
Mitsunori Ogihara

An Introduction 
to Theory 
of Computation
An Algorithmic Approach



An Introduction to Theory of Computation



Mitsunori Ogihara 

An Introduction to Theory of 
Computation 
An Algorithmic Exploration



Mitsunori Ogihara 
University of Miami 
Coral Gables, FL, USA 

ISBN 978-3-031-84739-4 ISBN 978-3-031-84740-0 (eBook) 
https://doi.org/10.1007/978-3-031-84740-0 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland 
AG 2025 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0


To my family



Preface 

I conceived the idea of writing this book in 2018 when I taught an undergraduate 
Theory of Computation course at the University of Miami. I used a popular textbook 
for the course, but felt that incorporating results not appearing in the book could 
make the learning experience more interesting. That feeling prompted me to start 
writing this book, but it took me several years to complete it. Since the number 
of pages in a textbook cannot be too large, the amount of materials I could add to 
the book was limited. A short list of the materials not appearing as frequently in 
undergraduate theory textbooks is as follows: 

• The Myhill-Nerode Theorem and its use for proving non-regularity of languages 
(Chap. 3) 

• Constructing Chomsky Normal Form grammars with a quadratic size increase 
(Chap. 4) 

• Constructing Greibach Normal Form grammars (Chap. 4) 
• An inherently ambiguous language and a proof of its inherent ambiguity 

(Chap. 4) 
• Ogden’s and Pumping Lemmas for context-free languages using pushdown 

automata as the computation model (Chap. 5) 
• The undecidability of the Context-Free Language’s totality problem (Chap. 8) 
• The undecidability of the inherent ambiguity problem (Chap. 8) 
• The two-tape time-efficient simulation by Hennie and Stearns (Chap. 9) 
• Time-constructibility (Chap. 9) 
• Separations of deterministic time complexity classes based on the Time Hierar-

chy Theorems (Chap. 9) 
• The Space Hierarchy Theorem (Chap. 10) 
• Ladner’s Theorem, which shows that if P  = NP., then there is a language that is 

neither NP.-complete nor polynomial-time decidable (Chap. 12) 
• The membership of Bounded Probabilistic Polynomial Time in the Polynomial 

Hierarchy (Chap. 13) and in P/poly. (Chap. 14) 
• The Isolation Lemma (Chap. 14) 
• NL ⊆ UL/poly. (Chap. 14)

vii



viii Preface

Some of the proofs presented in this book are long or complex. I have attached a 
proof overview to each lemma and theorem that is complex or long. A reader may 
choose to read an overview before reading its accompanying full proof. 

Additionally, an appendix of this book has a list of major results that are grouped 
according to their types. A reader may consult with the appendix to know where to 
find results. 

I hope the reader will find studying with this book to be interesting. If you have 
comments and corrections, please feel free to reach out to me. 

I would like to thank the Springer team for granting me the opportunity to publish 
this book, as well as technical help with resolving issues in LaTeX formatting. 

I would like to thank Ashwin Lall, Ryan Lin, Kevin Ma, Hawken Rives, Burt 
Rosenberg, and Melanie Xia for their helpful comments. My biggest thanks go to 
Ellen Ogihara, who proofread the entire book and provided valuable suggestions to 
me. Finally, this project was supported in part by the National Science Foundation 
Award NSF-CNS-2310807. 

Coral Gables, FL, USA Mitsunori Ogihara 
2025 



Contents 

Part I Preparation 

1 Mathematics and Computer Science Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.1.1 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.2 Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.2.1 Implication and Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
1.2.2 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.2.3 Truth Assignments and Quantifications . . . . . . . . . . . . . . . . . . . 8 

1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
1.3.1 Big-O Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

1.4 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
1.4.1 Alphabets and Strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
1.4.2 Languages and Their Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

1.5 Graphs and Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
1.5.1 Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
1.5.2 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
1.5.3 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
1.5.4 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

1.6 Proof Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
1.7 Algorithmic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

Part II Formal Language Theory and Automata 

2 The Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 
2.1 The Finite Automaton (DFA) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

2.1.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 
2.1.2 Example DFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

2.2 The Nondeterministic Finite Automaton (NFA) Model . . . . . . . . . . .  30 
2.2.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 
2.2.2 Converting NFAs to DFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

ix



x Contents

2.2.3 Constructing Regular Languages from Other 
Regular Languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

2.3 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 
2.3.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 
2.3.2 Equivalence Between Regular Expressions and NFAs . . .  45 
2.3.3 Visualizing the Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

3 Non-regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
3.1 Minimizing the State Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

3.1.1 A Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
3.1.2 Distinguishable State-Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

3.2 The Myhill-Nerode Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 
3.3 Proving Non-regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

3.3.1 Proving Non-regularity Using the 
Myhill-Nerode Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

3.3.2 Proving Non-regularity Using the Pumping 
Lemma for Regular Languages. . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

3.3.3 Proving Non-regularity Using Closure Properties . . . . . . . .  68 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

4 The Context-Free Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 
4.1 The Context-Free Grammar (CFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

4.1.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 
4.1.2 Examples of CFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 
4.1.3 Production Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 
4.1.4 Leftmost and Rightmost Productions . . . . . . . . . . . . . . . . . . . . .  78 
4.1.5 Closure Properties of CFLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

4.2 Normal Forms of CFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 
4.2.1 The Chomsky Normal Form (CNF) Grammars . . . . . . . . . .  80 
4.2.2 Normalizing CFGs to CNF Grammars. . . . . . . . . . . . . . . . . . . .  82 
4.2.3 The Greibach Normal Form (GNF) Grammars . . . . . . . . . . .  87 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 

5 The Pushdown Automaton Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 
5.1 The Pushdown Automaton (PDA) Model . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

5.1.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 
5.1.2 Examples of PDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97 

5.2 Equivalence Between CFLs and PDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 
5.3 The Deterministic Pushdown Automaton (DPDA) Model . . . . . . . .  108 
5.4 Proving Non-context-Freeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

5.4.1 The Pumping Lemma for CFLs . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
5.4.2 Inherent Ambiguity of CFLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114 
5.4.3 Non-context-Free Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 
5.4.4 Ogden’s Lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118



Contents xi

5.4.5 Proving Ogden’s Lemma by Analyzing a PDA’s 
Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 

Part III Undecidability and Turing Machines 

6 The Turing Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135 
6.1 The Turing Machine (TM) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135 

6.1.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135 
6.1.2 Examples of TMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138 
6.1.3 Instantaneous Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141 
6.1.4 Fundamental Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145 

6.2 The Multi-tape TM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 
6.2.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 
6.2.2 Examples of Multi-tape TMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150 
6.2.3 Simulating Multi-tape TMs Using Single-Tape TMs . . . .  152 

6.3 The Nondeterministic Turing Machine (NTM) Model . . . . . . . . . . . .  157 
6.4 Alternate Definitions of RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 

6.4.1 Enumerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 
6.4.2 Witness Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 

6.5 Computing Functions Using TMs and the Church-Turing 
Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 

7 Decidable Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171 
7.1 The Universal TM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171 

7.1.1 Encoding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171 
7.1.2 Fundamental Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 
7.1.3 Using Universal TMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 

7.2 Decidable Fundamental Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 
7.2.1 Decidable Problems About Regular Languages . . . . . . . . . .  175 
7.2.2 Decidable Problems About CFLs . . . . . . . . . . . . . . . . . . . . . . . . .  181 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184 

8 Undecidable Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 
8.1 The Halting Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 

8.1.1 Proving Impossibility Using Diagonalization . . . . . . . . . . . .  185 
8.1.2 The Halting Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 
8.1.3 Some Variants of the Halting Problem . . . . . . . . . . . . . . . . . . . .  188 

8.2 Many-One Reductions and Rice’s Theorem. . . . . . . . . . . . . . . . . . . . . . . .  188 
8.2.1 Many-One Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189 
8.2.2 Rice’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190 

8.3 Undecidable Problems About CFLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191 
8.3.1 The Totality Problem About CFLs . . . . . . . . . . . . . . . . . . . . . . . .  191



xii Contents

8.3.2 Undecidable Problems About DCFLs . . . . . . . . . . . . . . . . . . . .  193 
8.4 Post’s Correspondence Problem (PCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195 

8.4.1 The Definitions of PCP and MPCP . . . . . . . . . . . . . . . . . . . . . . .  195 
8.4.2 The Undecidability of MPCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196 
8.4.3 The Undecidability of PCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202 

8.5 Beyond RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 

Part IV Computational Complexity and Resource-Bounded 
Turing Machine Computation 

9 The Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215 
9.1 The Time Complexity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215 
9.2 Time-Efficient Simulations of Multi-tape TMs . . . . . . . . . . . . . . . . . . . .  220 

9.2.1 Simulating with One Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220 
9.2.2 Simulating with Two Tapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221 

9.3 The Time Hierarchy Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230 
9.4 The Nondeterministic Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . .  233 
9.5 Fundamental Time Complexity Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234 
9.6 Examples of Time Complexity Classifications . . . . . . . . . . . . . . . . . . . . .  236 

9.6.1 The DFA State Minimization Problem. . . . . . . . . . . . . . . . . . . .  236 
9.6.2 The Problem of Converting an NFA to a Regular 

Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238 
9.6.3 The CFL Membership Problem . . . . . . . . . . . . . . . . . . . . . . . . . . .  239 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243 

10 The Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245 
10.1 The Space Complexity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245 
10.2 Savitch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248 
10.3 Fundamental Space Complexity Classes . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 
10.4 The Reachability Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252 
10.5 Examples of Space Complexity Classifications . . . . . . . . . . . . . . . . . . . .  257 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261 

11 The Theory of NP-Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263 
11.1 The Polynomial-Time Many-One Reducibility . . . . . . . . . . . . . . . . . . . .  263 

11.1.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263 
11.1.2 The Definition of NP-Complete Languages . . . . . . . . . . . . . .  265 
11.1.3 A Canonical NP-Complete Language. . . . . . . . . . . . . . . . . . . . .  266 
11.1.4 Polynomial-Time Witness Schemes. . . . . . . . . . . . . . . . . . . . . . .  267 

11.2 The Satisfiability Problem (SAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268 
11.2.1 The NP-Completeness of SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268 
11.2.2 NP-Complete Variants of SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270 
11.2.3 Some Complete Problems for coNP . . . . . . . . . . . . . . . . . . . . . .  273 

11.3 Fundamental NP-Complete Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274 
11.3.1 The Clique Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274



Contents xiii

11.3.2 The Vertex Cover Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276 
11.3.3 The 3-Coloring Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279 
11.3.4 The Hamilton Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280 
11.3.5 NP-Completes Problems About Integers . . . . . . . . . . . . . . . . .  284 
11.3.6 NP-Complete Problems About Matching and 

Set Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287 
11.3.7 More Examples of NP-Complete Problems . . . . . . . . . . . . . .  289 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  293 

12 Beyond NP-Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295 
12.1 The Complexity of Finding a Witness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295 
12.2 The Polynomial-Time Turing Reducibility . . . . . . . . . . . . . . . . . . . . . . . . .  298 

12.2.1 The Problem of Finding the Least Satisfying 
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299 

12.3 The Polynomial Hierarchy (PH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303 
12.3.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303 
12.3.2 Logical Characterizations of PH . . . . . . . . . . . . . . . . . . . . . . . . . .  304 

12.4 Between P and NP-Complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309 
12.4.1 Two Enumerations of TMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310 
12.4.2 T ’s Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311 
12.4.3 T ’s Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  312 
12.4.4 t’s Range and Its Non-decreasing Property . . . . . . . . . . . . . . .  312 
12.4.5 t’s Unboundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313 
12.4.6 The Final Touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313 

12.5 PSPACE-Complete Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  314 
12.5.1 Quantified Boolean Formulas (QBF) . . . . . . . . . . . . . . . . . . . . .  314 
12.5.2 Games and Winning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . .  316 
12.5.3 The Geography Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322 

Part V Advanced Topics in Computational Complexity Theory 

13 The Probabilistic Polynomial-Time Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325 
13.1 The Probabilistic Turing Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . .  325 

13.1.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325 
13.2 Primality Testing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328 

13.2.1 Number Theory Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328 
13.2.2 The Miller-Rabin Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  334 
13.2.3 The Polynomial Zero-Testing Problem . . . . . . . . . . . . . . . . . . .  340 

13.3 Relations Between BPP and PH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341 
13.4 The Class PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  343 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  345 

14 Circuit Complexity and Unambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347 
14.1 The Circuit Computation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347 

14.1.1 The Boolean Circuit Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347



xiv Contents

14.1.2 Relations Between Boolean Circuit-Based 
Classes and TM-Based Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . .  350 

14.1.3 The Arithmetic Circuit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352 
14.2 The Class P/poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352 
14.3 Unambiguous Accepting Computation Paths of NTMs . . . . . . . . . . .  355 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  361 

A A List of Major Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363 
A.1 Characterizations of Language Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363 
A.2 Relations Between Language Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  364 
A.3 Closure Properties of Language Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . .  365 
A.4 Non-closure Properties of Language Classes. . . . . . . . . . . . . . . . . . . . . . .  366 
A.5 Classifications of Specific Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  366 
A.6 Polynomial-Time Many-One and Witness Reductions . . . . . . . . . . . .  368 
A.7 Pumping Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369 
A.8 Normalization and Behavior of Computing Objects . . . . . . . . . . . . . . .  369 
A.9 Time and Space Constructibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  370 
A.10 Number and Probability Theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  371 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  373



List of Figures 

Fig. 1.1 The fundamental set operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 
Fig. 1.2 An example of a directed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
Fig. 1.3 An acyclic graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
Fig. 1.4 A connected component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
Fig. 1.5 An undirected graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
Fig. 1.6 A tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
Fig. 1.7 The pigeon-hole principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
Fig. 2.1 The “turning game” solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 
Fig. 2.2 A finite automaton for the “turning game” . . . . . . . . . . . . . . . . . . . . . . . . . .  24 
Fig. 2.3 The operation of an NFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
Fig. 2.4 The two DFAs: M and M  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 
Fig. 2.5 The construction of an NFA accepting L∗ . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 
Fig. 2.6 The construction of an NFA accepting L ∪ L  . . . . . . . . . . . . . . . . . . . . . .  43 
Fig. 2.7 The construction of an NFA for LL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 
Fig. 2.8 A mystery NFA with three states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48 
Fig. 2.9 The mystery NFA after adding self-loops . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
Fig. 2.10 Incorporating an intermediate point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 
Fig. 2.11 An NFA with three states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 
Fig. 2.12 Initialization for the conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 
Fig. 2.13 Applying the label-replacement procedure with q2 as the 

intermediate point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 
Fig. 2.14 Applying the label-replacement procedure with q3 as the 

intermediate point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 
Fig. 2.15 Applying the label-replacement procedure with q4 as the 

intermediate point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 
Fig. 3.1 The input for the state-minimization algorithm . . . . . . . . . . . . . . . . . . . . .  61 
Fig. 3.2 The finite automaton after state-minimization . . . . . . . . . . . . . . . . . . . . . . .  61 
Fig. 3.3 The idea behind the Pumping Lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 
Fig. 4.1 A production tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 
Fig. 5.1 A typical drawing of a PDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 
Fig. 5.2 The computation path for aaabbb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

xv



xvi List of Figures

Fig. 5.3 The computation path for abbba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100 
Fig. 5.4 The modifications for the initial and final states . . . . . . . . . . . . . . . . . . . . .  104 
Fig. 5.5 The modification for the pop-then-push operations. . . . . . . . . . . . . . . . . .  104 
Fig. 5.6 The node selection for Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 
Fig. 5.7 The decomposition of w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
Fig. 5.8 The production tree involving A G,∗⇒ x1Ax2 . . . . . . . . . . . . . . . . . . . . . . . . . .  115 
Fig. 5.9 The pumping on ap bp c p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 
Fig. 5.10 The node selection for Ogden’s Lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 
Fig. 5.11 The partition of the input into V0,  .  .  .  ,  V  m . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 
Fig. 5.12 Two examples of a segment’s internal structure . . . . . . . . . . . . . . . . . . . . .  123 
Fig. 5.13 Pumping structure discovery Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 
Fig. 5.14 Pumping structure discovery Subcase 2a. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 
Fig. 5.15 Pumping structure discovery Subcase 2b . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 
Fig. 6.1 A TM with a one-way infinite tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 
Fig. 6.2 A diagram for {an bn an | n ≥ 0} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 
Fig. 6.3 Handling the first triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141 
Fig. 6.4 Handling the second triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142 
Fig. 6.5 Handling the last triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 
Fig. 6.6 Processing of the first triple with a state as the leading 

symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 
Fig. 6.7 A diagram for the palindromes over {1, 2} . . . . . . . . . . . . . . . . . . . . . . . . . .  146 
Fig. 6.8 Processing of 1221221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146 
Fig. 6.9 A two-tape TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150 
Fig. 6.10 The ID sequence of the TM accepting aabbaa . . . . . . . . . . . . . . . . . . . . .  151 
Fig. 6.11 An example of double-character encoding . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 
Fig. 6.12 An example of double-track encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 
Fig. 6.13 The mechanism for reducing the number of branches to 2 . . . . . . . . . .  159 
Fig. 6.14 A 3-tape simulation of an NTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160 
Fig. 7.1 The six tapes after extracting information from the input . . . . . . . . . .  176 
Fig. 8.1 TOTALCFG and NONTOTALCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191 
Fig. 8.2 The arithmetical hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 
Fig. 9.1 The block encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 
Fig. 9.2 The traversal of blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219 
Fig. 9.3 Implementing a two-way infinite tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222 
Fig. 9.4 Two tapes with two tracks each . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 
Fig. 9.5 One pair of tracks, and the color and marking tracks. 

The section corresponding to Cells −8 through Cell 12 
is shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224 

Fig. 9.6 The coloring procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225 
Fig. 9.7 The two cases of the push operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 
Fig. 9.8 The two cases of the pull operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228 
Fig. 9.9 Inclusions among the standard time complexity classes. . . . . . . . . . . . .  236 
Fig. 10.1 An offline TM with two work tapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246



List of Figures xvii

Fig. 10.2 Inclusions among the standard time and space 
complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251 

Fig. 11.1 A Hamilton path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264 
Fig. 11.2 A Hamilton cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264 
Fig. 11.3 A reduction to the Hamilton Cycle Problem . . . . . . . . . . . . . . . . . . . . . . . . .  265 
Fig. 11.4 Cliques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274 
Fig. 11.5 An example of a graph constructed for reducing 3SAT to 

CLIQUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276 
Fig. 11.6 A graph and one of its vertex covers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277 
Fig. 11.7 A vertex cover instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278 
Fig. 11.8 The local connection surrounding a triangle . . . . . . . . . . . . . . . . . . . . . . . .  279 
Fig. 11.9 A 3-coloring instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280 
Fig. 11.10 The Hamilton path gadget and its three Hamilton-path 

traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282 
Fig. 11.11 Conversion to HAMPATH from VERTEXCOVER. . . . . . . . . . . . . . . . . . . . .  283 
Fig. 11.12 A Subset Sum instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285 
Fig. 11.13 The variable assignment triples for 3DM.. . . . . . . . . . . . . . . . . . . . . . . . . . . .  288 
Fig. 11.14 The clause triples for 3DM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289 
Fig. 12.1 The polynomial hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304 
Fig. 12.2 The variable selection gadget in the reduction to 

GEOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  318 
Fig. 12.3 The construction for reducing TQBF to GEOGRAPHY . . . . . . . . . . . . . .  319 
Fig. 14.1 A four-input Boolean circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348



List of Algorithms 

1.1 A greedy algorithm for reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 
2.1 An algorithm for computing an equivalent pseudo-NFA. . . . . . . . . . . . . . . . . . .  36 
2.2 An algorithm for computing a DFA from a pseudo-NFA . . . . . . . . . . . . . . . . . .  37 
2.3 A greedy algorithm for constructing a DFA from an NFA. . . . . . . . . . . . . . . . .  37 
3.1 A greedy algorithm for finding all distinguishable pairs . . . . . . . . . . . . . . . . . . .  60 
3.2 An algorithm for finding all maximal equivalence groups . . . . . . . . . . . . . . . . .  60 
4.1 A CNF-construction algorithm (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 
4.2 A CNF-construction algorithm (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85 
4.3 A CNF-construction algorithm (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 
4.4 An algorithm for converting a CNF to a GNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 
6.1 A TM algorithm for {anbnan | n ≥ 0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 
6.2 A TM algorithm for the palindrome over {1, 2}. . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 
6.3 An enumerator for A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
7.1 A universal TM algorithm for TD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 
8.1 A TM F for Lself ., with E as a subroutine for ACCEPTTM .. . . . . . . . . . . . . . . . .  187 
8.2 A TM that recognizes NONTOTALCFG .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192 
9.1 A TM that decides the diagonal language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231 
9.2 A TM encoding test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232 
9.3 A TM that decides the minimum number of states . . . . . . . . . . . . . . . . . . . . . . . . .  237 
9.4 An algorithm for CFL membership test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240 
10.1 A TM that decides the space diagonal language . . . . . . . . . . . . . . . . . . . . . . . . . . .  247 
10.2 The enumeration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255 
10.3 The reachability testing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255 
10.4 The extended reachability testing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256 
10.5 An extended counting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256 
10.6 A non-reachability testing algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  257 
10.7 A logarithmic-space validity test of a TM encoding . . . . . . . . . . . . . . . . . . . . . . .  259 
11.1 A TM that recognizes CLIQUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275 
11.2 A TM that recognizes VERTEXCOVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277 
11.3 A TM that recognizes HAMPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281 
12.1 An algorithm for finding a satisfying assignment using an oracle . . . . . . . . .  296

xix



xx List of Algorithms

12.2 Finding a solution to the subset sum problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297 
12.3 Recursive algorithm for FORMULAGAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317 
12.4 Recursive algorithm for GEOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320 
13.1 A recursive method for computing gcd(m, n).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329 
13.2 An algorithm for primitive random number generation . . . . . . . . . . . . . . . . . . . .  336 
13.3 A binary exponentiation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  336 
13.4 A probabilistic primality testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337



Symbols, Acronyms, and Class Names 

ℵ1 . Aleph One 
ℵ0 . Aleph Zero 
 k, k, k . Arithmetical Hierarchy Classes 
∅. Empty Set 
 . Empty String 
 · . Function, Ceiling 
dom(·). Function, Domain of 
 · . Function, Floor 
range(·). Function, Range of 
O(·). Function Relation, Big-O 
 (·). Function Relation, Big-Omega 
o(·). Function Relation, Little-O 
ω(·). Function Relation, Little-Omega 
  (·). Function Relation, Theta 
G ⇒. Grammar’s Production, Single Step 
G,∗ ⇒. Grammar’s Production, Multiple Steps 
→. Grammar’s Production Rule 
[·] Integer Congruence Class 
∗
. Language Operation, Kleene-Star 
+

. Language Operation, Kleene-Plus 
∧. Logical Operation, And 
¬. Logical Operation, Negation 
∨. Logical Operation, Or 
 
p
k , 

p
k , 

p
k . Polynomial Time Hierarchy Classes 

∀∞ . Quantifier, Almost-All 
∃. Quantifier, Existential 
∀. Quantifier, Universal 
≤m . Reducibility, Many-One 
≤pT . Reducibility, Polynomial-Time Turing 
≤pwit . Reducibility, Polynomial-Time Witness-Preserving

xxi



xxii Symbols, Acronyms, and Class Names

≤pctt . Reducibility, Polynomial-Time Conjunctive Truth-Table 
≤pdtt . Reducibility, Polynomial-Time Disjunctive Truth-Table 
≤pm . Reducibility, Polynomial-Time Many-One 
≤pT . Reducibility, Polynomial-Time Turing 
≤pwit . Reducibility, Polynomial-Time Witness 
≤wit . Reducibility, Witness 
⇐⇒ . Relation, Equivalence 
→. Relation, Implication 
≡. Relation, Equivalent 
 · · ·  . Set Cardinality 
{· · · }. Set Specification 
∈. Set Membership, Is a Member of 
 . Set Membership, Contains 
Z. Set of Integers 
N. Set of Natural Numbers 
Q. Set of Rational Numbers 
R. Set of Real Numbers 
c
. Set Operation, Complement 
. Set Operation, Complement 

\ Set Operation, Difference 
∩. Set Operation, Intersection 
P(·). Set Operation, Power Set 
 . Set Operation, Symmetric Difference 
∪. Set Operation, Union 
⊂. Set Relation, Proper Subset 
⊃. Set Relation, Proper Superset 
⊆. Set Relation, Subset 
⊇. Set Relation, Superset 
  .  .Augmented with  . 
 ∗ . All Strings over  . 

 n . All Strings over  .Having a Length of n 
 ≤n . All Strings over  .Having a Length of ≤ n. 
 <n . All Strings over  .Having a Length of < n. 
 . Symbol, Blank 
 . Symbol, Left-End Marker 
 . Symbol, Right-End Marker 
AC Polylogarithmic-Depth, Polynomial-Size Unbounded-Fan-In 

Circuits 
BPP Bounded-Error Probabilistic Polynomial Time 
CFG Context-Free Grammar 
CFL Context-Free Language 
CNF Chomsky Normal Form 
CNF Conjunctive Normal Form 
CNFSAT Conjunctive Normal Form Satisfiability



Symbols, Acronyms, and Class Names xxiii

DCFL Deterministic Context-Free Languages 
DFA Deterministic Finite Automaton 
DNF Disjunctive Normal Form 
DPDA Deterministic Pushdown Automaton 
DTM Deterministic Turing Machine 
EXPSPACE Exponential Space 
EXPTIME Exponential Time 
FA Finite Automaton 
GCD Greatest Common Divisor 
GNF Greibach Normal Form 
ID Instantaneous Description 
L Logspace 
LCM Least Common Multiple 
NC Polylogarithmic-Depth, Polynomial-Size Bounded-Fan-In Circuits 
NEXPSPACE Nondeterministic Exponential Space 
NEXPTIME Nondeterministic Exponential Time 
NFA Nondeterministic Finite Automaton 
NL Nondeterministic Logspace 
NP Nondeterministic Polynomial Time 
NPSPACE Nondeterministic Polynomial Space 
NTM Nondeterministic Turing Machine 
P Polynomial Time 
P/log P with Logarithmic Advice 
P/poly P with Polynomial Advice 
PDA Pushdown Automaton 
PH Polynomial Hierarchy 
PNF Prenex Normal Form 
PP Probabilistic Polynomial Time 
PSAPCE Polynomial Space 
PTM Probabilistic Turing Machine 
R Regular Languages 
RE Recursively Enumerable Languages 
REC Recursive Languages 
REG Regular Languages 
RP Random Polynomial Time 
SAC Polylogarithmic-Depth, Polynomial-Size Semi-Unbounded-Fan-

In Circuits 
TM Turing Machine 
UL Unambiguous Logspace 
ZPP Zero-Error Probabilistic Polynomial Time



Part I 
Preparation



Chapter 1 
Mathematics and Computer Science 
Basics 

1.1 Sets 

The first topic is set theory. 
A set consists of its members (or elements). We use ∈. and �. to denote the 

set membership relation. We write x ∈ S . and S � x . to mean that the element x 
belongs to the set S . ∅., called the empty set, is a special set with no elements. 

There are two ways to specify sets. One is to list the members, like “the set 
consisting of 1, 2, 3, 4, and 5.” The other is to describe the requirement that a 
prospective element must satisfy to belong to the set, like “the set of all integers 
between 1 and 5.” We encompass the list and description with curly brackets 
( {. and }.) to denote mathematical sets. When listing, we write: 

{the list of elements}. 

If listing all the elements is impossible or impractical, ellipses are used, like: 

{1, 2, . . . , 99, 100}. and {. . . ,−4,−2, 0, 2, 4, 6 . . .}.. 
For specifying these two sets by their membership requirements, we write: 

{x | x . is an integer and 1 ≤ x ≤ 100.} and {x | x . is an even integer}. 

Let A and B be sets. If every element of A belongs to B, we say that A is a subset 
of B and B is a superset of A. We denote the relations with A ⊆ B . and B ⊇ A., 
respectively. If A ⊆ B . and A �= B ., we say that A is a proper subset of B and B is 
a proper superset of A and denote the relation with A ⊂ B . and B ⊃ A.. 

For example, let A = {4, 5, 7}., B = {4, 7}., and C = {8, 10}.. Then, 4 ∈ A., 
4 ∈ B ., and 4 �∈ C ..  Also,  A is a proper superset of B, B is a proper subset of A, and 
A is neither a subset nor a superset of C. We can denote these relations with A ⊃ B ., 
B ⊂ A., A �⊂ C ., and A �⊃ C .. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1
https://doi.org/10.1007/978-3-031-84740-0_1


4 1 Mathematics and Computer Science Basics

The cardinality (or the size) of a set is its number of elements. For a set S, 
we write ‖S‖. to indicate the number of elements in S. For example, ‖∅‖ = 0. and 
‖{1, 2, 4, 8}‖ = 4.. If the number of elements in S is finite, we say that S’s cardinality 
is finite and S is a finite set. Otherwise, we say that S’s cardinality is infinite and S 
is an infinite set. We often write ‖S‖ < ∞. and ‖S‖ = ∞. to mean that S is finite 
and S is infinite, respectiv ely.

We will frequently use the following infinite sets of numbers: 

• N. is the set of all natural numbers {1, 2, 3, . . .}.. 
• Z. is the set of all integers, {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.. 
• Q. is the set of all rational numbers Q.. 
• R. is the set of all real numbers. 

For the last two, by attaching the superscript +. ( Q+
. and R+

.), we denote that their 
subsets consist solely of positive members. As we will see later in Chap. 8, there 
are two types of infinite cardinality, ℵ0 . and ℵ1 .. The first three sets above have the 
cardinality ℵ0 ., and the last set has the cardinality ℵ1 .. 

1.1.1 Set Operations 

There are operations for constructing sets from other sets. 
The power set of a set S is the set consisting of all subsets of S, including the 

empty set and S itself. We write 2S
. or P(S). to denote the power set of S.  If S = ∅., 

the power set of S is the set consisting of just one set, ∅.; that is, {∅}.. 
The intersection (or the meet)  of  sets  A and B is the set consisting of all the 

elements in both A and B.  The  union (or the join)  of  sets  A and B is the set 
consisting of all the elements in either A or B. We write A ∩ B . to denote the 
intersection of A and B, and A ∪ B . for the union of A and B.  The  sets  A and 
B are disjoint if their intersection is empty. When A and B are disjoint, we may
write A + B . instead of A ∪ B .. 

For two sets A and B,  the  set difference of A from B is the set consisting of all 
elements appearing in A but not in B. We write A \B . to denote the set difference of 
A from B.  The  symmetric difference between sets A and B is the union of the two 
set differences, A\B . and B\A.. In other words, the symmetric difference between A 
and B is the set of all elements that appear in only one of the two sets. Alternatively, 
it is the difference between the union of the two sets and the intersection of the two 
sets. We denote the symmetric difference of A and B with A�B .. 

Often, a set A is presented with a universe from which its members are drawn. 
When the universe is known, we write A. or Ac

. to mean the complement of A; that 

is, the set of all elements in the universe that are not elements of A. Note that A =
A. for all sets A. Figure 1.1 demonstrates the intersection, union, and complement 
vconcepts.



1.2 Boolean Algebra 5

Fig. 1.1 The fundamental set operations: intersection (left), union (center), and complement 
(right) 

Here are some examples. LetA = {4, 5, 7}.,B = {4, 7, 8}., andC = {8, 10}.. Then 
A ∩ B = {4, 7}., A ∪ B = {4, 5, 7, 8}., A ∩ C = ∅., and B ∩ C = {8}.. Thus, A and C 
are disjoint. Additionally, A \ B = {5}., and B \ A = {8}., and so A�B = {5, 8}.. 

De Morgan’s Laws relate the union and the intersection in light of the 
complement operation. De Morgan’s Laws state that for all sets A and B, which 
are subsets of a universe U ,

A ∪ B = A ∩ B . and A ∩ B = A ∪ B .. 

The Cartesian product of sets A and B is the set of pairs {(a, b) | a ∈
A. and b ∈ B}.. We write A × B . as the Cartesian product of A and B.  For  
example, if A = {1, 2, 3}. and B = {5, 6}., the Cartesian product A × B . 

is {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6)}.. The concept of Cartesian products 
extends to a collection of more than two sets. For sets A1, . . . , Ak, k ≥ 2.,  the  
Cartesian product of A1, . . . , Ak . is the set {(a1, . . . , ak) | a1 ∈ A1, . . . , ak ∈ Ak}.. 

1.2 Boolean Algebra 

Next, we go over Boolean algebra. 
Boolean algebra is an algebraic system built on two constant Boolean values 

( true. and false.), variables representing a value, and Boolean algebraic operations. 
The value pair (true, false). is often identified with (T , F ). and (1, 0)..  The  two  
fundamental values complement one another. We say that true. is false.’s negation 
and false. is true.’s negation. We attach the symbol ¬. in front or draw a line on top 
to indicate the negation. Thus, ¬x . and x . similarly represent the negation of x.  Note  
that a double negation is an identity operation.

This logic has two other operations: conjunction and disjunction. 
A conjunction is an operation that takes two or more Boolean values and 

produces a new value representing if all the values are true.. An expression 
representing the conjunction of Boolean values lists the values with the symbol ∧. 

between each neighboring pair. For example, x ∧ y ∧ z. represents the conjunction 
of x, y, and z. We can draw elements from Boolean values and compute their 
conjunction. If S is a set of Boolean values, we write ∧x∈S x . to mean the conjunction 
of all values in S. We often call the conjunction the logical AND.



6 1 Mathematics and Computer Science Basics

A disjunction is an operation that takes two or more Boolean values and produces 
a new value representing if at least one of the values is true.. An expression 
representing the disjunction of Boolean values lists the values with the symbol ∨. 

between each neighboring pair. For example, x ∨ y ∨ z. represents the disjunction of 
x, y, and z. As with conjunction, we can write ∨x∈S . to indicate the disjunction of 
the (Boolean) values in the set S. We often call the disjunction the logical OR. 

To the right is a table for the value of x ∧ y . 

on all four possible combinations of values for x 
and y. Here, we use T and F for true. and false., 
respectively. . 

x y x ∧ y

T T T

T F F

F T F

F F F

We can construct a Boolean formula using constants, variables, and Boolean 
operations. A variable can appear in a Boolean formula as a literal. For each variable 
x, a literal has two forms, x and x .. The former is a positive literal, whose value 
equals the value of x. The latter is a negative literal, whose value equals the x’s 
negative value. The evaluation of a Boolean formula follows rules similar to that of 
mathematical formulas, where ¬., ∧., and ∨. correspond to −., ∗., and +., respectively. 
Using parentheses changes the priorities, so we process the leftmost, inner-most pair 
of parentheses first. 

Both conjunctions and disjunctions are commutative. In other words, for all 
Boolean formulas x and y, x ∧ y = y ∧ x ., and x ∨ y = y ∨ x ..  The  two  
operations are also associative. In other words, for all Boolean formulas x, y, and z ,
x ∧ (y ∧z) = (x ∧y)∧z. and x ∨ (y ∨z) = (x ∨y)∨z.. Because of this associativity, 
we can unite a series of Boolean objects with the same binary operation without 
parentheses. 

Both conjunctions and disjunctions also follow the distributive laws. For all x, 
y, and z, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)., and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).. 

De Morgan’s Laws we reviewed in the set section apply to Boolean logic as well. 
For all Boolean expressions X and Y , X ∪ Y = X ∩ Y ., and X ∩ Y = X ∪ Y .. 

1.2.1 Implication and Equivalence 

From the three fundamental Boolean logic operations, we can build relations. 
Because of De Morgan’s Laws, it is sufficient to have either negation and conjunc-
tion or negation and disjunction to express all Boolean logic. Two critical operations 
are implication: x → y ., and equivalence: x ≡ y .. The implication x → y . means, 
“wherever x is true, y is true,” and the equivalence x ≡ y .means, “x and y have the 
same values.” The implication x → y . is equivalent to x ∨y .. The equivalence x ≡ y . 

is equivalent to (x → y) ∧ (y → x). and thus equivalent to (x ∨ y) ∧ (y ∨ x)..



1.2 Boolean Algebra 7

The contrapositive (or contraposition) of an implication x → y . is y → x ..  The  
contrapositive has the same value as the original. We can derive that the two are 
equal to each other using the following transformations:

. (x → y) ≡ (x ∨ y) ≡ (y ∨ x) ≡ (y ∨ x) ≡ (y → x).

In addition to De Morgan’s Laws, distributive laws, removal of double negations, 
and replacement of implications with disjunctions, we can use the following rules 
for simplifying formulas: 

• x ∧ x . equals x; x ∨ x . equals x. 
• x ∧ ¬  x . equals false.; x ∨ ¬x . equals true.. 
• x ∧ false. equals false.; x ∨ false. equals x. 
• x ∧ true. equals x; x ∨ true. equals true.. 

1.2.2 Predicates 

Here, we define predicates. 
A predicate is an expression involving variables such that the expression receives 

a truth value (i.e., true. or false.) when all the variables in the expression receive a 
value. A set of permissible values is associated with each variable in the predicate. 
This set of permissible values is called the variable’s domain. 

We may classify predicates based on its variables’ domains, like integer predi-
cates, real number predicates, and Boolean predicates. We also classify predicates 
based on the number of its variables. We call a predicate with only one variable 
a unary predicate, one with two variables a binary predicate, one with three 
variables a ternary predicate, and so on. Generally, for a positive integer k,  a  k .-ary 
predicate is one with k variables. For example, P(x) = [x ∗ x − 3x + 2 > 0]. is 
a unary predicate with x as its variable. The domain of the variable x must admit 
multiplication, addition, and subtraction. The value of the predicate is true. for x > 2. 
and for x < −1.. The predicate Q(x, y) = [x ∗ y = 1]. is a binary predicate whose 
variables x and y must be in a domain that admits multiplication.

We often use the term binary relation as a synonym for the term “binary 
predicate.” Let Q(x, y). be a binary predicate such that the domain of x and y is 
D. The binary relation representing Q is the relationship between two elements 
x and y in D such that Q(x, y) = true.. We write xRy . to mean that the relation 
representing Q exists between x and y. The pair (x, y). for which xRy . holds is: 

. {(x, y) | x, y ∈ D ∧ Q(x, y) = true}.

This set is a subset of the Cartesian product D × D .. 
There are three essential properties of binary predicates. Let Q(x, y). be a binary 

predicate. We say that Q is reflexive if Q(x, x). is true. for all choices of x.  We  say  
that Q is symmetric if for all choices for x and y, Q(x, y) = Q(y, x).. We say that



8 1 Mathematics and Computer Science Basics

Q is transitive if for all x, y, and z, Q(x, y) ∧ Q(y, z). implies Q(x, z)..  If  R is 
reflexive, symmetric, and transitive, it is an equiva lence.

A distinguished type of predicates is the tautology. A predicate is a tautology if 
its value is true. regardless of the value assignments to the variables. For example, 
the binary predicate [x ≥ y∨x ≤ y].with x, y ∈ R. is a tautology because regardless 
of the choices of the values for x and y in R., either x ≥ y . or x ≤ y .. 

1.2.3 Truth Assignments and Quantifications 

Given a Boolean formula with some variables, we can assign values to the variables 
and evaluate the formula with those assigned values. The combination of the values 
assigned to the variables is a truth assignment.  Let  P be a Boolean formula built 
on some variables x1, . . . , xn .. Given a truth assignment α . for P , we write P(α). to 
denote the result of evaluation P with the truth assignment. We say that α . satisfies 
P if P(α) = true.. We say that P is satisfiable if some truth assignment satisfies 
P , unsatisfiable if no truth assignments satisfy P , and a tautology if every truth 
assignment satisfies P .

It is possible to quantify variables in a predicate. We frequently use the 
existential quantifier ∃. and the universal quantifier ∀.. 

For a predicate P(x)., (∃x)P (x).means “for some choice for x,  the  value  of P(x). 

is true,” and (∀x)P (x). means “for all choices for x,  the  value  of P(x). is true.” 
Without using the quantifiers attached to x, the two predicates are expressed as 
follows: 

(∃x)P (x). is equivalent to P(true) ∨ P(false)., and 

(∀x)P (x). is equivalent to P(true) ∧ P(false).. 

Because a quantification considers the two possible assignments to the variable to 
which it is attached, you cannot assign a value to the variable externally. 

Let P(x1, . . . , xm). be a formula free of quantifiers. We say that P is 
satisfiable if (∃x1, . . . , xm)[P(x1, . . . , xm) = true]. and P is unsatisfiable i f
(∀x1, . . . , xm)[P(x1, . . . , xm) = false].. In addition, we say that P is a tautology if
(∀x1, . . . , xm)[P(x1, . . . , xm) = true].. 

1.3 Functions 

Here, we go over some important concepts about functions. 
Let D and R be two nonempty sets. A function f from D to R associates with 

a value in R to each element of D.  We  also  use  the  word  mapping in place of
“function.” We write

.f : D → R



1.4 Languages 9

to mean that f is a function from D to R. For an element x ∈ D .,  the  value  of  f 
at x has the notation f (x).. We refer to D and R as the domain and range of f , 
respectively. We write dom(f ). and range(f ). to refer to them. 

If there may be some x for which f (x). is undefined, we say that f is a partial 
function. If there is no x for which f (x). is undefined, we say that f is a total 
function. We usually omit the word “total.” We say that f is a one-to-one function 
if for all x and x′ ∈ D ., f (x) �= f (x′).. We say that f is an onto function if, for all
y ∈ R ., there is at least x ∈ D . such that f (x) = y .. We say that f is a bijection if f 
is both a one-to-one and an onto function. If f is a bijection, we use f −1

. to mean 
the inverse function of f , i.e., the function that maps each y ∈ R . to the unique 
(because of f being a bijection) x ∈ D . such that f (x) = y .. The inverse function 
f −1

. is a bijection. While f (x). represents the value with which f associates x,  for  
a  set S ⊂ D ., f (S) = {f (x) | x ∈ S}.. When f is an onto function, we can express 
the property as f (D) = R .. 

Let P(n). be a predicate where n’s domain is N.. We say that P(n). holds for all 
but finitely many n. if there exists an integer n0 . such that for all n ≥ n0 ., P(n). is 
true.. We write 

. (∀∞n)[P(n)]

to express this property. 

1.3.1 Big-O Notation 

We use the “big-O” notation to compare the speed of growth of functions from N. to 
R..  Let f (n). and g(n). be functions whose domain is N. and range is R+

.. We define 
the big-O relations between them as follows: 

1. We write f (n) = O(g(n)). if there exists a constant c > 0. and an integer n0 . such 
that for all but finitely many n, f (n) ≤ cg(n).. 

2. We write f (n) = �(g(n)). if there exists a constant c > 0. and an integer n0 . such 
that for all but finitely many n, f (n) ≥ cg(n).. 

3. We write f (n) = o(g(n)). such that limn→∞ f (n)/g(n) = 0., i.e., for all c > 0., 
there exists an integer n0 . such that for all n ≥ n0 ., f (n) ≤ cg(n).. 

4. We write f (n) = ω(g(n)). such that limn→∞ f (n)/g(n) = ∞., i.e., for all 
constants c > 0., there exists an integer n0 . such that for all integers n ≥ n0 ., 
f (n) ≥ cg(n).. 

5. We write f (n) = �(g(n)). if f (n) = O(g(n). and f (n) = �(g(n)).. 

1.4 Languages 

Here, we define the components for defining language classes.



10 1 Mathematics and Computer Science Basics

1.4.1 Alphabets and Strings 

Let us begin with alphabets and strings. 
An essential component of a language is the string, which is an assembly of 

characters from the alphabet. An alphabet is any nonempty finite set. An element 
of an alphabet is a symbol. Typically, we use an uppercase Greek letter to represent 
an alphabet and other types of letters (e.g., the English alphabet and the lowercase 
Greek letters) to represent a symbol in an alphabet. 

A string (or word) over an alphabet is a sequence whose elements are from the 
alphabet. We specify a word by putting the elements within the sequence from left to 
right. We often refer to each symbol occurrence in a string as a character. In other 
words, each string is a sequence of characters, with each character representing 
a symbol in the alphabet. For example, if a string w is a sequence [a, b, a, b, c]., 
we write ababc to specify the sequence. The string w’s alphabet is a finite set of 
symbols whose members include a, b., and c. 

For a string w, |w|. denotes the length of w. Note that the single vertical line 
differs from the double vertical line we use for cardinality. The symbol ε . denotes 
an empty string (or empty word) whose length is 0. Let � . be an alphabet and n 
be a non-negative integer. For a non-negative integer n, �n

. represents the set of all 
strings over � . with a length equal to n. We define �<n

. to be the set of all strings 
over � ., whose length is less than n, and �≤n

. to be the set of all strings over � ., 
whose length is at most n. Furthermore, �∗

. is the set of all strings over � .; that is, 
�∗ = ∪n≥0�

n
.. Similarly, �+

. is the set of all nonempty strings over � .; that is, 
�+ = ∪n≥1�

n
.. 

For two strings u and v, u · v . is the concatenation of u and v; that is, the string 
we can create by appending v after u. We often omit the period in the middle and
write uv .. For example, if u = abcab. and v = cccbbb., uv = abcabcccbbb ..  If  u is 
empty, then uv . and vu. are identical to v.  If  w is the concatenation of u and v, i.e.,
uv ., then u is a prefix of w, and v is a suffix of w. If w = uv . and u �= ε ., then v is a 
proper suffix of w. Similarly, if w = uv . and v �= ε ., then u is a proper prefix of w. 
A substring (or subword)  of  a  string  w is any string we can construct from w by 
removing a (possibly empty) prefix and a (possible empty) suffix. In other words, 
v is a substring of w if, and only if, strings x and y (possibly empty) exist, such
as w = xvy ..  A  proper substring (or proper subword) is a substring that is not 
equal to the original. For example, if w = bbaaba ., then the substrings of w are ε ., 
a, b, aa, ab, ba, bb, aab, aba, baa, bba, aaba, baab, bbaa, baaba, bbaab, and 
bbaaba. Among these, ε, b, bb, bba, bbaa, bbab ., and bbaba are prefixes, and ε ., a, 
ba, aba, aaba, baaba, and bbaaba are suffix es.

1.4.2 Languages and Their Classes 

Here, we go over the general concepts about languages.



1.5 Graphs and Trees 11

A language over an alphabet � . is any subset of �∗
..  If  A is a language over a n

alphabet � ., then its complement is �∗ − A.. For example, if the language A is the 
set of all strings over {a, b}. containing at least one a, its complement is the set {b}∗ .. 

For languages A1, . . . , Am,m ≥ 1., A1 · · ·Am = {a1 · · · am | a1 ∈ A1, . . . , am ∈
Am}.. For a language A, A∗ = {ε} ∪ {a1 · · · am | m ≥ 1. and a1, . . . , am ∈ A}..  In  
other words, A∗ = {ε} ∪ A ∪ AA ∪ AAA ∪ AAAA ∪ · · · .. We call A∗

. the Kleene-
star (or simply the star)  of  A. Additionally, we write A+

. for AA∗
.. We call A+

. the 
Kleene-plus of A. We define (∅)∗ . to be ε ., not ∅.. 

A language class (or simply, class) is a collection of languages. The comple-
mentary class of a class, C, consists of the complements of the languages in C.  We  
use co-C . to denote the complementary class of C. 

1.5 Graphs and Trees 

Here, we review graphs and trees. 

1.5.1 Directed Graphs 

We start with the definition of directed graphs. 
A directed graph (or digraph) G is a pair (V ,A)., where V is a finite set and

A ⊆ V × V .. The elements of V are the vertices (or nodes) of the graph G, and 
the elements of A are the [directed] edges (or the arcs)  of  G. Let e = (u, v). be 
a directed edge. We call the endpoint u as the source vertex (or the source node) 
of e and the endpoint v as the destination vertex (or the destination node)  of  e. 
Furthermore, e is an incoming edge to v and an outgoing edge from u.  We  often  
use a directed graph to represent a binary relation between a set of finite objects,
with A encoding the relation. Figure 1.2 shows an example of a directed graph. 

Fig. 1.2 An example of a 
directed graph. The circles 
are vertices, and the arrows 
are edges



12 1 Mathematics and Computer Science Basics

1.5.2 Reachability 

Let G = (V ,A). be a directed graph. A path in G from a vertex u to a vertex v is a 
series of vertices π = [u1, . . . , um]., m ≥ 1., such that: 

• u1 = u.. 
• um = v .. 
• for all i such that 1 ≤ i ≤ m − 1., (ui, ui+1) ∈ A.. 

We call the two endpoints of the path u and v the source and destination of the 
path, respectively, or the start and end of the path. We say that v is reachable from 
u in G if G has a path from u to v. The length of a path [u1, . . . , um]. is m − 1.. 

If the source and the destination are identical, we call this a cycle. A cycle is 
simple if no vertices appear twice other than its start and end vertices. A directed 
graph is acyclic (or cycle-free) if it contains no cycles (see Exercises 1.10 and 1.11). 
Each acyclic graph has at least one vertex without incoming edges and at least one 
vertex without outgoing edges. These vertices are called source vertices and sink 
vertices, respectively. Figure 1.3 shows an example of an acyclic directed graph. 

Since the edges are between two vertices, we often use a matrix to represent a 
graph. Let G = (V ,A). be a directed graph. Let n = ‖V ‖..  Let u1, . . . , un . be an 
enumeration of G’s vertices. We define the matrix M representing G to be an n × n. 

matrix with elements mij , 1 ≤ i, j ≤ n., such that for all i and j between 1 and n,

mj = 1. if there is a directed edge from ui . to uj ., and 0 otherwise. 

We call the matrix the adjacency matrix of G (based on the ordering of the 
vertices). 

Once we have established a matrix representation of a directed graph G, we can 
compute the reachability for all pairs of vertices using matrix multiplication. Let
G = (V ,A). be a directed graph and M be the adjacency matrix of G.  Let  n be the 
number of vertices in G.  Let  I be the identity matrix of size n, the n × n. matrix 
with 1 at all diagonal positions, and 0 elsewhere. For each k such that 1 ≤ k ≤ n., 
define Mk . to be the k-th power of M where the arithmetic is Boolean, with the 
value of 1 representing true., the value of 0 representing false., the multiplication 
representing the conjunction, and the addition representing the disjunction. In other 
words, the matrix product calculation treats the entries as integers but reduces any 
integer greater than 1 to 1. Then for each k such that 1 ≤ k ≤ n., and for each pair 

Fig. 1.3 An acyclic graph. 
The squares are the source 
vertices (at the upper-left and 
lower-right corners). The 
stars are the sink vertices (at 
the upper-right and lower-left 
corners)



1.5 Graphs and Trees 13

(i, j), 1 ≤ i, j ≤ n.,  the (i, j).-th element of Mk . is 1 if, and only if, there is a path 
from ui . to uj .with at most k edges (see Exercise 1.13). 

A graph G′ = (V ′, A′). is a subgraph of another graph G = (V ,A). if V ′ ⊆ V . 

and A′ ⊆ A..  I  f G′
. is a subgraph of G and G′

. is different from G, then G′
. is a proper 

subgraph of G. 
Let G = (V ,A). be a directed graph. For V ′ ⊆ V ., the vertex-induced subgraph 

of G concerning V ′
. is the directed graph G′ = (V ′, A′). such that A′ = {(x, y) |

x ∈ V, y ∈ V ., and (x, y) ∈ A}..  Let A′ ⊆ A.. The edge-induced subgraph of G 
concerning A′

. is the directed graph G′ = (V ′, A′). such that V ′ = {x | x . is an 
end-point of some edge in A′}.. 

A strongly connected component of a directed graph G = (V ,A). is a set 
S ⊆ V . such that in the subgraph of G induced by S, every pair of nodes (u, v). 

is connected in both directions. A maximally strongly connected component of 
a directed graph G = (V ,A). is a strongly connected component of G with the 
property that no proper superset of S is a strongly connected component of G .
Figure 1.4 shows connected components of a graph. There are two ways to derive a 
subgraph: vertex-induced subgraphs and edge-induced subgraphs. 

1.5.3 Undirected Graphs 

Here, we go over the definitions of undirected graphs. 
An undirected graph (or simply a graph) is a pair G = (V ,E). such that E ⊆

V × V . and for all x and y, (x, y) ∈ E . if, and only if, (y, x) ∈ E .. In other words, an 
undirected graph is a directed graph where the arcs are symmetric. When drawing 
an undirected graph, we collapse the arcs in opposite directions between each pair 
of vertices into a single line with no arrowheads. 

Let G = (V ,E). be an undirected graph. For each (x, y) ∈ E ., we say that 
x is adjacent to y and y is adjacent to x. We define subgraphs, vertex-induced 
subgraphs, and edge-induced subgraphs in the same manner as we did for directed 
graphs. We define paths similarly, but note that each edge on a path has no direction.

While self-loops are permissible edges in directed graphs, in undirected graphs, 
the lack of direction in undirected graphs makes the existence of self-loops pointless. 
We, therefore, assume that there are no self-loops in undirected graphs. Figure 1.5 
shows an undirected graph. 

Fig. 1.4 A connected 
component. The highlighted 
edges and vertices form fully 
connected components. Two 
components appear here



14 1 Mathematics and Computer Science Basics

Fig. 1.5 An undirected graph 

In an undirected graph, if there is a path from a vertex u to v, there is a path 
from v to u. This symmetry occurs because edges have no direction. Therefore, 
the definition of connected components in undirected graphs is different from the 
definition of connected components in d irected graphs.

A clique (or complete graph) is a graph in which every pair of vertices has an 
edge between them. For an integer k ≥ 1.,  a  k .-clique is a clique having k ve rtices.

1.5.4 Trees 

Here, we go over the definitions of trees. 
A tree is a fully connected undirected graph without loops. Choosing one vertex 

as its root provides an orientation of each edge for specifying a cycle-free path 
from the root to each vertex. Such straight paths are unique. Thus, we can classify 
the vertices in a tree based on the length of the path to the root: 

• There is only one vertex at distance 0 from the root, which is the root itself. 
• For each i ≥ 1., a vertex is at a distance i . from the root if the shortest path from 

the root to the vertex has length i. The shortest path is necessarily cycle-free. 
Put differently, a vertex is at a distance i from the root if it does not have a 

distance of < i . and is adjacent to another vertex whose distance from the root is 
i − 1.. 

The depth of a vertex in a rooted tree (i.e., a tree with a designated root) is the 
length of the shortest path from the root. Given a rooted tree, a vertex’s parent 
appears immediately before the vertex on the shortest path from the root. A leaf of 
a rooted tree is a vertex without children in this hierarchical structure. The height 
of a tree is the length of the longest path from its root to any leaf. A binary tree is a 
rooted tree in which every non-leaf has at most two children. A forest is a collection 
of trees. 

Figure 1.6 shows an example of a tree.



1.6 Proof Methods 15

Fig. 1.6 A tree. The numbers 
represent the depth of the 
path 

1.6 Proof Methods 

This section covers proof methods. 
In proof by inference, we start from a set of facts and assumptions and apply 

logical inference to conclude. A simple example of this is an inference of this form: 

if S ⊂ T . and x is an element of S, then x is an element of T .

A way to show that a statement “for every x, P(x).holds” is to find an x for w hich
P(x). does not hold. A x that contradicts the statement is a counterexample.  For  
example, the statement “for all odd prime numbers n, n2 + 4. is a prime number” is 
false. While 32+4 = 13., 52+4 = 29., and 77+4 = 53. are all prime numbers, 112+
4 = 125 = 53 . is not a prime number. Thus, n = 11. serves as a counterexample. 

Proof by contradiction is a method for showing that a statement is true. by 
demonstrating that the assumption that the statement is false leads to a contradiction 
of that belief. In other words, we prove that a statement S is true by showing t hat
S → false., whose contrapositive is true → S .. Since true. holds with no assumption, 
we know that S is true.. 

A well-known example of this proof method is “ 
√
2. is not a rational number.” 

The proof goes as follows: 

1. By contradiction, assume 
√
2. is a rational number. 

2. If
√
2. is rational, there exist two strictly positive integers m and n such that√

2 = m
n

.. 
3. We can assume that m and n are relatively prime to each other, i.e., the greatest 

common divisor of m and n is 1.
4. From the above, we can assume that m or n is an odd number.
5. By taking the square of each side of the equality, we get 2 = m2

n2
..  By  moving  

terms, we have 2n2 = m2
.. 

6. Since 2 appears on the left-hand side of the equation, m is even. Let m = 2p . for 
some integer p.



16 1 Mathematics and Computer Science Basics

7. By substituting 2p for m, we get 2n2 = 4p2
.. By dividing both sides by 2, we get 

n2 = 2p2
.. 

8. Using the same argument, we have n = 2q . for some integer q. 
9. Thus, both m and n are divisible by 2, which contradicts Step 4. Hence,

√
2. 

cannot be rational. 

Another example of proof by contradiction is the pigeon-hole principle.  The  
principle, in the standard form, states that if m and n are positive integers andm > n., 
then labeling m elements with one of the n labels produces a pair of elements having 
the same labels. The proof of the principle is as f ollows:

• Suppose we have already assigned a label to some n elements. Our claim holds 
if we have already assigned an identical label to two elements. Otherwise, the n 
elements have used up all the n labels, so we must assign an already-used label 
to one of the remaining elements.

An extended version of this principle is the following: 

• For all integers k ≥ 1., if there are m > kn. elements to label, we must label a 
group of k + 1. elements identically. 

The extended version’s proof follows the same argument as the standard version. 
Figure 1.7 illustrates this principle. 

Proof by induction is a method for proving a statement P(n). for all integers 
in a possibly infinite series of integers {mi}i≥1 .. Initially, the proof shows that P(n). 

holds for some initial values n = m1, . . . , n = mk . for some k ≥ 1. (the base 
case(s)). Then, it shows that for all 	 ≥ k .,  if P(n). holds for n = m1, . . . , n = m	 ., 
then it holds for n = m	+1 . (the induction step). 

An example of proof by induction is: 

. (∀n ≥ 1)

[
n∑

i=1

i = n(n + 1)

2

]
.

Fig. 1.7 The pigeon-hole 
principle. There are four 
pigeons and three holes. One 
hole gets two pigeons



1.7 Algorithmic Concepts 17

We can prove this property as follows: 

• The base case of our induction proof is n = 1..  If n = 1., the left-hand side of 
the equation is equal to

∑1
i=1 i = 1., and the right-hand side is equal to 1·2

2 = 1.. 
Thus, the equality holds. 

• For the induction step, suppose k ≥ 1., and the equality holds for all values of n 
that are at most k. Specifically, we hav e

. 

k∑
i=1

i = k(k + 1)

2
.

Then, 

. 

k+1∑
i=1

i = k + 1 +
k∑

i=1

i

= k + 1 + k(k + 1)

2

= 2(k + 1) + k(k + 1)

2

= (k + 1)(k + 2)

2
,

and so the equality holds for k + 1.. This means that for all integers k ≥ 1.,  if  the  
equality holds for n = k ., then the equality holds for n = k+1.. Since the equality 
holds for n = 1., we have the equality holds for all values of n ≥ 1.. 

1.7 Algorithmic Concepts 

Here, we review some algorithm concepts. 
Exhaustive search refers to a search strategy in which we generate all candidates 

for an answer with some (usually simple) procedure and then check each candidate 
to see if it satisfies our search criteria. 

A well-known problem where exhaustive search is used to solve is the reacha-
bility problem. This is the problem of testing, given G, u, and w as input such that 
G is a directed graph and u and w are vertices of G if G has a path from u to w.  We  
can solve the problem using an exhaustive search as follows:

Let G = (V ,A). with ‖V ‖ = n.. Let numbers 1, . . . , n. represent the vertices. 
We can solve the problem using the following exhaustive search: we generate all 
nonempty sequences having lengths n with entries from {1, . . . , n}.,  say [i1, . . . , in]., 
and testing whether a prefix of the sequence represents a path from u and w in the 
following sense:



18 1 Mathematics and Computer Science Basics

• for some k ≥ 1., i1 = u., ik = w ., and for all j such that 1 ≤ j ≤ k − 1., there is a 
directed edge from ij . to ij+1 .. 

The beauty of this exhaustive approach is simplicity. The search, however, may 
generate several invalid sequences, such as those that do not start with u or contain 
w. 

A greedy algorithm is a search algorithm where we build a solution through 
repeated scanning of building blocks. Using Algorithm 1.1, we can solve the 
reachability problem by building the set S of all vertices reachable from u. 

An inductive algorithm finds the solution to a problem by gradual construction. 
There, we start from a solution to a simple subproblem. We then extend the solution 
to a larger subproblem. By repeating the extension, the subproblem becomes the 
whole problem, and we obtain the answer .

Algorithm 1.1 A greedy algorithm for reachability 
1: procedure GREEDY-REACHABILITY(G, u, w) 
2: G = (V , A) is a directed graph; u, w ∈ V ; 
3: initialize S ← {u}; 
4: repeat 
5: for each y ∈ V − S do 
6: if some x ∈ S exists such that (x, y) ∈ A then 
7: S ← S ∪ {y}; 
8: end if 
9: end for 
10: until no additions occur during the for loop 
11: if w ∈ S then 
12: assert w is reachable from u; 
13: else 
14: assert w is not reachable from u; 
15: end if 
16: end procedur e

Exercises 
1.1 Let A = {a, b, c}. and B = {a, d, f }.. State the elements of the following sets: 
A ∪ B,A ∩ B,A \ B,B \ A., and A�B .. 

1.2 State the power set of A = {a, b, c}.. 
1.3 List the elements of {a, b} × {c, d}.. 
1.4 Let φ(x, y, z) = (x ∨ y) ∧ (¬x ∨ z).. State the value φ . for each possible truth 
assignment. 

1.5 For each of the following properties P , prove or disprove whether P is 
symmetric, reflexive, or transitive .

1. P(x, y) = x < y .where the domain of x and y is R.. 
Hint: x < y . is equivalent to “there exists some strictly positive d such that
y − x = d ..”



1.7 Algorithmic Concepts 19

2. P(x, y) = |x − y| ≤ 5.where the domain of x and y is R.. 
3. P(S,  T  )  = ‖S ∩ T ‖ = 1., where S and T are sets.
4. P(G,  H  ). is G is a subgraph of H , where both G and H are undirected graphs.
5. P(X,  Y  ). is the predicate X ∩ Y = ∅., where X and Y are sets.

1.6 Let � = {a, b}. be an alphabet. List the elements of �≤3
.. 

1.7 Let S = {1}.. State the elements of P(S)., P(P(S))., and P(P(P(S))).. 

1.8 Use proof by induction to show for all n ≥ 1. that
∑n

i=1 i2 = n(n+1)(2n+1)
6 .. 

1.9 Using the pigeon-hole principle, prove that for all n ≥ 2.,  i  f π . is a path in an 
n-vertex graph (or directed graph) and has length geqn., then π . contains a cycle. 

1.10 Prove that if C is a non-simple cycle in a directed graph G = (V ,A)., C =
[u1, . . . , um]. contains at least one simple cycle. 

1.11 Prove that if P is a non-simple path from u1 . to um . (u1 �= um .) in a directed 
graph G = (V ,A)., we can obtain a simple path from u1 . to um . by repeatedly 
removing simple cycles in P . 

1.12 Use the property from Exercise 1.10 to prove that if a directed graph is fully 
connected, every pair of vertices (u, v). has a simple cycle containing both u and v .

1.13 Prove the property on Page 13, i.e., for each k such that 1 ≤ k ≤ n.,  the  k-th 
power of the adjacency matrix of a directed graph represents the reachability with 
at most k edges.

