter 
demonstrates significant improvements in data analytics, machine learning, and 
open-ended tasks across multiple benchmarks, showcasing adaptability and pre-
cision. Extensive evaluations highlight its superiority, with a 25% boost on the 
InfiAgent-DABench [27]dataset and marked advancements in machine learning and 
mathematical problem-solving tasks. 

Furthermore, Qiao et al. [51] introduce TaskWeaver, a code-first framework 
designed to enable LLM-powered autonomous agents for complex task execution. 
TaskWeaver leverages LLMs to transform natural language user requests into 
executable Python code, integrating both custom and pre-defined plugins for 
diverse applications. The framework supports rich data structures (e.g., pandas 
DataFrames), ensures stateful code execution, and incorporates domain-specific 
knowledge via user-provided examples. A two-layer architecture is employed,
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consisting of a Planner and a Code Interpreter (CI). The Planner decomposes high-
level tasks into sub-tasks and manages their execution, while the CI generates and 
executes code, ensuring compliance with safety rules. TaskWeaver includes features 
such as plugin-only mode, dynamic plugin selection, secure code execution, and 
error-handling mechanisms like post-verification and auto-correction. Its modular 
design allows for the integration of additional functionalities and ensures scalability. 
The framework is validated through various case studies, including anomaly 
detection in time series data and stock price forecasting using ARIMA models [60]. 

Lastly, Wang et al. [69] present AutoGen a generalized framework for developing 
LLM-powered applications through multi-agent conversation systems. AutoGen 
provides a versatile infrastructure where agents, equipped with LLMs, tools, and 
human inputs, collaborate via customizable and dynamic conversation patterns. The 
framework supports complex workflows by defining agents with specific roles (e.g., 
problem-solving, retrieval, or decision-making) and programming their interactions 
using a mix of natural and programming languages. AutoGen’s core innovations 
include Conversable Agents and Conversation Programming. Conversable Agents 
are modular and reusable entities that communicate through structured message 
exchanges, while Conversation Programming simplifies workflow orchestration by 
designing computation and control flow around inter-agent dialogs. These features 
enable agents to autonomously coordinate tasks, adapt to evolving challenges, 
and incorporate feedback for iterative refinement. The framework demonstrates 
its capabilities through diverse applications, including mathematical problem-
solving, retrieval-augmented question answering, interactive decision-making, and 
dynamic group collaboration. AutoGen achieves state-of-the-art results by leverag-
ing dynamic conversation patterns, integrating tool-backed and LLM-backed agents, 
and supporting human intervention where necessary. Experimental evaluations 
reveal AutoGen’s ability to streamline workflows, enhance modularity, and deliver 
significant performance improvements over existing single-agent and multi-agent 
approaches. 

5.2.6.2 Information Extraction 

The study proposed in [78] introduces LLMAAA, a framework that uses LLMs 
as active annotators to create high-quality training datasets with minimal human 
intervention. The ability of LLMs to provide pseudo labels in a few-shot learning 
paradigm is empowered through active learning and prompt engineering strategies. 
The aim of LLMAAA is to make LLMs efficient and reliable annotators by 
amalgamating active learning into the annotation process. It iteratively generates 
stronger task-specific models (TAMs) through three stages, LLM annotator, active 
data acquisition, and robust learning with noisy labels. In the first step, LLMs 
generate pseudo-labels for NLP tasks such as named entity recognition (NER) and 
relation extraction (RE), enhancing LLM performances by using k-NN example 
retrieval and Label Verbalizer techniques. In the next phase, active learning 
strategies identify the most useful examples to annotate, reducing the effort of
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LLMs. These strategies include Maximum Entropy, Least Confidence, and K-Means 
Clustering. Each annotated example is added to the labeled dataset, which gradually 
improves the task-specific model’s performance. The final operation performed by 
LLMAAA is addressing noise in the label generated by the LLM by using an 
automatic reweighting technique. Performances of LLMAAA are evaluated on NER 
and RE tasks using datasets like Chinese OntoNotes 4.0 [68], English CoNLL03 
[64], and Re-TACRED [61]. 

The study in [38] highlights how to leverage LLMs and Natural Language 
Inference (NLI) modules to enhance document-level relation datasets by generat-
ing relation triples for Document-Level Relation Extraction (DocRE). Using this 
framework, the authors proposed DocGNRE which represents an enhanced version 
of the Re-DocRED dataset [63]. The proposed approach addresses the limitations 
of manual annotation and prior distant supervision techniques with two main 
steps. In the first step, a prompt composed of a generation demonstration and a 
specific context along with an entity list derived from the dataset is paired with 
each document, allowing the LLM to generate relation triples exclusively from the 
entities in the derived entity list. To obtain additional triples, LLM-generated outputs 
are reintroduced into the prompts, allowing the model to extend the set of relation 
triples iteratively. In the second step, a NLI model is used to map generated triples, 
often in natural language, to predefined relation types. The evaluation has been 
conducted under two different configurations, zero-shot document-level RE, and 
training with the augmented dataset by considering metrics like precision, recall, 
and F1 score. The approach was also compared to state-of-the-art DocRE models 
such as ATLOP [79] and KD-DocRE [62]. 

The authors of [24] proposed Img2LLM, a framework designed to be LLM-
agnostic, capable of interfacing with any frozen LLM to perform zero-shot Visual 
Question Answering (VQA). This framework addresses the challenges of modality 
disconnect between language and vision and task disconnect between language 
modeling and VQA exploiting the creation of intermediate textual prompts that 
bridge these gaps. Img2LLM leverages a vision-language model (BLIP) [39]  to  
generate question-relevant captions by identifying, through the use of GradCAM, 
regions of interest in an image that are relevant to the input question. From this 
generated caption, candidate answers are extracted by identifying key elements 
(e.g., nouns, verbs, adjectives) through NLP tools such as spaCy. These candidate 
answers serve as potential answers to questions about the image. For each of 
them, it is possible to use a question-generation network in order to generate 
specific questions. The set of question-answer (QA) pairs is specific to the current 
image, avoiding external training data. The prompts for LLM are composed by 
concatenating instruction, captions, and QA examples. Final results are derived from 
the LLM using greedy decoding. Img2LLM’s performances have been evaluated 
on VQAv2 [23], OK-VQA [45], and A-OKVQA [57] and compared against the 
following three prior VQA methods categories, zero-shot methods with frozen 
LLMs (e.g., PICa [73]), zero-shot methods with extra multi-modal pretraining (e.g., 
Flamingo [1]), and few-shot methods (e.g., ClipClap [47]), as well as on different 
LLMs. Moreover, studies on generalization and ablation have been performed.
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In [40], BLIP-2 is proposed, a framework designed to facilitate vision-language 
pre-training tasks. The framework, to bridge the gap between vision and language, 
introduces a lightweight and trainable Querying Transformer (Q-Former) that 
exploits frozen models (both image encoders and LLMs). Q-Former learns to extract 
the most relevant visual features from the frozen image encoder. It serves as a 
bottleneck between the frozen image encoder and the frozen LLM, where it selects 
and transforms visual data into a format interpretable by frozen LLMs. BLIP-2 
leverages a two-stage pre-training strategy to align visual and textual, Vision-
Language Representation Learning and Vision-to-Language Generative Learning. 
In the first phase, Q-Former is connected to a frozen image encoder, which is 
trained to extract text-relevant visual features. This is achieved through tasks like 
Image-Text Contrastive Learning (ITC), which aligns image and text features in 
the embedding space; Image-Text Matching (ITM), which verifies if an image-text 
pair is correctly matched; and Image-Grounded Text Generation (ITG), where Q-
Former is trained to generate descriptive text grounded in the visual content. In the 
second stage, the Q-Former is linked to a frozen LLM to generate natural language 
text conditioned on visual inputs. This stage exploits a fully connected projection 
layer to map the outputs of the Q-Former into the input space of the LLM and uses 
soft visual prompts to guide the text generation. BLIP-2 has been evaluated across 
multiple vision-language tasks, demonstrating advancements over previous state-of-
the-art models. 

The study presented in [43] proposes M2
.UGen, a unified framework that inte-

grates LLMs for multi-modal music understanding and generation. This framework 
combines multiple LLMs to bridge the gap between understanding and generating 
music across various modalities, including text, images, and videos. The framework 
uses several feature encoders to handle diverse input types, such as a music 
encoder to extract meaningful representations from music data, and image and 
video encoders to process visual content, transforming it into feature embeddings. 
These feature embeddings are then aligned through multi-modal adapters, consisting 
of convolutional layers, linear projections, and dense networks, in order to fuse 
information from different modalities for complex reasoning tasks. At the core of 
M 2 .UGen, there is a LLM that integrates the processed embeddings at various layers 
to understand and reason about the input modalities. For music generation tasks, 
the framework employs specialized music decoders that are guided by conditional 
embeddings generated from the LLM to produce music aligned with input prompts. 
M 2 .UGen has been evaluated across various music understanding and generation 
tasks against state-of-the-art models. 

In [77], the authors proposed Video-LLaMA, a multi-modal framework that com-
bines frozen LLMs and video and audio encoders to enable comprehensive video 
understanding. The architecture of Video-LLaMA is characterized by a dual-branch 
structure used to process visual and auditory information. In the vision-language 
branch, a pre-trained visual encoder extracts visual features from video frames, a 
position embedding layer injects temporal information into video frames, a video Q-
Former aggregates these frame-level features into a unified video representation, and 
a linear projection layer aligns the video embeddings with the LLM’s input space.
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In the audio-language branch, a pre-trained audio encoder computes features from a 
short segment of audio, a position embedding layer injects temporal information 
into audio segments, an audio Q-Former aggregates these audio segment-level 
features into a unified audio representation, and a linear projection layer that maps 
audio features into the LLM’s embedding space. The processed visual and audio 
embeddings are then concatenated with textual embeddings as soft prompts to guide 
the LLMs generation. The framework has been compared against existing models 
and demonstrated significant advancements in audio-visual understanding. 

5.3 Discussion 

In this chapter, we have explored how large language models are progressively trans-
forming the life cycle of information systems, enhancing both strategic decision-
making and operational efficiency. Rather than simply automating isolated tasks, 
LLMs are demonstrating their ability to act as intelligent collaborators, bridging 
gaps between unstructured and structured information, improving reasoning across 
complex workflows, and enabling a more adaptive approach to system development 
and maintenance. 

From the early stages of planning, where LLMs assist in capturing requirements 
and synthesizing strategic insights, to conceptual modeling, where they facilitate 
the translation of informal descriptions into formal system representations, these 
models are redefining how ISs take shape. Their ability to understand context, 
generate structured outputs, and iteratively refine results introduces new possibilities 
for human-AI collaboration in design processes that were traditionally rigid and 
manual. As systems progress from design to implementation, LLMs have begun 
to influence architecture definition, not only by assisting in code generation but 
also by contributing to the formulation of structured development plans that align 
software design with business objectives. In testing and validation, their role extends 
beyond error detection, helping anticipate faults, optimize debugging workflows, 
and increase software resilience through adaptive learning techniques. The final 
stages of the IS life cycle, monitoring and maintenance, showcase LLMs as 
intelligent diagnostic tools, capable of identifying system anomalies, detecting 
security threats, and analyzing vast streams of log data with a level of efficiency 
and scalability previously unattainable. 

Beyond the structured phases of an information system life cycle, LLMs also 
prove to be valuable assets in complementary areas such as information extrac-
tion and data analytics. In information extraction, LLMs demonstrate an impres-
sive ability to process unstructured data from various sources—text, images, and 
multimedia—transforming them into structured, machine-readable formats. This 
capability enhances knowledge management, facilitates automation in document-
heavy domains, and improves interoperability across different IS components. 
Meanwhile, in data analytics, LLMs enable sophisticated insights through tech-
niques such as text-to-SQL, text-to-SPARQL, and multi-source reasoning via
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autonomous LLM agents. These advancements are critical in decision support 
systems, real-time analytics, and predictive modeling, allowing IS to move from 
reactive to proactive intelligence. 

Despite these advancements, the integration of LLMs into ISs is still in its 
early stages, facing critical challenges such as explainability, domain adaptation, 
and trustworthiness. Ensuring that these models provide reliable, unbiased, and 
interpretable outputs remains a key concern for real-world adoption. Future research 
must focus not only on refining LLM performance but also on understanding their 
limitations, improving their integration into existing IS frameworks, and developing 
methodologies that ensure human oversight to remain central in critical decision-
making processes. Ultimately, this survey highlights the potential of LLMs to 
reshape how ISs are conceived, built, and maintained. While their capabilities 
continue to expand, their true impact will depend on how effectively they are 
integrated into the broader ecosystem of information systems, balancing automation 
with human expertise to create more intelligent, adaptive, and trustworthy digital 
infrastructures. 
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Chapter 6 
Programming Large Language Models 

Marco Calamo and Jacopo Rossi 

Abstract This chapter provides a comprehensive overview of tools and techniques 
for programming large language models (LLMs), covering both fundamental and 
advanced aspects of their implementation. The first section explores different 
programming languages and frameworks, with a particular focus on Python due 
to its ecosystem of libraries, such as Hugging Face and LangChain, which facilitate 
model training, fine-tuning, and deployment. The chapter then presents a practical 
overview of pre-training and fine-tuning methodologies, discussing approaches 
like unsupervised and supervised learning, instruction tuning, parameter-efficient 
fine-tuning, and alignment fine-tuning to optimize LLM performance. In the 
final section, prompt engineering techniques are examined, including zero-shot, 
few-shot, and chain-of-thought prompting, demonstrating how structured prompts 
enhance model reasoning and response accuracy. Through examples and code 
snippets, the chapter offers a hands-on guide for understanding and exploiting 
LLMs efficiently, balancing computational resources, and improving task-specific 
performance. 

6.1 Tools and Libraries for Programming LLMs 

Large language models (LLMs) are advanced AI models designed to process and 
generate human-like text. They are trained on vast amounts of data and can be used 
for a wide variety of tasks, such as chatbots, text summarization, code generation, 
and many others. Python is the most widely used language in this context, but there 
are also other languages like TypeScript and JavaScript that support LLMs. The 
prominence of Python in this field is due to its syntactic simplicity and readability, 
combined with the availability of a rich ecosystem of libraries and frameworks that 
facilitate the implementation of machine learning and natural language processing 
techniques. The ease of writing in Python allows developers to focus more on the use 
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of models and solving problems, without having to understand complex syntactic 
details. Python’s compatibility with all major LLMs frameworks makes it ideal for 
simplifying key processes such as training and fine-tuning. Moreover, integration 
with data management and visualization libraries, such as Pandas, NumPy, and 
Matplotlib, helps create a complete and interconnected ecosystem that significantly 
accelerates the development cycle of LLM applications. 

In this context, the computing power of GPUs is assuming a crucial role in 
fully exploiting the potential of LLMs. GPUs allow thousands of operations to be 
executed simultaneously, which is essential for the intensive calculations required. 
A key element is the use of the CUDA platform, developed by NVIDIA, which 
offers specialized libraries and APIs to allow developers to fully exploit the power of 
GPUs. Thanks to CUDA, it is possible to optimize numerous algorithms used in the 
training of deep neural networks, ensuring highly efficient performance. GPUs with 
CUDA are also essential for the deployment of LLMs. In these scenarios, models 
require an optimal management of computational resources to allow the generation 
of real-time responses. 

Going more into details, in the first part of this chapter, we analyze Python’s 
role in using LLMs, focusing specifically on Hugging Face, a leading platform in 
the AI ecosystem. Hugging Face provides a large catalogue of pre-trained models, 
datasets, and training tools, making it easy to use and adapt them. We’ll explore 
how to load pre-trained models, leverage ready-made datasets, and apply fine-tuning 
techniques to customize models to specific needs. This section will provide practical 
feedback on how to best leverage the available training and experimentation tools. 
In the second part, we’ll move to LangChain, an open-source framework designed 
to simplify the orchestration of LLM-based applications. We will explore prompt 
engineering and strategies to improve the interaction of models with real data 
sources, optimizing performance and generating contextualized responses. 

6.2 Pre-training and Preparing an LLM Model 

In this section, we provide a comprehensive step-by-step guide on building a 
language model from scratch using Hugging Face. This practical implementation 
of basic LLM concepts offers an overview of the pre-training process for a small 
language model capable of running on a low-end machine without a dedicated GPU. 
The minimum requirement for running the pre-training code is approximately 2GB 
of RAM. However, the quality of the resulting model depends entirely on the amount 
of training data. For this demo, we use a very small dataset to illustrate the process. 
While a fully functional model requires trillions of tokens and extensive training 
time, our example is limited to a few thousand tokens and about one hour of training. 
To keep the implementation accessible, we use high-level abstractions and state-
of-the-art libraries, avoiding in-depth mathematical details related to optimization. 
First, we demonstrate how to build an LLM from scratch, covering the key steps in 
the pre-training process. Then, we show how to use an existing LLM as a black box,
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Table 6.1 Film reviews with 
sentiment analysis 

Text Label 

I rented I AM CURIOUS-YELLOW from my video 
store because of all the controversy .. 

0  ne  g

“I Am Curious: Yellow” is a risible and pretentious 
steaming pile... 

0  ne  g

If only to avoid making this type of film in the 
future... 

0  ne  g

This film was probably inspired by Godard’s 
Masculin, féminin and I urge you to see that film 
instead... 

0  ne  g

leveraging prompt engineering techniques to guide its behavior effectively without 
modifying the underlying model. 

6.2.1 Dataset Loading 

The first step in building a language model is preparing the dataset. The most 
important factor in training an effective language model is having a high-quality 
dataset. For this example, we use the imdb [13] dataset by Stanford NLP, directly 
accessed through Hugging Face.1 The dataset contains selected anonymized reviews 
from the IMDb platform,2 including also if the sentiment of the review was positive 
(1) or negative (0). A brief snippet is reported in Table 6.1. 

The datasets library3 simplifies dataset management and loading from Hug-
ging Face for various tasks. To load the IMDB dataset, execute the following 
command: 

Dataset Loading 

1 from datasets import load_dataset 
2 # since the dataset is already split between train, test 
3 # and unsupervised, we only load the train split 
4 dataset = load_dataset( "stanfordnlp/imdb", split='train')

To prepare the data for processing by the language model, we need to: 

1. Tokenize the plain text (break it into tokens). 
2. Pad the tokenized sequences to ensure uniform length.

1 https://huggingface.co/datasets/stanfordnlp/imdb 
2 https://www.imdb.com/ 
3 https://huggingface.co/docs/datasets/index 

https://huggingface.co/datasets/stanfordnlp/imdb
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It is important to use the correct tokenizer for the model; otherwise, it would not be 
possible to properly encode the text input in the tensor format of GPT-2 and decode 
the output from GPT-2 tensors to plain text. 

Dataset Pre-processing 

1 from transformers import AutoTokenizer, DataCollatorWithPadding, 
DataCollatorForLanguageModeling↪→ 

2 

3 # we choose to use pre-trained tokenizer 
4 # it will help speed up the pre-training step 
5 tokenizer = AutoTokenizer.from_pretrained('gpt2') 
6 # setting up the tokenizer for padding support 
7 tokenizer.pad_token = tokenizer.eos_token 
8 

9 # encoding function for tokenizing and padding data 
10 def encode(examples): 
11 # applying tokenization 
12 result = tokenizer(examples['text'], 
13 truncation=True, 
14 padding='max_length') 
15 # we set the gold standard for masked text. 
16 # During training the LM will try to recreate 
17 # token sequence from 'text', comparing it 
18 # from 'labels'. For base pre-training they 
19 # are the same 
20 result["labels"] = result["input_ids"].copy() 
21 return result
22

23 dataset = dataset.map(encode, batched=True, remove_columns=["id"])
24 data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

Once the dataset is prepared, we can load the model and feed data into it. 

6.2.2 Model Loading 

For this demonstration, we chose GPT-2 [15] as the base model due to its relatively 
small number of parameters (about 137M), which allows for training even on 
consumer machines.4 

4 Note that while the training time will still be significant, following through with our examples 
will take up to 2 hours on an NVIDIA RTX 3090 with 24GB of VRAM.
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To initialize the model, we use the transformers library5 by Hugging Face, the 
state-of-the-art tool for working with LLMs at any scale. Creating an empty GPT-2 
model is as simple as typing: 

GPT-2 Model Loading 

1 from transformers import GPT2Config, GPT2LMHeadModel 
2 # instantiate the model with default config 
3 model = GPT2LMHeadModel(GPT2Config()) 
4 # print out model details
5 print(model)

To be sure that we are looking at the correct model, we print out the model’s 
information and compare it with the original GPT-2 architecture presented in [7], 
where the blue rectangle represents a gpt block. The final model is composed by 12 
of those blocks. 

Output 

GPT2LMHeadModel( 
(transformer): GPT2Model( 
(wte): Embedding(50257, 768) 
(wpe): Embedding(1024, 768) 
(drop): Dropout(p=0.1, inplace=False) 
(h): ModuleList( 
(0-11): 12 x GPT2Block( 
(ln_1): LayerNorm((768,), eps=1e-05, 
elementwise_affine=True) 
(attn): GPT2SdpaAttention( 
... 
) 
(ln_2): LayerNorm((768,), eps=1e-05, 
elementwise_affine=True) 
(mlp): GPT2MLP( 
... 
) 
) 
)
(ln_f): LayerNorm((768,), eps=1e-05,
elementwise_affine=True)
)
(lm_head): Linear(in_features=768,
out_features=50257, bias=False)
)

We also generate some text completion to be sure that the model has actually its 
weights initialized at random. To generate the text completion from our model, we

5 https://huggingface.co/docs/transformers/index 

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
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use the pipeline abstraction that offers Hugging Face library. It is capable of parsing 
the output of the language model for us and display the output in natural language. 

GPT-2 First Testing 

1 from transformers import pipeline, set_seed 
2 # automated pipeline for text generation from 
3 # an huggingface model 
4 generator = pipeline('text-generation', model=model, 

tokenizer=tokenizer)↪→ 
5 # setting manual seed for reproducibility 
6 set_seed(0) 
7 # using the language model to complete the sentence 
8 # with the most probable token sequence according 
9 # to their weights 

10 print(generator("Hello, I'm a language model," , max_length=30,
num_return_sequences=1)[0]['generated_text'])↪→

Output 

"Hello, I'm a language model, azorazorazorigoigoigoigo..."

As we can see, the model currently generates only nonsensical gibberish. We are 
now ready to train it on plain text to improve its ability to model natural language. 

6.2.3 Pre-training 

Once the model and dataset are ready, we can begin the training process. In this case, 
the trainer abstraction provided by the Hugging Face library is straightforward. First, 
we need to define the training arguments, i.e., the parameters for the optimization 
process. 

Training Arguments 

1 from transformers import TrainingArguments, Trainer 
2 training_args = TrainingArguments( 
3 output_dir="llms", 
4 learning_rate=2e-5, 
5 per_device_train_batch_size=4, 
6 per_device_eval_batch_size=4, 
7 num_train_epochs=1, 
8 weight_decay=0.01, 
9 eval_strategy="epoch", 

10 save_strategy="epoch", 
11 load_best_model_at_end=True, 
12 eval_steps=1000,
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13 gradient_accumulation_steps=2, 
14 eval_accumulation_steps=1, 
15 ) 

The chosen parameters are pretty standard for what concerns learning rate and 
weight decay values, we decided to add some more parameters for reducing the 
impact on the GPU memory like per-device batch size and accumulation steps, to 
make this code executable even on GPUs with fewer VRAM available. The training 
will run for only one epoch, so the results will not be optimal, but it will be enough 
to demonstrate the capabilities of language modeling of GPT-2.6 Finally, we are 
ready to start our training. 

Training 

1 trainer = Trainer( 
2 model=model, 
3 args=training_args, 
4 train_dataset=dataset, 
5 eval_dataset=dataset, 
6 data_collator=data_collator, 
7 processing_class=tokenizer, 
8 ) 
9 trainer.train() # start the trainer

This snippet of code will execute the training on the task of generating the next 
most probable token given the past sequence, i.e., Causal Language Modeling. The 
train should last about an hour on a modern laptop. Afterward, we can try again the 
generation from earlier and observe the output: 

Output 

"Hello, I'm a language model, I have been a movie, I have been a movie. 
I have been a movie. I was a movie"↪→

We can see that the output is still very far from the model we are used to, but just 
from a small dataset and a quick training, the model already guessed correctly the 
English sentence structure and the main argument of the dataset (movies reviews). 

In the next sections, we will see how to enhance the plain language model and 
how to fine-tune it for specific tasks.

6 For reference, it took about 400 epochs on a small dataset to a similar model to properly converge: 
https://github.com/karpathy/nanoGPT. 

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
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6.3 Fine-Tuning LLMs 

In this section, we will go through all the fine-tuning methods of LLMs, and we 
will implement them starting from (full) pre-trained GPT-2 to test what kind of 
difference they make. We set the baseline by executing the generating script from 
Sect. 6.2 on the pre-trained GPT-2. 

Output 

"Hello, I'm a language model, language model. You know what I mean? A 
language model. When I write, I 'm like"↪→

As we can observe, the model has an understanding of the English language. 
However, even the full pre-trained version struggles to form a coherent sentence 
without context. Let’s see if when fine-tuning the model the results get more 
satisfactory. 

6.3.1 Unsupervised Fine-Tuning 

The first case is unsupervised fine-tuning. It will help our model comprehend a 
specific lexicon better. In our case, it will be about movies. The code is the same 
from Sect. 6.2, with one key difference at the model loading stage: in this case, we 
download from the Hugging Face repositories the pre-trained version. 

Unsupervised Fine Tuning Model Loading Code 

1 model = AutoModelForCausalLM.from_pretrained('gpt2 ' )

The output with the fine-tuned model is: 

Completion Output 

"Hello, I'm a language model, and I enjoy speaking Latin as a child. My 
favorite films is Lucio Morricone's (2007, 2003, 2004) and the 
excellent animated short 'The Man Who Wrote Our Mother's Heart.'"

↪→
↪→

We can observe that even if some information is made up (like the title of the movie), 
the model has shifted its default focus on the movie lexicon, which is exactly what 
we expected from fine-tuning.
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6.3.2 Supervised Fine-Tuning 

Regarding supervised fine-tuning, the class used for this type of training will rely on 
reinforcement learning techniques. In this example, we aim to fine-tune, by training, 
the full pre-trained GPT-2 on the imdb dataset to perform a sentiment analysis task. 
This time the trainer will consider the labels assigned to each review, which can 
be either positive or negative (see Table 6.1). This approach should help improve 
sentence completion in a specific sentiment compared to unsupervised fine-tuning. 
The code follows the same patterns as before, but the key difference is that we 
load the sequence classification version of GPT-2, which includes an additional final 
softmax layer. 

Supervised Fine Tuning Code 

1 from datasets import load_dataset 
2 from transformers import GPT2Tokenizer 
3 from transformers import GPT2ForSequenceClassification 
4 from transformers import Trainer, TrainingArguments 
5 

6 # dataset import 
7 dataset = load_dataset("imdb") 
8 

9 # tokenizer loading 
10 tokenizer = GPT2Tokenizer.from_pretrained("gpt2") 
11 tokenizer.pad_token = tokenizer.eos_token 
12 

13 # tokenize function 
14 def tokenize_function(examples): 
15 return tokenizer(examples["text"], padding="max_length", 

truncation=True)↪→ 
16 

17 # get dataset ready 
18 tokenized_datasets = dataset.map(tokenize_function, batched=True) 
19 

20 # import gpt-2 with a new softmax layer for classification 
21 # right now the softmax is initialized at random 
22 model = GPT2ForSequenceClassification.from_pretrained("gpt2", 
23 num_labels=2) 
24 model.config.pad_token_id = model.config.eos_token_id 
25 

26 # run training 
27 training_args = TrainingArguments( 
28 output_dir="./results", 
29 learning_rate=2e-5, 
30 per_device_train_batch_size=10,
31 num_train_epochs=3,
32 weight_decay=0.01,
33 )
34

35 trainer = Trainer(
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36 model=model, 
37 args=training_args, 
38 train_dataset=tokenized_datasets["train"], 
39 eval_dataset=tokenized_datasets["test"], 
40 ) 
41 

42 trainer.train() 

As we can see, the full code is similar to the pre-training one: the dataset loading, 
the tokenizer loading, and the tokenize function are the same. The key difference 
is the kind of model that we load: we use the gpt2 for sequence classification 
abstraction. The huggingface trainer is capable of detecting a training goal that is no 
longer sequence completion but sequence classification and automatically adapt the 
training process. 

After supervised fine-tuning, the GPT-2 model with a new softmax layer is now 
capable of classifying the sentiment of the movie reviews. We introduce a new 
snipped code for generating the desired output for classification: 

Classification Output 

1 def get_sentiment(sentence): 
2 inputs = tokenizer(sentence, return_tensors="pt").to('cuda') 
3 outputs = model(**inputs) 
4 prediction = outputs.logits.argmax(-1).item() 
5 return "Positive" if prediction == 1 else "Negative" 
6 

7 sentence = "I loved this movie!"
8 print(get_sentiment(sentence))

We needed a new function called get_sentiment to parse the numeric output provided 
by the softmax and transform them into text. The results are the ones we were 
expecting: 

Sentiment Output 

Positive  

6.3.3 Instruction Fine-Tuning 

To fine-tune a model using Instruction fine-tuning, we need to select the appropriate 
dataset and apply reinforcement learning. We introduce a new Hugging Face
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Table 6.2 Instruction and output examples 

Instruction Output 

Create a function that takes a 
specific input... 

def f(x): """Takes a specific input and produces 
a specific output using any mathematical
operators..."""

Generate a unique 
8-character string that... 

import string import random def 
random_password_string(): characters =...

Given a course consisting of 
5 lessons, write a... 

def display_first_lesson(lessons): print("The 
first lesson is: " + lessons[0]) Lessons =
["Python...

Create an algorithm to 
encourage work balance... 

One algorithm to encourage work balance and 
productivity in remote work is a scheduling...

Write a JavaScript that 
changes the text of a... 

document.getElementById("myParagraph").innerHTML 
= "Goodbye, World!";

Implement a sorting 
algorithm which takes an... 

def sorting_algorithm(arr): for i in 
range(len(arr)-1): for j in range(i+1,
len(arr)):...

library called trl,7 which stands for Transformers Reinforcement Learning. It uses 
reinforcement learning to train the model to follow instructions. Specifically, we use 
the SFTTrainer class from trl,  on  the CodeAlpaca20k8 dataset (see Table 6.2). 
This dataset contains prompt descriptions along with code outputs in different 
programming languages. 
By formatting the dataset into a chat template, even a small model like GPT-2 could 
learn to have chat like interactions and help with small code generation tasks. The 
code is: 

Instruction Fine Tuning Preparation 

1 from transformers import AutoModelForCausalLM, AutoTokenizer 
2 from datasets import load_dataset 
3 from trl import SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM 
4 

5 dataset = load_dataset("lucasmccabe-lmi/CodeAlpaca-20k", 
6 split="train") 
7 tokenizer = GPT2Tokenizer.from_pretrained('gpt2') 
8 tokenizer.pad_token = tokenizer.eos_token 
9 

10 # helper function to prepare the text from dataset: 
11 # it inserts into a chat template 
12 def formatting_prompts_func(example): 
13 output_texts = []
14 for i in range(len(example['instruction'])):

7 https://huggingface.co/docs/trl/index 
8 https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k 
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https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k
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15 # add the template for instruction completion 
16 # in the form of question and answer, 
17 # like a chat 
18 text = f"""### Question: {example['instruction'][i]}\n 
19 ### Answer: {example['output'][i]}""" 
20 output_texts.append(text) 
21 return output_texts 
22 

23 response_template = " ### Answer:" 
24 # preprocess the dataset to add the template
25 collator = DataCollatorForCompletionOnlyLM(response_template,
26 tokenizer=tokenizer)

To prepare the dataset for training, we use the formatting_prompts_func function 
that wraps the data entry in the dataset with a standard question-answer template 
to teach to the model the format of the response it should give when prompted 
according to the template. 

Instruction Fine Tuning Training 

1 # load the trainer with default parameters 
2 trainer = SFTTrainer( 
3 model, 
4 train_dataset=dataset, 
5 args=SFTConfig(output_dir="/tmp"), 
6 formatting_func=formatting_prompts_func, 
7 data_collator=collator, 
8 ) 
9 # start the training 

10 trainer.train()

The trainer abstraction is similar to what we have seen before, but we use the 
supervised fine-tuning trainer that applies reinforcement learning principles to the 
training. 

After the brief instruction, fine-tuning the model is now capable of answering 
questions in a chat-like style following the template presented before. However, due 
to a very short training and a small number of parameters, the quality of the answers 
is still not very satisfactory. Here is an example: 

Completion Output 

### Question: 
How can you help me? 
### Answer: 
You can: A: If you have any questions,
message me on Twitter, [...]
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6.3.4 Parameter Efficient Fine-Tuning 

To load an optimized version of our LLM, we can use another Hugging Face library 
called peft,9 which stands for Parameter Efficient Fine-Tuning. It supports several 
optimization techniques, like LoRa. This library works very well in tandem with 
other Hugging Face libraries, like trl. To run the same training from the previous 
section using about 33% less GPU memory, you could use this code: 

Parameter Optimized Fine Tuning 

1 from peft import LoraConfig 
2 

3 # create configuration for parameter optimization 
4 peft_config = LoraConfig( 
5 # optimization matrix rank 
6 r=32, 
7 # scaling factor 
8 lora_alpha=32, 
9 # parameter dropout for lora 

10 lora_dropout=0.05, 
11 bias="none", 
12 task_type="CAUSAL_LM", 
13 # tune the embedding layer and prediction head 
14 modules_to_save=["wte", "lm_head"] 
15 ) 
16 

17 # setting up the trainer with default parameters 
18 training_args = SFTConfig(output_dir ="/tmp", 
19 per_device_train_batch_size=2, 
20 per_device_eval_batch_size=2, 
21 num_train_epochs=2,) 
22 

23 # fine tuning with direct peft_config 
24 trainer = SFTTrainer( 
25 'gpt2', 
26 train_dataset=dataset,
27 args=training_args,
28 peft_config=peft_config
29 )
30

31 trainer.train()

9 https://huggingface.co/docs/peft/index 

https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index
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To run quantization, we can also load the model using the bitsandbytes library.10 
However, as GPT-2 is not supported by that, we use Opt-350M model [21]  as  an  
example:

Memory Optimized Fine Tuning 

1 from transformers import AutoModelForCausalLM, BitsAndBytesConfig 
2 

3 # loading configuration with 8-bit integer weights 
4 quantization_config = BitsAndBytesConfig(load_in_8bit=True) 
5 

6 # loading the model 
7 model_8bit = AutoModelForCausalLM.from_pretrained( 
8 "facebook/opt-350m", 
9 quantization_config=quantization_config, 

10 torch_dtype="auto"
11 )

6.3.5 Alignment Fine-Tuning 

To demonstrate alignment fine-tuning, we implemented a Direct Preference Opti-
mization (DPO) setup due to its direct support in Hugging Face and its comparable 
performance. Proper alignment requires selecting a reference dataset. For this demo, 
we chose the UltraFeedback Binarized dataset11 [4]. As shown in Table 6.3,  the  
dataset includes an instruction, an accepted completion, and a rejected completion, 
each assigned a score from 1 to 10.

To align fine-tune GPT-2 with the dataset provided, we first need to format the 
data in a chat-like structure. Once prepared, we can use the DPOTrainer from the 
trl library to perform fine-tuning.

DPO Alignment Code 

1 from datasets import load_dataset 
2 from trl import DPOConfig, DPOTrainer 
3 from transformers import AutoModelForCausalLM, AutoTokenizer 
4 

5 model = AutoModelForCausalLM.from_pretrained("gpt2") 
6 tokenizer = AutoTokenizer.from_pretrained("gpt2") 
7 tokenizer.pad_token = tokenizer.eos_token 
8 

9 # this time we need an explicit chat template

10 https://huggingface.co/docs/bitsandbytes/main/index 
11 https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized 

https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
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10 tokenizer.chat_template = """{%  for message in messages %} 
11 {%  if loop.first and messages[0]['role']  !=  'system' %} 
12 {{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }} 
13 {%  endif %}{{'<|im_start|>' 
14 + message['role']  +  '\n' + message['content'] 
15 + '<|im_end|>' + '\n'}}{%  endfor %} 
16 {%  if add_generation_prompt %}{{ '<|im_start|>assistant\n' }} 
17 {%  endif %}""" 
18 

19 train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", 
20 split="train") 
21 

22 training_args = DPOConfig(output_dir="openai-community/gpt2", 
23 logging_steps=10, 
24 per_device_train_batch_size=2, 
25 per_device_eval_batch_size=2,) 
26 trainer = DPOTrainer(model=model, args=training_args,
27 processing_class = tokenizer, train_dataset=train_dataset)
28 trainer.train()

We apply a standard chat template to the dataset by including it in the tokenizer. The 
training abstraction is once again similar to the standard trainer, but it applies under 
the hood the DPO training loop. 

Table 6.3 Comparison of instructions, chosen, rejected, and scores 

Instruction Chosen Rejected Score comparison 

Use the pygame library 
to write a version of the 
classic game Snake, 
with a unique twist 

Use the pygame library 
to write a version of the 
classic game Snake, 
with a unique twist 

Use the pygame library 
to write a version of the 
classic game Snake, 
with a unique twist 

6  v  s 4

She was a horrible pet 
owner; she would put a 
what on her cat? 
Options: leave outside, 
sharp teeth, get wet 

She was a horrible pet 
owner; she would put a 
what on her cat? 
Options: leave outside, 
sharp teeth, get wet 

She was a horrible pet 
owner; she would put a 
what on her cat? 
Options: leave outside, 
sharp teeth, get wet 

8  vs  7  .5

Detailed instructions: In 
this task, classify if a 
review is 
positive/negative, 
indicating your answer 
as P or N 

Detailed instructions: 
Classify reviews as 
positive or negative 

Detailed instructions: 
Classify reviews as 
positive or negative 

8  v  s 4

Write me an in-game 
shop system in Unity 
that uses gacha 

Write a basic gacha 
in-game shop system 

Write a basic gacha 
in-game shop system 

8  v  s 8

Develop a 10-page 
research paper on the 
impact of meditation on 
mental health 

Write about the impact 
of meditation on mental 
health 

Write about the impact 
of meditation on mental 
health 

7  vs 5
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After alignment tuning, the GPT-2 model is now capable of following a 
standardized chat template with system, user, and assistant prompt. We can use this 
snippet of code to generate proper chat completion: 

Chat text generation Code 

1 from transformers import pipeline, set_seed 
2 

3 generator = pipeline('text-generation', 
4 model=model, 
5 tokenizer=tokenizer) 
6 set_seed(0) 
7 chat_history = [ 
8 {"role": "system", "content": "You are a chatbot"}, 
9 {"role": "user", "content": "Help me?"}, 

10 ] 
11 outputs = generator( 
12 chat_history, 
13 max_new_tokens=52, 
14 )
15 print(outputs[0]["generated_text"])

We observe a behavior similar to that seen after instruction tuning: the model follows 
the template, but due to the short training time and limited number of parameters, 
its responses remain unsatisfactory. 

Completion Output 

{'role': 'system', 'content': 'You are a chatbot'}, 
{'role': 'user', 'content': 'Help me?'}, 
{'role': 'assistant', 'content': 'Notes: 

This command ignores message-level messages, 
making communication with external tools harder. [...]}

6.4 Prompt Engineering 

Prompt engineering is the practice of carefully designing and refining prompts to 
optimize the responses generated by LLMs [16]. The concept of a prompt refers 
to a set of task-specific instructions designed for an LLM to execute. A well-
structured prompt acts as a guide for the LLM, helping to understand the user’s 
intent, handle ambiguity, and focus on providing results that align with the desired 
goal. The importance of prompts lies in their ability to influence how effectively 
an LLM performs various tasks. For example, for simple questions, such as asking 
for a brief explanation or definition, a direct prompt is often sufficient. However, 
in more complex cases, such as generating detailed reports or solving multi-step
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problems, imprecise prompts may result in responses that are vague, incomplete, or 
unrelated [3]. This is where the distinction between simple prompts and advanced 
prompts becomes critical. Simple prompts are typically concise and straightforward, 
consisting of basic questions or instructions that require a minimum level of detail. 
While they are effective for simple tasks, they lack the structure and specificity 
needed to handle more complex requests. In contrast, advanced prompts are more 
elaborate and often include additional context, examples, constraints, or formatting 
guidelines. By incorporating these elements, advanced prompts direct with more 
efficiency the behavior of the model, allowing it to produce responses that are not 
only precise but also tailored to specific needs or expectations [12]. 

Prompt engineering is not limited to the simple design and development of 
prompts but involves a set of skills and techniques that are essential for interacting 
and working with LLMs. Through prompt engineering, it is not only possible to 
enhance the performance of an LLM, but there is also the chance to develop new 
features, such as integrating domain-specific knowledge or using external tools to 
extend the capabilities of the model [20]. In the following sections, we explore 
how to use advanced prompt engineering techniques to unlock the full potential 
of LLMs, enabling them to perform increasingly complex tasks with higher levels 
of consistency, reliability, and performance. 

6.4.1 Zero-Shot Prompting 

Zero-shot prompting is a technique that consists of directly asking the model to 
perform a task by providing only the task description or query. Zero-shot prompting 
relies entirely on the model’s pre-trained knowledge to interpret the task and answer 
appropriately. This method is quick and efficient and works particularly well for 
simple tasks or when the model already has sufficient knowledge about the request 
[10]. 

Zero-shot excels in handling simple and well-defined tasks, such as explaining a 
concept, summarizing or translating text, and creative writing. This approach is also 
ideal to develop LLM-based solutions without requiring extensive setup or examples 
to perform rapid tests on them. Additionally, zero-shot prompting uses the language 
model’s training data to handle general knowledge queries, providing contextually 
relevant responses. 

