
Francesca De Luzi
Flavia Monti
Massimo Mecella Editors

Engineering
Information
Systems with
Large Language
Models

Engineering
Information
Systems with
Large Language
Models

Francesca De Luzi • Flavia Monti •
Massimo Mecella
Editors

Engineering
Information
Systems with
Large Language
Models

Editors
Francesca De Luzi
Sapienza Università di Roma
Rome, Italy

Massimo Mecella
Sapienza Università di Roma
Rome, Italy

Flavia Monti
Sapienza Università di Roma
Rome, Italy

ISBN 978-3-031-92284-8 ISBN 978-3-031-92285-5 (eBook)
https://doi.org/10.1007/978-3-031-92285-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-9896-2528
https://orcid.org/0000-0002-9730-8882
https://orcid.org/0000-0003-3349-7861
https://doi.org/10.1007/978-3-031-92285-5
https://doi.org/10.1007/978-3-031-92285-5
https://doi.org/10.1007/978-3-031-92285-5
https://doi.org/10.1007/978-3-031-92285-5
https://doi.org/10.1007/978-3-031-92285-5
https://doi.org/10.1007/978-3-031-92285-5
https://doi.org/10.1007/978-3-031-92285-5
https://doi.org/10.1007/978-3-031-92285-5
https://doi.org/10.1007/978-3-031-92285-5
https://doi.org/10.1007/978-3-031-92285-5

Preface

The rapid advancement of artificial intelligence (AI), and more specifically gen-
erative AI and large language models (LLMs), is transforming various fields, and
among them, there is growing interest in its potential application in information
systems engineering (ISE). These technologies offer unprecedented opportunities
to support the design, development, and reengineering of information systems
(ISs). Despite their potential, a systematic and structured approach to integrating
LLMs in IS engineering is still in its infancy. Recent studies have explored various
applications, such as conceptual design, software development, business process
extraction, and IS dimensioning using ChatGPT and similar models. However, these
efforts remain fragmented, lacking a comprehensive and unified framework. In this
book, we aim at providing a first attempt toward such a framework, fully aware that
it might be a challenging and ephemeral effort, in a landscape in which a new paper
about LLMs is published on https://arxiv.org/1 every 8 minutes.

In March 2024, we started developing the tutorial Engineering Information Sys-
tems with LLMs and AI-based Techniques, which was accepted for presentation and
presented at CAiSE 2024, 36th International Conference on Advanced Information
Systems Engineering, in June 2024. The tutorial aimed to provide attendees with a
foundational understanding of AI, generative AI, and LLMs from an IS engineering
perspective, followed by an in-depth analysis of emerging methodologies and
applications in IS design and development. The positive reception of the tutorial,
combined with the growing academic and industrial interest in this field, led to the
opportunity to expand its content into this instant book.

The book is a collaborative effort of the research group in Processes, Services
and Software Engineering at Sapienza Universitá di Roma, Italy. Each chapter is
written by PhD students and postdocs actively working on applying LLMs to IS

1 arXiv is a free distribution service and an open-access archive, hosted by Cornell University, for
over 2 million scholarly articles in various fields, including computer science. Materials are not
peer reviewed by arXiv. Nowadays, researchers in computer science, AI, GenAI, and LLMs, in
order to have a timely dissemination of their results before a peer-reviewed publication, are largely
adopting this service.

v

https://arxiv.org/
https://arxiv.org/
https://arxiv.org/

vi Preface

engineering, with a deep and practical experience in LLMs and their adoption
for building applications and systems. A careful revision of the chapters, and
preliminarily the definition of contents of the single chapters, has been carried out
by us editors in order to provide the unifying framework we are aiming at.

Adopting an ISE perspective means we consider LLMs, as many other technolo-
gies, as black boxes and investigate how they can be adopted in a principled way
in order to develop more complex information systems that can take advantage of
LLMs. In contrast to other technologies, LLMs pose new challenges to IS engineers,
as their behavior is in most cases scarcely explainable, scarcely repeatable, and
forecastable. These challenges are not only relevant for IS engineers but also
for researchers and practitioners in software engineering, BPM (Business Process
Management), and software architectures (including service-oriented ones) and,
more broadly, those working with digital technologies. These communities are the
target of our book.

As previously stated, we aimed at creating an instant book, i.e., a book that has
been produced and published very quickly to meet a specific demand. We took
utmost care to provide accurate and precise information, as well as a survey of the
relevant literature. All references are up to date as till the end of 2024. Nevertheless,
we hope that the book will not fade out as quickly as instant books generally do, as
we strongly believe that the concepts here presented are more durable than the single
technologies we are describing. Only the future, which luckily is not yet foreseeable
by an LLM, will be able to witness whether our aim will be achieved.

Rome, Italy Francesca De Luzi
March 2025 Flavia Monti

Massimo Mecella

Acknowledgements We would like to acknowledge the following for financial
support to our research:

• MICS (Made in Italy–Circular and Sustainable) Extended Partnership funded by
the EU—NextGenerationEU PNRR MUR

• SPACE IT UP Extended Partnership funded from ASI (Agenzia Spaziale Ital-
iana) and MUR

• Thales Alenia Space and Regione Lazio, through the fellowships 35752-
22066DP000000040-A0627S0030 Utilizzo dell’Intelligenza Artificiale a
supporto della progettazione e qualifica del prodotto spaziale and 35757-
22066DP000000041-A0627S0031 Advanced Software Based on Cloud
Computing and Machine Learning for Space Systems

• Agreement on “Agile&Secure Digital Twins”
• Italian National PhD Program in Artificial Intelligence
• PhD fellowship Pubblica Amministrazione DM118 (CUP83C22003460006)
• Horizon Europe projects GenDAI and UPTAKERS

vii

Contents

1 Introduction . 1
Massimo Mecella

2 History of Large Language Models . 13
Francesca De Luzi

3 Large Language Models for Dummies . 33
Marco Calamo and Matteo Marinacci

4 A Reference Framework for Information Systems . 61
Francesca De Luzi and Massimo Mecella

5 Exploring Large Language Models in Information Systems:
A Survey . 77
Filippo Bianchini and Matteo Marinacci

6 Programming Large Language Models . 111
Marco Calamo and Jacopo Rossi

7 Retrieval-Augmented Generation . 139
Filippo Bianchini

8 Large Language Model Agents . 173
Jerin George Mathew and Jacopo Rossi

9 Applications of Large Language Models in Information Systems 207
Jerin George Mathew and Flavia Monti

10 Ethics and Governance of Large Language Models . 233
Gabriele Rendace Presta and Andrea Paolella

11 Epilogue . 285
Massimo Mecella

ix

List of Contributors

Filippo Bianchini
Sapienza Università di Roma, Rome, Italy
e-mail: bianchini@diag.uniroma1.it
Filippo Bianchini is a PhD student in Engineering in Computer Science. With a MSc
in Management Engineering, his research explores advanced applications of large
language models (LLMs), retrieval-augmented generation (RAG), and knowledge
graphs (KG) within information systems.

Marco Calamo
Sapienza Università di Roma, Rome, Italy
e-mail: calamo@diag.uniroma1.it
Marco Calamo is a PhD student in Engineering in Computer Science. His research
interests are Industry 4.0 and large language models.

Francesca De Luzi
Sapienza Università di Roma, Rome, Italy
e-mail: deluzi@diag.uniroma1.it
Francesca De Luzi is a postdoctoral researcher. She earned a BSc in Management
Engineering at the University of Rome Tor Vergata and completed her MSc in
Management Engineering at Sapienza. In 2024, she obtained her PhD in Industrial
and Management Engineering, defending a thesis that highlighted the role of
digital transformation in a hyper-connected world through the analysis of various
application domains. Her recent research has focused on the impact of AI techniques
in organizations.

xi

mailto:bianchini@diag.uniroma1.it
mailto:calamo@diag.uniroma1.it
mailto:deluzi@diag.uniroma1.it

xii List of Contributors

Matteo Marinacci
Sapienza Università di Roma, Rome, Italy
e-mail: marinacci@diag.uniroma1.it
Matteo Marinacci is a PhD student. He earned an MSc in Engineering in Computer
Science. His research focuses on Industry 4.0, with a particular emphasis on
human-in-the-loop systems, optimization of real-world manufacturing processes,
and error detection and recognition in production environments. Currently, he
is exploring how extended reality technologies can assist operators during the
assembly, integration, and testing of complex products, such as satellites, aiming
to improve precision and efficiency in the space industry.

Jerin George Mathew
Sapienza Università di Roma, Rome, Italy
e-mail: mathew@diag.uniroma1.it
Jerin George Mathew is a postdoctoral researcher. He earned a PhD in Artificial
Intelligence in 2025. His research focuses on applying AI techniques to data
cleaning and data management, ranging from entity resolution to fairness.

Flavia Monti
Sapienza Università di Roma, Rome, Italy
e-mail: monti@diag.uniroma1.it
Flavia Monti is a postdoctoral researcher. She earned a PhD in Engineering in
Computer Science in 2025. Her research interests focus on Industry 4.0 and smart
manufacturing, particularly the integration of computer vision, machine learning,
and artificial intelligence to improve production quality, reduce costs, increase
machinery uptime, and achieve zero-defect manufacturing.

Andrea Paolella
Sapienza Università di Roma, Rome, Italy
e-mail: and.paolella@gmail.com
Andrea Paolella is a high school teacher of History and Philosophy. He studied
History of Philosophy at Sapienza Universitá di Roma, where he obtained a PhD in
Documentation Studies, Linguistics, and Literature in 2017.

Gabriele Rendace Presta
Sapienza Università di Roma, Rome, Italy
e-mail: gabrielepresta.doc@gmail.com
Gabriele Rendace Presta is a researcher in digital humanities and teacher of History
and Classics. His main areas of interest include ethical and aesthetic issues related
to digital technologies. He is currently exploring the potential philosophical impact
of these technologies on policy decision-makers.

mailto:marinacci@diag.uniroma1.it
mailto:mathew@diag.uniroma1.it
mailto:monti@diag.uniroma1.it
mailto:and.paolella@gmail.com
mailto:gabrielepresta.doc@gmail.com

List of Contributors xiii

Jacopo Rossi
Sapienza Università di Roma, Rome, Italy
e-mail: j.rossi@diag.uniroma1.it
Jacopo Rossi is a PhD student in Engineering in Computer Science. His research
spans software engineering, information systems, and process mining techniques in
constrained environments (such as satellites).

Massimo Mecella
Sapienza Università di Roma, Rome, Italy
e-mail: mecella@diag.uniroma1.it
Massimo Mecella is a full professor. He conducts research in the fields of infor-
mation systems engineering, service-oriented computing, mobile and pervasive
computing, process management, data and process mining, big data analytics, and
human-computer interaction, focusing on smart applications, environments, and
communities. He was the General Chair of CAiSE 2019, BPM 2021, and ICSOC
2023. In 2025 he became program co-chair of IEEE CAI 2025-IEEE Conference on
Artificial Intelligence. He is currently a member of the Steering Committees of the
conference series CAiSE, ICSOC, and SummerSOC.

mailto:j.rossi@diag.uniroma1.it
mailto:mecella@diag.uniroma1.it

Chapter 1
Introduction

Massimo Mecella

In November 2022, OpenAI launched ChatGPT, a text-generating chatbot based
on a large language model (LLM). This has been the start of a storm.1 OpenAI,
an originally non-profit research organization started in 2015, later embracing a
“capped” for-profit model, had worked on reinforcement learning and Generative
Pre-trained Transformer (GPT) models, in order to develop “safe and beneficial
artificial general intelligence.”2

Since then, the landscape of information systems engineering has been changing.
AI technologies, and specifically LLMs, offer unprecedented opportunities to
support the design, development, and optimization of information systems. Recent
studies have explored various applications, such as conceptual design, software
development, business process extraction, and IS dimensioning using ChatGPT and
similar models. However, these efforts remain fragmented, lacking a comprehensive
and unified framework.

The primary objective of this book is to bridge the existing gaps by offering a
principled and structured perspective on how LLMs can be systematically leveraged
for IS engineering. We present a unifying pipeline, integrating state-of-the-art
research findings with case studies drawn from our research activities. Additionally,

1 Cf. https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/ (link
checked February 2025).
2 A story of OpenAI can be read on https://en.wikipedia.org/wiki/OpenAI (link checked February
2025).

M. Mecella (�)
Sapienza Università di Roma, Rome, Italy
e-mail: mecella@diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 1&domain=pdf
https://doi.org/0000-0002-9730-8882
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://techcrunch.com/2025/02/12/chatgpt-everything-to-know-about-the-ai-chatbot/
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI

 885 56845
a 885 56845 a

mailto:mecella@diag.uniroma1.it
mailto:mecella@diag.uniroma1.it
mailto:mecella@diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1
https://doi.org/10.1007/978-3-031-92285-5_1

2 M. Mecella

we provide a survey of the latest literature and practical implementations, offering
readers a solid foundation to explore and apply these techniques in their own work.

To facilitate practical application, we also provide access to a repository of code
and examples on GitHub,3 allowing readers to experiment with and extend the
methodologies and techniques presented in this book.

Structured as a comprehensive guide, this book is intended for researchers,
practitioners, and students in the fields of information systems, software engineering
and architectures, and business process management. By exploring both theoretical
foundations and practical applications, we aim to equip readers with the knowledge
and tools necessary to harness the power of LLMs in designing, developing, and
optimizing modern information systems. We hope this book serves as a valuable
resource for those looking to navigate and contribute to this rapidly evolving
domain.

Interestingly, we can take ChatGPT and adopt the following prompt.

Explanation Prompt

I need to write an introduction, in English, for a book that originated
from a tutorial, Engineering Information Systems with LLMs and
AI-based Techniques, presented at the CAiSE 2024 conference. I
would like also to have the table of contents of this book.

↪→
↪→
↪→
Here are some details:

Massimo Mecella, PhD in Engineering in Computer Science, is a full
professor at Sapienza, where he is conducting research in the
fields of information systems engineering, software architectures,
distributed middleware and service oriented computing, mobile and
pervasive computing, process management, data and process mining,
big data analytics, advanced interfaces, and human-computer
interaction, focusing on smart applications, environments, and
communities.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

We achieve the following introduction and table of contents (ToC)

Introduction
The rapid advancements in Artificial Intelligence (AI) -- and

particularly the rise of Generative AI through Large Language
Models (LLMs) -- are transforming the landscape of information
systems engineering. LLMs are increasingly being adopted as
powerful tools to support the design, development, and dimensioning
of complex information systems (IS). This book originates from the
tutorial Engineering Information Systems with LLMs and AI-based
Techniques, presented at the CAiSE 2024 conference, which explored
how AI and LLMs can be systematically integrated into the
engineering process of information systems.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

3 https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI.

https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI
https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI
https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI
https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI
https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI
https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI
https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI
https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI
https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/EngIS_LLM_AI

1 Introduction 3

The tutorial was delivered by Massimo Mecella, a prominent figure in
the field of information systems engineering. Prof. Mecella holds a
PhD in Engineering in Computer Science and is a full professor at
Sapienza University of Rome. His research spans a wide range of
areas, including software architectures, distributed middleware and
service-oriented computing, mobile and pervasive computing, process
management, data and process mining, big data analytics, advanced
interfaces, and human-computer interaction -- with a particular
focus on smart applications, environments, and communities. He is
the author of approximately 250 papers, with an h-index of 42, and
has been involved in numerous European and Italian research
projects, including serving as the technical manager of the WORKPAD
and SM4All projects. He has also played a key role in organizing
major scientific events, including serving as the General Chair of
CAiSE 2019, BPM 2021, and ICSOC 2023.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

At present, the adoption of Generative AI for IS engineering remains
fragmented. While there have been recent studies exploring how LLMs
can assist in software development, system evaluation, and business
process extraction, a unified framework is still lacking. The goal
of this book is to provide a structured and comprehensive approach
to integrating LLMs and AI-based techniques into the entire
lifecycle of information systems -- from conceptual design to
deployment and optimization. Drawing on both theoretical
foundations and practical case studies, this book aims to equip
researchers, practitioners, and students with a clear understanding
of how to leverage AI to improve the efficiency, scalability, and
adaptability of modern information systems. This book consolidates
state-of-the-art research and practical insights to provide a
structured and actionable framework for integrating AI and LLMs
into information systems engineering. By bridging the gap between
theory and practice, it offers a valuable resource for researchers,
developers, and decision-makers looking to harness the power of AI
for building more intelligent and adaptable information systems.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Table of Contents

1. Introduction
Background and Motivation
Scope and Objectives of the Book

2. Foundations of AI and LLMs for Information Systems
Overview of AI Techniques
Evolution and Capabilities of Large Language Models
Challenges and Opportunities in IS Engineering

3. LLMs for Information Systems Design
Conceptual Design of Information Systems with LLMs
Requirement Elicitation and Analysis
Design Automation and Optimization with AI

4 M. Mecella

4. LLMs for Software Development and Implementation
Code Generation and Completion
Testing and Debugging with LLMs
AI-Assisted Refactoring and Performance Tuning

5. Business Process Modeling and Analysis with LLMs
Extraction of Process Models from Documents
Process Optimization and Simulation with AI
Automated Business Rule Generation

6. Data and Process Mining with AI
Pattern Recognition and Anomaly Detection
Predictive Analytics and Decision Support
Mining for Process Improvement and Automation

7. Case Studies and Practical Applications
Real-World Examples from Research and Industry
Lessons Learned and Best Practices

8. Ethical and Practical Considerations
Bias and Fairness in AI-Based Systems
Transparency and Interpretability
Human-in-the-Loop and AI Governance

9. Future Directions and Open Challenges
Emerging Trends in Generative AI and IS Engineering
Research Gaps and Opportunities
Roadmap for Future Developments

10. Conclusions
Key Takeaways
Final Reflections and Next Steps

OnGemini (another chatbot based on LLMs, by Google), we achieve this answer:

Introduction

The dawn of Large Language Models (LLMs) has ushered in a paradigm
shift across numerous domains, and Information Systems (IS)
engineering stands poised to benefit immensely from this
transformative technology. This book, stemming from the tutorial
Engineering Information Systems with LLMs and AI-based Techniques
presented at the CAiSE 2024 conference, aims to provide a
comprehensive and practical guide to leveraging the power of LLMs
in the design, development, and dimensioning of modern information
systems.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

1 Introduction 5

In an era defined by rapid technological evolution, the integration of
AI, particularly LLMs, into the IS engineering lifecycle is no
longer a futuristic concept but a present-day necessity. This book
addresses the critical need for a structured and principled
approach to this integration, filling a gap in the existing
literature. While recent studies have explored the potential of
LLMs like ChatGPT for specific IS tasks, a holistic framework that
unifies these efforts has been conspicuously absent.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

This work is grounded in the extensive research and practical
experience of Massimo Mecella, a full professor at Sapienza
University of Rome. Professor Mecella's expertise spans a broad
spectrum of IS engineering, including software architectures,
process management, data analytics, and human-computer interaction,
with a focus on smart applications and environments. His deep
understanding of these domains, coupled with his commitment to
advancing the field, makes him uniquely qualified to guide readers
through the intricacies of LLM-driven IS engineering.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

This book builds upon the foundational knowledge shared during the
CAiSE 2024 tutorial, offering a structured exploration of AI and
Generative AI, with a specific focus on LLMs, through the lens of
IS engineering. It presents recent approaches and applications for
utilizing these technologies in IS design and development,
complemented by real-world case studies from the author's research.
Furthermore, it provides a systematic analysis of existing
literature and practical applications, culminating in a cohesive
pipeline for integrating LLMs into the IS engineering process.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

This book is intended to serve as a valuable resource for researchers,
practitioners, and students seeking to understand and harness the
transformative potential of LLMs in the engineering of information
systems. It provides a roadmap for navigating the evolving
landscape of AI-driven IS development, empowering readers to
leverage these powerful tools effectively.

↪→
↪→
↪→
↪→
↪→

Table of Contents

Chapter 1: Foundations of AI and Generative AI in Information Systems
1.1 Introduction to Artificial Intelligence and Machine Learning
1.2 The Rise of Generative AI and Large Language Models
1.3 LLMs in the Context of Information Systems Engineering
1.4 Key Concepts: Tokenization, Embeddings, and Transformer

Architectures↪→

Chapter 2: LLMs for Conceptual Design of Information Systems
2.1 Requirements Elicitation with LLMs
2.2 Use Case Modeling and Scenario Generation
2.3 Domain Modeling and Ontology Development
2.4 Case Study: Utilizing LLMs for Conceptual Design in a Smart City

Project↪→

6 M. Mecella

Chapter 3: LLMs for Software Development and Code Generation
3.1 Code Generation and Completion using LLMs
3.2 Automated Testing and Debugging with LLMs
3.3 Software Architecture Design and Documentation
3.4 LLMs for API Design and Development

Chapter 4: LLMs for Dimensioning and Performance Evaluation of
Information Systems↪→

4.1 Performance Analysis and Prediction using LLMs
4.2 Resource Allocation and Optimization
4.3 Simulation and Modeling with LLMs
4.4 Case Study: Dimensioning an E-commerce Platform with LLM-based

Analysis↪→

Chapter 5: Extracting Business Process Specifications from Documents
with LLMs↪→

5.1 Natural Language Processing for Process Discovery
5.2 Automatic Extraction of Process Models
5.3 Validation and Refinement of Extracted Processes
5.4 Application in Business Process Management

Chapter 6: A Unifying Framework for LLM-Driven IS Engineering
6.1 Integrating LLMs into the IS Engineering Lifecycle
6.2 Best Practices and Guidelines for LLM Usage
6.3 Addressing Challenges and Limitations
6.4 Future Directions and Research Opportunities

Chapter 7: Case Studies and Practical Applications
7.1 Detailed Examples from Research and Industry
7.2 Real-World Scenarios and Implementation Strategies
7.3 Lessons Learned and Practical Insights

Chapter 8: Conclusion and Future Outlook
8.1 Summarizing Key Findings and Contributions
8.2 The Future of AI and LLMs in Information Systems
8.3 Ethical Considerations and Responsible AI

References

And finally, DeepSeek provides:

1 Introduction 7

Introduction
In the rapidly evolving landscape of information systems engineering,

the integration of Large Language Models (LLMs) and AI-based
techniques has emerged as a transformative force. These
technologies are not only reshaping how we design, develop, and
manage information systems but are also opening new frontiers in
automation, decision-making, and user interaction. This book,
Engineering Information Systems with LLMs and AI-based Techniques,
is born out of a tutorial presented at the CAiSE 2024 conference,
where leading experts and practitioners gathered to explore the
cutting-edge advancements in this field.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Authored by Massimo Mecella, a distinguished full professor at Sapienza
University, this book distills years of research and practical
experience into a comprehensive guide. Professor Mecella's
expertise spans a wide array of domains, including information
systems engineering, software architectures, distributed
middleware, service-oriented computing, mobile and pervasive
computing, process management, data and process mining, big data
analytics, and advanced human-computer interaction. His work has
consistently focused on the development of smart applications,
environments, and communities, making him a pivotal figure in the
intersection of AI and information systems.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

This book is designed to serve as both a foundational text and a
practical resource for researchers, practitioners, and students
alike. It provides a thorough exploration of the theoretical
underpinnings of LLMs and AI-based techniques, while also offering
actionable insights into their application in real-world
information systems. Whether you are a seasoned professional
looking to stay ahead of the curve or a newcomer eager to
understand the potential of these technologies, this book will
equip you with the knowledge and tools needed to navigate the
complexities of modern information systems engineering.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Table of Contents

1. Introduction to Information Systems Engineering
Evolution of Information Systems
The Role of AI in Modern Information Systems
Overview of Large Language Models (LLMs)

2. Foundations of Large Language Models
Understanding LLMs: Architecture and Functionality

Training and Fine-Tuning LLMs
Ethical Considerations and Challenges

3. AI-Based Techniques in Information Systems
Machine Learning and Deep Learning Fundamentals
Natural Language Processing (NLP) Techniques
Integration of AI with Traditional Information Systems

8 M. Mecella

4. Designing Information Systems with LLMs
System Architecture and Design Principles
Data Management and Processing

User Interaction and Experience Design

5. Applications of LLMs in Information Systems
Automated Decision-Making and Support Systems
Process Automation and Optimization
Intelligent Data Analytics and Insights

6. Case Studies and Real-World Applications
Smart Environments and Communities
Industry-Specific Applications (Healthcare, Finance, etc.)
Lessons Learned and Best Practices

7. Future Trends and Directions
Emerging Technologies and Their Impact
The Future of AI in Information Systems
Research Opportunities and Open Challenges

8. Conclusion
Summary of Key Insights
The Path Forward for Information Systems Engineering

9. Appendices
Glossary of Terms
Additional Resources and References
Tools and Frameworks for LLM and AI Integration

The reader is invited to continue reading the book in order to discover the final
table of contents, which has been defined beforehand trying such prompts. We
anticipate that, in the end, most of the topics suggested by the three chatbots are
somehow addressed, even if with different levels of details; specifically, the reader
will notice that our case studies are deeply different from those considered by the
chatbots. We will discuss these aspects in the Epilogue. The reader can be assured
that in this book, we will address all the basic notions of the examples above,
as prompt, text generation, etc. with the focus of an IS engineer, who wants to
adopt such technologies in order to be assisted in the conceptualization, design,
and development of an information system.

Before concluding this introduction, by presenting the organization of the book,
we would like to outline the value chain of generative AI, including LLMs, as shown
in Fig. 1.1, as well as their location shown in Fig. 1.2.

Figure 1.1 shows the main entities involved in the GenAI ecosystem, categorized
into regulatory bodies, computing/infrastructure providers (such as NVIDIA, Intel,
AMD), model developers (like OpenAI, Meta, and Anthropic), code libraries
(e.g., TensorFlow, PyTorch), applications (such as ChatGPT, DALLE 2, Bard),
and services (like Uber and Morgan Stanley). The diagram also highlights the
flow of transactions and information across these different layers. Information
systems engineers (practitioners and researchers) should consider the applications

1 Introduction 9

Fig. 1.1 Players across the GenAI value chain4

Fig. 1.2 Location of major players across GenAI value chain5

and services layer, by investigating either new tools leveraging models for building
new applications (cf. Epilogue) or directly new type of applications and services.

Figure 1.2 provides a geographical distribution of major players in the GenAI
value chain, indicating key hubs like San Francisco (home to OpenAI, Midjourney,
and others), also called “The Cerebral Valley,” Seattle (Microsoft), New York (Hug-
ging Face, Synthesia), London (Stability AI), and Beijing (Baidu). A note mentions
that Europe lags behind the USA in funding, talent pool, and regulatory flexibility.
Both figures emphasize the complex network of companies, organizations, and
services that drive the GenAI landscape globally.

4A. Meige, Z. Huczok, R. Eagar, et al., Generative artificial intelligence: Toward a new civiliza-
tion? Arthur D. Little, 2023. Available at: https://www.adlittle.com/en/insights/report/generative-
artificial-intelligence-toward-new-civilization.
5Cf. previous footnote.

https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization
https://www.adlittle.com/en/insights/report/generative-artificial-intelligence-toward-new-civilization

10 M. Mecella

The book can be read in multiple ways. The reader interested solely in an
introduction to LLMs and a survey of relevant literature can consider Chaps. 2, 3,
4, and 5. Conversely, the researcher and/or practitioner more interested in practical
notions and code development can consider Chaps. 6, 7, 8, and 9. Those readers
interested in our specific research vision and outcomes can consider Chaps. 9 and
11, in which also case studies investigated by us are considered. Multidisciplinary
approaches are considered in Chap. 10, in which ethics and governance of LLMs
are discussed.

Specifically, the chapters are organized as follows:

• Chapter 2, “History of Large Language Models,” presents a historical analysis
of AI evolution, from symbolic AI to generative AI. The chapter explores
key milestones in natural language processing (NLP) and the rise of LLMs. It
presents a timeline of innovations leading to modern language models.

• Chapter 3, “Large Language Models,” for dummies, explains fundamental
concepts behind LLMs in an accessible way. It covers the attention mechanism,
deep learning foundations, and pre-training methods. It also introduces advanced
topics such as fine-tuning and retrieval-augmented generation (RAG).

• Chapter 4, “A Reference Framework for Information Systems,” details the IS
life cycle, from planning to maintenance. It also discusses data analytics and
knowledge management in ISs.

• Chapter 5, “Exploring Large Language Models in Information Systems: A
Survey,” presents a review on LLM applications in ISs. It categorizes research
findings based on the IS life cycle. The chapter identifies emerging trends and
gaps in the current adoption of LLMs.

• Chapter 6, “Programming Large Language Models,” covers the technical aspects
of working with LLMs. It introduces tools and libraries, fine-tuning techniques,
and prompt engineering. The chapter also explores efficient training methods for
LLM-based applications.

• Chapter 7, “Retrieval Augmented Generation,” provides an in-depth explana-
tion of RAG, a technique that combines information retrieval with language
generation. The chapter details the retrieval phase, generation mechanisms, and
real-world applications. It includes practical implementations using LlamaIndex
and LangChain.

• Chapter 8, “Large Language Model Agents,” covers key components like
memory, planning, and tools. It also presents multi-agent systems.

• Chapter 9, “Applications of Large Language Models in Information Systems,”
presents our applications of LLMs in IS Engineering, including industrial data
retrieval and process automation. The chapter introduces architectures such as
COSMADS and NL2ProcessOps. Practical case studies illustrate the impact of
LLMs in different domains.

• Chapter 10, “Ethics and Governance of Large Language Models,” provides a
discussion on the ethical implications and governance frameworks for LLMs.
The chapter analyzes different regulatory approaches across countries. It also
covers key principles for responsible AI deployment.

1 Introduction 11

• Chapter 11, “Epilogue,” is a reflective conclusion summarizing the book’s
insights and key takeaways. The chapter discusses open challenges in IS
Engineering with LLMs. It also provides future research directions and final
thoughts from the authors.

Chapter 2
History of Large Language Models

Francesca De Luzi

Abstract This chapter explores the historical development of artificial intelligence
(AI) and natural language processing (NLP), focusing on the evolution of language
modeling. We begin by outlining the foundations of AI, from symbolic approaches
to the emergence of sub-symbolic approaches such as machine learning (ML)
and deep learning (DL). We examine NLP advancements, distinguishing between
natural language understanding (NLU) and natural language generation (NLG) and
highlighting the innovative role of the transformers architectures. The chapter then
delves into the progression of language models (LMs), from early statistical LMs
to neural LMs and the modern era of large language models (LLMs). We present a
historical timeline of key LLMs—including GPT, PaLM, and LLaMA—alongside
their technological milestones, shedding light on their increasing scale, capabilities,
and impact.

2.1 Artificial Intelligence

The term artificial intelligence (AI) originated in the summer of 1956 when the
congress titled “The Dartmouth Summer Research Project on Artificial Intelligence”
organized by John McCarthy took place in Hanover. AI was defined as the science
and engineering of making intelligent machines, especially intelligent computer
programs. It is related to the similar task of using computers to understand human
intelligence, but AI does not have to confine itself to methods that are biologically
observable [30].

Since then, the history of AI has been characterized by many ups and downs.
Significant accelerations have been observed in the development of increasingly
sophisticated mathematical models designed to mimic certain brain functions.
However, progress was hindered by challenges related to hardware development.

F. De Luzi (�)
Sapienza Università di Roma, Rome, Italy
e-mail: deluzi@diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 2&domain=pdf
https://doi.org/0000-0002-9896-2528

 885 56845 a 885 56845 a

mailto:deluzi@diag.uniroma1.it
mailto:deluzi@diag.uniroma1.it
mailto:deluzi@diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2
https://doi.org/10.1007/978-3-031-92285-5_2

14 F. De Luzi

In 1966, Joseph Weizenbaum published ELIZA,1 which is considered a mile-
stone in the evolution of AI. However, during its development, natural language
processing was a challenging task, requiring substantial effort and innovation. In
the same year, researchers developed “Shakey,” the first mobile robot capable of
perceiving and reasoning about its surroundings. Despite the successes achieved
by early artificial neural networks, to which he himself had contributed, Marvin
Minsky, together with Seymour Papert, highlighted their limitations in 1969, as was
also the case with ELIZA. Subsequently, there was a significant reduction in funding
for research on artificial neural networks, marking the beginning of the first so-called
AI winter.

The evolution of AI continued, with a particular focus on symbolic logic.
During the 1970s, the first expert systems, characterized by if-then and rule-based
reasoning approaches, were created, gaining significant traction in the following
decades where computers from Apple and IBM outperformed them also being more
affordable, aligning with Moore’s Law.2

By the end of the 1980s, the collapse of the entire sector occurred, initiating
the second “AI winter.” Interest in AI research significantly declined until the
2000s, which was marked by substantial improvements in computer performance.
Specifically, renewed interest in neural networks and machine learning emerged,
driven by the availability of more powerful hardware and abundant data. Computers
have become increasingly powerful, more affordable, and equipped with access to
public clouds and, most importantly, superior GPUs (graphics processing units)
that enable significant computational capacity to process the huge amount of data
exponentially growing nowadays.

Nowadays, we are living in the boom of AI (also known as the “AI spring”),
which refers to the ongoing period of unprecedented development in the AI
field. Central to this boom is the rapid advancement in generative AI, an area
of AI gaining popularity with the development of new deep learning models.
Figure 2.1 illustrates the categorization of AI into two main branches: symbolic
and sub-symbolic AI. Symbolic AI relies on rule-based systems to derive logical
conclusions, while sub-symbolic AI focuses on learning patterns from data. Sub-
symbolic AI encompasses machine learning (ML), its subset deep learning (DL),
and the more recent generative AI (GAI), as explained in the following sections.

1 ELIZA is a chatbot, i.e., software designed to simulate a conversation with a human, intended to
behave like a psychotherapist (https://web.njit.edu/~ronkowit/eliza.html).
2 Proposed by Gordon Moore, co-founder of Intel, in 1965, the law observes that the number of
transistors on a microchip doubles approximately every two years, leading to exponential growth
in computing power while reducing relative costs.

https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html

2 History of Large Language Models 15

F
ig
. 2

.1

A
I

ap
pr

oa
ch

es

16 F. De Luzi

2.1.1 Symbolic AI

The classical approach to AI involves the use of formal languages that automatically
apply logical inference rules. This approach aimed to build intelligent machines
through programs that employ logical rules [36]. The focus was initially on tasks
similar to those performed by humans using computers to understand human
intelligence. Techniques falling into this category rely on explicit symbolic methods,
such as formal methods and programming languages, and are primarily used for
deductive knowledge. They involve first-order logic rules, as well as other methods
like ontologies, decision trees, planning, and reasoning. Symbolic AI is often
associated with knowledge bases and expert systems. One key feature of symbolic
methods is their ability to explain and reason about conclusions, with intermediate
steps being easily understandable. The human-readable computation flow makes
these systems easier to debug, explain, and control. Furthermore, thanks to the
modular structure of rules, they allow the insertion or removal of discrete and
autonomous knowledge units from a knowledge base, promoting rule modularity.
Knowledge interoperability in closely related applications is also facilitated, and
they are suitable for abstract problems, as they are not highly dependent on input
data.

However, symbolic methods face challenges in cases where datasets exhibit
data quality issues and noise, leading to suboptimal results and weaknesses, in
addition to difficulties in maintaining rule bases that require complex verification
and validation processes. In terms of applications, symbolic methods excel in well-
defined and static problems, but they struggle with real-time dynamic assessments
and handling massive empirical data streams. Examples of symbolic AI include
logic [35], planning [10], and gameplay [15].

2.1.2 Sub-symbolic AI

Over time, it became apparent that AI’s real challenge was acquiring knowledge by
extracting patterns from raw external data. This capacity for automatic learning was
termed machine learning (ML). ML is defined as software that creates algorithms
that improve its performance over time, measured within a specific task, after
undergoing a series of experiences. The goal was for AI to learn to solve problems
that humans intuitively solve automatically, such as recognizing words or faces in
images, activities that cannot be precisely described mathematically. Sub-symbolic
AI includes statistical learning methods, such as Bayesian learning, deep learning
(DL), backpropagation, and genetic algorithms.

2 History of Large Language Models 17

2.1.2.1 Machine Learning

ML refers to a set of mechanisms within the realm of AI that enable an intelligent
machine to learn and optimize their performance autonomously by creating self-
adaptive algorithms that derive knowledge from data [34]. These algorithms are
designed to adapt and improve their performance as they process increasing
amounts of data. Training data is crucial for ML, and its quality determines the
system’s accuracy and resilience to biases or distortions. There are three basic ML
paradigms [34]:

• Supervised learning: it relies on algorithms trained to provide desired results
by learning from a set of input labeled data, where each input is paired with a
corresponding output. It is commonly used for classification tasks or to predict
specific behaviors. Once trained, the algorithm can generalize from the provided
data to make accurate predictions on new, unseen data.

• Unsupervised learning: in this approach, algorithms operate without explicit
guidance from humans regarding the desired output. Instead, it autonomously
identifies patterns, structures, and relationships within the data. The primary
objective is to discover hidden or previously unknown relationships that may go
over human deductive abilities. While unsupervised learning still relies on data,
it differs from supervised learning as the input data is unlabeled, meaning it lacks
annotations.

• Reinforcement learning: this technique enables a machine to make sequential
decisions to solve a problem. In this case, algorithms function much like a game,
where each action is associated with a reward or penalty based on feedback from
its environment. While the system receives feedback, it is not provided with
explicit instructions on how to achieve its objective. Instead, it learns through
trial and error, gradually discovering strategies to maximize cumulative rewards.
This approach is particularly effective in scenarios with limited data, where the
system’s current state influences future decisions.

2.1.2.2 Deep Learning

DL is a subcategory of ML and refers to a family of techniques within AI that are
inspired by the structure and function of the brain [23]. These techniques are widely
applied in areas such as computer vision, audio and speech recognition, and natural
language processing.

A key feature of DL is the usage of algorithms with multiple layers of non-
linear hidden units. These layers are used in cascade to perform tasks that can be
classified as problems of transforming features extracted from the data. Each layer
uses the output of the preceding layer as input. They incorporate multiple layers of
representation, which can be conceptualized as various levels of abstraction, thereby
forming a hierarchy of concepts.

18 F. De Luzi

DL algorithms simulate certain mechanisms of the human brain, enabling
machines not only to learn autonomously and not only as ML systems do but also at
multiple levels of abstraction. While DL systems require significant computational
resources, their ability to scale with increasing data and complexity distinguishes
them from traditional ML, which often reach limitations in performance despite
additional data. DL systems improve their performance as data increases, whereas
ML applications, once a certain level of performance is reached, are not scalable
even with additional examples and training data added to the neural network.

Training a DL system typically involves the use of labeled data, which helps
guide the learning process by providing clear examples of inputs and corresponding
desired outputs.

DL is already applied in various fields today. Examples include self-driving cars,
drones, and robots used for parcel delivery or emergency management. Furthermore,
facial recognition [16] and predictive maintenance [41] are among the most relevant
emerging applications.

2.1.3 Toward Generative AI

Generative artificial intelligence (GAI) represents a major step further in machines’
ability to create innovative content autonomously. Unlike traditional approaches
such as ML and DL, which focus on modeling the relationship between input
features and output labels, GAI learns the intrinsic data structure and generation
processes [17]. As defined by [51], GAI consists of a set of algorithms designed
to learn the distribution of a dataset so that its underlying patterns can be
characterized and samples that resemble the original data can be generated. One
distinctive feature of GAI is its reliance on prompts as a means of interaction. Users
can engage with these models using natural language, instructing them to produce
desired outputs. This encourages users to employ a trial-and-error approach, refining
their input to achieve the intended results. Prompt engineering, an emerging field,
focuses on systematically designing and refining prompts to optimize the quality
and relevance of generated outputs. These systems, often embodied by models such
as LLMs, possess the capability to generate diverse and creative outputs.

The applications of GAI span across various domains, revolutionizing sectors
such as education, healthcare, manufacturing, retailing, and banking. In addition,
it is not confined to a singular modality; instead, GAI can create diverse content,
including text, images, videos, code, sound, and even complex structures like
molecules or 3D renderings. In the context of content creation, tools like ChatGPT3

are pivotal, in efficiently producing text. Image generation capabilities span from
creating abstract art to enhancing image quality by reducing noise. Notably, GAI

3 ChatGPT is an AI-based chatbot model developed by OpenAI that specializes in conversations
with a human user.

2 History of Large Language Models 19

extends to code generation, automating tasks such as developing Website templates
or entire software applications. Additionally, it plays a role in speech-to-speech
conversion, facilitating real-time language translation, and contributes to audio
generation, enabling the creation of music, sound effects, and voice-overs. In
addition, GAI is valuable in generating synthetic data, especially when authentic
data is limited, providing unique datasets for training ML models.

2.2 Natural Language Processing (NLP)

Natural language processing (NLP) forms the foundation for GAI in language
understanding and generation. While NLP focuses on analyzing, interpreting, and
processing human language, GAI builds on these advancements to autonomously
produce coherent and contextually relevant text. The evolution of NLP techniques,
particularly through DL, has led to powerful language models that drive modern
generative systems. This synergy has enabled breakthroughs in applications such as
machine translation, text summarization, and conversational agents.

Specifically, NLP is the field of research and application concerning the under-
standing and production of written texts in natural language. According to [26],
NLP is defined as a theoretically motivated range of computational techniques
for analyzing and representing naturally occurring texts, at one or more levels of
linguistic analysis for the purpose of achieving humanlike language processing
for a range of tasks or applications. Impressive progress has been made in NLP,
surpassing what many previously thought was impossible. The pivotal shift in
NLP occurred with the introduction of methods capable of acquiring robust,
versatile representations of text from extensive self-supervised textual datasets. This
breakthrough enabled the transfer of such representations to various tasks, leading to
significant strides in both language understanding and generation. These techniques
rely on the fundamental principle that the meaning of a word is intricately linked to
the context in which it appears. This principle underpins learning tasks that do not
require annotated data and is closely tied to the challenge of language modeling.

As mentioned, NLP enables the understanding and generation of natural lan-
guage. Techniques for understanding human language are referred to as natural
language understanding (NLU), while generative techniques are called natural
language generation (NLG) [21].

2.2.1 Natural Language Understanding (NLU)

The primary goal of NLU is to process and interpret natural language contained in
documents and texts. NLU encompasses a set of techniques and methodologies to
extract meaning, structured information, and semantic relationships from unstruc-

20 F. De Luzi

tured texts. Below are among the most commonly used NLU techniques we can
find:

• Part-of-speech tagging: identifies parts of speech (nouns, verbs, adjectives)
within sentences.

• Named entity recognition: identifies and classifies entities such as person names,
locations, organizations, dates, and more.

• Text classification: assigns a document or a sentence to one or more categories.
For example, this technique is used for emotion detection, identifying the main
topic of a speech, and recognizing spam emails.

2.2.2 Natural Language Generation (NLG)

The primary goal of NLG, also referred to as text generation, is to create an end-
to-end solution with minimal human intervention by automatically learning an
input-to-output mapping from the data [25]. In essence, NLG involves the process
of finding the optimal sequence of words or tokens that can be generated based
on a given source of information. This is typically achieved by determining the
conditional probability of each token in the generated sequence, given the previous
tokens and the source sequence. The final goal is to find the sequence that maximizes
the probability of generating the desired output.

2.2.2.1 Language Modeling

Given the importance of tokens’ conditional distribution in text generation, the (pre-
trained) language model has acquired a central role in NLG in the last decade [25].
A language model is a statistical model whose objective is to learn a function to
estimate the probability of a particular sequence of tokens. After the training of
a language model is completed, the learned probability distributions can be used
directly for text generation, which involves generating the next word in a sentence
based on the probabilities estimated by the language model [39]. Alternatively,
the language model can be fine-tuned on a small dataset to adapt it for a specific
supervised task. The latter is the main idea behind the usage of the PLM [25].

2.2.2.2 Transformers

The paradigm of NLG has been deeply influenced by encoder-decoder models
[9]: the encoder maps the input sequence into fixed-size low-dimensional vectors,
known as input embeddings; the decoder then generates a target text based on
these embeddings. Unlike earlier statistical approaches that relied heavily on
explicit feature engineering, encoder-decoder architecture can extract the important

2 History of Large Language Models 21

features automatically during training [25]. This makes it easier to capture complex
relationships between inputs and outputs, resulting in better performance on text
generation tasks.

Among the various encoder-decoder architectures, transformers [52] have proven
to be particularly successful in learning precise latent feature representations4 for
language modeling [9]. Both the encoder and decoder of the original transformer
can be described as composed by the repetition of identical blocks. The encoder’s
block has a multi-head self-attention module and a position-wise feed-forward net-
work [27]. The encoder has the task of mapping the input to a latent representation
of the whole sequence [52]. The decoder block has cross-attention modules added
between the multi-head self-attention modules and the position-wise feed-forward
networks (FFNs), and its task is to transform the latent representation in the desired
target [27]. A key mechanism in transformers is the attention mechanism.5 This
mechanism enables the model to dynamically weigh different words in the input
sequence, improving its ability to capture long-range dependencies and contextual
information effectively.

2.3 Stages of LMs

In this section, we explore the stages of LMs, providing a brief introduction to the
different models. Figure 2.2 illustrates a visual representation of the history of LMs
development [7, 54].

2.3.1 Statistical Language Models

Statistical Language Models (SLM) [18, 40, 43] emerged in the 1990s, leveraging
statistical learning methods to predict word sequences based on Markov’s assump-
tion. This principle states that the prediction of the next word depends only on the
most recent context. The resulting models, known as n-gram models, define fixed-
length contexts for their predictions. They suffer from a fundamental limitation
known as the “curse of dimensionality.” As the model order increases, the number of
possible word combinations grows exponentially, making it challenging to estimate
transition probabilities accurately and store them.

4 A latent feature representation refers to the underlying, hidden characteristics or variables within
a dataset that are not directly observed but are inferred from the available data through patterns,
relationships, or statistical methods.
5 Attention is a technique that allows the model to focus on the most relevant parts of the
input sequence while processing it. In transformers, self-attention computes attention scores that
determine how much each word in the input should contribute to the representation of another
word, enabling the model to capture dependencies regardless of distance.

22 F. De Luzi

F
ig
. 2

.2

H
is

to
ry

 a
nd

 d
ev

el
op

m
en

t o
f

la
ng

ua
ge

 m
od

el
s

2 History of Large Language Models 23

2.3.2 Neural Language Models

Neural language models (NLM) represented a paradigm shift by incorporating
neural networks to model the probability of word sequences [22, 32]. A significant
contribution in this field was the introduction of distributed word representations
[3], which enabled the prediction function to be conditioned on aggregated context
features, represented as distributed vectors. This approach allowed the development
of unified, end-to-end solutions for a broad range of NLP tasks. Another example is
the word2vec model [33], which used a shallow neural network to learn distributed
word representations. These word vectors demonstrated great effectiveness in
capturing both the meaning and structure of language, representing a significant
advancement in NLP applications.

2.3.3 Pre-trained Language Models

Pre-trained Language Models (PLM) revolutionized NLP by introducing the “pre-
training and fine-tuning” paradigm. The advent of models like ELMo [37] and
ULMFiT [14], based on long short-term memory (LSTM) networks [13], pioneered
this approach. ELMo introduced dynamic, task-specific word representations, while
ULMFiT focused on layer-wise fine-tuning of the language model, adding classifier
layers. These models highlighted the power of using large pre-training datasets
along with flexible architectures. This foundational work paved the way for later
innovations like BERT [8], which further refined the paradigm with transformer
architectures and novel pre-training tasks such as masked language modeling
(MLM), establishing a new standard for representation learning in NLP.

2.3.4 Large Language Models

Large language models represent the latest evolution of PLMs, with a focus on
scalability both in terms of model size and the volume of training data. Based
on observed trends, increasing the number of model parameters and the size
of the dataset leads to notable improvements in performance on various tasks.
For example, GPT-3 [5], with its 175 billion parameters, demonstrated emergent
abilities such as in-context learning, which allows it to perform tasks without
requiring explicit task-specific training, solving complex problems with minimal
instructions. These capabilities set LLMs apart from their smaller predecessors, like
GPT-2 [39] or BERT, and have garnered significant attention within the AI research
community. The popularity of LLMs has been further increased with practical
applications like ChatGPT, which fine-tuned the GPT series for conversational tasks.
The main LLMs so far are shown in Fig. 2.3. We present below the three most

24 F. De Luzi

Fig. 2.3 Popular LLMs

popular LLMs families currently used by users, as well as an overview of their
features in Table 2.1.

2.3.4.1 Generative Pre-trained Transformer (GPT) Family

Developed by OpenAI, GPT was first introduced with GPT-1 [38] in 2018 and had
117 million parameters. In 2019 it was followed by GPT-2 [39], which boasted
1.5 billion parameters, significantly surpassing the learning capabilities of GPT-1,
thanks also to training on a much larger dataset. In 2020 OpenAI releases GPT-3
[5], which has revolutionized AI reaching 175 billion parameters. The GPT models
are based on the Transformer architecture and are designed as generative language
models. As the series progressed, the models grew in size and capabilities. GPT-3
quickly became the focal point for research on LLMs and served as the foundation
of ChatGPT software, released in November 2022 by OpenAI. Released in March
2022, GPT-3.5 augmented the system’s capabilities, becoming more streamlined
and less costly.

2 History of Large Language Models 25

Table 2.1 Overview of popular LLM families

Type Model #Parameters Release Open source Training dataset

GPT
family

GPT-1 120M 2018 � BooksCorpus

GPT-2 1.5B 2019 � Reddit outbound

GPT-3 125M, 350M,
760M, 1.3B,
2.7B, 6.7B,
13B, 175B

2020 X Common Crawl
(filtered),
WebText2,
Books1, Books2,
Wikipedia

GPT-4 1.76T 2023 X –

PaLM
family

PaLM 8B, 62B, 540B 2022 X Web documents,
books, Wikipedia,
conversations,
GitHub code

PaLM-2 340B 2023 � Web documents,
books, code,
mathematics,
conversational
data

Med-PaLM 540B 2022 X HealthSearchQA,
MedicationQA,
LiveQA

LLaMA
family

LLaMA1 7B, 13B, 33B,
65B

2023 � Online sources

LLaMA2 7B, 13B, 34B,
70B

2023 � Online sources

Alpaca 7B 2023 � GPT-3.5

Vicuna 13B 2023 � GPT-3.5

LLaMA3 8B, 70B 2024 � Online sources

LLaMA3.1 8B, 70B, 405B 2024 � Online sources

LLaMA3.2 1B, 3B 2024 � Online sources

LLaMA3.3 70B 2024 � Online sources

Other
LLMs

DeepSeek-Coder 1.3B, 6.7B,
33B

2023 � GitHub’s
Markdown and
StackExchange

DeepSeek–LLM 7B, 67B 2024 � GitHub’s
Markdown and
StackExchange

DeepSeek-V2 236B (total),
21B (active)

2024 � Internet data

DeepSeek-V3-Base 671B (total),
37B (active)

2024 �

DeepSeek-R1 671B (total),
37B (active)

2025 �

(continued)

26 F. De Luzi

Table 2.1 (continued)

Type Model #Parameters Release Open source Training dataset

Mistral-7B 7B 2023 � Instruction dataset

Mixtral-8x7B 46.7B 2024 � Instruction dataset

Gemma 1 2B, 7B 2024 � English data from
Web documents,
mathematics, and
code

Gemma 2 2B, 9B, 27B 2024 � English data from
Web documents,
code, and science
articles

Qwen 1.8B, 7B, 14B 2023 � Public Web
documents,
encyclopedia,
books, codes

Qwen2.5-Max 0.5B, 1.5B, 3B,
7B, 14B, 32B,
72B

2025 � Qwen2.5-
Math, Qwen2.5-
Coder, synthetic
data (mathematics,
code)

More recently, OpenAI presented GPT-4 [1] in March 2023. Unlike previous
models, OpenAI has not publicly stated the number of parameters of the GPT-4,
which is estimated at about one trillion. In addition to a larger number of parameters,
this model has been trained on an even more diversified and extended dataset,
through the introduction of zero-shot and one-shot learning capabilities, allowing
the model to perform tasks with few or no examples provided, thus making GPT-4
more humanlike than any previous GPT model. In addition, GPT-4 has the ability
to use computer vision to interpret visual data and accepts both text and images
as input. GPT-4o, released in May 2024, represents the latest advance in OpenAI
language models and offers more concise and disciplined answers, better structured
explanations, and a particular improvement in creative writing activities.

2.3.4.2 Pathways Language Model (PaLM) Family

The PaLM family are developed by Google and are largely closed source, offering
limited public access but contributing significantly to advancements in few-shot
learning and complex reasoning tasks. PaLM was trained using a combination of
English and multilingual data, including high-quality Web pages, books, Wikipedia,
conversations, and code from GitHub.

The first PaLM [6] model was launched in 2022 (540 billion parameters), but
only thanks to PaLM-2 [2] (340 billion parameters), the model behind Google Bard,
the provider proves able to offer conversational features similar to ChatGPT. Google
Bard is an experimental conversational AI service, previously based on the LaMDA

2 History of Large Language Models 27

[48] model (137 billion parameters), and released in March 2023. After LaMDA,
Google decided to move to the more advanced PaLM-2 model for its AI products.
Bard was renamed to Gemini on February 8, 2024 (Gemini was already the LLM
that powered Bard). With the move from Gemini 1.0 [44] to Gemini 1.5 [45], the
model has improved its ability to handle extended contexts and optimized language
performance. The latest version, Gemini 2.0,6 represents a significant technological
leap, with improvements in speed, accuracy, and functionality.

Google also introduced Minerva [24], a language model based on PaLM that
solves mathematical and scientific problems by explaining the process through
formulas and text. Another model from the PaLM family is Med-PaLM [42], a
variant of PaLM-2 trained on a set of medical data, previously verified and screened,
which Google plans to implement in a product dedicated to providing medical
information.

2.3.4.3 Large Language Model Meta AI (LLaMA) Family

LLaMA is a collection of open-source language models developed by Meta. Unlike
GPT models, these models’ weights are published to the research community
in a non-commercial, licensed format. The LLaMA models are auto-regressive
decoder-only models, and they are based on transformer architecture with some
modifications and were trained using 15 trillion text tokens collected from public
sources. The first group of LLaMA models was released in 2023, starting with
LLaMA 1 [49] (65 billion parameters), LLaMA 2 [50] (70 billion parameters), and
LLaMA 3 [31] in 2024 (70 billion parameters). The latest version is Llama 3.3,7

released in December 2024, and it is a text-only instruction tuned model that offers
improved performance compared to previous Llama 3.1 and Llama 3.2, especially
when used for text-only applications. Llama 3.3 is therefore only provided as an
instruction-tuned model; a pretrained version is not available. The main feature is
that all the LLaMA models are open source, anyone can download LLaMA and use
it locally, and developers and researchers can access the source code and customize
it to meet specific needs.

2.3.4.4 Other Representative LLMs

In addition to the models discussed in the previous sections, other popular LLMs do
not belong to these three families but have achieved remarkable performance and
pushed the LLM field forward. We briefly describe these LLMs in this subsection.

6 https://blog.google/technology/google-deepmind/.
7 https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/.

https://blog.google/technology/google-deepmind/
https://blog.google/technology/google-deepmind/
https://blog.google/technology/google-deepmind/
https://blog.google/technology/google-deepmind/
https://blog.google/technology/google-deepmind/
https://blog.google/technology/google-deepmind/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/_llama3_3/

28 F. De Luzi

• DeepSeek-R1 is an open-source model based on reinforcement learning tech-
niques, developed by the Chinese company DeepSeek, and offers emerging
self-reflection capabilities, making it a valuable resource, thanks to its acces-
sibility and flexibility. In 2023 DeepSeek released the first series of models,
DeepSeek-Coder [12] and DeepSeek-LLM [4], while in 2024 it released the
series DeepSeek-V2 [28], DeepSeek-V3-Base [29], and DeepSeek-R1 [11]. In
January 2025, it released its first free chatbot app, based on the DeepSeek-R1
model, surpassing ChatGPT as the most downloaded free app on the iOS App
Store in the USA.

• Mixtral-8x7B [20] is the second LLM released by mistral.ai, after Mistral-7B
[19], a decoder-only transformer trained on a smaller set of data (7 billion
parameters). Instead, Mixtral is a Mixture-of-Experts (MoE) model that activates
only part of the parameters during inference, making it more efficient than models
of the same size.

• Gemma is a new set of open models based on a decoder transformer and has
been pre-trained on large datasets. Gemma 2 [47] is available in sizes 9B and
27B, while Gemma 1 [46] is available in sizes 2B and 7B. It is text-to-text LLM,
decoders with pre-trained and tuned variants on the instructions. Gemma is not
as large and powerful as the popular AI models (like OpenAI’s ChatGPT-4 and
Google’s Gemini), but it is a lightweight compact model that can work on laptops
or desktops because they have faster inference speeds and lower computational
demands.

• Qwen is a series of open-source decoder-only models, pre-trained on over
2.2 trillion tokens and consisting of different model sizes. The Qwen models
are developed by Chinese giant Alibaba and feature new neural architectures
that improve written and spoken language processing as well as reasoning
and contextual understanding. The latest model, Qwen2.5-Max [53], stands out
for its multimodality, so it is able to understand both text and images and
generate video content, and it has been pre-trained on over 20 trillion tokens and
further post-trained with reinforcement learning from human feedback (RLHF)
methodologies.

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv preprint
arXiv:2303.08774 (2023)

2. Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E.,
Bailey, P., Chen, Z., et al.: Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023)

3. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: T.K. Leen,
T.G. Dietterich, V. Tresp (eds.) Advances in Neural Information Processing Systems 13, Papers
from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA, pp. 932–938.
MIT Press (2000)

2 History of Large Language Models 29

4. Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C., Ding, H., Dong, K., Du, Q., Fu, Z.,
et al.: Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint
arXiv:2401.02954 (2024)

5. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Adv. Neural
Inf. Process. Syst. 33, 1877–1901 (2020)

6. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H.W., Sutton, C., Gehrmann, S., et al.: Palm: Scaling language modeling with pathways. J.
Mach. Learn. Res. 24(240), 1–113 (2023)

7. Chu, Z., Ni, S., Wang, Z., Feng, X., Li, C., Hu, X., Xu, R., Yang, M., Zhang, W.:
History, development, and principles of large language models-an introductory survey. CoRR
abs/2402.06853 (2024)

8. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR abs/1810.04805 (2018)

9. Dong, C., Li, Y., Gong, H., Chen, M., Li, J., Shen, Y., Yang, M.: A survey of natural language
generation. ACM Comput. Surv. 55(8), 1–38 (2022)

10. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Automated
Planning. Morgan & Claypool Publishers (2013)

11. Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi,
X., et al.: Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948 (2025)

12. Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y.,
et al.: Deepseek-coder: When the large language model meets programming—the rise of code
intelligence. arXiv preprint arXiv:2401.14196 (2024)

13. Hochreiter, S.: Long Short-Term Memory. Neural Computation MIT-Press (1997)
14. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. arXiv

preprint arXiv:1801.06146 (2018)
15. Hsu, F.H.: Behind Deep Blue: Building the Computer that Defeated the World Chess

Champion. Princeton University Press (2022)
16. Hu, G., Yang, Y., Yi, D., Kittler, J., Christmas, W., Li, S.Z., Hospedales, T.: When face

recognition meets with deep learning: an evaluation of convolutional neural networks for
face recognition. In: Proceedings of the IEEE international conference on computer vision
workshops, pp. 142–150 (2015)

17. Jebara, T., Jebara, T.: Generative versus discriminative learning. Machine learning: discrimi-
native and generative, pp. 17–60 (2004)

18. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press (1998)
19. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., Casas, D.d.l., Bressand,

F., Lengyel, G., Lample, G., Saulnier, L., et al.: Mistral 7b. arXiv preprint arXiv:2310.06825
(2023)

20. Jiang, A.Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot,
D.S., Casas, D.d.l., Hanna, E.B., Bressand, F., et al.: Mixtral of experts. arXiv preprint
arXiv:2401.04088 (2024)

21. Khurana, D., Koli, A., Khatter, K., Singh, S.: Natural language processing: state of the art,
current trends and challenges. Multimedia Tools Appl. 82(3), 3713–3744 (2023)

22. Kombrink, S., Mikolov, T., Karafiát, M., Burget, L.: Recurrent neural network based language
modeling in meeting recognition. In: 12th Annual Conference of the International Speech
Communication Association, INTERSPEECH 2011, Florence, Italy, August 27-31, 2011, pp.
2877–2880. ISCA (2011)

23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
24. Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E., Michalewski, H., Ramasesh, V., Slone,

A., Anil, C., Schlag, I., Gutman-Solo, T., et al.: Solving quantitative reasoning problems with
language models. Adv. Neural Inf. Process. Syst. 35, 3843–3857 (2022)

25. Li, J., Tang, T., Zhao, W.X., Nie, J.Y., Wen, J.R.: Pretrained language models for text
generation: A survey. ACM Comput. Surv. 56(9), 1–39 (2022)

30 F. De Luzi

26. Liddy, E.D.: Natural language processing. In: Encyclopedia of Library and Information
Science, 2nd edn. Marcel Decker, Inc., NY (2001)

27. Lin, T., Wang, Y., Liu, X., Qiu, X.: A survey of transformers. AI Open 3, 111–132 (2021)
28. Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C., Dengr, C., Ruan, C., Dai, D., Guo, D.,

et al.: Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model.
arXiv preprint arXiv:2405.04434 (2024)

29. Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C.,
et al.: Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437 (2024)

30. McCarthy, J.: What is artificial intelligence? (2004). Available at https://www-formal.stanford.
edu/jmc/whatisai.pdf

31. Meta: Introducing meta llama 3: The most capable openly available llm to date (2024). https://
ai.meta.com/blog/meta-llama-3/. Accessed: 2025-01-31

32. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent neural network
based language model. In: T. Kobayashi, K. Hirose, S. Nakamura (eds.) 11th Annual
Conference of the International Speech Communication Association, INTERSPEECH 2010,
Makuhari, Chiba, Japan, September 26–30, 2010, pp. 1045–1048. ISCA (2010)

33. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: C.J.C. Burges, L. Bottou, Z. Ghahramani,
K.Q. Weinberger (eds.) Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting held
December 5–8, 2013, Lake Tahoe, Nevada, United States, pp. 3111–3119 (2013)

34. Mitchell, T.: Machine Learning, vol. 1. McGraw Hill, New York (1997)
35. Newell, A., Simon, H.: The logic theory machine–a complex information processing system.

IRE Trans. Inf. Theory 2(3), 61–79 (1956)
36. Newell, A., Simon, H.A.: Computer science as empirical inquiry: Symbols and search.

Commun. ACM 19(3), 113–126 (1976)
37. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep

contextualized word representations. In: M.A. Walker, H. Ji, A. Stent (eds.) Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 2227–2237. Association for Computational
Linguistics (2018)

38. Radford, A.: Improving Language Understanding by Generative Pre-training. Princeton Uni-
versity Press (2018)

39. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models
are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

40. Rosenfeld, R.: Two decades of statistical language modeling: where do we go from here? Proc.
IEEE 88(8), 1270–1278 (2000)

41. Serradilla, O., Zugasti, E., Rodriguez, J., Zurutuza, U.: Deep learning models for predictive
maintenance: a survey, comparison, challenges and prospects. Appl. Intell. 52(10), 10934–
10964 (2022)

42. Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A.,
Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. arXiv
preprint arXiv:2212.13138 (2022)

43. Stolcke, A.: SRILM - an extensible language modeling toolkit. In: J.H.L. Hansen, B.L.
Pellom (eds.) 7th International Conference on Spoken Language Processing, ICSLP2002 -
INTERSPEECH 2002, Denver, Colorado, USA, September 16-20, 2002, pp. 901–904. ISCA
(2002)

44. Team, G., Anil, R., Borgeaud, S., Alayrac, J.B., Yu, J., Soricut, R., Schalkwyk, J., Dai, A.M.,
Hauth, A., Millican, K., et al.: Gemini: a family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805 (2023)

45. Team, G., Georgiev, P., Lei, V.I., Burnell, R., Bai, L., Gulati, A., Tanzer, G., Vincent, D., Pan,
Z., Wang, S., et al.: Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context. arXiv preprint arXiv:2403.05530 (2024)

https://www-formal.stanford.edu/jmc/whatisai.pdf
https://www-formal.stanford.edu/jmc/whatisai.pdf
https://www-formal.stanford.edu/jmc/whatisai.pdf
https://www-formal.stanford.edu/jmc/whatisai.pdf
https://www-formal.stanford.edu/jmc/whatisai.pdf
https://www-formal.stanford.edu/jmc/whatisai.pdf
https://www-formal.stanford.edu/jmc/whatisai.pdf
https://www-formal.stanford.edu/jmc/whatisai.pdf
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

2 History of Large Language Models 31

46. Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., Pathak, S., Sifre, L., Rivière,
M., Kale, M.S., Love, J., et al.: Gemma: Open models based on gemini research and
technology. arXiv preprint arXiv:2403.08295 (2024)

47. Team, G., Riviere, M., Pathak, S., Sessa, P.G., Hardin, C., Bhupatiraju, S., Hussenot, L.,
Mesnard, T., Shahriari, B., Ramé, A., et al.: Gemma 2: Improving open language models at
a practical size. arXiv preprint arXiv:2408.00118 (2024)

48. Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.T., Jin, A., Bos,
T., Baker, L., Du, Y., et al.: Lamda: Language models for dialog applications. arXiv preprint
arXiv:2201.08239 (2022)

49. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971 (2023)

50. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra,
S., Bhargava, P., Bhosale, S., et al.: Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288 (2023)

51. Triguero, I., Molina, D., Poyatos, J., Del Ser, J., Herrera, F.: General purpose artificial intelli-
gence systems (gpais): Properties, definition, taxonomy, societal implications and responsible
governance. Inf. Fusion 103, 102135 (2024)

52. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is all you need. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

53. Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H.,
et al.: Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115 (2024)

54. Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong,
Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., Liu, P.,
Nie, J., Wen, J.: A survey of large language models. CoRR abs/2303.18223 (2023)

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Chapter 3
Large Language Models for Dummies

Marco Calamo and Matteo Marinacci

Abstract The rapid expansion of interconnected systems and the increasing need
for intelligent data processing have driven the evolution of artificial intelligence,
particularly in the field of natural language processing (NLP). Large language
models (LLMs) represent a significant leap in AI capabilities, surpassing traditional
machine learning approaches by leveraging deep neural networks and transformer
architectures. This chapter explores the foundation of LLMs, beginning with deep
learning principles and the evolution from recurrent neural networks (RNNs)
to the transformer model. Key advancements such as attention mechanisms and
pre-training strategies are discussed, highlighting their role in enabling LLMs to
understand, generate, and manipulate humanlike text. Furthermore, the chapter
examines fine-tuning techniques, prompt engineering, retrieval-augmented gener-
ation, and LLM-based agents, which enhance model performance across diverse
applications. Additionally, computational efficiency and alignment with human
values are addressed. By providing a comprehensive overview of LLM develop-
ment, optimization, and deployment, this chapter aims to equip researchers and
practitioners with insights into the current state and future potential of LLMs.

3.1 Introduction

In recent years, the growing and continuous flow of information resulting from the
expansion of interconnected systems over the Internet, combined with the increase
in hardware and software platforms capable of generating vast amounts of raw data
within seconds, has led to the need to develop technologies that can surpass the
capabilities offered by traditional machine learning (ML) algorithms.

ML has emerged as a fundamental paradigm within the field of artificial
intelligence (AI) research, addressing data analysis problems where humans are
unable to define the governing rules of a phenomenon [22]. This paradigm provides

M. Calamo (�) · M. Marinacci
Sapienza Università di Roma, Rome, Italy
e-mail: calamo@diag.uniroma1.it,marinacci@diag.uniroma1.it; diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 3&domain=pdf
https://doi.org/0009-0006-2602-9604
https://doi.org/0009-0008-9110-0555

 885
56845 a 885 56845 a

mailto:calamo@diag.uniroma1.it,marinacci@diag.uniroma1.it
mailto:calamo@diag.uniroma1.it,marinacci@diag.uniroma1.it
mailto:calamo@diag.uniroma1.it,marinacci@diag.uniroma1.it
mailto:calamo@diag.uniroma1.it,marinacci@diag.uniroma1.it
mailto:calamo@diag.uniroma1.it,marinacci@diag.uniroma1.it
mailto:calamo@diag.uniroma1.it,marinacci@diag.uniroma1.it

 22274 56845 a 22274 56845 a

mailto:diag.uniroma1.it
mailto:diag.uniroma1.it
mailto:diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3
https://doi.org/10.1007/978-3-031-92285-5_3

34 M. Calamo and M. Marinacci

algorithms capable of learning from data and improving performance over time
without explicit knowledge of the domain rules under analysis. Traditional ML
algorithms leverage statistical theory to recognize common patterns within datasets,
encompassing methods such as decision trees and support vector machines [16].
However, classic ML struggles to efficiently handle raw datasets due to their size,
complexity, and lack of explicit semantics. For this reason, the field of deep learning
(DL) has been introduced as a subfield of ML.

The innovative work of Rosenblatt in 1958 [36] introduced the concept of
artificial neurons, providing the fundamentals for modern deep neural networks
(DNN) that can be composed of thousands or millions of interconnected neurons.
DL uses DNNs, which are specifically designed to process raw data and store
large amounts of information within the interconnections between the network
layers. Since the work of Rosenblatt, the implementation of neurons and DNNs has
become increasingly complex, involving functions such as non-linear operations,
convolution, attention, and skip connections. This allowed the development of
high-performing systems for various tasks like games [29, 40], vision [35, 42],
robotics [23, 26], and natural language processing [5, 45]. While DNN architectures
like recurrent neural network (RNN) and convolutional neural network (CNN)
improved our ability to model complex data, they struggle with understanding
and maintaining long-range dependencies, especially in sequential data like natural
language. To address these limitations, the attention mechanism was introduced, and
subsequently transformers, which allow models to weigh the importance of different
parts of an input sequence, making it possible to understand the entire context. This
mechanism laid the foundation for the development of large language model (LLM),
significantly advancing the field and the concept of AI.

3.1.1 Deep Neural Network

The goal of a neural network (NN) is to learn how to solve a task based on data
observations. A data observation is composed of several elements identified as
features. The collection of observations forms the training set, which is then used
to train the NN in a process known as the training process. In particular cases, each
observation is associated with a ground truth label, which denotes the desired output
and is used as feedback during the learning process.

A NN is a hierarchical mathematical model composed of multiple layers of
interconnected artificial neurons. It takes an input observation and produces an
output referred to as a prediction. The layers of an NN can be categorized based on
their position within the architecture: input, hidden, and output layers (see Fig. 3.1).
The lowest layer in the hierarchy is the input layer, which feeds input features to
subsequent layers. Following this are one or more hidden layers, where each layer
receives the output of neurons from the previous layer and provides input to the
next. The outputs of a hidden layer form the latent representation of the input, and
the collection of all such representations constitutes the latent space. At the top of

3 Large Language Models for Dummies 35

Fig. 3.1 Structure of a neural network

Fig. 3.2 Artificial neuron

the hierarchy is the output layer, which takes the output of the preceding layers and
generates the final prediction. A network with at least two hidden layers is referred
to as a DNN.

Each neuron between layers is connected via edges called weights, with each
weight assigned a specific value. An artificial neuron (see Fig. 3.2) processes the
outputs of all neurons from the preceding layer. Each neuron’s output is multiplied
by the weight corresponding to its connection to the current neuron. An aggregation
function, such as summation, then combines the weighted outputs from the previous
layer. Finally, an activation function is applied to the aggregated value to compute
the neuron’s output.

In the absence of hidden layers, the weights, which are adjusted during the
training process to achieve the desired output [36], are updated using the error-
correction learning rule, expressed as:

. wi(t + 1) = wi(t) + r(dj − yj (t))xj,i

Here, wi . represents the i-th weight of the vector w, t is the training iteration,
dj . is the desired output for the feature vector xj . in the training set D =
(x1, d1), . . . , (xs, da)., and xj,i . is the individual feature. The parameter r ∈ [0, 1]. is
the learning rate, controlling the magnitude of the update. A small value of r results
in gradual adjustments, averaging past inputs, while a large value of r enables rapid
adaptation but with less consideration for past errors.

36 M. Calamo and M. Marinacci

In the case of hidden layers, where no predefined desired output exists (i.e., no
ground truth), the backpropagation algorithm updates the weights of each neuron in
the hidden layers. The algorithm computes the error for each neuron j as follo ws:

. δj = �′(zj)
∑

k

δkwjk

Here, δj . is the error for the j -th neuron in the current layer, �′(zj). is the
derivative of the activation function with respect to the input zj ., δk . is the error of
the k-th neuron in the next layer, and wjk . is the weight connecting hidden neuron j
to neuron k in the next l ayer.

Once the error terms δ . are computed for all neurons, the weights are updated
using gradient descent. Specifically, the gradient of the loss L with respect to a
weight wjk ., which connects neuron j in layer l to neuron k in layer l + 1., is give n
by:

.
∂L

∂wjk

= δkȧj

Here, δk . is the error term of the k-th neuron in the current layer, and aj . is the
activation of the j -th neuron in the previous layer. The set of partial derivatives for
all the weights in the network forms the gradient vector ∇L., which is used to update
the weights as follows:

. wt+1 = wt − r∇L

These equations are further extended by optimization algorithms (e.g.,
Adam [20], AdaGrad [11], RMSProp). Each optimizer differs in how weights
are updated at each step and in its learning schedule. The interconnected structure
and training process enable each neuron to specialize in detecting particular feature
correlations, allowing the network to represent virtually any function.

The training process of a network is divided into epochs, in which the whole
training set is fed to the network to update weights. As the dataset may be too large
to be stored in memory, it could be divided into batches of samples progressively fed
during the epoch. At each step, the optimizer computes the loss associated with the
prediction and accordingly updates the weights. Depending on the task in analysis,
different loss functions can be employed.

When using a DNN for a particular task, there are two common approaches, i.e.,
training a new model from scratch or leveraging a pre-trained model. Pre-trained
models are trained on large corpora to capture fundamental features shared across
multiple tasks. These models serve as starting configurations for training models
on smaller, task-specific datasets, a process often referred to as transfer learning.
The foundation of transfer learning lies in the observation that most DNNs can be
decomposed into two primary components: the feature extraction function f and
the decision-making function g. Mathematically, this can be expressed as:

3 Large Language Models for Dummies 37

. h = f (x, θf)

. y = g(h, θg) = g(f (x, θf), θg) = (g ◦ f)(x)

On the one hand, the feature extraction function f maps the input x into a
meaningful representation in a latent space h, capturing feature relations. The latent
space denotes the output, and θf . denotes the parameters, i.e., the weights, of the
feature extraction layers. On the other hand, the feature representation h is fed to
the decision-making function g together with the parameters of the decision-making
layers θg .. For novel tasks, pre-trained models can be trained in two different ways,
i.e., feature freezing or fine-tuning. In the feature freezing approach, the parameters
of the feature extraction function θf . are kept frozen, and only the parameters of
the decision-making function θg . are adjusted. In the fine-tuning approach, the pre-
trained model’s parameters θf . are used to initialize the network, and the entire
model is fine-tuned for the new task by updating all associated weights.

At the end of the training process, the network’s performance is evaluated using
a set of samples unseen during training, known as the testing dataset. The quality of
the learning process is assessed through various metrics, such as accuracy or ROC-
AUC, that summarize the network’s performance on the testing dataset. Accuracy,
which ranges from 0 (no correct predictions) to 1 (all predictions correct), is defined
as the ratio between the number of correctly predicted samples and the total number
of samples in the dataset. ROC-AUC, on the other hand, considers the ratio between
true positive (e.g., the model predicts 1 when the ground truth is 1) and false positive
(e.g., the model predicts 1 when the ground truth is 0), and it is useful when the
dataset is unbalanced in the number of samples per class.

In a DNN, it is possible to connect layers and neurons in various ways,
and the output of neurons can be computed by exploiting multiple activation
functions. Depending on the configuration of neurons and layers, different families
of architectures can be identified, each suited to solve specific types of tasks. Among
these architectures, we mention long short-term memory (LSTM), which excels
at processing sequential data and capturing long-term dependencies. Similarly, the
attention mechanisms allow models to focus dynamically on the most relevant parts
of input data, enhancing their ability to solve complex tasks such as natural language
understanding and image captioning.

Long Short-Term Memory (LSTM)
LSTM [18] is a specific type of RNN designed to handle sequential data. Sequential
data consists of data points that have temporal dependencies with one another, which
are organized into structures called sequences. Each sequence represents a chain
of data points linked by temporal relationships, with each item corresponding to a
specific timestep. LSTM processes one timestep at a time, using both the current
input and the output of the previous cell to generate a prediction. Thus, for a
sequence with n timesteps, the LSTM produces n predictions.

In LSTMs, each cell acts as a memory unit with its own state s. At each timestep,
the cell processes three inputs: the current element of the sequence xt ., the hidden

38 M. Calamo and M. Marinacci

Fig. 3.3 LSTM cell

state ht−1 ., and the previous cell state st−1 .. The purpose of the cell is to store,
update, and propagate information across timesteps, enabling the model to capture
long-term dependencies. This is achieved through the use of gates that manage the
flow of information (see Fig. 3.3), including the forget gate ft . that determines what
information to discard from the cell state, the input gate it . that determines what new
information to add to the cell state, and the output gate ot . that determines how much
of the cell state contributes to the output.

The information that needs to be analyzed is obtained from the forget gate as
follows:

. ft = σ(Wf · [xt , ht−1] + bf)

where σ . is the activation function applied to the weighted matrix Wf . between
the current input xt . and the previous hidden state ht−1 . plus the bias vector bf . at t .