1.14 Prove that for all n ≥ 2., all undirected graphs with n vertices and n edges 
have a cycle whose length is ≥ 2..



Part II 
Formal Language Theory and Automata



Chapter 2 
The Regular Languages 

2.1 The Finite Automaton (DFA) Model 

Here, we introduce the finite automaton model and study its computational power 
for recognizing languages. 

Imagine the following “turning game”: 

• A friend blindfolds you and stands you facing North. 
• The friend then gives you a series of commands. You have yet to learn how long 

the series will be. 
• Each command you receive is one of “right face,” “left face,” and “about face.” 

You respond to the three types of commands by turning 90 ◦ . to your right, turning 
90 ◦ . to your left, and turning 180 ◦ .. 

• At some point, the friend informs you that the commands are complete. At the 
end, the friend asks you to state which direction (North, East, South, or West) 
you are facing. 

• You win if you state the correct answer to the question. 

Let’s simplify the problem by changing the goal to the following: you need to 
identify if you are facing east at the end. 

How do you tackle the game? A simple solution to the problem is as follows: 
You let the numbers 0, 1, 2, and 3 represent the cardinal directions (North, East, 

South, and West, respectively) and use the numbers to memorize the direction you 
are facing. The initial direction is North, so the number you memorize is 0. When 
you receive a command, you update your direction by adding an integer from 1, 2, 
and 3 and then reducing to an integer between 0 and 3 by subtracting four if the 
value after addition is greater than or equal to 4. The quantity to add is 1, 2, and 3 
if the command is “right face,” “about face,” and “left face,” respectively. After the 
command sequence, you have only to examine the value you have. If the number is 
1, the direction is the east; otherwise, it isn’t. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2
https://doi.org/10.1007/978-3-031-84740-0_2


24 2 The Regular Languages

Fig. 2.1 The “turning game” 
solution. The letters ‘a’, ‘r,’ 
and ‘l’ respectively represent 
the commands “about face,” 
“right face,” and “left face.” 
Each circle has a label 
representing the direction and 
the number representing it 

Fig. 2.2 A finite automaton 
for the “turning game” 

Figure 2.1 shows a diagram representing this idea. 
Let us build a new diagram by removing the North, East, South, and West 

annotations, replacing the “Start” marking with an arrow pointing to it, replacing 
the “End” marking with an interior concentric circle, and replacing the direction 
number x with qx . for x = 0, 1, 2, 3.. The resulting diagram, Fig. 2.2, is the finite 
automaton produced from this strategy. 

2.1.1 The Definition 

A formal definition of the finite automaton model is as follows: 

Definition 2.1 A (deterministic) finite automaton (DFA or FA) is a quintuple 
(Q,�, δ, q0, F ). where Q and � . are finite sets, δ . is a function from Q × � . to Q, 
q0 ∈ Q., and F is a nonempty subset of Q. We call the five components the state set, 
the alphabet, the transition function, the initial state, and the final states, respectively .

The transition δ(p, a) = q .means if the present state is p and the input character 
is a, then the next state is q.



2.1 The Finite Automaton (DFA) Model 25

We define the computation of a DFA using the transition function. Given an input 
w = w1 · · · wm ., the DFA processes the characters w1, . . . , wm . in the order they 
appear. M initializes its state with q0 .. Then, for i = 1, . . . , m., M processes wi . and 
updates its state by using the value of δ . given the present state and the symbol wi . 

as the input. The DFA M accepts if it arrives one of the final states after processing 
the input. 

We use the following mathematical formulation to express this i dea.

Definition 2.2 Let M = (Q,�, δ, q0, F ). be a DFA. For all states p ∈ Q., define 
δ(p, ε) = p ., and for all states p ∈ Q., for all integers m ≥ 1., and for all 
w1, . . . , wm ∈ � ., define 

. δ(p,w1 · · ·wm) = δ(δ(· · · δ(δ(p,w1), w2), · · · , wm−1), wm).

It is possible to redefine the formula using a state series [p0, . . . , pm]. to define 
δ(p,w1 · · · wm). as follows: 

• p0 = p .. 
• For each i such that 1 ≤ i ≤ m., pi = δ(pi−1, wi).. 
• δ(p, w1 · · ·  wm) = pm .. 

We now define the notion of acceptance. 

Definition 2.3 Let M = (Q,�, δ, q0, F ). be a DFA and let w ∈ �∗
.. We say that 

M accepts w if δ(q0, w) ∈ F .. 

We can state the DFA for the “turning game” as M = (Q,�, δ, q0, F )., where 
Q = {q0, q1, q2, q3}., � = {a, r, l}., q0 = 0., F = {q1}., and δ . has the following 
transition table: 

State a r l 
q0 . q2 . q1 . q3 . 

q1 . q3 . q2 . q0 . 

q2 . q0 . q3 . q1 . 

q3 . q1 . q0 . q2 . 

Here are two examples of the moves that the “turning game” DFA makes. 

• If the input is alrlar ., the resulting state-sequence is 

. [q0, q2, q1, q2, q1, q3, q0].

This implies δ(q0, alrlar) = q0 .. The DFA thus does not accept the input. 
• If the input is aaalllrr ., the resulting state-sequence is 

.[q0, q2, q0, q2, q1, q0, q3, q0, q1].



26 2 The Regular Languages

This implies δ(0, aaalllrr) = 1.. The DFA thus accepts the input. 

We can use a drawing like Fig. 2.2 for presenting a DFA using the following 
general rules: 

• Use a circle to represent a state. 
• Connect states p and q with an arrow going from p to q if a symbol produces a 

change from p to q.
• Label each arrow with a list of all the symbols that produce the change with a 

comma in between. 
• Draw a special arrow pointing to the initial state. 
• For each final state, double the circle. 

We now define the regular languages. 

Definition 2.4 Let L ⊆ �∗
. be a language. Let M = (Q,�, δ, q0, F ). be a DFA. 

We say that M accepts L if for all w ∈ �∗
., M accepts w if, and only if, w ∈ L..  We  

write L(M). to represent the language M accepts. 

Definition 2.5 We say that a language is regular if a DFA accepts it. We use REG. 

to represent the class of all regular languages. 

2.1.2 Example DFAs 

Let us look at some DFA examples. 

Example 2.1 Let A = {w | w ∈ {0, 1}∗ . and w has an odd number of 0s}.. We need 
just two states, q0 . and q1 ., where q0 . is the initial state and q1 . is the final state. The 
transition function and the transition diagram are as follows: 

State 0 1 

q0 . q0 . q1 . 

q1 . q1 . q0 . 

Let us examine the behavior of the DFA with a couple of input strings.



2.1 The Finite Automaton (DFA) Model 27

• On input 001101, the DFA in state q0 . follows the state sequence [q0, q0, q0, q1, q0,
q0, q1]. upon encountering the characters 0, 0, 1, 1, 0., and 1. The last state of the 
sequence is q1 ., so the DFA accepts the input. 

• On input 10101010, the DFA starts in state q0 . and follows the state sequence 
[q0, q1, q1, q0, q0, q1, q1, q0]. upon encountering the characters 1, 0, 1, 0, 1, 0, 1., 
and 0. The last state of the sequence is q0 ., so the DFA accepts the input. 

Example 2.2 Let B = {w | w ∈ {a, b}∗ . and w has abb. as a suffix }.. We need four 
states, q0 ., q1 ., q2 ., and q3 ., where q0 . is the initial state and q3 . is the only final state. 
The transition function and the transition diagram are as follows: 

State a b 
q0 . q1 . q0 . 

q1 . q1 . q2 . 

q2 . q1 . q3 . 

q3 . q1 . q0 . 

The states have the following meanings: 

• q1 . represents the situations where the input has a at the end.
• q2 . represents the situations where the input has ab. at the end. 
• q3 . represents the situations where the input has abb. at the end. 
• q0 . represents all other situations. 

The automaton’s action is as follows: 

• When the DFA receives an a, it transitions to q1 . regardless of where it is. 
• When the DFA receives a b, it transitions from q1 . to q2 ., q2 . to q3 ., and q3 . to q0 .;  if  

it is in state q0 ., it remains there. 

Let us examine the behavior of the DFA with a couple of examples: 

• On input aab, starting from q0 ., the DFA follows the state sequence 
[q0, q1, q1, q2].. Thus, the DFA does not accept w. 

• On input aabbbabb, starting from q0 ., the DFA follows the state sequence 
[q0, q1, q1, q2, q3, q0, q1, q2, q3]. arriving at q3 ., The DFA thus accepts w.



28 2 The Regular Languages

Example 2.3 Let C = {w | w ∈ {a, b}∗ . and w contains an a somewhere and then 
a b some place after the a}..  Let  w be an arbitrary member of C. Then w must be
xaybz., where x, y, z ∈ {a, b}∗ .. It is possible to choose x and y so that x has no as 
and y has no bs. (We prove this property in Exercise 2.1.) In other words, we may 
choose x to consist only of b and y to consist only of a. This observation leads to 
the following transition function, for which we need only three states, q0 ., q1 ., and 
q2 ., where q0 . is the initial state and q2 . is the only final state. We derive the transition 
function and the transition diagram as follows: 

State a b 
q0 . q1 . q0 . 

q1 . q1 . q2 . 

q2 . q2 . q2 . 

Let us examine the behavior of the DFA with a couple of examples: 

• On input w = bbaabbabbb ., the DFA follows the state sequence 
[q0, q0, q0, q1, q1, q2, q2, q2, q2, q2, q2].. Thus, the automaton accepts w. 

• On input w = baa ., the DFA follows the state sequence [q0, q0, q1, q1].. Thus, the 
automaton does not accept w. 

Example 2.4 Let D = {w | w ∈ {a, b}∗ . and contains aa . or bb. as a substring }..  We  
can construct a DFA for D with four states: q0 ., q1 ., q2 ., and q3 .. We designate q0 . as 
the initial state in which the DFA has yet to read any character. We also designate 
q3 . as the final state in which it has found that the input contains aa or bb, whichever 
comes first. Once arriving at q3 ., the DFA will remain in q3 .. The states q1 . and q3 . are 
intermediate states. The state q1 . represents the state where the DFA has just seen 
one a, and the character preceding the a,  if  any,  is  a  b. The state q2 . represents the 
state where the DFA has just seen one b, and the character preceding the b,  if  any,  
is an a. In state q1 ., if the character is an a, the DFA has found an occurrence of 
aa, so it advances to the state q3 .. Otherwise, the character is a b. Since the previous 
character is an a (because the state i s q1 .), the DFA advances to q2 .. Similarly, in state 
q2 ., if the character is a b, the DFA has found an occurrence of bb., so it advances 
to the state q3 .. Otherwise, it advances to q1 .. In state q0 ., the DFA advances to q1 . if 
the character is an a and to q2 . if the character is a b. The transition function and the 
transition diagram are as follows:



2.1 The Finite Automaton (DFA) Model 29

State a b 
q0 . q1 . q2 . 

q1 . q3 . q2 . 

q2 . q1 . q3 . 

q3 . q3 . q3 . 

Let us examine the behavior of the DFA using two examples: 

• Letw = ababb.. The state sequence that the DFA follows is [q0, q1, q2, q1, q2, q3].. 
Thus, the DFA accepts w. 

• Letw = bababa .. The DFA follows the state sequence [q0, q2, q1, q2, q1, q2, q1].. 
Thus, the DFA does not accept w. 

Example 2.5 Let E = {w | w ∈ {a, b}∗ . and w contains neither aa . nor bb. as a 
substring }.. The language is complementary to the language D from the previous 
example. We can use the same DFA for D but treat q0, q1 ., and q2 . as final states 
instead of q3 .. 

State a b 
q0 . q1 . q2 . 

q1 . q3 . q2 . 

q2 . q1 . q3 . 

q3 . q3 . q3 .



30 2 The Regular Languages

2.2 The Nondeterministic Finite Automaton (NFA) Model 

Here, we study a variant of the DFA model called the nondeterministic finite 
automaton (NFA) model. 

2.2.1 The Definition 

Let us begin with the definition of the NFA model. 
The term “nondeterministic” refers to the property that the state-symbol com-

binations may have any number of choices for the next state, and the automaton 
may choose any available state. In addition, the automaton may not need to read a 
character to make a state transition. 

There are two factors that distinguish NFAs from DFAs. First, by adding the 
empty string ε . to the alphabet, we can change the states without consuming an 
input character. Second, by expanding the range of the transition function from one 
state to any number of states, we give the finite automata choices for which state it 
transitions to. We call the transitions with ε . ε .-transitions or ε .-moves. 

Intuitively, how does an NFA operate? In the “deterministic” case we discussed 
earlier, a DFA followed whatever its transition function instructed at each state and 
each character it read. The deterministic cad has no ambiguity in how to operate. 

In the case of an NFA, however, the automaton may see multiple possibilities for 
potential actions to take. This means that the automaton may use nondeterministic 
decisions to compute. Additionally, the automaton may keep running unless it finds 
no available transitions. 

The automaton’s action is basically as follows: 

1. Checking the end of input. The automaton checks if there is any character 
remaining in the input. If there is no remaining character, the automaton advances 
to (2); otherwise, it advances to (4). 

2. Checking the availability of ε .-transitions at the end of input.  If  a  n ε .-transition 
is available, the automaton advances to (3); otherwise, it advances to (4). 

3. Selecting the use/not-use of ε .-transitions at the end of input. The automaton 
chooses whether or not to use an ε .-transition. If it chooses to use one, the 
automaton advances to (6); otherwise, it advances to (4). 

4. Accepting/not-accepting at the end of input. If the state is final, the automaton 
accepts; otherwise, it halts without accepting. 

5. Checking the availability of transitions. The automaton checks if there is 
a possible move. If a transition is possible, the automaton advances to (6); 
otherwise, it halts without accepting. 

6. Selecting a transition and executing it. The automaton selects one transition 
and executes it. 

Figure 2.3 shows how an NFA operates.



2.2 The Nondeterministic Finite Automaton (NFA) Model 31

Fig. 2.3 The operation of an NFA 

The mathematical representation of an NFA is a quintuple (Q,�, δ, q0, F )..  The  
presentation looks similar to a DFA but uses a different type of function f or δ .. First, 
we incorporate the ε .-transitions by changing the domain of the transition function 
to � ∪ {ε}., in which we use �ε . for notation. Second, we incorporate the diversity 
of possible transitions on a symbol by changing the range of the transition function 
δ . to 2Q

., which is the power set of Q. 

Definition 2.6 Let M = (Q,�, δ, q0, F ). be an NFA. Let w ∈ �∗
.. The automaton 

M accepts w if it selects its transitions to complete reading all the input characters 
and then arrive at a final state. 

In a more mathematical expression, M accepts w if, and only if, there exists a
sequence of states π = [q1, . . . , qm]. and a sequence of symbols λ = [�1, . . . , �m]. 
from �ε . that satisfy the following conditions: 

• qm ∈ F .. 
• For all i such that 1 ≤ i ≤ m., qi ∈ δ(qi−1, �i).. 
• The string �1 · · · �m . is constructible from w by inserting ε .. 

Definition 2.7 For an NFA M , we writeL(M). to represent the language M accepts; 
that is, the set of all w ∈ �∗

. such that M on w accepts.

Next, we give examples of NFAs. 

Example 2.6 Let F be the set of all strings w in {a, b}∗ . that satisfy: 

(a) w = ε .. 
(b) w ends with aa .. 
(c) w ends with bb..



32 2 The Regular Languages

We can design a five-state NFA that accepts F . The state set is {q0, . . . , q4}.,  the  
initial state is q0 ., and the final state set is {q0, q4}.. The transition table and the 
transition diagram of the NFA are as follows: 

State a b ε . 

q0 . q1 . 

q1 . q1, q2 . q1, q3 . 

q2 . q4 . 

q3 . q4 . 

q4 . 

The intuition behind this program is the following: 

• The initial state is q0 ., which is also a final state. The NFA may move to q1 . or 
remain in q0 .. If the input is ε . and the automaton remains in q0 ., the automaton 
accepts the input. If the input is ε .and the automaton moves to q1 ., the computation 
ends with accepting the input. If the input is not ε ., the automaton can use the ε .-
transition to move to q1 .. 

• In q1 ., the automaton consumes an indeterminate number of characters using the 
self-loop and can move to q2 . on an a and q3 . on a b. The automaton halts without 
accepting if the input ends before moving to q2 . or q3 .. 

• In q2 ., if the character is an a, the automaton advances to q4 .; otherwise, it halts 
without accepting. In addition, if no more characters exist, the automaton stops 
without accepting. 

• In q3 ., if the character is a b, the automaton advances to q4 .; otherwise, it halts 
without accepting. In addition, if no more characters exist, the automaton stops 
without accepting. 

• In q4 ., if any character remains, the automaton halts without accepting. Otherwise, 
since q4 . is a final state, the automaton accepts. 

An intuitive description of the NFA is as follows: 
At the start, if the input is ε ., the automaton accepts. Otherwise, the automaton 

advances to a state that consumes an indefinite number of input characters. In 
addition, in the same state, on seeing an a, the automaton may advance to a final 
state where it anticipates reading one more character before the end of input, and



2.2 The Nondeterministic Finite Automaton (NFA) Model 33

the last character is an a. Alternatively, on seeing a b in the same state, the automaton 
may advance to the same final state as in the case of a, where it anticipates reading 
one more character before the end of input, and the last character is an b. 

If the automaton’s choices fail to meet its anticipation, it halts without accepting. 
However, if the input is a non-ε . member of F , the automaton can make choices so 
that it arrives at the final state q4 .. 

The nonmembers of F are a, b, and those ending with either ab. or ba ..  If  the  
input is not a language member, the automaton cannot arrive at q4 .. 

We can construct a DFA that accepts the language with five states. The number of 
states is the same, as shown next, but the automaton needs three final states instead 
of two. 

Example 2.7 Let G be the set {abc, abcabc, abcabcabc, . . .}.: i.e., any number of 
repetitions of abc, excluding ε .. We can build an NFA for G with four states: q0 ., 
q1 ., q2 ., and q3 ., where q0 . is the initial state and q3 . is the final state. The transitions 
among these states are as follows: 

State a b c 
q0 . q1 . 

q1 . q2 . 

q2 . q3 . 

q3 . q1 . 

Next is the diagram of the NFA. 

We can design a deterministic version of the language, as shown next. The 
deterministic version looks more complex.



34 2 The Regular Languages

The principal idea in the design of the nondeterministic version is as follows: 
We first construct a DFA that anticipates receiving a cycle of abc. The construc-

tion uses a non-final sink state. Once the automaton gets to the sink state, it will loop 
at that state until the end of the input. We then get rid of the transition to the sink 
state. 

2.2.2 Converting NFAs to DFAs 

The condition for acceptance of an NFA is existential; it accepts its input if, and only 
if, nondeterministic selections of actions at each computation point take it to a final 
state. The existential nature gives us the impression that NFA can accept languages 
that deterministic ones cannot. Surprisingly, the NFA model is only as powerful as 
the DFA model. Below, we will show that the quest for a series of selections by 
NFAs is something that DFAs can simulate as well. 

Before formally presenting how such simulations are possible, we make a 
simple but important observation about the behavior of an NFAs. An NFA may 
nondeterministically choose to follow a series of ε .-transitions before and after 
consuming an input character. The automaton may be able to follow ε .-transitions 
indefinitely if we can form a loop using ε .-transitions only. This may raise a concern 
that the automaton may not stop. However, according to Exercise 1.11, if there is 
a loop on a path, we can create a loop-free path without changing its start and end 
points. Furthermore, according to Exercise 1.9, each loop-free path has no more 
nodes than there are states. These properties imply that we can assume that the 
number of successive ε .-transitions shall be strictly less than the number of states 
(the path length is the number of nodes minus 1). 

Proposition 2.1 Suppose an NFA M has k states. If M can transition from one state 
to another on ε .-transitions only, it can do so in at most k−1. steps. Thus, if M accepts 
an input having a length of n, it can arrive at a final state i n ≤ n+(k−1)(n+1) =
kn + k − 1. steps.



2.2 The Nondeterministic Finite Automaton (NFA) Model 35

The proposition means we can answer if an NFA M accepts an input w by 
examining all its computations with a length of k|w| + k − 1.. 

2.2.2.1 The Pseudo-Nondeterministic Finite Automaton (Pseudo-NFA) 
Model 

Proposition 2.1 states that whether or not a k-state NFA accepts its n-character input 
can be determined by examining all its computation paths having a length of ≤
kn + k − 1.. We can shorten the search depth to |w|. using some precomputation. 
Let M = (Q,�, δ, q0, F ). be an NFA and k = ‖Q‖.. Let us pick an enumeration, 
p1, . . . , pk .,  of  M’s state so that q0 = p1 .. We think of the directed graph derived 
from the state diagram of M by keeping only ε .-transitions. The graph’s adjacency 
matrix, Tε .,  is k × k . and given as follows: 

For all i and j ,  the (i, j). entry of Tε . is 1 if i = j . or pj ∈ δ(pi, ε).; the entry 
is 0 otherwise. 

Similarly, we define Ta . for each symbol a: 

For all i and j ,  the (i, j). entry of Ta . is 1 if pj ∈ δ(pi, ε).; the entry is 0 otherwise. 

Note that the diagonal entries of Ta .may or may not be 1. 
For each � ≥ 1., (Tε)

�
. represents the ε .-transitions-only reachability in �. steps. 

Let T̂ε = (Tε)
k−1

.. Then, for all i and j ,  the (i, j). entry of T̂ε . is 1 if, and only if, pj . 

is reachable from pi . by following any number of ε .-transitions. 
Using T̂ε . and Ta, a ∈ � ., we can construct a pseudo-NFA M̂ = (Q,�, δ̂, θ, F )., 

where δ̂ . is an updated transition without ε .-transitions and q0 ∈ I ⊆ Q.. The pseudo-
NFA M̂ . starts from a state nondeterministically chosen from θ .,  use  s δ̂ . to process the 
input, and accepts when it finishes in a final state. The set θ . consists of all states that 
M can reach from q0(= p1). with ε .-transitions. The set θ . can be obtained from T̂ε .. 
It is the set of states represented by the indices where the entry is 1 in the first row 
of T̂ε .. 

For each q ∈ Q. and a ∈ � ., δ̂(q, a). is the set of all states M can reach from q by 
following some ε .-transitions, a directed edge labeled by a, and some ε .-transitions. 
The transition function δ̂ . on a symbol a is given by:

. T̂a = T̂εTaT̂ε .

Here, for all i and j , pj ∈ δ̂(pi, a). if, and only if, the (i, j). entry of the matrix 
product is 1. Because of the incorporation of ε .-transitions in δ̂ ., no separate ε .-
transitions are needed in δ̂ ., and M̂ . accepts the same language as M . Algorithm 2.1 
presents the algorithm for computing the pseudo-NFA. The running time of the 
algorithm is O(k3(‖�‖ + log k)). (see Exercise 2.21).



36 2 The Regular Languages

Algorithm 2.1 An algorithm for computing an equivalent pseudo-NFA 
1: procedure PSEUDO-NFA-CONVERSION(M) 
2: receive an NFA M = (Q,�,  δ,  q0,  F); 
3: enumerate the states of Q as p1,  .  .  .  ,  pk where q0 = p1; 
4: construct a k × k 0/1  matrix  Tε as follows: 
5: for all i and j ,  the  (i, j) entry of Tε is 1 if i = j or pj ∈ δ(pi, ε); it is 0 otherwise; 
6: T̂ε ← (Tε)

k−1; 
7: for each a ∈ � do 
8: construct a k × k 0/1  matrix  Ta :  for  all  i and j ,  the  (i, j) entry is 1 ⇔ pj ∈ δ(pi,  a); 
9: T̂a ← BTaB; 
10: end for 
11: θ ← the  set  the  first  row  of  B represents; 
12: for each i such that 1 ≤ i ≤ k do 
13: for each a ∈ � do 
14: δ̂(pi ,  a)  ← the set the i-th row of T̂a represents; 
15: end for 
16: end for 
17: return (Q,�, δ̂, θ, F);
18: end procedure

2.2.2.2 Converting NFAs to DFAs 

We now use M̂ . to construct a DFA N = (Q′, �, δ′, q ′
0, F

′). for L(M).. The state 
set Q′ = 2Q

., i.e., the set of all combinations of states in Q. The transition function 
takes each state combination to another on each symbol. The initial state q ′

0 . is θ .; i.e., 

the set of all possible initial states of M̂ .. The final state set F ′
. is {S | S∩F �= ∅}.; i.e., 

the set of all combinations containing some element of F . The transition function δ′
. 

is determined from δ̂ .: for each S ∈ 2Q
. and each a ∈ � ., 

. δ′(S, a) = ∪pi∈S δ̂(pi, a).

If v is the vector representing S, δ′(S, a). can be calculated as the set representing 
vT̂a .. 

Since M̂ . accepts the same language as L(M). and is without ε .-transitions, N 
captures the exhaustive search for an accepting computation of M̂ .. Thus, N is a 
DFA accepting L(M).. 

Hence, we have proven the following theorem: 

Theorem 2.1 NFAs accept only regular languages. 

2.2.2.3 A Greedy Conversion Algorithm 

In the proof of Theorem 2.1, the DFA we derived from the NFA with k states has
2k

. states. Some of the states may be unreachable from the initial state. Such states 
are irrelevant, and we can safely remove them. While we can eliminate them after



2.2 The Nondeterministic Finite Automaton (NFA) Model 37

Algorithm 2.2 An algorithm for computing a DFA from a pseudo-NFA 

1: procedure PSEUDO-NFA-TO-DFA( M̂) 
2: receive a pseudo-NFA M = (Q,�, δ̂, θ, F) along with T̂a for all a ∈ �; 
3: Q′ ← 2Q; 
4: q ′

0 ← θ ; 
5: F ′ ← {S | S ∩ F �= ∅}; 
6: for each S ∈ 2Q do 
7: for a ∈ � do 
8: v ← the vector representing S; 
9: u ← v T̂a ; 
10: S′ ← the set representing u; 
11: δ′(S, a) ← S′; 
12: end for 
13: end for 
14: return (Q′, �,  δ′,  q ′

0,  F ′); 
15: end procedure

completing the construction, we can construct the deterministic one dynamically so 
that we never consider the unreachable states, as shown in Algorithm 2.3. 

An alternate, dynamic approach would be to combine the construction of the 
transition function and the exclusion of unreachable states, as follows: 

Algorithm 2.3 A greedy algorithm for constructing a DFA from an NFA 
1: procedure GREEDY-DFA-CONSTRUCTION(M) 
2: receive M = (Q,�,  δ,  q0,  F)  is an NFA; 
3: construct a pseudo-NFA M̂ = (Q,�, δ̂, θ, F) along with T̂a for each a ∈ �; 
4: initialize a set Q′ ← {θ}; 
5: initialize a queue R ← 〈θ〉; 
6: while R �= ∅ do 
7: dequeue the first element s from the queue R; 
8: for each a ∈ � do 
9: t ← δ′(s, a); 
10: record δ′(s, a) = t ; 
11: if t �∈ Q′ then 
12: Q′ ← Q′ ∪ {t}; 
13: add t to the queue R; 
14: end i f 
15: end for 
16: end while 
17: return (Q′, �,  δ′,  θ,  F); 
18: end procedure

In this algorithm, we will examine, for each state combination that emerges 
during exploration, which combinations are reachable from the first combination 
by reading a symbol. Each time a new combination emerges, we will add it to 
a list of state combinations. The exploration begins with the combination of all 
states reachable from the initial state by following any number, including 0, of



38 2 The Regular Languages

ε .-transitions. There is no guarantee that this meager construction can reduce the 
number of states from 2k

. to a smaller value. We can only guarantee that any 
combination unreachable from the initial combination is not part of the DFA. 

Example 2.8 Let A be the language of all nonempty strings in {a, b}∗ . starting with 
an a and ending with a b in which neither symbol repeats more than twice. The 
members of the language A include ab, abb, aab, aabb, abab, abbaab,  etc.  The  
nonmembers of the language include a, b, aaabb, abbb, baa, aba, etc. We design 
the following NFA that accepts A. The final state is q4 .. The automaton repeats a 
four-step cycle of [.either ε . or a, a, either ε . or b, b]. with the last position being the 
final state. 

State a b ε . 

q0 . q1 . q1 . 

q1 . q2 . 

q2 . q3 . q3 . 

q3 . q4 . 

q4 . q1 . q1 . 

In this order, we assign indices 1, . . . , 5. to the five states q0, . . . , q4 .. We obtain 
the matrices Tε ., Ta ., and Tb . as follows: 

. Tε =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

, Ta =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, Tb =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

We have T̂ε = Tε .. By combining T̂ε . and Ta . and Tb ., we get T̂a . and T̂b .: 

. T̂a =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 1 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0
0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎠

, T̂b =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 1 0 1 1
0 1 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

The initial state θ . is {q0, q1}.. Any state combination containing q4 . is a final state. 
We then obtain a DFA from the NFA using Algorithm 2.3 as follows:



2.2 The Nondeterministic Finite Automaton (NFA) Model 39

1. We initialize the set Q′
. as {{q0, q1}}. and the queue R as [{q0, q1}].. 

2. We remove the first element {q0, q1}. of R as s. Receiving an a in s results in the 
state set {q1, q2, q3}.. Receiving a b in s results in the state set ∅. because it has 
nowhere to go. Both {q1, q2, q3}. and ∅. are new combinations. We add both to Q′

. 

and R. Q′
. becomes {{q0, q1}, {q1, q2, q3},∅}., and R becomes [{q1, q2, q3},∅].. 

3. We remove the first element {q1, q2, q3}. of R as s. Receiving an a in s results 
in the state set {q2, q3}.. Receiving a b in s results in the state set {q1, q3, q4}.. 
Both {q2, q3}. and {q1, q3, q4}. are new combinations. We add both to Q′

. and 
R. Q′

. becomes {{q0, q1}, {q1, q2, q3},∅, {q2, q3}, {q1, q3, q4}}., and R becomes 
[∅, {q2, q3}, {q1, q3, q4}].. 

4. We remove the first element ∅. from R as s. Receiving an a or a b results in ∅.. 
We have already seen ∅., so there is no update on Q′

. or R. 
5. We remove the first element {q2, q3}. from R as s. Receiving an a in s results 

in the state set ∅.. Receiving a b in s results in the state set {q1, q3, q4}..  Both  
combinations are already in Q′

., so neither Q′
. nor R receives an update.

6. We remove the first element {q1, q3, q4}. from R as s. Receiving an a in s results 
in the state set {q1, q2, q3}.. Receiving a b in s results in the state set {q1, q4}..  We  
already have {q1, q2, q3}. in Q′

., so we add only {q1, q4}. to both Q′
. and R.  The  

set Q′
. becomes 

. {{q0, q1}, {q1, q2, q3},∅, {q2, q3}, {q1, q3, q4}, {q1, q4}},

and R becomes [{q1, q4}].. 
7. We remove the first element {q1, q4}. from R as s. Receiving an a in s results in 

the state set {q1, q2, q3}.. Receiving a b in s results in the state set ∅..  We  have  
seen both, so there are no new additions to Q′

. or R. 
8. The queue R has become empty. Thus, we have completed the exploration. Let 

us refer to the six state sets in Q′
. by r0, . . . , r5 . in the order we have discovered 

them; i.e., 

. r0 = {q0, q1},
r1 = {q1, q2, q3},
r2 = ∅,

r3 = {q2, q3},
r4 = {q1, q3, q4}, and

r5 = {q1, q4}.

The final states of the DFA are those that have q4 .;  they  are r4 . and r5 .. We obtain the 
following DFA based on the analysis we have just done.



40 2 The Regular Languages

State a b 
r0 . r1 . r2 . 

r1 . r3 . r4 . 

r2 . r2 . r2 . 

r3 . r2 . r4 . 

r4 . r1 . r5 . 

r5 . r1 . r2 . 

2.2.3 Constructing Regular Languages from Other Regular 
Languages 

Here, we consider composing regular languages into new languages and examine if 
the new languages remain regular. 

Let χ . be an operation for creating a language from some languages. Depending 
on the number of languages χ . requires for its production, we call it a unary 
operation, binary operation, ternary operation, and so on. We think of applying 
χ . to all languages in a class C to generate a new one, C′

.; that is, C′
. collects all you 

can produce by applying χ . to some members of C. We ask whether or not C′
. is the 

same as C. If it is, we say that C is closed under χ .. We also say that χ . is a closure 
property of C. 

The operations we already know are complementation, union, intersection, 
concatenation, and Kleene-star. Of these, the first and the last are unary operations. 
The other three may take two or more operands. An operation involving more than 
two languages can be represented by a sequence of binary operations. Thus, we need 
only consider the binary version. 

The previous section (Sect. 2.2.2) shows that NFAs are computationally equiva-
lent to DFAs. This equivalence is a powerful tool with which we can show that the 
class of regular languages is closed under all Boolean operations and the Kleene-
star. 

Theorem 2.2 The class of regular languages is closed under complement, union, 
intersection, concatenation, and Kleene-star.



2.2 The Nondeterministic Finite Automaton (NFA) Model 41

Proof Overview 
We previously showed the equivalence between the deterministic and NFA 
models. We prove this theorem using that equivalence. 

• To prove the closure property under complement, we switch the roles 
between final and non-final states in the DFA at hand. 

• To prove the closure property under union, we construct an NFA that, at 
the start, selects the execution between two DFAs. 

• Then, using the DeMorgan Laws, we prove the closure property under 
intersection. 

• To prove the closure property under concatenation, we construct an NFA 
that executes the first DFA, nondeterministically switches from the first to 
the second when it is in any final state, and then accepts when it finishes 
reading the input in any final state of the second. 

• To prove the closure property under the Kleene-star, we construct an NFA 
with a new initial state from which makes an ε .-transition to the initial state 
of the DFA at hand. The automaton can return to the additional state with 
an ε .-transition from each final state. Adding the new initial to the final 
states makes the nondeterministic one accept the Kleene-star. 

• To prove the closure property under the Kleene-plus, we connect the given 
DFA to the NFA for the Kleene-star. 

Proof Let L and L′
. be arbitrary regular languages. Let M = (Q,�, δ, q0, F ). and 

M ′ = (Q′, �, δ′, q ′
0, F

′).be DFAs accepting L and L′
., respectively. We may assume 

Q∩Q′ = ∅.. Let the two diagrams representing the computation of M and M ′
. be as 

in Fig. 2.4. 
[Complement] We define N as the DFA (Q,�, δ, q0,Q − F).; that is, the same 
automaton as M but the final states are the non-final states of M ′

.. It is easy to see 
that for all w ∈ �∗

., M on w arrives at a final state if, and only if, N on w arrives at 
a non-final state. Thus, N accepts the complement of L. This proves that the class 
of regular languages is closed under complement. 
[Kleene-Star] We construct, from M ,  an  NFA  N by adding a new initial state p0 .. 
p0 . also becomes a unique final state. Additionally, we add an ε .-transition from p0 . 

to q0 . and an ε .-transition from each state in F to p0 . (see Fig. 2.5). Adding p0 . as the 
initial and a final state allows N to accept ε ..  Th  e ε .-transition from p0 . to q0 . allows 
N to commence the computation of M from q ′

0 . without reading any character. The 
ε .-transition from each member of F to p0 ., along with the ε .-transition from p0 . to 
q0 ., allows N to restart the computation of M from any final state of M . Thus, for all 
strings w of the form w1 · · ·wm . such that w1, . . . , wm ∈ L., N can accept w.  This  
means that L∗ ⊆ L(N)..



42 2 The Regular Languages

Fig. 2.4 The two DFAs: M 
and M ′ . 

Fig. 2.5 The construction of 
an NFA accepting L∗ . 

Conversely, let w be a string that N accepts. We take an arbitrary s tate sequence
π . that N follows when it accepts w.  We  divide π . into sub-sequences wherever 
p0 . appears and eliminate p0 . from the sub-sequences. Let π1, . . . , πk . be the sub-
sequences. Let w1, . . . , wk . be the substring of w that N processes with the sub-
sequences, respectively. We have the follo wing properties:

• Since π . is a state sequence when N accepts, π . begins and ends with p0 .. Thus, 

. π = p0π1p0 · · · p0πkp0.

• An ε .-transition to q0 . is the only one transition from p0 .. Every transition to p0 . is 
an ε .-transition from a state in F . Thus, 

. w = εw1ε · · · εwkε.

In addition, for each j such that 1 ≤ j ≤ k ., wj ∈ L(M).. 

Hence, L(N) = L(M)∗ .. Figure 2.5 shows this construction. 
[Union] We construct an NFA N fromM andM ′

.. The state set of N isQ∪Q′∪{p0}., 
where p0 . is a new initial state. The final state set of N is F ∪F ′

.. We preserve all the 
transitions of M and M ′

. and add two new transitions: an ε .-transition from p0 . to q0 . 
and another from p0 . to q ′

0 .. The automaton N operates by selecting between M and



2.2 The Nondeterministic Finite Automaton (NFA) Model 43

Fig. 2.6 The construction of 
an NFA accepting L ∪ L′ . 

Fig. 2.7 The construction of an NFA for LL′ . 

M ′
.without consuming an input character and then executes the DFA it has chosen. 

The automaton N accepts if, and only if, the DFA it has chosen to execute accepts 
the input. Thus, L(N) = L(M) ∪ L(M ′).. 

Figure 2.6 shows this construction. 

[Intersection] We note that for all languages L and L′
., L ∩ L′ = L ∪ L′ .. Because 

the regular languages are closed under union and complement, L ∩ L′
. is regular if 

both L and L′
. are regular. Direct construction of a DFA that accepts L ∩ L′

. uses the 
state set R = Q × Q′

., the Cartesian product of the two-state sets. The initial state 
is (q0, q

′
0)., and the final state set is F × F ′

.. The transition function ξ . maps each 
((q, q ′), a). to (δ(a), δ′(a)).; that is, ξ . applies δ . to the first component and δ′

. to the 
second component of the state pair (q, q ′).. 
[Concatenation] We construct an NFA N from M and M ′

.. The state set of N is 
Q ∪ Q′

.. The initial state is q0 .. The final state set is F ′
.. The transition function of 

N is the join of the transition functions of M and M ′
.; if the state is in Q, N uses δ ., 

and if the state is in Q′
., N uses δ′

.. We also add an ε .-transition from each final state 
in F to q ′

0 . (see Fig. 2.7). We show that L(N) = LL′
. as follows: 

Suppose w ∈ LL′
. so that w = w1w2 . with w1 ∈ L. and w2 ∈ L′

.. Then, N can 
process w1 .. When N arrives at a final state of M at the end of w1 ., it jumps to q ′

0 ., 
processes the remainder of the input, and accepts. Thus, w ∈ L(N).. 

Conversely, suppose that L(N). accepts the input w. It must be the case that 
after reading some characters of w, N transitions to q ′

0 ..  Let w1 . be the string that 
N processes before jumping to q ′

0 ., and let w2 . be the remainder. We see that w1 . 

takes N from q0 . to a state in F using the transition function of M and w2 . takes



44 2 The Regular Languages

N from q ′
0 . to a state in F

′
. using the transition function of M ′

.. Thus, w1 ∈ L. and 
w2 ∈ L.’. This means that w ∈ LL′

.. Hence, L(N) = LL′
.. 

The proof of the theorem is now complete. ��

2.3 Regular Expressions 

While we define regular languages using DFAs and NFAs, there is an alternate way 
of defining regular languages, which is by using regular expressions. In this section, 
we define regular expressions and show that their expressive power is equal to that 
of DFAs and NFAs. 

2.3.1 The Definition 

Let us begin with the definition of regular expressions. 
A regular expression is a method for expressing a language using a pattern 

that every language member must satisfy, but none of its nonmembers satisfy. 
A specification of a regular expression may use an alphabet, symbols from the 
alphabet, ε ., ∅., ()., ∪., ∗., and +.. For a regular expression E, we write L(E). to indicate 
the language E represents. 

The regular expression construction uses the following inductive definition: 

Base expressions 

• ∅. represents the empty set. 
• ε . represents the empty string. 
• For each a ∈ � ., a represents the string a .
• � . represents the single-letter word whose unique letter is from � .. 

Induction 

• For each regular expression E, (E). represents E. 
• For each regular expression E, E∗

. represents L(E)∗ .. 
• For each regular expression E, E+

. represents L(E)+ .. 
• For all m ≥ 2. and regular expressions E1, E2, . . . , Em ., E1E2 · · ·Em . 

represents L(E1)L(E1) · · · L(Em).. 
• For all m ≥ 2. and regular expressions E1, E2, . . . , Em ., E1 ∪ E2 ∪ · · · ∪ Em . 

represents L(E1) ∪ L(E2) ∪ · · · ∪ L(Em).. 

Example 2.9 The language of all strings in {a, b, c}∗ . that contain at least one of 
aa, bb, and cc has a regular e xpression:

.(a ∪ b ∪ c)∗(aa ∪ bb ∪ cc)(a ∪ b ∪ c)∗.



2.3 Regular Expressions 45

Using � . for {a, b, c}., we have an alternate expression: 

. �∗(aa ∪ bb ∪ cc)�∗.

Example 2.10 The language of all strings in {a, b}∗ . that are either empty or ending 
with one of aa and bb has a regular expression:

. ε ∪ (a, b)∗(aa ∪ bb).

2.3.2 Equivalence Between Regular Expressions and NFAs 

We now see the equivalence between regular expressions and NFAs by proving the 
following theorem. 

Theorem 2.3 A language is regular if, and only if, it has a regular expression. 

Proof Overview 
The proof consists of two parts. Part One shows how to build an equivalent 
NFA from any regular expression. The proof is inductive and matches the 
inductive construction of regular expressions. Each symbol in the alphabet, 
including ε ., has a two-state NFA accepting it. The induction operations for 
constructing regular expressions are concatenation, union, Kleene-star, and 
Kleene-plus. Theorem 2.2 shows that an NFA can execute these operations. 
Thus, every regular expression has a matching NFA, representing a regular 
language. 

Part Two shows how to construct a regular expression from an arbitrary 
NFA. The construction is complex. Given a DFA with states q1, . . . , qn .,  using  
t as a parameter, we construct a regular expression corresponding to the path 
from each state to another, where only states among q1, . . . , qt . are usable as 
intermediate nodes. To build the expressions, we increase the value of t from 
0 (no intermediate nodes) to n .

Proof [Every Regular Expression Defines a Regular Language] By definition, 
every expression in the base case has a DFA that accepts it. For the inductive step, 
the permissible operations are union, concatenation, Kleene-star, and Kleene-plus. 
These are closure properties of regular languages. Since the base case defines regular 
languages and the inductive step uses regular language closure operations, regular 
expressions generate only regular languages. 

[Every Regular Language Is Expressible as a Regular Expression] Let L be 
an arbitrary regular language andM0 .be an arbitrary NFA that accepts L. We modify



46 2 The Regular Languages

the automaton by adding an ε .-transition to each state. Let M = (Q,�, δ, q1, F ). be 
the automaton we have just constructed, where Q = {q1, . . . , qn}.. 

For all i, j , and k such that 1 ≤ i ≤ n., 1 ≤ j ≤ n., and 0 ≤ k ≤ n.,  let Wi,j,k . be 
the set of all strings w, with the following properties: 

• δ(qi,  w)  = qj .. 
• Let w = w1 · · · wm . and let [p0, . . . , pm]. be the state sequence that M follows 

while processing w starting at state qi .. Here, p0 = qi . and pm = qi .. Then, for 
all �. such that 1 ≤ � ≤ m − 1., there is some t ≤ k . such that pi = qt .. In other 
words, the index of any state that M visits after leaving qi . and arriving at qj . 

while processing w is at most k .

Below, for each combination of i, j , and k, we will construct a regular expression 
Ei,j,k .. The construction is by way of induction on k. We will then show for all i, 
j , and k that L(Ei,j,k) = Wi,j,k .. Since for all integers i and j between 1 and n,
Wi,j,n . has no restriction on the states between qi . and qj ., we have for all j such 
that 1 ≤ j ≤ n. that W1,j,n . is the set of all input that takes M to qj .. Then, L 
is ∪j :qj ∈F W1,j,n .. The regular expression for L is the union of all E1,j,n . such as 
qj ∈ F .. 

The regular expressions are as follows: 

• (k = 0.) For all i and j between 1 and n, Ei,j,0 . is a list of all a ∈ � . such that 
δ(qi, a) = qj . joined with the symbol ∪.. 

• (k ≥ 1.) For all i and j between 1 and n, w e define

. Ei,j,k = Ei,j,k−1 ∪ Ei,k,k−1(Ek,k,k−1)
∗Ek,j,k−1.

Because Ei,j,k−1 . appears in the definition of Ei,j,k . as an element of the union, we 
have, for all i and j ,

. L(Ei,j,0) ⊆ L(Ei,j,1) ⊆ · · · ⊆ L(Ei,j,n).

In addition, we know that the following holds by definition: 

. Wi,j,0 ⊆ Wi,j,1 ⊆ · · · ⊆ Wi,j,n.

We now claim that L(Ei,j,k) = Wi,j,k . for all i, j, k . by induction on k. 
The base case is where k = 0..  Let 1 ≤ i ≤ n. and 1 ≤ j ≤ n.. By definition, 

Wi,j,0 . is the set of all strings that takes M from state qi . to qj .without going through 
any state between the two endpoints. This means that Wi,j,0 = {a | a ∈ �ε . and 
δ(qi, a) = qj }.. The definition of Ei,j,0 . is precisely this. Thus, the claim holds for 
k = 0.. 

For the induction step, let 1 ≤ k ≤ n. and suppose that the claim holds for all 
smaller values of k; i.e., for all k′

. such that 0 ≤ k′ ≤ k − 1., L(Ei,j,k′) = Wi,j,k′ . 
holds for all i and j .  Pick  any  i and j . We will show that every element of L(Ei,j,k). 

is in Wi,j,k . and every element of Wi,j,k . is in L(Ei,j,k)..



2.3 Regular Expressions 47

First, let w be an arbitrary word in L(Ei,j,k).. Then w matches either Ei,j,k−1 . or 
Ei,k,k−1(Ek,k,k−1)

∗Ek,j,k−1 .. Suppose w matches Ei,j,k−1 .. Then, by our induction 
hypothesis, we have w in 

. L(Ei,j,k−1) = Wi,j,k−1 ⊆ Wi,j,k

so w ∈ Wi,j,k .. Suppose w does not match the expression Ei,j,k−1 .. Then w must 
match the expression Ei,k,k−1(Ek,k,k−1)

∗Ek,j,k−1 .. By our induction hypothesis, the 
three regular expression components represent Wi,k,k−1 ., W ∗

k,k,k−1 ., and Wk,j,k−1 ., 
respectively. Of the three, Wi,k,k−1 . requires that the state sequence starts at qi . and 
ends at qk ., Wk,k,k−1 . starts at qk . and ends at qk ., and Wk,j,k−1 . starts at qk . and ends 
at qj .. Therefore, we can “join” the three state sequences. Here, by “joining,” we 
connect two sequences by identifying the last element of the first sequence and the 
first element of the second sequence. In other words, the “join” of two sequences 
[a, . . . , b, c]. and [c, d, . . . , e]. is [a, . . . , b, c, d, . . . , e].. The joint sequence starts in 
qi . and ends in qj . In addition, k is the largest value of h such that qh . appears in 
the sequence between the first and last elements of the sequence. Thus, in this case, 
w ∈ Wi,j,k ., too. 

Conversely, let w be an arbitrary member of Wi,j,k ..  Let � = [p1, . . . , pm]. be 
an arbitrary state sequence that M may follow while processing w starting at qi . and 
ending at qj ., where p1 = qi . and pm = qj .. Such a sequence may not be unique 
because we have inserted an ε .-labeled self-loop to each state. Let T be the set of all 
indices �.between 2 andm−1. such that p� = qk ..  Let t1, . . . , td .be an enumeration of 
the indices in T in increasing order. This means that for all � ∈ {2, . . . , m − 1} − T ., 
p� = qh . such that h ≤ k − 1..  Using  T , we construct the following sequences 
from �.: 

. π0 = [p1, . . . , pt1 ],
π1 = [pt1, . . . , pt2 ],
π2 = [pt2, . . . , pt3 ],

. . .

πd−1 = [ptd−1 , . . . , ptd ],
πd = [ptd , . . . , pm].

Using the “join” operation from the previous paragraph, the joint sequence of 
π0, . . . , πd . is �.. Noting that a state sequence of M having length a � ≥ 1. can 
process strings having a length � − 1. only, we can decompose w into substrings
u0, . . . , ud . such that w = u0 · · · ud ., and for each h, 0 ≤ h ≤ d ., M can process uh . 

using the sequence πd .. Since we have exhausted all the occurrences of qk . between 
p2 . and pm−1 . and �. is a state sequence for a member in Wi,j,k ., we know that the 
following properties hold:



48 2 The Regular Languages

• u0 ∈ Wi,k,k− 1 .. 
• u1,  .  .  .  ,  ud−1 ∈ Wk,k,k−1 .. 
• ud ∈ Wk,j,k−1 .. 

From our induction hypothesis, the W s appearing on the right-hand side are 
equivalent to the regular languages corresponding to the same triple indices, as 
follows: 

• L(Ei,k,k−1) = Wi,k,k− 1 .. 
• L(Ek,k,k−1) = Wk,k,k−1 .. 
• L(Ek,j,k−1).. 

Thus, we have: 

• u0 ∈ L(Ei,k,k−1 ).. 
• u1,  .  .  .  ,  ud−1 ∈ L(Ek,k,k−1).. 
• ud ∈ L(Ek,j,k− 1).. 

Since w = u0 · · · ud ., w ∈ L(Ei,k,k−1)L(Ek,k,k−1)
∗L(Ek,j,k−1).. This means 

. w ∈ L(Ei,k,k−1(Ek,k,k−1)
∗Ek,j,k−1).

The regular expression on the right-hand side is the second component for Ei,j,k .. 
Thus, w ∈ L(Ei,j,k).. 

From the two membership paragraphs, we get that Wi,j,k = L(Ei,j,k)., and so the 
claim holds for k. Hence, we have the equality Wi,j,k = L(Ei,j,k). for all i, j, k ., and 
complete the proof for the induction step. 

This proves the theorem. ��
Let us see one example of applying the algorithm from Theorem 2.3 to generate 

an equivalent regular expression from an NFA. 

Example 2.11 Consider the NFA shown in Fig. 2.8. By inspecting the diagram, we 
see that the language the NFA accepts has a regular expression (abc)∗(ε ∪ a).. 

We first modify the automaton with the addition of ε .-loops, as shown in Fig. 2.9. 
The enumeration of the states we use is p1, p2, p3 .. 

The construction of the regular expressions proceeds as follows: 

• First, we obtain the regular expressions for k = 0.. 

Fig. 2.8 A  mystery  NFA  
with three states



2.3 Regular Expressions 49

Fig. 2.9 The mystery NFA 
after adding self-loops 

To 

From p1 . p2 . p3 . 

p1 . ε . a ∅. 

p2 . ∅. ε . b 
p3 . c ∅. ε . 

• For k = 1.,  we  make p1 . available. The expression changes in the pair (p3, p2). as 
a result of combining (p3, p1). and (p1, p2).. 

To 

From p1 . p2 . p3 . 

p1 . ε . a ∅. 

p2 . ∅. ε . b 
p3 . c ca ε . 

• For k = 2., changes occur in (p1, p3). as a result of combining (p1, p2). and 
(p2, p3). and in (p3, p3). as a result of combining (p3, p2). and (p2, p3).. 

To 

From p1 . p2 . p3 . 

p1 . ε . a ∅ ∪ ab. 

p2 . ∅. ε . b 
p3 . c ca ε ∪ cab. 

• For k = 3., changes occur in all the pairs. 

To 

From p1 . p2 . p3 . 

p1 . ε ∪ ab(cab)∗c. a ∪ ab(cba)∗ca . (∅ ∪ ab)(cab)∗ . 
p2 . b(cab)∗c. ε ∪ b(cba)∗ca . b(cab)∗ . 
p3 . (cab)∗c. (cba)∗ca . (cab)∗(ε ∪ cab).



50 2 The Regular Languages

We can manually simplify the expressions as follows: 

To 

From p1 . p2 . p3 . 

p1 . (abc)∗ . (abc)∗a . (abc)∗ab. 

p2 . (bca)∗bc. (bca)∗ . (bca)∗b. 
p3 . (cab)∗c. (cab)∗ca . (caab∗ . 

• The expression for the language is now the union of the expressions for (p1, p1). 

and (p1, p2).. The union (abc)∗ ∪ (abc)∗a .. Since (abc)∗ = (abc)∗ε ., we can 
rewrite the union as (abc)∗(ε ∪ a).. 

2.3.3 Visualizing the Construction 

While the construction algorithm in the proof runs correctly, and its correctness is 
easy to establish using induction, the algorithm’s workings are somewhat complex 
to visualize. If we focus on finding a regular expression for the language, we can 
visually capture the algorithm. 

Let L be a regular language and M0 . be a finite automaton (deterministic or 
nondeterministic) that accepts L. We add two designated states. One is a new initial 
state with an ε .-transition to M0 .’s initial state. The other is a new final state with 
an ε .-transition to each of M0 .’s final state. The new final state is the only final state 
in the new automaton. Like before, we add an ε .-loop to each state from M0 ..  Le  t
M = (Q,�, δ, q1, {qn}). be the NFA we have thus constructed, where q1 . and qn . are 
the states we have added. 

Our visualization starts with a drawing of M , where for each pair (i, j). such that 
there is an arrow from qi . to qj ., we replace its label with Ei,j,0 .. Then, for each k 
such that 1 ≤ k ≤ n., and for all i and j , we replace the label of the arc from qi . 

to qj . with Ei,j,k . if the arc exists; if there is no arc from qi . to qj . and Ei,j,k . is no 
longer ∅., we draw a new arc from qi . and qj . with label Ei,j,k .. After completing the 
revision concerning k, we erase qk . from the drawing if 2 ≤ k ≤ n − 1. because qk . is 
no longer relevant to E1,n,n .. We present this idea in Fig. 2.10. 

Here is a demonstration of the visualization. Suppose we have an NFA as 
appearing in Fig. 2.11. 

We start with an NFA with additional initial and final states, as in Fig. 2.12. 
To prepare for the conversion, we add q1 . and q2 . as the initial and final states, 
respectively. Additionally, we rename p1, p2 ., and p3 . as q2 ., q3 ., and q4 ., respectively. 
Furthermore, we add a self-loop labeled with ε . to q2 ., q3 ., and q4 .. 

We then apply the label-replacement procedure three times in succession. The 
first application uses q2 . as the intermediate vertex, the second uses q3 ., and the last 
uses q4 .. The results of the three applications are shown in Figs. 2.13, 2.14, and 2.15, 
respectively.



2.3 Regular Expressions 51

Fig. 2.10 The step for 
incorporating an intermediate 
point qk . and eliminating the 
intermediate point from the 
diagram afterward. The top 
panel shows before 
short-circuiting. The bottom 
panel shows after 
short-circuiting. The dashed 
arrows show those that we 
can remove after this step 

Fig. 2.11 An NFA with three 
states 

Corollary 2.1 summarizes the equivalence relations we have seen. 

Corollary 2.1 The following are all the same: 

• DFAs 
• NFAs 
• Regular expressions 

Exercises 
2.1 Example 2.3 states that for an arbitrary member w of C, w’s decomposition
xaybz. can be such that x is free of a and y is free of b. Prove that such a 
decomposition is indeed possible.

2.2 Construct a DFA that accepts {w | w ∈ {a, b}∗ . such that |w|. is a multiple of 3}..



52 2 The Regular Languages

Fig. 2.12 Initialization for the conversion. q1 . and q5 .have been added as the initial and final states. 
p1, p2 .,  and p3 . have been renamed as q2 ., q3 .,  and q4 ., respectively. A self-loop labeled with ε . has 
been added to q2 ., q3 .,  and q4 . 

Fig. 2.13 Applying the label-replacement procedure with q2 . as the intermediate point 

Fig. 2.14 Applying the label-replacement procedure with q3 . as the intermediate point 

Fig. 2.15 Applying the label-replacement procedure with q4 . as the intermediate point. The label 
on the remaining arrow is the final form of the regular expression



2.3 Regular Expressions 53

2.3 Construct a DFA that accepts {w | w ∈ {a, b}∗ . such that w does not contain 
aaa or bbb}.. 
2.4 Construct a DFA that accepts the set of all strings in {a, b}∗ .with an odd number 
of as and an odd number of bs. 

2.5 Construct a DFA that accepts the complement of C = {w | w ∈ {a, b}∗ . such 
that w contains an a and then a b someplace later}.. 
2.6 For each of the following languages over {a, b}., give a DFA accepting it, a DFA 
for its star, and then a DFA that accepts the complement of its star. 

1. {ab, ba }.. 
2. {a,  ab,  abb,  abbb, . . .}.. 
3. {a,  ab,  abb,  abbb,  .  .  .} ∪ {b, ba, baa, baaa, . . .}.. 
2.7 Construct a two-state NFA for the complement of {a, ab, abb, abbb, . . .}∗ .. 

2.8 Let L be a regular language and letM = (Q,�, δ, q0, F ).be a DFA that accepts 
L. Let  �′

.be an alphabet that includes � .. Show that L is a language over the alphabet
�′

., and build, from M ,  a  DFA  for  L as a language over �′
.. 

2.9 In many programming languages, literal character sequences take the form of 
"X," where X is a sequence in which each occurrence of " has a pair of \s: one \ 
in front and one \ elsewhere. For example, "\\\"a" is a syntactically correct literal 
expression, while ""\\\" is not. Assuming that a programming language employs 
an alphabet consisting of ", \, 0, 1, and -, design a five-state DFA for deciding the 
language of syntactically correct literal character sequences.

2.10 In the United States, the expression of a currency amount combines the dollar 
part with the cent part, using a period in between. A comma appears before every 
power of a thousand in the dollar part. In the cent part, the expression is exactly 
two digits, with a 0 before any amount less than 10. For example, “two billion 
seventeen million nine hundred three thousands five hundred sixty-four dollars and 
eight cents” has the expression 2, 017, 903, 564.08., while “four dollars and fifty 
cents” has the expression 4.50.. Also, “zero dollars and one cent” has the expression 
0.01.. Design a DFA for accepting valid currency expressions in the United States. 

2.11 Modify the proof in Theorem 2.2 (of the closure of the regular languages 
under the Kleene-star) to show that the class of regular languages is closed under 
the Kleene-plus; that is, for all regular languages L, L+

. is regular. 

2.12 Design a three-state NFA for the language (abc)∗ ., which is the language of 
all strings that are some repetitions of abc. 

2.13 Construct an NFA that accepts the complement of {w | w ∈ {a, b}∗ . such that 
w contains an a and then someplace later has a b}.. 
2.14 Construct a three-state NFA that accepts L((aa)∗ ∪ (bb)∗)..



54 2 The Regular Languages

2.15 Let � = {0, 1}.. Construct a DFA that accepts L(�∗(01 ∪ 10)�∗)..  Also,  
construct a DFA for the language’s complement.

2.16 Construct a DFA that accepts L(0+10+).. 

2.17 Design a three-state NFA for the language a∗b∗c∗
.. 

2.18 Let � = {a, b}..  Let  M be an NFA (Q,�, δ, q0, F ). where Q = {q0, q1}., 
F = {q1}., and δ .’s transition table is as follows: 

State a b ε . 

q0 . q0 . q1 . – 

q1 . – q1 . X 

Suppose we have the following four choices for the cell X corresponding to (q1, ε).: 
{q1}., {q0}., {q0, q1}., and ∅.. For each of the four choices, state the language M 
accepts. 

2.19 Let M = (Q,�, δ, q0, F ). be a DFA accepting a language L. Build an NFA 
N from M , which accepts any string constructed from a member of L by replacing 
exactly one character with a different character.

2.20 Let � . be an alphabet of size ≥ 2..  Le  t ⊕. be a binary operation on � . that 
produces a symbol from each pair of elements in � .. For all w ∈ �+

., define ⊕ (w). 

inductively as follows: 

• If w = a . for some � . (i.e., |w| = 1.), ⊕ (w) = a .. 
• If w = xa .where x ∈ �+

. and a ∈ � ., ⊕ (w) = ⊕(⊕(x), a).. 

Define L(⊕, a). as the set of all strings w ∈ �+
. such that ⊕ (w) = a .. Show that 

L(⊕, a). is regular. 

2.21 Show that the running time of Algorithm 2.1 is O(k3(‖�‖ + log k))., where 
k = ‖Q‖.. 

2.22 Give a recursive algorithm to search for an accepting computation of a pseudo-
NFA whose recursion depth is the length of the input. 

2.23 Use the NFA conversion algorithm (Algorithm 2.2) to convert each of the 
following NFAs into a DFA: 

1.



2.3 Regular Expressions 55

2. 

3. 

4. 

2.24 Let L be an arbitrary nonempty language over {0}.. Show that L∗
. is the union 

of a finite set and {(0p)k | k ≥ t}. for some positive integers p and t . 
Hint: Think of the set N = {n | 0n ∈ L}.. Then L∗ = {0n | n. is 0 or the sum of 

integers in N}.. 
2.25 Suppose M is a DFA accepting ε . and at least one other string and the initial 
state is the only final state of M . Then for some nonempty w, L(M). includes w∗

.. 

2.26 A synchronizing sequence of a DFA M = (Q,�, δ, q0, F ). is a string 
that forces M to transition from any state to the same state. In other words, a 
synchronizing sequence is a string w such that for some state h, δ(q,w) = h. for 
all q ∈ Q.. If a DFA has a synchronizing sequence, it is synchronizable.  Give  a  
synchronizable DFA for L((01)∗).. 

2.27 Following the previous question, show that no DFAs for {w ∈ {0, 1} | w . has 
an odd number of 0s }. are synchronizable. 
2.28 Let M = (Q,�, δ, q0, F ). be a synchronizable DFA with n states. Show that 
for each state-pair (p, q). such that p �= q ., a sequence w exists such that δ(p,w) =
δ(q,w). and |w| ≤ n(n − 1)/2.. 

Hint: Use the pigeon-hole principle. 

Bibliographic Notes and Further Reading 
The finite automaton model originates from McCulloch and Pitts [5]. The model 
also appears in the papers by Mealy [6], Moore [7], and Huffman [2]. The NFA 
model is due to Rabin and Scott [8]. The pseudo-NFAs with multiple initial states 
and the conversion to FAs are by Rabin and Scott as well [8]. As mentioned at



56 2 The Regular Languages

the beginning of the chapter, DFAs and NFAs have many applications. Well-known 
examples are the Knuth-Morris-Pratt (KMP) algorithm [3], a bibliographic search 
algorithm by Aho and Corasick [1], and the lexical analyzer Lex [4]. 

References 

1. A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic search. Commun. 
ACM 18(6), 333–340 (1975) 

2. D.A. Huffman, The synthesis of sequential switching circuits. J. Franklin Inst. 257(3–4), 161– 
190, 275–303 (1954) 

3. D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings. SIAM J. Comput. 6(2), 
323–350 (1977) 

4. M.E. Lesk, E. Schmidt, Lex: A Lexical Analyzer Generator, vol. 39 (Bell Laboratories, Murray 
Hill, 1975) 

5. W.S. McCulloch, W.A. Pitts, A logical calculus of the ideas immanent in nervous activity. B. 
Math. Biophys. 5, 115–133 (1943) 

6. G.H. Mealy, A method for synthesizing sequential circuits. Bell. Syst. Tech. J. 34(5), 1045–1079 
(1955) 

7. E.F. Moore, Gedanken experiments on sequential machines, in Automata Studies (Princeton 
University Press, Princeton, 1956), pp. 129–153 

8. M.O. Rabin, D. Scott, Finite automata and their decision problems. IBM Res. J. 3(2), 115–125 
(1959)



Chapter 3 
Non-regularity 

3.1 Minimizing the State Number 

This section studies the problem of minimizing a given DFA’s state number. The 
minimization process involves identifying groups of states with the same roles as 
the other members. 