Here, are some examples of possible zero-shot prompts: 

Explanation Prompt 

Explain the concept of gravity as if you were teaching it to a 
10-year-old. Keep the explanation simple and avoid complex terms.↪→
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Summarization Prompt 

Summarize the following news article in one sentence: 'The city council 
has approved a plan to build a new community park, which will 
feature walking trails, playgrounds, and picnic areas. The project 
is expected to be completed by 2026.'

↪→
↪→
↪→

Translation Prompt 

Translate the following sentence from English to French: 'I would like 
a cup of coffee, please.' Use formal and polite language.↪→

Creative Writing Prompt 

Write a short story of 100 words about a lost dog finding its way home. 
Make it heartwarming and suitable for children.↪→

Observing these examples, it is important to underline that to get the most out of 
zero-shot prompting, the prompt should be: 

• Clear: use simple and unambiguous language. 
• Specific: clearly define what you want the model to do (e.g., summarize, explain, 

translate, etc.). 
• Contextual: provide any necessary background information or constraints. 
• Goal-Oriented: state the objective of the task to help the model focus on the 

desired result. 

The strength of zero-shot prompting lies in its simplicity. Designing a prompt 
with this technique requires minimal effort and allows one to execute tasks in a rapid 
way without doing a particular setup. However, limitations include less precision 
when handling complex or ambiguous tasks and the potential for misinterpretation 
due to the absence of task examples or demonstrations. 

6.4.2 Few-Shot Prompting 

Few-shot learning is an approach that can be adopted to perform specific tasks. 
Unlike zero-shot prompting, which relies solely on the responses generated by the 
model without providing specific guidelines, it uses examples to help the model 
identify patterns and relationships [17]. This approach is particularly useful when 
it is not possible to collect large amounts of labeled data, such as rare events, 
specialized domains, or rapidly changing contexts. The adoption of techniques 
based on few-shot learning is a key element for the effective use of LLMs. 
By structuring data in a consistent format, models can be configured to obtain
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appropriate answers to specific tasks, reducing the need for large amounts of 
training data. Few-shot learning can be described as a methodology that exploits the 
knowledge of the model in a more targeted way. In particular, it allows obtaining 
more structured answers, with less variability and greater consistency, improving 
the ability of the model to solve specific problems. Studies confirm that few-shot 
learning is a highly effective strategy [2], especially when using structured prompts. 
The use of carefully selected examples improves the performance of the model and 
proves to be useful in scenarios characterized by limited availability of data. 

To create an effective few-shot prompt, we can identify the following steps: 

• Define the task: specify the task or objective that the LLM is expected to perform. 
It is very important to define the type of input the LLM will process and the 
desired output format. 

• Choose examples: select examples that effectively represent how to solve the 
task. These examples should illustrate the desired input-output mapping with 
clarity and reflect the diversity of the data distribution to ensure robustness. 

• Organize the prompt: structure the prompt in a coherent and logical order. Exam-
ples are typically associated with the task of assisting the response generation. 
They should be formatted consistently and arranged to highlight their relevance 
to the prompt. 

• Test and refine: once an initial prompt is defined, it is critical to evaluate its 
effectiveness. This involves analyzing the outputs’ accuracy and consistency with 
the goals of the task. Based on these evaluations, it is possible to refine the prompt 
by adjusting examples, reformulating the query, or changing the overall structure. 
Iterative testing allows for the identification of issues, such as biases introduced 
by example selection or misinterpretations of the task by the LLM. 

Here there are some examples of few-shot prompting: 

Explanation 

Explain concepts in simple terms for a 10-year-old. 

These are some examples of how to perform the task: 

Topic: Electricity 
Explanation: Electricity is like magic energy that flows through wires 

to make things like lights and TVs work. It travels super fast and 
powers up everything around us.

↪→
↪→ 

Topic: Photosynthesis 
Explanation: Photosynthesis is how plants make their food. They use 

sunlight, water, and air to create energy, just like how we eat
food to stay strong.

↪→
↪→

Topic: Gravity
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Explanation: Gravity is like an invisible hand that pulls everything 
down to the ground. It's why we don't float away and why things 
fall when you drop them. Even the moon stays near Earth because of 
gravity.

↪→
↪→
↪→

Explain the following concept:

Topic: The Water Cycle
Explanation:

Named Entity Recognition 

Extract entities from the sentences and classify them. 

These are some examples of how to perform the task: 

Sentence: "Apple's headquarters are in Cupertino." 
Entities: [Apple: Organization, Cupertino: Location] 

Sentence: "Google was founded in California." 
Entities: [Google: Organization, California: Location] 

Sentence: "Elon Musk is the CEO of Tesla." 
Entities: [Elon Musk: Person, Tesla: Organization] 

Sentence: "The Eiffel Tower is located in Paris." 
Entities: [Eiffel Tower: Location, Paris: Location] 

Sentence: "Jeff Bezos founded Amazon in 1994."
Entities: [Jeff Bezos: Person, Amazon: Organization]

Extract entities and classify them from the following sentence:

Sentence: "Tony Effe was born in Rome"
Entities:



6 Programming Large Language Models 131

Topic Classification 

Classify sentences into categories: Sports, Technology, or 
Entertainment.↪→ 

These are some examples of how to perform the task: 

Sentence: "Cristiano Ronaldo scored the winning goal in the match." 
Category: Sports 

Sentence: "Apple just launched its latest iPhone model." 
Category: Technology 

Sentence: "The new Marvel movie is breaking box office records." 
Category: Entertainment 

Sentence: "The Lakers won their third consecutive game last night." 
Category: Sports 

Sentence: "Samsung unveiled its new foldable smartphone at the event." 
Category: Technology 

Sentence: "Taylor Swift's latest album topped the charts this week."
Category: Entertainment

Classify the following sentence into one of the predefined categories:

Sentence: "The streaming events of Blur attract thousands of users."
Category:

To ensure effective communication and clarity in presenting examples for a task, 
it is essential to focus on including examples that provide a concrete demonstration 
of what the result should be. Maintaining a uniform structure across examples 
reinforces the pattern to highlight. This consistency not only aids comprehension 
but also helps the LLM internalize the structure, improving its ability to generalize 
and apply the pattern in different situations [14]. Finally, even if it is important 
to provide examples with enough detail, it is important to not use overly lengthy 
examples that can lead to exceeding the token limit. 

6.4.3 Chain-of-Thought Prompting 

Chain-of-thought (CoT) is a reasoning process that allows to tackle complex prob-
lems by breaking them down into a sequence of simpler and more understandable 
steps [19]. This approach reflects how humans typically approach a problem, placing 
particular emphasis on the intermediate steps of reasoning. In practice, it improves 
the ability to manage complex tasks by highlighting the value of process-oriented
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thinking and the ability to connect steps following rigorous logic. Unlike traditional 
prompting techniques, where you simply provide some inputs and their outputs, 
CoT allows to structure the prompt in a way that encourages the LLM to articulate 
the intermediate steps to improve the accuracy of the results. 

CoT can be combined with few-shot prompting techniques, where the LLM 
receives examples that include inputs and outputs accompanied by the division of 
the task into intermediate steps. These examples help the model understand how to 
perform the list of intermediate steps to achieve the final result. 

Here we present a prompt with a possible application of CoT: 

Pairwise Product Check 

Determine whether a number is the product of any two numbers in a given 
list.↪→ 

These are some examples of how to perform the task: 

Task: Is 15 the product of any two numbers in the list [4, 8, 9, 12, 
2]?↪→ 

Reasoning: 
Check all pairwise products: 
4 × 8 = 32 (Not 15) 
4 × 9 = 36 (Not 15) 
4 × 12 = 48 (Not 15) 
4 × 2 = 8 (Not 15) 
8 × 9 = 72 (Not 15) 
8 × 12 = 96 (Not 15) 
8 × 2 = 16 (Not 15) 
9 × 12 = 108 (Not 15) 
9 × 2 = 18 (Not 15) 
12 × 2 = 24 (Not 15) 
None of the pairwise products equal 15. 
Answer: False. 

Task: Is 45 the product of any two numbers in the list [6, 4, 9, 2, 8]? 
Reasoning: 
Check all pairwise products: 
6 × 4 = 24 (Not 45) 
6 × 9 = 54 (Not 45) 
6 × 2 = 12 (Not 45) 
6 × 8 = 48 (Not 45)
4 × 9 = 36 (Not 45)
4 × 2 = 8 (Not 45)
4 × 8 = 32 (Not 45)
9 × 2 = 18 (Not 45)
9 × 8 = 72 (Not 45)
2 × 8 = 16 (Not 45)
None of the pairwise products equal 45.
Answer: False.
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Task: Is 72 the product of any two numbers in the list [6, 4, 9, 12, 
2]?↪→ 

Reasoning: 
Check all pairwise products: 
6 × 4 = 24 (Not 72) 
6 × 9 = 54 (Not 72) 
6 × 12 = 72 (Matches!) 
A pair exists (6 × 12) that equals 72. 
Answer: True. 

Solve the following problem. 
Task: Is 20 the product of any two numbers in the list [10, 7, 13, 5,

3]?↪→
Answer:

CoT has been described mainly in combination with few-shot learning. Alter-
natively, we can highlight some innovative approaches, such as the one introduced 
in [11], which is notable for its use of zero-shot prompting. This method involves 
adding the sentence Let’s think step by step at the end of the input prompt. This 
change, although minimal, has shown a significant impact, highlighting how small 
changes in the prompt can improve the performance of models. 

Another relevant technique is Auto-CoT [22], which automates the generation of 
demonstrations by implementing step-by-step reasoning with LLMs. The process 
begins with a question-clustering phase, where questions are grouped into clusters 
using vector representations and k-means clustering. Next, in the demonstration 
sampling stage, a representative question from each cluster is selected based on 
its proximity to the cluster center. This representative question is then fed into an 
LLM, which, using the Zero-Shot-CoT approach [11], generates a reasoning chain 
to generate the result. 

An evolution of the CoT technique is represented by the approach introduced in 
the work on Self-Consistency [18]. This method is based on the idea that complex 
problems can be solved by following different reasoning paths. Comparing these 
paths, it is possible to identify the most effective one, that is, the one capable of 
producing a more accurate solution. In Self-Consistency, first, a CoT prompt is 
defined and designed with manually written chain-of-thought exemplars [19]. Then, 
there is a generation of diverse set of reasoning paths by sampling multiple candidate 
outputs from the model’s decoder. This can be achieved by running the model on 
the same problem multiple times, using sampling techniques such as temperature 
sampling [1, 6], top-k sampling [5, 8, 15], and nucleus sampling [9]. Finally, the 
reasoning paths are analyzed using aggregation metrics, and there is a selection of 
the most consistent answer among the generated ones.
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6.4.4 Prompt Engineering in Action 

In this section, we describe the general procedures for invoking LLMs using the 
prompt engineering techniques described above. We use the LangChain library to 
simplify the interaction with LLMs and integrate models hosted on the Hugging 
Face platform. The code is also easily adaptable for loading and using local models, 
ensuring greater flexibility in model deployment. 

Zero-Shot, Few-Shot, Chain of Thought 

1 from langchain_huggingface import HuggingFaceEndpoint 
2 from langchain_core.prompts import ChatPromptTemplate 
3 from langchain_core.output_parsers import StrOutputParser 
4 import os 
5 

6 # Set up Hugging Face API token from environment variables 
7 os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN 
8 HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"] 
9 

10 # Define the prompt (updated with the actual prompt text) 
11 prompt = "prompt description..." 
12 

13 # Create a ChatPromptTemplate with a user message 
14 prompt_template = ChatPromptTemplate.from_messages([ 
15 ('user', prompt) # Define the user message as part of the prompt 

template↪→ 
16 ]) 
17 

18 # define the Hugging Face model endpoint 
19 model = HuggingFaceEndpoint( 
20 repo_id="mistralai/Mistral-7B-Instruct-v0.2", # Model ID for the 

Hugging Face endpoint↪→ 
21 temperature=0.5, # Controls randomness in responses 
22 huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN, # API token for 

authentication↪→ 
23 ) 
24 

25 # Output parser to convert the model response into a string 
26 parser = StrOutputParser() 
27 

28 # Function to execute the prompt and return the response 
29 def ask_question(): 
30 # Set up the chain of operations: prompt template -> model -> output

parser↪→
31 chain = prompt_template | model | parser
32

33 # Execute the chain and return the result
34 response = chain.invoke({})
35 return response
36

37 # Run the script if executed directly
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38 if __name__ == "__main__": 
39 try: 
40 result = ask_question() 
41 print("Result:", result) 
42 except Exception as e: 
43 print("Error:" ,  e)  # Handle and print any errors that occur during

execution↪→

Analyzing the code in details, 

Prompt definition 

1 % promp_template = "prompt description..." 
2 % prompt_template = ChatPromptTemplate.from_messages([ 
3 % (' user', promp_template) 
4 % ])
5 %

in lines 11–16, the prompt is structured using ChatPromptTemplate, which 
organizes the interaction as a series of messages. In this case, the message is 
attributed to the (’user’). By modifying the content of the prompt, it is possible 
to customize the request to suit different applications. This ability to configure the 
prompt allows for the application of various prompt engineering techniques. Indeed, 
by structuring the prompt at line 11 according to the guidelines outlined in the 
previous sections, these techniques can be implemented effectively. 

Model Integration 

1 % model = HuggingFaceEndpoint( 
2 % repo_id="mistralai/Mistral-7B-Instruct-v0.2", 
3 % temperature=0.5, 
4 % huggingfacehub_api_token= HUGGINGFACEHUB_API_TOKEN, 
5 % ) 
6 %

Lines 19 to 23 explain how to invoke the Mistral-7B-Instruct-v0.2 model, 
which is hosted on the Hugging Face repository. It is important to note that 
the same structure can be used to load a local model, such as a fine-tuned 
model designed for specific tasks, like the one described in this chapter. The 
configuration of the temperature parameter allows you to control the randomness of 
the model’s responses, with lower values producing more deterministic responses. 
The HUGGINGFACEHUB_API_TOKEN variable allows to authenticate to the Hugging 
Face service to access the models available.
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Output Parser 

1 % parser = StrOutputParser() 
2 %

The parser, at line 26, transforms the model output into a readable string, making 
it easier to interpret the results. 

Code Execution 

1 % def ask_question(): 
2 % chain = prompt_template | model | parser 
3 % response = chain.invoke({}) 
4 % return response
5 %

The ask_question() function, lines 29 to 35, set up the operation to invoke the 
LLM by defining the model, the prompt, and the parser .

As we can observe, the code structure is a practical and flexible example of how 
to use LLMs. The basic configuration can be easily adapted to use different models, 
both remote and local, and to perform advanced prompt engineering techniques, 
through customizing prompts. This implementation is not only a guide to invoke 
LLMs but also represents a methodological basis that can be extended to cover 
multiple use case applications. 
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Chapter 7 
Retrieval-Augmented Generation 

Filippo Bianchini 

Abstract Retrieval-augmented generation (RAG) has emerged as a transformative 
approach to enhancing the capabilities of large language models (LLMs) by 
integrating real-time information retrieval with generative text synthesis. Traditional 
LLMs rely on pre-trained data, limiting their effectiveness when handling tasks 
requiring up-to-date or domain-specific information. RAG addresses this constraint 
by embedding a retrieval mechanism within the LLM framework, allowing the 
model to access external knowledge sources dynamically. This integration enables 
LLMs to generate contextually relevant and factually accurate responses, extending 
their utility within the realm of information systems (IS), where timely and 
precise information is critical. Starting from the history and evolution of retrieval-
augmented generation, passing through different framework and methodologies, and 
moving to practical applications by different libraries, in this chapter, we offer a 
theoretical and practical overview of this innovative and powerful technique. 

7.1 Introduction 

The origins of retrieval-augmented generation (RAG) trace back to the early 
developments in question-answering systems [5] from the 1970s, when researchers 
in information retrieval began building systems capable of using natural language 
processing (NLP) to retrieve answers from text collections. Initially, these systems 
were confined to narrow domains, but they laid the groundwork for modern 
techniques by enabling machines to understand and process human questions. An 
example from the mid-1990s is Ask Jeeves1 [17], which introduced a conversational, 

1 Ask Jeeves was a search engine where users could ask questions in natural language: https://www. 
ask.com/. 
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user-friendly question-answering service with a virtual assistant mascot. This 
helped popularize the idea that users could ask natural language questions and 
receive relevant answers, an important step toward modern information retrieval 
systems [12]. 

A significant advancement in AI-driven information retrieval occurred in 2011 
when IBM’s Watson [9] demonstrated the potential of advanced AI by defeating 
human champions on the quiz show Jeopardy!.2 Unlike earlier question-answering 
systems that relied solely on predefined databases, Watson leveraged NLP and 
sophisticated retrieval and ranking algorithms to analyze vast amounts of unstruc-
tured text in real time. 

As AI research progressed, the limitations of purely generative models became 
increasingly evident, particularly their tendency to produce factually incorrect or 
unverifiable information. Despite steady advancements in NLP, the fundamental 
principles of text mining and information retrieval remained critical for ensuring 
factual consistency. The challenge, therefore, was to develop systems that could 
generate humanlike responses while grounding their output in verifiable, up-to-date 
sources. In this context, another important milestone for RAG is the development 
of the transformer architecture [29], a fundamental advancement that enabled 
language models to integrate additional knowledge through pre-trained models 
(PTMs) [3, 19]. This progression and the demand for more reliable AI-generated 
content led Patrick Lewis to introduce RAG in a 2020 paper [19], marking a key 
evolution in generative AI. His work proposed a novel framework that seamlessly 
combines a retrieval mechanism with a language model to enhance the handling of 
knowledge-intensive NLP tasks. Specifically, RAG integrates two key components: 
a retriever, which fetches relevant documents from an external knowledge base, and 
a generator, which synthesizes responses based on the retrieved information. In an 
interview, Lewis expressed regret over the unflattering acronym, acknowledging that 
they would have chosen a more appealing name had they anticipated the widespread 
impact of their work. RAG has since evolved into a recognized framework that 
encompasses a growing array of methods utilized in numerous academic papers and 
commercial applications. An overview of Lewis’ approach is presented in Fig. 7.1. 

This hybrid approach bridges the gap between traditional retrieval-based systems 
and modern generative models, improving both factual accuracy and contextual 
relevance and prepared the way for modern RAG technologies, as we know it today, 
which enhance LLMs by integrating real-time external data for greater accuracy 
and relevance. Figure 7.2 illustrates the rapid evolution and expansion of RAG 
techniques, from the release of GPT-3 in 2020, through the launch of ChatGPT, 
to the introduction of GPT-4. 

These models have transformed numerous tasks such as summarizing text, 
answering questions, and creative writing. The reach of LLMs is now pervasive,

2 A popular American quiz show where contestants respond to general knowledge clues with 
questions, aiming to accumulate the most money by the end of each round: https://www.jeopardy. 
com/. 
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Fig. 7.2 Technology tree of RAG research [10] 

extending beyond expert users to a wider audience. As their adoption grows, so does 
our understanding of their strengths and limitations. A key issue that has surfaced 
is the tendency of LLMs to generate responses that, while coherent and convincing, 
may contain information that is partially or entirely incorrect. This phenomenon, 
often referred to as hallucination in the AI community, poses a significant challenge 
in high-stakes environments. Hallucination occurs due to the probabilistic nature 
of LLMs, which generate text based on probability rather than fact-checking [30]. 
As a result, LLMs sometimes fill in information in a way that sounds plausible but 
is factually wrong [16]. This design enables impressive fluency and flexibility but 
lacks an internal verification mechanism to cross-check factual accuracy. 

When an LLM powered by RAG receives a prompt or question, it first consults an 
external information source, which could be a search engine, a database, or another 
structured repository. The retrieval component finds relevant documents, passages, 
or data points based on the prompt. Instead of generating an answer solely from 
its pre-trained language patterns, the LLM uses this retrieved information to guide 
and inform its response. The result is a hybrid output: the natural, conversational 
style of an LLM response combined with real-time data, significantly improving 
factual accuracy. With these advancements, RAG research shifted toward enhancing 
LLMs’ ability to handle complex, information-rich queries during the inference 
stage, leading to accelerated progress in RAG methodologies.



7 Retrieval-Augmented Generation 143

7.2 RAG: Working Logic 

The typical RAG framework combines a retrieval mechanism with generative 
language models to enhance the quality and accuracy of responses in natural 
language processing tasks. The functioning involves a two-step process: retrieving 
and generation. Before these steps are executed, a preliminary phase takes place. 
This phase is essential for preparing and organizing the data, ensuring effective 
querying by the retrieval system. 

7.2.1 Preliminary Step 

The core workflow of RAG begins with several preparatory steps, including 
data loading, parsing, embedding, and indexing. These steps ensure that external 
knowledge sources can be efficiently queried by the retrieval mechanism. 

7.2.1.1 Data Loading and Parsing 

The initial step in the RAG system involves loading the necessary data, which may 
originate from various sources and exist in different formats, such as PDF, HTML, 
Word, Markdown, or database exports. These various formats require processing to 
ensure compatibility with the retrieval system. Once loaded, the raw text undergoes 
a critical parsing phase, essential for achieving uniformity and ensuring clean, 
structured formatting suitable for indexing and querying. Parsing encompasses 
several key operations: 

• Removing unnecessary metadata and encoding artifacts that might interfere with 
efficient processing 

• Tokenizing the text into smaller, manageable segments to facilitate easier index-
ing and retrieval 

• Splitting large documents into smaller, contextually meaningful chunks that 
preserve semantic coherence while optimizing retrieval performance 

The goal of parsing is to prepare the raw data for transformation into a suitable 
embedding space and to ensure efficient indexing for similarity searches. 

7.2.1.2 Embedding 

The next stage in the RAG system is converting the cleaned and preprocessed text 
into numerical representations using embedding models. Embeddings are vector 
representations of the text chunks and play a central role during the retrieval phase 
by enabling the system to compute semantic similarity between user queries and
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indexed data [4]. Essentially, embeddings map text into a high-dimensional vector 
space, capturing their contextual and semantic meaning in a way that facilitates 
efficient comparison and matching. 

Common embedding methods include a variety of pre-trained models that have 
proven effective in encoding semantic relationships. Among the most widely used 
methods are: 

• Word2Vec: a model introduced by Mikolov et al. [21] that represents words 
as dense vectors3 by analyzing their co-occurrence in large corpora. Word2Vec 
embeddings capture word similarity based on their contextual usage. 

• GloVe: Global Vectors for Word Representation was developed by Pennington et 
al. [24]. GloVe embeddings are trained using global word co-occurrence statistics 
over large datasets, effectively combining global and local statistics for semantic 
modeling. 

• BERT-based models: the most prominent BERT-based models for embed-
ding generation are Sentence-BERT (SBERT) [25] and RoBERTa [20], both 
optimized extensions of the original BERT4 architecture [7]. Both improve 
BERT’s capability for similarity tasks. This adaptation significantly boosts their 
performance in applications such as semantic search, question answering, and 
clustering. 

• Transformer-based models: modern models like text-embedding-3-small 
or text-embedding-3-large by OpenAI,5 NV-Embed-v26 by NVIDIA [18], 
or meta-llama/LLaMA-3.1 by Meta7 are highly effective embeddings due to 
their attention mechanisms [29] and pre-training on massive corpora. 

These embeddings serve as the foundation for retrieval, as they allow the 
system to represent text chunks numerically, transforming semantic relationships 
into mathematical comparisons. 

7.2.1.3 Indexing 

After generating embeddings, the next step is indexing these vector representations 
into a system optimized for efficient retrieval. Indexing organizes the vectors in a 
structured and searchable format, enabling the system to swiftly match incoming

3 A dense vector is a numerical representation of data where most or all dimensions contain non-
zero values. 
4 Bidirectional Encoder Representations from Transformers. 
5 https://platform.openai.com/docs/guides/embeddings/embedding-models. 
6 https://huggingface.co/nvidia/NV-Embed-v2. 
7 https://huggingface.co/meta-llama. 
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queries with stored data. This process typically involves selecting between vector 
libraries and vector databases, each tailored to specific use cases: 

• Vector libraries: these systems are primarily used for static datasets where the 
indexed data remains immutable. Vector libraries focus solely on storing vector 
embeddings, without preserving the associated objects they were generated from. 
This approach means they lack support for CRUD (Create, Read, Update, Delete) 
operations. Examples of popular vector libraries include FAISS,8 which is widely 
adopted for its efficiency in static and large-scale datasets; Annoy,9 developed by 
Spotify and quite similar to FAISS since it is designed to work with static data; 
or ScaNN10 by Google, designed for fast approximate nearest neighbor searches 
in high-dimensional spaces. 

• Vector database: designed for dynamic and scalable applications, dedicated 
vector databases offer native support for vector operations and the associated data 
objects. These systems enable advanced functionalities such as CRUD opera-
tions, metadata integration, and real-time updates. Examples include Pinecone,11 

Weaviate,12 and Milvus.13 Such databases are particularly suitable for use cases 
requiring frequent updates or where contextual information must accompany the 
vectors for refined retrieval. 

Efficient indexing ensures that the retrieval system can quickly compute sim-
ilarity scores between incoming queries and stored vectors. The choice between a 
vector library and a vector database depends on the application’s requirements, such 
as data mutability, scalability, and the need for enhanced metadata handling. 

7.2.2 Retrieving Phase 

Once embeddings are indexed, the retrieval mechanism is activated during the query 
phase, which is central to the RAG framework. This process involves transforming 
a user query into a format that can be effectively matched against the indexed 
embeddings to retrieve relevant context passages. Here’s a detailed explanation of 
the retrieval phase: 

• Query encoding: when a user issues a query, it is first encoded using the same 
embedding model that was used during the indexing phase. This ensures compati-
bility between the query’s vector representation and the indexed embeddings. The

8 Facebook AI Similarity Search: https://github.com/facebookresearch/faiss/wiki. 
9 Approximate Nearest Neighbors Oh Yeah: https://github.com/spotify/annoy. 
10 Scalable Nearest Neighbors: https://github.com/google-research/google-research/tree/master/ 
scann. 
11 https://github.com/pinecone-io. 
12 https://github.com/weaviate/weaviate. 
13 https://github.com/milvus-io/milvus. 
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encoding step transforms the query into a dense vector that captures its semantic 
meaning. 

• Similarity computation: the encoded query vector is compared against the 
stored embeddings in the vector database or library. This comparison is per-
formed using similarity metrics, such as: 

– Cosine similarity, which measures the cosine of the angle between two vectors 
in multidimensional space 

– Euclidean distance, a measure for the straight-line distance between two 
vectors in space, suitable for certain use cases where magnitude14 is important 

– Dot product, which computes the projection of one vector onto another, often 
optimized for speed in high-dimensional spaces 

• Result ranking: the similarity scores computed in the previous step are used to 
rank the indexed embeddings. The system identifies the top-K embeddings, those 
with the highest similarity scores, corresponding to the most relevant chunks of 
data. 

• Passage retrieval: the top-ranked embeddings are then mapped back to their 
original text chunks (passages). Depending on the indexing system, additional 
metadata (e.g., document IDs, timestamps, or source information) can also be 
retrieved to enrich the results. 

7.2.3 Generation Phase 

After the retrieval process, the selected context (retrieved passages) is combined 
with the user query to form a prompt for the generative language model. This prompt 
serves as the input to the LLM, conditioning it on both the user query and retrieved 
knowledge. The model can then generate a response that incorporates this external 
context. The model’s response is influenced by task-specific factors. It can use either 
(1) parametric knowledge, namely, inherent general knowledge from the model’s 
pre-trained parameters, or (2) non-parametric information, which is information 
explicitly retrieved from external context. Figure 7.3 shows how the typical RAG 
framework works.

14 Magnitude is the length of a dense vector, measuring its scale in the embedding space. It is 
crucial for normalization and similarity metrics, ensuring accurate matching between query vectors 
and stored data. 
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Fig. 7.3 Typical RAG framework 

7.2.4 RAG Classification 

While the RAG paradigm is continuously evolving, researchers have proposed 
several categorizations based on multiple key components. Gao et al. [10] present 
a valuable classification that divides RAG into three main framework: Naive RAG, 
Advanced RAG, and Modular RAG. Additionally, RAG can be categorized based on 
the methodology employed by the retriever during the retrieval phase. Tonmoy et 
al. [27] propose three distinct RAG methodologies, specifically focusing on whether 
the retrieval occurs before, during,  or  after output generation. Zhao et al. [32] 
further extend this classification by categorizing RAG into four classes based on 
the retriever’s methodology to augment the generator: Query-based RAG, Latent 
Representation-based RAG, Logit-based RAG, and Speculative RAG. 

In addition to these categorizations, another valuable classification arises from 
the type of knowledge source utilized in the RAG framework. RAG systems can 
be tailored to different knowledge sources, such as documents, knowledge graphs 
(KGs), and ontologies, each requiring distinct approaches for data retrieval and 
integration into the pipeline. The following subsections will go deeper into each 
stage of RAG, as well as explore the distinctions based on the type of information 
source employed. 

7.2.4.1 RAG Framework 

Building on the categorization presented by Gao et al. [10], this paragraph aims to 
provide a thorough and detailed examination of the three framework of the RAG, 
Naive RAG, Advanced RAG, and Modular RAG. 

Naive RAG The Naive RAG represents the earliest iteration of the RAG. It 
operates through a straightforward sequence of steps: parsing, embedding, indexing, 
retrieval, and generation. While Naive RAG provides a foundational framework 
for RAG systems, its simplicity comes with several limitations: (i) the retrieval 
phase often struggles with accuracy, frequently retrieving irrelevant or incorrect
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Fig. 7.4 Naive RAG framework 

chunks and failing to capture all necessary information; (ii) during the generation 
phase, the model may produce hallucinations, generating content unsupported by 
the retrieved context. Additionally, (iii) responses can suffer from irrelevance, bias, 
or outright errors; integrating the retrieved information with the task at hand can be 
challenging, sometimes resulting in inconsistent or unclear outputs. Redundancy is 
another prevalent issue, as similar chunks may be retrieved multiple times, leading 
to repetitive responses. In Fig. 7.4, the Naive RAG framework with its steps is 
presented. 

Advanced RAG Advanced RAG is designed to overcome the limitations of Naive 
RAG. The strategy adopted in this framework introduces two new processes, 
namely, pre-retrieval and post-retrieval, to optimize both indexing and query 
handling. 

The pre-retrieval process focuses on two key elements: index optimization and 
query optimization. The goal of index optimization is to make the content of indexes 
more precise and representative to enhance retrieval accuracy. Techniques for this 
include improving data granularity (e.g., breaking down text into smaller, refined 
chunks for better management) and using mixed retrieval strategies that combine 
various types of data from multiple sources. On the other hand, query optimization 
involves the following processes: (i) Query routing, controlling which RAG flow the 
query is directed to; (ii) Query rewriting, rephrasing the query given in input from 
the user; and (iii) Query expansion, expanding the query with related terms to widen 
the search; 

The post-retrieval process involves an initial re-ranking phase of the retrieved 
chunks to move the most relevant information to the top of the list provided to 
the LLM. This step is essential for prioritizing key information and generating 
more accurate outputs. Subsequently, a filtering step is performed: information is 
condensed through summarization and identification of critical sections to avoid 
overloading and help the model focus on essential and relevant details. Figure 7.5 
illustrates the Advanced RAG framework. 

Modular RAG The final framework in the evolution of the RAG is the Modular 
RAG [11], a structured, multi-level architecture designed to handle the increasing 
complexity of modern information retrieval and generation tasks. This architecture 
is organized across three distinct levels, each responsible for enhancing system 
modularity, scalability, and efficiency.
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Fig. 7.5 Advanced RAG framework 

Primary Level The framework follows a structured pipeline consisting of the 
five main stages presented in advanced RAG: parsing, embedding, and indexing, 
pre-retrieval, retrieval, post-retrieval, and generation. Each stage is responsible for 
a specific phase in the information processing workflow, ensuring a systematic 
progression from data preparation to content generation. 

Secondary Level In this level, each stage of the pipeline is decomposed into 
specialized modules that handle distinct sub-tasks. For example, within the first step 
of pipeline (parsing, embedding, and indexing), modules like chunk optimization 
and structural organization ensure that data is processed and structured efficiently 
for retrieval. In pre-retrieval, components such as query transformation, query 
expansion, and query construction (as it has been already mentioned in advanced 
RAG explanation) refine the input query to improve retrieval accuracy. The retrieval 
stage integrates advanced mechanisms like retriever fine-tuning, retriever source, 
and retriever selection, enabling fine-grained control over data retrieval strategies. 
Similarly, post-retrieval involves modules for reranking, compression, and selection, 
optimizing the relevance and efficiency of retrieved information before generation. 
Finally, the generation phase incorporates generator fine-tuning and verification to 
ensure high-quality, accurate outputs. 

Third Level This is the orchestration level in which the framework coordinates the 
interactions between modules through adaptive control mechanisms that dynam-
ically govern the RAG process. Unlike rigid, linear approaches, Modular RAG 
introduces decision-making at pivotal junctures, allowing for flexible routing, 
scheduling, and knowledge-guided reasoning. (i) Routing directs queries through 
specific pipelines based on the input’s characteristics, using both metadata and 
semantic information to determine the most appropriate modules for each scenario. 
This decision-making process involves assigning scores to potential routes, enabling 
the system to activate only the most relevant modules for a given query. (ii) Schedul-
ing manages the execution flow, identifying critical moments where additional 
retrieval or processing might be necessary. This mechanism supports recursive, 
iterative, and adaptive retrieval, ensuring that the system dynamically adjusts its 
operations based on the quality of intermediate results. (iii) The knowledge guide 
integrates knowledge graphs to construct reasoning chains that guide retrieval and
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Fig. 7.6 Modular RAG framework 

generation tasks. This part will be better explained in the next section since RAG 
across different knowledge sources will be discussed. In Fig. 7.6 modular RAG 
framework is presented. 

7.2.4.2 RAG Across Knowledge Sources 

Having established a detailed understanding of the fundamental workings of RAG, 
these paragraphs shift focus to explore how the framework can be adapted to 
different types of knowledge sources. The emphasis will be on demonstrating 
how the same foundational principles previously presented can be extended and 
customized to interact with various data formats to tackle different linguistic tasks. 
Specifically, we will focus on Classical RAG, RAG with KG, and RAG with 
ontologies. While no further details on knowledge sources are necessary for Classic 
RAG, as it is based on documents in various formats, it is essential to briefly explain 
what a knowledge graph and an ontology are. 

According to [14], a KG is a graph of data intended to accumulate and convey 
knowledge of the real world, whose nodes represent entities of interest and whose 
edges represent potentially different relations between these entities. Given this 
definition, it is clear that KG represents information as a network of entities (nodes)
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Fig. 7.7 An example of generic KG of people (actors and directors) who directed or acted in films. 
This KG is extracted from the default MOVIE DB within neo4j 

and their relationships (edges), specifically as triplets subject-predicate-object.  An  
example of KG created using Neo4j15 is presented in Fig. 7.7. 

The strengths of knowledge graphs are several. Firstly, their semantic structure 
enables the embedding of explicit relationships, making them more intuitive 
for both human and machine reasoning [8]. Additionally, KGs offer significant 
interconnectivity, as an entity can have multiple connections to other entities and/or 
concepts, facilitating seamless access to both direct and indirect relationships. This 
structure allows for the exploration of first- and second-level links, providing a more 
comprehensive understanding of the data [2]. Finally, KGs are highly scalable [15], 
as they can represent knowledge at varying levels of granularity. They range 
from global knowledge bases like Wikidata16 or DBpedia17 to highly specialized, 
domain-specific graphs.

15 Neo4j is a native graph database platform designed to store and query connected data using 
a graph-based model of nodes, relationships, and properties, optimized for analyzing complex 
interconnections: https://neo4j.com/. 
16 Wikidata [23] is a free, collaborative, multilingual knowledge graph: https://www.wikidata.org/ 
wiki/Wikidata:Main_Page. 
17 DBpedia [1] is a project that extracts structured content from Wikipedia, transforming it into a 
semantic knowledge base: https://www.dbpedia.org/. 

https://neo4j.com/
https://neo4j.com/
https://neo4j.com/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.dbpedia.org/
https://www.dbpedia.org/
https://www.dbpedia.org/
https://www.dbpedia.org/
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Fig. 7.8 An example of an ontology extracted from BioPortal in the form of a list of classes and 
entities (left) and the graphical representation (right) 

On the other hand, an ontology is a description (like a formal specification 
of a program) of the concepts and relationships that can exist for an agent or a 
community of agents [13]. Hence, it defines: 

• Classes: categories or types of entities within the domain 
• Relations: defined connections between classes or instances 
• Axioms: logical rules and constraints that govern the relationships between 

classes and instances, enabling inference and reasoning 

An example of an ontology created using Protegé18 is shown in Fig. 7.8, where 
we see an ontology extracted from the BioPortal19 repository in the form of a class 
and entity list (left), along with its subclasses and the same ontology as a graph 
(right), illustrating the relationships between the various classes and entities. 

Although ontologies and knowledge graphs are often used interchangeably, they 
differ significantly in focus and structure. Knowledge graphs primarily represent 
entities and their interrelationships, linking real-world data with minimal predefined 
structure. For example, in a knowledge graph, Albert Einstein might be connected 
to Theory of Relativity through the relationship discovered. The emphasis in 
knowledge graphs is on connecting factual information to show how different pieces 
of data relate to each other. Ontologies, on the other hand, offer a more formal 
and structured approach to defining concepts and their relationships, focusing on 
capturing semantic meaning. In the case of Albert Einstein, an ontology might 
define that Albert Einstein is a person and that Theory of Relativity is a scientific

18 Protegé [22] is a free, open-source ontology editor and framework developed by the Stanford 
Center for Biomedical Informatics Research. It allows users to create, edit, and visualize 
ontologies: https://protege.stanford.edu. 
19 https://bioportal.bioontology.org. 

https://protege.stanford.edu
https://protege.stanford.edu
https://protege.stanford.edu
https://protege.stanford.edu
https://bioportal.bioontology.org
https://bioportal.bioontology.org
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https://bioportal.bioontology.org
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theory, with a relationship that links them through a more abstract concept, such 
as discovered, but also adding logical rules such as if someone is a scientist, 
then they are a person. This allows the system to make inferences and reason 
about the relationships, offering a deeper, more structured understanding of the 
concepts involved. Ontologies are thus particularly useful in contexts that require 
logical reasoning and inference, such as in knowledge management systems or AI 
applications. 

Classical RAG Classic RAG is the foundational form of RAG, leveraging a 
retriever and generator architecture to process and synthesize information from 
unstructured text documents. These documents can come in various formats, such 
as PDFs, Word files, HTML pages, or plain text, and do not require any predefined 
schema or structural organization. The system’s versatility lies in its ability to 
handle diverse data formats without prior restructuring, making it a straightforward 
approach suitable for a wide range of applications. This simplicity, however, may 
limit its effectiveness in scenarios requiring complex reasoning or deeper integration 
of structured knowledge. 

RAG with KG RAG with KG builds upon the classic RAG approach by incor-
porating structured knowledge into the retrieval process. In RAG-KG, the retriever 
operates on the graph structure rather than unstructured text. Queries are processed 
to identify relevant entities or subgraphs that provide context-rich and highly 
structured information. The retrieved subgraph or triples (subject-predicate-object) 
are then used to enhance the generation phase. 

RAG with Ontologies RAG with ontologies is an innovative extension of the 
traditional RAG paradigm, where the knowledge base used for retrieval and 
generation is structured as an ontology [6, 31]. Unlike classic RAG models that 
rely on unstructured documents or KG, RAG with ontologies takes advantage of the 
formal, logically structured nature of ontologies to enable more precise, context-
aware reasoning and retrieval. 

7.3 RAG Applications 

This section transitions into practical implementations. The first focus will be on 
Python-based implementations of RAG pipelines, specifically on Classic RAG, 
RAG with KG, and RAG with ontologies, utilizing two prominent libraries: 
LangChain20 and LlamaIndex.21 These tools provide comprehensive frameworks 
for integrating retrieval and generation components, simplifying the construction

20 https://www.langchain.com/. 
21 https://www.llamaindex.ai/. 

https://www.langchain.com/
https://www.langchain.com/
https://www.langchain.com/
https://www.langchain.com/
https://www.llamaindex.ai/
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of scalable and effective RAG systems. The second regards framework for RAG 
evaluation, specifically DeepEval and RAGAS . 

By demonstrating how to leverage these libraries, we aim to equip practitioners 
with the practical knowledge needed to build customized RAG pipelines tailored to 
specific use cases. 

7.3.1 Practical Application—LlamaIndex 

This first hands-on guide provides a detailed walk-through of how to implement 
the aforementioned RAG pipelines using LlamaIndex. Thanks to the flexible 
functionalities offered by this framework, the import, configuration, and final query 
processes remain identical across all three RAG types. However, the core processes 
of parsing, embedding, and indexing differ for each type. This design enables a 
perfectly modular architecture where the central components of the code can be 
seamlessly swapped to transition from one RAG type to another. 

Import 

1 import openai 
2 import os 
3 import fitz 
4 import nest_asyncio 
5 

6 from rdflib import Graph 
7 from dotenv import load_dotenv 
8 

9 from llama_index.llms.openai import OpenAI 
10 from llama_index.core.settings import Settings 
11 from llama_index.core import ( 
12 Document, 
13 VectorStoreIndex, 
14 PropertyGraphIndex, 
15 SimpleDirectoryReader 
16 )  

This first block of code sets up the necessary libraries and configurations for 
implementing a RAG pipeline. It uses LlamaIndex for managing document retrieval 
and indexing. Key components from LlamaIndex are VectorStoreIndex for 
storing and querying vector embeddings, PropertyGraphIndex for constructing 
property graphs from the document’s data, and SimpleDirectoryReader for 
file loading. Additionally, the code integrates OpenAI models for the generation 
process, Settings to configure global settings for language models, embeddings, 
and other behaviors and uses dotenv for securely managing environment variables 
like API keys. nest_asyncio enables nested asynchronous event loops, very
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useful in interactive environments where an event loop is already running in the 
background, like in Jupyter Notebooks. 