The input gate performs the following operations needed to update the cell status:

. it = σ(Wi · [xt , ht−1] + bi)

. ̂st = tanh (Ws · [xt , ht−1] + bs)

where σ . is the activation function applied to the weighted matrix Wi . between the
input xt . and the previous hidden state ht−1 . plus the bias vector bi . at t and tanh. is
the activation function applied to the weighted matrix Ws . between the input xt . and
the previous hidden state ht−1 . plus the bias vector bs . at t .

The cell state is then updated with the information from the forget and input gate:

. st = ft st−1 + it ŝt

with ft . as forget gate, st−1 . as previous cell state, is . as input gate, and ŝt . as value
generated by tanh..

3 Large Language Models for Dummies 39

Finally, the output is obtained by multiplying the output gate ot . and the candidate
output computed from the updated cell state:

. ot = σ(Wo · [xt , ht−1] + bo)

. ht = ot tanh (st)

where σ . is the activation function applied to the weighted matrix Wo . between
the input xt . and the previous hidden state ht−1 . plus the bias vector bo . at t .

The architecture of LSTMs, combined with their memory cells and gating
mechanisms, allows them to retain information over longer sequences compared
to classical RNNs. This capability enables LSTMs to achieve superior performance
on tasks involving sequential data, such as time-series analysis, language modeling,
and speech recognition.

Attention Mechanism
Attention [3] is a mechanism designed to model and leverage long-range corre-
lations between features. The attention mechanism is characterized by three main
components: the queries Q, the keys K , and the values V . These components can
either be vectors or linear projections of the same input [45]. The output of the
attention mechanism is computed by comparing each query q ∈ Q.with the keys to
generate a score value for each pair:

. eq,ki
= fscoring(q, ki)

The score value eq,ki
. is obtained using a scoring function fscoring ., which varies

based on the type of attention being implemented. Then, the scores are normalized
using the softmax function to compute the attention weights:

. wq,ki
= σsof t (eq,ki

)

Finally, the layer produces the output as a weighted sum of the values, with the
weights determined by the attention weights:

. y = Attention(q,K, V) =
∑

i

wq,ki
vi

Different variants of the attention mechanism can be implemented by modifying
the scoring function [28, 47], projection [4], or computational steps. For example,
the transformer architecture [45], which comprises multiple attention layers, forms
the backbone of several state-of-the-art models.

40 M. Calamo and M. Marinacci

Fig. 3.4 Transformer

3.1.2 From the Attention Mechanism Toward Large Language
Models

RNNs, including LSTMs, are foundational for sequence modeling and transduction
tasks, such as language modeling and machine translation [3, 7, 41]. However,
their sequential nature prevents parallel processing during the training process.
This significantly limits computational efficiency, especially when dealing with
large sequences, where processing an entire sequence in a single memory batch
becomes excessively costly. To address such limitations, systems that support
parallel processing are essential.

The attention mechanism has played a crucial role in overcoming the limitations
of RNNs. In 2017, the Transformer architecture [45] was introduced (see Fig. 3.4),
relying exclusively on the attention mechanism to capture global dependencies
between input and output. This innovation eliminated the intrinsic sequentiality of
RNNs, enabling parallel data processing and significantly improving computational
efficiency.

The transformer employs an encoder-decoder structure, where both the encoder
and decoder are composed of a stack of N = 6. identical layers. The encoder takes
as input a sequence of symbol representations (x1, · · · , xn). and transforms it into
a sequence of continuous representations z = (z1, · · · , zn).. The decoder uses z

3 Large Language Models for Dummies 41

along with the previously generated symbols as additional input, to produce an
output sequence (y1, · · · , ym).of symbols one element at a time in an autoregressive
manner. This means that each token is generated sequentially, conditioned on the
tokens generated so far and the encoder’s output.

Both the encoder and decoder begin with a learned embedding layer that converts
input and output tokens into dense vector representations of fixed dimension dmodel ..
These embeddings allow the model to work in a continuous, high-dimensional space
where semantic relationships between tokens can be effectively captured. To encode
positional information, positional embeddings are added to the token embeddings.
These embeddings, having the same dimension dmodel ., ensure that the model
can leverage sequential information despite lacking recurrence or convolutional
structures. Positional embeddings can be implemented in various ways, such as
fixed sinusoidal functions, learned embeddings, or relative encodings, each suited
to different tasks and sequence characteristics.

We can now examine the structure of the encoder and decoder layer stacks.
The encoder consists of two sub-layers: (i) a multi-head self-attention mechanism
and (ii) a fully connected feed-forward network. On the opposite, the decoder is
composed of three sub-layers: (i) a masked multi-head self-attention mechanism,
also referred to as encoder-decoder attention, which prevents each position from
attending to future positions, ensuring predictions for position i depend only on
outputs from earlier positions, (ii) a multi-head attention applied to the output of the
encoder stack, and (iii) a fully connected feed-forward network. Each multi-head
attention layer processes keys, values, and queries as its input, with the exception of
the encoder-decoder attention layer. In this case, the queries come from the previous
decoder layer, while the keys and values are derived from the encoder’s output.

The attention mechanism used in the transformer, known as Scaled Dot-Product
Attention, simultaneously computes the attention function on the keys K , values V ,
and a set of queries stored Q. The queries and keys have a dimension of dk ., while the
values have a dimension of dv .. The attention mechanism determines the relevance
of each key-value pair to a query by computing a dot product between the queries
and keys, scaling it by

√
dk . (to stabilize gradients), and applying a softmax function

to obtain the attention weights. The matrix of outputs is determined as:

. Attention(Q,K, V) = sof tmax

(
QKT

√
dk

)
V

Instead of performing a single attention function, the transformer utilizes h
parallel execution of the attention mechanism, each yielding dv .-dimensional output
values. Each head uses different learned linear projections to dk ., dk ., and dv . for
the queries, keys, and values, respectively. These outputs are concatenated and
linearly projected to produce the final values. This mechanism, known as multi-head
attention, allows the model to analyze information from different representation
subspaces at different positions, and its final result is computed as:

.MultiHead(Q,K, V) = Concat (head1, · · · , headn)W
O

42 M. Calamo and M. Marinacci

. with headi = Attention(QW
Q
i ,KWK

i , V WV
i)

The projection matrices are W
Q
i ∈ R

dmodel×dk ., WK
i ∈ R

dmodel×dk ., WV
i ∈ R

dmodel×dv .,
and WO ∈ R

hdv×dmodel .. This mechanism enables the model to process to multiple
representation subspaces simultaneously, enhancing its capacity to capture complex
dependencies in the input.

In each encoder and decoder layer, the final sub-layer consists of a fully
connected feed-forward network, applied independently and identically to each
position in the sequence. The network is characterized by two linear transformations
with a ReLU activation in between:

. FFN(x) = max(0, xW1 + b1)W2 + b2

where W1 . and W2 . are the weight matrices and b1 . and b2 . are the bias vectors.
Each sub-layer includes a residual connection [15] followed by a normaliza-

tion [2]. The output of each sub-layer is computed as:

. LayerNorm(x + Sublayer(x))

where Sublayer(x). represents the function implemented by the respective sub-
layer (e.g., multi-head attention or feed-forward network).

Since 2017, the transformer architecture, originally composed of an encoder-
decoder structure, has been adapted into various models. In 2018, Generative
Pre-Training (GPT) was introduced [33], leveraging only the transformer decoder.
GPT employs a multi-layer transformer decoder [27] that applies multi-headed self-
attention on input context tokens and position-wise feedforward layers to generate
an output distribution over target tokens.

In the same year, another variant of the original transformer architecture
was introduced, i.e., Bidirectional Encoder Representations from Transformers
(BERT) [9]. BERT leverages only the transformer encoder. In contrast to GPT,
which uses a left-to-right architecture where each token can only attend to previous
tokens in self-attention layers, BERT employs a masked language model (MLM)
pre-training objective. The MLM objective involves randomly masking a subset
of input tokens and training the model to predict the masked tokens based on the
surrounding context. This enables BERT to create a deep bidirectional transformer,
allowing each token to attend to both its left and right contexts. This bidirectional
approach enhances the ability to capture relationships within the entire sequence.
Additionally, BERT incorporates a next sentence prediction task during pre-training,
which jointly learns representations for text-pair relationships. Together, these
objectives make BERT highly effective for tasks like question answering and
natural language inference.

In 2019, a model combining Bidirectional and Auto-Regressive Transformers
(BART) was introduced [24]. BART is a denoising auto-encoder based on a
sequence-to-sequence architecture. During pre-training, BART corrupts text using

3 Large Language Models for Dummies 43

a noising function, such as randomly shuffling the order of sentences or applying
an in-filling scheme, where spans of text are replaced with a single mask token, and
then trains a sequence-to-sequence model to reconstruct the original text. BART
combines a bidirectional encoder, like BERT, with a left-to-right autoregressive
decoder, like GPT. However, there are key differences between BART and its
predecessors. Unlike GPT, BART uses GeLU [17] activation functions instead
of ReLU. Unlike BERT, its decoder layers perform cross-attention over the final
hidden states of the encoder and do not include an additional feed-forward network
before word prediction. The introduction of BART marked a return to the original
transformer structure (i.e., encoder-decoder), demonstrating the versatility and
power of this architecture for complex text reconstruction and generation tasks.
Moreover, recent advancements in transformer-based models have increasingly
shifted their focus toward scalability and multi-tasking, aiming to create general-
purpose systems capable of excelling across a wide range of natural language
processing tasks.

The development of models like BERT and BART constitutes the basis for
modern large language models (LLMs). These models leverage modern architec-
tural innovations, such as attention mechanisms and pre-training objectives, and
scale them with significantly larger datasets and parameter counts. LLMs like
GPT-3, PaLM, and LLaMA extend the autoregressive and bidirectional principles
introduced by earlier models to perform well across diverse tasks with little to no
fine-tuning. By leveraging pre-training and fine-tuning, LLMs are capable of under-
standing and generating humanlike text, transforming fields like conversational AI,
text summarization, and machine translation.

3.2 Pre-training of Large Language Models

Nowadays, there are many available LLMs already trained on large corpora, capable
of processing data and generating valuable and understandable responses [8]. The
pre-training phase is a fundamental step in the development of a LLM. This phase
has the role of establishing the basis of the skills of an LLM. In this step, many
variables need to be addressed, such as the scale and the quality of the pre-training
corpus.

The first and most important aspect that needs to be considered while pre-training
an LLM is the quality of the data. The performances and capacities of a LLM heavily
depend on how data has been preprocessed and the sources from which they are
considered. The steps necessary in preparing data include:

1. Collect a large amount of natural language data. These data can be obtained from
many sources that could be categorized as general and specialized data. General
data comprehend sources like Web pages, books [13], and conversational text
[49]. These sources are used to improve the generalization abilities of an LLM
due to their large and diverse nature. Conversely, specialized data involving, for

44 M. Calamo and M. Marinacci

instance, multilingual [6], scientific, and code [6] data are adopted to enhance
specific task-solving capabilities of LLMs [30, 44].

2. Clean collected data from noisy, redundant, irrelevant, and toxic data, which may
reduce the performance of an LLM. To clean data is possible to apply multiple
techniques, each of which aims to address a specific problem. To remove low-
quality data, it is possible to apply filtering and selection through two different
approaches named classifier and heuristic respectively. The former involves the
training of a selection classifier based on high-quality texts to identify and
remove low-quality data [10]. The latter relies on a set of well-designed filtering
rules based on Language, Metric (e.g., perplexity), Statistic (e.g., punctuation
distribution, symbol-to-word ratio, sentence length), and Keyword (e.g., HTML
tags, hyperlinks, boilerplates, offensive words). To remove duplicates, it is
necessary to apply a technique called de-duplication that may operate at different
levels, including sentences, documents, and datasets. To remove personally
identifiable information is possible to employ approaches based on rules like
keyword spotting. Furthermore, the cleaning step involves also preparing data
for the input of a LLM. To prepare data, the text is segmented into sequences
of individual tokens, and this method is called Tokenization. There exist many
specializations of this method, which are called subword tokenizers, like Byte-
Pair Encoding (BPE) [12, 39], WordPiece [38], and Unigram [21].

3. Schedule data to pre-training a LLM. The data schedule foresees data mixture
(i.e., how much data from each source needs to be used) and data curriculum
(i.e., which is the submission order of each data source).

Once the data are successfully preprocessed, they have to be encoded into the
massive model parameters through the pre-training phase. To train a LLM, it is
possible to adopt various approaches, among which there are:

• Language modeling (LM): a fundamental task in natural language processing
that predicts the next tokens in a sequence based on their history. It is the
main pre-training task when talking about LLMs. From a sequence of tokens
w = {w1, · · · , wn}., it autoregressively predicts the target tokens wi . based on the
preceding tokens w < i . in a sequence. The objective of this approach can be
formalized as:

. LLM(w) =
n∑

i=1

logP(wi |w < i)

This approach is commonly used in decoder-only models and, thanks to its
autoregressive nature, allows for learning various tasks, often without the need
for task-specific fine-tuning.

• Denoising autoencoding (DAE) [34]: a task in which the model is trained to
recover the original parts of the input text that are intentionally corrupted. From
corrupted text inputs w\w∼ . with random replaced spans, the language model is

3 Large Language Models for Dummies 45

trained to recover the replaced tokens w∼
.. The objective of this approach can be

formalized as:

. LDAE(w) = logP(w∼|w \ w∼)

Commonly used in encoder-only or encoder-decoder models.
• Mixture-of-Denoisers (MoD): a combination of both LM and DAE [43]. Depend-

ing on the initial special tokens in input sentences, different types of denoisers
could be used. The types of denoisers are S-denoiser whose objective is similar to
LM, R-denoiser that is a variant of DAE where short parts of text are corrupted,
and X-denoiser that is a variant of DAE with longer parts of text corrupted or
more frequent corruption. Commonly used in encoder-decoder models.

3.3 Advanced Usage of Large Language Models

Baseline LLMs obtained from pre-training are not inherently specialized for
solving complex tasks in specific target domains, such as chatting or document
summarization. While pre-training enables the model to generate the most probable
token sequence given an input, additional instructions are required to solve domain-
specific tasks. Fine-tuning (cf. Sect. 3.3.1), retrieval-augmented generation1 (cf.
Sect. 3.3.2), prompt engineering (cf. Sect. 3.3.3), and agents2 (cf. Sect. 3.3.4) are
the main tools to specialize an LLM. Each of these techniques is orthogonal to each
other (using one does not exclude using others), but each one comes with upsides
and downsides based on the dataset availability and time constraints. Table 3.1
reports the consumption of resources and the advantages of using each technique.

Table 3.1 Comparison of methods in terms of dataset size, time consumed, and performance
increase

Method Dataset size Time consumed Increase in performance

Fine-tuning High High Moderate/High

Prompt engineering Low Low Low/Moderate

Retrieval-augmented generation Low/Moderate Low Moderate

Agent Variable High High

1 For further details on retrieval-augmented generation, see Chap. 7.
2 For further details on Agents, see Chap. 9.

46 M. Calamo and M. Marinacci

3.3.1 Fine-Tuning

Most LLMs today excel in general performance but often struggle with specific
task-oriented problems. Fine-tuning provides significant benefits, such as reduced
computational costs and the ability to leverage state-of-the-art models without
developing one from scratch. Transformers-based models offer access to a wide
range of pre-trained models designed for various tasks. Fine-tuning these models
enhances their accuracy for specific applications like sentiment analysis, question
answering, or document summarization.

Fine-tuning is the process of taking a pre-trained model and further training it
on a domain-specific dataset. Different fine-tuning techniques on different datasets
can lead to different outputs depending on the goal [32]. There are four kinds of
fine-tuning:

• Unsupervised fine-tuning
• Supervised fine-tuning
• Instruction fine-tuning
• Alignment fine-tuning

Of these, only the last two steps are necessary to fine-tune a base LLM to obtain
a model that is fully capable of solving complex tasks aligned to human requests
and standards. The first two steps are important for extending the model knowledge
to specific domains that were not present (or present in little parts) in the original
training dataset. Table 3.2 highlights the key differences between these techniques.
In the next sections, each fine-tuning step will be analyzed, explaining how it works
and its ideal use cases.

3.3.1.1 Unsupervised Fine-Tuning

The most straightforward type of fine-tuning is the unsupervised fine-tuning. It
consists of repeating the same training method presented in Sect. 3.2 using new
data. This allows the LLM to acquire domain specific knowledge (e.g., medical,
legal).

Table 3.2 Comparison of fine-tuning methods in terms of dataset kind and goal

Method Dataset kind Goal

Unsupervised fine-tuning Plain text Learn a new domain (e.g., medical)

Supervised fine-tuning Plain text with labels Learn a new task (e.g., text classification)

Instruction fine-tuning Instruction dataset Learn to follow instructions (e.g., chat)

Alignment fine-tuning Instruction dataset Learn to follow guidelines (alignment)

3 Large Language Models for Dummies 47

3.3.1.2 Supervised Fine-Tuning

Supervised fine-tuning is the first approach that requires a specific dataset. It is used
to train a model for a new downstream task (e.g., sentiment analysis). It requires
an annotated dataset that exposes comprehensively the new task. Since creating
a high-quality rich dataset for each new task is often unfeasible in terms of time
and resources, in-prompt learning [31] (cf. Sect. 3.3.3) is frequently preferred as an
alternative.

3.3.1.3 Instruction Fine-Tuning

To address the gap between the next-word prediction objective of LLMs and
user-specific tasks, instruction tuning (IT), a particular type of supervised fine-
tuning (SFT), is employed. This technique involves further training LLMs using
pairs of instructions and corresponding outputs, enhancing their capabilities and
controllability. It offers benefits such as aligning models with user objectives,
improving controllability for domain-specific tasks, and enabling computationally
efficient adaptation without significant architectural changes.

Despite its advantages, instruction fine-tuning faces challenges, such as crafting
diverse and high-quality instruction datasets, the risk of overfitting to tasks present
in the training data, and the critique that SFT may focus on superficial patterns
rather than true task comprehension. Addressing these limitations requires further
research into optimizing fine-tuning techniques and understanding the behavior
of instruction-tuned LLMs. Figure 3.5 illustrates the architecture underlying this
approach.

3.3.1.4 Alignment Fine-Tuning

Alignment fine-tuning is an approach that involves training language models
through interactions with human feedback, aligning the model to human expecta-

Fig. 3.5 Instruction fine-tuning general pipeline [48]

48 M. Calamo and M. Marinacci

tions. This involves techniques like reinforcement learning from human feedback
(RLHF), which integrates human judgment into the learning process. RLHF
facilitates the continuous enhancement of language models so they produce more
accurate and contextually appropriate responses. This approach not only leverages
the expertise of human evaluators but also enables the model to adapt and evolve
based on real-world feedback, ultimately leading to more effective and refined
capabilities. Several techniques are employed in this context:

• Reward modeling: In this technique, the model generates several possible
outputs or actions, and human evaluators rank or rate these outputs based on
their quality. The model then learns to predict these human-provided rewards
and adjusts its behavior to maximize the predicted rewards. Reward modeling
provides a practical way to incorporate human judgment into the learning
process, allowing the model to learn complex tasks that are difficult to define
with a simple function. This method enables the model to learn and adapt based
on human-provided incentives, ultimately enhancing its capabilities.

• Proximal policy optimization (PPO): It is an iterative algorithm that updates
the language model’s policy to maximize the expected reward. The core idea of
PPO is to take actions that improve the policy while ensuring the changes are not
too drastic from the previous policy. This balance is achieved by introducing a
constraint on the policy update that prevents harmful large updates while still
allowing beneficial small updates. This constraint is enforced by introducing
a surrogate objective function with a clipped probability ratio that serves as
a constraint. This approach makes the algorithm more stable and efficient
compared to other reinforcement learning methods.

• Comparative ranking: Comparative ranking is similar to reward modeling,
but in comparative ranking, the model learns from relative rankings of multi-
ple outputs provided by human evaluators, focusing more on the comparison
between different outputs. In this approach, the model generates multiple outputs
or actions, and human evaluators rank these outputs based on their quality or
appropriateness. The model then learns to adjust its behavior to produce outputs
that are ranked higher by the evaluators. By comparing and ranking multiple
outputs rather than evaluating each output in isolation, comparative ranking
provides more nuanced and relative feedback to the model. This method helps
the model understand the task subtleties better, leading to improved results.

• Preference learning: It is also known as reinforcement learning with preference
feedback and focuses on training models to learn from human feedback in the
form of preferences between states, actions, or trajectories. In this approach, the
model generates multiple outputs, and human evaluators indicate their preference
between pairs of outputs. The model then learns to adjust its behavior to produce
outputs that align with the human evaluators’ preferences. This method is useful
when it is difficult to quantify the output quality with a numerical reward but
easier to express a preference between two outputs. Preference learning allows
the model to learn complex tasks based on nuanced human judgment, making it
an effective technique for fine-tuning the model on real-life applications.

3 Large Language Models for Dummies 49

3.3.1.5 Efficient Fine-Tuning

Fine-tuning an LLM can be a very computationally expensive process. To mitigate
this cost there exist two kinds of major optimization: optimizing the numbers of
parameters trained (parameter efficient fine-tuning) and optimizing the memory
footprint of the model (quantization).

Parameter-Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) is a technique used to improve the perfor-
mance of pre-trained LLMs on specific downstream tasks while minimizing the
number of trainable parameters. It offers a more efficient approach by updating only
a minor fraction of the model parameters during fine-tuning.

PEFT selectively modifies only a small subset of the LLM’s parameters, typically
by adding new layers or modifying existing ones in a task-specific manner. This
approach significantly reduces the computational and storage requirements while
maintaining comparable performance to full fine-tuning.

Figure 3.6 depicts the set of PEFT techniques. Here we briefly focus on repa-
rameterized PEFT and, more specifically, on LoRA [19] for its wide diffusion and
implementation. Reparameterization stands for equivalently transforming a model’s
architecture from one to another via transforming its parameters. In the context of
PEFT, this often means constructing a low-rank parameterization to achieve the goal
of parameter efficiency during training. For inference, the model can be converted
to its original weight parameterization, ensuring unchanged inference speed. Earlier
research studies [1] have shown that common pre-trained models exhibit an
exceptionally low intrinsic dimensionality. Intrinsic SAID [1] is the pioneering work
in investigating the intrinsic dimension feature during the fine-tuning of LLMs.
However, the most widely recognized reparameterization technique is LoRA, which
freezes the pre-trained model weights and injects trainable rank decomposition
matrices into each layer of the transformer architecture, greatly reducing the number
of trainable parameters for downstream tasks.

Memory-Efficient Fine-Tuning—Quantization
Quantization refers to dividing a quantity into discrete parts, often as integral multi-
ples of a common value. Initially studied as a rounding-off process, quantization has
evolved to play a pivotal role in modern computer science and machine learning.
It can influence data precision and entropy, as changes in precision affect the
uncertainty quantified by Shannon Entropy.

A widely used technique in this domain is 8-bit quantization, which converts
floating-point data into integer format. Although 32-bit single-precision floating
point has traditionally dominated deep learning applications, lower-precision for-
mats like 16-bit floating point (e.g., fp16 or bfloat16) have gained popularity due to
their compatibility with most deep learning accelerators. For inference, even lower-
precision formats, including floating-point, fixed-point, and integer representations,
are employed.

50 M. Calamo and M. Marinacci

F
ig
. 3

.6

PE

FT
 ta
xo
no
m
y
[1
4]

3 Large Language Models for Dummies 51

Low-precision formats offer significant performance benefits. They leverage
optimized hardware pipelines for reduced bit widths, accelerating computations like
convolutions and matrix multiplications. Additionally, smaller word sizes mitigate
memory bandwidth constraints and improve cache utilization, enhancing the overall
efficiency of computation-intensive tasks.

3.3.2 Retrieval-Augmented Generation (RAG)

When considering external data access, retrieval-augmented generation (RAG) [25]
is likely a superior option for applications needing to access external data sources.
Fine-tuning, on the other hand, is more suitable if you require the model to adjust
its behavior, and writing style, or incorporate domain-specific knowledge. In terms
of suppressing hallucinations and ensuring accuracy, RAG systems tend to perform
better as they are less prone to generating incorrect information. If you have large
domain-specific, labeled training data, fine-tuning can result in a more tailored
model behavior, whereas RAG systems are robust alternatives when such data is
scarce. RAG systems provide an advantage with dynamic data retrieval capabilities
for environments where data frequently updates or changes. Additionally, it is
crucial to ensure the transparency and interpretability of the model’s decision-
making process. In that case, RAG systems offer insight that is typically not
available in models that are solely fine-tuned.

Large pre-trained language models have been shown to store factual knowledge
in their parameters and achieve state-of-the-art results when fine-tuned on down-
stream NLP tasks. However, their ability to access and precisely manipulate knowl-
edge is still limited, and hence on knowledge-intensive tasks, their performance
lags behind task-specific architectures. Additionally, providing provenance for their
decisions and updating their world knowledge remain open research problems. Pre-
trained models with a differentiable access mechanism to explicit nonparametric
memory can overcome this issue but have so far been only investigated for extractive
downstream tasks. Even though the RAG techniques have advanced since it was
envisioned the first time, the base architecture stayed the same as in Fig. 3.7.

3.3.3 Prompt Engineering

Prompt engineering is a powerful technique for expanding the functionality of
LLMs. By employing task-specific instructions, or prompts, this method enables
models to perform a variety of tasks without altering their core parameters. Prompts,
whether in the form of natural language instructions or learned vector representa-
tions, guide the model to produce desired behaviors, making them indispensable
for tasks ranging from question-answering to commonsense reasoning. There are

52 M. Calamo and M. Marinacci

F
ig
. 3

.7

R
A
G
 a
rc
hi
te
ct
ur
e
[2
5]

3 Large Language Models for Dummies 53

Fig. 3.8 Prompt engineering techniques [37]

several approaches to prompt engineering that are summarized in Fig. 3.8. The most
relevant to us will be presented in detail in the recall of this s ection.

3.3.3.1 New Tasks Without Extensive Training

To present a new task to the LLM via prompting, we can leverage in-context
learning. It is obtained by describing the new task directly in the prompt. Depending
on whether some examples are presented or not, we have zero-shot or few-shot
prompting.

Zero-Shot Prompting
Zero-shot prompting eliminates the need for extensive training data, instead relying
on carefully designed prompts to guide the model in performing new tasks. The

54 M. Calamo and M. Marinacci

model processes task descriptions within the prompt without using labeled data
for training, leveraging its pre-existing knowledge to generate predictions. This
approach significantly reduces the overhead of data preparation while enabling
models to generalize effectively across various tasks.

Few-Shot Prompting
Few-shot prompting involves providing models with a limited number of input-
output examples to help them understand a given task. Unlike zero-shot prompting,
this technique offers concrete demonstrations, improving model performance on
complex tasks. However, it requires additional tokens for examples, which may limit
usability for longer inputs, and careful curation of examples is essential to mitigate
biases and optimize results.

3.3.3.2 Reasoning and Logic

In the following paragraphs, we will present some techniques to enable some
simulated reasoning and logical thinking by prompting.

Chain-of-Thought (CoT) Prompting
Chain-of-Thought (CoT) prompting enhances the reasoning capabilities of LLMs
by guiding them to generate step-by-step solutions. This approach fosters struc-
tured and logical responses, especially for multi-step problems, by mimicking
human problem-solving processes. CoT prompting has demonstrated state-of-the-
art performance in reasoning benchmarks, such as math and commonsense tasks,
showcasing its effectiveness for complex reasoning challenges.

Automatic Chain-of-Thought (Auto-CoT) Prompting
Auto-CoT addresses the labor-intensive nature of manual CoT example creation by
automating the process. Using prompts like “Let’s think step by step," the model
generates diverse reasoning chains, enhancing robustness through sampling. This
automated approach improves performance on reasoning tasks while reducing the
need for manual effort, making it a practical enhancement over traditional CoT
methods.

Self-Consistency
Self-consistency improves reasoning performance in CoT prompting by generat-
ing diverse reasoning chains and identifying the most consistent solution. This
method acknowledges the diversity of valid reasoning paths for complex problems,
marginalizing over sampled chains to determine the final answer. The combination
of self-consistency and CoT prompting significantly boosts accuracy across bench-
marks, making it an effective strategy for enhancing logical reasoning tasks.

3 Large Language Models for Dummies 55

3.3.4 LLM Agent

LLM agents are artificial entities capable of sensing their environment, making deci-
sions, and taking actions. While significant progress has been made in advancing
algorithms and training strategies to enhance specific capabilities, the community
still lacks a general, adaptable model that can serve as a foundation for designing
agents suitable for diverse scenarios.

LLMs, due to their broad capabilities, are increasingly seen as potential building
blocks for artificial general intelligence (AGI). Many researchers have harnessed
LLMs as a foundation for creating AI agents, achieving remarkable progress. A
conceptual framework for LLM-based agents can be envisioned with three primary
components: brain, perception, and action. This framework is flexible and can be
tailored to different applications, enabling agents to adapt and excel in various
environments.

In Fig. 3.9, it is presented the generic agent architecture that we will briefly
discuss in the following paragraphs.

The brain module serves as the controller, handling tasks like memory, reasoning,
and decision-making. The perception module processes multimodal information
from the external environment, translating it into a format understandable by LLMs.
The action module executes tasks using tools and interacts with the surroundings.

To illustrate how the whole agent workflow, consider an example where a human
asks whether it will rain. The perception module interprets the query and transforms
it into a representation the LLM can process. The brain module reasons using
current weather data and forecasts, and the action module provides a response,

Fig. 3.9 LLM agent [46]

56 M. Calamo and M. Marinacci

such as handing an umbrella to the human. Through continuous feedback and
interaction, such agents can refine their functionality and adapt dynamically to their
environment.

References

1. Aghajanyan, A., Zettlemoyer, L., Gupta, S.: Intrinsic dimensionality explains the effectiveness
of language model fine-tuning. arXiv preprint arXiv:2012.13255 (2020)

2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016). https://arxiv.org/abs/1607.
06450

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and
translate. CoRR abs/1409.0473 (2014). https://api.semanticscholar.org/CorpusID:11212020

4. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document transformer (2020).
http://doi.org/10.48550/ARXIV.2004.05150. https://arxiv.org/abs/2004.05150

5. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I., Amodei, D.: Language models are few-shot learners. In: H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, H. Lin (eds.) Advances in Neural Information Processing Systems,
vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_
files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

6. Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., Kaplan, J., Edwards, H., Burda,
Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry,
G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M.,
Winter, C., Tillet, P., Such, F.P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W.H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain,
S., Saunders, W., Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder, P., McGrew, B., Amodei, D.,
McCandlish, S., Sutskever, I., Zaremba, W.: Evaluating large language models trained on code
(2021). https://arxiv.org/abs/2107.03374

7. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine
translation (2014). https://arxiv.org/abs/1406.1078

8. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H.W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A.,
Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R.,
Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S.,
Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L., Zhou, D., Ippolito, D.,
Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal, S., Omernick,
M., Dai, A.M., Pillai, T.S., Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei, J., Meier-Hellstern,
K., Eck, D., Dean, J., Petrov, S., Fiedel, N.: Palm: scaling language modeling with pathways.
J. Mach. Learn. Res. 24(1), 11324–11436 (2024)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. In: North American Chapter of the Association for
Computational Linguistics (2019). https://api.semanticscholar.org/CorpusID:52967399

10. Du, N., Huang, Y., Dai, A.M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y., Yu,
A.W., Firat, O., Zoph, B., Fedus, L., Bosma, M.P., Zhou, Z., Wang, T., Wang, E., Webster,
K., Pellat, M., Robinson, K., Meier-Hellstern, K., Duke, T., Dixon, L., Zhang, K., Le, Q., Wu,

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://api.semanticscholar.org/CorpusID:11212020
https://api.semanticscholar.org/CorpusID:11212020
https://api.semanticscholar.org/CorpusID:11212020
https://api.semanticscholar.org/CorpusID:11212020
https://api.semanticscholar.org/CorpusID:11212020
https://api.semanticscholar.org/CorpusID:11212020
http://doi.org/10.48550/ARXIV.2004.05150
http://doi.org/10.48550/ARXIV.2004.05150
http://doi.org/10.48550/ARXIV.2004.05150
http://doi.org/10.48550/ARXIV.2004.05150
http://doi.org/10.48550/ARXIV.2004.05150
http://doi.org/10.48550/ARXIV.2004.05150
http://doi.org/10.48550/ARXIV.2004.05150
http://doi.org/10.48550/ARXIV.2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399

3 Large Language Models for Dummies 57

Y., Chen, Z., Cui, C.: GLaM: Efficient scaling of language models with mixture-of-experts.
In: K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, S. Sabato (eds.) Proceedings
of the 39th International Conference on Machine Learning, Proceedings of Machine Learning
Research, vol. 162, pp. 5547–5569. PMLR (2022). https://proceedings.mlr.press/v162/du22c.
html

11. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res. 12(null), 2121–2159 (2011)

12. Gage, P.: A new algorithm for data compression. C Users J. 12(2), 23–38 (1994)
13. Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A.,

Nabeshima, N., Presser, S., Leahy, C.: The pile: An 800gb dataset of diverse text for language
modeling (2020). https://arxiv.org/abs/2101.00027

14. Han, Z., Gao, C., Liu, J., Zhang, J., Zhang, S.Q.: Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608 (2024)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016).
http://doi.org/10.1109/CVPR.2016.90

16. Hearst, M., Dumais, S., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE
Intelligent Systems and their Applications 13(4), 18–28 (1998). http://doi.org/10.1109/5254.
708428

17. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv: Learning (2016). https://
api.semanticscholar.org/CorpusID:125617073

18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–
1780 (1997). http://doi.org/10.1162/neco.1997.9.8.1735

19. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: Lora: Low-
rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980
(2014). https://api.semanticscholar.org/CorpusID:6628106

21. Kudo, T.: Subword regularization: Improving neural network translation models with multiple
subword candidates (2018). https://arxiv.org/abs/1804.10959

22. La Rosa, B.: Explaining Deep Neural Networks by Leveraging Intrinsic Methods. arXiv. http://
doi.org/10.48550/ARXIV.2407.12243. (2024)

23. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies.
J. Mach. Learn. Res. 17(39), 1–40 (2016). http://jmlr.org/papers/v17/15-522.html

24. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Rahman Mohamed, A., Levy, O., Stoyanov,
V., Zettlemoyer, L.: Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In: Annual Meeting of the Association for
Computational Linguistics (2019). https://api.semanticscholar.org/CorpusID:204960716

25. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M.,
Yih, W.t., Rocktäschel, T., et al.: Retrieval-augmented generation for knowledge-intensive nlp
tasks. Adv. Neural Inf. Process. Syst. 33, 9459–9474 (2020)

26. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational
approaches to estimate solubility and permeability in drug discovery and development settings.
Adv. Drug Delivery Rev. 64, 4–17 (2012). http://doi.org/10.1016/j.addr.2012.09.019

27. Liu, P.J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., Shazeer, N.M.: Generating
wikipedia by summarizing long sequences. ArXiv abs/1801.10198 (2018). https://api.
semanticscholar.org/CorpusID:3608234

28. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine
translation. ArXiv abs/1508.04025 (2015). https://api.semanticscholar.org/CorpusID:1998416

29. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M.A., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level
control through deep reinforcement learning. Nature 518, 529–533 (2015). https://api.
semanticscholar.org/CorpusID:205242740

https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/5254.708428
http://doi.org/10.1109/5254.708428
http://doi.org/10.1109/5254.708428
http://doi.org/10.1109/5254.708428
http://doi.org/10.1109/5254.708428
http://doi.org/10.1109/5254.708428
http://doi.org/10.1109/5254.708428
https://api.semanticscholar.org/CorpusID:125617073
https://api.semanticscholar.org/CorpusID:125617073
https://api.semanticscholar.org/CorpusID:125617073
https://api.semanticscholar.org/CorpusID:125617073
https://api.semanticscholar.org/CorpusID:125617073
https://api.semanticscholar.org/CorpusID:125617073
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1997.9.8.1735
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1804.10959
http://doi.org/10.48550/ARXIV.2407.12243
http://doi.org/10.48550/ARXIV.2407.12243
http://doi.org/10.48550/ARXIV.2407.12243
http://doi.org/10.48550/ARXIV.2407.12243
http://doi.org/10.48550/ARXIV.2407.12243
http://doi.org/10.48550/ARXIV.2407.12243
http://doi.org/10.48550/ARXIV.2407.12243
http://doi.org/10.48550/ARXIV.2407.12243
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
http://doi.org/10.1016/j.addr.2012.09.019
http://doi.org/10.1016/j.addr.2012.09.019
http://doi.org/10.1016/j.addr.2012.09.019
http://doi.org/10.1016/j.addr.2012.09.019
http://doi.org/10.1016/j.addr.2012.09.019
http://doi.org/10.1016/j.addr.2012.09.019
http://doi.org/10.1016/j.addr.2012.09.019
http://doi.org/10.1016/j.addr.2012.09.019
http://doi.org/10.1016/j.addr.2012.09.019
http://doi.org/10.1016/j.addr.2012.09.019
https://api.semanticscholar.org/CorpusID:3608234
https://api.semanticscholar.org/CorpusID:3608234
https://api.semanticscholar.org/CorpusID:3608234
https://api.semanticscholar.org/CorpusID:3608234
https://api.semanticscholar.org/CorpusID:3608234
https://api.semanticscholar.org/CorpusID:3608234
https://api.semanticscholar.org/CorpusID:1998416
https://api.semanticscholar.org/CorpusID:1998416
https://api.semanticscholar.org/CorpusID:1998416
https://api.semanticscholar.org/CorpusID:1998416
https://api.semanticscholar.org/CorpusID:1998416
https://api.semanticscholar.org/CorpusID:1998416
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740

58 M. Calamo and M. Marinacci

30. Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., Xiong, C.:
Codegen: An open large language model for code with multi-turn program synthesis. In:
International Conference on Learning Representations (2022). https://api.semanticscholar.org/
CorpusID:252668917

31. Ovadia, O., Brief, M., Mishaeli, M., Elisha, O.: Fine-tuning or retrieval? comparing knowledge
injection in llms. arXiv preprint arXiv:2312.05934 (2023)

32. Parthasarathy, V.B., Zafar, A., Khan, A., Shahid, A.: The ultimate guide to fine-tuning llms
from basics to breakthroughs: An exhaustive review of technologies, research, best practices,
applied research challenges and opportunities. arXiv preprint arXiv:2408.13296 (2024)

33. Radford, A., Narasimhan, K.: Improving language understanding by generative pre-training
(2018). https://api.semanticscholar.org/CorpusID:49313245

34. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu,
P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach.
Learn. Res. 21(140), 1–67 (2020). http://jmlr.org/papers/v21/20-074.html

35. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time
object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), p. 779–788. IEEE (2016). http://doi.org/10.1109/cvpr.2016.91

36. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization
in the brain. Psychol. Rev. 65(6), 386–408 (1958). https://api.semanticscholar.org/CorpusID:
12781225

37. Sahoo, P., Singh, A.K., Saha, S., Jain, V., Mondal, S., Chadha, A.: A systematic survey of
prompt engineering in large language models: Techniques and applications. arXiv preprint
arXiv:2402.07927 (2024)

38. Schuster, M., Nakajima, K.: Japanese and Korean voice search. In: 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5149–5152 (2012).
http://doi.org/10.1109/ICASSP.2012.6289079

39. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword
units (2016). https://arxiv.org/abs/1508.07909

40. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche,
G., Graepel, T., Hassabis, D.: Mastering the game of go without human knowledge. Nature
550(7676), 354–359 (2017). http://doi.org/10.1038/nature24270

41. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger (eds.) Advances in Neural
Information Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.
neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

42. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-level
performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE (2014). http://doi.org/10.1109/cvpr.2014.220

43. Tay, Y., Dehghani, M., Tran, V.Q., Garcia, X., Wei, J., Wang, X., Chung, H.W., Shakeri,
S., Bahri, D., Schuster, T., Zheng, H.S., Zhou, D., Houlsby, N., Metzler, D.: Ul2: Unifying
language learning paradigms (2023). https://arxiv.org/abs/2205.05131

44. Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn, A., Saravia, E., Poulton, A.,
Kerkez, V., Stojnic, R.: Galactica: A large language model for science (2022). https://arxiv.
org/abs/2211.09085

45. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,
Polosukhin, I.: Attention is all you need. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

46. Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., Zhou, E.,
et al.: The rise and potential of large language model based agents: A survey. arXiv preprint
arXiv:2309.07864 (2023)

https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://doi.org/10.1109/cvpr.2016.91
http://doi.org/10.1109/cvpr.2016.91
http://doi.org/10.1109/cvpr.2016.91
http://doi.org/10.1109/cvpr.2016.91
http://doi.org/10.1109/cvpr.2016.91
http://doi.org/10.1109/cvpr.2016.91
http://doi.org/10.1109/cvpr.2016.91
http://doi.org/10.1109/cvpr.2016.91
https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225
http://doi.org/10.1109/ICASSP.2012.6289079
http://doi.org/10.1109/ICASSP.2012.6289079
http://doi.org/10.1109/ICASSP.2012.6289079
http://doi.org/10.1109/ICASSP.2012.6289079
http://doi.org/10.1109/ICASSP.2012.6289079
http://doi.org/10.1109/ICASSP.2012.6289079
http://doi.org/10.1109/ICASSP.2012.6289079
http://doi.org/10.1109/ICASSP.2012.6289079
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
http://doi.org/10.1038/nature24270
http://doi.org/10.1038/nature24270
http://doi.org/10.1038/nature24270
http://doi.org/10.1038/nature24270
http://doi.org/10.1038/nature24270
http://doi.org/10.1038/nature24270
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
http://doi.org/10.1109/cvpr.2014.220
http://doi.org/10.1109/cvpr.2014.220
http://doi.org/10.1109/cvpr.2014.220
http://doi.org/10.1109/cvpr.2014.220
http://doi.org/10.1109/cvpr.2014.220
http://doi.org/10.1109/cvpr.2014.220
http://doi.org/10.1109/cvpr.2014.220
http://doi.org/10.1109/cvpr.2014.220
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

3 Large Language Models for Dummies 59

47. Xu, S., Cheng, Y., Gu, K., Yang, Y., Chang, S., Zhou, P.: Jointly attentive spatial-temporal
pooling networks for video-based person re-identification. In: 2017 IEEE International
Conference on Computer Vision (ICCV), p. 4743–4752. IEEE (2017). http://doi.org/10.1109/
iccv.2017.507

48. Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S., Li, J., Hu, R., Zhang, T., Wu, F.,
et al.: Instruction tuning for large language models: A survey. arXiv preprint arXiv:2308.10792
(2023)

49. Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M.T., Li,
X., Lin, X.V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D., Koura, P.S., Sridhar,
A., Wang, T., Zettlemoyer, L.: Opt: Open pre-trained transformer language models. ArXiv
abs/2205.01068 (2022). https://api.semanticscholar.org/CorpusID:248496292

http://doi.org/10.1109/iccv.2017.507
http://doi.org/10.1109/iccv.2017.507
http://doi.org/10.1109/iccv.2017.507
http://doi.org/10.1109/iccv.2017.507
http://doi.org/10.1109/iccv.2017.507
http://doi.org/10.1109/iccv.2017.507
http://doi.org/10.1109/iccv.2017.507
http://doi.org/10.1109/iccv.2017.507
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292

Chapter 4
A Reference Framework for Information
Systems

Francesca De Luzi and Massimo Mecella

Abstract This chapter presents a comprehensive exploration of information sys-
tems (IS), analyzing their role, structure, and life cycle. First, we clarify key
concepts such as data, information, and knowledge and explain their interconnec-
tions within organizations. The discussion thus defines IS from both a technological
and an organizational point of view, underlining its importance in modern business
environments. In this chapter, we describe the IS life cycle in detail, covering the
planning, design, development, testing, and maintenance phases. We also introduce
the information and knowledge management layer, highlighting data analysis and
information extraction as critical components for turning raw data into useful
information. Finally, the chapter discusses information systems engineering (ISE)
as an interdisciplinary approach integrating technical and business considerations,
addressing the challenges of big data, automation, and security. By examining
methodologies, technologies, and best practices, this chapter provides a structured
framework for understanding and optimizing IS in dynamic organizational contexts.

4.1 Introduction

In today’s digital economy, businesses increasingly rely on information systems to
drive efficiency, innovation, and competitiveness. Changes in strategy, rules, and
business processes increasingly require updates to hardware, software, databases,
communication networks, and user interfaces [22]. Information systems serve as a
crucial link between business strategy and IT capabilities, enabling organizations
to adapt to changing market conditions and operational demands. However, orga-
nization’s capabilities are often limited by what its information system allows it to
accomplish.

In this context, the Internet and the World Wide Web have become fun-
damental pillars upon which organizations build information systems to create

F. De Luzi (�) · M. Mecella
Sapienza Università di Roma, Rome, Italy
e-mail: deluzi@diag.uniroma1.it; mecella@diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 4&domain=pdf
https://doi.org/0000-0002-9896-2528
https://doi.org/0000-0002-9730-8882

 885
56845 a 885 56845 a

mailto:deluzi@diag.uniroma1.it
mailto:deluzi@diag.uniroma1.it
mailto:deluzi@diag.uniroma1.it

 10768 56845 a 10768 56845
a

mailto:mecella@diag.uniroma1.it
mailto:mecella@diag.uniroma1.it
mailto:mecella@diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4
https://doi.org/10.1007/978-3-031-92285-5_4

62 F. De Luzi and M. Mecella

an information-driven economy. Among the various approaches to address the
challenges of a global economy is the need to acquire more information while
also leveraging the value of existing data. Web-based platforms and applications
are an effective response, as they allow the collection, correlated management, and
distribution of large amounts of data from heterogeneous information sources. In
such contexts, immediate and effective access to critical data extracted from vast
datasets becomes both strategic and essential.

Information systems supported by information technology (IT), encompass
software applications, data management systems, user interfaces, and communica-
tion networks. These systems support organizations in managing information and
involve complexities in design, control, and management. These complexities stem
from diverse information sources, databases differing in models and technologies,
communication networks based on various protocols, and processes and corporate
actors distributed and interconnected in cooperation.

Therefore, design and implementing an information system is a complex dis-
cipline. On one hand, it must address future challenges such as the exponential
growth of data (i.e., Big Data) and the increasing availability of low-cost, high-speed
computational power (i.e., Cloud Computing). On the other hand, it must enable
integration among heterogeneous system, and managing the resulting complexity is
a crucial task. To address these challenges, various methodologies, techniques, and
tools have been developed to support the design and implementation of information
systems.

In the following sections, we will explore key concepts in detail to better
understand how an information system works and the different perspectives from
which it can be analyzed.

4.1.1 Data, Information, and Organization

Before defining an information system and its components, it is important to clarify
key terms. The terms “data” and “information” are often used interchangeably. To
illustrate their differences, we reference the so-called knowledge pyramid shown in
Fig. 4.1, also known as DIKW (Data, Information, Knowledge, Wisdom) [13].

Fig. 4.1 The knowledge
pyramid

4 A Reference Framework for Information Systems 63

At the base of the pyramid lies data, which represents facts or measurements—
something considered true by definition and representing a portion of the reality to
be depicted. Every piece of data is always associated with its type, which defines the
range of possible values it can assume. Additionally, data may be characterized by
its unit of measure. Given the vast amount of collected data, database management
provides methods and tools to structure, store, and retrieve it efficiently.

Following the hierarchy suggested by the knowledge pyramid, above data lies
information, which is constructed from data and can be defined as the interpretation
of one or more data points. Indeed, a single data point, without any reference
context, is often not useful. For data to become useful, it must be combined with
other data to define a context that better characterizes the represented reality.
Therefore, information can be seen as the output of queries applied to a set of data.

Ascending further up the pyramid, above information, we find knowledge,
obtained by integrating information with experience. While information provides
a comprehensive representation of reality, knowledge informs decision-making and
influences outcomes. It is worth noting that knowledge is acquired over time through
an individual’s experience and generally cannot be transferred to others. In contrast,
information—and, to a certain extent, experience—can be transferred, although
formalizing the latter can be challenging.

Finally, we reach wisdom, which represents an extension of the traditional
knowledge pyramid. Wisdom can be defined as the application of experience to
knowledge, guiding an individual to take the most appropriate action in a given
moment. This structure shows that at the bottom, data is highly numerous and fine-
grained, while at the top, wisdom is represented by fewer elements, which are more
synthetic and coarse-grained.

The use of information systems requires an understanding not only of data and
information but also of the business entity, its management, and the role of IT within
it. An information system creates value by providing organizational and managerial
solutions to the challenges posed by the environment. Specifically, in the field of
information systems, the key concepts are resources and processes. Therefore, the
organization of a business entity defines the actions required to implement business
processes, determines their distribution across different levels of the structure, and
coordinates their execution to optimize resource utilization.

A resource refers to anything an organization operates with (both tangible and
intangible) to pursue its objectives. Data and information are examples of resources
and represent the fundamental elements of an information system. A process is the
set of activities an organization carries out to manage the life cycle of a resource
in order to achieve a defined and measurable result. Processes can be classified
according to various classification models. Below we go into the hierarchical model
of the organization given by Anthony’s pyramid.

64 F. De Luzi and M. Mecella

Fig. 4.2 Anthony pyramid

4.1.1.1 Anthony’s Pyramid

Anthony’s pyramid [3] is a foundational framework for understanding organi-
zational processes and their relationship with decision-making levels. Robert
Anthony’s model categorizes organizational activities into three hierarchical levels,
as shown in Fig. 4.2: strategic planning, management control, and operational
control.

• The strategic planning level focuses on long-term goals and policies that shape
the organization’s direction. Decisions at this level—such as market expansion
or launching significant initiatives—are based on aggregated data and high-level
insights. The strategic layer considers both external and internal factors that
influence organizational objectives.

• The management control level bridges strategic decisions with daily operations.
It involves allocating resources, monitoring performance, and ensuring alignment
with strategic goals. Examples include budget planning, resource scheduling, and
performance evaluation, all crucial for maintaining efficiency and effectiveness.

• The operational control level handles day-to-day activities and tasks critical
to the organization’s functioning. It encompasses routine processes such as
transaction recording, inventory management, and service delivery. The emphasis
here is on precision and adherence to established procedures.

Anthony’s pyramid illustrates the varying information needs and decision-
making complexity at each level. Operational decisions are based on detailed,
real-time data, while strategic decisions are based on synthesized insights and
forecasts. Modern information systems—especially those that utilize business intel-
ligence (BI) and data warehousing—support these diverse needs, ensuring seamless
organizational function across all levels.

4.1.2 Information System

After clarifying what information is and how fundamental it is for an organization,
we can accurately define an information system. An information system is, first
and foremost, a system—an organized set of diverse elements that interact in a

4 A Reference Framework for Information Systems 65

coordinated manner. It highlights the fact that there is an organized set of elements
of different natures, which interact in a coordinated manner.

Laudon and Laudon [17] define an information systems as a set of interrelated
components that collect, process, store, and distribute information within an orga-
nization. Hirschheim et al. [14] emphasize the importance of the human factor in
information systems and define them as:

Traditionally, an information system has been defined in terms of two perspectives: one
relating to its function; the other, to its structure. From a structural perspective, an
information system consists of a collection of people, process, data, models, technology and
partly formalized language, forming a cohesive structure, which serves some organizational
purpose or function. From a functional perspective, an information system is a techno-
logically implemented medium for the purpose of recorded, storing, and disseminating
linguistic expressions as well as for the supporting of inference making. Through perform-
ing these elementary functions, IS facilitates the creation and the exchange of meanings that
serve socially defined purposes such as control, sensemaking, and argumentation (i.e. the
formulation and justification of claims). In either of these two perspectives on information
systems, it should be noted that humans are included within its boundaries which means that
the services provided by an IS in part depend upon human capabilities and contributions.

Information systems can be viewed from multiple perspectives, but two pri-
mary approaches emerge: a human- or information-centered perspective and a
technology-centered perspective.

In general, information systems involve computerized as well as manual routines
and include people involved as agents manipulating and conveying information
that concern the things that are dealt with in the organization. The reduction in
IT costs has widely expanded the possibility to automatically elaborate information,
making procedures more accurate and faster while enhancing the ways information
is processed. The term automated information system or computer system refers
to that part of the information system implemented using IT: information is
collected, processed, stored, and exchanged through the use of information and
communication technologies.

There is a significant difference between an information system and a computer
system: the former includes hardware, software, and the set technical and organi-
zational knowledge of a business entity within which it operates, while the latter
consists solely of hardware and software, as illustrated in Fig. 4.3.

Fig. 4.3 Representation of a
business entity

66 F. De Luzi and M. Mecella

4.1.2.1 Representation of an IS

An information system is a complex entity that cannot be fully captured by a
single model and can be analyzed from multiple perspectives. The most widely
used modeling in the literature involves three different levels of representation:
organizational model, functional model, and computer model. In particular, the
functional model will be examined.

In general, at the functional level, an information system performs three main
activities [17]: input of information, i.e., a set of data entering the system, which
can be collected in various ways (textual input, sensor input, etc.); data processing,
where the data is aggregated, transformed, and stored to be output; and data output,
where the data is distributed to system users, including individuals working within
the organization, external individuals, or other information systems. The output
generated by the information system indirectly produces feedback. Essentially, users
will make decisions based on the output, and their actions will, in turn, generate
additional input for the information system. Therefore, an information system
not only monitors internal organizational activities but also interacts with and is
influenced by external factors.

To be more specific, an information system is fed by events, represented as data,
that occur within an organization as illustrated in Fig. 4.4. It transforms these data
into information, which must be appropriately modeled and represented depending
on who will use it. These events can trigger organizational processes, which form the
foundation of an organization. Therefore, the key aspects of an information system
revolve around managing the information resource according to business rules and
objectives, utilizing technology for one or more organizations.

In line with these aspects, the design of information systems aims to understand
and model, starting from organizational needs, how data and processes can be

Fig. 4.4 Representation of an information system

4 A Reference Framework for Information Systems 67

supported by technology. The information system is often associated with the
technological aspect alone, which is in fact a part, identified as IT, which processes,
stores, and manages the exchange of information, and changes over time with the
evolution of the business entity and technologies. Therefore, the key points of the
information system become the management of the information resource according
to rules and business objectives (business rules) with the use of technologies for one
(or more) organizations.

The design and development of information systems involve multiple aspects,
including data, processes, and user interaction. Structuring the project into key
areas—data, business logic, and user interface—helps manage complexity effec-
tively.

4.2 Information Systems Life Cycle

The life cycle of an information system is represented by its development plan,
structured into various phases that form a complex process often spanning several
years. Since the 1960s, researchers have investigated the ultimate methodology for
developing information systems [20], and several research-based methodologies
have been introduced [6]. The methodologies vary significantly, but in general, they
give guidelines for how to control and coordinate the process of developing and
implementing information systems. The life cycle, shown in Fig. 4.5, is iterative.
The design process follows a planning and requirements analysis phase. After
designing the system, we move on to its implementation and customer-side testing.
The system is then deployed and monitored. New requirements may emerge during
these phases, which is why the development of the system is iterative. In the
following, we provide a description of each phase.

4.2.1 Planning

The first phase involves planning, during which strategic guidelines, organizational
roles, and operational instructions for implementation are outlined. At this level,

Fig. 4.5 IS life cycle

68 F. De Luzi and M. Mecella

once the objectives requiring IT solutions have been identified (strategic planning),
the costs of various alternatives are assessed, and the priorities for implementing the
different components of the information system are established (feasibility study).

Strategic planning helps assess the current state of the organization and identify
areas and processes that require IT interventions, ensuring alignment between IT
and business objectives. Key activities in strategic planning include (i) analyzing
opportunities for information system development, including technologies, strate-
gies, and processes that shape future system evolution, and (ii) assessing information
needs, leading to the modeling and structuring information flows necessary for
organizational operations.

The feasibility study leads to the selection of the most suitable solution by eval-
uating multiple viable options from both technical and organizational perspectives.
Cost-effectiveness is also considered when comparing alternatives. Once a solution
is chosen, system implementation begins.

During this phase, one or more system analysts collaborate with stakeholders to
define the specific requirements of the new system. Procedures are documented, key
users are interviewed, and data requirements are analyzed to gain a comprehensive
understanding of the system’s objectives. The outcome of this phase is a formal
system requirements document.

4.2.2 Design

Once a solution is identified—whether it involves modifying the existing informa-
tion system or implementing a new one—it requires a dedicated design phase. The
feasibility study defines what the system needs to do, while the design phase focuses
on how it will achieve this. There are three fundamental aspects to the design of an
information system: data, which is the basis for conceptual modeling; process flows,
which are the basis for process modeling; and user-system interactions, the basis for
interaction modeling.

In the conceptual modeling phase, an abstract representation of the information
system is defined (conceptual design), serving as a reference for the subsequent
implementation phase. The objective of this phase is to identify types of information
and classes and to describe how logical connections between them occur through
relationships. Conceptual modeling is typically performed using a specialized
modeling language that describes the analyzed reality and defines the system to
be implemented. Some of the main languages used for the various design stages
include:

• E/R Diagrams (Entity/Relationship): a graphical formalism used to document
data structures based on the relational model.

• IDEF (Integration Definition) Languages: a family of graphical languages that
emerged in the 1970s, with IDEF1X being the most well-known for data
documentation.

4 A Reference Framework for Information Systems 69

• UML (Unified Modeling Language): a set of standard diagrams and graphical
formalisms for describing various aspects of an information system. The func-
tionalities are modelable in UML through use case diagrams, representing the
functional requirements of a system from the user’s point of view, identifying the
actors involved in the system and the functions they are authorized to perform.

• BPMN (Business Process Model and Notation): a graphical language for describ-
ing and defining business processes.

The main output of the design phase provides a detailed description of system
outputs, inputs, controls, and user interfaces. It also outlines hardware, software,
databases, telecommunications, personnel, and procedures, illustrating how these
components interrelate. A project specification document is then prepared, con-
taining formal descriptions of the system and software architecture. Databases are
designed based on specific models (schemas). The duration of the design phase
varies depending on the solution: modifying an existing system may take several
months, whereas designing a new system could take several years.

4.2.3 Development

In the development phase, the process of creating a system produces an operational
solution through programming, that is, the creation of a set of logical instructions
that a digital device must follow using a programming language. Developers write
the code and build the app based on final requirements and specification documents.
In particular, the development process consists of the actual implementation of
the information system design in its various components through the acquisition
of hardware and communication platforms and the development and installation
of software applications. Developing good software is not easy; it requires a
lot of resources and involves different groups of people in an organization. To
do this effectively, the groups agree to follow a specific software development
methodology.

Today, iterative and incremental software development methods, influenced by
the principles outlined in the Agile Manifesto [4], referred to as Agile software
development methods, are widely adopted due to their flexibility and adaptabil-
ity. These approaches contrast with more traditional methodologies, such as the
waterfall model [5], which emphasize extensive planning and structured phases.
While traditional methods remain suitable for certain projects requiring strict
documentation and predictability, Agile methodologies have gained prominence
for their ability to accommodate changing requirements and foster continuous
collaboration.

The design, build-up, and population of the database, which will be the essential
part of the computer system, is of fundamental importance. The result of this phase
is an initial working program that meets the requirements specified in the system
planning phase and the design developed in the system design phase.

70 F. De Luzi and M. Mecella

4.2.4 Testing and Validation

In the testing phase, the software program developed in the previous phase is put
through a series of structured tests. The first is a unit test, which evaluates individual
parts of the code for errors or bugs. This is followed by a system test in which
the different components of the system are tested to ensure that they work together
properly. Finally, the user acceptance test allows those that will be using the software
to test the system to ensure that it meets their standards. Any bugs, errors, or
problems found during testing are resolved, and then the software is tested again.

Typically, design and testing are typically conducted concurrently. For each
change, testing must be done to ensure the system works as anticipated. There
are different levels of testing that occur. IT staff will do the initial testing for bugs
(coding errors) and glitches (sudden malfunction). Users may be asked to test for
accuracy of the content, ease of use, or satisfaction with the feature, workflow, or
other tasks.

4.2.5 Monitoring and Maintenance

After the implementation of a new system, it enters the monitoring and maintenance
phase, where it remains in production and is actively used by the organization.
Although no longer in development, continuous improvements and adjustments are
necessary to fix bugs, accommodate new business requirements, and ensure long-
term functionality. Maintenance includes [9] corrective maintenance (resolving
errors not detected during implementation), perfective maintenance (adapting to
changing user needs and regulations), and adaptive maintenance (aligning with
technological advancements).

A crucial aspect of this phase is system monitoring, which ensures the system
operates efficiently, securely, and in alignment with business needs. Monitoring
involves tracking system performance, detecting anomalies, analyzing usage data,
and identifying potential risks or failures before they impact operations. IT teams
use automated tools and real-time analytics to oversee system health, optimize
resources, and implement proactive measures to prevent downtime.

Regular system updates, backups, and structured support processes help maintain
efficiency and reliability. Additionally, IT management must ensure that the system
continues to align with business priorities while optimizing operational costs. Over
time, significant upgrades or even a complete system overhaul may be required,
particularly when integrating with newer technologies. A well-maintained and well-
monitored system remains scalable, secure, and capable of supporting evolving
business needs.

4 A Reference Framework for Information Systems 71

4.3 The Information and Knowledge Management Layer

As discussed in the introductory section, information systems are complex systems
through which an organization can achieve its goals and improve its products or
services, making them competitive in the market. However, an information system is
not isolated from what happens outside the organization, and the way it is designed,
as well as its capabilities, is influenced by the technologies used to develop it.
The emergence of new technologies and their adoption within an organization’s
information system bring numerous advantages and can significantly impact the
company’s objectives.

In this modern data-driven environment, effective management of information
and knowledge becomes essential. The relationship between Knowledge Manage-
ment (KM) and Information Management (IM) plays a crucial role in this landscape:
while IM focuses on ensuring the efficient collection, processing, storage, and
distribution of information, KM leverages this structured information to generate
insights and knowledge. A multi-layered approach, such as the one depicted in
Fig. 4.6, illustrates this relationship effectively. The key components are described
below.

• Data sources [12] represent different types of data according to a classification
proposed by UNECE [26] (United Nations Economic Commission for Europe).
There are three main types of data sources that can be viewed as Big Data: human
sourced (e.g., blog comments), process mediated (e.g., banking records), and
machine generated (e.g., sensor measurements).

• Transactional databases form the foundation by storing raw operational data.
These interactions, or transactions, are named as such due to the type of data
they host (e.g., data derived from an interaction between two or more parties)
rather than the type of database they are. There are various types of databases
that can function as transactional databases, including relational databases and
NoSQL databases.

• ETL [10] (extraction, transformation, loading) processes ensure data quality and
standardization before integration into structured repositories. In particular, this
ETL process helps the data warehouse achieve enhanced system performance
and business intelligence by making data more reliable, accurate, and easily
accessible. This enables timely data access and a higher return on investment,
as it allows for more efficient analysis and reporting.

– Extraction: involves connecting systems and collecting the data needed for
analytical processing.

– Transformation: extracts data and converts it into a standard format.
– Loading: transformed data are imported into a large data warehouse.

• Data warehouses [16] and data lakes [11] act as centralized storage solutions,
with the former providing structured data for analytical purposes and the latter
offering flexible storage for all types of data (structured, semi-structured, and
unstructured data). Data lakehouse [21] combines the best elements of data lakes

72 F. De Luzi and M. Mecella

Fig. 4.6 The information and knowledge management layer

and data warehouses. It is a novel architecture based on low-cost and directly
accessible storage that provides traditional analytical DBMS management and
performance features. Data can be stored in a single location and supports ML,
BI, and data streaming. In data lakehouses, data warehouse-like structures and
schemas can be used for unstructured data like in a data lake.

• Analytics and dashboarding represent the final stage, where processed data is
transformed into meaningful insights, supporting decision-making and strategic
planning (c.f., Sect. 4.3.1).

By integrating KM and IM principles, organizations bridge the gap between
raw data and actionable knowledge, facilitating a seamless transition from data
management to strategic insight generation. Therefore, once data has been collected,
processed, and stored through the aforementioned layers, the next crucial step is to
extract valuable insights and transform raw data into actionable knowledge. This
phase is essential for organizations aiming to leverage their information assets for
strategic decision-making.

In the current landscape, two processes play a key role: data analytics, which
focuses on analyzing and visualizing data to support business intelligence, and
information extraction, which involves retrieving relevant knowledge from struc-
tured and unstructured data sources. The following sections provide an in-depth
discussion of these two critical components.

4 A Reference Framework for Information Systems 73

4.3.1 Data Analytics

Data analytics serves as a critical component within the information and knowl-
edge management layer, enabling organizations to process, analyze, and interpret
large-scale datasets. In recent years, advancements in computational power and
algorithmic efficiency have facilitated the application of sophisticated analytical
techniques to extract valuable insights from data.

There are four essential types of analysis [24]: exploratory, descriptive, senti-
ment, and predictive. Exploratory analysis investigates data for patterns, relation-
ships, and anomalies without making initial assumptions. It helps in understanding
the structure of the data and generating hypotheses for further examination.
Descriptive analysis summarizes historical data to provide insights into past trends
and performance. For example, it transforms raw data into reports that monitor an
organization’s operations in real time. Sentiment analysis examines subjective data,
measuring opinions or emotions expressed in textual content. It is often used to
understand customer feedback. Predictive analytics leverages historical data and
statistical models to forecast future outcomes. Therefore, mining and extracting
meaningful patterns from massive input data for decision-making, prediction, and
other inferencing is at the core of Big Data analytics [19].

Moreover, in the context of KM, data analytics plays a pivotal role in trans-
forming unstructured textual data into structured knowledge [15]. By leveraging
techniques such as sentiment analysis, topic modeling, and entity recognition,
organizations can gain deeper insights into textual information, enabling better
information utilization. The application of real-time analytics also enhances respon-
siveness, allowing organizations to adapt swiftly to emerging trends and dynamic
market conditions.

4.3.2 Information Extraction

Information extraction (IE) refers to the automatic extraction of structured informa-
tion, such as entities, their attributes, relationships, and events, from unstructured
text [2, 18, 23]. It is a fundamental task in natural language understanding and plays
a crucial role in transforming raw text into structured knowledge.

IE encompasses a wide range of downstream tasks, such as named entity
recognition (NER) [30], which identifies and classifies entities; entity typing (ET)
[8], which assigns specific categories to entities; relation extraction (RE) and event
extraction (EE) [27], which respectively determine the connections between entities
and identify events and their arguments; and knowledge graph construction [29]. In
addition, Aspect-Based Sentiment Analysis (ABSA) [7] is often considered part of
IE, as it extracts opinions and sentiments related to specific aspects of entities.

Given its role in structuring raw data, IE is deeply connected to KM. By
efficiently extracting and organizing knowledge, IE systems help enhance the

74 F. De Luzi and M. Mecella

efficiency and effectiveness of data analysis, particularly in context-aware analytical
systems [1]. This improves data-driven decision-making and knowledge manage-
ment, ultimately facilitating the development of intelligent systems.

4.4 Information Systems Engineering

In the introduction, we clarified key terms to understand the concept of information
systems. In particular, we have come to define ISs by distinguishing the concepts of
data, information, knowledge, and wisdom. To complete our discussion and define
information systems engineering (ISE), we still need to analyze the concept of
engineering, both in absolute terms and in relation to a system. The approach taken
to define ISE has followed the perspective outlined in [28], giving the fundamental
terms that constitute ISE and finally its definition.

The field of engineering has been defined by the Engineers Council for Pro-
fessional Development as the creative application of scientific principles to design
or develop structures, machines, apparatus, or manufacturing processes, or work
utilizing them singly or in combination; or to construct or operate the same with full
cognizance of their design; or to forecast their behaviour under specific operating
conditions; all as respects and intended function, economics of operation and safety
to life and property.

Therefore, engineering involves systematic analysis, problem-solving, and inno-
vation to create functional and optimized solutions across various disciplines, from
mechanical and civil engineering to software and information systems engineering.
Notably, in the context of ISs, this definition highlights that engineering encom-
passes both the creative application of manufacturing processes and the operation
of systems [28].

Systems engineering [25] is an interdisciplinary approach that focuses on design-
ing, integrating, and managing complex systems over their life cycles. It ensures that
all components—technical, operational, and human—function together cohesively
to meet user needs and system requirements. Systems engineering emphasizes a
holistic view, addressing aspects such as performance, reliability, cost, scalability,
and sustainability while considering the interactions between system elements and
their environment. However, there is much more to systems engineering than this
definition alone suggests. Its scope is broad and can be described from a variety of
perspectives, including participants, total life cycle impact, and the roles played by
both industry and researchers.

As a result, the field of information systems engineering (ISE) should focus not
only on implementation technologies and development methodologies but also on
the engineering process itself and the study of system usage and maintenance in
a broader sense. Both engineering and systems engineering are at the core of ISE,
an interdisciplinary approach that integrates technical and business considerations
throughout the life cycle of an information system. ISE applies formal analytical

4 A Reference Framework for Information Systems 75

methods to design, develop, and maintain complex systems that efficiently process,
analyze, and protect large amounts of data.

In particular, with the advent of the widely discussed Big Data and the need for
fast and reliable decisions, modern ISs must support operational and informational
functions while facing challenges such as scalability, automation, and security. In
such a context, advanced methodologies are emerging, such as agile software devel-
opment, cognitive engineering, and automated decision-making systems, which
promise to improve system adaptability, user experience, and resilience. In addition,
the integration of user-centered and multimedia design principles ensures that
ISs are not only functionally robust but also intuitive and engaging, facilitating
seamless interaction between man and computer. By managing complexity and
promoting innovation, ISE enables the development of high-performance systems
that align with technological and organizational needs in an increasingly fast-
evolving landscape.

In this chapter, we have detailed each phase of the IS life cycle to establish
a sound conceptual basis. By defining ISE and its interdisciplinary nature, we
provide the necessary context for understanding the methodologies, challenges, and
principles that guide the development and management of ISs.

This basic knowledge ensures that the subsequent investigation can be
approached with a clear understanding of the engineering processes and systemic
considerations that influence each stage of the life cycle.

References

1. Adnan, K., Akbar, R.: Limitations of information extraction methods and techniques for
heterogeneous unstructured big data. Int. J. Eng. Bus. Manag. 11, 1847979019890771 (2019)

2. Andersen, P.M., Hayes, P.J., Weinstein, S.P., Huettner, A.K., Schmandt, L.M., Nirenburg, I.:
Automatic extraction of facts from press releases to generate news stories. In: Third Conference
on Applied Natural Language Processing, pp. 170–177 (1992)

3. Anthony, R., Planning, N.: Control Systems: A Framework for Analysis. Graduate School of
Business Administration, Division of Research, Harvard University, Boston (1965)

4. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for agile software
development (2001)

5. Benington, H.D.: Production of large computer programs. Ann. Hist. Comput. 5(4), 350–361
(1983)

6. Bubenko, J.: On the evolution of information systems modelling: A Scandinavian perspective.
DSV (1992)

7. Chen, Z., Qian, T.: Relation-aware collaborative learning for unified aspect-based sentiment
analysis. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 3685–3694 (2020)

8. Choi, E., Levy, O., Choi, Y., Zettlemoyer, L.: Ultra-fine entity typing. arXiv preprint
arXiv:1807.04905 (2018)

9. Edwards, C.: Information systems maintenance: an integrated perspective. Mis. Quart., 237–
256 (1984)

10. Esmail, F.S.: A survey of real-time data warehouse and etl. Management 9(3), 3–9 (2014)

76 F. De Luzi and M. Mecella

11. Fang, H.: Managing data lakes in big data era: What’s a data lake and why has it became
popular in data management ecosystem. In: 2015 IEEE International Conference on Cyber
Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 820–824 (2015).
http://doi.org/10.1109/CYBER.2015.7288049

12. Firmani, D., Mecella, M., Scannapieco, M., Batini, C.: On the meaningfulness of “big data
quality”. Data Sci. Eng. 1, 6–20 (2016)

13. Frické, M.: The knowledge pyramid: a critique of the DIKW hierarchy. J. Inf. Sci. 35(2),
131–142 (2009)

14. Hirschheim, R., Klein, H.K., Lyytinen, K.: Information systems development and data
modeling: conceptual and philosophical foundations, vol. 9. Cambridge University Press,
Cambridge (1995)

15. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J. Parallel
Distrib. Comput. 74(7), 2561–2573 (2014)

16. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modeling. Wiley, New York (2013)

17. Laudon, K.C., Laudon, J.P.: Management Information Systems: New Approaches to Organiza-
tion and Technology. Prentice Hall PTR, Hoboken (1997)

18. Lu, Y., Liu, Q., Dai, D., Xiao, X., Lin, H., Han, X., Sun, L., Wu, H.: Unified structure generation
for universal information extraction. arXiv preprint arXiv:2203.12277 (2022)

19. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.:
Deep learning applications and challenges in big data analytics. J. Big Data 2, 1–21 (2015)

20. Nilsson, A.G.: Evolution of methodologies for information systems work : A historical
perspective (1995). https://api.semanticscholar.org/CorpusID:61002903

21. Oreščanin, D., Hlupić, T.: Data lakehouse-a novel step in analytics architecture. In: 2021
44th International Convention on Information, Communication and Electronic Technology
(MIPRO), pp. 1242–1246. IEEE (2021)

22. Pernici, B., Cappiello, C., Fugini, M., Grefen, P., Plebani, P., Vitali, M.,: Fondamenti di Sistemi
informativi: per il Settore dell’Informazione. In: Politecnico di Milano (2025)

23. Sarawagi, S., et al.: Information extraction. Found. Trends® Databases 1(3), 261–377 (2008)
24. Siddiqui, M.R.: Empowering decision-making through big data analytics insights from

exploratory, descriptive, sentiment, and predictive frameworks. Authorea Preprints (2025)
25. Stevens, R.: Systems Engineering: Coping with Complexity. Pearson Education, London

(1998)
26. UNECE: Classification of types of big data (2015). https://unstats.un.org/unsd/classifications/

expertgroup/egm2015/ac289-26.PDF. Accessed: Jan 2025
27. Wang, X., Zhou, W., Zu, C., Xia, H., Chen, T., Zhang, Y., Zheng, R., Ye, J., Zhang, Q., Gui,

T., et al.: Instructuie: Multi-task instruction tuning for unified information extraction. arXiv
preprint arXiv:2304.08085 (2023)

28. Wangler, B., Backlund, A.: Information systems engineering: What is it? In: CAiSE Workshops
(2), pp. 427–437 (2005)

29. Zhong, L., Wu, J., Li, Q., Peng, H., Wu, X.: A comprehensive survey on automatic knowledge
graph construction. ACM Comput. Surv. 56(4), 1–62 (2023)

30. Žukov-Gregorič, A., Bachrach, Y., Coope, S.: Named entity recognition with parallel recurrent
neural networks. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 69–74 (2018)

http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
http://doi.org/10.1109/CYBER.2015.7288049
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://api.semanticscholar.org/CorpusID:61002903
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF
https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-26.PDF

Chapter 5
Exploring Large Language Models in
Information Systems: A Survey

Filippo Bianchini and Matteo Marinacci

Abstract The integration of large language models (LLMs) into the life cycle of
information systems (ISs) is transforming traditional methodologies across multiple
phases, from planning and design to monitoring and maintenance. This chapter
provides a comprehensive survey of the most impactful research on LLMs in key
IS life cycle stages, analyzing their applications, benefits, and limitations. Through
a literature review, we examine how LLMs are utilized and can be leveraged across
different phases of the IS life cycle: planning, design, development, testing and
validation, and monitoring and maintenance. Additionally, we analyze their role in
tasks that, while not strictly part of the IS life cycle, are increasingly relevant, such as
information extraction and data analytics. This chapter provides an in-depth analysis
of recent LLMs applications in each phase, evaluating their impact on traditional
methodologies and assessing their effectiveness in automating processes, improving
decision-making, and enhancing overall system efficiency.

5.1 Introduction

This chapter serves as a comprehensive survey of the most impactful studies on
the application of large language models (LLMs) within the realm of information
systems (ISs), specifically on how LLMs are leveraged to address challenges
across the entire life cycle of an IS, highlighting state-of-the-art methodologies,
innovations, and practical applications. The life cycle of an IS1 encompasses several
phases: planning, design, development, testing and validation, and monitoring
and maintenance. For each of these phases, this survey identifies and evaluates

1 For a detailed overview of the phases of an IS life cycle, see Chap. 4.

F. Bianchini (�) · M. Marinacci
Sapienza Università di Roma, Rome, Italy
e-mail: bianchini@diag.uniroma1.it; marinacci@diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_5

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 5&domain=pdf
https://orcid.org/0009-0006-3278-9853
https://orcid.org/0009-0008-9110-0555

 885
56845 a 885 56845 a

mailto:bianchini@diag.uniroma1.it
mailto:bianchini@diag.uniroma1.it
mailto:bianchini@diag.uniroma1.it

 11971 56845 a 11971
56845 a

mailto:marinacci@diag.uniroma1.it
mailto:marinacci@diag.uniroma1.it
mailto:marinacci@diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5
https://doi.org/10.1007/978-3-031-92285-5_5

78 F. Bianchini and M. Marinacci

Table 5.1 Survey summary of IS life cycle phases

Phase Studies Description

Planning 4 Focuses on strategic alignment, requirements
elicitation, and techniques such as SWOT analysis to
define objectives and align IS goals with
organizational needs

Design 5 Involves creating abstract representations of systems,
such as UML diagrams, Entity-Relationship
diagrams, and process flows. Topics include
quantitative and qualitative evaluation of LLM
performance for accuracy, scalability, and adherence
to constraints

Development 4 Defines the technical framework of the system,
including components, interactions, and platforms.
Key topics include scalability, security, and
technological standardization

Testing and Validation 6 Ensures the system meets functional and
non-functional requirements. Topics include iterative
evaluation, correctness verification, and performance
optimization

Monitoring and Maintenance 7 Focuses on continuous oversight of system
performance, security, and compliance. Includes
techniques such as log analysis, anomaly detection,
and performance tracking

Other areas

Data Analytics 6 Leverages LLMs for predictive modeling, trend
analysis, and multi-source data integration to extract
actionable insights

Information Extraction 6 Focuses on deriving structured information from
unstructured data sources, including text and
multimedia, to enrich the system’s knowledge base

significant research contributions, offering a detailed view of how LLMs are
reshaping IS workflows.