3.1.1 A Motivation 

When two distinct DFAs accept the same languages, can we say which is better? 
A famous principle for model comparison is Occam’s Razor, which states that we 
must avoid unnecessary duplications. According to the principle, if one model is 
smaller, the smaller model is better. How should we compare the sizes of two finite 
automata? We can use the size of the transition function as a measurement. Since 
the size of the alphabet is equal between the automata, we can use the number of 
states as the measurement. 

Now that we have determined that the number of states is our measurement 
for size, we can ask if a DFA has a smaller equivalent automaton. The state 
minimization problem asks to find the smallest equivalent DFA. 

3.1.2 Distinguishable State-Pairs 

The key with the state minimization problem is distinguishability. A distinguishable 
pair of states consists of two states having different outcomes when processing the 
remainder of an input. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3
https://doi.org/10.1007/978-3-031-84740-0_3


58 3 Non-regularity

Let L be a regular language and let M = (Q,�, δ, q0, F ). be a DFA that accepts 
L. We can assume that every state in Q is reachable from q0 .; otherwise, we erase 
from Q all the states unreachable from q0 . and then return to the minimization 
question. We solve the minimization problem by inquiring, for each pair of states 
(p, q)., if they are functionally different from each other (i.e., if there is a string that 
leads M from p to a final state and leads M from q to a non-final state). We call 
such a pair distinguishable.

Here is a formal definition of distinguishability. 

Definition 3.1 Let M = (Q,�, δ, q0, F ). be a DFA. A state pair (p, q). of M 
is distinguishable if there is some w ∈ �∗

. such that exactly one of δ(p,w). 

and δ(q,w). is in F (and thus, the other is in Q − F .). Otherwise, (p, q). is 
indistinguishable. 

We can view both distinguishability and indistinguishability as binary relations 
between states. 

Proposition 3.1 The distinguishability has the following properties. 

1. Distinguishability is symmetric; i.e., a state pair (p, q). of a DFA M is distin-
guishable if, and only if, (q, p). is distinguishable. 

2. Indistinguishability is an equivalence. 
3. Distinguishability admits the following inductive definition: 

For each state pair (p, q).,

• [Base Case] if either (p, q). or (q, p). is in F × (Q − F)., the pair is 
distinguishable;

• [Induction Step] if there is a known distinguishable pair (s, t). and there 
is a symbol a ∈ � . such that δ(p, a) = s . and δ(q, a) = t ., (p, q). is 
distinguishable. 

Proof Let M = (Q,�, δ, q0, F ). be a DFA. As we did for proving the closure 
property of regular languages under intersection (Theorem 2.2), we extend δ . to a 
transition function that takes a pair of states in Q × Q. and a string in �∗

.. The  
extended version of the transition function is given as follows: 

. δ((p, q),w) = (δ(p,w), δ(q,w)).

Here, p, q ∈ Q. and w ∈ �∗
.. 

With this extended version of δ ., we have a new definition for distinguishable 
pairs as follows: 

.A state pair (p, q) is distinguishable if there is some w ∈ �∗such that

δ((p, q),w) ∈ (F × (Q − F)) ∪ ((Q − F) × F).



3.1 Minimizing the State Number 59

The first property we prove is the symmetry of distinguishability. To prove this 
property, we see that δ((p, q),w) ∈ (F × (Q − F)) ∪ ((Q − F) × F). if, and only 
if, δ((q, p),w) ∈ (F × (Q−F))∪ ((Q−F)×F).. Thus, the relation is symmetric. 

The second property we prove is the statement that indistinguishability is an 
equivalence relation. To prove this property, we rephrase indistinguishability as 
follows: 

. A state pair (p, q) is indistinguishable if, and only if, for all w ∈ �∗,

δ((p, q),w) ∈ (F × F) ∪ ((Q − F) × (Q − F)).

The symmetry of the relation is apparent because each of the two Cartesian 
products has two sets on either side. The reflexivity is easy to show because if 
q = p ., the two components of δ(p, q,w). are identical. For the transitivity, suppose 
both (p, q). and (q, r). are indistinguishable. Let w ∈ �∗

. be an arbitrary string. 
Suppose δ(p,w) ∈ F .. Then δ(q,w) ∈ F . because (p, q). is indistinguishable. 
Then δ(r, w) ∈ F . because (q, r). is indistinguishable. Because δ(p,w) ∈ F . and 
δ(r, w) ∈ F ., we know (p, r). is indistinguishable. The same argument holds when 
δ(p,w) ∈ Q − F .. The relation is reflexive, symmetric, and transitive, so it is an 
equivalence. 

We will prove the last property as follows: 
Suppose (p, q). is distinguishable. There is some w ∈ �∗

. such that 
δ((p, q),w) ∈ F × (Q − F) ∪ (Q − F) × F .. Select one such w. If  w = ε ., (p, q). 

satisfies the base case of the inductive definition as appearing in the proposition 
statement. If w �= ε ., let w1, . . . , wm . be the symbols of w, where m = |w|.. Let  
(s0, t0) = (p, q). and for each i such that 1 ≤ i ≤ m., let (si, ti) = δ(si−1, ti−1, wi)., 
so δ((p, q),w) = (sm, tm).. The pair (sm, tm). has just one element in F because 
of the indistinguishability definition, so (sm, tm). satisfies the base case. Then 
working backward in index i, from m down to 0, we know that δ((si−1, ti−1), wi). 

is a distinguishable pair, and thus (si−1, ti−1). is distinguishable according to the 
induction case. The last pair in the sequence is (p, q)., therefore satisfying the 
inductive definition. 

Conversely, suppose that a pair (p, q). is indistinguishable according to the 
inductive definition. If the pair satisfies the base case, then w = ε . in the original 
definition. Otherwise, there is a series of additions to the set of indistinguishable 
pairs, culminating in the addition of (p, q).. Suppose the smallest number of 
additions at (p, q). is m ≥ 1.. Let (b0, c0), (b1, c1), . . . , (bm, cm). be the series 
of additions where (bm, cm) = (p, q).. The first pair (b0, c0). is a pair in the 
base case. For each i such that 1 ≤ i ≤ m., there is a symbol ai . such that 
δ((bi, ci), ai) = (bi−1, ci−1).. Let a = amam−1 · · · a1 .. Then, δ(bm, a) = b0 . and 
δ(cm, a) = c0 .. Since (b0, c0). is a base-case distinguishable pair, (b0, c0). satisfies 
the requirement for a distinguishable pair. 

This proves the proposition. �	
The inductive definition from Proposition 3.1 gives Algorithms 3.1 and 3.2. Since 
indistinguishability is an equivalence relation, we can partition the states into



60 3 Non-regularity

equivalence classes, where each equivalence class is the largest group of pairwise 
indistinguishable states. We use a greedy algorithm to compute a collection of all 
maximally large equivalence classes concerning indistinguishability. The sets X 
appearing in the algorithm are all such maximally large equivalence classes, and 
the set H is the collection.

Algorithm 3.1 A greedy algorithm for finding all distinguishable pairs 
1: procedure INDISTINGUISHABLE-PAIRS(M) 
2: M = (Q,�,  δ,  q0,  F)  is a DFA; 
3: D ← F × (Q − F) ∪ (Q − F)  × F ; � the distinguishable pairs 
4: I ← (Q × Q) − D; � the indistinguishable pairs 
5: while true do 
6: S ← {(p, q) ∈ I | (∃a ∈ �)(δ(p, a), δ(q, a)) ∈ D}; 
7: if S = ∅ then 
8: terminate the loop; 
9: else 

10: D ← D + S; 
11: I ← I − S; 
12: end if 
13: end while 
14: report D as the set of all distinguishable pairs; 
15: report I as the set of all indistinguishable pairs; 
16: end pro cedure

Algorithm 3.2 An algorithm for finding all maximally indistinguishable groups 
using Algorithm 3.1 that finds all indistinguishable pairs 
1: procedure MAXIMALLY INDISTINGUISHABLE-GROUP(Q, I ) 
2: Q is the set of states; 
3: I is the set of indistinguishable pairs; 
4: R ← Q; � the states requiring processing 
5: H← ∅; � the collection of maximally indistinguishable states 
6: while R �= ∅  do 
7: select an arbitrary state p from R; 
8: X ← {q | (p, q) ∈ I }; 
9: R ← R − X; 

10: H← H ∪ {X}; 
11: end while 
12: report H as the set of mutually indistinguishable groups; 
13: end procedur e

We construct a nondeterministic finite automaton (NFA) N from M by adding an
ε .-transition from each state p to every other state in the same equivalence class. The 
introduction of the ε .-transitions allows transitions within each equivalence class. 
Due to the definition of indistinguishability, following ε .-transitions does not change 
whether or not the automaton accepts the input. Let us construct a DFA M ′

. from N



3.1 Minimizing the State Number 61

Fig. 3.1 The input for the 
state-minimization algorithm 

Table 3.1 The distinguishability results. The distinguishability is symmetric, so only the lower 
diagonal of the table is present. The letter i indicates that the pair is indistinguishable. The number 
0 indicates that one pair element is in F and the other is in Q − F ., so its distinguishability is in 
the base case. The number 1 indicates that the distinguishability is after the base case 

p i 
q 1 i 
r 0 0 i 
s i 1 0 i 
t 1 i 0 1 i 

p q r s t 

Fig. 3.2 The finite 
automaton after application of 
the state-minimization 
algorithm 

using Algorithm 2.3 for constructing a deterministic automaton from an NFA. The 
algorithm puts the members from each equivalence class together while keeping 
each distinguishable state pair separate. We see that the process collapses each 
equivalence class into a superstate. Because we have exhausted all distinguishable 
pairs, the DFA we have constructed is not reducible to a smaller DFA. 

Example 3.1 Here is an example of applying the statement minimization algo-
rithm. The input is a five-state finite automaton, as shown in Fig. 3.1. 

By applying the algorithm, we get the following table showing the distinguisha-
bility and indistinguishability, as demonstrated in Table 3.1. Since the distinguisha-
bility and indistinguishability are symmetric, we present each pair only once. The 
combination of Row x and Column y represents the pair (x, y). (and so (y, x). as 
well). A 0 appearing on the table means the pair is distinguishable according to the 
base case. A 1 appearing on the table means the pair is distinguishable according to 
the induction step. An i indicates that the pair is indistinguishable. 

We find that p and s are indistinguishable and that q and t are indistinguishable. 
We obtain the minimal DFA from the table in Fig. 3.2.



62 3 Non-regularity

3.2 The Myhill-Nerode Theorem 

In this section, we look at DFAs using equivalence classes. 

Definition 3.2 Let � . be an alphabet and L be a language ove r � .. Let u, v ∈ �∗
.. 

We say that u and v are equivalent concerning L if for all strings z ∈ �∗
., uz ∈ L. if, 

and only if, vz ∈ L.. We write u ≡L v . to mean that u and v are equivalent concerning 
L.

We leave the proof of the following proposition to the reader. 

Proposition 3.2 For every language L, the relation ≡L . is an equivalence. 

We also have the following relatively simple properties about equivalence 
classes. We also leave the task of proving the next proposition to the reader. 

Proposition 3.3 Let L be an arbitrary language. We have the f ollowing:

1. For all equivalence classes S concerning L, either S ⊆ L. or S ⊆ L.. 
2. For all equivalence classes S and T concerning L, if S ∩ T �= ∅., then either 

S ⊆ T . or T ⊆ S .. 

We say that an equivalence class S concerning a language L is maximal if no 
other equivalence classes concerning L properly contain S. 

Now, we can characterize regular languages using equiv alence classes.

Theorem 3.1 (The Myhill-Nerode Theorem) A language L is regular if, and only 
if, it has a finite number of maximal equivalence classes.

Proof Overview 
The theorem comes from the minimum DFA we obtain using the minimiza-
tion algorithm. Every pair of states is distinguishable in the minimum DFA we 
construct. In other words, for each pair, a string leads the automaton to a final 
state from one and a non-final state from the other. Thus, the strings on which 
the automaton arrives at one state and those on which the automaton arrives at 
the other belong to different equivalence classes. Because of the construction, 
the equivalence classes are maximal. 

Conversely, given a group of maximal equivalence classes, appending one 
specific symbol to every word in an equivalence class transforms the class 
into an equivalence class. Because of the maximality, the target equivalence 
class must be one of the maximal equivalence classes. 

Proof Suppose L is a regular language. Let M = (Q,�, δ, q0, F ). be an arbitrary 
DFA for L. Suppose we have constructed a DFA M∗ = (Q∗, �, δ∗, q∗

0 , F ∗). from 
M with the minimization algorithm in Sect. 3.1.2. For each state q ∈ Q∗

., define 
W(q). as the set of all strings that take M∗

. from its initial state to q. For each state



3.2 The Myhill-Nerode Theorem 63

q and each pair (x, y). in W(q)., we have x ≡L y . because they take M∗
. to the same 

states. Also, for all states q and q ′
. in Q∗

. such that q �= q ′
., a string  z takes M∗

. to 
acceptance from only one of q and q ′

.. Otherwise, the algorithm would have found 
indistinguishable q and q ′

.. This means the equivalence classes W(q), q ∈ Q∗
. are 

maximal. Since M∗
. is a DFA, Q∗

. should be a finite set, so the number of maximal 
equivalence classes concerning ≡L . is finite. 

Conversely, suppose [C1, C2, . . . , Cm]. is an enumeration of all maximal equiva-
lence classes of L. We claim that for all i such that 1 ≤ i ≤ m., and for all a ∈ � ., 
Cia ⊆ Cj . for some j such that 1 ≤ i ≤ m.. We prove this claim by contradiction. 
Assume that the claim does not hold. Then we can select some i, some  a, and some 
u, v ∈ Ci . such that ua and va belong to separate classes (say, Cj . and Ck .), where 
j < k .. We select an arbitrary pair of Cj . and Ck . satisfying this condition. Let x and 
y be any members of Cj . and Ck ., respectively. Let w be an arbitrary member of �∗

.. 
Since Ci ., Cj ., and Ck . are equivalence classes, we have: 

. uaw ∈ L ⇐⇒ vaw ∈ L,

xw ∈ L ⇐⇒ uaw ∈ L, and

yw ∈ L ⇐⇒ vaw ∈ L.

Thus, 

. xw ∈ L ⇐⇒ yw ∈ L.

We have arbitrarily chosen x, y, and w, so the equivalence implies that Cj ∪Ck . is an 
equivalence class. If we remove Ck . from the enumeration and add all its members 
to Cj ., we obtain the following new enumeration: 

. [C1, . . . , Cj1 , Cj ∪ Ck,Cj+1, · · · , Ck1 , Ck+1, . . . , Cm].

This new enumeration partitions �∗
. with just m − 1. equivalence classes. However, 

we assume that m is the number of maximal equivalence classes. So, we have a 
contradiction. Thus, the claim holds. 

Now, we can build a DFA based on the equivalence classes. We introduce 
states q1, . . . , qm . representing the membership in C1, . . . , Cm .. Based on the above 
“unique index” observation, we can develop a transition function δ .; for all i such that
1 ≤ i ≤ m., and a ∈ � ., δ(qi, a) = qj . where j is such that for all w ∈ Ci ., wa ∈ Cj .. 
Let q0 . be qi . such that ε ∈ Ci .. Let  F be the set of all qi . such that Ci ⊆ L.. Since 
C1, . . . , Cm . are equivalence classes concerning L, either Ci ⊆ L. or Ci ⊆ �∗ − L. 

(see Proposition 3.3). Thus, M = (Q,�, δ, q0, F ). is a DFA that accepts L. �	



64 3 Non-regularity

3.3 Proving Non-regularity 

There are languages for which proving regularity seems impossible. Can we prove 
that a language is not regular? We can use the Myhill-Nerode Theorem to prove this 
impossibility. Later in this section (Sect. 3.3.2), we show an alternate approach, “the 
Pumping Lemma.” 

3.3.1 Proving Non-regularity Using the Myhill-Nerode 
Theorem 

Let us explore using the Myhill-Nerode Theorem to prove non-regularity. 
The Myhill-Nerode theorem states that a language is regular if, and only if, the 

number of maximal equivalence classes for the language is finite, where two strings 
u and v are equivalent concerning a language L if for all strings w, uw ∈ L. if, and 
only if, vw ∈ L.. 

From the definition of equivalence classes, we obtain the following property: 

Proposition 3.4 For all strings u and v, u �≡L v . if, and only if, a string w exists 
such that uw ∈ L. and vw ∈ L. or uw ∈ L. and vw ∈ L.. 

Based on this proposition, we immediately obtain a characterization of non-
regular languages in the form of a lemma. In the following lemma, the strings wij . 

serve as the prefix, witnessing that xi . and xj . belong to separate equivalence classes. 

Lemma 3.1 A language L ⊆ �∗
. is non-regular if, and only if, there exists 

x1, x2, . . .. satisfying the following condition: 

(*) For all i and j such that 1 ≤ i < j ., xi �≡L xj .. In other words, for all i and j 
such that 1 ≤ i < j ., there exists some wij . such that xiwij ∈ L. if, and only if, 
xjwij �∈ L.. 

Using Lemma 3.1, we can use the following strategy for proving that a language 
L is not regular:

• Define an infinite sequence {xi}i≥1 ..
• Define an infinite double-index sequence {wi,j }j>i≥1 ..
• Argue for all i and j such that 1 ≤ i < j ., xiwij ∈ L. if, and only if, xjwij �∈ L.. 

Finding the sequences x and w is cumbersome because of the double-indexing in 
w. We thus slightly simplify the statement as follows:

Lemma 3.2 A language L ⊆ �∗
. is non-regular if there is a series of string pairs 

{(xi, wi)}i≥1 . satisfying the following:

• Either for all i ≥ 1., xiwi ∈ L. or for all i ≥ 1., xiwi �∈ L..
• For all i and j such that j > i ≥ 1., either xiwi ∈ L. and xiwj �∈ L. or xjwj ∈ L. 

and xjwi �∈ L..



3.3 Proving Non-regularity 65

Proof Suppose a sequence of pairs exists that satisfy the conditions. Let A = L. 

if it is the case that for all i ≤ 1., xiwi ∈ L. and A = L. otherwise. The maximal 
equivalence classes concerning L are the same as those concerning L.. For each 
i ≥ 1., let  Ei . be the maximal equivalence class concerning A that contains xi .. Then, 
for all i and j such that j > i ≥ 1., we have either

• xiwj �∈ A. and xiwi ∈ A..
• xjwi �∈ A. and xjwj ∈ A.. 

Either property implies that Ei �= Ej .. Thus, the classes E1, E2, . . . . are pairwise-
different and maximal. Since the Myhill-Nerode Theorem states that the number of 
maximal equivalence classes is finite for any regular language, we know that L is 
not regular . �	

Using Lemma 3.2, we can show the following. 

Example 3.2 The language L = {0n1n | n ≥ 1}. is not regular. 
For each i ≥ 1., let xi = 0i+11. and let wi = 1i

.. Let  A = L.. For all i ≥ 1., we  
have:

• xi �∈ A..
• xiwi ∈ A..
• for all j > i ., xiwj = 0i+11i+11j−i

. so xiwj �∈ A.. 

Thus, by Lemma 3.2, A(= L). is not regular. 

Example 3.3 The language L = {0n2 | n ≥ 1}. is not regular. 
For each i ≥ 1., let xi = 0i2+1

. and let wi = 02i
.. Let  A = L.. For all i ≥ 1., we  

have:

• xi �∈ A. because i2 < i2 + 1 < (i + 1)2
. so i2 + 1. is not a perfect square.

• xiwi ∈ A. because (i2 + 1) + 2i = (i + 1)2
..

• for all integers i and j such that j > i ≥ 1., xjwi = 0k
. such that j2 < k =

j2 + 1 + 2i < j2 + 1 + 2j = (j + 1)2
. so k is not a perfect square, and thus,

xjwi . is not in A. 

Thus, by Lemma 3.2, A(= L). is not regular. 

3.3.2 Proving Non-regularity Using the Pumping Lemma for 
Regular Languages 

An alternate method for proving non-regularity is using a Pumping Lemma for 
regular languages. In this section, we prove the lemma and learn how to use it to 
prove non-regularity.



66 3 Non-regularity

3.3.2.1 The Pumping Lemma 

Here, we state and prove the lemma. 

Lemma 3.3 (The Pumping Lemma for Regular Languages) Suppose a lan-
guage L is regular. Then there exists an integer p ≥ 1. such that for all strings 
w ∈ L. having a length of ≥ p ., w has a partition uvx . satisfying the following 
conditions: 

1. |v| ≥  1.. 
2. |uv| ≤  p .. 
3. for all i ≥ 0., uvix ∈ L ⇐⇒ w ∈ L.. 

We call the constant p the pumping constant (or the pumping length)  of  L.

Proof Let L be a regular language and M = (Q,�, δ, q0, F ). be a DFA that accepts 
L. Let p = ‖Q‖.. Let w, |w| ≥ p ., and w = a1 · · · apb. such that a1, . . . , ap ∈ � . and 
b ∈ �∗

.. For each i such that 1 ≤ i ≤ p ., let qi = δ(q0, a1 · · · ai). and q ′ = δ(q0, w).. 
The states q0, q1, . . . , qp . are from Q. By the pigeon-hole principle, a pair (qs, qt ). 

exists such that 0 ≤ s < t ≤ p . and qs = qt .. Let u = a1 · · · as ., v = as+1 · · · at ., and 
x = at+1 · · · apb.. Then |uv| = t ≤ p ., |v| = t − s ≥ 1., and uvx = w .. Because 
qs = qt ., δ(qs, v) = qt ., and so, for all i ≥ 0., δ(qs, v

i) = qs .. Also, because qs = qt . 

and δ(q0, uv) = qt ., δ(q0, x) = δ(q0, uvix). for all i ≥ 0.. Thus, for all i ≥ 0., 
uvix ∈ L ⇐⇒ w ∈ L.. 

This proves the lemma. �	
Figure 3.3 shows the idea behind the Pumping Lemma. 
Here, we state the exact contrapositive of the lemma.

• Let L be a language. Suppose that for all integers p ≥ 1., there is a string w ∈ L. 

having a length of ≥ p . satisfying the following property: 

(*) For all decompositions of w as uvx satisfying |uv| ≤ p . and |v| ≥ 1., 
uvix �∈ L. for some i ≥ 0.. 

Then, L is not regular .

We observe that every |w|. satisfying the condition for some p satisfies the condition 
for any smaller value of p. From this observation, we obtain the following slightly 
relaxed version of the contrapositive .

Lemma 3.4 A language L is not regular if the following holds: 
For infinitely many p, there is a string w having a length of ≥ p . such that for 

every partition uvx . of w satisfying |uv| ≤ p . and |v| ≥ 1., uvix �∈ L. and w ∈ L. or 
uvix ∈ L. and w �∈ L.. 

We can extend the Pumping Lemma further by replacing the characters 
a1, . . . , ap . appearing in the lemma’s proof with nonempty strings. 

Lemma 3.5 Let L ⊆ �∗
. be an arbitrary regular language. Then, there is a 

constant p ≥ 1.with the following property:



3.3 Proving Non-regularity 67

Fig. 3.3 The idea behind the Pumping Lemma. The top panel is a decomposition whose existence 
is guaranteed by the lemma. The middle panel is the string generated by removing v from w. The  
bottom panel is the string generated by inserting v

For all a1, · · · ap ∈ �+
. and b ∈ �∗

., there exist s and t such that 0 ≤ s < t ≤ p . 

and for all i ≥ 0., 

. a1 · · · as(as+1 · · · at )
iat+1 · · · apb ∈ L ⇐⇒ a1 · · · apb ∈ L.

3.3.2.2 Proving Non-regularity Using the Pumping Lemma 

Let us learn how to use the Pumping Lemma to prove non-regularity. 
For a string w, let  wR

. denote its reverse, i.e., the string in which the characters 
of w appear in the reverse order. For example, if w = abcccaabb. then wR =
bbaacccba .. 

A string is a palindrome if w = wR
.. 

Example 3.4 Let � . be an arbitrary alphabet having a size of ≥ 2.. Let  A be the set 
of all palindromes ove r � .. Then A is not regular. 

We use the contrapositive (Lemma 3.4) to prove that A is not regular. 
We choose any two distinct symbols, α . and β .. Let  p be an arbitrary positive 

integer. We select αpβαp
. for the value of w. The string is a palindrome, and so is 

in A. Let w = a1 · · · apb., where a1 = · · · = ap = α . and b = βαp
.. Let  c and d be 

integers such that 0 ≤ c < d ≤ p .. Then u = αc
., v = αd−c

., and x = αp−dβαp
.. We



68 3 Non-regularity

have uv0x(= ux) = αp−d+cβαp
.. Since d > c., uv0x �∈ A., and so we have found 

an i such that

. uvix �∈ L ⇐⇒ w ∈ L.

Thus, A is not regular .

We can view the non-regularity proof as the following “pumping game” you play 
against an adversary: 

1. The adversary specifies the pumping constant p. 
2. You specify w and a1, . . . , ap, b. such that w = a1 · · · apb., where a1, . . . , ap . are 

nonempty. 
3. The adversary chooses c and d, 0 ≤ c < d ≤ p ., thereby breaking down w into 

uvx ., where u = a1 · · · ac ., v = ac+1 · · · ad ., and w = ad · · · apb.. 
4. You select the value of i from {0, 2, 3, . . .}. and argue that uvix �∈ L. in the case 

where w ∈ L. and uvix ∈ L. otherwise. 

The language L is non-regular if, and only if, you have a winning strategy in the 
“pumping game.” You can prove non-regularity by presenting a winning strategy. 

In Example 3.2, we showed that the language {0n1n | n ≥ 0}. is not regular using 
the Myhill-Nerode Theorem. Here, we prove the non-regularity using the Pumping 
Lemma. 

Example 3.5 The language B = {0n1n | n ≥ 0}. is not regular. Here is the winning 
strategy in the “pumping game” for B. 

For any adversarial choice p, you select w = 0p1p
. and set a1 = · · · = ap = 0. 

and b = 1p
.. The string w ∈ B .. For any adversarial choice of c and d, you select

i = 0.. The string v is ac+1 · · · ad = 0d−c
., and so uv0x . is 0p−d+c1p

.. Since d−c > 0., 
ux �∈ B .. Thus, B is not regular .

Example 3.6 The language C = {0m1n2s | 0 ≤ m ≤ n ≤ s}. is not regular. Here is 
the winning strategy in the “pumping game” for C. 

For any adversarial choice p, you select w = 0p1p2p
. and set a1 = · · · = ap = 0. 

and b = 1p2p
.. The string w ∈ C .. For any adversarial choice of c and d, you select

i = 2.. The string v is ac+1 · · · ad = 0d−c
., uv2x = 0p+d−c1p2p

.. Since the 0-part is 
longer than the 1-part, uv2x �∈ C ., its membership differs from that of w. Thus, C is 
not regular .

3.3.3 Proving Non-regularity Using Closure Properties 

If non-regularity proofs appear challenging to establish, we can use a closure 
property to convert the language to another and then prove that the new language is 
non-regular.



3.3 Proving Non-regularity 69

The principle idea is the following proposition. 

Proposition 3.5 Let A be a language. Let B be a language we construct from A 
with a series of operations under which the regular languages are closed. If B is not 
regular, then A is not regular.

We leave the proof of the proposition to the reader (see Exercise 3.3). 
We already know that REG. (the class of all regular languages) is closed under 

complement, union, intersection, concatenation, and the Kleene-star. 

Definition 3.3 Let a be a symbol and w be a string. By #a(w)., we denote the 
number of occurrences of a in w .

Example 3.7 Let A = {w ∈ {a, b}∗ | #a(w) �= #b(w)}.. We show that A is not 
regular. 

Let B = L(a∗b∗).. Then B is regular. Let C = A ∩ B .. If  A is regular, then C 
is regular. Assume C is regular. Let p be the pumping constant for C. Let w =
apbp+p!

.. We obtain a partition w = uvx . by the lemma. Here, |uv| ≤ p ., |v| ≥ 1., 
and for all i ≥ 0., uvix ∈ C .. Both u and v are in {a}∗ .. Since |v| ≤ p ., |v|. is a divisor 
of p!.. Let w′ = uv1+p!/|v|x .. Then w′ = ap+p!bp+p!

. and is not a member of C. 
Thus, C is not regular; thus, A is not. 

Another approach is to use D = A ∩ B .. Then D = {anbn | n ≥ 0}.. If  A is 
regular, then D is regular because the class of regular languages is closed under 
complement and intersection. Then, using the proof for Example 3.5 with a in place 
of 0 and b in place of 1, we get that D is not regular. Thus, A is not regular.

Exercises 
3.1 Prove Proposition 3.2. 

3.2 Prove Proposition 3.3. 

3.3 Prove Proposition 3.5. 

3.4 Prove that {w ∈ {a, b, c}∗ | #a(w), #b(w)., and #c(w). are pairwise different }. is 
not regular. 

3.5 Using the Pumping Lemma, prove that {0p | p . is a prime number }. is not 
regular. 

3.6 Prove that {ambnad | m + n = d}. is not regular. 

3.7 Show that the class of regular languages is closed under reverse. In other words, 
show that for each regular language L, LR = {wR | w ∈ L}. is regular. 

Hint: From a DFA accepting L, construct an NFA accepting LR
.. 

3.8 Let � = {a, b}.. Define A = {wk | w ∈ �∗
. and k ≥ 2}.. Prove that A is not 

regular .

3.9 Let � . and � . be alphabets. Let f be a mapping from �∗
. to �∗

.. For each L ⊆
�∗

., let f (L) = {f (w) | w ∈ L}.. We say that f is homomorphic if for all x and y
in �∗

., f (xy) = f (x)f (y).. Answer the following questions:



70 3 Non-regularity

1. Prove that if f is homomorphic, then f (ε) = ε .. 
2. Prove that if f is homomorphic, then for all n ≥ 1. and w = w1 · · · wn . such 

that w1, . . . , wn ∈ � ., f (w) = f (w1) · · · f (wn)., i.e., the mapping f (w). is the 
concatenation of the symbol-wise image. 

3. Prove that the class of regular languages is closed under homomorphism, i.e., for 
all alphabets � . and � ., for all homomorphic function f from �∗

. to �∗
., and for 

all regular languages L ⊆ �∗
., f (L). is regular. 

Hint: From a DFA accepting L and a homomorphic function f , construct 
an NFA that nondeterministically traverses the DFA and matches the transition 
image with the i nput.

4. Prove that the class of regular languages is closed under inverse homomorphism; 
i.e., for all alphabets � . and � ., for all homomorphic function f from �∗

. to �∗
., 

and for all regular languages A ⊆ �∗
., every language L ⊆ �∗

. such that f (L) =
A. is regular. 

3.10 Use the Myhill-Nerode Theorem to prove that the language {0m1n | m > n}. 
is not regular. 

3.11 Use the Myhill-Nerode Theorem to prove that the language Lprime = {0p | p . 

is a prime number }. is non-regular. 
Hint: Show that the language members belong to different equivalence classes. 

Suppose x = 0p
. and y = 0q

. such that p < q . belong to different equivalence 
classes. Let z = 0q−p

.. Argue that xzi
. is in Lprime . for all i ≥ 0. and draw a 

contradiction. 

3.12 Prove that the language Lprime = {0p | p . is a prime number }. is non-regular in 
the following manner: 

1. Let L ⊆ {0}∗ . be a regular language. Suppose there exists some a and b such that
a < b. and for all i between a and b,

. 0i ∈ L ⇐⇒ i ∈ {a, b}.

Use the Myhill-Nerode Theorem and prove that for all i and j such that a < i <

j < b., 0i
. and 0j

. belong to different equivalence classes for L. 
2. It is known that the gap between a prime number and the next prime number 

is unbounded. In other words, for each integer B, a pair of consecutive prime 
numbers, (p, q)., exists such that q − p ≥ B .. Prove that there exists an infinite 
sequence of triples {(ai, bi, gi)}i≥1 . such that the sub-sequence g1, g2, . . .. is 
length increasing and for all i ≥ 1., ai . and bi . are consecutive prime numbers 
and bi − ai = gi .. 

3. Combine (1) and (2) to show that the number of equivalence classes for Lprime . is 
unbounded. 

3.13 Define HALF(L). of a language L as the language {x | x . for some y, |y| = |x|., 
xy ∈ L}.. Prove that HALF(L). is regular for each regular language.



3.3 Proving Non-regularity 71

3.14 Let k ≥ 2. be a positive integer. As an extension of the previous problem, 
define PREFIX1/k(L). of a language L as the language {x | x . for some y, |y| =
(k − 1)|x|., xy ∈ L}.. Prove that PREFIX1/k(L). is regular for each regular language. 

3.15 For a language L, let CYCLE(L). as {xy | yx ∈ L}.. In other words, CYCLE(L). 

is the language constructed from L by choosing an arbitrary string in L, choosing 
an arbitrary prefix of the string, and then moving the prefix to the end. For example, 
the CYCLE .-operation produces aabc, abca, bcaa, and caab from aabc. Show that 
the regular languages are closed under the CYCLE . operation. 

3.16 Prove Lemma 3.5. 

3.17 For two languages A and B, define MINGLE(A,B). as {a1b1 · · · ambm |
a1, . . . , am, b1, . . . , bm . are symbols, a1, · · · , am ∈ A., and b1, . . . , bm ∈ B}.. Show 
that for all regular languages A and B, MINGLE(A,B). is regular. 

3.18 Let L be a regular language and �. be an integer. Show that {w | |w| ≥ �. and 
w ∈ L}. is regular. 

3.19 For a language L, define MID3(L). as the language of strings w such that for 
some x, y, |x| = |y| = |w|., xwy ∈ L.. Show that MID3(L). is regular for each 
regular language L. 

3.20 For a language L, define NOMID3(L). as the language of strings xy such that 
for some w, |x| = |y| = |w|., xwy ∈ L.. Show that the regular languages are not 
closed under NOMID3.. 

3.21 Show that if L ∈ {0}∗ . is regular, NOMID3(L). is regular. 

3.22 Let � .be an alphabet. For languages A,B ⊆ �∗
., we define the right-quotient 

of A by B, denoted A/B ., as  

. {w ∈ �∗ | (∃x ∈ B)[wx ∈ A]}.

In other words, the right-quotient of A by B is the set of all strings that can be turned 
into a member of A by appending a member of B. Prove that the class of regular 
languages is closed under the right-quotient operation.

3.23 Let � . be an alphabet. For languages A,B ⊆ �∗
., we define the left-quotient 

of A by B, denoted A \ B ., as  

. {w ∈ �∗ | (∃x ∈ B)[xw ∈ A]}.

In other words, the left-quotient of A by B is the set of all strings that can be turned 
into a member of A by attaching after a member of B. Prove that the class of regular 
languages is closed under the left-quotient operation.



72 3 Non-regularity

3.24 Let P = {0k | k . is not a power of 2}.. Prove that P is not regular .

Bibliographic Notes and Further Reading 
Kleene [9, 10] considered the regular expression as a mathematical formulation 
of McCulloch and Pitt’s nerve net (i.e., neural net) model [11]. In the above 
work, Kleene first proved the equivalence between the regular expressions and the 
nondeterministic finite automata. The equivalence proof that uses ε .-transitions is 
created by McNaughton and Yamada [12] and Brzozowski [2, 3]. The Pumping 
Lemma is by Bar-Hillel, Perles, and Shamir [1]. The Myhill-Nerode Theorem 
(Theorem 3.1) is by Nerode [13] and Myhill [4]. The closure properties of 
regular languages are studied well in the literature. The closure properties under 
homomorphisms, inverse homomorphisms, and quotient are due to Ginsburg and 
Rose [6, 8] and Ginsburg and Spaniel [7]. 

Methods exist other than the Pumping Lemma and the Myhill-Nerode Theorem 
to prove non-regularity (see Gasarch’s Survey [5]). 

References 

1. Y. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase structure grammars. 
Sprachtypologie und Universalienforschung 14, 143–172 (1961) 

2. J.A. Brzozowski, A survey of regular expressions and their applications. IRE Trans. Electr. 
Comp. EC-11(3), 324–335 (1962) 

3. J.A. Brzozowski, Derivatives of regular expressions. J ACM 11(4), 481–494 (1964) 
4. Fundamental Concepts in the Theory of Systems. ASTIA Document. Wright Air Development 

Center, Air Research and Development Command, United States Air Force (1957) 
5. W. Gasarch, Open problems column. ACM SIGACT News 49(1), 40–54 (2018) 
6. S. Ginsburg, G.F. Rose, Operations which preserve definability in languages. J. ACM 10(2), 

175–195 (1963) 
7. S. Ginsburg, E.H. Spanier, Bounded ALGOL-like languages. Trans. Am. Math. Soc. 113(2), 

333–368 (1964) 
8. S. Gisburg, G.F. Rose, Preservation of languages by transducers. Inf. Control 9(2), 153–176 

(1966) 
9. S.C. Kleene, Representation of events in nerve nets and finite automata. Research 

Memorandum RM-704, US Air Force Project Rand, 12 (1951) 
10. S.C. Kleene, Representation of events in nerve nets and finite automata, in ed. by C.E. Shannon, 

J. McCarthy, Automata Studies (Princeton University Press, Princeton, 1956), pp. 3–41 
11. W.S. McCulloch, W.A. Pitts, A logical calculus of the ideas immanent in nervous activity. B. 

Math. Biophys. 5, 115–133 (1943) 
12. R. McNaughton, H. Yamada, Regular expressions and state graphs for automata. IRE Trans. 

Electr. Comp. EC-9(1), 39–47 (1960) 
13. A. Nerode, Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)



Chapter 4 
The Context-Free Languages 

4.1 The Context-Free Grammar (CFG) 

This section introduces context-free grammar and presents some examples. 

4.1.1 The Definition 

Let us start with the definition of context-free grammars and context-free languages. 
A context-free grammar (CFG) is an apparatus for producing language mem-

bers through a series of simple substitutions. The substitution process starts with 
a string consisting solely of one specific symbol, which we call the start variable. 
The symbols that may appear in the string during the process consist of two groups. 
The first group is the collection of terminals, which do not permit substitutions. The 
second group is the collection of variables. Each variable is substitutable with a 
string consisting of terminals and variables. The variables have an arbitrary number 
of possible substitutions. The substitution procedure selects an arbitrary variable and 
applies an arbitrary replacement from the available replacements. The procedure is 
executed until the string becomes terminal-only. The language the grammar defines 
is the collection of all terminal-only strings that you can produce from the start 
variable. 

Here is a formal definition of CFGs. A CFG is a quadruple G = (V ,�,R, S)., 
where V is a nonempty set of variables (or non-terminals ), � . is a nonempty set of 
terminals, R is a nonempty set of production rules (or derivation rules) and is a 
subset of V ×(V ∪�)∗ ., and S ∈ V . is the start variable. You can substitute symbols 
with a sequence of variables and terminals. Each production rule specifies which 
symbol can be substituted with which sequence. You cannot substitute terminals. 
The terminals and the variables are disjoint. We write each production rule as x →

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4
https://doi.org/10.1007/978-3-031-84740-0_4


74 4 The Context-Free Languages

w ., where x ∈ V . and w ∈ (V ∪ �)∗ .. For a production rule r : x → w ., |w|. is the 
length of r , and each character of w is a component of w .

The rule x → w . signifies that any string z ∈ (V ∪ �)∗ . containing at least 
one occurrence of x is rewriteable into a string in which w replaces one arbitrary 
occurrence of x in z. More specifically, suppose z ∈ (V ∪ �)∗ . is equal to uxv such 
that u, v ∈ (V ∪ �)∗ . and x ∈ V ., and x → w ∈ R .. Then, applying the rule to the x 
produces uwv. We say that G produces (or derives) uvw from z (according to G)

and write z
G�⇒ uwv .. For strings z and z′ ∈ (V ∪ �)∗ ., we write z

G,∗�⇒ z′
. to mean 

that G produces z′
. from z with multiple successive substitutions. In other words, 

there exist some z1, . . . zk ∈ (V ∪ �)∗ . such that 

. z1
G�⇒ z2

G�⇒G z3 · · · zk−1
G�⇒ zk.

Here, z = z1 . and z′ = zk .. We call the series [z1, . . . , zk]. a production sequence 
(or a derivation sequence)  o  f z′

. from z. For both
G�⇒. and

G,∗�⇒.,  we  omit  G if the 
grammar G is evident from t he context.

Definition 4.1 For a CFG G = (V ,�,R, S)., L(G). is the set of all w ∈ �∗
. that we 

can derive from the start variable S. We say that G produces L(G).. 

Definition 4.2 A language L is context-free if a CFG produces L .

Definition 4.3 CFL is the class of all context-free languages. 

We often combine rules for substituting the same variables for presenting 
production rules using |. to enumerate the right-hand side of the production rules. If 
there are rules A → w1, . . . , A → wk ., we write: 

. A → w1 | · · · | wk.

4.1.2 Examples of CFGs 

Let us see some examples of CFGs. 

Example 4.1 Our first example is A = {anbn | n ≥ 0}.. We can develop a grammar 
for A with just one variable, S, which also serves as the start variable. The empty 
string is a language member. We thus introduce the rule S → ε .. We observe that a 
nonempty string w is a member of A if, and only if, w = aw′b. such that w′ ∈ A.. 
This observation gives a rule S → aSb.. These two rules are sufficient for generating 
A. Thus, our grammar is G = ({S}, {a, b}, R, S). where R = {S → ε, S → aSb}.. 
Using |., we present the production rules as: 

.S → ε | aSb.



4.1 The Context-Free Grammar (CFG) 75

When considering a sequence of productions, the variable subject to production 
can be ambiguous. We can make this explicit by attaching a marker to it. We use 
underlines for the specification here. With this grammar, we obtain the following 
production sequences: 

. S �⇒ ε,

S �⇒ aSb �⇒ ab,

S �⇒ aSb �⇒ aaSbb �⇒ aabb, and

S �⇒ aSb �⇒ aaSbb �⇒ aaaSbbb �⇒ aaabbb.

With a slight change in the rules, we can construct a grammar for {anbn | n ≥ 1}. 
(see Exercise 4.3). 

Example 4.2 Our next example is the language B of all palindromes over the 
alphabet {a, b}.; that is, B = {w | w ∈ {a, b}∗ . and w = wR}., where wR

. denotes the 
reverse of w. 

We can produce the language using CFG with just one variable. The idea is that a 
string u, |u| ≥ 2., is a palindrome if, and only if, u = xwx ., where w is a palindrome 
and x is either a or b. From the observation, we obtain the rules:

. S → ε | a | b | aSa | bSb.

With this grammar, we obtain the following production sequences: 

. S �⇒ ε,

S �⇒ a,

S �⇒ b,

S �⇒ aSa �⇒ aa,

S �⇒ aSa �⇒ aaa,

S �⇒ bSb �⇒ aaa, and

S �⇒ aSa �⇒ abSba �⇒ abba.

With a slight change in the rules, we can construct a grammar for the language of all 
nonempty palindromes and a grammar for the language of all nonempty even-length 
palindromes, etc. (see Exercise 4.4). 

Example 4.3 Our next example is {aibj ck | a = j . or j = k}.. The language is 
equal to



76 4 The Context-Free Languages

. {aibi | i ≥ 0} · {cj | j ≥ 0} ∪ {ai | i ≥ 0} · {bj cj | j ≥ 0}.

Here, ·. is the concatenation. 
Using this decomposition, we construct a grammar with five variables: 

S,A,C, T ., and U . 

• S is the start variable for selecting between two components, T  C  and AU .
• A is for producing any number of a s.
• C is for producing any number of c s.
• T is for producing {aibi | i ≥ 0}.. 
• U is for producing {bj cj | j ≥ 0}.. 
The rules are as follows: 

. S → T C | AU,

C → ε | cC,

A → ε | aA,

T → ε | aT b, and

U → ε | bUc.

Example 4.4 The last example is the language C of all strings over {a, b}. in which 
a occurs the same number of times as b. We can state the membership of a string in 
C using induction:

• A nonempty string w is in C if, and only i f, either

– w = αw ′β . such that α . and β . are opposite members of the alphabet and w′
. is 

a member of the language 
– w = uv . such that u and v are nonempty members o f C

To see why the induction works, let w = αw′β . be a nonempty member of the 
language with α, β ∈ {a, b}.. We consider two cases: α 
= β . and α = β .. First, 
suppose α 
= β .. The two characters collectively contribute 1 to the number of a .s  in  
w and 1 to b.s  in  w. Since w is in C, w′

.must be in C. 
Next, suppose α = β .. Suppose, further, α = a ..  Let w0, . . . , wn . be the prefixes 

of w in the increasing order of length, where w0 = ε . and wm = w .. For each i such 
that 0 ≤ i ≤ n.,  le  t di . be the difference in the occurrences between a and b in wi .. 
For all i such that 0 ≤ i ≤ n − 1., di+1 − di . is 1 if w’s character at position i + 1. is 
a and − 1. otherwise (i.e., the character is b). So, we have: 

• Since w is a language member, we have dn = 0.. 
• Since w’s last symbol is a, dn−1 = −1.. 
• Since w0 = ε ., d0 = 0.. 
• Since w1 = a ., d1 = 1..



4.1 The Context-Free Grammar (CFG) 77

Since d1 . is positive, dn−1 . is negative, and the change from di . to di+1 . is ± 1.,  an  
index j must exist between 2 and n−2. such that dj = 0.. Pick any such j . Then, wj . 

belongs to the language. This implies that w’s suffix after sj . is a language member. 
Thus, w = uv ., where both u and v are language members. 

The proof for the case where α = β = b. is the same, with the roles switched 
between a and b. 

From the observation, we obtain a grammar with just one variable, S, with the 
rules:

. S → ε | aSb | bSa | SS.

The last rule, S → SS ., has two occurrences of S. The double occurrences of S make 
it possible to split the production into two successive ones. 

Here are some examples of producing members of the language.

. S �⇒ SS �⇒ SaSb �⇒ SaSb �⇒ baaSb �⇒ baab and

S �⇒ SS �⇒ baS �⇒ baSS �⇒ baSbSa �⇒ baSba �⇒ baba.

4.1.3 Production Trees 

Let us explore the concept of production trees, which is a way to visualize the action 
of CFGs. 

A production tree (or derivation tree) is an upside-down tree that presents 
derivation. Each node of a production tree has an element from V ∪ � ∪ {ε}. as 
its label. A production tree has only one root. When drawing a production tree, we 
place its root at the top and leaves at the bottom. If the label of a node in a production 
tree is a variable, say x, the node may have children. The children come from one of 
the rules for substituting x, and the concatenation of the children’s labels matches 
the right-hand side of the rule. If a production tree’s root is labeled by A and the 
concatenation of its leaf labels is w, the tree corresponds to A �⇒ w .. A production 
tree is complete if the root’s label is the start variable and no leaf has a variable as 
its label (i.e., the leaves have labels belonging to �ε .). 

Figure 4.1 shows a complete production tree. 
Note that if a production tree has X as its root and w as its leaf labels, the t ree

represents X �⇒ w .. We can view this production as a new production rule and 
add it to the grammar. This new rule is redundant and consistent with the grammar 
because it can be decomposed into a sequence of existing derivation rules. Thus, the 
addition preserves the grammar’s language. This observation gives the following 
proposition.



78 4 The Context-Free Languages

Fig. 4.1 A production tree according to the palindrome’s grammar. The tree corresponds to the 
production of abba . 

Proposition 4.1 Let G be a CFG and T be a production tree. Suppose we construct 
a grammar H by adding the rule corresponding to the production tre e. Then
L(G) = L(H).. 

4.1.4 Leftmost and Rightmost Productions 

In this section, we explore leftmost and rightmost productions. 
We sometimes observe that a CFG can produce some members through different 

sequences of productions. For example, abba in the language from Example 4.4 has 
at least two productions: 

. S �⇒ SS �⇒ abS �⇒ abba and S �⇒ SS �⇒ Sba �⇒ abba.

We ask if we can define a preference order so that there is always a unique, 
most preferable production. In response to the question, we consider the leftmost 
production, which dictates that applying a production rule must be to the leftmost 
variable. Similarly, we define the rightmost production. For example, with our 
grammar for producing all strings having the same number of as  as  bs, the following 
is a leftmost production:



4.1 The Context-Free Grammar (CFG) 79

. S �⇒ SS �⇒ abS �⇒ abba.

Definition 4.4 A CFG for a language is unambiguous if, for each language 
member, there is only one leftmost derivation sequence for the member. Otherwise, 
we call the grammar ambiguous. 

Note that the grammar for the palindromes over {a, b}. from Example 4.2 is 
unambiguous because the variable S always appears once in the string the grammar 
produces. 

Is every context-free language unambiguous? Can we construct an unambiguous 
grammar for each context-free language?

Definition 4.5 A  CFL  is  inherently ambiguous if it lacks unambiguous CFG.

The question in the above is restated as: is there an inherently ambiguous CFL? 
The answer to the question is positive; we will postpone this discussion to the 

next chapter. 

4.1.5 Closure Properties of CFLs 

In this section, we explore the closure properties of CFLs. 

Proposition 4.2 CFL. is closed under union, concatenation, and the Kleene-star. 

Proof Let L1 . and L2 . be two CFLs. Let G1 = (V1, �1, R1, S1). and G2 =
(V2, �2, R2, S2). be two CFGs for the two languages, where L1 = L(G1). and 
L2 = L(G2).. We can assume that V1 ∩ V2 = ∅. by renaming the variables. 
Define V = V1 ∪ V2 ∪ {S}.. Here, S is a new variable, � = �1 ∪ �2 ., and 
R = R1 ∪ R2 ∪ {S → S1, S → S2}., where S → S1 . is a rule that turns S to S1 . 
and S → S2 . is a rule that turns S to S2 .. Now define G = (V ,�,R, S)..  Using  
one of the additional rules, we select one of G1 . and G2 . and then execute derivation 
according to the chosen grammar. Thus, G is the grammar for L1 ∪ L2 .. 

Define R′ = R1 ∪ R2 ∪ {S → S1S2}., and define G′ = (V ,�,R′, S).. With 
this new rule, the grammar produces S1S2 . from S. The two, S1 . and S2 ., respectively 
produce members of L1 . and L2 .. Thus, G′

. is a grammar for L1L2 .. 
Define V ′′ = V1 ∪ {S′′}. where S′′

. is a new variable. Define R′′ = R1 ∪ {S′′ →
ε, S′′ → S′′S1}.. Define G′′ = (V ′′, �1, R

′′, S′′).. We can exclusively produce (S1)
∗
. 

using the two new rules. Then, by applying independent derivations to the S1 .’  s,  we  
can produce a member of L(G1)

∗
.. Thus, G′′

. is a grammar for (L1)
∗
.. ��

Theorem 4.1 CFL. is not closed under complement. It is also not closed under 
intersection. 

Proof Let A = {0n1n2t | n, t ≥ 0}. and B = {0n1n2t | n, t ≥ 0}..  Let L = A ∩ B .. 
We saw in Example 5.7 that L is not context-free. Both A and B are context-free.



80 4 The Context-Free Languages

If the class of context-free languages were closed under intersection, L would be 
context-free. Thus, by contradiction, the class is not closed under intersection. 

Note that the class is closed under union. Under the De Morgan laws, if the class 
were closed under complement, it would be closed under intersection. Thus, by 
contradiction, the class is not closed under complement. ��

4.2 Normal Forms of CFGs 

Here, we study two normal forms of CFGs. Because of the form’s flexibility, 
analyzing a CFG’s behavior is challenging. The normal forms will help in this 
analysis. 

4.2.1 The Chomsky Normal Form (CNF) Grammars 

Let us start with the Chomsky Normal Form grammar. 
The Chomsky Normal Form (CNF) is a regular form where each grammar 

consists of only three types of rules. A grammar G = {V,�,R, S}. is in the 
Chomsky Normal Form if R consists only of the following three t ypes:

1. S → ε .. 
2. X → a . for some a ∈ � .. 
3. X → YZ ., where Y,Z ∈ V − {S}.. 
Because of this restriction, the first type appears in the grammar only when ε ∈
L(G).. The third type prohibits S from appearing on the right-hand side of any rule. 

None of the CFGs we have seen so far are CNF grammars. As we see later, we 
can construct an equivalent Chomsky Normal Form grammar from every CFG. 

Here is an equivalent CNF grammar for A = {anbn | n ≥ 0}.. We construct a 
CNF grammar from the one in Example 4.1.2, where the rules are S → ε | aSb..  The  
CNF grammar has five variables (S,A,B,X ., and T ) and has the following rules: 

. S → ε | AB | AX,

A → a,

B → b,

X → T B, and

T → AB | AX.

The thought process for arriving at the grammar is as follows: 
First, we introduce variables A and B for producing terminals a and b, 

respectively, and have no other roles. We replace each occurrence of a with A and



4.2 Normal Forms of CFGs 81

each occurrence of b with B. Since S cannot appear on the right-hand side, we 
duplicate the rules for S with T on the right-hand side, like S → AT B | AB | ε . 

and T → AT B | AB .. We introduce a variable X and a rule X → T B . and replace 
AT B with AX. The set of rules we obtain from these modifications is 
as follows:

. S → ε,

S → AX,

S → AB,

X → T B,

T → AX,

T → AB,

A → a, and

B → b.

Here are examples of the production sequences with the grammar: 

. S �⇒ ε,

S �⇒ AB �⇒ aB �⇒ ab, and

S �⇒ AX �⇒ aX �⇒ aT B �⇒ aABB �⇒ aaB �⇒ aabB �⇒ aabb.

The grammar is unambiguous. The nonempty strings that the grammar produces 
with leftmost production are one of the following patterns: 

1. ai ABi+ 1
., 

2. ai+1XBi
., 

3. ai+j+1bi Bj+ 1
., 

4. ai+1T  Bi+1
., and 

5. ai AXBi+ 1
.. 

Here, i ≥ j ≥ 0.. Note the following properties: 

• Applying A → a . to (1) produces (3). 
• Applying X → AB . to (2) produces (1). 
• Applying X → T B . to (2) produces (4). 
• Applying B → b. to (3) produces (3). 
• Applying T → AB . to (3) produces (1). 
• Applying T → AX . to (3) produces (5). 
• Applying A → a . to (5) produces (3).



82 4 The Context-Free Languages

• Note that the number of occurrences of A or a equals the number of occurrences 
of B or b in all the patterns.

Thus, the grammar is unambiguous. 
In a CNF grammar, applying a rule of the form X → YZ . increases the length of 

any final (i.e., terminal-only) string by 1. 

Proposition 4.3 To produce a string having a length n ≥ 2. with a CNF grammar, 
we must apply rules of the formX → YZ n−1. times and rules of the formX → a n. 

times. 

This proposition plays a crucial role in our attempt to establish methods for showing 
languages to be non-context-free in Sect. 5.4.3. 

4.2.2 Normalizing CFGs to CNF Grammars 

Every CFG is convertible to a CNF grammar. The following theorem shows such a 
conversion is possible. 

Theorem 4.2 For every CFL, a CNF grammar produces the language. 

Before getting into the construction’s details, let us define some terminology 
about production rules. The classifications are not exclusive. 

• We call a length-0 rule an ε . rule. 
• A variable from which ε . can be produced is a nullable variable. 
• A rule having a length of ≥ 1. if a terminal-only rule if its right-hand side 

consists only of terminals, a variable-only rule if its right-hand side consists 
only of variables, and a mixed rule otherwise. 

• A length-1 variable-only rule is a unit rule. 
• A rule with a ≥ 3. length is a long rule. 

Proof Overview 
We convert an arbitrary CFG G = (V ,�,R, S). to an equivalent CNF 
grammar through the following steps: 

1. For each terminal, we introduce a variable with a length-1 rule that 
produces the terminal, and we replace every occurrence of the terminal 
in the existing rules with the variable if the rule has a length of ≥ 2.. 

The process eliminates all the mixed rules. 
2. We introduce a new variable and duplicate each rule from the start variable 

to the new variable; after the duplication, we make the new variable the 
start variable. 

(continued)



4.2 Normal Forms of CFGs 83

The process eliminates the start variable on the right-hand side of the 
rules. 

3. We identify all nullable variables. If the new start variable is nullable, we 
record the information and introduce an ε . rule from the start variable at the 
end. 

4. We turn all long rules into a series of length-2 rules while duplicating 
each length-2 rule containing a nullable variable, with one of the nullable 
variables erased. 

We then eliminate all ε . rules. 
5. We identify all unit rules and their chains. 
6. We short-circuit all unit rules to create length-2 rules and terminal-only 

rules. 
After that, we remove all unit rules. 

7. If we found earlier that the grammar produces ε ., we add an ε . rule from the 
(new) start variable. 

Proof Let G = (V ,�,R, S). be an arbitrary CFG. We will convert G to  a  CNF  
grammar through the seven steps in the overview. 
Step 1: For each terminal a ∈ � ., we introduce a variable Xa . and a rule Xa → a . 

and then, in every other rule, replace each occurrence of a with Xa .. The process 
replaces a rule containing k terminals with a production consisting of a series of
k + 1. rules. After the modification, no mixed rules exist in the grammar. 
Step 2: We use a greedy algorithm to identify nullable variables. Let N be the 
variables found to be nullable. The initial members of N are those v ariables with
ε . rules. Let V be the present set of all variables. Let W = V − N .. We repeat the 
following until no element is moved from W to N ; if a variable X ∈ W . exists with 
a  rule X → w,w ∈ N∗

., move X from W to N . After the addition, we record if
S → ε .. 
Step 3: We introduce a new variable S0 ., and for each rule, S → w ., add S0 → w .. 
Step 4: For each variable-only rule A → X1 · · · X� . such that � ≥ 2., we apply the 
following: 

• If � = 2. and X1 . is nullable, we add a new rule A → X2 .. 
• If � = 2. and X2 . is nullable, we add a new rule A → X1 .. 
• If � ≥ 3., we add a new variable Y , replace the rule with A → X1Y . and Y →

X2 · · ·X� .. In addition, if X1 . is nullable, add another rule A → Y .. 

After this process, we remove all ε . rules. 
Step 5: We find all existing unit rules and those induced by combining them. We 
initialize U as the set of all unit rules in the grammar. We then repeat the following: 
as long as rules X → Y . and Y → Z . exist in U such that X → Z . is not in U and 
X 
= Z ., add X → Z . to U .



84 4 The Context-Free Languages

Step 6: For each unit rule X → Y . in U and non-unit rule Y → w .,  we  add  a  r  ule
X → w .. 
Step 7: If S0 → ε . is a required rule, add it to the grammar. 

Algorithms 4.1 and 4.2 present a pseudocode of the conversion algorithm. ��

Algorithm 4.1 An algorithm for converting a CFG to an equivalent CNF grammar 
(part 1) 
1: procedure CNF-CONVERSION-PART1(G = (V ,�,  R,  S)) � Step 1 
2: for each a ∈ � do 
3: add Xa to V ; 
4: add Xa → a to R; 
5: end for 
6: for each rule X → w, |w| ≥  2 do 
7: if w contains a terminal then 
8: w′ → w with each a ∈ σ replaced with Xa ; 
9: replace X → w with X → w′; 
10: end if 
11: end for � Step 2 
12: N ← {X | X has an ε rule}; 
13: W ← V − N ; 
14: while (∃X ∈ W)(∃X → w ∈ R0)w ∈ N+ do 
15: for each such X do 
16: add X to N ; 
17: end for 
18: end while 
19: β ← S ∈ N ; � Step 3 
20: add S0 to V ; 
21: for each rule S → w do 
22: add S0 → w to R; 
23: end for 
24: replace S with S0; 
25: end procedure

Example 4.5 Here is a demonstration of how the conversion algorithm works. Let 
G be a grammar for {(aa)n(bb)n | n ≥ 0}.. The rules are: 

. S → ε | aaSbb | ε.

• In Step 1, we add variables Xa . and Xb ., add rules Xa → a . and Xb → b., and then 
change the rules for S to: 

. S → ε | XaXaSXbXb | ε.

• Step 2 finds N = {S}. as the set of nullable variables. We record β . as true.. 
• In Step 3, we introduce S0 . and the rules:



4.2 Normal Forms of CFGs 85

Algorithm 4.2 An algorithm for converting a CFG to an equivalent CNF grammar 
(part 2) 
1: procedure CNF-CONVERSION-PART2(G = (V ,�,  R,  S)) � Step 4 
2: R1 ← ∅; 
3: while R is not empty do 
4: select one rule r : A → w in R; 
5: if |w| ≥  1 then 
6: add r to R1; 
7: remove r to R; 
8: if |w| = 2 then 
9: let w = X1X2; 
10: add r to R1; 
11: if X1 ∈ N then 
12: add A → X2 to R1; 
13: end if 
14: if X2 ∈ N then 
15: add A → X1 to R1; 
16: end if 
17: else 
18: let w = X1X2 · · ·X�; 
19: add a new variable Y ; 
20: add A → X1Y to R1; 
21: add Y → X2 · · ·  X� to R; 
22: if X1 ∈ N then 
23: add A → Y to R1; 
24: end if 
25: end if 
26: end if 
27: end while 
28: R ← R1; 
29: end pro cedure

. S0 → ε | XaXaSXbXb | ε.

• In Step 4, we decompose long rules, possibly erasing occurrences of the nullable 
S. The new variables are Y1 . and Y2 ., and the new rules are: 

.S → XaY1,

Y1 → XaSXbXb,

Y1 → XaY2,

Y2 → SXbXb,

Y2 → XbXb,

Y2 → SY3,

Y2 → Y3,

Y3 → XbXb, and

S0 → XaY1.



86 4 The Context-Free Languages

Algorithm 4.3 An algorithm for converting a CFG to an equivalent CNF grammar 
(part 3) 
1: procedure CNF-CONVERSION-PART3(G = (V ,�,  R,  S)) � Step 5 
2: U ← all the unit rules; 
3: while true do 
4: if ∃X, Y, Z ∈ V,  X  → Y ∈ R, Y → Z ∈ R, X → Z 
∈ R, X 
= Z then 
5: add X → Z to U ; 
6: else 
7: terminate the loop; 
8: end if 
9: end while � Step 6 
10: for each X → Y, Y → w ∈ R do 
11: if Y → w 
∈ U then 
12: add a rule X → w; 
13: end if 
14: end for 
15: remove all rules in U from R; � Step 7 
16: if β = true then 
17: add a rule S0 → ε; 
18: end if 
19: return the grammar; 
20: end pro cedure

Here, the second and fourth rules require further decompositions. 
• In Step 5, we find all unit rules. There is only one unit rule: Y2 → Y3 .. 
• Step 6 combines unit and non-unit rules to produce Y2 → X3X3 .. 
• Finally, in Step 7, we add S0 → ε .. 

The final set of rules is: 

.S0 → XaY1,

Xa → a,

Xb → b,

S → XaY1,

Y1 → XaY2,

Y2 → SY3,

Y2 → XbXb, and

Y3 → XbXb.



4.2 Normal Forms of CFGs 87

4.2.3 The Greibach Normal Form (GNF) Grammars 

CFLs have another normalized form, the Greibach Normal Form (GNF). Intu-
itively, in a Greibach Normal Form grammar, terminals may appear only as the first 
symbol on the right-hand side of the rules. 

Definition 4.6 A  CFG G = (V ,�,R, S). not producing ε . is a Greibach Normal 
Form (GNF) grammar if every rule is of the form X → aY . for some X ∈ V ., 
a ∈ � ., and Y ∈ V ∗

.. 
If a GNF grammar G produces ε ., S does not appear on the right-hand side of any 

rules, and G has a rule S → ε .. 