Configuration 

1 # Apply the asyncio patch to allow nested event loops. 
2 nest_asyncio.apply() 
3 

4 # Load environment variables from a .env file. 
5 load_dotenv() 
6 

7 # Retrieve the OpenAI and Llama API key from the environment variables. 
8 openai_api_key = os. getenv("OPENAI_API_KEY" )  

This block of code securely manages sensitive information, such as OpenAI API 
key22 (line 8). The load_dotenv() function (line 5) reads environment variables 
from a .env file located in the same directory as the script. This practice keeps 
sensitive information separate from the code, minimizing the risk of exposure in 
version control systems or public repositories. Environment variables can then be 
accessed using os.getenv() and set with os.environ, ensuring their security and 
anonymity. For proper functionality, ensure the .env file is in the same directory 
as the script. 

File loading 

1 # Specify required extensions as a list (if needed) 
2 required_exts = [] # .png, .jpg, .pdf, .md, .txt, .csv etc... 
3 

4 # Load documents from a specified directory 
5 reader = SimpleDirectoryReader( 
6 input_dir="path/to/your/directory", 
7 input_files =["path/to/your/directory/document_1", 
8 "path/to/your/directory/document_2"], 
9 required_exts=required_exts 

10 ) 
11 

12 # Load and parse document from the reader 
13 document = reader .load_data(num_workers=4 )  

In this part, SimpleDirectoryReader function serves to load multiple doc-
uments from a specified directory. The input_dir parameter (line 6) specifies 
the main directory from which all documents will be loaded automatically. This 
is useful for batch processing files without manually listing each one. On the other

22 To activate an API key for OpenAI, visit: https://platform.openai.com/api-keys. 

https://platform.openai.com/api-keys
https://platform.openai.com/api-keys
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hand, the input_files parameter (line 7) allows for specifying individual file paths 
directly, giving you the flexibility to load specific files from different locations if 
needed. Finally, the required_exts list (line 2) can be customized to filter files 
based on their extensions, such as .pdf, .txt, .md,  or  .csv. This setup enables 
the batch processing of multiple files simultaneously, making it ideal for preparing 
documents to populate a vector database. Finally, documents are loaded from the 
reader using load_data method (line 13). 

These first blocks of code (import, configuration, and file loading) can be used as 
the basis for each following RAG type. 

7.3.1.1 Classic RAG 

Classic RAG - Pipeline set-up 

1 # Create a vector index from the parsed documents. 
2 index = VectorStoreIndex.from_documents(document) 
3 

4 # Initialize the OpenAI language model (LLM) for generating responses. 
5 llm = OpenAI( 
6 model="gpt-4-turbo", 
7 strict=True, # True default 
8 temperature=0, #  from  0  to  1  
9 max_tokens=2000, # from 0 to infinity (None default) 

10 top_p=0.8) #  from  0  to  1  
11 

12 # Convert the vector index into a query engine for running queries on 
the indexed documents.↪→ 

13 query_engine = index.as_query_engine( 
14 llm=llm, 
15 response_mode = "compact", 
16 streaming = True, 
17 similarity_top_k =2, 
18 verbose= True)  

In this core part of the RAG pipeline, the process begins with the indexing of the 
document using VectorStoreIndex (line 2), which organizes the content into vec-
tor embeddings. These embeddings enable efficient similarity-based retrieval. Next, 
the OpenAI language model is initialized with the OpenAI function (lines 5). The 
parameters are as follows: strict=True ensures that input data is strictly validated 
to conform to expected formats; temperature=0 is set to generate deterministic 
responses, reducing randomness for more consistent results; max_tokens=2000 
allows the model to generate longer responses when needed, up to a maximum 
of 2000 tokens; and top_p=0.8 controls the diversity of the responses, narrowing 
down the possible options while maintaining some variety. Finally, a query engine is 
created using the as_query_engine method (line 13). The verbose=True option
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enables detailed logging, providing real-time information about the execution and 
process status. 

7.3.1.2 RAG with KG 

RAG with KG - Pipeline set-up 

1 # Create a PropertyGraphIndex from the parsed documents. 
2 index = PropertyGraphIndex.from_documents(document) 
3 

4 # Initialize the OpenAI language model (LLM) for generating responses. 
5 llm = OpenAI( 
6 model="gpt-4-turbo", 
7 strict=True, # True default 
8 temperature=0, #  from  0  to  1  
9 max_tokens=2000, # from 0 to infinity (None default) 

10 top_p=0.8) #  from  0  t  o  1  
11 

12 # Convert the vector index into a query engine for running queries on 
the indexed documents.↪→ 

13 query_engine = index.as_query_engine( 
14 llm=llm, 
15 response_mode = "compact", 
16 streaming = True, 
17 similarity_top_k =2, 
18 verbose= True)  

This further block represents the core of RAG with KG. First, the documents 
are indexed using PropertyGraphIndex (line 2), a method tailored for construct-
ing property graphs from the document’s data. This indexing approach supports 
the representation of relationships and metadata, enhancing the system’s ability 
to query and analyze structured knowledge. Finally, llm with OpenAI function 
(line 5) and a query engine with query_engine (line 13) are configured using 
as_query_engine. Key parameters are the same for Classic RAG. 

7.3.1.3 RA G with Ontologies 

RAG with Ontologies - Pipeline set-up 

1 # Initialize an RDF graph and parse the selected XML file into it. 
2 g = Graph() 
3 g.parse(str(reader.input_files[0]), format="xml") # must be .owl, .json 

or .csv↪→ 
4 

5 # Create a list of nodes from the RDF graph 
6 nodes = [] 
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7 documents_ontology = [] 
8 

9 for s, p, o in g: 
10 nodes.append({ 
11 "subject": str(s), 
12 "predicate": str(p), 
13 "object": str(o), }) 
14 

15 # Generate documents from RDF nodes and store them in the 
documents_ontology list.↪→ 

16 for node in nodes: 
17 content = f"Subject: {node['subject']}, Predicate: {node['predicate']}, 

Object: {node['object']}"↪→ 
18 documents_ontology.append(Document(text=content)) 
19 

20 # Index the documents into a PropertyGraphIndex for semantic search. 
21 index_ontology = PropertyGraphIndex.from_documents(documents_ontology) 
22 

23 # Initialize the OpenAI model with specific configurations for response 
generation.↪→ 

24 llm = OpenAI( 
25 model="gpt-4-turbo", 
26 strict=True, # True default 
27 temperature =0, #  from  0  to  1  
28 max_tokens=2000, # from 0 to infinity (None default) 
29 top_p=0.8), #  from  0  to  1  
30 

31 # Set up the query engine to perform semantic search on ontology index. 
32 query_engine = index_ontology.as_query_engine( 
33 llm=Settings.llm, 
34 response_mode = "compact", 
35 streaming = True, 
36 similarity_top_k=2, 
37 verbose =True)  

This final block of code illustrates the core implementation of an ontology-
based RAG pipeline, which uses RDF data to construct a retrieval system through 
a property graph. Initially, the code leverages the RDF graph parser Graph() (lines 
2–3) to load and parse the selected ontology file. The ontology must be provided 
in .owl, .json,  or  .csv format, with the data being processed as XML. The 
RDF triples are then iterated through, and each triple is stored as a structured 
node, where each node captures a distinct relationship or fact derived from the 
ontology. Next, these nodes are converted into text documents, stored in the list 
documents_ontology (line 18). Each document represents an RDF triple as a 
textual string, ensuring the data is suitable for downstream indexing and retrieval. 
These textual representations are indexed to create a PropertyGraphIndex (line 
21), which organizes the ontology data into a graph structure. The llm is set with 
OpenAI function (line 24). Finally, a query engine using query_engine (line 32) 
is instantiated using the property graph. The llm and the engine are configured with
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parameters previously discussed, enabling it to process user queries by retrieving 
relevant results based on the indexed ontology data. 

7.3.1.4 Query and Response 

Query and response 

1 user_query = input("Enter your query: ") 
2 response = query_engine .query(user_query)  

This final segment of the pipeline is designed to execute user queries across 
any of the RAG configurations previously discussed.  The  user_query (line 
1) serves as the input for the query engine (line 2), which processes the query 
and retrieves relevant context from the indexed data to generate a response. The 
retrieval and response generation process is entirely interchangeable and adapts 
seamlessly to the underlying knowledge source. Additionally, the user_query can 
be enriched using prompt engineering techniques. By carefully structuring the query 
with specific instructions, constraints, or context, the system can be better directed 
toward performing the desired task, such as summarization, reasoning, or detailed 
explanation. 

7.3.2 Practical Application—Langchain 

This second hands-on guide focuses on implementing RAG pipelines using the 
LangChain framework. Unlike the previous section, where we provided plug-and-
play code structures applicable to all three types of RAG (classical, RAG with 
knowledge graphs, and RAG with ontologies), the implementations here are more 
specialized. While the initial steps for classical RAG and ontology RAG can be 
unified, implementing RAG with KG requires a separate block of code. 

7.3.2.1 Classic RAG and Ontology RAG 

Import 

1 import os 
2 import json 
3 import nest_asyncio 
4 

5 from dotenv import load_dotenv 
6 

7 from langchain.text_splitter import RecursiveCharacterTextSplitter 
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8 from langchain.vectorstores import FAISS 
9 from langchain.chains import RetrievalQA 

10 from langchain_openai import ChatOpenAI, OpenAIEmbeddings 
11 from langchain.document_loaders import ( 
12 TextLoader, 
13 PyPDFLoader, 
14 CSVLoader, 
15 JSONLoader 
16 ) 

This first block of code sets up the necessary libraries and configurations for 
implementing a RAG pipeline using Langchain. It imports various modules for doc-
ument loading, such as TextLoader, PyPDFLoader, CSVLoader, and JSONLoader 
(lines 11–15), which handle different file formats (.txt, .pdf, .csv, .json). The 
RecursiveCharacterTextSplitter (line 7) is used to split large documents into 
smaller chunks for easier processing and querying. The code utilizes FAISS (line 8) 
for efficient vector storage and similarity-based retrieval of document embeddings. 
For the generation process, the ChatOpenAI model and OpenAIEmbeddings (line 
10) are integrated to facilitate semantic search and response generation. The purpose 
of dotenv and nest_asyncio libraries have already been explained in previous 
section. 

Configuration 

1 # Apply the asyncio patch to allow nested event loops. 
2 nest_asyncio.apply() 
3 

4 # Load environment variables from a .env file. 
5 load_dotenv() 
6 

7 # Retrieve the OpenAI API key from the environment variables. 
8 openai_api_key = os.getenv( "OPENAI_API_KEY" )  

Since this is identical to the previous implementation, no further explanation is 
needed. 

File Loading 

1 # Load a PDF document from the specified path using PyPDFLoader. 
2 loader = PyPDFLoader('path/to/your/directory/document.pdf') 
3 # loader = TextLoader('path/to/your/directory/document.txt') 
4 # loader = CSVLoader( 'path/to/your/directory/document.csv') 
5 # loader = JSONLoader('path/to/your/directory/document.json') 
6 

7 document = loader .load() 
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This simple block of code manages file selection and document loading for the 
RAG pipeline. Specifically, it loads PDF files using the PyPDFLoader function (line 
2). If a different document format needs to be loaded, this function can be replaced 
with TextLoader for .txt files, CSVLoader for .csv files, or JSONLoader for 
.json files, as p resented in comments (lines 3–5) . 

Parsing, Embedding, Indexing 

1 # Split documents into smaller chunks for easier processing. 
2 text_splitter = RecursiveCharacterTextSplitter( 
3 chunk_size=1000, 
4 chunk_overlap=200 
5 ) 
6 

7 # Split the documents into smaller chunks using the text splitter. 
8 docs = text_splitter.split_documents(document) 
9 

10 # Create embeddings using the "text-embedding-3-large" model 
11 embeddings = OpenAIEmbeddings(model="text-embedding-3-large") 
12 

13 # Create a FAISS vector store from the documents and embeddings for 
efficient similarity search.↪→ 

14 vectorstore = FAISS.from_documents(docs, embeddings) 
15 

16 # Initialize the ChatOpenAI model with specific configurations for 
response generation.↪→ 

17 llm = ChatOpenAI( 
18 model="gpt-4o", 
19 temperature=0, #  from  0  to  1  
20 max_tokens=2000, # from 0 to infinity 
21 top_p=0.8, #  from  0  to  1  
22 api_key=openai_api_key) 
23 

24 # Set up a RetrievalQA chain for querying 
25 qa_chain = RetrievalQA.from_llm( 
26 llm=llm, 
27 retriever=vectorstore.as_retriever(), 
28 )  

This block of code sets up the core components of the RAG pipeline. The 
RecursiveCharacterTextSplitter (line 2) is initialized with a chunk size of 
1000 characters and an overlap of 200 characters, ensuring that the documents are 
split into manageable and contextually cohesive chunks. Note that chunk_overlap 
must be smaller than chunk_size.  The  split_documents method (line 8) is 
then used to apply this splitter to the loaded documents, effectively preparing 
them for downstream tasks. To handle embeddings, the OpenAIEmbeddings 
class (line 11) is instantiated using the text-embedding-3-large model. 
Other available embedding models include text-embedding-3-small and
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text-embedding-ada-002.23 These embeddings are stored in a FAISS vector 
store via the FAISS.from_documents method (line 14), enabling efficient 
similarity-based searches. The ChatOpenAI model (line 17) is then initialized with 
specific parameters, the same presented for LlamaIndex in the previous section. 
Finally, the RetrievalQA.from_llm method (line 25) creates a retrieval-based 
question-answering chain by linking the initialized language model (llm) and the 
FAISS vector store retriev er (vectorstore.as_retriever()). 

Query and response 

1 user_query = input("Enter your query: ") 
2 response = qa_chain .invoke(user_query)  

In this final block the user query is processed using the qa_chain.invoke 
method (line 3). The functionality mirrors the equivalent steps in the LlamaIndex 
framework. 

7.3.2.2 RAG with KG 

Now we present an alternative implementation of a RAG pipeline with knowledge 
graphs. 

Import 

1 import os 
2 

3 from dotenv import load_dotenv 
4 from neo4j import GraphDatabase 
5 

6 from langchain_openai import ChatOpenAI 
7 from langchain.chains import GraphCypherQAChain 
8 from langchain.graphs import Neo4jGraph 
9 from langchain.prompts import PromptTemplate  

This initial block imports the required libraries for integrating a knowledge 
graph with the RAG pipeline. It includes Neo4j as the graph database backend 
and LangChain modules such as GraphCypherQAChain and Neo4jGraph for

23 More information on embedding models by OpenAI is available at https://platform.openai.com/ 
docs/guides/embeddings. 
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interacting with the KG. The PromptTemplate is used to customize queries sent 
to the model, while pprint assists with structured output during debugging. 

Configuration and KG loading 

1 # Load environment variables from a .env file 
2 load_dotenv() 
3 

4 # Retrieve API keys and database credentials from a .env file 
5 openai_api_key = os.getenv("OPENAI_API_KEY") 
6 neo4j_username = os.getenv("NEO4J_USERNAME") 
7 neo4j_password = os.getenv("NEO4J_PASSWORD") 
8 

9 # Retrieve the Neo4j database URI and set authentication credentials. 
10 URI = os.getenv("NEO4J_URI") 
11 AUTH = (neo4j_username, neo4j_password) 
12 

13 # Initialize the Neo4jGraph connection with enhanced schema support. 
14 graph = Neo4jGraph( 
15 url=URI, 
16 username=neo4j_username, 
17 password=neo4j_password, 
18 enhanced_schema=True, 
19 ) 
20 

21 # Define a Cypher query to load CSV data from a specific URL and create 
nodes/relationships.↪→ 

22 cypher_query = """ 
23 LOAD CSV WITH HEADERS FROM 'specific URL to load CSV file' AS row 
24 

25 // Replace the following MERGE clauses with your specific data modeling 
logic.↪→ 

26 // Use MERGE to create nodes and relationships based on the data in the 
CSV.↪→ 

27 // Add your domain-specific MERGE clauses here 
28 """ 
29 graph. query(cypher_query)

This block configures environment variables for connecting to the Neo4j 
database and OpenAI services. Using dotenv, it retrieves and sets the necessary 
details, including the OpenAI API key, Neo4j URI, username, and password from 
the .env file (lines 5–11). Following this, the Neo4jGraph class (line 14) from 
Langchain is initialized using the Neo4j URI, username, and password, which 
are retrieved from the environment variables. This object provides a convenient 
interface to interact with the graph database. The enhanced_schema parameter 
(line 18) is set to True to enable advanced schema capabilities for more complex 
graph queries. The first part of the code allows you to interact with and upload an 
existing graph that is already present in Neo4j. The second part of the code allows 
you to execute a Cypher query (line 22) that performs an upload from a CSV file
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into the Neo4j graph database. The LOAD CSV clause in Cypher loads data from 
the specified file, and the MERGE clauses within the query are used to create nodes 
and relationships based on the contents of the CSV file. The insert specific 
URL to load CSV file placeholder (line 23) should be replaced with the actual 
location of the CSV file to be uploaded. 

Pipeline set-up 

1 # Define a custom prompt template for user input, allowing future 
customization.↪→ 

2 chat_prompt = PromptTemplate( 
3 input_variables=["user_input"], 
4 template="" # Template left intentionally blank for customization 
5 ) 
6 

7 # Initialize the OpenAI model with specific configurations for response 
generation↪→ 

8 llm = ChatOpenAI( 
9 model="gpt-4o", 

10 temperature=0, #  from  0  to  1  
11 max_tokens=2000, # from 0 to infinity 
12 top_p=0.8, #  from  0  to  1  
13 api_key=openai_api_key) 
14 

15 # Create a GraphCypherQAChain for querying the Neo4j graph using 
natural language.↪→ 

16 chain = GraphCypherQAChain.from_llm( 
17 llm, 
18 graph=graph, 
19 prompt=chat_prompt, 
20 verbose=True, 
21 return_intermediate_steps=True, 
22 validate_cypher=True, 
23 top_k=5, 
24 allow_dangerous_requests= True 
25 )  

This block of code sets up a GraphCypherQAChain (line 16), enabling 
queries on a Neo4j graph using OpenAI’s gpt-4o model. A PromptTemplate 
defines the input format for user queries, allowing for future customization as 
needed. The ChatOpenAI model (line 2) is configured with key parameters 
such as temperature, max_tokens, and top_p, while the OpenAI API 
key is provided for authentication. The GraphCypherQAChain connects the 
language model, the Neo4j graph instance, and the input prompt (line 17–19). 
Additional options include enabling verbose logging for detailed output, returning 
intermediate reasoning steps, validating Cypher queries before execution, limiting
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the number of results with top_k, and permitting potentially unsafe requests via 
allow_dangerous_requests (line 20–24). 

Query and response 

1 user_query = input("Enter your query: ") 
2 response = chain .invoke(users_query)  

Finally, we can execute our query using chain.invoke (line 2 ). 

7.3.3 RAG Evaluation 

Evaluating RAG systems is crucial for ensuring their effectiveness in real-world 
applications. Unlike traditional generative models, RAG combines retrieval and 
generation components, which requires evaluation strategies that assess both aspects 
comprehensively. Earlier assessments of RAG systems often focused on task-
specific metrics, such as F1 and EM scores [28, 33] for Question Answering or 
Accuracy for Fact-Checking [26]. However, modern evaluation frameworks now 
emphasize not only task performance but also the quality of retrieval and the fidelity 
of generation, making them more suited to assess the unique characteristics of RAG 
systems. 

This section introduces two widely used frameworks for RAG evaluation: 
DeepEval24 and RAGAS.25 First, we will present the key evaluation metrics, which 
are divided into retrieval evaluation metrics and generation evaluation metrics,  to  
offer a comprehensive understanding of how to measure the quality of retrieval 
and generated outputs. In this context, it is important to clarify that all of these 
metrics use LLMs as a critical component for assessing the quality of the retrieval 
and generation processes. For retrieval metrics such as Contextual Precision and 
Contextual Recall, the LLM evaluates the relevance of nodes in the retrieval context 
and determines their alignment with the input and expected output. For generation 
metrics like Answer Relevancy and Faithfulness, the LLM evaluates the factual 
accuracy and relevance of the generated output in relation to the input query 
and retrieval context. Additionally, the LLM provides reasoning for its judgments, 
which enhances the transparency and interpretability of the evaluation process. After 
introducing these metrics, we will provide implementation examples for DeepEval, 
demonstrating how to apply them in practice. Due to space limitations, detailed 
implementation examples for RAGAS will be included in GitHub.

24 https://docs.confident-ai.com/docs/getting-started. 
25 https://docs.ragas.io/en/stable/. 
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7.3.3.1 Retrieval Evaluation Metrics 

The following retrieval evaluation metrics are essential for assessing the perfor-
mance of the retriever component in a RAG pipeline. These metrics evaluate the 
quality and relevance of the retrieved documents or nodes from the retrieval context 
in relation to the expected output. 

Contextual Precision The Contextual Precision metric (CP) assesses the effec-
tiveness of the retriever by measuring how well the retrieved nodes in the retrieval 
context match the relevance of the given input query. In particular, it evaluates 
whether relevant nodes are ranked higher than irrelevant ones. This metric employs 
a self-explaining LLM-based evaluation, where an LLM is used to assess the 
relevance of each retrieved node to the query, and justifies its relevance judgment. 
The CP score prioritizes nodes that appear earlier in the retrieval list, reflecting their 
higher importance. The CP is calculated using the following formula: 

. CP = 1

No. of Relevant Nodes
·

n∑

k=1

(
No. of Relevant Nodes up to Position k

k
· rk

)

where: 

• k is the position of the k-th node in the retrieval_contex t 
• n is the total number of nodes in the retrieval_contex t 
• rk . is the binary relevance of the k-th node (rk = 1. if relevant, rk = 0. otherwise) 

The resulting score is computed using the Weighted Cumulative Precision 
(WCP), which aggregates the relevance assessments while prioritizing nodes ranked 
higher in the retrieval list. The WCP increases the contribution of relevant nodes 
that appear earlier in the ranking, reflecting their greater importance in a retrieval 
context. 

Contextual Recall The Contextual Recall metric (CR) evaluates the ability of the 
retriever to capture all the relevant information in the retrieval context with respect 
to the expected output. It measures how well the retrieval context aligns with the 
expected output by calculating the proportion of statements in the expected output 
that are supported by the retrieved context. Similar to CP, this metric also uses an 
LLM-based evaluation to assess how well each statement in the expected output is 
supported by the retrieval context. The CR is calculated as: 

. CR = Number of Attributable Statements

Total Number of Statements in Expected Output

where: 

• Attributable statements are statements in the expected output that can be traced 
back to the nodes in the retrieval context
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• Total number of statements refers to the total number of distinct statements 
identified in the expected output 

The LLM plays a crucial role here by extracting and classifying the statements 
made in the expected output. It then determines which of those statements are 
attributable to the nodes in the retrieval context. The final score reflects the 
proportion of statements in the expected output that are adequately supported by 
the retrieved context. 

7.3.3.2 Generation Evaluation Metrics 

The following metrics focus on evaluating the quality of the generated output in a 
RAG pipeline, specifically assessing the coherence, relevance, and factual accuracy 
of the answers generated by the model. 

Answer Relevancy The Answer Relevancy metric evaluates how relevant the 
actual output generated by the LLM is in relation to the input query. It measures 
the proportion of relevant statements in the generated output compared to the total 
number of statements. This metric is essential for understanding how well the 
generated answer addresses the user’s query. The Answer Relevancy Metric (AR) is 
calculated as follows: 

. AR = Number of Relevant Statements

Total Number of Statements in Actual Output

where: 

• Relevant statements are those statements in the actual output that are directly 
related to the input query 

• Total number of statements refers to the total number of distinct statements made 
in the actual output 

The LLM is responsible for evaluating the relevance of each statement in 
the generated output. It provides the reasoning behind its classification, enabling 
transparency in the evaluation process. 

Faithfulness The Faithfulness metric evaluates the degree to which the actual 
output aligns with the factual information contained in the retrieval context. It 
ensures that the generated answer does not introduce hallucinations or incorrect 
information, maintaining consistency with the retrieved context. This metric uses an 
LLM-based evaluation, where the LLM checks if the claims made in the generated 
output are truthful and supported by the retrieval context. The Faithfulness Metric 
(F) is calculated as: 

.F = Number of Truthful Claims

Total Number of Claims in Actual Output
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where: 

• Truthful claims are those claims in the actual output that are factually accurate 
and supported by the retrieval context 

• Total number of claims refers to the total number of distinct claims made in the 
actual output 

The LLM is used to verify the truthfulness of each claim in the generated output 
by comparing it to the information in the retrieval context. The reasoning behind the 
evaluation is provided, allowing for an explanation of which claims are considered 
truthful and which are not. 

7.3.3.3 Practical Implementation with DeepEval 

DeepEval - Import 

1 # Importing the necessary evaluation metrics from the deepeval library 
2 from deepeval.metrics import ContextualPrecisionMetric 
3 from deepeval.metrics import ContextualRecallMetric 
4 from deepeval.metrics import AnswerRelevancyMetric 
5 from deepeval.metrics import FaithfulnessMetric 
6 from deepeval.test_case import LLMTestCase 
7 from deepeval import evaluate  

In this first block of code, necessary library are imported, including those 
for the retrieval and generation evaluation metrics, namely, Contextual Precision, 
Contextual Recall, Answer Relevancy, and Faithfulness (lines 2–5). LLMTestCase 
and evaluate (lines 6–7) are fundamental for the actual execution of the eva luation 
process. 

Metrics configuration and initialization 

1 # Defining the environment variable for OpenAI API key 
2 os.environ["OPENAI_API_KEY"] = "your_openai_api_key" 
3 

4 #Initializing test inputs 
5 actual_output = "  "  
6 expected_output = "  "  
7 retrieval_context = [] 
8 

9 # Initializing the ContextualPrecisionMetric 
10 metric_CP = ContextualPrecisionMetric( 
11 threshold = 0.7, 
12 model = "gpt-4o-mini", 
13 include_reason = True 
14 ) 
15 

16 # Initializing the ContextualRecallMetric 
17 metric_CR = ContextualRecallMetric( 
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18 threshold = 0.7, 
19 model = "gpt-4o-mini", 
20 include_reason = True 
21 ) 
22 

23 # Initializing the AnswerRelevancyMetric 
24 metric_AR = AnswerRelevancyMetric( 
25 threshold = 0.7, 
26 model = "gpt-4o-mini", 
27 include_reason = True 
28 ) 
29 

30 # Initializing the FaithfulnessMetric 
31 metric_F = FaithfulnessMetric( 
32 threshold = 0.7, 
33 model = "gpt-4o-mini", 
34 include_reason = True 
35 )  

Here, the code sets up the api key (line 2) and the inputs for evaluation (lines 5– 
7). The actual_output (line 3) represents the generated response from the model, 
while the expected_output (line 4) is the ground truth or reference answer. The 
retrieval_context (line 5) is a list of strings retrieved by the system, which 
the model uses to generate its response. Moreover, all single metrics are initialized 
(lines 8, 15, 22, 29), setting specific parameters, such as a threshold,  used  to  
determine relevance, and the model to be evaluated, in this case, gpt-4o-mini. 
The include_reason parameter ensures that the reasoning behind the s core is 
provided. 

Executing test 

1 # Creating a test case to evaluate contextual precision (CP) 
2 test_case_PC = LLMTestCase( 
3 input = "", 
4 actual_output = actual_output, 
5 expected_output = expected_output, 
6 retrieval_context = retrieval_context 
7 ) 
8 

9 # Creating a test case to evaluate contextual recall (CR) 
10 test_case_CR = LLMTestCase( 
11 input = "", 
12 actual_output = actual_output, 
13 expected_output = expected_output, 
14 retrieval_context = retrieval_context 
15 ) 
16 

17 # Creating a test case to evaluate answer relevancy (AR) 
18 test_case_CR = LLMTestCase(
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19 input = "", 
20 actual_output = actual_output, 
21 ) 
22 

23 # Creating a test case to evaluate faithfulness (F) 
24 test_case_CR = LLMTestCase( 
25 input = "", 
26 actual_output = actual_output, 
27 retrieval_context = retrieval_context 
28 ) 
29 

30 # Measuring the evaluation score for the test case 
31 metric_CP. measure(test_case_CP) 
32 metric_CP.measure(test_case_CR) 
33 metric_CP.measure(test_case_AR) 
34 metric_CP.measure(test_case_F) 
35 

36 # Evaluating the test case with the metric and displaying results 
37 evaluate([test_case_CP], [metric_CP]) 
38 evaluate([test_case_CR], [metric_CR]) 
39 evaluate([test_case_AR], [metric_AR]) 
40 evaluate([test_case_F], [metric_F])  

Inputs defined in Metrics configuration and initialization block go into each 
LLMTestCase function (lines 2, 10, 18, 24). The measure method (lines 31–34) 
is then called to evaluate the test case, calculating the score based on the provided 
inputs. Finally, the evaluation is conducted using the evaluate function (lines 37– 
40), which processes and outputs the final evaluation r esults. 
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Chapter 8 
Large Language Model Agents 

Jerin George Mathew and Jacopo Rossi 

Abstract Large language model (LLM) agents are transforming the landscape 
of artificial intelligence, enabling sophisticated interactions, reasoning, and 
autonomous decision. This chapter explores the theoretical and practical 
foundations of LLM agents and multi-agent systems, highlighting their architecture, 
communication strategies, and coordination mechanisms. The chapter also presents 
examples of LLM agent applications in software engineering, demonstrating 
their impact on tasks such as code generation, debugging, and automated 
software development. Finally, the chapter describes the programming paradigms 
for designing and deploying intelligent agents and multi-agent coordination 
frameworks. By summarizing key advancements and methodologies, this chapter 
provides a comprehensive guide to developing and understanding LLM agents and 
multi-agent systems in modern AI applications. 

8.1 Introduction 

Addressing complex and articulated tasks has always been one of the main 
challenges in computer science. Large language models (LLMs) have a significant 
impact on solving intricate problems. However, LLMs alone often have trouble 
with complex tasks that require planning, multi-step reasoning, or using external 
information. Expanding the context window can mitigate some limitations but does 
not fully address these challenges. One promising approach is the development 
of LLM agents [12], which augment LLMs with additional modules dedicated to 
memory, planning, and external tools. 

In artificial intelligence, the concept of agent is fundamental, referring to an 
entity that perceives its environment, processes information, and takes actions to 
achieve specific goals. This notion is particularly relevant in reinforcement learning 
(RL) [1], where an agent interacts with an environment, learning through feedback 
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to maximize cumulative rewards. Similarly, LLM agents enhance the ability to solve 
complex and articulated tasks. Such tasks often require the execution of multiple 
actions and steps, which must be managed with great care and handled by different 
specialized components. These solutions enable LLMs to interact with the external 
environment, further expanding their capabilities. 

LLM agents operate in such situations by integrating various module compo-
nents. These components collectively enable the system to handle complex tasks, 
including iterative learning from prior outcomes. 

To understand the importance of LLM agents, we can analyze in detail two 
possible problems to solve: 

(a) Analyze the environmental impacts of two different cars. 
(b) Analyze the life cycle emissions of two different cars, including production, 

usage, and disposal. There is the need to generate a report summarizing key 
findings and create a chart showing the annual reduction in emissions for the 
two different models 

As we can observe, the first problem (a) could be entirely resolved by an LLM 
when it has sufficient knowledge. If the LLM lacks the necessary information, 
a RAG (retrieval-augmented generation) system could be used, having access to 
customized documents that serve as the knowledge base.1 

Regarding the second problem (b), it is clear that the exclusive use of an LLM is 
not sufficient to solve the entire task. This is because the problem requires complex 
operations that cannot be managed directly in a single iteration. In this context, 
LLM agents come into play: the task can be divided into subtasks, which can 
be addressed using specific tools and following a flow of operations that leads to 
the desired final response. An effective approach might involve creating an LLM 
agent equipped with access to APIs and a database, enabling it to deliver relevant 
insights on environmental impact. Furthermore, the agent should incorporate a tool 
for generating visualizations, such as charts, to better interpret trends related to 
pollution. These components can be considered the core of a potential LLM agent; 
however, it is also crucial to consider other aspects, such as incorporating planning 
and memory modules, which are further discussed below. 

8.2 LLM Agent Structure 

LLM agents have several fundamental components that define their operational 
capabilities and performance. These elements are essential for information process-
ing, task management, and interaction with external data sources. Specifically, three 
primary categories can be identified that define the functioning of LLM Agents (c.f. 
Fig. 8.1):

1 For a detailed overview about RAG system, see Chap. 7. 
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Fig. 8.1 Architecture of LLM agent 

• Memory: divided into short-term memory, which allows to retain relevant 
information temporarily for immediate tasks, and long-term memory, which can 
be used to store extensive information in an external storage system. 

• Planning: breaks down complex tasks into smaller, manageable subgoals, allow-
ing for more efficient handling and organization. This technique is complemented 
by the agent’s capacity for self-assessment, where it reflects on past actions, 
identifies mistakes, and refines its methods for future steps, enhancing overall 
performance. 

• Tools: use external resources and applications to recover missing information, 
execute operations, or have access to proprietary data. This augments agent 
knowledge and real-time abilities. 

8.2.1 Memory 

The integration of memory modules in LLM agents is essential to make the system 
more precise and adaptable [23]. LLM agents have the ability to retain and organize 
information internally, enabling them to navigate complex, multi-step processes. 
They arrange data into distinct memory modules, each designed to address specific 
informational purposes. Memory modules act as a structured and dynamic system 
that allows agents to use stored information, improving decision-making, increasing 
adaptability and building the cognitive basis of the agent. This includes two different 
types of memory: short-term memory and long-term memory. 

• Short-term memory is a temporary, immediate storage that holds information 
relevant to the agent’s current task or session. Short-term memory enables
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the agent to maintain context within a single interaction or trial, allowing it 
to give answer based on the ongoing context [23]. For instance, if an agent 
is having a conversation, short-term memory stores details from earlier in 
that conversation, helping it understand follow-up questions or references. It 
facilitates a coherent flow within a task by retaining recent actions, responses, 
or observations, making it essential for multi-step processes like guiding a user 
through a series of instructions or tasks in a single session (e.g., a chatbot for 
customer support). Since its focus is on the current context, short-term memory 
enables the agent to retrieve relevant information quickly, keeping interactions 
efficient and responsive. Short-term memory also communicates with long-term 
memory systems, acting as the core integrative layer that links the different 
functions of a language agent [17]. 

• Long-term memory enables agents to accumulate and store knowledge and 
insights over time. Various methodologies are employed to manage data in long-
term memory, allowing for the distinction between different types of memory 
[23]. The use of cross-trial information includes details from historical data 
related to past iterations and their outcomes. This approach optimizes future 
decisions for specific tasks but has some limitations in its dependency on 
past interactions between the agent and its environment. Closely related to 
these methods is also the concept of episodic memory, which stores data from 
earlier decision iterations. There are also approaches that incorporate external 
knowledge rather than relying solely on the agent’s direct experiences. This 
information can be stored as parameters (encoded in model through fine-tuning 
or training), textual data (readily interpretable), or external vector databases and 
support tasks that require historical or contextual understanding. Some methods 
draw from general sources like Wikipedia or other Website [19, 25], while others 
utilize specialized repositories [11, 21]. In this context, the semantic memory is 
also important, which stores world knowledge, enabling agents to integrate new 
insights through reasoning. 

8.2.2 Planning 

Planning for LLM agents represents an ambitious frontier. Numerous studies aim 
to integrate LLMs with planning methods. Their main goal is to enable agents 
to make complex decisions and perform tasks across a wide range of domains. 
Task Decomposition, Multiple Plan Selection, External Planner-Assisted Planning, 
and Reflection and Refinement are key approaches that address distinct challenges 
in planning [7]. Together, these strategies enhance the robustness, flexibility, and 
scalability of LLM agents. 

• Task Decomposition allows agents to break tasks into manageable sub-tasks. 
In LLM agents, this involves the model’s ability to sequentially identify and 
plan these sub-tasks, improving clarity and reducing cognitive load for each
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planning step. We can distinguish two different methods. Decomposition-first 
method involves breaking down sub-tasks at the beginning, allowing planning for 
each sub-task in isolation. Interleaved decomposition method offers a dynamic 
approach, allowing interleaved task decomposition and sub-tasks planning where 
each decomposition identifies only one or two immediate sub-tasks. 

• Multiple Plan Selection. LLMs agents can generate multiple solutions to solve 
complex tasks. This process involves two key steps: Multiple Plan Genera-
tion and Multiple Plan Selection. Multiple Plan Generation employs diverse 
strategies to produce a set of candidate plans, ensuring coverage of potential 
approaches. Multiple Plan Selection mitigates variability by evaluating these 
candidates through an optimal selection mechanism, guaranteeing that the most 
effective plan is executed. Together, these steps enhance robustness and reliability 
in task resolution by systematically exploring and refining solutions. 

• Planning Assisted by External Planners. Integrating LLMs with external plan-
ners, both symbolic (rule-based systems that use predefined logic) and neural 
(data-driven models that learn patterns), can significantly enhance feasibility and 
efficiency, especially in dynamic or complex environments. Symbolic planners 
improve task feasibility by following strict rules and structured reasoning, 
ensuring reliability in predictable settings. However, they struggle in unfamiliar 
scenarios where rules are missing or incomplete. Neural planners, on the other 
hand, adapt well to specific tasks by learning from examples, but they falter when 
faced with situations outside a specific context. 

• Reflection and Refinement. LLMs benefit significantly from reflection and refine-
ment mechanisms. These techniques mirror principles of reinforcement learning 
but focuses on refining outputs through prompt-based feedback rather than 
parameter updates, enabling continuous improvement without retraining. Reflec-
tion and refinement are critical for overcoming challenges like hallucinations 
(generating incorrect or nonsensical outputs) and reasoning gaps (incomplete or 
flawed logic). By systematically analyzing failures and adapting strategies, LLM 
agents improve errors tolerance, adaptability, and overall robustness in planning 
tasks. 

8.2.3 Tools 

Equipping LLMs with external tools enhances their ability to interact with external 
environments, enabling them to execute complex workflows and obtain necessary 
information beyond their inherent capabilities. 

The entire process of utilizing tools to assist LLM agents can be handled in 
different ways. Here we introduced an iterative and structured pipeline that can be 
summarized in four distinct steps [20]: (a) task planning, (b) tool retrieval, (c) tool 
selection, and (d) tool execution. 

Before executing the pipeline, it is crucial to clearly define the target of the 
LLM’s action to identify the specific task to be solved. Once the intent is understood,
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the LLM requires an action plan to achieve the predefined goal. After formalizing 
the plan (a), often aided by the planning module (c.f. Sect. 8.2.2), the next step is to 
translate the plan into concrete tasks and align these tasks with the available tools 
for solving the problem (b). Subsequently, the most appropriate tool is selected (c) 
based on its description, and all the parameters for its execution are configured. 
After the tool execution (d), the model collects feedback on the results obtained. If 
a tool fails, the system can activate a fallback mechanism. This involves selecting 
an alternative tool from the tool-retrieval module (b) and continuing the workflow 
from that point. 

By adopting the described pipeline, the agent can handle disparate categories of 
tools. 

In this context, agents simulate human behavior in orchestrating and coordinating 
tools. It is also worth highlighting how task execution methods can be categorized 
into code-based and UI-based approaches [12], each offering distinct capabilities 
and facing unique challenges. Code-based methods rely on generating code to 
interact with APIs, databases, or other components, often employing LLMs for tasks 
like slot-filling and program synthesis. These methods are effective for structured 
and predefined API-driven tasks but encounter limitations in handling complex 
scenarios, scaling to large toolsets, and adapting to unseen domains. On the other 
hand, UI-based approaches focus on simulating human interactions with device 
interfaces, enabling versatile automation without depending on APIs, through text-
based representations like HTML or multimodal representations combining visual 
and textual inputs. Both Code-based and UI-based methods can be categorized 
by different functionalities [26]. These include text tools, which extract relevant 
information from text documents; database tools, which manage and query tabular 
data; math tools, which handle computations ranging from basic arithmetic to com-
plex operations; graph tools, which analyze graph structures and attributes; code 
tools, which execute code and enable interoperability between tools; and system 
tools, which finalize task results based on execution feedback. This classification 
highlights the diverse features required for effective task execution and emphasizes 
the importance of selecting the appropriate tools to match the specific needs of 
executing a task. 

The use of tools introduce also significant challenges [16]. Deciding when to 
invoke a tool is very important, since doing it in the wrong way can slow down 
the process and increase resource consumption, while an absence of invocation can 
lead to incomplete or inaccurate results. Another challenge is related to selecting 
the most appropriate tool. LLMs often have a wide range of tools at their disposal, 
but choosing the right one is not always straightforward. Even when the right tool 
is selected, the LLM must know how to invoke it correctly [9]. Each tool has its 
own interface and requires specific parameters. Errors in formatting parameters or 
understanding the API can lead to failures. For example, an API that requires a date 
in ISO format may fail if the model provides a different format. A critical aspect is 
to ensure the robustness of the process, avoiding errors accumulating [2]. Because 
complex tasks require multiple steps, an initial failure can have a cascading effect 
on all subsequent steps.
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8.3 LLM-Based Multi-agents (LLM-MA) 

Due to the impressive results of using LLMs as autonomous agents to do many tasks 
automatically, the idea of using multiple LLMs to accomplish complex problem-
solving tasks has been proposed to leverage the collective intelligence, specialized 
profiles, and skills of multiple LLM-based agents. 

Compared to systems using a single LLM-based agent, multi-agent systems 
offer advanced capabilities by specializing LLMs into various distinct agents, 
each with different capabilities, and enabling interactions among these diverse 
agents to simulate complex real-world environments effectively [4]. In this context, 
multiple autonomous agents collaboratively participate in planning, discussions, 
and decision-making, similarly to the cooperative nature of human group work in 
problem-solving tasks. The interaction among the agents leverages the communi-
cation capability of LLMs, which are able to comprehend and generate texts of 
disparate domains. 