To identify relevant studies, this survey conducts a literature review using
advanced academic article retrieval tools such as Publish or Perish2 and by referring
to the main guidelines proposed in the literature [33, 66]. Queries were designed
to target highly specific intersections of IS and LLM applications. In cases where
the queries yielded zero or very few results—reflecting the scarcity of direct
applications of LLMs in certain IS life cycle phases—the selected studies focused on
frameworks, techniques, or methodologies relevant to the respective phase, where
LLMs could plausibly be utilized. This approach ensured comprehensive coverage
of the literature, capturing both foundational studies and innovative applications.

2 https://harzing.com/resources/publish-or-perish

https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish

5 Exploring Large Language Models in Information Systems: A Survey 79

Each study underwent a detailed analysis, assessing both its specific contribu-
tions and its placement within the broader state-of-the-art landscape. Particular
attention was given to the LLM models employed during the testing and validation
phases, as these models are critical to understanding the practical implications and
limitations of the research. Evaluation methodologies were also analyzed, highlight-
ing how researchers assessed the performance and effectiveness of their proposed
approaches. This dual focus on LLM models and evaluation methodologies ensures
that the survey not only captures theoretical advancements but also provides insights
into their practical applicability.

5.2 Results of the Literature Review

The life cycle of an IS encompasses multiple phases, each addressing specific
objectives and challenges in the development and management of the system.

• Planning phase: focuses on defining strategic objectives and gathering require-
ments to ensure alignment with organizational goals and stakeholder expectations
(Table 5.2).

• Design phase: an abstract representation of the system is then provided through
tools such as Entity-Relationship diagrams, UML models, or process flows,
which serve as blueprints for structuring and refining system requirements
(Table 5.3).

• Development phase: establishes the technical framework of the system, including
the definition of components, their interactions, and the underlying technological
platforms. This phase ensures the scalability, security, and standardization of the
system (Table 5.4).

• Testing and validation phase: verifies that the system meets its functional and
non-functional requirements, employing rigorous evaluation to ensure reliability
and correctness (Table 5.5).

• Monitoring and maintenance phase: addresses the continuous oversight of the
system’s performance, security, and compliance through techniques such as log
analysis and anomaly detection (Table 5.6).

Although the deployment phase is not addressed separately, it is considered an
integral part of the transition process between development, testing, and main-
tenance. Deployment activities, including system configuration and release, are
closely linked to the testing and validation phases, as well as monitoring and
maintenance operations, to ensure the system’s stability and effectiveness in pro-
duction. Any studies addressing deployment-related topics will be discussed within
the relevant phases of the IS life cycle, depending on the specific context in which
they are analyzed. In addition to these life cycle phases, LLMs also play a significant
role in areas closely connected to information systems, such as data analytics and
information extraction (c.f. Sect. 5.2.6).

80 F. Bianchini and M. Marinacci

• Data analytics helps in extracting actionable insights from the data generated by
the system, enabling predictive modeling and trend analysis (Table 5.7).

• Information extraction focuses on structuring unstructured data from diverse
sources, such as text or multimedia, to enrich the system’s knowledge base and
support decision-making processes (Table 5.8).

For each of these phases, a summary table is provided to present key findings,
including the LLMs used for testing and validation, as well as the evaluation
methodologies applied. In Table 5.1, the analyzed phases are reported along with
number of selected papers and a brief description for each phase.

Table 5.2 Planning for information systems

Source LLM Evaluation methodology

Ataei et al. [6] GPT-4-turbo
text-embedding-ada-002

User agent diversity, evaluated using
computational metrics and clustering,
showing serial method as most diverse; Latent
Need Identification, simulated user scenarios
with LLM agents, assessed with F1-scores
and predefined criteria; Latent Need
Detection, different detection methods were
compared, including zero-shot and
criteria-based approaches (evaluated on
precision, recall, and F1 score)

Ronanki et al. [53] GPT-3.5 Expert-based comparative evaluation, attribute
scoring methodology (scale on 0 to 10 for
selected quality attributes), controlled context
testing using standardized questions on
Trustworthy AI principles

Kenyon et al. [46] all-MiniLM-L12-v2
all-MiniLM-L6-v2
all-mpnet-base-v2
msmarco-bert-base-dot-
v5
msmarco-MiniLM-L6-
cos-v5
multi-qa-MiniLM-L6-
co-v1
multi-qa-mpnet-base-
dot-v1

Semantic validation, semantic similarity
analysis using cosine distance between text
embeddings, accuracy analysis (spot checking
with Damerau-Levenshtein distance metric),
quantitative evaluation, out-of-sample return
analysis to evaluate the effectiveness of the
SWOT-based portfolios against traditional
methods

Arora et al. [4] GPT-3.5 Comparative analysis, customized metric
evaluation (full match, partial match, or no
match), automatic metric evaluation (precision
and recall), human evaluation

5 Exploring Large Language Models in Information Systems: A Survey 81

Table 5.3 Design for information systems

Source LLM Evaluation methodology

Klievtsova et al. [34] GPT-1
(text-davinci-001),
GPT-2
(text-davinci-002),
GPT-3
(text-davinci-003),
GPT-3.5 (gpt-3.5-turbo),
GPT-4

Quantitative Evaluation (Jaccard Index,
Precision and Recall, Key Performance
Indicators (KPIs)), Qualitative Evaluation
(human experts), surveys

Kourani et al. [35] GPT-4, Gemini LLMs effectiveness, comparison with
existing frameworks (e.g.,)

Cámara et al. [16] GPT (OpenAI, February
2023 release)

Syntactic and semantic accuracy,
scalability, concepts modeling, prompt
sensitivity

Fill et al. [22] GPT-3, GPT-4 correctness, completeness, adherence to
constraints

Conrardy et al. [15] GPT-4V, Gemini Pro,
Gemini Ultra, CogVLM

Accuracy, Completeness, Syntax Errors,
Impact of Complexity, Effect of Prompt
Detail, Semantic Understanding

Table 5.4 Development for information systems

Source LLM Evaluation Methodology

Rahman et al. [52] GPT-4.0 Effectiveness tested on seven RE documents,
user evaluation based on RUST framework,
quantitative and qualitative evaluation

Dong et al. [20] GPT-3.5 Comparison against other models on
different benchmarks using two
experimental settings (i.e., one combining
NL descriptions, function signatures, and
public test cases and another relying only on
NL descriptions) using Pass@1 metric

Jiang et al. [28] code-davinci-002 Comparison against other models on
different benchmarks using different metrics
(i.e., Pass@1, Pass@k, AvgPassRatio,
CodeBLEU), user evaluation

Li et al. [41] gpt-3.5-turbo-0301
code-davinci-002

Comparison against other standard
prompting methods on different benchmarks
using Pass@k metric, user evaluation,
ablation studies

82 F. Bianchini and M. Marinacci

Table 5.5 Testing and validation for information systems

Source LLM Evaluation methodology

Liu et al. [42] GPT-3 Comparison with existing state-of-the-art
approaches, user evaluation, usefulness

Feng et al. [21] GPT-3.5 Comparison against existing approaches (e.g.,
and ablation models) on performances
reproducibility and computational time, user
evaluation

Chen et al. [14] Codex
(code-davinci-002)
GPT-3.5-turbo GPT-4
StarCoder

Evaluation against benchmark datasets,
comparison with existing approaches (e.g.,
Coder-Reviewer)

Wei et al. [67] CodeT5-large
InCoder-6.7B

Comparison against existing traditional
NMT-based and LLM-based approaches,
bug-fixing capabilities, compilation rate,
generalizability

Schäfer et al. [58] GPT-3.5-turbo
Code-Cushman-002
StarCoder

Comparison against employed LLMs and
state-of-the-art methods, quality of generated
tests, coverage, similarity with already
existing results

Joshi et al. [30] Codex Comparison against other repair engines,
repair accuracy, multilingual capabilities, error
localization

5 Exploring Large Language Models in Information Systems: A Survey 83

Table 5.6 Monitoring and maintenance for information systems

Source LLM Evaluation methodology

Gu et al. [29] gpt-3.5-turbo Evaluation against benchmark datasets, template
accuracy (F1 score), performance comparison
with state-of-the-art parsers, efficiency
assessment

Xu et al. [72] Codex, GPT-3 Comparison against state-of-the-art accuracy
benchmarks in all logging tasks, evaluated on
parameter tuning time (UniLog required < 4%.
of the time compared to SOTA methods)

Ma et al. [44] Flan-T5-small
Flan-T5-base
LLaMA-7B
ChatGLM-6B

Evaluations on a benchmark dataset of logs,
parsing accuracy (PA), Grouping accuracy
(GA), analysis of training data size effects,
pre-training effect analysis, efficiency testing

Jia et al. [25] GPT-3.5 BERT Precision, recall, and F1-score, Comparison
across multiple datasets (HDFS, BGL, and
Thunderbird), few-shot learning evaluation with
varying proportions of labeled training data
(5%., 10%., 20%., and 30%.), generalization
scenario testing, evaluation against
state-of-the-art unsupervised, semi-supervised,
and supervised models

Ali et al. [2] gpt-3.5-turbo Comparison against traditional machine
learning models, analysis of privacy and
computational efficiency challenges, assessment
of known attack type identification accuracy,
evaluation of effectiveness against zero-day
attacks, investigation of LLM adaptability and
generalization capabilities

Wu et al. [70] GPT-4 Llama Simulating scenario to evaluate the tool’s
reasoning capabilities, use of metrics such as
precision, recall, and F1-score, to quantify the
accuracy while metrics as time to detect
vulnerabilities and time to execute
countermeasures to perform benchmark tests,
real-world attack simulation

Deng et al. [18] GPT-4 GPT-3.5 BARD Automated reasoning tests, generation and
parsing accuracy (syntactic correctness, logical
coherence), context retention evaluation,
performance benchmarking (time-to-detection
and time-to-mitigation), real-world attack
simulation

84 F. Bianchini and M. Marinacci

Table 5.7 Data analytics for information systems

Source LLM Evaluation Methodology

Wang et al. [65] PaLM 2 GPT-3.5 Benchmark evaluation across several datasets
(WikiTQ for table QA, TabFact for table fact
verification, and FeTaQA for
free-form-table-based QA), comparison
existing reasoning frameworks
(chain-of-thought and text-to-SQL),
evaluation of tabular operations (sorting,
filtering) against gold standard

Nguyen et al. [11] GPT-3.5 GPT-4 Accuracy and interpretability evaluation with
datasets (TabFact, WikiTQ, and FeTaQA),
comparison with other frameworks
(text-to-SQL, Chain-of-Table, and DATER)
for both accuracy and user interpretability,
human evaluation coherence and clarity,
efficiency analysis by several metrics (query
reduction rate and computational cost savings)

Parisi et al. [49] T5 BM25-Based Knowledge-oriented QA evaluation (F1
scores), reasoning-oriented evaluation (Math
QA), iterative self-play validation, comparison
against human-curated answers and baseline
LLM predictions

Liu et al. [26] GPT-4o
GPT-3.5-Turbo-0613
GPT-4-0613

Benchmark evaluation (InfiAgent-DABench,
ML-Benchmark, MATH Dataset), metrics
evaluation (accuracy; Normalized
Performance Score, NPS; and Comprehensive
Score, CS), comparative baselines against
other framework (AutoGen, OpenInterpreter,
and OpenDevin)

Qiao et al. [51] GPT-4 GPT-3.5 Benchmark evaluation (DS-100,
InfiAgent-DABench, DSEval), metrics
evaluation (overall task success rates, pass rate
against ground-truth code), comparison with
existing framework (LangChain, AutoGPT)
through accuracy, efficiency, and stateful
execution

Wang et al. [69] GPT-4 GPT-3.5-Turbo Benchmark evaluation (MATH, AFLWord,
Natural Questions), metrics evaluation
(success ratio, F1 score, recall), baselines
comparison against AutoGPT, ChatGPT,
Langchain ReAct, Multi-Agent Debate

5 Exploring Large Language Models in Information Systems: A Survey 85

Table 5.8 Information extraction for information systems

Source LLM Evaluation methodology

Zhang et al. [78] GPT-3 GPT-4 BERT Comparison against baseline methods

Li et al. [38] GPT-3.5-turbo GPT-4
T5-XXL

Comparison against state-of-the-art DocRE
models and under different configurations
(i.e., zero-shot document-level RE, training
with the augmented dataset) considering
metrics like precision, recall, F1 score

Guo et al. [24] OPT (Open Pre-trained
Transformer) BLOOM
GPT-J GPT-NEO

Comparison against VQA methods and
different LLMs, generalization and ablation
studies

Li et al. [40] OPT Flan-T5 CLIP
EVA-CLIP Florence
Flamingo

Comparison against state-of-the-art models on
different visual-language tasks

Liu et al. [43] LLaMA 2 MU-LLaMA
MERT AudioLDM 2
MusicGen ViT (Vision
Transformer) ViViT
(Video Vision
Transformer)

Comparison of music generation and
understanding tasks against state-of-the-art
models on different benchmarks, user
evaluation on music generation task

Zhang et al. [77] LLaMA/Vicuna
ViT-G/14 ImageBind

Comparison against existing models,
empirical evaluation

5.2.1 Planning

The requirements elicitation phase is a critical component of the planning stage in
the life cycle of an information system. This phase lays the foundation for the entire
development process by identifying user needs, system constraints, and functional
requirements [80]. Effective requirements elicitation ensures that the resulting
system aligns with organizational goals and user expectations while mitigating
potential risks related to misunderstandings or incomplete specifications. Several
relevant studies on the use of LLMs in the requirements elicitation process are
presented below.

Authors in [6] propose Elicitron, a framework designed to leverage LLMs
for simulating diverse user agents and uncovering both explicit and latent needs
during the requirements elicitation process. The framework employs a multi-stage
approach, starting with the generation of user agents using GPT-based models,
where agents are created either serially to maintain contextual diversity or in
parallel with clustering techniques to ensure variability. These agents then simulate
interactions with a hypothetical product, providing structured feedback in terms of
actions, observations, and challenges. Simulated interviews are conducted to gather
detailed insights, which are subsequently analyzed by the LLM to identify latent
needs requiring innovative design solutions. The framework is validated through
experiments that demonstrate its ability to identify more diverse and latent needs

86 F. Bianchini and M. Marinacci

compared to traditional methods, showcasing the potential of LLMs like GPT-4-
turbo to improve the scalability and depth of requirements elicitation processes.

The second study [53] focuses on exploring ChatGPT’s capabilities in eliciting
requirements for Trustworthy AI systems. Using the GPT-3.5 model, the authors
developed a controlled methodology to compare ChatGPT-generated requirements
with those formulated by human experts. The study employs six carefully crafted
questions aimed at eliciting requirements related to key attributes of Trustworthy AI,
such as accuracy, transparency, and privacy. ChatGPT’s responses were evaluated
alongside 30 requirements collected from domain experts by a separate group
of evaluators, who assessed them across seven quality attributes: abstraction,
atomicity, consistency, correctness, unambiguity, understandability, and feasibility.
The findings reveal that ChatGPT excels in abstraction, consistency, and under-
standability, often outperforming human experts in these dimensions. However, the
model showed limitations in producing unambiguous and feasible requirements,
highlighting challenges in its ability to address domain-specific complexity and
practicality. Despite these limitations, the study underscores the potential of LLMs
to support and enhance the requirements elicitation process by reducing time and
effort while improving quality in key areas.

Moving on to other analysis techniques for the initial phases of planning ISs,
the authors in [46] propose an interesting approach to automate and validate SWOT
analysis,3 using LLMs. This approach focuses on portfolio construction, extracting
SWOT elements from company reports (10-K filings) using tools like ChatPDF.
A key component of the methodology is prompt engineering, avoiding reliance on
general knowledge. This iterative process improves the extraction quality, ensuring
that each SWOT element is supported by specific evidence. Each feature is assigned
a weighted score (high, medium, or low), allowing for an assessment of its
significance. For validation, the authors use LLMs and embedding models to verify
the extracted features. The semantic alignment of the extracted SWOT elements
is assessed through cosine distance between text embeddings, which measures
similarity and ensures the accuracy of the extracted data. Additional spot-checking
using metrics like Damerau-Levenshtein4 distance further ensures consistency and
accuracy, addressing potential hallucination issues in MLM outputs. The authors
demonstrate the methodology by constructing and validating portfolios for 471 S&P
500 companies. These portfolios, based on SWOT analysis, are compared with those
constructed using traditional Sharpe ratio metrics.

Finally, in [4], authors propose a study that highlights how LLMs, particularly
ChatGPT, can streamline requirements elicitation while using SWOT analysis as a
structured approach to assess their impact across different stages of requirements

3 A SWOT analysis is a strategic planning tool used to assess the internal and external factors
that can impact a business, project, or organization. It consists of four key elements, Strengths,
Weaknesses, Opportunities, and Threats [37, 56].
4 Damerau-Levenshtein metric calculates the minimum number of edits (insertions, deletions,
substitutions, or transpositions) required to transform one string into another.

5 Exploring Large Language Models in Information Systems: A Survey 87

engineering (RE). They focus on using LLMs like ChatGPT (GPT-3.5) to address
challenges in four key RE stages: requirements elicitation, specification, analysis,
and validation. The authors emphasize the potential of LLMs to enhance efficiency,
bridge communication gaps, and improve the accuracy of requirements-related tasks
through automated and interactive capabilities. The study outlines a vision for an
LLM-driven RE process that integrates LLM agents for various RE tasks. These
agents use advanced prompting techniques, such as zero-shot, few-shot, and chain-
of-thought prompting, to assist stakeholders in generating, refining, and validating
requirements. The methodology is tested on a real-world project (ActApp), designed
to assist patients with type 2 diabetes, to evaluate the feasibility of LLMs in
requirements elicitation. The evaluation involves analyzing how ChatGPT generates
user-story-style requirements and comparing them against expert-identified require-
ments. For each RE stage, SWOT analysis is performed, identifying strengths (e.g.,
efficient data processing, domain knowledge assimilation), weaknesses (e.g., lack of
empathy, risk of misinterpretation), opportunities (e.g., real-time feedback, human-
centric elicitation), and threats (e.g., data privacy concerns, potential biases).

The use of LLMs in the IS planning phase is expanding to cover various
tasks, in particular requirements elicitation and SWOT analysis support. Their
use relies on identifying explicit and latent needs by simulating user interactions
and refining requirements through iterative analysis. Their capabilities are further
enhanced through advanced prompting techniques, embedding models, and valida-
tion methods that improve accuracy and reduce errors and inconsistencies. LLMs
also facilitate automated SWOT analysis, extracting and verifying strategic insights
from official company documents.

5.2.2 Design

The concept of Conversational Process Modeling (ConverMod) was introduced
in [34] to transform traditional business process modeling practices by leveraging
the potential of conversational AI. This interactive and iterative approach supports
domain experts in extracting, modeling, and refining business process descriptions
with the assistance of LLMs. Cooperation between domain experts and process ana-
lysts is essential to bridge the gap between these roles and facilitate the generation
of Business Process Model and Notation (BPMN) diagrams. Starting from prompts
designed with textual process description and additional context (e.g., a list of tasks
extracted from it, a set of custom rules for textual graph representation), the LLMs
are guided to generate the desired output. To ensure compatibility with the limited
token context of LLMs, ConverMod exploits intermediary textual notation (TN) of
BPMN such as Mermaid.js (MER) to represent BPMN diagrams in their textual
definition. The result of MER is then converted into the graphical representation
(GR) with the BPMN2Constraints tool. The final model generated by LLMs is
then reviewed and corrected to align with BPMN standards. The textual description
from which the model is generated is contained in the PET dataset that is used as

88 F. Bianchini and M. Marinacci

standard. Using the PET dataset as the ground truth, the performances of LLMs in
task extraction and process model generation are evaluated both quantitatively and
qualitatively.

In [35] has been proposed a framework to generate process models exploiting
LLMs. This framework transforms textual descriptions into structured, standard
formats such as BPMN and Petri nets. A key component is the iterative feedback
loop, which is based on user’s feedback to refine the generated process model pro-
gressively. The framework starts with prompt engineering techniques, where textual
descriptions are enhanced with additional information to guide the LLM in the
most effective way. These techniques include role prompting, knowledge injection,
few-shot learning, and negative prompting. After querying the LLM, it generates
an intermediate process representation in Partially Ordered Workflow Language
(POWL). The model in POWL goes under the error-handling and refinement step
that categorizes the errors as critical (i.e., which disrupts the system’s functionality
or compromises security) and adjustable (i.e., which affects qualitative aspects).
This step incorporates iterative refinements to be aligned with user expectations.
Generated models in POWL are then converted into BPMN or Petri nets for display
and export purposes. The framework’s evaluation focuses on the effectiveness of
integrating LLMs and its performances against existing approaches.

The authors in [16] explored the application of LLMs in software modeling
tasks, specifically focusing on realizing UML class diagrams enriched with Object
Constraint Language (OCL) constraints. The implemented approach unfolds in two
different phases: (i) exploration and (ii) focused experiments. In the former, a con-
versational prompt-based approach was performed to identify modeling capabilities
and limitations. During this phase, there were no constraints on the content of
the prompts. In the latter, a more specific modeling task was performed in order
to highlight concepts like inheritance, enumerations, determinism, abstraction, and
OCL constraints. In this phase, the prompts were limited only to a set of predefined
model arguments. Each model, which has been generated starting from user intent
used as initial prompt, went through a refinement stage to test the adaptability of
LLMs to corrections. The evaluation of LLMs applications in software modeling
tasks spanned on their syntactic and semantic accuracy, scalability, handling of
modeling concepts, and prompt sensitivity.

The study conducted in [22] explores the capabilities of LLMs for conceptual
modeling tasks. The modeling languages analyzed are Entity-Relationship (ER)
diagrams, BPMN, UML class diagrams, and Heraklit models. The approach
employed relies on the use of different prompts carefully designed to generate
models in the desired language format. This process exploits a combination of few-
shot learning (i.e., providing some examples in the prompt) and zero-shot learning
(i.e., relying on only instruction contained in the prompt). The prompts also include
specifics of the output’s format such as JSON for ER and BPM, PlantUML for
UML class diagrams, or custom JSON-based representation for Heraklit models.
Moreover, the proposed approach also shows the interpretation capabilities of LLMs
by extracting textual descriptions from pre-defined diagrams in a simplified custom

5 Exploring Large Language Models in Information Systems: A Survey 89

textual notation. The generated results of this approach were assessed based on
correctness, completeness, and adherence to the format and prompt constraints.

Authors in [15] demonstrate the capabilities of several multimodal LLMs to
transform images of hand-drawn UML class diagrams into corresponding computer-
readable PlantUML notation. The implemented approach foresees the use of four
hand-drawn UML diagrams and three different prompts. The first three UML
diagrams are of increasing complexity (e.g., specifying relationships, attributes, and
cardinalities), and the last one is a diagram with correct syntax but semantically
unrealistic. Each prompt has been designed to increase the level of detail used to
describe the task. Each LLM was fed with each diagram using all three prompts,
and each prompt-model combination was tested three times to assess consistency.
The final results were evaluated on accuracy and completeness with respect to the
original hand-drawn UML diagrams.

LLMs are increasingly used in the design phase of software and process
modeling to extract structured representations such as UML diagrams, BPMN
models, and Petri nets from textual descriptions or images. Their capability to
interpret and refine models is enhanced through prompt engineering techniques,
iterative feedback loops, and intermediate notations like POWL or MER. These
models demonstrate adaptability in handling errors, improving semantic and syn-
tactic accuracy through user interaction and refinement processes. Furthermore,
LLMs exhibit multimodal capabilities, transforming hand-drawn UML diagrams
into structured digital representations, enabling seamless integration with standard
modeling tools.

5.2.3 Development

In [52], the authors proposed a framework called GeneUS, designed to automate
the generation of user stories and associated test case specifications directly from
software requirements documents—the output of the requirements engineering (RE)
phase. The framework leverages the natural language understanding and generation
capabilities of LLMs. The outputs generated by GeneUS are in JSON format to
facilitate the integration with popular project management tools such as Jira and
Azure DevOps. The core of this framework is Refine and Thought (RaT), an opti-
mized version of Chain of Thought (CoT) prompting. RaT operates in two stages:
a Refinement Step, where redundant or non-textual information (e.g., diagrams,
symbols) is filtered to clean the input text, and Thought Step, where the refined
input text is used to generate structured outputs (i.e., user stories and associated test
cases). GeneUS functionalities can be summarized in three main steps, requirement
extraction in which functional and non-functional requirements are extracted from
the input document, user story generation in which these extracted requirements
are converted into structured user stories with clear objectives and deliverables, and
test case generation in which for each user story associated test case are generated.
The framework functionalities are assisted with sequential RaT prompts to ensure

90 F. Bianchini and M. Marinacci

accuracy and completeness. The effectiveness of the framework has been tested on
seven mid-sized RE documents, and a survey based on the RUST framework has
also been conducted.

The authors of [20] proposed a self-collaboration framework for code generation,
which utilizes multiple specialized LLMs-based agents to simulate a collaborative
software development team. The aims of this framework is to improve the quality
and correctness of the generated code by assigning specific software engineering
roles (e.g., Analyst, Coder, and Tester), with each role assigned to a separate
LLM agent. To ensure effective role execution, each LLM agent operates under
specifically designed role instructions, guiding task execution in their domain.
The framework is structured around two key components, (i) Division of Labor
(DOL) and (ii) Collaboration. In the DOL the division of the software development
tasks happens—in particular, the Analyst decomposes high-level requirements into
detailed subtasks and formulates a high-level plan for coding, the Coder implements
code according to the analyst’s plan and refines the code based on feedback, and the
Tester evaluates the generated code by identifying bugs and providing structured
feedback through test reports. In the Collaboration phase, agents interact through a
shared blackboard mechanism in which outputs are shared and iteratively refined,
first from Analyst to Coder and then in iterative cycles between Coder to Tester
until the Tester’s feedback is fully addressed by the Coder. The framework adopts
real-world development methodologies, specifically the waterfall model, where
the process is sequential but allows for feedback loops to enable refinement. Its
performance has been evaluated on benchmark datasets, such as HumanEval [13],
HumanEval-ET [19], MBPP [8], and MBPP-ET, and compared against other LLMs
using the Pass@1 metric, which measures the correctness of the top-1 generated
code after execution. Two experimental settings were considered, one combining
natural language descriptions, function signatures, and public test cases and another
relying solely on natural language, simulating real-world scenarios with only textual
requirements.

The study presented in [28] introduces a self-planning code generation frame-
work designed to enhance the performances of LLMs in handling complex pro-
gramming tasks. The framework is composed of a two-phase approach that guides
LLMs through the code generation process. The first phase is the Planning phase,
in which the LLM generates a high-level plan containing a sequence of steps to
solve the given programming task. This generated plan simplifies the problem into
manageable subproblems used to guide the LLM during the code generation phase.
Through few-shot prompting, the model is fed with examples of how to convert
problem descriptions into solution steps. The second step is the Implementation
phase, where the model generates code step by step according to the plan produced
in the previous phase. The high-level plan is appended to the original problem
statement and used as input to the model to guide the code generation process.
The framework was evaluated on multiple code generation benchmarks (e.g.,
HumanEval, MBPP-ET) against different LLMs. Evaluation metrics used for the
evaluation include Pass@1, Pass@k, AvgPassRatio, and CodeBLEU. Moreover, a

5 Exploring Large Language Models in Information Systems: A Survey 91

human evaluation on correctness, readability, and robustness criteria was performed
against direct generation and CoT prompting.

In [41] has been proposed a prompting technique called structured chain-of-
thought (SCoT) to increase the performance of LLMs in code generation tasks.
SCoT aims to improve code generation by aligning intermediate reasoning with
program structures (i.e., sequence, branch, and loop structures) to guide LLMs more
effectively during code generation. These structures mirror how human developers
logically approach coding tasks. This technique uses a two-step generation pipeline.
In the first step, the LLM generates a structured reasoning process (i.e., SCoT)
that decomposes the problem using program structures and defines input-output
parameters. In the second step, the LLM uses the generated SCoT as a soft template
to produce the final code. This two-step approach helps mitigate errors in SCoT
generation and allows for refinements. Moreover, to further assist the LLM in code
generation, SCoT includes explicit input-output (I/O) specifications. To evaluate
the performances of the proposed technique, experiments have been conducted on
three code generation benchmarks (i.e., HumanEval, MBPP, MBCPP [7]) against
different standard prompting methods (i.e., zero-shot, few-shot, CoT) using as
evaluation metric Pass@k. Human evaluation and ablation studies5 have also been
performed.

The use of LLMs in the development phase of IS has rapidly increased. They are
employed in various tasks, in particular to automate code generation, requirement
analysis, and test case specification, improving efficiency and reducing manual
effort. Their performance is enhanced through structured reasoning techniques
and multi-step prompting strategies that refine outputs iteratively, to improve
code correctness, readability, and robustness. Furthermore, they facilitate seamless
integration with project management tools by structuring outputs in standardized
formats. Through iterative refinement and self-planning methodologies, LLMs
continue to bridge the gap between natural language understanding and high-quality
software development.

5.2.4 Testing and Validation

In [42], QTypist was introduced as a novel approach based on LLMs to automate
text input generation according to the GUI context. QTypist requires two types
of information to generate a valid text response: one extracted directly from the
UI page with the text input and another from pre-existing data sources. At first,
QTypist extracts context information from the view hierarchy file of a GUI page.
The extracted context information is composed of three types: input widget, local
context, and global context. Based on this extracted context, 14 linguistic patterns

5 The contribution of a component in an AI system is determined by removing it and then analyzing
the performance of the system after the removal.

92 F. Bianchini and M. Marinacci

are designed to construct precise prompts for the LLM. Furthermore, exploiting
the Rico dataset [17] and other sources, three types of input widgets are identified,
which include search list, popup menu, and filled content. These types of input
widgets and their associated candidate input contents are used to generate pairs of
prompts and answers for model tuning. Finally, the prompt-tuned LLM, using the
prompts generated from the GUI page’s context information, generates responses
to enhance automated GUI testing tasks. The QTypist approach was evaluated
considering the effectiveness of text input generation and the quality of generated
inputs.

The authors of [21] proposed AdbGPT, a framework for automating Android bug
replay tasks from bug reports. This framework employs LLMs through prompt engi-
neering and techniques such as few-shot learning and chain-of-thought reasoning to
reproduce bugs. AdbGPT is splitted in two main phases, Steps-to-Reproduce (S2R)
extraction and Guided Replay, both of which exploit LLMs to accomplish their task.
The former has the task of extracting S2R entities from bug reports, such as action
types, target components, input values, and scroll directions. The extraction process
occurs by exploiting a prompt composed of available actions, action primitives,
input examples, chain-of-thought reasoning, and output examples. The latter has the
task of matching the extracted S2R entities with a sequence of GUI events needed
to dynamically replicate the bug steps. The first step is to encode the GUI into a
custom HTML-like syntax, which is derived from the Android view hierarchy, to be
processed by the LLM. Finally, the LLM is prompted with the encoded GUI, input
example, chain-of-thought reasoning, and output example in order to reproduce the
step. The performance of AdbGPT was evaluated in terms of accuracy, efficiency,
and practical usefulness.

The study made in [14] highlights the capabilities of LLMs in code generation
and debugging tasks. They developed SELF-DEBUGGING framework, which is
designed to enhance pre-trained LLMs capabilities without any further fine-tuning
relying on prompt-based instructions. This framework enables LLMs to debug their
own generated code through an iterative approach. One single execution of the
framework consists of three steps, Generation, in which LLM generates candidate
programs relying solely on the problem description; Explanation, in which the
generated code is described in detail via a line-by-line approach (i.e., rubber duck
debugging), and in some cases, this explanation also includes execution traces; and
Feedback, in which the model generates a feedback message indicating whether the
code is correct or needs revision. The debugging process terminates when the code
is correct or a maximum iteration limit is reached. The framework capabilities are
evaluated across multiple benchmarks such as Spider for text-to-SQL generation
[75], TransCoder for code translation [54], and MBPP for text-to-python generation
[8]. Furthermore, SELF-DEBUGGING is compared also against other baseline
approaches like MBR-Exec [59] and Coder-Reviewer [76].

In [67] has been proposed Repilot, a novel framework that combines LLMs
and Completion Engines for Automated Program Repair (APR). This approach
aims to remove tokens generated by the LLM under the guidance of a Completion
Engine in order to produce more valid and accurate patches during the repair

5 Exploring Large Language Models in Information Systems: A Survey 93

process. In detail, the LLM provides probabilistic predictions for the next token
during patch generation, and the Completion Engine verifies the feasibility of
the suggested tokens. Authors consider the repair problem as a cloze-style task
[71] in which the buggy code is replaced with a masked token (<.SPAN >.),
and the LLM is used to generate the patch based on the surrounding context.
Repilot iteratively generates patches through a feedback loop in which the LLM
produces candidate tokens and probabilities. Infeasible tokens are removed from the
search space and rejected by the Completion Engine. Instead, accepted tokens are
appended to the patch, allowing the loops to continue until the patch is complete.
To store previously rejected or accepted tokens, a prefix tree data structure (Trie)
is used in order to reduce the overhead to the Completion Engine. Repilot’s
effectiveness has been compared against 19 APR tools across traditional, Neural
Machine Translation-based (NMT), and LLM-based, using the Defects4J dataset
(versions 1.2 and 2.0) [31] containing buggy Java programs. Evaluation metrics of
the results of the proposed approach cover bug-fixing capabilities, compilation rate,
and generalizability.

An interesting study proposed in [58] evaluates the use of the tool TESTPILOT,
which incorporates LLMs for automated unit test generation for JavaScript projects.
This tool relies on five distinct components (i.e., API explorer, documentation
miner, prompt generator, test validator, prompt refiner) organized in four phases.
TESTPILOT starts by using dynamic analysis to explore the API of the Package
Under Test (PUT) in order to identify elements such as methods, constants, and
signatures. Moreover, in this first phase, it also records the API’s structure and
gathers, from documentation, metadata like comments and usage examples if
available. In the second phase, the prompt is constructed using up to five elements,
the function signature, the function definition if available, the documentation
comments, the usage examples if available, and failing tests and error messages if
generated in a successive phase of this approach. The initial results that are obtained
from the LLM using this prompt are validated for syntax correctness, and if they
are syntactically valid, they are executed to identify errors or assertion failures.
If a test fails, the fourth and last phase is in charge of refining the prompt by
including the failing test and error response to assist the LLM in correcting the
test. TESTPILOT’s effectiveness has been compared using a benchmark of 25 npm
packages with Nessie [5], a state-of-the-art feedback-directed test generator. The
involved metrics are the quality of generated tests in terms of contained assertions,
coverage of tests that include non-trivial assertions, and similarity with generated
tests and already existing ones. Furthermore, a study has also been conducted to
compare employed LLMs.

The study presented in [30] introduces RING, a multilingual repair engine that
is powered by LLMs. The LLM chosen by the authors is used for its ability to
perform few-shot learning and adapt to multilingual program repair tasks. RING
program repair operation is divided into three key stages, fault localization, code
transformation, and candidate ranking. The first step exploits compiler diagnostics,
static analyzers, and linters to locate syntactic and semantic errors. Error messages
are normalized to enforce consistency across languages. The middle step, leveraging

94 F. Bianchini and M. Marinacci

few-shot learning, uses a collection of buggy-fixed code pairs to guide the repair
process by selecting programs with similar mistakes. Similar examples are selected
based on error similarity using error vector selection and message embedding
selection according to the selected language. The selected pairs are embedded into
the prompt to show potential fixes for similar errors, allowing the LLM to generate
more accurate candidate repairs. The last phase is in charge of ranking LLM’s output
candidates based on the average log probabilities of the tokens generated. Finally,
this study compares RING against language-specific repair engines (e.g., LaMirage
[9], TFix [10], and BIFI [74]) across different programming languages (i.e., Excel,
Power Fx, Python, JavaScript, C, and PowerShell).

The use of LLMs in the testing and validation phase of the IS is growing,
particularly in automated debugging, bug reproduction, and unit test generation.
The accuracy and efficiency of these tasks are enhanced by leveraging prompt
engineering, few-shot learning, and iterative feedback mechanisms to refine the
outputs. LLMs also assist in program repair by integrating probabilistic token
prediction, multilingual fault localization, and error-driven correction techniques.
Moreover, they are also used in GUI testing and automated test case generation to
improve coverage and validation, reducing manual effort.

5.2.5 Monitoring and Maintenance

Monitoring is a critical phase in the life cycle of information systems, ensuring
their reliability, security, and performance over time. We identified three key areas
of monitoring: log parsing, anomaly detection, and Intrusion Detection Systems
(IDS). Log parsing focuses on extracting meaningful information from unstructured
log files, a task essential for diagnosing system issues, tracking performance,
and ensuring compliance. Anomaly detection involves identifying deviations from
expected system behavior, which could indicate issues ranging from performance
bottlenecks to security breaches. Finally, IDS safeguards information systems by
identifying and mitigating potential security threats.

In [72], authors propose UniLog, an innovative approach that leverages LLMs
and in-context learning (ICL)6 to enhance the automatic generation of logging
statements in software systems. They identify the limitations of existing logging
tools, which often address only specific sub-problems related to logging, such
as determining verbosity levels or suggesting log messages, without providing a
comprehensive solution that simultaneously tackles the determination of logging
positions, generation of log messages, and setting of verbosity levels. By utilizing
the ICL paradigm, UniLog circumvents the need for extensive training on large
datasets, instead relying on the LLM’s ability to infer appropriate logging statements

6 ICL is a paradigm that allows language models to learn tasks given only a few examples in the
form of demonstration [2].

5 Exploring Large Language Models in Information Systems: A Survey 95

from provided code examples. This method not only improves the practicality
of logging in real-world scenarios but also aligns with the fast deployment and
interpretability needs of software engineering, ultimately achieving state-of-the-
art performance in logging tasks. The evaluation of UniLog involved testing
its automated logging capabilities on a dataset comprising 12,012 code snippets
extracted from 1,465 GitHub repositories.

Gu et al. [29] and Ma et al. [44] focus on the use of LLMs for log parsing, aiming
to improve the extraction of log templates and parameters from log messages.

In the first study, the authors propose LILAC, a log parsing framework designed
to address the challenges of current log parsing techniques, such as dependency on
handcrafted rules and limited training data. LILAC leverages an in-context learning
(ICL) approach and enhances LLM capabilities through a hierarchical candidate
sampling algorithm to select high-quality log message demonstrations. Additionally,
the authors introduce an adaptive parsing cache that stores and refines generated
log templates, enabling faster and more consistent parsing. LILAC is extensively
evaluated on large-scale public datasets, achieving a 69.5%. improvement in tem-
plate accuracy F1 score over state-of-the-art methods while maintaining comparable
efficiency to traditional parsers. The second study introduces LLMParser, a frame-
work that approaches log parsing as a text-to-text or text generation task, utilizing
LLMs such as FLAN-T5-SMALL, FLAN-T5-BASE, LLAMA-7B, and CHATGLM-
6B. The authors employ few-shot tuning to adapt the models for translating raw
logs into structured log templates. Evaluations on a benchmark dataset of logs from
16 open-source systems reveal that LLMParser achieves a parsing accuracy of u p
to 96%., outperforming traditional parsers like Drain, Logram, and LogPPT. The
study also examines the effects of training size, model architecture, and pre-training
on performance, finding that smaller models like Flan-T5-base provide similar
accuracy to larger models with reduced computational overhead. Additionally,
the authors explore limitations and propose future directions for enhancing the
adaptability and efficiency of LLM-based log parsers.

Authors in [25] propose LLMeLog, a novel approach for anomaly detection that
utilizes LLMs to enhance log event representations by addressing three identified
anti-patterns: content missing, semantic deflection, and tendency lacks. LLMeLog
employs a structured prompt designed for in-context learning to enrich log events
with domain knowledge, including anomaly tendencies. Enriched events are then
used to fine-tune a pre-trained BERT model through a hierarchical semantic fine-
tuning process, which incorporates a novel hierarchical metric loss to jointly encode
semantic information and anomaly tendencies into event embeddings. Finally, these
embeddings are fed into a transformer-based anomaly detection model that captures
temporal patterns for effective anomaly detection. Experimental evaluations on three
public datasets (HDFS, BGL, and Thunderbird) demonstrate LLMeLog’s superior
performance, achieving F1-scores consistently exceeding 99%., even when trained
on as little as 10%. of labeled data.

Focusing on another critical aspect of IS monitoring, specifically Intrusion
Detection Systems (IDS), the authors in [32] investigate the potential of large
language models (LLMs) to enhance cybersecurity through advanced log analysis

96 F. Bianchini and M. Marinacci

and intrusion detection. The study compares the performance of general-purpose
LLMs, fine-tuned task-specific LLMs, and traditional machine learning models
using real-world commercial deployment data. Key strategies explored include few-
shot prompting, retrieval-augmented generation, and a decoupled framework where
LLMs are employed to classify attack types and generate detailed incident reports.
The findings reveal that while general-purpose LLMs face challenges related
to privacy concerns and computational efficiency, fine-tuned LLMs demonstrate
strong performance in identifying known attack patterns. However, their limited
effectiveness against zero-day threats underscores the need for further research to
improve LLM adaptability and robustness in dynamic cybersecurity environments.
Several recent works have proposed innovative approaches that integrate LLMs
into cybersecurity frameworks to improve intrusion detection, penetration testing,
and threat analysis. HuntGPT [2] integrates explainable AI techniques with LLM,
using a Random Forest classifier alongside SHAP and Lime frameworks to improve
interpretability. GPT-3.5 Turbo is used to generate comprehensible threat insights,
which assists cybersecurity analysts in decision-making. Moreover, SecGPT [70]
introduces an interactive LLM agent designed to streamline penetration testing.
This system leverages a Generative Adversarial Network (GAN) architecture to
synthesize data for model retraining, enabling the generation of new attack profiles
and enhancing adaptability against evolving threats. Finally, PentestGPT [18] is
a penetration testing tool that uses LLMs to automate reasoning, generation, and
parsing tasks. It addresses key challenges such as context loss and inaccurate result
generation, providing a more efficient and intelligent penetration testing p rocess.

The use of LLMs in the monitoring and maintenance phase of IS is increasing in
tasks such as log parsing, anomaly detection, and intrusion detection. The ability of
LLMs to extract meaningful insights from unstructured logs enhances system diag-
nostics, performance tracking, and compliance monitoring. Log-analysis accuracy
and anomaly detection are improved through in-context learning, hierarchical fine-
tuning, and structured prompting. Through continuous advancements, LLMs are
becoming a fundamental component in system monitoring, strengthening reliability
and security in dynamic IT environments.

5.2.6 Beyond the IS Life Cycle: Other Areas Enhanced by
LLMs

Tasks like information extraction and data analytics are not traditionally consid-
ered part of the IS life cycle, even though the use of LLMs has shown many
advantages in these kinds of areas, introducing many benefits beyond conventional
applications. Their ability to process vast amounts of structured and unstructured
data allows them to extract meaningful insights, automate complex reasoning
tasks, and improve decision-making processes. In detail, in data analytics tasks,
LLMs facilitate seamless interaction with structured repositories through natural
language interfaces, improving accessibility to large-scale data sources while

5 Exploring Large Language Models in Information Systems: A Survey 97

ensuring interpretability and efficiency. In information extraction tasks, LLMs
enhance annotation, relation extraction, and multi-modal understanding by lever-
aging advanced prompting strategies and alignment techniques, reducing manual
effort and improving accuracy. The possibility to integrate LLMs with external tools,
domain-specific frameworks, and multi-modal architectures further improves their
versatility across different tasks and domains, spacing from tabular reasoning to
video comprehension, bridging the gaps in data-driven workflows and enhancing
automation, augmentation, and analysis capabilities.

5.2.6.1 Data Analytics

In the context of data analytics for information systems, large language models
have shown several capabilities that can be categorized into three main areas: first,
data analytics on sample data, which includes tasks like tabular question answering
(Tabular QA) to extract insights from structured datasets; second, data analytics on
external data sources, where LLMs are used with relational databases through text-
to-SQL models or with knowledge graphs via text-to-SPARQL interfaces, enabling
seamless querying and integration with large-scale, structured repositories; and
finally, data analytics on multiple external data sources involving the use of LLM
agents and sophisticated frameworks that leverage LLMs to interact with diverse
datasets, perform reasoning across different domains, and synthesize actionable
insights. These categories represent the versatility of LLMs in addressing a wide
range of data-driven challenges within the monitoring phase of information systems.

In [65] authors propose a novel framework, Chain-of-Table, designed to improve
table-based reasoning tasks, such as question answering and fact verification, by
integrating evolving tabular transformations into the reasoning process of large
language models. The framework extends the concept of chain-of-thought (CoT)
prompting [55], transforming tables through iterative, structured operations to better
align intermediate reasoning steps with the final answer. The approach introduces a
dynamic mechanism where LLMs iteratively apply pre-defined tabular operations,
including adding columns, selecting rows, grouping, and sorting. At each step, the
model dynamically plans the next operation based on the current state of the table,
the reasoning history, and the question or task. This sequence forms a chain of
tables, representing the logical steps of reasoning through intermediate transforma-
tions. By explicitly encoding these operations, the framework provides structured
intermediate results that improve prediction accuracy and transparency compared to
free-form reasoning approaches. To validate the proposed methodology, the authors
conduct experiments on three established benchmarks for table understanding:
WikiTQ [50] (table-based question answering), TabFact [12] (table-based fact
verification), and FeTaQA [48] (free-form table-based question answering). The
framework demonstrates state-of-the-art performance across these datasets, surpass-
ing existing generic reasoning methods (e.g., chain-of-thought) and program-aided
reasoning approaches (e.g., text-to-SQL). Notably, it achieves superior results with
fewer steps required to arrive at the correct answer, showcasing its efficiency. The

98 F. Bianchini and M. Marinacci

study also analyzes the robustness of the method across different table sizes and
the complexity of the required operations. The results highlight the framework’s
ability to handle large tables and multi-step reasoning tasks more gracefully than
competing methods. The proposed approach uses LLMs such as PaLM 2 and GPT-
3.5, leveraging their in-context learning capabilities to dynamically plan and execute
operations while reducing query inefficiencies. The authors conclude that Chain-
of-Table provides a significant advancement in LLM-driven table understanding,
enabling more reliable and interpretable results by explicitly encoding intermediate
reasoning steps into structured tabular transformations.

Moreover, in [11], Plan-of-SQLs (POS) is proposed, a novel framework for Table
Question Answering (Table QA) that emphasizes interpretability, efficiency, and
competitive accuracy. The study addresses a critical gap in Table QA literature:
while recent advances using large language models (LLMs) have significantly
improved performance, their decision-making processes often remain opaque,
particularly in high-stakes industries like finance and healthcare. POS aims to
bridge this gap by decomposing complex queries into a sequence of simple, atomic
SQL operations, enabling transparency in reasoning and facilitating user trust.
The POS framework operates in three primary stages. First, a Natural Language
Atomic Planner takes an input query and generates a sequence of sub-queries
in natural language, breaking down complex tasks into atomic steps. Each step
corresponds to a minimal SQL operation, such as filtering rows or sorting columns,
ensuring traceability and interpretability. Second, the Step-to-SQL Module converts
each atomic step into an SQL command, executing the operation on the input
table. The resulting intermediate tables are then used as inputs for subsequent
steps, forming a sequential chain of transformations. Finally, the output of the last
SQL operation provides the answer to the query, along with detailed attribution
maps that highlight the specific rows and columns contributing to the answer.
To evaluate POS, the authors conduct experiments on three benchmark datasets:
TabFact, WikiTQ, and FeTaQA. POS demonstrates competitive or superior accuracy
compared to existing Table QA methods, including text-to-SQL, Chain-of-Table,
and DATER. Notably, it achieves higher interpretability scores in human and LLM-
based evaluations, with users consistently preferring POS explanations due to
their clarity and coherence. The framework also outperforms baseline methods in
efficiency, requiring significantly fewer LLM calls and database queries per task,
thereby reducing computational costs. The study highlights POS’s robustness in
handling complex queries and its alignment with human reasoning. The findings
suggest that POS not only enhances the accuracy and efficiency of Table QA but
also addresses key interpretability challenges, making it particularly valuable for
applications in domains where accountability and transparency are critical.

Another notable study is TALM: Tool Augmented Language Models [49]. The
authors propose a framework for enhancing LLMs with external tools to address
limitations in handling dynamic, private, or computationally intensive data sources.
This approach integrates LLMs with external tools through a text-to-text API
interface, enabling the models to generate tool queries, process tool outputs,
and incorporate the results into final answers. The study highlights the frame-

5 Exploring Large Language Models in Information Systems: A Survey 99

work’s application to two distinct domains: knowledge-oriented question answering
using the Natural Questions (NQ) dataset and reasoning tasks using the MathQA
dataset [3]. TALM operates in two stages. First, the model generates a tool input
based on the task’s context and calls the relevant tool via an API. Once the tool
outputs the results, these are appended to the input sequence, allowing the model
to generate an informed response. To improve performance on tasks with limited
tool-use demonstrations, the authors employ an iterative self-play mechanism. This
involves bootstrapping tool-use datasets from a few labeled examples and iteratively
refining the dataset by validating generated outputs against task-specific metrics.
The iterative self-play process improves TALM’s ability to generalize and handle
multi-step reasoning tasks. The evaluation demonstrates TALM’s effectiveness
across domains. For Natural Questions (NQ)[36], TALM accesses a BM25-based
retriever tool to extract answer spans from indexed documents, outperforming non-
augmented LLMs in knowledge-heavy QA tasks. In MathQA, TALM interacts with
a custom math solver API to evaluate formulas and generate correct solutions
for math word problems, achieving significant performance improvements over
baseline LLMs. TALM also showcases robustness in handling out-of-distribution
tasks, such as changing world knowledge or operations involving large numbers,
where traditional LLMs fail. The study concludes that TALM enables smaller
models to outperform larger non-augmented LLMs by leveraging external tools and
iterative self-play, offering a scalable and cost-effective approach to enhancing LLM
capabilities for complex, multi-source data analytics tasks.

Here [26] a framework for automating end-to-end data science workflows using
a LLM-based agent is presented. This framework introduces two core modules: (i)
Hierarchical Graph Modeling and (ii) Programmable Node Generation. The former
decomposes complex data science workflows into a structured graph, where tasks
are represented as nodes and dependencies as edges. This approach dynamically
adjusts to evolving data and task requirements by iteratively refining the graph
structure. The latter ensures each subproblem is accurately defined, refined, and
verified by dynamically generating and optimizing task-specific code snippets.
These nodes integrate external tools and libraries for robust task execution. The
system uses contextual feedback to refine both task and action graphs iteratively,
enabling adaptive execution and debugging in real-time. The Data Interpreter
demonstrates significant improvements in data analytics, machine learning, and
open-ended tasks across multiple benchmarks, showcasing adaptability and pre-
cision. Extensive evaluations highlight its superiority, with a 25% boost on the
InfiAgent-DABench [27]dataset and marked advancements in machine learning and
mathematical problem-solving tasks.

Furthermore, Qiao et al. [51] introduce TaskWeaver, a code-first framework
designed to enable LLM-powered autonomous agents for complex task execution.
TaskWeaver leverages LLMs to transform natural language user requests into
executable Python code, integrating both custom and pre-defined plugins for
diverse applications. The framework supports rich data structures (e.g., pandas
DataFrames), ensures stateful code execution, and incorporates domain-specific
knowledge via user-provided examples. A two-layer architecture is employed,

100 F. Bianchini and M. Marinacci

consisting of a Planner and a Code Interpreter (CI). The Planner decomposes high-
level tasks into sub-tasks and manages their execution, while the CI generates and
executes code, ensuring compliance with safety rules. TaskWeaver includes features
such as plugin-only mode, dynamic plugin selection, secure code execution, and
error-handling mechanisms like post-verification and auto-correction. Its modular
design allows for the integration of additional functionalities and ensures scalability.
The framework is validated through various case studies, including anomaly
detection in time series data and stock price forecasting using ARIMA models [60].

Lastly, Wang et al. [69] present AutoGen a generalized framework for developing
LLM-powered applications through multi-agent conversation systems. AutoGen
provides a versatile infrastructure where agents, equipped with LLMs, tools, and
human inputs, collaborate via customizable and dynamic conversation patterns. The
framework supports complex workflows by defining agents with specific roles (e.g.,
problem-solving, retrieval, or decision-making) and programming their interactions
using a mix of natural and programming languages. AutoGen’s core innovations
include Conversable Agents and Conversation Programming. Conversable Agents
are modular and reusable entities that communicate through structured message
exchanges, while Conversation Programming simplifies workflow orchestration by
designing computation and control flow around inter-agent dialogs. These features
enable agents to autonomously coordinate tasks, adapt to evolving challenges,
and incorporate feedback for iterative refinement. The framework demonstrates
its capabilities through diverse applications, including mathematical problem-
solving, retrieval-augmented question answering, interactive decision-making, and
dynamic group collaboration. AutoGen achieves state-of-the-art results by leverag-
ing dynamic conversation patterns, integrating tool-backed and LLM-backed agents,
and supporting human intervention where necessary. Experimental evaluations
reveal AutoGen’s ability to streamline workflows, enhance modularity, and deliver
significant performance improvements over existing single-agent and multi-agent
approaches.

5.2.6.2 Information Extraction

The study proposed in [78] introduces LLMAAA, a framework that uses LLMs
as active annotators to create high-quality training datasets with minimal human
intervention. The ability of LLMs to provide pseudo labels in a few-shot learning
paradigm is empowered through active learning and prompt engineering strategies.
The aim of LLMAAA is to make LLMs efficient and reliable annotators by
amalgamating active learning into the annotation process. It iteratively generates
stronger task-specific models (TAMs) through three stages, LLM annotator, active
data acquisition, and robust learning with noisy labels. In the first step, LLMs
generate pseudo-labels for NLP tasks such as named entity recognition (NER) and
relation extraction (RE), enhancing LLM performances by using k-NN example
retrieval and Label Verbalizer techniques. In the next phase, active learning
strategies identify the most useful examples to annotate, reducing the effort of

5 Exploring Large Language Models in Information Systems: A Survey 101

LLMs. These strategies include Maximum Entropy, Least Confidence, and K-Means
Clustering. Each annotated example is added to the labeled dataset, which gradually
improves the task-specific model’s performance. The final operation performed by
LLMAAA is addressing noise in the label generated by the LLM by using an
automatic reweighting technique. Performances of LLMAAA are evaluated on NER
and RE tasks using datasets like Chinese OntoNotes 4.0 [68], English CoNLL03
[64], and Re-TACRED [61].

The study in [38] highlights how to leverage LLMs and Natural Language
Inference (NLI) modules to enhance document-level relation datasets by generat-
ing relation triples for Document-Level Relation Extraction (DocRE). Using this
framework, the authors proposed DocGNRE which represents an enhanced version
of the Re-DocRED dataset [63]. The proposed approach addresses the limitations
of manual annotation and prior distant supervision techniques with two main
steps. In the first step, a prompt composed of a generation demonstration and a
specific context along with an entity list derived from the dataset is paired with
each document, allowing the LLM to generate relation triples exclusively from the
entities in the derived entity list. To obtain additional triples, LLM-generated outputs
are reintroduced into the prompts, allowing the model to extend the set of relation
triples iteratively. In the second step, a NLI model is used to map generated triples,
often in natural language, to predefined relation types. The evaluation has been
conducted under two different configurations, zero-shot document-level RE, and
training with the augmented dataset by considering metrics like precision, recall,
and F1 score. The approach was also compared to state-of-the-art DocRE models
such as ATLOP [79] and KD-DocRE [62].

The authors of [24] proposed Img2LLM, a framework designed to be LLM-
agnostic, capable of interfacing with any frozen LLM to perform zero-shot Visual
Question Answering (VQA). This framework addresses the challenges of modality
disconnect between language and vision and task disconnect between language
modeling and VQA exploiting the creation of intermediate textual prompts that
bridge these gaps. Img2LLM leverages a vision-language model (BLIP) [39] to
generate question-relevant captions by identifying, through the use of GradCAM,
regions of interest in an image that are relevant to the input question. From this
generated caption, candidate answers are extracted by identifying key elements
(e.g., nouns, verbs, adjectives) through NLP tools such as spaCy. These candidate
answers serve as potential answers to questions about the image. For each of
them, it is possible to use a question-generation network in order to generate
specific questions. The set of question-answer (QA) pairs is specific to the current
image, avoiding external training data. The prompts for LLM are composed by
concatenating instruction, captions, and QA examples. Final results are derived from
the LLM using greedy decoding. Img2LLM’s performances have been evaluated
on VQAv2 [23], OK-VQA [45], and A-OKVQA [57] and compared against the
following three prior VQA methods categories, zero-shot methods with frozen
LLMs (e.g., PICa [73]), zero-shot methods with extra multi-modal pretraining (e.g.,
Flamingo [1]), and few-shot methods (e.g., ClipClap [47]), as well as on different
LLMs. Moreover, studies on generalization and ablation have been performed.

102 F. Bianchini and M. Marinacci

In [40], BLIP-2 is proposed, a framework designed to facilitate vision-language
pre-training tasks. The framework, to bridge the gap between vision and language,
introduces a lightweight and trainable Querying Transformer (Q-Former) that
exploits frozen models (both image encoders and LLMs). Q-Former learns to extract
the most relevant visual features from the frozen image encoder. It serves as a
bottleneck between the frozen image encoder and the frozen LLM, where it selects
and transforms visual data into a format interpretable by frozen LLMs. BLIP-2
leverages a two-stage pre-training strategy to align visual and textual, Vision-
Language Representation Learning and Vision-to-Language Generative Learning.
In the first phase, Q-Former is connected to a frozen image encoder, which is
trained to extract text-relevant visual features. This is achieved through tasks like
Image-Text Contrastive Learning (ITC), which aligns image and text features in
the embedding space; Image-Text Matching (ITM), which verifies if an image-text
pair is correctly matched; and Image-Grounded Text Generation (ITG), where Q-
Former is trained to generate descriptive text grounded in the visual content. In the
second stage, the Q-Former is linked to a frozen LLM to generate natural language
text conditioned on visual inputs. This stage exploits a fully connected projection
layer to map the outputs of the Q-Former into the input space of the LLM and uses
soft visual prompts to guide the text generation. BLIP-2 has been evaluated across
multiple vision-language tasks, demonstrating advancements over previous state-of-
the-art models.

The study presented in [43] proposes M2
.UGen, a unified framework that inte-

grates LLMs for multi-modal music understanding and generation. This framework
combines multiple LLMs to bridge the gap between understanding and generating
music across various modalities, including text, images, and videos. The framework
uses several feature encoders to handle diverse input types, such as a music
encoder to extract meaningful representations from music data, and image and
video encoders to process visual content, transforming it into feature embeddings.
These feature embeddings are then aligned through multi-modal adapters, consisting
of convolutional layers, linear projections, and dense networks, in order to fuse
information from different modalities for complex reasoning tasks. At the core of
M 2 .UGen, there is a LLM that integrates the processed embeddings at various layers
to understand and reason about the input modalities. For music generation tasks,
the framework employs specialized music decoders that are guided by conditional
embeddings generated from the LLM to produce music aligned with input prompts.
M 2 .UGen has been evaluated across various music understanding and generation
tasks against state-of-the-art models.

In [77], the authors proposed Video-LLaMA, a multi-modal framework that com-
bines frozen LLMs and video and audio encoders to enable comprehensive video
understanding. The architecture of Video-LLaMA is characterized by a dual-branch
structure used to process visual and auditory information. In the vision-language
branch, a pre-trained visual encoder extracts visual features from video frames, a
position embedding layer injects temporal information into video frames, a video Q-
Former aggregates these frame-level features into a unified video representation, and
a linear projection layer aligns the video embeddings with the LLM’s input space.

5 Exploring Large Language Models in Information Systems: A Survey 103

In the audio-language branch, a pre-trained audio encoder computes features from a
short segment of audio, a position embedding layer injects temporal information
into audio segments, an audio Q-Former aggregates these audio segment-level
features into a unified audio representation, and a linear projection layer that maps
audio features into the LLM’s embedding space. The processed visual and audio
embeddings are then concatenated with textual embeddings as soft prompts to guide
the LLMs generation. The framework has been compared against existing models
and demonstrated significant advancements in audio-visual understanding.

5.3 Discussion

In this chapter, we have explored how large language models are progressively trans-
forming the life cycle of information systems, enhancing both strategic decision-
making and operational efficiency. Rather than simply automating isolated tasks,
LLMs are demonstrating their ability to act as intelligent collaborators, bridging
gaps between unstructured and structured information, improving reasoning across
complex workflows, and enabling a more adaptive approach to system development
and maintenance.

From the early stages of planning, where LLMs assist in capturing requirements
and synthesizing strategic insights, to conceptual modeling, where they facilitate
the translation of informal descriptions into formal system representations, these
models are redefining how ISs take shape. Their ability to understand context,
generate structured outputs, and iteratively refine results introduces new possibilities
for human-AI collaboration in design processes that were traditionally rigid and
manual. As systems progress from design to implementation, LLMs have begun
to influence architecture definition, not only by assisting in code generation but
also by contributing to the formulation of structured development plans that align
software design with business objectives. In testing and validation, their role extends
beyond error detection, helping anticipate faults, optimize debugging workflows,
and increase software resilience through adaptive learning techniques. The final
stages of the IS life cycle, monitoring and maintenance, showcase LLMs as
intelligent diagnostic tools, capable of identifying system anomalies, detecting
security threats, and analyzing vast streams of log data with a level of efficiency
and scalability previously unattainable.

Beyond the structured phases of an information system life cycle, LLMs also
prove to be valuable assets in complementary areas such as information extrac-
tion and data analytics. In information extraction, LLMs demonstrate an impres-
sive ability to process unstructured data from various sources—text, images, and
multimedia—transforming them into structured, machine-readable formats. This
capability enhances knowledge management, facilitates automation in document-
heavy domains, and improves interoperability across different IS components.
Meanwhile, in data analytics, LLMs enable sophisticated insights through tech-
niques such as text-to-SQL, text-to-SPARQL, and multi-source reasoning via

104 F. Bianchini and M. Marinacci

autonomous LLM agents. These advancements are critical in decision support
systems, real-time analytics, and predictive modeling, allowing IS to move from
reactive to proactive intelligence.

Despite these advancements, the integration of LLMs into ISs is still in its
early stages, facing critical challenges such as explainability, domain adaptation,
and trustworthiness. Ensuring that these models provide reliable, unbiased, and
interpretable outputs remains a key concern for real-world adoption. Future research
must focus not only on refining LLM performance but also on understanding their
limitations, improving their integration into existing IS frameworks, and developing
methodologies that ensure human oversight to remain central in critical decision-
making processes. Ultimately, this survey highlights the potential of LLMs to
reshape how ISs are conceived, built, and maintained. While their capabilities
continue to expand, their true impact will depend on how effectively they are
integrated into the broader ecosystem of information systems, balancing automation
with human expertise to create more intelligent, adaptive, and trustworthy digital
infrastructures.

References

1. Alayrac, J.B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A.,
Millican, K., Reynolds, M., Ring, R., Rutherford, E., Cabi, S., Han, T., Gong, Z., Samangooei,
S., Monteiro, M., Menick, J.L., Borgeaud, S., Brock, A., Nematzadeh, A., Sharifzadeh, S.,
Bińkowski, M.a., Barreira, R., Vinyals, O., Zisserman, A., Simonyan, K.: Flamingo: A visual
language model for few-shot learning. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp.
23716–23736. Curran Associates, Red Hook (2022). https://proceedings.neurips.cc/paper_
files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf

2. Ali, T., Kostakos, P.: Huntgpt: Integrating machine learning-based anomaly detection and
explainable ai with large language models (llms). arXiv preprint arXiv:2309.16021 (2023)

3. Amini, A., Gabriel, S., Lin, P., Koncel-Kedziorski, R., Choi, Y., Hajishirzi, H.: Mathqa:
Towards interpretable math word problem solving with operation-based formalisms (2019).
https://arxiv.org/abs/1905.13319

4. Arora, C., Grundy, J., Abdelrazek, M.: Advancing requirements engineering through generative
AI: Assessing the role of LLMS. In: Generative AI for Effective Software Development, pp.
129–148. Springer, Berlin (2024)

5. Arteca, E., Harner, S., Pradel, M., Tip, F.: Nessie: automatically testing javascript apis with
asynchronous callbacks. In: Proceedings of the 44th International Conference on Software
Engineering, ICSE ’22, pp. 1494–1505. Association for Computing Machinery, New York
(2022). https://doi.org/10.1145/3510003.3510106

6. Ataei, M., Cheong, H., Grandi, D., Wang, Y., Morris, N., Tessier, A.: Elicitron: An llm agent-
based simulation framework for design requirements elicitation (2024). https://arxiv.org/abs/
2404.16045

7. Athiwaratkun, B., Gouda, S.K., Wang, Z., Li, X., Tian, Y., Tan, M., Ahmad, W.U., Wang, S.,
Sun, Q., Shang, M., Gonugondla, S.K., Ding, H., Kumar, V., Fulton, N., Farahani, A., Jain, S.,
Giaquinto, R., Qian, H., Ramanathan, M.K., Nallapati, R., Ray, B., Bhatia, P., Sengupta, S.,
Roth, D., Xiang, B.: Multi-lingual evaluation of code generation models (2023). https://arxiv.
org/abs/2210.14868

https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://doi.org/10.1145/3510003.3510106
https://doi.org/10.1145/3510003.3510106
https://doi.org/10.1145/3510003.3510106
https://doi.org/10.1145/3510003.3510106
https://doi.org/10.1145/3510003.3510106
https://doi.org/10.1145/3510003.3510106
https://doi.org/10.1145/3510003.3510106
https://arxiv.org/abs/2404.16045
https://arxiv.org/abs/2404.16045
https://arxiv.org/abs/2404.16045
https://arxiv.org/abs/2404.16045
https://arxiv.org/abs/2404.16045
https://arxiv.org/abs/2404.16045
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2210.14868

5 Exploring Large Language Models in Information Systems: A Survey 105

8. Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C.,
Terry, M., Le, Q., Sutton, C.: Program synthesis with large language models (2021). https://
doi.org/10.48550/ARXIV.2108.07732. https://arxiv.org/abs/2108.07732

9. Bavishi, R., Joshi, H., Cambronero, J., Fariha, A., Gulwani, S., Le, V., Radiček, I., Tiwari,
A.: Neurosymbolic repair for low-code formula languages. Proc. ACM Program. Lang.
6(OOPSLA2) (2022). https://doi.org/10.1145/3563327

10. Berabi, B., He, J., Raychev, V., Vechev, M.: Tfix: Learning to fix coding errors with a text-
to-text transformer. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International
Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 139, pp.
780–791. PMLR (2021). https://proceedings.mlr.press/v139/berabi21a.html

11. Brugere, I., Sharma, S., Kariyappa, S., Nguyen, A.T., Lecue, F., et al.: Interpretable llm-based
table question answering. arXiv preprint arXiv:2412.12386 (2024)

12. Chen, W., Wang, H., Chen, J., Zhang, Y., Wang, H., Li, S., Zhou, X., Wang, W.Y.: Tabfact: A
large-scale dataset for table-based fact verification (2020). https://arxiv.org/abs/1909.02164

13. Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., Kaplan, J., Edwards, H., Burda,
Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry,
G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M.,
Winter, C., Tillet, P., Such, F.P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W.H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain,
S., Saunders, W., Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder, P., McGrew, B., Amodei, D.,
McCandlish, S., Sutskever, I., Zaremba, W.: Evaluating large language models trained on code
(2021). https://arxiv.org/abs/2107.03374

14. Chen, X., Lin, M., Schärli, N., Zhou, D.: Teaching large language models to self-debug (2023).
https://doi.org/10.48550/ARXIV.2304.05128. https://arxiv.org/abs/2304.05128

15. Conrardy, A.D., Cabot, J.: From image to uml: First results of image based uml diagram gen-
eration using llms. ArXiv abs/2404.11376 (2024). https://api.semanticscholar.org/CorpusID:
269187592

16. Cámara, J., Troya, J., Burgueño, L., Vallecillo, A.: On the assessment of generative ai in
modeling tasks: an experience report with ChatGPT and UML. Softw. Syst. Model. 22(3),
781–793 (2023). http://doi.org/10.1007/s10270-023-01105-5

17. Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan, D., Li, Y., Nichols, J., Kumar, R.:
Rico: A mobile app dataset for building data-driven design applications. In: Proceedings of
the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, p.
845–854. ACM (2017). http://dx.doi.org/10.1145/3126594.3126651

18. Deng, G., Liu, Y., Mayoral-Vilches, V., Liu, P., Li, Y., Xu, Y., Zhang, T., Liu, Y., Pinzger,
M., Rass, S.: Pentestgpt: An llm-empowered automatic penetration testing tool (2024). https://
arxiv.org/abs/2308.06782

19. Dong, Y., Ding, J., Jiang, X., Li, G., Li, Z., Jin, Z.: Codescore: Evaluating code generation by
learning code execution (2024). https://arxiv.org/abs/2301.09043

20. Dong, Y., Jiang, X., Jin, Z., Li, G.: Self-collaboration code generation via chatgpt (2024).
https://arxiv.org/abs/2304.07590

21. Feng, S., Chen, C.: Prompting is all you need: Automated android bug replay with large
language models. In: Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ICSE ’24. Association for Computing Machinery, New York (2024).
https://doi.org/10.1145/3597503.3608137

22. Fill, H.G., Fettke, P., Köpke, J.: Conceptual modeling and large language models: Impressions
from first experiments with ChatGPT. Enterp. Modell. Inf. Syst. Architectures 18, 1–15 (2023).
https://doi.org/10.18417/EMISA.18.3. https://emisa-journal.org/emisa/article/view/318

23. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the v in vqa matter:
Elevating the role of image understanding in visual question answering. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6325–6334 (2017).
https://doi.org/10.1109/CVPR.2017.670

https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3563327
https://doi.org/10.1145/3563327
https://doi.org/10.1145/3563327
https://doi.org/10.1145/3563327
https://doi.org/10.1145/3563327
https://doi.org/10.1145/3563327
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://api.semanticscholar.org/CorpusID:269187592
https://api.semanticscholar.org/CorpusID:269187592
https://api.semanticscholar.org/CorpusID:269187592
https://api.semanticscholar.org/CorpusID:269187592
https://api.semanticscholar.org/CorpusID:269187592
https://api.semanticscholar.org/CorpusID:269187592
http://doi.org/10.1007/s10270-023-01105-5
http://doi.org/10.1007/s10270-023-01105-5
http://doi.org/10.1007/s10270-023-01105-5
http://doi.org/10.1007/s10270-023-01105-5
http://doi.org/10.1007/s10270-023-01105-5
http://doi.org/10.1007/s10270-023-01105-5
http://doi.org/10.1007/s10270-023-01105-5
http://doi.org/10.1007/s10270-023-01105-5
http://doi.org/10.1007/s10270-023-01105-5
http://dx.doi.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/3126594.3126651
https://arxiv.org/abs/2308.06782
https://arxiv.org/abs/2308.06782
https://arxiv.org/abs/2308.06782
https://arxiv.org/abs/2308.06782
https://arxiv.org/abs/2308.06782
https://arxiv.org/abs/2308.06782
https://arxiv.org/abs/2301.09043
https://arxiv.org/abs/2301.09043
https://arxiv.org/abs/2301.09043
https://arxiv.org/abs/2301.09043
https://arxiv.org/abs/2301.09043
https://arxiv.org/abs/2301.09043
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.18417/EMISA.18.3
https://emisa-journal.org/emisa/article/view/318
https://emisa-journal.org/emisa/article/view/318
https://emisa-journal.org/emisa/article/view/318
https://emisa-journal.org/emisa/article/view/318
https://emisa-journal.org/emisa/article/view/318
https://emisa-journal.org/emisa/article/view/318
https://emisa-journal.org/emisa/article/view/318
https://emisa-journal.org/emisa/article/view/318
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670

106 F. Bianchini and M. Marinacci

24. Guo, J., Li, J., Li, D., Huat Tiong, A.M., Li, B., Tao, D., Hoi, S.: From images to textual
prompts: Zero-shot visual question answering with frozen large language models. In: 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10867–
10877 (2023). https://doi.org/10.1109/CVPR52729.2023.01046

25. He, M., Jia, T., Duan, C., Cai, H., Li, Y., Huang, G.: LLMeLog: An Approach for
Anomaly Detection based on LLM-enriched Log Events . In: 2024 IEEE 35th International
Symposium on Software Reliability Engineering (ISSRE), pp. 132–143. IEEE Computer
Society, Los Alamitos (2024). https://doi.org/10.1109/ISSRE62328.2024.00023. https://doi.
ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023

26. Hong, S., Lin, Y., Liu, B., Liu, B., Wu, B., Zhang, C., Wei, C., Li, D., Chen, J., Zhang, J.,
Wang, J., Zhang, L., Zhang, L., Yang, M., Zhuge, M., Guo, T., Zhou, T., Tao, W., Tang, X., Lu,
X., Zheng, X., Liang, X., Fei, Y., Cheng, Y., Gou, Z., Xu, Z., Wu, C.: Data interpreter: An llm
agent for data science (2024). https://arxiv.org/abs/2402.18679

27. Hu, X., Zhao, Z., Wei, S., Chai, Z., Ma, Q., Wang, G., Wang, X., Su, J., Xu, J., Zhu, M., et al.:
Infiagent-dabench: Evaluating agents on data analysis tasks. arXiv preprint arXiv:2401.05507
(2024)

28. Jiang, X., Dong, Y., Wang, L., Fang, Z., Shang, Q., Li, G., Jin, Z., Jiao, W.: Self-planning code
generation with large language models (2024). https://arxiv.org/abs/2303.06689

29. Jiang, Z., Liu, J., Chen, Z., Li, Y., Huang, J., Huo, Y., He, P., Gu, J., Lyu, M.R.: Lilac: Log
parsing using llms with adaptive parsing cache (2024). https://arxiv.org/abs/2310.01796

30. Joshi, H., Sanchez, J.C., Gulwani, S., Le, V., Radiček, I., Verbruggen, G.: Repair is nearly gen-
eration: Multilingual program repair with llms. In: Proceedings of the Thirty-Seventh AAAI
Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications
of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial
Intelligence, AAAI’23/IAAI’23/EAAI’23. AAAI Press (2023). https://doi.org/10.1609/aaai.
v37i4.25642

31. Just, R., Jalali, D., Ernst, M.D.: Defects4j: A database of existing faults to enable controlled
testing studies for java programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA ’14. ACM (2014). https://doi.org/10.1145/2610384.
2628055

32. Kheddar, H.: Transformers and large language models for efficient intrusion detection systems:
A comprehensive survey (2024). https://arxiv.org/abs/2408.07583

33. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature reviews
in software engineering. Technical Report EBSE 2007-001, Keele University and
Durham University Joint Report (2007). https://www.elsevier.com/__data/promis_misc/
525444systematicreviewsguide.pdf

34. Klievtsova, N., Benzin, J.V., Kampik, T., Mangler, J., Rinderle-Ma, S.: Conversational process
modeling: Can generative ai empower domain experts in creating and redesigning process
models? (2023). https://api.semanticscholar.org/CorpusID:258291461

35. Kourani, H., Berti, A., Schuster, D., van der Aalst, W.M.P.: Process Modeling with Large
Language Models, p. 229–244. Springer Nature Switzerland, Cham (2024). https://doi.org/
10.1007/978-3-031-61007-3_18

36. Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein,
D., Polosukhin, I., Devlin, J., Lee, K., et al.: Natural questions: a benchmark for question
answering research. Trans. Assoc. Comput. Linguist. 7, 453–466 (2019)

37. Leigh, D.: SWOT analysis. In: Handbook of Improving Performance in the Workplace:
Volumes 1–3, pp. 115–140 (2009), Wiley Online Library, Hoboken

38. Li, J., Jia, Z., Zheng, Z.: Semi-automatic data enhancement for document-level relation
extraction with distant supervision from large language models. In: Bouamor, H., Pino, J., Bali,
K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 5495–5505. Association for Computational Linguistics, Singapore (2023). https://
doi.org/10.18653/v1/2023.emnlp-main.334. https://aclanthology.org/2023.emnlp-main.334/

https://doi.org/10.1109/CVPR52729.2023.01046
https://doi.org/10.1109/CVPR52729.2023.01046
https://doi.org/10.1109/CVPR52729.2023.01046
https://doi.org/10.1109/CVPR52729.2023.01046
https://doi.org/10.1109/CVPR52729.2023.01046
https://doi.org/10.1109/CVPR52729.2023.01046
https://doi.org/10.1109/CVPR52729.2023.01046
https://doi.org/10.1109/CVPR52729.2023.01046
https://doi.org/10.1109/ISSRE62328.2024.00023
https://doi.org/10.1109/ISSRE62328.2024.00023
https://doi.org/10.1109/ISSRE62328.2024.00023
https://doi.org/10.1109/ISSRE62328.2024.00023
https://doi.org/10.1109/ISSRE62328.2024.00023
https://doi.org/10.1109/ISSRE62328.2024.00023
https://doi.org/10.1109/ISSRE62328.2024.00023
https://doi.org/10.1109/ISSRE62328.2024.00023
https://doi.ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023
https://doi.ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023
https://doi.ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023
https://doi.ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023
https://doi.ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023
https://doi.ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023
https://doi.ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023
https://doi.ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023
https://doi.ieeecomputersociety.org/10.1109/ISSRE62328.2024.00023
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2310.01796
https://arxiv.org/abs/2310.01796
https://arxiv.org/abs/2310.01796
https://arxiv.org/abs/2310.01796
https://arxiv.org/abs/2310.01796
https://arxiv.org/abs/2310.01796
https://doi.org/10.1609/aaai.v37i4.25642
https://doi.org/10.1609/aaai.v37i4.25642
https://doi.org/10.1609/aaai.v37i4.25642
https://doi.org/10.1609/aaai.v37i4.25642
https://doi.org/10.1609/aaai.v37i4.25642
https://doi.org/10.1609/aaai.v37i4.25642
https://doi.org/10.1609/aaai.v37i4.25642
https://doi.org/10.1609/aaai.v37i4.25642
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://arxiv.org/abs/2408.07583
https://arxiv.org/abs/2408.07583
https://arxiv.org/abs/2408.07583
https://arxiv.org/abs/2408.07583
https://arxiv.org/abs/2408.07583
https://arxiv.org/abs/2408.07583
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://api.semanticscholar.org/CorpusID:258291461
https://api.semanticscholar.org/CorpusID:258291461
https://api.semanticscholar.org/CorpusID:258291461
https://api.semanticscholar.org/CorpusID:258291461
https://api.semanticscholar.org/CorpusID:258291461
https://api.semanticscholar.org/CorpusID:258291461
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://aclanthology.org/2023.emnlp-main.334/
https://aclanthology.org/2023.emnlp-main.334/
https://aclanthology.org/2023.emnlp-main.334/
https://aclanthology.org/2023.emnlp-main.334/
https://aclanthology.org/2023.emnlp-main.334/
https://aclanthology.org/2023.emnlp-main.334/
https://aclanthology.org/2023.emnlp-main.334/