We can construct a Greibach Normal Form grammar from an arbitrary CFG not 
producing ε .. 

Theorem 4.3 For every CFL not producing ε ., a Greibach Normal Form grammar 
produces the language. 

Proof Let G = (V ,�,R, S). be a Chomsky Normal Form grammar for a language 
L. We fix some ordering of the variables, A1, . . . , Ak ., where Ak = S .. We may add 
new variables Ak+1, Ak+2 ., etc., during the conversion. The addition will be in this 
order, and it will be one variable at a time. 

We classify the rules we handle into the following four types: 

1. (Terminal-leading) A → aw .where a ∈ � . and w ∈ (� ∪ V )∗ .. 
2. (Index-increasing) Ai → Ajw .where i < j . and w ∈ (� ∪ V )∗ .. 
3. (Index-decreasing) Ai → Ajw .where i > j . and w ∈ (� ∪ V )∗ .. 
4. (Index-preserving) Ai → Aiw .where w ∈ (� ∪ V )∗ .. 

Our task is to convert the grammar so there are only terminal-leading rules. We 
accomplish this task in two phases. First, we eliminate all index-increasing and 
index-preserving rules. Then, we eliminate index-decreasing rules. 

The elimination in the first phase occurs in the decreasing order of the index 
to the variables, starting with Ak . and ending with A1 .. For the base case, Ak . is the 
variable. Since Ak . is the start variable, and the start variable of a CNF grammar does 
not appear on the right-hand side of any production, Ak . has no index-increasing or 
index-preserving rules. Thus, the requirement for Ak . has already been met. 

For the induction step, let 1 ≤ i ≤ k − 1., and suppose that the requirement has 
been met for Ai+1, . . . , Ak .. Suppose Ai . has an index-increasing rule Ai → Ajw . 

such that j > i .. We construct a new rule by combining Ai → Ajw . and each 
rule of the form Aj → u.. We then replace Ai → Ajw . with the new rules. The 
replacement may produce an index-increasing rule of the form Ai → Apv ., but, due 
to our induction hypothesis, p < j .. Thus, by repeatedly applying the replacement 
procedure to any index-increasing rule from Ai ., all index-increasing rules from Ai . 

can be eliminated. 
After the elimination, suppose Ai . has an index-preserving rule. If Ai . has no 

index-increasing or terminal-leading rules, we cannot turn a string containing Ai . to



88 4 The Context-Free Languages

terminals, so we will remove all rules from Ai . and those with Ai . on the right-hand 
side. Let 

. Ai → α1 | · · · | αm

be an enumeration of all index-decreasing or terminal-leading rules from Ai .. 
Additionally, let 

. Ai → Aiβ1 | · · · | Aiβn

be an enumeration of all index-preserving rules from Ai .. If we construct a string 
by combining these rules so that the right-hand side does not start with Ai ., then the 
string must be in the form: 

. Ai → αpβl1 · · ·βlq

for some q ≥ 0. and l1, . . . , lq . between 1 and n. We introduce a new variable B 
(which receives the smallest available variable index) and replace the rules from Ai . 

with the following rules: 

. Ai → α1 | · · · | αm | α1B | · · · | αmB and

B → β1 | · · · | βn | β1B | · · · | βnB.

The rules from Ai . free of B that we can produce from the new rules are exactly of 
the f orm:

. Ai → αpβl1 · · · βlq , q ≥ 0.

After the replacement, Ai . has no recursive rules. Also, since B has the highest 
index, each rule from B is index-decreasing or terminal-leading. This completes 
the induction step for Ai .. 

In the second phase, we eliminate all the index-decreasing rules, starting from 
A1 . and moving toward the variable with the highest index. The construction is 
inductive. The base case is A1 .. Since A1 . has no preceding variable in the ordering, 
all its rules are terminal-leading. Thus, the requirement has already been met for A1 .. 

For the induction step, let i ≥ 2. and suppose we have completed the construction 
for A1, . . . , Ai−1 ..  Let Ai → Ajw . be an arbitrary index-decreasing rule from Ai ., 
where j < i .. By our induction hypothesis, every rule from Aj . is index-decreasing. 
We create new rules by replacing Aj . in Ai → Ajw . with each rule from Aj . and 
substitute Ai → Ajw . with the new rules. The new rules are terminal-leading. In 
this manner, we complete the construction for Ai .. 

Algorithm 4.4 presents the conversion algorithm. ��



4.2 Normal Forms of CFGs 89

Algorithm 4.4 An algorithm for converting a CNF to a GNF 
1: procedure GNF-CONVERSION(G) 
2: receive a CNF grammar G = (V ,�,  R,  S); 
3: enumerate the variables of V as A1,  .  .  .  ,  Ak where S = Ak ; 
4: initialize the maximum index μ as k; 
5: for i = k − 1,  .  .  .  , 1 do 
6: while R has an index-increasing rule from Ai do 
7: select one rule r : Ai → Ajw; 
8: find all rules from Aj : Aj → u1 |  · · · |  us ; 
9: add Ai → u1w |  · · · |  usw; 
10: remove r from R; 
11: end while 
12: find all terminal-leadings from Ai : Ai → α1 |  · · · | αm; 
13: find all index-preserving rules from Ai : Ai → Aiβ1 |  · · · |  βn; 
14: if n ≥ 1 ∧ m = 0 then � Ai cannot produce terminal-only strings 
15: for each rule r : A → w in R s.t. A = Ai or Ai appears in w do 
16: remove r from R; 
17: end for 
18: else if n, m ≥ 1 then 
19: μ ← μ + 1; V ← V ∪ {Aμ}; 
20: add Ai → α1Aμ |  · · · |  |  αmAμ to R; 
21: add Aμ → β1 |  · · · | βn to R; 
22: add Aμ → β1Aμ |  · · · |  βnAμ to R; 
23: remove all the index-preserving rules from Ai ; 
24: end if 
25: end for 
26: for i = 1,  .  .  .  ,  μ  do 
27: for each rule r : Ai → Ajw ∈ R s.t. i  >  j  do 
28: find all rules from Aj : Aj → u1 |  · · · |  us ; 
29: add Ai → u1w |  · · ·  | usw to R

30: remove r from R;
31: end for
32: end for
33: end procedure

Example 4.6 Here is an example of converting a CNF to a GNF. Let G =
(V ,�,R,A5). be a CNF grammar such that V = {A1, . . . , A5}., � = {a, b}., and R 
consists of the following rules:

. A1 → a,

A2 → b,

A3 → A4A2 | b,

A4 → A1A3, and

A5 → A1A3.

The grammar is for {anbn | n ≥ 1}.. A5 .’s rule is index-decreasing; so is A4 .’s. A3 .’s 
first rule A3 → A4A2 . is index-increasing, so requires a replacement. We substitute



90 4 The Context-Free Languages

the A4 . on the right-hand side with A1A3 . to create a new rule A3 → A1A3A2 .. A2 . 

and A1 . have only a terminal-leading rule, so no change is necessary. We thus have: 

. A1 → a,

A2 → b,

A3 → A1A3A2 | b,

A4 → A1A3, and

A5 → A1A3.

Now, we turn all the rules into terminal-leading. No changes are needed for A1 . and 
A2 .. We substitute the A1 . at the start of the remaining rules with a to get A3 →
aA3A2 ., A4 → aA3 ., and A5 → aA3 .. The final composition of the rules is: 

. A1 → a,

A2 → b,

A3 → aA3A2 | b,

A4 → aA3, and

A5 → aA3.

Exercises 
4.1 Show that regular languages are already context-free using the following 
argument: 

Let M = (Q,�, δ, q0, F ). be a DFA for some regular language L. For each pair 
of states (p, q) ∈ Q × F ., think of a variable Sp,q . representing all strings in �∗

. that 
take M from p to q.  Let  S be the start variable of the grammar you will construct. 
There shall be rules S → Sq0,q . for all q ∈ F .. Present the rules for the remaining 
variables. 

4.2 Give a CFG for {ambn | m > 1. and n ≥ 1}.. 
4.3 Give a CFG for {anbn | n ≥ 1}.. 
4.4 Give a CFG for the nonempty palindromes over {a, b}.. 
4.5 Give a CFG for {ambncm | m, n > 1}.. 
4.6 Using the grammar from the previous question, present a leftmost production 
tree for aabcc and aabbcc .

4.7 Give a CFG for the set of all strings over {0, 1}. containing the same number of 
0s as 1s. 

4.8 Give a CFG for the set of all strings over {0, 1}. containing strictly more 0s than 
1s.



4.2 Normal Forms of CFGs 91

4.9 Give a CFG for the set of all strings over {0, 1}. containing unequal numbers of 
0s and 1s. 

4.10 The Dyck language D is the set of all strings over the alphabet {[, ]}. such that 
for all w, w ∈ D . if, and only if, u has the same number of [.s  a  s ].s and all prefixes of 
w has no less [.s than ].s. Prove that the Dyck language is context-free by constructing 
its CNF grammar. 

4.11 Let k ≥ 1..  Let [j , ]j .where 1 ≤ j ≤ k . be k pairs of brackets. As an extension 
of the Dyck language from the previous question, define Dk . as the set of strings w ∈
{[1, ]1, . . . , [k, ]k}∗ . such that for all i, the string constructed from w by erasing all 
characters except for [i , ]i . is the member of the Dyck language with [= [i . and ] =]i .. 
Give a CFG for L. 

4.12 Let A be a regular language. Define L = {xyR | |x| = |y|. and xy ∈ A}.. Show 
that L is contex t-free.

4.13 Let k ≥ 2..  Let L1, . . . , Lk . be CFLs not containing an ε .. Suppose G1 =
(V1, �1, R1, S1), . . . ,Gk = (Vk,�k, Rk, Sk). are CNF grammars for L1, . . . , Lk ., 
respectively. Define 

. ((L1 ∪ ε) · · · · · (Lk ∪ ε)) − {ε}.

In other words, L is the concatenation of some m strings from L1, . . . , Lk ., where 
the m parts have increasing source indices, and 1 ≤ m ≤ k .. Show how to construct 
a CNF grammar for L using the existing CNF grammar for each source language.

4.14 Let � . be an alphabet. Let $. be a symbol not in � .. Define B = {x$y | |x| 
=
|y|}.. Show that B is contex t-free.

4.15 Let � . be an alphabet. Let #. and $. be two symbols not in � .. Define C =
{#w$wR# | w ∈ �∗}. and D = {#w$yR# | w, y ∈ �∗

. and y 
= wR}.. Show that 
both C and D are conte xt-free.

4.16 Let � . be an alphabet. Let k ≥ 1. be an integer. Let 	. be a nonempty subset 
of �k × �k

..  Le  t #. and $. be two symbols not in � .. Define E = {#uxv$wyuR# |
u, v,w ∈ �∗

., and (x, y) ∈ 	}.. Show that E is contex t-free.

4.17 Let � . be an alphabet and let #. be a symbol not in � ..  Le  t F =
{#w1# · · · #wm# | m. is positive and even, and |w1| = · · · = |wm|}.. Prove that 
F . is context-free. 

4.18 Let A = {w | w ∈ {0, 1, 2}∗ . and among the numbers of 0s, of 1s, and 2s, at 
least two of them have the same values }.. Show that A is context-free by providing 
its CFG.

4.19 Regarding the grammar you provided for the previous question, present the 
leftmost production trees for 0012110222. (0 and 1 appear three times each) and 
2012012. (each symbol appears twice).



92 4 The Context-Free Languages

4.20 Define the size of a CFL as the sum of its number of rules and the total length 
of the right-hand side of the rules. Show that with our CNF conversion method, a 
grammar with a size of s becomes a CNF grammar with a size of O(s2 log(s)).. 
You may assume that the individual elements of the alphabet and variables have a 
constant size. 

4.21 A variable in a CFG is useless if the variable does not appear in any production 
from the start variable or does not produce a terminal-only string. Give an algorithm 
for finding all useless variables in an arbitrary CFG. 

4.22 Show that the language {w | w ∈ {0, 1}∗ . and w has  twice  as  many  0s as 1s}. is 
context-free by providing a CFG for the language. 

4.23 Show that the class of context-free languages is closed under the reverse 
operation; i.e., for all context-free language L, LR

. is context-free. 

4.24 Let G1 . and G2 . be CNF grammars for two context-free languages, L1 . and L2 ., 
respectively. Show how to construct CNF grammars for L1L2 . and L1 ∪ L2 . using 
G1 . and G2 .. 

4.25 Let G be a CNF grammar for a context-free language L.  LetL′
.be the set of all 

prefixes of the members of L. State how to modify the grammar G into a grammar 
for L′

., where the grammar is like a CNF grammar, and the ε . rule is available to any 
variable. 

4.26 Prove that if every rule in a Greibach Normal Form grammar G has at most 
one variable on the right-hand side, then L(G). is regular. 

4.27 Show how to construct from an arbitrary DFA M , a Greibach Normal Form 
grammar for L(M). where the right-hand side of each production is ε ., a terminal, 
and a terminal followed by a variable. 

4.28 In a CNF grammar, the rule’s right-hand side, consisting solely of variables, 
has a length of 2. If we increase the required number of variables to exactly three, 
can we still convert an arbitrary CFL grammar to a normal-form grammar? 

4.29 Let G be a CNF grammar (V ,�,R,A5)., where V = {A1, . . . , A5}., � =
{0, 1, 2}. and R consists of the following rules:

. A1 → 0,

A2 → 1,

A3 → A4A2 | A2A4,

A4 → A1A3 | A3A4 | 2, and

A5 → A4A4.

Convert G to a GNF grammar using the conversion algorithm from Sect. 4.2.3.



References 93

4.30 Let G = (V ,�,R, S). be a CNF grammar with V = {A1, . . . , Am}. such that 
for all i between 1 and m, no variables having an index ≤ i . appear in production 
rules for Ai .. Prove that such a grammar necessarily produces a finite language. 

Bibliographic Notes and Further Reading 
The context-free languages are by Chomsky [2, 3]. The Chomsky Normal Form is 
from [3]. The Greibach Normal Form is by Greibach [8]. The CNF construction 
algorithm is by Rosenkrantz [11]. Rosenkrantz [11] also presents alternate normal 
forms derived from CNF. The ambiguity of CFGs was first mentioned in Cantor [1], 
Chomsky and Schützenberger [4], Floyd [5], and Greibach [7]. The inherent 
ambiguity was first studied in Ginsburg and Ullian [6], Gross [9], and Parikh [10]. 

References 

1. D.G. Cantor, On the ambiguity problem of Backus systems. J. ACM 9(4), 477–479 (1962) 
2. N. Chomsky, Three models for the description of language. IRE Trans. Inform. Theory 2(3), 

113–124 (1956) 
3. N. Chomsky, On certain formal properties of grammars. Inform. Control 2(2), 137–167 (1959) 
4. N. Chomsky, M.P. Schützenberger, The algebraic theory of context-free languages, in Studies 

in Logic and the Foundations of Mathematics, vol. 26 (Elsevier, 1959), pp. 118–161 
5. R.W. Floyd, On ambiguity in phrase structure languages. Commun. ACM 5(10), 526,534 

(1962) 
6. S. Ginsburg, J. Ullian, Ambiguity in context free languages. J. ACM 13(1), 62–89 (1966) 
7. S.A. Greibach, The undecidability of the ambiguity problem for minimal linear grammars. 

Inform. Control 6(2), 119–125 (1963) 
8. S.A. Greibach, A new normal-form theorem for context-free phrase structure grammars. J. 

ACM 12(1), 42–52 (1965) 
9. M. Gross, Inherent ambiguity of minimal linear grammars. Inform. Control 7(3), 366–368 

(1964) 
10. R.J. Parikh, On context-free languages. J. ACM 13(4), 570–581 (1966) 
11. D.J. Rosenkrantz, Matrix equations and normal forms for context-free grammars. J. ACM 

14(3), 501–507 (1967)



Chapter 5 
The Pushdown Automaton Model 

5.1 The Pushdown Automaton (PDA) Model 

First, we introduce the pushdown automaton computation model. We then show its 
equivalence to CFLs. 

5.1.1 The Definition 

Let us begin by defining the model. A pushdown automaton (PDA) is an NFA with 
an additional storage device, the stack. 

A pushdown automaton’s stack is similar to the stack (last-in, first-out) data 
structures but lacks the native testing of emptiness. A PDA uses a symbol indicating 
the stack’s bottom to compensate for that lack. The symbol is referred to as an 
initial symbol (or bottom symbol). A PDA is expected to place the symbol at the 
computation’s start and refrain from using the symbol at other stack positions. 
The designation of the initial symbol may or may not be part of the PDA’s 
definition. In one step, like NFAs, the PDA reads at most one input symbol in the 
stream and removes the last symbol from the stack. We call the removal operation 
“popping.” Depending on the input symbol, the stack symbol, and the state, the PDA 
nondeterministically decides its next state and the string to append to the stack. We 
call the append operation “pushing.” 

Formally, a PDA is a seven-tuple (Q,�,�, δ, q0,⊥, F ).. The components of the 
tuple have the following roles: 

• Q is the set of states .
• � . is the input alphabet. 
• � . is the stack alphabet. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_5

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5
https://doi.org/10.1007/978-3-031-84740-0_5


96 5 The Pushdown Automaton Model

• δ . is the transition function and is a mapping from Q × �ε × �ε . to P(Q × �∗)., 
i.e., the power set of Q × �ε .. Here, �ε = � ∪ {ε}.. 

• q0 ∈ Q. is the initial state. 
• ⊥ ∈ � . is the initial symbol (or bottom symbol). 
• F ⊂ Q. is the final state set. 

The move (r, x) ∈ δ(q, a, b).with q, r ∈ Q., a ∈ �ε ., b ∈ �ε ., and x ∈ �∗
.means: 

• If the PDA is in q, reads a in the input, and pops b from the stack, it pushes x 
onto the stack and enters r .

A PDA is nondeterministic because of the following nature of its computation: 

(a) A PDA can choose between reading the input character (when available) and 
not reading it. 

(b) A PDA can choose between popping the stack’s top symbol (when available) 
and not popping it. 

(c) Multiple choices (or no choices) may exist for each combination of state, input 
symbol, and stack symbol. 

We often use a drawing as in Fig. 5.1 for graphical presentations of PDAs. 
There are multiple variants of PDAs depending on the way they operate on the 

stack and when they choose to accept. 

• The Stack Initialization 

– A PDA’s computation may start with an empty stack. 
– A PDA’s computation may start with a single initial symbol in its stack. 

• The Initial Symbol 

– A PDA has a fixed initial symbol. 
– A PDA has no fixed initial symbol. 

• The Popping Operation 

– A PDA must pop from its stack at each step. If popping is required, a PDA 
must start its computation with its initial symbol in its stack. Additionally, 
a PDA stops computing when the stack becomes empty because it cannot 
execute a popping operation. 

– A PDA may choose not to pop from its stack at any step. 

Fig. 5.1 A typical drawing 
of a PDA. The vertical cells 
represent the stack. The stack 
contents are ⊥aBA. from the 
bottom to the top



5.1 The Pushdown Automaton (PDA) Model 97

• The Pushing Operation 

– If popping is required, a PDA needs to push more than one character. 
– If popping is not required, a PDA may be restricted to push one character at a 

time. 

The Acceptance Condition 

– The PDA accepts when it enters a final state after reading its entire input. 
– The PDA accepts when it enters a final state after reading its entire input and 

emptying its stack. The PDA accepts when the state becomes final and the 
stack becomes empty. 

These variants are all equivalent. In this section, we consider the model in which: 

• A PDA starts its computation with the initial symbol in the stack and 
• It accepts its input by entering a final state after reading the entire input and 

emptying its stack. 

For a PDA, we combine the state, the remaining input characters, and the stack 
content from bottom to top to present its instantaneous description (ID). In one 
step, if the PDA reads from the input, we remove the first character of the remaining 
input. In one step, if the PDA pops from the stack, we remove the string’s first 
character representing the stack content. Similarly, if the PDA pushes onto the stack, 
we insert the symbol as the string’s first character. The initial ID of the PDA with 
w as its input is (q0, w,⊥). since the computation starts with the empty stack. An 
accepting ID of the automaton is (p, ε, α). with p ∈ F . for any α ∈ �∗

., since the 
requirements for acceptance are an empty input and an arrival at a final state. 

Definition 5.1 A  PDA  M accepts its input w if the ID of M on input w reaches 
one of its accepting IDs starting from its initial ID. We denote the language that M

accepts (i.e., {w | M . on x accepts }.)  by L(M).. 

5.1.2 Examples of PDAs 

Here, we show that some non-regular languages we previously saw have PDAs to 
accept them. 

Example 5.1 The example here is {anbn | n ≥ 0}.. Anticipating that the input 
matches the regular expression a∗b∗

., our PDA puts the leading as onto the stack. 
When the input switches to b, the PDA starts popping from the stack for each 
b appearing in the input. If the input is a language member, the stack becomes 
empty at the same time the input becomes empty; otherwise, the matching process 
prematurely ends with either input characters remaining or the stack remaining 
nonempty.



98 5 The Pushdown Automaton Model

We can program this idea using only three states, q0 ., q1 ., and q2 ., where q0 . is the 
initial state and q2 . is the final state. The stack alphabet is {⊥, a}.. There are only 
three combinations of state and symbols for which we have nonempty values for the 
transition function: 

. δ(q0, a,⊥) = {(q0, a⊥)},
δ(q0, a, a) = {(q0, aa)},
δ(q0, b, a) = {(q1, ε)},
δ(q1, b, a) = {(q1, ε)}, and

δ(q1, ε,⊥) = {(q2, ε)}.

The first action is to start creating as in the stack. The second action is to continue 
creating as in the stack. The third action is to switch to matching a and b upon 
seeing the first b. The fourth action is to continue matching a and b. The last action 
is to remove the initial symbol and enter the final state for termination. 

We show how the PDA may accept aaabbb. using the changes in its ID: 

. (q0, aaabbb,⊥) → (q0, aabbb,⊥a) → (q0, abbb,⊥aa)

→ (q0, bbb,⊥aaa) → (q1, bb,⊥aa) → (q1, b,⊥a)

→ (q1, ε,⊥) → (q2, ε, ε).

Here, the symbol →. represents a change in a single step. Figure 5.2 shows the 
PDA’s possible choices. The computation starts from the middle top ID, and the 
successful computation ends at the bottom right ID. A possible computation path 
with abbb. as the input is as follows: 

. (q0, abbb,⊥) → (q0, bbb,⊥a) → (q1, bb,⊥).

Fig. 5.2 The computation 
path for {anbn | n ≥ 0}. on 
input aaabbb.



5.1 The Pushdown Automaton (PDA) Model 99

At this point, there is nothing for the automaton to do, so the automaton halts without 
accepting the input. 

Example 5.2 In this example, we consider the language of palindromes over the 
alphabet {a, b}.. Our PDA has two states, the initial q0 . and the final q1 ..  In q0 .,  the  
automaton builds a prefix that the PDA reve rse-matches:

1. If the stack symbol is the initial symbol, the PDA may enter q1 . without pushing 
onto the stack. 

2. If the stack symbol is the initial symbol, the PDA may push the symbol after the 
initial symbol and stay in q0 .. 

3. If the stack symbol is not the initial symbol, the PDA may add it to the stack and 
stay in q0 .. 

4. If the stack symbol is not the initial symbol, the PDA may add it to the stack and 
enter q1 .. 

5. If the stack symbol is not the initial symbol, the PDAmay enter q2 .without adding 
the input character to the stack. 

In q1 ., the automaton reads an input character and pops a character from the stack. 
When no input character remains, the stack has only the initial symbol, and the state 
is q1 .; the PDA may then remove the initial symbol. 

Here is the transition function, where x ∈ {a, b}. and y is an arbitrary symbol in
{a, b}.: 

. (q0, ε,⊥) = {(q1, ε)},
(q0, x,⊥) = {(q0,⊥x), (q1, ε)},
(q0, x, y) = {(q0, yx), (q1, x), (q1, yx)},
(q1, x, x) = {(q1, ε)}, and

(q1, ε,⊥) = {(q2, ε)}.

With this program, a PDA finds the input abbba . to be a member as follows: 

. (q0, abbba,⊥) → (q0, bbba,⊥a) → (q0, bba,⊥ab)

→ (q1, ba,⊥ab) → (q1, a,⊥a) → (q1, ε,⊥) → (q2, ε, ε).

With this program, a PDA finds the input abba . to be a member as follows: 

. (q0, abba,⊥) → (q0, bba,⊥a) → (q1, ba,⊥ab)

→ (q1, a,⊥a) → (q1, ε,⊥) → (q1, ε, ε).

An example of how the PDA works appears in Fig. 5.3.



100 5 The Pushdown Automaton Model

Fig. 5.3 The computation path of our PDA for the palindrome over {a, b}. on input abbba . 

Example 5.3 Our last example is the language of all strings over {a, b}. where a 
occurs the same number of times as b. Our program uses two states, q0 . and q1 ., 
where q0 . is the initial state and q1 . is the final state. The stack alphabet is {⊥, a, b}., 
where ⊥. represents the bottom of the stack. Our PDA scans the input and computes 
the running difference in the number of occurrences between as and bs  using  the  
symbols in excess. The stack content is ⊥ak

. when the difference is positive k (i.e., 
more as than bs and the difference is k) and ⊥bk

. when the difference is − k . (i.e., 
there are more bs than as and the difference is k). The stack content is ⊥. exactly 
when there is no difference. The PDA may pop ⊥. without reading the input and 
enter q0 .. The state q1 . has no action. The following shows the transition function of 
the PDA, where x is a symbol in {a, b}. and y is the opposite symbol of a .

. δ(q0, x,⊥) = {(q0,⊥x)},
δ(q0, x, x) = {(q0, xx)},
δ(q0, x, y) = {(q0, ε)}, and

δ(q0, ε,⊥) = {(q1, ε)}.

For the list, the transition function offers exactly one value for each triple of a state, 
an input symbol, and a stack symbol.



5.2 Equivalence Between CFLs and PDAs 101

5.2 Equivalence Between CFLs and PDAs 

This section proves that PDAs’s computational power is equivalent to the expressive 
power of context-free grammars. 

Theorem 5.1 Each context-free language has a PDA accepting it. 

Proof Overview 
From a CNF grammar of an arbitrary context-free language, we develop a 
PDA that executes leftmost production while comparing the input character 
each time it applies some single-terminal rule. 

Proof Let L be an arbitrary context-free language. Let G = (V ,�,R, S). be  a  CNF  
grammar for L. We construct a PDA, M = (Q,�,�, δ, q0,⊥, F )., that executes 
leftmost production accoording to G, as follows: 

• The stack alphabet of M , � .,  is V ∪ {⊥}.. 
• The state set of M , Q,  is {q0, q1, q2}., where q0 . is the initial state and q2 . is a 

unique final state. 
• In state q0 ., two possible actions exist. First, the PDA replaces the ⊥. with 

the string ⊥S . without reading the input. Second, in the case where ε ∈
L(G)., the PDA may enter q2 . after popping the ⊥., without reading the input. 
Mathematically, these actions can be expressed as: 

. δ(q0, ε,⊥) = {(q1,⊥S), (q2, ε)}.

• In state q1 ., the PDA has three types of actions: 

1. The PDA may try to match the character it pops from the stack and the input 
character it reads. Suppose the character from the stack is A and the input is 
a. The PDA continues in state q1 . if a rule A → a . exists in G without pushing; 
the PDA has no action to perform otherwise.

2. The PDA may choose to pop a character from the stack and push two 
characters onto the stack. Suppose the character from the stack is A and there 
is a rule A → BC ., where B and C are variables. The PDA pushes C and then 
B and remains in q1 .. 

3. The PDA may pop a character from the stack and, if the character is ⊥., 
enter q2 ..



102 5 The Pushdown Automaton Model

These possible actions are represented as the following values in the transition 
function. 

1. For all A ∈ V . and a ∈ � . such that A → a . is a production rule of G, 
(q1, ε) ∈ δ(q1, a, A).. 

2. For all A, B, and C in V such that A → BC . is a production rule of G, 
(q1, CB) ∈ δ(q1, ε, A).. 

3. (q2, ε)  ∈ δ(q1, ε,  ⊥).. 

The transitions of the first type correspond to using a rule that replaces a variable 
with a terminal. The transitions of the second type correspond to using a rule that 
replaces a variable with some two variables, including itself. The transition of 
the last type terminates the computation. Thus, the computation that M executes 
corresponds to the leftmost production. 

Since all the transitions in q1 . demand popping from the stack, once it becomes 
empty, M terminates its computation. For a PDA to accept the input, it must 
consume the input completely and empty the stack. This requirement means that 
there are just two possibilities for M to accept: (1) directly entering from q0 . to 
q2 . without a push and (2) popping the bottom of the stack and reading the last 
character of the input at the same time. From these observations, the strings M 
accepts completely match those that G produces using leftmost production. 

The proof is no w complete. 	

Theorem 5.2 For each PDA, there is a context-free grammar that produces the 
language it accepts. 

Proof Overview 
From an arbitrary PDA M = (Q,�,�, δ, q0,⊥, F )., we develop a context-
free grammar. A key idea here is the introduction of the variable Hp,q . for 
each p, q ∈ Q.. From the variable Hp,q ., the grammar derives all strings in 
�∗

. that M can process while transitioning from state p to q in the following 
stack-height preserving manner; the stack height at the start and the stack 
height at the end are equal, and during the process, the stack height never goes 
below the starting height. We also introduce variablesUp,q,c ., where c ∈ � .,  for  
deriving all input symbols that M can process in one step by making a state 
transition from p to q and pushing an a onto the stack. We also introduce
variables Dp,q,c ., where c ∈ � ., for deriving all input symbols that M can 
process in one step by making a state transition from p to q and popping 
an a from the stack. Finally, we introduce variables Sp,q . for deriving all the 
symbols M can process in one step while transitioning from p and q without 
touching the stack. We can build recursive relations on the three variable
sets.



5.2 Equivalence Between CFLs and PDAs 103

Proof Let M = (Q,�,�, δ, q0,⊥, F ). be an arbitrary PDA. We modify M as 
follo ws:

• We add a new initial state. The PDA starts with an empty stack. In the new initial 
state, the PDA pushes ⊥.onto the stack without popping from the stack or reading 
the input. 

• After the new initial step, for each m ≥ 0., we stretch each pushing action of m 
characters onto the stack into a series of m steps after the pop step. In each of the 
m subsequent steps, the PDA pushes one character onto the stack without reading 
the input. In the last of the m steps, the PDA changes its state to t he target state.

• We introduce a new final state, pf .. From each state in F , there is a transition to 
the new state without reading the input and without touching the stack. We make 
the new state a unique final state. In the state pf ., M pops as long as the stack is 
nonempty, i.e., δ(pf , ε,X) = {(pf , ε)}. for all X ∈ � .. 

A concrete description of the modifications is as follows: 

• We add a new state p0 .with the unique action δ(p0, ε, ε) = {(q0,⊥)}.. 
• We add a new final state pf . with the action δ(qf , ε,X) = {(pf , ε)}. for all 

X ∈ � .. 
• We set F to {pf }.. 
• For each transition (r, y1 · · · ym) ∈ δ(q, a, x). such that m ≥ 1. and 

x, y1, . . . , ym ∈ � ., we assign a unique index k and introduce states
pk,1, . . . , pk,m ., change the transition for δ(q, a, a). to {(pk,1, ε)}., and then 
introduce: 

. δ(pk,1, ε, ε) = {(pk,2, y1)},
δ(pk,2, ε, ε) = {(pk,3, y2)},

· · ·
δ(pk,m−2, ε, ε) = {(pk,m−1, ym − 2)},
δ(pk,m−1, ε, ε) = {(pk,m, ym − 1)}, and

δ(pk,m, ε, ε) = {(r, ym)}.

Figure 5.4 illustrates the modifications to the initial and final states. 
Figure 5.5 illustrates the stretching of a step involving pop and push. 
Suppose we have modified M so that it satisfies the two requirements. By “stack-

preserving computation from p to q,” we refer to the action of M as follows:

• M begins its computation in state p with stack height h ≥ 0. and arrives in state 
q with stack height h .

• During the computation, the stack height is always greater than or equal to h. 

For each pair, (p, q) ∈ Q × Q.,  let W(p, q). denote the set of all character 
sequences M processes in any stack-preserving computation from p to q. Since the



104 5 The Pushdown Automaton Model

Fig. 5.4 The modifications for the initial and final states. The middle section in the rectangle 
represents the computation corresponding to the original behavior of M 

Fig. 5.5 The modification for the pop-then-push operations. The first action is popping only. Then, 
a series of pushes builds the result one character at a time. The final step is for transitioning to the 
target state 

computation of M starts with the empty stack and M must empty its stack before 
accepting, we ha ve

. L(M) = W(p0, pf ).

For each pair, (p, q) ∈ Q × Q., we introduce a variable in the grammar Hp,q .. 
We introduce two variable groups, Up,q,c . and Dp,q,c ., for each (p, q, c) ∈ Q ×

Q × � ..  Both Up,q,c . and Dp,q,c . produce subsets of �ε .. 

• The production rules from Up,q,c . take the form Up,q,c → a ., where a is a symbol 
in �ε . such that δ(p, a, ε). includes (q, c).; i.e., the PDA may transition from p to 
q when it reads a in the input and, as a result, pushes c onto the stack.

• The production rules from Dp,q,c . take the form Dp,q,c → a ., where a is a symbol 
in �ε . such that δ(p, a, c). includes (q, ε).; i.e., the PDA may transition from p to 
q when it reads a in the input and pops c from the stack.



5.2 Equivalence Between CFLs and PDAs 105

We also add a variable group Sp,q . for each (p, q) ∈ Q × Q.. 

• The production rules from Sp,q . take the form Sp,q → a ., where a is a symbol 
in �ε . such that δ(p, a, ε). includes (q, ε).; i.e., the PDA may transition from p to 
q when it reads a in the input with no action on the stack. If p = q .,  the  rules  
include Sp,p → ε .. 

For Hp,q ., we have the following possibilities: 

• The transition from p to q occurs in one step, i.e., Hp,q → Sp,q .. 
• After departing p, the PDA returns to the same stack height and then reaches q, 

i.e., Hp,q → Hp,rHr,q . for some r ∈ Q.. 
• In p, the PDA enters some state r while raising the height by 1 to h + 1. by 

pushing some c onto the stack, maintains the minimum height h + 1.,  arrives  in  
some state s with h + 1. as the height, and then enters q by popping c from the 
stack, i.e., Hp,q → Up,r,cHr,sDs,q,c . for some r, s ∈ Q. and c ∈ � .. 

Some variables in the S, U , and D groups may be without rules to apply. By 
definition, a CFG may contain variables without rules, so keeping such variables 
does not prevent the grammar from being context-free. However, if we want to 
clean up the grammar by eliminating them, we can eliminate all rules in which 
such variables appear on the right hand and then eliminate such variables. 

We now show that the grammar produces the language that the PDA accepts. 
For each variable X,  let L(X). denote the set of all strings in �∗

. the grammar can 
produce starting from X. Since L(M) = W(p0, pf )., we can establish our goal by 
showing, for all p, q ∈ Q., L(Hp,q) = W(p, q).. We show this equality by proving 
that the following inclusions hold true for all p, q ∈ Q.: 

1. L(Hp,q) ⊆ W(p,  q).; i.e., for each full production tree with Hp,q . as the root, a 
computation of M in W(p, q). corresponds to the tree. 

2. W(p,  q)  ⊆ L(Hp,q).; i.e., for each computation of M in W(p, q).,  a  full  
production tree corresponds to the computation.

	

First, we prove the following: 

Proposition 5.1 L(Hp,q) ⊆ W(p,  q).. 

Proof We prove the claim by induction on the production tree’s height, h.  Let  T be 
a full production tree with Hp,q . as the root. Let w be the string T produces. Let h 
be the height of T . Since H variables lack production rules that produce terminals,
h ≥ 2.. Thus, the base case is h = 2.. If the root has some H variable as a child, the 
tree’s height is ≥ 3.. Thus, the root has no H variable as a child. The lack of H as a 
child leaves only one possibility: Hp,q → Sp,q → a .where a ∈ �ε .. The production 
Sp,q → a . corresponds to the transition δ(p, a, ε) � (q, ε)., which is reading a and 
transitioning from p to q without touching the stack. Since M does not touch the 
stack, the stack remains the same, which implies that a ∈ Wp,q .. Thus, the claim 
holds for the base case.



106 5 The Pushdown Automaton Model

For the induction step, let h ≥ 3. and suppose that the claim holds for all smaller 
values of h. If the root has only one child, the child must be Sp,q ., but then the tree’s 
height is 2, which contradicts our assumption. Thus, the children must be one of the 
following: 

• Hp,r ,  H  r,q . from left to right for some r ∈ Q. 

• Up,r,c,  Hr,s,  Ds,q,c . from left to right for r, s ∈ Q. and c ∈ � .. 

For the first case, both children have a height of ≤ h − 1.. By our induction 
hypothesis, the subtrees produce strings in W(p, r). and W(r, q)., respectively. Since 
M preserves the height, W(p, r)W(r, q). is a member of W(p, q).. For the second 
case, the middle subtree has height h. The subtree produces a W(r, s). string by 
our induction hypothesis. The flanking children Up,r,c . and Ds,r,c . must produce a 
terminal each. The left increases the height by 1, and the right decreases the height 
by 1. Overall, the tree corresponds to some computation that preserves the height. 
Thus, the claim holds for h. 	


Next, we prove the inclusion in the opposite direction. 

Proposition 5.2 L(Hp,q) ⊇ W(p,  q).. 	

Proof We prove this by induction on the number of steps M makes. Let w be a 
member of W(p, q)..  Le  t π . be stack preserving computation from p and q that 
processes w.  Let  t be the number of steps in π .. We prove w ∈ L(Hp,q).by induction 
on t . 

For the base case, let t = 0.. Since the computation has 0 steps, it must be the 
case that w = ε . and p = q ..  We  have w ∈ L(Hp,p). because of the rule Hp,p →
Sp,p → ε .. Thus, the claim holds for the base case. 

For the induction step, let t ≥ 1.. Assume that the claim holds for all smaller 
values of t . Suppose M increases the stack height at the beginning of π . and 
decreases the height at the end of π ..  Let  r be the state M enters in the first 
step, and let c be the symbol it pushes. Let s be the state from which M enters 
q at the last step. M must pop c from the stack at the last step. Let α . be the 
input character that M processes in the first step, and let β . be the input character 
that M processes in the last step. Let u be the input characters that M processes 
in between. Because of the assumptions we have made, we can apply the rule
Hp,q → Up,r,cHr,sDs,q,c → αHr,sDs,q,c → αHr,sβ .. The path π . without its first 
and last steps starts in r , ends in s, and has length t −2.. By our induction hypothesis, 
this means that L(Hr,s). includes u. Thus, L(Hp,q). includes w = αuβ .. 

On the other hand, suppose that during π ., the stack height returns to the same 
value as the start before it reaches the end. We split π . into two parts, π1 . and π2 ., 
where π1 . is the computation until the first return to the same stack height and π2 . is 
the remainder. Let r be the state that M reaches when it completes π1 ..  Let  u be the 
input characters that M processes during π1 . and v be the input characters that M 
processes during π2 .. Since both π1 . and π2 . are nonempty, their lengths are smaller 
than t . By our induction hypothesis, this means that u ∈ L(Hp,r ). and v ∈ L(Hr,q)..



5.2 Equivalence Between CFLs and PDAs 107

Since the rule Hp,q → Hp,rHr,q . is available for all combinations of p, q ., and r ,  we  
know that L(Ap,q). contains w = uv .. Thus, the property holds for t . 

Hence, the claim holds for all values of t , and so, L(Apq) ⊇ H(p, q).. 	

We have proven both claims and therefore, the theorem holds. 

Example 5.4 Let us examine the following PDA for {anbn | n ≥ 1}.. 

. δ(q0, ε, ε) = {(q3, ε), (q1,⊥)},
δ(q1, a, ε) = {(q1, a)},
δ(q1, b, a) = {(q2, ε)},
δ(q2, b, a) = {(q2, ε)}, and

δ(q2, ε,⊥) = {(q3, ε)}.

Here, q0 . is the initial state for pushing the initial symbol, and q3 . is the final state. 
We simplify the notation in the variable names by using the subscripts 0, . . . , 3. 

instead of q0, . . . , q3 ., respectively. There are 4 × 4 = 16. state combinations and 3 
stack symbols ( ⊥., a, and ε .). Since there are four variable groups (H , S, U , and D), 
the number of possible variables in the grammar is 16 × 3 × 4 = 192.. However, 
most of the variables are irrelevant. We need only the following variables and rules: 

. H0,3 → S0,3,

S0,3 → ε,

H0,3 → U0,1,⊥H1,2D2,3,⊥,

H1,2 → U1,1,aH1,2D2,2,a,

H1,2 → S1,2,

S1,2 → ε,

U0,1,⊥ → ε,

D2,3,⊥ → ε,

U1,1,a → a, and

D2,2,a → b.

Since PDAs and context-free languages are equivalent in their power, we 
can prove the proposition with PDAs instead. We leave the reader to prove the 
proposition using PDAs (see Exercise 5.8). 

Theorem 5.3 The class of context-free languages is closed under intersection with 
regular languages.



108 5 The Pushdown Automaton Model

Proof Overview 
From an arbitrary pair of PDA and DFA, we can construct a new PDA that 
concurrently simulates the two automata and accepts when both do. The state 
set of the new PDA is the Cartesian product of the states of the PDA and DFA. 
The new PDA’s transition function processes each input symbol individually 
for the PDA and the DFA; the state for the DFA is unchanged if the input 
symbol is ε .. The final state set of the new PDA is the Cartesian product of the 
final state sets of the PDA and the DFA. 

Proof Let � . be an alphabet. Let L1 . be a context-free language over the 
alphabet � ..  Let L2 . be a regular language over the alphabet � ..  Le  t M1 =
(Q1, �, �, δ1, q1,⊥, F1). be a PDA that accepts L1 ..  Let M2 = (Q2, �, δ2, q2, F2). 

be a finite automaton that accepts L2 .. Our goal is to show that L1 ∩ L2 . is context-
free. We accomplish this goal by designing a PDA that accepts the intersection. 

Define Q = Q1 × Q2 ., q0 = (q1, q2)., and F = F1 × F2 .. Define the transition 
function δ . as follows: 

• For all α ∈ � ., p1, r1 ∈ Q1 ., p2, r2 ∈ Q2 ., and b, c ∈ �ε .,  if (r1, c). is one of the 
values of δ1(p1, α, b). and r2 = δ2(p2, α)., then (r1 × r2, c). is one of the values 
of δ(p1 × p2, α, b).. 

• For all p1, r1 ∈ Q1 ., p2 ∈ Q2 ., and b, c ∈ �ε .,  if (r1, c). is one of the values of 
δ1(p1, ε, b)., then (r1 × p2, c). is one of the values of δ(p1 × p2, α, b).. 

The former means that the new PDA processes α . as M1 . and M2 . at the same time, 
and the latter means that the new PDA processes α . as M1 .. However, since the input 
character is ε ., it will not change the state on the M2 . side. 

The new PDA is (Q,�,�, δ, q0,⊥, F ).. The PDA accepts if, and only if, it 
finishes reading the input with the product state in F and the empty stack. Thus, 
the new PDA accepts its input if, and only if, both M1 . and M2 . do. 	


5.3 The Deterministic Pushdown Automaton (DPDA) Model 

We know NFAs are as equally powerful as DFAs. Can we show a similar result for 
PDAs? In other words, if we define a deterministic PDA model, will the model be 
as powerful as the PDA model? We study this question in the following section. 

Definition 5.2 A deterministic pushdown automaton (DPDA) is a pushdown 
automaton (Q,�,�, δ, q0,⊥, F ).with the following properties: 

• For all q ∈ Q., a ∈ �ε ., and x ∈ � ., δ(q, a, b). has at most one element, i.e., either 
no move at all or exactly one move.



5.3 The Deterministic Pushdown Automaton (DPDA) Model 109

• For all q ∈ Q. and x ∈ � .,  if δ(q, a, b). is nonempty for some a ∈ � ., then 
δ(q, ε, b). is empty; i.e., if the pushdown automaton can process an input symbol 
with this combination, then it cannot process ε .. 

The two properties guarantee that each ID of the pushdown automaton has no more 
than one possible next ID. 

Definition 5.3 A language is deterministically context-free if a DPDA accepts it. 
DCFL. is the set of all deterministically context-free languages. 

For a DPDA, we remove the set notation {}. from the values of its transition 
function. Specifically, if δ(q, a, b) = {(r, c)}., we write δ(q, a, b) = (r, s).; we still 
write δ(q, a, b) = ∅. if the function does not have values at (q, a, b).. 

Example 5.5 The PDA from Example 5.1 (for the language {anbn | n ≥ 0}.) does 
not appear to be deterministic. However, the language is deterministic, as an extra b 
is attached at the end of each member. The new language is {anbn+1 | n ≥ 0}.. 

The PDA for the revised version is as follows: 

. δ(q0, a,⊥) = (q0,⊥a),

δ(q0, b,⊥) = (q2,⊥),

δ(q0, a, a) = (q0, aa),

δ(q0, b, a) = (q1, ε),

δ(q1, b, a) = (q1, ε), and

δ(q1, b,⊥) = (q2,⊥).

The initial state is q0 ., and the final is q2 .. 

Example 5.6 If the input must be nonempty, the language {anbn | n ≥ 1}. is 
deterministic. We introduce an additional stack symbol ⊥a .. The symbol combines 
⊥. and a into one. The PDA M for the revised version is as follows:

. δ(q0, a,⊥) = (q0,⊥a),

δ(q0, a,⊥a) = (q0,⊥a),

δ(q0, a, a) = (q0, aa),

δ(q1, b, a) = (q1, ε), and

δ(q1, b,⊥a) = (q2,⊥).

The initial state is q0 ., and the final is q2 .. The accepting ID is (q2, ε,⊥)..  The  
automaton can enter q2 . if the input has a prefix anbn

. for some n ≥ 1.. If there 
is some character after the prefix, there is no action to perform for the pushdown 
automaton. This means the input with an extra character is not in L(M)..



110 5 The Pushdown Automaton Model

Theorem 5.4 The class of deterministic context-free languages is closed under 
complement. 

Proof Overview 
We modify an arbitrary DPDA so that it will read its entire input and arrive at a 
non-final state with an empty stack. Then, we can make the DPDA accept the 
language’s complement by switching between the final and non-final states. 

Proof Let M = (Q,�,�, δ, q0,⊥, F ). be a DPDA that accepts some language L. 
We apply a series of modifications to M . First, we introduce a new initial symbol ⊥′

., 
a new initial state q ′

0 ., and a new non-final sink state qs .. We then add the following 
transitions: 

• δ(q ′
0, ε,⊥′) = (q0,⊥′⊥).. 

• δ(q, a,⊥′) = (qs,⊥′). for each q ∈ Q. and a ∈ � .. 
• δ(qs,  a,  X)  = (qs,X). for each a ∈ � .. 
• δ(q, a, X) = (qs,X). for each q ∈ Q. and a ∈ � . such that δ(q, a,X) = ∅. for all 

a ∈ �ε .. 

These modifications ensure the following: 

(a) The pushdown automaton now preserves the new initial symbol ⊥′
.at the bottom 

of the stack. 
(b) If the original pushdown automaton pops everything above ⊥′

. with part of the 
input remaining, the new automaton continues reading the input until the end. 

(c) If the pushdown automaton enters qs ., it will keep reading the input without 
changing the stack content. 

(d) If the pushdown automaton enters a state and sees a stack symbol with no 
possible moves regardless of the input symbol, it enters qs .. 

Next, we ensure the computation never enters an infinite loop so it finishes reading 
the input. An infinite loop occurs with a chain of ε . moves that don’t decrease the 
stack height below the height at the start, bringing the state and the stack symbol 
back to the original combination. Letm0 = ‖Q‖‖�‖.where Q and � . are the original 
states and the stack symbols, respectively. A minimal loop is one without repetition. 
Every minimal loop has a length of ≤ m0 .. We can find all minimal loops using an 
exhaustive search. For each pair (p0, X0) ∈ Q × X ., we try executing ε .moves from 
δ(p0, ε,X0). and check if the execution does not pop below the X at the start and if
(p0, X0). returns. Put differently, each sequence we search for satisfies the following 
properties: 

• The sequence has the form δ(p0, ε,X0) = (p1, Y1), . . . , δ(pm−1, ε,Xm−1) =
(pm, Ym).. 

• p0 = p m .. 
• We define w0, . . . , wm . by



5.4 Proving Non-context-Freeness 111

– w0 = X 0 .. 
– For each i ≥ 1., wi . is the concatenation of wi−1 . without the last character 

followed by Yi .. 

Then, 

– None of w0, . . . , wm . are empty. 
– The last character of Ym . is equal to X0 .. 
– For all i such that 1 ≤ i ≤ m − 1., either pi �= p0 . or X0 . is not equal to the last 

character of wi .. 

Because of the last property, we can apply the pigeon-hole principle, so m ≤ m0 =
‖Q‖ × ‖�‖.. After finding all minimal infinite loops, we replace δ(pi, ε,Xi) =
(pi+1, Yi+1).with δ(p, ε,X) = (qs,X). for all i such that 0 ≤ i ≤ m − 1.. 

The elimination of infinite loops forces every computation to read the entire input 
without changing the language the pushdown automaton accepts. The pushdown 
automaton remains deterministic. 

We now swap the roles between the final and non-final states. The resulting 
pushdown automaton accepts the complement of L(M).. 	


Since CFL. is not closed under complement (Theorem 5.6) and {anbn | n ≥ 0}. is 
deterministic context-free and is non-regular, we have the following result. 

Corollary 5.1 REG ⊂ DCFL ⊂ CFL.. 

5.4 Proving Non-context-Freeness 

In this section, we study how to prove languages are not context-free. 

5.4.1 The Pumping Lemma for CFLs 

We previously used the Pumping Lemma to prove the existence of non-regular 
languages. A similar result exists for context-free languages, but its statement is 
more complicated. 

Lemma 5.1 (The Pumping Lemma for Context-Free Languages) Let L be an 
arbitrary context-free language. A constant p > 0. exists such that for all w ∈
L, |w| ≥ p ., there is a decomposition w = uvxyz.with the following properties: 

1. |vxy| ≤  p .. 
2. |vy| ≥  1.. 
3. For all i ≥ 0., uvixyiz ∈ L..



112 5 The Pushdown Automaton Model

Proof Overview 
The proof contains two critical ideas. A long, straight path in a production 
tree has two nodes whose labels are identical. If a production tree of a CNF 
grammar produces a long enough string, then the tree has a long, straight 
path. 

Proof Let L be a context-free language. Let G = (V ,�,R, S). be a CNF grammar 
for L.  Let  n be the number of variables in V .  Let p = 2n

..  Let w = w1 · · ·wm . be 
L’s member having a length of m ≥ p ..  Let  T be a full production tree for w.  For  
each node h in T , let λ(h). denote the number of leaves in the subtree rooted at T . 

Let g0 . be the root of T . We construct a straight path g0, g1, . . . , gk . in T where 
the node gk . has a unique child. Since G is a CNF grammar, the node gk . is the parent 
of a leaf. To construct the path, we repeat the following process until the new node 
has a unique child. 

• Suppose we have selected g0, . . . , g
 ., where g
 . has two children (because G is a 
CNF grammar). We compare the two children o f g
 . using the number of leaves. 
We select the child with the larger number of leaves as g
+1 .. We break a tie 
arbitrarily. 

Let [g0, . . . , gk]. be the path. For all 
. such that 0 ≤ 
 ≤ k − 1., λ(g
+1) ≥ λ(g
)/2.. 
Since λ(gk) = 1. and λ(g0) = ‖J‖ ≥ p = 2n

., k ≥ n.. Figure 5.6 shows our 
selections for the sequence [g0, . . . , gk].. 

Fig. 5.6 The node selection 
for Lemma 5.1. The square 
nodes are the ones on the 
chosen path. The chosen 
nodes have at least the same 
number of leaves as their 
siblings



5.4 Proving Non-context-Freeness 113

Let X0, . . . , Xk . be the sequence of variables that appear as the labels of 
g0, . . . , gk .. Since n is the number of variables and k ≥ n., by the pigeon-hole 
principle, there are two indices, c and d, such that 0 ≤ c < d ≤ n. such that 
Xc = Xd .. Since selecting c and d is possible whenever k ≥ n., we can choose c and 
d so that k − n ≤ c < d ≤ k .. Then, we have: 

. 1 ≤ λ(gd) < λ(gc) ≤ 2n.

Let x be the word the subtree rooted at g[d . produces. The subtree rooted at gc . 

produces the string vxy since gd . is a descendant of gc .. In other words, v appears to 
the left of x, and y appears to the right of x. The tree T produces the string uvxyz, 
where u is to the left of vxy ., and z is to the right of vxy . in the production tree. 
Since the labels of gc . and gd . are equal, substituting the subtree rooted at gc . with 
the subtree rooted at gd . produces a valid full production tree. Also, substituting 
the subtree rooted at gd . with the subtree rooted at gc . produces a valid production 
tree. The former produces the word uxz, and the latter, uvvxyyz.. In addition, the 
latter contains gd . and gc . with gd . as a descendant of gc .; the same substitution, 
i.e., the substitution of gd . with gc ., works again. This substitution gives a new 
tree, which produces uvvvxyyyz.. By repeating this substitution, we obtain strings 
uvixyiz.. Here, i = 0. produces uxz. Figure 5.7 shows the relations among the five 
components. 

Fig. 5.7 The decomposition of w as the lemma states. The node label A is common between the 
node that produces vxy . and the one that produces x



114 5 The Pushdown Automaton Model

Since λ(gc) ≤ 2n
., |vxy| ≤ 2n

.. In addition, |vy|. is λ(gc) − λ(gd).. According 
to the way we construct g0, . . . , gs ., the difference is strictly positive. We have thus 
proven the lemma. 	


5.4.2 Inherent Ambiguity of CFLs 

In Sect. 4.1.4, we asked if every context-free language has an unambiguous gram-
mar. We prove here that there is an inherently ambiguous language. The proof uses 
ideas reminiscent of the Pumping Lemma. 

Theorem 5.5 The following language is inherently ambiguous: 

. L = {anbncmdm | n,m ≥ 1} ∪ {anbmcmdn | n,m ≥ 1}.

Proof Overview 
We apply some normalization to an arbitrary grammar for L. We then extract 
two separate grammars from the normalized grammar, where one will be 
responsible for the first component of the union where n �= m. and the other 
will be responsible for the second component of the union where n �= m..  The  
two grammars have only the start symbol in common. We then show that for 
some n, both grammars generate anbncndn

.. This implies that the word has 
two leftmost production trees. Thus, L is inherently ambiguous.

Proof Let L1 = {anbncmdm | n,m ≥ 1}. and L2 = {anbmcmdn | n,m ≥ 1}..  Let  
G be an arbitrary grammar for L. We first apply some procedures from the CNF 
conversion (see Sect. 4.2.2 and Exercise 4.21) to remove all useless variables and 
eliminate both ε . and unit rules. Additionally, we ensure that S does not appear on 
the right-hand side of the production rules. We then check if the grammar has a 
variable X �= S . such that X never reappears in any production tree rooted at X.  We  
can eliminate all such variables X by replacing each occurrence of X on the right-
hand side of any rule with one of the rules from X, as we did in eliminating unit rules 
in the conversion algorithm to CNF. (This idea is reminiscent of the elimination of ε . 

and unit rules.) More specifically, if X is such a variable and Y → w . is a production 
rule containing an occurrence of X, we independently replace each occurrence of X 
with each rule X → z..  If  w has k occurrences of X and X has d rules, we create dk

. 

rules. We then replace Y → w .with the dk
. rules. 

These modifications preserve the ambiguity; i.e., the original G is ambiguous if, 
and only if, the modified G is ambiguous. 

After completing the modifications, every variable A ∈ V −{S}. has a production 
of the form A

G,∗⇒ x1Ax2 . such that x1 . and x2 . consist only of terminals, and either x1 . 
or x2 . is nonempty. Since there are no useless variables, a production tree rooted at



5.4 Proving Non-context-Freeness 115

Fig. 5.8 The production tree 

involving A
G,∗⇒ x1Ax2 ..  The  

top A can be substituted with 
the bottom A and v ice versa

S produces a string containing A, and a production tree rooted at A can produce a 
terminal-only string. Then, using the same idea as the Pumping Lemma, we ha ve:

. some y1 and y2 ∈ �∗ exist such that for all k ≥ 0, y1(x1)
kα(x2)

ky2 ∈ L.

Figure 5.8 shows this idea. 
We find the following properties of x1 . and x2 .: 

1. Neither x1 . nor x2 . are empty. 
2. Neither x1 . nor x2 . have two different symbols. Specifically, 

a. If x1 = at
. for some t ≥ 1., then x2 = bt

. or dt
.. 

b. If x1 = bt
. for some t ≥ 1., then x2 = ct

.. 
c. If x1 = ct

. for some t ≥ 1., then x2 = ct
.. 

d. x1 ∈ d ∗ .. 

Thus, the variables A other than S are exactly one of the follo wing types:

• A G,∗⇒ akAbk
. for some k. 

• A G,∗⇒ akAdk
. for some k. 

• A G,∗⇒ bkAck
. for some k. 

• A G,∗⇒ ckAdk
. for some k. 

Otherwise, we can combine two distinct types of a single variable to create a new 
x1Ax2 . such that either x1 . or x2 . has two different symbols. Let us partition the 
variables into four groups according to the four properties. Let Xab ., Xad ., Xbc ., and 
Xcd .be the groups, respectively. We see that the following are the only possible rules 
in G. 

• For L1 .: 

– S → an u1bn cmv1d
m

. for some n,m ≥ 0., u1 ∈ Xab ∪{ε}., and u2 ∈ Xcd ∪{ε}., 
where if u1 = ε ., then n ≥ 1., and if u2 = ε ., then m ≥ 1.. 

– xab → an ub n . for some n ≥ 0., xab ∈ Xab ., and u ∈ Xab ∪ {ε}., where if u = ε ., 
then n ≥ 1.. 

– xcd → cmudm
. for some m ≥ 0., xcd ∈ Xcd ., and u ∈ Xcd ∪ {ε}., where if 

u = ε ., then m ≥ 1..



116 5 The Pushdown Automaton Model

• For L2 .: 

– u → anvdn
. for some n ≥ 1., u ∈ S ∪ Xad ., and v ∈ Xad .. 

– u → an bm vcmdn
. for some n,m ≥ 1., u ∈ S ∪ Xad ., and v ∈ Xbc ∪ {ε}.. 

– u → bmvcm
. for some m ≥ 1. and u ∈ Xbc ∪ {ε}.. 

We construct a grammar G1 . using the first group of rules and a grammar G2 . using 
the second group. The variable set of G1 . is {S} ∪ Xab ∪ Xcd ., and the variable set of 
G2 . is {S}∪Xad ∪Xbc .. S is the only variable in common. Let S → α1, . . . , S → αr . 

be an enumeration of the rules from S in G1 .. For each (n,m). such that n �= m., 
anbncmdm

. is produced from one of α1, . . . , αs .. Because of the types of available 
rules in G1 ., we can show that for each i,  if anbncmdm

. and asbsctdt
. can be produced 

from α .,  so  are anbnctdt
. and asbscmdm

.. Thus, for each i, sets of integers Ni . and Mi . 

exist such that: 

. {(n,m) | αi
G,∗⇒ anbncmdm, n �= m} = Ni × Mi.

Because G1 . is responsible for anbncmdm
. such that n �= m.,  we  hav  e:

. (N1 × M1) ∪ · · · ∪ (Nr × Mr) ⊇ {(n,m) | n,m ≥ 1, n �= m}.

We argue that this union includes all but finitely many (n, n), n ≥ 1.. In other words, 
G1 . produces all but finitely many anbncndn, n ≥ 1.. 

Assume, by way of contradiction, that N1 × M1 ∪ · · · ∪ Nr × Mr . misses (n, n). 

for infinitely many n. For each i such that 1 ≤ i ≤ r .,  le  t

. Qi = {n | (n, n) �∈ (Ni × Mi) ∪ · · · ∪ (Nr × Mr)}.

We know Q1 ⊆ Q2 ⊆ · · · ⊆ Qr .. By our assumption, Q1 . is infinite. For each 
q ∈ Q1 ., N1 . does not have q,  or M1 . does not. Since Q1 . is infinite, either Q1 \ N1 . or 
Q1 \ M1 . is infinite. We select Q1 \ N1 . if it is infinite and Q1 \ M1 . otherwise. We 
call the chosen set J1 .. Then, J1 ⊆ Q1 ⊆ Q2 . and J1 . is infinite. Since J1 . is infinite, 
either J1 \ N2 . or J1 \ M2 . is infinite. We select J1 \ N2 . if it infinite one and J1 \ M2 . 

otherwise. We call the chosen set J2 .. Then, J2 ⊆ Q2 ⊆ Q3 . and J2 . is infinite. By 
repeating this process for i = 3, . . . , r ., we obtain Jr ..  We  hav  e:

. Jr ⊆ Jr−1 ⊆ · · · ⊆ J1 ⊆ Q1 ⊆ Q2 ⊆ · · · ⊆ Qr.

Thus, Jr . is missing entirely from Ni . or Mi . for each i. This means that for each pair 
(n,m) ∈ Jr ×Jr ., (n,m).does not appear inN1×M1∪· · ·∪Nr ×Mr .. This contradicts 
that L(G1) ⊇ L1 .. Thus, L(G1).misses only a finite number of anbncndn

.. 
We can apply the same argument to G2 . to show that L(G2). misses only a finite 

number of anbncndn
.. This implies G1 . and G2 . generate anbncndn

. for infinitely 
many n. Since the two grammars have only S in common, and S never appears



5.4 Proving Non-context-Freeness 117

on the right-hand side of the rules, every such anbncndn
. has two different leftmost 

productions, one from G1 . and the other from G2 .. Thus, L is inherently ambiguous. 
This proves the theorem. 	


5.4.3 Non-context-Free Languages 

Using the lemmas from Sect. 5.4.1, we can prove languages to be non-context-free. 
As our first example, consider {anbncn | n ≥ 0}.. 
Example 5.7 L = {an bn cn | n ≥ 0}. is not context-free. 

Assume, on the contrary, that L is context-free. Let p be the constant for the 
language according to the Pumping Lemma (Lemma 5.1). Let w = apbpcp

.. 
According to the lemma, we can decompose w as uvxyz. such that |vxy| ≤ p ., 
|vy| ≥ 1., and for all i ≥ 0., uvixyiz. is the member of L.  Let w′ = uxz.. By our 
supposition, w′

. must be a member of the language. Since |vxy| ≤ p ., vxy . is either 
part of apbp

. or part of bpcp
.. Suppose the former is the case. Since |vy| ≥ 1.,  the  

number of as appearing in w′
. is less than p, or the number of bs appearing in w′

. is 
less than p. However, since vxy . is part of apbp

., the number of cs  in w′
. is p. Thus, 

w′
.cannot be a language member, a contradiction. Similarly, we draw a contradiction 

if uvy is part of bpcp
.. Thus, L is not contex t-free.