In particular, in a multi-agent system, each agent is assigned a distinct role and 
relevant expertise, making it specifically responsible for different tasks; in addition, 
the agents can communicate with each other and share the progress/information as 
the task proceeds. Typically, agents can work collaboratively (i.e., by working on 
different sub-tasks to achieve a final goal) or competitively (i.e., by working on the 
same task while debating adversarially). 

The main operational framework of these types of systems focuses on four 
key aspects: the environment interface, the profiling, the communication, and the 
capability acquisition [4]. These aspects are represented in Fig. 8.2, which depicts 

Fig. 8.2 LLM-based multi-agents architecture
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the general architecture of this type of system and will be further described in the 
sections below. 

8.3.1 Environment Interface 

The environment interface defines the setting in which the LLM-MA system 
perceives and interacts, shaping agent behavior and decision-making. The authors 
in [4] categorize these interfaces into three types: Sandbox, Physical, and no specific 
external environment. 

The Sandbox environment refers to a simulated or virtual space where agents 
interact freely and experiment with various actions and strategies without real-world 
consequences. The Physical environment involves real-world interactions, where 
agents engage with tangible entities and operate under physical constraints. The 
third category, no specific external environment, applies to settings where agents 
primarily interact with each other rather than with an external system. 

These environments are applied across various domains depending on the 
nature of agent interaction. The Sandbox environment is widely used in software 
development, gaming, and experimental simulations, enabling agents to explore 
different strategies in controlled settings. Examples include game-based learning 
environments and AI-driven software engineering platforms. The Physical envi-
ronment includes robotics and industrial automation, where agents interact with 
sensors, actuators, and other physical components to perform real-world tasks. 
In contrast, scenarios without a specific external environment include debating 
agents [8] and simulated social interactions [14], where agent behavior is defined 
entirely through internal knowledge exchange and inter-agent communication. 

8.3.2 Profiling 

The agents interacting in a LLM-MA system are defined by their roles (or profiles) 
specifying their characteristics, capabilities, behavior, and constraints, which are 
personalized to meet specific goals. The profiles of the agents are crucial, as 
they define the interactions and effectiveness in their respective environments. The 
authors in [4] classify agent profiling methods into three main types: pre-defined 
profiles, model-generated profiles, and data-derived profiles. 

Pre-defined profiles consist of manually designed roles where agents have fixed 
characteristics, responsibilities, and constraints. This approach is useful for struc-
tured environments where agent behavior needs to be explicitly defined, such as in 
software engineering or policy simulations. Model-generated profiles allow LLMs 
to dynamically generate agent attributes based on context and requirements. This 
enables flexible role assignments and allows agents to adapt their behavior based on
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real-time interactions and external changes. Data-derived profiles rely on existing 
datasets to infer agent characteristics, facilitating domain-specific behaviors. 

Beyond role assignment, profiling also defines inter-agent relationships and 
communication structures. LLM-MA systems can be designed with different hier-
archical structures, ranging from decentralized peer-to-peer networks to centralized 
agent coordination models. These structures, which will be further discussed in the 
next section, impact collaboration efficiency and decision-making processes within 
the system [4]. 

Additionally, agents within LLM-MA can exhibit cognitive evolution, meaning 
their profiles can be updated over time based on experience, interactions, and 
learning feedback. This allows for a more adaptive and evolving multi-agent 
ecosystem, where agents refine their expertise and improve task performance 
through iterative learning cycles [10]. 

8.3.3 Communication 

Inter-agent communication is a fundamental aspect of multi-agent collaboration, 
enabling agents to exchange information, coordinate actions, and resolve conflicts. 
LLM-MA employ different communication paradigms depending on the nature of 
their interactions and the complexity of their tasks [4]. 

Communication within these systems can take cooperative, debate-based,  or  
competitive forms, each serving a distinct role in agent coordination. 

Cooperative communication involves agents working together toward shared 
objectives, where information is exchanged to improve collective decision-making. 
This paradigm is particularly useful in collaborative problem-solving scenarios, 
such as software development or scientific research, where multiple agents con-
tribute distinct expertise to achieve a common goal. 

Debate-based communication allows agents to engage in structured argumen-
tative discussions, evaluating multiple perspectives before reaching a consensus. 
This approach is frequently utilized in policy simulation and automated negotiation 
systems, where diverse viewpoints must be reconciled. 

Competitive communication fosters adversarial interactions, where agents pursue 
individual strategies that may be in conflict with others. This is commonly seen in 
gaming and strategic planning applications. 

These communication paradigms align with different structural models of agent 
interaction [10], as depicted in Fig. 8.3.  In  a  single-agent setting, an LLM interacts 
with external tools but does not communicate with other agents. This model is 
suited for tasks where a single agent can operate autonomously while leveraging 
external resources. In a centralized setup, a single agent oversees coordination and 
decision-making, managing communication with subordinate agents. This structure 
is effective in cooperative environments where efficiency and control are prioritized. 
A variation of this model, centralized (as tools), treats multiple agents as external 
tools controlled by an LLM, balancing modularity with oversight while allowing
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Fig. 8.3 Different types of communication in LLM-MA systems 

specialization within a structured framework. Decentralized architectures distribute 
communication across multiple agents interacting in a peer-to-peer manner, without 
a central coordinator. This approach supports debate-based and competitive commu-
nication, enabling greater adaptability and resilience in distributed environments. A 
more structured variation is the hierarchical model, where high-level agents oversee 
lower-level agents, combining structured oversight with task-specific autonomy. 
This is particularly useful in complex systems requiring multi-level decision-
making. Finally, custom architectures combine elements of these models, adapting 
communication structures to specific use cases where hybrid interaction strategies 
are necessary. 

8.3.4 Evolution 

Agent evolution in LLM-MA refers to the ability of agents to dynamically improve, 
adapt, and refine their behavior over time based on experience, interactions, and 
external feedback. This process enhances multi-agent collaboration by allowing 
agents to learn from prior interactions, optimize their strategies, and develop new 
capabilities autonomously [4]. 

The evolution process can be categorized into three primary mechanisms: 
memory-based learning, self-adaptation, and dynamic agent generation.
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Memory-based learning allows agents to store past interactions and retrieve 
relevant experiences to inform future decisions, ensuring contextual consistency 
and improved response efficiency. Self-adaptation enables agents to refine their 
strategies based on ongoing interactions, modifying their behavior in real time to 
enhance coordination and task execution. Dynamic agent generation introduces 
new agents as required, adjusting system complexity and specialization levels 
to optimize performance in evolving environments [10]. Reinforcement learning 
techniques [18] and iterative training mechanisms [13] further contribute to the 
evolution of LLM-based agents. These techniques enable agents to continuously 
improve their problem-solving abilities, adapt to new challenges, and fine-tune 
decision-making processes. The integration of feedback loops (e.g., [22]), both from 
other agents and external sources, ensures a more robust and scalable multi-agent 
system that can handle complex, real-world tasks effectively. 

8.4 Applications of LLM Agents in Software Engineering 

This section reviews some applications of LLM agent-based systems in software 
engineering. These systems have been applied across various stages of software 
development, including requirements analysis, system design, code generation, 
testing, and documentation. 

Software engineering typically involves complex, interdependent tasks that 
traditionally require extensive human oversight. LLM-MA systems can address 
these challenges by structuring workflows, enabling agents to collaborate, validate 
outputs, and refine software artifacts iteratively. The following sections explore 
different frameworks, starting with structured systems that enforce predefined 
workflows, followed by agile-oriented approaches that enable dynamic adaptation. 
The discussion concludes with a look at autonomous multi-agent frameworks and 
their potential for scalable, self-sufficient software development. 

Frameworks for Software Engineering 
Several frameworks that leverage multi-agent collaboration to enhance software 
development have been recently proposed in the literature. 

MetaGPT [6] is one such framework that introduces a structured approach to 
software engineering by assigning distinct roles to different agents. Instead of 
treating the development process as a single monolithic task, MetaGPT organizes 
it into multiple specialized roles, such as a product manager for gathering require-
ments, an architect for designing the system, an engineer for writing the code, and 
a QA engineer for testing and debugging. A defining feature of MetaGPT is its 
use of predefined workflows that guide each agent’s responsibilities. This structure 
prevents agents from engaging in unstructured interactions that could lead to incon-
sistencies or unnecessary repetition. The development process follows a structured 
sequence, where each agent builds on the output of the previous one. For example, 
the product manager agent first produces a requirements document that serves as the 
foundation for system design. The architect then refines this document into technical
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specifications, which the engineer uses to generate code. The QA engineer later tests 
the implementation against the specifications to identify any issues. This ensures 
that agents exchange information in a structured manner, potentially minimizing 
misunderstandings and preventing errors from propagating through the pipeline. 
Unlike multi agent frameworks that rely on free-form conversation between agents, 
MetaGPT enforces a step-by-step approach where each agent’s output adheres to a 
predefined format. This method reduces ambiguities, maintains consistency across 
development phases, and ensures that generated software adheres to well-defined 
specifications. 

Another framework, ChatDev [15], takes a different approach by modeling a 
virtual software company where agents communicate through structured dialogues. 
The development process is divided into four sequential phases: designing, coding, 
testing, and documenting. Each phase involves agents with distinct roles, such 
as architects, programmers, and testers, who engage in multi-turn interactions 
to refine requirements, generate implementations, and validate outputs. ChatDev 
enables agents to verify each other’s contributions, reducing the risk of errors 
in generated software. If a programmer agent produces an implementation, a 
peer reviewer checks the code for correctness before passing it to a tester for 
validation. The system follows a structured dialogue model where agents justify 
their decisions, propose modifications, and iterate on solutions as needed. This 
collaborative verification process helps mitigate hallucinations in LLM-generated 
code by ensuring that multiple agents reach a consensus before finalizing an output. 

Agile Software Engineering with LLM Agents 
Some frameworks focus on integrating multi-agent coordination into agile software 
engineering methodologies. CogniSim [3] is an example of a multi-agent system 
designed to enhance agile workflows, particularly in the Scaled Agile Framework 
(SAFe). The system consists of autonomous agents that participate in sprint 
planning, backlog refinement, and iterative software development. Each agent 
contributes specialized expertise at different stages of the development cycle, sup-
porting tasks such as prioritizing backlog items, optimizing workload distribution, 
and tracking project progress. The use of agents allows for continuous learning and 
adaptation. Instead of relying on static decision-making rules, these agents analyze 
past development cycles, evaluate performance metrics, and adjust their strategies 
accordingly. A backlog refinement agent, for instance, may learn from previous 
sprints to improve its prioritization of user stories, while a sprint planning agent can 
modify workload assignments based on real-time team capacity. These adaptations 
can help agile teams manage changing requirements more effectively and optimize 
resource allocation throughout the development process. 

From Multi-agent Coordination to Fully Autonomous Software Engineering 
While existing frameworks have demonstrated significant progress in structuring 
and optimizing software development workflows, full autonomy remains an open 
challenge. Current systems, such as MetaGPT and ChatDev, rely on predefined 
workflows and structured communication, while agile-oriented frameworks like 
CogniSim introduce adaptability through iterative refinement. However, these
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approaches might still require human intervention to define objectives, interpret 
ambiguous requirements, and address unexpected failures. Moving toward fully 
autonomous software engineering requires advances in three key areas, as outlined 
in the survey in [5]: independent decision-making, adaptive planning, and long-term 
learning. 

Independent decision-making remains a challenge for LLM agent systems. 
While current frameworks distribute tasks across agents, decisions about ambiguous 
or conflicting requirements might still require human oversight. Achieving full 
autonomy requires mechanisms that allow agents to debate, negotiate, and reach 
consensus without explicit human input. 

Adaptive planning is another critical factor in autonomous software engineering. 
Existing frameworks follow structured workflows, which, while effective, may 
struggle when encountering novel scenarios that require deviating from predefined 
processes. Future research must focus on enabling agents to dynamically adjust their 
workflows based on real-time feedback to allow LLM agent systems to generalize 
beyond their initial training data. 

Long-term learning and knowledge retention are also essential for achieving 
sustained autonomy. Fully autonomous systems must incorporate mechanisms 
for continuous learning, where agents retain and refine knowledge over multiple 
projects, enabling incremental improvements in software development capabilities. 
Techniques such as lifelong learning [24] may play a crucial role in this transition. 

Achieving fully autonomous software engineering will require further advance-
ments in multi-agent reasoning, uncertainty handling, and ethical considerations 
in AI-driven decision-making. While current LLM agent systems offer structured 
workflows and iterative adaptation, future developments will need to address inde-
pendent goal setting, dynamic problem-solving, and self-improvement mechanisms 
to reduce reliance on human oversight. 

8.5 Programming LLM Agents 

In this section, we explore the implementation of LLM agents and compare 
various approaches. While foundational libraries like Hugging Face Transformers2 

and LangChain3 facilitate building agents from scratch, recent frameworks have 
emerged to facilitate the development of LLM agents and complex workflows 
involving LLM-MA. Notable examples include LangGraph,4 CrewAI,5 and OpenAI 
Swarm.6 

2 https://huggingface.co/docs/transformers. 
3 https://www.langchain.com/langchain. 
4 https://www.langchain.com/langgraph. 
5 https://www.crewai.com. 
6 https://github.com/openai/swarm.
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LangGraph is part of the LangChain ecosystem and offers a robust framework for 
constructing structured multi-agent workflows. It models interactions as directed 
graphs, with nodes representing agents or tasks and edges defining the flow of 
information between them. LangGraph excels in managing complex decision-
making processes and supporting parallel task execution, making it particularly 
useful for applications requiring precise control over agent orchestration, such as 
dynamic task pipelines or modular workflows. 

CrewAI adopts a human-centric approach to multi-agent systems, focusing on 
collaboration through the concept of “crews,” i.e., specialized teams of agents 
working collectively toward a shared objective. With features like role-based 
management, task delegation, and seamless inter-agent communication, CrewAI 
simplifies development by aligning agent interactions with familiar organizational 
paradigms. Its design is especially effective for projects requiring intuitive role 
assignment and efficient coordination between agents. 

OpenAI Swarm is an experimental, educational framework designed to explore 
lightweight multi-agent orchestration. It focuses on making agent coordination and 
execution controllable and testable through two primary abstractions: agents and 
handoffs. An agent encompasses instructions and tools and can choose to hand off 
a conversation to another Agent. These primitives enable the construction of real-
world solutions while avoiding a steep learning curve. 

In the following steps, we will first implement an LLM agent at a low level 
using Hugging Face Transformers to understand the foundational concepts and 
mechanics. Then, we will leverage the high-level interfaces of the previously 
mentioned high-level libraries, specifically LangGraph, to ease the implementation 
of LLM agents and LLM-MA. 

8.5.1 Implementing a Simple LLM Agent from Scratch Using 
Hugging Face Transformers 

In this section, we will implement a simplified ReAct agent [19] from scratch 
using Hugging Face Transformers. A ReAct agent operates by iteratively alternating 
between reasoning and acting to accomplish a task. 

During the reasoning stage, the agent analyzes the current state of the environ-
ment, processes the context, and formulates a plan based on its understanding of 
the task. This stage focuses on logical deduction and decision-making. During the 
acting stage, the agent executes the planned actions, interacts with the environment, 
and collects feedback, which it uses to refine subsequent reasoning steps. We 
provide a summary of the inner workings of a ReAct agent in Fig. 8.4. 

For simplicity, this implementation will use a single tool: a calculator, allowing 
the agent to perform basic mathematical operations as part of its actions. 

We will start by importing the libraries needed for this implementation of an 
LLM agent and setting up the device (either CPU or GPU) for inference.
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Fig. 8.4 Overview of the 
inner workings of ReAct 

Import the required libraries 

1 from transformers import LlamaTokenizer, MistralForCausalLM, 
StoppingCriteria, StoppingCriteriaList↪→ 

2 import json 
3 import re 
4 import torch 
5 

6 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

Next, we define the LLM to use as the agent and its tokenizer. We will use 
OpenHermes-2.5-Mistral-7B, which is a fine-tuned variant of the Mistral architec-
ture trained on additional code datasets, which is known for its agent capacities. 

Define the model and its tokenizer 

1 tokenizer = LlamaTokenizer.from_pretrained( 
2 "teknium/OpenHermes-2.5-Mistral-7B", 
3 trust_remote_code=True 
4 ) 
5 

6 model = MistralForCausalLM.from_pretrained( 
7 "teknium/OpenHermes-2.5-Mistral-7B", 
8 torch_dtype=torch.float16, 
9 device_map=device, 

10 load_in_8bit=False, 
11 load_in_4bit= True, 
12 use_flash_attention_2=False, 
13 low_cpu_mem_usage= True 
14 ) 

The model is loaded with quantization and memory optimization parameters 
to balance efficiency and performance. By using torch_dtype=torch.float16
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(line 8), weights are stored in 16-bit floating-point format, reducing memory 
usage while maintaining precision. The load_in_4bit=True (line 11) enables 4-
bit quantization, significantly lowering the memory footprint, making it suitable 
for resource-constrained environments. Additionally, low_cpu_mem_usage=True 
(line 13) minimizes memory use during loading, and device_map=device (line 9) 
ensures the model is loaded onto the most capable hardware (GPU o r CPU). 

The ReAct agent uses tools to perform specific tasks. For simplicity, we include 
a single tool: a calculator. This tool evaluates mathematical expressions and returns 
the result. We provide a simple (and naive) implementation of a calculator function 
below: 

Define the calculator tool 

1 def calculator(expression): 
2 try: 
3 result = eval(expression) 
4 return f"The result is {result}." 
5 except Exception as e: 
6 return f"Error in calculation: {e}" 
7 

8 TOOLS = { 
9 "Calculator":  {  "function": calculator, "parameters": 

"expression (a mathematical expression to evaluate)"}↪→ 
10 } 
11 

12 TOOL_NAMES = list (TOOLS. keys())

We will now define the ReAct agent as a Python class. 

Define the React Agent 

1 class ReActAgent: 
2 def __init__(self, model, tokenizer, tools): 
3 self.model = model 
4 self .tokenizer = tokenizer 
5 self .tools = tools

We will now define below a simple variant of the ReAct prompt to allow the LLM 
to generate structured reasoning and use tools to solve tasks. The format_prompt 
method below is used to generate the prompt that will be fed to the model. 

Define the React Agent prompt 

1 def format_prompt(self, question): 
2 """Construct the exact prompt template with tool descriptions""" 
3 tools_description = "\n".join( 
4 [f"- {tool}: {desc['parameters'] }" for tool, desc in 

self.tools.items()]↪→ 
5 )



8 Large Language Model Agents 189 

6 system_prompt = f"""Answer the following questions as best you can. You 
have access to the following tools:↪→ 

7 

8 {tools_description} 
9 

10 The way you use the tools is by specifying a json blob. 
11 Specifically, this json should have a �action� key (with the name of 

the tool to use) and a �action_input� key (with the input to the 
tool going here).

↪→
↪→ 

12 The only values that should be in the "action" field are: {TOOL_NAMES} 
13 The $JSON_BLOB should only contain a SINGLE action and MUST be 

formatted as markdown, do NOT return a list of multiple actions. 
Here is an example of a valid $JSON_BLOB:

↪→
↪→ 

14 ���
15 {{ 
16 "action": $TOOL_NAME, 
17 "action_input": $INPUT 
18 }} 
19 ���
20 Make sure to have the $INPUT in the right format for the tool you are 

using, and do not put variable names as input if you can find the 
right values.

↪→
↪→ 

21 ALWAYS use the following format: 
22 Question: the input question you must answer 
23 Thought: you should always think about one action to take. Only one 

action at a time in this format:↪→ 
24 Action: 
25 ���
26 $JSON_BLOB 
27 ���
28 Observation: the result of the action 
29 ... (this Thought/Action/Observation can repeat N times, you should 

take several steps when needed. The $JSON_BLOB must be formatted as 
markdown and only use a SINGLE action at a time.)

↪→
↪→ 

30 You must always end your output with the following format: 
31 Thought: I now know the final answer 
32 Final Answer: the final answer to the original input question 
33 

34 Now begin! Reminder to ALWAYS use the exact characters �Final Answer:�
when you provide a definitive answer. ↪→

35 Question: {question}"""
36

37 return system_prompt

This prompt defines how the ReAct agent should structure its reasoning. The 
ReAct framework transforms the output of a language model from simple text 
generation into a process of structured reasoning and action. The structured 
reasoning in ReAct is achieved through three primary elements: Thought, Action, 
and Observation. These elements form a loop that the agent cycles through until 
it reaches a final answer. The “Thought” encapsulates the agent’s reasoning, the
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“Action” specifies a concrete step to execute, and the “Observation” reflects on the 
result of that step to guide the next reasoning process. 

Let’s explore this through an example of solving a mathematical problem: “What 
is the result of 5 + 2?” When presented with this task, the agent begins by analyzing 
the problem and thinking how to decompose the problem into smaller problem. In 
this simple case, the problem can be solved in a single step by calling the calculator 
tool. 

Reasoning/thinking in ReAct 

Question: What is the result of  5  +  2?  
Thought: To solve this, I need to calculate the value of  5  +  2  using 

the calculator. ↪→

With its plan in place, the agent decides to execute the calculation for 5 + 2. The 
ReAct prompt ensures that the agent specifies this action using a JSON blob. This 
structured representation of the action communicates the agent’s intent to use the 
calculator tool: 

Generating the action 

Action:
���
{ 

"action": "Calculator", 
"action_input": "5 + 2" 

} 
���

This explicit format is not just for the agent’s internal reasoning; it is designed for 
easy integration with external tools or APIs, ensuring that the system understands 
and executes the action correctly. The calculator then processes the input and 
returns the result, 7. The agent then observes this output and incorporates it into 
its reasoning: 

Generating the final response 

Observation: The result of the calculation is 7. 
Thought: I now know the final answer. 
Final Answer: 7

Here, the agent completes its reasoning process by explicitly stating the final 
answer using the “Final Answer” marker. 

Moving on with the implementation of the ReAct agent, we implement the 
generate_response method that invokes the model to generate text based on the 
formatted prompt.
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Prompting the model to generate a response 

1 def generate_response(self, prompt, stop_criteria): 
2 inputs = self.tokenizer(prompt, return_tensors="pt") 
3 input_ids = inputs.input_ids.to(device) 
4 attention_mask = inputs.attention_mask.to(device) 
5 outputs = self.model.generate( 
6 input_ids, 
7 attention_mask=attention_mask, 
8 max_new_tokens=750, 
9 temperature=0.8, 

10 pad_token_id=tokenizer.eos_token_id, 
11 repetition_penalty=1.1, 
12 do_sample=True, 
13 stopping_criteria=stop_criteria 
14 ) 
15 response = self.tokenizer.decode(outputs[0], skip_special_tokens =True) 
16 return response

The generate method is called with several parameters that control the behavior 
of the model during text generation. The max_new_tokens parameter (line 8) limits 
the number of tokens the model can generate, ensuring responses remain concise 
and efficient. To balance creativity and coherence, the temperature parameter 
(line 9) is set to 0.8, introducing some randomness to the output without sacrificing 
relevance. The repetition_penalty (line 11) discourages repetitive phrases by 
penalizing the reuse of tokens, enhancing the diversity of the generated text. 

The last parameter is the stopping_criteria (line 13), which we use to 
prevent the model from going all the way through the final answer without calling 
the calculator function. In this case, we want to stop generating text right after the 
model generates the action. A simple approach consists of stopping the generation 
once the model generates the “Observation:” sequence, which is generated right 
after the action. The code below implements general stopping criteria based on a 
specific text sequence: 

LLM agent stopping criteria implementation 

1 class StopOnObservation(StoppingCriteria): 
2 

3 def __init__(self, target_sequence, prompt): 
4 self.target_sequence = target_sequence 
5 self.prompt = prompt 
6 self.last = None 
7 self.new_token = '' 
8 

9 def __call__(self, input_ids, scores, **kwargs): 
10 generated_text = tokenizer.decode(input_ids[0]) 
11 if self.last: 
12 self.new_token += generated_text.replace(self.last, '') 
13 if self.target_sequence in self .new_token:
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14 return True 
15 self.last = generated_text 
16 return False  

We now explore how the ReAct framework prompts the model to iteratively 
solve a query. The process is implemented in the interact method, which guides 
the agent through reasoning, action, and observation loops until a final answer is 
reached. Below is the code for this m ethod: 

Implementation of the ReAct workflow 

1 def parse_json_blob(self, response): 
2 """Extract the JSON blob related to an action from the model's 

response."""↪→ 
3 # Locate the "Action:" keyword in the response 
4 match = re.search(r"Action:\s*(?:���)?\s*({.*?})\s*(?:���)?", response, 

re.DOTALL)↪→ 
5 if match: 
6 json_str = match.group(1).strip() # Extract the JSON object string 
7 try: 
8 return json.loads(json_str) 
9 except json.JSONDecodeError as e: 

10 print(f"JSON parsing error: {e}") 
11 print(f"Malformed JSON: {json_str}") 
12 return None 
13 print("No valid action JSON found in response.") 
14 return None 
15 

16 

17 def interact(self, question): 
18 """Answer the question iteratively using the structured ReAct 

process."""↪→ 
19 # generate the initial prompt 
20 initial_prompt = self.format_prompt(question) 
21 

22 while True: 
23 # generate response 
24 stop_criteria = StopOnObservation("Observation:", self.tokenizer) 
25 response = self.generate_response(initial_prompt, stop_criteria) 
26 

27 # mask the initial prompt from the current generation 
28 new_content = response.replace(initial_prompt, "").strip() 
29 

30 # process the new content line by line and find the final answer or 
action↪→ 

31 has_action = False 
32 final_answer = None 
33 for line in new_content.splitlines(): 
34 if line.startswith("Action:"): 
35 has_action = True 
36 elif line.startswith("Final Answer:"):
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37 final_answer = line[len("Final Answer:"):].strip() 
38 

39 # handle final answer immediately 
40 if final_answer: 
41 return final_answer 
42 

43 # parse the action 
44 if has_action: 
45 try: 
46 action_json = self.parse_json_blob(new_content) 
47 except json.JSONDecodeError: 
48 return "I am unable to answer the question." 
49 else: 
50 return "I am unable to answer the question." 
51 

52 if action_json is None: 
53 return "I am unable to answer the question." 
54 

55 # execute the action 
56 tool_name = action_json.get("action") 
57 tool_input = action_json.get("action_input") 
58 

59 if tool_name in self .tools: 
60 result = self.tools[tool_name]["function"](tool_input) 
61 new_content += f" {result}" 
62 else: 
63 new_content += "\nFinal Answer: I am unable to answer the question." 
64 return "I am unable to answer the question." 
65 

66 # update the initial prompt to include the latest reasoning 
67 initial_prompt += f"\n {new_content}"

The interact method begins by generating an initial prompt using the 
format_prompt function (line 20), which structures the user’s question along-
side the context needed for reasoning. This prompt is then passed to the 
generate_response function (line 25), which uses the model to produce a 
response adhering to the ReAct frame work. 

The response generated by the model can take one of two forms, depending on 
whether the StopOnObservation stopping criteria (line 24) is triggered or not: it 
may contain a final answer, signaling that the reasoning process is complete, or it 
may include an action, indicating that further steps are needed to resolve the query. If 
the response includes a final answer, the method immediately terminates, returning 
this answer to the user. This ensures that the agent stops reasoning as soon as the 
task is fully resolv ed. 

If the response contains an action, the agent proceeds to parse it (line 46) using 
the parse_json_blob method (line 1). This step extracts the necessary details from 
the JSON representation of the action, including the tool to be used and its input. 
For example, if the response suggests using the calculator tool to compute 5 + 2, the 
method extracts the tool name (Calculator) and the input (5 + 2). The agent then
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executes the action by invoking the appropriate tool (line 60), such as the calculator, 
which returns the result of the operation. 

Once the tool has provided its result, the agent updates its prompt by appending 
the new reasoning, action, and observation. This updated prompt forms the basis for 
the next iteration, as it provides the model with a more detailed context to refine 
its reasoning further. The process of reasoning, acting, and observing continues 
iteratively, with the agent building upon its previous steps until it arrives at a final 
answer. 

With the ReAct agent constructed, we can now process user queries interactively, 
using the following code: 

ReAct agent instantiation and execution 

1 if __name__ == "__main__": 
2 agent = ReActAgent(model, tokenizer, TOOLS) 
3 print("ReAct Agent Initialized. Type 'exit' to quit.\n") 
4 

5 while True: 
6 question = input("Your Question: ") 
7 if question.lower() == "exit": 
8 print("Exiting...") 
9 break 

10 

11 answer = agent.interact(question) 
12 print(f"Agent's Answer: {answer}\n")  

While this simple implementation of the ReAct agent provides an intuition of 
how LLMs can use iterative reasoning and external tools, it has notable limitations 
that highlight the need for higher-level frameworks. A key challenge is the explicit 
stopping of text generation to identify tool invocations, execute actions, and then 
manually resume reasoning with an updated prompt. Additionally, the stopping 
criteria rely on hardcoded sequences, such as detecting “Observation:” in the 
output, which can be unreliable and may fail if the model generates unexpected 
variations. Moreover, tools must be defined manually with specific input and output 
structures, placing a significant burden on developers to design and integrate new 
functionalities. These limitations can make scaling the agent to more complex tasks 
or diverse toolsets challenging. 

High-level abstractions, such as those offered by LangChain and LangGraph, 
address these issues by offering an ecosystem of diverse tools, agentic frameworks 
(e.g., ReAct), and even the ability to design complex flows involving LLM-MA. 

8.5.2 Implementing an LLM Agent Using Langchain 

Wewill now discuss how to implement a ReAct agent with the high-level abstraction 
provided by the Langchain and the Langgraph libraries. We will leverage their
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ecosystem of tools to create an LLM Agent that can search the Web and Wikipedia 
to answer questions. 

We will first start by implementing the ReAct agent using LangChain. We will 
start by importing the necessary libraries. 

Import the required libraries 

1 from langchain import hub 
2 from langchain.agents import AgentExecutor, create_react_agent 
3 from langchain.agents import load_tools 
4 from langchain_openai import ChatOpenAI 
5 import os 
6 

7 if "OPENAI_API_KEY" not in os.environ: 
8 os.environ["OPENAI_API_KEY"] = "your-openai-key" 
9 

10 if "SERPAPI_API_KEY" not in os.environ: 
11 os.environ["SERPAPI_API_KEY"] = "your-serapi-key"

The hub, AgentExecutor, create_react_agent, and load_tools modules 
from LangChain are used to manage prompts, construct the agent, and load tools. 
LangChain’s ecosystem supports a wide variety of tools, such as Web search, 
Wikipedia, calculators, and APIs, enabling seamless integration with external 
resources. Additionally, we import ChatOpenAI from langchain_openai to 
instantiate our LLM. 

We will use OpenAI’s GPT-4o-mini as our agent in this example. To set up the 
model, we need to set the OPENAI_API_KEY for accessing the model. We will also 
set the SERPAPI_API_KEY for using SerpApi, which is an API to access Google 
search results, which we will expose as one of the tools for our agent. 

The next step consists of loading the tools. As mentioned before, we will load 
two tools for this example: SerpApi, for searching the Web, and Wikipedia. Both 
tools are integrated into the Langchain ecosystem and can be defined using the 
load_tools function from Langchain, which conveniently wraps them as tools to 
be used by an LLM agent: 

Define the list of tools 

1 tools = load_tools(["serpapi", "wikipedia" ])  

We then define the prompt that will guide the agent’s reasoning process. 

Pull the ReAct prompt from the LangChain Hub 

1 prompt = hub.pull( "hwchase17/react" )  

The LangChain ecosystem includes a repository called the LangChain Hub, 
where prompts, models, and other reusable resources are stored and shared. Using
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the hub.pull method, we retrieve the react prompt designed for the ReAct 
framewo rk. 

The LLM is selected next. We use the ChatOpenAI class to instantiate a model, 
specifying gpt-4o-mini as the version. 

Define the model 

1 llm = ChatOpenAI(model= "gpt-4o-mini" )  

With the tools, prompt, and LLM in place, we construct the ReAct agent using 
the create_react_agent function. 

Create the ReAct agent 

1 agent = create_react_agent(llm, tools, prompt)  

Finally, we create the AgentExecutor, which serves as the execution engine for 
the agent. Passing the constructed agent and tools to the AgentExecutor and setting 
verbose=True, we enable detailed logging of the agent’s intermediate steps. This 
is useful for debugging and understanding how the agent reasons through tasks, as 
it provides a complete view of the reasoning, action, and observation loop. 

Wrap the agent for subsequent execution 

1 agent_executor = AgentExecutor(agent=agent, tools=tools, verbose =True )  

The ReAct agent can then be queried using the .invoke method of 
AgentExecutor : 

Run the agent 

1 agent_executor.invoke({"input": "who is Massimo Mecella?" })  

Here’s an excerpt of the output from the execution of the ReAct agent: 

Reasoning/thinking in ReAct 

I should start by looking up Massimo Mecella on Wikipedia to gather 
relevant information about him.↪→ 

Action: Wikipedia 
Action Input: Massimo Mecella 

... (continue) 

There doesn't seem to be relevant information about Massimo Mecella 
directly from the initial search results on Wikipedia. I might need 
to look deeper or consult another source.

↪→
↪→
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Action: Search 
Action Input: Massimo Mecella 

... (continue) 

I found relevant information about Massimo Mecella, including his 
educational background, research interests, and current position.↪→ 

Action: Search 
Action Input: Massimo Mecella Sapienza University of Rome profile 

... (continue) 

I now have a comprehensive profile of Massimo Mecella, detailing his 
education, current position, and research interests.↪→ 

Final Answer: Massimo Mecella is an associate professor at Sapienza 
University of Rome, where he specializes in Information Systems 
Engineering. He was born in Rome, Italy, in 1973 and holds a PhD in 
Computing Science and Engineering from the same university. His 
research interests include business process management, software 
engineering, and various information systems applications.

↪→
↪→
↪→ 
↪→
↪→

The agent first attempts to look up details about a person named Massimo 
Mecella on Wikipedia but finds no relevant results. It then issues a general Web 
search to gather information, retrieving details about a person named Massimo 
Mecella who works at Sapienza University of Rome. To refine its understanding, the 
agent formulates a more specific search query targeting his professional profile at 
the university. After retrieving this additional information, it synthesizes the results 
into a final answer about Massimo Mecella, including his academic background, 
research interests, and current position. 

Compared to the previous implementation (cf. Sect. 8.5.1) where we had to 
explicitly handle passing the prompt to the model, pausing generation to detect tool 
usage, calling the tools, and then resuming the reasoning process, the combined 
use of create_react_agent and AgentExecutor abstracts away much of this 
complexity. In fact, the create_react_agent function automatically integrates 
the tools and the prompt with the LLM. The AgentExecutor instead transparently 
manages the process of stopping generation when an action (e.g., a tool invocation) 
is detected and then resumes reasoning seamlessly after the output from t he tool is 
obtained. 

8.5.3 Implementing LLM-MA with LangGraph 

We will now discuss how to implement a LLM-MA system with LangGraph. 
LangGraph is a Python library part of the LangChain ecosystem and is designed
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to facilitate the orchestration of workflows involving stateful interactions between 
agents. Its foundation is the state graph, a directed graph where nodes represent 
tasks or agents and edges define the transitions between them. The state graph 
integrates both the logic of individual tasks and the flow of data, making it ideal for 
scenarios involving complex task coordination. The core components of LangGraph 
include: 

• Nodes: represent tasks or agents that modify or act upon the shared state. 
• Edges: define how tasks connect and transition from one to another. Conditional 

edges allow the workflow to adapt dynamically based on intermediate outcomes. 
• State: a mutable object shared across tasks, carrying the data that evolves through 

the workflow. 
• Special nodes: START and END are predefined nodes marking the beginning and 

conclusion of the workflow. 

This graph-based abstraction provides enough flexibility to cover a variety of 
different profile, communication, and evolution settings, allowing LLMs to interact 
conditionally and adaptively and enabling precise coordination in even the most 
complex workflows. 

We will use LangGraph in this section to create an automated research assistant 
that uses multiple agents to streamline the process of finding and filtering academic 
research papers. The workflow starts with a search agent that queries Google Scholar 
through the scholarly library. This library provides a programmatic way to 
interact with Google Scholar, retrieving metadata for academic papers such as titles, 
authors, and publication venues. Once the initial papers are retrieved, a filtering 
agent evaluates their relevance to the initial query. This agent analyzes the content 
of each paper’s metadata and determines whether it aligns closely with the original 
search query. A supervisor agent then reviews the filtered papers. If the number of 
relevant papers is sufficient, the workflow concludes by providing the user with 
the title, authors, publication year (if available), and venue (if available) of the 
relevant papers. However, if the relevant papers are too few, the supervisor triggers 
a query refinement process. A dedicated query refinement agent then generates a 
more precise search query, and the process is repeated to improve the results. 

We will start by importing the relevant libraries first and setting the environment 
variables since we will use GPT 4o-mini in this e xample: 

Import the required libraries 

1 import os 
2 from scholarly import scholarly 
3 from langchain_openai import ChatOpenAI 
4 from langchain.prompts import ChatPromptTemplate 
5 from langgraph.graph import StateGraph, START, END 
6 

7 if "OPENAI_API_KEY" not in os.environ: 
8 os.environ["OPENAI_API_KEY"] = "your-openai-key"
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Then we define the first agent, search_agent, which queries Google Scholar 
for academic papers. 

Define the search agent 

1 def search_agent(state): 
2 query = state.get("query", "applications of AI in education") 
3 search_results = scholarly.search_pubs(query) 
4 papers = [] 
5 for i in range(5): # Limit to 5 results for simplicity 
6 try: 
7 paper = next(search_results) 
8 papers.append({ 
9 "title": paper['bib']['title'], 

10 "authors": paper['bib']['author'], 
11 "pub_year": paper['bib'].get('pub_year', 'Unknown'), 
12 "venue": paper['bib'].get('venue' , 'Unknown'), 
13 "abstract": paper['bib'].get('abstract', 'Unknown') 
14 }) 
15 except StopIteration: 
16 break 
17 state["papers"] = papers 
18 return state 

This function extracts the query (line 2) from the shared state (defaults to 
“applications of AI in education” if no query is provided) and uses scholarly to 
retrieve search results (line 3). The first five results are stored in a structured format 
(lines 8–13) containing the paper’s title, authors, publication year, and venue. The 
results are added to the state (line 17) for subsequent processing. 

Then, the filter_agent evaluates the relevance of the retrieved papers by 
interacting with OpenAI’s GPT 4o-mini. 

Define the filter agent 

1 def filter_agent(state): 
2 papers = state.get("papers", []) 
3 if not papers: 
4 state["filtered_papers"] = [] 
5 return state 
6 

7 llm = ChatOpenAI(model="gpt-4o-mini", temperature=0) 
8 filtered_papers = [] 
9 

10 for paper in papers: 
11 title = paper['title'] 
12 prompt = ChatPromptTemplate.from_messages([ 
13 ("system", "You are a helpful academic assistant."), 
14 ("user", f"Is this paper titled '{title}' relevant to the query 

'{state['query']}'?. Here is the abstract:\n{paper['abstract']}.\n 
Reply with 'Yes' or 'No'.")

↪→ 
↪→
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15 ]) 
16 response = llm(prompt.format_messages()) 
17 if "Yes" in response.content: 
18 filtered_papers.append(paper) 
19 

20 state["filtered_papers"] = filtered_papers 
21 return state  

This agent retrieves the list of papers from the state (line 2) and evaluates each 
one using GPT 4o-mini. A prompt is created for each paper (line 12), asking the 
model if it is relevant to the query. Papers identified as relevant are added to the 
filtered list (lines 17–18), which is stored in the state. If the filtered results are 
inadequate, the query_refinement_agent refines the query to improve search 
results, as shown in the code below : 

Define the query refinement agent 

1 def query_refinement_agent(state): 
2 query = state.get("query", "") 
3 feedback = state.get("feedback", "No relevant papers found.") 
4 llm = ChatOpenAI(model="gpt-4o-mini", temperature=0) 
5 prompt = ChatPromptTemplate.from_messages([ 
6 ("system", "You are a helpful research assistant."), 
7 ("user", f"Refine this query: '{query}' to improve search results. 

Feedback: {feedback}")↪→ 
8 ]) 
9 response = llm(prompt.format_messages()) 

10 state["query" ] = response.content.strip() 
11 return state 

This function refines the query by using feedback and GPT 4o model. The refined 
query is added back to the state (line 10) for another iteration of the search process. 
The supervisor_agent decides whether the workflow should finalize or refine the 
query . 

Define the supervisor agent 

1 def supervisor_agent(state): 
2 filtered_papers = state.get("filtered_papers", []) 
3 if len(filtered_papers) <= 1: # trigger refinement if 0 or 1 paper is 

found↪→ 
4 state["decision"] = "refine" 
5 state["feedback"] = f"Only {len(filtered_papers)} relevant paper(s) 

found. Refining the query."↪→ 
6 else: 
7 summary = f"Found {len(filtered_papers)} relevant papers:\n" 
8 for idx, paper in enumerate(filtered_papers, 1 ): 
9 summary += f"{idx}. {paper['title']} by {', '.join(paper['authors'])}" 

10 if paper['pub_year'] and paper['pub_year'] != "NA":
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11 summary += f" ({paper['pub_year']})" 
12 if paper['venue'] and paper['venue'] != "NA": 
13 summary += f" in {paper['venue']}" 
14 summary += "\n " 
15 state["decision"] = "finalize" 
16 state["summary"] = summary 
17 

18 return state

If the number of relevant papers is greater than one, the agent finalizes the 
workflow by summarizing the papers (lines 7–16), including their titles, authors, 
publication years, and venues. Otherwise, it triggers query refinement by updating 
the state with feedback (lines 4–5). 