5 Exploring Large Language Models in Information Systems: A Survey 107

39. Li, J., Li, D., Xiong, C., Hoi, S.C.H.: Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In: International Conference on
Machine Learning (2022). https://api.semanticscholar.org/CorpusID:246411402

40. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In: Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org (2023)

41. Li, J., Li, G., Li, Y., Jin, Z.: Structured chain-of-thought prompting for code generation (2023).
https://arxiv.org/abs/2305.06599

42. Liu, Z., Chen, C., Wang, J., Che, X., Huang, Y., Hu, J., Wang, Q.: Fill in the blank: Context-
aware automated text input generation for mobile gui testing. In: 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), pp. 1355–1367 (2023). https://
doi.org/10.1109/ICSE48619.2023.00119

43. Liu, S., Hussain, A.S., Wu, Q., Sun, C., Shan, Y.: M 2 .ugen: Multi-modal music understanding
and generation with the power of large language models (2024). https://arxiv.org/abs/2311.
11255

44. Ma, Z., Chen, A.R., Kim, D.J., Chen, T.H., Wang, S.: Llmparser: An exploratory study on using
large language models for log parsing. In: Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, pp. 1–13. ACM (2024). https://doi.org/10.
1145/3597503.3639150

45. Marino, K., Rastegari, M., Farhadi, A., Mottaghi, R.: Ok-vqa: A visual question answering
benchmark requiring external knowledge. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) pp. 3190–3199 (2019). https://api.semanticscholar.
org/CorpusID:173991173

46. Meskovskis, A., Kenyon, C.: Swot portfolio construction and validation using massive
language models. Available at SSRN 4784515 (2024)

47. Mokady, R., Hertz, A.: Clipcap: Clip prefix for image captioning. ArXiv abs/2111.09734
(2021). https://api.semanticscholar.org/CorpusID:244346239

48. Nan, L., Hsieh, C., Mao, Z., Lin, X.V., Verma, N., Zhang, R., Kryściński , W., Schoelkopf,
N., Kong, R., Tang, X., Mutuma, M., Rosand, B., Trindade, I., Bandaru, R., Cunningham, J.,
Xiong, C., Radev, D.: FeTaQA: Free-form table question answering (2021). https://arxiv.org/
abs/2104.00369

49. Parisi, A., Zhao, Y., Fiedel, N.: Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255 (2022)

50. Pasupat, P., Liang, P.: Compositional semantic parsing on semi-structured tables. arXiv preprint
arXiv:1508.00305 (2015)

51. Qiao, B., Li, L., Zhang, X., He, S., Kang, Y., Zhang, C., Yang, F., Dong, H., Zhang, J., Wang,
L., Ma, M., Zhao, P., Qin, S., Qin, X., Du, C., Xu, Y., Lin, Q., Rajmohan, S., Zhang, D.:
Taskweaver: A code-first agent framework (2024). https://arxiv.org/abs/2311.17541

52. Rahman, T., Zhu, Y.: Automated user story generation with test case specification using large
language model. ArXiv abs/2404.01558 (2024). https://api.semanticscholar.org/CorpusID:
268857136

53. Ronanki, K., Berger, C., Horkoff, J.: Investigating chatgpt’s potential to assist in requirements
elicitation processes (2023). https://arxiv.org/abs/2307.07381

54. Roziere, B., Lachaux, M.A., Chanussot, L., Lample, G.: Unsupervised translation of pro-
gramming languages. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.
(eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 20601–20611. Curran
Associates, Red Hook (2020)

55. Sahoo, P., Singh, A.K., Saha, S., Jain, V., Mondal, S., Chadha, A.: A systematic survey of
prompt engineering in large language models: Techniques and applications. arXiv preprint
arXiv:2402.07927 (2024)

56. Sammut-Bonnici, T., Galea, D.: Swot analysis. In: Wiley Encyclopedia of Management, pp.
1–8. Wiley, Hoboken (2015)

57. Schwenk, D., Khandelwal, A., Clark, C., Marino, K., Mottaghi, R.: A-okvqa: A benchmark for
visual question answering using world knowledge (2022). https://arxiv.org/abs/2206.01718

https://api.semanticscholar.org/CorpusID:246411402
https://api.semanticscholar.org/CorpusID:246411402
https://api.semanticscholar.org/CorpusID:246411402
https://api.semanticscholar.org/CorpusID:246411402
https://api.semanticscholar.org/CorpusID:246411402
https://api.semanticscholar.org/CorpusID:246411402
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
https://arxiv.org/abs/2311.11255
https://arxiv.org/abs/2311.11255
https://arxiv.org/abs/2311.11255
https://arxiv.org/abs/2311.11255
https://arxiv.org/abs/2311.11255
https://arxiv.org/abs/2311.11255
https://doi.org/10.1145/3597503.3639150
https://doi.org/10.1145/3597503.3639150
https://doi.org/10.1145/3597503.3639150
https://doi.org/10.1145/3597503.3639150
https://doi.org/10.1145/3597503.3639150
https://doi.org/10.1145/3597503.3639150
https://doi.org/10.1145/3597503.3639150
https://api.semanticscholar.org/CorpusID:173991173
https://api.semanticscholar.org/CorpusID:173991173
https://api.semanticscholar.org/CorpusID:173991173
https://api.semanticscholar.org/CorpusID:173991173
https://api.semanticscholar.org/CorpusID:173991173
https://api.semanticscholar.org/CorpusID:173991173
https://api.semanticscholar.org/CorpusID:244346239
https://api.semanticscholar.org/CorpusID:244346239
https://api.semanticscholar.org/CorpusID:244346239
https://api.semanticscholar.org/CorpusID:244346239
https://api.semanticscholar.org/CorpusID:244346239
https://api.semanticscholar.org/CorpusID:244346239
https://arxiv.org/abs/2104.00369
https://arxiv.org/abs/2104.00369
https://arxiv.org/abs/2104.00369
https://arxiv.org/abs/2104.00369
https://arxiv.org/abs/2104.00369
https://arxiv.org/abs/2104.00369
https://arxiv.org/abs/2311.17541
https://arxiv.org/abs/2311.17541
https://arxiv.org/abs/2311.17541
https://arxiv.org/abs/2311.17541
https://arxiv.org/abs/2311.17541
https://arxiv.org/abs/2311.17541
https://api.semanticscholar.org/CorpusID:268857136
https://api.semanticscholar.org/CorpusID:268857136
https://api.semanticscholar.org/CorpusID:268857136
https://api.semanticscholar.org/CorpusID:268857136
https://api.semanticscholar.org/CorpusID:268857136
https://api.semanticscholar.org/CorpusID:268857136
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2206.01718

108 F. Bianchini and M. Marinacci

58. Schäfer, M., Nadi, S., Eghbali, A., Tip, F.: An empirical evaluation of using large language
models for automated unit test generation. IEEE Trans. Softw. Eng. 50(1), 85–105 (2024).
https://doi.org/10.1109/TSE.2023.3334955

59. Shi, F., Fried, D., Ghazvininejad, M., Zettlemoyer, L., Wang, S.I.: Natural language to code
translation with execution (2022). https://doi.org/10.48550/ARXIV.2204.11454. https://arxiv.
org/abs/2204.11454

60. Shumway, R.H., Stoffer, D.S., Shumway, R.H., Stoffer, D.S.: Arima models. In: Time Series
Analysis and Its Applications: With R Examples, pp. 75–163. Springer, Berlin (2017)

61. Stoica, G., Platanios, E.A., Poczos, B.: Re-tacred: Addressing shortcomings of the tacred
dataset. Proc. AAAI Conf. Artif. Intell. 35(15), 13843–13850 (2021). https://doi.org/10.1609/
aaai.v35i15.17631

62. Tan, Q., He, R., Bing, L., Ng, H.T.: Document-level relation extraction with adaptive focal
loss and knowledge distillation. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Findings
of the Association for Computational Linguistics: ACL 2022, pp. 1672–1681. Association for
Computational Linguistics, Dublin (2022). https://doi.org/10.18653/v1/2022.findings-acl.132.
https://aclanthology.org/2022.findings-acl.132/

63. Tan, Q., Xu, L., Bing, L., Ng, H.T., Aljunied, S.M.: Revisiting docred – addressing the false
negative problem in relation extraction (2022). https://doi.org/10.48550/ARXIV.2205.12696.
https://arxiv.org/abs/2205.12696

64. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In: Proceedings of the Seventh Confer-
ence on Natural Language Learning at HLT-NAACL 2003, pp. 142–147 (2003). https://
aclanthology.org/W03-0419/

65. Wang, Z., Zhang, H., Li, C.L., Eisenschlos, J.M., Perot, V., Wang, Z., Miculicich, L., Fujii, Y.,
Shang, J., Lee, C.Y., Pfister, T.: Chain-of-table: Evolving tables in the reasoning chain for table
understanding (2024). https://arxiv.org/abs/2401.04398

66. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: Writing a literature
review. MIS Quart. 26(2), xiii–xxiii (2002). http://www.jstor.org/stable/4132319

67. Wei, Y., Xia, C.S., Zhang, L.: Copiloting the copilots: Fusing large language models with
completion engines for automated program repair. In: Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE ’23. ACM (2023). https://doi.org/10.1145/3611643.3616271

68. Weischedel, R., Palmer, M., Marcus, M., Hovy, E., Pradhan, S., Ramshaw, L., Xue, N., Taylor,
A., Kaufman, J., Franchini, M., El-Bachouti, M., Belvin, R., Houston, A.: Ontonotes release
4.0 (2011). https://doi.org/10.35111/GFJF-7R50. https://catalog.ldc.upenn.edu/LDC2011T03

69. Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., Jiang, L., Zhang, X., Zhang, S., Liu,
J., Awadallah, A.H., White, R.W., Burger, D., Wang, C.: Autogen: Enabling next-gen llm
applications via multi-agent conversation (2023). https://arxiv.org/abs/2308.08155

70. Wu, Y., Roesner, F., Kohno, T., Zhang, N., Iqbal, U.: Secgpt: An execution isolation
architecture for llm-based systems. arXiv preprint arXiv:2403.04960 (2024)

71. Xia, C.S., Zhang, L.: Less training, more repairing please: revisiting automated program repair
via zero-shot learning. In: Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE ’22, p.
959–971. ACM (2022). https://doi.org/10.1145/3540250.3549101

72. Xu, J., Cui, Z., Zhao, Y., Zhang, X., He, S., He, P., Li, L., Kang, Y., Lin, Q., Dang,
Y., Rajmohan, S., Zhang, D.: Unilog: Automatic logging via llm and in-context learning.
In: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering,
ICSE ’24. Association for Computing Machinery, New York (2024). https://doi.org/10.1145/
3597503.3623326

73. Yang, Z., Gan, Z., Wang, J., Hu, X., Lu, Y., Liu, Z., Wang, L.: An empirical study of GPT-
3 for few-shot knowledge-based VQA. Proc. AAAI Conf. Artif. Intell. 36(3), 3081–3089
(2022). https://doi.org/10.1609/aaai.v36i3.20215. https://ojs.aaai.org/index.php/AAAI/article/
view/20215

https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.48550/ARXIV.2204.11454
https://doi.org/10.48550/ARXIV.2204.11454
https://doi.org/10.48550/ARXIV.2204.11454
https://doi.org/10.48550/ARXIV.2204.11454
https://doi.org/10.48550/ARXIV.2204.11454
https://doi.org/10.48550/ARXIV.2204.11454
https://doi.org/10.48550/ARXIV.2204.11454
https://doi.org/10.48550/ARXIV.2204.11454
https://arxiv.org/abs/2204.11454
https://arxiv.org/abs/2204.11454
https://arxiv.org/abs/2204.11454
https://arxiv.org/abs/2204.11454
https://arxiv.org/abs/2204.11454
https://arxiv.org/abs/2204.11454
https://doi.org/10.1609/aaai.v35i15.17631
https://doi.org/10.1609/aaai.v35i15.17631
https://doi.org/10.1609/aaai.v35i15.17631
https://doi.org/10.1609/aaai.v35i15.17631
https://doi.org/10.1609/aaai.v35i15.17631
https://doi.org/10.1609/aaai.v35i15.17631
https://doi.org/10.1609/aaai.v35i15.17631
https://doi.org/10.1609/aaai.v35i15.17631
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://aclanthology.org/2022.findings-acl.132/
https://aclanthology.org/2022.findings-acl.132/
https://aclanthology.org/2022.findings-acl.132/
https://aclanthology.org/2022.findings-acl.132/
https://aclanthology.org/2022.findings-acl.132/
https://aclanthology.org/2022.findings-acl.132/
https://aclanthology.org/2022.findings-acl.132/
https://doi.org/10.48550/ARXIV.2205.12696
https://doi.org/10.48550/ARXIV.2205.12696
https://doi.org/10.48550/ARXIV.2205.12696
https://doi.org/10.48550/ARXIV.2205.12696
https://doi.org/10.48550/ARXIV.2205.12696
https://doi.org/10.48550/ARXIV.2205.12696
https://doi.org/10.48550/ARXIV.2205.12696
https://doi.org/10.48550/ARXIV.2205.12696
https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
http://www.jstor.org/stable/4132319
http://www.jstor.org/stable/4132319
http://www.jstor.org/stable/4132319
http://www.jstor.org/stable/4132319
http://www.jstor.org/stable/4132319
http://www.jstor.org/stable/4132319
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.35111/GFJF-7R50
https://doi.org/10.35111/GFJF-7R50
https://doi.org/10.35111/GFJF-7R50
https://doi.org/10.35111/GFJF-7R50
https://doi.org/10.35111/GFJF-7R50
https://doi.org/10.35111/GFJF-7R50
https://doi.org/10.35111/GFJF-7R50
https://catalog.ldc.upenn.edu/LDC2011T03
https://catalog.ldc.upenn.edu/LDC2011T03
https://catalog.ldc.upenn.edu/LDC2011T03
https://catalog.ldc.upenn.edu/LDC2011T03
https://catalog.ldc.upenn.edu/LDC2011T03
https://catalog.ldc.upenn.edu/LDC2011T03
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3597503.3623326
https://doi.org/10.1145/3597503.3623326
https://doi.org/10.1145/3597503.3623326
https://doi.org/10.1145/3597503.3623326
https://doi.org/10.1145/3597503.3623326
https://doi.org/10.1145/3597503.3623326
https://doi.org/10.1145/3597503.3623326
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1609/aaai.v36i3.20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215
https://ojs.aaai.org/index.php/AAAI/article/view/20215

5 Exploring Large Language Models in Information Systems: A Survey 109

74. Yasunaga, M., Liang, P.: Break-it-fix-it: Unsupervised learning for program repair. ArXiv
abs/2106.06600 (2021). https://api.semanticscholar.org/CorpusID:235421942

75. Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, I., Yao, Q., Roman, S.,
Zhang, Z., Radev, D.: Spider: A large-scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural L anguage Processing. Association for Computational
Linguistics (2018). https://doi.org/10.18653/v1/d18-1425

76. Zhang, T., Yu, T., Hashimoto, T.B., Lewis, M., Yih, W.T., Fried, D., Wang, S.I.: Coder reviewer
reranking for code generation (2022). https://doi.org/10.48550/ARXIV.2211.16490. https://
arxiv.org/abs/2211.16490

77. Zhang, H., Li, X., Bing, L.: Video-llama: An instruction-tuned audio-visual language model
for video understanding (2023). https://arxiv.org/abs/2306.02858

78. Zhang, R., Li, Y., Ma, Y., Zhou, M., Zou, L.: Llmaaa: Making large language models as active
annotators. In: Findings of the Association for Computational Linguistics: EMNLP 2023.
Association for Computational Linguistics, Stroudsburg (2023). https://doi.org/10.18653/v1/
2023.findings-emnlp.872.

79. Zhou, W., Huang, K., Ma, T., Huang, J.: Document-level relation extraction with adaptive
thresholding and localized context pooling. In: AAAI Conference on Artificial Intelligence
(2020). https://api.semanticscholar.org/CorpusID:225039888

80. Zowghi, D., Coulin, C.: Requirements elicitation: A survey of techniques, approaches, and
tools. In: Engineering and Managing Software Requirements, pp. 19–46. Springer, Berlin
(2005)

https://api.semanticscholar.org/CorpusID:235421942
https://api.semanticscholar.org/CorpusID:235421942
https://api.semanticscholar.org/CorpusID:235421942
https://api.semanticscholar.org/CorpusID:235421942
https://api.semanticscholar.org/CorpusID:235421942
https://api.semanticscholar.org/CorpusID:235421942
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.48550/ARXIV.2211.16490
https://doi.org/10.48550/ARXIV.2211.16490
https://doi.org/10.48550/ARXIV.2211.16490
https://doi.org/10.48550/ARXIV.2211.16490
https://doi.org/10.48550/ARXIV.2211.16490
https://doi.org/10.48550/ARXIV.2211.16490
https://doi.org/10.48550/ARXIV.2211.16490
https://doi.org/10.48550/ARXIV.2211.16490
https://arxiv.org/abs/2211.16490
https://arxiv.org/abs/2211.16490
https://arxiv.org/abs/2211.16490
https://arxiv.org/abs/2211.16490
https://arxiv.org/abs/2211.16490
https://arxiv.org/abs/2211.16490
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://doi.org/10.18653/v1/2023.findings-emnlp.872
https://api.semanticscholar.org/CorpusID:225039888
https://api.semanticscholar.org/CorpusID:225039888
https://api.semanticscholar.org/CorpusID:225039888
https://api.semanticscholar.org/CorpusID:225039888
https://api.semanticscholar.org/CorpusID:225039888
https://api.semanticscholar.org/CorpusID:225039888

Chapter 6
Programming Large Language Models

Marco Calamo and Jacopo Rossi

Abstract This chapter provides a comprehensive overview of tools and techniques
for programming large language models (LLMs), covering both fundamental and
advanced aspects of their implementation. The first section explores different
programming languages and frameworks, with a particular focus on Python due
to its ecosystem of libraries, such as Hugging Face and LangChain, which facilitate
model training, fine-tuning, and deployment. The chapter then presents a practical
overview of pre-training and fine-tuning methodologies, discussing approaches
like unsupervised and supervised learning, instruction tuning, parameter-efficient
fine-tuning, and alignment fine-tuning to optimize LLM performance. In the
final section, prompt engineering techniques are examined, including zero-shot,
few-shot, and chain-of-thought prompting, demonstrating how structured prompts
enhance model reasoning and response accuracy. Through examples and code
snippets, the chapter offers a hands-on guide for understanding and exploiting
LLMs efficiently, balancing computational resources, and improving task-specific
performance.

6.1 Tools and Libraries for Programming LLMs

Large language models (LLMs) are advanced AI models designed to process and
generate human-like text. They are trained on vast amounts of data and can be used
for a wide variety of tasks, such as chatbots, text summarization, code generation,
and many others. Python is the most widely used language in this context, but there
are also other languages like TypeScript and JavaScript that support LLMs. The
prominence of Python in this field is due to its syntactic simplicity and readability,
combined with the availability of a rich ecosystem of libraries and frameworks that
facilitate the implementation of machine learning and natural language processing
techniques. The ease of writing in Python allows developers to focus more on the use

M. Calamo (�) · J. Rossi
Sapienza Università di Roma, Rome, Italy
e-mail: calamo@diag.uniroma1.it; j.rossi@diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_6

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 6&domain=pdf
https://orcid.org/0009-0006-2602-9604
https://orcid.org/0009-0005-0100-0605

 885
56845 a 885 56845 a

mailto:calamo@diag.uniroma1.it
mailto:calamo@diag.uniroma1.it
mailto:calamo@diag.uniroma1.it

 11186 56845 a 11186
56845 a

mailto:j.rossi@diag.uniroma1.it
mailto:j.rossi@diag.uniroma1.it
mailto:j.rossi@diag.uniroma1.it
mailto:j.rossi@diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6
https://doi.org/10.1007/978-3-031-92285-5_6

112 M. Calamo and J. Rossi

of models and solving problems, without having to understand complex syntactic
details. Python’s compatibility with all major LLMs frameworks makes it ideal for
simplifying key processes such as training and fine-tuning. Moreover, integration
with data management and visualization libraries, such as Pandas, NumPy, and
Matplotlib, helps create a complete and interconnected ecosystem that significantly
accelerates the development cycle of LLM applications.

In this context, the computing power of GPUs is assuming a crucial role in
fully exploiting the potential of LLMs. GPUs allow thousands of operations to be
executed simultaneously, which is essential for the intensive calculations required.
A key element is the use of the CUDA platform, developed by NVIDIA, which
offers specialized libraries and APIs to allow developers to fully exploit the power of
GPUs. Thanks to CUDA, it is possible to optimize numerous algorithms used in the
training of deep neural networks, ensuring highly efficient performance. GPUs with
CUDA are also essential for the deployment of LLMs. In these scenarios, models
require an optimal management of computational resources to allow the generation
of real-time responses.

Going more into details, in the first part of this chapter, we analyze Python’s
role in using LLMs, focusing specifically on Hugging Face, a leading platform in
the AI ecosystem. Hugging Face provides a large catalogue of pre-trained models,
datasets, and training tools, making it easy to use and adapt them. We’ll explore
how to load pre-trained models, leverage ready-made datasets, and apply fine-tuning
techniques to customize models to specific needs. This section will provide practical
feedback on how to best leverage the available training and experimentation tools.
In the second part, we’ll move to LangChain, an open-source framework designed
to simplify the orchestration of LLM-based applications. We will explore prompt
engineering and strategies to improve the interaction of models with real data
sources, optimizing performance and generating contextualized responses.

6.2 Pre-training and Preparing an LLM Model

In this section, we provide a comprehensive step-by-step guide on building a
language model from scratch using Hugging Face. This practical implementation
of basic LLM concepts offers an overview of the pre-training process for a small
language model capable of running on a low-end machine without a dedicated GPU.
The minimum requirement for running the pre-training code is approximately 2GB
of RAM. However, the quality of the resulting model depends entirely on the amount
of training data. For this demo, we use a very small dataset to illustrate the process.
While a fully functional model requires trillions of tokens and extensive training
time, our example is limited to a few thousand tokens and about one hour of training.
To keep the implementation accessible, we use high-level abstractions and state-
of-the-art libraries, avoiding in-depth mathematical details related to optimization.
First, we demonstrate how to build an LLM from scratch, covering the key steps in
the pre-training process. Then, we show how to use an existing LLM as a black box,

6 Programming Large Language Models 113

Table 6.1 Film reviews with
sentiment analysis

Text Label

I rented I AM CURIOUS-YELLOW from my video
store because of all the controversy ..

0 ne g

“I Am Curious: Yellow” is a risible and pretentious
steaming pile...

0 ne g

If only to avoid making this type of film in the
future...

0 ne g

This film was probably inspired by Godard’s
Masculin, féminin and I urge you to see that film
instead...

0 ne g

leveraging prompt engineering techniques to guide its behavior effectively without
modifying the underlying model.

6.2.1 Dataset Loading

The first step in building a language model is preparing the dataset. The most
important factor in training an effective language model is having a high-quality
dataset. For this example, we use the imdb [13] dataset by Stanford NLP, directly
accessed through Hugging Face.1 The dataset contains selected anonymized reviews
from the IMDb platform,2 including also if the sentiment of the review was positive
(1) or negative (0). A brief snippet is reported in Table 6.1.

The datasets library3 simplifies dataset management and loading from Hug-
ging Face for various tasks. To load the IMDB dataset, execute the following
command:

Dataset Loading

1 from datasets import load_dataset
2 # since the dataset is already split between train, test
3 # and unsupervised, we only load the train split
4 dataset = load_dataset("stanfordnlp/imdb", split='train')

To prepare the data for processing by the language model, we need to:

1. Tokenize the plain text (break it into tokens).
2. Pad the tokenized sequences to ensure uniform length.

1 https://huggingface.co/datasets/stanfordnlp/imdb
2 https://www.imdb.com/
3 https://huggingface.co/docs/datasets/index

https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/stanfordnlp/imdb
https://www.imdb.com/
https://www.imdb.com/
https://www.imdb.com/
https://www.imdb.com/
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index

114 M. Calamo and J. Rossi

It is important to use the correct tokenizer for the model; otherwise, it would not be
possible to properly encode the text input in the tensor format of GPT-2 and decode
the output from GPT-2 tensors to plain text.

Dataset Pre-processing

1 from transformers import AutoTokenizer, DataCollatorWithPadding,
DataCollatorForLanguageModeling↪→

2

3 # we choose to use pre-trained tokenizer
4 # it will help speed up the pre-training step
5 tokenizer = AutoTokenizer.from_pretrained('gpt2')
6 # setting up the tokenizer for padding support
7 tokenizer.pad_token = tokenizer.eos_token
8

9 # encoding function for tokenizing and padding data
10 def encode(examples):
11 # applying tokenization
12 result = tokenizer(examples['text'],
13 truncation=True,
14 padding='max_length')
15 # we set the gold standard for masked text.
16 # During training the LM will try to recreate
17 # token sequence from 'text', comparing it
18 # from 'labels'. For base pre-training they
19 # are the same
20 result["labels"] = result["input_ids"].copy()
21 return result
22

23 dataset = dataset.map(encode, batched=True, remove_columns=["id"])
24 data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

Once the dataset is prepared, we can load the model and feed data into it.

6.2.2 Model Loading

For this demonstration, we chose GPT-2 [15] as the base model due to its relatively
small number of parameters (about 137M), which allows for training even on
consumer machines.4

4 Note that while the training time will still be significant, following through with our examples
will take up to 2 hours on an NVIDIA RTX 3090 with 24GB of VRAM.

6 Programming Large Language Models 115

To initialize the model, we use the transformers library5 by Hugging Face, the
state-of-the-art tool for working with LLMs at any scale. Creating an empty GPT-2
model is as simple as typing:

GPT-2 Model Loading

1 from transformers import GPT2Config, GPT2LMHeadModel
2 # instantiate the model with default config
3 model = GPT2LMHeadModel(GPT2Config())
4 # print out model details
5 print(model)

To be sure that we are looking at the correct model, we print out the model’s
information and compare it with the original GPT-2 architecture presented in [7],
where the blue rectangle represents a gpt block. The final model is composed by 12
of those blocks.

Output

GPT2LMHeadModel(
(transformer): GPT2Model(
(wte): Embedding(50257, 768)
(wpe): Embedding(1024, 768)
(drop): Dropout(p=0.1, inplace=False)
(h): ModuleList(
(0-11): 12 x GPT2Block(
(ln_1): LayerNorm((768,), eps=1e-05,
elementwise_affine=True)
(attn): GPT2SdpaAttention(
...
)
(ln_2): LayerNorm((768,), eps=1e-05,
elementwise_affine=True)
(mlp): GPT2MLP(
...
)
)
)
(ln_f): LayerNorm((768,), eps=1e-05,
elementwise_affine=True)
)
(lm_head): Linear(in_features=768,
out_features=50257, bias=False)
)

We also generate some text completion to be sure that the model has actually its
weights initialized at random. To generate the text completion from our model, we

5 https://huggingface.co/docs/transformers/index

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index

116 M. Calamo and J. Rossi

use the pipeline abstraction that offers Hugging Face library. It is capable of parsing
the output of the language model for us and display the output in natural language.

GPT-2 First Testing

1 from transformers import pipeline, set_seed
2 # automated pipeline for text generation from
3 # an huggingface model
4 generator = pipeline('text-generation', model=model,

tokenizer=tokenizer)↪→
5 # setting manual seed for reproducibility
6 set_seed(0)
7 # using the language model to complete the sentence
8 # with the most probable token sequence according
9 # to their weights

10 print(generator("Hello, I'm a language model," , max_length=30,
num_return_sequences=1)[0]['generated_text'])↪→

Output

"Hello, I'm a language model, azorazorazorigoigoigoigo..."

As we can see, the model currently generates only nonsensical gibberish. We are
now ready to train it on plain text to improve its ability to model natural language.

6.2.3 Pre-training

Once the model and dataset are ready, we can begin the training process. In this case,
the trainer abstraction provided by the Hugging Face library is straightforward. First,
we need to define the training arguments, i.e., the parameters for the optimization
process.

Training Arguments

1 from transformers import TrainingArguments, Trainer
2 training_args = TrainingArguments(
3 output_dir="llms",
4 learning_rate=2e-5,
5 per_device_train_batch_size=4,
6 per_device_eval_batch_size=4,
7 num_train_epochs=1,
8 weight_decay=0.01,
9 eval_strategy="epoch",

10 save_strategy="epoch",
11 load_best_model_at_end=True,
12 eval_steps=1000,

6 Programming Large Language Models 117

13 gradient_accumulation_steps=2,
14 eval_accumulation_steps=1,
15)

The chosen parameters are pretty standard for what concerns learning rate and
weight decay values, we decided to add some more parameters for reducing the
impact on the GPU memory like per-device batch size and accumulation steps, to
make this code executable even on GPUs with fewer VRAM available. The training
will run for only one epoch, so the results will not be optimal, but it will be enough
to demonstrate the capabilities of language modeling of GPT-2.6 Finally, we are
ready to start our training.

Training

1 trainer = Trainer(
2 model=model,
3 args=training_args,
4 train_dataset=dataset,
5 eval_dataset=dataset,
6 data_collator=data_collator,
7 processing_class=tokenizer,
8)
9 trainer.train() # start the trainer

This snippet of code will execute the training on the task of generating the next
most probable token given the past sequence, i.e., Causal Language Modeling. The
train should last about an hour on a modern laptop. Afterward, we can try again the
generation from earlier and observe the output:

Output

"Hello, I'm a language model, I have been a movie, I have been a movie.
I have been a movie. I was a movie"↪→

We can see that the output is still very far from the model we are used to, but just
from a small dataset and a quick training, the model already guessed correctly the
English sentence structure and the main argument of the dataset (movies reviews).

In the next sections, we will see how to enhance the plain language model and
how to fine-tune it for specific tasks.

6 For reference, it took about 400 epochs on a small dataset to a similar model to properly converge:
https://github.com/karpathy/nanoGPT.

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT

118 M. Calamo and J. Rossi

6.3 Fine-Tuning LLMs

In this section, we will go through all the fine-tuning methods of LLMs, and we
will implement them starting from (full) pre-trained GPT-2 to test what kind of
difference they make. We set the baseline by executing the generating script from
Sect. 6.2 on the pre-trained GPT-2.

Output

"Hello, I'm a language model, language model. You know what I mean? A
language model. When I write, I 'm like"↪→

As we can observe, the model has an understanding of the English language.
However, even the full pre-trained version struggles to form a coherent sentence
without context. Let’s see if when fine-tuning the model the results get more
satisfactory.

6.3.1 Unsupervised Fine-Tuning

The first case is unsupervised fine-tuning. It will help our model comprehend a
specific lexicon better. In our case, it will be about movies. The code is the same
from Sect. 6.2, with one key difference at the model loading stage: in this case, we
download from the Hugging Face repositories the pre-trained version.

Unsupervised Fine Tuning Model Loading Code

1 model = AutoModelForCausalLM.from_pretrained('gpt2 ')

The output with the fine-tuned model is:

Completion Output

"Hello, I'm a language model, and I enjoy speaking Latin as a child. My
favorite films is Lucio Morricone's (2007, 2003, 2004) and the
excellent animated short 'The Man Who Wrote Our Mother's Heart.'"

↪→
↪→

We can observe that even if some information is made up (like the title of the movie),
the model has shifted its default focus on the movie lexicon, which is exactly what
we expected from fine-tuning.

6 Programming Large Language Models 119

6.3.2 Supervised Fine-Tuning

Regarding supervised fine-tuning, the class used for this type of training will rely on
reinforcement learning techniques. In this example, we aim to fine-tune, by training,
the full pre-trained GPT-2 on the imdb dataset to perform a sentiment analysis task.
This time the trainer will consider the labels assigned to each review, which can
be either positive or negative (see Table 6.1). This approach should help improve
sentence completion in a specific sentiment compared to unsupervised fine-tuning.
The code follows the same patterns as before, but the key difference is that we
load the sequence classification version of GPT-2, which includes an additional final
softmax layer.

Supervised Fine Tuning Code

1 from datasets import load_dataset
2 from transformers import GPT2Tokenizer
3 from transformers import GPT2ForSequenceClassification
4 from transformers import Trainer, TrainingArguments
5

6 # dataset import
7 dataset = load_dataset("imdb")
8

9 # tokenizer loading
10 tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
11 tokenizer.pad_token = tokenizer.eos_token
12

13 # tokenize function
14 def tokenize_function(examples):
15 return tokenizer(examples["text"], padding="max_length",

truncation=True)↪→
16

17 # get dataset ready
18 tokenized_datasets = dataset.map(tokenize_function, batched=True)
19

20 # import gpt-2 with a new softmax layer for classification
21 # right now the softmax is initialized at random
22 model = GPT2ForSequenceClassification.from_pretrained("gpt2",
23 num_labels=2)
24 model.config.pad_token_id = model.config.eos_token_id
25

26 # run training
27 training_args = TrainingArguments(
28 output_dir="./results",
29 learning_rate=2e-5,
30 per_device_train_batch_size=10,
31 num_train_epochs=3,
32 weight_decay=0.01,
33)
34

35 trainer = Trainer(

120 M. Calamo and J. Rossi

36 model=model,
37 args=training_args,
38 train_dataset=tokenized_datasets["train"],
39 eval_dataset=tokenized_datasets["test"],
40)
41

42 trainer.train()

As we can see, the full code is similar to the pre-training one: the dataset loading,
the tokenizer loading, and the tokenize function are the same. The key difference
is the kind of model that we load: we use the gpt2 for sequence classification
abstraction. The huggingface trainer is capable of detecting a training goal that is no
longer sequence completion but sequence classification and automatically adapt the
training process.

After supervised fine-tuning, the GPT-2 model with a new softmax layer is now
capable of classifying the sentiment of the movie reviews. We introduce a new
snipped code for generating the desired output for classification:

Classification Output

1 def get_sentiment(sentence):
2 inputs = tokenizer(sentence, return_tensors="pt").to('cuda')
3 outputs = model(**inputs)
4 prediction = outputs.logits.argmax(-1).item()
5 return "Positive" if prediction == 1 else "Negative"
6

7 sentence = "I loved this movie!"
8 print(get_sentiment(sentence))

We needed a new function called get_sentiment to parse the numeric output provided
by the softmax and transform them into text. The results are the ones we were
expecting:

Sentiment Output

Positive

6.3.3 Instruction Fine-Tuning

To fine-tune a model using Instruction fine-tuning, we need to select the appropriate
dataset and apply reinforcement learning. We introduce a new Hugging Face

6 Programming Large Language Models 121

Table 6.2 Instruction and output examples

Instruction Output

Create a function that takes a
specific input...

def f(x): """Takes a specific input and produces
a specific output using any mathematical
operators..."""

Generate a unique
8-character string that...

import string import random def
random_password_string(): characters =...

Given a course consisting of
5 lessons, write a...

def display_first_lesson(lessons): print("The
first lesson is: " + lessons[0]) Lessons =
["Python...

Create an algorithm to
encourage work balance...

One algorithm to encourage work balance and
productivity in remote work is a scheduling...

Write a JavaScript that
changes the text of a...

document.getElementById("myParagraph").innerHTML
= "Goodbye, World!";

Implement a sorting
algorithm which takes an...

def sorting_algorithm(arr): for i in
range(len(arr)-1): for j in range(i+1,
len(arr)):...

library called trl,7 which stands for Transformers Reinforcement Learning. It uses
reinforcement learning to train the model to follow instructions. Specifically, we use
the SFTTrainer class from trl, on the CodeAlpaca20k8 dataset (see Table 6.2).
This dataset contains prompt descriptions along with code outputs in different
programming languages.
By formatting the dataset into a chat template, even a small model like GPT-2 could
learn to have chat like interactions and help with small code generation tasks. The
code is:

Instruction Fine Tuning Preparation

1 from transformers import AutoModelForCausalLM, AutoTokenizer
2 from datasets import load_dataset
3 from trl import SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM
4

5 dataset = load_dataset("lucasmccabe-lmi/CodeAlpaca-20k",
6 split="train")
7 tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
8 tokenizer.pad_token = tokenizer.eos_token
9

10 # helper function to prepare the text from dataset:
11 # it inserts into a chat template
12 def formatting_prompts_func(example):
13 output_texts = []
14 for i in range(len(example['instruction'])):

7 https://huggingface.co/docs/trl/index
8 https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k

https://huggingface.co/docs/trl/index
https://huggingface.co/docs/trl/index
https://huggingface.co/docs/trl/index
https://huggingface.co/docs/trl/index
https://huggingface.co/docs/trl/index
https://huggingface.co/docs/trl/index
https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k
https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k
https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k
https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k
https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k
https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k
https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k
https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k

122 M. Calamo and J. Rossi

15 # add the template for instruction completion
16 # in the form of question and answer,
17 # like a chat
18 text = f"""### Question: {example['instruction'][i]}\n
19 ### Answer: {example['output'][i]}"""
20 output_texts.append(text)
21 return output_texts
22

23 response_template = " ### Answer:"
24 # preprocess the dataset to add the template
25 collator = DataCollatorForCompletionOnlyLM(response_template,
26 tokenizer=tokenizer)

To prepare the dataset for training, we use the formatting_prompts_func function
that wraps the data entry in the dataset with a standard question-answer template
to teach to the model the format of the response it should give when prompted
according to the template.

Instruction Fine Tuning Training

1 # load the trainer with default parameters
2 trainer = SFTTrainer(
3 model,
4 train_dataset=dataset,
5 args=SFTConfig(output_dir="/tmp"),
6 formatting_func=formatting_prompts_func,
7 data_collator=collator,
8)
9 # start the training

10 trainer.train()

The trainer abstraction is similar to what we have seen before, but we use the
supervised fine-tuning trainer that applies reinforcement learning principles to the
training.

After the brief instruction, fine-tuning the model is now capable of answering
questions in a chat-like style following the template presented before. However, due
to a very short training and a small number of parameters, the quality of the answers
is still not very satisfactory. Here is an example:

Completion Output

Question:
How can you help me?
Answer:
You can: A: If you have any questions,
message me on Twitter, [...]

6 Programming Large Language Models 123

6.3.4 Parameter Efficient Fine-Tuning

To load an optimized version of our LLM, we can use another Hugging Face library
called peft,9 which stands for Parameter Efficient Fine-Tuning. It supports several
optimization techniques, like LoRa. This library works very well in tandem with
other Hugging Face libraries, like trl. To run the same training from the previous
section using about 33% less GPU memory, you could use this code:

Parameter Optimized Fine Tuning

1 from peft import LoraConfig
2

3 # create configuration for parameter optimization
4 peft_config = LoraConfig(
5 # optimization matrix rank
6 r=32,
7 # scaling factor
8 lora_alpha=32,
9 # parameter dropout for lora

10 lora_dropout=0.05,
11 bias="none",
12 task_type="CAUSAL_LM",
13 # tune the embedding layer and prediction head
14 modules_to_save=["wte", "lm_head"]
15)
16

17 # setting up the trainer with default parameters
18 training_args = SFTConfig(output_dir ="/tmp",
19 per_device_train_batch_size=2,
20 per_device_eval_batch_size=2,
21 num_train_epochs=2,)
22

23 # fine tuning with direct peft_config
24 trainer = SFTTrainer(
25 'gpt2',
26 train_dataset=dataset,
27 args=training_args,
28 peft_config=peft_config
29)
30

31 trainer.train()

9 https://huggingface.co/docs/peft/index

https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/index

124 M. Calamo and J. Rossi

To run quantization, we can also load the model using the bitsandbytes library.10
However, as GPT-2 is not supported by that, we use Opt-350M model [21] as an
example:

Memory Optimized Fine Tuning

1 from transformers import AutoModelForCausalLM, BitsAndBytesConfig
2

3 # loading configuration with 8-bit integer weights
4 quantization_config = BitsAndBytesConfig(load_in_8bit=True)
5

6 # loading the model
7 model_8bit = AutoModelForCausalLM.from_pretrained(
8 "facebook/opt-350m",
9 quantization_config=quantization_config,

10 torch_dtype="auto"
11)

6.3.5 Alignment Fine-Tuning

To demonstrate alignment fine-tuning, we implemented a Direct Preference Opti-
mization (DPO) setup due to its direct support in Hugging Face and its comparable
performance. Proper alignment requires selecting a reference dataset. For this demo,
we chose the UltraFeedback Binarized dataset11 [4]. As shown in Table 6.3, the
dataset includes an instruction, an accepted completion, and a rejected completion,
each assigned a score from 1 to 10.

To align fine-tune GPT-2 with the dataset provided, we first need to format the
data in a chat-like structure. Once prepared, we can use the DPOTrainer from the
trl library to perform fine-tuning.

DPO Alignment Code

1 from datasets import load_dataset
2 from trl import DPOConfig, DPOTrainer
3 from transformers import AutoModelForCausalLM, AutoTokenizer
4

5 model = AutoModelForCausalLM.from_pretrained("gpt2")
6 tokenizer = AutoTokenizer.from_pretrained("gpt2")
7 tokenizer.pad_token = tokenizer.eos_token
8

9 # this time we need an explicit chat template

10 https://huggingface.co/docs/bitsandbytes/main/index
11 https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/docs/bitsandbytes/main/index
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

6 Programming Large Language Models 125

10 tokenizer.chat_template = """{% for message in messages %}
11 {% if loop.first and messages[0]['role'] != 'system' %}
12 {{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
13 {% endif %}{{'<|im_start|>'
14 + message['role'] + '\n' + message['content']
15 + '<|im_end|>' + '\n'}}{% endfor %}
16 {% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}
17 {% endif %}"""
18

19 train_dataset = load_dataset("trl-lib/ultrafeedback_binarized",
20 split="train")
21

22 training_args = DPOConfig(output_dir="openai-community/gpt2",
23 logging_steps=10,
24 per_device_train_batch_size=2,
25 per_device_eval_batch_size=2,)
26 trainer = DPOTrainer(model=model, args=training_args,
27 processing_class = tokenizer, train_dataset=train_dataset)
28 trainer.train()

We apply a standard chat template to the dataset by including it in the tokenizer. The
training abstraction is once again similar to the standard trainer, but it applies under
the hood the DPO training loop.

Table 6.3 Comparison of instructions, chosen, rejected, and scores

Instruction Chosen Rejected Score comparison

Use the pygame library
to write a version of the
classic game Snake,
with a unique twist

Use the pygame library
to write a version of the
classic game Snake,
with a unique twist

Use the pygame library
to write a version of the
classic game Snake,
with a unique twist

6 v s 4

She was a horrible pet
owner; she would put a
what on her cat?
Options: leave outside,
sharp teeth, get wet

She was a horrible pet
owner; she would put a
what on her cat?
Options: leave outside,
sharp teeth, get wet

She was a horrible pet
owner; she would put a
what on her cat?
Options: leave outside,
sharp teeth, get wet

8 vs 7 .5

Detailed instructions: In
this task, classify if a
review is
positive/negative,
indicating your answer
as P or N

Detailed instructions:
Classify reviews as
positive or negative

Detailed instructions:
Classify reviews as
positive or negative

8 v s 4

Write me an in-game
shop system in Unity
that uses gacha

Write a basic gacha
in-game shop system

Write a basic gacha
in-game shop system

8 v s 8

Develop a 10-page
research paper on the
impact of meditation on
mental health

Write about the impact
of meditation on mental
health

Write about the impact
of meditation on mental
health

7 vs 5

126 M. Calamo and J. Rossi

After alignment tuning, the GPT-2 model is now capable of following a
standardized chat template with system, user, and assistant prompt. We can use this
snippet of code to generate proper chat completion:

Chat text generation Code

1 from transformers import pipeline, set_seed
2

3 generator = pipeline('text-generation',
4 model=model,
5 tokenizer=tokenizer)
6 set_seed(0)
7 chat_history = [
8 {"role": "system", "content": "You are a chatbot"},
9 {"role": "user", "content": "Help me?"},

10]
11 outputs = generator(
12 chat_history,
13 max_new_tokens=52,
14)
15 print(outputs[0]["generated_text"])

We observe a behavior similar to that seen after instruction tuning: the model follows
the template, but due to the short training time and limited number of parameters,
its responses remain unsatisfactory.

Completion Output

{'role': 'system', 'content': 'You are a chatbot'},
{'role': 'user', 'content': 'Help me?'},
{'role': 'assistant', 'content': 'Notes:

This command ignores message-level messages,
making communication with external tools harder. [...]}

6.4 Prompt Engineering

Prompt engineering is the practice of carefully designing and refining prompts to
optimize the responses generated by LLMs [16]. The concept of a prompt refers
to a set of task-specific instructions designed for an LLM to execute. A well-
structured prompt acts as a guide for the LLM, helping to understand the user’s
intent, handle ambiguity, and focus on providing results that align with the desired
goal. The importance of prompts lies in their ability to influence how effectively
an LLM performs various tasks. For example, for simple questions, such as asking
for a brief explanation or definition, a direct prompt is often sufficient. However,
in more complex cases, such as generating detailed reports or solving multi-step

6 Programming Large Language Models 127

problems, imprecise prompts may result in responses that are vague, incomplete, or
unrelated [3]. This is where the distinction between simple prompts and advanced
prompts becomes critical. Simple prompts are typically concise and straightforward,
consisting of basic questions or instructions that require a minimum level of detail.
While they are effective for simple tasks, they lack the structure and specificity
needed to handle more complex requests. In contrast, advanced prompts are more
elaborate and often include additional context, examples, constraints, or formatting
guidelines. By incorporating these elements, advanced prompts direct with more
efficiency the behavior of the model, allowing it to produce responses that are not
only precise but also tailored to specific needs or expectations [12].

Prompt engineering is not limited to the simple design and development of
prompts but involves a set of skills and techniques that are essential for interacting
and working with LLMs. Through prompt engineering, it is not only possible to
enhance the performance of an LLM, but there is also the chance to develop new
features, such as integrating domain-specific knowledge or using external tools to
extend the capabilities of the model [20]. In the following sections, we explore
how to use advanced prompt engineering techniques to unlock the full potential
of LLMs, enabling them to perform increasingly complex tasks with higher levels
of consistency, reliability, and performance.

6.4.1 Zero-Shot Prompting

Zero-shot prompting is a technique that consists of directly asking the model to
perform a task by providing only the task description or query. Zero-shot prompting
relies entirely on the model’s pre-trained knowledge to interpret the task and answer
appropriately. This method is quick and efficient and works particularly well for
simple tasks or when the model already has sufficient knowledge about the request
[10].

Zero-shot excels in handling simple and well-defined tasks, such as explaining a
concept, summarizing or translating text, and creative writing. This approach is also
ideal to develop LLM-based solutions without requiring extensive setup or examples
to perform rapid tests on them. Additionally, zero-shot prompting uses the language
model’s training data to handle general knowledge queries, providing contextually
relevant responses.

Here, are some examples of possible zero-shot prompts:

Explanation Prompt

Explain the concept of gravity as if you were teaching it to a
10-year-old. Keep the explanation simple and avoid complex terms.↪→

128 M. Calamo and J. Rossi

Summarization Prompt

Summarize the following news article in one sentence: 'The city council
has approved a plan to build a new community park, which will
feature walking trails, playgrounds, and picnic areas. The project
is expected to be completed by 2026.'

↪→
↪→
↪→

Translation Prompt

Translate the following sentence from English to French: 'I would like
a cup of coffee, please.' Use formal and polite language.↪→

Creative Writing Prompt

Write a short story of 100 words about a lost dog finding its way home.
Make it heartwarming and suitable for children.↪→

Observing these examples, it is important to underline that to get the most out of
zero-shot prompting, the prompt should be:

• Clear: use simple and unambiguous language.
• Specific: clearly define what you want the model to do (e.g., summarize, explain,

translate, etc.).
• Contextual: provide any necessary background information or constraints.
• Goal-Oriented: state the objective of the task to help the model focus on the

desired result.

The strength of zero-shot prompting lies in its simplicity. Designing a prompt
with this technique requires minimal effort and allows one to execute tasks in a rapid
way without doing a particular setup. However, limitations include less precision
when handling complex or ambiguous tasks and the potential for misinterpretation
due to the absence of task examples or demonstrations.

6.4.2 Few-Shot Prompting

Few-shot learning is an approach that can be adopted to perform specific tasks.
Unlike zero-shot prompting, which relies solely on the responses generated by the
model without providing specific guidelines, it uses examples to help the model
identify patterns and relationships [17]. This approach is particularly useful when
it is not possible to collect large amounts of labeled data, such as rare events,
specialized domains, or rapidly changing contexts. The adoption of techniques
based on few-shot learning is a key element for the effective use of LLMs.
By structuring data in a consistent format, models can be configured to obtain

6 Programming Large Language Models 129

appropriate answers to specific tasks, reducing the need for large amounts of
training data. Few-shot learning can be described as a methodology that exploits the
knowledge of the model in a more targeted way. In particular, it allows obtaining
more structured answers, with less variability and greater consistency, improving
the ability of the model to solve specific problems. Studies confirm that few-shot
learning is a highly effective strategy [2], especially when using structured prompts.
The use of carefully selected examples improves the performance of the model and
proves to be useful in scenarios characterized by limited availability of data.

To create an effective few-shot prompt, we can identify the following steps:

• Define the task: specify the task or objective that the LLM is expected to perform.
It is very important to define the type of input the LLM will process and the
desired output format.

• Choose examples: select examples that effectively represent how to solve the
task. These examples should illustrate the desired input-output mapping with
clarity and reflect the diversity of the data distribution to ensure robustness.

• Organize the prompt: structure the prompt in a coherent and logical order. Exam-
ples are typically associated with the task of assisting the response generation.
They should be formatted consistently and arranged to highlight their relevance
to the prompt.

• Test and refine: once an initial prompt is defined, it is critical to evaluate its
effectiveness. This involves analyzing the outputs’ accuracy and consistency with
the goals of the task. Based on these evaluations, it is possible to refine the prompt
by adjusting examples, reformulating the query, or changing the overall structure.
Iterative testing allows for the identification of issues, such as biases introduced
by example selection or misinterpretations of the task by the LLM.

Here there are some examples of few-shot prompting:

Explanation

Explain concepts in simple terms for a 10-year-old.

These are some examples of how to perform the task:

Topic: Electricity
Explanation: Electricity is like magic energy that flows through wires

to make things like lights and TVs work. It travels super fast and
powers up everything around us.

↪→
↪→

Topic: Photosynthesis
Explanation: Photosynthesis is how plants make their food. They use

sunlight, water, and air to create energy, just like how we eat
food to stay strong.

↪→
↪→

Topic: Gravity

130 M. Calamo and J. Rossi

Explanation: Gravity is like an invisible hand that pulls everything
down to the ground. It's why we don't float away and why things
fall when you drop them. Even the moon stays near Earth because of
gravity.

↪→
↪→
↪→

Explain the following concept:

Topic: The Water Cycle
Explanation:

Named Entity Recognition

Extract entities from the sentences and classify them.

These are some examples of how to perform the task:

Sentence: "Apple's headquarters are in Cupertino."
Entities: [Apple: Organization, Cupertino: Location]

Sentence: "Google was founded in California."
Entities: [Google: Organization, California: Location]

Sentence: "Elon Musk is the CEO of Tesla."
Entities: [Elon Musk: Person, Tesla: Organization]

Sentence: "The Eiffel Tower is located in Paris."
Entities: [Eiffel Tower: Location, Paris: Location]

Sentence: "Jeff Bezos founded Amazon in 1994."
Entities: [Jeff Bezos: Person, Amazon: Organization]

Extract entities and classify them from the following sentence:

Sentence: "Tony Effe was born in Rome"
Entities:

6 Programming Large Language Models 131

Topic Classification

Classify sentences into categories: Sports, Technology, or
Entertainment.↪→

These are some examples of how to perform the task:

Sentence: "Cristiano Ronaldo scored the winning goal in the match."
Category: Sports

Sentence: "Apple just launched its latest iPhone model."
Category: Technology

Sentence: "The new Marvel movie is breaking box office records."
Category: Entertainment

Sentence: "The Lakers won their third consecutive game last night."
Category: Sports

Sentence: "Samsung unveiled its new foldable smartphone at the event."
Category: Technology

Sentence: "Taylor Swift's latest album topped the charts this week."
Category: Entertainment

Classify the following sentence into one of the predefined categories:

Sentence: "The streaming events of Blur attract thousands of users."
Category:

To ensure effective communication and clarity in presenting examples for a task,
it is essential to focus on including examples that provide a concrete demonstration
of what the result should be. Maintaining a uniform structure across examples
reinforces the pattern to highlight. This consistency not only aids comprehension
but also helps the LLM internalize the structure, improving its ability to generalize
and apply the pattern in different situations [14]. Finally, even if it is important
to provide examples with enough detail, it is important to not use overly lengthy
examples that can lead to exceeding the token limit.

6.4.3 Chain-of-Thought Prompting

Chain-of-thought (CoT) is a reasoning process that allows to tackle complex prob-
lems by breaking them down into a sequence of simpler and more understandable
steps [19]. This approach reflects how humans typically approach a problem, placing
particular emphasis on the intermediate steps of reasoning. In practice, it improves
the ability to manage complex tasks by highlighting the value of process-oriented

132 M. Calamo and J. Rossi

thinking and the ability to connect steps following rigorous logic. Unlike traditional
prompting techniques, where you simply provide some inputs and their outputs,
CoT allows to structure the prompt in a way that encourages the LLM to articulate
the intermediate steps to improve the accuracy of the results.

CoT can be combined with few-shot prompting techniques, where the LLM
receives examples that include inputs and outputs accompanied by the division of
the task into intermediate steps. These examples help the model understand how to
perform the list of intermediate steps to achieve the final result.

Here we present a prompt with a possible application of CoT:

Pairwise Product Check

Determine whether a number is the product of any two numbers in a given
list.↪→

These are some examples of how to perform the task:

Task: Is 15 the product of any two numbers in the list [4, 8, 9, 12,
2]?↪→

Reasoning:
Check all pairwise products:
4 × 8 = 32 (Not 15)
4 × 9 = 36 (Not 15)
4 × 12 = 48 (Not 15)
4 × 2 = 8 (Not 15)
8 × 9 = 72 (Not 15)
8 × 12 = 96 (Not 15)
8 × 2 = 16 (Not 15)
9 × 12 = 108 (Not 15)
9 × 2 = 18 (Not 15)
12 × 2 = 24 (Not 15)
None of the pairwise products equal 15.
Answer: False.

Task: Is 45 the product of any two numbers in the list [6, 4, 9, 2, 8]?
Reasoning:
Check all pairwise products:
6 × 4 = 24 (Not 45)
6 × 9 = 54 (Not 45)
6 × 2 = 12 (Not 45)
6 × 8 = 48 (Not 45)
4 × 9 = 36 (Not 45)
4 × 2 = 8 (Not 45)
4 × 8 = 32 (Not 45)
9 × 2 = 18 (Not 45)
9 × 8 = 72 (Not 45)
2 × 8 = 16 (Not 45)
None of the pairwise products equal 45.
Answer: False.

6 Programming Large Language Models 133

Task: Is 72 the product of any two numbers in the list [6, 4, 9, 12,
2]?↪→

Reasoning:
Check all pairwise products:
6 × 4 = 24 (Not 72)
6 × 9 = 54 (Not 72)
6 × 12 = 72 (Matches!)
A pair exists (6 × 12) that equals 72.
Answer: True.

Solve the following problem.
Task: Is 20 the product of any two numbers in the list [10, 7, 13, 5,

3]?↪→
Answer:

CoT has been described mainly in combination with few-shot learning. Alter-
natively, we can highlight some innovative approaches, such as the one introduced
in [11], which is notable for its use of zero-shot prompting. This method involves
adding the sentence Let’s think step by step at the end of the input prompt. This
change, although minimal, has shown a significant impact, highlighting how small
changes in the prompt can improve the performance of models.

Another relevant technique is Auto-CoT [22], which automates the generation of
demonstrations by implementing step-by-step reasoning with LLMs. The process
begins with a question-clustering phase, where questions are grouped into clusters
using vector representations and k-means clustering. Next, in the demonstration
sampling stage, a representative question from each cluster is selected based on
its proximity to the cluster center. This representative question is then fed into an
LLM, which, using the Zero-Shot-CoT approach [11], generates a reasoning chain
to generate the result.

An evolution of the CoT technique is represented by the approach introduced in
the work on Self-Consistency [18]. This method is based on the idea that complex
problems can be solved by following different reasoning paths. Comparing these
paths, it is possible to identify the most effective one, that is, the one capable of
producing a more accurate solution. In Self-Consistency, first, a CoT prompt is
defined and designed with manually written chain-of-thought exemplars [19]. Then,
there is a generation of diverse set of reasoning paths by sampling multiple candidate
outputs from the model’s decoder. This can be achieved by running the model on
the same problem multiple times, using sampling techniques such as temperature
sampling [1, 6], top-k sampling [5, 8, 15], and nucleus sampling [9]. Finally, the
reasoning paths are analyzed using aggregation metrics, and there is a selection of
the most consistent answer among the generated ones.

134 M. Calamo and J. Rossi

6.4.4 Prompt Engineering in Action

In this section, we describe the general procedures for invoking LLMs using the
prompt engineering techniques described above. We use the LangChain library to
simplify the interaction with LLMs and integrate models hosted on the Hugging
Face platform. The code is also easily adaptable for loading and using local models,
ensuring greater flexibility in model deployment.

Zero-Shot, Few-Shot, Chain of Thought

1 from langchain_huggingface import HuggingFaceEndpoint
2 from langchain_core.prompts import ChatPromptTemplate
3 from langchain_core.output_parsers import StrOutputParser
4 import os
5

6 # Set up Hugging Face API token from environment variables
7 os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
8 HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
9

10 # Define the prompt (updated with the actual prompt text)
11 prompt = "prompt description..."
12

13 # Create a ChatPromptTemplate with a user message
14 prompt_template = ChatPromptTemplate.from_messages([
15 ('user', prompt) # Define the user message as part of the prompt

template↪→
16])
17

18 # define the Hugging Face model endpoint
19 model = HuggingFaceEndpoint(
20 repo_id="mistralai/Mistral-7B-Instruct-v0.2", # Model ID for the

Hugging Face endpoint↪→
21 temperature=0.5, # Controls randomness in responses
22 huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN, # API token for

authentication↪→
23)
24

25 # Output parser to convert the model response into a string
26 parser = StrOutputParser()
27

28 # Function to execute the prompt and return the response
29 def ask_question():
30 # Set up the chain of operations: prompt template -> model -> output

parser↪→
31 chain = prompt_template | model | parser
32

33 # Execute the chain and return the result
34 response = chain.invoke({})
35 return response
36

37 # Run the script if executed directly

6 Programming Large Language Models 135

38 if __name__ == "__main__":
39 try:
40 result = ask_question()
41 print("Result:", result)
42 except Exception as e:
43 print("Error:" , e) # Handle and print any errors that occur during

execution↪→

Analyzing the code in details,

Prompt definition

1 % promp_template = "prompt description..."
2 % prompt_template = ChatPromptTemplate.from_messages([
3 % (' user', promp_template)
4 %])
5 %

in lines 11–16, the prompt is structured using ChatPromptTemplate, which
organizes the interaction as a series of messages. In this case, the message is
attributed to the (’user’). By modifying the content of the prompt, it is possible
to customize the request to suit different applications. This ability to configure the
prompt allows for the application of various prompt engineering techniques. Indeed,
by structuring the prompt at line 11 according to the guidelines outlined in the
previous sections, these techniques can be implemented effectively.

Model Integration

1 % model = HuggingFaceEndpoint(
2 % repo_id="mistralai/Mistral-7B-Instruct-v0.2",
3 % temperature=0.5,
4 % huggingfacehub_api_token= HUGGINGFACEHUB_API_TOKEN,
5 %)
6 %

Lines 19 to 23 explain how to invoke the Mistral-7B-Instruct-v0.2 model,
which is hosted on the Hugging Face repository. It is important to note that
the same structure can be used to load a local model, such as a fine-tuned
model designed for specific tasks, like the one described in this chapter. The
configuration of the temperature parameter allows you to control the randomness of
the model’s responses, with lower values producing more deterministic responses.
The HUGGINGFACEHUB_API_TOKEN variable allows to authenticate to the Hugging
Face service to access the models available.

136 M. Calamo and J. Rossi

Output Parser

1 % parser = StrOutputParser()
2 %

The parser, at line 26, transforms the model output into a readable string, making
it easier to interpret the results.

Code Execution

1 % def ask_question():
2 % chain = prompt_template | model | parser
3 % response = chain.invoke({})
4 % return response
5 %

The ask_question() function, lines 29 to 35, set up the operation to invoke the
LLM by defining the model, the prompt, and the parser .

As we can observe, the code structure is a practical and flexible example of how
to use LLMs. The basic configuration can be easily adapted to use different models,
both remote and local, and to perform advanced prompt engineering techniques,
through customizing prompts. This implementation is not only a guide to invoke
LLMs but also represents a methodological basis that can be extended to cover
multiple use case applications.

References

1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines.
Cognit. Sci. 9(1), 147–169 (1985)

2. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Adv. Neural
Inf. Process. Syst. 33, 1877–1901 (2020)

3. Chen, B., Zhang, Z., Langrené, N., Zhu, S.: Unleashing the potential of prompt engineering in
large language models: a comprehensive review. arXiv preprint arXiv:2310.14735 (2023)

4. Cui, G., Yuan, L., Ding, N., Yao, G., Zhu, W., Ni, Y., Xie, G., Liu, Z., Sun, M.: Ultrafeedback:
Boosting language models with high-quality feedback. arXiv preprint arXiv:2310.01377
(2023)

5. Fan, A., Lewis, M., Dauphin, Y.: Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833 (2018)

6. Ficler, J., Goldberg, Y.: Controlling linguistic style aspects in neural language generation. arXiv
preprint arXiv:1707.02633 (2017)

7. Heilbron, M., Ehinger, B., Hagoort, P., De Lange, F.P.: Tracking naturalistic linguistic
predictions with deep neural language models. arXiv preprint arXiv:1909.04400 (2019)

8. Holtzman, A., Buys, J., Forbes, M., Bosselut, A., Golub, D., Choi, Y.: Learning to write with
cooperative discriminators. arXiv preprint arXiv:1805.06087 (2018)

9. Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y.: The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751 (2019)

6 Programming Large Language Models 137

10. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models are zero-
shot reasoners. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A.
(eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 22199–22213. Curran
Associates, Newry (2022)

11. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models are zero-shot
reasoners. Adv. Neural Inf. Process. Syst. 35, 22199–22213 (2022)

12. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict:
A systematic survey of prompting methods in natural language processing. ACM Comput.
Surveys 55(9), 1–35 (2023)

13. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors
for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 142–150. Association for
Computational Linguistics, Portland, Oregon (2011). http://www.aclweb.org/anthology/P11-
1015

14. Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., Zettlemoyer, L.:
Rethinking the role of demonstrations: What makes in-context learning work? arXiv preprint
arXiv:2202.12837 (2022)

15. Radford, A., Wu, J., Amodei, D., Amodei, D., Clark, J., Brundage, M., Sutskever, I.: Better
language models and their implications. OpenAI blog 1(2) (2019). https://openai.com/index/
better-language-models/

16. Sahoo, P., Singh, A.K., Saha, S., Jain, V., Mondal, S., Chadha, A.: A systematic survey of
prompt engineering in large language models: Techniques and applications. arXiv preprint
arXiv:2402.07927 (2024)

17. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971 (2023)

18. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., Zhou, D.:
Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171 (2022)

19. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q.V., Zhou, D., et al.:
Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf.
Process. Syst. 35, 24824–24837 (2022)

20. Yong, G., Jeon, K., Gil, D., Lee, G.: Prompt engineering for zero-shot and few-shot defect
detection and classification using a visual-language pretrained model. Comput.-Aided Civil
Infrastruct. Eng. 38(11), 1536–1554 (2023)

21. Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li,
X., Lin, X.V., et al.: Opt: Open pre-trained transformer language models. arXiv preprint
arXiv:2205.01068 (2022)

22. Zhang, Z., Zhang, A., Li, M., Smola, A.: Automatic chain of thought prompting in large
language models. arXiv preprint arXiv:2210.03493 (2022)

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/

Chapter 7
Retrieval-Augmented Generation

Filippo Bianchini

Abstract Retrieval-augmented generation (RAG) has emerged as a transformative
approach to enhancing the capabilities of large language models (LLMs) by
integrating real-time information retrieval with generative text synthesis. Traditional
LLMs rely on pre-trained data, limiting their effectiveness when handling tasks
requiring up-to-date or domain-specific information. RAG addresses this constraint
by embedding a retrieval mechanism within the LLM framework, allowing the
model to access external knowledge sources dynamically. This integration enables
LLMs to generate contextually relevant and factually accurate responses, extending
their utility within the realm of information systems (IS), where timely and
precise information is critical. Starting from the history and evolution of retrieval-
augmented generation, passing through different framework and methodologies, and
moving to practical applications by different libraries, in this chapter, we offer a
theoretical and practical overview of this innovative and powerful technique.

7.1 Introduction

The origins of retrieval-augmented generation (RAG) trace back to the early
developments in question-answering systems [5] from the 1970s, when researchers
in information retrieval began building systems capable of using natural language
processing (NLP) to retrieve answers from text collections. Initially, these systems
were confined to narrow domains, but they laid the groundwork for modern
techniques by enabling machines to understand and process human questions. An
example from the mid-1990s is Ask Jeeves1 [17], which introduced a conversational,

1 Ask Jeeves was a search engine where users could ask questions in natural language: https://www.
ask.com/.

F. Bianchini (�)
Sapienza Università di Roma, Rome, Italy
e-mail: bianchini@diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_7

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 7&domain=pdf
https://orcid.org/0009-0006-3278-9853
https://www.ask.com/
https://www.ask.com/
https://www.ask.com/
https://www.ask.com/

 885 56845 a 885 56845 a

mailto:bianchini@diag.uniroma1.it
mailto:bianchini@diag.uniroma1.it
mailto:bianchini@diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7
https://doi.org/10.1007/978-3-031-92285-5_7

140 F. Bianchini

user-friendly question-answering service with a virtual assistant mascot. This
helped popularize the idea that users could ask natural language questions and
receive relevant answers, an important step toward modern information retrieval
systems [12].

A significant advancement in AI-driven information retrieval occurred in 2011
when IBM’s Watson [9] demonstrated the potential of advanced AI by defeating
human champions on the quiz show Jeopardy!.2 Unlike earlier question-answering
systems that relied solely on predefined databases, Watson leveraged NLP and
sophisticated retrieval and ranking algorithms to analyze vast amounts of unstruc-
tured text in real time.

As AI research progressed, the limitations of purely generative models became
increasingly evident, particularly their tendency to produce factually incorrect or
unverifiable information. Despite steady advancements in NLP, the fundamental
principles of text mining and information retrieval remained critical for ensuring
factual consistency. The challenge, therefore, was to develop systems that could
generate humanlike responses while grounding their output in verifiable, up-to-date
sources. In this context, another important milestone for RAG is the development
of the transformer architecture [29], a fundamental advancement that enabled
language models to integrate additional knowledge through pre-trained models
(PTMs) [3, 19]. This progression and the demand for more reliable AI-generated
content led Patrick Lewis to introduce RAG in a 2020 paper [19], marking a key
evolution in generative AI. His work proposed a novel framework that seamlessly
combines a retrieval mechanism with a language model to enhance the handling of
knowledge-intensive NLP tasks. Specifically, RAG integrates two key components:
a retriever, which fetches relevant documents from an external knowledge base, and
a generator, which synthesizes responses based on the retrieved information. In an
interview, Lewis expressed regret over the unflattering acronym, acknowledging that
they would have chosen a more appealing name had they anticipated the widespread
impact of their work. RAG has since evolved into a recognized framework that
encompasses a growing array of methods utilized in numerous academic papers and
commercial applications. An overview of Lewis’ approach is presented in Fig. 7.1.

This hybrid approach bridges the gap between traditional retrieval-based systems
and modern generative models, improving both factual accuracy and contextual
relevance and prepared the way for modern RAG technologies, as we know it today,
which enhance LLMs by integrating real-time external data for greater accuracy
and relevance. Figure 7.2 illustrates the rapid evolution and expansion of RAG
techniques, from the release of GPT-3 in 2020, through the launch of ChatGPT,
to the introduction of GPT-4.

These models have transformed numerous tasks such as summarizing text,
answering questions, and creative writing. The reach of LLMs is now pervasive,

2 A popular American quiz show where contestants respond to general knowledge clues with
questions, aiming to accumulate the most money by the end of each round: https://www.jeopardy.
com/.

https://www.jeopardy.com/
https://www.jeopardy.com/
https://www.jeopardy.com/
https://www.jeopardy.com/

7 Retrieval-Augmented Generation 141

F
ig
. 7

.1

O
ve
rv
ie
w
 o
f
L
ew

is
’
ap
pr
oa
ch
 f
or
 R
A
G
 [
19

]

142 F. Bianchini

Fig. 7.2 Technology tree of RAG research [10]

extending beyond expert users to a wider audience. As their adoption grows, so does
our understanding of their strengths and limitations. A key issue that has surfaced
is the tendency of LLMs to generate responses that, while coherent and convincing,
may contain information that is partially or entirely incorrect. This phenomenon,
often referred to as hallucination in the AI community, poses a significant challenge
in high-stakes environments. Hallucination occurs due to the probabilistic nature
of LLMs, which generate text based on probability rather than fact-checking [30].
As a result, LLMs sometimes fill in information in a way that sounds plausible but
is factually wrong [16]. This design enables impressive fluency and flexibility but
lacks an internal verification mechanism to cross-check factual accuracy.

When an LLM powered by RAG receives a prompt or question, it first consults an
external information source, which could be a search engine, a database, or another
structured repository. The retrieval component finds relevant documents, passages,
or data points based on the prompt. Instead of generating an answer solely from
its pre-trained language patterns, the LLM uses this retrieved information to guide
and inform its response. The result is a hybrid output: the natural, conversational
style of an LLM response combined with real-time data, significantly improving
factual accuracy. With these advancements, RAG research shifted toward enhancing
LLMs’ ability to handle complex, information-rich queries during the inference
stage, leading to accelerated progress in RAG methodologies.

7 Retrieval-Augmented Generation 143

7.2 RAG: Working Logic

The typical RAG framework combines a retrieval mechanism with generative
language models to enhance the quality and accuracy of responses in natural
language processing tasks. The functioning involves a two-step process: retrieving
and generation. Before these steps are executed, a preliminary phase takes place.
This phase is essential for preparing and organizing the data, ensuring effective
querying by the retrieval system.

7.2.1 Preliminary Step

The core workflow of RAG begins with several preparatory steps, including
data loading, parsing, embedding, and indexing. These steps ensure that external
knowledge sources can be efficiently queried by the retrieval mechanism.

7.2.1.1 Data Loading and Parsing

The initial step in the RAG system involves loading the necessary data, which may
originate from various sources and exist in different formats, such as PDF, HTML,
Word, Markdown, or database exports. These various formats require processing to
ensure compatibility with the retrieval system. Once loaded, the raw text undergoes
a critical parsing phase, essential for achieving uniformity and ensuring clean,
structured formatting suitable for indexing and querying. Parsing encompasses
several key operations:

• Removing unnecessary metadata and encoding artifacts that might interfere with
efficient processing

• Tokenizing the text into smaller, manageable segments to facilitate easier index-
ing and retrieval

• Splitting large documents into smaller, contextually meaningful chunks that
preserve semantic coherence while optimizing retrieval performance

The goal of parsing is to prepare the raw data for transformation into a suitable
embedding space and to ensure efficient indexing for similarity searches.

7.2.1.2 Embedding

The next stage in the RAG system is converting the cleaned and preprocessed text
into numerical representations using embedding models. Embeddings are vector
representations of the text chunks and play a central role during the retrieval phase
by enabling the system to compute semantic similarity between user queries and

144 F. Bianchini

indexed data [4]. Essentially, embeddings map text into a high-dimensional vector
space, capturing their contextual and semantic meaning in a way that facilitates
efficient comparison and matching.

Common embedding methods include a variety of pre-trained models that have
proven effective in encoding semantic relationships. Among the most widely used
methods are:

• Word2Vec: a model introduced by Mikolov et al. [21] that represents words
as dense vectors3 by analyzing their co-occurrence in large corpora. Word2Vec
embeddings capture word similarity based on their contextual usage.

• GloVe: Global Vectors for Word Representation was developed by Pennington et
al. [24]. GloVe embeddings are trained using global word co-occurrence statistics
over large datasets, effectively combining global and local statistics for semantic
modeling.

• BERT-based models: the most prominent BERT-based models for embed-
ding generation are Sentence-BERT (SBERT) [25] and RoBERTa [20], both
optimized extensions of the original BERT4 architecture [7]. Both improve
BERT’s capability for similarity tasks. This adaptation significantly boosts their
performance in applications such as semantic search, question answering, and
clustering.

• Transformer-based models: modern models like text-embedding-3-small
or text-embedding-3-large by OpenAI,5 NV-Embed-v26 by NVIDIA [18],
or meta-llama/LLaMA-3.1 by Meta7 are highly effective embeddings due to
their attention mechanisms [29] and pre-training on massive corpora.

These embeddings serve as the foundation for retrieval, as they allow the
system to represent text chunks numerically, transforming semantic relationships
into mathematical comparisons.

7.2.1.3 Indexing

After generating embeddings, the next step is indexing these vector representations
into a system optimized for efficient retrieval. Indexing organizes the vectors in a
structured and searchable format, enabling the system to swiftly match incoming

3 A dense vector is a numerical representation of data where most or all dimensions contain non-
zero values.
4 Bidirectional Encoder Representations from Transformers.
5 https://platform.openai.com/docs/guides/embeddings/embedding-models.
6 https://huggingface.co/nvidia/NV-Embed-v2.
7 https://huggingface.co/meta-llama.

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/meta-llama
https://huggingface.co/meta-llama
https://huggingface.co/meta-llama
https://huggingface.co/meta-llama
https://huggingface.co/meta-llama

7 Retrieval-Augmented Generation 145

queries with stored data. This process typically involves selecting between vector
libraries and vector databases, each tailored to specific use cases:

• Vector libraries: these systems are primarily used for static datasets where the
indexed data remains immutable. Vector libraries focus solely on storing vector
embeddings, without preserving the associated objects they were generated from.
This approach means they lack support for CRUD (Create, Read, Update, Delete)
operations. Examples of popular vector libraries include FAISS,8 which is widely
adopted for its efficiency in static and large-scale datasets; Annoy,9 developed by
Spotify and quite similar to FAISS since it is designed to work with static data;
or ScaNN10 by Google, designed for fast approximate nearest neighbor searches
in high-dimensional spaces.

• Vector database: designed for dynamic and scalable applications, dedicated
vector databases offer native support for vector operations and the associated data
objects. These systems enable advanced functionalities such as CRUD opera-
tions, metadata integration, and real-time updates. Examples include Pinecone,11

Weaviate,12 and Milvus.13 Such databases are particularly suitable for use cases
requiring frequent updates or where contextual information must accompany the
vectors for refined retrieval.

Efficient indexing ensures that the retrieval system can quickly compute sim-
ilarity scores between incoming queries and stored vectors. The choice between a
vector library and a vector database depends on the application’s requirements, such
as data mutability, scalability, and the need for enhanced metadata handling.

7.2.2 Retrieving Phase

Once embeddings are indexed, the retrieval mechanism is activated during the query
phase, which is central to the RAG framework. This process involves transforming
a user query into a format that can be effectively matched against the indexed
embeddings to retrieve relevant context passages. Here’s a detailed explanation of
the retrieval phase:

• Query encoding: when a user issues a query, it is first encoded using the same
embedding model that was used during the indexing phase. This ensures compati-
bility between the query’s vector representation and the indexed embeddings. The

8 Facebook AI Similarity Search: https://github.com/facebookresearch/faiss/wiki.
9 Approximate Nearest Neighbors Oh Yeah: https://github.com/spotify/annoy.
10 Scalable Nearest Neighbors: https://github.com/google-research/google-research/tree/master/
scann.
11 https://github.com/pinecone-io.
12 https://github.com/weaviate/weaviate.
13 https://github.com/milvus-io/milvus.

https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/pinecone-io
https://github.com/pinecone-io
https://github.com/pinecone-io
https://github.com/pinecone-io
https://github.com/pinecone-io
https://github.com/weaviate/weaviate
https://github.com/weaviate/weaviate
https://github.com/weaviate/weaviate
https://github.com/weaviate/weaviate
https://github.com/weaviate/weaviate
https://github.com/milvus-io/milvus
https://github.com/milvus-io/milvus
https://github.com/milvus-io/milvus
https://github.com/milvus-io/milvus
https://github.com/milvus-io/milvus
https://github.com/milvus-io/milvus

146 F. Bianchini

encoding step transforms the query into a dense vector that captures its semantic
meaning.