An alternative proof looks at the distance between the last a and the first c. Since 
the language members have three parts of equal length, the inflatable parts, (v, y)., 
must collectively contain the same number of as  as  bs and cs. However, the distance 
between the last a and the first c is p, and the length of vxy is at most p. So, a, b, and 
c do not appear together in vy. Figure 5.9 presents how we visualize the limitation 
of covering with vxy . of the input string apbpcp

.. 
Since the class of context-free languages is closed under concatenation, we 

obtain the following: 

Theorem 5.6 The class of context-free languages is not closed under intersection. 
It is not closed under complement either. 

Proof Let L1 = {anbn | n ≥ 0}., L2 = {bncn | n ≥ 0}., L3 = {cn | n ≥ 0}., 
and L4 = {an | n ≥ 0}.. All four languages are context-free (actually, L3 . 

and L4 . are regular). Because the class of context-free languages is closed under 
concatenation (Proposition 4.2), we know that L1L3 . and L4L2 . are context-free. 

Fig. 5.9 The pumping on 
apbpcp .. The lines represent 
the longest stretches that vxy . 
can cover



118 5 The Pushdown Automaton Model

The two concatenations are {anbncm | m, n ≥ 0}. and {ambncn | m, n ≥ 0}.;  the  
intersection of the two is {anbncn | n ≥ 0}.. This intersection is not context-free. 
Thus, the class of context-free languages does not have the closure property under 
intersection. 

By DeMorgan’s Laws, we can express the intersection of two languages, A and 
B, using complement and union as:

. A ∪ B.

Thus, the class of context-free languages does not have the closure property under 
complement. 	


5.4.4 Ogden’s Lemma 

A more flexible version of the Pumping Lemma is called Ogden’s Lemma.  We  
mark some characters of a given string from the rest. We then pretend the unmarked 
characters do not exist and obtain a decomposition of the input.

Below is the lemma. 

Lemma 5.2 (Ogden’s Lemma) For each context-free language L, there is a 
constant p ≥ 1.with the following property: 

• For all w ∈ L., |w| ≥ p ., and for all selections of ≥ p . positions, w is 
decomposable as uvxyz. such that: 

1. x covers at least one marked position.
2. vxy . covers at most p marked positions.
3. Both u and v cover at least one marked position, or both y and z cover at 

least one marked position.
4. For all i ≥ 0., uvixyiz. is a member of L. 

There is a simpler version of Ogden’s Lemma, which immediately follows from 
the first version. 

Lemma 5.3 (A Simpler Version of Ogden’s Lemma) For each context-free 
language L, there is a constant p ≥ 1.with the following property: 

• For all w ∈ L., |w| ≥ p ., and for all selections of ≥ p . positions, w is 
decomposable as uvxyz. such that: 

1. vxy . covers at most p marked positions.
2. uv covers at least one marked position.
3. For all i ≥ 0., uvixyiz. is a member of L.



5.4 Proving Non-context-Freeness 119

Proof Overview 
Given a CNF grammar G = (�, V,R, S)., we choose p = 24‖V ‖

..  Given  w 
with its ≥ p .marked positions, we examine a production tree of w and select 
a straight path by always selecting the branch covering more marked positions 
than the opposite branch. The path length is ≥ 4‖V ‖ + 1.. We look at the last 
4‖V ‖ + 1. nodes. For some variable A, five nodes exist labeled with A, where 
the marked positions are split between their children. Three of the five choose 
their left branch, or three choose their right branch. From such a triple, we can 
produce the desired decomposition. 

Proof Let G = (V ,�, S,R). be a CNF grammar. Let t = ‖V ‖. and p = 24t ..  Le  t
w ∈ L. and |w| = n ≥ p ..  Let J ⊆ {1, . . . , n}. be a set that specifies the chosen 
positions. Let ‖J‖ = m ≥ p ..  Let  T be an arbitrary production tree of w. Because 
G is a CNF grammar, T is fully binary, except the parent of each leaf has only one 
child. Each leaf of T is labeled with a terminal, and every non-leaf of T is labeled 
with a variable. For each node e of T , let μ(e). be the number of marked positions 
appearing at the leaf level of the subtree rooted at e.  Th  e μ. value of the root is 
‖J‖ = m., and for every non-leaf, its μ. value is the sum of its children’s μ. values. 
We construct a straight path from the tree’s root by selecting, at each non-leaf node, 
the branch with a larger μ. value than the opposite branch. Here, a tie can be broken 
arbitrarily. Let P = [u0, . . . , uk]. be the downward path. Let M = [μ0, . . . , μk]. be 
the sequence μ(u0), . . . , μ(uk).. M is non-increasing with μ0 = m. and μk = 1.. 
Also, for each i such that μi > μi+1 ., μi ≤ 2μi+1 . (equivalently, μi+1 ≥ μi/2.). 
Since m ≥ p = 24t ., μi > μi+1 . holds for at least 4t = �log(p)�. values of i.  We  
select the last 4t indices i satisfying μi > μi+1 . and the first i such that μi = 1.. 
Let P̂ = [v0, . . . , v4t ]. be the node sequence derived from the chosen indices in the 
order they appear on P .  Let M̂ = [ν0, . . . , μ4t ]. be P̂ .’s accompanying μ. sequence. 
We have the following properties of M̂ .: 

• ν4t = 1.. 
• For all i such that 0 ≤ i ≤ 4t ., νi+1 < νi ≤ 2νi+1 .. 
• ν0 ≤ 24t = p ≤ m.. 

The branch selections at these nodes are either left or right. Let SL . be the nodes 
where the branch is the left one plus v4t ..  Let SR . be the nodes where the branch is 
the right one plus v4t .. The intersection of SL . and SR . is {v4t }.. So, ‖SL‖ ≥ 2t + 1. or 
‖SR‖ ≥ 2t + 1.. Figure 5.10 shows the path construction. 

Suppose the former is the case. Since t = ‖V ‖., the pigeon-hole principle states 
that some three nodes in SL . have an identical label. Let α, β ., and γ . be the three 
nodes in order of appearance in the path P̂ ..  Let  A be the label of the three nodes. 
Among the three, α . and β . split the value of μ. and choose the left branch. Let 
u, v, x, y ., and z be as follows:



120 5 The Pushdown Automaton Model

Fig. 5.10 The node selection 
for Ogden’s Lemma. The 
triangles are those children 
who receive no marked 
leaves. Their siblings inherit 
all the marked leaves from 
their parents. The squares are 
those where the two children 
split marked leaves. The 
squares become elements of 
the sequence 

• u is the terminal string to the left o f β .. 
• v is the terminal string appearing to the left of γ . in the subtree rooted at β .. 
• x is the terminal string in the subtree rooted at γ .. 
• y is the terminal string appearing to the right of γ . in the subtree rooted at β .. 
• z is the terminal string to the right of β .. 

Since the three nodes have the same label, we can replace the subtree rooted at β . 

with a copy of the subtree rooted at γ ., or vice versa, to produce a production tree 
that produces a string in L. Thus, for all i ≥ 0., uvixyiz ∈ L.. Since the right child 
of α . and the right child of β . receive some marked positions, y and z cover at least 
one marked position. In addition, x covers μ(γ ) ≥ 1. marked positions. Similarly, 
vxy . covers μ(β) ≤ p .marked positions.



5.4 Proving Non-context-Freeness 121

For the proof for ‖SR‖ ≥ 2t + 1., we switch the roles between the left and right 
branches. This proves the lemma. 	


When the Pumping Lemma does not help prove that a language is not context-
free, we can use Ogden’s Lemma. 

Example 5.8 Let a, b., and c be symbols. L = {aibkck | i �= j, i �= k ., and j �= k}. 
is not context-free. 

Assume, by way of contradiction, that L is context-free. Let p be the constant 
from the simpler version of Ogden’s Lemma. Let w = apbp+p!cp+2p!

. be a chosen 
member of L. We select the positions 1, . . . , p . and apply the lemma. We obtain 
a decomposition w = uvxyz. such that vy has at least one a and for all i ≥ 0., 
uvixyiz ∈ L..  If  v or y has different symbols, uvvxyyz has ba or cb as a string, 
which is not a member. Thus, v and y have only one symbol. Specifically, v ∈ a+

.. 
We have the following three possibilities: 

• If vy ∈ a+
.,  let 
 = |vy|. and choose i = p!/
 + 1.. Then, uvixyiz =

ap+p!bp+p!cp+2p!
.. This does not belong to L, so we have a contradiction. 

• If v ∈ a+
. and y ∈ b+

.,  let 
 = |v|. and choose i = 2p!/
 + 1.. Then, 
uvixyiz = ap+2p!bp+p!+(i−1)|y|cp+2p!

.. This does not belong to L,  so  we  ha  ve a
contradiction.

• If v ∈ a+
. and y ∈ c+

.,  let 
 = |v|. and choose i = p!/
 + 1.. Then, 
uvixyiz = ap+p!bp+p!cp+2p!+(i−1)|y|

.. This does not belong to L,  so  we  hav  e
a contradiction.

In all three cases, we can produce a nonmember from a member. Thus, L is not 
contex t-free.

5.4.5 Proving Ogden’s Lemma by Analyzing a PDA’s Behavior 

This section presents an alternate proof of Ogden’s Lemma, which analyzes PDAs. 
Suppose we want to compute the pumping constant of Ogden’s Lemma from a 

PDA. Assuming that the PDA empties its stack before accepting, we can convert the 
PDA to a CFL grammar, convert the grammar to a CNF grammar, and then obtain 
the constant from the number of variables in the CNF grammar. This approach 
works as long as the PDA is nondeterministic because we can modify it to empty the 
stack before accepting. The stack-emptying property is not necessarily applicable 
to DPDAs. Thus, this raises the question of whether or not Ogden’s Lemma can be 
proven by analyzing the PDA’s behavior, which may not empty its stack. The answer 
to this question is positive, as we shall see next. 

Proof Let L be a context-free language. Let M = (Q,�,�, q0, δ,⊥, F ). be 
a pushdown automaton, possibly deterministic, that accepts L. Without loss of 
generality, we may assume the following:



122 5 The Pushdown Automaton Model

• M starts with ⊥. in the stack and one ε .-move. 
• For each q ∈ Q., a ∈ �ε ., and b ∈ � ., every element (q ′, x). in δ(q, a, b). satisfies 

that x = ε . or bc. for some c ∈ � .. In other words, M removes the top symbol and 
decreases the stack height by 1; alternatively, M adds a new symbol after pushing 
the top symbol back to the stack, which increases the stack height by 1.

We define the following size parameters: 

. 
 = 4‖Q‖�‖ + 1,

� = 12‖Q‖2‖�‖ + 1,

� = 
 + �,

p̂i = 
�+1−i for all i such that 0 ≤ i ≤ �, and

p = p̂0 = 
�+1.

Let w be a string in L(M). such that |w| ≥ p .. Suppose M has an n-step computation 
path π . to accept w and a set J of m ≥ p . positions have been designated. For any 
step j such that 1 ≤ j ≤ n., let us use the following notation: 

• ID(j). is the instantaneous description (ID) at steps j . 
• char(j). is the input M processes at step j .
• stack(j). is the stack string of M at step j .
• top(j). is the stack string of M at step j .
• state(j). is the stack string of M at step j .
• height(j). is the stack height of M at step j .

We note that at n − |w|. places, inputt = ε . and 

. w = char(1) · · · char(n).

We partition π . into m + 1. segments V0, . . . , Vm .. 

• V0 . is the computation before processing the first marked position. 
• Vm . is the computation from step m that processes the last marked position to the 

last step.
• For each j such that 1 ≤ j ≤ m − 1., Vj . is the computation from the step M 

processes the j -th marked position and the step immediately before M processes 
the (j + 1).-th marked position. 

By definition, 

(*) for all j ≥ 1., Vj . processes exactly one marked position, and the processing 
occurs at the first step of Vj .. 

Figure 5.11 shows the partition into V0, . . . , Vm .. Our decomposition w = uvxyz. 

relies on the changes in the stack height in each segment. The stack height in a 
segment, Vk ., starts with a value, reaches the maximum within the segment, and



5.4 Proving Non-context-Freeness 123

Fig. 5.11 The partition of the input into V0, . . . , Vm .. The highlighted rectangles represent the 
individual marked positions 

Fig. 5.12 Two examples of a segment’s internal structure. In the left panel, there is only one step 
number at which the bottom height is achieved, and the two sequences have a length of > 1..  In  
the right panel, the bottom height is achieved at two places, and the upward sequence has only one 
element

ends at some value. The minimum height may be equal to the start value and the 
end value. Also, the minimum may appear multiple times in the segment. For each 
k such that 0 ≤ k ≤ m., we formalize the change (see Fig. 5.12)  as  follow  s:

• We denote the minimum height in Vk . by botk ., the starting height by startk ., and 
the ending height by endk .. 

• downk . is the sequence of the positions where the stack height moves from the 
starting value to botk .. The sequence specifies the first positions where the height 
value becomes startk, startk − 1, . . . , botk + 1., and botk . occur, respectively. 
These positions exist because M cannot remove more than one top symbol in 
one step and startk ≥ botk . by the minimality of botk . as the height. The length 
of downk . is thus startk − botk + 1.. 

• upk . is the sequence of the positions where the stack height moves from botk . to 
the ending value. The sequence specifies the last positions where the height value 
becomes botk, botk + 1, . . . , endk − 1, endk ., respectively. These positions exist 
because M can push only one symbol in one step and botk ≤ endk . because of 
the minimality of botk .. The length of upk . is thus endk − botk + 1.. 

We construct a finite sequence of segment blocks that shrink in size, where the 
index to the sequence starts from 0. By “block” we mean that it is a set of segments



124 5 The Pushdown Automaton Model

having consecutive indices, like {Vj | a ≤ j ≤ b}. for some a, b, 0 ≤ a <

b ≤ p .. We represent a block using its corresponding index interval [a, b]..  We  l  et
Ik = [�k, rk]. denote the index interval at k.  We  also  let Îk . denote the open interval 
corresponding to Ik .; that is, [�k + 1, rk − 1].. The initial interval I0 . is [0, p].; i.e., 

0 = 0. and r0 = p .. In addition, Î0 = [1, p − 1].. We also define a height sequence 
h0, h1, . . .. corresponding to I0, I1, . . .., and the value of h0 . is 0. For each k ≥ 1.,  we  
define

. hk = min{botj | j ∈ Îk−1} and Hk = {j | j ∈ Îk−1 and botk = hk}.

In other words, hk . is the lowest height across the segments with indices in Îk−1 ., and 
Hk . is the segment indices where the lowest height is achieved. 	


By the minimality of hk ., the following holds: 

Proposition 5.3 For all k ≥ 1., a string s ∈ �hk . exists such that: 

1. For all j ∈ Îk ., s is a prefix of all stack strings appearing in the segment Vj .. 
2. For all j ∈ Hk ., s appears as the stack string in Vj . at the position the last element 

of downj . specifies and at the position the first element of upj . specifies. 

Additionally, we have: 

Proposition 5.4 For each k ≥ 1.,  le  t ξk .be the smallest index in Hk .and νk .be the last 
element of downξk

..  If bot�k−1 < hk .and ξk ≥ �k−1+2., then end�k−1 ≥ hk .,  so up�k−1
. 

contains a position at which the stack string is equal to s from Proposition 5.3 Part 
1. 

The claim holds due to the following argument: 
Assume, on the contrary, end�k−1 ≤ hk − 1.. Since the amount of change in the 

stack height is ± 1., start�k−1+1 ≤ hk .. Then, bot�k−1+1 ≤ hk ., and so, �k−1 + 1. 
should belong to Hk .. However, the smallest element in Hk . is ≥ �k−1 + 2..  This  is  
a contradiction. Thus, the stack height reaches hk . in up�k−1+1 ..  Le  t s′

. be the stack 
string where the height becomes hk .. After this point, the stack height returns to hk . 

for the first time at νk .,  so s′ = s .. 
After constructing hk . and Hk ., we consider two major cases. 

5.4.5.1 (Case 1) ‖Hk‖ ≥ 4‖Q‖ + 1. 

For each segment index j in Hk ., we select the first position at which botj . occurs 
and make it represent the block Vj .. Put differently, the position is the last element 
in the position sequence downj ..  Let f1, . . . , ft . be the positions, where t = ‖Hk‖.. 
Let s be the stack prefix from Proposition 5.3. Since ‖Hk‖ ≥ 4‖Q‖ + 1.,  by  the  
pigeon-hole principle, there are five distinct indices a, b, c, d, e. such that 1 ≤ a <

b < c < d < e ≤ t . and state(fa) = state(fb) = state(fc) = state(fd) = state(fe).. 
We select an arbitrary quintuple. The five members satisfy the following:



5.4 Proving Non-context-Freeness 125

. ID(fa) = ID(fb) = ID(fc) = ID(fd) = ID(fe).

Let 

. u0 = char(fa) · · · char(fc − 1) and v = char(fc) · · · char(fe − 1).

Because a < b < c., u0 . fully covers the segments Va+1, . . . , Vc−1 .: in particular, 
Vb .. In addition, because c < d < e., v fully covers the segments Vc+1, . . . , Ve−1 .:  in  
particular , Vd .. Thus, u0 . and v contain at least one marked position.

We terminate the construction. We decompose w into uvz., where u is w’s prefix 
preceding v and z is w’s suffix after v. Here, u0 . is now part of u.  Let x = y = ε .. 
Then, w = uvwyz., and for all i ≥ 2., uvixyiz = uvix .; because the IDs before and 
after proceeding of v are equal, M accepts this string.

Additionally, since the stack has s as a prefix between fa . and fc .,  it  is  safe  to  
remove v without changing the outcome. This means that M accepts uz, which is 
equal to uzy. Thus, for all i ≥ 0., M accepts uvixyiz.. 

Because u contains u0 ., the number of marked positions is at least one in u. 
Additionally, because we have been dealing with V1, . . . , Vp ., there are only p 
marked positions, and so the number of marked positions in vxy is at most p.  The  
decompostion therefore satisifies the requirements.

Figure 5.13 shows the discovery of pumping structure in this case. 

5.4.5.2 (Case 2) ‖Hk‖ ≤ 4‖Q‖. 

Let d = ‖Hk‖. and α1, . . . , αd . be the indices in Hk . in the increasing order. We 
consider d + 1. index intervals with overlapping endpoints. 

Fig. 5.13 Pumping structure discovery Case 1. Each tall box represents the stack in a block at its 
bottom positions. The stack strings with solid-colored top rectangles are identical. The stack strings 
in other boxes are taller. By the pigeon-hole principle, among the stack strings with solid-colored 
top rectangles exist two with the same states



126 5 The Pushdown Automaton Model

. [�k−1, α1], [α1, α2], . . . , [αd−1, αd ], [αd, rk−1].

From these intervals, we select the largest one as Ik .. There are d + 1. candidate 
intervals, every pair of neighboring candidates share one segment, and d ≤ 2‖Q‖.. 
Thus, we have 

. ‖Ik‖ ≥ ‖Ik−1‖ + d

d + 1
>

‖Ik−1‖
d + 1

≥ ‖Ik−1‖
2‖Q‖ + 1

.

Since p = (2‖Q‖ + 1)�+1
., by induction on k,  we  ha  ve

. ‖Ik‖ ≥ (2‖Q‖ + 1)�+1−k = pk.

Because of the way we constructed hk .s and Hk .s, we have the following: 

Proposition 5.5 For all k ≥ 1., hk > hk−1 .. 	

We consider the following situations: 

5.4.5.3 (Subcase 2a) k = �., We Have Kept Choosing the Last Block Index 
p . as the Right End of the Interval At Each Step (i.e., 
r0 = ··· = r� = p .), and h� ≤ botp . 

For each j such that 1 ≤ j ≤ 
., we designate the first element of upj . in the 
segment V�j

. as fj . and sj = stack(fj ).. Since the right end of the index interval has 
been p, we have chosen the last candidate interval at each step. Thus, 

. �1 < �2 < · · · < �
.

By Proposition 5.3,  we  hav  e:

(*) For each j such that 1 ≤ j ≤ 
., sj . is a prefix of the stack string at all 
positions between fj . and f
 .. 

Since 
 = 4‖Q‖‖�‖ + 1., there are five positions (a, b, c, d ., e) among f1, . . . , f
 ., 
such that a < b < c < d < e., state(a) = state(b) = state(c) = state(d) = state(e). 
and top(a) = top(b) = top(c) = top(d) = top(e).. As with Case 1, let 

. u0 = char(a) · · · char(c − 1) and v = char(c) · · · char(e − 1).

We terminate the construction. We take the same form of decomposition as with 
Case 1; w = uvzxy ., where u is w’s prefix before v, z is w’s suffix after v , and
x = y = ε .. Since h
 ≤ botp ., s
 . remains as a prefix of the stack for all positions 
after f
 .. Thus, we can freely remove v or add multiples of v to produce the same 
outcome. For all i ≥ 0., M on uvixyiz. accepts. Figure 5.14 presents this case.



5.4 Proving Non-context-Freeness 127

Fig. 5.14 Pumping structure discovery Subcase 2a. The high end of the interval is always Vp . in 
the interval sequence, and the bottom height of Vp . is greater than the bottom height of the low 
ends. The high end of the intervals is always the last block. The low end of the intervals constantly 
moves to the right. By the pigeon-hole principle, two highlighted stack strings have the same top 
symbols and are in the same states 

5.4.5.4 (Subcase 2b) k = � = � + �. 

Let J = {
 + 1, . . . , I
+�}., that is, the values for k in the last �. steps. Our 
construction ensures the following properties hold for all k ∈ J .: 

1. Because the intervals are proper sub-intervals of their predecessors, either �k ≥
�k−1 + 1. or rk ≤ rk−1 − 1.. 

2. By Proposition 5.5, hk > hk−1 .. 
3. Because bot0 = bot�0 = 1., bot�k

≤ hk ., and because Subcase 2a did not occur 
at step 
., botrk ≤ hk .. 

4. By (3) and Propositions 5.3 and 5.4, a position in up�k
. exists where the stack 

height is hk ., and a position in downrk . exists where the stack height is hk .. 
Let these positions be fk . and gk ., respectively. 

We have 

. f
+1 < · · · < f
+� < g
+� < · · · < g
+1.

Since � = 12‖Q‖2‖�‖ + 1., the pigeon-hole principle states that there exists a 
combination of q, r ∈ Q. and β ∈ � . such that for ≥ 13. values of k, the state at fk . 

is q, the top symbol at fk . is β ., and the state at gk . is r . We select one combination 
of q, r , and β . and, in the combination, thirteen k values to form a set T . Due to 1, 
for all k and k’  in T such that k < k′

., either fk . comes from one of the preceding



128 5 The Pushdown Automaton Model

segments of fk′ . or gk′ . comes from one of the preceding segments of gk .. Then, seven 
indices k1, . . . , k7 . exist such that either fk1 , . . . , fk7 . are from different segments or 
gk7 , . . . , gk1 . are from different segments. Suppose the former is the case. Let 

. u0 = char(fk1) · · · char(fk3),

v = char(fk3) · · · char(fk5),

x1 = char(fk5) · · · char(fk7),

x2 = char(fk7) · · · char(gk5),

x = x1x2, and

y = char(gk5) · · · char(gk3).

Let u be w’s prefix before v, which contains u0 ., and z be w’s suffix after y.  We  
hav e:

• v raises the stack height from hk3 . to hk5 ., brings the state from the one at fk3 . to 
the same one, then places the same stack symbol as the top symbol at fk3 .. 

• x brings the height to the same level as fk5 . and brings the state to q. 
• y lowers the stack height from hk5 . to hk3 . and brings the state back to q. 
• u contains Vk2 ., so covers at least one marked position. 
• v contains Vk4 ., so covers at least one marked position. 
• x contains Vk6 ., so covers at least one marked position. 

Thus, M accepts uxz and for all i ≥ 2., uvixyiz.. The number of marked positions 
in vy . is at least one. The number is at most p because y ends before the last point
of downp .. We have thus found a desired decomposition. Figure 5.15 presents this 
case. 

5.4.5.5 (Subcase 2c) Neither Subcase 2a Nor Subcase 2b Holds 

We proceed to the next value of k. 
This is the end of the construction. Case 1, Subcase 2a, and Subcase 2b 

collectively cover all possible situations. We have now proven the lemma. 	

Exercises 
5.1 Show that the language {0s1t | s > t > 0}. is context-free by designing a 
pushdown automaton accepting it. 

5.2 Show that the language {0n1m2m | n,m ≥ 0}. is context-free by designing a 
pushdown automaton accepting it. 

5.3 Show that the language {0n1n2m | n,m ≥ 0}. is context-free by designing a 
pushdown automaton accepting it.



5.4 Proving Non-context-Freeness 129

Fig. 5.15 Pumping structure discovery Subcase 2b. The intervals in decreasing sizes offer sections 
that are simultaneously repeatable. The arrows at the bottom indicate the intervals. The tall 
rectangles are stack strings, and the top rectangles are the top symbols of the stack. The states 
are equal on the solid-colored rectangles on the right-hand side. Among the solid-colored bars on 
the left-hand side, the states and the top symbols are identical 

5.4 Show that the language {w | w ∈ {0, 1}∗ . and w has  twice  as  many 0s as 1s}. is 
context-free by giving its pushdown automaton. 

5.5 Let M be a PDA. Suppose M may not empty its stack before accepting. Show 
that M can be modified so that it empties its stack before accepting.

5.6 Let M be a PDA. Show that M can be modified so that M decreases or increases 
its stack height by 1 a t each step.

5.7 Prove that the normalization from the previous question (i.e., the stack height 
increases by 1 or decreases by 1) applies to DPDA as well. 

5.8 Prove Proposition 4.2 using  a  PD  A.

5.9 Show that {0n1n2m | n,m ≥ 1}. is a deterministic context-free language by 
designing a DPDA accepting it. 

5.10 Show that for each k ≥ 1., {0n+k1n | n ≥ 1}. is a deterministic context-free 
language by designing a DPDA accepting it. 

5.11 A homomorphism f from an alphabet � . to another alphabet �. is prefix-free 
if for all a, b ∈ � . such that a �= b., f (a). is not a prefix or f (b). and f (b). is not 
a prefix of f (a).. Prove that for all deterministic context-free languages L ⊆ �∗

. 

and prefix-free homomorphisms f from � . to �., f (L) ⊆ �∗
. is a deterministic 

context-free language.



130 5 The Pushdown Automaton Model

5.12 Define prefix-free homomorphisms as in the last question. For each language 
L and for each prefix-free homomorphism f , define f −1(L) = {w | f (w) ∈ L}.. 
Prove that for all deterministic context-free languages L ⊆ �∗

. and prefix-free 
homomorphisms f from � . to �., f −1(L) ⊆ �∗

. is a deterministic context-free 
language. 

5.13 Show that for each PDA, there is an equivalent PDA with a binary stack 
alphabet. 

5.14 Using the Pumping Lemma, prove that {anbnan | n ≥ 0}. is not context-free. 
5.15 Using Ogden’s Lemma (the simpler version), prove that {aibj ck | j =
max{i, k}}. is not context-free. 
5.16 Using Ogden’s Lemma (the simpler version), prove that {aibj ck | j <

min{i, k}}. is not context-free. 
5.17 Using Ogden’s Lemma (the simpler version), prove that {aibj ck | i = j �= k}. 
is not context-free. 

5.18 By simulating PDAs, show that the class of context-free languages is closed 
under the prefix operation; i.e., for all context-free languages L, the language {w | w . 

is a prefix of some member of L}. is context-free as well. 
5.19 Show that the class of context-free languages is closed under the proper prefix 
operation; i.e., for all context-free language L, {w | w . is a proper prefix of some 
member of L}. is context-free as well. 
5.20 Use either the Pumping Lemma for context-free languages or Ogden’s Lemma 
to prove {anbnanbn | n ≥ 1}. is not context-free. 
5.21 For a language L, NOMID3(L). is {xy | |x| = |y|. and for some w, |w| = |x|., 
xwy ∈ L}.. Show that the context-free languages are not closed under the NOMID3. 
operation. 

Hint:  Use {anbncmapbp | n,m, p ≥ 1}. is context-free. 
5.22 Let M be a pushdown automaton that empties its stack whenever it accepts. 
Construct a pushdown automaton N from M that reverses the action to accept
L(M)R .. 

5.23 Let L1 . and L2 .be two languages in �∗
..  The  marked concatenation of L1 . and 

L2 . is {u$v | u ∈ L1 . and v ∈ L2}., where $ �∈ � .. Show that DCFL. is closed under 
marked concatenation. 

5.24 Let A = {anbn | n ≥ 1}., B = {anb2n+1 | n ≥ 1}., C = A ∪ B ., and 
D = {anbncdn | n ≥ 1}.. Show that C ∈ DCFL. implies D ∈ CFL.,  so DCFL. is not 
closed under union. 

5.25 Based on the previous result, prove that DCFL. is not closed under intersection.



References 131

Bibliographic Notes and Further Reading 
The pushdown automaton model was first studied by Oettinger [7] and Schützen-
berger [10]. The equivalence between CFLs and PDAs is by Chomsky [3] and 
Evey [4]. The Pumping Lemma for context-free languages is by Bar-Hillel, Perles, 
and Shamir [1]. Ogden’s Lemma is by Ogden [8]. Ogden proved results called 
intercalation theorems, which extend the Pumping Lemma for more powerful 
computation models [9]. The exposition of Ogden’s Lemma was adopted from [9]. 
Boasson [2] showed pumping lemmas for various models. Bar-Hillel, Perles, and 
Shamir [1] showed various closure properties of CFLs. DPDA is by Haines [6] and 
Ginsburg and Greibach [5]. 

References 

1. Y. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase structure grammars. 
Sprachtypologie und Universalienforschung 14, 143–172 (1961) 

2. L. Boasson, Two iteration theorems for some families of languages. J. Comput. Syst. Sci. 7(6), 
583–596 (1973) 

3. N. Chomsky, Context-free grammars and pushdown storage. MIT Res. Lab. Electron. Quart. 
Prog. Rep. 65, 187–194 (1962) 

4. R.J. Evey, Application of pushdown-store machines, in Proceedings of the November 12–14, 
1963, Fall Joint Computer Conference (1963), pp. 215–227 

5. S. Ginsburg, S.A. Greibach, Deterministic context free languages. Inform Control 9, 620–648 
(1966) 

6. L.G. Haines, Generation and recognition of formal languages. PhD thesis, Massachusetts 
Institute of Technology, 1965 

7. A.G. Oettinger, Automatic Syntactic Analysis and the Pushdown Store (American Mathemati-
cal Society, 1961) 

8. W.F. Ogden, A helpful result for proving inherent ambiguity. Math. Syst. Theory 2(3), 191–194 
(1968) 

9. W.F. Ogden, Intercalation theorems for stack languages, in Proceedings of the First Annual 
ACM Symposium on Theory of Computing (1969), pp. 31–42 

10. M.P. Schützenberger, On context-free languages and push-down automata. Inform. Control 6, 
246–264 (1963)



Part III 
Undecidability and Turing Machines



Chapter 6 
The Turing Machines 

6.1 The Turing Machine (TM) Model 

In this chapter, we study the Turing machine computation model. The model 
resembles the finite automaton model but is more complex. 

6.1.1 The Definition 

Here is the definition of the model. 
A Turing machine (TM) operates in discrete time and has three components: 

• Tape: The tape of a TM is a sequence of cells. Each cell holds a symbol from 
the TM’s tape alphabet. The cells have unique sequential indices (or positions). 
The range of cell indices may be infinite or finite. The finite-index model is the 
Linear Bounded Automaton model (we will study this model in Chap. 7). When 
the range is unlimited, the minimum is 1 or undefined. In the former case, the 
tape is one-way infinite; in the latter case, the tape is two-way infinite. We will 
consider mainly one-way infinite tapes in this book. 

• Head: The head is an apparatus for a TM utilized to access the tape’s content. At 
each computation step, a TM has access to exactly one cell through its head. A 
TM can read the symbol written in the cell and store a symbol in the same cell. 
To prepare for the next step, a TM may move the head to a neighbor of the cell 
on which the head is located; alternatively, it may keep the head in the same cell. 
The move decreasing the cell index by 1 is a left move, and the move increasing 
the cell index by 1 is a right move, If a TM tries to move its head in a direction 
where no additional cell is available, the head remains in the same position. We 
call this phenomenon a bounceback. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_6

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6
https://doi.org/10.1007/978-3-031-84740-0_6


136 6 The Turing Machines

Fig. 6.1 A TM with a 
one-way infinite tape 

• Finite control: The finite control is where a TM determines its action. Like 
automata, a TM holds a state from its finite state set in its finite control. A TM 
determines which symbol it will write, to which direction it will move its head, 
and to which state it will transition. This determination is based on the present 
state and the symbol stored in the cell on which the head is located. 

Figure 6.1 is a typical drawing of a TM, where the TM has a one-way infinite 
tape. 

A TM commences and terminates its computation as follows: 
At the start of computation, the tape of a TM holds its input in the cells starting 

from index 1, its head is on Cell 1, and its state is the initial state, denoted as q0 .. 
The cells not occupied by the input hold a special “blank” symbol, which we denote 
with �.. If the input is ε ., the head reads �. at the start of the computation. Otherwise, 
the head reads some symbol not equal to �.. Thus, a TM can tell if the input is ε . 

when it starts computing. 
Once the computation commences, a TM uses its finite control to determine and 

execute its action. The computation terminates when the state becomes one of two 
special states, qacc . and qrej .. We call these states the accepting state and rejecting 
state, respectively. We say that the machine accepts when it enters qacc . and rejects 
when it enters qrej .. 

6.1.1.1 The Mathematical Definition 

Formally, a TM is an eight-tuple (Q,�,�, �, δ, q0, qacc, qrej)., whose components 
are as follows: 

• Q is the state set.
• � . is the tape alphabet. 
• �. is the blank symbol. 
• � . is the input alphabet and is a subset of � ⊆ (� − {�}).. 
• δ : Q×� → Q×� ×D . is the transition function, where D = {L,R,−}..  The  

elements L, R, and −. represent the left head move, the right head move, and the 
stationary head move, respectively. 

We define the transitions in states qacc . and qrej . as δ(qacc, a) = (qacc, a,−). and 
δ(qrej, a) = (qrej, a,−). for all a ∈ � .. 

• q0 ∈ Q. is the initial state. 
• qacc ∈ Q. is the accepting state. 
• qrej ∈ Q, qrej �= qacc . is the rejecting state.



6.1 The Turing Machine (TM) Model 137

The computation by a TM on an input has three possible outcomes: 

• The TM accepts the input. 
• The TM rejects the input. 
• The TM runs forever. 

6.1.1.2 Recognition and Decision 

Here, we define the concepts of recognition and decision by TMs. 

Definition 6.1 Let M = (Q,�,�, �, δ, q0, qacc, qrej). be a TM. 

1. The language that M recognizes is:

. {w | w ∈ �∗ and M on w accepts}.

We denote the language by L(M).. 
2. The language that M co-recognizes is:

. {w | w ∈ �∗and M on w does not accept}.

3. If M halts on all inputs, we say M decides L(M). (Table 6.1). 

We then define the following language classes: 

Definition 6.2 A language is recursive or decidable if a TM decides the language. 
A language is co-recursive or co-decidable if a TM decides its complement. 

Definition 6.3 If a TM accepts the language, a language is recursively enumer-
able. 

If a TM accepts its complement, a language is co-recursively enumerable. 

By swapping the roles between qacc . and qrej ., we obtain the following proposition: 

Proposition 6.1 A language A is recursive if, and only if, its complement, A.,  is  
recursive .

Table 6.1 The terminology we use in describing languages that TMs characterize according 
to their behavior 

Outcome on Outcome on 
Class Terminology members non-members 

Recursively enumerable Recognition Accept Reject or run forever 

Co-recursively enumerable Co-recognition Reject or run forever Accept 

Decidable Decision Accept Reject 

Co-decidable Co-decision Reject Accept



138 6 The Turing Machines

Definition 6.4 R., RE., and coRE., respectively, denote the classes of all languages 
that are decidable, recursively enumerable, and co-recursively enumerable. 

6.1.2 Examples of TMs 

Let us explore some examples of TMs. 
The first TM example decides L = {anbnan | n ≥ 0}..  From  Exerci  se 5.14, 

we know that L is not context-free. Let w ∈ {a, b}∗ . be an arbitrary input. As 
mentioned earlier, a TM can tell at the start if w = ε .. We thus design a TM, M , 
to accept ε ..  If w �= ε ., M repeatedly “finds and erases” the leftmost a,  the  leftmost  
b appearing after the a, and the rightmost a appearing after the b. More specifically, 
while executing the search for the three characters, M “erases” the triple by turning 
the three characters into �., x, and �., respectively. When no more triple is found, if 
the tape has no a or b, M learns that the input was a member of L, so enters qacc .. 
Otherwise, M enters qrej .. 

In other words, M turns some leading as  in  to �.s, an equal number of trailing as 
into �.s, and the same number of leading bs  into  x. After erasing k triples, the tape 
holds a string with the follo wing form:

. � · · · �
︸ ︷︷ ︸

k

a · · · a x · · · x
︸ ︷︷ ︸

k

b · · · bza · · · a � · · · �
︸ ︷︷ ︸

k

� · · · .

Here, z is some string in {a, b}∗ .. After successfully finding and erasing a trio, M’s 
next target for erasure consists of three characters as follows: 

1. First, the character immediately to the right of the leading �.s must be found. This 
character is a or x. For the search to continue, the character must be a .

2. Next, the character to the right of the run of xs must be found. This character is 
b or �.. For the search to continue, the character must be b. 

3. Finally, the character immediately to the left of the trailing �.s must be found. 
This character is a, b,  o  r �.. For the search to complete, the character must be a. 

If the character does not have a match in (2) or (3), that indicates that the search 
failed, so the TM rejects the input. If the character does not match in (1), the TM 
checks if the tape content matches �+ x+�+

.. 
Algorithm 6.1 shows the algorithm for M . As stated earlier, by requiring the 

middle to be the leftmost b after the first a, we plan to change the input of the f orm
aibj ak

.with positive i, j , and k into: 

. � ai−1xbj−1ak−1 � .

If i, j ., and k are all ≥ 2., we change the tape content further into: 

. � �ai−2xxbj−2ak−2 � �.



6.1 The Turing Machine (TM) Model 139

Algorithm 6.1 A TM algorithm for {anbnan | n ≥ 0}. 
1: procedure TESTING-FOR-an bn an(w) 
2: the computation begins with the head on the input’s leftmost character; 
3: if the character is � then 
4: accept; 
5: end if 
6: while true do 
7: search to the right for an a,  a  b,  or  a �; 	 the initial check 
8: if the character at the head position is � then 
9: enter qacc; 
10: else if the character is b then 
11: enter qrej; 
12: else if the character is x then 
13: scan to the right to locate a non-x; 
14: if the character is � then 
15: enter qacc; 
16: else 
17: enter qrej; 
18: end if 
19: else 	 the character is a 
20: replace the a with �; 
21: scan to the right to locate a b or a �; 
22: if the character is � then 
23: enter qrej; 
24: end if 
25: replace the b with an x; 
26: scan to the right for a �; 
27: move the head to the left neighbor of the �; 
28: if the character is not a then 
29: enter qrej; 
30: end if 
31: replace the a with �; 
32: scan to the right for a �; 
33: move to the right neighbor of the �; 
34: end if 
35: end while 
36: end procedure 

In general, if i, j ., and k are ≥ m.,  after  m rounds, we change w to:

. �m ai−mxmbj−mak−m �m .

If i = j = k = m., then w will become �m xm�m
.. 

Figure 6.2 shows the program as a diagram. The letters a and r appearing in 
the circles represent acceptance and rejection, respectively. The arrows represent 
transitions between states. A label of the form Y/Z,D . on an arrow specifies that the 
transition occurs when the symbol is Y and that the machine writes Z and moves 
the head to the direction of D.



140 6 The Turing Machines

Fig. 6.2 A diagram for a TM that accepts {anbnan | n ≥ 0}. 

Table 6.2 The transition 
table of the TM for {anbnan}. Symbol 

State a b x �. 

q0 . (q1,�, R). (qrej, b,−). (q5, x, R). (qacc,�,−). 

q1 . (q1, a, R). (q2, x, R). (q1, x, R). (qrej,�,−). 

q2 . (q2, a,−). (q2, b,−). (q2, x, R)† . (q3,�, L). 

q3 . (q4,�, L). (qrej, b,−). (qrej, x,−). (qrej,�,−)† . 

q4 . (q4, a, L). (q4, b, L). (q4, x, L). (q0,�, R). 

q5 . (qrej, a,−). (qrej, b,−). (q5, x, R). (qacc,�,−). 

We encode the algorithm into a transition function δ .. We represent Step i with 
qi . for all i between 1 and 6. The computation halts when the state becomes qacc . or 
qrej .. The transition function δ . is in Table 6.2. In the table, the rows are the states, the 
columns are the symbols, and the entries are the values of the transition function. 
The †. symbol indicates the transitions that never occur. This table suggests � =
{a, b}., Q = {q0, . . . , q5, qacc, qrej}., � = {a, b,X,�}., and q0 . as the initial state. 

Figures 6.3, 6.4, and 6.5 present how the program runs on a3b3c3 . as a series of 
diagrams representing the tape, the head position, and the state, respectively. The 
order of the diagrams is row-wise.



6.1 The Turing Machine (TM) Model 141

Fig. 6.3 Handling the first triple and searching for the next triple 

6.1.3 Instantaneous Descriptions 

Here, we define a TM’s instantaneous descriptions. 
We use the term configuration to refer to the status of a TM at a step of 

its computation. The configuration comprises of the state, the tape’s content, 
and the head’s position. A pictorial representation like Fig. 6.1 can present a 
configuration. However, encoding the configuration as a character sequence is much



142 6 The Turing Machines

Fig. 6.4 Handling the second triple 

more convenient than a pictorial representation for treating it mathematically. We 
call such an encoding instantaneous description (ID). 

There are multiple ways to encode configurations into ID. 
Consider a configuration where the tape holds aabbcaabb � � · · · ., the head is 

on the c, and the state is q3 .. By treating q3 . as a symbol not part of the tape alphabet, 
we encode the ID as the string: 

. aabbq3caabb �k .

The encoding format assumes that the state-representing symbol appears immedi-
ately to the left of the symbol at the position of the head. Therefore, an ID must 
match the regular expression (�)∗Q�+

.. We truncate the infinite stretch of blank 
appearing in the tape to a finite string but do not restrict its length after truncation. 
In other words, we do not demand that the IDs be as short as possible. Thus, for 
each configuration, there exist infinitely many strings representing it because if w is 
an ID, then so is w�.. 

Sometimes, we use an alternate representation in which the state-representing 
symbol appears at the beginning, and a symbol with a marking indicates the location



6.1 The Turing Machine (TM) Model 143

Fig. 6.5 Handling the last triple and then checking if no a or b is remaining

of the head. For a TM whose tape alphabet is � ., we consider its marked version �̃ ., 
whose letters are those from � .with a squiggle. If the state set of the machine is Q, 
then the IDs with a state-representing symbol match the regular expression �∗Q�+

., 
and those without it match Q�∗�̃� .. Figure 6.6 shows changes in the ID with this 
alternate representation. 

We present a TM for the palindromes over {1, 2}..  Let  L denote the language. The 
basis of the program is the following recursive definition for L:

• Let w be a string over {1, 2}..  If |w| ≤ 1., w ∈ L.. Otherwise, w ∈ L. if and only if 
w = cyc. for some c ∈ {1, 2}. and y ∈ L.. 

Imagine checking to see if the tape content is in the form �∗ cyc�∗
. for some c ∈

{1, 2}. and y ∈ {1, 2}∗ . and, if so, replacing each c to �.. Imagine, also, repeating 
the check and replacements until the tape content reduces to �∗ (a ∪ b ∪ ε)�∗

..  For  
example, we make a series of reductions of an input string 1221221 to generate:



144 6 The Turing Machines

Fig. 6.6 Processing of the 
first triple with a state as the 
leading symbol 

�. 2 2 1 2 2 �. ⇒. 

�. �. 2 1 2 �. �. ⇒. 

�. �. �. 1 �. �. �. ⇒. 

�. �. �. 1 �. �. �. . 

The last element in this series has only one non-�., which is the 1 in the middle. 
An examination of this last ID reveals that the input was a palindrome. 

Algorithm 6.2 is the program demonstrating this. 

Algorithm 6.2 A TM algorithm for the palindrome over {1, 2}. 
1: procedure PALINDROME-TES(w) 
2: receive input w ∈ {0, 1}; 
3: while true do 
4: if the cell has � then 
5: enter qacc; 
6: else 
7: c ← the symbol in the cell; 
8: write � in the cell; 
9: scan to the right for �; 
10: move the head to the left neighbor; 
11: if the cell has � then 
12: enter qacc; 
13: else if the cell has a symbol different from c then 
14: enter qrej; 
15: else 
16: the cell has c; 
17: write � in the cell; 
18: scan to the left for �; 
19: move the head to the right neighbor; 
20: end if 
21: end if 
22: end while 
23: end p rocedure 

We can implement the algorithm using states q0 ., q1 ., q2 ., q3 ., q4 ., and q5 ., where q0 . 
is the initial state. The states play the following roles:



6.1 The Turing Machine (TM) Model 145

• In q0 ., the TM examines the leftmost character yet to turn into �..  The  TM  
proceeds to qacc . if no character must turn into �.; otherwise, the TM has identified 
a 1 or a 2 as the leftmost character to turn that into �.. If the character is 1, the 
TM proceeds to q1 . after changing the character to �.. If the character is 2, the TM 
proceeds to q2 . instead after changing the character to �.. The TM memorizes the 
erased character by choosing between q1 . and q2 .. 

• In q1 ., the TM scans to the right, looking for �.. After finding one, the TM moves 
the head to the left neighbor of the �. and enters q3 .. 

• In q2 ., the TM scans to the right, looking for �.. After finding one, the TM moves 
the head to the left neighbor of the �. and enters q4 .. 

• In q3 ., if the character is �., it indicates that the character the TM has erased 
was the middle character in an odd-length palindrome, so the TM enters qacc . 

immediately. If the character is 2, it is a mismatch with the character the TM has 
erased, so the TM enters qrej . immediately. If the character is 1, it matches the 
character the TM has erased, so the TM changes the character to �. and enters q5 .. 

• Similarly, in q4 ., if the character is �., it indicates that the character the TM has 
erased was the middle character in an odd-length palindrome, so the TM enters 
qacc . immediately. If the character is 1, it is a mismatch with the character the TM 
has erased, so the TM enters qrej . immediately. If the character is 2, it matches the 
character the TM has erased, so the TM changes the character to �. and enters q5 .. 

• In q5 ., the TM moves the head to the left, looking for �.. Upon finding one, the 
machine moves the head to the right neighbor of the �. and enters q0 .. 

Here is the TM’s transition table. 

Symbols 

States 1 2 �. 

q0 . (q1,�, R). (q2,�, R). (qacc,�,−). 

q1 . (q1, 1, R). (q1, 2, R). (q3,�, L). 

q2 . (q2, 1, R). (q2, 2, R). (q4,�, L). 

q3 . (q5,�, L). (qrej, 2,−). (qacc,�,−). 

q4 . (qrej, 1,−). (q5,�, L). (qacc,�,−). 

q5 . (q5, 1, L). (q5, 2, L). (q0,�, R). 

Figure 6.7 is the transition diagram of the TM. 
Figure 6.8 shows how the machine accepts an input of 1221221. 

6.1.4 Fundamental Subroutines 

Designing TM programs is challenging because of two features of the TM model. 
One is that the tape access is sequential, and the other is that the cell index 
is unknown. We respond to this challenge by adding special symbols, like the 
initial/bottom symbol for PDA.



146 6 The Turing Machines

Fig. 6.7 A diagram for the palindromes over {1, 2}. 

Fig. 6.8 Processing of 1221221



6.1 The Turing Machine (TM) Model 147

6.1.4.1 Restoring the Input 

We can modify the program for {anbnan | n ≥ 0}. so that the TM changes the input 
back to the original after making its accept/reject decision. The main idea is to use 
three symbols ( ã ., a′

., and a′′
.) for erasing as. The TM uses these new symbols and 

behaves as follows: 

1. As before, the machine immediately accepts or rejects if the symbol it sees at the 
start is �. or b, respectively. 

2. The erasure process goes as follows: 

(a) The TM erases the as in the first segment with a′
., not �., except it uses ã . 

instead for the very first a, 
(b) The TM erases the as in the third segment with a′′

., not �.. 
(c) The TM erases bs with x as before.
(d) The search to the right for �.will become a search for a′′

.. 
(e) The search to the left for �.will become a search for a′

.. 

3. When the TM is about to accept or reject, it executes the following restoration 
process: 

(a) The TM enters non-halting states pA . and pR . instead of qacc . and qrej ., 
respectively. 

(b) In pA . and pR ., the TM moves the head to the right in search of �.. 
(c) When �. is found, the TM enters p′

A . from pA . and p′
R . from pR .. It then begins 

to move the head to the left. 
(d) While moving the head to the left, the TM replaces a′

.s and a′′
.s with a and 

xs with b .
(e) When it arrives at ã ., the TM writes a and enters qacc . from p′

A . and qrej . from 
p′

R .. 

These changes altogether give the following property to the machine: 

• When the machine accepts or rejects, the input returns to the original, and the 
head is on the leftmost cell. 

The reader is encouraged to write a code for the input-restoring version (see 
Exercise 6.3). 

Next, we will study two fundamental operations of inserting a string at a location 
on the tape and deleting a section of input. 

6.1.4.2 Insertion 

Suppose a TM, whose state set is Q and whose alphabet is � ., has the task of 
changing the tape contents by inserting one character at the head’s present position. 
In terms of ID, the TM must turn its present ID upw to usαw ., where s, t ∈ Q., 
α ∈ � ., u ∈ �∗

., and w ∈ (� − {�})∗�.. The change is easy if w = �.;  the  TM



148 6 The Turing Machines

writes α ., keeps the head at the present location, and enters s. Otherwise, the TM can 
accomplish this task as follows: 

• Add a state ia,s . for each a ∈ � .. 
• Add a symbol α̃ .. 

The TM’s program is as follows: 

1. At the start, let a be the symbol appearing in the cell on which the head is located.
2. The TM writes ã ., moves the head to the next cell, and enters ia,s .. 
3. In the next phase, if the state is ia,s . and the cell has b, the TM writes a, moves 

the head to the right neighbor, and enters ib,s .. The TM will remain in the phase 
until it enters i�,s .. 

4. In i�,s ., the TM scans to the left for ã .without changing the cell’s content. 
5. When it reaches α̃ ., the TM writes α ., keeps the head in the same position, and 

enters s. 

Here is an example of how the insertion algorithm works. Suppose a TM’s 
present ID is aapbbcd�. with p ∈ Q., and the TM needs to insert an e between 
aa and bb and enter q. Using the state-in format, we see the program execution a s
follows:

a a p b b c d �. ⇒. a a ẽ. ib,s . b c d �. 

⇒. a a ẽ. b ib,s . c d �. ⇒. a a ẽ. b b ic,s . d �. 

⇒. a a ẽ. b b c id,s . �. ⇒. a a ẽ. b b c d i�,s . 

⇒. a a ẽ. b b c i�,s . d ⇒. a a ẽ. b b i�,s . c d 
⇒. a a ẽ. b i�,s . b c d ⇒. a a ẽ. i�,s . b b c d 
⇒. a a i�,s . ẽ. b b c d ⇒. a a s e b b c d . 

A TM can insert a constant number of characters using the above algorithm in 
sequence. 

6.1.4.3 Deletion 

Suppose a TM whose state set is Q and alphabet is � . has the task of changing the 
tape contents by deleting the character at the present position of the head. More 
specifically, the machine must turn its present ID upw to usαw ., where s, t ∈ Q., 
α ∈ � ., and u,w ∈ �∗

.. 
The machine can accomplish this task with the following additional symbols and 

states: 

• A state da,s . for each a ∈ � . (including �.), 
• A symbol α̃ . 

• A state rs . 

The action of the machine is as follows:



6.2 The Multi-tape TM Model 149

1. Let us say w begins with some a ∈ � .. In one step, the machine writes ã ., moves 
the head to the right neighbor, and enters rs .. 

2. The present state is rs .. The machine searches for �. to the right. Upon encounter-
ing one, the machine preserves the �., moves the head to the left neighbor, and 
enters d�,s .. 

3. The present state is da,s . for some a ∈ � .. If what the machine reads is some b 
for some b ∈ � ., the machine writes a, moves the head to the left neighbor, and 
enters db,s .. If the machine reads b̃. for some b ∈ � . (b may equal a), the machine 
writes a and enters s without mo ving the head.

Here is an example of how the deletion algorithm works. Suppose a TM has 
cbabcc � � · · · . on its tape and needs to remove the a and enter s. Suppose the 
present state is p and the head is on the cell holding the a. The program runs as 
follows:

c b p a b c c �. ⇒. c b ã . rs . b c c �. 

⇒. c b ã . b rs . c c �. ⇒. c b ã . b c rs . c �. 

⇒. c b ã . b c c rs . �. ⇒. c b ã . b c d�,s . c �. 

⇒. c b ã . b dc,s . c �. �. ⇒. c b ã . dc,s . b c �. �. 

⇒. c b db,s . ã . c c �. �. ⇒. c b s b c c �. �. . 

6.2 The Multi-tape TM Model 

We can extend the previous TM model to one with multiple tapes. 

6.2.1 The Definition 

Multi-tape TMs (see Fig. 6.9) have one or more tapes besides the input tape. Multi-
tape TMs access their tapes with independently moving heads; i.e., the head’s 
movement on a tape can differ from the other heads’ movement. We call a TM 
having k tapes a k .-tape TM. The TM model we previously studied is thus a single-
tape TM. We assign numbers 1 through k to the tapes of a k-tape TM. At the 
computation’s start, Tape 1 has the input like the tape of a single-tape TM, and 
the other tapes are all blank, with the head on the first cell at the computation’s s tart.

A multi-tape TM executes its computation in the following manner. At each 
computation step, a multi-tape TM decides its action depending on the present state 
and the symbols it reads through its heads. Like single-tape TMs, the action consists 
of writing on the cells through the heads, moving the heads, and updating the state. 
A k-tape TM’s transition function maps from Q × �k

. to Q × (� × D)k ., where 
D = {L,−, R}.. We often refer to one-tape TMs as single-tape TMs.



150 6 The Turing Machines

Fig. 6.9 A  two-tape  T  M

A multi-tape TM variant is the offline TM. Tape 1 of an offline TM is ready-
only and holds the input. Since a TM cannot detect the left end of the tape without 
placing a marking, the input tape has marks immediately on the left and right of the 
input. These marks are special symbols that the machine must not write anywhere 
else. The other tapes permit reading and writing. We use the offline TM model to 
assess the amount of storage a TM must use. 

6.2.2 Examples of Multi-tape TMs 

Here, we present TM algorithms that take advantage of the availability of multiple 
tapes. 

Conceiving algorithms for TMs is often easy when additional tapes are available. 
Let us examine {anbnan | n ≥ 0}. from the previous section. A two-tape TM may 
use the following algorithm for deciding the language: 

• If the input is ε ., accept. 
• If the input starts with a b, reject. 
• Copy the prefix of the input consisting of a to Tape 2.
• Accept if the remainder of the input matches b+a+

. such that the b-portion and 
the a-portion have the same lengths as the copy on Tape 2; reject otherwise. 

More specifically, we envision using the following algorithm, where c1 . represents 
the symbol Head 1 is seeing and c2 . represents the symbol Head 2 is seeing: 

1. Initial Check If c1 = �., accept; if c1 = b., reject; if c1 = a ., write an x on 
Tape 2 as the end marker, move Head 2 to the right neighbor, and proceed to the 
next step.

2. Copying the leading a .s If c1 = a ., write a on Tape 2 and move both heads to 
the right neighbor; if c1 = �., reject; if c1 = b., move Head 2 to the left neighbor 
without moving Head 1 and proceed to the next step. 

3. Matching the copied a .s and the following b .s If c1 = b. and c2 = a ., move 
Head 1 to the left neighbor and Head 2 to the right neighbor; if c1 = �., reject; 
if c1 = b. and c2 = x ., reject; if c1 = a . and c2 = x ., move Head 2 to the right 
neighbor without moving Head 1 and proceed to the next step.



6.2 The Multi-tape TM Model 151

Table 6.3 The transition table of a two-tape TM that decides {anbnan | n ≥ 0}.. The symbol 
combinations that do not appear on the table are impossible. The empty cells are impossible 
symbol pairs 

q0 . q1 . q2 . q3 . 

(�,�). (qacc,�,−,�,−). (qrej,�,−,�,−). (qacc,�,−,�,−). 

(a,�). (q1, a,−, x, R). (q1, a, R, a, R). (qrej, a,−,�,−). 

(b,�). (qrej, b,−,�,−). (q2, b,−,�, R). 

(b, a). (q2, b, L, a, L). 

(a, x). (q3, a,−, x, R). 

(a, b). (q3, a, R, b, R). 

(a, a). (qrej, a,−, a,−). 

(b, x). (qrej, b,−, x,−). 

(�, a). (qrej,�,−, a,−). 

Fig. 6.10 The ID sequence 
of the TM accepting aabbaa 

4. Matching the copied a .s and the trailing a .s If c1 = c2 = a ., move both heads 
to the right neighbor; if exactly one of c1 . and c2 . is a, reject; if c1 = c2 = �., 
accept. 

We can implement the algorithm using four non-halting states ( q0 ., q1 ., q2 ., and q3 .) 
in addition to qacc . and qrej .. The initial state is q0 .. We transpose the transition Table 
6.3 so that the columns represent the states and the rows represent the symbol pairs. 

For multi-tape TMs, we similarly define configurations and IDs like that for 
single-tape TMs. Since the heads of multi-tape TMs move independently, the 
positions of the heads may differ among the heads. Thus, we use IDs by placing 
a state-representing symbol at the start. 

Figure 6.10 shows an ID sequence of the two-tape TM defined for the input 
aabbaa.



152 6 The Turing Machines

6.2.3 Simulating Multi-tape TMs Using Single-Tape TMs 

Although the availability of multiple tapes enriches the algorithm design strategies, 
single-tape TMs can do whatever multi-tape TMs can do. We delve into this on a 
technical level by proving the following theorem. 

Theorem 6.1 A language is decidable if, and only if, a multi-tape TM decides the 
language. 

Proof Overview 
A single-tape TM can simulate a multi-tape TM by storing an ID of a multi-
tape TM on its sole tape. The format of the single-tape encoding can be 
one connecting the tape contents with a delimiter in between (horizontal 
concatenation) or one grouping the tape cells at the same cell indices together 
(vertical slicing). We use the latter in this proof. After converting the input 
to an initial ID, the machine keeps updating the string by following the 
instructions of the multi-tape machine until the ID becomes either accepting 
or rejecting. At this point, the single-tape machine accepts or rejects the input. 

Proof Let k ≥ 2..  Let M = (Q,�,�, �, δ, q0, qacc, qrej). be a k-tape TM. We aim 
to design a single-tape TM, S, that simulates M . 

We encode the IDs of M using a format in which the state-representing symbol 
appears at the start. Since there is no limit on the size of the alphabet, we introduce a 
set of symbols representing (�∪�̃)k .. Each k-tuple encodes the k symbols appearing 
in the cells with the same cell number. 

The TM S’s input tape alphabet equals M’s. The tape alphabet of S is the union
of � ., Q, and (� ∪ �̃)k .. The squiggle version of the alphabet indicates the existence 
of the head on the cell. Using this extended alphabet, the first five steps of the two-
tape program with input aabbaa have the series of single-tape encodings as shown 
in Fig. 6.11. 

We now return to the simulation. 
An alternate view of the encoding using multiple symbols appearing in the same 

cells uses tape tracks. A reader familiar with cassette tapes may know that the 
tapes are horizontally divided into four tracks, representing the left and right audio 
channels of Side A and Side B. The components are vertically represented in this 
representation, and the elements at the same component positions are viewed as 
tracks. The previous presentation thus can be presented using tracks as shown in 
Fig. 6.12 

We now return to the simulation. 
We use θ . to represent the transition function of S. In this simulation, S first 

addresses any case where the input is empty. We can assume that S knows whether



6.2 The Multi-tape TM Model 153

Fig. 6.11 An example of double-character encoding. Two symbols appearing in one box are a 
double-character encoding 

Fig. 6.12 An example of 
double-track encoding. Two 
symbols aligned vertically are 
at the same cell positions 

or not ε ∈ L(M).. In the first step, if S sees the character is �., S accepts or rejects 
accordingly. Otherwise, S executes the following simulation program. 

The machine S prepares for simulation by converting the input to a k-tuple form 
with a leading state-representing symbol. If the input is x1 · · · xm ., where m ≥ 1. and 
x1, . . . , xm ∈ � ., then S converts it t o:

. q0 x̃1�̃k−1
x2 �k−1 · · · xm �k−1 .

We can adapt the insertion algorithm from the previous section for the conversion 
(see Exercise 6.12).



154 6 The Turing Machines

The simulation’s main idea is to scan the tape to identify which k symbols M is 
presently seeing through its heads. 

A straightforward method for the discovery task is to make k round-trips of the 
tape content. At the j -th round, the goal of the round-trip is to discover the symbol 
on the j -th tape. Scanning the head from the left end to the cell index where any head 
has ever reached reveals the symbol as the j -th component, which has a squiggle in 
the k-tuple encoding. There is exactly one such tuple, so the scan successfully finds 
the symbol. While making the k round-trips, S can record M’s state as part of its 
state. More specifically, S’s state can combine the following:

• An indication that S is in the discovery mode
• The value of the trip number j 
• The direction (left or right) in which S is moving the head
• The symbols S has discovered (the number of symbols is j −1. for a forward scan 

and j otherwise) 

We imagine that this information is accumulated in the state. The number of possible 
combinations is fixed and independent of the input length. To initialize a round-trip, 
S moves the head to the left until it encounters a cell holding a state of M . 

Once the k symbols have been identified, S can decide how the tape should be 
updated, as well as the state of M in the next step. Then, using another set of k 
round-trips, S can update the content of its tape. 

Now, let us get into the details of the simulation. The simulation uses six steps as
follows:

1. For j = 1, . . . , k ., move the head to the right to locate the cell containing a k-tuple 
whose j -th component has a squiggle. Upon finding the cell, memorize the j -th 
component, and move the head back to the leftmost cell (i.e., the cell containing 
a state-representing symbol). 

After completing the discovery, determine the instruction M is about to 
perform. Accept if M has reached qacc . and reject if it has reached qrej .. Otherwise, 
rewrite the state-representing symbol. 

2. If M does not halt, move the head to Cell 2. If a squiggle appears on some 
tape and the head on the tape must move to the left, the head’s actual move is 
stationary because of the bounceback. The machine S revises the head’s move to 
stationary. Move the head to Cell 1.

3. For each j = k, . . . , 1., scan to the right, looking for a cell whose j -th component 
has a squiggle. Then: 

(a) Rewrite the j -th component according to the action M is to take .
(b) If the head movement is to the right, remove the marking and reattach it to 

the right neighbor. If the right neighbor is not in a k-tuple form, change it to 
a k-tuple form (it must be “all �.”) before adding the mark. 

(c) If the head movement is to the left, remove the marking on the j -th 
component and reattach to the left neighbor. 

(d) Move the head back to the leftmost cell. 

We now describe the implementations of this algorithm. ��



6.2 The Multi-tape TM Model 155

6.2.3.1 Discovering the Symbols 

This step uses states of the form: 

. qfind(a1, . . . , aj−1, ?), 1 ≤ j ≤ k, a1, . . . , aj ∈ �

and 

. qfound(a1, . . . , aj ), 1 ≤ j ≤ k, a1, . . . , aj ∈ �.