These four agents are combined into an LLM-MA system using the graph-based 
abstraction offered by LangGraph, with nodes representing each agent and edges 
defining their transitions, as shown below: 

Graph-based representation of the LLM-MA system with LangGraph 

1 graph_builder = StateGraph(State) 
2 # nodes (agents) 
3 graph_builder.add_node("SearchAgent", search_agent) 
4 graph_builder.add_node("FilterAgent", filter_agent) 
5 graph_builder.add_node("SupervisorAgent", supervisor_agent) 
6 graph_builder.add_node("QueryRefinementAgent", query_refinement_agent) 
7 # edges (transitions) 
8 graph_builder.add_edge(START, "SearchAgent" ) 
9 graph_builder.add_edge("SearchAgent", "FilterAgent") 

10 graph_builder.add_edge( "FilterAgent", "SupervisorAgent" )

Conditional edges are added to enable dynamic routing based on the supervisor 
agent’s decisions: 

Routing logic 

1 def supervisor_routing(state: State) -> str: 
2 if state.get("decision") == "refine": 
3 return "QueryRefinementAgent" 
4 elif state.get("decision") == "finalize": 
5 return END 
6 else: 
7 raise ValueError(f"Unexpected decision: {state.get('decision')}") 
8 # other edges (transitions) 
9 graph_builder.add_conditional_edges("SupervisorAgent", 

supervisor_routing)↪→ 
10 graph_builder .add_edge("QueryRefinementAgent", "SearchAgent" )

Finally, the workflow is compiled and executed with an initial query:
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Run the LLM-MA system 

1 graph = graph_builder.compile() 
2 

3 initial_input = {"query": "service composition roman model"} 
4 

5 final_state = graph.invoke(initial_input) 
6 

7 if final_state.get("decision") == "finalize": 
8 print(final_state.get("summary")) 
9 else: 

10 print("Refined Query Suggested:") 
11 print (final_state.get("query"))  

The system processes the query, either producing a list of relevant academic 
papers or refining the query and rerunning the system to improve the results. The 
output of this process is displayed below: 

Sample output 

1. Automatic Service Composition and Synthesis: the Roman Model. by D 
Calvanese, G De Giacomo, M Lenzerini (2008) in IEEE Data Eng. Bull↪→ 

2. Automated service composition based on behaviors: The roman model by 
G De Giacomo, M Mecella, F Patrizi (2013) in Web services 
foundations

↪→
↪→ 
3. Best Service Synthesis in the Weighted Roman Model. by D Calvanese, 

A Santoso (2012) in ZEUS↪→ 
4. Automatic Composition of e-Services: The "Roman" way by D Berardi

LangGraph also allows the visualization of the constructed workflow graph, 
providing a clear representation of how the nodes (agents) and edges (transitions) 
interact, thus helping in understanding the flow of tasks and possibly debugging the 
logic of the LLM-MA system, as shown in the code below: 

Generating a diagram of the LLM-MA system 

1 from IPython.display import Image, display 
2 from langchain_core.runnables.graph import MermaidDrawMethod 
3 

4 graph_png = graph.get_graph() .draw_mermaid_png( 
draw_method=MermaidDrawMethod.PYPPETEER)↪→ 

5 display(Image(graph_png))  

The resulting graph is shown in Fig. 8.5.  The  __start__ node marks the entry 
point, leading directly to the SearchAgent, which initializes the workflow. The 
__end__ node signifies the conclusion of the process when sufficient results are 
found. 

Two types of edges connect the nodes: solid edges, such as those between 
the SearchAgent and FilterAgent, represent the default sequential flow of
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Fig. 8.5 Graph 
representation of the 
LLM-MA system built with 
LangGraph 

tasks like searching and filtering papers. Dotted edges, such as the one from the 
SupervisorAgent to the QueryRefinementAgent, are conditional and reflect the 
dynamic nature of the workflow, triggered when the supervisor determines that 
query refinement is needed. The loop from the QueryRefinementAgent back to 
the SearchAgent ensures that the refined query is used for another search iteration. 

8.6 Concluding Remarks 

This chapter presented an in-depth exploration of LLM agents and multi-agent 
systems, highlighting their role in addressing complex and articulated tasks. While 
traditional LLMs are powerful in language processing, their limitations in plan-
ning, multi-step reasoning, and external interaction necessitate the development of 
agent-based architectures. By integrating memory, structured decision-making, and 
external tool usage, LLM agents enhance problem-solving capabilities and extend 
the applicability of AI-driven systems. Additionally, we examined the broader 
context of multi-agent systems, where multiple intelligent agents collaborate to 
achieve shared objectives. Furthermore, we explored the application of LLM agents 
and multi-agent systems in software engineering, demonstrating how they can assist 
in different tasks like code generation or testing. Finally, a practical guide on how to 
program LLM agents and multi-agent systems was discussed, providing insights 
into their implementation and deployment. As research in this area continues 
to evolve, overcoming challenges related to efficiency, robustness, and ethical 
considerations will be crucial for realizing the full potential of LLM agents in real-
world applications.
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Chapter 9 
Applications of Large Language Models 
in Information Systems 

Jerin George Mathew and Flavia Monti 

Abstract The integration of large language models (LLMs) into information 
systems is revolutionizing data management and business process automation. 
This chapter presents two complementary approaches that leverage LLMs to 
enhance intelligent data processing and workflow execution. By enabling the 
seamless integration of heterogeneous data and increasing the adaptability of 
business process management systems, these approaches highlight the potential 
of LLMs to optimize and advance information systems. Implementation examples 
provide practical guidelines for developing LLM-based applications for real-world 
scenarios, illustrating how LLMs can drive efficiency, automation, and intelligent 
decision-making within information systems. 

9.1 Introduction 

The increasing adoption of large language models (LLMs) in various domains 
has transformed how data is processed, retrieved, and utilized. In the context of 
industrial applications and business process automation, LLMs offer significant 
potential for enhancing the efficiency and adaptability of available application 
systems, also referred to as information systems. 

This chapter presents two complementary works that leverage LLMs for data 
synthesis and process execution. The first work, COSMADS (COmposing SMArt 
Data Services) [5], addresses the challenge of data accessibility and integration 
in industrial settings. Manufacturing environments generate vast amounts of het-
erogeneous data, often siloed across different systems. COSMADS facilitates data 
retrieval through the dynamic composition of information extraction pipelines in 
response to natural language queries. An LLM agent and a structured repository 
of data services and past pipelines enable efficient on-demand data processing, 
bridging the gap between operators and digital resources. The second work, 
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NL2ProcessOps [8], focuses on business process automation by extracting struc-
tured process operations from natural language process descriptions. Traditional 
business process modeling techniques require predefined workflows, which may 
lack flexibility in dynamic environments. ProcessOps employs an LLM-based 
approach to translate textual process descriptions into executable scripts, ensuring 
rapid process adaptation. Tool descriptions and context-aware retrieval mechanisms 
support the generation of Python-based process workflows that can be executed 
within business process management systems. The chapter presents such works 
focusing on the functioning of the developed LLM-based solutions; if the reader 
wants to get more details on the evaluation, please refer to the related full papers. 

Together, these works showcase the potential of LLMs in facilitating intelligent 
data management and process automation. COSMADS emphasizes data retrieval 
and synthesis in industrial settings, while ProcessOps extends these capabilities to 
business process execution, demonstrating how LLMs can drive automation across 
different operational domains. 

9.2 Data-on-Demand in the Industrial Domain with LLMs 

In modern manufacturing environments, the ability to access and synthesize data 
on demand is increasingly vital for maintaining operational efficiency and agility. 
From shop floors to administrative offices, manufacturing companies generate vast 
amounts of heterogeneous data, including sensor readings, production metrics, and 
machine statuses. However, this data often resides in siloed systems, limiting its 
accessibility and utility. In this section, we introduce COSMADS—COmposing 
SMArt Data Services [5]—a tool that synthesizes information extraction pipelines, 
in the form of Python scripts, starting from natural language queries and a 
documented codebase consisting of available data services and possibly other, 
previously defined, information extraction pipelines. Such pipelines, in particular, 
can be either manually defined or formerly generated with COSMADS. 

9.2.1 The COSMADS Architecture 

Figure 9.1 depicts the architectural components of COSMADS. A new execution 
is spawned as soon as a human operator specifies a natural language query 1©
to retrieve information from the ongoing manufacturing process. A query can be 
parametric, meaning that it can provide a set of input arguments (e.g., a time 
range or a specific kind of defect to be monitored). The reader can imagine the 
human operator to have little or zero knowledge about the available data services. 
As a consequence, it can be supposed that the query only expresses the required 
information without technical details on how to compute it.
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Fig. 9.1 COSMADS high-level architecture [5] 

The core of the architecture is represented by an LLM agent that instructs a pre-
trained LLM by feeding a query-specific prompt, which is built according to the 
output of the dynamic context retrieval component. This module analyzes the query 
and retrieves 2a©, a set of example pipelines from a pipeline repository, and 2b©,  a  set  
of data services from a data service repository that can be used to answer the query.

Data services exposed by manufacturing assets in a factory can range from 
operational/actuating services (e.g., turning on the camera) to services that generate 
data (e.g., getting the current speed of the die cutting machine using its embedded 
chip). Data services can be accessed using different paradigms and communication 
protocols, but for simplicity, the authors assume they can be called through function 
calls wrapping the actual calling mechanism. A data service can expect a set of 
parameters and returns an output, which can be either structured or unstructured. 
For each data service, the data service repository contains a documentation, i.e., a 
textual description of the functioning and usage of a data service. 

The pipeline repository consists of all the pipelines already available. These 
pipelines can be manually defined or obtained from previous executions of COS-
MADS. Each pipeline is associated with the query it fulfills. In general, pipelines 
can be defined using various modeling formalisms, such as programming languages 
and scientific workflow scripting languages [9], among others. In COSMADS, 
pipelines are software (Python) scripts that (i) produce a table as an output and 
(ii) make use of data services. 

Examples of pipelines and documentation of relevant data services are fed 3© to 
the LLM Agent together with the original query. Such input data is incorporated into 
a prompt, according to a specific prompt template. The output pipeline generated by 
the LLM agent is then sent 4© to the execution module (e.g., the Python interpreter). 

The execution of the pipeline finally 5© produces a table answering the query. If 
the human operator thinks the produced pipeline can be helpful as a future reference 
for future queries, the pipeline together with the originating query can be stored 6©
in the pipeline repository.
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9.2.2 Implementing COSMADS 

A Python-based prototype of COSMADS1 has been implemented using the 
LangChain framework. The base LLM model utilized for the LLM agent relies 
on GPT-4 (gpt-4-turbo) by OpenAI.2 

9.2.2.1 Dynamic Context Retrieval 

The contextual information required for the prompt of the LLM agent consists 
of (i) relevant previous queries with corresponding pipelines to be used as few-
shot examples and (ii) the set of data services needed for solving the input query. 
As discussed in Sect. 9.2.1, this information can be obtained from the pipeline 
repository and the data service repository, respectively. 

The pipeline repository is implemented as a vector store containing the vector 
representations of queries already solved. Each vector contains the embedding of 
the query and some metadata, including the path to the Python script containing 
the pipeline that solves that query. An example of a query that is embedded into 
a dense vector is provided belo w.

Example of stored query and pipeline metadata 

1 { 
2 "query": "Consider the next 5 carboard of the first diecutter. 

Generate a table containing: (i) the number of cardboards 
with no defects, (ii) those with errors, (iii) how many 
fold errors, and (iv) how many hole errors.",

↪→
↪→
↪→ 

3 "metadata":{
4 "pipeline": "pipelines/04_07_2024-21_43_24.py"
5 }
6 }

The embedding is computed by applying the text-embedding-ada-002 model 
by OpenAI. For the vector store, the authors rely on DocArray’s DocInde x,3 which 
is well integrated into LangChain and allows us to efficiently access stored data. 
The implementation details of the pipeline repository are provided below, omitting 
or simplifying some methods for the sake of clarity. 

1 https://github.com/jermathew/COSMADS. 
2 The base LLM model for the LLM agent can be any LLM model available in the literature. Some 
changes in the prompt may be necessary if another model is selected. 
3 Cf. https://github.com/docarray/docarray. 

https://github.com/jermathew/COSMADS
https://github.com/jermathew/COSMADS
https://github.com/jermathew/COSMADS
https://github.com/jermathew/COSMADS
https://github.com/jermathew/COSMADS
https://github.com/docarray/docarray
https://github.com/docarray/docarray
https://github.com/docarray/docarray
https://github.com/docarray/docarray
https://github.com/docarray/docarray
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Pipeline repository implementation 

1 from langchain_community.vectorstores import DocArrayInMemorySearch 
2 from langchain_core.documents import Document 
3 import json 
4 

5 

6 class PipelineStore(): 
7 

8 def __init__(self): 
9 json_setup = json.load(open('queries_pipelines.json')) 

10 queries = json_setup.keys() 
11 self.docs = [] 
12 for q in queries: 
13 self.docs.append( 
14 Document( 
15 page_content = json_setup[q]['query'], 
16 metadata = {"pipeline":json_setup[q]['pipeline']} 
17 ) 
18 ) 
19 

20 def embed_docs(self, embedding_function): 
21 self.embedding_function = embedding_function 
22 

23 self.db = DocArrayInMemorySearch.from_documents(documents=self.docs, 
embedding=embedding_function)↪→ 

24 

25 def search(self, query): 
26 best_result = None 
27 best_match = self.db.similarity_search(query) 
28 best_result = best_match[0] 
29 return {'api_name': self.__class__.__name__, 'input': query, 'output':

best_result, 'exception': None}↪→

The vector store is implemented as a Python class called PipelineStore. 
During instantiation (lines 8–18), the PipelineStore reads a JSON file containing 
the list of available pipelines and the query from which they stem. Each query-
pipeline pair in the JSON file is formatted similarly to the example provided above. 
Each query is then wrapped into a Document, a built-in class from the LangChain 
library that provides a unified interface for managing and manipulating documents 
(e.g., generating an e mbedding).

The embed_docs method (line 20) contains the logic for embedding each 
Document parsed from the JSON file during initialization. The method takes an 
embedding function parameter, i.e., a function that maps a string to a dense 
vector using an embedding model and uses it to embed each query and store it 
into DocArray, using the DocArrayInMemorySearch class. The latter represents a 
wrapper class for DocArray that allows easy storage of embeddings and performing
queries.

The retrieval procedure is implemented in the search method (line 25). The 
core part is the similarity_search function, which takes a query as a parameter
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and (i) transparently embeds it into a dense vector and (ii) returns a sorted list of 
similar queries in descending order of cosine similarity. Particularly, given a natural 
language query, the dynamic context retrieval component computes its embedding 
and retrieves the top-K similar queries from the vector store.

The PipelineStore can be initialized and the text-embedding-ada-002 
model by OpenAI can be specified as the embedding function using the 
OpenAIEmbeddings class, as shown in the code snippet below:

Specify an embedding function for DocArray 

1 from langchain_openai import OpenAIEmbeddings 
2 

3 self.pipeline_store = PipelineStore() 
4 openai_key = None # replace with your OpenAI API key 
5 embedding_function = OpenAIEmbeddings(model="text-embedding-ada-002", 

api_key=openai_key)↪→ 
6 self .pipeline_store.embed_docs(embedding_function)

To simplify interaction with the PipelineStore and allow for convenient 
configuration, the system introduces a wrapper class, PipelineManagerDB .

The PipelineManagerDB wrapper class 

1 class PipelineManagerDB: 
2 

3 def __init__(self, openai_key): 
4 self.pipeline_store = PipelineStore() 
5 embedding_function = OpenAIEmbeddings(model="text-embedding-ada-002", 

api_key=openai_key)↪→ 
6 self.pipeline_store.embed_docs(embedding_function) 
7 

8 if __name__ == '__main__': 
9 openai_key = None # replace with your OpenAI API key

10

11 tools_manager = PipelineManagerDB(openai_key=openai_key)

This wrapper simplifies the initialization of the vector store by enabling 
direct specification of the embedding function, which, in our case, is OpenAI’s 
text-embedding-ada-002 model. 

The set of data services needed for solving the input query is stored in the 
data service repository. A data service is used to retrieve historical or online data. 
Online data is often associated with the execution of some operation (e.g., taking a 
picture). As a consequence, any asset of the company exposing services to support 
its operational functionalities can be considered a data service. Referring to the 
example case study, an example of data service is the service related to the camera 
asset that captures frames (i.e., DS3). In COSMADS, each data service is realized 
as a Python class having two main components: (i) a function wrapping the existing 
service of the asset and representing the actual execution logic and (ii) a  class
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variable containing the documentation. The LLM agent relies on the documentation 
of the data services, which summarizes their capabilities, how they need to be used, 
a one-shot example, and a specification of the input and output parameters. The 
data service documentation of the camera asset capturing frames is provided below. 
Notably, this documentation corresponds to what in traditional service composition 
was referred to as service description. 

Data service contextual information 

1 "brief_description": "Data service that, given the id of a camera1, 
provides a frame captured from that camera1.",↪→ 

2 "detailed_description": 
3 """Data service that, given the id of a camera1, provides a frame 

captured from that camera1.↪→ 
4 In general instances of camera1 point downwards to a conveyor belt of a 

specific production line that transports single cutout cardboards 
produced by a specific die machine.

↪→
↪→ 

5 The data service takes a single parameter, namely the id of the camera1 
(an integer) and returns a frame captured from that camera1 as a 
numpy matrix.

↪→
↪→ 

6 The matrix is a 2D array having a shape of (1080, 1920, 3) where 1080 
is the height, 1920 is the width and 3 is the number of channels 
(RGB).

↪→
↪→ 

7 Example usage: 
8 - If the id of the camera1 is 123, then the data service would be 

called as follows:↪→ 
9 camera1_id = 123 

10 frame = GetFrameFromCamera1.call(camera1_id=123) 
11 # assuming the frame is a numpy matrix 
12 print(frame.shape) # (1080, 1920, 3) 
13 Things to keep in mind: 
14 - The refresh rate of the camera is 1 second, i.e. the frame is updated 

every second, so if the data service is called multiple times
within a second, it will return the same value.

↪→
↪→

15 - The frame is a numpy matrix, so avoid trying to access it as a
dictionary.""",↪→

16 "input_parameters": ["camera1_id:int"],
17 "output_values": ["frame:np.matrix"],
18 "module": "camera1"

Noteworthy, while the dynamic context retrieval selects only K example 
pipelines to be included in the prompt, all data services are considered. This 
approach is justified by the assumption that the number of services in the entire 
repository remains relatively stable, as the codebase of a company typically grows 
slowly and is also relatively small compared to the maximum prompt length 
allowed by the LLM. Conversely, the number of pipelines is expected to grow more 
significantly over time, as new pipelines are added to the repository, either through 
manual definition or automatic generation by COSMADS. Also, this excludes the 
possibility an incorrect pipeline is generated, simply because information about 
needed data services is not available.



214 J. G. Mathew and F. Monti

9.2.2.2 LLM Agent 

The LLM agent leverages the ICL ability of LLMs [2]. The quality of the output 
though is strongly dependent on the quality of the provided prompt [13]. For 
COSMADS, in particular, a prompt template is designed to be filled with the output 
of the dynamic context retrieval module, which follows the most common best 
practices [14]. These include (i) expressing the goal task clearly, (ii) including 
contextual information, (iii) providing demonstrations, and (iv) utilizing model-
friendly format style. The prompt template is provided below:4 

Prompt template 

<LLM AGENT EXPERTISE> 
Query: {query} 
<GOAL DESCRIPTION> 
{data_services} 
<DATA SERVICES DOCUMENTATIONS STRUCTURE> 
<GUIDELINES> 
Here examples of pipelines that may help you in generating a new 

pipeline:↪→
Query: {example_query}
Pipeline: {example_pipeline}
...other examples...
Answer:

The invariable parts of the prompt include (i) a system header describing the 
skills of the agent, (ii) a description of the specific goal to be fulfilled, (iii) the 
description of the structure of the documentation of the data services, and (iv) a 
set of guidelines the output of the agent must respect. It also contains the dynamic 
context retrieval output, i.e., the set of data services the pipeline can call, and the 
example queries. Finally, the input natural language query to be answered is also 
provided. 

The implementation of the LLM agent is provided below. 

Implementation of the LLM Agent 

1 from langchain.prompts import ChatPromptTemplate 
2 from langchain.schema import BaseOutputParser 
3 from langchain_openai import ChatOpenAI 
4 

5 class PipelineGeneratorAgent: 
6 """The agent that designs the pipeline.""" 
7 

8 def __init__(self, openai_key):

4 The full prompt is available at https://github.com/jermathew/COSMADS/blob/main/src/ 
pipeline_chain.py. 

https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py


9 Applications of Large Language Models in Information Systems 215 

9 """Initialize the agent.""" 
10 # define the prompt 
11 prompt_template = TEMPLATE 
12 self.prompt = ChatPromptTemplate.from_template(prompt_template) 
13 # define the LLM 
14 self.llm = ChatOpenAI(model="gpt-4-turbo", 
15 api_key=openai_key, 
16 temperature=0.0) 
17 # define the output parser 
18 self.output_parser = CustomOutputParser() 
19 

20 def get_chain(self): 
21 # generate the python function 
22 agent_chain = self.prompt | self.llm | self.output_parser 
23 return agent_chain 
24 

25 

26 class CustomOutputParser(BaseOutputParser): 
27 """The output parser for the LLM.""" 
28 

29 def parse(self, text: str) -> str: 
30 text = text.strip("\n") 
31 text = text.strip() 
32 # count how many ``  ̀ are in the text 
33 back_count = text.count("���") 
34 if back_count != 2: 
35 print(text) 
36 raise ValueError("The string should contain exactly two triple 

backticks")↪→ 
37 code = text.split("���")[1]
38 code = code.strip()[len("python"):].strip()
39 return code

The LLM agent is implemented as a class called PipelineGeneratorAgent, 
and its inner logic is defined in the get_chain method (line 20). This method 
implements the chain as a linear sequence of tasks, consisting of (i) passing the 
prompt to the model, (ii) generating the pipeline, and (iii) parsing its output. This 
sequence of steps is defined in line 22 using LCEL. The final part of the pipeline 
involves a custom output parser, which is used to parse the output generated by 
the LLM agent. The prompt, the LLM, and the output parser are defined in the 
constructor of the PipelineGeneratorAgent (lines 8–18). The prompt is set 
up in line 11 according to the previously described prompt structure and is then 
wrapped into a ChatPromptTemplate, a utility class to format the prompt for 
OpenAI’s GPT models. The constructor also creates a ChatOpenAI object, which 
is a general wrapper for OpenAI models and is set up with gpt-4-turbo. Finally, a 
CustomOutputParser object (defined in lines 26–39) is initiated, which strips off 
character delimiters from the Python code generated by the LLM agent.
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9.2.2.3 The COSMADS LCEL Chain 

We have already seen an example of a chain in the PipelineGeneratorAgent 
class: 

The chain used in PipelineGeneratorAgent 

1 def get_chain(self): 
2 # generate the python function 
3 agent_chain = self.prompt | self.llm | self.output_parser 
4 return agent_chain

This simple composition demonstrates how LangChain chains can be built 
using modular components. The LangChain Expression Language (LCEL) extends 
this idea by structuring more complex chains that involve multiple sequential 
and parallel operations. It introduces components such as RunnableLambda for 
single-step transformations and RunnableParallel for concurrent execution, 
enabling efficient and flexible task orchestration. LCEL also allows for the dynamic 
composition of LLM-driven workflows, making them well suited for integrating 
retrieval, generation, and execution steps, as seen in the COSMADS system.

We now present the high-level functioning of COSMADS through its LCEL 
chain. The main implementation is encapsulated in the COSMADS class, detailed 
below .

The COSMADS class 

1 import sys 
2 from pathlib import Path 
3 import dotenv 
4 import os 
5 from langchain.schema.runnable import Runnable, RunnableLambda, 

RunnableParallel, RunnablePassthrough↪→ 
6 

7 # append the path to the parent directory to the system path 
8 import sys 
9 sys.path.append(str(Path(__file__).parent.parent.parent)) 

10 

11 from pipeline_manager_db import PipelineManagerDB 
12 from pipeline_chain import PipelineGeneratorAgent 
13 from runner_chain import PipelineRunner 
14 

15 INTERMEDIATE_RESULTS_FILEPATH = Path(__file__).parent / 
"temp_pipeline.py"↪→ 

16 

17 class COSMADS: 
18 def __init__(self): 
19 dotenv.load_dotenv() 
20 OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
21

22 self.pipeline_manager = PipelineManagerDB(OPENAI_API_KEY)
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23 self.generator = PipelineGeneratorAgent(OPENAI_API_KEY) 
24 self.runner = PipelineRunner() 
25 

26 

27 

28 def get_chain(self) -> Runnable: 
29 generator_chain = self.generator.get_chain() 
30 runner_chain = self.runner.get_chain() 
31 

32 generator_chain_output = { 
33 "pipeline": generator_chain, 
34 "inputs": RunnablePassthrough() 
35 } 
36 

37 runner_chain_output = { 
38 "output": runner_chain, 
39 "inputs": RunnablePassthrough() 
40 } 
41 

42 chain = ... 
43 

44 # return the chain 
45 return chain 
46 

47 

48 if __name__ == "__main__": 
49 llm = COSMADS() 
50 query = "" # your query here
51 result = llm.get_chain().invoke(query)
52 print(result["output"])

The COSMADS class includes a get_chain method that consists of a Runnable 
object implementing the COSMADS processing flow depicted in Fig. 9.1. The chain 
can be called using the invoke method (line 54) by passing an input query and will 
execute the COSMADS system, including the generation of the Python script and 
its ex ecution.

The execution of the generated pipeline is managed by the PipelineRunner 
class, which is responsible for running the generated Python script and processing 
its results. We provide the implementation details of the PipelineRunner class 
belo w:

PipelineRunner implementation 

1 class PipelineRunner: 
2 

3 def run_pipeline(self, pipeline_filepath: str) -> dict: 
4 execution_ok = False 
5 

6 cwd = Path.cwd() 
7 os.chdir(Path(pipeline_filepath).parent)
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8 execution_result = os.system(f"python {pipeline_filepath}") 
9 

10 if execution_result == 0: 
11 execution_ok = True 
12 

13 os.chdir(cwd) 
14 return execution_ok 
15 

16 def parse_pipeline_result(self, pipeline_result_filepath: str) -> dict: 
17 with open(pipeline_result_filepath, "r") as f: 
18 result = json.load(f) 
19 

20 result = pd.DataFrame(result) 
21 result = tabulate(result, headers='keys', tablefmt='psql') 
22 return result 
23 

24 def get_chain(self) -> Runnable: 
25 runner_chain = ( 
26 RunnableLambda(lambda x: { 
27 "execution_ok": self .run_pipeline(x["pipeline_filepath"]) 
28 }) 
29 | RunnableBranch( 
30 (lambda x: x["execution_ok"], RunnableLambda(lambda x: 

self.parse_pipeline_result(↪→ 
31 str(PIPELINE_RESULT_FILEPATH) 
32 ))), 
33 (RunnableLambda(lambda x: "The pipeline did not run successfully"))
34 )
35 )
36 return runner_chain

The PipelineRunner class consists of three core methods. The run_pipeline 
method (line 3–14) executes the pipeline script in its designated directory and 
returns a Boolean indicating whether the execution was successful. If the execution 
completes without errors, the output of the pipeline is stored in a JSON file. The 
parse_pipeline_result method (line 16–22) loads the result into a Pandas 
DataFrame and formats it as a table for display. The PipelineRunner is integrated 
into the COSMADS LCEL chain through its get_chain method, which defines 
the execution workflow. The chain consists of a RunnableLambda that triggers 
the pipeline execution, by invoking the run_pipeline method, followed by a 
RunnableBranch that checks if the execution was successful. If the pipeline runs 
successfully, the output is parsed using the parse_pipeline_result method and 
returned; otherwise, an error message is displayed.

The implementation details of the whole COSMADS chain are provided below. 
Additionally, Fig. 9.2 provides its visual explanation.
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LCEL implementation of COSMADS processing flow 

1 chain = ( 
2 # Step 1: Retrieve similar pipelines from the Pipeline repository 
3 RunnableLambda(lambda x: { 
4 "query":  x,  
5 "pipeline_search": 

self.pipeline_manager.pipeline_store.search(x),↪→ 
6 } 
7 ) 
8 # Step 2: Retrieve the the most relevant data services 
9 # for this query from the Data Service repository 

10 | RunnableLambda( 
11 lambda x: { 
12 "query":  x["query"], 
13 "example": self.get_example(x["pipeline_search"]["output"]), 
14 "data_services": self.get_data_services() 
15 } 
16 ) 
17 # Step 3: Parse the retrieval results from both repositories 
18 | RunnableLambda( 
19 lambda x: { 
20 "query":  x["query"], 
21 "data_services":  x["data_services"][0], 
22 "data_services_list":  x["data_services"][1], 
23 "example_query":  x["example"][0], 
24 "example_pipeline":  x["example"][1], 
25 } 
26 ) 
27 # Step 4: Generate the pipeline using the LLM Agent 
28 | generator_chain_output 
29 # Step 5: Store the pipeline into a temporary Python script file 
30 | RunnableParallel( 
31 gen = RunnableLambda(lambda x: { 
32 "query":  x["inputs"]["query"], 
33 "data_services":  x["inputs"]["data_services"], 
34 "example_query":  x["inputs"]["example_query"], 
35 "example_pipeline":  x["inputs"]["example_pipeline"], 
36 "pipeline":  x["pipeline"] 
37 }), 
38 exe = RunnableLambda(lambda x: 
39 self.save_intermediate_result_to_json(x["pipeline"], 

x["inputs"]["data_services_list"])↪→ 
40 ) 
41 ) 
42 | RunnableLambda(lambda x: {
43 "inputs": x,
44 "pipeline_filepath": str(INTERMEDIATE_RESULTS_FILEPATH)
45 })
46 # Step 6: Execute the pipeline (i.e. the temporary file)
47 | RunnableParallel(
48 inputs = RunnableLambda(lambda x: {
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49 "query":  x["inputs"]["gen"]["query"], 
50 "data_services":  x["inputs"]["gen"]["data_services"], 
51 "example_query":  x["inputs"]["gen"]["example_query"], 
52 "example_pipeline":  x["inputs"]["gen"]["example_pipeline"], 
53 "pipeline":  x["inputs"]["gen"]["pipeline"], 
54 }), 
55 output = runner_chain_output 
56 ) 
57 # Step 7: Parse the pipeline output 
58 | RunnableLambda(lambda x: { 
59 "query":  x["inputs"]["query"], 
60 "data_services":  x["inputs"]["data_services"], 
61 "example_query":  x["inputs"]["example_query"], 
62 "example_pipeline":  x["inputs"]["example_pipeline"], 
63 "pipeline":  x["inputs"]["pipeline"], 
64 "output" : x["output"]["output"],
65 })
66 )

The COSMADS LCEL chain is structured as a sequence of RunnableLambda 
and RunnableParallel components, the two foundational abstractions in 
LangChain. RunnableLambda is designed for single-step transformations or 
computations. It wraps a callable function or lambda, providing a flexible way 
to define and execute individual tasks within a chain. For example, it can retrieve 
data, transform inputs, or parse outputs all while maintaining a clear and isolated 
scope for each operation. In the context of COSMADS , RunnableLambda is

Fig. 9.2 COSMADS LCEL chain explained
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used to perform tasks like querying repositories and parsing retrieval results. 
RunnableParallel, on the other hand, facilitates the concurrent execution of 
multiple independent tasks. It is particularly useful in scenarios where different 
processes can run simultaneously without interdependencies, enhancing the 
efficiency of the workflow. 

The chain begins with a RunnableLambda (line 3) that queries the pipeline 
repository to retrieve pipelines relevant to the input query. This step leverages 
existing knowledge by identifying similar pipelines to use as examples in the 
generation process. Following this, another RunnableLambda (line 10) fetches data 
services from the data service repository that are most relevant to fulfilling the query. 
These two steps ensure that the COSMADS system gathers the necessary contextual 
information for creating a new pipeline.

Once the repository outputs are retrieved, a third RunnableLambda (line 18) 
parses and organizes the results, wrapping the query, example pipelines, and data 
services into a structured format. This parsed information is then fed into the LLM 
agent, which is implemented as part of a RunnableLambda (line 28). The agent 
uses the provided context to generate a Python script that represents the pipeline for 
fulfilling the query.

The generated pipeline is then stored using a RunnableParallel component 
(line 30), which handles both writing the pipeline to a temporary Python file 
and saving metadata about the inputs and selected data services. Subsequently, 
another RunnableParallel component (line 42) executes the stored pipeline while 
capturing its outputs concurrently.

Finally, a RunnableLambda (line 47) processes the output of the executed 
pipeline, structuring it into a relational table or other desired formats based on the 
query. The chain concludes with this step, delivering the final result to the user .

9.3 Extracting Process Operations with LLMs 

The complexity of modern business processes often demands rapid and efficient 
solutions for translating textual descriptions into executable process operations. 
Traditional approaches to business process management rely heavily on predefined 
models, making them inflexible to evolving requirements. In this section, we 
describe NL2ProcessOps [8], an LLM-based approach for generating a process 
script from a textual process description. In practice, the script is a Python code 
containing invocations to external tools for executing the tasks of the given process. 
Each tool is characterized by a description that provides a textual representation of 
operations offered to execute the tasks. Tool documentations are prompted to the 
LLM to generate the script. To overcome the limitation of the input context length 
of LLMs, which cannot incorporate too much information, we consider the most 
appropriate tool descriptions and fit them within the prompt length.
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9.3.1 The NL2ProcessOps Architecture and Pipeline 

The goal of NL2ProcessOps is to provide a solution for process operations 
(ProcessOps), aiming to simplify the development and deployment of processes, 
similar to how DevOps simplifies the development and deployment of general 
software. Specifically, once a new process definition is available, the involved 
operations include (a) extracting a process model from the description, defining the 
legal execution traces similarly to a program, (b) binding of each task to a software 
module implementing that task, and (c) defining the data flow, i.e., how data artifacts 
are manipulated by the tasks. 

The generation of the process script from a textual process description is broken 
down into multiple stages supported by LLMs and chained together as follows: (i) 
extraction of tasks and control flow from the textual process description (operation 
(a) of ProcessOps), (ii) retrieval of relevant tools corresponding to the extracted 
tasks (operation (b) of ProcessOps), and (iii) generation of the process script 
implementing the process (operation (c) of ProcessOps). Figure 9.3 illustrates the 
components of NL2ProcessOps and their interactions. The numbers in the circles 
represent the order of the performed operations. 

Stage (i) consists of a textual process description given as input 1© to the 
Tasks-Model extractor. This component is an LLM prompted to extract the tasks 
and the control flow of the process and generates the model representation as a 
Mermaid.js [3, 4]. The list of tasks paired with the textual process description (i.e., 
[proc_desc, tasks]) is input 2a© to the Tasks pre-processing component. Con-
currently, the process model and the textual process description (i.e., [proc_desc, 
model]) are input 2b© to the Code gener ator component.

Stage (ii) (depicted in gray in Fig. 9.3) is inspired by the RAG concept to retrieve 
the relevant tools for the particular textual process description. The Tasks pre-
processing component employs an LLM to refine the descriptions of the extracted 
tasks based on the textual process description. The refined list of tasks is then 
processed 3© by the Tools retriever component. This component interacts 4© with 
the vector database Tools DB and retrieves the most similar embedded tools offering 
the most suitable operation for each embedded task. Tools DB stores vectors 
consisting of the embeddings of the descriptions of the tools. 

Fig. 9.3 Architecture of the NL2ProcessOps [8]
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The list of retrieved tools is fed 5© into the Code generator component to initiate 
stage (iii),  the  Code generator LLM. The Code generator, given the textual process 
description, process model, and the list of tools (and their operations) implementing 
the process tasks, generates 6© a Python code—process script—embedding the 
control and data flows and implementing the process.

The integration of LLMs within the proposed approach is essential for several 
reasons. LLMs excel at processing natural language, making them ideal for 
extracting tasks and control flow from textual process descriptions. This first 
stage is critical as it forms the basis for the subsequent stages of the pipeline. 
Without accurate extraction of tasks and control flow, subsequent stages would 
lack the necessary information for generating meaningful outputs. The retrieval 
of relevant tools highly relies on the quality of the extracted tasks. An incorrect 
set of tools would affect the generation of the process script, leading to incorrect 
data and control flows. Finally, LLMs excel in generating high-quality code from a 
description. In this case, the textual process description guides the code generation, 
supported by the control flow and tools information derived from the previous 
stages. 

9.3.2 A Running Example 

Let us consider a real-world example in the Smart Manufacturing domain. Smart 
Manufacturing is a modern trend where cutting-edge technologies such as Industrial 
Internet of Things (IIoT) and artificial intelligence (AI) play pivotal roles in enabling 
quality enhancement, optimization, and automation of production processes [10]. In 
this domain, the integration of the proposed solution, paired with PEE and enterprise 
systems like Manufacturing Execution System (MES) and Enterprise Resource 
Planning (ERP), enables the orchestration and execution of specific processes in 
a quick and efficient way [12]. 

Example The automatic calibration process of cardboard production consists of continu-
ously capturing a photo of the cardboard being produced. Each photo is analyzed to check 
if all the markers identified are ok. If markers are not ok, the calibration process continues. 
If the markers are ok, the speed of the die-cutting machine is set to 10,000 RPM and the 
process ends. 

The Example describes the automatic calibration process in cardboard produc-
tion. Cardboard production is a manufacturing process that involves a die-cutting 
machine for the transformation of raw cardboard into printed cut-out cardboard 
sheets for the packaging industry. When starting a new order, calibration is needed 
to guarantee quality before proceeding with the production. 

Figure 9.4 depicts the input-output of each of the NL2ProcessOps components 
over the Example. The numbers in circles are tightly connected to those in Fig. 9.3. 
Figure 9.4 reports the process model represented as Mermaid.js (green colored) and 
the list of (refined) tasks (blue and red colored) extracted from Example, the list 
of tools operations (purple colored) retrieved, and the process script—Python code 
(black colored). All the artifacts are available at the provided link.5 .
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Fig. 9.4 Input-output of each component of NL2ProcessOps on Example 

9.3.3 Realization 

The authors have realized a prototype5 of NL2ProcessOps [7]. The prototype is 
developed in Python and built on top of LangChain,6 a framework for constructing 
LLM-powered applications facilitating the creation, management, and chaining of 
prompts. The base LLM utilized for the three LLM-based components is GPT-4 
(gpt-4-0125-preview) from OpenAI [1] with temperature set to 0, implying a 
more deterministic LLM mode. 

9.3.3.1 Tools Retriever 

Tools are central to such approach as they support task execution in a service-
oriented way, i.e., offering operations for specific tasks. As proposed in [6], 
the LLM relies solely on the documentation of these tools, which outlines their

5 Cf. https://github.com/iaiamomo/NL2ProcessOps. 
6 Cf. https://www.langchain.com/. 

https://github.com/iaiamomo/NL2ProcessOps
https://github.com/iaiamomo/NL2ProcessOps
https://github.com/iaiamomo/NL2ProcessOps
https://github.com/iaiamomo/NL2ProcessOps
https://github.com/iaiamomo/NL2ProcessOps
https://www.langchain.com/
https://www.langchain.com/
https://www.langchain.com/
https://www.langchain.com/
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capabilities, usage instructions, and outcomes. An excerpt from the documentation 
for the SetSpeedDieMachine tool of the Example is provided below. It consists 
of a general description of its unique operation, parameters details, and outcome 
description.

Example of tool documentation 

1 SetSpeedDieMachine = { 
2 "description": "Set the speed of the die-cutting machine.", 
3 "more_details": "It takes as input the speed. It returns a 

boolean value, True if the speed has been set, False 
otherwise.",

↪→
↪→ 

4 "input_parameters":  ["speed:int"], 
5 "output_parameters": ["speed_set:bool"],
6 "tool": "die_machine" }

The Tools DB is a vector database containing the vector representations of the 
descriptions of the available tools. Each vector constitutes the embedding of the 
following information: tool_name and description, where the description is 
extracted from the tool documentation. An embedding is a sequence of numbers that 
represent information and enable better comprehension of relationships between 
similar information. The text-embedding-ada-002 model from OpenAI7 is 
utilized to compute these vectors. The embeddings are usually managed in vector 
DBs, which enable a set of capabilities, including indexing, distance metrics, and 
similarity search. As vector DB, ChromaDB,8 which is open source and well 
integrated with LangChain, is employed. ChromaDB enables the implementation 
of RAG-based approach basing similarity search on cosine distance (where a lower 
score indicates better similarity). 

In the Example, for the refined extracted task description “set the speed of the 
die cutting machine”, the similarity search identifies SetSpeedDieMachine tool 
operation as the most similar. Consequently, the Die machine tool is the most 
suitable for task ex ecution.

The similarity search outputs a set of most similar tools with corresponding score 
results. The module guarantees that the useful tools are among those retrieved. In 
practice, given a task, the Tool retriever selects one or more tools based on their 
score values. The set of tools is then processed by the Code generator LLM that 
considers only those necessary for the specific case. 

The tools retriever is implemented as a Python class responsible of managing 
tools, which are implemented as Python classes themselves. An example of tool is 
provided below: 

7 Cf. https://platform.openai.com/docs/models/embeddings. 
8 Cf. https://www.trychroma.com/. 

https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://www.trychroma.com/
https://www.trychroma.com/
https://www.trychroma.com/
https://www.trychroma.com/
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Sample tool implementation 

1 class ConfigureAssemblyLine: 
2 description = { 
3 "description": "Configure the assembly line.", 
4 "more details": "This tool takes no input and does not return 

anything.",↪→ 
5 "input_parameters": [], 
6 "output_parameters": [], 
7 "actor": "assembly_line" 
8 } 
9

10 def call():
11 return

A simplified version of the class implementing the Tool Retriever is provided 
below. 

Embedding tools in NL2ProcessOps 

1 from langchain_community.vectorstores.chroma import Chroma 
2 

3 class ToolStore(): 
4 

5 def embed_tools(self, embedding_function): 
6 self.embedding_function = embedding_function 
7 self.db = Chroma.from_texts(self.tools, embedding_function) 
8 

9 def search(self, keywords): 
10 best_match = self.db.similarity_search_with_score(keywords) 
11 for i, match_elem in enumerate(best_match): 
12 if i == 0 and match_elem[1] >= 0.5: 
13 break 
14 elif i >  0  and match_elem[1] <= 0.3: 
15 tool_name = match_elem[0].page_content.split('  ')[0] 
16 file_name = match_elem[0].page_content.split('  ')[1 ]
17 api_info = self.extract_input_output(tool_name, file_name)
18 list_match.append(api_info)

The embed_tools method (line 5) makes usage of the Chroma.from_texts 
method (line 7), which takes a list of tool descriptions and converts them into 
embeddings, which are then indexed in ChromaDB for similarity-based searches.