• Similarity computation: the encoded query vector is compared against the
stored embeddings in the vector database or library. This comparison is per-
formed using similarity metrics, such as:

– Cosine similarity, which measures the cosine of the angle between two vectors
in multidimensional space

– Euclidean distance, a measure for the straight-line distance between two
vectors in space, suitable for certain use cases where magnitude14 is important

– Dot product, which computes the projection of one vector onto another, often
optimized for speed in high-dimensional spaces

• Result ranking: the similarity scores computed in the previous step are used to
rank the indexed embeddings. The system identifies the top-K embeddings, those
with the highest similarity scores, corresponding to the most relevant chunks of
data.

• Passage retrieval: the top-ranked embeddings are then mapped back to their
original text chunks (passages). Depending on the indexing system, additional
metadata (e.g., document IDs, timestamps, or source information) can also be
retrieved to enrich the results.

7.2.3 Generation Phase

After the retrieval process, the selected context (retrieved passages) is combined
with the user query to form a prompt for the generative language model. This prompt
serves as the input to the LLM, conditioning it on both the user query and retrieved
knowledge. The model can then generate a response that incorporates this external
context. The model’s response is influenced by task-specific factors. It can use either
(1) parametric knowledge, namely, inherent general knowledge from the model’s
pre-trained parameters, or (2) non-parametric information, which is information
explicitly retrieved from external context. Figure 7.3 shows how the typical RAG
framework works.

14 Magnitude is the length of a dense vector, measuring its scale in the embedding space. It is
crucial for normalization and similarity metrics, ensuring accurate matching between query vectors
and stored data.

7 Retrieval-Augmented Generation 147

Fig. 7.3 Typical RAG framework

7.2.4 RAG Classification

While the RAG paradigm is continuously evolving, researchers have proposed
several categorizations based on multiple key components. Gao et al. [10] present
a valuable classification that divides RAG into three main framework: Naive RAG,
Advanced RAG, and Modular RAG. Additionally, RAG can be categorized based on
the methodology employed by the retriever during the retrieval phase. Tonmoy et
al. [27] propose three distinct RAG methodologies, specifically focusing on whether
the retrieval occurs before, during, or after output generation. Zhao et al. [32]
further extend this classification by categorizing RAG into four classes based on
the retriever’s methodology to augment the generator: Query-based RAG, Latent
Representation-based RAG, Logit-based RAG, and Speculative RAG.

In addition to these categorizations, another valuable classification arises from
the type of knowledge source utilized in the RAG framework. RAG systems can
be tailored to different knowledge sources, such as documents, knowledge graphs
(KGs), and ontologies, each requiring distinct approaches for data retrieval and
integration into the pipeline. The following subsections will go deeper into each
stage of RAG, as well as explore the distinctions based on the type of information
source employed.

7.2.4.1 RAG Framework

Building on the categorization presented by Gao et al. [10], this paragraph aims to
provide a thorough and detailed examination of the three framework of the RAG,
Naive RAG, Advanced RAG, and Modular RAG.

Naive RAG The Naive RAG represents the earliest iteration of the RAG. It
operates through a straightforward sequence of steps: parsing, embedding, indexing,
retrieval, and generation. While Naive RAG provides a foundational framework
for RAG systems, its simplicity comes with several limitations: (i) the retrieval
phase often struggles with accuracy, frequently retrieving irrelevant or incorrect

148 F. Bianchini

Fig. 7.4 Naive RAG framework

chunks and failing to capture all necessary information; (ii) during the generation
phase, the model may produce hallucinations, generating content unsupported by
the retrieved context. Additionally, (iii) responses can suffer from irrelevance, bias,
or outright errors; integrating the retrieved information with the task at hand can be
challenging, sometimes resulting in inconsistent or unclear outputs. Redundancy is
another prevalent issue, as similar chunks may be retrieved multiple times, leading
to repetitive responses. In Fig. 7.4, the Naive RAG framework with its steps is
presented.

Advanced RAG Advanced RAG is designed to overcome the limitations of Naive
RAG. The strategy adopted in this framework introduces two new processes,
namely, pre-retrieval and post-retrieval, to optimize both indexing and query
handling.

The pre-retrieval process focuses on two key elements: index optimization and
query optimization. The goal of index optimization is to make the content of indexes
more precise and representative to enhance retrieval accuracy. Techniques for this
include improving data granularity (e.g., breaking down text into smaller, refined
chunks for better management) and using mixed retrieval strategies that combine
various types of data from multiple sources. On the other hand, query optimization
involves the following processes: (i) Query routing, controlling which RAG flow the
query is directed to; (ii) Query rewriting, rephrasing the query given in input from
the user; and (iii) Query expansion, expanding the query with related terms to widen
the search;

The post-retrieval process involves an initial re-ranking phase of the retrieved
chunks to move the most relevant information to the top of the list provided to
the LLM. This step is essential for prioritizing key information and generating
more accurate outputs. Subsequently, a filtering step is performed: information is
condensed through summarization and identification of critical sections to avoid
overloading and help the model focus on essential and relevant details. Figure 7.5
illustrates the Advanced RAG framework.

Modular RAG The final framework in the evolution of the RAG is the Modular
RAG [11], a structured, multi-level architecture designed to handle the increasing
complexity of modern information retrieval and generation tasks. This architecture
is organized across three distinct levels, each responsible for enhancing system
modularity, scalability, and efficiency.

7 Retrieval-Augmented Generation 149

Fig. 7.5 Advanced RAG framework

Primary Level The framework follows a structured pipeline consisting of the
five main stages presented in advanced RAG: parsing, embedding, and indexing,
pre-retrieval, retrieval, post-retrieval, and generation. Each stage is responsible for
a specific phase in the information processing workflow, ensuring a systematic
progression from data preparation to content generation.

Secondary Level In this level, each stage of the pipeline is decomposed into
specialized modules that handle distinct sub-tasks. For example, within the first step
of pipeline (parsing, embedding, and indexing), modules like chunk optimization
and structural organization ensure that data is processed and structured efficiently
for retrieval. In pre-retrieval, components such as query transformation, query
expansion, and query construction (as it has been already mentioned in advanced
RAG explanation) refine the input query to improve retrieval accuracy. The retrieval
stage integrates advanced mechanisms like retriever fine-tuning, retriever source,
and retriever selection, enabling fine-grained control over data retrieval strategies.
Similarly, post-retrieval involves modules for reranking, compression, and selection,
optimizing the relevance and efficiency of retrieved information before generation.
Finally, the generation phase incorporates generator fine-tuning and verification to
ensure high-quality, accurate outputs.

Third Level This is the orchestration level in which the framework coordinates the
interactions between modules through adaptive control mechanisms that dynam-
ically govern the RAG process. Unlike rigid, linear approaches, Modular RAG
introduces decision-making at pivotal junctures, allowing for flexible routing,
scheduling, and knowledge-guided reasoning. (i) Routing directs queries through
specific pipelines based on the input’s characteristics, using both metadata and
semantic information to determine the most appropriate modules for each scenario.
This decision-making process involves assigning scores to potential routes, enabling
the system to activate only the most relevant modules for a given query. (ii) Schedul-
ing manages the execution flow, identifying critical moments where additional
retrieval or processing might be necessary. This mechanism supports recursive,
iterative, and adaptive retrieval, ensuring that the system dynamically adjusts its
operations based on the quality of intermediate results. (iii) The knowledge guide
integrates knowledge graphs to construct reasoning chains that guide retrieval and

150 F. Bianchini

Fig. 7.6 Modular RAG framework

generation tasks. This part will be better explained in the next section since RAG
across different knowledge sources will be discussed. In Fig. 7.6 modular RAG
framework is presented.

7.2.4.2 RAG Across Knowledge Sources

Having established a detailed understanding of the fundamental workings of RAG,
these paragraphs shift focus to explore how the framework can be adapted to
different types of knowledge sources. The emphasis will be on demonstrating
how the same foundational principles previously presented can be extended and
customized to interact with various data formats to tackle different linguistic tasks.
Specifically, we will focus on Classical RAG, RAG with KG, and RAG with
ontologies. While no further details on knowledge sources are necessary for Classic
RAG, as it is based on documents in various formats, it is essential to briefly explain
what a knowledge graph and an ontology are.

According to [14], a KG is a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities of interest and whose
edges represent potentially different relations between these entities. Given this
definition, it is clear that KG represents information as a network of entities (nodes)

7 Retrieval-Augmented Generation 151

Fig. 7.7 An example of generic KG of people (actors and directors) who directed or acted in films.
This KG is extracted from the default MOVIE DB within neo4j

and their relationships (edges), specifically as triplets subject-predicate-object. An
example of KG created using Neo4j15 is presented in Fig. 7.7.

The strengths of knowledge graphs are several. Firstly, their semantic structure
enables the embedding of explicit relationships, making them more intuitive
for both human and machine reasoning [8]. Additionally, KGs offer significant
interconnectivity, as an entity can have multiple connections to other entities and/or
concepts, facilitating seamless access to both direct and indirect relationships. This
structure allows for the exploration of first- and second-level links, providing a more
comprehensive understanding of the data [2]. Finally, KGs are highly scalable [15],
as they can represent knowledge at varying levels of granularity. They range
from global knowledge bases like Wikidata16 or DBpedia17 to highly specialized,
domain-specific graphs.

15 Neo4j is a native graph database platform designed to store and query connected data using
a graph-based model of nodes, relationships, and properties, optimized for analyzing complex
interconnections: https://neo4j.com/.
16 Wikidata [23] is a free, collaborative, multilingual knowledge graph: https://www.wikidata.org/
wiki/Wikidata:Main_Page.
17 DBpedia [1] is a project that extracts structured content from Wikipedia, transforming it into a
semantic knowledge base: https://www.dbpedia.org/.

https://neo4j.com/
https://neo4j.com/
https://neo4j.com/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.dbpedia.org/
https://www.dbpedia.org/
https://www.dbpedia.org/
https://www.dbpedia.org/

152 F. Bianchini

Fig. 7.8 An example of an ontology extracted from BioPortal in the form of a list of classes and
entities (left) and the graphical representation (right)

On the other hand, an ontology is a description (like a formal specification
of a program) of the concepts and relationships that can exist for an agent or a
community of agents [13]. Hence, it defines:

• Classes: categories or types of entities within the domain
• Relations: defined connections between classes or instances
• Axioms: logical rules and constraints that govern the relationships between

classes and instances, enabling inference and reasoning

An example of an ontology created using Protegé18 is shown in Fig. 7.8, where
we see an ontology extracted from the BioPortal19 repository in the form of a class
and entity list (left), along with its subclasses and the same ontology as a graph
(right), illustrating the relationships between the various classes and entities.

Although ontologies and knowledge graphs are often used interchangeably, they
differ significantly in focus and structure. Knowledge graphs primarily represent
entities and their interrelationships, linking real-world data with minimal predefined
structure. For example, in a knowledge graph, Albert Einstein might be connected
to Theory of Relativity through the relationship discovered. The emphasis in
knowledge graphs is on connecting factual information to show how different pieces
of data relate to each other. Ontologies, on the other hand, offer a more formal
and structured approach to defining concepts and their relationships, focusing on
capturing semantic meaning. In the case of Albert Einstein, an ontology might
define that Albert Einstein is a person and that Theory of Relativity is a scientific

18 Protegé [22] is a free, open-source ontology editor and framework developed by the Stanford
Center for Biomedical Informatics Research. It allows users to create, edit, and visualize
ontologies: https://protege.stanford.edu.
19 https://bioportal.bioontology.org.

https://protege.stanford.edu
https://protege.stanford.edu
https://protege.stanford.edu
https://protege.stanford.edu
https://bioportal.bioontology.org
https://bioportal.bioontology.org
https://bioportal.bioontology.org
https://bioportal.bioontology.org

7 Retrieval-Augmented Generation 153

theory, with a relationship that links them through a more abstract concept, such
as discovered, but also adding logical rules such as if someone is a scientist,
then they are a person. This allows the system to make inferences and reason
about the relationships, offering a deeper, more structured understanding of the
concepts involved. Ontologies are thus particularly useful in contexts that require
logical reasoning and inference, such as in knowledge management systems or AI
applications.

Classical RAG Classic RAG is the foundational form of RAG, leveraging a
retriever and generator architecture to process and synthesize information from
unstructured text documents. These documents can come in various formats, such
as PDFs, Word files, HTML pages, or plain text, and do not require any predefined
schema or structural organization. The system’s versatility lies in its ability to
handle diverse data formats without prior restructuring, making it a straightforward
approach suitable for a wide range of applications. This simplicity, however, may
limit its effectiveness in scenarios requiring complex reasoning or deeper integration
of structured knowledge.

RAG with KG RAG with KG builds upon the classic RAG approach by incor-
porating structured knowledge into the retrieval process. In RAG-KG, the retriever
operates on the graph structure rather than unstructured text. Queries are processed
to identify relevant entities or subgraphs that provide context-rich and highly
structured information. The retrieved subgraph or triples (subject-predicate-object)
are then used to enhance the generation phase.

RAG with Ontologies RAG with ontologies is an innovative extension of the
traditional RAG paradigm, where the knowledge base used for retrieval and
generation is structured as an ontology [6, 31]. Unlike classic RAG models that
rely on unstructured documents or KG, RAG with ontologies takes advantage of the
formal, logically structured nature of ontologies to enable more precise, context-
aware reasoning and retrieval.

7.3 RAG Applications

This section transitions into practical implementations. The first focus will be on
Python-based implementations of RAG pipelines, specifically on Classic RAG,
RAG with KG, and RAG with ontologies, utilizing two prominent libraries:
LangChain20 and LlamaIndex.21 These tools provide comprehensive frameworks
for integrating retrieval and generation components, simplifying the construction

20 https://www.langchain.com/.
21 https://www.llamaindex.ai/.

https://www.langchain.com/
https://www.langchain.com/
https://www.langchain.com/
https://www.langchain.com/
https://www.llamaindex.ai/
https://www.llamaindex.ai/
https://www.llamaindex.ai/
https://www.llamaindex.ai/

154 F. Bianchini

of scalable and effective RAG systems. The second regards framework for RAG
evaluation, specifically DeepEval and RAGAS .

By demonstrating how to leverage these libraries, we aim to equip practitioners
with the practical knowledge needed to build customized RAG pipelines tailored to
specific use cases.

7.3.1 Practical Application—LlamaIndex

This first hands-on guide provides a detailed walk-through of how to implement
the aforementioned RAG pipelines using LlamaIndex. Thanks to the flexible
functionalities offered by this framework, the import, configuration, and final query
processes remain identical across all three RAG types. However, the core processes
of parsing, embedding, and indexing differ for each type. This design enables a
perfectly modular architecture where the central components of the code can be
seamlessly swapped to transition from one RAG type to another.

Import

1 import openai
2 import os
3 import fitz
4 import nest_asyncio
5

6 from rdflib import Graph
7 from dotenv import load_dotenv
8

9 from llama_index.llms.openai import OpenAI
10 from llama_index.core.settings import Settings
11 from llama_index.core import (
12 Document,
13 VectorStoreIndex,
14 PropertyGraphIndex,
15 SimpleDirectoryReader
16)

This first block of code sets up the necessary libraries and configurations for
implementing a RAG pipeline. It uses LlamaIndex for managing document retrieval
and indexing. Key components from LlamaIndex are VectorStoreIndex for
storing and querying vector embeddings, PropertyGraphIndex for constructing
property graphs from the document’s data, and SimpleDirectoryReader for
file loading. Additionally, the code integrates OpenAI models for the generation
process, Settings to configure global settings for language models, embeddings,
and other behaviors and uses dotenv for securely managing environment variables
like API keys. nest_asyncio enables nested asynchronous event loops, very

7 Retrieval-Augmented Generation 155

useful in interactive environments where an event loop is already running in the
background, like in Jupyter Notebooks.

Configuration

1 # Apply the asyncio patch to allow nested event loops.
2 nest_asyncio.apply()
3

4 # Load environment variables from a .env file.
5 load_dotenv()
6

7 # Retrieve the OpenAI and Llama API key from the environment variables.
8 openai_api_key = os. getenv("OPENAI_API_KEY")

This block of code securely manages sensitive information, such as OpenAI API
key22 (line 8). The load_dotenv() function (line 5) reads environment variables
from a .env file located in the same directory as the script. This practice keeps
sensitive information separate from the code, minimizing the risk of exposure in
version control systems or public repositories. Environment variables can then be
accessed using os.getenv() and set with os.environ, ensuring their security and
anonymity. For proper functionality, ensure the .env file is in the same directory
as the script.

File loading

1 # Specify required extensions as a list (if needed)
2 required_exts = [] # .png, .jpg, .pdf, .md, .txt, .csv etc...
3

4 # Load documents from a specified directory
5 reader = SimpleDirectoryReader(
6 input_dir="path/to/your/directory",
7 input_files =["path/to/your/directory/document_1",
8 "path/to/your/directory/document_2"],
9 required_exts=required_exts

10)
11

12 # Load and parse document from the reader
13 document = reader .load_data(num_workers=4)

In this part, SimpleDirectoryReader function serves to load multiple doc-
uments from a specified directory. The input_dir parameter (line 6) specifies
the main directory from which all documents will be loaded automatically. This
is useful for batch processing files without manually listing each one. On the other

22 To activate an API key for OpenAI, visit: https://platform.openai.com/api-keys.

https://platform.openai.com/api-keys
https://platform.openai.com/api-keys
https://platform.openai.com/api-keys
https://platform.openai.com/api-keys
https://platform.openai.com/api-keys
https://platform.openai.com/api-keys

156 F. Bianchini

hand, the input_files parameter (line 7) allows for specifying individual file paths
directly, giving you the flexibility to load specific files from different locations if
needed. Finally, the required_exts list (line 2) can be customized to filter files
based on their extensions, such as .pdf, .txt, .md, or .csv. This setup enables
the batch processing of multiple files simultaneously, making it ideal for preparing
documents to populate a vector database. Finally, documents are loaded from the
reader using load_data method (line 13).

These first blocks of code (import, configuration, and file loading) can be used as
the basis for each following RAG type.

7.3.1.1 Classic RAG

Classic RAG - Pipeline set-up

1 # Create a vector index from the parsed documents.
2 index = VectorStoreIndex.from_documents(document)
3

4 # Initialize the OpenAI language model (LLM) for generating responses.
5 llm = OpenAI(
6 model="gpt-4-turbo",
7 strict=True, # True default
8 temperature=0, # from 0 to 1
9 max_tokens=2000, # from 0 to infinity (None default)

10 top_p=0.8) # from 0 to 1
11

12 # Convert the vector index into a query engine for running queries on
the indexed documents.↪→

13 query_engine = index.as_query_engine(
14 llm=llm,
15 response_mode = "compact",
16 streaming = True,
17 similarity_top_k =2,
18 verbose= True)

In this core part of the RAG pipeline, the process begins with the indexing of the
document using VectorStoreIndex (line 2), which organizes the content into vec-
tor embeddings. These embeddings enable efficient similarity-based retrieval. Next,
the OpenAI language model is initialized with the OpenAI function (lines 5). The
parameters are as follows: strict=True ensures that input data is strictly validated
to conform to expected formats; temperature=0 is set to generate deterministic
responses, reducing randomness for more consistent results; max_tokens=2000
allows the model to generate longer responses when needed, up to a maximum
of 2000 tokens; and top_p=0.8 controls the diversity of the responses, narrowing
down the possible options while maintaining some variety. Finally, a query engine is
created using the as_query_engine method (line 13). The verbose=True option

7 Retrieval-Augmented Generation 157

enables detailed logging, providing real-time information about the execution and
process status.

7.3.1.2 RAG with KG

RAG with KG - Pipeline set-up

1 # Create a PropertyGraphIndex from the parsed documents.
2 index = PropertyGraphIndex.from_documents(document)
3

4 # Initialize the OpenAI language model (LLM) for generating responses.
5 llm = OpenAI(
6 model="gpt-4-turbo",
7 strict=True, # True default
8 temperature=0, # from 0 to 1
9 max_tokens=2000, # from 0 to infinity (None default)

10 top_p=0.8) # from 0 t o 1
11

12 # Convert the vector index into a query engine for running queries on
the indexed documents.↪→

13 query_engine = index.as_query_engine(
14 llm=llm,
15 response_mode = "compact",
16 streaming = True,
17 similarity_top_k =2,
18 verbose= True)

This further block represents the core of RAG with KG. First, the documents
are indexed using PropertyGraphIndex (line 2), a method tailored for construct-
ing property graphs from the document’s data. This indexing approach supports
the representation of relationships and metadata, enhancing the system’s ability
to query and analyze structured knowledge. Finally, llm with OpenAI function
(line 5) and a query engine with query_engine (line 13) are configured using
as_query_engine. Key parameters are the same for Classic RAG.

7.3.1.3 RA G with Ontologies

RAG with Ontologies - Pipeline set-up

1 # Initialize an RDF graph and parse the selected XML file into it.
2 g = Graph()
3 g.parse(str(reader.input_files[0]), format="xml") # must be .owl, .json

or .csv↪→
4

5 # Create a list of nodes from the RDF graph
6 nodes = []

158 F. Bianchini

7 documents_ontology = []
8

9 for s, p, o in g:
10 nodes.append({
11 "subject": str(s),
12 "predicate": str(p),
13 "object": str(o), })
14

15 # Generate documents from RDF nodes and store them in the
documents_ontology list.↪→

16 for node in nodes:
17 content = f"Subject: {node['subject']}, Predicate: {node['predicate']},

Object: {node['object']}"↪→
18 documents_ontology.append(Document(text=content))
19

20 # Index the documents into a PropertyGraphIndex for semantic search.
21 index_ontology = PropertyGraphIndex.from_documents(documents_ontology)
22

23 # Initialize the OpenAI model with specific configurations for response
generation.↪→

24 llm = OpenAI(
25 model="gpt-4-turbo",
26 strict=True, # True default
27 temperature =0, # from 0 to 1
28 max_tokens=2000, # from 0 to infinity (None default)
29 top_p=0.8), # from 0 to 1
30

31 # Set up the query engine to perform semantic search on ontology index.
32 query_engine = index_ontology.as_query_engine(
33 llm=Settings.llm,
34 response_mode = "compact",
35 streaming = True,
36 similarity_top_k=2,
37 verbose =True)

This final block of code illustrates the core implementation of an ontology-
based RAG pipeline, which uses RDF data to construct a retrieval system through
a property graph. Initially, the code leverages the RDF graph parser Graph() (lines
2–3) to load and parse the selected ontology file. The ontology must be provided
in .owl, .json, or .csv format, with the data being processed as XML. The
RDF triples are then iterated through, and each triple is stored as a structured
node, where each node captures a distinct relationship or fact derived from the
ontology. Next, these nodes are converted into text documents, stored in the list
documents_ontology (line 18). Each document represents an RDF triple as a
textual string, ensuring the data is suitable for downstream indexing and retrieval.
These textual representations are indexed to create a PropertyGraphIndex (line
21), which organizes the ontology data into a graph structure. The llm is set with
OpenAI function (line 24). Finally, a query engine using query_engine (line 32)
is instantiated using the property graph. The llm and the engine are configured with

7 Retrieval-Augmented Generation 159

parameters previously discussed, enabling it to process user queries by retrieving
relevant results based on the indexed ontology data.

7.3.1.4 Query and Response

Query and response

1 user_query = input("Enter your query: ")
2 response = query_engine .query(user_query)

This final segment of the pipeline is designed to execute user queries across
any of the RAG configurations previously discussed. The user_query (line
1) serves as the input for the query engine (line 2), which processes the query
and retrieves relevant context from the indexed data to generate a response. The
retrieval and response generation process is entirely interchangeable and adapts
seamlessly to the underlying knowledge source. Additionally, the user_query can
be enriched using prompt engineering techniques. By carefully structuring the query
with specific instructions, constraints, or context, the system can be better directed
toward performing the desired task, such as summarization, reasoning, or detailed
explanation.

7.3.2 Practical Application—Langchain

This second hands-on guide focuses on implementing RAG pipelines using the
LangChain framework. Unlike the previous section, where we provided plug-and-
play code structures applicable to all three types of RAG (classical, RAG with
knowledge graphs, and RAG with ontologies), the implementations here are more
specialized. While the initial steps for classical RAG and ontology RAG can be
unified, implementing RAG with KG requires a separate block of code.

7.3.2.1 Classic RAG and Ontology RAG

Import

1 import os
2 import json
3 import nest_asyncio
4

5 from dotenv import load_dotenv
6

7 from langchain.text_splitter import RecursiveCharacterTextSplitter

160 F. Bianchini

8 from langchain.vectorstores import FAISS
9 from langchain.chains import RetrievalQA

10 from langchain_openai import ChatOpenAI, OpenAIEmbeddings
11 from langchain.document_loaders import (
12 TextLoader,
13 PyPDFLoader,
14 CSVLoader,
15 JSONLoader
16)

This first block of code sets up the necessary libraries and configurations for
implementing a RAG pipeline using Langchain. It imports various modules for doc-
ument loading, such as TextLoader, PyPDFLoader, CSVLoader, and JSONLoader
(lines 11–15), which handle different file formats (.txt, .pdf, .csv, .json). The
RecursiveCharacterTextSplitter (line 7) is used to split large documents into
smaller chunks for easier processing and querying. The code utilizes FAISS (line 8)
for efficient vector storage and similarity-based retrieval of document embeddings.
For the generation process, the ChatOpenAI model and OpenAIEmbeddings (line
10) are integrated to facilitate semantic search and response generation. The purpose
of dotenv and nest_asyncio libraries have already been explained in previous
section.

Configuration

1 # Apply the asyncio patch to allow nested event loops.
2 nest_asyncio.apply()
3

4 # Load environment variables from a .env file.
5 load_dotenv()
6

7 # Retrieve the OpenAI API key from the environment variables.
8 openai_api_key = os.getenv("OPENAI_API_KEY")

Since this is identical to the previous implementation, no further explanation is
needed.

File Loading

1 # Load a PDF document from the specified path using PyPDFLoader.
2 loader = PyPDFLoader('path/to/your/directory/document.pdf')
3 # loader = TextLoader('path/to/your/directory/document.txt')
4 # loader = CSVLoader('path/to/your/directory/document.csv')
5 # loader = JSONLoader('path/to/your/directory/document.json')
6

7 document = loader .load()

7 Retrieval-Augmented Generation 161

This simple block of code manages file selection and document loading for the
RAG pipeline. Specifically, it loads PDF files using the PyPDFLoader function (line
2). If a different document format needs to be loaded, this function can be replaced
with TextLoader for .txt files, CSVLoader for .csv files, or JSONLoader for
.json files, as p resented in comments (lines 3–5) .

Parsing, Embedding, Indexing

1 # Split documents into smaller chunks for easier processing.
2 text_splitter = RecursiveCharacterTextSplitter(
3 chunk_size=1000,
4 chunk_overlap=200
5)
6

7 # Split the documents into smaller chunks using the text splitter.
8 docs = text_splitter.split_documents(document)
9

10 # Create embeddings using the "text-embedding-3-large" model
11 embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
12

13 # Create a FAISS vector store from the documents and embeddings for
efficient similarity search.↪→

14 vectorstore = FAISS.from_documents(docs, embeddings)
15

16 # Initialize the ChatOpenAI model with specific configurations for
response generation.↪→

17 llm = ChatOpenAI(
18 model="gpt-4o",
19 temperature=0, # from 0 to 1
20 max_tokens=2000, # from 0 to infinity
21 top_p=0.8, # from 0 to 1
22 api_key=openai_api_key)
23

24 # Set up a RetrievalQA chain for querying
25 qa_chain = RetrievalQA.from_llm(
26 llm=llm,
27 retriever=vectorstore.as_retriever(),
28)

This block of code sets up the core components of the RAG pipeline. The
RecursiveCharacterTextSplitter (line 2) is initialized with a chunk size of
1000 characters and an overlap of 200 characters, ensuring that the documents are
split into manageable and contextually cohesive chunks. Note that chunk_overlap
must be smaller than chunk_size. The split_documents method (line 8) is
then used to apply this splitter to the loaded documents, effectively preparing
them for downstream tasks. To handle embeddings, the OpenAIEmbeddings
class (line 11) is instantiated using the text-embedding-3-large model.
Other available embedding models include text-embedding-3-small and

162 F. Bianchini

text-embedding-ada-002.23 These embeddings are stored in a FAISS vector
store via the FAISS.from_documents method (line 14), enabling efficient
similarity-based searches. The ChatOpenAI model (line 17) is then initialized with
specific parameters, the same presented for LlamaIndex in the previous section.
Finally, the RetrievalQA.from_llm method (line 25) creates a retrieval-based
question-answering chain by linking the initialized language model (llm) and the
FAISS vector store retriev er (vectorstore.as_retriever()).

Query and response

1 user_query = input("Enter your query: ")
2 response = qa_chain .invoke(user_query)

In this final block the user query is processed using the qa_chain.invoke
method (line 3). The functionality mirrors the equivalent steps in the LlamaIndex
framework.

7.3.2.2 RAG with KG

Now we present an alternative implementation of a RAG pipeline with knowledge
graphs.

Import

1 import os
2

3 from dotenv import load_dotenv
4 from neo4j import GraphDatabase
5

6 from langchain_openai import ChatOpenAI
7 from langchain.chains import GraphCypherQAChain
8 from langchain.graphs import Neo4jGraph
9 from langchain.prompts import PromptTemplate

This initial block imports the required libraries for integrating a knowledge
graph with the RAG pipeline. It includes Neo4j as the graph database backend
and LangChain modules such as GraphCypherQAChain and Neo4jGraph for

23 More information on embedding models by OpenAI is available at https://platform.openai.com/
docs/guides/embeddings.

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings

7 Retrieval-Augmented Generation 163

interacting with the KG. The PromptTemplate is used to customize queries sent
to the model, while pprint assists with structured output during debugging.

Configuration and KG loading

1 # Load environment variables from a .env file
2 load_dotenv()
3

4 # Retrieve API keys and database credentials from a .env file
5 openai_api_key = os.getenv("OPENAI_API_KEY")
6 neo4j_username = os.getenv("NEO4J_USERNAME")
7 neo4j_password = os.getenv("NEO4J_PASSWORD")
8

9 # Retrieve the Neo4j database URI and set authentication credentials.
10 URI = os.getenv("NEO4J_URI")
11 AUTH = (neo4j_username, neo4j_password)
12

13 # Initialize the Neo4jGraph connection with enhanced schema support.
14 graph = Neo4jGraph(
15 url=URI,
16 username=neo4j_username,
17 password=neo4j_password,
18 enhanced_schema=True,
19)
20

21 # Define a Cypher query to load CSV data from a specific URL and create
nodes/relationships.↪→

22 cypher_query = """
23 LOAD CSV WITH HEADERS FROM 'specific URL to load CSV file' AS row
24

25 // Replace the following MERGE clauses with your specific data modeling
logic.↪→

26 // Use MERGE to create nodes and relationships based on the data in the
CSV.↪→

27 // Add your domain-specific MERGE clauses here
28 """
29 graph. query(cypher_query)

This block configures environment variables for connecting to the Neo4j
database and OpenAI services. Using dotenv, it retrieves and sets the necessary
details, including the OpenAI API key, Neo4j URI, username, and password from
the .env file (lines 5–11). Following this, the Neo4jGraph class (line 14) from
Langchain is initialized using the Neo4j URI, username, and password, which
are retrieved from the environment variables. This object provides a convenient
interface to interact with the graph database. The enhanced_schema parameter
(line 18) is set to True to enable advanced schema capabilities for more complex
graph queries. The first part of the code allows you to interact with and upload an
existing graph that is already present in Neo4j. The second part of the code allows
you to execute a Cypher query (line 22) that performs an upload from a CSV file

164 F. Bianchini

into the Neo4j graph database. The LOAD CSV clause in Cypher loads data from
the specified file, and the MERGE clauses within the query are used to create nodes
and relationships based on the contents of the CSV file. The insert specific
URL to load CSV file placeholder (line 23) should be replaced with the actual
location of the CSV file to be uploaded.

Pipeline set-up

1 # Define a custom prompt template for user input, allowing future
customization.↪→

2 chat_prompt = PromptTemplate(
3 input_variables=["user_input"],
4 template="" # Template left intentionally blank for customization
5)
6

7 # Initialize the OpenAI model with specific configurations for response
generation↪→

8 llm = ChatOpenAI(
9 model="gpt-4o",

10 temperature=0, # from 0 to 1
11 max_tokens=2000, # from 0 to infinity
12 top_p=0.8, # from 0 to 1
13 api_key=openai_api_key)
14

15 # Create a GraphCypherQAChain for querying the Neo4j graph using
natural language.↪→

16 chain = GraphCypherQAChain.from_llm(
17 llm,
18 graph=graph,
19 prompt=chat_prompt,
20 verbose=True,
21 return_intermediate_steps=True,
22 validate_cypher=True,
23 top_k=5,
24 allow_dangerous_requests= True
25)

This block of code sets up a GraphCypherQAChain (line 16), enabling
queries on a Neo4j graph using OpenAI’s gpt-4o model. A PromptTemplate
defines the input format for user queries, allowing for future customization as
needed. The ChatOpenAI model (line 2) is configured with key parameters
such as temperature, max_tokens, and top_p, while the OpenAI API
key is provided for authentication. The GraphCypherQAChain connects the
language model, the Neo4j graph instance, and the input prompt (line 17–19).
Additional options include enabling verbose logging for detailed output, returning
intermediate reasoning steps, validating Cypher queries before execution, limiting

7 Retrieval-Augmented Generation 165

the number of results with top_k, and permitting potentially unsafe requests via
allow_dangerous_requests (line 20–24).

Query and response

1 user_query = input("Enter your query: ")
2 response = chain .invoke(users_query)

Finally, we can execute our query using chain.invoke (line 2).

7.3.3 RAG Evaluation

Evaluating RAG systems is crucial for ensuring their effectiveness in real-world
applications. Unlike traditional generative models, RAG combines retrieval and
generation components, which requires evaluation strategies that assess both aspects
comprehensively. Earlier assessments of RAG systems often focused on task-
specific metrics, such as F1 and EM scores [28, 33] for Question Answering or
Accuracy for Fact-Checking [26]. However, modern evaluation frameworks now
emphasize not only task performance but also the quality of retrieval and the fidelity
of generation, making them more suited to assess the unique characteristics of RAG
systems.

This section introduces two widely used frameworks for RAG evaluation:
DeepEval24 and RAGAS.25 First, we will present the key evaluation metrics, which
are divided into retrieval evaluation metrics and generation evaluation metrics, to
offer a comprehensive understanding of how to measure the quality of retrieval
and generated outputs. In this context, it is important to clarify that all of these
metrics use LLMs as a critical component for assessing the quality of the retrieval
and generation processes. For retrieval metrics such as Contextual Precision and
Contextual Recall, the LLM evaluates the relevance of nodes in the retrieval context
and determines their alignment with the input and expected output. For generation
metrics like Answer Relevancy and Faithfulness, the LLM evaluates the factual
accuracy and relevance of the generated output in relation to the input query
and retrieval context. Additionally, the LLM provides reasoning for its judgments,
which enhances the transparency and interpretability of the evaluation process. After
introducing these metrics, we will provide implementation examples for DeepEval,
demonstrating how to apply them in practice. Due to space limitations, detailed
implementation examples for RAGAS will be included in GitHub.

24 https://docs.confident-ai.com/docs/getting-started.
25 https://docs.ragas.io/en/stable/.

https://docs.confident-ai.com/docs/getting-started
https://docs.confident-ai.com/docs/getting-started
https://docs.confident-ai.com/docs/getting-started
https://docs.confident-ai.com/docs/getting-started
https://docs.confident-ai.com/docs/getting-started
https://docs.confident-ai.com/docs/getting-started
https://docs.confident-ai.com/docs/getting-started
https://docs.confident-ai.com/docs/getting-started
https://docs.ragas.io/en/stable/
https://docs.ragas.io/en/stable/
https://docs.ragas.io/en/stable/
https://docs.ragas.io/en/stable/
https://docs.ragas.io/en/stable/
https://docs.ragas.io/en/stable/

166 F. Bianchini

7.3.3.1 Retrieval Evaluation Metrics

The following retrieval evaluation metrics are essential for assessing the perfor-
mance of the retriever component in a RAG pipeline. These metrics evaluate the
quality and relevance of the retrieved documents or nodes from the retrieval context
in relation to the expected output.

Contextual Precision The Contextual Precision metric (CP) assesses the effec-
tiveness of the retriever by measuring how well the retrieved nodes in the retrieval
context match the relevance of the given input query. In particular, it evaluates
whether relevant nodes are ranked higher than irrelevant ones. This metric employs
a self-explaining LLM-based evaluation, where an LLM is used to assess the
relevance of each retrieved node to the query, and justifies its relevance judgment.
The CP score prioritizes nodes that appear earlier in the retrieval list, reflecting their
higher importance. The CP is calculated using the following formula:

. CP = 1

No. of Relevant Nodes
·

n∑

k=1

(
No. of Relevant Nodes up to Position k

k
· rk

)

where:

• k is the position of the k-th node in the retrieval_contex t
• n is the total number of nodes in the retrieval_contex t
• rk . is the binary relevance of the k-th node (rk = 1. if relevant, rk = 0. otherwise)

The resulting score is computed using the Weighted Cumulative Precision
(WCP), which aggregates the relevance assessments while prioritizing nodes ranked
higher in the retrieval list. The WCP increases the contribution of relevant nodes
that appear earlier in the ranking, reflecting their greater importance in a retrieval
context.

Contextual Recall The Contextual Recall metric (CR) evaluates the ability of the
retriever to capture all the relevant information in the retrieval context with respect
to the expected output. It measures how well the retrieval context aligns with the
expected output by calculating the proportion of statements in the expected output
that are supported by the retrieved context. Similar to CP, this metric also uses an
LLM-based evaluation to assess how well each statement in the expected output is
supported by the retrieval context. The CR is calculated as:

. CR = Number of Attributable Statements

Total Number of Statements in Expected Output

where:

• Attributable statements are statements in the expected output that can be traced
back to the nodes in the retrieval context

7 Retrieval-Augmented Generation 167

• Total number of statements refers to the total number of distinct statements
identified in the expected output

The LLM plays a crucial role here by extracting and classifying the statements
made in the expected output. It then determines which of those statements are
attributable to the nodes in the retrieval context. The final score reflects the
proportion of statements in the expected output that are adequately supported by
the retrieved context.

7.3.3.2 Generation Evaluation Metrics

The following metrics focus on evaluating the quality of the generated output in a
RAG pipeline, specifically assessing the coherence, relevance, and factual accuracy
of the answers generated by the model.

Answer Relevancy The Answer Relevancy metric evaluates how relevant the
actual output generated by the LLM is in relation to the input query. It measures
the proportion of relevant statements in the generated output compared to the total
number of statements. This metric is essential for understanding how well the
generated answer addresses the user’s query. The Answer Relevancy Metric (AR) is
calculated as follows:

. AR = Number of Relevant Statements

Total Number of Statements in Actual Output

where:

• Relevant statements are those statements in the actual output that are directly
related to the input query

• Total number of statements refers to the total number of distinct statements made
in the actual output

The LLM is responsible for evaluating the relevance of each statement in
the generated output. It provides the reasoning behind its classification, enabling
transparency in the evaluation process.

Faithfulness The Faithfulness metric evaluates the degree to which the actual
output aligns with the factual information contained in the retrieval context. It
ensures that the generated answer does not introduce hallucinations or incorrect
information, maintaining consistency with the retrieved context. This metric uses an
LLM-based evaluation, where the LLM checks if the claims made in the generated
output are truthful and supported by the retrieval context. The Faithfulness Metric
(F) is calculated as:

.F = Number of Truthful Claims

Total Number of Claims in Actual Output

168 F. Bianchini

where:

• Truthful claims are those claims in the actual output that are factually accurate
and supported by the retrieval context

• Total number of claims refers to the total number of distinct claims made in the
actual output

The LLM is used to verify the truthfulness of each claim in the generated output
by comparing it to the information in the retrieval context. The reasoning behind the
evaluation is provided, allowing for an explanation of which claims are considered
truthful and which are not.

7.3.3.3 Practical Implementation with DeepEval

DeepEval - Import

1 # Importing the necessary evaluation metrics from the deepeval library
2 from deepeval.metrics import ContextualPrecisionMetric
3 from deepeval.metrics import ContextualRecallMetric
4 from deepeval.metrics import AnswerRelevancyMetric
5 from deepeval.metrics import FaithfulnessMetric
6 from deepeval.test_case import LLMTestCase
7 from deepeval import evaluate

In this first block of code, necessary library are imported, including those
for the retrieval and generation evaluation metrics, namely, Contextual Precision,
Contextual Recall, Answer Relevancy, and Faithfulness (lines 2–5). LLMTestCase
and evaluate (lines 6–7) are fundamental for the actual execution of the eva luation
process.

Metrics configuration and initialization

1 # Defining the environment variable for OpenAI API key
2 os.environ["OPENAI_API_KEY"] = "your_openai_api_key"
3

4 #Initializing test inputs
5 actual_output = " "
6 expected_output = " "
7 retrieval_context = []
8

9 # Initializing the ContextualPrecisionMetric
10 metric_CP = ContextualPrecisionMetric(
11 threshold = 0.7,
12 model = "gpt-4o-mini",
13 include_reason = True
14)
15

16 # Initializing the ContextualRecallMetric
17 metric_CR = ContextualRecallMetric(

7 Retrieval-Augmented Generation 169

18 threshold = 0.7,
19 model = "gpt-4o-mini",
20 include_reason = True
21)
22

23 # Initializing the AnswerRelevancyMetric
24 metric_AR = AnswerRelevancyMetric(
25 threshold = 0.7,
26 model = "gpt-4o-mini",
27 include_reason = True
28)
29

30 # Initializing the FaithfulnessMetric
31 metric_F = FaithfulnessMetric(
32 threshold = 0.7,
33 model = "gpt-4o-mini",
34 include_reason = True
35)

Here, the code sets up the api key (line 2) and the inputs for evaluation (lines 5–
7). The actual_output (line 3) represents the generated response from the model,
while the expected_output (line 4) is the ground truth or reference answer. The
retrieval_context (line 5) is a list of strings retrieved by the system, which
the model uses to generate its response. Moreover, all single metrics are initialized
(lines 8, 15, 22, 29), setting specific parameters, such as a threshold, used to
determine relevance, and the model to be evaluated, in this case, gpt-4o-mini.
The include_reason parameter ensures that the reasoning behind the s core is
provided.

Executing test

1 # Creating a test case to evaluate contextual precision (CP)
2 test_case_PC = LLMTestCase(
3 input = "",
4 actual_output = actual_output,
5 expected_output = expected_output,
6 retrieval_context = retrieval_context
7)
8

9 # Creating a test case to evaluate contextual recall (CR)
10 test_case_CR = LLMTestCase(
11 input = "",
12 actual_output = actual_output,
13 expected_output = expected_output,
14 retrieval_context = retrieval_context
15)
16

17 # Creating a test case to evaluate answer relevancy (AR)
18 test_case_CR = LLMTestCase(

170 F. Bianchini

19 input = "",
20 actual_output = actual_output,
21)
22

23 # Creating a test case to evaluate faithfulness (F)
24 test_case_CR = LLMTestCase(
25 input = "",
26 actual_output = actual_output,
27 retrieval_context = retrieval_context
28)
29

30 # Measuring the evaluation score for the test case
31 metric_CP. measure(test_case_CP)
32 metric_CP.measure(test_case_CR)
33 metric_CP.measure(test_case_AR)
34 metric_CP.measure(test_case_F)
35

36 # Evaluating the test case with the metric and displaying results
37 evaluate([test_case_CP], [metric_CP])
38 evaluate([test_case_CR], [metric_CR])
39 evaluate([test_case_AR], [metric_AR])
40 evaluate([test_case_F], [metric_F])

Inputs defined in Metrics configuration and initialization block go into each
LLMTestCase function (lines 2, 10, 18, 24). The measure method (lines 31–34)
is then called to evaluate the test case, calculating the score based on the provided
inputs. Finally, the evaluation is conducted using the evaluate function (lines 37–
40), which processes and outputs the final evaluation r esults.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus for
a web of open data. In: international Semantic Web Conference, pp. 722–735. Springer (2007)

2. Auer, S., Kovtun, V., Prinz, M., Kasprzik, A., Stocker, M., Vidal, M.E.: Towards a knowledge
graph for science. In: Proceedings of the 8th International Conference on Web Intelligence,
Mining and Semantics, pp. 1–6 (2018)

3. Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., Van Den Driess-
che, G.B., Lespiau, J.B., Damoc, B., Clark, A., et al.: Improving language models by retrieving
from trillions of tokens. In: International Conference on Machine Learning, pp. 2206–2240.
PMLR (2022)

4. Boykis, V.: What Are Embeddings. https://doi.org/10.5281/zenodo.8015029 (2023)
5. Caballero, M.: A brief survey of question answering systems. Int. J. Artif. Intell. Appl. (IJAIA)

12(5), (2021)
6. DeBellis, M., Duttab, N., Ginoc, J., Balajid, A.: Integrating ontologies and large language

models to implement retrieval augmented generation (rag). Appl. Ontol. 1, 1–5 (2024)
7. Devlin, J.: Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805 (2018)

https://doi.org/10.5281/zenodo.8015029
https://doi.org/10.5281/zenodo.8015029
https://doi.org/10.5281/zenodo.8015029
https://doi.org/10.5281/zenodo.8015029
https://doi.org/10.5281/zenodo.8015029
https://doi.org/10.5281/zenodo.8015029
https://doi.org/10.5281/zenodo.8015029

7 Retrieval-Augmented Generation 171

8. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. SEMANTiCS (Posters,
Demos, SuCCESS) 48(1-4), 2 (2016)

9. Ferrucci, D.A.: Introduction to “this is watson”. IBM J. Res. Dev. 56(3.4), 1:1–1:15 (2012).
https://doi.org/10.1147/JRD.2012.2184356

10. Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M., Wang,
H.: Retrieval-augmented generation for large language models: A survey. arXiv preprint
arXiv:2312.10997 (2023)

11. Gao, Y., Xiong, Y., Wang, M., Wang, H.: Modular rag: Transforming rag systems into lego-like
reconfigurable frameworks. arXiv preprint arXiv:2407.21059 (2024)

12. Graham, K.: Techmatters: What happened to jeeves, you ask. com? LOEX Quart. 33(3), 3
(2006)

13. Gruber, T.: What is an ontology (1993)
14. Hogan, A., Blomqvist, E.: Knowledge graphs. ACM Comput. Surv. (Csur) 54(4), 1–37 (2021)
15. Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowledge graphs:

Representation, acquisition, and applications. IEEE Trans. Neural Networks Learn. Syst. 33(2),
494–514 (2021)

16. Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y.J., Madotto, A., Fung,
P.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1–38
(2023). https://doi.org/10.1145/3571730

17. Krajewski, M., Marcrum Charles, I.: Ask Jeeves: Servants as search engines. Grey Room (38),
6–19 (2010). https://doi.org/10.1162/grey.2010.1.38.6

18. Lee, C., Roy, R., Xu, M., Raiman, J., Shoeybi, M., Catanzaro, B., Ping, W.: Nv-embed:
Improved techniques for training llms as generalist embedding models. arXiv preprint
arXiv:2405.17428 (2024)

19. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M.,
Yih, W.t., Rocktäschel, T., et al.: Retrieval-augmented generation for knowledge-intensive nlp
tasks. Adv. Neural Inf. Process. Syst. 33, 9459–9474 (2020)

20. Liu, Y.: Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692 364 (2019)

21. Mikolov, T.: Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 3781 (2013)

22. Noy, N.F., Crubézy, M., Fergerson, R.W., Knublauch, H., Tu, S.W., Vendetti, J., Musen, M.A.:
Protégé-2000: an open-source ontology-development and knowledge-acquisition environment:
Amia 2003 open source expo. In: Amia Annual Symposium Proceedings, vol. 2003, p. 953
(2003)

23. Pellissier Tanon, T., Vrandečić, D., Schaffert, S., Steiner, T., Pintscher, L.: From freebase to
wikidata: The great migration. In: Proceedings of the 25th International Conference on World
Wide Web, pp. 1419–1428 (2016)

24. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532–1543 (2014)

25. Reimers, N.: Sentence-bert: Sentence embeddings using Siamese bert-networks. arXiv preprint
arXiv:1908.10084 (2019)

26. Shao, Z., Gong, Y., Shen, Y., Huang, M., Duan, N., Chen, W.: Enhancing retrieval-
augmented large language models with iterative retrieval-generation synergy. arXiv preprint
arXiv:2305.15294 (2023)

27. Tonmoy, S., Zaman, S., Jain, V., Rani, A., Rawte, V., Chadha, A., Das, A.: A comprehensive
survey of hallucination mitigation techniques in large language models. arXiv preprint
arXiv:2401.01313 (2024)

28. Van Rijsbergen, C.J.: Foundation of evaluation. J. Document. 30(4), 365–373 (1974)
29. Vaswani, A.: Attention is all you need. Adv. Neural Inf. Process. Syst. (2017)

https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1162/grey.2010.1.38.6
https://doi.org/10.1162/grey.2010.1.38.6
https://doi.org/10.1162/grey.2010.1.38.6
https://doi.org/10.1162/grey.2010.1.38.6
https://doi.org/10.1162/grey.2010.1.38.6
https://doi.org/10.1162/grey.2010.1.38.6
https://doi.org/10.1162/grey.2010.1.38.6
https://doi.org/10.1162/grey.2010.1.38.6
https://doi.org/10.1162/grey.2010.1.38.6
https://doi.org/10.1162/grey.2010.1.38.6

172 F. Bianchini

30. Wang, C., Liu, X., Yue, Y., Tang, X., Zhang, T., Jiayang, C., Yao, Y., Gao, W., Hu, X., Qi,
Z., Wang, Y., Yang, L., Wang, J., Xie, X., Zhang, Z., Zhang, Y.: Survey on factuality in large
language models: Knowledge, retrieval and domain-specificity (2023). https://arxiv.org/abs/
2310.07521

31. Xiao, J., Ding, L., Barry, J., Elkaref, M., De Mel, G., Han, J.: Orag: Ontology-guided retrieval-
augmented generation for theme-specific entity typing. In: First Conference on Language
Modeling (2024)

32. Zhao, P., Zhang, H., Yu, Q., Wang, Z., Geng, Y., Fu, F., Yang, L., Zhang, W., Jiang, J.,
Cui, B.: Retrieval-augmented generation for ai-generated content: A survey. arXiv preprint
arXiv:2402.19473 (2024)

33. Zhu, K., Luo, Y., Xu, D., Wang, R., Yu, S., Wang, S., Yan, Y., Liu, Z., Han, X., Liu, Z.,
et al.: Rageval: Scenario specific rag evaluation dataset generation framework. arXiv preprint
arXiv:2408.01262 (2024)

https://arxiv.org/abs/2310.07521
https://arxiv.org/abs/2310.07521
https://arxiv.org/abs/2310.07521
https://arxiv.org/abs/2310.07521
https://arxiv.org/abs/2310.07521
https://arxiv.org/abs/2310.07521

Chapter 8
Large Language Model Agents

Jerin George Mathew and Jacopo Rossi

Abstract Large language model (LLM) agents are transforming the landscape
of artificial intelligence, enabling sophisticated interactions, reasoning, and
autonomous decision. This chapter explores the theoretical and practical
foundations of LLM agents and multi-agent systems, highlighting their architecture,
communication strategies, and coordination mechanisms. The chapter also presents
examples of LLM agent applications in software engineering, demonstrating
their impact on tasks such as code generation, debugging, and automated
software development. Finally, the chapter describes the programming paradigms
for designing and deploying intelligent agents and multi-agent coordination
frameworks. By summarizing key advancements and methodologies, this chapter
provides a comprehensive guide to developing and understanding LLM agents and
multi-agent systems in modern AI applications.

8.1 Introduction

Addressing complex and articulated tasks has always been one of the main
challenges in computer science. Large language models (LLMs) have a significant
impact on solving intricate problems. However, LLMs alone often have trouble
with complex tasks that require planning, multi-step reasoning, or using external
information. Expanding the context window can mitigate some limitations but does
not fully address these challenges. One promising approach is the development
of LLM agents [12], which augment LLMs with additional modules dedicated to
memory, planning, and external tools.

In artificial intelligence, the concept of agent is fundamental, referring to an
entity that perceives its environment, processes information, and takes actions to
achieve specific goals. This notion is particularly relevant in reinforcement learning
(RL) [1], where an agent interacts with an environment, learning through feedback

J. G. Mathew (�) · J. Rossi
Sapienza Università di Roma, Rome, Italy
e-mail: mathew@diag.uniroma1.it; monti@diag.uniroma1.it; j.rossi@diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_8

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 8&domain=pdf
https://orcid.org/0000-0002-4626-826X
https://orcid.org/0009-0005-0100-0605

 885
56845 a 885 56845 a

mailto:mathew@diag.uniroma1.it
mailto:mathew@diag.uniroma1.it
mailto:mathew@diag.uniroma1.it

 11424 56845 a 11424
56845 a

mailto:monti@diag.uniroma1.it
mailto:monti@diag.uniroma1.it
mailto:monti@diag.uniroma1.it

 21204 56845 a 21204
56845 a

mailto:j.rossi@diag.uniroma1.it
mailto:j.rossi@diag.uniroma1.it
mailto:j.rossi@diag.uniroma1.it
mailto:j.rossi@diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8
https://doi.org/10.1007/978-3-031-92285-5_8

174 J. G. Mathew and J. Rossi

to maximize cumulative rewards. Similarly, LLM agents enhance the ability to solve
complex and articulated tasks. Such tasks often require the execution of multiple
actions and steps, which must be managed with great care and handled by different
specialized components. These solutions enable LLMs to interact with the external
environment, further expanding their capabilities.

LLM agents operate in such situations by integrating various module compo-
nents. These components collectively enable the system to handle complex tasks,
including iterative learning from prior outcomes.

To understand the importance of LLM agents, we can analyze in detail two
possible problems to solve:

(a) Analyze the environmental impacts of two different cars.
(b) Analyze the life cycle emissions of two different cars, including production,

usage, and disposal. There is the need to generate a report summarizing key
findings and create a chart showing the annual reduction in emissions for the
two different models

As we can observe, the first problem (a) could be entirely resolved by an LLM
when it has sufficient knowledge. If the LLM lacks the necessary information,
a RAG (retrieval-augmented generation) system could be used, having access to
customized documents that serve as the knowledge base.1

Regarding the second problem (b), it is clear that the exclusive use of an LLM is
not sufficient to solve the entire task. This is because the problem requires complex
operations that cannot be managed directly in a single iteration. In this context,
LLM agents come into play: the task can be divided into subtasks, which can
be addressed using specific tools and following a flow of operations that leads to
the desired final response. An effective approach might involve creating an LLM
agent equipped with access to APIs and a database, enabling it to deliver relevant
insights on environmental impact. Furthermore, the agent should incorporate a tool
for generating visualizations, such as charts, to better interpret trends related to
pollution. These components can be considered the core of a potential LLM agent;
however, it is also crucial to consider other aspects, such as incorporating planning
and memory modules, which are further discussed below.

8.2 LLM Agent Structure

LLM agents have several fundamental components that define their operational
capabilities and performance. These elements are essential for information process-
ing, task management, and interaction with external data sources. Specifically, three
primary categories can be identified that define the functioning of LLM Agents (c.f.
Fig. 8.1):

1 For a detailed overview about RAG system, see Chap. 7.

8 Large Language Model Agents 175

Fig. 8.1 Architecture of LLM agent

• Memory: divided into short-term memory, which allows to retain relevant
information temporarily for immediate tasks, and long-term memory, which can
be used to store extensive information in an external storage system.

• Planning: breaks down complex tasks into smaller, manageable subgoals, allow-
ing for more efficient handling and organization. This technique is complemented
by the agent’s capacity for self-assessment, where it reflects on past actions,
identifies mistakes, and refines its methods for future steps, enhancing overall
performance.

• Tools: use external resources and applications to recover missing information,
execute operations, or have access to proprietary data. This augments agent
knowledge and real-time abilities.

8.2.1 Memory

The integration of memory modules in LLM agents is essential to make the system
more precise and adaptable [23]. LLM agents have the ability to retain and organize
information internally, enabling them to navigate complex, multi-step processes.
They arrange data into distinct memory modules, each designed to address specific
informational purposes. Memory modules act as a structured and dynamic system
that allows agents to use stored information, improving decision-making, increasing
adaptability and building the cognitive basis of the agent. This includes two different
types of memory: short-term memory and long-term memory.

• Short-term memory is a temporary, immediate storage that holds information
relevant to the agent’s current task or session. Short-term memory enables

176 J. G. Mathew and J. Rossi

the agent to maintain context within a single interaction or trial, allowing it
to give answer based on the ongoing context [23]. For instance, if an agent
is having a conversation, short-term memory stores details from earlier in
that conversation, helping it understand follow-up questions or references. It
facilitates a coherent flow within a task by retaining recent actions, responses,
or observations, making it essential for multi-step processes like guiding a user
through a series of instructions or tasks in a single session (e.g., a chatbot for
customer support). Since its focus is on the current context, short-term memory
enables the agent to retrieve relevant information quickly, keeping interactions
efficient and responsive. Short-term memory also communicates with long-term
memory systems, acting as the core integrative layer that links the different
functions of a language agent [17].

• Long-term memory enables agents to accumulate and store knowledge and
insights over time. Various methodologies are employed to manage data in long-
term memory, allowing for the distinction between different types of memory
[23]. The use of cross-trial information includes details from historical data
related to past iterations and their outcomes. This approach optimizes future
decisions for specific tasks but has some limitations in its dependency on
past interactions between the agent and its environment. Closely related to
these methods is also the concept of episodic memory, which stores data from
earlier decision iterations. There are also approaches that incorporate external
knowledge rather than relying solely on the agent’s direct experiences. This
information can be stored as parameters (encoded in model through fine-tuning
or training), textual data (readily interpretable), or external vector databases and
support tasks that require historical or contextual understanding. Some methods
draw from general sources like Wikipedia or other Website [19, 25], while others
utilize specialized repositories [11, 21]. In this context, the semantic memory is
also important, which stores world knowledge, enabling agents to integrate new
insights through reasoning.

8.2.2 Planning

Planning for LLM agents represents an ambitious frontier. Numerous studies aim
to integrate LLMs with planning methods. Their main goal is to enable agents
to make complex decisions and perform tasks across a wide range of domains.
Task Decomposition, Multiple Plan Selection, External Planner-Assisted Planning,
and Reflection and Refinement are key approaches that address distinct challenges
in planning [7]. Together, these strategies enhance the robustness, flexibility, and
scalability of LLM agents.

• Task Decomposition allows agents to break tasks into manageable sub-tasks.
In LLM agents, this involves the model’s ability to sequentially identify and
plan these sub-tasks, improving clarity and reducing cognitive load for each

8 Large Language Model Agents 177

planning step. We can distinguish two different methods. Decomposition-first
method involves breaking down sub-tasks at the beginning, allowing planning for
each sub-task in isolation. Interleaved decomposition method offers a dynamic
approach, allowing interleaved task decomposition and sub-tasks planning where
each decomposition identifies only one or two immediate sub-tasks.

• Multiple Plan Selection. LLMs agents can generate multiple solutions to solve
complex tasks. This process involves two key steps: Multiple Plan Genera-
tion and Multiple Plan Selection. Multiple Plan Generation employs diverse
strategies to produce a set of candidate plans, ensuring coverage of potential
approaches. Multiple Plan Selection mitigates variability by evaluating these
candidates through an optimal selection mechanism, guaranteeing that the most
effective plan is executed. Together, these steps enhance robustness and reliability
in task resolution by systematically exploring and refining solutions.

• Planning Assisted by External Planners. Integrating LLMs with external plan-
ners, both symbolic (rule-based systems that use predefined logic) and neural
(data-driven models that learn patterns), can significantly enhance feasibility and
efficiency, especially in dynamic or complex environments. Symbolic planners
improve task feasibility by following strict rules and structured reasoning,
ensuring reliability in predictable settings. However, they struggle in unfamiliar
scenarios where rules are missing or incomplete. Neural planners, on the other
hand, adapt well to specific tasks by learning from examples, but they falter when
faced with situations outside a specific context.

• Reflection and Refinement. LLMs benefit significantly from reflection and refine-
ment mechanisms. These techniques mirror principles of reinforcement learning
but focuses on refining outputs through prompt-based feedback rather than
parameter updates, enabling continuous improvement without retraining. Reflec-
tion and refinement are critical for overcoming challenges like hallucinations
(generating incorrect or nonsensical outputs) and reasoning gaps (incomplete or
flawed logic). By systematically analyzing failures and adapting strategies, LLM
agents improve errors tolerance, adaptability, and overall robustness in planning
tasks.

8.2.3 Tools

Equipping LLMs with external tools enhances their ability to interact with external
environments, enabling them to execute complex workflows and obtain necessary
information beyond their inherent capabilities.

The entire process of utilizing tools to assist LLM agents can be handled in
different ways. Here we introduced an iterative and structured pipeline that can be
summarized in four distinct steps [20]: (a) task planning, (b) tool retrieval, (c) tool
selection, and (d) tool execution.

Before executing the pipeline, it is crucial to clearly define the target of the
LLM’s action to identify the specific task to be solved. Once the intent is understood,

178 J. G. Mathew and J. Rossi

the LLM requires an action plan to achieve the predefined goal. After formalizing
the plan (a), often aided by the planning module (c.f. Sect. 8.2.2), the next step is to
translate the plan into concrete tasks and align these tasks with the available tools
for solving the problem (b). Subsequently, the most appropriate tool is selected (c)
based on its description, and all the parameters for its execution are configured.
After the tool execution (d), the model collects feedback on the results obtained. If
a tool fails, the system can activate a fallback mechanism. This involves selecting
an alternative tool from the tool-retrieval module (b) and continuing the workflow
from that point.

By adopting the described pipeline, the agent can handle disparate categories of
tools.

In this context, agents simulate human behavior in orchestrating and coordinating
tools. It is also worth highlighting how task execution methods can be categorized
into code-based and UI-based approaches [12], each offering distinct capabilities
and facing unique challenges. Code-based methods rely on generating code to
interact with APIs, databases, or other components, often employing LLMs for tasks
like slot-filling and program synthesis. These methods are effective for structured
and predefined API-driven tasks but encounter limitations in handling complex
scenarios, scaling to large toolsets, and adapting to unseen domains. On the other
hand, UI-based approaches focus on simulating human interactions with device
interfaces, enabling versatile automation without depending on APIs, through text-
based representations like HTML or multimodal representations combining visual
and textual inputs. Both Code-based and UI-based methods can be categorized
by different functionalities [26]. These include text tools, which extract relevant
information from text documents; database tools, which manage and query tabular
data; math tools, which handle computations ranging from basic arithmetic to com-
plex operations; graph tools, which analyze graph structures and attributes; code
tools, which execute code and enable interoperability between tools; and system
tools, which finalize task results based on execution feedback. This classification
highlights the diverse features required for effective task execution and emphasizes
the importance of selecting the appropriate tools to match the specific needs of
executing a task.

The use of tools introduce also significant challenges [16]. Deciding when to
invoke a tool is very important, since doing it in the wrong way can slow down
the process and increase resource consumption, while an absence of invocation can
lead to incomplete or inaccurate results. Another challenge is related to selecting
the most appropriate tool. LLMs often have a wide range of tools at their disposal,
but choosing the right one is not always straightforward. Even when the right tool
is selected, the LLM must know how to invoke it correctly [9]. Each tool has its
own interface and requires specific parameters. Errors in formatting parameters or
understanding the API can lead to failures. For example, an API that requires a date
in ISO format may fail if the model provides a different format. A critical aspect is
to ensure the robustness of the process, avoiding errors accumulating [2]. Because
complex tasks require multiple steps, an initial failure can have a cascading effect
on all subsequent steps.

8 Large Language Model Agents 179

8.3 LLM-Based Multi-agents (LLM-MA)

Due to the impressive results of using LLMs as autonomous agents to do many tasks
automatically, the idea of using multiple LLMs to accomplish complex problem-
solving tasks has been proposed to leverage the collective intelligence, specialized
profiles, and skills of multiple LLM-based agents.

Compared to systems using a single LLM-based agent, multi-agent systems
offer advanced capabilities by specializing LLMs into various distinct agents,
each with different capabilities, and enabling interactions among these diverse
agents to simulate complex real-world environments effectively [4]. In this context,
multiple autonomous agents collaboratively participate in planning, discussions,
and decision-making, similarly to the cooperative nature of human group work in
problem-solving tasks. The interaction among the agents leverages the communi-
cation capability of LLMs, which are able to comprehend and generate texts of
disparate domains.

In particular, in a multi-agent system, each agent is assigned a distinct role and
relevant expertise, making it specifically responsible for different tasks; in addition,
the agents can communicate with each other and share the progress/information as
the task proceeds. Typically, agents can work collaboratively (i.e., by working on
different sub-tasks to achieve a final goal) or competitively (i.e., by working on the
same task while debating adversarially).

The main operational framework of these types of systems focuses on four
key aspects: the environment interface, the profiling, the communication, and the
capability acquisition [4]. These aspects are represented in Fig. 8.2, which depicts

Fig. 8.2 LLM-based multi-agents architecture

180 J. G. Mathew and J. Rossi

the general architecture of this type of system and will be further described in the
sections below.

8.3.1 Environment Interface

The environment interface defines the setting in which the LLM-MA system
perceives and interacts, shaping agent behavior and decision-making. The authors
in [4] categorize these interfaces into three types: Sandbox, Physical, and no specific
external environment.

The Sandbox environment refers to a simulated or virtual space where agents
interact freely and experiment with various actions and strategies without real-world
consequences. The Physical environment involves real-world interactions, where
agents engage with tangible entities and operate under physical constraints. The
third category, no specific external environment, applies to settings where agents
primarily interact with each other rather than with an external system.

These environments are applied across various domains depending on the
nature of agent interaction. The Sandbox environment is widely used in software
development, gaming, and experimental simulations, enabling agents to explore
different strategies in controlled settings. Examples include game-based learning
environments and AI-driven software engineering platforms. The Physical envi-
ronment includes robotics and industrial automation, where agents interact with
sensors, actuators, and other physical components to perform real-world tasks.
In contrast, scenarios without a specific external environment include debating
agents [8] and simulated social interactions [14], where agent behavior is defined
entirely through internal knowledge exchange and inter-agent communication.

8.3.2 Profiling

The agents interacting in a LLM-MA system are defined by their roles (or profiles)
specifying their characteristics, capabilities, behavior, and constraints, which are
personalized to meet specific goals. The profiles of the agents are crucial, as
they define the interactions and effectiveness in their respective environments. The
authors in [4] classify agent profiling methods into three main types: pre-defined
profiles, model-generated profiles, and data-derived profiles.

Pre-defined profiles consist of manually designed roles where agents have fixed
characteristics, responsibilities, and constraints. This approach is useful for struc-
tured environments where agent behavior needs to be explicitly defined, such as in
software engineering or policy simulations. Model-generated profiles allow LLMs
to dynamically generate agent attributes based on context and requirements. This
enables flexible role assignments and allows agents to adapt their behavior based on

8 Large Language Model Agents 181

real-time interactions and external changes. Data-derived profiles rely on existing
datasets to infer agent characteristics, facilitating domain-specific behaviors.

Beyond role assignment, profiling also defines inter-agent relationships and
communication structures. LLM-MA systems can be designed with different hier-
archical structures, ranging from decentralized peer-to-peer networks to centralized
agent coordination models. These structures, which will be further discussed in the
next section, impact collaboration efficiency and decision-making processes within
the system [4].

Additionally, agents within LLM-MA can exhibit cognitive evolution, meaning
their profiles can be updated over time based on experience, interactions, and
learning feedback. This allows for a more adaptive and evolving multi-agent
ecosystem, where agents refine their expertise and improve task performance
through iterative learning cycles [10].

8.3.3 Communication

Inter-agent communication is a fundamental aspect of multi-agent collaboration,
enabling agents to exchange information, coordinate actions, and resolve conflicts.
LLM-MA employ different communication paradigms depending on the nature of
their interactions and the complexity of their tasks [4].

Communication within these systems can take cooperative, debate-based, or
competitive forms, each serving a distinct role in agent coordination.

Cooperative communication involves agents working together toward shared
objectives, where information is exchanged to improve collective decision-making.
This paradigm is particularly useful in collaborative problem-solving scenarios,
such as software development or scientific research, where multiple agents con-
tribute distinct expertise to achieve a common goal.

Debate-based communication allows agents to engage in structured argumen-
tative discussions, evaluating multiple perspectives before reaching a consensus.
This approach is frequently utilized in policy simulation and automated negotiation
systems, where diverse viewpoints must be reconciled.

Competitive communication fosters adversarial interactions, where agents pursue
individual strategies that may be in conflict with others. This is commonly seen in
gaming and strategic planning applications.

These communication paradigms align with different structural models of agent
interaction [10], as depicted in Fig. 8.3. In a single-agent setting, an LLM interacts
with external tools but does not communicate with other agents. This model is
suited for tasks where a single agent can operate autonomously while leveraging
external resources. In a centralized setup, a single agent oversees coordination and
decision-making, managing communication with subordinate agents. This structure
is effective in cooperative environments where efficiency and control are prioritized.
A variation of this model, centralized (as tools), treats multiple agents as external
tools controlled by an LLM, balancing modularity with oversight while allowing

182 J. G. Mathew and J. Rossi

Fig. 8.3 Different types of communication in LLM-MA systems

specialization within a structured framework. Decentralized architectures distribute
communication across multiple agents interacting in a peer-to-peer manner, without
a central coordinator. This approach supports debate-based and competitive commu-
nication, enabling greater adaptability and resilience in distributed environments. A
more structured variation is the hierarchical model, where high-level agents oversee
lower-level agents, combining structured oversight with task-specific autonomy.
This is particularly useful in complex systems requiring multi-level decision-
making. Finally, custom architectures combine elements of these models, adapting
communication structures to specific use cases where hybrid interaction strategies
are necessary.

8.3.4 Evolution

Agent evolution in LLM-MA refers to the ability of agents to dynamically improve,
adapt, and refine their behavior over time based on experience, interactions, and
external feedback. This process enhances multi-agent collaboration by allowing
agents to learn from prior interactions, optimize their strategies, and develop new
capabilities autonomously [4].

The evolution process can be categorized into three primary mechanisms:
memory-based learning, self-adaptation, and dynamic agent generation.

8 Large Language Model Agents 183

Memory-based learning allows agents to store past interactions and retrieve
relevant experiences to inform future decisions, ensuring contextual consistency
and improved response efficiency. Self-adaptation enables agents to refine their
strategies based on ongoing interactions, modifying their behavior in real time to
enhance coordination and task execution. Dynamic agent generation introduces
new agents as required, adjusting system complexity and specialization levels
to optimize performance in evolving environments [10]. Reinforcement learning
techniques [18] and iterative training mechanisms [13] further contribute to the
evolution of LLM-based agents. These techniques enable agents to continuously
improve their problem-solving abilities, adapt to new challenges, and fine-tune
decision-making processes. The integration of feedback loops (e.g., [22]), both from
other agents and external sources, ensures a more robust and scalable multi-agent
system that can handle complex, real-world tasks effectively.

8.4 Applications of LLM Agents in Software Engineering

This section reviews some applications of LLM agent-based systems in software
engineering. These systems have been applied across various stages of software
development, including requirements analysis, system design, code generation,
testing, and documentation.

Software engineering typically involves complex, interdependent tasks that
traditionally require extensive human oversight. LLM-MA systems can address
these challenges by structuring workflows, enabling agents to collaborate, validate
outputs, and refine software artifacts iteratively. The following sections explore
different frameworks, starting with structured systems that enforce predefined
workflows, followed by agile-oriented approaches that enable dynamic adaptation.
The discussion concludes with a look at autonomous multi-agent frameworks and
their potential for scalable, self-sufficient software development.

Frameworks for Software Engineering
Several frameworks that leverage multi-agent collaboration to enhance software
development have been recently proposed in the literature.

MetaGPT [6] is one such framework that introduces a structured approach to
software engineering by assigning distinct roles to different agents. Instead of
treating the development process as a single monolithic task, MetaGPT organizes
it into multiple specialized roles, such as a product manager for gathering require-
ments, an architect for designing the system, an engineer for writing the code, and
a QA engineer for testing and debugging. A defining feature of MetaGPT is its
use of predefined workflows that guide each agent’s responsibilities. This structure
prevents agents from engaging in unstructured interactions that could lead to incon-
sistencies or unnecessary repetition. The development process follows a structured
sequence, where each agent builds on the output of the previous one. For example,
the product manager agent first produces a requirements document that serves as the
foundation for system design. The architect then refines this document into technical

184 J. G. Mathew and J. Rossi

specifications, which the engineer uses to generate code. The QA engineer later tests
the implementation against the specifications to identify any issues. This ensures
that agents exchange information in a structured manner, potentially minimizing
misunderstandings and preventing errors from propagating through the pipeline.
Unlike multi agent frameworks that rely on free-form conversation between agents,
MetaGPT enforces a step-by-step approach where each agent’s output adheres to a
predefined format. This method reduces ambiguities, maintains consistency across
development phases, and ensures that generated software adheres to well-defined
specifications.

Another framework, ChatDev [15], takes a different approach by modeling a
virtual software company where agents communicate through structured dialogues.
The development process is divided into four sequential phases: designing, coding,
testing, and documenting. Each phase involves agents with distinct roles, such
as architects, programmers, and testers, who engage in multi-turn interactions
to refine requirements, generate implementations, and validate outputs. ChatDev
enables agents to verify each other’s contributions, reducing the risk of errors
in generated software. If a programmer agent produces an implementation, a
peer reviewer checks the code for correctness before passing it to a tester for
validation. The system follows a structured dialogue model where agents justify
their decisions, propose modifications, and iterate on solutions as needed. This
collaborative verification process helps mitigate hallucinations in LLM-generated
code by ensuring that multiple agents reach a consensus before finalizing an output.

Agile Software Engineering with LLM Agents
Some frameworks focus on integrating multi-agent coordination into agile software
engineering methodologies. CogniSim [3] is an example of a multi-agent system
designed to enhance agile workflows, particularly in the Scaled Agile Framework
(SAFe). The system consists of autonomous agents that participate in sprint
planning, backlog refinement, and iterative software development. Each agent
contributes specialized expertise at different stages of the development cycle, sup-
porting tasks such as prioritizing backlog items, optimizing workload distribution,
and tracking project progress. The use of agents allows for continuous learning and
adaptation. Instead of relying on static decision-making rules, these agents analyze
past development cycles, evaluate performance metrics, and adjust their strategies
accordingly. A backlog refinement agent, for instance, may learn from previous
sprints to improve its prioritization of user stories, while a sprint planning agent can
modify workload assignments based on real-time team capacity. These adaptations
can help agile teams manage changing requirements more effectively and optimize
resource allocation throughout the development process.

From Multi-agent Coordination to Fully Autonomous Software Engineering
While existing frameworks have demonstrated significant progress in structuring
and optimizing software development workflows, full autonomy remains an open
challenge. Current systems, such as MetaGPT and ChatDev, rely on predefined
workflows and structured communication, while agile-oriented frameworks like
CogniSim introduce adaptability through iterative refinement. However, these

8 Large Language Model Agents 185

approaches might still require human intervention to define objectives, interpret
ambiguous requirements, and address unexpected failures. Moving toward fully
autonomous software engineering requires advances in three key areas, as outlined
in the survey in [5]: independent decision-making, adaptive planning, and long-term
learning.

Independent decision-making remains a challenge for LLM agent systems.
While current frameworks distribute tasks across agents, decisions about ambiguous
or conflicting requirements might still require human oversight. Achieving full
autonomy requires mechanisms that allow agents to debate, negotiate, and reach
consensus without explicit human input.

Adaptive planning is another critical factor in autonomous software engineering.
Existing frameworks follow structured workflows, which, while effective, may
struggle when encountering novel scenarios that require deviating from predefined
processes. Future research must focus on enabling agents to dynamically adjust their
workflows based on real-time feedback to allow LLM agent systems to generalize
beyond their initial training data.

Long-term learning and knowledge retention are also essential for achieving
sustained autonomy. Fully autonomous systems must incorporate mechanisms
for continuous learning, where agents retain and refine knowledge over multiple
projects, enabling incremental improvements in software development capabilities.
Techniques such as lifelong learning [24] may play a crucial role in this transition.

Achieving fully autonomous software engineering will require further advance-
ments in multi-agent reasoning, uncertainty handling, and ethical considerations
in AI-driven decision-making. While current LLM agent systems offer structured
workflows and iterative adaptation, future developments will need to address inde-
pendent goal setting, dynamic problem-solving, and self-improvement mechanisms
to reduce reliance on human oversight.