For each j , the former type is used to find the cell with a squiggle on the j -th 
component. In the state qfind(a1, . . . , aj−1, ?)., S moves the head to the right. Upon 
encountering a cell with a squiggle on the j -th component, S switches to the latter 
type with the symbol on the j -th component, say, aj ., replacing the state name’s j -th 
component. The new state is thus qfound(a1, . . . , aj−1, aj ).. In the state, S moves the 
head to the left until it returns to Cell 1. Upon returning to Cell 1, if j < k ., the state 
switches to qfind(a1, . . . , aj , ?)..  If j = k ., S examines M’s state, say, p,  in  Cell  1  
and determines the action of M gi ven by:

. δ(p, a1, . . . , ak) = (p′, b1, . . . , bk, e1, . . . , ek).

Here, p′ ∈ Q., b1, . . . , bk ∈ � ., and e1, . . . , ek ∈ D .. The determination is by entering 
a state. The state is qacc . if p′ = qacc . and qrej . if p′ = qrej .. Otherwise, S writes p′

. in 
Cell 1 and enters the state: 

. r1(b1, e1, . . . , bk, ek).

6.2.3.2 Determining What to Update 

If the state is r1(b1, e1, . . . , bk, ek)., S moves to the right neighbor (Cell 2) and 
changes the state to r2(b1, e1, . . . , bk, ek).. If the state is r2(b1, e1, . . . , bk, ek)., S 
scans the symbol in Cell 2, returns to Cell 1, and changes the state to:

. qwrite(b1, e
′
1, . . . , bk, e

′
k).

Here, for all j , e′
j = ej ., if either the squiggle is absent on the j -th component 

of k-tuple symbol in Cell 2 or ej = L.; otherwise, e′
j = −.. Replacing ej . with e′

j . 

incorporates the bounceback on Tape j . 

6.2.3.3 Executing the Updates 

The machine uses three groups of states:



156 6 The Turing Machines

1. qwrite(b1,  e1,  .  .  .  ,  bj , ej ). 

2. qwrite+(b1,  e1,  .  .  .  ,  bj , ej ). 

3. qwritten(b1,  e1,  .  .  .  ,  bj , ej ). 

Here, 1 ≤ j ≤ k ., r ∈ Q., b1, . . . , bj ∈ � ., and e1, . . . , ej ∈ D .. The first group is 
for scanning to the right for the cell with the squiggle on the j -th component. Upon 
finding the cell, the machine changes the j -th component to bj . without squiggle. 
In addition, the machine moves the head to the right neighbor if ej = R . and to 
the left neighbor if ej = L.. Then the machine enters qwrite+(b1, e1, . . . , bj , ej ).. 
In qwrite+(b1, e1, . . . , bj , ej )., the machine adds squiggle to the j -th component 
and enters qwritten(b1, e1, . . . , bj , ej )., in which the machine moves the head to the 
leftmost position. Returning the head to the leftmost position completes the round 
for j , so the machine switches to the next round, j − 1.. Upon entering qwritten()., S 
changes its state to qfind(?). and commences the simulation of the next step of M . 
The simulation requires k . round-trips in Step 1 and Step 3 for each step of M . ��

If the multi-tape TM has reached the farthest position d, each round-trip may 
require as many as 2d steps. With k tapes to examine individually, each procedure 
may require as many as 2kd . steps. It is possible to compress the k trips into one by 
discovering the symbols the heads see in the increasing order of their position. We 
leave the detail of the algorithm to the reader (see Exercise 6.12), but the alternate 
procedures require ≤2d . steps for discovery and ≤2d + 2k . steps for rewriting. 

The proof above applies to recognizers. 

Theorem 6.2 A language is recursively enumerable if, and only if, a multi-tape TM 
recognizes the language. 

6.2.3.4 R Is the Intersection of RE and coRE 

Here, we study the relations between R. and RE.. 
The multi-tape TM model offers an essential characterization of R.. 

Theorem 6.3 R = RE ∩ coRE.; that is, a language is recursive if, and only if, it is 
both recursively enumerable and co-recursively enumerable. 

Proof Overview 
A two-tape TM can simulate two single-tape TMs concurrently. If the 
two machines recognize complementary languages, the concurrent two-tape 
simulation finds which of the two machines accepts the input. The two-tape 
machine can then decide whether or not it should accept the input.



6.3 The Nondeterministic Turing Machine (NTM) Model 157

Proof Let A ⊆ �∗
. be a recursive language. Then, by Proposition 6.1, A. is 

recursive. Since a recursive language is already recursively enumerable, we know 
that A and A. are recursively enumerable. Thus, R ⊆ RE ∩ coRE.. 

Conversely, suppose that a language A is recursively enumerable and co-
recursively enumerable. Let M = (Q,�,�, �, δ, q0, qacc, qrej). be a recognizer for 
A.  Let M ′ = (Q′, �′,�, �, δ′, q ′

0, qacc, qrej). be a recognizer for A.. Then, for all 
inputs x, 

• If x ∈ A., then M1 . on x accepts and M2 . on x does not accept.
• If x �∈ A., then M1 . on x does not accept and M2 . on x accepts. 

We construct a two-tape TM N for A. On all inputs x, N simulates M1 . on input 
x using Tape 1 and M2 . on x using Tape 2 concurrently. The TM N prepares its 
concurrent simulations using the follo wing algorithm:

1. If the head on Tape 1 sees �. at the start, the input is ε ..  The  TM  N accepts or 
rejects depending on whether or not ε . is a member of A. 

2. Otherwise, N creates a copy of the input on Tape 2. After that, N moves each 
head to Cell 1 (see Exercise 6.10). 

3. The TM N concurrently simulates M1 .with Tape 1 and M2 .with Tape 2, one step 
at a time. The transition function, θ ., during the simulation, uses the Cartesian 
product Q1 × Q2 . as the states: 

. θ((q, q ′), a, a′) = ((p, p′), b, d, b′, d ′).

Here, a ∈ �, a′ ∈ �′
., δ(q, a) = (p, b, d)., and δ′(q ′, a′) = (p′, b′, d ′).. There 

are two exceptions; if p = qacc . or p′ = qrej .,  use qacc . in place of (p, p′)., and if 
p = qrej . or p′ = qacc .,  use qrej . in place of (p, p′).. 

As discussed earlier, exactly one of the two simulations enters qacc .,  so  N accepts all 
members of A and rejects all members of A.. Thus, N decides A . ��

6.3 The Nondeterministic Turing Machine (NTM) Model 

We stipulate that the transition function of a TM does not necessarily have exactly 
one value for all state-symbol combinations. This stipulation gives rise to the 
nondeterministic Turing machine (NTM) model. In contrast with NTMs, we 
call the TM model we have studied in the previous sections deterministic Turing 
machines (DTMs). 

A mathematical definition of an NTM uses the same kind of tuples as the DTM, 
i.e., the definition uses an eight-tuple (Q,�,�, �, δ, q0, qacc, qrej).. Here, δ . is a 
mapping fromQ×� . to the power set ofQ×�×D ., whereD = {L,R,−}..  An  NTM  
may abort its computation if there is no action to perform in the transition function. 
NTMs offer no guarantee of condensed outcomes. On one halting computation path,



158 6 The Turing Machines

the machine may enter qacc ., while on another path, the machine may enter qrej .. 
NTMs also may produce computation paths that run forever. 

We say that an NTM accepts an input x if it enters qacc . for some computation 
path with x as the i nput.

Definition 6.5 An NTM M recognizes a language if for all inputs, x, the following 
properties hold:

• If x is in the language, M accepts x on some computation path.
• If x is not in the language, M does not accept x on an y computation path.

We introduce an NTM with a guarantee of halting. 

Definition 6.6 A halting NTM halts on all inputs regardless of its action choices. 

Definition 6.7 An NTM M decides a language if M is a halting machine and 
recognizes the language.

The single-tape simulation technique for DTMs can be applied to NTMs. 

Theorem 6.4 For each multi-tape NTM N , a single-tape NTM S recognizes the 
same language as N . Furthermore, if N is a decider, S is a decider.

Like the finite automaton models, the availability of nondeterministic choices 
does not increase the fundamental computation power of TMs. 

Theorem 6.5 A language is recursively enumerable if, and only if, an NTM 
recognizes it. Furthermore, a language is recursive if, and only if, an NTM decides 
it. 

Proof Overview 
Since each DTM is a special NTM, every language a DTM decides is 
decidable by an NTM, and every language a DRM recognizes is recognizable 
by an NTM. Thus, our task is to show that every language an NTM decides is 
decidable by a DTM and every language an NTM recognizes is recognizable 
by a DTM. The single-tape simulation method from the proof of Theorem 6.1 
also applies to NTMs, so we consider simulating single-tape NTMs with 
multi-tape DTMs. Specifically, we show that for each single-tape NTM N , 
a three-tape DTM can simulate S. We construct S so that for each input x, S’s 
simulation has the following outcome:

• If N accepts x, S finds an accepting computation of N on x in a finite time 
and accepts x.

• If N does not accept x, S does not accept.
• If N is a halting machine, S rejects x.

(continued)



6.3 The Nondeterministic Turing Machine (NTM) Model 159

The three-tape simulator tries all computation paths whose lengths are no 
more than �., with �. increasing from 1 to higher numbers. Since S examines 
N ’s computation paths exhaustively, if N accepts, S eventually finds an 
accepting computation path when �. is large enough. 

Proof All DTMs are NTMs, by definition. Thus, each recursively enumerable 
language has an NTM recognizer, and each recursive language has an NTM decider. 

For the other inclusions, we show that NTMs can be simulated by DTMs. Let 
N = (Q,�,�, �, δ, q0, qacc, qrej). be an arbitrary single-tape NTM. We modify 
N so its transition function has at most two possible values for each state-symbol 
combination.

• If δ(q, a). has m ≥ 3. values (r1, b1, d1), . . . , (rm, bm, dm)., we add m − 2. 
intermediate states, say p1, p2, . . . , pm−2 ., and a series of transitions: 

– δ(q, a ). has two values, (r1, b1, d1). and (p1, a,−).. 
– For each i such that 1 ≤ i ≤ m−3., δ(pi, a). has two values, (ri+1, bi+1, di+1). 

and (pi+1, a,−).. 
– δ(pm−2,  a  ). has two values, (rm−1, bm−1, dm−1). and (rm, bm, dm).. 

Figure 6.13 shows the result of such a conversion. The modification preserves the 
overall acceptance behavior. The original version of N accepts if, and only if, the 
modified version accepts.

Fig. 6.13 The mechanism for reducing the number of branches to 2. The boxes represent the input 
to the transition function, and the circles represent the elements and values of the transition function



160 6 The Turing Machines

Fig. 6.14 Simulating an 
NTM deterministically using 
three tapes. The top three 
lines show the tape contents 
at the start of computation. 
The bottom three lines show 
the tape contents immediately 
after preparation 

The role of the three tapes is as follows: 

• On Tape 1, S preserves the input.
• On Tape 2, S generates computation paths.
• On Tape 3, S simulates N ’s tape.

Let x be an arbitrary input to M . The string x also appears on S’s Tape 1 at the start. 
The machine S prepares for its simulation by inserting a left-end marker, #.,  on  

all three tapes, and then appends 0 on the second tape (see Fig. 6.14). We can adapt 
the character insertion algorithm from Sect. 6.1.1 for this purpose. 

The string appearing on Tape 2 after the marker is a binary representation 
encoding the branches to follow. Since the transition function of N has at most 
two possible values for each state-symbol combination, the i-th character after the 
marking represents which of the two branches S must follow. The interpretation is 
0 for the first choice and 1 for the second. The machine S follows the computation 
of N using the branch sequence as a guide. S simulates N for no more steps than 
there are bits in the guide. 

When S finishes its simulation on the present path, it rewrites the encoding into 
the next path. The machine accomplishes this updating by changing the leftmost 0
or the leftmost �., whichever comes first, to 1 while changing each 1 it encounters 
during the search to 0. The paths generated in this manner will be: 

. #0, #1, #00, #10, #01, #11, #000, #100, #010, #110, #001, #101, #011, #111, . . . .

We can view these as the downward paths on an infinite complete binary tree and 
think of S as executing a breadth-first search on the tree. 

Now, let us see the details of the deterministic simulation. 
Before each simulation, Tape 3 has #�· · · �. as its content. The machine S copies 

x on Tape 1 to Tape 3 after the #.. Then, S commences the simulation of N in the 
following manner:



6.3 The Nondeterministic Turing Machine (NTM) Model 161

• Tape 3 serves as the tape of N . 
• If Head 3 sees a #. as the result of moving the head to the left, it means N has 

experienced a bounceback. Thus, S moves the head to Cell 2 before executing 
the next step of N .

• During the simulation, S marks the farthest cell reached on Tape 3 using a marker, 
such as a squiggle. If the head is about to go beyond the marker, S removes it and 
attaches it to whatever appears in the right neighbor (the cell must hold �.). 

• Let p be the present state of N and let a be the symbol appearing on Tape 3. The 
simulation of one step of N is as follows:

– If δ(p, a). has no value, S aborts the simulation because there is no action to 
perform.

– If δ(p, a). is not empty and the symbol that Head 3 sees is �., S aborts the 
simulation because the path on Tape 3 is not long enough.

– If δ(p, a). has only one value and the symbol that Head 3 sees is not �., S 
advances with δ(p, a).. 

– If δ(p, a). has two values and the symbol that Head 3 sees is 0, S advances 
with the first v alue.

– If δ(p, a). has two values and the symbol that Head 3 sees is 1, S advances 
with the second va lue.

– If the state of N has become qacc ., S accepts immediately .
– If the state of N has become qrej ., S moves on to the next path.

• Before proceeding to the next path on the list, S moves the heads on Tapes 1 
and 2 back to the leftmost position and clears all the cells it has touched during 
the simulation. For the erasure, S moves Head 3 to the marking for the farthest 
position and then brings it back to the leftmost position while writing �. in each 
cell. 

• After the erasure, S updates the computation path on Tape 2.

If x ∈ L(N)., at least one computation path exists along which N on x accepts. Since 
S generates all possible computations, S eventually finds that N on x accepts and 
thus accepts. Otherwise, N on x never accepts. Thus, S accepts the same language
as M . ��

In the case where M is a halting machine, for every input x �∈ A., there exists an 
integer �. such that all computation paths having length �. lead M to rejection without 
abortion. The machine S checks the “all rejection” property during its simulation 
and rejects x if that happens. We explore modifying the action of S in detail as an 
exercise (see Exercise 6.14). 

Theorem 6.6 A language is decidable if, and only if, an NTM decides the language.



162 6 The Turing Machines

6.4 Alternate Definitions of RE 

This section explores two alternate ways to define recursively enumerable lan-
guages. One is by using enumerators, and the other is by using witness schemes. 

6.4.1 Enumerators 

The name “recursively enumerable” comes from the fact that each language in the 
class has a method for producing all members. 

A language A’s enumerator is a multi-tape TM that writes a list of all members 
of A on one tape, where each member appears exactly once on the list. More 
specifically, an enumerator E operates as follows:

• The input is irrelevant to the action of E. 
• If A is infinite, E runs foreve r.
• One tape of E is an “output tape.” An output tape is write-only in that (a) the 

transition function of E ignores that the output tape sees, and (b) the output tape’s 
head does not move to the left.

• When E discovers a new member of A, E appends #. and the latest member to 
the output tape. The list thus takes the form of: 

. #x1#x2#x3# · · · .

We show that all recursively enumerable languages have enumerators. Then, we 
show that all languages with enumerators are recursively enumerable. 

Theorem 6.7 A language is recursively enumerable if, and only if, it has an 
enumerator. 

Proof Overview 
Let M be an arbitrary deterministic single-tape TM. We use a five-tape DTM 
and simulate M . The simulator runs with a round number � = 1, 2, 3.,  etc.  
In the round �., the simulator examines each string whose length is ≤ �. by 
simulating at most �. steps of M’s program. Each time the simulator finds that 
M accepts an input (say, x), the simulator checks whether or not x is already 
on the list; if not, the simulator adds x to the list. The five tapes are for �., 
input, M’s simulation, output, and output’s copy, respectively.



6.4 Alternate Definitions of RE 163

Proof Let A ⊆ �∗
. be recursively enumerable. Let M be a single-tape TM that 

accepts A. Our enumerator, E, has four tapes. A high-level description of E’s 
algorithm is Algorithm 6.3. 

Algorithm 6.3 An enumerator for A 
1: procedure ENUMERATOR-FOR-A 
2: initialize the output as the empty string; 
3: for � ← 1, 2, 3,  .  .  .  do 
4: for w ∈ �≤� do 
5: simulate M on w for at most � steps; 
6: if M accepts w then 
7: if w does not appear on the output then 
8: append #w to the list; 
9: add w to λ; 
10: end if 
11: end if 
12: end for 
13: end for 
14: end procedure 

The algorithm’s four-tape implementation is as follows: 

• Tape 1 is for specifying the value of �.. 
• Tape 2 generates the members of �≤�

.. 
• Tape 3 is where E runs simulations of M .
• Tape 4 is the output of E: i.e., #w1#w2# · · · . that E finds as members of L(M).. 

There is no left move of the head on Tape 4. 
• Tape 5 is an exact copy of Tape 4. 

The simulation goes as follows: 

• The simulator E moves Head 1 to Cell 2. The simulator E moves Head 2 to Cell 
2. The simulator E copies the input from Tape 2 to Tape 3.

• The simulator E executes M using Tape 3 as its tape. During the simulation, it 
records the rightmost place Head 3 has visited using a squiggle. At each step, E 
moves Head 1 to the right neighbor. The simulation ends when Head 1 sees �. or 
M’s state becomes qacc . or qrej .. 

– If Head 1 arrives at a cell showing �., E aborts the simulation for the present 
input.

– If M’s state becomes qrej ., E moves to the next simulation.
– If M’s state becomes qacc ., E compares the input with the strings appearing on 

Tape 5.

·. The simulator E moves Head 2 to Cell 1 and compares the content to the 
right of #.with each member appearing in Tape 5. 

·. It compares each string after #. with the input in Tape 2, character by 
character.



164 6 The Turing Machines

·. If there is no match (different symbols or either string longer than the 
other), E moves to the following comparison by moving Head 2 to Cell 
1.

·. If there is a match, E has already identified the input as a member, so it 
moves to the next simulation. Otherwise, E appends #. and the input to 
Tapes 4 and 5. 

– In all cases, the preparation for the next simulation is as follows: 

·. Move all the heads to Cell 1. 
·. On Tape 2, E scans to the right from #. and locates a cell holding a symbol 

not equal to ac .. If the symbol is ad . such that d < c., change it to ad+1 .; 
otherwise, change it to a1 .. During the scan, change each ac . to a1 ..  Also,  
when Head 2 moves to the right neighbor, E moves Head 1 to the right 
neighbor.

·. After updating is complete, if Head 1 sees �., the content of Tape 2 must 
be #a1 · · · a1 .. The simulator E changes the �. to 0, indicating that the 
simulation for round �. is over. 

Let w be an arbitrary member of A.  Let t0 . be an integer such that M on w enters
qacc . at step τ ..  Le  t t1 . be the larger of |w|. and t0 .. Then E simulates M on w for all
� ≥ |w|. and finds that M on w accepts for all � ≥ t1 .. Specifically, the latter occurs 
when � = t1 . for the first time, so E adds w to the output. This completes the proof 
that every recursively enumerable language has an enumerator. 

Conversely, suppose a language A has an enumerator E.  Let  D be a TM that, on 
input x, runs E, compares x with each new member on the list that E produces, and 
accepts if there is a match. Because E is an enumerator if x is a member of A, E 
eventually adds x to the list, although D does not necessarily know when. On the 
other hand, if x is not a member of A, E never produces x on the list, so D never
accepts x. Thus, D accepts A. ��

An enumerator may not make its enumeration in lexicographic order. For 
example, if M accepts 00 in eight steps, 0001 in six steps, 1100 in six steps, and 
all other members in more than eight steps, then the output E generates starts with

. #1100#0001#00# · · · .

Furthermore, if an enumerator produces its output strings in the lexicographic order, 
then A is recursive. We prove this in Exercise 6.11. 

6.4.2 Witness Schemes 

Another characterization of RE. is by way of witness languages.



6.5 Computing Functions Using TMs and the Church-Turing Thesis 165

Let L be recursively enumerable. Let M be a TM that recognizes L. Define A as 
the language of all pairs 〈x, C1# · · · #Cm〉. such that C1, . . . , Cm . are IDs of M , C1 . 

is the initial ID of M on x, Cm . is an accepting ID, and for all i such that 1 ≤ i ≤
m − 1., Ci+1 . is the next ID of Ci . }.. The language A is decidable, and for all x :

. x ∈ L ⇐⇒ (∃y)[〈x, y〉 ∈ A].

In this formulation, A is a recursive witness language for L, and any y satisfying 
the right-hand side of the equivalence is a witness for x ∈ L. concerning A. Based 
on the membership condition, we can show that L is in RE. (see Exercise 6.30). 

Thus, we have: 

Theorem 6.8 A language L is in RE. if, and only if, L has a recursive witness 
language .

6.5 Computing Functions Using TMs and the Church-Turing 
Thesis 

We define TMs that compute functions by extending the idea from Theorem 6.7.  A  
TM that computes a function is a transducer, while a TM that decides a language 
is a decider. A transducer accepts all inputs; its output is the tape’s content when it 
halts, ignoring the trailing �.. 

Definition 6.8 Let � . and � . be alphabets. Let f be a function from �∗
. to �∗

..  We  
say that f is computable if a TM M is a transducer such that for all x ∈ �∗

.,  the  
output of M on input x is f (x).. 

Although transductions appear more complex than decisions, we can build 
transductions from decisions. Let f be a function from �∗

. to �∗
..  Le  t #. be a symbol 

not in � ∪ � .. Let 0 be another symbol. 
Define: 
Af = {x#0k#a | x ∈ �∗, k ≥ 1, a ∈ � ., and the k’s character of f (x). is a}.. 

Proposition 6.2 The function f is computable if, and only if, Af . is decidable. 

We leave the proof of the proposition to the reader. 
We can encode an arbitrarily long list of arbitrary large integers using just one 

tape of a TM and process it dynamically with insertion, deletion, indexing, and 
search as permissible operations (see Exercise 6.18). The ability to mimic a dynamic 
list empowers TMs to simulate an arbitrary computer code. The observation 
emboldens us to hypothesize that TMs can compute everything that is computable; 
we call this idea the Church-Turing thesis. 

Conjecture 6.1 A function on natural numbers is computable with an algorithm if, 
and only if, it is computable by a TM.



166 6 The Turing Machines

A computing system that can compute something a TM cannot is unknown. 
However, researchers have shown that the TM model is as powerful as all known 
programming languages, and the bit size of each dataset and the number of variables 
are unlimited. 

Exercises 
6.1 Give a single-tape TM program for the following languages: 

1. {w ∈ {a, b}+ | w . has the same number of as  as  b s}.. 
2. {w ∈ {a, b}+ | |  w|. is even and w is not a palindrome}.. 
3. {w#w | w ∈ {a, b}+}.. 
4. {ai bj ck | 0 < i < j < k}.. 
5. {an bn cn | n ≥ 0}.. 
6.2 The program for {anbnan | n ≥ 0}. we reviewed had six states other than qacc . 

and qrej .. We can reduce the number of states from six to five by changing the order 
of finding a triple to the leftmost a, the rightmost a, and the rightmost b in between. 
Give a TM that accommodates this modification.

6.3 It is possible to generalize the idea of input preservation by introducing an 
auxiliary tape alphabet � × � . and its squiggled version in addition to � .. Here, 
(a, b) ∈ � × � . represents that the cell had a originally, which now is replaced with 
b. Each element (ã, b̃). in the squiggled version is for use in Cell 1. 

Describe how a TM can use the Cartesian-product alphabets and recover the 
input. 

6.4 Suppose a two-tape TM has a string #a . on Tape 1 and #b. on Tape 2, where both 
a and b are binary. Write a code for this machine to compare a and b for equality. 
You may assume the following: (a) At the start, the heads are on t he cells that contain
#.. (b) At the end of the comparison, the TM enters qacc . if a = b. and qrej . otherwise. 

6.5 Suppose a two-tape TM has #xz. on Tape 1 and #y . on Tape 2, where x, y, z ∈
{0, 1}∗ .. Write a code for this machine to insert y between x and z in the f ollowing
manner:

(a) At the start, the head of Tape 1 is on the cell immediately to the right of x. 
Also, the head of Tape 2 is on the cell immediately to the right of y. 

(b) The machine appends #z. after y on Tape 2 while erasing z on Tape 1. 
(c) Copy yz. (without the #. between y and z)  after #x . on Tape 1. 
(d) Remove #z. from Tape 2. 
(e) Move the heads to #. and enter qacc .. 

6.6 Suppose a three-tape TM has #0a
. on Tape 1, #0b

. on Tape 2, and #. on Tape 3, 
where the heads are initially on their respective #.s. Write a program for the TM to 
append 0a+b

. after the #. on Tape 3, move the heads back to their #.s, and enter qacc .. 

6.7 Suppose a three-tape TM has #0a
. on Tape 1, #0b

. on Tape 2, and #. on Tape 3, 
where the heads are initially on their respective #.s. Write a program for the TM to 
append 0ab

. after the #. on Tape 3, move the heads back to their #.s, and enter qacc ..



6.5 Computing Functions Using TMs and the Church-Turing Thesis 167

6.8 Write a program for a two-tape TM that receives a binary number n ≥ 1. on 
Tape 1 and produces #0n

. on Tape 2. Here, n is the integer the input represents. The 
machine must terminate its computation by entering qacc .with Head 2 on the #..  Note  
that the integer that a binary number b1 · · · bm . represents is 

. ((· · · ((b1 ∗ 2 + b2) ∗ 2 + b3) · · · ) ∗ 2 + bm−1) ∗ 2 + bm.

We can execute “times 2 then plus b” as follows: 

• Presently Tape 2 has #0k
. for some k ≥ 1.. 

• There is an additional bit b indicating the #0k
.must turn into #02k+b

.. 
• Turn each 0 on Tape 2 to 2, starting from the leftmost one, and for each 0, append 

a 1 at the end. 
• After this, the tape contains #2k1k

.. Append one 1 if b = 1.. 
• Move Head 2 back to #.while turning each 1 and each 2 to 0. 

6.9 Prove Proposition 6.1. 

6.10 Write a program for a two-tape TM that copies the input from Tape 1 to Tape 
2. After copying, the machine moves the heads to the leftmost positions and enters 
a state r . 

6.11 Prove that if there exists an enumerator for a language A that produces the 
members of A in the lexigraphic order, then there is a TM that decides A.

6.12 In the proof of Theorem 6.1, the simulation S made k round-trips to find the 
symbols that the k heads are seeing. It is possible to combine the k round-trips into 
one by changing the states S uses for discovery so that they record for which tapes 
S has found the symbol the head is scanning. Provide details for S to execute this 
d iscovery.

6.13 Continuing the previous question, describe how S can execute all its actions 
during k round-trips in just one round-trip.

6.14 Complete the proof of Theorem 6.5 by showing that a DTM can check to see 
if the present path length covers all possible computation paths of the NTM N . 

6.15 Prove Proposition 6.2. 

6.16 A two-tape NTM can simulate an arbitrary PDA using the second tape as the 
stack. Describe how a two-tape NTM can execute such a simulation. 

6.17 Think of a PDA with two stacks such that the input appears in the second stack 
from top to bottom with a special symbol $. appearing at the last symbol of the input 
as the bottom sign. Show that such a “two-stack PDA” can simulate an arbitrary 
single-tape TM. 

6.18 Describe how to implement a dynamic list of non-negative integers on a multi-
tape TM, where an element n on the list takes the encoding 0n

., a symbol #. appears



168 6 The Turing Machines

at the start of the list, and $. appears between elements. The operations that the list 
needs to accommodate are: 

• Insertion of an element 0n
. at the k-th position on the list, where 0k

. is the string 
that specifies k 

• Deletion of an element at the k-th position, where 0k
. is the string that specifies k 

• Obtaining the element at the k-th position, where 0k
. is the string that specifies k 

• Obtaining the length, �., of the list as 0�
. 

• Returning the position of the first occurrence of 0n
. 

6.19 Show that we can augment each TM M so that at the time of termination, 
the tape cells hold the blank on each tape, and all the heads are in their leftmost 
positions.

6.20 Let L be an arbitrary language and α . be an arbitrary symbol. Define L′ =
{αw | w ∈ L}.. Show that L is decidable if, and only if, L′

. is decidable. In addition, 
prove that L is recognizable if, and only if, L′

. is recognizable. 

6.21 Prove that R. is closed under union, intersection, and complement. 

6.22 Prove that R. is closed under Kleene-star. 

6.23 Prove that RE. is closed under union and intersection. 

6.24 Prove that RE. is closed under Kleene-star. 

6.25 The marked union of languages A and B is {0w | w ∈ A} ∪ {1w | w ∈ B}.. 
We write A⊕B . as the marked union of A and B. We say that a language class C. has 
the closure property under marked union if for all A,B ∈ C., A ⊕ B . is in C.. Prove 
that the class of recursively enumerable languages has the closure properties under 
marked union. 

6.26 Prove that the class of recursive languages has the closure properties under 
marked union. 

6.27 Describe how a TM with a one-way-infinite tape can simulate another with a 
two-way-infinite tape. 

6.28 Recall that if a TM attempts to move its head to the left when the head is 
on the leftmost cell, the head does not move. Let M be a single-tape TM that 
may attempt to make such a move. Answer how this impossible attempt can be 
avoided by introducing new symbols and modifying M’s transition function without 
changing the language that M recognizes.

6.29 Let M be a single-tape TM whose possible head moves are L, −., and R. 
Answer how another single-tape TM N whose possible head moves are L and R 
only can simulate M without slowdonw; for all t , N can simulate t steps of M in at
most t steps.

6.30 Show that if a language is characterized as the set of all x such that for some 
y, 〈x, y〉 ∈ A., where A is recursive, then the language is recursively enumerable.



References 169

6.31 Show that if L has a recursive witness scheme as in the previous question and 
a recursive function exists that computes an upper bound on the length of a witness, 
then L is recursiv e.

Bibliographic Notes and Further Reading 
Turing introduced the TM in his 1936 paper [8]. In the same year, Church [1], 
Kleene [4], and Post [6] published their papers proposing models as equally 
powerful as the TM model. Their papers are available in a compendium by 
Davis [3] along with their historical importance. The Church-Turing thesis and 
other equivalent models for the recursively enumerable can be found in Davis [2], 
Kleene [5], and Rogers [7]. 

References 

1. A. Church, An unsolvable problem of elementary number theory. Am. J. Math. 58, 345–363 
(1936) 

2. M. Davis, Computability and Undecidability (McGraw-Hill, New York, 1958) 
3. M. Davis, The Undecidable (Raven Press, New York, 1965) 
4. S.C. Kleene, General recursive functions of natural numbers. Math. Ann. 112, 727–742 (1936) 
5. S.C. Kleene, Introduction to Mathematics (D. van Nostrand, Princeton, 1952) 
6. E.L. Post, Finite combinatory process-formulation, I. J. Symbol Logic 1, 103–105 (1936) 
7. H. Rogers, Jr., Theory of Recursive Functions and Effective Computability. (The MIT Press, 

Cambridge, 1987) 
8. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. J. 

Math. 58(345–363), 5 (1936)



Chapter 7 
Decidable Languages 

7.1 The Universal TM Model 

Here, we will explore the concept of encoding computing devices. 

7.1.1 Encoding Schemes 

First, we study the properties of TMs and other computing models by defining 
languages whose members are computing models for which certain conditions hold. 
This necessitates a scheme for encoding individual computing devices as strings 
without ambiguity. The previous chapters described devices and their inputs using 
symbols, mathematical notation, diagrams, and plain text. While we can make those 
descriptions as accurate as possible, they are complex and can be redundant. Can 
we simplify those descriptions while maintaining their accuracy? 

The answer to this question is positive. Let us derive some simple encoding 
schemes. A crucial observation necessary here is that the references we make to 
device components are only abstract. We know that language classes are closed 
under one-to-one character replacements. Let � . and �′

. be arbitrary alphabets 
of equal size. Let h be an arbitrary bijection from � . to �′

.. Then, h acts  as  a  
homomorphism from the languages over � . to the languages over �′

..  Let  L be an 
arbitrary language over � ..  Let L′ = h(L).. For all language classes C., L ∈ C. if, and 
only if, L′ ∈ C.. 

The preservation of class membership under a bijection between alphabets 
reveals that to study complexity, we need to know how the symbols in the alphabet 
are related. A similar universality exists in variables within context-free grammars 
and stack alphabets in PDAs. Thus, we can treat automata and grammars as lists of 
indices where the indices appear in a specific order. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_7

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7
https://doi.org/10.1007/978-3-031-84740-0_7


172 7 Decidable Languages

For example, the following list adequately describes an NFA (Q,�, δ, q0, F ).: 

1. The cardinality of ‖Q‖. 

2. The  index  o  f q0 . in Q 
3. The cardinality of F 
4. A list of indices of the states in F 
5. The size of �ε . 

6. ε .’s index in �ε . 

7. A list of triples (i.e., the state in the present step, the symbol, and the state in the 
next step) representing the elements of δ . 

Here, the indices can be represented as tally strings in {0}∗ .; i.e., 0k
. represents k as 

an index. In addition, these indices should be separated with a delimiter in between, 
and we will use a tally string in {1}∗ ., e.g., 1. While a single type of delimiter may 
be sufficient for encoding NFAs, using multiple delimiters may make extracting 
information easier. 

Suppose the NFA is Q = {p1, p2}., � = {a1, a2}., q0 = p1 ., and F = {p2}. and δ . 

comprises of 

. (p1, a1) = {p2}, (p1, ε) = {p2}, and(p2, a2) = {p2}.

Then, the encoding can be: 

. 00 111 0 111 0 111 00 111 000 111 010100 11 01000100 11 00100100.

Here, we use three different delimiters: 111 for the top level, 11 between the 
transition function’s triples, and 1 for separating three elements in triples. 

If necessary, we can turn these binary encodings into unary encodings. For 
example, we can use 0m

. to encode the binary string whose lexicographic order is m. 
We will use these encodings in our studies without specifying the formats used. 

From now on, we assume an encoding scheme for each computing object type 
and use 〈X〉. to represent the encoding. We can connect multiple encodings using a 
punctuation mark that does not appear in the individual parts. We use 〈X1, . . . , Xk〉. 
to represent an encoding of objects X1, . . . , Xk . in such a manner. We call this the 
semantic encoding function. 

7.1.2 Fundamental Problems 

Now that we have our encoding scheme, we can study how difficult it is to determine 
the properties of computing devices and the languages they define. We assign the 
task of determining the properties to TMs. TMs of this sort are similar to those 
we have seen previously. However, they are expected to (a) receive an encoding as 
input, (b) validate the encoding while extracting the components of the device(s), 
(c) analyze the extracted device(s), and (d) simulate the device(s). Such TMs can 
simulate all TMs. These are called universal Turing machines (“universal TMs”).



7.1 The Universal TM Model 173

While the choices of the problems to study may be broad, we have a strong 
interest in the following fundamental questions: 

• Acceptance Is a string x a member of a language A ?
• Emptiness Does a language A have any members?
• Infiniteness Does a language A have infinitely many members?
• Totality Does a language A include all possible m embers?
• Equality Is a language A equal to another language B ?
• Containment Is a language A a subset of another language B ?

Which language classes shall we consider for these questions? The language 
classes we have seen are REG., CFL., DCFL., R., and RE..  Fo  r R., there is no obvious 
way to specify TMs that are deciders. We thus exclude R. and consider only 
the four remaining classes: REG., CFL., DCFL., and RE..  As  for REG., we know 
regular expressions, FAs, and NFAs are equivalent through conversion algorithms. 
Similarly, for CFL., we know that CFGs, normal-form CFGs, and PDAs are 
equivalent through conversion algorithms. Thus, we can use any alternative to 
specify these language classes. 

Since we have six types of problems, the total number of fundamental questions 
we will examine is twenty-four. We combine a property type T and a class type D 
and write TD . to specify the problem. For example, ACCEPTREG . is: 

• The language of all combinations 〈M,w〉. such that M is a regular language and
w ∈ L(M). 

We will identify which of the 24 problems are decidable and, if they do not appear 
decidable, prove that they are undecidable. 

Table 7.1 shows each problem’s decidability property. 

Table 7.1 The decidability table. The columns are computing devices representing language 
classes. Cells D and U indicate the decidable and undecidable problems, respectively. Underneath 
the D/U indicator is the place where the proof appears. The ∗ . indicates that the proof is not provided 
in the book 

Type FA DPDA PDA TM 

Acceptance D D D U 

Theorem 7.1 Corollary 7.3 Theorem 7.7 Theorem 8.2 

Emptiness D D D U 

Theorem 7.2 Corollary 7.3 Exercise 7.9 Corollary 8.2 

Infiniteness D D D U 

Theorem 7.3 Corollary 7.3 Exercise 7.11 Corollary 8.2 

Totality D D U U 

Theorem 7.4 Corollary 7.3 Theorem 8.5 Corollary 8.2 

Containment D U U U 

Theorem 7.5 Theorem 8.7 Corollary 8.5 Corollary 8.3 

Equality D D ∗ . U U 

Theorem 7.6 Theorem 7.8 Corollary 8.4 Corollary 8.3



174 7 Decidable Languages

In addition to the twenty-four questions, we study the following question about 
TMs: 

• The Halting Problem: Does a TM halt on all inputs? 

We show that this problem is undecidable in Theorem 8.3. 

7.1.3 Using Universal TMs 

The universal TM model mentioned earlier is a primary tool for the classification 
process. 

A universal TM operates similarly to the simulators from Chap. 6. However, the 
simulations here are more complex than the previous ones because the universal TM 
simulators need to decode the language objects appearing as part of the input. The 
size of the objects, e.g., the size of the alphabet, has no limits. Thus, the simulators 
need to deal with objects of an arbitrary size. To clarify this requirement, consider 
a problem type T and an object type D. Our universal TM has a fixed number of 
tapes and receives a binary (or unary) string that could encode an instance. The 
format of the encoding depends on T and D. A basic algorithm, which appears i n
Algorithm 7.1, is for the universal TM to test the membership of its input in the 
language TD .. We may expect that for each combination of T and D, the number of 

Algorithm 7.1 A universal TM algorithm for TD . 

1: procedure MEMBERSHIP-FOR-TD(w) 
2: w is an input; 
3: check the validity of input as an encoding; 
4: if w is invalid then 
5: accept or reject according to the definition of TD ; 
6: else 
7: prepare for a simulation by extracting components from w; 
8: simulate to test the membership property; 
9: if the simulation is complete then 
10: accept reject according to the definition; 
11: end if 
12: end if 
13: end pro cedure 

components separated by 111 in any valid input is a constant. We can give a fixed 
number of tapes to our universal TM solving TD . for extracting the components 
embedded in the input and checking the validity. After successfully verifying the 
input, our universal TM does some work to check the property T .



7.2 Decidable Fundamental Problems 175

7.2 Decidable Fundamental Problems 

Here, we present some decidable problems. 

7.2.1 Decidable Problems About Regular Languages 

We first present decidable problems about regular languages. 

7.2.1.1 Acceptance 

The accepting problem about regular languages is decidable. 

Theorem 7.1 The following language is decidable: 

. ACCEPTFA = {〈M, w〉 | M is a DFA acceptingw}.

Proof We will develop a multi-tape universal TM, U , that decides the language 
ACCEPTFA .. We assume that the input alphabet of U is in binary. Let x be an input 
U . U operates as follows: 

First, U checks the validity of the input. While confirming the validity, U extracts 
the DFA and its associated input from x. Let us call the DFA M and the input w. 
U can use its tapes to store the components of M . If the validity checking fails, U 
rejects x immediately. 

Next, U simulates M and an input w, which will terminate in a finite number of 
steps. Then, U accepts x if M accepts w in the simulation and rejects x otherwise. 

Next are more details about the action of U . 
U e xtracts the following information about M , according to its expected

encoding scheme:

1. The cardinality of the state set 
2. The cardinality of the alphabet 
3. The transition table as a list of triples, where the components of each triple are 

separated by 1 and the triples are separated by 11 
4. The index of the initial state 
5. The list of final states with 1 in between 
6. The input w as a sequence of numbers separated by 1

U writes these numbers as tallies of 0 (as they appear in the input w). U may write 
these six components on six separate tapes. In addition, U maywrite the components 
with a left-end mark (e.g., #.) in front for convenience. 

The validity checks U conducts are the following:



176 7 Decidable Languages

• The transition table must be a series of triples in the format mentioned previously. 
In each triple, the first and third components must be between 1 and the state set’s 
cardinality, and the second component must be between 1 and the alphabet’s 
cardinality. In addition, for each combination of a state number and a symbol 
number, a unique triple must exist whose first component matches the state 
number and whose second component matches the symbol number. 

• The initial state must be between 1 and the state set’s cardinality. 
• Each final state must be between 1 and the state set’s cardinality. 
• Each element of the input w must be between 1 and the alphabet’s cardinality .

Figure 7.1 presents the contents of the six tapes that U extracts from the input. 
Let (Q,�, δ, q0, F ). be the DFA M . After confirming the validity, U operates as 

follo ws:

1. U will use yet another tape to record M’s state during simulation. U initializes 
the value with the initial state number.

2. U reads the index of each symbol in w. For each symbol index, U compares 
the present state and symbol numbers with the first two components of all the 
triples in the transition information. A unique match must exist because the
〈M,w〉. passed the validity test. U extracts the third component from the triple 
and updates M’s state with the third component.

3. Upon processing all the input symbols, U compares M’s state with each final 
state. If a match exists, U accepts x; otherwise, it rejects x.

Comparing two numbers appearing in separate tapes is relatively easy for U since 
the numbers are tallies. U can compare them by moving the heads on the two tapes 
in one direction, starting from one end of the tally, aiming for the other end, and 
checking if the heads will simultaneously arrive at any symbol other than 0. 

We see that U can execute all its work in a finite amount of steps. T hus,U decides
ACCEPTFA .. �	

Fig. 7.1 The six tapes after 
extracting information from 
the input



7.2 Decidable Fundamental Problems 177

7.2.1.2 Emptiness 

Like the acceptance problem, the emptiness problem is decidable. 

Theorem 7.2 The following language is decidable: 

. EMPTYFA = {〈M〉 | Mis a DFA that accepts no input}.

Proof Overview 
Unlike the acceptance problem, the emptiness problem does not specify 
an input. We can consider simulating the DFA on each possible input to 
determine if a given DFA accepts any input. This question is complementary 
to the emptiness question. The input can be generated one after another in 
lexicographic order. If the DFA accepts any input, we know the emptiness 
question is negative. However, the simulation will never stop if the DFA 
accepts no input. Thus, the strategy puts the emptiness problem in coRE. but 
not necessarily in R.. Is there a way to terminate the simulation when the DFA 
does not accept input? Indeed, there is a strategy for termination. According 
to the Pumping Lemma, if an m-state DFA accepts a string w having a l ength
≥ m., the removal of the y-part of the xyz decomposition produces a string 
the DFA agrees with that is shorter than w. Thus, the examination of input 
in lexicographic order can be terminated when we discover that no strings 
having a length <m. are accepted. 

Proof We develop a universal TM, U , that decides the language. As with the proof 
of Theorem 7.1, the initial action of U is to validate its input x as an encoding of 
a DFA and extract the information from that input. As with the previous proof, U 
rejects x if U finds that x is invalid. 

Assuming that x is valid, U advances to testing emptiness. Let M be the DFA 
and n be the cardinality of M’s state set.

We then use the following proposition in the emptiness test: 

Proposition 7.1 A DFA with n states accepts a nonempty set if, and only if, it 
accepts a string having a length <n.. �	
Proof Let M be an arbitrary DFA and n be the number of states of M . Suppose M 
accepts no input. Then, M accepts no input with a length <n.. 

Conversely, suppose M accepts at least one string. If there is one having a l ength
<n., we are done. So, think of a string u = u1 · · · uk . that M accepts, whose l ength
k ≥ n.. Here, u1, . . . , uk . are from M’s alphabet. Then, we can use the Pumping 
Lemma for regular languages (Lemma 3.3) to obtain xyz as a decomposition of u, 
where |y| ≥ 1. and M accepts xz.  If |xz| < n., we have identified a string M accepts



178 7 Decidable Languages

whose length is less than n. Otherwise, we can re-apply the Pumping Lemma to xz 
to construct another shorter member. 

We can repeat the decomposition-then-removal procedure until we find a string 
M accepts whose length is <n.. Thus, the proposition holds. �	

We can now use Proposition 7.1 to test the “emptiness.” In this test, U generates 
all inputs for M having a length less than n in lexicographic order. U can use the 
algorithm for the acceptance problem to test if M accepts any prospective members. 

The generation of prospective members can follow an idea reminiscent of the 
path generation for deterministically simulating NTMs (Theorem 6.4) as follows: 

For a prospective member whose symbol indices are j1, . . . , jt ., its representation 
for simulation is 

. #0j110j21 · · · 10jt 	 · · · .

• If jt < n., the next candidate is the same as the current one, expect that jt .becomes 
jt + 1.. U accomplishes this by replacing the leftmost 	.with 0. 

• If jt = n. and there is some k such that jk < n., U finds the largest such k, inserts 
0  after 0jk ., and reduces each of jk+1, · · · , jt . to 1. 

• If j1 = · · · = jt = m. and t < m − 1., U turns each of j1, · · · , jt . into 1 and 
appends 10. 

• If j1 = · · · jt = m. and t = m − 1., U terminates the s imulation.

This completes the description of U ’s algorithm. 
An alternate proof of the theorem uses reachability; a DFA accepts some input 

if, and only if, one of its final states is reachable from the initial state by following 
its transition function (see Exercise 7.1). 

7.2.1.3 Infiniteness 

The infiniteness problem about regular languages is decidable. 

Theorem 7.3 The following language is decidable: 
INFINITEFA = {〈M〉 | M . is a DFA and accepts infinitely many inputs }.. 

Proof Using the Pumping Lemma, we can show that if an n-state DFA accepts 
a string with a reappearing state, we can construct, from that string, a member 
having a length between n and 2n by pumping. Based on this observation, consider 
a universal TM that extracts a DFA from the input and tests whether or not the 
DFA accepts a string whose length is in the interval [n, 2n].. The universal TM 
exhaustively examines all the strings in the length range. The universal TM accepts 
if the encoding is valid, and the DFA accepts at least one such input. Then the 
machine witnesses that INFINITEFA .. �	



7.2 Decidable Fundamental Problems 179

7.2.1.4 Totality 

The totality problem about regular languages is decidable. 

Theorem 7.4 The following language is decidable: 
TOTALFA = {〈M〉 | M . is a DFA and accepts all inputs }.. 

Proof Let M = (Q,�, δ, q0, F ). be a DFA. Construct M ′
. from M by substituting 

its final state set F with Q − F .. Then, M accepts �∗
. if, and only if, M ′

. accepts ∅.. 
From Theorem 7.2, we already know that the emptiness problem is decidable. Let 
U0 . be a universal TM that decides EMPTYFA .. Define a new machine U from U0 . as 
follows: 

After executing the initial check on the code, if the input is a valid DFA encoding, 
U replaces the list of final states with the states that do not appear on the list. Then, 
U enters the post-verification part of U0 .. Finally, U accepts if U0 . accepts and rejects 
if U0 . rejects. 

This program halts on all inputs and correctly decides the totality problem. �	

7.2.1.5 Containment 

The containment problem about regular languages is decidable. 

Theorem 7.5 The following language is decidable: 
SUBSETFA = {〈M,N〉 | M . and N are finite automata and L(M) ⊆ L(N)}.. 

Proof Think of a universal TM that, on input w, behaves as follows: 

1. Attempt to decompose the input into the five components (the states, the alphabet, 
the transition function, the initial state, and the final states) of M and the five 
components of N . If the attempt is not successful, reject it immediately .

2. Check if the five components are valid for representing finite automata and if the 
alphabet size is the same for both. If the check fails, reject the input immediately. 

3. Construct a new DFA for L(M) ∩ L(N)..  If M = (Q,�, δ, q0, F ). and N =
(Q′, �, δ′, q ′

0, F
′)., then the new DFA, H = (R,�, θ, p0,G)., has the following 

components: 

• R = Q × Q′
.. 

• θ((q, q ′), a) = (δ(q, a), δ(q ′, a)). for all a ∈ � .. 
• p0 = (q0,  q  ′0).. 
• G = F × (Q′ − F ′).. 

Let k = ‖Q‖. and k′ = ‖Q′‖.. Since the states require sequential numbering, the 
universal TM combines the index i for a state in Q and the index j for a state in
Q′

. into (i − 1)k′ + j ..



180 7 Decidable Languages

4. The universal TM then conducts the emptiness test. The universal TM carries out 
this test by checking to see if H accepts any string having a length less than ‖R‖.. 
If H accepts any such string, L(H) �= ∅.; otherwise, L(H) = ∅.. 

5. The universal TM accepts the input if H accepts ∅.and rejects the input otherwise. 

The universal TM halts on all inputs. Also, for all inputs that encode some two finite 
automata, M and N , the universal TM accepts if, and only if, L(M) ∩ L(N) = ∅., 
which is equivalent to L(M) ⊆ L(N).. 

This proves the theorem. �	

7.2.1.6 Equality 

The equality problem is also decidable for regular languages. 

Theorem 7.6 The following language is decidable: 
EQUALFA = {〈M,N〉 | M . and N are finite automata and L(M) = L(N)}.. 

Proof A language A equals a language B if, and only if, A�B = ∅.. So, given 
DFAs M and N , the question as to whether or not L(M) = L(N). can be answered 
as follows: 

We construct a DFA for accepting the symmetric difference between L(M). and 
L(N).; we then check if the DFA accepts the empty set. This proves the theorem. �	

7.2.1.7 Decidable Problems About NFAs and Regular Expressions 

As mentioned earlier, we can also specify the six fundamental problems from 
Sect. 7.1.2 using NFAs. A slight difference, if any, is that the validation of a 
transition table is less strict. The requirement that the transition table must contain 
an entry for each combination of a state number and a symbol number does not 
apply to NFAs. 

From the above observation, we obtain the following result: 

Corollary 7.1 ACCEPTNFA ., EMPTYNFA ., EQUALNFA ., TOTALNFA ., and SUBSETNFA . 

are decidable. 

Similarly, we can develop a strategy for converting an arbitrary regular expres-
sion  to  a  DF  A.

Corollary 7.2 ACCEPTREX ., EMPTYREX ., EQUALREX ., TOTALREX ., and SUBSETREX . 

are decidable.



7.2 Decidable Fundamental Problems 181

7.2.2 Decidable Problems About CFLs 

As we discussed earlier in this chapter, CFGs, CNF grammars, and PDAs are 
equivalent using the conversion algorithms. Thus, we can study the problems with 
CFLs using any of these three models. 

Theorem 7.7 ACCEPTCFG . is decidable. 

Proof We will develop a universal TM for the language, we will call the machine 
U . 

Suppose we want to decide if a binary string x belongs to ACCEPTCFG .. As with 
decision problems for regular languages, the first thing U does is check the validity 
of x as a CFG encoding. The components U ex tracts are:

1. The number of variables in the grammar 
2. The number of terminals in the grammar 
3. The production rules of the grammar 
4. The index of the start variable 
5. The input string as a sequence of indices 

The scheme requires a distinction between variable indices and terminal indices. For 
example, the distinction can be achieved by assigning a variable index d to 02d . and 
a terminal index d to 02d−1

., where the length of the former tally is an even number; 
in contrast, the length of the latter tally is an odd number. We can then assume the 
following: 

• The rules are separated by 111. 
• The left-hand side and the right-hand side of each rule are separated by 11. 
• The elements on the right-hand side of each rule are separated by 1. 

Suppose the validation is successful. Let n be the length of w. U can convert 
the grammar G to its equivalent CNF grammar H by executing the conve rsion
algorithm from Sect. 4.2.2. Then, U can enumerate all possible leftmost production 
trees that use n−1. rules whose form is A → BC . and n rules whose form is A → a .. 
If any of the leftmost productions generates w, w ∈ L(G).; otherwise, w �∈ L(G).. 

The number of leftmost productions U examines is finite, so U decides
ACCEPTCFG .. �	
Exercises 7.9 and 7.11 are about the decidability of the emptiness and infiniteness 
problems for context-free languages. 

Since DPDAs are PDAs, decidable problems for context-free languages are 
decidable for DCFLs. Additionally, since the class of DCFLs is closed under 
complement, the totality problem for DCFLs is decidable. 

Corollary 7.3 ACCEPTDPDA ., EMPTYDPDA ., TOTALDPDA ., and INFINITEDPDA . are 
decidable.



182 7 Decidable Languages

The decidability of the DCFL equivalence problem remained unsolved until it 
was positively resolved at the end of the twentieth century. The proof is very long, 
so we only state the result. 

Theorem 7.8 EQUALDPDA . is decidable. 

The decidability contrasts with the equality problem about PDAs, which is 
undecidable (see Corollary 8.4). 

Exercises 
7.1 Let M = (Q,�, δ, q0, F ). be  a  DFA.  Let G = (Q,A). be a directed graph such 
that 

. A = {(p, q) | δ(p, a) = q for some a ∈ �}.

Prove that M accepts at least one input if G has a directed path from q0 . to some 
p ∈ F .. Then use the result to show that EMPTYFA . is decidable. 

7.2 Let M be a DFA with n states. Based on the Pumping Lemma, prove that M 
accepts infinitely many inputs if, and only if, it accepts a string with a length between 
n and 2n.

7.3 The general strategy for universal TMs appearing in Sect. 7.2.1.7 states that 
the universal TM must check the validity of the input components. Describe the 
conditions the components must satisfy to be valid, assuming that the components 
are the number of states, the size of the alphabet, the transition function, the initial 
state, the final states, and the input. 

7.4 Building off the previous problem, describe the conditions the components 
must satisfy to be a valid encoding of a regular expression appearing as a string. 

7.5 Show that the following language is decidable: 
{〈M〉 | M . is a single-tape TM and makes a left move regardless of its input }.. 
Hint: We can modify M so that it makes no stationary moves, construct a DFA 

accepting all inputs on which M makes a left move (M keeps reading input until it 
makes a left move), and test if the DFA accepts all inputs.

7.6 Show that the problem of deciding if an NFA has an equivalent DFA with no 
more than a specified number of states is decidable. 

7.7 Show that the following language is decidable: 

.{〈G〉 | Gis a CFG and has a variableAsuch thatAdoes not appear on the

right-hand side on any production starting from the start variable}.



7.2 Decidable Fundamental Problems 183

7.8 Show that the following language is decidable: 

. {〈E, k〉 | E is a regular expression, k is a positive integer, and there exists a DFA

with at most k states that accept L(E)}.

7.9 Show that EMPTYCFG . is decidable. 

7.10 Show that the following language is decidable: 
{〈G, k〉 | G. is a CFG, k is an integer, and L(G). has a string whose length is k}.. 

7.11 Show that INFINITECFG . is decidable. 

7.12 Show that the following language is decidable: 
{〈P 〉 | P . is a deterministic PDA }.. 

7.13 Show that the following language is decidable: 
{〈G〉 | G. is a CNF grammar }.. 

7.14 Show that the following language is decidable: 
{〈G〉 | G. is a GNF grammar }.. 

7.15 Show that the following language is decidable: 

. {〈G,w〉 | G is a CNF grammar and G has a unique leftmost production tree that

produces w}.

7.16 A linear bounded automaton is a single-tape TM such that the input appears 
between left-end and right-end markers and the head does not move out of the region 
between end markers. Prove that linear bounded automata recognize only decidable 
languages. 

7.17 Show that the following language is decidable: 
{〈A,B〉 | A. and B are DFAs, L(A) ∩ L(B) = ∅., and L(A) ∪ L(B) = �∗}.. 

7.18 Let L ⊆ �∗
.. Show that L∗ = �∗

. if, and only if, � ⊆ L.. 

7.19 Based on the previous question, prove that the problem of testing if a CFL L 
satisfies L∗ = �∗

. is decidable, where L is given by its CNF grammar .

7.20 Prove that {〈M〉 | M . is a PDA and accepts ε}. is decidable. 

Bibliographic Notes and Further Reading 
The concept of universal TMs is by Turing [5]. The decidability of the equivalence 
problem of DPDA is by Sénizergues [3]; the proof is complex. A less complex proof 
is given by Stirling [4]. CFL’s decidability is by Cocke and Schwartz [1] but first 
appeared in Younger [6] and Kasami [2].



184 7 Decidable Languages

References 

1. J. Cocke, J.T. Schwartz, Programming languages and their compilers: Preliminary notes. 
Technical Report (2nd revised ed.), CIMS, New York University (1970) 

2. T. Kasami, An efficient recognition and syntax-analysis algorithm for context-free languages. 
Coordinated Science Laboratory Report no R-257 (1966) 

3. G. Sénizergues, L(A) = L(B).? decidability results from complete formal systems. Theor. 
Comput. Sci. 251(1–2), 1–166 (2001) 

4. C. Stirling, Decidability of DPDA equivalence. Theor. Comput. Sci. 255(1–2), 1–31 (2001) 
5. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. J. 

Math. 58(345–363), 5 (1936) 
6. D.H. Younger, Recognition and parsing of context-free languages in time n3 .. Inf. Control 10(2), 

189–208 (1967)



Chapter 8 
Undecidable Languages 

8.1 The Halting Problem 

In this section, we present some fundamental results about undecidable problems. 

8.1.1 Proving Impossibility Using Diagonalization 

We begin with the diagonalization technique, which takes an enumeration of all the 
members in an infinite set and creates something different from each one. 

An infinite set S is countable if there is a sequence s1, s2, s3, . . .. such that S =
{s1, s2, s3, . . .}.. This definition of countability permits the reappearance of the same 
value in the sequence. If necessary, this reappearance can be eliminated by selecting 
a sub-sequence {si | i = 1. or i ≥ 2. and si /= sj . for all j such that 1 ≤ j ≤ n− 1}.. 

Examples of countable sets are N., Z., and Q.. The set of real numbers, R.,  is  
different from the three and is uncountable using the following diagonal argument :

Proposition 8.1 R. is uncountable. 

Proof Assume, by way of contradiction, that R. is countable. Then, there is an 
enumeration, s1, s2, s3, . . .., such that R = {s1, s2, s3, . . .}.. We define a new real 
number t such that 0 < t < 1. as follows: 

• For all j ≥ 1.,  i  f sj .’s digit in the j -th place after the decimal point is d,  the  t’s 
digit in the same place is equal to the remainder of d + 1. divided by 10. 

For example, if s1 = 7..980123 . . .., s2 = −123.4.43, s3 = 3.00.789, s4 = 5.555.5, 
s5 = 5.1470.14 . . .., etc., then t = 0.05862 . . ..A mathematical expression for t is: 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_8

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8
https://doi.org/10.1007/978-3-031-84740-0_8


186 8 Undecidable Languages

. 
 

i≥1

(( si ∗ 10i ) mod 10)/10i .

This number t is real. Then, owing to the assumption that R. is countable, there 
is an index j such that t = sj .. Let us pick one such j . However, because of the 
construction, t and sj . have different digits in the j -th place after the decimal point. 
This is a contradiction. Thus, R. is not countable.   

Since ℵ0 . and ℵ1 . are the cardinalities of N. and R. respectively, the diagonalization 
result implies that ℵ0 /= ℵ1 .. 

Now, we apply the diagonalization argument to languages. Let M1,M2, . . .. be 
an enumeration of single-tape TMs given as follows: 

For each i ≥ 1.,  if  the  i-th nonempty binary string passes the encoding test 
according to the encoding scheme from Sect. 7.1.1, then Mi . is the TM that the 
binary string encodes; otherwise, it is a TM accepting no inputs with {0}. as its input 
alphabet. For every language A ∈ RE., there is an index i such that L(Mi) = A.. 

Definition 8.1 Define Ldiag = {0i | . Mi . does not accept 0i ., where 0 is the first 
symbol of the unary encoding of some TM D, and D does not accept 0m}.. 
As we will prove in Exercise 8.4, Ldiag ∈ coRE.. However, Ldiag /∈ RE.. Assume, 
on the contrary, that Ldiag ∈ RE.. Then, there is an index i such that Mi . recognizes 
Ldiag .. We observe the following: 

• Suppose Mi . accepts 0i .. Then, due to the definition of Ldiag ., 0i /∈ Ldiag ., which 
implies that Mi . does not accept 0i .. 

• Suppose Mi . does not accept 0i .. Then, due to the definition of Ldiag ., 0i ∈ Ldiag ., 
which implies that Mi . accepts 0i .. 

Therefore, we have a contradiction. 
We have thus proven the following: 

Theorem 8.1 Ldiag ∈ (coRE \ RE ).. 

Let us define Lself . as the complementary language of Ldiag . as follows: 

Definition 8.2 Define Lself = { D  | D . accepts  D  }.. 
Since Ldiag ∈ coRE \ RE.,  we  hav  e:

Corollary 8.1 Lself ∈ RE \ coRE.. 

We leave the proof of the result to the reader (Exercise 8.5). 
Using Lself ., we can show the following language is not decidable. 

Definition 8.3 Define ACCEPTTM = { G,w  | G. is a DTM, w is an input to G, 
and G on w accepts}.. 

Theorem 8.2 ACCEPTTM . is undecidable. More specifically, ACCEPTTM . is recur-
sively enumerable but not recursive.



8.1 The Halting Problem 187

We leave to the reader the task of proving that ACCEPTTM . is in RE. (Exercise 8.6). 
We show that ACCEPTTM /∈ coRE. by contradiction. 
By way of contradiction, assume that ACCEPTTM . is in coRE.. Since we already 

know that ACCEPTTM ∈ RE.,  we  have ACCEPTTM ∈ R..  Let  E be a TM t hat decides
ACCEPTTM ..  Using  E as a subroutine, we can construct a three-tape TM that decides
Lself .. We present its algorithm in Algorithm 8.1. 

Algorithm 8.1 A  TM  F for Lself ., with E as a subroutine for ACCEPTTM . 

1: procedure TURING-MACHINE-FOR-Lself (w) 
2: receive a unary input x = 0k ; 
3: if |x| = 0 then 
4: reject x; 
5: else 
6: on Tape 2, construct the k-th nonempty binary string; 
7: check if the string encodes some TM; 
8: if the encoding is invalid then 
9: reject x; 
10: else 
11: extract the machine M that x encodes; 
12: on Tape 3, construct the encoding  M, x  ; 
13: simulate E assuming that Tape 3 is E’s only tape; 
14: if E accepts then 
15: accept x; 
16: else 
17: reject x; 
18: end if 
19: end if 
20: end if 
21: end procedure 

By our assumption, E decides ACCEPTTM .,  so  F halts on all inputs. Then, for 
all inputs x, M on x accepts if, and only if, E accepts x. This implies that Lself . is 
decidable, which is a contradiction. Thus, ACCEPTTM . is undecidable. 

8.1.2 The Halting Problem 

The next undecidable problem is the Halting Problem. The Halting Problem asks 
if a given TM halts on all inputs. 

Definition 8.4 Define HALTTM = { M  | M . is a TM that halts on all inputs }.. 

Theorem 8.3 HALTTM . is undecidable. 

Proof We can prove the theorem by contradiction. Assume, on the contrary, that 
HALTTM . is decidable. Let E be a TM that decides HALTTM .. We construct the 
following TM, F , from E.