The search method (line 9) performs retrieval by calculating the cosine similarity 
between the query embeddings and the stored tool embeddings. It uses ChromaDB’s 
similarity_search_with_score function to fetch tools whose descriptions 
closely match the query. If the similarity score exceeds predefined thresholds, the 
corresponding tools are added to the result s et.

In this realization, embeddings serve as a bridge between textual process descrip-
tions and tool metadata. For example, a textual task description like “adjust machine 
speed to 10,000 RPM” is embedded and compared against stored tool descriptions.
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Table 9.1 Prompt information of the LLM-based components 

Tasks-model extractor Tasks pre-processing Code generator 

(a) BPM expert BPM expert – 

(b) Extract the control flow in 
terms of a process model 
and the list of tasks 

Rephrase the tasks 
descriptions 

Generate a Python code 

(c) Description of BPMN 
elements 

– Tools descriptions and 
guidelines 

(d) Yes Yes No 

(e) Set of custom rules for the 
process model 
representation 

– Python program structure 

(f) Textual process description Textual process description 
and extracted tasks 

Textual process description 
and process model 

The similarity search may retrieve a match like the SetSpeedDieMachine tool, 
which provides the exact operation r equired.

9.3.3.2 Prompt Engineering 

The prompt is a guide for the model, instructing it on relevant information and 
desired output formatting. The quality of the LLM output directly correlates with 
the quality of the provided prompt [13]. 

The proposed approach consists of three different LLM-based components, each 
specialized in a particular task, i.e., extraction of the process tasks and model, pre-
processing of the extracted tasks, and generation of Python code. Each component 
is characterized by a specific prompt. Each prompt is characterized by all (or 
some) of the following parts: (a) the role the LLM plays that helps in controlling 
the output style [11], (b) a clear description of the task to be performed, (c) 
additional information (context) to aid the LLM in generating better responses, (d) 
few examples to teach the LLM, (e) type and format of the desired output, and (f) 
the input data used by the LLM to compute the response. Table 9.1 presents detailed 
information regarding each part of the prompt for the three LLM-based components. 
All the prompts are available at the provided link.5 . 

9.3.3.3 NL2ProcessOps Implementation 

The implementation of NL2ProcessOps leverages LangChain to integrate LLMs 
into a pipeline for generating process scripts from natural language descriptions. 
This section explains the key components of the implementation, focusing on how 
tasks, tools, and code generation are orchestrated.
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The ProcessLLM class implements the core logic of NL2ProcessOps. It inte-
grates multiple components, including task modeling, code generation, and tool 
management, by leveraging LangChain’s Runnable utilities and custom LLM
modules.

The ProcessLLM class 

1 class ProcessLLM: 
2 def __init__(self, model="gpt-3.5-turbo", openai_key=None, 

temperature=0.0):↪→ 
3 self.model_tasks_llm = MermaidLLM(model, openai_key, 

temperature=temperature)↪→ 
4 self.task_llm = TaskRetrieverLLM(model, openai_key, 

temperature=temperature)↪→ 
5 self.code_llm = CodeLLM(model, openai_key, temperature=temperature) 
6 

7 embedding_function = OpenAIEmbeddings(model="text-embedding-ada-002", 
api_key=openai_key)↪→ 

8 self.tools_store = ToolStore(openai_key) 
9 self.tools_store.embed_tools(embedding_function)

The ProcessLLM class initializes various components, including (i) 
MermaidLLM, which extracts process models from descriptions; (ii) 
TaskRetrieverLLM, which identifies tasks within the process; and (iii) CodeLLM, 
which generates Python code based on tasks and tools. These classes are 
implemented as standard LangChain pipelines, adhering to the standard chai 
structure of self.prompt | self.model | self.output_parser.  The  
ProcessLLM class also sets up ChromaDB (line 8) for semantic retrieval of t he
tools through the ToolStore class.

The get_chain method, which is provided below, defines the overall 
workflow of the ProcessLLM class. It orchestrates the sequence of oper-
ations using LangChain’s Runnable utilities, including RunnableLambda, 
RunnablePassthrough (which directly propagates inputs without modification), 
and RunnableBranch (enabling conditional branching based on predicate
functions).

The ProcessLLM chain 

1 def get_chain(self): 
2 model_tasks_llm_chain_output = self.model_tasks_llm_parser() 
3 task_llm_chain_output = self.task_llm_parser() 
4 code_llm_chain_output = self.code_llm_parser() 
5 

6 general_chain = ( 
7 RunnableLambda(lambda x: { 
8 "model":  x  ["model"], 
9 "tools": self.tools_prompt_parser(x["tasks"]), 

10 "input":  x["input"],
11 })
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12 | code_llm_chain_output 
13 | RunnableBranch( 
14 (lambda x: not x["error_python"], RunnableLambda(lambda x: 

self.parse_output(x))),↪→ 
15 (lambda x: "There are some errors in the python code.") 
16 ) 
17 ) 
18 

19 chain = ( 
20 model_tasks_llm_chain_output 
21 | task_llm_chain_output 
22 | RunnableLambda( 
23 lambda x: { 
24 "tasks":  x["tasks"], 
25 "has_tasks": self.is_list_of_tasks(x["tasks"]), 
26 "input":  x["input"], 
27 "model":  x["model"], 
28 } 
29 ) 
30 | RunnableBranch( 
31 (lambda x: x["has_tasks"], general_chain), 
32 (lambda x: "Your process description does not contain any task.")
33 )
34 )
35 return chain

This method begins by defining three parsing subchains for task mod-
eling (line 2), task retrieval (line 3), and code generation (line 4). The 
model_tasks_llm_parser chain processes the input to extract tasks, the 
task_llm_parser chain retrieves additional task details, and the 
code_llm_parser chain generates Python code based on the tasks and tools. 
These subchains are constructed using LangChain’s RunnableLambda for inline 
computations and RunnablePassthrough to propag ate inputs.

The heart of the workflow lies in the two branches created using Runnable-
Branch. The first branch (lines 30–33) checks whether tasks are present in the 
process description. If tasks are found, the general_chain is executed, which:

1. Integrates task descriptions, tools, and process inputs. 
2. Generates Python code using the code_llm_parser (line 12).
3. Validates the generated code with the second branch (lines 13–16). It either 

parses the generated code for output or returns an error message if issues are 
detected. 

If no tasks are found, the branch directly outputs a message stating, “Your process 
description does not contain any task.” 

Finally, the ProcessLM provides a CLI-based interactive interface for users to 
input natural language process descriptions, generate Python code based on these 
descriptions, and optionally execute the generated code. Below is a simplified 
version of the main function:
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Running NL2ProcessOps (simplified) 

1 if __name__ == "__main__": 
2 # Load environment variables and retrieve the OpenAI API key 
3 dotenv.load_dotenv() 
4 OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") 
5 model = "gpt-4-0125-preview" # Define the LLM model to use 
6 

7 # Instantiate the ProcessLLM pipeline 
8 llm = ProcessLLM(model, OPENAI_API_KEY) 
9 

10 while True: 
11 # Prompt the user to input a process description 
12 input_text = input("Enter a process description (or press Enter to 

skip): ")↪→ 
13 if input_text == "": 
14 continue 
15 

16 # Process the input and generate Python code 
17 result = llm.get_chain().invoke({"input": input_text}) 
18 print(f"Generated Code:\n{result}") 
19 

20 # Ask if the user wants to execute the process or provide another 
description↪→ 

21 user_choice = input("Execute the process? (y)\nEnter a new description? 
(p)\nQuit? (q): ")↪→ 

22 if user_choice == "y": 
23 try: 
24 # Validate and execute the generated Python code 
25 print("Executing the process...") 
26 if os.system("python -m py_compile llm_process_code.py") != 0: 
27 print("The generated code contains syntax errors.") 
28 else: 
29 os.system("python llm_process_code.py") 
30 print("Process executed successfully.") 
31 except Exception as e: 
32 print(f"Error during execution: {e}")
33 elif user_choice == "p":
34 continue # Loop back for a new process description
35 else:
36 print("Exiting...")
37 break
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Chapter 10 
Ethics and Governance of Large 
Language Models 

Gabriele Rendace Presta and Andrea Paolella 

Abstract Artificial Intelligence is reshaping the ontological structure of reality. 
The analysis examines AI’s role in the re-ontologization process, emphasizing 
the implications of digital tools on human existence and showing how ethical 
concerns also emerge from this ontological shift. To face these AI ethical issues, 
this chapter proposes a Heideggerian approach that looks at ethics as care of the 
human stay (Aufenthal). It is an attempt to define a critical effort able to re-evaluate 
the human role in AI development and use, accompanying the already proposed 
ethical principles and the law-making processes (especially in Europe). The analysis 
focuses then on the global AI political and regulative scenario, with an overview 
observing China, Russia, EU, and the USA. The text shows the common points 
and differences between these approaches, offering a structured understanding of 
main governmental actions on AI (from development strategies to direct regulative 
actions). Finally, the overview on regulations will be crucial to reflect on censorship, 
AI openness, freedom, and rights. 

10.1 Preliminary Ontology 

10.1.1 Introduction 

In this first introductory section, the reader will focus on the ontological issues 
related to digital tools and AI. According to a Heideggerian vision, ontology is here 
intended as the analysis of the deep composition of the meaning to be of reality 
[53], looking what means for something to be and not just why something is. In 
fact, digital tools, and artificial intelligence more than anything else, are reshaping 
the ontology not just of single objects but of reality as a whole [42, 50]. Every 
aspect of the world—actions, relations, basic shapes, fundamental elements, etc.— 
is changed by these new technologies. This condition, of course, puts under strict 
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attention the way AI is used and which are the principle effects it has: here ethical 
concerns emerge, along with all the possible political, juridical, and philosophical 
answers [40, 42]. This passage will be essential to enlighten how the ethical and 
ontological problems are deeply related and why this previous section on ontology 
will be necessary to understand the subsequent sections on ethics and rules. 

Two examples about this process of re-ontologization are then shown into 
the following paragraphs of the introduction. Both deal with the phenomenon of 
prosuming (progressive merging of the two figures of producer and consumer [18]), 
trying to show how processes and relations are transformed by the use of digital 
tools. The examples will be the chance to open a reflection on the role of human 
beings in an informational society, where the world humans live in is adapted for 
the coexistence with artificial digital agents. 

However, at the end of this section, a new idea enters the discourse: the possibility 
to design critically optimized political and juridical tools to achieve the right 
solutions for the progressive emergence of ethical concerns related to the AI re-
ontologization of reality. 

10.1.2 The Ontological Problem Behind the Ethical Approach 
to AI 

To achieve a real comprehension of what artificial intelligence is and how it works 
from a philosophical perspective, we must understand the inner composition of 
the world it has been built to be used in. This is not an approach that seeks a 
philosophical answer to the deep structures of artificial intelligence algorithms 
and models—it would not be different to ask a misleading question about what a 
machine is1 —but a more complex analysis of the way AI is used and the way the 
world is arranged to allow its efficient use. A first point that must be clear and has 
to be accurately considered is that the ontology we are discussing is not the one of 
AI machines but the one of contemporary world, which is rearranged in its deeper 
composition and structure by these machines. 

However, this kind of research brings us exactly to the point where we must 
understand why and how we use AI to the question “what should we do?”, a 
question that, in a more radical and essential approach, turns into the following 
deeply complex interrogation: “How should we think?”2 Nevertheless, this way

1 As Turing already noticed, it would be a question leading to no solution, putting our research on 
the wrong path [42]. 
2 It’s essentially a Heideggerian philosophical interrogation that enshrines an ethical approach into 
a firstly ontological one: “Dies alles vermogen wir nur, wenn wir vor der anscheinend immer 
nachsten und allein als dringlich erscheinenden Frage: was sollen wir tun, dies bedenken: Wie 
mussen wir denken? Denn das Denken ist das heigentliche Handeln, wenn Handeln heißt, dem 
Wesen des Seins an die Hand gehen” eng.: “We can only achieve all this if, in the face of the 
seemingly ever-present and only urgent question: “What should we do?”, we also consider: ‘How
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of thinking should constitute an always-necessary approach when construing a 
possible political or ethical path in our contemporary society. Specifically, new 
technologies, as artificial intelligence is, represent the main tools involved in the 
progressive re-ontologization of the world [42]. AI is reshaping the way things get 
done, and this condition of course leads to an interrogation about how societies and 
organizations should use these technologies: here the ethical issue emerges, along 
with all the possible political answers.

To give the reader a more practical vision of the just suggested re-ontologization 
process, everyday examples on how digital technologies and tools rebuild our reality 
and restructure the world could be useful. Among these cultural and ontological 
evolutions, a quite famous one is prosuming, often discussed also in new media 
theory.3 It consists in the progressive merging of two different figures operating 
in the cultural and economic fields: the consumer and the producer.4 In the last 
decades, a growing number of young adolescents from every country of the world 
started to turn the stories they read on books they had bought into new collective 
narratives shared on blogs and Web sites, thus transforming themselves from simple 
readers, or passive consumers, to readers-writers, at the same time passive readers 
and active producers involved in the expansion of a fictional world, becoming new 
digital entities that we would call prosumers [18]. We can make now an example 
that would resonate a little bit more in our mind, contemplating how prosuming 
operates also in the sphere of new generative AI. The owner of a creative agency 
who needs to create textual contents for Web sites could hire a copywriter, give her 
or him some indications, and obtain a result, good and specific contents that will 
add to the Web sites. In this case, there’s a consumer asking for a product. Instead, 
if the creative agency owner does not ask to a copywriter, an expert in the field of 
textual content creation, but start prompting indications to a LLM obtaining as a 
result the contents for the Web sites, the owner is turning somehow into a prosumer. 
The owner is self-producing (producer) the contents that will be used for the final 
aim (consumer). 

These are two very different examples regarding the power of re-shaping and 
re-ontologize reality digital technologies have. They change actions, identities, and 
relations, establishing a new ontological perimeter. It must be underlined that it is 
not just a matter of why and how we choose to do something, but it deals also with 
the way we think and understand reality.5 

must we think?”’ [52]. As we will see further in the analysis of ethical approaches to AI, the 
question about the way we should think becomes a general critical approach to technological 
developments that precedes and envelopes law-making and legislative directions.
3 Important contribution has been given by researchers in the fields of new media phenomena. 
Fanfictioning has probably been one of the most explored [18]. 
4 A good report on the historical evolution of this term and its meaning can be found in Floridi, 
2022 [42]. 
5 To understand better, the following passage can be useful: “il digitale non è semplicemente 
qualcosa che potenzia o aumenta una realtà, ma qualcosa che la trasforma radicalmente, perché 
crea nuovi ambienti e nuove forme di agire con cui interagiamo. [ . . ..] ho utilizzato l’espressione 
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It is important to recognize that ethical concerns and the political and juridical 
regulations that will follow them cannot be detached from a philosophical and 
cultural detection directed to explore the mechanisms of contemporary thinking. 
This is clearly a purpose linked with a human-oriented approach that will focus 
on the essential articulation of how we think and then of how we construe our 
reality. It is important to put at the center of the analysis this peculiar point: firstly, 
to recognize its importance in the field of AI development and use and, as second 
instance, to insert it in this discourse as a filter of analysis to observe which path we 
have decided to walk through. 

Nowadays, it is necessary to evaluate if there is a real human-centered approach 
to AI. The progressive transformation of society has led to a digital technology 
environment where we are just one part, but not the main constitutive element. 
Human beings therefore appear to live a condition of simple means in the new reality 
constituted by the encounter of online and offline worlds.6 

Our artificial agents, currently constitutive components in every aspect of our life 
and in every space we walk through, exist because we’re building an environment 
where these objects7 can live and prosper. We build an envelope where digital 
entities, including AI of course, can work autonomously and realize a product or 
give any kind of service [42]. This works on a small scale and in a more expanded 
and complex one. Robots involved in manufacturing cars or moving boxes in 
distribution centers, for example, can complete their tasks only in the perimeter 
of the factory, a small environment completely arranged to guarantee a successful 
accomplishment of digital entities tasks. Smart cities are examples on a large scale 
of this envelopment process.8 So, there is a cultural and material movement of 
reality toward a digitized status or, better said, toward a merged condition where 

re-ontologizzazione per fare riferimento a una radicale forma di re-ingegnerizzazione, che non 
consiste soltanto nel disegnare, costruire o strutturare un sistema [ . . ..] in modo nuovo, ma nel 
trasformare fondamentalmente la sua natura intrinseca, vale a dire la sua ontologia. [ . . ..] Attraverso 
la re-ontologizzazione della modernità, per dirlo in breve, il digitale sta anche ridefinendo dal 
punto di vista epistemologico la mentalità moderna, cioè molte delle nostre concezioni e idee 
consolidate.” eng.: “The digital is not simply something that enhances or increases a reality, but 
something that radically transforms it, because it creates new environments and new forms of action 
with which we interact. [ . . ..] I have used the term re-ontologization to refer to a radical form of re-
engineering, which does not consist merely in designing, building or structuring a system [ . . ..] in a  
new way, but in fundamentally transforming its intrinsic nature, that is, its ontology. [ . . ..] Through 
the re-ontologization of modernity, in short, the digital is also redefining the modern mentality from 
an epistemological point of view, that is, many of our established conceptions and ideas” [42].
6 A world we can easily call with the widespread expression infosphere [40]. 
7 The word “object” for digital entities can be not exactly the most fitted one. South Korean 
philosopher Byung-Chul Han talks about Undinge, non-objects, because of digital incapability 
to produce real negativity and establish the perimeter of reality [50]. This has consequences on 
how we make choices, build relations, work, and so on. Of course, it can represent also a good 
point to start a discussion where digital ethics and esthetics are profoundly interlinked. 
8 We’ll see that one of the first countries involved in the development of AI policies and ethical 
discussion, China, is also the most advanced in the creation of smart cities and the subsequent data 
collection [87]. 
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digital informational reality results combined with the material and physically 
experienced world: the onlife of the infosphere [40]. Well, this is the starting point to 
understand the re-ontologization of reality. In these new spaces, things are as they’ve 
never been before, and humans are not the measure of this process but simple guests 
into an environmental project progressively more oriented to and fit for machines 
and digital entities [42]. 

However, humans still have the possibility to imagine and draw a world shaped 
by artificial intelligence, and our ability to design will probably be the aspect that 
will determine the quality of the answers we will give to political and ethical 
concerns deriving from AI development [42]. Future challenges will lie not only 
in the way we drive digital and AI innovation but also and overall in the way we 
will govern it through a critical designing approach. 

Key Points of Preliminary Ontology for Artificial Intelligence 

• Understanding AI requires analyzing the world it is built to function in. 
• The focus is not just on AI models but on how AI reshapes reality. 
• Ethical concerns lead to fundamental questions: 

– “What should we do?” →. “How should we think?” (Heideggerian 
radical approach). 

• AI and digital technologies restructure reality at its core. 

– Example: Prosuming (producer and consumer roles merge): 

·. New Media Theory on fanfictions. 
·. AI tools like LLMs turning content consumers into a hybrid of 

content producers-consumers (prosumers). 

• AI changes actions, identities, and relationships. 
• The digital world does not merely enhance reality but fundamentally 

transforms the real world merging with it. 
• Re-ontologization is the name of this radical process of reconstruction 

(Floridi). 
• Concept of the Infosphere: merging of online and offline worlds. 
• A central issue regards the question on centrality of human beings and 

their transformation into mere means inside a merged digital-material 
environment. 

• AI operates in enveloped environments designed for its efficiency (facto-
ries, smart cities), and the enveloping process is progressively involving 
every aspect of reality. 

• AI is shaping the world, but humans can still direct this transformation. 
• Ethical and political decisions will determine the future of AI governance. 
• Key challenge: Not just driving AI innovation but designing it with a 

critical approach.
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10.2 Ethics 

10.2.1 Introduction 

After the introductory first section centered on the relation between ontology and 
ethics, this second part will take a further look on how an ethical approach to AI 
could be imagined and arranged. 

The starting point will be an attempt to describe how ethics could be interpreted, 
looking at the topic employing a semantic analysis of the Ancient Greek word ἦθος 
(ēthos), from which the modern term ethics comes from.

In fact, the ancient Greek word ἦθος could embrace a double meaning: a first one 
related to the idea of “habit” and another one linked to the concept of “stay.” Starting 
from this ambiguous semantic nature, it is possible to intercept two philosophical 
interpretations that can operate as useful tools to develop an ethical approach to AI:

1. The first approach derives from the Aristotelian tradition and links ἦθος to the 
role that the laws of the state play in shaping the virtues of citizens [6]; 

2. The second interpretation has instead its roots in Heraclitus and Heidegger’s 
way of thinking, connecting ethics to the condition of care humans should direct 
toward the place they live every day, aside from any constriction deriving from 
the external action of law and government [51]. 

The attempt is to show how these two approaches can co-operate, defining a more 
complex scenario where laws are accompanied by the personal development of an 
articulated critical thinking. 

Then, the analysis will focus on the Unified Framework of Five Principles for AI 
proposed by Floridi and Cowls. It is the first fundamental systematic and organized 
definition of an ethical path for the development and use of artificial intelligence 
digital tools [43]. 

The Unified Framework is composed of four principles inherited in AI ethical 
studies from the research already developed in the field of bioethics. They are 
beneficence, non-maleficence, autonomy, and justice. To them the two researchers 
add another one: explicability. This last principle underlines how the processes and 
data exploited by these technologies must be clear and open for the users, who 
must be aware of the entity that is accountable for the potential dangers and threats 
deriving from the use of AI technology [43]. 

Finally, the analysis will introduce three fields—education, climate change, and 
work—where AI has produced interesting questions for ethical research. The action 
of AI in relation to these three areas represents a great interest for international 
political organizations, especially for the European Union, and at the same time, 
these three fields are good examples of how AI can generate ambiguous and 
controversial effects in everyday aspects of society [7, 25, 47, 72, 85]. This last 
reflection thus proposes to the reader a first practical idea of what an AI ethical 
concern can be and leads to the next part of this chapter, where different countries’ 
strategies and legislative actions to face these issues are introduced.
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10.2.2 Where the Meaning of Ethics Comes From 

Starting from a point of view able to merge philosophy, linguistics, and semantics, 
the first passage of this second section will be related to a wider and articulated 
understanding of the term “ethic.” It derives from the ancient Greek word ἦθος 
(ēthos),9 and the meaning it had for Greeks can open our reflection to a vast 
comprehension of what ethics is. 

Aristotle in the Nicomachean Ethics introduces the concept of virtue and 
distinguishes between two different kinds of virtue: the dianoetic virtue and the 
ethical virtue. The first one can be reached through learning (ἐκ διδασκαλίας), while 
the second one is derived from habit(ἐξ  ̓́εθους).10 

According to Aristotle, ethical behavior is not related just to a natural disposition, 
but it is obtained by also nurturing our inner nature through the continuous 
smoothing action of the habits. He affirms that someone can become virtuous and 
pursue an ethical path by only accomplishing good actions: we can learn to be 
good people through the repetition of these good actions, confirming our natural 
disposition with practice [6]. In Aristotle’s discourse then enters one of the main 
political and cultural protagonists of ancient Greek world, the πόλις (polis), the city-
state. In this passage, Aristotle affirms that the political leaders of the city-state, 
the legislators, guide the citizens toward virtuous behaviors creating good habits 
they can follow to become j ust.11 Now we can achieve a deeper understanding 
of Aristotelian thinking: ethical behavior—the practical and moral one, related to 
action and to the question “what should we do?”—is shaped by habits, and the 
laws of the State are arranged to create good habits that will lead the citizens to the 
achievement of ethical virtue. 

To summarize with a sentence: here ἦθος enters the semantic area of the habit, 
dialogues with this concept, and, according to Aristotle, interlaces consequently 
itself with the legislative bodies.

However, we must look at the wider semantic horizon the word ἦθος opens in 
the ancient Greek language. It is particularly interesting to understand what happens 
when this word assumes other possible meaning. In fact, ἦθος does not relate just to 
the semantic area of the habit, but it contemplates also the idea of the dwelling, the

9 The etymology of the English term can be easily found on the https://www.oed.com/dictionary/ 
ethics_n?tl=true, Oxford English Dictionary. 
10 “Virtue being, as we have seen, of two kinds, intellectual and moral, intellectual virtue is for the 
most part both produced and increased by instruction, and therefore requires experience and time; 
whereas moral or ethical virtue is the product of ‘habit”’ [6]. 
11 “This truth [of learning virtues through habit] is attested by the experience of states: lawgivers 
make the citizens good by training them in habits of right action—this is the aim of all legislation, 
and if it fails to do this it is a failure; this is what distinguishes a good form of constitution from a 
bad one” [6]. 

https://www.oed.com/dictionary/ethics_n?tl=true
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one of the home.12 Something ethical, for ancient Greeks, could be just an object 
or a place you are accustomed to. Heidegger stimulates a profound philosophical 
reflection starting exactly from an ancient Greek sentence attributed to Heraclitus 
[51]. The sentence is extrapolated from Heraclitus Fragment 119: ἦθος ἀvθρώπ ῳ 
δαίμωv (ēthos anthrōpō daimōn).13 

Heidegger denotes how translators, biased by their modern view of ethics and 
ethical thinking, often render inaccurately this passage: Seine Eigenart ist dem 
Menschen sein Dämon (in English, “His own character is for the human his demon”) 
[51]. According to Heidegger, this is a partial translation of ἦθος as “character,” 
unable to capture the real essential meaning of the word ἦθος; he proposes instead 
to translate the word ἦθος with the German term Aufenthalt, which we could turn 
into English as “stay” or “residence” [51]. Well, we can see how here the radical 
meaning of ἦθος as the accustomed place, as home, comes back and somehow 
takes place again in the realm of contemporary e thics.

The German philosopher then tells a short story about Heraclitus.14 The ancient 
Greek savior would have been seen close to an oven, warming his cold hands and 
body, by some visitors who expected to admire the famous Heraclitus thinking 
in a special or extraordinary pose. However, the philosopher understands their 
disappointment and invites them to come closer to the oven, saying that Götter 
wesen auch hieran (in English, “Gods are here too”) [51]. He was trying to 
communicate to his visitors that also in the usual and most common stay, human 
beings can find the essence of things and the essence of themselves too. That’s why 
the Heideggerian translation of the Heraclitus sentence “ἦθος ἀvθρώπ ῳ  δαίμωv” 
will be “Der (geheure) Aufenthalt ist dem Menschen das Offene für die Anweisung 
des Gottes (des Un-geheuren)” (in English, “The [usual] stay is for the human the 
opening for the coming of the gods [of the un-usual]”) [51]. 

So, if we consider the word ἦθος according to its fundamental meaning, ethics 
and ethical thinking must be linked directly to the idea of the stay of the human 
being. Then, the main task of ethics should be to nurture and take care the essence 
of the stay. This leads back ethics directly to an ontological dimension.15 

12 A simple dictionary can be helpful in understanding properly the multiplicity of different 
semantic uses of the word ἦθος, (e.g.,  https://www.perseus.tufts.edu/hopper/text?doc=Perseus: 
text:1999.04.0057:entry=h)=qos, Liddell, Scott, 1940). 
13 This fragment Heidegger starts his reflection from has been reported by ancient author Stobaeus 
in his Anthology [74]. 
14 The story Heidegger tells has been reported by Aristotle in his De Partibus Animalium [5]. 
15 “Soll nun gemäß der Grundbedeutung des ἦθος der Name Ethik dies sagen, daß sie den 
Aufenthalt des Menschen bedenkt, dann ist dasjenige Denken, das die Wahrheit des Seins als das 
anfängliche Element des Menschen als eines eksistierenden denkt, in sich schon die ursprüngliche 
Ethik. Dieses Denken ist aber dann auch nicht erst Ethik, weil es Ontologie ist (in English, “If, 
according to the fundamental meaning of ἦθος, the name ‘ethics’ is to signify a consideration of 
human existence, then that thinking which conceives the truth of being as the primordial element 
of human existence, as that which exists, is in itself already the original ethics. Such thinking, 
however, is not first ethics and then ontology”) [51].
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In a political and social environment influenced by AI, where challenging 
ethical concerns frequently enter the cultural debate, it is important to learn to 
design and think about ethical solutions that overcome a simple regulatory base— 
the Aristotelian ἦθος of laws and bureaucratic protocols cannot be sufficient—a 
model that has the bravery to embrace not just a radical redesign of tech tools 
but also a redefinition of the human environment and society, welfare, education, 
economic relations, and care, they will be used in, thus reactivating the Heraclitus-
Heideggerian ἦθος, which looks at the essence of the stay of human beings that 
pones itself before the simple action.16 It is true what Floridi has already theorized 
about the creation and expansion of the Infosphere [40], but this reontologization 
[39, 42] theory works overall on a superficial plan. An informational interpretation 
of the world does not contemplate the entire and complex sphere of human action, 
an aspect that we must consider, as said before, when we talk about ethics. It 
is necessary to propose again the Heideggerian return of ethics to the realm of 
ontology, trying to understand how we can construe a world that can host properly 
human action, and not just a world reontologizied by informational machines on 
which we try to impose laws and constrictions. A radical solution could be necessary 
when a game-changing technology is introduced in human society. Informational 
tools are redefining the human relation with the world [40]; they are however 
Undinge (non-things) [50], and in a reality where objects are not able to create 
negativity and mediate, there is a high ethical risk: the impossibility of action [4]. 

This comparison between the two meaning of the word ἦθος could represent an 
important premise to enter the discourse of AI ethics trying to develop a critical 
approach, but it has to meet also the philosophical prodromes that influenced 
contemporary debate on the ethical use of digital tools and AI.

16 “Es muß nämlich gefragt werden: wenn das Denken, die Wahrheit des Seins bedenkend, das 
Wesen der Humanitas als Eksistenz aus deren Zugehörigkeit zum Sein bestimmt, bleibt dann 
dieses Denken nur ein theoretisches Vorstellen vom Sein und vom Menschen, oder lassen sich 
aus solcher Erkenntnis zugleich Anweisungen für das tätige Leben entnehmen und diesem an die 
Hand geben? Die Antwort lautet: dieses Denken ist weder theoretisch noch praktisch. Es ereignet 
sich vor dieser Unterscheidung” (In English, “One must ask: if thinking, in considering the truth 
of being, determines the essence of humanity as existence from its belonging to being, does this 
thinking then remain merely a theoretical conception of being and of man, or can directives for 
practical life be derived from such knowledge and given to it? The answer is: this thinking is 
neither theoretical nor practical. It occurs prior to this distinction”) [51]. 
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10.2.3 The Unified Framework of Five Principles for AI in 
Society 

It is crucial, for whoever wants to enhance his or her knowledge in the field of digital 
ethics, to know what the Unified Framework of Five Principles for AI in Society is.17 

It represents the attempt, led by Floridi and Cowls, to manage the chaotic scenario 
of ethical initiatives launched by several organizations to adopt AI technologies that 
could benefit society.18 

The two researchers then identified also the emergence of five principles that 
could be adopted to evaluate and to create new artificial intelligence tools [43]. 

The first four principles were already widely spread in the field of bioethics: 
beneficence, non-maleficence, autonomy, and justice. 

The beneficence principle regards the creation of AI tools that are directed 
to benefit the existence of human beings, and it is one of the most widespread 
principles among the documents realized in the field of AI ethics and analyzed by 
Floridi and Cowls. Linked to the idea of beneficence are the concepts of well-being, 
common good, human dignity, and sustainability [42, 43]. 

The non-maleficence principle could seem not so different from the previous one 
of beneficence, or at least logically consequent, but there is instead an important 
semantic nuance we must look at. Non-maleficence principle reminds us that 
overuse and misuse of AI tools must be avoided in order to preserve human 
beings from important and irreversible issues caused by these technologies. Several 
concerns emerge when artificial intelligence deals with our personal data or when 
it enters the military perimeter and helps the development of new technologically 
advanced weapons.19 One interesting point is also that from the documents, it is not 
so clear whether the people who use them or the technologies themselves should be 
subjected to this principle of not harming [42, 43]. 

Strictly related to this philosophical question is the third principle, the one of 
autonomy. In fact, when we use AI tools, we give part of our decision-making 
power to machines, which operate autonomously from our direct will. So, it is 
necessary to find the right balance between the possibility of human beings to act 
on the processes and outputs machines give and the power to operate autonomously 
we completely delegate to these technologies. If we do not succeed to reach this

17 Of course, research on AI and debates on AI ethics do not begin in the contemporary era with 
this paper published at the end of the last decade but at the beginning of the second half of the 
twentieth century [69, 88, 101]. 
18 Floridi and Cowls analyze six documents, elaborated by organizations, authorities, and 
researchers, that represented various ethical approaches to AI. These initiatives were (1) The 
Asilomar AI Principles, (2)  The Montreal Declaration for Responsible AI, (3) Ethically Aligned 
Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems, (4)  
The Statement on Artificial Intelligence, Robotics and ‘Autonomous’ Systems, (5)  AI in the UK: 
ready, willing and able?, and (6)  The Tenets of the Partnership on AI [43]. 
19 Further in this chapter, it will be clear how war and AI are profoundly interlinked (e.g., in the 
case of Russia). 
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balance, the potential threat could be the imposition of machine autonomy over 
human autonomy. AI technologies should instead improve overall human autonomy. 
Human beings, not machines, should decide if they want to leave part of their will 
and power to other autonomous agents. It is necessary also to adopt a sort of decide-
to-delegate model, where human beings decide which tasks in a decision-making 
process they want to delegate to AI—e.g., they could delegate to machines in order 
to obtain more efficacy. Nonetheless, human agents should always have the chance 
to take again power over the parts of the process they delegated, in a sort of “deciding 
to decide again” action [42, 43]. 

The fourth principle is the one of justice. It deals with the idea of AI as profitable 
and positive for each member of human society. Artificial intelligence should not 
be discriminatory and promote diversity in order to remove any potential threats for 
justice itself and for citizens. The first action should be to work on the datasets we 
use for the training of our AI, removing biased data that can give the machine an 
inheritance of discriminatory or prejudicial information,20 and as a consequence, it 
leads to potentially dangerous outputs. Justice principle promotes also the idea of a 
shared prosperity and shared benefits coming from AI21 [42, 43]. 

Floridi and Cowles denote another important element about the world of artificial 
intelligence: a small bunch of people, experts, are really conscious of how these 
technologies work, while a great mass of other human beings do not really know 
the fundamentals of AI, but it is involved in the profound changes that are spread 
by these new tools and systems [43]. They underline a condition all the documents 
they analyzed contributed to make clearer: there is something unintelligible that’s 
invisibly working behind these technologies; it is accessible only by few people, 
and this situation is creating a really unavoidable concern [42, 43]. That’s why they 
added to the other four principles another one: explicability. AI technologies must 
be intelligible, they must answer to questions linked to the basic structure of their 
functioning, and at the same time they must be accountable so we can know who 
has the responsibility of possible dangerous or threatening AI outputs.22 

The Unified Framework of Five Principles for AI in Society has been crucial 
for the ethical and legal debate in Europe [44] and for further studies all over the

20 Dependent from the quality of data, from their robustness, is the whole infrastructure of AI 
systems, including the potential biased outputs [94]. 
21 Artificial intelligence can lead to the progressive diffusion of real threats for historically 
disadvantaged groups and reinforce existing power hierarchies spreading economic inequality [60]. 
22 “The addition of the principle of ‘explicability,’ incorporating both the epistemological sense 
of ‘intelligibility’ (as an answer to the question ‘how does it work?’) and in the ethical sense of 
‘accountability’ (as an answer to the question ‘who is responsible for the way it works?’), is the 
crucial missing piece of the AI ethics jigsaw. It complements the other four principles: for AI to be 
beneficent and non-maleficent, we must be able to understand the good or harm it is actually doing 
to society, and in which ways; for AI to promote and not constrain human autonomy, our ‘decision 
about who should decide’ must be informed by knowledge of how AI would act instead of us; 
and for AI to be just, we must know whom to hold accountable in the event of a serious, negative 
outcome, which would require in turn adequate understanding of why this outcome arose”[43]. 
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world.23 So, it is a fundamental tool for whoever wants to understand the ethical 
consequences of developing AI tools, but, as said before, we must consider also the 
wider challenge—to look for critical instruments to take care of the human stay, and 
not just to respect rigid protocols and laws24 —ethical thinking involves.25 

10.2.4 Education, Climate Change, Work 

In this section, as already suggested before, the attempt will be directed to give the 
reader the chance to face the major issues ethical research on AI has faced in specific 
fields, trying to describe a first practical idea of how AI is redefining the way things 
get done. A process that produces at the same time the concerns and challenges 
contemporary societies must deal with. 

The three fields that will receive a deeper analysis are education, climate change, 
and work. They have been chosen because they are considered by international 
organizations, such as the United Nations and the European Union, crucial and 
game-changing elements for an equal and sustainable development of worldwide 
societies [7, 25, 47, 72, 85]. 

Moreover, they are also specific fields that can help the reader understand clearly 
how AI controversies emerge: 

1. Artificial intelligence makes education more targeted and personalized, helping 
students learn, but at the same time it can be a potential threat for their privacy 
[10, 11]. 

2. AI model use has a negative impact on the environment, but the data analysis and 
the outputs obtained through these models can help in the fight against climate 
change [40, 42]. 

3. These new technologies promise to boost economy and enhance the quality of 
life, but nowadays workers are still concerned for the possibility of losing their 
jobs [20]. 

These are just few examples that will be then understood more deeply and 
analyzed in their wide complexity. 

As just suggested, artificial intelligence, especially generative AI, has profoundly 
contributed to give a great boost to transform the field of education [19]. This 
process of redefinition is already in progress all over the world and will define 
a great change in the way people study and learn. AI is contributing to several 
strategic roles of contemporary education: instructional and teaching assistants,

23 For example, the interesting attempts to evaluate governmental regulation of AI starting from 
the principles extrapolated by Floridi and Cowls [89]. 
24 We talked about this before when introducing the two different meaning of ἦθος. 
25 The Framework can of course help us during the phases of development and deployment, but 
important concerns are still present when we talk about the whole life cycle of these AI tools [99]. 
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helping with bureaucratic duties and the production of materials for lessons and 
evaluation, parent assistants, and administrator assistants [11]. Artificial intelligence 
can combine data and sophisticated statistical tools to monitor school climate and 
act when necessary to improve the well-being of students [11] or to give teachers 
the chance to understand better the different levels of their classrooms and create a 
more personalized educational path for each student [10]. 

However, along with these stunning new possibilities, artificial intelligence arises 
also numerous issues regarding the ethical consequences its use determines. Firstly, 
AI can contribute to spread cheating habits (e.g., doing homework for students). 
This could lead to a diminished interest for a real learning of what they are studying 
and to a lack of skills when they will end their path in schools and universities [11]. 
Another important issue regards the potential bias present in datasets AI systems 
are trained by. Students could be exposed to potentially racist or discriminatory 
ideas, which could be a real obstacle for the development of ethical and social 
abilities fundamental for civil coexistence in our modern societies. At the same 
time, these AI biases can lead the machine to favor students belonging to a certain 
socioeconomic class or with some specific characteristics [11]. 

Other problems are linked to potential diffusion of private data. Students can 
expose themselves chatting with AI bots, letting their privacy become the source for 
further analysis and extraction of value. At the same time, teachers should be careful 
when they input into AI systems potential personal data and information regarding 
the school environment, including colleagues and students [1, 10, 11]. 

Finally, some challenges can be directly related to the area of social connections 
and equity issues. Relevant in education is, of course, the chance to meet the other 
and establish a profound connection that can lead to the activation of cognitive and 
learning skills. This happens when an educator meets her or his students, but rarely 
when a young pupil alone chats with conversational bots. Social connections are 
central in the discourse of education, and we must answer to the possible lack of this 
link not only between the student and teacher but also of course between students 
[11, 49]. Meanwhile, inequality in access to AI systems and models represents a 
potential threat to the development of the necessary skills to face the hard challenges 
of life. This imbalanced access is primarily influenced by economic and social gaps 
between students and can contribute to widen these socioeconomic lags.26 

The second field that we will now be giving deeper attention to is climate change. 
According to Floridi [42], in relation to climate change, artificial intelligence has 
a sort of double face. On one hand, these models are giving a fundamental help in 
contrasting the sudden environmental changes occurring all around the world. AI, in 
fact, is directly contributing to the design of the fundamental tools employed in the 
attempt to answer to these new challenges—from neural networks able to forecast 
climatic trends [56] or the water demand under climate change [92] to systems that 
provide more sustainable solutions in the optimization of energy [33].

26 We must consider that AI systems, if ethically directed and able to consider different intersec-
tions, can instead be a resource to fight inequality and delete privileges [61]. 
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On the other hand, artificial intelligence models, in terms of emissions, impact 
directly on climate change when they are developed, during training, and when they 
are implemented by final users.27 There is no doubt that one important concern 
is computing power. Deep Learning, a high-energy-requiring type of machine 
learning, needs a lot of computing power to accomplish its tasks, and of course, 
this has a relevant impact also on the emissions of these models [42]. To estimate 
the ecological footprint of AI, we must consider different elements: the hardware 
used, how long a session of training lasts, the number of neural networks trained, 
when during the day the model is trained, how much memory it uses, and the kind 
of resources the electric network providing energy employs28 [54]. 

These models are trained by researchers that often do not give sufficient 
information on the training conditions of their models and on the attempts done 
before they obtain publishable results. A lot of computing power is exploited 
to reach just a small progress in models’ accuracy, forgetting to invest part of 
the research in enhancing energy efficiency. This approach creates a huge entry 
barrier for developing countries that do not have enough resources to start the AI 
development process [42]. 