8.5 Programming LLM Agents

In this section, we explore the implementation of LLM agents and compare
various approaches. While foundational libraries like Hugging Face Transformers2

and LangChain3 facilitate building agents from scratch, recent frameworks have
emerged to facilitate the development of LLM agents and complex workflows
involving LLM-MA. Notable examples include LangGraph,4 CrewAI,5 and OpenAI
Swarm.6

2 https://huggingface.co/docs/transformers.
3 https://www.langchain.com/langchain.
4 https://www.langchain.com/langgraph.
5 https://www.crewai.com.
6 https://github.com/openai/swarm.

https://huggingface.co/docs/transformers
https://huggingface.co/docs/transformers
https://huggingface.co/docs/transformers
https://huggingface.co/docs/transformers
https://huggingface.co/docs/transformers
https://www.langchain.com/langchain
https://www.langchain.com/langchain
https://www.langchain.com/langchain
https://www.langchain.com/langchain
https://www.langchain.com/langchain
https://www.langchain.com/langgraph
https://www.langchain.com/langgraph
https://www.langchain.com/langgraph
https://www.langchain.com/langgraph
https://www.langchain.com/langgraph
https://www.crewai.com
https://www.crewai.com
https://www.crewai.com
https://www.crewai.com
https://github.com/openai/swarm
https://github.com/openai/swarm
https://github.com/openai/swarm
https://github.com/openai/swarm
https://github.com/openai/swarm

186 J. G. Mathew and J. Rossi

LangGraph is part of the LangChain ecosystem and offers a robust framework for
constructing structured multi-agent workflows. It models interactions as directed
graphs, with nodes representing agents or tasks and edges defining the flow of
information between them. LangGraph excels in managing complex decision-
making processes and supporting parallel task execution, making it particularly
useful for applications requiring precise control over agent orchestration, such as
dynamic task pipelines or modular workflows.

CrewAI adopts a human-centric approach to multi-agent systems, focusing on
collaboration through the concept of “crews,” i.e., specialized teams of agents
working collectively toward a shared objective. With features like role-based
management, task delegation, and seamless inter-agent communication, CrewAI
simplifies development by aligning agent interactions with familiar organizational
paradigms. Its design is especially effective for projects requiring intuitive role
assignment and efficient coordination between agents.

OpenAI Swarm is an experimental, educational framework designed to explore
lightweight multi-agent orchestration. It focuses on making agent coordination and
execution controllable and testable through two primary abstractions: agents and
handoffs. An agent encompasses instructions and tools and can choose to hand off
a conversation to another Agent. These primitives enable the construction of real-
world solutions while avoiding a steep learning curve.

In the following steps, we will first implement an LLM agent at a low level
using Hugging Face Transformers to understand the foundational concepts and
mechanics. Then, we will leverage the high-level interfaces of the previously
mentioned high-level libraries, specifically LangGraph, to ease the implementation
of LLM agents and LLM-MA.

8.5.1 Implementing a Simple LLM Agent from Scratch Using
Hugging Face Transformers

In this section, we will implement a simplified ReAct agent [19] from scratch
using Hugging Face Transformers. A ReAct agent operates by iteratively alternating
between reasoning and acting to accomplish a task.

During the reasoning stage, the agent analyzes the current state of the environ-
ment, processes the context, and formulates a plan based on its understanding of
the task. This stage focuses on logical deduction and decision-making. During the
acting stage, the agent executes the planned actions, interacts with the environment,
and collects feedback, which it uses to refine subsequent reasoning steps. We
provide a summary of the inner workings of a ReAct agent in Fig. 8.4.

For simplicity, this implementation will use a single tool: a calculator, allowing
the agent to perform basic mathematical operations as part of its actions.

We will start by importing the libraries needed for this implementation of an
LLM agent and setting up the device (either CPU or GPU) for inference.

8 Large Language Model Agents 187

Fig. 8.4 Overview of the
inner workings of ReAct

Import the required libraries

1 from transformers import LlamaTokenizer, MistralForCausalLM,
StoppingCriteria, StoppingCriteriaList↪→

2 import json
3 import re
4 import torch
5

6 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Next, we define the LLM to use as the agent and its tokenizer. We will use
OpenHermes-2.5-Mistral-7B, which is a fine-tuned variant of the Mistral architec-
ture trained on additional code datasets, which is known for its agent capacities.

Define the model and its tokenizer

1 tokenizer = LlamaTokenizer.from_pretrained(
2 "teknium/OpenHermes-2.5-Mistral-7B",
3 trust_remote_code=True
4)
5

6 model = MistralForCausalLM.from_pretrained(
7 "teknium/OpenHermes-2.5-Mistral-7B",
8 torch_dtype=torch.float16,
9 device_map=device,

10 load_in_8bit=False,
11 load_in_4bit= True,
12 use_flash_attention_2=False,
13 low_cpu_mem_usage= True
14)

The model is loaded with quantization and memory optimization parameters
to balance efficiency and performance. By using torch_dtype=torch.float16

188 J. G. Mathew and J. Rossi

(line 8), weights are stored in 16-bit floating-point format, reducing memory
usage while maintaining precision. The load_in_4bit=True (line 11) enables 4-
bit quantization, significantly lowering the memory footprint, making it suitable
for resource-constrained environments. Additionally, low_cpu_mem_usage=True
(line 13) minimizes memory use during loading, and device_map=device (line 9)
ensures the model is loaded onto the most capable hardware (GPU o r CPU).

The ReAct agent uses tools to perform specific tasks. For simplicity, we include
a single tool: a calculator. This tool evaluates mathematical expressions and returns
the result. We provide a simple (and naive) implementation of a calculator function
below:

Define the calculator tool

1 def calculator(expression):
2 try:
3 result = eval(expression)
4 return f"The result is {result}."
5 except Exception as e:
6 return f"Error in calculation: {e}"
7

8 TOOLS = {
9 "Calculator": { "function": calculator, "parameters":

"expression (a mathematical expression to evaluate)"}↪→
10 }
11

12 TOOL_NAMES = list (TOOLS. keys())

We will now define the ReAct agent as a Python class.

Define the React Agent

1 class ReActAgent:
2 def __init__(self, model, tokenizer, tools):
3 self.model = model
4 self .tokenizer = tokenizer
5 self .tools = tools

We will now define below a simple variant of the ReAct prompt to allow the LLM
to generate structured reasoning and use tools to solve tasks. The format_prompt
method below is used to generate the prompt that will be fed to the model.

Define the React Agent prompt

1 def format_prompt(self, question):
2 """Construct the exact prompt template with tool descriptions"""
3 tools_description = "\n".join(
4 [f"- {tool}: {desc['parameters'] }" for tool, desc in

self.tools.items()]↪→
5)

8 Large Language Model Agents 189

6 system_prompt = f"""Answer the following questions as best you can. You
have access to the following tools:↪→

7

8 {tools_description}
9

10 The way you use the tools is by specifying a json blob.
11 Specifically, this json should have a �action� key (with the name of

the tool to use) and a �action_input� key (with the input to the
tool going here).

↪→
↪→

12 The only values that should be in the "action" field are: {TOOL_NAMES}
13 The $JSON_BLOB should only contain a SINGLE action and MUST be

formatted as markdown, do NOT return a list of multiple actions.
Here is an example of a valid $JSON_BLOB:

↪→
↪→

14 ���
15 {{
16 "action": $TOOL_NAME,
17 "action_input": $INPUT
18 }}
19 ���
20 Make sure to have the $INPUT in the right format for the tool you are

using, and do not put variable names as input if you can find the
right values.

↪→
↪→

21 ALWAYS use the following format:
22 Question: the input question you must answer
23 Thought: you should always think about one action to take. Only one

action at a time in this format:↪→
24 Action:
25 ���
26 $JSON_BLOB
27 ���
28 Observation: the result of the action
29 ... (this Thought/Action/Observation can repeat N times, you should

take several steps when needed. The $JSON_BLOB must be formatted as
markdown and only use a SINGLE action at a time.)

↪→
↪→

30 You must always end your output with the following format:
31 Thought: I now know the final answer
32 Final Answer: the final answer to the original input question
33

34 Now begin! Reminder to ALWAYS use the exact characters �Final Answer:�
when you provide a definitive answer. ↪→

35 Question: {question}"""
36

37 return system_prompt

This prompt defines how the ReAct agent should structure its reasoning. The
ReAct framework transforms the output of a language model from simple text
generation into a process of structured reasoning and action. The structured
reasoning in ReAct is achieved through three primary elements: Thought, Action,
and Observation. These elements form a loop that the agent cycles through until
it reaches a final answer. The “Thought” encapsulates the agent’s reasoning, the

190 J. G. Mathew and J. Rossi

“Action” specifies a concrete step to execute, and the “Observation” reflects on the
result of that step to guide the next reasoning process.

Let’s explore this through an example of solving a mathematical problem: “What
is the result of 5 + 2?” When presented with this task, the agent begins by analyzing
the problem and thinking how to decompose the problem into smaller problem. In
this simple case, the problem can be solved in a single step by calling the calculator
tool.

Reasoning/thinking in ReAct

Question: What is the result of 5 + 2?
Thought: To solve this, I need to calculate the value of 5 + 2 using

the calculator. ↪→

With its plan in place, the agent decides to execute the calculation for 5 + 2. The
ReAct prompt ensures that the agent specifies this action using a JSON blob. This
structured representation of the action communicates the agent’s intent to use the
calculator tool:

Generating the action

Action:
���
{

"action": "Calculator",
"action_input": "5 + 2"

}
���

This explicit format is not just for the agent’s internal reasoning; it is designed for
easy integration with external tools or APIs, ensuring that the system understands
and executes the action correctly. The calculator then processes the input and
returns the result, 7. The agent then observes this output and incorporates it into
its reasoning:

Generating the final response

Observation: The result of the calculation is 7.
Thought: I now know the final answer.
Final Answer: 7

Here, the agent completes its reasoning process by explicitly stating the final
answer using the “Final Answer” marker.

Moving on with the implementation of the ReAct agent, we implement the
generate_response method that invokes the model to generate text based on the
formatted prompt.

8 Large Language Model Agents 191

Prompting the model to generate a response

1 def generate_response(self, prompt, stop_criteria):
2 inputs = self.tokenizer(prompt, return_tensors="pt")
3 input_ids = inputs.input_ids.to(device)
4 attention_mask = inputs.attention_mask.to(device)
5 outputs = self.model.generate(
6 input_ids,
7 attention_mask=attention_mask,
8 max_new_tokens=750,
9 temperature=0.8,

10 pad_token_id=tokenizer.eos_token_id,
11 repetition_penalty=1.1,
12 do_sample=True,
13 stopping_criteria=stop_criteria
14)
15 response = self.tokenizer.decode(outputs[0], skip_special_tokens =True)
16 return response

The generate method is called with several parameters that control the behavior
of the model during text generation. The max_new_tokens parameter (line 8) limits
the number of tokens the model can generate, ensuring responses remain concise
and efficient. To balance creativity and coherence, the temperature parameter
(line 9) is set to 0.8, introducing some randomness to the output without sacrificing
relevance. The repetition_penalty (line 11) discourages repetitive phrases by
penalizing the reuse of tokens, enhancing the diversity of the generated text.

The last parameter is the stopping_criteria (line 13), which we use to
prevent the model from going all the way through the final answer without calling
the calculator function. In this case, we want to stop generating text right after the
model generates the action. A simple approach consists of stopping the generation
once the model generates the “Observation:” sequence, which is generated right
after the action. The code below implements general stopping criteria based on a
specific text sequence:

LLM agent stopping criteria implementation

1 class StopOnObservation(StoppingCriteria):
2

3 def __init__(self, target_sequence, prompt):
4 self.target_sequence = target_sequence
5 self.prompt = prompt
6 self.last = None
7 self.new_token = ''
8

9 def __call__(self, input_ids, scores, **kwargs):
10 generated_text = tokenizer.decode(input_ids[0])
11 if self.last:
12 self.new_token += generated_text.replace(self.last, '')
13 if self.target_sequence in self .new_token:

192 J. G. Mathew and J. Rossi

14 return True
15 self.last = generated_text
16 return False

We now explore how the ReAct framework prompts the model to iteratively
solve a query. The process is implemented in the interact method, which guides
the agent through reasoning, action, and observation loops until a final answer is
reached. Below is the code for this m ethod:

Implementation of the ReAct workflow

1 def parse_json_blob(self, response):
2 """Extract the JSON blob related to an action from the model's

response."""↪→
3 # Locate the "Action:" keyword in the response
4 match = re.search(r"Action:\s*(?:���)?\s*({.*?})\s*(?:���)?", response,

re.DOTALL)↪→
5 if match:
6 json_str = match.group(1).strip() # Extract the JSON object string
7 try:
8 return json.loads(json_str)
9 except json.JSONDecodeError as e:

10 print(f"JSON parsing error: {e}")
11 print(f"Malformed JSON: {json_str}")
12 return None
13 print("No valid action JSON found in response.")
14 return None
15

16

17 def interact(self, question):
18 """Answer the question iteratively using the structured ReAct

process."""↪→
19 # generate the initial prompt
20 initial_prompt = self.format_prompt(question)
21

22 while True:
23 # generate response
24 stop_criteria = StopOnObservation("Observation:", self.tokenizer)
25 response = self.generate_response(initial_prompt, stop_criteria)
26

27 # mask the initial prompt from the current generation
28 new_content = response.replace(initial_prompt, "").strip()
29

30 # process the new content line by line and find the final answer or
action↪→

31 has_action = False
32 final_answer = None
33 for line in new_content.splitlines():
34 if line.startswith("Action:"):
35 has_action = True
36 elif line.startswith("Final Answer:"):

8 Large Language Model Agents 193

37 final_answer = line[len("Final Answer:"):].strip()
38

39 # handle final answer immediately
40 if final_answer:
41 return final_answer
42

43 # parse the action
44 if has_action:
45 try:
46 action_json = self.parse_json_blob(new_content)
47 except json.JSONDecodeError:
48 return "I am unable to answer the question."
49 else:
50 return "I am unable to answer the question."
51

52 if action_json is None:
53 return "I am unable to answer the question."
54

55 # execute the action
56 tool_name = action_json.get("action")
57 tool_input = action_json.get("action_input")
58

59 if tool_name in self .tools:
60 result = self.tools[tool_name]["function"](tool_input)
61 new_content += f" {result}"
62 else:
63 new_content += "\nFinal Answer: I am unable to answer the question."
64 return "I am unable to answer the question."
65

66 # update the initial prompt to include the latest reasoning
67 initial_prompt += f"\n {new_content}"

The interact method begins by generating an initial prompt using the
format_prompt function (line 20), which structures the user’s question along-
side the context needed for reasoning. This prompt is then passed to the
generate_response function (line 25), which uses the model to produce a
response adhering to the ReAct frame work.

The response generated by the model can take one of two forms, depending on
whether the StopOnObservation stopping criteria (line 24) is triggered or not: it
may contain a final answer, signaling that the reasoning process is complete, or it
may include an action, indicating that further steps are needed to resolve the query. If
the response includes a final answer, the method immediately terminates, returning
this answer to the user. This ensures that the agent stops reasoning as soon as the
task is fully resolv ed.

If the response contains an action, the agent proceeds to parse it (line 46) using
the parse_json_blob method (line 1). This step extracts the necessary details from
the JSON representation of the action, including the tool to be used and its input.
For example, if the response suggests using the calculator tool to compute 5 + 2, the
method extracts the tool name (Calculator) and the input (5 + 2). The agent then

194 J. G. Mathew and J. Rossi

executes the action by invoking the appropriate tool (line 60), such as the calculator,
which returns the result of the operation.

Once the tool has provided its result, the agent updates its prompt by appending
the new reasoning, action, and observation. This updated prompt forms the basis for
the next iteration, as it provides the model with a more detailed context to refine
its reasoning further. The process of reasoning, acting, and observing continues
iteratively, with the agent building upon its previous steps until it arrives at a final
answer.

With the ReAct agent constructed, we can now process user queries interactively,
using the following code:

ReAct agent instantiation and execution

1 if __name__ == "__main__":
2 agent = ReActAgent(model, tokenizer, TOOLS)
3 print("ReAct Agent Initialized. Type 'exit' to quit.\n")
4

5 while True:
6 question = input("Your Question: ")
7 if question.lower() == "exit":
8 print("Exiting...")
9 break

10

11 answer = agent.interact(question)
12 print(f"Agent's Answer: {answer}\n")

While this simple implementation of the ReAct agent provides an intuition of
how LLMs can use iterative reasoning and external tools, it has notable limitations
that highlight the need for higher-level frameworks. A key challenge is the explicit
stopping of text generation to identify tool invocations, execute actions, and then
manually resume reasoning with an updated prompt. Additionally, the stopping
criteria rely on hardcoded sequences, such as detecting “Observation:” in the
output, which can be unreliable and may fail if the model generates unexpected
variations. Moreover, tools must be defined manually with specific input and output
structures, placing a significant burden on developers to design and integrate new
functionalities. These limitations can make scaling the agent to more complex tasks
or diverse toolsets challenging.

High-level abstractions, such as those offered by LangChain and LangGraph,
address these issues by offering an ecosystem of diverse tools, agentic frameworks
(e.g., ReAct), and even the ability to design complex flows involving LLM-MA.

8.5.2 Implementing an LLM Agent Using Langchain

Wewill now discuss how to implement a ReAct agent with the high-level abstraction
provided by the Langchain and the Langgraph libraries. We will leverage their

8 Large Language Model Agents 195

ecosystem of tools to create an LLM Agent that can search the Web and Wikipedia
to answer questions.

We will first start by implementing the ReAct agent using LangChain. We will
start by importing the necessary libraries.

Import the required libraries

1 from langchain import hub
2 from langchain.agents import AgentExecutor, create_react_agent
3 from langchain.agents import load_tools
4 from langchain_openai import ChatOpenAI
5 import os
6

7 if "OPENAI_API_KEY" not in os.environ:
8 os.environ["OPENAI_API_KEY"] = "your-openai-key"
9

10 if "SERPAPI_API_KEY" not in os.environ:
11 os.environ["SERPAPI_API_KEY"] = "your-serapi-key"

The hub, AgentExecutor, create_react_agent, and load_tools modules
from LangChain are used to manage prompts, construct the agent, and load tools.
LangChain’s ecosystem supports a wide variety of tools, such as Web search,
Wikipedia, calculators, and APIs, enabling seamless integration with external
resources. Additionally, we import ChatOpenAI from langchain_openai to
instantiate our LLM.

We will use OpenAI’s GPT-4o-mini as our agent in this example. To set up the
model, we need to set the OPENAI_API_KEY for accessing the model. We will also
set the SERPAPI_API_KEY for using SerpApi, which is an API to access Google
search results, which we will expose as one of the tools for our agent.

The next step consists of loading the tools. As mentioned before, we will load
two tools for this example: SerpApi, for searching the Web, and Wikipedia. Both
tools are integrated into the Langchain ecosystem and can be defined using the
load_tools function from Langchain, which conveniently wraps them as tools to
be used by an LLM agent:

Define the list of tools

1 tools = load_tools(["serpapi", "wikipedia"])

We then define the prompt that will guide the agent’s reasoning process.

Pull the ReAct prompt from the LangChain Hub

1 prompt = hub.pull("hwchase17/react")

The LangChain ecosystem includes a repository called the LangChain Hub,
where prompts, models, and other reusable resources are stored and shared. Using

196 J. G. Mathew and J. Rossi

the hub.pull method, we retrieve the react prompt designed for the ReAct
framewo rk.

The LLM is selected next. We use the ChatOpenAI class to instantiate a model,
specifying gpt-4o-mini as the version.

Define the model

1 llm = ChatOpenAI(model= "gpt-4o-mini")

With the tools, prompt, and LLM in place, we construct the ReAct agent using
the create_react_agent function.

Create the ReAct agent

1 agent = create_react_agent(llm, tools, prompt)

Finally, we create the AgentExecutor, which serves as the execution engine for
the agent. Passing the constructed agent and tools to the AgentExecutor and setting
verbose=True, we enable detailed logging of the agent’s intermediate steps. This
is useful for debugging and understanding how the agent reasons through tasks, as
it provides a complete view of the reasoning, action, and observation loop.

Wrap the agent for subsequent execution

1 agent_executor = AgentExecutor(agent=agent, tools=tools, verbose =True)

The ReAct agent can then be queried using the .invoke method of
AgentExecutor :

Run the agent

1 agent_executor.invoke({"input": "who is Massimo Mecella?" })

Here’s an excerpt of the output from the execution of the ReAct agent:

Reasoning/thinking in ReAct

I should start by looking up Massimo Mecella on Wikipedia to gather
relevant information about him.↪→

Action: Wikipedia
Action Input: Massimo Mecella

... (continue)

There doesn't seem to be relevant information about Massimo Mecella
directly from the initial search results on Wikipedia. I might need
to look deeper or consult another source.

↪→
↪→

8 Large Language Model Agents 197

Action: Search
Action Input: Massimo Mecella

... (continue)

I found relevant information about Massimo Mecella, including his
educational background, research interests, and current position.↪→

Action: Search
Action Input: Massimo Mecella Sapienza University of Rome profile

... (continue)

I now have a comprehensive profile of Massimo Mecella, detailing his
education, current position, and research interests.↪→

Final Answer: Massimo Mecella is an associate professor at Sapienza
University of Rome, where he specializes in Information Systems
Engineering. He was born in Rome, Italy, in 1973 and holds a PhD in
Computing Science and Engineering from the same university. His
research interests include business process management, software
engineering, and various information systems applications.

↪→
↪→
↪→
↪→
↪→

The agent first attempts to look up details about a person named Massimo
Mecella on Wikipedia but finds no relevant results. It then issues a general Web
search to gather information, retrieving details about a person named Massimo
Mecella who works at Sapienza University of Rome. To refine its understanding, the
agent formulates a more specific search query targeting his professional profile at
the university. After retrieving this additional information, it synthesizes the results
into a final answer about Massimo Mecella, including his academic background,
research interests, and current position.

Compared to the previous implementation (cf. Sect. 8.5.1) where we had to
explicitly handle passing the prompt to the model, pausing generation to detect tool
usage, calling the tools, and then resuming the reasoning process, the combined
use of create_react_agent and AgentExecutor abstracts away much of this
complexity. In fact, the create_react_agent function automatically integrates
the tools and the prompt with the LLM. The AgentExecutor instead transparently
manages the process of stopping generation when an action (e.g., a tool invocation)
is detected and then resumes reasoning seamlessly after the output from t he tool is
obtained.

8.5.3 Implementing LLM-MA with LangGraph

We will now discuss how to implement a LLM-MA system with LangGraph.
LangGraph is a Python library part of the LangChain ecosystem and is designed

198 J. G. Mathew and J. Rossi

to facilitate the orchestration of workflows involving stateful interactions between
agents. Its foundation is the state graph, a directed graph where nodes represent
tasks or agents and edges define the transitions between them. The state graph
integrates both the logic of individual tasks and the flow of data, making it ideal for
scenarios involving complex task coordination. The core components of LangGraph
include:

• Nodes: represent tasks or agents that modify or act upon the shared state.
• Edges: define how tasks connect and transition from one to another. Conditional

edges allow the workflow to adapt dynamically based on intermediate outcomes.
• State: a mutable object shared across tasks, carrying the data that evolves through

the workflow.
• Special nodes: START and END are predefined nodes marking the beginning and

conclusion of the workflow.

This graph-based abstraction provides enough flexibility to cover a variety of
different profile, communication, and evolution settings, allowing LLMs to interact
conditionally and adaptively and enabling precise coordination in even the most
complex workflows.

We will use LangGraph in this section to create an automated research assistant
that uses multiple agents to streamline the process of finding and filtering academic
research papers. The workflow starts with a search agent that queries Google Scholar
through the scholarly library. This library provides a programmatic way to
interact with Google Scholar, retrieving metadata for academic papers such as titles,
authors, and publication venues. Once the initial papers are retrieved, a filtering
agent evaluates their relevance to the initial query. This agent analyzes the content
of each paper’s metadata and determines whether it aligns closely with the original
search query. A supervisor agent then reviews the filtered papers. If the number of
relevant papers is sufficient, the workflow concludes by providing the user with
the title, authors, publication year (if available), and venue (if available) of the
relevant papers. However, if the relevant papers are too few, the supervisor triggers
a query refinement process. A dedicated query refinement agent then generates a
more precise search query, and the process is repeated to improve the results.

We will start by importing the relevant libraries first and setting the environment
variables since we will use GPT 4o-mini in this e xample:

Import the required libraries

1 import os
2 from scholarly import scholarly
3 from langchain_openai import ChatOpenAI
4 from langchain.prompts import ChatPromptTemplate
5 from langgraph.graph import StateGraph, START, END
6

7 if "OPENAI_API_KEY" not in os.environ:
8 os.environ["OPENAI_API_KEY"] = "your-openai-key"

8 Large Language Model Agents 199

Then we define the first agent, search_agent, which queries Google Scholar
for academic papers.

Define the search agent

1 def search_agent(state):
2 query = state.get("query", "applications of AI in education")
3 search_results = scholarly.search_pubs(query)
4 papers = []
5 for i in range(5): # Limit to 5 results for simplicity
6 try:
7 paper = next(search_results)
8 papers.append({
9 "title": paper['bib']['title'],

10 "authors": paper['bib']['author'],
11 "pub_year": paper['bib'].get('pub_year', 'Unknown'),
12 "venue": paper['bib'].get('venue' , 'Unknown'),
13 "abstract": paper['bib'].get('abstract', 'Unknown')
14 })
15 except StopIteration:
16 break
17 state["papers"] = papers
18 return state

This function extracts the query (line 2) from the shared state (defaults to
“applications of AI in education” if no query is provided) and uses scholarly to
retrieve search results (line 3). The first five results are stored in a structured format
(lines 8–13) containing the paper’s title, authors, publication year, and venue. The
results are added to the state (line 17) for subsequent processing.

Then, the filter_agent evaluates the relevance of the retrieved papers by
interacting with OpenAI’s GPT 4o-mini.

Define the filter agent

1 def filter_agent(state):
2 papers = state.get("papers", [])
3 if not papers:
4 state["filtered_papers"] = []
5 return state
6

7 llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
8 filtered_papers = []
9

10 for paper in papers:
11 title = paper['title']
12 prompt = ChatPromptTemplate.from_messages([
13 ("system", "You are a helpful academic assistant."),
14 ("user", f"Is this paper titled '{title}' relevant to the query

'{state['query']}'?. Here is the abstract:\n{paper['abstract']}.\n
Reply with 'Yes' or 'No'.")

↪→
↪→

200 J. G. Mathew and J. Rossi

15])
16 response = llm(prompt.format_messages())
17 if "Yes" in response.content:
18 filtered_papers.append(paper)
19

20 state["filtered_papers"] = filtered_papers
21 return state

This agent retrieves the list of papers from the state (line 2) and evaluates each
one using GPT 4o-mini. A prompt is created for each paper (line 12), asking the
model if it is relevant to the query. Papers identified as relevant are added to the
filtered list (lines 17–18), which is stored in the state. If the filtered results are
inadequate, the query_refinement_agent refines the query to improve search
results, as shown in the code below :

Define the query refinement agent

1 def query_refinement_agent(state):
2 query = state.get("query", "")
3 feedback = state.get("feedback", "No relevant papers found.")
4 llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
5 prompt = ChatPromptTemplate.from_messages([
6 ("system", "You are a helpful research assistant."),
7 ("user", f"Refine this query: '{query}' to improve search results.

Feedback: {feedback}")↪→
8])
9 response = llm(prompt.format_messages())

10 state["query"] = response.content.strip()
11 return state

This function refines the query by using feedback and GPT 4o model. The refined
query is added back to the state (line 10) for another iteration of the search process.
The supervisor_agent decides whether the workflow should finalize or refine the
query .

Define the supervisor agent

1 def supervisor_agent(state):
2 filtered_papers = state.get("filtered_papers", [])
3 if len(filtered_papers) <= 1: # trigger refinement if 0 or 1 paper is

found↪→
4 state["decision"] = "refine"
5 state["feedback"] = f"Only {len(filtered_papers)} relevant paper(s)

found. Refining the query."↪→
6 else:
7 summary = f"Found {len(filtered_papers)} relevant papers:\n"
8 for idx, paper in enumerate(filtered_papers, 1):
9 summary += f"{idx}. {paper['title']} by {', '.join(paper['authors'])}"

10 if paper['pub_year'] and paper['pub_year'] != "NA":

8 Large Language Model Agents 201

11 summary += f" ({paper['pub_year']})"
12 if paper['venue'] and paper['venue'] != "NA":
13 summary += f" in {paper['venue']}"
14 summary += "\n "
15 state["decision"] = "finalize"
16 state["summary"] = summary
17

18 return state

If the number of relevant papers is greater than one, the agent finalizes the
workflow by summarizing the papers (lines 7–16), including their titles, authors,
publication years, and venues. Otherwise, it triggers query refinement by updating
the state with feedback (lines 4–5).

These four agents are combined into an LLM-MA system using the graph-based
abstraction offered by LangGraph, with nodes representing each agent and edges
defining their transitions, as shown below:

Graph-based representation of the LLM-MA system with LangGraph

1 graph_builder = StateGraph(State)
2 # nodes (agents)
3 graph_builder.add_node("SearchAgent", search_agent)
4 graph_builder.add_node("FilterAgent", filter_agent)
5 graph_builder.add_node("SupervisorAgent", supervisor_agent)
6 graph_builder.add_node("QueryRefinementAgent", query_refinement_agent)
7 # edges (transitions)
8 graph_builder.add_edge(START, "SearchAgent")
9 graph_builder.add_edge("SearchAgent", "FilterAgent")

10 graph_builder.add_edge("FilterAgent", "SupervisorAgent")

Conditional edges are added to enable dynamic routing based on the supervisor
agent’s decisions:

Routing logic

1 def supervisor_routing(state: State) -> str:
2 if state.get("decision") == "refine":
3 return "QueryRefinementAgent"
4 elif state.get("decision") == "finalize":
5 return END
6 else:
7 raise ValueError(f"Unexpected decision: {state.get('decision')}")
8 # other edges (transitions)
9 graph_builder.add_conditional_edges("SupervisorAgent",

supervisor_routing)↪→
10 graph_builder .add_edge("QueryRefinementAgent", "SearchAgent")

Finally, the workflow is compiled and executed with an initial query:

202 J. G. Mathew and J. Rossi

Run the LLM-MA system

1 graph = graph_builder.compile()
2

3 initial_input = {"query": "service composition roman model"}
4

5 final_state = graph.invoke(initial_input)
6

7 if final_state.get("decision") == "finalize":
8 print(final_state.get("summary"))
9 else:

10 print("Refined Query Suggested:")
11 print (final_state.get("query"))

The system processes the query, either producing a list of relevant academic
papers or refining the query and rerunning the system to improve the results. The
output of this process is displayed below:

Sample output

1. Automatic Service Composition and Synthesis: the Roman Model. by D
Calvanese, G De Giacomo, M Lenzerini (2008) in IEEE Data Eng. Bull↪→

2. Automated service composition based on behaviors: The roman model by
G De Giacomo, M Mecella, F Patrizi (2013) in Web services
foundations

↪→
↪→
3. Best Service Synthesis in the Weighted Roman Model. by D Calvanese,

A Santoso (2012) in ZEUS↪→
4. Automatic Composition of e-Services: The "Roman" way by D Berardi

LangGraph also allows the visualization of the constructed workflow graph,
providing a clear representation of how the nodes (agents) and edges (transitions)
interact, thus helping in understanding the flow of tasks and possibly debugging the
logic of the LLM-MA system, as shown in the code below:

Generating a diagram of the LLM-MA system

1 from IPython.display import Image, display
2 from langchain_core.runnables.graph import MermaidDrawMethod
3

4 graph_png = graph.get_graph() .draw_mermaid_png(
draw_method=MermaidDrawMethod.PYPPETEER)↪→

5 display(Image(graph_png))

The resulting graph is shown in Fig. 8.5. The __start__ node marks the entry
point, leading directly to the SearchAgent, which initializes the workflow. The
__end__ node signifies the conclusion of the process when sufficient results are
found.

Two types of edges connect the nodes: solid edges, such as those between
the SearchAgent and FilterAgent, represent the default sequential flow of

8 Large Language Model Agents 203

Fig. 8.5 Graph
representation of the
LLM-MA system built with
LangGraph

tasks like searching and filtering papers. Dotted edges, such as the one from the
SupervisorAgent to the QueryRefinementAgent, are conditional and reflect the
dynamic nature of the workflow, triggered when the supervisor determines that
query refinement is needed. The loop from the QueryRefinementAgent back to
the SearchAgent ensures that the refined query is used for another search iteration.

8.6 Concluding Remarks

This chapter presented an in-depth exploration of LLM agents and multi-agent
systems, highlighting their role in addressing complex and articulated tasks. While
traditional LLMs are powerful in language processing, their limitations in plan-
ning, multi-step reasoning, and external interaction necessitate the development of
agent-based architectures. By integrating memory, structured decision-making, and
external tool usage, LLM agents enhance problem-solving capabilities and extend
the applicability of AI-driven systems. Additionally, we examined the broader
context of multi-agent systems, where multiple intelligent agents collaborate to
achieve shared objectives. Furthermore, we explored the application of LLM agents
and multi-agent systems in software engineering, demonstrating how they can assist
in different tasks like code generation or testing. Finally, a practical guide on how to
program LLM agents and multi-agent systems was discussed, providing insights
into their implementation and deployment. As research in this area continues
to evolve, overcoming challenges related to efficiency, robustness, and ethical
considerations will be crucial for realizing the full potential of LLM agents in real-
world applications.

204 J. G. Mathew and J. Rossi

References

1. Canese, L., Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Giardino, D., Re, M., Spanò, S.:
Multi-agent reinforcement learning: A review of challenges and applications. Appl. Sci.
11(11), 4948 (2021)

2. Chen, Z., Zhou, K., Zhang, B., Gong, Z., Zhao, W.X., Wen, J.R.: Chatcot: Tool-
augmented chain-of-thought reasoning on chat-based large language models. arXiv preprint
arXiv:2305.14323 (2023)

3. Cinkusz, K., Chudziak, J.A.: Towards llm-augmented multiagent systems for agile software
engineering. In: Proceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering, pp. 2476–2477 (2024)

4. Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla, N.V., Wiest, O., Zhang, X.: Large
language model based multi-agents: A survey of progress and challenges. arXiv preprint
arXiv:2402.01680 (2024)

5. He, J., Treude, C., Lo, D.: Llm-based multi-agent systems for software engineering: Literature
review, vision and the road ahead. ACM Trans. Software Eng. Methodol. 34(5), 1–30 (2025)

6. Hong, S., Zheng, X., Chen, J., Cheng, Y., Wang, J., Zhang, C., Wang, Z., Yau, S.K.S., Lin, Z.,
Zhou, L., et al.: Metagpt: Meta programming for multi-agent collaborative framework. arXiv
preprint arXiv:2308.00352 (2023)

7. Huang, X., Liu, W., Chen, X., Wang, X., Wang, H., Lian, D., Wang, Y., Tang, R., Chen, E.:
Understanding the planning of llm agents: A survey. arXiv preprint arXiv:2402.02716 (2024)

8. Khan, A., Hughes, J., Valentine, D., Ruis, L., Sachan, K., Radhakrishnan, A., Grefenstette, E.,
Bowman, S.R., Rocktäschel, T., Perez, E.: Debating with more persuasive llms leads to more
truthful answers. In: Forty-first International Conference on Machine Learning (2024)

9. Li, M., Zhao, Y., Yu, B., Song, F., Li, H., Yu, H., Li, Z., Huang, F., Li, Y.: Api-bank: A
comprehensive benchmark for tool-augmented llms. arXiv preprint arXiv:2304.08244 (2023)

10. Li, X., Wang, S., Zeng, S., Wu, Y., Yang, Y.: A survey on llm-based multi-agent systems:
workflow, infrastructure, and challenges. Vicinagearth 1(1), 9 (2024)

11. Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S., Zhang, Y.: Chatdoctor: A medical chat model fine-
tuned on a large language model meta-ai (llama) using medical domain knowledge. Cureus
15(6), e40895 (2023). https://doi.org/10.7759/cureus.40895

12. Li, Y., Wen, H., Wang, W., Li, X., Yuan, Y., Liu, G., Liu, J., Xu, W., Wang, X., Sun, Y., et al.:
Personal llm agents: Insights and survey about the capability, efficiency and security. arXiv
preprint arXiv:2401.05459 (2024)

13. Motwani, S.R., Smith, C., Das, R.J., Rybchuk, M., Torr, P.H., Laptev, I., Pizzati, F., Clark,
R., de Witt, C.S.: Malt: Improving reasoning with multi-agent llm training. arXiv preprint
arXiv:2412.01928 (2024)

14. Park, J.S., Popowski, L., Cai, C., Morris, M.R., Liang, P., Bernstein, M.S.: Social simulacra:
Creating populated prototypes for social computing systems. In: Proceedings of the 35th
Annual ACM Symposium on User Interface Software and Technology, pp. 1–18 (2022)

15. Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J., Liu, Z., Sun, M.: Communicative agents
for software development. arXiv preprint arXiv:2307.07924 6 (2023)

16. Shen, Z.: Llm with tools: A survey. arXiv preprint arXiv:2409.18807 (2024)
17. Sumers, T.R., Yao, S., Narasimhan, K., Griffiths, T.L.: Cognitive architectures for language

agents. arXiv preprint arXiv:2309.02427 (2023)
18. Xu, Z., Yu, C., Fang, F., Wang, Y., Wu, Y.: Language agents with reinforcement learning

for strategic play in the werewolf game. In: Forty-first International Conference on Machine
Learning (2024)

19. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022)

20. Yuan, S., Song, K., Chen, J., Tan, X., Shen, Y., Kan, R., Li, D., Yang, D.: Easytool: Enhancing
llm-based agents with concise tool instruction. arXiv preprint arXiv:2401.06201 (2024)

https://doi.org/10.7759/cureus.40895
https://doi.org/10.7759/cureus.40895
https://doi.org/10.7759/cureus.40895
https://doi.org/10.7759/cureus.40895
https://doi.org/10.7759/cureus.40895
https://doi.org/10.7759/cureus.40895
https://doi.org/10.7759/cureus.40895

8 Large Language Model Agents 205

21. Zhang, K., Li, J., Li, G., Shi, X., Jin, Z.: Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339 (2024)

22. Zhang, Y., Yang, S., Bai, C., Wu, F., Li, X., Wang, Z., Li, X.: Towards efficient llm grounding
for embodied multi-agent collaboration. arXiv preprint arXiv:2405.14314 (2024)

23. Zhang, Z., Bo, X., Ma, C., Li, R., Chen, X., Dai, Q., Zhu, J., Dong, Z., Wen, J.R.: A
survey on the memory mechanism of large language model based agents. arXiv preprint
arXiv:2404.13501 (2024)

24. Zheng, J., Qiu, S., Shi, C., Ma, Q.: Towards lifelong learning of large language models: A
survey. arXiv preprint arXiv:2406.06391 (2024)

25. Zhu, X., Chen, Y., Tian, H., Tao, C., Su, W., Yang, C., Huang, G., Li, B., Lu, L., Wang, X.,
et al.: Ghost in the minecraft: Generally capable agents for open-world environments via large
language models with text-based knowledge and memory. arXiv preprint arXiv:2305.17144
(2023)

26. Zhuang, Y., Yu, Y., Wang, K., Sun, H., Zhang, C.: Toolqa: A dataset for llm question answering
with external tools. Adv. Neural Inf. Process. Syst. 36, 50117–50143 (2023)

Chapter 9
Applications of Large Language Models
in Information Systems

Jerin George Mathew and Flavia Monti

Abstract The integration of large language models (LLMs) into information
systems is revolutionizing data management and business process automation.
This chapter presents two complementary approaches that leverage LLMs to
enhance intelligent data processing and workflow execution. By enabling the
seamless integration of heterogeneous data and increasing the adaptability of
business process management systems, these approaches highlight the potential
of LLMs to optimize and advance information systems. Implementation examples
provide practical guidelines for developing LLM-based applications for real-world
scenarios, illustrating how LLMs can drive efficiency, automation, and intelligent
decision-making within information systems.

9.1 Introduction

The increasing adoption of large language models (LLMs) in various domains
has transformed how data is processed, retrieved, and utilized. In the context of
industrial applications and business process automation, LLMs offer significant
potential for enhancing the efficiency and adaptability of available application
systems, also referred to as information systems.

This chapter presents two complementary works that leverage LLMs for data
synthesis and process execution. The first work, COSMADS (COmposing SMArt
Data Services) [5], addresses the challenge of data accessibility and integration
in industrial settings. Manufacturing environments generate vast amounts of het-
erogeneous data, often siloed across different systems. COSMADS facilitates data
retrieval through the dynamic composition of information extraction pipelines in
response to natural language queries. An LLM agent and a structured repository
of data services and past pipelines enable efficient on-demand data processing,
bridging the gap between operators and digital resources. The second work,

J. G. Mathew (�) · F. Monti
Sapienza Università di Roma, Rome, Italy
e-mail: mathew@diag.uniroma1.it; monti@diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_9

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 9&domain=pdf
https://orcid.org/0000-0002-4626-826X
https://orcid.org/0000-0003-3349-7861

 885 56845
a 885 56845 a

mailto:mathew@diag.uniroma1.it
mailto:mathew@diag.uniroma1.it
mailto:mathew@diag.uniroma1.it

 11424 56845 a 11424
56845 a

mailto:monti@diag.uniroma1.it
mailto:monti@diag.uniroma1.it
mailto:monti@diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9
https://doi.org/10.1007/978-3-031-92285-5_9

208 J. G. Mathew and F. Monti

NL2ProcessOps [8], focuses on business process automation by extracting struc-
tured process operations from natural language process descriptions. Traditional
business process modeling techniques require predefined workflows, which may
lack flexibility in dynamic environments. ProcessOps employs an LLM-based
approach to translate textual process descriptions into executable scripts, ensuring
rapid process adaptation. Tool descriptions and context-aware retrieval mechanisms
support the generation of Python-based process workflows that can be executed
within business process management systems. The chapter presents such works
focusing on the functioning of the developed LLM-based solutions; if the reader
wants to get more details on the evaluation, please refer to the related full papers.

Together, these works showcase the potential of LLMs in facilitating intelligent
data management and process automation. COSMADS emphasizes data retrieval
and synthesis in industrial settings, while ProcessOps extends these capabilities to
business process execution, demonstrating how LLMs can drive automation across
different operational domains.

9.2 Data-on-Demand in the Industrial Domain with LLMs

In modern manufacturing environments, the ability to access and synthesize data
on demand is increasingly vital for maintaining operational efficiency and agility.
From shop floors to administrative offices, manufacturing companies generate vast
amounts of heterogeneous data, including sensor readings, production metrics, and
machine statuses. However, this data often resides in siloed systems, limiting its
accessibility and utility. In this section, we introduce COSMADS—COmposing
SMArt Data Services [5]—a tool that synthesizes information extraction pipelines,
in the form of Python scripts, starting from natural language queries and a
documented codebase consisting of available data services and possibly other,
previously defined, information extraction pipelines. Such pipelines, in particular,
can be either manually defined or formerly generated with COSMADS.

9.2.1 The COSMADS Architecture

Figure 9.1 depicts the architectural components of COSMADS. A new execution
is spawned as soon as a human operator specifies a natural language query 1©
to retrieve information from the ongoing manufacturing process. A query can be
parametric, meaning that it can provide a set of input arguments (e.g., a time
range or a specific kind of defect to be monitored). The reader can imagine the
human operator to have little or zero knowledge about the available data services.
As a consequence, it can be supposed that the query only expresses the required
information without technical details on how to compute it.

9 Applications of Large Language Models in Information Systems 209

Fig. 9.1 COSMADS high-level architecture [5]

The core of the architecture is represented by an LLM agent that instructs a pre-
trained LLM by feeding a query-specific prompt, which is built according to the
output of the dynamic context retrieval component. This module analyzes the query
and retrieves 2a©, a set of example pipelines from a pipeline repository, and 2b©, a set
of data services from a data service repository that can be used to answer the query.

Data services exposed by manufacturing assets in a factory can range from
operational/actuating services (e.g., turning on the camera) to services that generate
data (e.g., getting the current speed of the die cutting machine using its embedded
chip). Data services can be accessed using different paradigms and communication
protocols, but for simplicity, the authors assume they can be called through function
calls wrapping the actual calling mechanism. A data service can expect a set of
parameters and returns an output, which can be either structured or unstructured.
For each data service, the data service repository contains a documentation, i.e., a
textual description of the functioning and usage of a data service.

The pipeline repository consists of all the pipelines already available. These
pipelines can be manually defined or obtained from previous executions of COS-
MADS. Each pipeline is associated with the query it fulfills. In general, pipelines
can be defined using various modeling formalisms, such as programming languages
and scientific workflow scripting languages [9], among others. In COSMADS,
pipelines are software (Python) scripts that (i) produce a table as an output and
(ii) make use of data services.

Examples of pipelines and documentation of relevant data services are fed 3© to
the LLM Agent together with the original query. Such input data is incorporated into
a prompt, according to a specific prompt template. The output pipeline generated by
the LLM agent is then sent 4© to the execution module (e.g., the Python interpreter).

The execution of the pipeline finally 5© produces a table answering the query. If
the human operator thinks the produced pipeline can be helpful as a future reference
for future queries, the pipeline together with the originating query can be stored 6©
in the pipeline repository.

210 J. G. Mathew and F. Monti

9.2.2 Implementing COSMADS

A Python-based prototype of COSMADS1 has been implemented using the
LangChain framework. The base LLM model utilized for the LLM agent relies
on GPT-4 (gpt-4-turbo) by OpenAI.2

9.2.2.1 Dynamic Context Retrieval

The contextual information required for the prompt of the LLM agent consists
of (i) relevant previous queries with corresponding pipelines to be used as few-
shot examples and (ii) the set of data services needed for solving the input query.
As discussed in Sect. 9.2.1, this information can be obtained from the pipeline
repository and the data service repository, respectively.

The pipeline repository is implemented as a vector store containing the vector
representations of queries already solved. Each vector contains the embedding of
the query and some metadata, including the path to the Python script containing
the pipeline that solves that query. An example of a query that is embedded into
a dense vector is provided belo w.

Example of stored query and pipeline metadata

1 {
2 "query": "Consider the next 5 carboard of the first diecutter.

Generate a table containing: (i) the number of cardboards
with no defects, (ii) those with errors, (iii) how many
fold errors, and (iv) how many hole errors.",

↪→
↪→
↪→

3 "metadata":{
4 "pipeline": "pipelines/04_07_2024-21_43_24.py"
5 }
6 }

The embedding is computed by applying the text-embedding-ada-002 model
by OpenAI. For the vector store, the authors rely on DocArray’s DocInde x,3 which
is well integrated into LangChain and allows us to efficiently access stored data.
The implementation details of the pipeline repository are provided below, omitting
or simplifying some methods for the sake of clarity.

1 https://github.com/jermathew/COSMADS.
2 The base LLM model for the LLM agent can be any LLM model available in the literature. Some
changes in the prompt may be necessary if another model is selected.
3 Cf. https://github.com/docarray/docarray.

https://github.com/jermathew/COSMADS
https://github.com/jermathew/COSMADS
https://github.com/jermathew/COSMADS
https://github.com/jermathew/COSMADS
https://github.com/jermathew/COSMADS
https://github.com/docarray/docarray
https://github.com/docarray/docarray
https://github.com/docarray/docarray
https://github.com/docarray/docarray
https://github.com/docarray/docarray

9 Applications of Large Language Models in Information Systems 211

Pipeline repository implementation

1 from langchain_community.vectorstores import DocArrayInMemorySearch
2 from langchain_core.documents import Document
3 import json
4

5

6 class PipelineStore():
7

8 def __init__(self):
9 json_setup = json.load(open('queries_pipelines.json'))

10 queries = json_setup.keys()
11 self.docs = []
12 for q in queries:
13 self.docs.append(
14 Document(
15 page_content = json_setup[q]['query'],
16 metadata = {"pipeline":json_setup[q]['pipeline']}
17)
18)
19

20 def embed_docs(self, embedding_function):
21 self.embedding_function = embedding_function
22

23 self.db = DocArrayInMemorySearch.from_documents(documents=self.docs,
embedding=embedding_function)↪→

24

25 def search(self, query):
26 best_result = None
27 best_match = self.db.similarity_search(query)
28 best_result = best_match[0]
29 return {'api_name': self.__class__.__name__, 'input': query, 'output':

best_result, 'exception': None}↪→

The vector store is implemented as a Python class called PipelineStore.
During instantiation (lines 8–18), the PipelineStore reads a JSON file containing
the list of available pipelines and the query from which they stem. Each query-
pipeline pair in the JSON file is formatted similarly to the example provided above.
Each query is then wrapped into a Document, a built-in class from the LangChain
library that provides a unified interface for managing and manipulating documents
(e.g., generating an e mbedding).

The embed_docs method (line 20) contains the logic for embedding each
Document parsed from the JSON file during initialization. The method takes an
embedding function parameter, i.e., a function that maps a string to a dense
vector using an embedding model and uses it to embed each query and store it
into DocArray, using the DocArrayInMemorySearch class. The latter represents a
wrapper class for DocArray that allows easy storage of embeddings and performing
queries.

The retrieval procedure is implemented in the search method (line 25). The
core part is the similarity_search function, which takes a query as a parameter

212 J. G. Mathew and F. Monti

and (i) transparently embeds it into a dense vector and (ii) returns a sorted list of
similar queries in descending order of cosine similarity. Particularly, given a natural
language query, the dynamic context retrieval component computes its embedding
and retrieves the top-K similar queries from the vector store.

The PipelineStore can be initialized and the text-embedding-ada-002
model by OpenAI can be specified as the embedding function using the
OpenAIEmbeddings class, as shown in the code snippet below:

Specify an embedding function for DocArray

1 from langchain_openai import OpenAIEmbeddings
2

3 self.pipeline_store = PipelineStore()
4 openai_key = None # replace with your OpenAI API key
5 embedding_function = OpenAIEmbeddings(model="text-embedding-ada-002",

api_key=openai_key)↪→
6 self .pipeline_store.embed_docs(embedding_function)

To simplify interaction with the PipelineStore and allow for convenient
configuration, the system introduces a wrapper class, PipelineManagerDB .

The PipelineManagerDB wrapper class

1 class PipelineManagerDB:
2

3 def __init__(self, openai_key):
4 self.pipeline_store = PipelineStore()
5 embedding_function = OpenAIEmbeddings(model="text-embedding-ada-002",

api_key=openai_key)↪→
6 self.pipeline_store.embed_docs(embedding_function)
7

8 if __name__ == '__main__':
9 openai_key = None # replace with your OpenAI API key

10

11 tools_manager = PipelineManagerDB(openai_key=openai_key)

This wrapper simplifies the initialization of the vector store by enabling
direct specification of the embedding function, which, in our case, is OpenAI’s
text-embedding-ada-002 model.

The set of data services needed for solving the input query is stored in the
data service repository. A data service is used to retrieve historical or online data.
Online data is often associated with the execution of some operation (e.g., taking a
picture). As a consequence, any asset of the company exposing services to support
its operational functionalities can be considered a data service. Referring to the
example case study, an example of data service is the service related to the camera
asset that captures frames (i.e., DS3). In COSMADS, each data service is realized
as a Python class having two main components: (i) a function wrapping the existing
service of the asset and representing the actual execution logic and (ii) a class

9 Applications of Large Language Models in Information Systems 213

variable containing the documentation. The LLM agent relies on the documentation
of the data services, which summarizes their capabilities, how they need to be used,
a one-shot example, and a specification of the input and output parameters. The
data service documentation of the camera asset capturing frames is provided below.
Notably, this documentation corresponds to what in traditional service composition
was referred to as service description.

Data service contextual information

1 "brief_description": "Data service that, given the id of a camera1,
provides a frame captured from that camera1.",↪→

2 "detailed_description":
3 """Data service that, given the id of a camera1, provides a frame

captured from that camera1.↪→
4 In general instances of camera1 point downwards to a conveyor belt of a

specific production line that transports single cutout cardboards
produced by a specific die machine.

↪→
↪→

5 The data service takes a single parameter, namely the id of the camera1
(an integer) and returns a frame captured from that camera1 as a
numpy matrix.

↪→
↪→

6 The matrix is a 2D array having a shape of (1080, 1920, 3) where 1080
is the height, 1920 is the width and 3 is the number of channels
(RGB).

↪→
↪→

7 Example usage:
8 - If the id of the camera1 is 123, then the data service would be

called as follows:↪→
9 camera1_id = 123

10 frame = GetFrameFromCamera1.call(camera1_id=123)
11 # assuming the frame is a numpy matrix
12 print(frame.shape) # (1080, 1920, 3)
13 Things to keep in mind:
14 - The refresh rate of the camera is 1 second, i.e. the frame is updated

every second, so if the data service is called multiple times
within a second, it will return the same value.

↪→
↪→

15 - The frame is a numpy matrix, so avoid trying to access it as a
dictionary.""",↪→

16 "input_parameters": ["camera1_id:int"],
17 "output_values": ["frame:np.matrix"],
18 "module": "camera1"

Noteworthy, while the dynamic context retrieval selects only K example
pipelines to be included in the prompt, all data services are considered. This
approach is justified by the assumption that the number of services in the entire
repository remains relatively stable, as the codebase of a company typically grows
slowly and is also relatively small compared to the maximum prompt length
allowed by the LLM. Conversely, the number of pipelines is expected to grow more
significantly over time, as new pipelines are added to the repository, either through
manual definition or automatic generation by COSMADS. Also, this excludes the
possibility an incorrect pipeline is generated, simply because information about
needed data services is not available.

214 J. G. Mathew and F. Monti

9.2.2.2 LLM Agent

The LLM agent leverages the ICL ability of LLMs [2]. The quality of the output
though is strongly dependent on the quality of the provided prompt [13]. For
COSMADS, in particular, a prompt template is designed to be filled with the output
of the dynamic context retrieval module, which follows the most common best
practices [14]. These include (i) expressing the goal task clearly, (ii) including
contextual information, (iii) providing demonstrations, and (iv) utilizing model-
friendly format style. The prompt template is provided below:4

Prompt template

<LLM AGENT EXPERTISE>
Query: {query}
<GOAL DESCRIPTION>
{data_services}
<DATA SERVICES DOCUMENTATIONS STRUCTURE>
<GUIDELINES>
Here examples of pipelines that may help you in generating a new

pipeline:↪→
Query: {example_query}
Pipeline: {example_pipeline}
...other examples...
Answer:

The invariable parts of the prompt include (i) a system header describing the
skills of the agent, (ii) a description of the specific goal to be fulfilled, (iii) the
description of the structure of the documentation of the data services, and (iv) a
set of guidelines the output of the agent must respect. It also contains the dynamic
context retrieval output, i.e., the set of data services the pipeline can call, and the
example queries. Finally, the input natural language query to be answered is also
provided.

The implementation of the LLM agent is provided below.

Implementation of the LLM Agent

1 from langchain.prompts import ChatPromptTemplate
2 from langchain.schema import BaseOutputParser
3 from langchain_openai import ChatOpenAI
4

5 class PipelineGeneratorAgent:
6 """The agent that designs the pipeline."""
7

8 def __init__(self, openai_key):

4 The full prompt is available at https://github.com/jermathew/COSMADS/blob/main/src/
pipeline_chain.py.

https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py
https://github.com/jermathew/COSMADS/blob/main/src/pipeline_chain.py

9 Applications of Large Language Models in Information Systems 215

9 """Initialize the agent."""
10 # define the prompt
11 prompt_template = TEMPLATE
12 self.prompt = ChatPromptTemplate.from_template(prompt_template)
13 # define the LLM
14 self.llm = ChatOpenAI(model="gpt-4-turbo",
15 api_key=openai_key,
16 temperature=0.0)
17 # define the output parser
18 self.output_parser = CustomOutputParser()
19

20 def get_chain(self):
21 # generate the python function
22 agent_chain = self.prompt | self.llm | self.output_parser
23 return agent_chain
24

25

26 class CustomOutputParser(BaseOutputParser):
27 """The output parser for the LLM."""
28

29 def parse(self, text: str) -> str:
30 text = text.strip("\n")
31 text = text.strip()
32 # count how many `` ̀ are in the text
33 back_count = text.count("���")
34 if back_count != 2:
35 print(text)
36 raise ValueError("The string should contain exactly two triple

backticks")↪→
37 code = text.split("���")[1]
38 code = code.strip()[len("python"):].strip()
39 return code

The LLM agent is implemented as a class called PipelineGeneratorAgent,
and its inner logic is defined in the get_chain method (line 20). This method
implements the chain as a linear sequence of tasks, consisting of (i) passing the
prompt to the model, (ii) generating the pipeline, and (iii) parsing its output. This
sequence of steps is defined in line 22 using LCEL. The final part of the pipeline
involves a custom output parser, which is used to parse the output generated by
the LLM agent. The prompt, the LLM, and the output parser are defined in the
constructor of the PipelineGeneratorAgent (lines 8–18). The prompt is set
up in line 11 according to the previously described prompt structure and is then
wrapped into a ChatPromptTemplate, a utility class to format the prompt for
OpenAI’s GPT models. The constructor also creates a ChatOpenAI object, which
is a general wrapper for OpenAI models and is set up with gpt-4-turbo. Finally, a
CustomOutputParser object (defined in lines 26–39) is initiated, which strips off
character delimiters from the Python code generated by the LLM agent.

216 J. G. Mathew and F. Monti

9.2.2.3 The COSMADS LCEL Chain

We have already seen an example of a chain in the PipelineGeneratorAgent
class:

The chain used in PipelineGeneratorAgent

1 def get_chain(self):
2 # generate the python function
3 agent_chain = self.prompt | self.llm | self.output_parser
4 return agent_chain

This simple composition demonstrates how LangChain chains can be built
using modular components. The LangChain Expression Language (LCEL) extends
this idea by structuring more complex chains that involve multiple sequential
and parallel operations. It introduces components such as RunnableLambda for
single-step transformations and RunnableParallel for concurrent execution,
enabling efficient and flexible task orchestration. LCEL also allows for the dynamic
composition of LLM-driven workflows, making them well suited for integrating
retrieval, generation, and execution steps, as seen in the COSMADS system.

We now present the high-level functioning of COSMADS through its LCEL
chain. The main implementation is encapsulated in the COSMADS class, detailed
below .

The COSMADS class

1 import sys
2 from pathlib import Path
3 import dotenv
4 import os
5 from langchain.schema.runnable import Runnable, RunnableLambda,

RunnableParallel, RunnablePassthrough↪→
6

7 # append the path to the parent directory to the system path
8 import sys
9 sys.path.append(str(Path(__file__).parent.parent.parent))

10

11 from pipeline_manager_db import PipelineManagerDB
12 from pipeline_chain import PipelineGeneratorAgent
13 from runner_chain import PipelineRunner
14

15 INTERMEDIATE_RESULTS_FILEPATH = Path(__file__).parent /
"temp_pipeline.py"↪→

16

17 class COSMADS:
18 def __init__(self):
19 dotenv.load_dotenv()
20 OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
21

22 self.pipeline_manager = PipelineManagerDB(OPENAI_API_KEY)

9 Applications of Large Language Models in Information Systems 217

23 self.generator = PipelineGeneratorAgent(OPENAI_API_KEY)
24 self.runner = PipelineRunner()
25

26

27

28 def get_chain(self) -> Runnable:
29 generator_chain = self.generator.get_chain()
30 runner_chain = self.runner.get_chain()
31

32 generator_chain_output = {
33 "pipeline": generator_chain,
34 "inputs": RunnablePassthrough()
35 }
36

37 runner_chain_output = {
38 "output": runner_chain,
39 "inputs": RunnablePassthrough()
40 }
41

42 chain = ...
43

44 # return the chain
45 return chain
46

47

48 if __name__ == "__main__":
49 llm = COSMADS()
50 query = "" # your query here
51 result = llm.get_chain().invoke(query)
52 print(result["output"])

The COSMADS class includes a get_chain method that consists of a Runnable
object implementing the COSMADS processing flow depicted in Fig. 9.1. The chain
can be called using the invoke method (line 54) by passing an input query and will
execute the COSMADS system, including the generation of the Python script and
its ex ecution.

The execution of the generated pipeline is managed by the PipelineRunner
class, which is responsible for running the generated Python script and processing
its results. We provide the implementation details of the PipelineRunner class
belo w:

PipelineRunner implementation

1 class PipelineRunner:
2

3 def run_pipeline(self, pipeline_filepath: str) -> dict:
4 execution_ok = False
5

6 cwd = Path.cwd()
7 os.chdir(Path(pipeline_filepath).parent)

218 J. G. Mathew and F. Monti

8 execution_result = os.system(f"python {pipeline_filepath}")
9

10 if execution_result == 0:
11 execution_ok = True
12

13 os.chdir(cwd)
14 return execution_ok
15

16 def parse_pipeline_result(self, pipeline_result_filepath: str) -> dict:
17 with open(pipeline_result_filepath, "r") as f:
18 result = json.load(f)
19

20 result = pd.DataFrame(result)
21 result = tabulate(result, headers='keys', tablefmt='psql')
22 return result
23

24 def get_chain(self) -> Runnable:
25 runner_chain = (
26 RunnableLambda(lambda x: {
27 "execution_ok": self .run_pipeline(x["pipeline_filepath"])
28 })
29 | RunnableBranch(
30 (lambda x: x["execution_ok"], RunnableLambda(lambda x:

self.parse_pipeline_result(↪→
31 str(PIPELINE_RESULT_FILEPATH)
32))),
33 (RunnableLambda(lambda x: "The pipeline did not run successfully"))
34)
35)
36 return runner_chain

The PipelineRunner class consists of three core methods. The run_pipeline
method (line 3–14) executes the pipeline script in its designated directory and
returns a Boolean indicating whether the execution was successful. If the execution
completes without errors, the output of the pipeline is stored in a JSON file. The
parse_pipeline_result method (line 16–22) loads the result into a Pandas
DataFrame and formats it as a table for display. The PipelineRunner is integrated
into the COSMADS LCEL chain through its get_chain method, which defines
the execution workflow. The chain consists of a RunnableLambda that triggers
the pipeline execution, by invoking the run_pipeline method, followed by a
RunnableBranch that checks if the execution was successful. If the pipeline runs
successfully, the output is parsed using the parse_pipeline_result method and
returned; otherwise, an error message is displayed.

The implementation details of the whole COSMADS chain are provided below.
Additionally, Fig. 9.2 provides its visual explanation.

9 Applications of Large Language Models in Information Systems 219

LCEL implementation of COSMADS processing flow

1 chain = (
2 # Step 1: Retrieve similar pipelines from the Pipeline repository
3 RunnableLambda(lambda x: {
4 "query": x,
5 "pipeline_search":

self.pipeline_manager.pipeline_store.search(x),↪→
6 }
7)
8 # Step 2: Retrieve the the most relevant data services
9 # for this query from the Data Service repository

10 | RunnableLambda(
11 lambda x: {
12 "query": x["query"],
13 "example": self.get_example(x["pipeline_search"]["output"]),
14 "data_services": self.get_data_services()
15 }
16)
17 # Step 3: Parse the retrieval results from both repositories
18 | RunnableLambda(
19 lambda x: {
20 "query": x["query"],
21 "data_services": x["data_services"][0],
22 "data_services_list": x["data_services"][1],
23 "example_query": x["example"][0],
24 "example_pipeline": x["example"][1],
25 }
26)
27 # Step 4: Generate the pipeline using the LLM Agent
28 | generator_chain_output
29 # Step 5: Store the pipeline into a temporary Python script file
30 | RunnableParallel(
31 gen = RunnableLambda(lambda x: {
32 "query": x["inputs"]["query"],
33 "data_services": x["inputs"]["data_services"],
34 "example_query": x["inputs"]["example_query"],
35 "example_pipeline": x["inputs"]["example_pipeline"],
36 "pipeline": x["pipeline"]
37 }),
38 exe = RunnableLambda(lambda x:
39 self.save_intermediate_result_to_json(x["pipeline"],

x["inputs"]["data_services_list"])↪→
40)
41)
42 | RunnableLambda(lambda x: {
43 "inputs": x,
44 "pipeline_filepath": str(INTERMEDIATE_RESULTS_FILEPATH)
45 })
46 # Step 6: Execute the pipeline (i.e. the temporary file)
47 | RunnableParallel(
48 inputs = RunnableLambda(lambda x: {

220 J. G. Mathew and F. Monti

49 "query": x["inputs"]["gen"]["query"],
50 "data_services": x["inputs"]["gen"]["data_services"],
51 "example_query": x["inputs"]["gen"]["example_query"],
52 "example_pipeline": x["inputs"]["gen"]["example_pipeline"],
53 "pipeline": x["inputs"]["gen"]["pipeline"],
54 }),
55 output = runner_chain_output
56)
57 # Step 7: Parse the pipeline output
58 | RunnableLambda(lambda x: {
59 "query": x["inputs"]["query"],
60 "data_services": x["inputs"]["data_services"],
61 "example_query": x["inputs"]["example_query"],
62 "example_pipeline": x["inputs"]["example_pipeline"],
63 "pipeline": x["inputs"]["pipeline"],
64 "output" : x["output"]["output"],
65 })
66)

The COSMADS LCEL chain is structured as a sequence of RunnableLambda
and RunnableParallel components, the two foundational abstractions in
LangChain. RunnableLambda is designed for single-step transformations or
computations. It wraps a callable function or lambda, providing a flexible way
to define and execute individual tasks within a chain. For example, it can retrieve
data, transform inputs, or parse outputs all while maintaining a clear and isolated
scope for each operation. In the context of COSMADS , RunnableLambda is

Fig. 9.2 COSMADS LCEL chain explained

9 Applications of Large Language Models in Information Systems 221

used to perform tasks like querying repositories and parsing retrieval results.
RunnableParallel, on the other hand, facilitates the concurrent execution of
multiple independent tasks. It is particularly useful in scenarios where different
processes can run simultaneously without interdependencies, enhancing the
efficiency of the workflow.

The chain begins with a RunnableLambda (line 3) that queries the pipeline
repository to retrieve pipelines relevant to the input query. This step leverages
existing knowledge by identifying similar pipelines to use as examples in the
generation process. Following this, another RunnableLambda (line 10) fetches data
services from the data service repository that are most relevant to fulfilling the query.
These two steps ensure that the COSMADS system gathers the necessary contextual
information for creating a new pipeline.

Once the repository outputs are retrieved, a third RunnableLambda (line 18)
parses and organizes the results, wrapping the query, example pipelines, and data
services into a structured format. This parsed information is then fed into the LLM
agent, which is implemented as part of a RunnableLambda (line 28). The agent
uses the provided context to generate a Python script that represents the pipeline for
fulfilling the query.

The generated pipeline is then stored using a RunnableParallel component
(line 30), which handles both writing the pipeline to a temporary Python file
and saving metadata about the inputs and selected data services. Subsequently,
another RunnableParallel component (line 42) executes the stored pipeline while
capturing its outputs concurrently.

Finally, a RunnableLambda (line 47) processes the output of the executed
pipeline, structuring it into a relational table or other desired formats based on the
query. The chain concludes with this step, delivering the final result to the user .

9.3 Extracting Process Operations with LLMs

The complexity of modern business processes often demands rapid and efficient
solutions for translating textual descriptions into executable process operations.
Traditional approaches to business process management rely heavily on predefined
models, making them inflexible to evolving requirements. In this section, we
describe NL2ProcessOps [8], an LLM-based approach for generating a process
script from a textual process description. In practice, the script is a Python code
containing invocations to external tools for executing the tasks of the given process.
Each tool is characterized by a description that provides a textual representation of
operations offered to execute the tasks. Tool documentations are prompted to the
LLM to generate the script. To overcome the limitation of the input context length
of LLMs, which cannot incorporate too much information, we consider the most
appropriate tool descriptions and fit them within the prompt length.

222 J. G. Mathew and F. Monti

9.3.1 The NL2ProcessOps Architecture and Pipeline

The goal of NL2ProcessOps is to provide a solution for process operations
(ProcessOps), aiming to simplify the development and deployment of processes,
similar to how DevOps simplifies the development and deployment of general
software. Specifically, once a new process definition is available, the involved
operations include (a) extracting a process model from the description, defining the
legal execution traces similarly to a program, (b) binding of each task to a software
module implementing that task, and (c) defining the data flow, i.e., how data artifacts
are manipulated by the tasks.

The generation of the process script from a textual process description is broken
down into multiple stages supported by LLMs and chained together as follows: (i)
extraction of tasks and control flow from the textual process description (operation
(a) of ProcessOps), (ii) retrieval of relevant tools corresponding to the extracted
tasks (operation (b) of ProcessOps), and (iii) generation of the process script
implementing the process (operation (c) of ProcessOps). Figure 9.3 illustrates the
components of NL2ProcessOps and their interactions. The numbers in the circles
represent the order of the performed operations.

Stage (i) consists of a textual process description given as input 1© to the
Tasks-Model extractor. This component is an LLM prompted to extract the tasks
and the control flow of the process and generates the model representation as a
Mermaid.js [3, 4]. The list of tasks paired with the textual process description (i.e.,
[proc_desc, tasks]) is input 2a© to the Tasks pre-processing component. Con-
currently, the process model and the textual process description (i.e., [proc_desc,
model]) are input 2b© to the Code gener ator component.

Stage (ii) (depicted in gray in Fig. 9.3) is inspired by the RAG concept to retrieve
the relevant tools for the particular textual process description. The Tasks pre-
processing component employs an LLM to refine the descriptions of the extracted
tasks based on the textual process description. The refined list of tasks is then
processed 3© by the Tools retriever component. This component interacts 4© with
the vector database Tools DB and retrieves the most similar embedded tools offering
the most suitable operation for each embedded task. Tools DB stores vectors
consisting of the embeddings of the descriptions of the tools.

Fig. 9.3 Architecture of the NL2ProcessOps [8]

9 Applications of Large Language Models in Information Systems 223

The list of retrieved tools is fed 5© into the Code generator component to initiate
stage (iii), the Code generator LLM. The Code generator, given the textual process
description, process model, and the list of tools (and their operations) implementing
the process tasks, generates 6© a Python code—process script—embedding the
control and data flows and implementing the process.

The integration of LLMs within the proposed approach is essential for several
reasons. LLMs excel at processing natural language, making them ideal for
extracting tasks and control flow from textual process descriptions. This first
stage is critical as it forms the basis for the subsequent stages of the pipeline.
Without accurate extraction of tasks and control flow, subsequent stages would
lack the necessary information for generating meaningful outputs. The retrieval
of relevant tools highly relies on the quality of the extracted tasks. An incorrect
set of tools would affect the generation of the process script, leading to incorrect
data and control flows. Finally, LLMs excel in generating high-quality code from a
description. In this case, the textual process description guides the code generation,
supported by the control flow and tools information derived from the previous
stages.

9.3.2 A Running Example

Let us consider a real-world example in the Smart Manufacturing domain. Smart
Manufacturing is a modern trend where cutting-edge technologies such as Industrial
Internet of Things (IIoT) and artificial intelligence (AI) play pivotal roles in enabling
quality enhancement, optimization, and automation of production processes [10]. In
this domain, the integration of the proposed solution, paired with PEE and enterprise
systems like Manufacturing Execution System (MES) and Enterprise Resource
Planning (ERP), enables the orchestration and execution of specific processes in
a quick and efficient way [12].

Example The automatic calibration process of cardboard production consists of continu-
ously capturing a photo of the cardboard being produced. Each photo is analyzed to check
if all the markers identified are ok. If markers are not ok, the calibration process continues.
If the markers are ok, the speed of the die-cutting machine is set to 10,000 RPM and the
process ends.

The Example describes the automatic calibration process in cardboard produc-
tion. Cardboard production is a manufacturing process that involves a die-cutting
machine for the transformation of raw cardboard into printed cut-out cardboard
sheets for the packaging industry. When starting a new order, calibration is needed
to guarantee quality before proceeding with the production.

Figure 9.4 depicts the input-output of each of the NL2ProcessOps components
over the Example. The numbers in circles are tightly connected to those in Fig. 9.3.
Figure 9.4 reports the process model represented as Mermaid.js (green colored) and
the list of (refined) tasks (blue and red colored) extracted from Example, the list
of tools operations (purple colored) retrieved, and the process script—Python code
(black colored). All the artifacts are available at the provided link.5 .

224 J. G. Mathew and F. Monti

Fig. 9.4 Input-output of each component of NL2ProcessOps on Example

9.3.3 Realization

The authors have realized a prototype5 of NL2ProcessOps [7]. The prototype is
developed in Python and built on top of LangChain,6 a framework for constructing
LLM-powered applications facilitating the creation, management, and chaining of
prompts. The base LLM utilized for the three LLM-based components is GPT-4
(gpt-4-0125-preview) from OpenAI [1] with temperature set to 0, implying a
more deterministic LLM mode.

9.3.3.1 Tools Retriever

Tools are central to such approach as they support task execution in a service-
oriented way, i.e., offering operations for specific tasks. As proposed in [6],
the LLM relies solely on the documentation of these tools, which outlines their

5 Cf. https://github.com/iaiamomo/NL2ProcessOps.
6 Cf. https://www.langchain.com/.

https://github.com/iaiamomo/NL2ProcessOps
https://github.com/iaiamomo/NL2ProcessOps
https://github.com/iaiamomo/NL2ProcessOps
https://github.com/iaiamomo/NL2ProcessOps
https://github.com/iaiamomo/NL2ProcessOps
https://www.langchain.com/
https://www.langchain.com/
https://www.langchain.com/
https://www.langchain.com/

9 Applications of Large Language Models in Information Systems 225

capabilities, usage instructions, and outcomes. An excerpt from the documentation
for the SetSpeedDieMachine tool of the Example is provided below. It consists
of a general description of its unique operation, parameters details, and outcome
description.

Example of tool documentation

1 SetSpeedDieMachine = {
2 "description": "Set the speed of the die-cutting machine.",
3 "more_details": "It takes as input the speed. It returns a

boolean value, True if the speed has been set, False
otherwise.",

↪→
↪→

4 "input_parameters": ["speed:int"],
5 "output_parameters": ["speed_set:bool"],
6 "tool": "die_machine" }

The Tools DB is a vector database containing the vector representations of the
descriptions of the available tools. Each vector constitutes the embedding of the
following information: tool_name and description, where the description is
extracted from the tool documentation. An embedding is a sequence of numbers that
represent information and enable better comprehension of relationships between
similar information. The text-embedding-ada-002 model from OpenAI7 is
utilized to compute these vectors. The embeddings are usually managed in vector
DBs, which enable a set of capabilities, including indexing, distance metrics, and
similarity search. As vector DB, ChromaDB,8 which is open source and well
integrated with LangChain, is employed. ChromaDB enables the implementation
of RAG-based approach basing similarity search on cosine distance (where a lower
score indicates better similarity).

In the Example, for the refined extracted task description “set the speed of the
die cutting machine”, the similarity search identifies SetSpeedDieMachine tool
operation as the most similar. Consequently, the Die machine tool is the most
suitable for task ex ecution.

The similarity search outputs a set of most similar tools with corresponding score
results. The module guarantees that the useful tools are among those retrieved. In
practice, given a task, the Tool retriever selects one or more tools based on their
score values. The set of tools is then processed by the Code generator LLM that
considers only those necessary for the specific case.

The tools retriever is implemented as a Python class responsible of managing
tools, which are implemented as Python classes themselves. An example of tool is
provided below:

7 Cf. https://platform.openai.com/docs/models/embeddings.
8 Cf. https://www.trychroma.com/.

https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings
https://www.trychroma.com/
https://www.trychroma.com/
https://www.trychroma.com/
https://www.trychroma.com/

226 J. G. Mathew and F. Monti

Sample tool implementation

1 class ConfigureAssemblyLine:
2 description = {
3 "description": "Configure the assembly line.",
4 "more details": "This tool takes no input and does not return

anything.",↪→
5 "input_parameters": [],
6 "output_parameters": [],
7 "actor": "assembly_line"
8 }
9

10 def call():
11 return

A simplified version of the class implementing the Tool Retriever is provided
below.

Embedding tools in NL2ProcessOps

1 from langchain_community.vectorstores.chroma import Chroma
2

3 class ToolStore():
4

5 def embed_tools(self, embedding_function):
6 self.embedding_function = embedding_function
7 self.db = Chroma.from_texts(self.tools, embedding_function)
8

9 def search(self, keywords):
10 best_match = self.db.similarity_search_with_score(keywords)
11 for i, match_elem in enumerate(best_match):
12 if i == 0 and match_elem[1] >= 0.5:
13 break
14 elif i > 0 and match_elem[1] <= 0.3:
15 tool_name = match_elem[0].page_content.split(' ')[0]
16 file_name = match_elem[0].page_content.split(' ')[1]
17 api_info = self.extract_input_output(tool_name, file_name)
18 list_match.append(api_info)

The embed_tools method (line 5) makes usage of the Chroma.from_texts
method (line 7), which takes a list of tool descriptions and converts them into
embeddings, which are then indexed in ChromaDB for similarity-based searches.

The search method (line 9) performs retrieval by calculating the cosine similarity
between the query embeddings and the stored tool embeddings. It uses ChromaDB’s
similarity_search_with_score function to fetch tools whose descriptions
closely match the query. If the similarity score exceeds predefined thresholds, the
corresponding tools are added to the result s et.

In this realization, embeddings serve as a bridge between textual process descrip-
tions and tool metadata. For example, a textual task description like “adjust machine
speed to 10,000 RPM” is embedded and compared against stored tool descriptions.

9 Applications of Large Language Models in Information Systems 227

Table 9.1 Prompt information of the LLM-based components

Tasks-model extractor Tasks pre-processing Code generator

(a) BPM expert BPM expert –

(b) Extract the control flow in
terms of a process model
and the list of tasks

Rephrase the tasks
descriptions

Generate a Python code

(c) Description of BPMN
elements

– Tools descriptions and
guidelines

(d) Yes Yes No

(e) Set of custom rules for the
process model
representation

– Python program structure

(f) Textual process description Textual process description
and extracted tasks

Textual process description
and process model

The similarity search may retrieve a match like the SetSpeedDieMachine tool,
which provides the exact operation r equired.

9.3.3.2 Prompt Engineering

The prompt is a guide for the model, instructing it on relevant information and
desired output formatting. The quality of the LLM output directly correlates with
the quality of the provided prompt [13].