188 8 Undecidable Languages

1. Receive a binary string x. 
2. Test if x is an encoding of the form  M,w  . such that M is a TM and w is an 

input to M .
3. If x does not pass the test, reject x .
4. Construct  N  ., where N is a TM that, on each input y, behaves as follo ws:

a. N tests if y = w .. 
b. If y /= w ., N accepts y .
c. If y = w ., N moves the head to the leftmost cell and simulates M .
d. If M accepts, N accepts; if M rejects, N enters a n infinite loop.

5. Run E on  N  .. 
6. If E accepts, accept w; otherwise, reject w .

N is specific to M and w;  it  has  w as part of its code and compares w with its input 
y, character by character. 

Since E halts on all inputs, F halts on all inputs as well. In addition, N accepts 
all inputs if M accepts w and runs forever on all inputs otherwise. Thus, N halts on 
all inputs if, and only if,M on w accepts. Since we assume that E decides HALTTM ., 
we have a program that decides ACCEPTTM ., which is a contradiction.   

8.1.3 Some Variants of the Halting Problem 

Since the TM from the proof of Theorem 8.3 accepts either all inputs or no inputs, 
we obtain the following result: 

Corollary 8.2 EMPTYTM ., INFINITETM ., and TOTALTM . are undecidable. 

Since both TMs accepting no inputs and TMs accepting all inputs can be 
constructed, we have the following result: 

Corollary 8.3 SUBSETTM . and EQUALTM . are undecidable. 

8.2 Many-One Reductions and Rice’s Theorem 

Here, we study two general techniques for proving undecidability. One technique is 
the many-one reduction, which, instance by instance, transforms a decision problem 
into another. The other technique is Rice’s Theorem, which states that all nontrivial 
properties of TMs are undecidable.



8.2 Many-One Reductions and Rice’s Theorem 189

8.2.1 Many-One Reductions 

We begin with the use of many-one reductions. 
We have seen undecidability proofs that take the form: “If X were decidable, 

then a problem Y that is already known to be undecidable would be decidable, and 
so X must be undecidable.” We study this type of argument here, where every input 
about one language can be translated into some input about another problem.

Definition 8.5 Let A ⊆  ∗
. and B ⊆  ∗

. be two languages, where  . and  . are two 
(possibly equal) alphabets. We say that A is many-one reducible to B if there is a 
computable function f from  ∗

. to  ∗
. such that for all x ∈  ∗

., x ∈ A. if, and only 
if, f (x) ∈ B .. 

We write A ≤m B . to denote that A is many-one reducible to B .

The many-one reducibility is a tool for finding upper and lower bounds to the 
difficulty of problems. 

Proposition 8.2 If A ≤m B . and B is recursive, then A is recursive. Conversely, if 
A is not recursive and A ≤m B ., B is not recursive .

Proof Suppose A ≤m B .. Then, a reduction, f , exists from A to B.  Let  R be a TM 
that computes f . 

Suppose B is recursive. We select a TM M that decides B. We may assume that 
M is a single-table TM. 

Let N be a TM that for each input x e xecutes the following algorithm:

1. Compute f (x). using R, where a normal read/write tape plays the role of the 
output tape of R. 

2. Simulate M assuming the tape that played the role of R’s output tape is M’s tape.
3. Accept x if M accepts; reject x otherwise.

Since R and M halt on all inputs, N halts on all inputs as well. Because of the 
translational property of many-one reductions, N accepts its input if, and only if, 
the input is a member of A. Thus, A is recursive.   

The many-one reducibility is a relation between languages. It is reflexive and 
transitive but not symmetric. 

Proposition 8.3 The many-one reducibility is reflexive and transitive. 

Proposition 8.4 The many-one reducibility is not symmetric. 

We leave the proofs of the above propositions to the reader. 
Here is an example of using the many-one reducibility to show the undecidability 

of a language. 

Example 8.1 Define A = {xx | x =  M  . for some TM M where M does not
accept x}.. A is not recursive for the following reason: 

Assume A is recursive. Then, there is a TM M that decides A. For all x, x ∈ Lself . 

if, and only if, xx ∈ A.. Define f as the function that maps each x to xx. The function



190 8 Undecidable Languages

f is computable by a TM that copies its input to the output tape twice. Then f is a 
many-one reduction from Lself . to A. Since Lself . is not recursive, we have A /∈ R. by 
Proposition 8.2. 

8.2.2 Rice’s Theorem 

Next, we show Rice’s Theorem. 
Rice’s Theorem is a technique for proving the undecidability of properties of 

TMs. 

Definition 8.6 Let Q be any property of recursively enumerable languages; i.e., for 
each recursively enumerable language L, L either satisfies the requirement for Q or 
it doesn’t. We say that Q is nontrivial if there is a recursively enumerable language 
that has Q and there is another recursively enumerable language that does not have
Q.

Theorem 8.4 (Rice’s Theorem) Every nontrivial property of recursively enumer-
able languages is undecidable. More specifically, for each nontrivial property Q, 
LQ = { M  | M . is a TM, and L(M). has the property Q}. is undecidable. 
Proof Let Q be an arbitrary nontrivial property of recursively enumerable lan-
guages. Let A1 . be a recursively enumerable language with Q, and let A2 . be a 
recursively enumerable language without Q.  LetM1 . and M2 . be TMs that recognize 
A1 . and A2 ., respectively. We can assume that A1 . or A2 . is ∅.. 

Suppose A2 = ∅..  Le  t  . be an alphabet such that A1 ⊆  ∗
..  Let M0 . be a TM 

that runs forever on every input. Then L(M0) = ∅.. We may assume that M0 .’s input 
alphabet is  ..  Let  f be the function that maps each w as follows:

1. If w /=  M,x  . such that M is a TM and x is an input toM , f (w) =  M0  .. 
2. Otherwise, f (w) =  N  ., where on each input y ∈  ∗

., N behaves as follo ws:

• N simulates M on x.
• N simulates M1 . on y if M accepts x.
• N simulates M0 . on y otherwise. 

Let T be a TM such that f (w) =  T   ..  If w =  M,x  . such that M accepts x ,
L(T ) = A1 . so L(T ). has Q; otherwise, L(T ) = ∅. so L(T ). does not have Q. 
Thus, ACCEPTTM ≤m LQ .. Since ACCEPTTM . is undecidable (Proposition 8.2), LQ . 

is undecidable. 
The proof where ∅. has the property Q is similar. We leave the proof to the reader 

(see Exercise 8.11).   



8.3 Undecidable Problems About CFLs 191

8.3 Undecidable Problems About CFLs 

In this section, we prove the undecidability of some problems concerning CFLs. 

8.3.1 The Totality Problem About CFLs 

The totality problem is the opposite of the emptiness problem. In the case of regular 
languages, both the emptiness and totality problems are decidable. In the previous 
chapter, we saw that the membership and emptiness problems about context-free 
languages are decidable. We show here the totality of context-free languages is an 
undecidable problem. 

Theorem 8.5 TOTALCFG . is undecidable. 

We can say something more specific about the problem. Let NONTOTALCFG . be 
TOTALCFG .’s complementary problem (i.e., the problem of deciding if a context-free 
language has a nonmember). 

Theorem 8.6 TOTALCFG ∈ coRE \ RE., and NONTOTALCFG ∈ RE \ coRE.. 

Figure 8.1 shows the classification of the two decision problems. 
NONTOTALCFG ∈ RE. comes from ACCEPTCFG . being decidable (Theorem 7.7). 

For proving that L(G) /=  ∗
., we try checking w ∈ L(G). for all w in lexicographic 

order using a recursive algorithm. Each membership testing halts. IfL(G) /=  ∗
., we  

eventually encounter the smallest nonmember, w,  of L(G). in lexicographic order. 
Upon encountering such w, we accept. Algorithm 8.2 shows the algorithm. 

Let’s turn to the proof of Theorem 8.5. 

Proof To prove the undecidability of TOTALCFG ., we translate the acceptance 
problem of TMs to NONTOTALCFG .. We can capture the translation as a many-one 
reduction, f , from ACCEPTTM . to NONTOTALCFG .. In other words, for an arbitrary 
binary string x, x ∈ ACCEPTTM . if, and only if, f (x) ∈ NONTOTALCFG .. 

The computation of f (x). begins by checking the validity of x as an encoding of 
some machine, say M , and an input, w, to it. If x fails the test, x is a nonmember
of ACCEPTTM ., so we set the value of f (x). to some nonmember of NONTOTALCFG .. 
The trivial nonmember can be the empty string because an empty string cannot 

Fig. 8.1 TOTALCFG . and 
NONTOTALCFG .



192 8 Undecidable Languages

Algorithm 8.2 A TM that recognizes NONTOTALCFG . 

1: procedure TM-FOR-NONTOTALCFG(w) 
2: check the validity of w as an encoding of a context-free grammar; 
3: if w is valid then 
4: extract the grammar G = (V , ,  R,  S)  from w; 
5: else 
6: reject w; 
7: end if 
8: convert G to a CNF grammar G = (V   , R ,  S ); 
9: for  ← 0, 1, 2,  .  .  .  do 
10: for each u ∈   do 
11: for each sequences s of 2 − 1 production rules do 
12: if s represents a leftmost derivation producing u then 
13: terminate the loop generating s; 
14: end if 
15: end for 
16: if no s produces u then 
17: accept w; 
18: end if 
19: end for 
20: end for 
21: end pro cedure

encode any grammar. On the other hand, if x passes the test, f (x). is a CFG G =
(V , ,R, S). such that M accepts w if, and only if, G’s production omits some string
in  ∗

.. 
The construction of the grammar goes as follows: 
Let M = (Q, . , δ, q0, qacc, qrej). be an arbitrary single-tape TM. Let # and 

$ be two symbols not in  ..  Let  =  ∪ Q. and ζ =  ∪ {#, $}.. We define the 
language ZM,x ⊆ ζ ∗

. as the set of all strings of the form 

. #C1$D1#C2$D2# · · · #Cm$Dm#

satisfying the following conditions: 

1. C1,  .  .  .  ,  C  m . and D1, . . . , Dm . are in  ∗Q ∗
.. 

2. For all i such that 1 ≤ i ≤ m., Di = CRi .. 
3. |C1| = |D1| = · · · = |Cm| = |Dm|.. 
4. C1 . is the initial ID of M on input x (with an arbitrary number of trailing  .s). 
5. Cm . is an accepting ID of M: i.e., in  ∗qacc ∗

. (with an arbitrary number of 
trailing  .s). 

6. For all i such that 1 ≤ i ≤ m− 1., Ci+1 . is M’s ID immediately after Ci . (with an 
arbitrary number of trailing  .s). 

For each w ∈ ZM,x ., the sub-sequence C1, . . . , Cm . appearing in it represents the 
accepting computation of M of x. T hus,

.M accepts x if, and only if, ZM,x /= ∅.



8.3 Undecidable Problems About CFLs 193

By taking the complement of each side, we have: 

. M does not accept x if, and only if, ZM,x = ζ ∗.

We can thus test the membership  M,x  . in ACCEPTTM . using the totality of ZM,x .. 
The membership conditions for w ∈ ZM,x . are as follows: 

1. w /∈ (# ∗Q ∗$ ∗Q ∗)∗ #.. 
2. w contains a substring #u$v#. such that u, v ∈  ∗

. and v /= uR .. 
3. w contains a substring #u$v#. such that u, v ∈  ∗

. and |u| /= |v|. or a substring 
$u#v$. such that u, v ∈  ∗

. and |u| /= |v|.. 
4. w has a prefix #u$. such that u is in ∗

. and does not match the regular expression 
q0x ∗

.. 
5. w has a suffix $u#. such that u is in ∗

. and does not match the regular expression 
 ∗qacc ∗

.. 
6. w has a substring $u#v$. such that u and v are in  ∗

. and v is not M’s ID 
immediately after uR .. 

Among these conditions, (1), (4), and (5) are each testable with a DFA, and 
thus context-free. The remaining conditions are also context-free, according to 
Exercises 4.14 and 4.15 Since the class CFL. is closed under union, the ZM,x . is 
context-free. 

This proves the theorem.   
We obtain the following corollaries from Theorem 8.5. 

Corollary 8.4 EQUALCFG . is undecidable. 

Proof Consider the following function f : 
Let x be an arbitrary binary string. If x is not encoding a CFG, f (x). is a fixed 

nonmember of EQUALCFG .. Otherwise, f (x) =  G ,G  ., where G 
. is a grammar that 

produces  ∗
. and  . is G’s terminal set. For the latter case, L(G) =  ∗

. if, and only 
if, L(G ) = L(G).. Thus, f is a many-one reduction from TOTALCFG . to EQUALCFG .. 

This completes the proof.   
The function f from the proof is also a many-one reduction from TOTALCFG . to 

SUBSETCFG .. 

Corollary 8.5 SUBSETCFG . is undecidable. 

The proof is left to the reader (see Exercise 8.3). 

8.3.2 Undecidable Problems About DCFLs 

Here, we prove two undecidability results about DCFLs. 

Theorem 8.7 SUBSETDPDA . is undecidable.



194 8 Undecidable Languages

Proof Overview 
We use the palindrome-like language ZM,x . from Sect. 8.3.1. We slightly 
modify ZM,x . so that the last #. is replaced with another symbol, #̃., to mark the 
end. We show that the language is the intersection of two DCFL languages. 
Since DCFL is closed under complement, we can complement one of the two 
languages. The complemented language includes the other language if, and 
only if, the modified version of ZM,x . is empty. 

Proof We use the language ZM,x . from Sect. 8.3.1. We assume here that M does not 
attempt a left move when the head is on the leftmost cell, and so does not experience 
a bounceback. We define Z 

M,x . as ZM,x .with the last #. replaced with a new symbol, 

#̃..  Let  = Q ∪  . and ζ  =  ∪ {#, $, #̃}.. We decompose Z 
M,x . as the intersection 

of the following two languages, R1 . and R2 .. 

• R1 . is the set of all strings of the form 

. #C1$D1#C2$D2# · · · #Cm$Dm#̃

such that: 

– m ≥ 2.. 
– C1, · · ·  ,  Cm ∈  ∗Q ∗

.. 
– For all i such that 1 ≤ i ≤ m., Di = CRi .. 

• R2 . is the set of all strings of the form 

. #C1$D1#C2$D2# · · · #Cm$Dm#̃

such that: 

– m ≥ 2.. 
– C1, · · ·  ,  Cm ∈  ∗Q ∗

.. 
– C1 .matches the regular expression q1x ∗

.. 
– Dm .matches the regular expression  ∗qacc ∗

.. 
– For all i such that 1 ≤ i ≤ m−1., Ci+1 . is the ID resulting from executing M’s 

action on (Di)R .. 

Combining all the requirements for R1 . and R2 . is equivalent to the conditions for 
Z 
M,x .,  so Z

 
M,x = R1 ∩ R2 .. 

R1 . is a series of palindromes such that each component is in a regular language 
with a marker between palindromes, a marker at the halfway point of each 
palindrome, and #̃. as the end marker; thus, it is in DCFL (see Exercise 8.16). R2 . has 
a structure similar to R1 .with #C1 . added as a prefix andDm#̃. as a suffix. In addition,



8.4 Post’s Correspondence Problem (PCP) 195

although the string Di#Ci+1 . is similar to a palindrome, it is not a palindrome. We 
can also show that R2 . is a DCFL (see Exercise 8.17). 

Now, let R3 = R2 .. Since the class of DCFLs is closed under complement, R3 . is 
a DCFL. If Z 

M,x = ∅., R1 ∩ R2 = ∅.,  so R1 ⊆ R3 ..  If Z 
M,x /= ∅., each member of 

R1 ∩ R2 = Z 
M,x . is in R1 . but not in R3 .,  so R1 /⊆ R3 .. Thus, x ∈ L(M). if, and only 

if, R1 /⊆ R3 .. 
Since we can construct R1 . and R3 . from the description of M and x, we can 

reduce the acceptance question to the DCFL inclusion p roblem.   

8.4 Post’s Correspondence Problem (PCP) 

A well-known undecidable problem is Post’s Correspondence Problem. Using the 
concept of accepting ID sequences, we define Post’s Correspondence Problem as a 
puzzle-like problem. In this section, we show that Post’s Correspondence Problem 
is undecidable. 

8.4.1 The Definitions of PCP and MPCP 

Here, we define the problem. 
Let  . be an alphabet. An instance of Post’s Correspondence Problem over 

 . is a collection, P , of string pairs, (t1, b1), . . . , (tk, bk).,  for  some k ≥ 1., such 
that t1, . . . , tk, b1, . . . , bk ∈  ∗

.. We call each pair a domino tile. In addition, for 
a domino tile (t, b)., we call t the top portion and b the bottom portion.  L  et s =
[p1, . . . , pm]. be a sequence whose elements are from P .  The  top string of s is the 
concatenation of all its top portions. The bottom string of s is the concatenation of 
all its bottom portions. The sequence s is a match (or a complete match) if its top 
string is identical to its bottom string. The sequence s is a partial match if either 
the top string is a proper prefix of the bottom string or the bottom string is a proper 
prefix of the top string. In the former, we call the part of the top string extending 
beyond the bottom string the top protrusion. In the latter, we call the part of the 
bottom string extending beyond the top string the bottom protrusion. The problem 
asks whether or not P has a nonempty sequence with a match. We call a sequence 
that has a match a solution.

Here is an example. Suppose that the following four domino tiles are the elements 
of an instance of Post’s Correspondence Problem: 

. p1 = (aaa, a), p2 = (b, aaaabc), p3 = (cdd, d), p4 = (e, de),

or, with the stacked presentations



196 8 Undecidable Languages

. p1 =
 
aaa

a

 
, p2 =

 
b

aaaabc

 
, p3 =

 
cdd

d

 
, p4 =

 
e

de

 
.

There is a solution [p1, p1, p2, p3, p4]., whose top and bottom strings are equal 
to aaaaaabcdde. The sequences [p1]., [p1, p1]., [p1, p1, p2]., and [p1, p1, p2, p3]. 
produce partial matches: 

. 

 
aaa

a

 
,

 
aaaaaa

aa

 
,

 
aaaaaab

aaaaaabc

 
, and

 
aaaaaabcdd

aaaaaabcd

 
,

with a top protrusion aa, a top protrusion aaaa, a bottom protrusion c, and a top 
protrusion d, respectively. 

For each instance of PCP, we encode the symbols of its alphabet in binary so 
that they are identical in length. A domino tile’s top and bottom portions are the 
concatenations of the binary representations. Then, using the forward slash as a 
separator between the top and bottom of each domino tile, and the comma as a 
separator between the domino tiles, we obtain an encoding of the instance with a 
four-letter alphabet. Then, representing the four letters with two bits, we obtain a 
complete binary encoding of the instance. 

We now define the language of Post’s Correspondence Problem. 

Definition 8.7 Define PCP = { P   | P . is an instance of Post’s Correspondence 
Problem and P has a solution}.. 

We define a variant of PCP, which we call the Marked Post’s Correspondence 
Problem (MPCP). Each instance of MPCP designates one tile as the start tile; every 
match must begin with the start title. 

Definition 8.8 Define MPCP = { P   | P . is an instance of the Marked Post’s 
Correspondence Problem, and P has a solution}.. 

8.4.2 The Undecidability of MPCP 

In this section, we prove the undecidability of MPCP.. 

Theorem 8.8 MPCP. is undecidable. 

8.4.2.1 An Accepting ID Sequence 

We adapt the concept of accepting ID sequences from the proof of Theorem 8.5. 
Let M = (Q,  ,  , δ, q0, qacc, qrej). be an arbitrary single-tape TM. Let L =

L(M).. We may assume the following:



8.4 Post’s Correspondence Problem (PCP) 197

• M has just one accepting ID; the head is on the leftmost cell, the tape has  . 

everywhere, and the state is qacc .. 
• M never attempts to move the head on the leftmost cell to the left neighbor .

If M does not meet the requirements, we will augment the transition function of M 
with the addition of new states and symbols in the follo wing manner:

• M marks the leftmost cell. M will keep the mark throughout its computation. It 
will not mark other cells with the same marke r.

• M places a different mark on all other cells it visits. The mark will be removed 
just before the input is accepted.

• For cleaning, M scans the head to the right, looking for a  . without any mark. 
Upon finding the unmarked  ., M starts scanning to the left, looking for the left 
end of the tape (the left end was marked at the first step of computation). While 
looking for the left end, M writes  . in every cell it visits. Upon arriving at the 
leftmost cell, M writes  . in the cell and then enters qacc .. 

Let #. be a symbol not in  ∪Q..  Let w ∈  ∗
. be an input to M . We will construct 

a set of domino tiles P and designate one tile as the start domino tile. L et π =
#C1# · · · #Cm#., where C1, . . . , Cm ∈ L( ∗Q ∗).. We say that π . is an accepting ID 
sequence of M on w if the following conditions are met:

• C1,  .  .  .  ,  C  m . are IDs. 
• For each i between 1 and m− 1., Ci .’s next ID is Ci+1 .. 
• C1 . is the initial ID of M on input w: q0w .. 
• Cm . is the unique accepting ID of M: qacc .. 

Then, M on w accepts if, and only if, an accepting ID sequence of M on w exists.

8.4.2.2 Designing Domino Tiles 

Here, we describe the design of the domino tiles for MPCP.. 
The domino tiles are as follows: 

1. The Start Domino Tile The designated start domino tile is 

. 

 
#q0w#
#

 
.

The start domino tile creates q0w#. as the top protrusion. The protrusion encodes 
the initial ID of M on w .

2. The Computation Domino Tiles We introduce domino tiles for transforming 
the top protrusion representing a non-accepting ID of M to one representing the 
next step.



198 8 Undecidable Languages

a. For each x ∈  ∪ {#}., we introduce a domino tile,

 
x

x

 
., that clears one letter 

in the protrusion and appends the same domino tile on the top. 

b. We also introduce a domino tile

  #
#

 
., whose role is to extend the top 

protrusion by transforming the last #. to  #., thereby inserting  . at the end. 
c. For all (p, a) ∈ (Q− {qacc, qrej})× . such that the move of the head is R,  we  

introduce

. 

 
bq

pa

 
,

where δ(p, a) = (q, b, R).. 
d. For all (p, a) ∈ (Q− {qacc, qrej})× . such that the move of the head is −.,  we  

introduce

. 

 
qb

pa

 
,

where δ(p, a) = (q, b,−).. 
e. For all (p, a) ∈ (Q− {qacc, qrej})× . such that the move of the head is L and 

for all c ∈  ., we introduce 

. 

 
qcb

cpa

 
.

3. The Clean-up Domino Tile We introduce domino tiles for transforming the top 
protrusion (representing an accepting ID of M) into a protrusion shorter by one 

character. In addition to

  
 
 
. from the above, we also introduce 

. 

 
#
 #

 
.

4. The Final Domino Tile We introduce one domino tile to clear the top protrusion 

of qacc#., which is

 
 

qacc#

 
.. 

8.4.2.3 The Correctness 

We now prove the correctness of the construction for MPCP.. 
Let P denote the instance we have just described. We show that P has a solution 

if, and only if, M accepts w.



8.4 Post’s Correspondence Problem (PCP) 199

First, suppose M on w accepts. Suppose a sequence of domino tiles, s, has the 
top and bottom strings in the following form with C as an ID:

. 

 
#W#C#
#W#

 
.

Here, C#. is the top protrusion and C is an ID. We must attach a series of domino 
tiles whose bottom part matches the top protrusion. The protrusion C#. contains 
exactly one symbol representing a state (say q), and the symbol immediately 
following the state-representing symbol is a tape symbol (say q). If this state-
representing symbol is not qacc ., the piece that we select for matching the pattern 
qa . in the top protrusion must be the one that represents M’s transition δ(q, a).. 
Thus, if q is not qacc ., in the new top protrusion we have part representing the local 
change that occurs by executing the transition δ(q, a).. If this state-representing 

symbol is qacc .,  we  must  use

 
qacc

qacc

 
. instead. Using these domino tiles to clear 

the protrusions necessitates using domino tiles without state-representing symbols. 
Unless C = qacc ., the available domino tiles are for clearing one character and 
appending the same character, except for clearing #. and appending  #. or clearing 
 #. and appending #.. Except for the final domino, every domino tile in which #. 
appears has the property that #. appears as the last character on the top and as the 
last character on the bottom. This means that matching the #. at the end of the top 
protrusion C#. appends #. at the end of the next protrusion. Thus, an extension of the 
partial match is: 

. 

 
#W#C#D#
#W#C#

 
.

Here, D satisfies one of the following two p roperties:

• D is a string representing M’s ID immediately after the ID that C represents.
• D = qaccv . and C = qaccv . for v ∈  ∗

.. 

Since the start domino tile has the initial ID of M on w and the final domino tile is 
the only domino tile with a state only on the bottom portion, we conclude that M 
on w accepts if, and only if, there is a sequence beginning with the start domino tile 
producing a complete m atch as follows:

. 

 
#C1#C2# · · · #Ck# · · · #Ck+ #qacc#
#C1#C2# · · · #Ck# · · · #Ck+ #qacc#

 
.

Here, k and  . are non-negative. Additionally, the following three properties hold: 

• For all i such that 2 ≤ i ≤ k ., Ck . represents M’s ID immediately after the ID that 
Ck−1 . represents. 

• Ck . is an accepting ID and is equal to qacc  +1
.. 

• For all j such that 1 ≤ j ≤  ., Ck+ . is qacc  +1−k
..



200 8 Undecidable Languages

The proof of the theorem is now complete. 

Example 8.2 Here is an example. Suppose D = R .. In addition, suppose v is 
nonempty and v1 . . . vr .with v1, . . . , vs ∈  ..  We  u  se

. 

 
u1

u1

 
, . . . ,

 
ur

ur

 
,

 
c

c

 
,

 
a p 
pa

 
,

 
v1

v1

 
, . . . ,

 
vs

vs

 
,

 
#
#

 
.

Then, we can extend the partial match to 

. 

 
#C1#C2# · · · #Ck−1#ucpav#uca p v#
#C1#C2# · · · #Ck−1#ucpav#

 
.

The new protrusion is uca p v#., representing Ck ..  If  v is empty, we use

. 

 
u1

u1

 
, . . . ,

 
ur

ur

 
,

 
c

c

 
,

 
a p 
pa

 
, and then

  #
#

 
.

The partial match becomes 

. 

 
#C1#C2# · · · #Ck−1#ucpa#uca p  #
#C1#C2# · · · #Ck−1#ucpa#

 
.

We have omitted the empty v from the expression. The string uca p  . represents 
M’s ID immediately after the ID ucpa .. In the case where D = R ., pa . becomes bq ., 
and the domino sequence becomes 

. 

 
#C1#C2# · · · #Ck−1#ucpav#ucbqv#
#C1#C2# · · · #Ck−1#ucpav#

 
.

The protrusion represents M’s ID immediately after the ID that Ck−1 . represents. 
When v is empty, when attaching a #. on the bottom, we need to insert at least 

one  . after q. This is because the extension domino tile needs a symbol from  . to 
the right of a symbol from Q on the bottom side and appending a #. after q on the 
top makes using any such domino tiles impossible. So, in this case, we use

. 

  #
#

 

instead of 

. 

 
#
#

 
.

The new partial match is



8.4 Post’s Correspondence Problem (PCP) 201

. 

 
#C1#C2# · · · #Ck−1#ucpa#ucbq  #
#C1#C2# · · · #Ck−1#ucpa#

 
.

We have removed the empty v from both sides. 
Suppose D = −..  We  u  se

. 

 
u1

u1

 
, . . . ,

 
ur

ur

 
,

 
c

c

 
,

 
p a 
pa

 
,

 
v1

v1

 
, . . . ,

 
vs

vs

 
, and then

 
#
#

 
.

This extends the partial match to 

. 

 
#C1#C2# · · · #Ck−1#ucpav#ucp a v#
#C1#C2# · · · #Ck−1#ucpav#

 
.

The new protrusion is ucp a v#., representing M’s ID immediately after ucpav .. 
Suppose D = L. and c /=  ..  We  u  se

. 

 
u1

u1

 
, . . . ,

 
ur

ur

 
,

 
p ca 
cpa

 
,

 
v1

v1

 
, . . . ,

 
vs

vs

 
, and then

 
#
#

 
.

This extends the partial match to 

. 

 
#C1#C2# · · · #Ck−1#ucpav#up ca v#
#C1#C2# · · · #Ck−1#ucpav#

 
.

The new protrusion is up ca v#., representing M’s ID immediately after ucpav .. 
Suppose D = L. and u = c =  .. Since we are assuming that M does not move 

the head to the left on the leftmost cell, this situation never occurs. 
Since the start domino tile has a string representing the initial ID and a #. as its 

protrusion, the above observation informs us that we can extend the partial match 
of the start domino tile to a string representing an accepting ID with a #.,  if  M on w 
accepts. 

Once the protrusion becomes an accepting ID, we can start shrinking the 
protrusion. Suppose the partial match is

. 

 
#C1#C2# · · · #Ck#ucqaccv#
#C1#C2# · · · #Ck#

 

with u, v ∈  ∗
. and c ∈  .. Suppose u = u1 . . . ur . and v = v1 . . . vs ..  We  use  th  e

sequence

.

 
u1

u1

 
, . . . ,

 
ur

ur

 
,

 
qacc

cqacc

 
,

 
v1

v1

 
, . . . ,

 
vs

vs

 
,

 
#
#

 
.



202 8 Undecidable Languages

This extends the partial match to 

. 

 
#C1#C2# · · · #Ck#ucqaccv#uqaccv#
#C1#C2# · · · #Ck#ucqaccv#

 
.

We thus decrease the length of the protrusion by one. 
Similarly, when the partial match is 

. 

 
#C1#C2# · · · #Ck#uqacccv#
#C1#C2# · · · #Ck#

 

with u ∈  ∗
., v ∈  +

., and c ∈  .. Suppose u = u1 . . . ur . and v = v1 . . . vs ..  We  
extend the partial match using the sequence

. 

 
u1

u1

 
, . . . ,

 
ur

ur

 
,

 
qacc

cqacc

 
,

 
v1

v1

 
, . . . ,

 
vs

vs

 
,

 
#
#

 
.

This extends the partial match to 

. 

 
#C1#C2# · · · #Ck#ucqaccv#uqaccv#
#C1#C2# · · · #Ck#ucqaccv#

 
.

Thus, we decrease the length of the protrusion by one character. 
Using the two length-reduction processes, the protrusion becomes qacc#., which 

we can clear with the domino tile 

. 

 
 

qacc#

 
.

8.4.3 The Undecidability of PCP 

We now prove the undecidability of the PCP problem. 

Theorem 8.9 PCP. is undecidable. 

We will modify the construction in the previous proof to show that PCP. is 
undecidable. Let ∗. be a new symbol not in  ∪ Q ∪ {#}.. Construct from the 
above instance, P , of Post’s Correspondence Problem, a new instance, P ∗

., with 
the following modifications: 

• For each domino tile, insert a ∗. after each symbol for its top string and before 
each symbol for its bottom string. 

• Insert a ∗. before the first symbol of the top string of the start domino tile. 
• Insert a ∗. after the last symbol of the bottom string of each closing domino tile.



8.5 Beyond RE 203

The last two additional modifications enforce the starting of a match with the new 
start domino tile and the ending of a match with the new final domino tile. Since the 
insertion of ∗. is between symbols, once we have fixed the first and the final domino 
tiles, the construction of a match will proceed as before. 

We have thus proven Theorem 8.8. 

8.5 Beyond RE 

Here, we study the realm beyond the recursively enumerable and the co-recursively 
enumerable. 

We have learned that there are languages in RE \ coRE. and coRE \ RE..  Do RE. 

and coRE. jointly cover all the languages? Certainly not. Some languages are neither 
RE. nor coRE.. We can construct a language outside RE ∪ coRE. by taking the union 
of a language not in RE. and one not in coRE.. Define: 

. L = {0w | w ∈ ACCEPTTM} ∪ {1w | w ∈ ACCEPTTM}.

We can construct a many-one reduction from ACCEPTTM . to L because for all w ,
w ∈ ACCEPTTM . if, and only if, 0w ∈ L.. Similarly, we can construct a many-one 
reduction from ACCEPTTM . to L because for all w, w ∈ ACCEPTTM . if, and only if, 
1w ∈ L.. Since ACCEPTTM . is in RE \ coRE. and ACCEPTTM . is in coRE \ RE., L is 
thus neither coRE. nor RE.. 

We can systematically construct language classes that are increasing in difficulty. 
We will use the oracle Turing machine (oracle TM) model for this purpose. An 
oracle TM has a mechanism for executing an external black-box subroutine that can 
answer the membership question of some language. The calls to the subroutine are 
through an oracle tape, which is different from the input tape. Like the output tape, 
the query tape is write-only (see Sect. 6.4). The transition function of an oracle TM 
is independent of the symbol appearing in the cell that the head on the oracle tape is 
seeing, and does not move the head on the query tape to the left. 

An oracle TM calls the subroutine by entering a query state. This special state 
is qquery .. Upon entering qquery ., the subroutine checks the membership of the query 
string (ignoring the infinitely long suffix of the blank character). The subroutine 
reports the result of its membership checking by setting the state of the oracle TM. 
If the query is a member, the subroutine sets the state to qyes .; otherwise, it sets to qno .. 
After processing the query, the subroutine erases all non-blank characters appearing 
on the query tape and moves the head on the query tape to the leftmost position. 

An oracle TM does not control the language that appears as its subroutine 
(oracle), but its program may expect a specific language as the oracle. We design 
an oracle TM assuming that a specific language plays the role of the oracle. This 
means that the program’s decisions may be incorrect if a wrong language is used as 
the oracle.



204 8 Undecidable Languages

Definition 8.9 We say that an oracle TM M accepts a language L with O as its 
oracle if for all x,

• If x ∈ L., M on input x with O as its oracle accepts
• If x /∈ L., M on input x with O as its oracle rejects

We define the concepts of recognition and co-recognition similarly. 

We define the arithmetical hierarchy { k, k, k}k≥0 . as follows. 

Definition 8.10 Define  0 =  0 =  0 = R., and for all k ≥ 1., define  k .,  k ., and 
 k . as follows: 

•  k . is the collection of all languages L some oracle TM decides with some 
language in  k−1 . as the oracle. 

•  k . is the collection of all languages L some oracle TM recognizes with some 
language in  k−1 . as the oracle. 

•  k . is the collection of all languages L some oracle TM co-recognizes with some 
language in  k−1 . as the oracle. 

Figure 8.2 shows the relations among the first three levels of the arithmetical 
hierarchy. 

Here are some known examples of languages in the arithmetical hierarchy at 
levels greater than 1. 

• { M, N  |  M . and N are TMs and they recognize the same languages}. is in 
 2 − ( 1 ∪ 1).. 

• { M  |  M . is a TM and does not halt on at least one input }. is in  2 − ( 1 ∪ 1).. 
• { M  |  M . is a TM and L(M). is recursive }. is in  3 − ( 2 ∪ 2).. 

Theorem 8.10 

1.  1 = R.,  1 = RE., and  1 = coRE.. 

Fig. 8.2 The arithmetical 
hierarchy. The classes that 
appear higher contain the 
classes that appear lower



8.5 Beyond RE 205

2. Each class C. in the arithmetical hierarchy has closure properties under union, 
intersection, and marked union. 

3. For all k,  k =  k ∩ k .. 
Proof 

(1) Let M be an oracle TM that recognizes L and uses a language A as its oracle. 
SupposeA is in 0 .. Since 0 = R.by definition, a single-tape TM N decides A. 
We assume that N has a property that, before accepting or rejecting, writes the 
blank in all cells holding non-blank symbols and moves the head to the leftmost 
cell (see Exercise 6.19). 

We combine M’s and A’s programs and construct a TM, T , that recognizes 
L. The tape alphabet of T is the unions of those of M and N . The input tape 
alphabet of T is the unions of those of M and N . In constructing the latter 
union, we can assume that the two machines have the same blank symbol. The 
number of tapes of T is the same as that of M . The roles of the tapes are the 
same between the two machines, except that we will treat the query tape of M 
as a regular tape. 

On each input x, the machine T executes the code for M with the following
modifications:

• While simulating M , T keeps track of the position of the head on the “query 
tape,” which is a regular tape.

• When M is about to enter qquery ., T moves the head on the “query tape” to 
its leftmost position. Then, T executes the program of N , assuming that the 
“query tape” is the tape of N . Since N is a single-tape machine, during the 
simulation of N , T does not touch other tapes.

• Since N is a decider, the simulation of N ends in qacc . or qrej . eventually. If 
the simulation ends in qacc ., T changes its state to qyes ., and if the simulation 
ends in qrej ., T changes its state to qno .. Then, T returns to the simulation of 
M .

• When the simulation of N takes T to either qacc . or qrej . of M , T accepts or 
rejects accordingly .

Since T substitutes queries with simulations of N , we can treat qyes . and qno . of 
T as regular states. We can think of T as a non-oracle TM with this treatment. 

For an arbitrary query M makes, if the query string is a member of A,  the  
simulation takes T to qacc . of N , and so T goes back to the simulation of M 
in qyes .; otherwise, the state that T arrives at is qrej ., and so T goes back in qno .. 
Thus, we conclude that T on x would behave like M on x, with A as the oracle. 
Therefore, T recognizes the same language as M with A as the oracle; that is, 
L. 

Using the same argument as the above, we can show that  1 . equals coRE. 

and  1 . equals R.. 
(2) The proof uses an induction on the level, k, of the hierarchy. For k = 0.,  the  three  

classes are each equal to R.. From Exercises 6.21 and 6.25, we know that R. has 
the closure properties in question. For k ≥ 1., assume that we have already



206 8 Undecidable Languages

established the closure properties for all levels < k ..  Let L1 . and L2 . be two 
languages in  k ..  Let M1 . and M2 . be, respectively, the machines that recognize 
L1 .and L2 .with oracles A1 .and A2 . in k−1 ..  LetA0 = A1⊕A2 .. By our induction 
hypothesis, A0 ∈  k−1 ..  Let M  

1 . be a TM that operates as if it were M1 . but 
would insert a 0 at the beginning of each query string M1 . would produce. The 
machine M  

1 . recognizes L1 . with oracle A0 ..  LetM  
2 . be a TM that operates as if 

it were M2 . but would insert a 1 at the beginning of each query string M2 .would 
produce. The machine M  

2 . recognizes L2 .with oracle A0 .. Now, by following the 
solution to Exercise 6.23, we can show that a TM recognizes L1 ∪ L2 . with A0 . 

as the oracle and that another one recognizes L1 ⊕ L2 . with A0 . as the oracle. 
These machines witness that the two new languages are in  k .. The proofs for 
 k . and  k . are similar, so we skip them. 

(3) For k = 0., since  0 =  0 =  0 = R. by definition, we have  0 =  0 ∩ 0 .. 
For k = 1., since 1 = R.,  1 = RE., and 0 = coRE.,  we  have  1 =  1 ∩ 1 .. 
For k ≥ 2.,  let L1 ∈  k . and L2 ∈  k .. There is an oracle TM M1 . and a language 
A1 ∈  k−1 . such that M1 . recognizes L1 .with A1 . as the oracle. There is an oracle 
TM M2 . and a language A2 ∈  k−1 . such that M2 . co-recognizes L2 . with A2 . as 
the oracle. Let A0 = A1 ⊕ A1 .. The language A0 . is in  k−1 .. 

By following the argument from (2), we can obtain oracle TMs M  
1 . and M

 
2 . 

such that M  
1 . recognizes L1 .with A0 . as the oracle and M  

2 . co-recognizes L2 .with 
A0 . as the oracle. We can assume that both M  

1 . and M
 
2 .have only two tapes, each 

using the second tape as the query tape. 
Think  of  an  oracle TM, M0 ., that, like the machine from the proof of 

Theorem 6.3, attempts to simulate M  
1 . and M

 
2 . concurrently. The machine 

M0 . has six tapes, where the fifth is the query tape and the sixth is for bit 
counting. M0 . uses its first two tapes for simulating M  

1 . and the next two tapes 
for simulating M  

2 .. As with the previous part of the proof, we will treat the query 
tapes of M  

1 . and M
 
2 . as regular tapes. 

The first action of M0 . is to copy the input from Tape 1 to Tape 3. 
Next, M0 . simulates M  

1 . and M
 
2 . on their respective tapes (the first, second, 

third, and fourth). The simulations will be one step and one machine at a time. 
When it is about to simulate a step of M1 ., M0 .writes 1 on Tape 6 and keeps the 
head at the same position. Similarly, when it is about to simulate a step of M2 ., 
M0 .writes 2 on Tape 6 and keeps the head at the same position. 

When M  
1 . enters qquery ., M0 . does the following: 

a. Copy the contents of Tape 2 to Tape 5 with 0 in front. 
b. Clear Tape 2 and move the head on Tape 2 to the leftmost position. 
c. Enter qquery .. 

Similarly, when M  
2 . enters qquery ., M0 . does the following: 

a. Copy the contents of Tape 4 to Tape 5 with 0 in front. 
b. Clear Tape 4 and move the head on Tape 4 to the leftmost position. 
c. Enter qquery ..



8.5 Beyond RE 207

Upon returning from querying, the state is either qyes . or qno .. To identify 
the machine whose query it has executed, M0 . examines the cell on Tape 6. If 
the cell holds 1, then M0 . assumes that the state of M  

1 . has changed to qyes . or 
qno . accordingly. If the cell holds 2, then M0 . assumes that the state of M  

2 . has 
changed to qyes . or qno . accordingly. 

After simulating one step action of M  
1 ., if the state of M

 
1 . becomes qacc ., then 

T accepts; after simulating one step action of M  
2 ., if the state of M

 
2 . becomes 

qacc ., then T rejects. 
For all oracles X, the above program of T correctly simulates M  

1 . and M
 
2 . 

with oracle X. By our assumption, for each input w, if the oracle is A0 ., either 
M  

1 . on x accepts or M
 
2 . accepts (we cannot necessarily guarantee the property 

if the oracle is not equal to A0 .). Thus, for each input x, T on x either accepts or 
rejects, and the decision T makes is correct for L. 

This proves the theorem.
  

The inclusions are proper. 

Theorem 8.11 

1. For all k ≥ 1.,  k . and  k . are incomparable; that is,  k ⊂  k /⊆  k . and 
 k ⊂  k /⊆  k .. 

2. For all k ≥ 2.,  k ⊃  k−1 ∪ k−1 .. 

Proof We use an argument similar to Sect. 8.1.1 to show that neither  k . nor  k . 
include one another. 

For (1), we prove the separations by induction on k. The first two properties of 
the theorem hold for k = 1. because  1 = RE.,  1 = coRE., and  1 = R..  For  
the induction step, let k = 2. and suppose that the theorem’s properties hold for all 
smaller values of k. 

We use the unary TM encoding from Sect. 7.1.1. We define D to be the set of all 
strings w of the form 0dk10dk−11 · · · 10d1 . such that 
• 0dk−1 ,  .  .  .  , 0d1 . are valid encodings of deterministic oracle TMs. 
• 0dk . is a valid encoding of a deterministic TM. 
• Under the following formulation, w /∈ Ak .: 

– Mk,  .  .  .  ,  M  1 . are the machines that 0dk , . . . , 0d1 . represent, respectively. 
– A1 . is the language that M1 . recognizes. 
– For i = 2, . . . , k ., Ai . is the language that Mi . recognizes with Ai−1 . as the 

oracle. 

The language D is in  k .. We can show the membership of D in  k . using the 
following series of mechanical languages, B1, . . . , Bk ., where for each i such that
1 ≤ i ≤ k ., Bi . is the set of all y of the f orm

.0m10dk10dk−11 · · · 10d1



208 8 Undecidable Languages

such that 0m . encodes some input y to Mi . and y ∈ Ai ., where the definitions of Mi . 
and Ai . are the same as those for D. We can see that B1 ∈  1, B2 ∈  2, . . . , Bk ∈
 k .. Since Bk−1 ∈  k−1 ., we know that D ∈  k .. Assume D in  k .. Then, there is a 
series of TMs Nk, . . . , N1 . witnessing the membership of D in  k . in the language 
definitions of Ak, . . . , A1 .. We define w = 0dk10dk−11 · · · 10d1 . where the unary 
strings encoding Nk, . . . , N1 .. Then we know Nk . accepts w with Ak−1 . as the oracle 
if, and only if, Nk . does not take w with Ak−1 . as the oracle; this is a contradiction. 
Thus,D /∈  k ., and so, k /⊆  k .. Using the compliment of D, we get that k /⊆  k .. 
Hence, for all k,  k . and  k . are incompatible. The incompatibility also implies that 
 k ⊂  k . and  k ⊂  k .. 

For (2), let k ≥ 1..  Let Ck = {A ⊕ B | A ∈  k . and B ∈  k}.. The class Ck . 
is a subclass of  k+1 . (see Problem 8.15). The class Ck . cannot be a subset of  k . 
because the inclusion implies  k ⊆  k .. For much the same reason, Ck /⊆  k .. 
Thus,  k+1 ⊃  k ∪ k ..   
Exercises 
8.1 Show that Z. is countable. 

8.2 Show that Q. is countable. 
Hint: You can develop an enumeration in the following manner: 
First, we enumerate all pairs of integers, (m, n)., such that m, n ≥ 1..  We  use  a  

nondecreasing sequence of values d representing m+ n.. The initial value of d is 2. 
For each value d, we start the enumeration with the pair (1, d − 1). and increase the 
value of the first component one by one. In other words, the enumeration for d is 
(1, d − 1), (2, d − 2), . . . , (d − 2, 2), (d − 1, 1).. After enumerating all pairs having 
the same value of d, we move on to the next value, d + 1.. 

We view each pair (m, n). as the representation of the rational number equal to 
m/n.. For all pairs (m, n). and all positive integers g, (mg, ng). represents the same 
rational number as (m, n).. We can design the enumeration so that we include exactly 
one pair from the pairs representing the same rational numbers; that way, we can 
avoid duplications. 

We can then extend this enumeration so that it covers 0 and all negative rational 
numbers. 

8.3 Prove Corollary 8.5. 

8.4 Prove that Ldiag ∈ coRE.. 

8.5 Prove Corollary 8.1. 

8.6 Prove that ACCEPTTM . is recursively enumerable. 

8.7 Prove Proposition 8.3. 

8.8 Prove that the problem of deciding, given three CFGs, G1 ., G2 ., and G3 ., whether 
or not L(G1) = L(G2) ∪ L(G2)., is undecidable. 

8.9 Prove that the equality problem between a CFL and a DFA is undecidable, 
where the CFL is given by a CFG.



8.5 Beyond RE 209

8.10 Prove Proposition 8.4. 

8.11 Prove Rice’s Theorem when the empty set has the property Q. 

8.12 Using Rice’s Theorem, prove that the following language is undecidable: 

. { M  | M is a single-tape TM and L(M)isregular}.

8.13 Using Rice’s Theorem, prove that the following language is undecidable: 

. { M  | M is a single-tape TM and L(M) is finite}.

8.14 Using Rice’s Theorem, prove that the following language is undecidable: 

. { M  | M is a single-tape TM and L(M)is empty}.

8.15 Let k ≥ 1..  Let Ck = {0A ∪ 1B | A ∈  k . and B ∈  k}.. Show that Ck . is in 
 k+1 .. 

8.16 Prove that R1 . in the proof of Theorem 8.7 is DCFL. 

8.17 Prove that R2 . in the proof of Theorem 8.7 is DCFL. 

8.18 Prove Corollary 8.3. 

8.19 Prove that PCP is decidable if the strings in the domino pieces are over a 
single-letter alphabet. 

8.20 Prove that PCP is undecidable if the strings in the domino pieces are over a 
two-letter alphabet. 

8.21 We can prove that the ambiguity of CFLs is undecidable by constructing a 
many-one reduction from PCP to it. Let I =  (t1, b1), . . . , (tk, bk)  . be an instance 
for PCP where each pair is a tile. We define a grammar G as follo ws:

• The symbols appearing in the tiles are terminals. 
• There are k additional terminals d1, . . . , dk .. 
• There are three variables: S, T ., and B. 
• The rules of the grammar are as follows: 

. S → T | B,
T → d1T t

R
1 | · · · | dkT tRk |  , and

B → d1Bb
R
1 | · · · | dkBtRk |  .

Prove that this grammar is ambiguous if, and only if, I has a match, so PCP is 
many-one reducible to the ambiguity problem.



210 8 Undecidable Languages

8.22 Rice’s Theorem makes it possible to state the undecidability of any nontrivial 
property of the language a TM accepts. One such property is context-freeness. It 
is not difficult to argue that not all languages TMs accept are context-free, but can 
you provide a concrete example? In other words, can you construct a reduction from 
ACCEPTTM . such that the TM language generated from an instance of ACCEPTTM . is 
context-free if, and only if, the instance is a positive member? 

8.23 Consider the problem of testing if a CFL is properly contained in another 
CFL, where their respective grammars give both CFLs. Show that the problem is 
undecidable. 

8.24 Show that the problem of deciding whether or not two RE. languages are 
incomparable (i.e., neither contain the other) is undecidable, where TMs give the 
two languages. 

8.25 Show that the problem of deciding whether or not two RE. languages have 
exactly one member in common is undecidable, where TMs give the two languages. 

8.26 Show that the problem of deciding if a CFL has an equivalent grammar with 
no more than a given number of variables is undecidable. 

8.27 We say that a variable of a CFG is equivalent to another variable in the CFG if 
the variables produce the same sets of terminal-only strings. Show that the problem 
of deciding if two variables in a CFG are equivalent is undecidable. 

Bibliographic Notes and Further Reading 
The diagonal argument for showing that R. is not countable is by Cantor [3]. 
The diagonal language is by Turing [9]. Post’s Correspondence Problem and its 
marked version are by Post [6]. The undecidability of problems about context-free 
languages is from Bar-Hillel, Perles, and Shamir [1], Ginsburg and Rose [4], and 
Hartmanis [5]. The undecidability of unambiguity is by Cantor [2]. Rice’s Theorem 
is by Rice [7, 8]. 

References 

1. Y. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase structure grammars. 
Sprachtypologie und Universalienforschung 14, 143–172 (1961) 

2. D.G. Cantor, On the ambiguity problem of Backus systems. J. ACM 9(4), 477–479 (1962) 
3. G. Cantor, Über eine elementare frage der mannigfaltigkeitslehre. Jahresbericht der Deutschen 

Mathematiker-Vereinigung, vol. 1 (1891) 
4. S. Ginsburg, G.F. Rose, Operations which preserve definability in languages. J. ACM 10(2), 

175–195 (1963) 
5. J. Hartmanis, Context-free languages and Turing machine computations, in Proceedings of 

Symposia in Applied Mathematics, vol. 19 (American Mathematical Society, Providence, 1967), 
pp. 42–51 

6. E.L. Post, Finite combinatory process-formulation, I. J. Symbol Logic 1, 103–105 (1936) 
7. H.G. Rice, Classes of recursively enumerable sets and their decision problems. Trans. Am.Math. 

Soc. 74(2), 358–366 (1953)



References 211

8. H.G. Rice, On completely recursively enumerable classes and their key arrays. J. Symbol Logic 
21(3), 304–308 (1956) 

9. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. J. 
Math. 58(345–363), 5 (1936)



Part IV 
Computational Complexity 

and Resource-Bounded Turing Machine 
Computation



Chapter 9 
The Time Complexity 

9.1 The Time Complexity Measure 

Computational complexity theory studies computational problems regarding how 
much resources are necessary to solve them. Two types of resources are of concern: 
time and space. In this chapter, we study the time complexity measure. The next 
chapter will deal with the space complexity measure. 

Definition 9.1 Let M be a TM that halts on all inputs. We define timeM(x). as the 
function that maps each input x to the number of steps M on x ex ecutes before
halting.

Definition 9.2 Let f (n). be  a  function  from N. to itself. We say that f (n). is a time-
bounding function if f (n). is non-decreasing and for all n, f (n) ≥ n+ 1.. 

This definition of time-bounding functions incorporates the following two 
anticipated properties about how TMs behave: 

• TMs must read their entire input before accepting or rejecting. (TMs need a 
minimum of n+ 1. steps to arrive at the cell that immediately follows the input.) 

• TMs may operate for a longer time on a longer input. 

Definition 9.3 Let f (n). be a time-bounding function and M be a TM. We say that 
M is f (n). time-bounded if for all but finitely many n, timeM(x) ≤ f (n). holds for 
all inputs x having length n .

Definition 9.4 Let f (n). be a time-bounding function. Let L be a decidable 
language. We say that L has time complexity f (n). if an f (n). time-bounded TM 
decides L. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_9

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9
https://doi.org/10.1007/978-3-031-84740-0_9


216 9 The Time Complexity

We sometimes refer to this time complexity notion as the worst-case complexity 
in the following sense: 

• A TM deciding L faster than M may exist. Still, in the worst-case scenario, f (n). 
is sufficient for solving L’s decision problem. 

We use multi-tape TMs to define complexity classes. 

Definition 9.5 For a time-bounding function f (n)., we define: 

. DTIME[f (n)] = {L | there exists a f (n) time-bounded TM deciding L}.

The following theorem shows that reducing the time bound to its constant 
fraction does not change the DTIME. classes. 

Theorem 9.1 (The Linear Speed-Up Theorem) Let f (n). be a time-bounding 
function. Then, for all constants d > 1., DTIME[f (n)] ⊆ DTIME[n+ f (n)/d].. 

Proof Overview 
A crucial idea behind the proof is compressing the tapes via combining 
multiple symbols into one symbol. Given a k-tape TM M that decides a 
language, we construct a k+1.-tape TM whose alphabet can encode h symbols 
of M into just one symbol. Here, h is an integer parameter whose value we 
can select. The k + 1.-tape TM constructs, from its input, an alternate input. 
The alternate input combines h symbols and then simulates M . The new 
machine simulates d steps of M in just six steps. If M is to run for f (n). 
steps on an input having a length of n, the machine will run for approximately 
n+ (f (n)+ n) ∗ 8/h. steps. By choosing a value significant enough for h,  the  
computation time can be reduced by any constant factor .

Proof Let L be a language in DTIME[f (n)]., where f (n). is a time-bounding 
function. LetM = (Q, , , δ, q0, qacc, qrej). be a TM that decides L in time f (n).. 
Let k be the number of M’s tapes. Let d > 1. be an arbitrary constant. Let h ≥ 8d . 
be an arbitrary integer. 

We will develop a simulator of M having k + 1. tapes. We call the simulator N . 
N ’s Tape 1 is exclusively for receiving M’s input. N uses the remaining k tapes for 
running M’s program.

Let  ̃ = {ã | a ∈  }.. Each symbol ã . in  ̃ . indicates that the symbol is a and 
the head of M is on the cell that holds the a.  Let  . be the collection of all h-
tuples, (a1, . . . , ah)., from  .. In addition, let   . be the collection of all h-tuples 
(a1, . . . , ah). from  ∪  ̃ . such that exactly one of a1, . . . , ah . is from  ̃ ..  Le  t  . be 
a symbol representing the left end of the tape. We will identify the ( , . . . , ). in  . 

with  . in  ..



9.1 The Time Complexity Measure 217

We group the cells on each tape of M into blocks of consecutive h cells; i.e., for
all i ≥ 1.,  the  i-th block consists of the cells at positions (i − 1)h+ 1, . . . , ih.. Each 
symbol of  . can encode the content of a block, including the case in which the head 
is on one of the cells. For example, if a, b, c ∈  . and h = 4., a tuple-sequence 

. (abcc)(bbbb)(cacã)(baba)

corresponds to the 16-symbol character sequence: 

. abccbbbbcacãbaba.

The ã . indicates that the head is on M’s 12th cell. We refer to a block that contains 
the head position as the “center” block. We refer to the block immediately to the left 
of the center block as the “left guard” and the block immediately to the right of the 
center block as the “right guard.” Figure 9.1 shows this encoding idea. 

Let x be the input and n = |x|.. 
N prepares its simulation by developing a block-wise representation of the input. 

First, N writes  . on Cell 1 of Tape 2 in one step. In the same step, N writes an 
h-symbol tuple  ̃ h−1 . on Cell 1 of Tapes 2 through k + 1..  The  h-tuple represents 
the situation in which the h cells are all blank, and the head is on the leftmost cell 
of the h cells. 

Next, N reads Tape 1 from the left end to the first appearance of  .. While reading, 
N collects the symbols appearing in each block of h cells and writes their h-symbol 
representation on Tape 2. In addition, N adds the squiggle to the first element of the 
first h-symbol representation. The number of h-symbol representations N creates
is  n/h . symbols. If the length of the input is not a multiple of h, the last block 
contains some  .. Upon encountering the first  ., N knows it has reached the end of 
the input and can stop scanning it. Upon completing this conversion, N moves Head 
2 back to Cell 2, where a squiggle appears. 

The preparation is now complete. 
Now that Tapes 2 through k + 1. have representations that combine h cells into 

one, N can simulate the action of M for h steps in just six steps via t he following
manner:

1. At the beginning of the six-step simulation cycle, N knows the present state of 
M . In addition, on each tape (Tapes 2 through k + 1.), the head is on a cell that 
indicates the head position of M of its corresponding tape; i.e., one of the h 
symbols appearing in the cell is from  ̃ .. 

Fig. 9.1 The block encoding and its traversal. The size of the blocks is four in the diagram



218 9 The Time Complexity

2. Using three steps, N moves each head to the left guard, back to the center, and 
then to the right guard. The three-step move brings each head to the position of 
its right guard and reveals the 3h symbols appearing, where one of the middle h 
symbols holds the squiggle.

3. Since the cycle began with the knowledge of M .’s present state and M cannot 
move its heads more than h positions, N learns M’s actions during the next h 
steps. The knowledge consists of the following:

a. On each tape, N learns the contents of the 3h cells of M and the head position 
within the 3h cells. N can interpret them as three h-symbol representations to 
replace the present representations.

b. N learns which of the three cells must move the head on each tape.
c. N learns M’s state after the h steps.

4. In the next three steps, N updates the contents of each tape and brings its head to 
the designated new position. Among the three cells, replacement is required for 
at most two, with the following possibilities:

a. The head must move to the left guard. All three cells may require updating. 
b. The head must move to the center. All three cells may need updating. 
c. The head must move to the right guard. The left guard does not require 

updating. 

Given that updating starts with the head on the right guard, these cases are 
completed with the following corresponding head moves (the sequence of head 
positions resulting from the moves appears within the parentheses): 

a. −,  L  , L. (right guard, center, left guard) 
b. L, L, R . (center, left guard, center) 
c. L, R, −. (center, right guard, right guard) 

Figure 9.2 presents how the head moves during the six-step action. 
5. At the end of the sixth step, N updates M’s state.
6. If the state becomes qacc . or qrej ., N accepts or rejects accordingly .

Suppose the length of the input is n. The number of steps N uses for preparation 
is

. 1+ (n+ 1)+ ( n/h − 1).

The first term is the time required for initializing Tapes 3 through k + 1., the second 
is for reading the input and creating the initial h-tuple encoding, and the third is for 
moving Head 2 to its starting position. The quantity is at most: 

.n+ n/h+ 2.



9.1 The Time Complexity Measure 219

Fig. 9.2 The block encoding 
and its traversal. The size of 
the blocks is four in the 
diagram. The numbers 
1, . . . , 6. represent the head 
positions after steps 1, . . . , 6., 
respectively. The circles 
indicate where the cell can be 
updated when executing the 
next step. (a–c) correspond to 
the cases that appear on 
p. 218 

After the initialization, the time N spends on the simulation i s:

. 6 ·
  
f (n)

h

 
≤ 6 · f (n)

h
+ 6.

Combining the two, the running time of N is at most:

. n+ n
h
+ 2+ 6 · f (n)

h
+ 6 ≤ n+ 7 · f (n)

h
+ 8.

The last inequality holds because f (n). is a time-bounding function, so f (n) ≥ n+1.. 
Since h is a constant, for all but finitely many n, f (n)/h ≥ 8.. Thus, for all but 
finitely many n, the running time is at most: 

. n+ 8 · f (n)
h

= n+ f (n)

(h/8)
.

Since h is an integer greater than or equal to 8d, h/8 ≥ d ., the running time is at most 
n+f (n)/d . for all but finitely many n. Thus, DTIME[f (n)] ≤ DTIME[n+f (n)/d].. 

This proves the theorem.   
We obtain the following result from the theorem. 

Corollary 9.1 Suppose f (n). satisfies f (n) ≥ (1 + α)n. for all but finitely many 
n, where α . is a positive constant. Then, for all constants c > 0., DTIME[f (n)] =
DTIME[cf (n)].. 

We leave the proof to the reader (see Exercise 9.2).



220 9 The Time Complexity

9.2 Time-Efficient Simulations of Multi-tape TMs 

An important issue to address when simulating time-bounded TMs is the time effi-
ciency. In the proof of Theorem 9.1, the simulator N has k+ 1. tapes when the orig-
inal machine M has k tapes. Exercise 9.1 asks to reduce the number of tapes to k by 
reusing the input tape. If we limit the number of tapes of N to a fixed constant, some 
nontrivial amounts of “slowdown” appear. The simulations require O(t(n)2). steps 
when N has just one tape, but the multiplicative t (n). factor will shrink to log(t (n)). 
when N has two tapes. In this section, we prove these two simulation r esults.

9.2.1 Simulating with One Tape 

First, we analyze the efficiency when the simulator has only one tape. 

Theorem 9.2 (The Single-Tape Simulation Theorem) Let t (n). be a time-
bounding function. Let L be a language in DTIME[t (n)].. Then L ∈ DTIME[t (n)2]. 
by a single-tape TM. 

Proof Overview 
We recall the proof of Theorem 6.1, where we showed that a two-tape TM 
can simulate a multi-tape TM. When the content of a multi-tape TM appears 
on one tape, determining the TM’s action requires scanning the entire tape 
because the heads may be scattered in the region covered by the heads. After 
d steps, the cell indices that the heads have covered are between 1 and d. 
Simulating the action of the TM at step d thus requiresO(d). steps. Given that 
the TM has a time bound of t (n)., the simulation requires O(t(n)2). steps. 

Proof Let k ≥ 1. be an integer. Let M be a k-tape TM that decides some language 
L. We construct an M’s simulator N .  Let t (n).be a time-bounding function such that 
M runs in time t (n)..  Le  t  . be the tape alphabet of M . We combine the ideas from 
the proofs of Theorems 6.1 and 9.1 and expand the alphabet  .by adding all k-tuples 
( ∪  ̃)k .. Each k-tuple encodes the cells of M’s tapes at the same cell index, along 
with k independent markers indicating the head position. 

The initial preparation for the simulation requires rewriting the tape contents 
where the input appears in its k-tuple version, with an end marker appearing before 
the tape contents’ encoding. Then, N conducts a step-by-step simulation of M , 
making k round trips on the tape to determine the action M is to perform and then k 
more round trips to rewrite the tape contents. 

The length of the tape that a round trip covers at time  . is at most 2+max{n,  }., 
where n is the length of the input. The quantity  . is at most t (n). since M halts in



9.2 Time-Efficient Simulations of Multi-tape TMs 221

at most t (n). steps, and so one step of M requires at most O(k · t (n)). steps. The 
initial conversion requires O(n). steps. Since M halts in t (n). steps, the total number 
of steps that N runs is at most O(n) +O(t(n) · k · t (n)) = O(k · t (n)2).. Since we 
can think of k as a constant, N decides L in time O(t(n)2).. 

This proves the theorem.   

9.2.2 Simulating with Two Tapes 

In the previous section, we saw that a single-tape TMs can simulate t (n). time-
bounded TMs inO((t (n))2). steps. While this quadratic time increase is unavoidable 
for single-tape simulation, adding one more tape reduces the time required for 
simulation to O(t(n) log(t (n))).. 