The debate about the impact of AI on climate change is still open and complex;29 

it would deserve a deeper analysis, including not just an ethical approach but also a 
political and social one. However, Floridi’s thirteen recommendations for an ethical 
approach to AI and climate change issues can be a useful starting point. They can be 
useful for a practical approach to AI research and governance; at the same time, they 
can lead to the development of a first critical approach to the relationship between 
AI and climate change challenges.30 

27 As https://openai.com/index/ai-and-compute/, Amodei and Fernandez, 2018 report, the required 
energy to train models has been increasing constantly and in an incredibly rapid way since 2012. 
28 To train the GPT-3 model, it has been estimated that every single training session would have to 
produce 223.920 kg of CO2 .. An average car in the USA emits every year almost 4600 kg of CO2 . 
[42]. 
29 An important discussion deals also with the idea of human hyperagency and the boost AI could 
give to the dangerous development of Anthropocene [22]. 
30 (1) “Incentivise a world-leading initiative (Observatory) to document evidence of AI being used 
to combat climate change around the world [ . . ..]; (2) develop standards of quality, accuracy, 
privacy, relevance and interoperability for data to be included in the forthcoming Common 
European Green Deal data space; identify aspects of climate action for which more data would be 
most benefcial; and explore, in consultation with domain experts and civil society organisations, 
how this data could be pooled in a common global climate data space; (3) incentivise collaborations 
between data providers and technical experts in the private sector with domain experts from civil 
society, in the form of ‘challenges’ [ . . ..]; (4) incentivise the development of sustainable, scalable 
responses to climate change that incorporate AI technology [ . . ..]; (5) develop mechanisms for 
ethical auditing of AI systems [..]; (6) develop greener, smarter and cheaper data infrastructure 
(e.g., European research data centres) for researchers and universities across the EU; (7) assess 
AI and its underlying infrastructure (e.g., data centres) when formulating energy management and 
carbon mitigation strategies [ . . ..]; (8) develop carbon assessment and disclosure standards for AI to 
help the field align on metrics, increase research transparency, and communicate carbon footprints 
effectively via methods such as adding carbon labels to AI-based technologies and models listed
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The third and last area of interest for our introductory dissertation on ethical 
approaches to AI is work. Our personal and social identity, our self-esteem, and 
the way we approach the social world is often influenced by our job31 [42]. 
Artificial intelligence has yet to begin and will be a game-changer in the field of 
work, restructuring the way most of our jobs are done32 but also undermining the 
necessity of many job skills [20]. It has been calculated that 40% of the workforce 
worldwide faces significant changes due to the rise of AI, and it’s interesting to 
see how advanced economies are more exposed to this process (60%) because its 
workforce is prevalently composed by professionals whose tasks are increasingly 
being influenced or reshaped by AI’s growing capabilities [20]. So, more educated 
workers seem to be more exposed, and often they are women. This adds another 
critical point: AI-led job transformation will bring a prevalent exposure of women, 
potentially widening the already-existing gender gap. At the same time, highly 
educated workers have clearly shown to be able to adapt to these changes and 
shift to jobs with high AI complementarity [20]. Nonetheless, there are still some 
critical points we must observe carefully; among them, of course, is the risk of 
labor displacement, with a consequent reduction33 of labor income for workers. 

in online libraries, journals, and leaderboards; (9) incentivise diverse research agendas by funding 
and rewarding projects that diverge from the current trend of compute-intensive AI research to 
explore energy-efficient AI; (10) incentivise energy-efficient and green research by making EU 
funding conditional on applicants measuring and reporting their estimated energy consumption and 
GHG emissions. [ . . ..]; (11) develop conference and journal checklists that include the disclosure 
of, inter alia, energy consumption, computational complexity, and experiments (e.g., number of 
training runs, and models produced) to align the field on common metrics [ . . ..]; (12) assess the 
carbon footprint of AI models that appear on popular libraries and platforms, such as PyTorch, 
TensorFlow and Hugging Face, to inform users about their environmental costs; (13) incentivise 
the development of efficiency metrics for AI research and development (including model training) 
by promoting efficiency improvements and objectives in journals, conferences and challenges” 
[32].
31 Often work is also linked to a condition of alienation and loss of identity and well-being. This 
Marxist point of view [68] has been a theoretical base for the critical contemporary philosophic 
approach to work. Franco Berardi, in 1970, published in Italy his famous work Contro il lavoro, 
which, using Marxist theoretical tools, opens a wider reflection on the roles of machines not 
seen anymore as producers of value but as simple mediators of the worker “lavoro vivo” (human 
work), the only kind of work that gives real value to the final product. Berardi says that capitalists 
will always need workers and “lavoro vivo” to create this value: according to Berardi, to destroy 
capitalism, it should be necessary to leave production only to machines [14], a point of view that 
leads to some critical points but able at the same time to start a new philosophic discourse in the 
era of AI and spread automation. 
32 As said before, we must remember that AI is, at its core, leading a reality re-ontologization 
process, and work is not less affected by these technological transforming pressure. The ontology 
of actions, their essence, would be moving with the input of AI toward a smart condition. Actions 
are somehow becoming smart actions. So, according to this vision, artificial intelligence would not 
be a new kind of intelligence but a new kind of action, a smart action [42]. 
33 However, according to Cazzaniga [20], this reduction could be offset by gains in productivity. 
This position is not always shared by other researchers who instead criticize it and denounce a 
polarization that “widen income and wealth disparities” [37]. 
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Then, another problem is represented by the emergence of strong differences linked 
to the way advanced economies can deal with the AI transformation of work and 
how instead the so-called low-income countries do not seem to be enough prepared 
to face this new challenge. The situation described here, of course, can bring as 
consequence the growth of the gaps between the former economies and the latter 
ones, leading to a condition of diffused inequality [20]. 

Policymakers have to answer to this AI-led transformation of work that will 
disrupt the actual scenario and potentially create social unrest. The political action 
must consider to lead an equitable and ethical integration of AI, granting the 
adequate training of the next generation and a general reskilling of workers already 
part of the existing economies and threatened by AI disruption. As seen before, AI 
can contribute to spreading inequalities on the worldwide scenario, widening gaps 
and lags between countries. An answer is absolutely required and must consider the 
adoption of policies of international cooperation [20]. 

One practical solution is represented by universal basic income (UBI). It is 
considered a radical idea, but its popularity and experimental use are progressively 
spreading all around the world [42]. UBI is really considered a good option 
from different thinkers—Martin Luther King and Milton Freedman among them— 
and this popularity exists because universal basic income has a wide range of 
interpretation. Liberals look at UBI as a possible additional income related to a still 
existing wage, so alone it would not be enough to grant someone a comfortable life. 
Another version of UBI is related to the removal of the domain of unconditionality 
in welfare services, such as education, health, and housing. So, it would be possible 
to receive UBI but no more free welfare. This is considered a right-wing vision of 
UBI. The third version of universal basic income, the left-wing one, proposes to part 
away livelihood from work: everyone would receive an income adequate for a basic 
but comfortable life, and then he or she would be free to decide if and how he or she 
wants to contribute to society.34 This last type of UBI results in the most radical but 
at the same time the one that can produce the most creative and interesting political 
and ethical alternatives [48]. 

This introduction to AI ethics tried to give a general overview on what an ethical 
approach could be and which are some of the major implications that have to be 
considered when we design this kind of technological tools. 

It is now time to delve deeper into the legislative initiatives in the field of artificial 
intelligence undertaken by China, Russia, the European Union, and the USA.

34 This would be effective “economic freedom” [48], and AI general transformations of work and 
society could lead to this new economic scenario. In this regard, as https://www.forbes.com/sites/ 
bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/, Marr, 2024 shows, the 
debate is still open. 
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Key Points of Ethics for Artificial Intelligence 

• Ethics and Ontology: Ethics in AI is deeply connected to ontological 
considerations. 

• We consider two meanings of the word ἦθος (ēthos ):

– Habit: Ethics as shaped by repeated actions and societal norms (Aristo-
tle) 

– Dwelling: Ethics as the way humans inhabit and create a relationship of 
care with their world (Heraclitus, Heidegger) 

• Aristotle’s perspective: 

– Virtue ethics: Ethical behavior is cultivated by “habits.” The laws of the 
city-state promote habitual good actions leading citizens to a virtuous 
state. 

– The πόλις (polis) and laws shape the virtues of the c itizens.

• Heraclitus-Heideggerian perspective: 

– Ethics as continuous care for the human stay in everyday life 
– ἦθος ἀvθρώπ ῳ  δαίμωv (ēthos anthrōpō daimōn) →. Ethics as a critical 

individual awareness of the profound relationship of care humans 
should create with the place and social environment they live in 

• AI and ethics, aware of the important role laws have, must go however 
beyond regulation: 

– Ethical AI must understand the governmental actions but requires more 
than just laws and constraints: it is necessary to have a critical approach 
that allows to comprehend the essential necessities of a re-ontologized 
reality. 

• Unified Framework of Five Principles for AI (Floridi, Cowls): 

– Beneficence, Non-maleficence, Autonomy, Justice (inherited by AI 
ethics from bioethical reflection) 

– Added principle for AI ethics: Explicability—transparency and 
accountability in AI decision-making 

• Practical Applications: AI ethics in key domains. 

– Education: AI’s role in learning environments 

·. AI assists in teaching, administration, and monitoring student well-
being. 

·. AI can promote personalized learning but also facilitate cheating. 
·. Risk of bias in training data can affect students unfairly. 

(continued)
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·. Privacy concerns: AI may collect and exploit student data. 
·. AI impacts social interaction, potentially reducing meaningful 

student-teacher engagement. 
·. Digital divide: Unequal access to AI tools may widen educational 

disparities. 

– Climate change: AI for sustainability and environmental concerns. 

·. AI helps predict climate patterns and optimize energy use. 
·. AI development and implementation have high energy costs and 

emissions. 
·. Computing power demands can create barriers for low-income coun-

tries and threaten their efforts to deal with climate change issues. 
·. An important guideline: Floridi’s 13 recommendations for ethical AI 

in climate policy. 

– Work: automation, labor ethics, and the transformation of employ-
ment. 

·. AI transforms job roles and redefines economic structures. 
·. Risk of job displacement, especially in advanced economies. 
·. AI-led job transformation disproportionately affects women. 
·. Income disparities may widen due to unequal adaptation to AI. 
·. Need for policies and awareness to ensure fair AI integration in the 

workforce. 
·. Universal Basic Income (UBI): A potential solution with various 

ideological perspectives. 

– Ethical AI requires a critical approach to the law-shaped Aristotelian 
ethical approach that contemplates an Heraclitus-Heideggerian view 
able to involve a deep comprehension of the effects actions of AI 
developers and users have on reality: 

·. Developing an ethical approach that accompanies law-driven and 
human-centered actions 

·. Recognizing AI’s role in the re-ontologization of reality 

10.3 Rules 

10.3.1 Introduction 

In this third section, the analysis will focus on the introduction of the main 
approaches four important political powers have developed worldwide to deal with
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the major concerns deriving from AI. Their approaches, as the research will try to 
explain, are strictly related to their economical and political strategies for AI. 

The analysis that is going to be introduced to the reader must consider as a 
fundamental premise what has been shown in the previous observations related 
to ethics and its meanings. This political approach has a crucial role in the way 
societies tried to govern AI transformations, but it is not sufficient, and a specific 
critical self-awareness that pones real care in everyday actions developers decide 
to pursue must be always considered, regardless of the political direction laws will 
suggest. 

Governmental interest for digital technologies, use of data, and AI model 
development has tried to move toward an ethical and human-oriented path and 
has been, especially in the European Union [82, 85], a precious shield against 
the forms of surveillance capitalistic structure assumed to turn personal collected 
data into profits [103]. Data were and are still used not just to monitor individual 
behaviors in order to predict choices but also to persuade, manipulate, and finally 
generate behaviors. This new extractive paradigm simply turns humans into means 
of production to obtain raw materials (data) that through algorithmic processes are 
then turned into profits [103]. This structure produces an enveloped environment 
where humans can rapidly shift from the condition of aims in the perimeter of a 
human-oriented world into means to exploit in order to generate profits. This can 
be considered another form of the digital re-ontologization process that has been 
underlined by Floridi [42]. A transformation that, of course, alarmed European 
institutions that already in 2016 intervened to protect its citizens data with the 
release of the GDPR (General Data Protection Regulation) [82]. 

However, governments had also an important role in the spread of potential 
threats coming from AI and digital technologies in general. The use of these tools 
for social control in China and Russia will be one of the main topics of the following 
pages [91, 98], but also what happened in the USA and EU must be observed with 
concerned attention. 

In this section, the main elements determining the nature of EU and US approach 
to AI will be analyzed, and in the conclusive part of the research, there will 
be an introductory attempt to comprehend how emergency became a political 
and ideological instrument to impose aggressive private data extraction and to 
develop related algorithmic infrastructures able to produce surveillance methods 
that undermine human freedom and rights [103]. 

Again, a critical ethical approach that respects but knows to look beyond the 
simple perimeter suggested by governmental directions must be considered a good 
proposal to develop further human-oriented AI solutions. 

The following sections will analyze governmental approaches to AI and data 
regulation, focusing on the ethical challenges posed by digital technologies in the 
EU, the USA, China, and Russia. Special attention will be given to surveillance, 
social control, legislative frameworks like the GDPR and AIA, and the geopolitical 
competition in AI development.
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10.3.2 Chinese Approach to AI Development and Regulation: 
AIDP and the Mission of Reaching AI Global 
Leadership 

China is today a world leader in AI technologies development and has set a specific 
goal to achieve a complete supremacy in this field around the year 2030 [87]. The 
main political and institutional tool organized by China’s Communist Party leaders 
to accomplish this aim is the so-called AIDP or NGAIDP, the New Generation 
Artificial Intelligence Development Plan. It is a complex document directed to the 
definition of an articulated strategy exploring different layers of economics and 
society: from Chinese possibilities in the development of national AI technologies 
able to compete in the international scenario with other powers’ AI resources to the 
chance to make China an important hub that will attract researchers35 from all over 
the world [87]. 

The AIDP was the result of a long debate, and attention inside Chinese 
governmental institutions started already at the beginning of the last decade [87] 
and is now living a period where the focus is moving to a possible more ethical use 
of these technologies [91]. The AIDP is led by the AI Strategy Advisory Committee 
and the Ministry of Science and technology, both institutions related to the central 
government, but the implementation of the numerous initiatives promoted by the 
AIDP is a task left to local administrations and the private sector. In the 3-year plan 
linked to the development plan here discussed, this sort of dialogue between micro-
and macro-governing scale is openly declared.36 However, the central government 
chose AI national champions—among them Baidu and Alibaba—giving these 
companies specific tasks in the wide field of AI development, trying simultaneously 
to promote the birth and growth of new Chinese AI start-up companies, whose 
success37 is not less relevant for the realization of the plan [87]. 

China puts AI technologies at the center of its political, military, and economic 
policies, considering these new tools as fundamental to obtain results in interna-
tional competition, economic development, and social governance. AI is looked 
at as perfectly coherent to the Chinese attempt to construe a national apparatus 
defined by parallel skills in the international competition with the USA. According 
to China’s government, it is not possible, nor convenient, to engage a direct race 
against the USA in fields where the latter has a clearly superior power; so, the aim 
is to start to overperform in other areas of development, and the new AI tools and

35 In 2023, China was “the largest producer of AI research in the world” [91]. 
36 To focus on this specific point, important indications are given by Khanal [59]. 
37 “Technology start-ups within China often receive government support and subsidies for 
developing AI technologies. As an example, Zhongguancun Innovation Town is a purpose-built, 
government subsidised, incubator workspace that provides a suite of services to help Chinese 
technology start-ups succeed, often in the sectors where national champions have been selected” 
[87]. 
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infrastructure are an unexplored path that could represent a good opportunity38 for 
China to compete [87]. 

China has set also important goals for its economy, targeting AI as an important 
instrument to continue boosting its growth with innovation after previous decades of 
incredible economic development. On one hand, AI promises to create an incredible 
expected growth in the country by 2030,39 resulting in an economic development of 
the 26% [81]), and the investments in this field has already had a rush in 2018, with 
a stunning growth rate of 48% [64]. On the other hand, although Chinese industry 
reached an incredible rate of automation in factories and services, the managing of 
the progressive dismantling of workers opportunities and the spreading of wealth 
inequalities could be important menaces to the stability of Chinese political and 
social apparatus [87]. 

CCP sees in AI also a great potentiality to obtain a more effective social 
control over the population in the country. Main issues from this point of view 
are the possible use in social scoring and uncontrolled collection of personal data. 
Social governance, for example, is implemented by a social credit system based 
on algorithms and whose complete acceptance by the Chinese people is debated.40 

These mathematical structures that are at the base of every digital software have also 
been under continuous attention by the Chinese government that looks at them as 
potential threats for the absolute control of information that CCP wants to detain.41 

This is a real concern widespread among the leaders of the party, who decided to 
answer with a regulation that points at algorithms as the main digital element toward 
which one important attention must be led to obtain a real control of digital tools. 
Algorithms in China are part of an AI supply chain that was elected as the point of 
entry for regulation, with a registry. In this registry are included also the training

38 For example, a “leapfrog” in military development: something that can make China a leader of 
international competition for the arrangement of new digital-equipped armies, especially in cyber 
warfare [87]. 
39 The deadline set in the AIDP to reach AI supremacy according to the Chinese government [87]. 
40 “The disruption of the Maoist period followed by an ‘opening up’ has created a moral vacuum 
within China. These concerns are echoed by the Chinese public, with Ipsos Mori finding that 
concerns over ‘moral decline’ in China were twice as high as the global. This is something that 
has been recognised by the Chinese government, with high-level officials, including President 
Xi, forwarding the idea of a ‘minimum moral standard’ within society [ . . ..] In view of the  
government, AI can be used to this end [ . . ..] Articles in the Western media often emphasise 
the problematic nature of ‘the’ Social Credit System, due to the authoritarian undertones of this 
pervasive control. Examples of public dissatisfaction with specific features of locally run social 
credit systems appear to support this viewpoint [102]. In some cases, there have even been cases of 
public backlash leading to revisions in the rating criteria for local social credit systems. In contrast, 
some commentators have emphasized that, domestically, a national social credit system may be 
positively received as a response to the perception of moral decline in China” [87]. 
41 “Tracing the origin of the term ‘algorithmic recommendation’ backward in Chinese state media 
shows that it first emerged during a 2017 CCP backlash against ByteDance’s news and media apps, 
in which user feeds were dictated by algorithms. The party viewed this as threatening its ability 
to set the agenda of public discourse and began looking for ways to rein in algorithms used for 
information dissemination” [91]. 



254 G. R. Presta and A. Paolella

data used for the development of the model: they must be diverse and objective 
[91]. Algorithms and data are also subjected—specially deep synthesis outputs—to 
a vague form of censorship that includes the necessity to adhere to specific social 
and moral values, to avoid misleading for the public, and to disturb the economic 
and social sphere [91]. The creation of this first tool gave bureaucrats the chance 
to get in touch with this new technology, building a first know-how that has been 
useful in the advancement of further legislative documents. Then, China’s approach 
became vertical—dealing with a single manifestation of a technology—and iterative 
so when a regulation gets obsolete, it is just updated with a new release that solves 
the problems and obsolescence of the previous one [91]. 

10.3.3 Russian Approach to AI Development and Regulation: 
Strategies to Fill Lags, Face Ethical Issues, and 
Compete in the International Scenario 

In Russia, current AI strategies and opportunities are affected by the recent events 
following the invasion of Ukraine, with a progressive mutation of Russian economy, 
policies, and academic research in this technological field [13]. However, to 
understand better the actual situation in the country, as already done before for 
China, we make a little step back to the last decade. 

Russia has tried to set a specific strategy to compete in the worldwide scenario 
since 2018,42 when the government of the Federation released the first of four main 
policies and programs [93], the Digital Economy National Program. It was arranged 
to pursue three main objectives: 

1. To expand domestic investments and development on digital economy 
2. To create a stable and secure information and telecommunications infrastructure 

for high-speed transmission, processing, and storage of large amounts of data 
3. To use Russian software in local and national government bodies and organiza-

tion43 

This first program was then followed by the AI Roadmap, promoted by the  
government and led by the private Russian company Sber, which had the duty to 
detail different AI subtechnologies—from natural language processing to neural 
interfaces, neurostimulation, and neurosensing—to fund and develop [93].

42 We must consider that Russia has what we can call an ethics-based approach to the regulation 
of AI. Governmental directions on this topic have been tailored by private companies to build an 
environment where real legal restrictions are more or less absent. So, ethical concerns are often 
just an excuse for ethics washing and not effective laws to look at when developing new products 
[75]. 
43 https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-
policyInitiatives-24621, OECD 2023. 
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Russia then established the National Strategy on AI Development, appointing in 
2019 a specific commission with the aim to supervise and update the strategy itself. 
Russia wanted and wants to use this tool to fill the gap with other more advanced 
nations, setting 2030 as the deadline to obtain positive responses for its efforts. 
The strategy looks at the quality of the data employed in the development of new 
national AI technologies, but at the same time great relevance is given also to the 
nurture of new talents in the AI research field and to the attempt of creating the best 
environment for the progressive spreading of AI culture and education in Russian 
society. The National Strategy on AI Development was then emended in February 
2024, and great importance was given again to research and development, with 
the precise strategic will of reducing Russian dependence from other international 
competitors in AI software and hardware creation [93]. 

Also relevant is one of the four main Russian policies on AI, the 2020 AI 
Federal Project, whose attempt is to underline how the AI initiatives will be funded, 
which are the metrics and the schedule for development projects. The project also 
shows the main areas of interest, including agriculture, healthcare, energy, and 
transportation [35, 79]. 

Just with this first look at Russian legislation on AI, we have seen how it has 
evolved and which are the main points it is composed of. We also got in touch 
with the recombination and rethinking of necessities linked to the transformation of 
Russian legislative approach to AI after the beginning of the war in Ukraine. 

It is essential to take a deeper look into the composition of Russian National 
Strategy on AI development, where we can recognize six blocks related to specific 
fields of interest for the use of artificial intelligence.44 So, the six blocks are (1) legal 
and ethical framework; (2) scientific and academic community; (3) data regulation; 
(4) hardware and software development; (5) education; and (6) healthcare. 

For the current analysis, a better understanding of the first part of the block, the 
one regarding ethics, is necessary. We can underline how the document shows a 
focus and concern on the creation of the legal and ethical base for the development 
of research center, linked with industries, clarifying responsibilities on circulation 
and results of AI data and elaborating national standards for certifying, testing, 
and confirming compliance of AI items and technologies [89]. This dimension 
is profoundly interlinked with the third point, the one regarding data regulation: 
in fact, the Russian government has tried, deploying this strategy, building a 
huge database to collect information, the fundamental resource to train artificial 
intelligence systems, but at the same time, the government has tried to provide

44 These different areas composing Russian AI strategy are considered essential by governmental 
organizations to reach a good degree of competitive skills and take part to the international AI 
scenario, turning Russia into a world leader in the development of AI technologies: “The strategy 
stresses the strategic importance of AI as a prerequisite for Russia’s entry into the group of 
economic world leaders as well as the country’s technological independence and competitiveness. 
Even though Russia is not currently considered a leader in the realm of AI, the document states 
that Russia has the potential to ‘[become] an international leader in the development and use of 
artificial intelligence technologies” [89]. 



256 G. R. Presta and A. Paolella

Russian citizens with specific tools to take care of and anonymize their personal data 
published online [89]. About data collection, it’s interesting to look at the Russian 
Law No.123-FZ and Russian Law No. 258-FZ approved, respectively, in 2020 and 
in 2021. These two laws represent an attempt to create a sort of data extraction 
center in the heart of everyday life: the first one works just for a specific area in 
Moscow and allows the possibility of using anonymized personal health data to 
contribute to the development of AI technologies for this research field; the second 
extends the creation of this kind of special data extraction area to the rest of the 
country—but with a previous deal between industries and the Ministry of Economic 
Development.45 

These are the so-called ELRs,46 Experimental Legal Regimes, whose creation 
can be seen also as a good strategic solution to enhance a qualitative development 
of artificial intelligence systems.47 However, if we try to conduct a deeper analysis, 
using as guide and filter the Unified Framework developed by Floridi,48 we’ll find 
out that Russian National Strategy on AI development has numerous and diverse 
problems, lacking of a real ethical accuracy. In principles such as beneficence 
or non-maleficence, Russia seems to enter a virtuous path and establish a good 
approach, but the lack of explicability of the main legal or ethical tools to use 
in order to face the moral and juridical issues emerging from AI development 
represents a real obstacle to enhance the credibility of the strategy and to obtain 
the optimistic objectives—competitiveness and leadership of Russia in the global 
AI race—the government is looking at [89].

45 Russian Law No. 123-FZ established an experimental legal regime (commonly referred to as 
a regulatory sandbox) in Moscow. Coming into effect in July 2020, its aim was to promote 
innovation over the course of five years. Importantly, the law contains an amendment to the 
law “On Personal Data,” passed in 2006, that allows for the processing of anonymized personal 
health data of Russian citizens. The authors of the bill claim that the amendment is needed 
to gather the large amounts of information needed for the development and testing of AI 
technologies. In July 2021, Russian Law No. 258-FZ established a similar regulatory sandbox 
for all of Russia. It aimed to promote development in AI, quantum technology, big data, and 
robotics. To participate, entrepreneurs and organizations submit an application to the Ministry 
of Economic Development for approval https://geohistory.today/artificial-intelligence-in-russia/# 
National_AI_Initiatives_in_Russia, (Sullivan 2022). 
46 ELRs proposal initiatives are currently 180 and focused on different activities, from healthcare 
to unmanned transportation and access for AI developers to governmental datasets. The most 
important Russian tech and financial industries, including Sber, Yandex, and Kamaz, are involved 
in the use of these legal regimes and are the main partners of the government for this project. More 
data and insights can be found in https://ai.gov.ru/en/ai/regulatory/, Artificial Intelligence of the 
Russian Federation Web site. 
47 Floridi suggests the European Union should give a chance to this model of development: 
“Incentivare finanziariamente lo sviluppo e l’uso di zone speciali legalmente deregolamentate 
all’interno della UE per la verifica empirica e lo sviluppo dei sistemi di IA. Queste zone possono 
assumere la forma di un “laboratorio vivente” eng. “To financially incentivize the development and 
use of specially designated, legally deregulated zones within the EU for the empirical verification 
and development of AI systems. These zones could take the form of a ‘living laboratory” [42]. 
48 We spoke about the Framework before in this chapter. 
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As underlined before, there is an important connection between Russian AI 
development and the events related to the war in Ukraine. One of the first things 
that became suddenly evident at the beginning of the war was the delay of Russian 
AI technologies infrastructure and how the sanctions imposed by Western countries 
obliged tech industries in Russia to depend more and more on state fundings [13]. 
This, of course, contributed to a general centralization of AI development in the 
country,49 and with the war being a priority for Russia, also research on artificial 
intelligence was used to extract major data from the battlefield and, as MOD 
[Ministry of Defense] AI department leader Vasily Yelistratov announced, to develop 
tools able to guarantee supremacy at war [13]. 

It is important to enlighten the ethical concern raised by the use of AI in the field 
of warfare and how the present international scenario of tension—the war in Ukraine 
is deeply interlinked with artificial intelligence use in Russia, but it’s just an example 
in this period of political and economic concerns50 —is not helping in creating the 
best environment for a good and qualitative research of ethical AI. We cannot trust 
in a future machine-led warfare, where human directions and implications will 
be deleted; instead, the psychological dilemma caused by the use of this kind of 
technology on the battlefield is even more evident, a use that is inevitably related to 
the osmotic relationship human beings develop with the tools they use [58]. 

For Russia, the situation becomes every day more complex because of the 
deteriorating political environment of the country, with a spread repression against 
a however still-existing opposition to the government [45], a hostile political atmo-
sphere that, previously with the post-Soviet crisis and then with the recent sanctions 
adopted by Western countries against the Federation, led to a loss of talented 
researchers, evident also in the tech and AI field [13]. A lot of Russians, employed as 
tech developers or entrepreneurs in artificial intelligence industry, decided to leave 
the country51 and search for other occupations abroad. Meanwhile, Russia has been

49 “With the launch of sanctions against Russia in March 2022, Russian society looked to the 
state for long-term solutions and paths forward for the domestic high-tech ecosystem, and for 
funding and technology development in general. In practice, this meant adopting many centralized 
development pathways with the government at the epicenter of all relevant activity. While the 
Russian state was already the major entity in national AI and high-tech development prior to the 
Ukraine invasion, the government, and the MOD [Ministry of Defense], in particular, moved to 
create centralized structures for AI research, development, and use to streamline approaches, avoid 
duplication of efforts, and have better control over multiple efforts across the country” [13]. 
50 The widespread tensions are expressed also with the economic threat of tariffs for other 
countries’ imported goods—as shown by https://www.reuters.com/world/us/trump-promises-
25-tariff-products-mexico-canada-2024-11-25/, Pitas, 2024—and by the continuous political 
crisis overthrowing Europe (https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-
german-governments-terrible-moment-eu/, Crisp, 2024) and important democracies in Asia 
(https://www.bbc.com/news/articles/c0kvjx474g1o, Walker, Lee, 2024). 
51 “Many talented high-tech workers and entrepreneurs in the broader information and communi-
cation technologies (ICT) ecosystem that includes AI emigrated abroad at the start of Moscow’s 
invasion of Ukraine. At least 70,000 and up to 100,000 tech professionals have left the country— 
bound for Europe, the United States, the Middle East, and several former Soviet republics. While 
some continued to work for Russian high-tech companies, many were employed by international
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isolated from the international innovation ecosystem—e.g., Russian developers 
had various issues using GitHub—and Russian technological development depends 
always more on cooperation with its partners, especially China [13]. 

10.3.4 EU Approach to AI Development and Regulation: The 
Anthropocentric Way to AI

The European Union legislation started to regulate digital environments and online 
identities and actions to preserve from potential dangers the lives of European 
citizens—the famous Regulation (EU) 2016/679, also known as GDPR, is a good 
example of this attempt[82]52 —but also to boost the European economy through the 
maximization of the opportunities digital instruments can provide to the economic 
growth of the continent. That’s why in 2015, during Juncker mandate, as president of 
the European Commission, the Digital Single Market strategy has been established, 
reaching in 2016 and 2017 important goals regarding data protection and cross-
border portability.53 

It was in 2016 when, as said before, the Regulation (EU) 2016/679, the GDPR 
(General Data Protection Regulation) was released. The EU, with this legislative 
act, succeeded in governing potential breaches in privacy and possible European 
citizens and industries data leaks [82]. 

The GDPR act recognized the importance reached by data in economic and 
technological developments, considering parallel risks this new condition could 
create for private citizens. At the same time, one of the declared goals the European 
Commission looked at was the definition of common laws that could help regulate 

companies, while others chose to seek entirely new ICT employment. Many remain abroad, instead 
others have returned due to difficulties settling in new countries. This emigration will remain a 
long-term issue for the Russian high-tech industry in general” [13].
52 This regulative attempt led also to the creation of a strict approach against any possible abuse of 
data. Italian governmental data-protection authority, Garante per la Privacy, for example, has been 
the first to stop two online-accessible LLMs, OpenAI (in 2023) and DeepSeek (2025) services, after 
some issues emerged exactly in the management of users’ data. The decision was not political and 
related to the Italian Garante fast reaction in observing European privacy laws. In fact, according 
to the Garante, OpenAI didn’t accomplish the necessary informative duties that could guarantee 
Italian citizens awareness on the treatment of their data. However, Italy has just been the first and 
fastest European country to act, but also Spanish and French authorities started the procedural 
passages necessary to stop OpenAI in 2023, before OpenAI answered positively to the Italian 
and European requests. In 2025 also, the mobile app of DeepSeek, a new Chinese LLM, has 
been stopped, and data-protection authorities in Italy and Ireland asked the Chinese developer 
to answer to the same doubts on data that emerged before with ChatGPT (https://legrandcontinent. 
eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/, Azzolini, 2023; https://www.bbc.com/news/ 
technology-65139406, Shiona MvCullum, 2023; https://www.theguardian.com/technology/2025/ 
jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use, Booth, Krupa, Giuffrida, 
2025). 
53 https://www.consilium.europa.eu/en/policies/digital-single-market/, European Council, 2020. 
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the circulation and use of data inside the European Union [82]. Restrictions imposed 
by the EU changed profoundly the structures and modalities developers had to 
attain to get an answer for the new challenges the regulation added. Of course, one 
crucial point has been compliance, which then regarded all the progressive updates 
the entire world of digital and informational industries went through—from Web 
navigation to blockchains and Internet of Things (IoT) [36]. 

The European Union started to develop a regulative practice that intended 
preservation online the human rights granted in natural everyday life by the 
fundamental laws of the Union [82]. Meanwhile, digital assets and infrastructure are 
seen as crucial resources for the future of the European Union.54 The economical 
frame of digital technologies, including AI, had and still has strong influence and 
profound consequences on ethical and political decisions, thus drawing particular 
attention from European policymakers. 

This is shown by the intense legislative work that characterized EU law-making 
in the field of digital market. In 2020, the European Union proposed the Digital 
Market Act (DMA), the Digital Service Act (DSA), and the Data Governance Act 
(DGA) [80]. 

The DMA represents an attempt, directed by the Union, to unify the continental 
previous fragmented digital market frame and to establish clear borders for the 
actions of so-called digital market “Gatekeepers” (e.g., Amazon or Google). Such 
borders are linked to specific prohibitions including data combination across 
platforms and self-preferencing [83]. The DSA instead has a specific focus on e-
commerce, with peculiar attention for potential misuse of information by societies. 
An interesting aspect of this law, actually contributing to ethical and political 
debates, deals with digital platforms and the hosting of illegal contents. The Data 
Service Act does not declare the hosting providers (i.e., Meta, X, etc.) responsible 
for such contents but creates a simultaneous expansion of procedural obligations 
to obtain the removal of these illegal materials [97]. Finally, the DGA has the 
purpose of regulating the reuse of publicly shared and private protected data— 
with the latter ones being shielded also by the application of the GDPR, shaping a 
European informational environment where precious datasets are easily accessible. 
This Act tries to reach its aim appointing novel data management intermediaries and 
encouraging the sharing of data for altruistic purposes. Another important boost is 
tried to be gained through the implementation of initiatives to establish a favorable 
cultural atmosphere to entrust data sharing and reuse, in order to provide more data 
for the further development of new technologies [84]. 

Already at the publication of Digital Market Act proposals, not few experts 
underlined different critical points and potential threats for the European digital 
market itself [80]. Important lacks emerged in the specificity and flexibility of the 
act, with real risks for the applicability of the law and for possible future transfor-

54 We have already seen before what this means when we referred to the EU strategy developed 
since 2015. 



260 G. R. Presta and A. Paolella

mations and adjustments related to market development and sectorial necessities55 

[16, 17]. 
These Acts and the GDPR are examples of European awareness about the 

necessity of creating a law-making approach that can regulate, managing data 
circulation and use, the digital life of EU citizens, giving them the opportunity to 
access the necessary legal instruments to protect themselves in the complex structure 
of modern infosphere. 

In order to engage the global political and economic competition for AI 
supremacy, the European Union since 2018—one year after Chinese AIDP— 
understood the importance of establishing a continental strategy to face the new 
challenges emerging from the diffusion and use of artificial intelligence systems 
[24]. The EU started to look at AI as a technological revolution that would have 
completely transformed the entire industrial asset of the continent and the world, 
reconfiguring societies and ways of life.56 Europe was aware that members had to 
coordinate and harmonize their AI policies to reach the desired goal of creating a 
strong and valuable development oriented to establish good and for-all AI. So, the 
European Commission found three strategical points of capitalization: 

1. A world-leading environment of researchers, labs, and start-ups, integrated in 
advanced industries in the fields of healthcare, transports, and manufacture and 
linked to a peculiar strength in robotics 

2. The presence of a common Digital Single Market 
3. A wealth of industrial, research, and public sector data that are the core of AI 

development, raw materials without which these technologies could neither exist 
[24]. 

The European strategy wants to set the EU as one of the international leaders 
in AI technological developments57 but with particular regard to an AI-led digital 
transformation that leaves none behind and is able instead to produce more inclusion 
and to guarantee a sustainable future for the continent. According to the European 
Commission, these goals, to create an AI that benefits people and society as a whole, 
can be reached only by an approach to artificial intelligence based on values [24, 41].

55 The DMA is the European law that is creating different problems for the introduction in the 
continent of new AI foreign products and tools, among them the well-known delay, framed by 
debates and controversies, for the arrival in Europe of Apple Intelligence AI service (https://www. 
theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation, Guardian, 2024). 
56 “Like the steam engine or electricity in the past, AI is transforming our world, our society and our 
industry. Growth in computing power, availability of data and progress in algorithms have turned 
AI into one of the most strategic technologies of the twenty-first century. The stakes could not be 
higher. The way we approach AI will define the world we live in. Amid fierce global competition, 
a solid European framework is needed” [24]. 
57 This aim, to obtain AI leadership in a global competitive scenario, was already set in 2017 
[23], aligning, from a temporal point of view, the starting moment of the race for EU and China. 
However, it must be recognized that Europe started to promote research and development of AI 
technologies since 2004, focusing on the specific sector of robotics [24]. 
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The European strategy considered fundamental also the necessity to develop 
an AI that could represent a real opportunity for everyone. This means that the 
socioeconomic changes led by AI had and still have to be governed through 
specific political actions directed to the enhancement of people’s digital abilities. 
The European AI is accompanied by plans for the reskilling of older citizens— 
still working or not—for the nurturing of young talents, and of diversity and 
interdisciplinarity [24]. Of course, in order to obtain these goals the adoption of the 
new artificial intelligence innovations in Europe needed from the very beginning 
ethical guidelines. This necessity led to the idea of defining a collective work that 
included an open exchange of views with the main AI stakeholders [24]. 

The EU strategy for artificial intelligence, with its human-oriented approach 
based on values, was released in 2018. Following debates and proposals, including 
the ones on ethical frameworks and the principal issues emerging when observing 
AI use in everyday life, resulted in the latest great European regulative initiative: 
the AI Act. The Artificial Intelligence Act (AIA), published on June 13, 2024, has 
a clear ethical nature and aims to establish in the EU a human-centered approach 
that guarantees the development of trustworthy and safe AI models and systems 
[85]. The Act provides also the legislative base to promote and ensure the free 
movement of products and services linked to artificial intelligence, avoiding a 
possible fragmentation of the European AI development and market.58 

The AI act has, of course, practical consequences on the way providers of 
AI services must develop and deploy their products; in fact, under the new law, 
AI systems are classified according to their risks. Unacceptable risks (e.g., social 
scoring systems and manipulative AI) are absolutely forbidden, while high-risk AI 
systems are accepted but strongly regulated. A smaller part of the Act is focused 
instead on limited-risk AI systems (chatbots and deepfakes) that have transparencies 
obligations, while minimal-risk AI systems are unregulated (e.g., AI-enabled video 
games and spam filters), but things are changing with generative AI [85]. Developers 
of AI systems, single individuals or entities that want to enter the European market 
or put into service in Europe high-risk systems,59 have to deal with the majority of 
obligations. Nonetheless, some legal duties fall also on deployers, natural or legal

58 “The purpose of this Regulation is to improve the functioning of the internal market by laying 
down a uniform legal framework in particular for the development, the placing on the market, the 
putting into service and the use of artificial intelligence systems (AI systems) in the Union, in 
accordance with Union values, to promote the uptake of human centric and trustworthy artificial 
intelligence (AI) while ensuring a high level of protection of health, safety, fundamental rights as 
enshrined in the Charter of Fundamental Rights of the European Union (the ‘Charter’), including 
democracy, the rule of law and environmental protection, to protect against the harmful effects of 
AI systems in the Union, and to support innovation. This Regulation ensures the free movement, 
cross-border, of AI-based goods and services, thus preventing Member States from imposing 
restrictions on the development, marketing and use of AI systems, unless explicitly authorised 
by this Regulation” [85]. 
59 The law applies with no differences also if they are not based inside European borders or if these 
entities are third-country providers [85]. 
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persons that deploy an AI system—whose output will be experienced in the EU—in 
a professional capacity [85]. 

Another important passage of the AIA regards General Purpose Artificial 
Intelligence (GPAI). The locution “GPAI” was already defined during the legislative 
debates that occurred in the European Commission before the publication of the 
AI Act, and it led to a comprehensive idea of GPAI as a system able to pursue 
generally applicable functions, from image recognition to text translation; it is a 
model that can be used in different contexts and potentially integrated in other AI 
systems.60 According to the AI Act, GPAI systems providers are subjected to strict 
control from different points of view: they must provide technical documentation 
and instructions for use, and then they must comply with the Copyright Directive. 
Finally, providers are obliged to publish a summary of the contents used for the 
model training. Unless systemic risks are present, regulations become softer for 
open and free GPAI developers: they have just the duty to comply with Copyright 
Directive and to publish a training data summary. Additional legal obligations are 
instead addressed to potentially risky GPAI providers, including the conduction of 
model evaluations and adversarial testing; they have also the responsibility to report 
accidents and ensure cybersecurity protection [85]. 