The proposed approach consists of three different LLM-based components, each
specialized in a particular task, i.e., extraction of the process tasks and model, pre-
processing of the extracted tasks, and generation of Python code. Each component
is characterized by a specific prompt. Each prompt is characterized by all (or
some) of the following parts: (a) the role the LLM plays that helps in controlling
the output style [11], (b) a clear description of the task to be performed, (c)
additional information (context) to aid the LLM in generating better responses, (d)
few examples to teach the LLM, (e) type and format of the desired output, and (f)
the input data used by the LLM to compute the response. Table 9.1 presents detailed
information regarding each part of the prompt for the three LLM-based components.
All the prompts are available at the provided link.5 .

9.3.3.3 NL2ProcessOps Implementation

The implementation of NL2ProcessOps leverages LangChain to integrate LLMs
into a pipeline for generating process scripts from natural language descriptions.
This section explains the key components of the implementation, focusing on how
tasks, tools, and code generation are orchestrated.

228 J. G. Mathew and F. Monti

The ProcessLLM class implements the core logic of NL2ProcessOps. It inte-
grates multiple components, including task modeling, code generation, and tool
management, by leveraging LangChain’s Runnable utilities and custom LLM
modules.

The ProcessLLM class

1 class ProcessLLM:
2 def __init__(self, model="gpt-3.5-turbo", openai_key=None,

temperature=0.0):↪→
3 self.model_tasks_llm = MermaidLLM(model, openai_key,

temperature=temperature)↪→
4 self.task_llm = TaskRetrieverLLM(model, openai_key,

temperature=temperature)↪→
5 self.code_llm = CodeLLM(model, openai_key, temperature=temperature)
6

7 embedding_function = OpenAIEmbeddings(model="text-embedding-ada-002",
api_key=openai_key)↪→

8 self.tools_store = ToolStore(openai_key)
9 self.tools_store.embed_tools(embedding_function)

The ProcessLLM class initializes various components, including (i)
MermaidLLM, which extracts process models from descriptions; (ii)
TaskRetrieverLLM, which identifies tasks within the process; and (iii) CodeLLM,
which generates Python code based on tasks and tools. These classes are
implemented as standard LangChain pipelines, adhering to the standard chai
structure of self.prompt | self.model | self.output_parser. The
ProcessLLM class also sets up ChromaDB (line 8) for semantic retrieval of t he
tools through the ToolStore class.

The get_chain method, which is provided below, defines the overall
workflow of the ProcessLLM class. It orchestrates the sequence of oper-
ations using LangChain’s Runnable utilities, including RunnableLambda,
RunnablePassthrough (which directly propagates inputs without modification),
and RunnableBranch (enabling conditional branching based on predicate
functions).

The ProcessLLM chain

1 def get_chain(self):
2 model_tasks_llm_chain_output = self.model_tasks_llm_parser()
3 task_llm_chain_output = self.task_llm_parser()
4 code_llm_chain_output = self.code_llm_parser()
5

6 general_chain = (
7 RunnableLambda(lambda x: {
8 "model": x ["model"],
9 "tools": self.tools_prompt_parser(x["tasks"]),

10 "input": x["input"],
11 })

9 Applications of Large Language Models in Information Systems 229

12 | code_llm_chain_output
13 | RunnableBranch(
14 (lambda x: not x["error_python"], RunnableLambda(lambda x:

self.parse_output(x))),↪→
15 (lambda x: "There are some errors in the python code.")
16)
17)
18

19 chain = (
20 model_tasks_llm_chain_output
21 | task_llm_chain_output
22 | RunnableLambda(
23 lambda x: {
24 "tasks": x["tasks"],
25 "has_tasks": self.is_list_of_tasks(x["tasks"]),
26 "input": x["input"],
27 "model": x["model"],
28 }
29)
30 | RunnableBranch(
31 (lambda x: x["has_tasks"], general_chain),
32 (lambda x: "Your process description does not contain any task.")
33)
34)
35 return chain

This method begins by defining three parsing subchains for task mod-
eling (line 2), task retrieval (line 3), and code generation (line 4). The
model_tasks_llm_parser chain processes the input to extract tasks, the
task_llm_parser chain retrieves additional task details, and the
code_llm_parser chain generates Python code based on the tasks and tools.
These subchains are constructed using LangChain’s RunnableLambda for inline
computations and RunnablePassthrough to propag ate inputs.

The heart of the workflow lies in the two branches created using Runnable-
Branch. The first branch (lines 30–33) checks whether tasks are present in the
process description. If tasks are found, the general_chain is executed, which:

1. Integrates task descriptions, tools, and process inputs.
2. Generates Python code using the code_llm_parser (line 12).
3. Validates the generated code with the second branch (lines 13–16). It either

parses the generated code for output or returns an error message if issues are
detected.

If no tasks are found, the branch directly outputs a message stating, “Your process
description does not contain any task.”

Finally, the ProcessLM provides a CLI-based interactive interface for users to
input natural language process descriptions, generate Python code based on these
descriptions, and optionally execute the generated code. Below is a simplified
version of the main function:

230 J. G. Mathew and F. Monti

Running NL2ProcessOps (simplified)

1 if __name__ == "__main__":
2 # Load environment variables and retrieve the OpenAI API key
3 dotenv.load_dotenv()
4 OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
5 model = "gpt-4-0125-preview" # Define the LLM model to use
6

7 # Instantiate the ProcessLLM pipeline
8 llm = ProcessLLM(model, OPENAI_API_KEY)
9

10 while True:
11 # Prompt the user to input a process description
12 input_text = input("Enter a process description (or press Enter to

skip): ")↪→
13 if input_text == "":
14 continue
15

16 # Process the input and generate Python code
17 result = llm.get_chain().invoke({"input": input_text})
18 print(f"Generated Code:\n{result}")
19

20 # Ask if the user wants to execute the process or provide another
description↪→

21 user_choice = input("Execute the process? (y)\nEnter a new description?
(p)\nQuit? (q): ")↪→

22 if user_choice == "y":
23 try:
24 # Validate and execute the generated Python code
25 print("Executing the process...")
26 if os.system("python -m py_compile llm_process_code.py") != 0:
27 print("The generated code contains syntax errors.")
28 else:
29 os.system("python llm_process_code.py")
30 print("Process executed successfully.")
31 except Exception as e:
32 print(f"Error during execution: {e}")
33 elif user_choice == "p":
34 continue # Loop back for a new process description
35 else:
36 print("Exiting...")
37 break

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv preprint
arXiv:2303.08774 (2023)

9 Applications of Large Language Models in Information Systems 231

2. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. NeurIPS 2020
(2020)

3. Klievtsova, N., Benzin, J.V., Kampik, T., Mangler, J., Rinderle-Ma, S.: Conversational process
modelling: State of the art, applications, and implications in practice. In: BPM 2023 Forum
(2023)

4. Klievtsova, N., Benzin, J.V., Kampik, T., Mangler, J., Rinderle-Ma, S.: Conversational process
modeling: Can generative ai empower domain experts in creating and redesigning process
models? arXiv preprint arXiv:2304.11065 (2024)

5. Mathew, J.G., Monti, F., Firmani, D., Leotta, F., Mandreoli, F., Mecella, M.: Composing smart
data services in shop floors through large language models. In: International Conference on
Service-Oriented Computing, pp. 287–296. Springer (2024)

6. Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., Rozière, B.,
Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., et al.: Augmented language models: a survey.
arXiv preprint arXiv:2302.07842 (2023)

7. Monti, F., Leotta, F., Mangler, J., Mecella, M., Rinderle-Ma, S.: NL2ProcessOps (2024).
https://doi.org/10.5281/zenodo.11219809

8. Monti, F., Leotta, F., Mangler, J., Mecella, M., Rinderle-Ma, S.: Nl2processops: Towards llm-
guided code generation for process execution. In: BPM. Springer (2024)

9. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,
K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

10. Popkova, E.G., Ragulina, Y.V., Bogoviz, A.V.: Industry 4.0: Industrial Revolution of the 21st
Century, vol. 169. Springer (2019)

11. Shanahan, M., McDonell, K., Reynolds, L.: Role play with large language models. Nature 623,
493–498 (2023)

12. Thalmann, S., Mangler, J., Schreck, T., Huemer, C., Streit, M., Pauker, F., Weichhart, G.,
Schulte, S., Kittl, C., Pollak, C., et al.: Data analytics for industrial process improvement a
vision paper. In: CBI 2018. IEEE (2018)

13. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith,
J., Schmidt, D.C.: A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv
preprint arXiv:2302.11382 (2023)

14. Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong,
Z., et al.: A survey of large language models. arXiv preprint arXiv:2303.18223 (2023)

https://doi.org/10.5281/zenodo.11219809
https://doi.org/10.5281/zenodo.11219809
https://doi.org/10.5281/zenodo.11219809
https://doi.org/10.5281/zenodo.11219809
https://doi.org/10.5281/zenodo.11219809
https://doi.org/10.5281/zenodo.11219809
https://doi.org/10.5281/zenodo.11219809

Chapter 10
Ethics and Governance of Large
Language Models

Gabriele Rendace Presta and Andrea Paolella

Abstract Artificial Intelligence is reshaping the ontological structure of reality.
The analysis examines AI’s role in the re-ontologization process, emphasizing
the implications of digital tools on human existence and showing how ethical
concerns also emerge from this ontological shift. To face these AI ethical issues,
this chapter proposes a Heideggerian approach that looks at ethics as care of the
human stay (Aufenthal). It is an attempt to define a critical effort able to re-evaluate
the human role in AI development and use, accompanying the already proposed
ethical principles and the law-making processes (especially in Europe). The analysis
focuses then on the global AI political and regulative scenario, with an overview
observing China, Russia, EU, and the USA. The text shows the common points
and differences between these approaches, offering a structured understanding of
main governmental actions on AI (from development strategies to direct regulative
actions). Finally, the overview on regulations will be crucial to reflect on censorship,
AI openness, freedom, and rights.

10.1 Preliminary Ontology

10.1.1 Introduction

In this first introductory section, the reader will focus on the ontological issues
related to digital tools and AI. According to a Heideggerian vision, ontology is here
intended as the analysis of the deep composition of the meaning to be of reality
[53], looking what means for something to be and not just why something is. In
fact, digital tools, and artificial intelligence more than anything else, are reshaping
the ontology not just of single objects but of reality as a whole [42, 50]. Every
aspect of the world—actions, relations, basic shapes, fundamental elements, etc.—
is changed by these new technologies. This condition, of course, puts under strict

G. R. Presta (�) · A. Paolella
Sapienza Università di Roma, Rome, Italy

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_10

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 10&domain=pdf
https://orcid.org/0009-0007-9213-6405
https://orcid.org/0009-0006-7247-5373
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10
https://doi.org/10.1007/978-3-031-92285-5_10

234 G. R. Presta and A. Paolella

attention the way AI is used and which are the principle effects it has: here ethical
concerns emerge, along with all the possible political, juridical, and philosophical
answers [40, 42]. This passage will be essential to enlighten how the ethical and
ontological problems are deeply related and why this previous section on ontology
will be necessary to understand the subsequent sections on ethics and rules.

Two examples about this process of re-ontologization are then shown into
the following paragraphs of the introduction. Both deal with the phenomenon of
prosuming (progressive merging of the two figures of producer and consumer [18]),
trying to show how processes and relations are transformed by the use of digital
tools. The examples will be the chance to open a reflection on the role of human
beings in an informational society, where the world humans live in is adapted for
the coexistence with artificial digital agents.

However, at the end of this section, a new idea enters the discourse: the possibility
to design critically optimized political and juridical tools to achieve the right
solutions for the progressive emergence of ethical concerns related to the AI re-
ontologization of reality.

10.1.2 The Ontological Problem Behind the Ethical Approach
to AI

To achieve a real comprehension of what artificial intelligence is and how it works
from a philosophical perspective, we must understand the inner composition of
the world it has been built to be used in. This is not an approach that seeks a
philosophical answer to the deep structures of artificial intelligence algorithms
and models—it would not be different to ask a misleading question about what a
machine is1 —but a more complex analysis of the way AI is used and the way the
world is arranged to allow its efficient use. A first point that must be clear and has
to be accurately considered is that the ontology we are discussing is not the one of
AI machines but the one of contemporary world, which is rearranged in its deeper
composition and structure by these machines.

However, this kind of research brings us exactly to the point where we must
understand why and how we use AI to the question “what should we do?”, a
question that, in a more radical and essential approach, turns into the following
deeply complex interrogation: “How should we think?”2 Nevertheless, this way

1 As Turing already noticed, it would be a question leading to no solution, putting our research on
the wrong path [42].
2 It’s essentially a Heideggerian philosophical interrogation that enshrines an ethical approach into
a firstly ontological one: “Dies alles vermogen wir nur, wenn wir vor der anscheinend immer
nachsten und allein als dringlich erscheinenden Frage: was sollen wir tun, dies bedenken: Wie
mussen wir denken? Denn das Denken ist das heigentliche Handeln, wenn Handeln heißt, dem
Wesen des Seins an die Hand gehen” eng.: “We can only achieve all this if, in the face of the
seemingly ever-present and only urgent question: “What should we do?”, we also consider: ‘How

10 Ethics and Governance of Large Language Models 235

of thinking should constitute an always-necessary approach when construing a
possible political or ethical path in our contemporary society. Specifically, new
technologies, as artificial intelligence is, represent the main tools involved in the
progressive re-ontologization of the world [42]. AI is reshaping the way things get
done, and this condition of course leads to an interrogation about how societies and
organizations should use these technologies: here the ethical issue emerges, along
with all the possible political answers.

To give the reader a more practical vision of the just suggested re-ontologization
process, everyday examples on how digital technologies and tools rebuild our reality
and restructure the world could be useful. Among these cultural and ontological
evolutions, a quite famous one is prosuming, often discussed also in new media
theory.3 It consists in the progressive merging of two different figures operating
in the cultural and economic fields: the consumer and the producer.4 In the last
decades, a growing number of young adolescents from every country of the world
started to turn the stories they read on books they had bought into new collective
narratives shared on blogs and Web sites, thus transforming themselves from simple
readers, or passive consumers, to readers-writers, at the same time passive readers
and active producers involved in the expansion of a fictional world, becoming new
digital entities that we would call prosumers [18]. We can make now an example
that would resonate a little bit more in our mind, contemplating how prosuming
operates also in the sphere of new generative AI. The owner of a creative agency
who needs to create textual contents for Web sites could hire a copywriter, give her
or him some indications, and obtain a result, good and specific contents that will
add to the Web sites. In this case, there’s a consumer asking for a product. Instead,
if the creative agency owner does not ask to a copywriter, an expert in the field of
textual content creation, but start prompting indications to a LLM obtaining as a
result the contents for the Web sites, the owner is turning somehow into a prosumer.
The owner is self-producing (producer) the contents that will be used for the final
aim (consumer).

These are two very different examples regarding the power of re-shaping and
re-ontologize reality digital technologies have. They change actions, identities, and
relations, establishing a new ontological perimeter. It must be underlined that it is
not just a matter of why and how we choose to do something, but it deals also with
the way we think and understand reality.5

must we think?”’ [52]. As we will see further in the analysis of ethical approaches to AI, the
question about the way we should think becomes a general critical approach to technological
developments that precedes and envelopes law-making and legislative directions.
3 Important contribution has been given by researchers in the fields of new media phenomena.
Fanfictioning has probably been one of the most explored [18].
4 A good report on the historical evolution of this term and its meaning can be found in Floridi,
2022 [42].
5 To understand better, the following passage can be useful: “il digitale non è semplicemente
qualcosa che potenzia o aumenta una realtà, ma qualcosa che la trasforma radicalmente, perché
crea nuovi ambienti e nuove forme di agire con cui interagiamo. [. . ..] ho utilizzato l’espressione

236 G. R. Presta and A. Paolella

It is important to recognize that ethical concerns and the political and juridical
regulations that will follow them cannot be detached from a philosophical and
cultural detection directed to explore the mechanisms of contemporary thinking.
This is clearly a purpose linked with a human-oriented approach that will focus
on the essential articulation of how we think and then of how we construe our
reality. It is important to put at the center of the analysis this peculiar point: firstly,
to recognize its importance in the field of AI development and use and, as second
instance, to insert it in this discourse as a filter of analysis to observe which path we
have decided to walk through.

Nowadays, it is necessary to evaluate if there is a real human-centered approach
to AI. The progressive transformation of society has led to a digital technology
environment where we are just one part, but not the main constitutive element.
Human beings therefore appear to live a condition of simple means in the new reality
constituted by the encounter of online and offline worlds.6

Our artificial agents, currently constitutive components in every aspect of our life
and in every space we walk through, exist because we’re building an environment
where these objects7 can live and prosper. We build an envelope where digital
entities, including AI of course, can work autonomously and realize a product or
give any kind of service [42]. This works on a small scale and in a more expanded
and complex one. Robots involved in manufacturing cars or moving boxes in
distribution centers, for example, can complete their tasks only in the perimeter
of the factory, a small environment completely arranged to guarantee a successful
accomplishment of digital entities tasks. Smart cities are examples on a large scale
of this envelopment process.8 So, there is a cultural and material movement of
reality toward a digitized status or, better said, toward a merged condition where

re-ontologizzazione per fare riferimento a una radicale forma di re-ingegnerizzazione, che non
consiste soltanto nel disegnare, costruire o strutturare un sistema [. . ..] in modo nuovo, ma nel
trasformare fondamentalmente la sua natura intrinseca, vale a dire la sua ontologia. [. . ..] Attraverso
la re-ontologizzazione della modernità, per dirlo in breve, il digitale sta anche ridefinendo dal
punto di vista epistemologico la mentalità moderna, cioè molte delle nostre concezioni e idee
consolidate.” eng.: “The digital is not simply something that enhances or increases a reality, but
something that radically transforms it, because it creates new environments and new forms of action
with which we interact. [. . ..] I have used the term re-ontologization to refer to a radical form of re-
engineering, which does not consist merely in designing, building or structuring a system [. . ..] in a
new way, but in fundamentally transforming its intrinsic nature, that is, its ontology. [. . ..] Through
the re-ontologization of modernity, in short, the digital is also redefining the modern mentality from
an epistemological point of view, that is, many of our established conceptions and ideas” [42].
6 A world we can easily call with the widespread expression infosphere [40].
7 The word “object” for digital entities can be not exactly the most fitted one. South Korean
philosopher Byung-Chul Han talks about Undinge, non-objects, because of digital incapability
to produce real negativity and establish the perimeter of reality [50]. This has consequences on
how we make choices, build relations, work, and so on. Of course, it can represent also a good
point to start a discussion where digital ethics and esthetics are profoundly interlinked.
8 We’ll see that one of the first countries involved in the development of AI policies and ethical
discussion, China, is also the most advanced in the creation of smart cities and the subsequent data
collection [87].

10 Ethics and Governance of Large Language Models 237

digital informational reality results combined with the material and physically
experienced world: the onlife of the infosphere [40]. Well, this is the starting point to
understand the re-ontologization of reality. In these new spaces, things are as they’ve
never been before, and humans are not the measure of this process but simple guests
into an environmental project progressively more oriented to and fit for machines
and digital entities [42].

However, humans still have the possibility to imagine and draw a world shaped
by artificial intelligence, and our ability to design will probably be the aspect that
will determine the quality of the answers we will give to political and ethical
concerns deriving from AI development [42]. Future challenges will lie not only
in the way we drive digital and AI innovation but also and overall in the way we
will govern it through a critical designing approach.

Key Points of Preliminary Ontology for Artificial Intelligence

• Understanding AI requires analyzing the world it is built to function in.
• The focus is not just on AI models but on how AI reshapes reality.
• Ethical concerns lead to fundamental questions:

– “What should we do?” →. “How should we think?” (Heideggerian
radical approach).

• AI and digital technologies restructure reality at its core.

– Example: Prosuming (producer and consumer roles merge):

·. New Media Theory on fanfictions.
·. AI tools like LLMs turning content consumers into a hybrid of

content producers-consumers (prosumers).

• AI changes actions, identities, and relationships.
• The digital world does not merely enhance reality but fundamentally

transforms the real world merging with it.
• Re-ontologization is the name of this radical process of reconstruction

(Floridi).
• Concept of the Infosphere: merging of online and offline worlds.
• A central issue regards the question on centrality of human beings and

their transformation into mere means inside a merged digital-material
environment.

• AI operates in enveloped environments designed for its efficiency (facto-
ries, smart cities), and the enveloping process is progressively involving
every aspect of reality.

• AI is shaping the world, but humans can still direct this transformation.
• Ethical and political decisions will determine the future of AI governance.
• Key challenge: Not just driving AI innovation but designing it with a

critical approach.

238 G. R. Presta and A. Paolella

10.2 Ethics

10.2.1 Introduction

After the introductory first section centered on the relation between ontology and
ethics, this second part will take a further look on how an ethical approach to AI
could be imagined and arranged.

The starting point will be an attempt to describe how ethics could be interpreted,
looking at the topic employing a semantic analysis of the Ancient Greek word ἦθος
(ēthos), from which the modern term ethics comes from.

In fact, the ancient Greek word ἦθος could embrace a double meaning: a first one
related to the idea of “habit” and another one linked to the concept of “stay.” Starting
from this ambiguous semantic nature, it is possible to intercept two philosophical
interpretations that can operate as useful tools to develop an ethical approach to AI:

1. The first approach derives from the Aristotelian tradition and links ἦθος to the
role that the laws of the state play in shaping the virtues of citizens [6];

2. The second interpretation has instead its roots in Heraclitus and Heidegger’s
way of thinking, connecting ethics to the condition of care humans should direct
toward the place they live every day, aside from any constriction deriving from
the external action of law and government [51].

The attempt is to show how these two approaches can co-operate, defining a more
complex scenario where laws are accompanied by the personal development of an
articulated critical thinking.

Then, the analysis will focus on the Unified Framework of Five Principles for AI
proposed by Floridi and Cowls. It is the first fundamental systematic and organized
definition of an ethical path for the development and use of artificial intelligence
digital tools [43].

The Unified Framework is composed of four principles inherited in AI ethical
studies from the research already developed in the field of bioethics. They are
beneficence, non-maleficence, autonomy, and justice. To them the two researchers
add another one: explicability. This last principle underlines how the processes and
data exploited by these technologies must be clear and open for the users, who
must be aware of the entity that is accountable for the potential dangers and threats
deriving from the use of AI technology [43].

Finally, the analysis will introduce three fields—education, climate change, and
work—where AI has produced interesting questions for ethical research. The action
of AI in relation to these three areas represents a great interest for international
political organizations, especially for the European Union, and at the same time,
these three fields are good examples of how AI can generate ambiguous and
controversial effects in everyday aspects of society [7, 25, 47, 72, 85]. This last
reflection thus proposes to the reader a first practical idea of what an AI ethical
concern can be and leads to the next part of this chapter, where different countries’
strategies and legislative actions to face these issues are introduced.

10 Ethics and Governance of Large Language Models 239

10.2.2 Where the Meaning of Ethics Comes From

Starting from a point of view able to merge philosophy, linguistics, and semantics,
the first passage of this second section will be related to a wider and articulated
understanding of the term “ethic.” It derives from the ancient Greek word ἦθος
(ēthos),9 and the meaning it had for Greeks can open our reflection to a vast
comprehension of what ethics is.

Aristotle in the Nicomachean Ethics introduces the concept of virtue and
distinguishes between two different kinds of virtue: the dianoetic virtue and the
ethical virtue. The first one can be reached through learning (ἐκ διδασκαλίας), while
the second one is derived from habit(ἐξ ̓́εθους).10

According to Aristotle, ethical behavior is not related just to a natural disposition,
but it is obtained by also nurturing our inner nature through the continuous
smoothing action of the habits. He affirms that someone can become virtuous and
pursue an ethical path by only accomplishing good actions: we can learn to be
good people through the repetition of these good actions, confirming our natural
disposition with practice [6]. In Aristotle’s discourse then enters one of the main
political and cultural protagonists of ancient Greek world, the πόλις (polis), the city-
state. In this passage, Aristotle affirms that the political leaders of the city-state,
the legislators, guide the citizens toward virtuous behaviors creating good habits
they can follow to become j ust.11 Now we can achieve a deeper understanding
of Aristotelian thinking: ethical behavior—the practical and moral one, related to
action and to the question “what should we do?”—is shaped by habits, and the
laws of the State are arranged to create good habits that will lead the citizens to the
achievement of ethical virtue.

To summarize with a sentence: here ἦθος enters the semantic area of the habit,
dialogues with this concept, and, according to Aristotle, interlaces consequently
itself with the legislative bodies.

However, we must look at the wider semantic horizon the word ἦθος opens in
the ancient Greek language. It is particularly interesting to understand what happens
when this word assumes other possible meaning. In fact, ἦθος does not relate just to
the semantic area of the habit, but it contemplates also the idea of the dwelling, the

9 The etymology of the English term can be easily found on the https://www.oed.com/dictionary/
ethics_n?tl=true, Oxford English Dictionary.
10 “Virtue being, as we have seen, of two kinds, intellectual and moral, intellectual virtue is for the
most part both produced and increased by instruction, and therefore requires experience and time;
whereas moral or ethical virtue is the product of ‘habit”’ [6].
11 “This truth [of learning virtues through habit] is attested by the experience of states: lawgivers
make the citizens good by training them in habits of right action—this is the aim of all legislation,
and if it fails to do this it is a failure; this is what distinguishes a good form of constitution from a
bad one” [6].

https://www.oed.com/dictionary/ethics_n?tl=true
https://www.oed.com/dictionary/ethics_n?tl=true
https://www.oed.com/dictionary/ethics_n?tl=true
https://www.oed.com/dictionary/ethics_n?tl=true
https://www.oed.com/dictionary/ethics_n?tl=true
https://www.oed.com/dictionary/ethics_n?tl=true
https://www.oed.com/dictionary/ethics_n?tl=true
https://www.oed.com/dictionary/ethics_n?tl=true

240 G. R. Presta and A. Paolella

one of the home.12 Something ethical, for ancient Greeks, could be just an object
or a place you are accustomed to. Heidegger stimulates a profound philosophical
reflection starting exactly from an ancient Greek sentence attributed to Heraclitus
[51]. The sentence is extrapolated from Heraclitus Fragment 119: ἦθος ἀvθρώπ ῳ
δαίμωv (ēthos anthrōpō daimōn).13

Heidegger denotes how translators, biased by their modern view of ethics and
ethical thinking, often render inaccurately this passage: Seine Eigenart ist dem
Menschen sein Dämon (in English, “His own character is for the human his demon”)
[51]. According to Heidegger, this is a partial translation of ἦθος as “character,”
unable to capture the real essential meaning of the word ἦθος; he proposes instead
to translate the word ἦθος with the German term Aufenthalt, which we could turn
into English as “stay” or “residence” [51]. Well, we can see how here the radical
meaning of ἦθος as the accustomed place, as home, comes back and somehow
takes place again in the realm of contemporary e thics.

The German philosopher then tells a short story about Heraclitus.14 The ancient
Greek savior would have been seen close to an oven, warming his cold hands and
body, by some visitors who expected to admire the famous Heraclitus thinking
in a special or extraordinary pose. However, the philosopher understands their
disappointment and invites them to come closer to the oven, saying that Götter
wesen auch hieran (in English, “Gods are here too”) [51]. He was trying to
communicate to his visitors that also in the usual and most common stay, human
beings can find the essence of things and the essence of themselves too. That’s why
the Heideggerian translation of the Heraclitus sentence “ἦθος ἀvθρώπ ῳ δαίμωv”
will be “Der (geheure) Aufenthalt ist dem Menschen das Offene für die Anweisung
des Gottes (des Un-geheuren)” (in English, “The [usual] stay is for the human the
opening for the coming of the gods [of the un-usual]”) [51].

So, if we consider the word ἦθος according to its fundamental meaning, ethics
and ethical thinking must be linked directly to the idea of the stay of the human
being. Then, the main task of ethics should be to nurture and take care the essence
of the stay. This leads back ethics directly to an ontological dimension.15

12 A simple dictionary can be helpful in understanding properly the multiplicity of different
semantic uses of the word ἦθος, (e.g., https://www.perseus.tufts.edu/hopper/text?doc=Perseus:
text:1999.04.0057:entry=h)=qos, Liddell, Scott, 1940).
13 This fragment Heidegger starts his reflection from has been reported by ancient author Stobaeus
in his Anthology [74].
14 The story Heidegger tells has been reported by Aristotle in his De Partibus Animalium [5].
15 “Soll nun gemäß der Grundbedeutung des ἦθος der Name Ethik dies sagen, daß sie den
Aufenthalt des Menschen bedenkt, dann ist dasjenige Denken, das die Wahrheit des Seins als das
anfängliche Element des Menschen als eines eksistierenden denkt, in sich schon die ursprüngliche
Ethik. Dieses Denken ist aber dann auch nicht erst Ethik, weil es Ontologie ist (in English, “If,
according to the fundamental meaning of ἦθος, the name ‘ethics’ is to signify a consideration of
human existence, then that thinking which conceives the truth of being as the primordial element
of human existence, as that which exists, is in itself already the original ethics. Such thinking,
however, is not first ethics and then ontology”) [51].

10 Ethics and Governance of Large Language Models 241

In a political and social environment influenced by AI, where challenging
ethical concerns frequently enter the cultural debate, it is important to learn to
design and think about ethical solutions that overcome a simple regulatory base—
the Aristotelian ἦθος of laws and bureaucratic protocols cannot be sufficient—a
model that has the bravery to embrace not just a radical redesign of tech tools
but also a redefinition of the human environment and society, welfare, education,
economic relations, and care, they will be used in, thus reactivating the Heraclitus-
Heideggerian ἦθος, which looks at the essence of the stay of human beings that
pones itself before the simple action.16 It is true what Floridi has already theorized
about the creation and expansion of the Infosphere [40], but this reontologization
[39, 42] theory works overall on a superficial plan. An informational interpretation
of the world does not contemplate the entire and complex sphere of human action,
an aspect that we must consider, as said before, when we talk about ethics. It
is necessary to propose again the Heideggerian return of ethics to the realm of
ontology, trying to understand how we can construe a world that can host properly
human action, and not just a world reontologizied by informational machines on
which we try to impose laws and constrictions. A radical solution could be necessary
when a game-changing technology is introduced in human society. Informational
tools are redefining the human relation with the world [40]; they are however
Undinge (non-things) [50], and in a reality where objects are not able to create
negativity and mediate, there is a high ethical risk: the impossibility of action [4].

This comparison between the two meaning of the word ἦθος could represent an
important premise to enter the discourse of AI ethics trying to develop a critical
approach, but it has to meet also the philosophical prodromes that influenced
contemporary debate on the ethical use of digital tools and AI.

16 “Es muß nämlich gefragt werden: wenn das Denken, die Wahrheit des Seins bedenkend, das
Wesen der Humanitas als Eksistenz aus deren Zugehörigkeit zum Sein bestimmt, bleibt dann
dieses Denken nur ein theoretisches Vorstellen vom Sein und vom Menschen, oder lassen sich
aus solcher Erkenntnis zugleich Anweisungen für das tätige Leben entnehmen und diesem an die
Hand geben? Die Antwort lautet: dieses Denken ist weder theoretisch noch praktisch. Es ereignet
sich vor dieser Unterscheidung” (In English, “One must ask: if thinking, in considering the truth
of being, determines the essence of humanity as existence from its belonging to being, does this
thinking then remain merely a theoretical conception of being and of man, or can directives for
practical life be derived from such knowledge and given to it? The answer is: this thinking is
neither theoretical nor practical. It occurs prior to this distinction”) [51].

242 G. R. Presta and A. Paolella

10.2.3 The Unified Framework of Five Principles for AI in
Society

It is crucial, for whoever wants to enhance his or her knowledge in the field of digital
ethics, to know what the Unified Framework of Five Principles for AI in Society is.17

It represents the attempt, led by Floridi and Cowls, to manage the chaotic scenario
of ethical initiatives launched by several organizations to adopt AI technologies that
could benefit society.18

The two researchers then identified also the emergence of five principles that
could be adopted to evaluate and to create new artificial intelligence tools [43].

The first four principles were already widely spread in the field of bioethics:
beneficence, non-maleficence, autonomy, and justice.

The beneficence principle regards the creation of AI tools that are directed
to benefit the existence of human beings, and it is one of the most widespread
principles among the documents realized in the field of AI ethics and analyzed by
Floridi and Cowls. Linked to the idea of beneficence are the concepts of well-being,
common good, human dignity, and sustainability [42, 43].

The non-maleficence principle could seem not so different from the previous one
of beneficence, or at least logically consequent, but there is instead an important
semantic nuance we must look at. Non-maleficence principle reminds us that
overuse and misuse of AI tools must be avoided in order to preserve human
beings from important and irreversible issues caused by these technologies. Several
concerns emerge when artificial intelligence deals with our personal data or when
it enters the military perimeter and helps the development of new technologically
advanced weapons.19 One interesting point is also that from the documents, it is not
so clear whether the people who use them or the technologies themselves should be
subjected to this principle of not harming [42, 43].

Strictly related to this philosophical question is the third principle, the one of
autonomy. In fact, when we use AI tools, we give part of our decision-making
power to machines, which operate autonomously from our direct will. So, it is
necessary to find the right balance between the possibility of human beings to act
on the processes and outputs machines give and the power to operate autonomously
we completely delegate to these technologies. If we do not succeed to reach this

17 Of course, research on AI and debates on AI ethics do not begin in the contemporary era with
this paper published at the end of the last decade but at the beginning of the second half of the
twentieth century [69, 88, 101].
18 Floridi and Cowls analyze six documents, elaborated by organizations, authorities, and
researchers, that represented various ethical approaches to AI. These initiatives were (1) The
Asilomar AI Principles, (2) The Montreal Declaration for Responsible AI, (3) Ethically Aligned
Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems, (4)
The Statement on Artificial Intelligence, Robotics and ‘Autonomous’ Systems, (5) AI in the UK:
ready, willing and able?, and (6) The Tenets of the Partnership on AI [43].
19 Further in this chapter, it will be clear how war and AI are profoundly interlinked (e.g., in the
case of Russia).

10 Ethics and Governance of Large Language Models 243

balance, the potential threat could be the imposition of machine autonomy over
human autonomy. AI technologies should instead improve overall human autonomy.
Human beings, not machines, should decide if they want to leave part of their will
and power to other autonomous agents. It is necessary also to adopt a sort of decide-
to-delegate model, where human beings decide which tasks in a decision-making
process they want to delegate to AI—e.g., they could delegate to machines in order
to obtain more efficacy. Nonetheless, human agents should always have the chance
to take again power over the parts of the process they delegated, in a sort of “deciding
to decide again” action [42, 43].

The fourth principle is the one of justice. It deals with the idea of AI as profitable
and positive for each member of human society. Artificial intelligence should not
be discriminatory and promote diversity in order to remove any potential threats for
justice itself and for citizens. The first action should be to work on the datasets we
use for the training of our AI, removing biased data that can give the machine an
inheritance of discriminatory or prejudicial information,20 and as a consequence, it
leads to potentially dangerous outputs. Justice principle promotes also the idea of a
shared prosperity and shared benefits coming from AI21 [42, 43].

Floridi and Cowles denote another important element about the world of artificial
intelligence: a small bunch of people, experts, are really conscious of how these
technologies work, while a great mass of other human beings do not really know
the fundamentals of AI, but it is involved in the profound changes that are spread
by these new tools and systems [43]. They underline a condition all the documents
they analyzed contributed to make clearer: there is something unintelligible that’s
invisibly working behind these technologies; it is accessible only by few people,
and this situation is creating a really unavoidable concern [42, 43]. That’s why they
added to the other four principles another one: explicability. AI technologies must
be intelligible, they must answer to questions linked to the basic structure of their
functioning, and at the same time they must be accountable so we can know who
has the responsibility of possible dangerous or threatening AI outputs.22

The Unified Framework of Five Principles for AI in Society has been crucial
for the ethical and legal debate in Europe [44] and for further studies all over the

20 Dependent from the quality of data, from their robustness, is the whole infrastructure of AI
systems, including the potential biased outputs [94].
21 Artificial intelligence can lead to the progressive diffusion of real threats for historically
disadvantaged groups and reinforce existing power hierarchies spreading economic inequality [60].
22 “The addition of the principle of ‘explicability,’ incorporating both the epistemological sense
of ‘intelligibility’ (as an answer to the question ‘how does it work?’) and in the ethical sense of
‘accountability’ (as an answer to the question ‘who is responsible for the way it works?’), is the
crucial missing piece of the AI ethics jigsaw. It complements the other four principles: for AI to be
beneficent and non-maleficent, we must be able to understand the good or harm it is actually doing
to society, and in which ways; for AI to promote and not constrain human autonomy, our ‘decision
about who should decide’ must be informed by knowledge of how AI would act instead of us;
and for AI to be just, we must know whom to hold accountable in the event of a serious, negative
outcome, which would require in turn adequate understanding of why this outcome arose”[43].

244 G. R. Presta and A. Paolella

world.23 So, it is a fundamental tool for whoever wants to understand the ethical
consequences of developing AI tools, but, as said before, we must consider also the
wider challenge—to look for critical instruments to take care of the human stay, and
not just to respect rigid protocols and laws24 —ethical thinking involves.25

10.2.4 Education, Climate Change, Work

In this section, as already suggested before, the attempt will be directed to give the
reader the chance to face the major issues ethical research on AI has faced in specific
fields, trying to describe a first practical idea of how AI is redefining the way things
get done. A process that produces at the same time the concerns and challenges
contemporary societies must deal with.

The three fields that will receive a deeper analysis are education, climate change,
and work. They have been chosen because they are considered by international
organizations, such as the United Nations and the European Union, crucial and
game-changing elements for an equal and sustainable development of worldwide
societies [7, 25, 47, 72, 85].

Moreover, they are also specific fields that can help the reader understand clearly
how AI controversies emerge:

1. Artificial intelligence makes education more targeted and personalized, helping
students learn, but at the same time it can be a potential threat for their privacy
[10, 11].

2. AI model use has a negative impact on the environment, but the data analysis and
the outputs obtained through these models can help in the fight against climate
change [40, 42].

3. These new technologies promise to boost economy and enhance the quality of
life, but nowadays workers are still concerned for the possibility of losing their
jobs [20].

These are just few examples that will be then understood more deeply and
analyzed in their wide complexity.

As just suggested, artificial intelligence, especially generative AI, has profoundly
contributed to give a great boost to transform the field of education [19]. This
process of redefinition is already in progress all over the world and will define
a great change in the way people study and learn. AI is contributing to several
strategic roles of contemporary education: instructional and teaching assistants,

23 For example, the interesting attempts to evaluate governmental regulation of AI starting from
the principles extrapolated by Floridi and Cowls [89].
24 We talked about this before when introducing the two different meaning of ἦθος.
25 The Framework can of course help us during the phases of development and deployment, but
important concerns are still present when we talk about the whole life cycle of these AI tools [99].

10 Ethics and Governance of Large Language Models 245

helping with bureaucratic duties and the production of materials for lessons and
evaluation, parent assistants, and administrator assistants [11]. Artificial intelligence
can combine data and sophisticated statistical tools to monitor school climate and
act when necessary to improve the well-being of students [11] or to give teachers
the chance to understand better the different levels of their classrooms and create a
more personalized educational path for each student [10].

However, along with these stunning new possibilities, artificial intelligence arises
also numerous issues regarding the ethical consequences its use determines. Firstly,
AI can contribute to spread cheating habits (e.g., doing homework for students).
This could lead to a diminished interest for a real learning of what they are studying
and to a lack of skills when they will end their path in schools and universities [11].
Another important issue regards the potential bias present in datasets AI systems
are trained by. Students could be exposed to potentially racist or discriminatory
ideas, which could be a real obstacle for the development of ethical and social
abilities fundamental for civil coexistence in our modern societies. At the same
time, these AI biases can lead the machine to favor students belonging to a certain
socioeconomic class or with some specific characteristics [11].

Other problems are linked to potential diffusion of private data. Students can
expose themselves chatting with AI bots, letting their privacy become the source for
further analysis and extraction of value. At the same time, teachers should be careful
when they input into AI systems potential personal data and information regarding
the school environment, including colleagues and students [1, 10, 11].

Finally, some challenges can be directly related to the area of social connections
and equity issues. Relevant in education is, of course, the chance to meet the other
and establish a profound connection that can lead to the activation of cognitive and
learning skills. This happens when an educator meets her or his students, but rarely
when a young pupil alone chats with conversational bots. Social connections are
central in the discourse of education, and we must answer to the possible lack of this
link not only between the student and teacher but also of course between students
[11, 49]. Meanwhile, inequality in access to AI systems and models represents a
potential threat to the development of the necessary skills to face the hard challenges
of life. This imbalanced access is primarily influenced by economic and social gaps
between students and can contribute to widen these socioeconomic lags.26

The second field that we will now be giving deeper attention to is climate change.
According to Floridi [42], in relation to climate change, artificial intelligence has
a sort of double face. On one hand, these models are giving a fundamental help in
contrasting the sudden environmental changes occurring all around the world. AI, in
fact, is directly contributing to the design of the fundamental tools employed in the
attempt to answer to these new challenges—from neural networks able to forecast
climatic trends [56] or the water demand under climate change [92] to systems that
provide more sustainable solutions in the optimization of energy [33].

26 We must consider that AI systems, if ethically directed and able to consider different intersec-
tions, can instead be a resource to fight inequality and delete privileges [61].

246 G. R. Presta and A. Paolella

On the other hand, artificial intelligence models, in terms of emissions, impact
directly on climate change when they are developed, during training, and when they
are implemented by final users.27 There is no doubt that one important concern
is computing power. Deep Learning, a high-energy-requiring type of machine
learning, needs a lot of computing power to accomplish its tasks, and of course,
this has a relevant impact also on the emissions of these models [42]. To estimate
the ecological footprint of AI, we must consider different elements: the hardware
used, how long a session of training lasts, the number of neural networks trained,
when during the day the model is trained, how much memory it uses, and the kind
of resources the electric network providing energy employs28 [54].

These models are trained by researchers that often do not give sufficient
information on the training conditions of their models and on the attempts done
before they obtain publishable results. A lot of computing power is exploited
to reach just a small progress in models’ accuracy, forgetting to invest part of
the research in enhancing energy efficiency. This approach creates a huge entry
barrier for developing countries that do not have enough resources to start the AI
development process [42].

The debate about the impact of AI on climate change is still open and complex;29

it would deserve a deeper analysis, including not just an ethical approach but also a
political and social one. However, Floridi’s thirteen recommendations for an ethical
approach to AI and climate change issues can be a useful starting point. They can be
useful for a practical approach to AI research and governance; at the same time, they
can lead to the development of a first critical approach to the relationship between
AI and climate change challenges.30

27 As https://openai.com/index/ai-and-compute/, Amodei and Fernandez, 2018 report, the required
energy to train models has been increasing constantly and in an incredibly rapid way since 2012.
28 To train the GPT-3 model, it has been estimated that every single training session would have to
produce 223.920 kg of CO2 .. An average car in the USA emits every year almost 4600 kg of CO2 .
[42].
29 An important discussion deals also with the idea of human hyperagency and the boost AI could
give to the dangerous development of Anthropocene [22].
30 (1) “Incentivise a world-leading initiative (Observatory) to document evidence of AI being used
to combat climate change around the world [. . ..]; (2) develop standards of quality, accuracy,
privacy, relevance and interoperability for data to be included in the forthcoming Common
European Green Deal data space; identify aspects of climate action for which more data would be
most benefcial; and explore, in consultation with domain experts and civil society organisations,
how this data could be pooled in a common global climate data space; (3) incentivise collaborations
between data providers and technical experts in the private sector with domain experts from civil
society, in the form of ‘challenges’ [. . ..]; (4) incentivise the development of sustainable, scalable
responses to climate change that incorporate AI technology [. . ..]; (5) develop mechanisms for
ethical auditing of AI systems [..]; (6) develop greener, smarter and cheaper data infrastructure
(e.g., European research data centres) for researchers and universities across the EU; (7) assess
AI and its underlying infrastructure (e.g., data centres) when formulating energy management and
carbon mitigation strategies [. . ..]; (8) develop carbon assessment and disclosure standards for AI to
help the field align on metrics, increase research transparency, and communicate carbon footprints
effectively via methods such as adding carbon labels to AI-based technologies and models listed

https://openai.com/index/ai-and-compute/
https://openai.com/index/ai-and-compute/
https://openai.com/index/ai-and-compute/
https://openai.com/index/ai-and-compute/
https://openai.com/index/ai-and-compute/
https://openai.com/index/ai-and-compute/
https://openai.com/index/ai-and-compute/

10 Ethics and Governance of Large Language Models 247

The third and last area of interest for our introductory dissertation on ethical
approaches to AI is work. Our personal and social identity, our self-esteem, and
the way we approach the social world is often influenced by our job31 [42].
Artificial intelligence has yet to begin and will be a game-changer in the field of
work, restructuring the way most of our jobs are done32 but also undermining the
necessity of many job skills [20]. It has been calculated that 40% of the workforce
worldwide faces significant changes due to the rise of AI, and it’s interesting to
see how advanced economies are more exposed to this process (60%) because its
workforce is prevalently composed by professionals whose tasks are increasingly
being influenced or reshaped by AI’s growing capabilities [20]. So, more educated
workers seem to be more exposed, and often they are women. This adds another
critical point: AI-led job transformation will bring a prevalent exposure of women,
potentially widening the already-existing gender gap. At the same time, highly
educated workers have clearly shown to be able to adapt to these changes and
shift to jobs with high AI complementarity [20]. Nonetheless, there are still some
critical points we must observe carefully; among them, of course, is the risk of
labor displacement, with a consequent reduction33 of labor income for workers.

in online libraries, journals, and leaderboards; (9) incentivise diverse research agendas by funding
and rewarding projects that diverge from the current trend of compute-intensive AI research to
explore energy-efficient AI; (10) incentivise energy-efficient and green research by making EU
funding conditional on applicants measuring and reporting their estimated energy consumption and
GHG emissions. [. . ..]; (11) develop conference and journal checklists that include the disclosure
of, inter alia, energy consumption, computational complexity, and experiments (e.g., number of
training runs, and models produced) to align the field on common metrics [. . ..]; (12) assess the
carbon footprint of AI models that appear on popular libraries and platforms, such as PyTorch,
TensorFlow and Hugging Face, to inform users about their environmental costs; (13) incentivise
the development of efficiency metrics for AI research and development (including model training)
by promoting efficiency improvements and objectives in journals, conferences and challenges”
[32].
31 Often work is also linked to a condition of alienation and loss of identity and well-being. This
Marxist point of view [68] has been a theoretical base for the critical contemporary philosophic
approach to work. Franco Berardi, in 1970, published in Italy his famous work Contro il lavoro,
which, using Marxist theoretical tools, opens a wider reflection on the roles of machines not
seen anymore as producers of value but as simple mediators of the worker “lavoro vivo” (human
work), the only kind of work that gives real value to the final product. Berardi says that capitalists
will always need workers and “lavoro vivo” to create this value: according to Berardi, to destroy
capitalism, it should be necessary to leave production only to machines [14], a point of view that
leads to some critical points but able at the same time to start a new philosophic discourse in the
era of AI and spread automation.
32 As said before, we must remember that AI is, at its core, leading a reality re-ontologization
process, and work is not less affected by these technological transforming pressure. The ontology
of actions, their essence, would be moving with the input of AI toward a smart condition. Actions
are somehow becoming smart actions. So, according to this vision, artificial intelligence would not
be a new kind of intelligence but a new kind of action, a smart action [42].
33 However, according to Cazzaniga [20], this reduction could be offset by gains in productivity.
This position is not always shared by other researchers who instead criticize it and denounce a
polarization that “widen income and wealth disparities” [37].

248 G. R. Presta and A. Paolella

Then, another problem is represented by the emergence of strong differences linked
to the way advanced economies can deal with the AI transformation of work and
how instead the so-called low-income countries do not seem to be enough prepared
to face this new challenge. The situation described here, of course, can bring as
consequence the growth of the gaps between the former economies and the latter
ones, leading to a condition of diffused inequality [20].

Policymakers have to answer to this AI-led transformation of work that will
disrupt the actual scenario and potentially create social unrest. The political action
must consider to lead an equitable and ethical integration of AI, granting the
adequate training of the next generation and a general reskilling of workers already
part of the existing economies and threatened by AI disruption. As seen before, AI
can contribute to spreading inequalities on the worldwide scenario, widening gaps
and lags between countries. An answer is absolutely required and must consider the
adoption of policies of international cooperation [20].

One practical solution is represented by universal basic income (UBI). It is
considered a radical idea, but its popularity and experimental use are progressively
spreading all around the world [42]. UBI is really considered a good option
from different thinkers—Martin Luther King and Milton Freedman among them—
and this popularity exists because universal basic income has a wide range of
interpretation. Liberals look at UBI as a possible additional income related to a still
existing wage, so alone it would not be enough to grant someone a comfortable life.
Another version of UBI is related to the removal of the domain of unconditionality
in welfare services, such as education, health, and housing. So, it would be possible
to receive UBI but no more free welfare. This is considered a right-wing vision of
UBI. The third version of universal basic income, the left-wing one, proposes to part
away livelihood from work: everyone would receive an income adequate for a basic
but comfortable life, and then he or she would be free to decide if and how he or she
wants to contribute to society.34 This last type of UBI results in the most radical but
at the same time the one that can produce the most creative and interesting political
and ethical alternatives [48].

This introduction to AI ethics tried to give a general overview on what an ethical
approach could be and which are some of the major implications that have to be
considered when we design this kind of technological tools.

It is now time to delve deeper into the legislative initiatives in the field of artificial
intelligence undertaken by China, Russia, the European Union, and the USA.

34 This would be effective “economic freedom” [48], and AI general transformations of work and
society could lead to this new economic scenario. In this regard, as https://www.forbes.com/sites/
bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/, Marr, 2024 shows, the
debate is still open.

https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/
https://www.forbes.com/sites/bernardmarr/2024/12/12/will-ai-make-universal-basic-income-inevitable/

10 Ethics and Governance of Large Language Models 249

Key Points of Ethics for Artificial Intelligence

• Ethics and Ontology: Ethics in AI is deeply connected to ontological
considerations.

• We consider two meanings of the word ἦθος (ēthos):

– Habit: Ethics as shaped by repeated actions and societal norms (Aristo-
tle)

– Dwelling: Ethics as the way humans inhabit and create a relationship of
care with their world (Heraclitus, Heidegger)

• Aristotle’s perspective:

– Virtue ethics: Ethical behavior is cultivated by “habits.” The laws of the
city-state promote habitual good actions leading citizens to a virtuous
state.

– The πόλις (polis) and laws shape the virtues of the c itizens.

• Heraclitus-Heideggerian perspective:

– Ethics as continuous care for the human stay in everyday life
– ἦθος ἀvθρώπ ῳ δαίμωv (ēthos anthrōpō daimōn) →. Ethics as a critical

individual awareness of the profound relationship of care humans
should create with the place and social environment they live in

• AI and ethics, aware of the important role laws have, must go however
beyond regulation:

– Ethical AI must understand the governmental actions but requires more
than just laws and constraints: it is necessary to have a critical approach
that allows to comprehend the essential necessities of a re-ontologized
reality.

• Unified Framework of Five Principles for AI (Floridi, Cowls):

– Beneficence, Non-maleficence, Autonomy, Justice (inherited by AI
ethics from bioethical reflection)

– Added principle for AI ethics: Explicability—transparency and
accountability in AI decision-making

• Practical Applications: AI ethics in key domains.

– Education: AI’s role in learning environments

·. AI assists in teaching, administration, and monitoring student well-
being.

·. AI can promote personalized learning but also facilitate cheating.
·. Risk of bias in training data can affect students unfairly.

(continued)

250 G. R. Presta and A. Paolella

·. Privacy concerns: AI may collect and exploit student data.
·. AI impacts social interaction, potentially reducing meaningful

student-teacher engagement.
·. Digital divide: Unequal access to AI tools may widen educational

disparities.

– Climate change: AI for sustainability and environmental concerns.

·. AI helps predict climate patterns and optimize energy use.
·. AI development and implementation have high energy costs and

emissions.
·. Computing power demands can create barriers for low-income coun-

tries and threaten their efforts to deal with climate change issues.
·. An important guideline: Floridi’s 13 recommendations for ethical AI

in climate policy.

– Work: automation, labor ethics, and the transformation of employ-
ment.

·. AI transforms job roles and redefines economic structures.
·. Risk of job displacement, especially in advanced economies.
·. AI-led job transformation disproportionately affects women.
·. Income disparities may widen due to unequal adaptation to AI.
·. Need for policies and awareness to ensure fair AI integration in the

workforce.
·. Universal Basic Income (UBI): A potential solution with various

ideological perspectives.

– Ethical AI requires a critical approach to the law-shaped Aristotelian
ethical approach that contemplates an Heraclitus-Heideggerian view
able to involve a deep comprehension of the effects actions of AI
developers and users have on reality:

·. Developing an ethical approach that accompanies law-driven and
human-centered actions

·. Recognizing AI’s role in the re-ontologization of reality

10.3 Rules

10.3.1 Introduction

In this third section, the analysis will focus on the introduction of the main
approaches four important political powers have developed worldwide to deal with

10 Ethics and Governance of Large Language Models 251

the major concerns deriving from AI. Their approaches, as the research will try to
explain, are strictly related to their economical and political strategies for AI.

The analysis that is going to be introduced to the reader must consider as a
fundamental premise what has been shown in the previous observations related
to ethics and its meanings. This political approach has a crucial role in the way
societies tried to govern AI transformations, but it is not sufficient, and a specific
critical self-awareness that pones real care in everyday actions developers decide
to pursue must be always considered, regardless of the political direction laws will
suggest.

Governmental interest for digital technologies, use of data, and AI model
development has tried to move toward an ethical and human-oriented path and
has been, especially in the European Union [82, 85], a precious shield against
the forms of surveillance capitalistic structure assumed to turn personal collected
data into profits [103]. Data were and are still used not just to monitor individual
behaviors in order to predict choices but also to persuade, manipulate, and finally
generate behaviors. This new extractive paradigm simply turns humans into means
of production to obtain raw materials (data) that through algorithmic processes are
then turned into profits [103]. This structure produces an enveloped environment
where humans can rapidly shift from the condition of aims in the perimeter of a
human-oriented world into means to exploit in order to generate profits. This can
be considered another form of the digital re-ontologization process that has been
underlined by Floridi [42]. A transformation that, of course, alarmed European
institutions that already in 2016 intervened to protect its citizens data with the
release of the GDPR (General Data Protection Regulation) [82].

However, governments had also an important role in the spread of potential
threats coming from AI and digital technologies in general. The use of these tools
for social control in China and Russia will be one of the main topics of the following
pages [91, 98], but also what happened in the USA and EU must be observed with
concerned attention.

In this section, the main elements determining the nature of EU and US approach
to AI will be analyzed, and in the conclusive part of the research, there will
be an introductory attempt to comprehend how emergency became a political
and ideological instrument to impose aggressive private data extraction and to
develop related algorithmic infrastructures able to produce surveillance methods
that undermine human freedom and rights [103].

Again, a critical ethical approach that respects but knows to look beyond the
simple perimeter suggested by governmental directions must be considered a good
proposal to develop further human-oriented AI solutions.

The following sections will analyze governmental approaches to AI and data
regulation, focusing on the ethical challenges posed by digital technologies in the
EU, the USA, China, and Russia. Special attention will be given to surveillance,
social control, legislative frameworks like the GDPR and AIA, and the geopolitical
competition in AI development.

252 G. R. Presta and A. Paolella

10.3.2 Chinese Approach to AI Development and Regulation:
AIDP and the Mission of Reaching AI Global
Leadership

China is today a world leader in AI technologies development and has set a specific
goal to achieve a complete supremacy in this field around the year 2030 [87]. The
main political and institutional tool organized by China’s Communist Party leaders
to accomplish this aim is the so-called AIDP or NGAIDP, the New Generation
Artificial Intelligence Development Plan. It is a complex document directed to the
definition of an articulated strategy exploring different layers of economics and
society: from Chinese possibilities in the development of national AI technologies
able to compete in the international scenario with other powers’ AI resources to the
chance to make China an important hub that will attract researchers35 from all over
the world [87].

The AIDP was the result of a long debate, and attention inside Chinese
governmental institutions started already at the beginning of the last decade [87]
and is now living a period where the focus is moving to a possible more ethical use
of these technologies [91]. The AIDP is led by the AI Strategy Advisory Committee
and the Ministry of Science and technology, both institutions related to the central
government, but the implementation of the numerous initiatives promoted by the
AIDP is a task left to local administrations and the private sector. In the 3-year plan
linked to the development plan here discussed, this sort of dialogue between micro-
and macro-governing scale is openly declared.36 However, the central government
chose AI national champions—among them Baidu and Alibaba—giving these
companies specific tasks in the wide field of AI development, trying simultaneously
to promote the birth and growth of new Chinese AI start-up companies, whose
success37 is not less relevant for the realization of the plan [87].

China puts AI technologies at the center of its political, military, and economic
policies, considering these new tools as fundamental to obtain results in interna-
tional competition, economic development, and social governance. AI is looked
at as perfectly coherent to the Chinese attempt to construe a national apparatus
defined by parallel skills in the international competition with the USA. According
to China’s government, it is not possible, nor convenient, to engage a direct race
against the USA in fields where the latter has a clearly superior power; so, the aim
is to start to overperform in other areas of development, and the new AI tools and

35 In 2023, China was “the largest producer of AI research in the world” [91].
36 To focus on this specific point, important indications are given by Khanal [59].
37 “Technology start-ups within China often receive government support and subsidies for
developing AI technologies. As an example, Zhongguancun Innovation Town is a purpose-built,
government subsidised, incubator workspace that provides a suite of services to help Chinese
technology start-ups succeed, often in the sectors where national champions have been selected”
[87].

10 Ethics and Governance of Large Language Models 253

infrastructure are an unexplored path that could represent a good opportunity38 for
China to compete [87].

China has set also important goals for its economy, targeting AI as an important
instrument to continue boosting its growth with innovation after previous decades of
incredible economic development. On one hand, AI promises to create an incredible
expected growth in the country by 2030,39 resulting in an economic development of
the 26% [81]), and the investments in this field has already had a rush in 2018, with
a stunning growth rate of 48% [64]. On the other hand, although Chinese industry
reached an incredible rate of automation in factories and services, the managing of
the progressive dismantling of workers opportunities and the spreading of wealth
inequalities could be important menaces to the stability of Chinese political and
social apparatus [87].

CCP sees in AI also a great potentiality to obtain a more effective social
control over the population in the country. Main issues from this point of view
are the possible use in social scoring and uncontrolled collection of personal data.
Social governance, for example, is implemented by a social credit system based
on algorithms and whose complete acceptance by the Chinese people is debated.40

These mathematical structures that are at the base of every digital software have also
been under continuous attention by the Chinese government that looks at them as
potential threats for the absolute control of information that CCP wants to detain.41

This is a real concern widespread among the leaders of the party, who decided to
answer with a regulation that points at algorithms as the main digital element toward
which one important attention must be led to obtain a real control of digital tools.
Algorithms in China are part of an AI supply chain that was elected as the point of
entry for regulation, with a registry. In this registry are included also the training

38 For example, a “leapfrog” in military development: something that can make China a leader of
international competition for the arrangement of new digital-equipped armies, especially in cyber
warfare [87].
39 The deadline set in the AIDP to reach AI supremacy according to the Chinese government [87].
40 “The disruption of the Maoist period followed by an ‘opening up’ has created a moral vacuum
within China. These concerns are echoed by the Chinese public, with Ipsos Mori finding that
concerns over ‘moral decline’ in China were twice as high as the global. This is something that
has been recognised by the Chinese government, with high-level officials, including President
Xi, forwarding the idea of a ‘minimum moral standard’ within society [. . ..] In view of the
government, AI can be used to this end [. . ..] Articles in the Western media often emphasise
the problematic nature of ‘the’ Social Credit System, due to the authoritarian undertones of this
pervasive control. Examples of public dissatisfaction with specific features of locally run social
credit systems appear to support this viewpoint [102]. In some cases, there have even been cases of
public backlash leading to revisions in the rating criteria for local social credit systems. In contrast,
some commentators have emphasized that, domestically, a national social credit system may be
positively received as a response to the perception of moral decline in China” [87].
41 “Tracing the origin of the term ‘algorithmic recommendation’ backward in Chinese state media
shows that it first emerged during a 2017 CCP backlash against ByteDance’s news and media apps,
in which user feeds were dictated by algorithms. The party viewed this as threatening its ability
to set the agenda of public discourse and began looking for ways to rein in algorithms used for
information dissemination” [91].

254 G. R. Presta and A. Paolella

data used for the development of the model: they must be diverse and objective
[91]. Algorithms and data are also subjected—specially deep synthesis outputs—to
a vague form of censorship that includes the necessity to adhere to specific social
and moral values, to avoid misleading for the public, and to disturb the economic
and social sphere [91]. The creation of this first tool gave bureaucrats the chance
to get in touch with this new technology, building a first know-how that has been
useful in the advancement of further legislative documents. Then, China’s approach
became vertical—dealing with a single manifestation of a technology—and iterative
so when a regulation gets obsolete, it is just updated with a new release that solves
the problems and obsolescence of the previous one [91].

10.3.3 Russian Approach to AI Development and Regulation:
Strategies to Fill Lags, Face Ethical Issues, and
Compete in the International Scenario

In Russia, current AI strategies and opportunities are affected by the recent events
following the invasion of Ukraine, with a progressive mutation of Russian economy,
policies, and academic research in this technological field [13]. However, to
understand better the actual situation in the country, as already done before for
China, we make a little step back to the last decade.

Russia has tried to set a specific strategy to compete in the worldwide scenario
since 2018,42 when the government of the Federation released the first of four main
policies and programs [93], the Digital Economy National Program. It was arranged
to pursue three main objectives:

1. To expand domestic investments and development on digital economy
2. To create a stable and secure information and telecommunications infrastructure

for high-speed transmission, processing, and storage of large amounts of data
3. To use Russian software in local and national government bodies and organiza-

tion43

This first program was then followed by the AI Roadmap, promoted by the
government and led by the private Russian company Sber, which had the duty to
detail different AI subtechnologies—from natural language processing to neural
interfaces, neurostimulation, and neurosensing—to fund and develop [93].

42 We must consider that Russia has what we can call an ethics-based approach to the regulation
of AI. Governmental directions on this topic have been tailored by private companies to build an
environment where real legal restrictions are more or less absent. So, ethical concerns are often
just an excuse for ethics washing and not effective laws to look at when developing new products
[75].
43 https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-
policyInitiatives-24621, OECD 2023.

https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-24621

10 Ethics and Governance of Large Language Models 255

Russia then established the National Strategy on AI Development, appointing in
2019 a specific commission with the aim to supervise and update the strategy itself.
Russia wanted and wants to use this tool to fill the gap with other more advanced
nations, setting 2030 as the deadline to obtain positive responses for its efforts.
The strategy looks at the quality of the data employed in the development of new
national AI technologies, but at the same time great relevance is given also to the
nurture of new talents in the AI research field and to the attempt of creating the best
environment for the progressive spreading of AI culture and education in Russian
society. The National Strategy on AI Development was then emended in February
2024, and great importance was given again to research and development, with
the precise strategic will of reducing Russian dependence from other international
competitors in AI software and hardware creation [93].

Also relevant is one of the four main Russian policies on AI, the 2020 AI
Federal Project, whose attempt is to underline how the AI initiatives will be funded,
which are the metrics and the schedule for development projects. The project also
shows the main areas of interest, including agriculture, healthcare, energy, and
transportation [35, 79].

Just with this first look at Russian legislation on AI, we have seen how it has
evolved and which are the main points it is composed of. We also got in touch
with the recombination and rethinking of necessities linked to the transformation of
Russian legislative approach to AI after the beginning of the war in Ukraine.

It is essential to take a deeper look into the composition of Russian National
Strategy on AI development, where we can recognize six blocks related to specific
fields of interest for the use of artificial intelligence.44 So, the six blocks are (1) legal
and ethical framework; (2) scientific and academic community; (3) data regulation;
(4) hardware and software development; (5) education; and (6) healthcare.

For the current analysis, a better understanding of the first part of the block, the
one regarding ethics, is necessary. We can underline how the document shows a
focus and concern on the creation of the legal and ethical base for the development
of research center, linked with industries, clarifying responsibilities on circulation
and results of AI data and elaborating national standards for certifying, testing,
and confirming compliance of AI items and technologies [89]. This dimension
is profoundly interlinked with the third point, the one regarding data regulation:
in fact, the Russian government has tried, deploying this strategy, building a
huge database to collect information, the fundamental resource to train artificial
intelligence systems, but at the same time, the government has tried to provide

44 These different areas composing Russian AI strategy are considered essential by governmental
organizations to reach a good degree of competitive skills and take part to the international AI
scenario, turning Russia into a world leader in the development of AI technologies: “The strategy
stresses the strategic importance of AI as a prerequisite for Russia’s entry into the group of
economic world leaders as well as the country’s technological independence and competitiveness.
Even though Russia is not currently considered a leader in the realm of AI, the document states
that Russia has the potential to ‘[become] an international leader in the development and use of
artificial intelligence technologies” [89].

256 G. R. Presta and A. Paolella

Russian citizens with specific tools to take care of and anonymize their personal data
published online [89]. About data collection, it’s interesting to look at the Russian
Law No.123-FZ and Russian Law No. 258-FZ approved, respectively, in 2020 and
in 2021. These two laws represent an attempt to create a sort of data extraction
center in the heart of everyday life: the first one works just for a specific area in
Moscow and allows the possibility of using anonymized personal health data to
contribute to the development of AI technologies for this research field; the second
extends the creation of this kind of special data extraction area to the rest of the
country—but with a previous deal between industries and the Ministry of Economic
Development.45

These are the so-called ELRs,46 Experimental Legal Regimes, whose creation
can be seen also as a good strategic solution to enhance a qualitative development
of artificial intelligence systems.47 However, if we try to conduct a deeper analysis,
using as guide and filter the Unified Framework developed by Floridi,48 we’ll find
out that Russian National Strategy on AI development has numerous and diverse
problems, lacking of a real ethical accuracy. In principles such as beneficence
or non-maleficence, Russia seems to enter a virtuous path and establish a good
approach, but the lack of explicability of the main legal or ethical tools to use
in order to face the moral and juridical issues emerging from AI development
represents a real obstacle to enhance the credibility of the strategy and to obtain
the optimistic objectives—competitiveness and leadership of Russia in the global
AI race—the government is looking at [89].

45 Russian Law No. 123-FZ established an experimental legal regime (commonly referred to as
a regulatory sandbox) in Moscow. Coming into effect in July 2020, its aim was to promote
innovation over the course of five years. Importantly, the law contains an amendment to the
law “On Personal Data,” passed in 2006, that allows for the processing of anonymized personal
health data of Russian citizens. The authors of the bill claim that the amendment is needed
to gather the large amounts of information needed for the development and testing of AI
technologies. In July 2021, Russian Law No. 258-FZ established a similar regulatory sandbox
for all of Russia. It aimed to promote development in AI, quantum technology, big data, and
robotics. To participate, entrepreneurs and organizations submit an application to the Ministry
of Economic Development for approval https://geohistory.today/artificial-intelligence-in-russia/#
National_AI_Initiatives_in_Russia, (Sullivan 2022).
46 ELRs proposal initiatives are currently 180 and focused on different activities, from healthcare
to unmanned transportation and access for AI developers to governmental datasets. The most
important Russian tech and financial industries, including Sber, Yandex, and Kamaz, are involved
in the use of these legal regimes and are the main partners of the government for this project. More
data and insights can be found in https://ai.gov.ru/en/ai/regulatory/, Artificial Intelligence of the
Russian Federation Web site.
47 Floridi suggests the European Union should give a chance to this model of development:
“Incentivare finanziariamente lo sviluppo e l’uso di zone speciali legalmente deregolamentate
all’interno della UE per la verifica empirica e lo sviluppo dei sistemi di IA. Queste zone possono
assumere la forma di un “laboratorio vivente” eng. “To financially incentivize the development and
use of specially designated, legally deregulated zones within the EU for the empirical verification
and development of AI systems. These zones could take the form of a ‘living laboratory” [42].
48 We spoke about the Framework before in this chapter.

https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://ai.gov.ru/en/ai/regulatory/
https://ai.gov.ru/en/ai/regulatory/
https://ai.gov.ru/en/ai/regulatory/
https://ai.gov.ru/en/ai/regulatory/
https://ai.gov.ru/en/ai/regulatory/
https://ai.gov.ru/en/ai/regulatory/
https://ai.gov.ru/en/ai/regulatory/

10 Ethics and Governance of Large Language Models 257

As underlined before, there is an important connection between Russian AI
development and the events related to the war in Ukraine. One of the first things
that became suddenly evident at the beginning of the war was the delay of Russian
AI technologies infrastructure and how the sanctions imposed by Western countries
obliged tech industries in Russia to depend more and more on state fundings [13].
This, of course, contributed to a general centralization of AI development in the
country,49 and with the war being a priority for Russia, also research on artificial
intelligence was used to extract major data from the battlefield and, as MOD
[Ministry of Defense] AI department leader Vasily Yelistratov announced, to develop
tools able to guarantee supremacy at war [13].

It is important to enlighten the ethical concern raised by the use of AI in the field
of warfare and how the present international scenario of tension—the war in Ukraine
is deeply interlinked with artificial intelligence use in Russia, but it’s just an example
in this period of political and economic concerns50 —is not helping in creating the
best environment for a good and qualitative research of ethical AI. We cannot trust
in a future machine-led warfare, where human directions and implications will
be deleted; instead, the psychological dilemma caused by the use of this kind of
technology on the battlefield is even more evident, a use that is inevitably related to
the osmotic relationship human beings develop with the tools they use [58].

For Russia, the situation becomes every day more complex because of the
deteriorating political environment of the country, with a spread repression against
a however still-existing opposition to the government [45], a hostile political atmo-
sphere that, previously with the post-Soviet crisis and then with the recent sanctions
adopted by Western countries against the Federation, led to a loss of talented
researchers, evident also in the tech and AI field [13]. A lot of Russians, employed as
tech developers or entrepreneurs in artificial intelligence industry, decided to leave
the country51 and search for other occupations abroad. Meanwhile, Russia has been

49 “With the launch of sanctions against Russia in March 2022, Russian society looked to the
state for long-term solutions and paths forward for the domestic high-tech ecosystem, and for
funding and technology development in general. In practice, this meant adopting many centralized
development pathways with the government at the epicenter of all relevant activity. While the
Russian state was already the major entity in national AI and high-tech development prior to the
Ukraine invasion, the government, and the MOD [Ministry of Defense], in particular, moved to
create centralized structures for AI research, development, and use to streamline approaches, avoid
duplication of efforts, and have better control over multiple efforts across the country” [13].
50 The widespread tensions are expressed also with the economic threat of tariffs for other
countries’ imported goods—as shown by https://www.reuters.com/world/us/trump-promises-
25-tariff-products-mexico-canada-2024-11-25/, Pitas, 2024—and by the continuous political
crisis overthrowing Europe (https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-
german-governments-terrible-moment-eu/, Crisp, 2024) and important democracies in Asia
(https://www.bbc.com/news/articles/c0kvjx474g1o, Walker, Lee, 2024).
51 “Many talented high-tech workers and entrepreneurs in the broader information and communi-
cation technologies (ICT) ecosystem that includes AI emigrated abroad at the start of Moscow’s
invasion of Ukraine. At least 70,000 and up to 100,000 tech professionals have left the country—
bound for Europe, the United States, the Middle East, and several former Soviet republics. While
some continued to work for Russian high-tech companies, many were employed by international

https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.reuters.com/world/us/trump-promises-25-tariff-products-mexico-canada-2024-11-25/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.telegraph.co.uk/world-news/2024/12/03/crisis-french-german-governments-terrible-moment-eu/
https://www.bbc.com/news/articles/c0kvjx474g1o
https://www.bbc.com/news/articles/c0kvjx474g1o
https://www.bbc.com/news/articles/c0kvjx474g1o
https://www.bbc.com/news/articles/c0kvjx474g1o
https://www.bbc.com/news/articles/c0kvjx474g1o
https://www.bbc.com/news/articles/c0kvjx474g1o
https://www.bbc.com/news/articles/c0kvjx474g1o

258 G. R. Presta and A. Paolella

isolated from the international innovation ecosystem—e.g., Russian developers
had various issues using GitHub—and Russian technological development depends
always more on cooperation with its partners, especially China [13].

10.3.4 EU Approach to AI Development and Regulation: The
Anthropocentric Way to AI

The European Union legislation started to regulate digital environments and online
identities and actions to preserve from potential dangers the lives of European
citizens—the famous Regulation (EU) 2016/679, also known as GDPR, is a good
example of this attempt[82]52 —but also to boost the European economy through the
maximization of the opportunities digital instruments can provide to the economic
growth of the continent. That’s why in 2015, during Juncker mandate, as president of
the European Commission, the Digital Single Market strategy has been established,
reaching in 2016 and 2017 important goals regarding data protection and cross-
border portability.53

It was in 2016 when, as said before, the Regulation (EU) 2016/679, the GDPR
(General Data Protection Regulation) was released. The EU, with this legislative
act, succeeded in governing potential breaches in privacy and possible European
citizens and industries data leaks [82].

The GDPR act recognized the importance reached by data in economic and
technological developments, considering parallel risks this new condition could
create for private citizens. At the same time, one of the declared goals the European
Commission looked at was the definition of common laws that could help regulate

companies, while others chose to seek entirely new ICT employment. Many remain abroad, instead
others have returned due to difficulties settling in new countries. This emigration will remain a
long-term issue for the Russian high-tech industry in general” [13].
52 This regulative attempt led also to the creation of a strict approach against any possible abuse of
data. Italian governmental data-protection authority, Garante per la Privacy, for example, has been
the first to stop two online-accessible LLMs, OpenAI (in 2023) and DeepSeek (2025) services, after
some issues emerged exactly in the management of users’ data. The decision was not political and
related to the Italian Garante fast reaction in observing European privacy laws. In fact, according
to the Garante, OpenAI didn’t accomplish the necessary informative duties that could guarantee
Italian citizens awareness on the treatment of their data. However, Italy has just been the first and
fastest European country to act, but also Spanish and French authorities started the procedural
passages necessary to stop OpenAI in 2023, before OpenAI answered positively to the Italian
and European requests. In 2025 also, the mobile app of DeepSeek, a new Chinese LLM, has
been stopped, and data-protection authorities in Italy and Ireland asked the Chinese developer
to answer to the same doubts on data that emerged before with ChatGPT (https://legrandcontinent.
eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/, Azzolini, 2023; https://www.bbc.com/news/
technology-65139406, Shiona MvCullum, 2023; https://www.theguardian.com/technology/2025/
jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use, Booth, Krupa, Giuffrida,
2025).
53 https://www.consilium.europa.eu/en/policies/digital-single-market/, European Council, 2020.

https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://legrandcontinent.eu/it/2023/04/21/perche-litalia-ha-bloccato-chatgpt/
https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.theguardian.com/technology/2025/jan/29/deepseek-blocked-some-app-stores-italy-questions-data-use
https://www.consilium.europa.eu/en/policies/digital-single-market/
https://www.consilium.europa.eu/en/policies/digital-single-market/
https://www.consilium.europa.eu/en/policies/digital-single-market/
https://www.consilium.europa.eu/en/policies/digital-single-market/
https://www.consilium.europa.eu/en/policies/digital-single-market/
https://www.consilium.europa.eu/en/policies/digital-single-market/
https://www.consilium.europa.eu/en/policies/digital-single-market/
https://www.consilium.europa.eu/en/policies/digital-single-market/
https://www.consilium.europa.eu/en/policies/digital-single-market/
https://www.consilium.europa.eu/en/policies/digital-single-market/

10 Ethics and Governance of Large Language Models 259

the circulation and use of data inside the European Union [82]. Restrictions imposed
by the EU changed profoundly the structures and modalities developers had to
attain to get an answer for the new challenges the regulation added. Of course, one
crucial point has been compliance, which then regarded all the progressive updates
the entire world of digital and informational industries went through—from Web
navigation to blockchains and Internet of Things (IoT) [36].

The European Union started to develop a regulative practice that intended
preservation online the human rights granted in natural everyday life by the
fundamental laws of the Union [82]. Meanwhile, digital assets and infrastructure are
seen as crucial resources for the future of the European Union.54 The economical
frame of digital technologies, including AI, had and still has strong influence and
profound consequences on ethical and political decisions, thus drawing particular
attention from European policymakers.

This is shown by the intense legislative work that characterized EU law-making
in the field of digital market. In 2020, the European Union proposed the Digital
Market Act (DMA), the Digital Service Act (DSA), and the Data Governance Act
(DGA) [80].

The DMA represents an attempt, directed by the Union, to unify the continental
previous fragmented digital market frame and to establish clear borders for the
actions of so-called digital market “Gatekeepers” (e.g., Amazon or Google). Such
borders are linked to specific prohibitions including data combination across
platforms and self-preferencing [83]. The DSA instead has a specific focus on e-
commerce, with peculiar attention for potential misuse of information by societies.
An interesting aspect of this law, actually contributing to ethical and political
debates, deals with digital platforms and the hosting of illegal contents. The Data
Service Act does not declare the hosting providers (i.e., Meta, X, etc.) responsible
for such contents but creates a simultaneous expansion of procedural obligations
to obtain the removal of these illegal materials [97]. Finally, the DGA has the
purpose of regulating the reuse of publicly shared and private protected data—
with the latter ones being shielded also by the application of the GDPR, shaping a
European informational environment where precious datasets are easily accessible.
This Act tries to reach its aim appointing novel data management intermediaries and
encouraging the sharing of data for altruistic purposes. Another important boost is
tried to be gained through the implementation of initiatives to establish a favorable
cultural atmosphere to entrust data sharing and reuse, in order to provide more data
for the further development of new technologies [84].