We’ve talked before about a risk-based evaluation system that enables the AI 
Act to regulate artificial intelligence models according to their potential danger 
for people and society. These are models also considered too risky and whose use, 
because of this, results forbidden in the EU: 

1. Models deploying subliminal, manipulative, or deceptive techniques 
2. Models exploiting vulnerabilities related to age, disability, or socioeconomic 

circumstances to cause significant harm 
3. Social scoring models, i.e., evaluating or classifying individuals or groups, 

causing detrimental or unfavorable treatment of those people 
4. Models assessing the risk of an individual committing criminal offenses solely 

based on profiling or personality traits 
5. Models compiling facial recognition databases by untargeted scraping of facial 

images from the Internet or CCTV footage 
6. Models inferring emotions in workplaces or educational institutions

60 “General-purpose AI system” is an AI system that—irrespective of how it is placed on the market 
or put into service, including as open source software—performs generally applicable functions 
such as image and speech recognition, audio and video generation, pattern detection, question 
answering, translation, and others; a general-purpose AI system may be used in a plurality of 
contexts and be integrated in a plurality of other AI systems https://data.consilium.europa.eu/doc/ 
document/ST-14954-2022-INIT/en/pdf, (Council of the European Union, 2022). This definition 
has been widely criticized because it is considered too inclusive and unable to capture the real 
essence of GPAI [96]. Another definitional proposal came from the Institute for the Future of Life 
that underlined instead the always-present multitasking performance of these kinds of systems and 
their ability to accomplish tasks they were not directly trained for https://artificialintelligenceact.eu/ 
wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf, (Future of Life Institute, 
2022). 
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7. Biometric categorization systems 
8. “Real-time” remote biometric identification (RBI) in publicly accessible spaces 

for law enforcement (with some exception, e.g., in terrorism, research of missing 
people, etc.) [85] 

These AI systems cannot be deployed and used in the European Union; they are 
strictly prohibited. 

However, there are a number of models that are considered high risk but can 
still operate in the Union. Among them, there are AI systems exploited for the 
management of crucial everyday activities, including critical infrastructure (e.g., 
road traffic, water or electric supply, etc.), education and vocational training, 
employment, workers’ management and self-employment, the access to and enjoy-
ment of essential private services and essential public services and benefits (e.g., 
healthcare), and law enforcement (for the occurring of special-risk conditions) [85]. 
There are also high-risk systems considered not prohibited dealing with biometric 
data collection and use. Furthermore, at the center of general ethical concerns and 
considered high risk by the AI Act are also AI algorithms linked to migration, 
asylum, and border control management [15]. 

The providers of high-risk artificial intelligence models have the compliance and 
transparency duties we have already seen, with the additional responsibility to test 
their models in order to prevent accidents and answer to possible data vulnerability. 
They must design their high-risk AI system to achieve appropriate levels of 
accuracy, robustness, and cybersecurity, allowing at the same time deployers to 
implement human oversight [85]. 

The AI Act is the first full attempt to regulate the use of artificial intelligence in 
a vast jurisdictional area [90], and of course, the regulation has to face different 
challenges, e.g., choosing the right path to obtain a good harmonized standard 
system to evaluate AI models [63] and find the best answers for them. 

Among these complex and challenging concerns, relevant is the one related 
to the process of inserting the AI Act inside the multilayered and intricate legal 
sphere composing the European AI regulative scenario. The AIA will necessarily 
coordinate with another important legislative tool, the GDPR, the 2016 European 
initiative that led to a first regulative paradigm for the collection of personal data61 

[38]. We know that data are the fuel of artificial intelligence models [42]; however, 
the AI Act does not really provide a new regulation for data collection, which 
remains consequently managed by the previous existing legislative action and thus 
involving directly the GDPR. It is now fundamental to avoid potential conflicts and 
contradictions between the two acts and try to understand how, after their collection, 
these data will be used in AI training and which kind of outputs will emerge. It is 
clear that the AI Act and the GDPR have a lot of common points [38]. They are 
both regulations, not directives, and both adopt the same risk-based approach to 
evaluate possible danger emerging from technologies they regulate. Furthermore,

61 We have discussed before about the GDPR and its consequences on digital data. 
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they share also some principles and methods that the AI Act now updates and 
exploits to manage the training of AI models. Firstly is the extraterritorial action, 
which obligates whoever exports inside the EU borders their artificial intelligence 
models to respect the rules imposed by the Union. Then, there is also a deep care for 
the quality and accuracy of data, linked to a spread approach attempting to achieve a 
privacy by design and by default AI models production. Other important principles 
are also transparency, the possibility for users and experts to check how data are 
used and for which purpose, and the automation of decision-making processes—the 
most strict point between the AI Act and the GDPR, it deals with the possibility for 
data to be processed autonomously by machines that provide consequent outputs 
and options then used to decide about concerning problems62 [38]. 

However, this similar background cannot give the needed answer for a still-absent 
procedural joint between the two acts. It is possible to identify three principle critical 
points: 

1. The risk to overload the private sector with legal duties, obtaining a negative 
effect for technological development. 

2. Without general guidelines, companies operating in the AI market will be 
obliged to self-regulate, and this condition could lead to arbitrary and discretional 
evaluations. 

3. These uncertainties could generate the paradox of a lack of protection for 
individual data and privacy [38]. 

These are the themes policymakers and researchers will encounter in the future 
discussion on the legislative regulation of artificial intelligence, themes that are still 
evolving and changing, progressively fueling the debate on ethical and legislative 
tools capable to develop the European anthropocentric approach to AI. 

10.3.5 US Approach to AI Development and Regulation: 
Keeping Global Supremacy Between Ethical Issues 
and Future Challenges 

The USA is nowadays the leading country in artificial intelligence development and 
research. It has been calculated that 73% of the production of large language models 
worldwide is based in the USA, with only a 15% total Chinese contribution to LLM 
design and development [3]. A substantial gap between the two superpowers can 
be observed also in the field of research during the first 20 years of the twenty-first 
century, when the USA, although there has been one year of Chinese supremacy

62 It is interesting to underline how the GDPR draws limits for this kind of automation, but not 
directly forbidding this kind of possible data treatments [82]; instead, the AI Act regulates most of 
these automated decision-making processes, establishing a specific prohibition for some of them 
(e.g., in some processes involving biometric data) [38, 82]. 
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in 2010, has always prevailed over its most direct competitor for the number of 
published AI papers.63 

Furthermore, the AI supremacy of the USA is also a matter of investments. In 
2020, 82% of global investments in the sector of artificial intelligence start-ups has 
been parted between China and the USA, with the latter spending a total amount of 
$27.6 billion. In 2019, the USA spent $656 billion in artificial intelligence R&D, 
attesting itself as the world leader for the AI sector [2]. 

The incredible achievements of American AI are even more impressive compared 
to the ones obtained by the European Union. Again investments can give us a clear 
view of the general landscape, underlining differences and gaps. Private investments 
for AI development in the USA reached 62.5 billion, while Europe had to sum up 
its continental investments with those of the UK to obtain a total 9 billion.64 It has 
been observed that between 2018 and 2023, the total investments in EU artificial 
intelligence companies reached 32.5 billion, while in the USA, tech industries 
involved in AI development attested at 120 billion investments. Generative AI, and 
overall OpenAI’s ChatGPT model breakthrough,65 is of course fueling American 
competitive power and widening the gaps between the USA and Europe [65]. At the 
same time, these conditions are increasing the attraction of young European talents 
for the US market—offering more positions in the AI sector compared to EU and 
UK—for the stimulating work opportunities and salaries [9]. 

There is also another point that opens a wide range of debates and discussions: 
the costs of compliance that European regulative processes require to release in the 
market new AI models. It has been observed how the GDPR bureaucratic duties 
contributed to a 2.1% reduction of companies profits, with principle consequences 
fallen on smaller tech developers [46]. Then, first previsions stated that the AI Act 
is likely to produce additional compliance costs,66 causing a possible 20% decrease 
of AI investments in the European continent [70]. 

These complex regulative issues, of course, do not resolve in a sort of pure 
dichotomy where the European Union appears as a simple overregulating entity 
trying to choke its own AI development and economy, whereas the USA seems an 
under- or not-regulated space where tech companies can do whatever they think is 
necessary for the growth of their profits, avoiding any ethical or political concerns

63 “The U.S. has produced a total of 1,365,452 AI papers (25.23% of global output) while China 
has produced a total of 957,840 papers (17.70% of global output)” [2]. 
64 However, it is interesting to observe how there are more private investments in Europe— 
including the UK—than China, whose total funding from private entities stops at 7.3 billion [65]. 
65 ChatGPT has been a game-changer in the AI race between China and the USA. Its online upload 
at the beginning of the current decade surprised Chinese AI industry, showing for the first time a 
real delay of the country in AI development and the absence of an already-suited tool to answer 
American innovation https://tinyurl.com/theguardianAI-supremacy, (Koetse, 2024). 
66 “The AIA will cost the European economy 31 billion over the next five years and reduce AI 
investments by almost 20%. A European SME [small and medium-sized enterprise] that deploys 
a high-risk AI system will incur compliance costs of up to 400,000 which would cause profits to 
decline by 40%” [70]. 
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linked to the diffusion of their products. In fact, we have already seen how the AI 
Act, the GDPR, and other European actions for the continental digital market pursue 
instead a data regulation impact able to unify the European markets and to boost the 
future of AI; and, on the other side, we are going to underline that the USA has 
already released some regulative directives and how American policymakers gave 
the appropriate attention for AI-related ethical and political issues. 

The USA has released in 2020 the National Artificial Intelligence Initiative Act 
establishing an American AI initiative to guide research, development, and evalua-
tion for federal science agencies [29]. Other acts, instead, were directed to impose 
to some federal agencies the development of specific AI programs and policies 
[28, 30]. Ethical concerns have been suited more directly in the 2023 Blueprint 
for an AI Bill of Rights, where problems linked to possible biases and prejudices 
inherited by the AI during the training and the possible misuse of AI systems 
for social scoring or other risky and threatening activities are put into a defined 
framework.67 This first initiative has been followed then by different other attempts 
to suggest a path to start creating a more defined legal tool meant to support an 
ethical and safe development of AI technologies. Among these attempts are included 
the joint efforts by four federal agencies to avoid technological advancements that 
could break the law, the release of the AI Risk Management Framework by the 
National Institute of Standards and Technology, the SAFE Innovation Framework 
for AI Policy, and Blumenthal and Hawley Comprehensive AI Framework. This 
is what occurred at federal level; instead, from a local point of view, 14 member 
states of the federation between 2016 and 2022 have already passed AI-related 
legislation: Maryland is the leader of this regulative wave, followed by California, 
Massachusetts, and Washington [76]. 

On October 30, 2023, former US president Joe Biden issued an Executive Order 
(EO), yet withdrawn by Trump’s new administration [27], on “the Safe, Secure, 
and Trustworthy Development and Use of AI.” A new plan for American AI 
regulation has not yet been proposed, and Biden’s action can be considered today 
the only known approach to establish an ethical path for American AI. It was built 
starting from a previous work against discrimination inside federal agencies and 
from a cooperation with self-committed US companies active in the development 
of artificial intelligence systems (e.g., Amazon, Google, Meta, OpenAI) [26]. In the 
EO, there are eight main policy fields: 

1. The release of new standards for AI safety and security field, where there will 
be direct contribution of private companies that will share their own data with 
governmental agencies involved in the elaboration of standardized tools for the 
future development of safe and trustworthy AI 

2. The protection of citizens’ privacy from AI-related risks, with the direct federal 
support to the development and research of tools able to measure the impact of 
AI systems on citizens’ private data

67 https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying, Blueprint for an AI Bill of Rights,  
2023. 
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3. The advancement of equity and civil rights that links the Executive Order to the 
definition of clear guidelines for landlords and to the establishment of benefits 
programs, federal contractors, and measures to fight algorithmic discrimination 
and pursue fairness in justice procedures when AI technologies are used68 

4. The protection of consumers, patients, and students, pursued with measures 
for the responsible use of AI systems in healthcare and defining how these 
technologies will be exploited to lead the future of education 

5. Support for workers who will need a governmental action to limit potential harm 
coming from AI and a maximization of all the benefits these technologies will 
bring for their jobs, including plans to mitigate labor-market impacts 

6. The promotion of innovation and competition, a field in which the EO tries to 
create the perfect environment to boost research and to guarantee the birth and 
growth of an open and fair AI ecosystem across the country, able to attract also 
high-skilled immigrants who will contribute to improve the American artificial 
intelligence sector69 

7. The advancement of US leadership abroad, requiring the expansion of AI 
engagements in order to promote the design process of global vital standards 
for AI70 but also making possible a safe and responsible development and 
deployment of artificial intelligence systems abroad to face ethical and political 
challenges on a global level 

8. Responsible and effective government use of AI, linked to the executive order 
need to seek new AI-related guidelines for federal agencies that use these 
technologies to enhance the quality of the process used to acquire AI products or 
services and to hire the sector most qualified experts [26] 

President Biden’s executive order shared and reaffirmed the values and strategic 
wills already expressed in the National Artificial Intelligence Research and Develop-
ment Strategic Plan. In this document, the USA offered a national view on artificial 
intelligence that looks for a human-AI collaboration, focusing on designing user-
oriented technologies that privilege user experience and the protection of human 
agents in the interaction with the machine [71]. The Plan recognized the necessity to 
develop AI technologies able to advance core values through sociotechnical system 
design and understanding the ethical, legal, and societal implications of AI systems 
[71].

68 This point of the EO tries to avoid potential injustices emerging from the use of models trained 
through biased collections of data, an issue that is also linked to the wider problem of apparently 
always fair algorithmic decision-making [86]. 
69 And it has already been noted how this is effectively happening for European talents, progres-
sively moving to the USA for better and more adequate job opportunities [9]. 
70 An already-existing example of these efforts could be the EU-US Research Alliance in AI for 
the Public Good, a first attempt to create a sort of transatlantic cooperation, involving the USA and 
the European Union, to develop artificial intelligence systems that aim to face important challenges 
such as extreme weather and climate events, optimization of energy, and responses to emergencies 
[95]. 
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These efforts involved different federal agencies and institutions. The Depart-
ment of Defense (DOD) has released the Responsible AI toolkit used to check if AI 
projects align to DOD AI ethical principles, while the Department of Education 
is defining the needed policies and guidance for safe and accessible uses of AI 
in schools and educational institutions. This work will engage teachers with the 
creation of an adequate toolkit for the implementation of past recommendations and 
also developers who will provide resources to generate trust for the AI marketplace 
and essential questions to guide future AI responsible development. At the same 
time, the Education Department is collaborating with the Department of Justice 
to address discrimination and all the other possible harms AI can bring to the 
preservation of civil rights in the USA [8]. Inside the US Department of Health and 
Human Services, the National Institutes of Health (NIH) is among the main actors 
of American AI R&D sector, producing big efforts to protect the privacy and well-
being of the patients involved in researches. To reach this data-preservation goal, 
they have produced policies such as the Common Rule and the NIH Certificates of 
Confidentiality. Furthermore, the National Institute of Justice (NIJ) established the 
Predictive Forensic Deoxyribonucleic Acid (DNA) and Predictive Policing efforts 
that fund workshops on probabilistic genotyping, forensic DNA phenotyping, and 
forensic investigative genetic genealogy technologies. The same institution worked 
also on the Strengthening Data-Driven Pretrial Releases in New Jersey effort, an 
interesting action conducted to revise the Public Safety Assessment (PSA) tool, 
an AI-based juridical technology that had the aim to give objective pretrial release 
recommendations, resulting often in bias. The NIJ, exploiting ML and data analysis 
instruments, is trying now to face the inner discrimination problems the PSA 
revealed in the past, trying to guarantee high-level ethical standards [8]. 

Despite the absence of a structured answer for artificial intelligence ethical and 
political problems—as the European AI Act instead is—it has just been observed 
how the USA is demonstrating a real concern for the possible harms emerging from 
the use of these new technologies. This does not mean, of course, that the debate 
can be considered now unnecessary. In fact, Republican Senator Ted Cruz added 
to the Future of Artificial Intelligence Innovation Act of 2024 [31] an amendment 
that directly prohibits the development of AI technologies designed with processes 
that ensure inclusivity and equity.71 He claimed that this action will preserve 
American artificial intelligence progress, avoiding possible future deceleration and 
the potential overcoming from Chinese AI industry.72 

This example makes clear how multilayered and complex the debate on the best 
way to build a proper ethical regulative path to ensure the future of AI-human 
relationship can still be. 

A last focus can be directed to the issues related to generative AI and copyright. 
As we have seen, data are at the core of artificial intelligence models development, 
the real fuel that allows their training and the production of brilliant output.

71 https://tinyurl.com/commerce-gov-senate, Senator Cruz, 2024. 
72 https://tinyurl.com/govtech-policy, Scott J. Mulligan, 2024. 
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ChatGPT, a generative pre-trained transformer model, since its release, generated 
hype, spreading at the same time tension, fear, and also fascination and interest for 
the world of artificial intelligence, large language models, and automated generation 
[21]. It was also a turning point and a game-changing technology that helped 
establish a renovated sense of American supremacy in the field of AI.73 However, 
these generative models were trained through data obtained from the Web and then 
copied and analyzed by machines.74 All these operations require author consent, 
because they can violate reproduction rights and must consider the right to control 
derivative works, since the training is based on the data scraped online [73]. 

In the USA, this situation turned into a wide movement of protests that then 
led to a class action from the Authors Guild [73] and the publication of an online 
petition that wants to forbid the use of these contents for AI training and that defines 
generative AI use of authors’ works as “a major, unjust threat to the livelihoods of 
the people behind those works,” a petition that was signed by mostly forty thousand 
people, among them also important artists as Thom Yorke.75 

Federal Trade Commission has already opened an inquiry on OpenAI, trying 
to understand the sources of the training data exploited for the development of 
ChatGPT, and also the European Union is trying to develop new rules to manage 
AI-related copyright issues [73]. The debate on copyright is intriguing and still in 
progress. Some researchers and experts look at machine learning as a humanlike 
form of education, saying that none would ask for their royalties because their 
works activated a learning process.76 Others instead see in the reform of licensing 
a possible future for the creation of a data market that will protect authors and that 
will let the AI industry flourish too [73]. 

What has just been introduced shows how, in the field of legislative and ethical 
approach to AI, the USA is today a laboratory,77 a not-yet-defined regulative 
area where contradictions and experiments show us the potentiality of new AI

73 A supremacy that translated also in the growth of private investments [65]. 
74 Processes, and following issues, have already changed today: some models are thought to be 
trained starting from contents and data produced by other competitors of generative AIs (https:// 
techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/, Wiggers, 2024). It 
happens also because a growing part of Web contents, almost the 90% in 2026 according to 
previsions, will be composed of AI-generated materials [62]. 
75 https://www.aitrainingstatement.org/, Statement on AI training, 2024 (last seen on December 
29, 2024). 
76 The idea of a cooperative use of online resources for learning and collective growth are at the 
base of the Internet media revolution[57]. It is quite complex nowadays to detach that kind of 
human-oriented approach from the contemporary one where machine learning does not mean the 
same thing as what education means for human growth and life enhancement [73]. 
77 In the copyright field related to AI, a good example of US constant attempts to innovate and 
create solutions can be found in the recent publication of a new report by the US Copyright Office. 
The report affirms that a content generated by LLMs and then edited by humans—so, the simple 
prompt is not enough—can be considered a new human-generated work, and consequently it can 
be protected by the laws of copyright [78]. 
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technologies, a potential strength whose outputs must be deeply understood and 
governed in order to let human beings construe new and better worlds. 

Key Points of Rules for Artificial Intelligence 

• The Role of Ethics and Political Governance in AI 

– Ethical concerns are shaping AI regulations, especially in the EU’s 
human-oriented approach to artificial intelligence. 

– The concept of Emergency and the birth of Surveillance capitalism: 
Data extraction, behavior prediction, and manipulation. 

– AI-driven re-ontologization and transformation of humans from aims, 
beneficiaries of digital technologies, into means of production. 

– Governmental role in AI-driven threats and social control. 
– Case studies: 

·. China and Russia: AI as a tool for surveillance and governance. 
·. USA and EU: Use of emergency conditions to boost data extraction 

and AI technologies able to limit Freedom and Rights. 

• China’s AI Strategy 

– New Generation AI Development Plan (2030 Goal: Global Supremacy 
on AI) 

·. AI as a pathway to global technological leadership. 

– AI’s impact on labor and workforce concerns. 
– CCP’s social control through AI: Algorithmic governance, censorship, 

and adaptation strategies. 

• Russia’s AI Approach 

– Instability affecting AI development. 
– AI ethics and data collection policies: 

·. Special legal zones for data extraction. 
·. AI in military applications and warfare. 

• The European Union’s AI Strategy 

– Creation of a single and unified European area to collect, manage, and 
fair use data for economic development (DMA,DGA,DSA): a regulative 
approach that contributed to enhance EU digital market, creating at the 
same time some delays in innovation. 

– Human-centric AI regulation: 

(continued)
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·. GDPR (General Data Protection Regulation): governing potential 
breaches in privacy and possible European citizens and industries data 
leaks 

·. AI Act (AIA): Risk-based classification approach. 

– Ensures trustworthy and safe AI models and systems. 
– Promotes free movement in the Union of AI-related products and 

services. 
– Prevents fragmentation in the European AI market. 
– Risk-based classification of AI systems. 

·. Unacceptable risk: Strictly prohibited (e.g., social scoring, manipula-
tive AI). 

·. High-risk AI: Allowed under strong regulations. 
·. Limited-risk AI: Transparency obligations (e.g., chatbots, deepfakes). 
·. Minimal-risk AI: Unregulated (e.g., AI in video games, spam filters). 

– The AI Act and GDPR: legal harmonization challenges. 

·. GDPR remains the main regulation for data collection. 
·. The AI Act focuses on how AI systems use data. 
·. Key shared principles: 

·. Extraterritorial scope: Compliance required for all AI entering 
the EU market. 

·. Data quality and accuracy: Ensuring high-standard AI training. 
·. Privacy by design and default: AI systems must respect privacy 

norms. 
·. Transparency: Clear understanding of AI decision-making 

processes. 
·. Automated decision-making: Regulated under both GDPR and 

AI Act. 

– US AI governance 

·. US dominance in AI R&D and investments. 
·. Federal legislative actions: 
·. Biden’s Executive Order 14110, already withdrawn by Trump’s 

administration, but yet the only known approach to American AI. 
Key elements: AI privacy, consumer protection, and technological 
supremacy. 

·. New standards for AI safety and security. 
·. Protection of citizens’ privacy. 
·. Promotion of equity and civil rights. 
·. Consumer, patient, and student protections. 

(continued)



272 G. R. Presta and A. Paolella

·. Support for workers impacted by AI. 
·. Encouragement of AI innovation and competition. 
·. Strengthening US leadership in AI globally. 
·. Responsible government use of AI. 

·. AI policies across different institutions (DoD, NIH). 

– Ethical and political debates on AI in the USA 

·. Senator Ted Cruz’s amendment against inclusivity-driven AI. 
·. The future of Artificial Intelligence Innovation Act. 

– Generative AI and copyright issues 

·. AI models training on copyrighted data. 
·. Authors Guild class action and petition against AI use of copyrighted 

works. 
·. FTC inquiry into OpenAI’s data sources. 
·. Emerging discussions on AI licensing and data markets. 
·. US Copyright Office ruling on AI-assisted human-generated works. 

10.4 Conclusions: Censorship, Openness of Data 
and Models, Freedom, and Rights 

10.4.1 Censorship 

In this first part of the conclusive section, the previous overview on general ethical 
approach to AI and on the way it has been interpreted in legislative actions around 
the world will be used to allow the research to outline the way censorship operates 
in the field of AI. 

It has been underlined how the Chinese government has tried, with its direct 
control on algorithms and data, to operate and orient the outputs obtained with 
the use of generative LLMs, technological output that has been defined in Chinese 
AI sector as deep synthesis [91]. The censorship is here directed by the central 
government, led by the Chinese Communist Party, to avoid possible harms or 
subversive propaganda able to represent a real threat for the stability of the 
government itself. In China, this means no algorithmic freedom: the process and 
data from the very beginning are censored, asking developers to create technologies 
adherent to specific moral values and not disturbing for the social and economic 
spheres.
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This need for censorship translated also in an advancement in political and 
legislative actions to regulate these technologies, with new processes optimized to 
afford changes and mutation on the algorithmic side [91]. 

Russia, although not directly working on artificial intelligence, has demonstrated 
great interest for data and the way they are used and diffused. The analysis has 
shown before how ELRs, special zones for data extraction, have been created in 
Moscow and all around the country,78 but this has more effects on data freedom 
and personal rights than on data censorship. It is instead the Yaroyava Law, a law  
apparently directed to fight terrorism, that has increased surveillance and censorship 
on the Internet, setting also governmental requirements for data retention that of 
course affect directly the development of AI models [98]. 

Interesting also is the debate on forms of censorship not directly related to social 
control but to the outputs AI generative models can produce: censoring processes 
that affect and regard also the debate in Europe and the USA. 

The European anthropocentric approach presented before tries to protect users 
from potential threats deriving from AI technologies [85], and also in the USA, these 
actions took place to preserve the well-being of citizens [26]. However, also in this 
areas of the world, AI is used to detect contents considered potentially dangerous. A 
good example is what happens in online social media platforms, where algorithmic 
control operates to moderate concerning published contents (pornography, hate 
speech, etc.) [66]. This situation has spread concerns among many of the possibility 
that algorithmic detection and content censorship can undermine the necessary 
freedom of speech that lies behind the complex freedom structure of democracy 
[55]. 

Also LLMs and TTI (text-to-image) developers have been accused of operating 
a selected censorship, producing outputs that limit the use range of generative 
models to obtain specific outputs. It became a great issue widely discussed in the 
field, not just of ethics but also of aesthetics and artistic debate. The discussion 
wanted to analyze and comprehend the nature of models as artistic instruments— 
not immediately related to diffusion and publication of these contents—trying to 
underline how a sort of puritan censorship (e.g., the production of nudity) cannot be 
applied to the production of personal works of art. 

A solution to avoid censoring restrictions imposed in initial model training is 
through the use of fine-tuning and RAG techniques. Of course, open-source models 
result more suit for this purpose [34]. 

However, nowadays, a process where content moderation results less relevant for 
developers is starting to affirm, producing new controversies and stimulating further 
debates.79 

78 These actions of the Russian government have been deeply analyzed in the previous section of 
the research. 
79 https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/, Zeff, 2025.
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10.4.2 Openness of Data and Models 

Another major topic that occurred to be central in the previous analysis is the 
one of collection, free movement, and open use of data: meaningful circumstances 
that are at the core of artificial intelligence and generative artificial intelligence 
development.80 

The European Union has tried to create, since the GDPR release in 2016 and 
with other market regulation actions, a unified and safe network where data can be 
easily accessible by different actors. The Digital Governance Act (DGA) especially 
contributed to the definition of this European scenario, regulating public and private 
data and shielding the latter through the cooperation with the GDPR[84]. 

This is an institutional solution that aimed to propose a model of development 
that could lead to the development of technologies based on open data, able 
to enhance the quality of specific sectors—for example, healthcare—through all 
Europe [84]. 

Open data are easily accessible to everyone with minimal or absent economic 
barriers [77], a horizontal approach that consents an efficient diffusion of informa-
tion, enabling researchers and organizations to produce innovation in an easier way. 
This confirms how EU legislation has tried to enhance equal opportunities, offering 
a real anthropocentric paradigm of digital development. 

Openness of data is the first step that has led and will lead to design open 
artificial intelligence models, including of course generative models. However, these 
are multilayered and complex technologies that must be deeply analyzed before 
they can be considered really open. It is not sufficient that their training data are 
accessible, but it is necessary to consider also other elements: 

1. The openness of models’ constitutive algorithms 
2. The openness of the researches that brought to the realization of the model 
3. The possibility to obtain a real open access [100] 

Openness is not just an important ethical issue—as it has already been seen in 
previous passages of this research—because it is a necessary element to achieve 
qualitative research outputs with less economic efforts [77] and also because it 
can be used as a manipulating label to promote developers of models and services 
that call themselves open while respecting real and complete openness just partially 
[100]. This is the main reason why the term “openwashing” has started to spread in 
order to define models that attract users with their self-defined openness, without 
really offering then a real complete open product. This controversy has been 
partially solved by White et al. with the proposed Model Openness Framework 
that ranks machine learning models according to five principles: open science, open 
source, open data, and open access [100].

80 It has been already shown before the importance of data for the development of these 
technologies. 
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Open-source models, although not being the best options in terms of perfor-
mance, will guarantee a democratized access and better reproducibility, strength-
ening at the same time human supervisions81 [67]. 

Their use could become also a good resource to overcome possible censoring 
mechanisms introduced in closed-source models, turning open-source AIs (e.g., 
open TTI models) into personalized powerful instruments for free artistic production 
and research [34]. In this specific field, the debate on how these models should be 
trained has also become interesting. Important discussions involved the copyright 
issue too. As seen before, artists, especially in the USA, organized to protect their 
works from being used for models training, but it is not a so-unified front. 

The Italian artist and philosopher Francesco D’Isa proposed an open use of 
artistic works and expressions to train models in order to expand the horizon of 
machines’ cognitive world.82 He claims that this approach can represent a more 
appropriate path to create instruments with the real ability to help humans realize 
their artistic aims. 

D’Isa thus suggests an entirely open approach where models can be explored 
and rearranged for the artist’s aims, asking at the same time artists to remove any 
restriction that does not allow full access for the creation of a wider and more 
representative training dataset for machines [34]. 

10.4.3 Freedom and Rights 

The previous section centered on AI regulations that helped the reader face the 
principle ethical issues related to the use of AI and the potential dangers for human 
rights and freedom that can emerge. 

It has been observed how the Chinese Communist Party decided to exploit 
artificial intelligence power to gain and preserve social control over the Chinese 
population with the arrangement of a social credit system [91]. AI has been used 
by the CCP also to obtain biometric data and then to repress the Uighurs Muslim 
minority’s attempt to affirm their identity, an attempt that helped also the infiltration 
of terroristic organizations inside the region, producing a strong controlling action 
by the central government through the use of AI [98]. 

Another concerning issue involving AI and potential dangers for freedom and 
rights regards the implementation of Experimental Legal Regimes (ELR) in Russia. 
It has been shown before how in these special areas the possibility of collecting data 
became easier, exposing directly the privacy of Russian citizens and enhancing the

81 An aspect that has been introduced before examining the Unified Framework of Five Principles 
for AI in Society. 
82 He refers directly to the famous Wittgenstein’s idea of the perimeter of a person’s own language 
as the perimeter of his or her own world. Machines can be properly used to represent something 
if their knowledge of the world is expanded and contemplates different points of view and 
sensibilities [34]. 
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quality of social controlling tools developed by the government.83 These data are 
not used only to face possible security challenges but also to recognize protesters 
and silence dissent [98]. 

Furthermore, Russia is increasing the use of AI technologies in order to turn 
them into instruments fitted for surveillance and propaganda. Thus algorithmic 
control is used to limit the free use of platforms and Internet services. For example, 
the Roskomnadzor (The Federal Service for Supervision of Communications, 
Information Technology and Mass Media) is a Russian federal office that uses 
artificial intelligence tools to scan Web publications, find contents potentially 
threatening for governmental order, and ban them. Other uses of AI to limit the 
freedom of citizens have increasingly spread after the beginning of the Ukrainian 
war and have seized the possibility to use, if not authorized, VPN services [98]. 

These uses of artificial intelligence models for the collection of private data 
and surveillance have been pointed out by the European Union as major threats 
to the freedom and rights of European citizens. As seen before, the Artificial 
Intelligence Act reveals these preoccupations and tries to give a strong answer [85]. 
The European legislative action forbids artificial intelligence systems that could be 
used for social scoring, for emotional tracking at work and in educational spaces, 
and for biometric and real-time biometric categorization [85]. As already noted, the 
prohibition of this last typology of AI technologies has some exceptions. Biometric 
data can be used to recognize and act against individuals in moment of emergency, 
for example, when someone is missing or during a terrorist attack [85]. 

Emergency has played, as Shoshana Zuboff has already noted [103], an important 
role in the development of digital surveillance techniques that have undermined 
and still undermine freedom and personal rights. The dot-com bubble economic 
emergency produced the necessity for big players in the field of digital technologies 
(e.g., Google or Meta) to turn private data into profits without users’ consent and a 
condition of social and political emergency, following the 9/11 terrorist attack, and 
drew institutional interest to the development of artificial intelligence algorithms 
able to guarantee control and surveillance [103]. 

So, these exceptions in the European AIA must be regarded with extreme 
attention and concern, because they can represent a possible breach for future 
political misuses of AI also in the European Union. Dealing with these possible 
emerging issues must be considered essential, to consider the critical behavior 
suggested by the Heraclitus-Heideggerian approach described in the first section 
of this research, an approach that looks beyond the simple perimeter of the law to 
embrace a real and deep care of the stay. 

A last point that must be underlined in this conclusive passage is strictly related to 
the amendment, mentioned before, and added by the American Republican Senator 
Ted Cruz to the Future of Artificial Intelligence Innovation Act of 2024 [31]. It 
explicitly forbids the development of AI models that ensure inclusivity and equity.

83 https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia, 
Sullivan 2022. 

https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia


10 Ethics and Governance of Large Language Models 277

Cruz affirms that these two conditions could represent a limitation for the 
competition of American AI in the global scenario.84 However, this vision seems to 
lack a more articulated comprehension of what inclusivity and equity can guarantee. 
It has been shown how equity and inclusivity are not limits but the fundamental 
resources to provide artificial intelligence models with datasets that propose a wider 
and more complex vision of the real dynamics existing in human societies [12]. 
Models designed following this inclusive vision, through the application of specific 
rules, have a wider perspective of what the real world is and can contribute better to 
include and guarantee rights and freedom of underrepresented social groups [12]. 

It is a paradigm not so different from the one proposed by the approach of 
D’Isa to the openness of data [34]. A wider dataset, able to include differences 
and alternative visions, can comprehend better different necessities of users and can 
really know and understand multiple sensibilities. A not-inclusive and not-equal 
model must be simply considered a biased model [12], 

a vision that recalls again the condition of ἦθος (ēthos) as the care for the stay, 
able to look at the borders offered by the law and to overcome them for a wider 
and more essential comprehension of reality, a paradigm that can really reactivate 
critical thinking in the use and development of artificial intelligence.

Key Points of Conclusions 

• Censorship in AI emerges as a key issue in ethical and legislative discus-
sions. 

• Analysis of censorship mechanisms in different geopolitical contexts. 
• China: State-controlled algorithmic censorship 

– Chinese government directly controls algorithms and data with a reg-
istry. 

– Censorship is implemented at the development stage, ensuring AI aligns 
with state-approved moral and social values. 

– Legislative advancements optimize AI regulation, adapting to techno-
logical mutations. 

• Russia: surveillance and data control 

– Focus on data collection. 
– ELRs (Extractive Logic Regions) established for data extraction. 
– Yaroyava Law increases state surveillance, requiring extensive data 

retention, affecting AI development. 

(continued)

84 https://tinyurl.com/ovtech-ai-bills, Scott J. Mulligan, 2024. 
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• Forms of censorship in the EU and the USA: AI and content moderation 

– AI used to detect and remove harmful content (e.g., hate speech, 
pornography). 

– European and US regulations prioritize user protection. 
– Among many, concerns arise over AI moderation undermining the 

freedom of speech that lies behind the complex structure of democracy. 

• Generative models and censorship 

– Accusations of selective censorship in LLMs and TTI models. 
– Debate on AI as an artistic tool: should nudity and controversial topics 

be restricted? 
– Open-source models and fine-tuning/RAG techniques as solutions to 

bypass initial censorship. 
– Shift toward reduced content moderation, sparking new ethical debates. 

• Openness of data and models as a central theme in AI development. 
• Focus on the free movement, collection, and open use of data. 
• Advantages of open data 

– Minimizes economic barriers, ensuring broad accessibility. 
– Facilitates research, innovation, and fair digital development. 
– Supports the EU’s anthropocentric paradigm in digital governance. 

• Openness in AI models: a multilayered concept 

– Openness is not only about training data but also: 

·. Transparency in model algorithms. 
·. Open access to research behind the models. 
·. Real accessibility and the removal of any form of restriction. 

• The issue of “openwashing” 

– Some AI developers claim openness without fully implementing it. 
– Model Openness Framework (White et al.) ranks AI models based on: 

·. Open science 
·. Open source 
·. Open data 
·. Open access 

• Open-source AI: advantages and controversies 

– Ensures democratized access, reproducibility, and human supervision. 
– Helps bypass censorship in closed-source models. 
– Facilitates free expression, creation, and research. 

(continued)
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• Openness and copyright debates for AI training 

– Artists (especially in the USA) oppose AI training on their works. 
– Francesco D’Isa’s Perspective: advocates open artistic data for AI 

training. 
– Suggests models should be freely explored and rearranged for artistic 

purposes. 

• Freedom and rights 
• Ethical issues and human rights risks emerging from AI applications. 
• AI as a tool for social control: 

– China: social credit system and minority repression 

·. AI used by the Chinese Communist Party (CCP) for mass social 
control. 

·. Biometric data collection and surveillance targeting Uighur Muslims. 
·. Justification: emergency conditions that allow counterterrorism 

efforts, leading to strict government oversight. 

– Russia: Experimental Legal Regimes and AI surveillance 

·. Experimental Legal Regimes (ELR): Special zones easing data col-
lection. 

·. AI-enhanced surveillance identifies protesters and suppresses dissent. 
·. Roskomnadzor: AI-powered censorship and control of online con-

tent. 
·. Increased restrictions post-Ukraine war, including bans on unautho-

rized VPNs. 

• European Union’s legislative response 

– Artificial Intelligence Act (AIA): addresses AI-related threats to free-
dom and privacy. 

– Concerns over exceptions: emergency-based AI use may create loop-
holes for misuse. 

• Surveillance capitalism and AI’s role in political power 

– Shoshana Zuboff’s analysis: 

·. AI surveillance developed in emergency conditions due to economic 
crises and security fears. 

·. Dot-com bubble →. monetization of user data (Google, Meta, etc.). 
·. Post-9/11 →. government interest in AI surveillance. 

– AIA’s role: needs scrutiny to prevent future political misuse in the EU. 

(continued)
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• US policy and AI ethics debate 

– Ted Cruz’s amendment (Future of AI Innovation Act, 2024): 

·. Prohibits AI models prioritizing inclusivity and equity to protect US 
AI competitiveness. 

– Critique: inclusivity as an AI strength 

·. Equity and inclusivity improve AI dataset diversity and representation 
of reality complex structure [12]. 

·. Ensures better representation of underrepresented groups. 
·. Prevents biased AI outcomes. 

• Inclusivity, data openness, and ethical AI development 

– D’Isa’s approach: open datasets enhance AI’s knowledge—this guaran-
tee a better impact for AI in artistic and cultural fields. 

– Wider datasets improve AI’s understanding of human sensibilities. 
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Chapter 11 
Epilogue 

Massimo Mecella 

For many years, information systems engineering has been developed as discipline 
of design. Principled approaches are investigated and applied in order to develop 
artefacts; refinements from abstract (conceptual) till concrete (executable/runnable) 
artefacts are carried out in order to achieve a system. Different methodologies 
have been proposed over the years, starting from older waterfall, later iterative, 
and nowadays agile approaches. But independently on the way of scheduling and 
sequencing activities and tasks, (practically) the quality of the designer (or of the 
designer team) heavily impacts the overall quality of the system. Quality of an 
information system is a well-investigated topic, with many facets (including the 
quality of the information managed by the system, the quality of the software 
constituting the system, the quality of the processes carried out through the system, 
etc.); undoubtedly, it is agreeable that the quality of the persons (designers) 
modeling and designing and building the system is a primary concern. 

Methodologies and practices investigated and proposed over the years support 
the designer (team), but mostly knowledge, skills, and capabilities of the designers 
are in their minds. We refer to this approach as heavily design-based approach,  in  
order to emphasize that the design activities are crucial.

With generative AI and LLMs, we can conversely attempt a different approach: 
a designer can be assisted by a smart twin,1 which can iteratively support his/her 

1 The reader should not mislead this concept with the one of digital twin, which is a digital model of 
an intended or actual real-world physical product, system, or process (a physical twin) that serves 
as a digital counterpart of it for purposes such as simulation, integration, testing, monitoring, and 
maintenance [1–4]. 
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work. A precise design is no more crucial. The designer can quickly try and iterate 
the production of the artefact he/she is in charge of, being supported by the assistant. 

In analogy with low-code approaches to software development, we define this 
approach �.low design �.. Still far away from there, but initial symptoms are here 
(see the survey and our research). 

This transformation in IS engineering presents both opportunities and challenges: 

• Faster. Adopting smart twins makes the design cycle faster. 
• More standardized. Smart twins will be trained on the best possible practices, 

and even if customized (e.g., through RAG techniques) to different needs and 
development contexts, there will be a positive standardization effect on outcomes 
and practices. 

• Potential risks for innovation and disruptive ideas. The trend toward standardiza-
tion that potentially can be induced by adopting smart twins is a risk in terms of 
innovation and opportunities for disruptive ideas. In a design approach in which 
all designers adopt similar assistants, there is the risk of limiting creativity of 
individuals. Appropriate countermeasures, yet to be devised, should be planned 
in order to avoid this. 

• Dependency on proprietary AI models (depending on which LLMs are used). 
This is quite obvious; designer will adopt proprietary models. 

• Openness of AI models as a key concern. It is related to the above point; 
governance of AI/LLMs should push toward open models and transparent 
datasets (cf. Chap. 10), even if this clearly contrasts with possible business 
models, based on fees, which can justify investments from vendors and providers. 

• Higher costs and environmental impact (cf. the footprint of LLMs and their costs 
when used via paid APIs). Companies adopting smart twins/assistants should 
evaluate the business model, for engineering the information system, that can 
afford, if any, such costs and impact. 

Our claim is that LLMs can become, and indeed are already partly becoming, a 
powerful assistant for designers. However, a human-in-the-loop approach remains 
essential. Moreover, openness is a crucial factor in ensuring transparency, accessi-
bility, and ethical development. 

We would conclude with a few sentences from Bertrand Russell: 

�.The fundamental cause of the trouble is that in the modern world the stupid are cocksure 
while the intelligent are full of doubt. �. 

to mean that clearly this approach based on smart twins currently raises many doubts 
related to correctness, effectiveness, and, in general, meaningfulness, but also 

�.One should never be certain of anything, because nothing deserves certainty, and so one 
should always maintain an element of doubt in one’s beliefs, and one should be able to act 
vigorously in spite of the doubt. �.
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to mean that nevertheless we cannot simply refuse it and not act and that, conversely, 
information systems engineers and researchers should act vigorously, in order to 
drive and correct this trend up to the point of making it meaningful, as it will happen 
independently. 
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