Already at the publication of Digital Market Act proposals, not few experts
underlined different critical points and potential threats for the European digital
market itself [80]. Important lacks emerged in the specificity and flexibility of the
act, with real risks for the applicability of the law and for possible future transfor-

54 We have already seen before what this means when we referred to the EU strategy developed
since 2015.

260 G. R. Presta and A. Paolella

mations and adjustments related to market development and sectorial necessities55

[16, 17].
These Acts and the GDPR are examples of European awareness about the

necessity of creating a law-making approach that can regulate, managing data
circulation and use, the digital life of EU citizens, giving them the opportunity to
access the necessary legal instruments to protect themselves in the complex structure
of modern infosphere.

In order to engage the global political and economic competition for AI
supremacy, the European Union since 2018—one year after Chinese AIDP—
understood the importance of establishing a continental strategy to face the new
challenges emerging from the diffusion and use of artificial intelligence systems
[24]. The EU started to look at AI as a technological revolution that would have
completely transformed the entire industrial asset of the continent and the world,
reconfiguring societies and ways of life.56 Europe was aware that members had to
coordinate and harmonize their AI policies to reach the desired goal of creating a
strong and valuable development oriented to establish good and for-all AI. So, the
European Commission found three strategical points of capitalization:

1. A world-leading environment of researchers, labs, and start-ups, integrated in
advanced industries in the fields of healthcare, transports, and manufacture and
linked to a peculiar strength in robotics

2. The presence of a common Digital Single Market
3. A wealth of industrial, research, and public sector data that are the core of AI

development, raw materials without which these technologies could neither exist
[24].

The European strategy wants to set the EU as one of the international leaders
in AI technological developments57 but with particular regard to an AI-led digital
transformation that leaves none behind and is able instead to produce more inclusion
and to guarantee a sustainable future for the continent. According to the European
Commission, these goals, to create an AI that benefits people and society as a whole,
can be reached only by an approach to artificial intelligence based on values [24, 41].

55 The DMA is the European law that is creating different problems for the introduction in the
continent of new AI foreign products and tools, among them the well-known delay, framed by
debates and controversies, for the arrival in Europe of Apple Intelligence AI service (https://www.
theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation, Guardian, 2024).
56 “Like the steam engine or electricity in the past, AI is transforming our world, our society and our
industry. Growth in computing power, availability of data and progress in algorithms have turned
AI into one of the most strategic technologies of the twenty-first century. The stakes could not be
higher. The way we approach AI will define the world we live in. Amid fierce global competition,
a solid European framework is needed” [24].
57 This aim, to obtain AI leadership in a global competitive scenario, was already set in 2017
[23], aligning, from a temporal point of view, the starting moment of the race for EU and China.
However, it must be recognized that Europe started to promote research and development of AI
technologies since 2004, focusing on the specific sector of robotics [24].

https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation
https://www.theguardian.com/technology/article/2024/jun/21/apple-ai-europe-regulation

10 Ethics and Governance of Large Language Models 261

The European strategy considered fundamental also the necessity to develop
an AI that could represent a real opportunity for everyone. This means that the
socioeconomic changes led by AI had and still have to be governed through
specific political actions directed to the enhancement of people’s digital abilities.
The European AI is accompanied by plans for the reskilling of older citizens—
still working or not—for the nurturing of young talents, and of diversity and
interdisciplinarity [24]. Of course, in order to obtain these goals the adoption of the
new artificial intelligence innovations in Europe needed from the very beginning
ethical guidelines. This necessity led to the idea of defining a collective work that
included an open exchange of views with the main AI stakeholders [24].

The EU strategy for artificial intelligence, with its human-oriented approach
based on values, was released in 2018. Following debates and proposals, including
the ones on ethical frameworks and the principal issues emerging when observing
AI use in everyday life, resulted in the latest great European regulative initiative:
the AI Act. The Artificial Intelligence Act (AIA), published on June 13, 2024, has
a clear ethical nature and aims to establish in the EU a human-centered approach
that guarantees the development of trustworthy and safe AI models and systems
[85]. The Act provides also the legislative base to promote and ensure the free
movement of products and services linked to artificial intelligence, avoiding a
possible fragmentation of the European AI development and market.58

The AI act has, of course, practical consequences on the way providers of
AI services must develop and deploy their products; in fact, under the new law,
AI systems are classified according to their risks. Unacceptable risks (e.g., social
scoring systems and manipulative AI) are absolutely forbidden, while high-risk AI
systems are accepted but strongly regulated. A smaller part of the Act is focused
instead on limited-risk AI systems (chatbots and deepfakes) that have transparencies
obligations, while minimal-risk AI systems are unregulated (e.g., AI-enabled video
games and spam filters), but things are changing with generative AI [85]. Developers
of AI systems, single individuals or entities that want to enter the European market
or put into service in Europe high-risk systems,59 have to deal with the majority of
obligations. Nonetheless, some legal duties fall also on deployers, natural or legal

58 “The purpose of this Regulation is to improve the functioning of the internal market by laying
down a uniform legal framework in particular for the development, the placing on the market, the
putting into service and the use of artificial intelligence systems (AI systems) in the Union, in
accordance with Union values, to promote the uptake of human centric and trustworthy artificial
intelligence (AI) while ensuring a high level of protection of health, safety, fundamental rights as
enshrined in the Charter of Fundamental Rights of the European Union (the ‘Charter’), including
democracy, the rule of law and environmental protection, to protect against the harmful effects of
AI systems in the Union, and to support innovation. This Regulation ensures the free movement,
cross-border, of AI-based goods and services, thus preventing Member States from imposing
restrictions on the development, marketing and use of AI systems, unless explicitly authorised
by this Regulation” [85].
59 The law applies with no differences also if they are not based inside European borders or if these
entities are third-country providers [85].

262 G. R. Presta and A. Paolella

persons that deploy an AI system—whose output will be experienced in the EU—in
a professional capacity [85].

Another important passage of the AIA regards General Purpose Artificial
Intelligence (GPAI). The locution “GPAI” was already defined during the legislative
debates that occurred in the European Commission before the publication of the
AI Act, and it led to a comprehensive idea of GPAI as a system able to pursue
generally applicable functions, from image recognition to text translation; it is a
model that can be used in different contexts and potentially integrated in other AI
systems.60 According to the AI Act, GPAI systems providers are subjected to strict
control from different points of view: they must provide technical documentation
and instructions for use, and then they must comply with the Copyright Directive.
Finally, providers are obliged to publish a summary of the contents used for the
model training. Unless systemic risks are present, regulations become softer for
open and free GPAI developers: they have just the duty to comply with Copyright
Directive and to publish a training data summary. Additional legal obligations are
instead addressed to potentially risky GPAI providers, including the conduction of
model evaluations and adversarial testing; they have also the responsibility to report
accidents and ensure cybersecurity protection [85].

We’ve talked before about a risk-based evaluation system that enables the AI
Act to regulate artificial intelligence models according to their potential danger
for people and society. These are models also considered too risky and whose use,
because of this, results forbidden in the EU:

1. Models deploying subliminal, manipulative, or deceptive techniques
2. Models exploiting vulnerabilities related to age, disability, or socioeconomic

circumstances to cause significant harm
3. Social scoring models, i.e., evaluating or classifying individuals or groups,

causing detrimental or unfavorable treatment of those people
4. Models assessing the risk of an individual committing criminal offenses solely

based on profiling or personality traits
5. Models compiling facial recognition databases by untargeted scraping of facial

images from the Internet or CCTV footage
6. Models inferring emotions in workplaces or educational institutions

60 “General-purpose AI system” is an AI system that—irrespective of how it is placed on the market
or put into service, including as open source software—performs generally applicable functions
such as image and speech recognition, audio and video generation, pattern detection, question
answering, translation, and others; a general-purpose AI system may be used in a plurality of
contexts and be integrated in a plurality of other AI systems https://data.consilium.europa.eu/doc/
document/ST-14954-2022-INIT/en/pdf, (Council of the European Union, 2022). This definition
has been widely criticized because it is considered too inclusive and unable to capture the real
essence of GPAI [96]. Another definitional proposal came from the Institute for the Future of Life
that underlined instead the always-present multitasking performance of these kinds of systems and
their ability to accomplish tasks they were not directly trained for https://artificialintelligenceact.eu/
wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf, (Future of Life Institute,
2022).

https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf
https://artificialintelligenceact.eu/wp-content/uploads/2022/05/General-Purpose-AI-and-the-AI-Act.pdf

10 Ethics and Governance of Large Language Models 263

7. Biometric categorization systems
8. “Real-time” remote biometric identification (RBI) in publicly accessible spaces

for law enforcement (with some exception, e.g., in terrorism, research of missing
people, etc.) [85]

These AI systems cannot be deployed and used in the European Union; they are
strictly prohibited.

However, there are a number of models that are considered high risk but can
still operate in the Union. Among them, there are AI systems exploited for the
management of crucial everyday activities, including critical infrastructure (e.g.,
road traffic, water or electric supply, etc.), education and vocational training,
employment, workers’ management and self-employment, the access to and enjoy-
ment of essential private services and essential public services and benefits (e.g.,
healthcare), and law enforcement (for the occurring of special-risk conditions) [85].
There are also high-risk systems considered not prohibited dealing with biometric
data collection and use. Furthermore, at the center of general ethical concerns and
considered high risk by the AI Act are also AI algorithms linked to migration,
asylum, and border control management [15].

The providers of high-risk artificial intelligence models have the compliance and
transparency duties we have already seen, with the additional responsibility to test
their models in order to prevent accidents and answer to possible data vulnerability.
They must design their high-risk AI system to achieve appropriate levels of
accuracy, robustness, and cybersecurity, allowing at the same time deployers to
implement human oversight [85].

The AI Act is the first full attempt to regulate the use of artificial intelligence in
a vast jurisdictional area [90], and of course, the regulation has to face different
challenges, e.g., choosing the right path to obtain a good harmonized standard
system to evaluate AI models [63] and find the best answers for them.

Among these complex and challenging concerns, relevant is the one related
to the process of inserting the AI Act inside the multilayered and intricate legal
sphere composing the European AI regulative scenario. The AIA will necessarily
coordinate with another important legislative tool, the GDPR, the 2016 European
initiative that led to a first regulative paradigm for the collection of personal data61

[38]. We know that data are the fuel of artificial intelligence models [42]; however,
the AI Act does not really provide a new regulation for data collection, which
remains consequently managed by the previous existing legislative action and thus
involving directly the GDPR. It is now fundamental to avoid potential conflicts and
contradictions between the two acts and try to understand how, after their collection,
these data will be used in AI training and which kind of outputs will emerge. It is
clear that the AI Act and the GDPR have a lot of common points [38]. They are
both regulations, not directives, and both adopt the same risk-based approach to
evaluate possible danger emerging from technologies they regulate. Furthermore,

61 We have discussed before about the GDPR and its consequences on digital data.

264 G. R. Presta and A. Paolella

they share also some principles and methods that the AI Act now updates and
exploits to manage the training of AI models. Firstly is the extraterritorial action,
which obligates whoever exports inside the EU borders their artificial intelligence
models to respect the rules imposed by the Union. Then, there is also a deep care for
the quality and accuracy of data, linked to a spread approach attempting to achieve a
privacy by design and by default AI models production. Other important principles
are also transparency, the possibility for users and experts to check how data are
used and for which purpose, and the automation of decision-making processes—the
most strict point between the AI Act and the GDPR, it deals with the possibility for
data to be processed autonomously by machines that provide consequent outputs
and options then used to decide about concerning problems62 [38].

However, this similar background cannot give the needed answer for a still-absent
procedural joint between the two acts. It is possible to identify three principle critical
points:

1. The risk to overload the private sector with legal duties, obtaining a negative
effect for technological development.

2. Without general guidelines, companies operating in the AI market will be
obliged to self-regulate, and this condition could lead to arbitrary and discretional
evaluations.

3. These uncertainties could generate the paradox of a lack of protection for
individual data and privacy [38].

These are the themes policymakers and researchers will encounter in the future
discussion on the legislative regulation of artificial intelligence, themes that are still
evolving and changing, progressively fueling the debate on ethical and legislative
tools capable to develop the European anthropocentric approach to AI.

10.3.5 US Approach to AI Development and Regulation:
Keeping Global Supremacy Between Ethical Issues
and Future Challenges

The USA is nowadays the leading country in artificial intelligence development and
research. It has been calculated that 73% of the production of large language models
worldwide is based in the USA, with only a 15% total Chinese contribution to LLM
design and development [3]. A substantial gap between the two superpowers can
be observed also in the field of research during the first 20 years of the twenty-first
century, when the USA, although there has been one year of Chinese supremacy

62 It is interesting to underline how the GDPR draws limits for this kind of automation, but not
directly forbidding this kind of possible data treatments [82]; instead, the AI Act regulates most of
these automated decision-making processes, establishing a specific prohibition for some of them
(e.g., in some processes involving biometric data) [38, 82].

10 Ethics and Governance of Large Language Models 265

in 2010, has always prevailed over its most direct competitor for the number of
published AI papers.63

Furthermore, the AI supremacy of the USA is also a matter of investments. In
2020, 82% of global investments in the sector of artificial intelligence start-ups has
been parted between China and the USA, with the latter spending a total amount of
$27.6 billion. In 2019, the USA spent $656 billion in artificial intelligence R&D,
attesting itself as the world leader for the AI sector [2].

The incredible achievements of American AI are even more impressive compared
to the ones obtained by the European Union. Again investments can give us a clear
view of the general landscape, underlining differences and gaps. Private investments
for AI development in the USA reached 62.5 billion, while Europe had to sum up
its continental investments with those of the UK to obtain a total 9 billion.64 It has
been observed that between 2018 and 2023, the total investments in EU artificial
intelligence companies reached 32.5 billion, while in the USA, tech industries
involved in AI development attested at 120 billion investments. Generative AI, and
overall OpenAI’s ChatGPT model breakthrough,65 is of course fueling American
competitive power and widening the gaps between the USA and Europe [65]. At the
same time, these conditions are increasing the attraction of young European talents
for the US market—offering more positions in the AI sector compared to EU and
UK—for the stimulating work opportunities and salaries [9].

There is also another point that opens a wide range of debates and discussions:
the costs of compliance that European regulative processes require to release in the
market new AI models. It has been observed how the GDPR bureaucratic duties
contributed to a 2.1% reduction of companies profits, with principle consequences
fallen on smaller tech developers [46]. Then, first previsions stated that the AI Act
is likely to produce additional compliance costs,66 causing a possible 20% decrease
of AI investments in the European continent [70].

These complex regulative issues, of course, do not resolve in a sort of pure
dichotomy where the European Union appears as a simple overregulating entity
trying to choke its own AI development and economy, whereas the USA seems an
under- or not-regulated space where tech companies can do whatever they think is
necessary for the growth of their profits, avoiding any ethical or political concerns

63 “The U.S. has produced a total of 1,365,452 AI papers (25.23% of global output) while China
has produced a total of 957,840 papers (17.70% of global output)” [2].
64 However, it is interesting to observe how there are more private investments in Europe—
including the UK—than China, whose total funding from private entities stops at 7.3 billion [65].
65 ChatGPT has been a game-changer in the AI race between China and the USA. Its online upload
at the beginning of the current decade surprised Chinese AI industry, showing for the first time a
real delay of the country in AI development and the absence of an already-suited tool to answer
American innovation https://tinyurl.com/theguardianAI-supremacy, (Koetse, 2024).
66 “The AIA will cost the European economy 31 billion over the next five years and reduce AI
investments by almost 20%. A European SME [small and medium-sized enterprise] that deploys
a high-risk AI system will incur compliance costs of up to 400,000 which would cause profits to
decline by 40%” [70].

https://tinyurl.com/theguardianAI-supremacy
https://tinyurl.com/theguardianAI-supremacy
https://tinyurl.com/theguardianAI-supremacy
https://tinyurl.com/theguardianAI-supremacy
https://tinyurl.com/theguardianAI-supremacy

266 G. R. Presta and A. Paolella

linked to the diffusion of their products. In fact, we have already seen how the AI
Act, the GDPR, and other European actions for the continental digital market pursue
instead a data regulation impact able to unify the European markets and to boost the
future of AI; and, on the other side, we are going to underline that the USA has
already released some regulative directives and how American policymakers gave
the appropriate attention for AI-related ethical and political issues.

The USA has released in 2020 the National Artificial Intelligence Initiative Act
establishing an American AI initiative to guide research, development, and evalua-
tion for federal science agencies [29]. Other acts, instead, were directed to impose
to some federal agencies the development of specific AI programs and policies
[28, 30]. Ethical concerns have been suited more directly in the 2023 Blueprint
for an AI Bill of Rights, where problems linked to possible biases and prejudices
inherited by the AI during the training and the possible misuse of AI systems
for social scoring or other risky and threatening activities are put into a defined
framework.67 This first initiative has been followed then by different other attempts
to suggest a path to start creating a more defined legal tool meant to support an
ethical and safe development of AI technologies. Among these attempts are included
the joint efforts by four federal agencies to avoid technological advancements that
could break the law, the release of the AI Risk Management Framework by the
National Institute of Standards and Technology, the SAFE Innovation Framework
for AI Policy, and Blumenthal and Hawley Comprehensive AI Framework. This
is what occurred at federal level; instead, from a local point of view, 14 member
states of the federation between 2016 and 2022 have already passed AI-related
legislation: Maryland is the leader of this regulative wave, followed by California,
Massachusetts, and Washington [76].

On October 30, 2023, former US president Joe Biden issued an Executive Order
(EO), yet withdrawn by Trump’s new administration [27], on “the Safe, Secure,
and Trustworthy Development and Use of AI.” A new plan for American AI
regulation has not yet been proposed, and Biden’s action can be considered today
the only known approach to establish an ethical path for American AI. It was built
starting from a previous work against discrimination inside federal agencies and
from a cooperation with self-committed US companies active in the development
of artificial intelligence systems (e.g., Amazon, Google, Meta, OpenAI) [26]. In the
EO, there are eight main policy fields:

1. The release of new standards for AI safety and security field, where there will
be direct contribution of private companies that will share their own data with
governmental agencies involved in the elaboration of standardized tools for the
future development of safe and trustworthy AI

2. The protection of citizens’ privacy from AI-related risks, with the direct federal
support to the development and research of tools able to measure the impact of
AI systems on citizens’ private data

67 https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying, Blueprint for an AI Bill of Rights,
2023.

https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying
https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying
https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying
https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying
https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying
https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying
https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying
https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying
https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying
https://www.whitehouse.gov/ostp/ai-bill-of-rights/#applying

10 Ethics and Governance of Large Language Models 267

3. The advancement of equity and civil rights that links the Executive Order to the
definition of clear guidelines for landlords and to the establishment of benefits
programs, federal contractors, and measures to fight algorithmic discrimination
and pursue fairness in justice procedures when AI technologies are used68

4. The protection of consumers, patients, and students, pursued with measures
for the responsible use of AI systems in healthcare and defining how these
technologies will be exploited to lead the future of education

5. Support for workers who will need a governmental action to limit potential harm
coming from AI and a maximization of all the benefits these technologies will
bring for their jobs, including plans to mitigate labor-market impacts

6. The promotion of innovation and competition, a field in which the EO tries to
create the perfect environment to boost research and to guarantee the birth and
growth of an open and fair AI ecosystem across the country, able to attract also
high-skilled immigrants who will contribute to improve the American artificial
intelligence sector69

7. The advancement of US leadership abroad, requiring the expansion of AI
engagements in order to promote the design process of global vital standards
for AI70 but also making possible a safe and responsible development and
deployment of artificial intelligence systems abroad to face ethical and political
challenges on a global level

8. Responsible and effective government use of AI, linked to the executive order
need to seek new AI-related guidelines for federal agencies that use these
technologies to enhance the quality of the process used to acquire AI products or
services and to hire the sector most qualified experts [26]

President Biden’s executive order shared and reaffirmed the values and strategic
wills already expressed in the National Artificial Intelligence Research and Develop-
ment Strategic Plan. In this document, the USA offered a national view on artificial
intelligence that looks for a human-AI collaboration, focusing on designing user-
oriented technologies that privilege user experience and the protection of human
agents in the interaction with the machine [71]. The Plan recognized the necessity to
develop AI technologies able to advance core values through sociotechnical system
design and understanding the ethical, legal, and societal implications of AI systems
[71].

68 This point of the EO tries to avoid potential injustices emerging from the use of models trained
through biased collections of data, an issue that is also linked to the wider problem of apparently
always fair algorithmic decision-making [86].
69 And it has already been noted how this is effectively happening for European talents, progres-
sively moving to the USA for better and more adequate job opportunities [9].
70 An already-existing example of these efforts could be the EU-US Research Alliance in AI for
the Public Good, a first attempt to create a sort of transatlantic cooperation, involving the USA and
the European Union, to develop artificial intelligence systems that aim to face important challenges
such as extreme weather and climate events, optimization of energy, and responses to emergencies
[95].

268 G. R. Presta and A. Paolella

These efforts involved different federal agencies and institutions. The Depart-
ment of Defense (DOD) has released the Responsible AI toolkit used to check if AI
projects align to DOD AI ethical principles, while the Department of Education
is defining the needed policies and guidance for safe and accessible uses of AI
in schools and educational institutions. This work will engage teachers with the
creation of an adequate toolkit for the implementation of past recommendations and
also developers who will provide resources to generate trust for the AI marketplace
and essential questions to guide future AI responsible development. At the same
time, the Education Department is collaborating with the Department of Justice
to address discrimination and all the other possible harms AI can bring to the
preservation of civil rights in the USA [8]. Inside the US Department of Health and
Human Services, the National Institutes of Health (NIH) is among the main actors
of American AI R&D sector, producing big efforts to protect the privacy and well-
being of the patients involved in researches. To reach this data-preservation goal,
they have produced policies such as the Common Rule and the NIH Certificates of
Confidentiality. Furthermore, the National Institute of Justice (NIJ) established the
Predictive Forensic Deoxyribonucleic Acid (DNA) and Predictive Policing efforts
that fund workshops on probabilistic genotyping, forensic DNA phenotyping, and
forensic investigative genetic genealogy technologies. The same institution worked
also on the Strengthening Data-Driven Pretrial Releases in New Jersey effort, an
interesting action conducted to revise the Public Safety Assessment (PSA) tool,
an AI-based juridical technology that had the aim to give objective pretrial release
recommendations, resulting often in bias. The NIJ, exploiting ML and data analysis
instruments, is trying now to face the inner discrimination problems the PSA
revealed in the past, trying to guarantee high-level ethical standards [8].

Despite the absence of a structured answer for artificial intelligence ethical and
political problems—as the European AI Act instead is—it has just been observed
how the USA is demonstrating a real concern for the possible harms emerging from
the use of these new technologies. This does not mean, of course, that the debate
can be considered now unnecessary. In fact, Republican Senator Ted Cruz added
to the Future of Artificial Intelligence Innovation Act of 2024 [31] an amendment
that directly prohibits the development of AI technologies designed with processes
that ensure inclusivity and equity.71 He claimed that this action will preserve
American artificial intelligence progress, avoiding possible future deceleration and
the potential overcoming from Chinese AI industry.72

This example makes clear how multilayered and complex the debate on the best
way to build a proper ethical regulative path to ensure the future of AI-human
relationship can still be.

A last focus can be directed to the issues related to generative AI and copyright.
As we have seen, data are at the core of artificial intelligence models development,
the real fuel that allows their training and the production of brilliant output.

71 https://tinyurl.com/commerce-gov-senate, Senator Cruz, 2024.
72 https://tinyurl.com/govtech-policy, Scott J. Mulligan, 2024.

https://tinyurl.com/commerce-gov-senate
https://tinyurl.com/commerce-gov-senate
https://tinyurl.com/commerce-gov-senate
https://tinyurl.com/commerce-gov-senate
https://tinyurl.com/commerce-gov-senate
https://tinyurl.com/commerce-gov-senate
https://tinyurl.com/govtech-policy
https://tinyurl.com/govtech-policy
https://tinyurl.com/govtech-policy
https://tinyurl.com/govtech-policy
https://tinyurl.com/govtech-policy

10 Ethics and Governance of Large Language Models 269

ChatGPT, a generative pre-trained transformer model, since its release, generated
hype, spreading at the same time tension, fear, and also fascination and interest for
the world of artificial intelligence, large language models, and automated generation
[21]. It was also a turning point and a game-changing technology that helped
establish a renovated sense of American supremacy in the field of AI.73 However,
these generative models were trained through data obtained from the Web and then
copied and analyzed by machines.74 All these operations require author consent,
because they can violate reproduction rights and must consider the right to control
derivative works, since the training is based on the data scraped online [73].

In the USA, this situation turned into a wide movement of protests that then
led to a class action from the Authors Guild [73] and the publication of an online
petition that wants to forbid the use of these contents for AI training and that defines
generative AI use of authors’ works as “a major, unjust threat to the livelihoods of
the people behind those works,” a petition that was signed by mostly forty thousand
people, among them also important artists as Thom Yorke.75

Federal Trade Commission has already opened an inquiry on OpenAI, trying
to understand the sources of the training data exploited for the development of
ChatGPT, and also the European Union is trying to develop new rules to manage
AI-related copyright issues [73]. The debate on copyright is intriguing and still in
progress. Some researchers and experts look at machine learning as a humanlike
form of education, saying that none would ask for their royalties because their
works activated a learning process.76 Others instead see in the reform of licensing
a possible future for the creation of a data market that will protect authors and that
will let the AI industry flourish too [73].

What has just been introduced shows how, in the field of legislative and ethical
approach to AI, the USA is today a laboratory,77 a not-yet-defined regulative
area where contradictions and experiments show us the potentiality of new AI

73 A supremacy that translated also in the growth of private investments [65].
74 Processes, and following issues, have already changed today: some models are thought to be
trained starting from contents and data produced by other competitors of generative AIs (https://
techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/, Wiggers, 2024). It
happens also because a growing part of Web contents, almost the 90% in 2026 according to
previsions, will be composed of AI-generated materials [62].
75 https://www.aitrainingstatement.org/, Statement on AI training, 2024 (last seen on December
29, 2024).
76 The idea of a cooperative use of online resources for learning and collective growth are at the
base of the Internet media revolution[57]. It is quite complex nowadays to detach that kind of
human-oriented approach from the contemporary one where machine learning does not mean the
same thing as what education means for human growth and life enhancement [73].
77 In the copyright field related to AI, a good example of US constant attempts to innovate and
create solutions can be found in the recent publication of a new report by the US Copyright Office.
The report affirms that a content generated by LLMs and then edited by humans—so, the simple
prompt is not enough—can be considered a new human-generated work, and consequently it can
be protected by the laws of copyright [78].

https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://techcrunch.com/2024/12/27/why-deepseeks-new-ai-model-thinks-its-chatgpt/
https://www.aitrainingstatement.org/
https://www.aitrainingstatement.org/
https://www.aitrainingstatement.org/
https://www.aitrainingstatement.org/

270 G. R. Presta and A. Paolella

technologies, a potential strength whose outputs must be deeply understood and
governed in order to let human beings construe new and better worlds.

Key Points of Rules for Artificial Intelligence

• The Role of Ethics and Political Governance in AI

– Ethical concerns are shaping AI regulations, especially in the EU’s
human-oriented approach to artificial intelligence.

– The concept of Emergency and the birth of Surveillance capitalism:
Data extraction, behavior prediction, and manipulation.

– AI-driven re-ontologization and transformation of humans from aims,
beneficiaries of digital technologies, into means of production.

– Governmental role in AI-driven threats and social control.
– Case studies:

·. China and Russia: AI as a tool for surveillance and governance.
·. USA and EU: Use of emergency conditions to boost data extraction

and AI technologies able to limit Freedom and Rights.

• China’s AI Strategy

– New Generation AI Development Plan (2030 Goal: Global Supremacy
on AI)

·. AI as a pathway to global technological leadership.

– AI’s impact on labor and workforce concerns.
– CCP’s social control through AI: Algorithmic governance, censorship,

and adaptation strategies.

• Russia’s AI Approach

– Instability affecting AI development.
– AI ethics and data collection policies:

·. Special legal zones for data extraction.
·. AI in military applications and warfare.

• The European Union’s AI Strategy

– Creation of a single and unified European area to collect, manage, and
fair use data for economic development (DMA,DGA,DSA): a regulative
approach that contributed to enhance EU digital market, creating at the
same time some delays in innovation.

– Human-centric AI regulation:

(continued)

10 Ethics and Governance of Large Language Models 271

·. GDPR (General Data Protection Regulation): governing potential
breaches in privacy and possible European citizens and industries data
leaks

·. AI Act (AIA): Risk-based classification approach.

– Ensures trustworthy and safe AI models and systems.
– Promotes free movement in the Union of AI-related products and

services.
– Prevents fragmentation in the European AI market.
– Risk-based classification of AI systems.

·. Unacceptable risk: Strictly prohibited (e.g., social scoring, manipula-
tive AI).

·. High-risk AI: Allowed under strong regulations.
·. Limited-risk AI: Transparency obligations (e.g., chatbots, deepfakes).
·. Minimal-risk AI: Unregulated (e.g., AI in video games, spam filters).

– The AI Act and GDPR: legal harmonization challenges.

·. GDPR remains the main regulation for data collection.
·. The AI Act focuses on how AI systems use data.
·. Key shared principles:

·. Extraterritorial scope: Compliance required for all AI entering
the EU market.

·. Data quality and accuracy: Ensuring high-standard AI training.
·. Privacy by design and default: AI systems must respect privacy

norms.
·. Transparency: Clear understanding of AI decision-making

processes.
·. Automated decision-making: Regulated under both GDPR and

AI Act.

– US AI governance

·. US dominance in AI R&D and investments.
·. Federal legislative actions:
·. Biden’s Executive Order 14110, already withdrawn by Trump’s

administration, but yet the only known approach to American AI.
Key elements: AI privacy, consumer protection, and technological
supremacy.

·. New standards for AI safety and security.
·. Protection of citizens’ privacy.
·. Promotion of equity and civil rights.
·. Consumer, patient, and student protections.

(continued)

272 G. R. Presta and A. Paolella

·. Support for workers impacted by AI.
·. Encouragement of AI innovation and competition.
·. Strengthening US leadership in AI globally.
·. Responsible government use of AI.

·. AI policies across different institutions (DoD, NIH).

– Ethical and political debates on AI in the USA

·. Senator Ted Cruz’s amendment against inclusivity-driven AI.
·. The future of Artificial Intelligence Innovation Act.

– Generative AI and copyright issues

·. AI models training on copyrighted data.
·. Authors Guild class action and petition against AI use of copyrighted

works.
·. FTC inquiry into OpenAI’s data sources.
·. Emerging discussions on AI licensing and data markets.
·. US Copyright Office ruling on AI-assisted human-generated works.

10.4 Conclusions: Censorship, Openness of Data
and Models, Freedom, and Rights

10.4.1 Censorship

In this first part of the conclusive section, the previous overview on general ethical
approach to AI and on the way it has been interpreted in legislative actions around
the world will be used to allow the research to outline the way censorship operates
in the field of AI.

It has been underlined how the Chinese government has tried, with its direct
control on algorithms and data, to operate and orient the outputs obtained with
the use of generative LLMs, technological output that has been defined in Chinese
AI sector as deep synthesis [91]. The censorship is here directed by the central
government, led by the Chinese Communist Party, to avoid possible harms or
subversive propaganda able to represent a real threat for the stability of the
government itself. In China, this means no algorithmic freedom: the process and
data from the very beginning are censored, asking developers to create technologies
adherent to specific moral values and not disturbing for the social and economic
spheres.

10 Ethics and Governance of Large Language Models 273

This need for censorship translated also in an advancement in political and
legislative actions to regulate these technologies, with new processes optimized to
afford changes and mutation on the algorithmic side [91].

Russia, although not directly working on artificial intelligence, has demonstrated
great interest for data and the way they are used and diffused. The analysis has
shown before how ELRs, special zones for data extraction, have been created in
Moscow and all around the country,78 but this has more effects on data freedom
and personal rights than on data censorship. It is instead the Yaroyava Law, a law
apparently directed to fight terrorism, that has increased surveillance and censorship
on the Internet, setting also governmental requirements for data retention that of
course affect directly the development of AI models [98].

Interesting also is the debate on forms of censorship not directly related to social
control but to the outputs AI generative models can produce: censoring processes
that affect and regard also the debate in Europe and the USA.

The European anthropocentric approach presented before tries to protect users
from potential threats deriving from AI technologies [85], and also in the USA, these
actions took place to preserve the well-being of citizens [26]. However, also in this
areas of the world, AI is used to detect contents considered potentially dangerous. A
good example is what happens in online social media platforms, where algorithmic
control operates to moderate concerning published contents (pornography, hate
speech, etc.) [66]. This situation has spread concerns among many of the possibility
that algorithmic detection and content censorship can undermine the necessary
freedom of speech that lies behind the complex freedom structure of democracy
[55].

Also LLMs and TTI (text-to-image) developers have been accused of operating
a selected censorship, producing outputs that limit the use range of generative
models to obtain specific outputs. It became a great issue widely discussed in the
field, not just of ethics but also of aesthetics and artistic debate. The discussion
wanted to analyze and comprehend the nature of models as artistic instruments—
not immediately related to diffusion and publication of these contents—trying to
underline how a sort of puritan censorship (e.g., the production of nudity) cannot be
applied to the production of personal works of art.

A solution to avoid censoring restrictions imposed in initial model training is
through the use of fine-tuning and RAG techniques. Of course, open-source models
result more suit for this purpose [34].

However, nowadays, a process where content moderation results less relevant for
developers is starting to affirm, producing new controversies and stimulating further
debates.79

78 These actions of the Russian government have been deeply analyzed in the previous section of
the research.
79 https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/, Zeff, 2025.

https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/
https://techcrunch.com/2025/02/16/openai-tries-to-uncensor-chatgpt/

274 G. R. Presta and A. Paolella

10.4.2 Openness of Data and Models

Another major topic that occurred to be central in the previous analysis is the
one of collection, free movement, and open use of data: meaningful circumstances
that are at the core of artificial intelligence and generative artificial intelligence
development.80

The European Union has tried to create, since the GDPR release in 2016 and
with other market regulation actions, a unified and safe network where data can be
easily accessible by different actors. The Digital Governance Act (DGA) especially
contributed to the definition of this European scenario, regulating public and private
data and shielding the latter through the cooperation with the GDPR[84].

This is an institutional solution that aimed to propose a model of development
that could lead to the development of technologies based on open data, able
to enhance the quality of specific sectors—for example, healthcare—through all
Europe [84].

Open data are easily accessible to everyone with minimal or absent economic
barriers [77], a horizontal approach that consents an efficient diffusion of informa-
tion, enabling researchers and organizations to produce innovation in an easier way.
This confirms how EU legislation has tried to enhance equal opportunities, offering
a real anthropocentric paradigm of digital development.

Openness of data is the first step that has led and will lead to design open
artificial intelligence models, including of course generative models. However, these
are multilayered and complex technologies that must be deeply analyzed before
they can be considered really open. It is not sufficient that their training data are
accessible, but it is necessary to consider also other elements:

1. The openness of models’ constitutive algorithms
2. The openness of the researches that brought to the realization of the model
3. The possibility to obtain a real open access [100]

Openness is not just an important ethical issue—as it has already been seen in
previous passages of this research—because it is a necessary element to achieve
qualitative research outputs with less economic efforts [77] and also because it
can be used as a manipulating label to promote developers of models and services
that call themselves open while respecting real and complete openness just partially
[100]. This is the main reason why the term “openwashing” has started to spread in
order to define models that attract users with their self-defined openness, without
really offering then a real complete open product. This controversy has been
partially solved by White et al. with the proposed Model Openness Framework
that ranks machine learning models according to five principles: open science, open
source, open data, and open access [100].

80 It has been already shown before the importance of data for the development of these
technologies.

10 Ethics and Governance of Large Language Models 275

Open-source models, although not being the best options in terms of perfor-
mance, will guarantee a democratized access and better reproducibility, strength-
ening at the same time human supervisions81 [67].

Their use could become also a good resource to overcome possible censoring
mechanisms introduced in closed-source models, turning open-source AIs (e.g.,
open TTI models) into personalized powerful instruments for free artistic production
and research [34]. In this specific field, the debate on how these models should be
trained has also become interesting. Important discussions involved the copyright
issue too. As seen before, artists, especially in the USA, organized to protect their
works from being used for models training, but it is not a so-unified front.

The Italian artist and philosopher Francesco D’Isa proposed an open use of
artistic works and expressions to train models in order to expand the horizon of
machines’ cognitive world.82 He claims that this approach can represent a more
appropriate path to create instruments with the real ability to help humans realize
their artistic aims.

D’Isa thus suggests an entirely open approach where models can be explored
and rearranged for the artist’s aims, asking at the same time artists to remove any
restriction that does not allow full access for the creation of a wider and more
representative training dataset for machines [34].

10.4.3 Freedom and Rights

The previous section centered on AI regulations that helped the reader face the
principle ethical issues related to the use of AI and the potential dangers for human
rights and freedom that can emerge.

It has been observed how the Chinese Communist Party decided to exploit
artificial intelligence power to gain and preserve social control over the Chinese
population with the arrangement of a social credit system [91]. AI has been used
by the CCP also to obtain biometric data and then to repress the Uighurs Muslim
minority’s attempt to affirm their identity, an attempt that helped also the infiltration
of terroristic organizations inside the region, producing a strong controlling action
by the central government through the use of AI [98].

Another concerning issue involving AI and potential dangers for freedom and
rights regards the implementation of Experimental Legal Regimes (ELR) in Russia.
It has been shown before how in these special areas the possibility of collecting data
became easier, exposing directly the privacy of Russian citizens and enhancing the

81 An aspect that has been introduced before examining the Unified Framework of Five Principles
for AI in Society.
82 He refers directly to the famous Wittgenstein’s idea of the perimeter of a person’s own language
as the perimeter of his or her own world. Machines can be properly used to represent something
if their knowledge of the world is expanded and contemplates different points of view and
sensibilities [34].

276 G. R. Presta and A. Paolella

quality of social controlling tools developed by the government.83 These data are
not used only to face possible security challenges but also to recognize protesters
and silence dissent [98].

Furthermore, Russia is increasing the use of AI technologies in order to turn
them into instruments fitted for surveillance and propaganda. Thus algorithmic
control is used to limit the free use of platforms and Internet services. For example,
the Roskomnadzor (The Federal Service for Supervision of Communications,
Information Technology and Mass Media) is a Russian federal office that uses
artificial intelligence tools to scan Web publications, find contents potentially
threatening for governmental order, and ban them. Other uses of AI to limit the
freedom of citizens have increasingly spread after the beginning of the Ukrainian
war and have seized the possibility to use, if not authorized, VPN services [98].

These uses of artificial intelligence models for the collection of private data
and surveillance have been pointed out by the European Union as major threats
to the freedom and rights of European citizens. As seen before, the Artificial
Intelligence Act reveals these preoccupations and tries to give a strong answer [85].
The European legislative action forbids artificial intelligence systems that could be
used for social scoring, for emotional tracking at work and in educational spaces,
and for biometric and real-time biometric categorization [85]. As already noted, the
prohibition of this last typology of AI technologies has some exceptions. Biometric
data can be used to recognize and act against individuals in moment of emergency,
for example, when someone is missing or during a terrorist attack [85].

Emergency has played, as Shoshana Zuboff has already noted [103], an important
role in the development of digital surveillance techniques that have undermined
and still undermine freedom and personal rights. The dot-com bubble economic
emergency produced the necessity for big players in the field of digital technologies
(e.g., Google or Meta) to turn private data into profits without users’ consent and a
condition of social and political emergency, following the 9/11 terrorist attack, and
drew institutional interest to the development of artificial intelligence algorithms
able to guarantee control and surveillance [103].

So, these exceptions in the European AIA must be regarded with extreme
attention and concern, because they can represent a possible breach for future
political misuses of AI also in the European Union. Dealing with these possible
emerging issues must be considered essential, to consider the critical behavior
suggested by the Heraclitus-Heideggerian approach described in the first section
of this research, an approach that looks beyond the simple perimeter of the law to
embrace a real and deep care of the stay.

A last point that must be underlined in this conclusive passage is strictly related to
the amendment, mentioned before, and added by the American Republican Senator
Ted Cruz to the Future of Artificial Intelligence Innovation Act of 2024 [31]. It
explicitly forbids the development of AI models that ensure inclusivity and equity.

83 https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia,
Sullivan 2022.

https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia
https://geohistory.today/artificial-intelligence-in-russia/#National_AI_Initiatives_in_Russia

10 Ethics and Governance of Large Language Models 277

Cruz affirms that these two conditions could represent a limitation for the
competition of American AI in the global scenario.84 However, this vision seems to
lack a more articulated comprehension of what inclusivity and equity can guarantee.
It has been shown how equity and inclusivity are not limits but the fundamental
resources to provide artificial intelligence models with datasets that propose a wider
and more complex vision of the real dynamics existing in human societies [12].
Models designed following this inclusive vision, through the application of specific
rules, have a wider perspective of what the real world is and can contribute better to
include and guarantee rights and freedom of underrepresented social groups [12].

It is a paradigm not so different from the one proposed by the approach of
D’Isa to the openness of data [34]. A wider dataset, able to include differences
and alternative visions, can comprehend better different necessities of users and can
really know and understand multiple sensibilities. A not-inclusive and not-equal
model must be simply considered a biased model [12],

a vision that recalls again the condition of ἦθος (ēthos) as the care for the stay,
able to look at the borders offered by the law and to overcome them for a wider
and more essential comprehension of reality, a paradigm that can really reactivate
critical thinking in the use and development of artificial intelligence.

Key Points of Conclusions

• Censorship in AI emerges as a key issue in ethical and legislative discus-
sions.

• Analysis of censorship mechanisms in different geopolitical contexts.
• China: State-controlled algorithmic censorship

– Chinese government directly controls algorithms and data with a reg-
istry.

– Censorship is implemented at the development stage, ensuring AI aligns
with state-approved moral and social values.

– Legislative advancements optimize AI regulation, adapting to techno-
logical mutations.

• Russia: surveillance and data control

– Focus on data collection.
– ELRs (Extractive Logic Regions) established for data extraction.
– Yaroyava Law increases state surveillance, requiring extensive data

retention, affecting AI development.

(continued)

84 https://tinyurl.com/ovtech-ai-bills, Scott J. Mulligan, 2024.

https://tinyurl.com/ovtech-ai-bills
https://tinyurl.com/ovtech-ai-bills
https://tinyurl.com/ovtech-ai-bills
https://tinyurl.com/ovtech-ai-bills
https://tinyurl.com/ovtech-ai-bills
https://tinyurl.com/ovtech-ai-bills

278 G. R. Presta and A. Paolella

• Forms of censorship in the EU and the USA: AI and content moderation

– AI used to detect and remove harmful content (e.g., hate speech,
pornography).

– European and US regulations prioritize user protection.
– Among many, concerns arise over AI moderation undermining the

freedom of speech that lies behind the complex structure of democracy.

• Generative models and censorship

– Accusations of selective censorship in LLMs and TTI models.
– Debate on AI as an artistic tool: should nudity and controversial topics

be restricted?
– Open-source models and fine-tuning/RAG techniques as solutions to

bypass initial censorship.
– Shift toward reduced content moderation, sparking new ethical debates.

• Openness of data and models as a central theme in AI development.
• Focus on the free movement, collection, and open use of data.
• Advantages of open data

– Minimizes economic barriers, ensuring broad accessibility.
– Facilitates research, innovation, and fair digital development.
– Supports the EU’s anthropocentric paradigm in digital governance.

• Openness in AI models: a multilayered concept

– Openness is not only about training data but also:

·. Transparency in model algorithms.
·. Open access to research behind the models.
·. Real accessibility and the removal of any form of restriction.

• The issue of “openwashing”

– Some AI developers claim openness without fully implementing it.
– Model Openness Framework (White et al.) ranks AI models based on:

·. Open science
·. Open source
·. Open data
·. Open access

• Open-source AI: advantages and controversies

– Ensures democratized access, reproducibility, and human supervision.
– Helps bypass censorship in closed-source models.
– Facilitates free expression, creation, and research.

(continued)

10 Ethics and Governance of Large Language Models 279

• Openness and copyright debates for AI training

– Artists (especially in the USA) oppose AI training on their works.
– Francesco D’Isa’s Perspective: advocates open artistic data for AI

training.
– Suggests models should be freely explored and rearranged for artistic

purposes.

• Freedom and rights
• Ethical issues and human rights risks emerging from AI applications.
• AI as a tool for social control:

– China: social credit system and minority repression

·. AI used by the Chinese Communist Party (CCP) for mass social
control.

·. Biometric data collection and surveillance targeting Uighur Muslims.
·. Justification: emergency conditions that allow counterterrorism

efforts, leading to strict government oversight.

– Russia: Experimental Legal Regimes and AI surveillance

·. Experimental Legal Regimes (ELR): Special zones easing data col-
lection.

·. AI-enhanced surveillance identifies protesters and suppresses dissent.
·. Roskomnadzor: AI-powered censorship and control of online con-

tent.
·. Increased restrictions post-Ukraine war, including bans on unautho-

rized VPNs.

• European Union’s legislative response

– Artificial Intelligence Act (AIA): addresses AI-related threats to free-
dom and privacy.

– Concerns over exceptions: emergency-based AI use may create loop-
holes for misuse.

• Surveillance capitalism and AI’s role in political power

– Shoshana Zuboff’s analysis:

·. AI surveillance developed in emergency conditions due to economic
crises and security fears.

·. Dot-com bubble →. monetization of user data (Google, Meta, etc.).
·. Post-9/11 →. government interest in AI surveillance.

– AIA’s role: needs scrutiny to prevent future political misuse in the EU.

(continued)

280 G. R. Presta and A. Paolella

• US policy and AI ethics debate

– Ted Cruz’s amendment (Future of AI Innovation Act, 2024):

·. Prohibits AI models prioritizing inclusivity and equity to protect US
AI competitiveness.

– Critique: inclusivity as an AI strength

·. Equity and inclusivity improve AI dataset diversity and representation
of reality complex structure [12].

·. Ensures better representation of underrepresented groups.
·. Prevents biased AI outcomes.

• Inclusivity, data openness, and ethical AI development

– D’Isa’s approach: open datasets enhance AI’s knowledge—this guaran-
tee a better impact for AI in artistic and cultural fields.

– Wider datasets improve AI’s understanding of human sensibilities.

References

1. Akgun, S., Greenhow, C.: Artificial intelligence in education: Addressing ethical challenges
in k-12 settings. AI Ethics 2(3), 431–440 (2022)

2. AlShebli, B., Memon, S.A., Evans, J.A., Rahwan, T.: China and the us produce more
impactful ai research when collaborating together. Sci. Rep. 14(1), 28576 (2024)

3. Analysis and Research Team.: Chatgpt in the public sector – overhyped or overlooked?
Council of the European Union, pp. 1–23 (2023)

4. Arendt, H.: Vita Activa. Piper, Girvan (1967)
5. Aristotle: De Partibus Animalium. Harvard University Press, Cambridge (1911)
6. Aristotle: The Nicomachean Ethics. Harvard University Press, Cambridge (1934)
7. Arruda, E.P., Arruda, D.P.: Artificial intelligence for sdg 4 of the 2030 agenda: Transforming

education to achieve quality, equality, and inclusion. Sustain. Econ. 2(2), 34–34 (2024)
8. Artificial Intelligence Research and Development Interagency Working Group: 2020–2024

progress report: Advancing trustworthy artificial intelligence research and developmeent.
Technical Report, Executive Office of the President of the United States (2024)

9. Atomico: State of European Tech 2024 (2024)
10. Ayeni, O.O., Al Hamad, N.M., Chisom, O.N., Osawaru, B., Adewusi, O.E.: Ai in education:

a review of personalized learning and educational technology. GSC Adv. Res. Rev. 18(2),
261–271 (2024)

11. Bailey, J.: Ai in education. Edu. Next 23(4), 29–36 (2023)
12. Bartoletti, I., Xenidis, R.: Study on the impact of artificial intelligence systems, their potential

for promoting equality, including gender equality, and the risks they may cause in relation to
non-discrimination. Council of Europe Publishing, Strasbourg (2023)

13. Bendett, S.: The Role of AI in Russia’s Confrontation with the West. CNAS (2024)
14. Berardi, F.: Contro il lavoro. Edizioni della Libreria (1970)
15. du Boucher, G.: Les algorithmes et l’intelligence artificielle contre les étrangers en europe.

Plein droit 140(1), 31–34 (2024)

10 Ethics and Governance of Large Language Models 281

16. Cabral, L., Haucap, J., Parker, G., Petropoulos, G., Valletti, T.M., Van Alstyne, M.W.: The
EU digital markets act: a report from a panel of economic experts. In: Cabral, L., Haucap, J.,
Parker, G., Petropoulos, G., Valletti, T., Van Alstyne, M. (eds.) The EU Digital Markets Act,
Publications Office of the European Union, Luxembourg (2021)

17. Caffarra, C., Morton, F.S.: The european commission digital markets act: a translation.
VOXEU (2021)

18. Calabrese, S., Conti, V.: Che cos’ è una fanfiction. Carocci editore, Rome (2019)
19. Cardona, M.A., Rodríguez, R.J., Ishmael, K., et al.: Artificial intelligence and the future of

teaching and learning: Insights and recommendations. In: Pelita Internasional Conference
(PIC) (2023)

20. Cazzaniga, M., Jaumotte, M.F., Li, L., Melina, M.G., Panton, A.J., Pizzinelli, C., Rockall,
E.J., Tavares, M.M.M.: Gen-AI: Artificial Intelligence and the Future of Work. International
Monetary Fund, Washington (2024)

21. Chan, A.: Gpt-3 and instructgpt: technological dystopianism, utopianism, and “contextual”
perspectives in ai ethics and industry. AI Ethics 3(1), 53–64 (2023)

22. Coeckelbergh, M.: Ai for climate: freedom, justice, and other ethical and political challenges.
AI Ethics 1(1), 67–72 (2021)

23. European Commission: Communication from the commission to the european parliament, the
european council, the council, the european economic and social committee and the commit-
tee of the regions, artificial intelligence for europe, SWD(2018) 137 final. Communication
(eu), 155 (2017)

24. European Commission: Communication from the commission to the european parliament, the
european council, the council, the european economic and social committee and the commit-
tee of the regions, artificial intelligence for europe, SWD(2018) 137 final. Communication
(eu) 132 (2018)

25. European Commission: Digital Education Action Plan. 2021–2027. European Parliament
Luxembourg, Belgium (2020)

26. Executive Office of the President: Exec. order 14110: Safe, secure, and trustworthy develop-
ment and use of artificial intelligence (2023)

27. Executive Office of the President: Exec. order 14179: Removing barriers to american
leadership in artificialintelligence (2025)

28. Congress.gov: H.r.2575 - 116th congress (2019–2020): AI in government act of 2020 (2020)
29. Congress.gov: H.r.6216 - 116th congress (2019–2020): National artificial intelligence initia-

tive act of 2020 (2020)
30. Congress.gov: S.1353 - 117th congress (2021–2022): Advancing american AI act. (2022)
31. Congress.gov: S.4178 - 118th congress (2023-2024): Future of artificial intelligence innova-

tion act of 2024 (2024)
32. Cowls, J., Tsamados, A., Taddeo, M., Floridi, L.: The ai gambit: leveraging artificial

intelligence to combat climate change—opportunities, challenges, and recommendations. Ai
Soc. 38, 1–25 (2023)

33. Di Piazza, A., Di Piazza, M.C., La Tona, G., Luna, M.: An artificial neural network-based
forecasting model of energy-related time series for electrical grid management. Math.
Comput. Simul. 184, 294–305 (2021)

34. D’Isa, F.: La rivoluzione algoritmica delle immagini. Luca Sossella Editore (2024)
35. Edmonds, J., Bendett, S., Fink, A., Chesnut, M., Gorenburg, D., Kofman, M., Stricklin, K.,

Waller, J.: Artificial intelligence and autonomy in Russia. CNA (2021)
36. El-Gazzar, R., Stendal, K.: Examining how GDPR challenges emerging technologies. J. Inf.

Policy 10, 237–275 (2020)
37. Ernst, E., Merola, R., Samaan, D.: Economics of artificial intelligence: Implications for the

future of work. IZA J. Labor Policy 9(1), 1–35 (2019)

282 G. R. Presta and A. Paolella

38. Falletta, P., Marsano, A.: Intelligenza artificiale e protezione dei dati personali: il rapporto
tra regolamento europeo sull’intelligenza artificiale e GDPR. Rivista italiana di informatica e
diritto 6(1), 119–137 (2024). https://doi.org/10.32091/RIID0155

39. Floridi, L.: A defence of informational structural realism. Synthese 161(2), 219–253 (2008)
40. Floridi, L.: La quarta rivoluzione: come l’infosfera sta trasformando il mondo. Raffaello

Cortina Editore (2017)
41. Floridi, L.: The european legislation on ai: A brief analysis of its philosophical approach.

Philos. Technol. 34(2), 215–222 (2021)
42. Floridi, L.: Etica dell’intelligenza artificiale: Sviluppi, opportunità, sfide. Raffaello Cortina

Editore (2022)
43. Floridi, L., Cowls, J.: A unified framework of five principles for ai in society. In: Machine

Learning and the City: Applications in Architecture and Urban Design, pp. 535–545. Wiley,
Hoboken (2019)

44. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C.,
Madelin, R., Pagallo, U., Rossi, F., et al.: Ai4people—an ethical framework for a good ai
society: opportunities, risks, principles, and recommendations. Minds Mach. 28, 689–707
(2018)

45. Franceschelli, M.C., Varese, F.: La russia che si ribella. repressione e opposizione nel paese
di putin (2024)

46. Frey, C.B., Presidente, G.: Privacy regulation and firm performance: Estimating the gdpr
effect globally. Econ. Inquiry 62, 1074–1089 (2024)

47. Gailhofer, P., Herold, A., Schemmel, J.P., Scherf, C.S., de Stebelski, C.U., Köhler, A.R.,
Braungardt, S.: The Role of Artificial Intelligence in the European Green Deal. European
Parliament Luxembourg, Belgium (2021)

48. Graeber, D.: Policy for the Future of Work. Springer, Berlin (2020)
49. Guilherme, A.: AI and education: the importance of teacher and student relations. AI Soc.

34, 47–54 (2019)
50. Han, B.C.: Le non cose: come abbiamo smesso di vivere il reale. Einaudi (2022)
51. Heidegger, M.: Über den Humanismus. Vittorio Klostermann (1949)
52. Heidegger, M.: Die Technik und die Kehre (1962). Aufl. Pfullingen (1962)
53. Heidegger, M.: Sein und Zeit. M. Niemeyer Tübingen (1977)
54. Henderson, P., Sinha, K., Angelard-Gontier, N., Ke, N.R., Fried, G., Lowe, R., Pineau, J.:

Ethical challenges in data-driven dialogue systems. In: Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pp. 123–129 (2018)

55. Hidy, K.M.: The speech gods: Freedom of speech, censorship, and cancel culture in the age
of social media. Washburn LJ 61, 99 (2021)

56. Ise, T., Oba, Y.: Forecasting climatic trends using neural networks: an experimental study
using global historical data. Front. Robot. AI 6, 446979 (2019)

57. Jenkins, H.: Confronting the Challenges of Participatory Culture: Media Education for the
21st Century. The MIT Press, Cambridge (2009)

58. Johnson, J.: The AI commander problem: Ethical, political, and psychological dilemmas of
human-machine interactions in AI-enabled warfare. J. Military Ethics 21(3–4), 246–271
(2022)

59. Khanal, S., Zhang, H., Taeihagh, A.: Development of new generation of artificial intelligence
in china: When beijing’s global ambitions meet local realities. J. Contemp. China 34(151),
19-42 (2025)

60. Kim, P.: AI and inequality. In: Forthcoming in the Cambridge Handbook on Artificial
Intelligence & the Law, Johnson, K., Reyes, C. (eds.) (2022). Washington University in St.
Louis Legal Studies Research Paper (21-09), 03 (2021)

61. Kumar, S.: Breaking privilege paradoxes: Ethical framework for AI advancement in an
unequal world. Engineering Archive. https://doi.org/10.31224/3207

62. Lab, E.I.: Law enforcement and the challenge of deepfakes. Technical Report, European
Union (2022)

https://doi.org/10.32091/RIID0155
https://doi.org/10.32091/RIID0155
https://doi.org/10.32091/RIID0155
https://doi.org/10.32091/RIID0155
https://doi.org/10.32091/RIID0155
https://doi.org/10.32091/RIID0155
https://doi.org/10.31224/3207
https://doi.org/10.31224/3207
https://doi.org/10.31224/3207
https://doi.org/10.31224/3207
https://doi.org/10.31224/3207
https://doi.org/10.31224/3207

10 Ethics and Governance of Large Language Models 283

63. Laux, J., Wachter, S., Mittelstadt, B.: Three pathways for standardisation and ethical
disclosure by default under the european union artificial intelligence act. Comput. Law
Security Rev. 53, 105957 (2024)

64. Lin, S., Wang, M., Jing, C., Zhang, S., Chen, J., Liu, R.: The influence of ai on the economic
growth of different regions in china. Sci. Rep. 14(1), 9169 (2024)

65. Madiega, T.A.: AI investment: EU and global indicators (At a Glance) (2024). https://www.
europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392

66. Malec, L., Lešetickỳ, J.: Social media content moderation, censorship and ai detection evasion
techniques. In: IDIMT-2024: Changes to ICT, Management, and Business Processes through
AI (2024)

67. Manchanda, J., Boettcher, L., Westphalen, M., Jasser, J.: The open source advantage in large
language models (LLMS). arXiv preprint arXiv:2412.12004 (2024)

68. Marx, K.: konomisch-philosophische Manuskripte aus dem Jahre 1844. Zenodot (2011)
69. McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the dartmouth

summer research project on artificial intelligence, august 31, 1955. AI Mag. 27(4), 12–12
(2006)

70. Mueller, B.: How much will the artificial intelligence act cost europe? Technical Report,
Information Technology and Innovation Foundation (2021)

71. National Science and Technology Council (US). Select Committee on Artificial Intelligence:
The National Artificial Intelligence Research and Development Strategic Plan: 2023 Update.
National Science and Technology Council (US), Select Committee on Artificial Intelligence,
1–37 (2023)

72. Organizzazione delle Nazioni Unite.: Trasformare il nostro mondo: l’agenda 2030 per lo
sviluppo sostenibile. Risoluzione adottata dall’Assemblea Generale il 25 (2015). https://www.
cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre
%202015.pdf

73. Opderbeck, D.W.: Copyright in ai training data: a human-centered approach. Okla. L. Rev.
76, 951 (2023)

74. O’Meara, D.J.: Tracking the sources of the fragments of heraclitus in stobaeus’ anthology.
Heraklit im Kontext 8, 439 (2017)

75. Papyshev, G., Yarime, M.: The limitation of ethics-based approaches to regulating artificial
intelligence: regulatory gifting in the context of russia. AI Soc. 39(3), 1381–1396 (2024)

76. Parliament, E.: United states approach to artificial intelligence. Technical Report, European
Parliament (2024)

77. Pasquetto, I.V., Sands, A.E., Borgman, C.L.: Exploring openness in data and science: What is
“open,” to whom, when, and why? Proc. Assoc. Inf. Sci. Technol. 52(1), 1–2 (2015)

78. Perlmutter, S.: Copyright and artificial intelligence. part 2: Copyrightability. Technical
Report, United States Copyright Office (2025)

79. Petrella, S., Miller, C., Cooper, B.: Russia’s artificial intelligence strategy: the role of state-
owned firms. Orbis 65(1), 75–100 (2021)

80. Picht, P.G., Richter, H.: Eu digital regulation 2022: data desiderata. GRUR Int. 71(5), 395–
402 (2022)

81. PwC: Sizing the prize: What’s the real value of AI for your business and how can you
capitalise? PwC (2017)

82. Regulation, P.: Regulation (eu) 2016/679 of the european parliament and of the council.
Regulation (eu) 679, 2016 (2016)

83. Regulation, P.: Regulation (eu) 2022/1925 of the european parliament and of the council.
Regulation (eu) 1925 (2022)

84. Regulation, P.: Regulation (eu) 2022/868 of the european parliament and of the council.
Regulation (eu) 868 (2022)

85. Regulation, P.: Regulation (eu) 2024/1689 of the european parliament and of the council.
Regulation (eu) 1689 (2024)

86. Rejmaniak, R.: Bias in artificial intelligence systems. Białostockie Studia Prawnicze 3(26),
25–42 (2021)

https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.europarl.europa.eu/thinktank/en/document/EPRS_ATA(2024)760392
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf
https://www.cisl.it/wp-content/uploads/2019/03/assemblea%20generale%20ONU%2025%20settembre%202015.pdf

284 G. R. Presta and A. Paolella

87. Roberts, H., Cowls, J., Morley, J., Taddeo, M., Wang, V., Floridi, L.: The Chinese Approach to
Artificial Intelligence: An Analysis of Policy, Ethics, and Regulation. Springer, Berlin (2021)

88. Samuel, A.L.: Some moral and technical consequences of automation—a refutation. Science
132(3429), 741–742 (1960)

89. Saveliev, A., Zhurenkov, D.: Artificial intelligence and social responsibility: the case of the
artificial intelligence strategies in the United States, Russia, and China. Kyberneetes 50(3),
656–675. (2021)

90. Schuett, J.: Risk management in the artificial intelligence act. Eur. J. Risk Regul. 15(2),
367–385 (2024)

91. Sheehan, M.: China’s ai regulations and how they get made. Horizons J. Int. Relat. Sustain.
Develop. 24, 108–125 (2023)

92. Shrestha, M., Manandhar, S., Shrestha, S.: Forecasting water demand under climate change
using artificial neural network: a case study of Kathmandu Valley, Nepal. Water Supply 20(5),
1823–1833 (2020)

93. Szakonyi, A., Chellasamy, H., Dawson, M.: Russia’s strategies for leveraging AI policies and
investments for global economic competitiveness (2024). https://aisel.aisnet.org/mwais2024/
12

94. Tocchetti, A., Corti, L., Balayn, A., Yurrita, M., Lippmann, P., Brambilla, M., Yang, J.:
AI robustness: a human-centered perspective on technological challenges and opportunities.
ACM Comput. Surveys 57(6), 1–38 (2025)

95. Trade, E.U., Council, T.: AI for public good: EU-U.S. research alliance in ai for the public
good. Technical Report, European Commission (2024)

96. Triguero, I., Molina, D., Poyatos, J., Del Ser, J., Herrera, F.: General purpose artificial
intelligence systems (gpais): Properties, definition, taxonomy, societal implications and
responsible governance. Inf. Fusion 103, 102135 (2024)

97. Union, E., Economic, E., Committee, S.: Digital Services Act and Digital Markets Act—
Stepping stones to a level playing field in Europe. European Economic and Social Committee
(2021). https://doi.org/doi/10.2864/28842

98. Ünver, H.A.: Artificial intelligence (AI) and human rights: Using ai as a weapon of repression
and its impact on human rights (2024)

99. Volkov, D., Ivanova, N., Morozov, P., Sokolova, O.: Ethical considerations in ai and machine
learning: A framework for responsible development. J. Mach. Learn. Healthcare Decis.
Support 4(1), 36–59 (2024)

100. White, M., Haddad, I., Osborne, C., Yanglet, X.Y.L., Abdelmonsef, A., Varghese, S.: The
model openness framework: Promoting completeness and openness for reproducibility,
transparency, and usability in artificial intelligence. arXiv preprint arXiv:2403.13784 (2024)

101. Wiener, N.: Some moral and technical consequences of automation: As machines learn they
may develop unforeseen strategies at rates that baffle their programmers. Science 131(3410),
1355–1358 (1960)

102. Zhang, Y., Han, W.: In depth: China’s burgeoning social credit system stirs controversy.
CAIXIN (2019)

103. Zuboff, S.: Il capitalismo della sorveglianza: il futuro dell’umanità nell’era dei nuovi poteri.
Luiss University Press, Roma (2019)

https://aisel.aisnet.org/mwais2024/12
https://aisel.aisnet.org/mwais2024/12
https://aisel.aisnet.org/mwais2024/12
https://aisel.aisnet.org/mwais2024/12
https://aisel.aisnet.org/mwais2024/12
https://aisel.aisnet.org/mwais2024/12
https://doi.org/doi/10.2864/28842
https://doi.org/doi/10.2864/28842
https://doi.org/doi/10.2864/28842
https://doi.org/doi/10.2864/28842
https://doi.org/doi/10.2864/28842
https://doi.org/doi/10.2864/28842
https://doi.org/doi/10.2864/28842

Chapter 11
Epilogue

Massimo Mecella

For many years, information systems engineering has been developed as discipline
of design. Principled approaches are investigated and applied in order to develop
artefacts; refinements from abstract (conceptual) till concrete (executable/runnable)
artefacts are carried out in order to achieve a system. Different methodologies
have been proposed over the years, starting from older waterfall, later iterative,
and nowadays agile approaches. But independently on the way of scheduling and
sequencing activities and tasks, (practically) the quality of the designer (or of the
designer team) heavily impacts the overall quality of the system. Quality of an
information system is a well-investigated topic, with many facets (including the
quality of the information managed by the system, the quality of the software
constituting the system, the quality of the processes carried out through the system,
etc.); undoubtedly, it is agreeable that the quality of the persons (designers)
modeling and designing and building the system is a primary concern.

Methodologies and practices investigated and proposed over the years support
the designer (team), but mostly knowledge, skills, and capabilities of the designers
are in their minds. We refer to this approach as heavily design-based approach, in
order to emphasize that the design activities are crucial.

With generative AI and LLMs, we can conversely attempt a different approach:
a designer can be assisted by a smart twin,1 which can iteratively support his/her

1 The reader should not mislead this concept with the one of digital twin, which is a digital model of
an intended or actual real-world physical product, system, or process (a physical twin) that serves
as a digital counterpart of it for purposes such as simulation, integration, testing, monitoring, and
maintenance [1–4].

M. Mecella (�)
Sapienza Università di Roma, Rome, Italy
e-mail: mecella@diag.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. De Luzi et al. (eds.), Engineering Information Systems with Large
Language Models, https://doi.org/10.1007/978-3-031-92285-5_11

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92285-5protect T1	extunderscore 11&domain=pdf
https://orcid.org/0000-0002-9730-8882

 885 56845 a 885 56845 a

mailto:mecella@diag.uniroma1.it
mailto:mecella@diag.uniroma1.it
mailto:mecella@diag.uniroma1.it
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11
https://doi.org/10.1007/978-3-031-92285-5_11

286 M. Mecella

work. A precise design is no more crucial. The designer can quickly try and iterate
the production of the artefact he/she is in charge of, being supported by the assistant.

In analogy with low-code approaches to software development, we define this
approach �.low design �.. Still far away from there, but initial symptoms are here
(see the survey and our research).

This transformation in IS engineering presents both opportunities and challenges:

• Faster. Adopting smart twins makes the design cycle faster.
• More standardized. Smart twins will be trained on the best possible practices,

and even if customized (e.g., through RAG techniques) to different needs and
development contexts, there will be a positive standardization effect on outcomes
and practices.

• Potential risks for innovation and disruptive ideas. The trend toward standardiza-
tion that potentially can be induced by adopting smart twins is a risk in terms of
innovation and opportunities for disruptive ideas. In a design approach in which
all designers adopt similar assistants, there is the risk of limiting creativity of
individuals. Appropriate countermeasures, yet to be devised, should be planned
in order to avoid this.

• Dependency on proprietary AI models (depending on which LLMs are used).
This is quite obvious; designer will adopt proprietary models.

• Openness of AI models as a key concern. It is related to the above point;
governance of AI/LLMs should push toward open models and transparent
datasets (cf. Chap. 10), even if this clearly contrasts with possible business
models, based on fees, which can justify investments from vendors and providers.

• Higher costs and environmental impact (cf. the footprint of LLMs and their costs
when used via paid APIs). Companies adopting smart twins/assistants should
evaluate the business model, for engineering the information system, that can
afford, if any, such costs and impact.

Our claim is that LLMs can become, and indeed are already partly becoming, a
powerful assistant for designers. However, a human-in-the-loop approach remains
essential. Moreover, openness is a crucial factor in ensuring transparency, accessi-
bility, and ethical development.

We would conclude with a few sentences from Bertrand Russell:

�.The fundamental cause of the trouble is that in the modern world the stupid are cocksure
while the intelligent are full of doubt. �.

to mean that clearly this approach based on smart twins currently raises many doubts
related to correctness, effectiveness, and, in general, meaningfulness, but also

�.One should never be certain of anything, because nothing deserves certainty, and so one
should always maintain an element of doubt in one’s beliefs, and one should be able to act
vigorously in spite of the doubt. �.

11 Epilogue 287

to mean that nevertheless we cannot simply refuse it and not act and that, conversely,
information systems engineers and researchers should act vigorously, in order to
drive and correct this trend up to the point of making it meaningful, as it will happen
independently.

References

1. Moi, T., Cibicik, A., Rølvåg, T.: Digital twin based condition monitoring of a knuckle boom
crane: An experimental study. Eng. Failure Anal. 112, 104517 (2020). http://doi.org/10.1016/j.
engfailanal.2020.104517. hdl:11250/2650461. ISSN 1350-6307

2. Haag, S., Anderl, R.: Digital twin – Proof of concept. Manuf. Lett. Ind. 4.0 Smart Manuf. 15,
64–66 (2018). http://doi.org/10.1016/j.mfglet.2018.02.006. ISSN 2213-8463.

3. Boschert, S., Rosen, R.: Digital Twin—The Simulation Aspect. In: Mechatronic Futures:
Challenges and Solutions for Mechatronic Systems and Their Designers, pp. 59–74. Springer
International Publishing (2016). http://doi.org/10.1007/978-3-319-32156-1_5

4. Negri, E.: A review of the roles of Digital Twin in CPS-based production systems. Procedia
Manuf. 11, 939–948 (2017). http://doi.org/10.1016/j.promfg.2017.07.198

http://doi.org/10.1016/j.engfailanal.2020.104517
http://doi.org/10.1016/j.engfailanal.2020.104517
http://doi.org/10.1016/j.engfailanal.2020.104517
http://doi.org/10.1016/j.engfailanal.2020.104517
http://doi.org/10.1016/j.engfailanal.2020.104517
http://doi.org/10.1016/j.engfailanal.2020.104517
http://doi.org/10.1016/j.engfailanal.2020.104517
http://doi.org/10.1016/j.engfailanal.2020.104517
http://doi.org/10.1016/j.engfailanal.2020.104517
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1016/j.mfglet.2018.02.006
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1007/978-3-319-32156-1_5
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.promfg.2017.07.198

	Preface
	Contents
	List of Contributors
	1 Introduction
	2 History of Large Language Models
	2.1 Artificial Intelligence
	2.1.1 Symbolic AI
	2.1.2 Sub-symbolic AI
	2.1.2.1 Machine Learning
	2.1.2.2 Deep Learning

	2.1.3 Toward Generative AI

	2.2 Natural Language Processing (NLP)
	2.2.1 Natural Language Understanding (NLU)
	2.2.2 Natural Language Generation (NLG)
	2.2.2.1 Language Modeling
	2.2.2.2 Transformers

	2.3 Stages of LMs
	2.3.1 Statistical Language Models
	2.3.2 Neural Language Models
	2.3.3 Pre-trained Language Models
	2.3.4 Large Language Models
	2.3.4.1 Generative Pre-trained Transformer (GPT) Family
	2.3.4.2 Pathways Language Model (PaLM) Family
	2.3.4.3 Large Language Model Meta AI (LLaMA) Family
	2.3.4.4 Other Representative LLMs

	References

	3 Large Language Models for Dummies
	3.1 Introduction
	3.1.1 Deep Neural Network
	3.1.2 From the Attention Mechanism Toward Large Language Models

	3.2 Pre-training of Large Language Models
	3.3 Advanced Usage of Large Language Models
	3.3.1 Fine-Tuning
	3.3.1.1 Unsupervised Fine-Tuning
	3.3.1.2 Supervised Fine-Tuning
	3.3.1.3 Instruction Fine-Tuning
	3.3.1.4 Alignment Fine-Tuning
	3.3.1.5 Efficient Fine-Tuning

	3.3.2 Retrieval-Augmented Generation (RAG)
	3.3.3 Prompt Engineering
	3.3.3.1 New Tasks Without Extensive Training
	3.3.3.2 Reasoning and Logic

	3.3.4 LLM Agent

	References

	4 A Reference Framework for Information Systems
	4.1 Introduction
	4.1.1 Data, Information, and Organization
	4.1.1.1 Anthony's Pyramid

	4.1.2 Information System
	4.1.2.1 Representation of an IS

	4.2 Information Systems Life Cycle
	4.2.1 Planning
	4.2.2 Design
	4.2.3 Development
	4.2.4 Testing and Validation
	4.2.5 Monitoring and Maintenance

	4.3 The Information and Knowledge Management Layer
	4.3.1 Data Analytics
	4.3.2 Information Extraction

	4.4 Information Systems Engineering
	References

	5 Exploring Large Language Models in Information Systems: A Survey
	5.1 Introduction
	5.2 Results of the Literature Review
	5.2.1 Planning
	5.2.2 Design
	5.2.3 Development
	5.2.4 Testing and Validation
	5.2.5 Monitoring and Maintenance
	5.2.6 Beyond the IS Life Cycle: Other Areas Enhanced by LLMs
	5.2.6.1 Data Analytics
	5.2.6.2 Information Extraction

	5.3 Discussion
	References

	6 Programming Large Language Models
	6.1 Tools and Libraries for Programming LLMs
	6.2 Pre-training and Preparing an LLM Model
	6.2.1 Dataset Loading
	6.2.2 Model Loading
	6.2.3 Pre-training

	6.3 Fine-Tuning LLMs
	6.3.1 Unsupervised Fine-Tuning
	6.3.2 Supervised Fine-Tuning
	6.3.3 Instruction Fine-Tuning
	6.3.4 Parameter Efficient Fine-Tuning
	6.3.5 Alignment Fine-Tuning

	6.4 Prompt Engineering
	6.4.1 Zero-Shot Prompting
	6.4.2 Few-Shot Prompting
	6.4.3 Chain-of-Thought Prompting
	6.4.4 Prompt Engineering in Action

	References

	7 Retrieval-Augmented Generation
	7.1 Introduction
	7.2 RAG: Working Logic
	7.2.1 Preliminary Step
	7.2.1.1 Data Loading and Parsing
	7.2.1.2 Embedding
	7.2.1.3 Indexing

	7.2.2 Retrieving Phase
	7.2.3 Generation Phase
	7.2.4 RAG Classification
	7.2.4.1 RAG Framework
	7.2.4.2 RAG Across Knowledge Sources

	7.3 RAG Applications
	7.3.1 Practical Application—LlamaIndex
	7.3.1.1 Classic RAG
	7.3.1.2 RAG with KG
	7.3.1.3 RAG with Ontologies
	7.3.1.4 Query and Response

	7.3.2 Practical Application—Langchain
	7.3.2.1 Classic RAG and Ontology RAG
	7.3.2.2 RAG with KG

	7.3.3 RAG Evaluation
	7.3.3.1 Retrieval Evaluation Metrics
	7.3.3.2 Generation Evaluation Metrics
	7.3.3.3 Practical Implementation with DeepEval

	References

	8 Large Language Model Agents
	8.1 Introduction
	8.2 LLM Agent Structure
	8.2.1 Memory
	8.2.2 Planning
	8.2.3 Tools

	8.3 LLM-Based Multi-agents (LLM-MA)
	8.3.1 Environment Interface
	8.3.2 Profiling
	8.3.3 Communication
	8.3.4 Evolution

	8.4 Applications of LLM Agents in Software Engineering
	8.5 Programming LLM Agents
	8.5.1 Implementing a Simple LLM Agent from Scratch Using Hugging Face Transformers
	8.5.2 Implementing an LLM Agent Using Langchain
	8.5.3 Implementing LLM-MA with LangGraph

	8.6 Concluding Remarks
	References

	9 Applications of Large Language Models in Information Systems
	9.1 Introduction
	9.2 Data-on-Demand in the Industrial Domain with LLMs
	9.2.1 The COSMADS Architecture
	9.2.2 Implementing COSMADS
	9.2.2.1 Dynamic Context Retrieval
	9.2.2.2 LLM Agent
	9.2.2.3 The COSMADS LCEL Chain

	9.3 Extracting Process Operations with LLMs
	9.3.1 The NL2ProcessOps Architecture and Pipeline
	9.3.2 A Running Example
	9.3.3 Realization
	9.3.3.1 Tools Retriever
	9.3.3.2 Prompt Engineering
	9.3.3.3 NL2ProcessOps Implementation

	References

	10 Ethics and Governance of Large Language Models
	10.1 Preliminary Ontology
	10.1.1 Introduction
	10.1.2 The Ontological Problem Behind the Ethical Approach to AI

	10.2 Ethics
	10.2.1 Introduction
	10.2.2 Where the Meaning of Ethics Comes From
	10.2.3 The Unified Framework of Five Principles for AI in Society
	10.2.4 Education, Climate Change, Work

	10.3 Rules
	10.3.1 Introduction
	10.3.2 Chinese Approach to AI Development and Regulation: AIDP and the Mission of Reaching AI Global Leadership
	10.3.3 Russian Approach to AI Development and Regulation: Strategies to Fill Lags, Face Ethical Issues, and Compete in the International Scenario
	10.3.4 EU Approach to AI Development and Regulation: The Anthropocentric Way to AI
	10.3.5 US Approach to AI Development and Regulation: Keeping Global Supremacy Between Ethical Issues and Future Challenges

	10.4 Conclusions: Censorship, Openness of Data and Models, Freedom, and Rights
	10.4.1 Censorship
	10.4.2 Openness of Data and Models
	10.4.3 Freedom and Rights

	References

	11 Epilogue
	References