Theorem 9.3 For all time-bounding functions and L ∈ DTIME[t (n)]., a two-tape 
TM decides L in time O(t(n) log(t (n))).. 

Proof Overview 
We assume that the simulator’s Tape 1 is two-way infinite with two tracks (i.e., 
each cell can hold two symbols), and Tape 2 is one-way infinite. By doubling 
the number of tracks, the two-way infinite Tape 1 can be simulated with a 
one-way infinite tape; for all p,  Cell  p represents Cells ± p .. 

The simulation’s principle idea is to keep the character of the cell (on which 
the head is supposed to be) to Cell 0. To realize this arrangement, the tape is 
divided into blocks. When the first character of a block must move to Cell 
0, the characters in the entire block move. Starting from Cell 0, the positive 
index cells are divided into blocks 0, 1, 2, 3, . . ... These blocks exponentially 
increase in size; their sizes are 20, 21, 22, 23, . . ... The same power-of-2 block-
size allocation is applied to the region with negative indices. 

During the simulation, the block having an index of i (or − i .) covers 0, 2i ., 
or 2i+1 . consecutive cells of the TM subject to simulation. This means that the 
characters travel from one block to another. The exponential increase in block 
sizes results in a running time of O(t(n) log(t (n))).. 

We devote the rest of this section to the proof of this theorem. 

9.2.2.1 The Tape Organization 

We first learn the tape organization of the two-tape simulator. 
Let k ≥ 2..  Let t (n). be a time-bounding function. Let M be a k-tape TM that 

runs in time t (n).. We will develop a two-tape simulator, S,  of  M . Tape 1 of S has



222 9 The Time Complexity

2k + 2. tracks (i.e., each cell has holds 2k + 2. symbols); Tape 2 has three tracks. Of 
the 2k+2. tracks of Tape 1, S allocates two  tracks to each tape of M . The remaining 
two tracks have particular roles; one provides block-wise coloring, and the other 
indicates the point closest to Cell 0 in each block. The markings appearing on the 
last two tracks will be commonly used among all the tape simulations. Tape 2 of S 
is a scratch area.

The head positions of Tape 1 are two-way infinite: 

. . . . ,−3,−2− 1, 0, 1, 2, 3, . . . .

As we examined in Exercise 6.27, we can implement two-way infinite tapes on one-
way infinite ones by “folding” the tapes at position 0 (see Fig. 9.3). Folding a tape in 
half doubles the number of tracks. We understand that the actual coding of S uses the 
one-way infinite representation of two-way infinite tapes using (2k+2)∗2 = 4k+4. 
tracks. The discussion here uses a two-way infinite tape. 

The descriptions in the remainder of this section are for M’s Tape 1. If k ≥ 2., 
our simulator repeats the simulation for Tapes 2, 3, . . . , k .. 

The two tracks corresponding to each tape of M are the “lower” and the “upper” 
tracks. At each cell position, we refer to the upper- and lower-track combinations 
as “domino tiles.” This view is reminiscent of Post’s Correspondence Problem from 
Sect. 8.4. Each domino has an upper-track character and a lower-track character; 
these characters are from M’s tape alphabet. We will introduce the symbol  ., which 
is different from the blank symbol of M . The new symbol is equivalent to the empty 
string  ., indicating that the character is empty. Let α . and β . be the characters of the 
lower and upper tracks in a domino, respectively. After each round of the simulation, 
the symbols satisfy the following conditions: 

(R1) If α =  ., then β =  .. 
(R2) The domino represents αβ . as M’s tape content. 

Fig. 9.3 Implementing a two-way infinite tape by a two-track, one-way infinite tape. Top panel: 
the contents of a two-way infinite tape requiring a one-way tape representation. Bottom panel: 
after folding, the bottom layer of the column at position 0 is empty. The numbers represent the cell 
positions in the two-way tape



9.2 Time-Efficient Simulations of Multi-tape TMs 223

We partition Tape 1 into blocks of consecutive cells, Bi, i = 0,±1,±2.,  etc.  Th  e
block B0 . has just one cell and is at the cell position 0. The blocks with positive 
indices stretch to the right of B0 ., with B1 . immediately to the right of B0 ., B2 . 

immediately to the right of B1 ., etc. The blocks with negative indices stretch to the 
left of B0 ., with B−1 . immediately to the left of B0 ., B−2 . immediately to the left of 
B−1 .,  etc.  

The size of a block is the number of domino tiles in it. For each p ≥ 1., the blocks 
Bp . and B−p . have 2p−1 . domino tiles. Therefore, the character-based capacity of Bp . 

and B−p . is thus 2p−1 ∗ 2 = 2p .. The simulation maintains the following invariant 
holds for each block and each tape after simulating one step of M: 

(R3) The occupancy condition of the cells is one of the following three: 

• All characters are  .. 
• None of the characters are  .. 
• All lower characters are non- ., and all upper characters are  .. 

(R4) Combining (R3) with (R1), we have for all index p or − p .: 

• Empty The upper and the lower characters in every domino tile are empty. 
The block represents  .. 

• Packed Both upper and lower characters are nonempty. The block repre-
sents a string of 2p . characters. 

• Half-packed Only the upper characters are empty. The block represents a 
string having 2p−1 . characters. 

Figure 9.4 shows the divisions into blocks representing two tapes of M . Figure 9.5 
shows the coloring and marking tracks. 

9.2.2.2 The Tape Coloring and Marking 

Next, we describe the marking and coloring of the tape. 

Fig. 9.4 Two tapes with two tracks each. The coloring rule is discussed in Sect. 9.2.2.2



224 9 The Time Complexity

Fig. 9.5 One pair of tracks, and the color and marking tracks. The section corresponding to Cells 
− 8. through Cell 12 is shown 

The color track contains one of three symbols: z, +.,  o  r−.. The color symbols are 
fixed throughout the simulation. The color assignments are as follows: 

(R5) The symbol z is exclusively for B0 .. For other blocks, +. and −. appear in all 
the domino tiles in Bp .with an even p and an odd p, respectively .

The marker track contains one of two symbols: x or  .. The marker x appears in the 
cell closest to Cell 0. The other cells have the marke r  .. 

When S visits a block, it scans the entire block. If the visit is for the first time, 
S assigns a value to the color and marker tracks. At the start of the computation, S 
places the color z on B0 . and the marker x on B0 .. When S encounters a cell without 
color, it suspends its present task and assigns a color to the uncolored block in the 
following manner:

1. S can memorize the color of the cell it departs from when moving the head to 
the next cell; it can immediately determine the color γ . of the uncolored block. 
If the color in its memory is z, then the color to assign is −.; otherwise, it is the 
opposite of the color in memory. In addition, S places x as the marke r.

2. S starts moving Head 1 to the left. For each cell with the previous color, S writes 
1 on Tape 2 and moves Head 2 to the right. The process stops when Head 1 
encounters the block marker x in the marker track. Let  . be the number of 1’s S 
writes on Tape 2.

3. S erases the 1 . on Tape 2 by moving the head straight back to the opposite end. 
For each move of Head 2, S writes γ . on two color cells. The total number of 
cells S writes γ . is 2 .. 

4. S moves Head 1 back to the leftmost cell of the newly found block, where S sees 
the marker. The procedure is no w complete.

Figure 9.6 shows the length of the 1s on Tape 2 and the color assignment of the new 
block. The duration of the procedure is as follows:



9.2 Time-Efficient Simulations of Multi-tape TMs 225

Fig. 9.6 The coloring procedure 

• In the case of B1 ., the duration is 2. 
• In the case of Bp, p ≥ 2., the duration is the sum of the following: 

–  . for writing 1 .. 
–  . for moving Head 1 to the start of the new block. 
– 2 . for writing γ . in the 2 . cells. 
– 2 . for moving Head 1 back to the first cell of Bp .. 

The total is 6 .. This bound applies to B1 . also. 

When the head movement is in the opposite direction, it is handled similarly by 
swapping the roles between left and right. 

9.2.2.3 The Simulation Procedure 

We are now ready to describe the simulation procedure. 
S records M’s tape contents using a dynamic procedure, in which S moves the 

tape contents so that the cell on which M’s head is located will appear in B0 . for all 
tapes. S executes the procedure separately for the k tapes. The procedure demands 
that S uses multiple steps to simulate M’s one step. After completing one step of 
M , each block is empty, half-empty, or packed. At the start of the computation, the 
input tape of S has only one track. The simulator treats a cell with some symbol 
a appearing in the single-track mode as having a in the lower track and the empty
symbol in the upper track.



226 9 The Time Complexity

When the head of M must move to the right, S does the f ollowing:

• Push to the left S vacates the lower character of the domino tile in B0 . by moving 
the character appearing in B0 . to the left (the blocks B−1, B−2, . . ..). 

• Pull from the right S finds the first nonempty domino tile to the right (the blocks
B1, B2, . . ..) and moves it to the lower character of B0 .. 

By symmetry, when the head of M must move to the left, S does the f ollowing:

• Push to the right S vacates the lower character of the domino tile in B0 . by 
moving the character appearing there to the right (the blocks B1, B2, . . ..). 

• Pull from the left S finds the first nonempty domino title to the left (the b locks
B−1, B−2, . . ..) and moves it to the lower character of B0 .. 

The push-to-the-left action is symmetric to the push-to-the-right action, except that 
the upper character switches roles with the character track (because in every cell, the 
lower character precedes the upper character). The same is the case for the pulling 
actions. Noting the symmetry, we see only how S pushes to the right and how it 
pulls from the right.

9.2.2.4 Pushing Blocks to the Right 

Suppose we must push the character in B0 . to the right. The algorithm that S executes 
is as follo ws:

1. S searches for any non-packed domino title to the right. While searching, S 
copies the contents (as domino titles) from Tape 1 to Tape 2. The upper and 
lower characters S encounters are nonempty during copying. Since Tape 2 has 
two tracks, S copies the characters domino-wise: i.e., upper to upper and lower 
to lower.

2. After arriving at a non-packed domino tile, if the domino tile is empty, S does 
the follo wing:

a. S continues scanning until the end of the block. The end is identifiable using 
the coloring and marking tracks. S keeps Head 2 at the same position.

b. While moving Heads 1 and 2 to the left (back to the last packed block), S 
copies the two symbols in the domino tile appearing in Tape 2 to the lower 
track of Tape 1 and then clears the upper track of Tape 1. S counters Head 1’s 
one move with Head 2’s two mov es.

c. For some q ≥ 2., the number of characters moved equals: 

. 2q + 2q−1 + · · · + 4+ 2 = 2q+1 − 2.

This means that the copying ends at B2 ., with B1 . vacant. S moves the lower 
character of B0 . to B1 .’s lower character and clears B1 .’s upper character.



9.2 Time-Efficient Simulations of Multi-tape TMs 227

3. Otherwise, the non-packed block is half-packed. S does the follo wing:

a. S continues scanning until the end of the block and appends the contents of 
the lower track of the domino tiles by combining two symbols as a pair .

b. While moving Heads 1 and 2 back to the left, S copies a pair of symbols from 
Tape 2 to Tape 1 as long as the head on Tape 1 is in the same non-packed 
block it has found.

c. While moving Heads 1 and 2 back to the left, S copies the two symbols 
appearing in Tape 2 to the lower track of Tape 1 and clears the upper track 
for Tape 1. S counters Head 1’s one move with Head 2’s two mov es.

d. Like before, copying ends at B2 ., with B1 . vacant. S moves the lower character 
of B0 . to B1 .’s lower track and clears B1 .’s upper character. 

In both cases, S erases the contents of Tape 2 during the moving-back process.

Figure 9.7 shows the two cases of the push operation. Let us analyze the running 
time of the push operations. Head 1 moves straight to the right and then straight to 
the left. Let Bp . be the block S finds to be non-packed. The movement to the right 
stops at the cell immediately to the right of Bp ., which is at: 

. 1+ 2+ · · · + 2p−1 + 1 = 2p.

Thus, the running time of the push operation is 2 · 2p .. 

Fig. 9.7 The two cases of the push operation. Left panel: the case where the non-packed block is 
half-packed. Right panel: the case where the non-packed block is empty. The top represents the 
symbols in the two tracks before the push operation, and the bottom represents the symbols after 
the push operation. The middle part is the copy S creates on Tape 2



228 9 The Time Complexity

9.2.2.5 Pulling Blocks from the Right 

We next explain the operation for pulling from the right. S executes the follo wing:

1. S scans to the right for a nonempty b lock.
2. When a nonempty block is found, S continues scanning to the right and copies 

its contents to Tape 2.
3. If the nonempty block is packed, S moves Heads 1 and 2 to the left. While doing 

this, S spreads each symbol pair appearing on Tape 2 to the lower track over two 
cells on Tape 1. Also, while doing this, S erases the contents of Tape 2.

4. If the nonempty block is not packed, S moves Head 1 to the left while erasing 
the character appearing on the lower track while keeping Head 2 in the same 
position. Upon entering the previous block, S starts moving Tape 2 to the left 
and copies the contents on Tape 2 to Tape 1. During the execution, S erases the 
contents of Tape 2.

Figure 9.8 shows the two cases of the pull operation. Let us analyze the running time 
of the pull operations. Let Bp . be the block S finds to be nonempty. The movement 
to the right stops at the cell immediately to the right of Bp ., which is at position: 

. 1+ 2+ · · · + 2p−1 + 1 = 2p.

Thus, the running time of the push operation is 2 · 2p .. 

Fig. 9.8 The two cases of the pull operation. Left panel: the case where the nonempty block is 
packed. Right panel: the case where the nonempty block is half-packed. The top represents the 
symbols in the two tracks before the push operation, and the bottom represents the symbols after 
the push operation. The middle part is the copy S creates on Tape 2



9.2 Time-Efficient Simulations of Multi-tape TMs 229

9.2.2.6 An Analysis of the Running Time 

Let us analyze the time it takes S to execute the simulation.
Let n be the length of the input. Let r1 . be the index of the farthest block S 

reaches to the right. Since the running time of M has t (n). as an upper bound, 
r1 ≤  log(t (n)) ..  Let − r2 . be the index in the opposite direction. We know 
r2 ≤  log(t (n)) ..  Let r0 =  log(t (n)) .. The time that it takes for S to perform 
coloring is at m ost:

. 2
r0 
p=1
(7 · 2p−1) ≤ 14 · 2r0 ≤ 14 · 21+log(t (n)) = 28t (n).

The scaling factor of 2 applies here because we are looking at two directions. 
The push or pull operation ending in Bp . (or B−p .) leaves all the blocks between 

that and B0 . half-packed. The next time the same block receives modifications is 
when either 

(A) all the half-packed blocks in between become packed, and another push occurs 
or 

(B) all the half-packed blocks in between become empty, and another pull occurs. 

The number of steps necessary for S to run before either incident happens is the sum 
of the half-sizes of the blocks plus 1, which i s:

. (1+ 2+ · · · + 2p−2)+ 1 = 2p−1.

Since the running time of M is at most t (n)., the event that reaches Bp .or B−p .occurs 
no more frequently than once in 2p . steps and requires 2 ·2p . steps to complete. Thus, 
the largest p we need to consider is  log(t (n)) = r0 .. Since each step involves one 
push operation and one pull operation, the contributions from the push and pull 
operations are: 

. ≤ 2
r0 
i=1

  
t (n)

2p−1

 
· (2 · 2p)

= 2
r0 
i=1

2t (n)

2p−1
· (2 · 2p)

= 16
r0 
i=1
t (n)

= 16t (n)r0

≤ 16t (n)(1+ log(t (n))).



230 9 The Time Complexity

This amount is for simulating one tape. S has k tapes to simulate. By combining the 
amount with the time for the coloring operation, the total running time of S is at
most:

. 28t (n)+ k · 16t (n)(1+ log(t (n)))

= 44t (n)+ 16k · t (n) log(t (n))
= O(t(n) log(t (n))).

Here, k is a constant. Therefore, the big O can include k. The analysis we have seen 
is an example of amortized analysis, which uses the idea that costly operations do 
not occur very often. 

The proof of the theorem is now complete.

9.3 The Time Hierarchy Theorems 

The simulation results from the previous section enable us to prove proper inclusions 
between time complexity classes. Proving proper inclusions about time complexity 
classes requires a “clock” that provides some steps allocated for simulation. A time-
bounding function f (n). can be turned into a clock if there is a TM that stops in steps 
1f (n) . on each input 1n ., where 1 is an arbitrary symbol. Time-constructible functions 
are those we can turn into a clock. 

Definition 9.6 A time-bounding function f (n). is time-constructible if there is a 
multi-tape TM that, on all inputs x, stops in 1f (|x|) . steps. 

Only some time-bounding functions are time-constructible. Showing time-
constructibility is a cumbersome task. The following theorem helps in finding 
time-constructibility. 

Theorem 9.4 A time-bounding function t (n). is time-constructible if, and only if, a 
TM that computes 1t (n) . from 1n . in O(t(n)). steps exists. 

We now use time-constructibility to show separations between time complexity 
classes. 

Theorem 9.5 Suppose f (n). and g(n). are time-bounding functions, g(n). is time-
constructible, and g(n) = ω(f (n) log(f (n))).. Then: 

.DTIME[f (n)] ⊂ DTIME[g(n)].



9.3 The Time Hierarchy Theorems 231

Proof Overview 
We construct a language of TM machine encodings with an arbitrary number 
of trailing 0s. The language’s membership condition is that the machine 
does not accept the encoding as an input in f (n). steps. Since g(n). is time-
constructible, a TM can count for g(n). steps while simulating an arbitrary 
machine M . Using the two-tape simulation technique, simulating M for f (n). 
steps is possible in cf (n) log(f (n)). steps for some constant. Because of the 
ω .-relation, the quantity cf (n) log(f (n)). is less than g(n). for all but finitely 
many n, and the simulator can make a decision opposite to M’s decision. 

Proof Let f (n). and g(n). be as appearing in the statement of Theorem 9.5.  Let  T 
be a TM witnessing that g(n). is time-constructible. 

Algorithm 9.1 A TM that decides the diagonal language 
1: procedure DIAGONAL-LANGUAGE(w) 
2: w is a binary string; 
3: copy w to a separate tape; 
4: simulate T on w to generate 1g(|w|); 
5: using g(|w|) as the time limit, execute the following; 
6: if w does not have a suffix of the form 10p for some p ≥ 1 then 
7: reject w; 
8: end if 
9: check the validity of the machine portion of w; 
10: if the  machine  fails  the  test  then 
11: reject w; 
12: end if 
13: extract M for simulation; 
14: simulate M on w; 
15: if M accepts then 
16: reject w; 
17: else if M rejects then 
18: accept w; 
19: end if 
20: if the execution reaches the time limit then 
21: accept w; 
22: end if 
23: end procedure 

Define D as the set of all strings w of the form  M 10 . satisfying the following 
two conditions: 

• M is a TM whose input alphabet has a size of ≥ 2.. 
• M on w does not accept w within f (n). steps.



232 9 The Time Complexity

We assume that the encodings of the TMs follow the number-based scheme from 
Sect. 7.1.1. In the encoding, tallies of 1s serve as delimiters, where the length of the 
tally represents its meaning. We present the algorithm for N in Algorithm 9.1. 

Algorithm 9.2 A TM encoding test 
1: procedure POLYNOMIAL-TIME-ENCODING-TEST(x) 
2: x is a binary string; 
3: try to extract the number of tapes, k; 
4: try to extract the number of states, q; 
5: try to extract the tape alphabet size, s; 
6: try to extract the indices of the blank system, q0, qacc,  and  qrej; 
7: if the extraction fails then 
8: return false; 
9: end if 
10: extract the transition table; 
11: if the table is incomplete then 
12: return false; 
13: end if 
14: return true; 
15: end pro cedure 

We can use Algorithm 9.2 to test the validity of the encoding. 
Let n be the length of the input w. The running time of N is then:

. 2n+O(g(n))+ g(n) = O(g(n)).

Since g(n). is a time limit that applies to the entire computation, we assess the 
running time of Algorithm 9.2 as O(r2).. By the linear speedup theorem, the 
language D is in DTIME[g(n)].. 

By contradiction, we show that D is not in DTIME[f (n)].. Assume M is a TM 
that decides D and has f (n). as its time bound. Let w be an arbitrary input to N that 
contains the description of M .  Let  n be the length of w.  Let  r be the length of the 
description. 

The encoding-checking consists of decoding the sizes of the input and tape 
alphabets, the size of the state set, and the transition table. Since the size information 
is unary, the decoding is possible in O(r2). steps. In the simulation of M on w, N 
can use the time-efficient simulation from Theorem 9.3. Since the alphabet size and 
the number of tapes of M are variable, N must use multiple cells to encode one 
character on one tape of M . Each element of the transition table has entries greater 
than or equal to the number of tapes. Also, the element size of the table is greater 
than or equal to the size of the alphabet. Thus, the number of bits necessary to 
encode one symbol on one M’s tapes is at most r . Determining which action to 
perform requires matching the symbols and the state with the transition tape. The 
determination is thus possible inO(r2).. The running time of simulation, without the



9.4 The Nondeterministic Time Complexity 233

time limit of 1g(n) .,  is  :

. O(r2)+O(f (n))+O((r2)f (n) log(f (n)))
= O((r2)f (n) log(f (n))).

Let c0 . be a constant such that the time requirement is at most c0r2f (n) log(f (n)).. 
Since we have fixed r and g(n) = ω(f (n) log(f (n)))., for all infinitely many n, 
c0r

2f (n) log(f (n)) ≤ g(n).. Therefore, for infinitely many inputs w in which M 
appears, N produces the result contradicting M . Hence, M does not accept the 
language D. Thus, D   ∈ DTIME[f (n)]..   

The single-tape simulation technique (Theorem 9.2) produces a weaker version 
time hierarchy theorem. 

Theorem 9.6 Let f (n). and g(n). be time-constructible time-bounding functions 
such that g(n) = ω(f (n)2).. Then: 

. DTIME[f (n)] ⊂ DTIME[g(n)].

For each rational number α > 1., define nα . as representing  nα .. This function is 
time-constructible (see Exercise 9.3). 9.3 We thus obtain the following result. 

Corollary 9.2 For all rational constants c and d such that c > d ≥ 1., 
DTIME[nd ] ⊂ DTIME[nc].. 

9.4 The Nondeterministic Time Complexity 

Next, we define nondeterministic analogs of the deterministic time complexity 
classes. 

Definition 9.7 Let f (n). be a time-bounding function. We say that a nondetermin-
istic TM M is f (n). time-bounded if, for all inputs x, M on x halts within f (|x|). 
steps regardless of its nondeterministic choices. 

Definition 9.8 Let f (n). be a time-bounding function. Let L be a decidable 
language. We say that L has nondeterministic time complexity f (n). if a non-
deterministic TM is deciding L that is f (n). time-bounded. 

Definition 9.9 For a time-bounding function f (n)., we define NTIME[f (n)]. as the 
set of all languages that have nondeterministic time complexity f (n).. 

The linear speedup theorem also holds for nondeterministic complexity.



234 9 The Time Complexity

Theorem 9.7 (The Nondeterministic Linear Speedup Theorem) Let f (n). be a 
time-bounding function. Then, for all constants d > 1.: 

. NTIME[f (n)] ⊆ NTIME

 
n+ f (n)

d

  
.

Corollary 9.3 Suppose f (n). satisfies f (n) ≥ (1 + α)n. for all but finitely many 
n, where α . is a positive constant. Then, for all constants c > 0., NTIME[f (n)] =
NTIME[cf (n)].. 

Since deterministic TMs are nondeterministic TMs without nondeterministic 
actions, the following proposition holds: 

Proposition 9.1 For all time-bounding functions f (n).: 

. DTIME[f (n)] ⊆ NTIME[f (n)].

Using the deterministic simulation of NTMs (Theorem 6.5) for simulating time-
bounded NTMs, we obtain the following theorem: 

Theorem 9.8 (The Nondeterministic Time Hierarchy Theorem) For all time-
bounding functions f (n).: 

. NTIME[f (n)] ⊆ ∪c≥1DTIME[2cf (n)].

9.5 Fundamental Time Complexity Classes 

We now define the standard time complexity classes. 
We group all polynomials. Since the time-bounding function requires that 

f (n) ≥ n + 1., the time-bounding functions are upper bounds, and there are linear 
speedup theorems, we will consider only polynomials of the form cnc+c. in defining 
the standard complexity classes. 

Definition 9.10 P. is the class of all decidable languages with some deterministic 
TM whose running time is O(cnc + c). for some integer c. In other words: 

. P = ∪c≥1DTIME[cnc + c].

By the second time hierarchy theorem (Theorem 9.5), we can show that there 
are hierarchies of time complexity classes inside P.. For example, if g(n). is a time-
constructible polynomial and f (n) log(f (n)) = o(g(n))., then DTIME[f (n)] ⊂
DTIME[g(n)].. While these hierarchies give partitions of P., we treat P. as the class 
of all tractable problems. 

Another important class is NP.. This is the nondeterministic analog of P..



9.5 Fundamental Time Complexity Classes 235

Definition 9.11 NP. is the class of all decidable languages with some nondetermin-
istic TM whose running time is O(cnc + c). for some integer c. In other words: 

. NP = ∪c≥1NTIME[cnc + c].

In addition, we also define coNP. as the complementary class of NP.. 

Definition 9.12 coNP. is the class of all languages whose complements are in NP.. 
In other words: 

. coNP = {A | A ∈ NP}.

An extension of the polynomials is the group of exponential functions: 2cn
c+c

. for 
all c ≥ 1.. 

Definition 9.13 EXPTIME. is the class of all decidable languages with some 
deterministic TM whose running time is O(2cn

c+c). for some integer c. In other 
words: 

. EXPTIME = ∪c≥1DTIME[2cnc+c].

Definition 9.14 NEXPTIME. is the class of all decidable languages with some 
nondeterministic TM whose running time is O(2cn

c+c). for some integer c. In other 
words: 

. NEXPTIME = ∪c≥1NTIME[2cnc+c].

Definition 9.15 coNEXPTIME. is the class of all languages whose complements 
are in coNEXPTIME.. In other words: 

. coNEXPTIME = {A | A ∈ NEXPTIME}.

The following class inclusions hold: 

Proposition 9.2 P ⊆ NP ∩ coNP ⊆ NP ∪ coNP ⊆ EXPTIME ⊆ NEXPTIME ∩
coNEXPTIME ⊆ NEXPTIME ∪ coNEXPTIME.. 

Figure 9.9 shows the relationship stated in Proposition 9.2. 
By using either of the time hierarchy theorems (Theorems 9.5 and 9.6), we can 

prove that P ⊂ EXPTIME.. From this separation, we immediately learn that P., NP., 
and coNP. are proper subclasses of EXPTIME., NEXPTIME., and coNEXPTIME.. 
Except for these separations, we do not know if any inclusion appearing in the 
sequence in Proposition 9.2 is proper. Specifically, whether or not P = NP. is a 
fundamental question in computational complexity theory. We refer to the problem 
as the P vs. NP problem.



236 9 The Time Complexity

Fig. 9.9 Inclusions among 
the standard time complexity 
classes 

Table 9.1 The closure properties of the standard time complexity classes 

Class Intersection Union Concatenation Complementation Kleene-star 

P. Y Y Y Y Y 

NP. Y Y Y ? Y 

EXPTIME. Y Y Y Y Y 

NEXPTIME. Y Y Y ? Y 

For most of the above classes, we know which closure properties they have. 
Table 9.1 presents the list of the closure properties, where the question mark 
represents that the field does not know whether or not the class has the property. 

9.6 Examples of Time Complexity Classifications 

We present example problems from the classes defined in the previous section. 
First, the validity tests of TM encodings are in P.. 

Proposition 9.3 The language { M | M . is a TM }. is in P.. 

Using the same argument, we can show: 

Proposition 9.4 The language { M,w | M . is a TM, and w is an input toM}. is in 
P.. 

The task of proving these propositions is left to the reader (see Exercises 9.10 
and 9.11). 

9.6.1 The DFA State Minimization Problem 

We first show that the state minimization problem of DFA is in P..



9.6 Examples of Time Complexity Classifications 237

Proposition 9.5 The language { M, 0k | M . is a DFA, and there is an equivalent 
DFA with ≤ k . states }. is in P.. 

Proof After verifying the input’s validity, we execute Algorithm 9.3 adapted from 
Sect. 3.1. 

Algorithm 9.3 A TM that decides the minimum number of states 
1: procedure MINIMUM-NUMBER-OF-STATES(M, k) 
2: M = (Q, ,  δ,  q0,  F)  is a DFA, k is an integer; 
3: Q = {p1,  .  .  .  ,  ps}; 
4: instantiate an s × s table T ; 
5: store 0 in T [i, j ] for all i and j between 1 and s; 
6: for i ← 1,  .  .  .  s  do 
7: for j ← 1,  .  .  .  ,  s  do 
8: if pi ∈ F ⇐⇒ pj   ∈ F then 
9: store 1 in T [i, j ]; 
10: end if 
11: end for 
12: end for 
13: repeat 
14: f ← 0; 
15: for i ← 1,  .  .  .  ,  q  do 
16: for j ← 1,  .  .  .  ,  q  do 
17: if T [i, j ] =  0 then 
18: for a ∈  do 
19: k ← such that pk = δ(pi,  a); 
20:  ← such that p = δ(pj ,  a); 
21: if T [k,  ] =  1 then 
22: store 1 in T [k,  ] and T [ , k]; 
23: f ← 1; 
24: end if 
25: end for 
26: end if 
27: end for 
28: end for 
29: until f   = 0 
30: J ← {j | 1 ≤ j ≤ s and for all  such that 1 ≤  ≤ j − 1, T [ , j ] =  1}; 
31: if j = k then 
32: accept (M, k); 
33: else
34: reject (M, k);
35: end if
36: end procedure

Let n be the length of the input. The sizes of Q and  . are at most n, and so the 
size of T is at most n2 .. The “repeat-until” loop at Line 7 appears to be the most 
time-consuming part. The algorithm executes its external loop at most n2 . times. 
The algorithm executes its internal double loop at most n2 · n = n3 . times. For each 
combination of i, j ., and a, scanning the input is necessary to find the transition



238 9 The Time Complexity

functions, which gives an O(n). overhead. Thus, the algorithm’s running time is 
O(n2 · n3 · n) = O(n6).. Therefore, the language is in P..   

Similarly, we can show that the following problems are in P.. 

Proposition 9.6 The following problems are in P.. 

• Nrep = { M, 0k |  M . is a DFA and the k-th state of M is distinguishable from all 
states of M with smaller indices}.. 

• Nfinal =  { M, 0k | M . is a DFA and the k-th state of M is distinguishable from 
all states of M with smaller indices and is a final state}.. 

• Ntrans =  { M, 0k , 0 , 0a | M . is a finite automaton, the k-th and the  . states of 
M are representative states, and on the a-th symbol, the states the k-th represents 
transition to the states the  .-th represents }.. 

9.6.2 The Problem of Converting an NFA to a Regular 
Expression 

We now explore the time complexity of converting NFAs to regular expressions. 
Suppose we apply the algorithm from the proof of Theorem 2.3 to generate a 

regular expression from an NFA. The expression we generate could be very long. 
Suppose N is an NFA from which we will generate a regular expression. Let m be 
the number of states of N . The graph we use in the generation has m + 2. nodes. 
Each arrow in the graph has a label of the form: 

. (a1 ∪ a2 ∪ ap).

Here, a1, . . . , ap . are from   . and  . is the alphabet of N . Suppose a1, . . . , ap . have 
unary representations and the other symbols in the expression; i.e., the parentheses, 
∪., and ∗ . are single symbols. Then, the initial labels have a length of at most: 

. 

 
m+1 
i=1
i

 
+m+ 2 = m(m+ 1)

2
+m+ 2 = (m+ 1)2

2
+ 1.

The last quantity in the equation is at least (m+1)
2

2 . and at most (m+ 1)2 .. 
Suppose the construction still needs to be completed (i.e., at least three nodes 

are remaining), and the maximum of the lengths of the labels is at most  ..  The  
consolidation of a node x changes the label of the arrow (u, v). to: 

. (l1 ∪ l2l∗3 l4).

Here, l1, l2, l3 ., and l4 . are the labels on the arrows from u to v,  from  u to x,  from  
x to x, and from x to v, respectively. Since each label before the consolidation has



9.6 Examples of Time Complexity Classifications 239

a length of ≤  ., the new label has a length of ≤ 4 + 4.. For each i such that
0 ≤ i ≤ m.,  le  t  i . be the maximum length after the i-th conversion. Then we have 
the recurrence  i = 4 i−1 + 4. and  0 ≤ (m+ 1)2 .. The solution to the recurrence is 
( i + 4/3) = 4( i−1 + 4/3).,  so  we  ha  ve:

.  i =  022i − 4

3
.

Specifically, for i = m.,  we  hav  e:

.  m =  022m − 4

3
=  (m222m).

The value of m can be  (n). (where n represents the length of the encoding) if we 
restrict the size of the alphabet to be constant, so we have that the expression can be
 (n22 (n)).. Now, define the following languages: 

• Rlength =  { N,   | N . is an NFA, and the expression we obtain from N has a 
length of at most  ., where  . is a binary integer }.. 

• Rsymbol =  { N,  , a | N . is an NFA,  . is a binary integer, a ∈ {0, 1, (, ),∪, ∗}., 
the expression we obtain from N has a length of at least  ., and the  .-th symbol 
of the expression is a}.. 

Proposition 9.7 Rlength . and Rsymbol . are in EXPTIME.. 

The proof is left to the reader (see Exercise 9.7). 

9.6.3 The CFL Membership Problem 

We show that each context-free language is in P.. 

Theorem 9.9 Each context-free language belongs to P.. 

Proof Overview 
We use inductive programming. LetG = (V , ,R, S). be a CNF formula and 
w, |w| = m., be an input whose membership in L(G). we want to test. We 
compute the sets T [i, j ], 1 ≤ i ≤ j ≤ n., of all the variables that produce 
wi · · ·wj .. w ∈ L(G). if, and only if, S ∈ T [1, n].. Here, where i = j ., T [i, j ]. 
directly comes from the form A→ a . rules, where a ∈  .. In addition, where 
i < j ., we think of applying a rule r in the form of A → BC . such that 
B ∈ T [i,  ]. and C ∈ T [ + 1, j ]. for some  . between i and j − 1..  We  try  all  
combinations of the rules r and  . and identify all qualifying variables A.



240 9 The Time Complexity

Proof Let L be a context-free language. LetG = (V , ,R, S).be a CNF (Chomsky 
normal form) grammar for L.  Let w = w1 · · ·wn ., where w1, . . . , wn ∈  .. For each 
pair of integers i and j such that 1 ≤ i ≤ j ≤ m.,  let T [i, j ]. denote the set of 
all variables A such that A

G,∗ ⇒ wi · · ·wj .. We can compute the tables T using 
inductive programming as appears in Algorithm 9.4, and accept w if, and only i f,
T [1,m]. contains S. The algorithm uses the fact that each CNF grammar has only 
two forms of rules: A → a . and A → BC .. In other words, T [i, i]. should consist 
solely of the variables that produce wi . in one step; for all i and j , T [i, j ]. should 
consist of all variables A with  a  rule A→ BC . such that B produces T [i, q]. and C 
produces T [q + 1, j ]. for some q such that i ≤ q ≤ j − 1.. The algorithm’s running 
time is cubic in n since there is a triple loop. The language L is thus O(n3)..   

Algorithm 9.4 An algorithm for CFL membership test 
1: procedure CFL-MEMBERSHIP(w) 
2: G = (V , ,  R,  S)  is a fixed CNF grammar; 
3: let w = w1 · · ·wn be an input; 
4: if n = 0 then 
5: if S →  is in R then 
6: accept w; 
7: else 
8: reject w; 
9: end if 
10: else 
11: for i ← 1,  .  .  .  ,  n  do 
12: T [i, i] ← {A | A → wi ∈ R}; 
13: end for 
14: for  ← 2,  .  .  .  ,  n  do 
15: for i ← 1,  .  .  .  ,  n  −  + 1 do 
16: T [i, i +  − 1]← ∅; 
17: for k ← i,  .  .  .  ,  n  −  do 
18: if a  rule  A → BC exists where B ∈ T [i, k] and C ∈ T [k + 1,  i  +  + 1] 

then 
19: T [i, j ] ← T [i, j ] ∪ {A}; 
20: end if 
21: end for 
22: end for 
23: end for 
24: if S ∈ T [1,  n] then 
25: accept w; 
26: else 
27: reject w ;
28: end if
29: end if
30: end procedure

Next, we consider the conversion algorithm from an arbitrary CFG to a CNF 
grammar that appears in the proof of Theorem 4.2. Recall that the algorithm 
processes a grammar G = (V , ,R, S). as follows:



9.6 Examples of Time Complexity Classifications 241

1. Eliminate mixed rules by introducing a variable for each terminal. 
2. Introduce a new start variable. 
3. Find all nullable variables using a greedy search algorithm. 
4. Decompose long rules into rules with a length of at most 2 while independently 

choosing whether or not to include each nullable variable at each stage of 
decomposition. 

5. Eliminate all  . rules. 
6. Find all chains of unit rules using reachability. 
7. Create new rules by combining all chains of unit rules and all non-unit rules. 
8. Eliminate all unit rules. 

As we observed in Exercise 4.20, the number of new variables and rules introduced 
in the conversion process is O(m2)., where m = |V | + | | + |R|.. In addition, 
discovering nullable variables, decomposing long rules, finding unit-rule chains, and 
combining the chains and non-unit rules can be carried out in polynomial time. 
Thus, the entire construction can be done in polynomial time. 

To translate the conversion problem into decision problems, the following 
languages can be used: 

• Cvariables =  { G, 0k | G. is a CFG, and the conversion program produces a rule 
with at most k variables}.. 

• Cterminal−rule = { G, 0r10s |  G. is a CFG, and the converted CNF has a rule that 
produces the s-th terminal from the r-th variable }.. 

• Csplit−rule =  { G, 0r10s10t  | G. is a CFG, and the converted CNF has a rule 
that turns the r-th variable into a concatenation of the s-th variable and the t-th 
variable }.. 

• Cstart =  { G, 0r  | G. is a CFG, and the converted CNF’s start variable has r as 
its inde x}.. 

Proposition 9.8 Cvariables ., Cterminal−rule ., Csplit−rule ., and Cstart . are in P.. 

Exercises 
9.1 The simulator in the proof of Theorem 9.1 has one more tape than the original. 
Prove that it is possible to eliminate the need for one extra tape by reusing the input 
tape after reading the input. 

9.2 Prove Corollary 9.1. 

9.3 Show that for all rational constants c > 1.,  cnc + c . is time-constructible. 

9.4 Show that  n log n . is time-constructible. 

9.5 Show that 2n . is a time-constructible function. Hint: In the proof of Theo-
rem 6.4, we designed a method for generating all computation paths of an NTM 
with at most two branches at each computation step. We can modify the method so 
that for each n ≥ 1., the method uses 2n+ c. steps to generate all paths having length 
n.



242 9 The Time Complexity

9.6 Let f (n). and g(n). be time-constructible. Show that f (n) + g(n). is time-
constructible. 

9.7 Let f (n). and g(n). be time-constructible. Show that g(f (n)). is time-
constructible. 

9.8 Let f (n). and g(n). be time-constructible. Show that f (n) ∗ g(n). is time-
constructible. 

9.9 Prove Theorem 9.8. 

9.10 Prove Proposition 9.3. 

9.11 Prove Proposition 9.4. 

9.12 Prove Proposition 9.7. 

9.13 In Theorem 9.9, we showed that each context-free language is in DTIME[n3].. 
Show that each context-free language is in NTIME[n].. 
9.14 In Theorem 9.9, we showed that each context-free language is in DTIME[n3].. 
Consider L = { G,w |. G is a CNF grammar and w ∈ L(G)}. is in P.. Show that L 
is in DTIME[n7].. 
9.15 Show that the language { M,w, π | M . is a DPDA, w is an input to M , π . is 
a series of transitions of M , and M accepts w along the path}. is in P.. 

Hint: The time complexity can be O(n2).. 

9.16 Define T = { G,w, T  | G. is a CNF grammar, w is a string over the terminals 
of G, T is a labeled tree, and T is a valid tree producing w}.. Show that T ∈ P.. 

9.17 Show that { M, 1t  | M . is a finite automaton and accepts a string having a 
length of t}. belongs to NTIME[n2]. by giving a nondeterministic TM for it. 

9.18 Show that the language from the previous question is actually in DTIME[n3]., 
noting that the symbols appearing can be arbitrarily chosen from the alphabet of M . 

9.19 A bipartite graph is a graph with vertex sets U and V such that the edges 
of the graph are between U and V . Show that the problem of deciding if a graph is 
bipartite is in P.. 

9.20 Prove that NP. is closed under the Kleene-star operation. 

9.21 Prove that NP. is closed under union. 

9.22 Prove that NP. is closed under intersection. 

Bibliographic Notes and Further Reading 
Hartmanis and Stearns [4] introduced the concept of time-bounded TM computa-
tion. Theorems 9.1 and 9.2 are from there. Grzegorzcyk [3] considered the number 
of steps required for TMs to compute function. Using polynomials as time bounds 
was suggested in Ritchie [7] and Cobham [1]. Using the polynomial time as the class 
of tractable problems is by Edmonds [2]. Theorem 9.4 about time-constructible



References 243

functions is by Kobayashi [6]. Theorem 9.3 is by Hennie and Stearns [5]. A 
more potent form of nondeterministic time hierarchy theorem is given by Seiferas, 
Fischer, and Meyer [8]. 

References 

1. A. Cobham, The intrinsic computational difficulty of functions, in Proceedings of the 1964 
Congress for Logic, Methodology, and the Philosophy of Science (North-Holland, Amsterdam, 
1964), pp. 24–30 

2. J. Edmonds, Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965) 
3. A. Grzegorczyk, Computable functionals. Fund. Math. 42(19553), 168–202 (1955) 
4. J. Hartmanis, R.E. Stearns, On the computational complexity of algorithms. T Am. Math. Soc. 

117, 285–306 (1965) 
5. F.C. Hennie, R.E. Stearns, Two-tape simulation of multitape Turing machines. J. ACM 13(4), 

533–546 (1966) 
6. K. Kobayashi, On proving time constructibility of functions. Theor. Comput. Sci. 35, 215–225 

(1985) 
7. R.W. Ritchie, Classes of predictably computable functions. T Am. Math. Sci. 106, 139–173 

(1963) 
8. J.I. Seiferas, M.J. Fischer, A.R. Meyer, Separating nondeterministic time complexity classes. J. 

ACM 25(1), 146–167 (1978)



Chapter 10 
The Space Complexity 

10.1 The Space Complexity Measure 

Let us begin with the definition of the space complexity measure. 
The computation model for studying space complexity is the offline Turing 

machine, a variant of the multi-tape model (see Fig. 10.1). In an offline TM, the 
input appears on a read-only tape called the input tape. 

Mathematically, the symbol the offline TM writes on its input tape is the same as 
the symbol it reads. Because it is read-only, the input tape on an offline TM holds 
the input between end markers. We often use  . and  . to represent the left and right 
markers. At the start of computation, the head on the input tape of an offline TM is 
on the cell immediately to the right of the left-end marker. If the input is an empty 
string, the head is on the right-end marker; otherwise, it is on the first character of 
the input. The other tapes permit reading and writing; we call these work tapes. We  
measure the space a TM uses with the number of distinct cells it accesses during 
computation, excluding read-only or write-only tapes. 

Definition 10.1 Let f (n).be a positive non-decreasing function from N. to N.. A TM  
M is f (n). space-bounded if for all inputs x, M on input x halts using no more than 
f (|x|). cells on each work tape. 

We require any space-bounding function to be positive and non-decreasing. 

Definition 10.2 Any positive non-decreasing function from N. to N. is a space-
bounding function. 

Now, we define space complexity classes using space-bounding functions. 

Definition 10.3 For a space-bounding function f (n)., we define: 

. DSPACE[f (n)] = {L | there exists an f (n) space-bounded TM deciding L}.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_10

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10
https://doi.org/10.1007/978-3-031-84740-0_10


246 10 The Space Complexity

Fig. 10.1 An offline TM 
with  two work tapes  

We can show the following space compression theorem by combining multiple 
symbols into one. We leave the proof to the reader. 

Theorem 10.1 (The Space Compression Theorem) For all space-bounding func-
tions f (n). and constants c ≥ 0., DSPACE[f (n)] = DSPACE[cf (n)].. 

Definition 10.4 A space-bounding function f (n). is space-constructible if there is 
a multi-tape TM with space-bound f (n). such that, for all inputs x, writes 1f (|x|)

. on 
one tape and halts. 

We can state a more stringent result about the definition of space-constructible 
functions. 

Proposition 10.1 If f (n). is space-constructible, there is an offline TM with one 
work tape that produces   f (n) 2  . on its work tape and halts. 

We leave the task of proving the proposition to the reader. 

Theorem 10.2 Suppose f (n). and g(n). are space-bounding functions, f (n) =
ω(g(n))., and g(n). is space-constructible. Then: 

. DSPACE[f (n)] ⊂ DSPACE[g(n)].

Proof The proof follows the same idea as the time hierarchy theorem (Theo-
rem 9.5). Suppose f (n). and g(n). are functions such that g(n). is space-constructible 
and f (n) = o(g(n)). (in other words, g(n) = ω(f (n)).). Let S be a machine 
witnessing that g(n). is space-constructible. We can assume that S has two work 
tapes and produces 1g(n) . on the second work tape. We define N as an offline TM 
with two work tapes executing Algorithm 10.1.



10.1 The Space Complexity Measure 247

Algorithm 10.1 A TM that decides the space diagonal language 
1: procedure SPACE-DIAGONALIZATION(w) 
2: simulate S on w to generate 1g(|w|) . on a work-tape; 
3: mark all its work tapes with  1g(|w|) 2  .; 
4: check w =  M, 0  ., where  M is a Turing machine; 
5: if the check fails then 
6: reject w; 
7: else 
8: simulate M on w while counting the number of steps; 
9: if M accepts within 2g(|w|) . steps without using unmarked space then 
10: reject w; 
11: else 
12: accept w; 
13: end if 
14: end if 
15: end procedure 

Let L = L(N).. Then L ∈ DSPACE[g(n)].. We prove that L ∈ DSPACE[g(n)]  
DSPACE[f (n)]. by contradiction. Assume L ∈ DSPACE[f (n)].. Then, an f (n). 

space-bounded TM M accepts L. Let  w be  M, 0  . for some  ≥ 0.. Let n = |w|. and 
r be the portion length in M describing w. Suppose we give w to M and N . As we  
saw in the proof of the time hierarchy theorem, the need for simulating M raises the 
space requirement by a multiplicative factor of r2 .. Since M is f (n). space-bounded, 
the space requirement for N to simulate M on w is r2f (n).. If r2f (n) > g(n)., N on 
w may not finish simulating M on w. If r2f (n) ≤ g(n)., N on w accepts w if, and 
only if, M on w does not accept. Since M is fixed, we can consider r as a constant 
and make  . arbitrarily large. Since f (n) = o(g(n))., for all but finitely many  ., 
r2f (n) ≤ g(n).. We pick any  such   .. Then, w witnesses that M does not decide L. 

This proves the theorem.   
From the space hierarchy theorem, we can draw many separation results. The 

following two corollaries show examples of such results. 

Corollary 10.1 For all rational constants c and d such that 1 ≤ c < d ., 

. DSPACE[nc] ⊂ DSPACE[nd ].

Corollary 10.2 For all integer constants c and d such that 1 ≤ c < d ., 

. DSPACE[(log n)c] ⊂ DSPACE[(log n)c].

Here, (log n)d = ( log n )d .. 

We now define nondeterministic analogs of the deterministic space complexity 
classes.



248 10 The Space Complexity

Definition 10.5 Let f (n). be a space-bounding function. We say that an NTM M 
is f (n). space-bounded if, for all inputs x, M on x halts without using more than 
f (|x|). cells on any tape regardless of its nondeterministic choices. 

Definition 10.6 Let f (n). be a space-bounding function. Let L be a decidable 
language. We say that L has nondeterministic space complexity f (n). if an NTM 
decides L that is f (n). space-bounded. 

Definition 10.7 For a space-bounding function f (n)., we define: 

. NSPACE[f (n)] = {L | there exists an f (n) space-bounded NTM deciding L}.

We now obtain the nondeterministic analog of the deterministic space compres-
sion theorem (Theorem 10.1) by applying the same proof. 

Theorem 10.3 (The Nondeterministic Space Compression Theorem) For all 
space-bounding functions f (n). and constants c ≥ 0.: 

. NSPACE[f (n)] = NSPACE[cf (n)].

10.2 Savitch’s Theorem 

Some major separation results in space complexity classes are derived from the 
following Savitch’s theorem. 

Theorem 10.4 (Savitch’s Theorem) For all space-constructible functions f (n). 

such that f (n) =  (log n)., NSPACE[f (n)] ⊆ DSPACE[f (n)2].. 

Proof Overview 
Given an f (n). space-bounded NTM, we count the number of IDs, as with the 
proof for Theorem 10.2. The number of IDs on an input having a length of n 
is O(2cf (n)). for some constant c > 0.. We define a predicate that takes three 
variables. The first two variables are IDs (C and C  .). The last one is an integer 
t . The predicate has a value of true. if, and only if, C  . is reachable from C in 
at most 2t . steps. For t = 0., the predicate can be evaluated deterministically in 
f (n). space. We develop a recursive procedure for evaluating the predicate by 
exhaustively exploring all IDs as candidates for the halfway point. 

Proof Let f (n). be a space-constructible function. Suppose f (n) =  (log n).. Let  
L be a language in NSPACE[f (n)].. Let  M be an NTM that decides L and is f (n). 

space-bounded. We recall the proof of Theorem 6.1, where we showed that a two-



10.2 Savitch’s Theorem 249

tape TM can simulate a multi-tape TM. We treat the tapes of M in the same manner. 
In addition, since f (n). is space-constructible, by using Proposition 10.1, M marks 
f (n).cells on each work tape and, before accepting or rejecting, clears all the marked 
cells and then moves the heads to the leftmost positions. Because of this property, 
for each integer n, only one accepting ID exists for any input to M having a length 
of n. 

Let  . be the tape alphabet of M , and Q be the set of states of M . Let  x be an 
input to M . Let n = |x|.. Since we are examining one specific input for M , we can 
represent each ID of M on input x as a combination of the following components: 

• The head position on the input tape, which is between 0 and n+1. (assuming that 
the markers appear at positions 0 and n+ 1.) 

• The head position on the work tape, which is between 1 and f (n). 

• The state number, which is between 1, . . . ,  Q . 
• The tape contents    f (n)

. 

We encode each component in binary. This results in a binary encoding of each ID. 
The number of bits used in the binary-encoded ID is: 

.  log(n+ 1) +  log(f (n)) +   Q  + f (n) log     .

This total isO(log(n)+f (n)).. Since f (n) =  (log(n))., there is an integer constant 
c, independent of n, such that the ID has length at most cf (n).. 

Note the following properties: 

• Not all binary strings having a length of cf (n). encode an ID of M on x. 
• For an arbitrary two strings u and v that are valid encodings of M on input x, only 

cf (n). space is necessary for testing whether or not one of the possible moves of 
M takes u to v in one step. 

• For an arbitrary two strings u and v that are valid encodings of M on input x, 
only cf (n). space is necessary for testing u = v .. 

For two binary strings having a length of cf (n). and an integer t such that 0 ≤
t ≤ cf (n)., we define ρ(u, v, t). as the following predicate: 

u and v are valid encodings of IDs of M on x, and v is reachable from u in at most 
2t . steps by following the nondeterministic actions of M . 

Let uI . be the initial ID of M on input x. Let  uA . be the accepting ID of M on input 
x. Then, the following property holds: 

M accepts x if, and only if, ρ(uI , uA, cf (n)) = true.. 

There is a recursive algorithm for testing ρ(u, v, t). with a space requirement of 
O(tf (n)).. The algorithm employs the following approach: 

• If t = 0., test if u = v . or v results from u in one step. 
• If t ≥ 1., for each legitimate w, test:  

.ρ(u,w, t  1) ∧ ρ(w, v, t  1).



250 10 The Space Complexity

In other words, we search for a halfway point w between u and v; i.e., w is reachable 
from u in ≤ 2t 1 . steps, and v is reachable from w in ≤ 2t 1 . steps. We can 
implement this approach as a depth-first search algorithm. Executing the search 
requires remembering u, v,w ., and t , as well as which side of the two terms is being 
evaluated. 

The recursion depth of this depth-first search is cf (n)., and the information we 
need to remember at each level requires ≤ 3cf (n).bits. Thus, the algorithm requires 
O(f (n)2). space. One subtle point is that the value of t specifies “at most 2t . steps.” 
We may encounter a situation for some u, v ., and t ≥ 2. such that ρ(u, v, t). is true. 
and (either u = v . or v is reachable from u in one step). In such a situation, the 
recursion will continue, but we can guarantee that if we keep choosing u (as the 
middle point w in the ensuing recursion), we will find that ρ(u, v, t). is true. 

This proves the theorem.   
From Savitch’s theorem, we obtain the following class separation result. 

Theorem 10.5 (Nondeterministic Space Hierarchy Theorem) For all space-
bounding functions f (n). and g(n). such that f (n) =  (log n). and g(n) =
ω(f (n)2)., NSPACE[f (n)] ⊂ NSPACE[g(n)].. 

10.3 Fundamental Space Complexity Classes 

We now define the standard space complexity classes. 

Definition 10.8 L. is the class of all decidable languages with some TM that is 
O(log n). space-bounded. 

Definition 10.9 NL. is the class of all decidable languages with some TM that is 
O(log n). space-bounded. 

Definition 10.10 coNL. is the class of all languages whose complements are in NL.. 
In other words, coNL = {A | A ∈ NL}.. 

Definition 10.11 PSPACE. is the class of all languages that are decidable with 
some TM that is O(cnc + c). space-bounded for some c ≥ 1.; that is, PSPACE =
∪c≥1DSPACE[cnc + c].. 
Definition 10.12 EXPSPACE. is the class of all decidable languages with some 
TM that is O(2cn

c+c). space-bounded for some c ≥ 1.; that is, EXPSPACE =
∪c≥1DSPACE[2cnc+c].. 

We know that the following relations hold (see Fig. 10.2). 

Theorem 10.6 L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ 
EXPSPACE..



10.3 Fundamental Space Complexity Classes 251

Fig. 10.2 Inclusions among 
the standard time and space 
complexity classes 

Proof L ⊆ NL., P ⊆ NP., and EXPTIME ⊆ NEXPTIME. are clear from the 
definition. 

Suppose a language is in NTIME[f (n)]. for some time-constructible function 
f (n) = ω(n). and an NTM M . As with the proof of Theorem 6.6, we can assume 
that M has at most two choices of actions at each computation step. Let T be a TM 
witnessing that f (n). is time-constructible. 

We can design a TM N that simulates M using an exhaustive search as follows: 

• Using T , N obtains 1f (n)
.. 

• N generates all binary strings having a length of f (n). using one tape. Then, for 
each string it generates, N simulates M on input x using the binary string as a 
guide. 

• If any simulation leads to acceptance, N accepts; if none leads to acceptance, N 
rejects. 

The simulator N witnesses that L(M) ∈ DSPACE[f (n)].. Thus, we know NP ⊆
PSPACE. and NEXPTIME ⊆ EXPSPACE.. 

In the proof of Savitch’s theorem, we noted that if an NTM is f (n). space-
bounded, then its halting computation has a length of at most cf (n)

. for some constant 
c > 0.. We can make a better argument as follows: 

Let x be an input to M having a length of n. Let  G be a graph whose vertices are 
the IDs of M on input x. The number of vertices of G is at most cf (n)

.. In the graph 
G, we draw an edge from a node u to another node v if v is one of the possible next 
IDs of u. Then, M on x accepts if, and only if, there is a path from the initial ID to 
one of the accepting IDs (we can modify M so there is only one accepting ID). A 
TM can test the reachability by writing down the adjacency graph and then running a 
depth-first or breadth-first search to obtain a list of vertices reachable from the initial 
ID. There is a polynomial time algorithm for depth-first and breadth-first searches, 
and so the running time of the machine can be O((cf (n))d). for some integer d. We  
can rewrite the running time as O(2αf (n)). for some constant α .. Thus, NL ⊆ P. and 
PSPACE ⊆ EXPSPACE..   

Because of the hierarchy theorems, we know that in the aforementioned sequence 
of inclusions, there is a gap between NL. and PSPACE., between PSPACE. and



252 10 The Space Complexity

Table 10.1 The closure properties of the standard space complexity classes 

Class Intersection Union Concatenation Complement Kleene-star 

L. Y Y Y Y ? 

NL. Y Y Y Y Y 

PSPACE. Y Y Y Y Y 

EXPSPACE. Y Y Y Y Y 

EXPSPACE., and between P. and EXPTIME.. Is any inclusion from the aforemen-
tioned sequence proper? That is an open question. 

For most of the above classes, we know which closure properties they have. 
Table 10.1 presents the list of these closure properties. The question mark in the 
table indicates that the field does not know whether or not the class has the property. 

10.4 The Reachability Problem 

A remarkable finding in computational complexity theory is that for all space-
constructible functions, f (n) =  (log n)., NSPACE[f (n)]. is closed under com-
plement. Specifically, since log n. is a space-constructible function, we know NL =
coNL.. 

Theorem 10.7 (The Immerman-Szelepscényi Theorem) NL = coNL.. 

Proof Overview 
We can test the membership for a language in NL. as the reachability in a 
directed graph, whose nodes represent the IDs of an NTM with a logarithmic 
space bound and whose directed edges represent the possible transitions of the 
machine. A polynomial of the input length bounds the size of the graph. We 
will develop a nondeterministic logarithmic-space algorithm for computing 
the number of vertices that are reachable from the vertex representing the 
initial ID. After learning the number, it is possible to use a nondeterministic 
algorithm to check the reachability. Our nondeterministic algorithm for the 
complement accepts if no accepting IDs are among the reachable vertices. 

Proof Let L be a language in NL.. Let  M be an NTM that decides L and has a c log n. 

as its space bound for some constant c > 0.. We will develop a nondeterministic 
logarithmic space algorithm for deciding the membership in L.. 

We may assume that M has only one work tape. Let Q be the state set of M and 
 . be the work-tape alphabet of M . Let   ̃ . be the  .with squiggle. Let us simplify the 
notation by equating log a . and  log a . for all positive integers a. We aim to develop



10.4 The Reachability Problem 253

an NTM that decides L. using O(log n). space. We call the target TM N , which has 
a constant number of tapes. Our design will ensure that N uses O(log n). cells on 
each tape, so the overall space requirement is O(log n).. 

Let x be an input for which we want to test whether or not x ∈ L.. For x =  ., 
N can behave as a DFA and accept or reject according to the membership of  . it 
already knows, so we assume that |x| ≥ 1.. 

Recall the binary path generation procedure from the proof of Theorem 6.6. 
A TM can generate an infinite series of binary numbers where the bits appear in 
the reverse order; that is, 1, 01, 11, 001, 101, 011, 111, 0001, 1001, . . ... A TM can 
count the occurrences of an event by executing an update each time it occurs. In 
particular, N can generate the binary representation of |x| + 2. with the bits in the 
reverse order. By applying updates to the binary number until the number takes 
the form 0d1., N can generate log |x|. in binary. Then, by copying the expression c 
times, N can mark a region having a length of exactly c log |x|.. Let us assume that 
N computes these binary representations immediately after marking the left end of 
each work tape. 

Let κ . be the length of the binary representation of  Q .. Let  π . be the length of 
the binary representation of |x| + 2.. Let V = {0, 1}κ+π ( ∪  ̃)c log(|x|) .. Using  a  
string in V , we can encode each ID of M on input x as follows: 

• The first κ . characters represent an index to an element in Q. 
• The next π . characters represent a position between 1 and |x| + 2.. 
• The next c log(|x|). characters represent the contents of the work tape of M . 

Not all strings in V are valid, but N . can check whether or not an element in V that 
appears on one work tape is a valid encoding, via referring to the strings it generated 
earlier in the computation. The validity is the conjunction of three conditions; the 
first component represents a value between 1 and  Q ., the second component 
represents a value between 1 and |x| + 2., and the third component has exactly one 
symbol from  ̃ .. N can execute the iteration and check on a single tape using space: 

. κ + ξ + c log |x| = O(log |x|).

Thus, we treat all members of V as possible IDs. In addition, N can generate the 
possible next ID of any u ∈ V . in O(log |x|). space. For this generation, N extracts 
the input head position from u, moves the input head to that position, and reads the 
input character at that position. Since the content of the work tape, the position of 
the work-tape head, and the present state number are available in u, N can determine 
the next action to occur. After determining the action, N can compute, from u, the  
ID at the next step, which consists of the updated head positions, the updated work-
tape content, and the updated state number. Finally, N can check whether or not an 
arbitrary two strings in V are identical. Thus, N has the capacity in the deterministic 
logarithmic space to: 

• Produce the initial and the accept IDs 
• Iterate all members of V



254 10 The Space Complexity

• Check the validity of any member of V 
• Compute the next IDs of any member of V 
• Check the equality of an arbitrary ID pair 

For each i such that 0 ≤ i ≤  V  ., we define R(i). as follows: 

R(i) =. the set of all elements in E that represent IDs of M on input x and reachable 
from the initial ID in at most i steps. 

In addition, for each i such that 0 ≤ i ≤  V  ., we define ρ(i) =  R(i) .. We  
inductively compute ρ(i). for i = 0, . . . ,  V  .. The basis is R(0).. The set consists 
only of the initial ID, so ρ(0) = 1.. 

We build the inductive computation on four nondeterministic algorithms: 

• Enumeration(i, r). nondeterministically lists the elements of R(i)., assuming 
r = ρ(i).. 

• Reachability(u, i, r). tests whether or not u ∈ R(i)., assuming r = ρ(i).. 
• Extended-Reachability(u, i, r). tests whether or not u ∈ R(i + 1)., assuming 

r = ρ(i).. 
• Extended-Counting(i, r). produces ρ(i + 1)., assuming r = ρ(i).. 

All four require the knowledge of ρ(i). and O(log(n)). space and may produce 
“failure” as the output. While the computation may fail, we can guarantee that if 
r = ρ(i)., all four methods have a non-failing path, and for each non-failing path, 
the output is correct. We present them in Algorithms 10.2, 10.3, 10.4, and 10.5. 

The way the algorithms work is as follows: 
First, for the Enumeration program, for each u ∈ V ., we examine whether or not 

u ∈ R(i). by running M on x from the initial ID for i steps. For each u that is found 
to be in R(i)., we output u. We also count the number of elements in R(i). we have 
found. When we have checked all members of V , we check if the count equals r . If  
they are equal, we have successfully enumerated all members of R(i)., so we output 
“success”; otherwise, we output “failure.” The “success” and “failure” assertions do 
not appear until the end. If the count equals r , for each u ∈ R(i)., we found a path 
to u within i steps so that there is a successful computation path. Also, if the count 
is < r ., the computation is unsuccessful, as there are unidentified IDs in R(i).. 

The Reachability program runs the Enumeration program and checks if u appears 
in the enumeration, and the execution ends with “success.” If both occur, we have 
found that u ∈ R(i)..



10.4 The Reachability Problem 255

Algorithm 10.2 The enumeration algorithm 
1: procedure ENUMERATION( i, r .) 
2: c← 0.; 
3: for each ID z ∈ E . do 
4: u←. the initial ID of M on x; 
5: if u = z. then 
6: c← c + 1.; 
7: else 
8: for j ← 1, . . . , i . do 
9: nondeterministically choose v from a pool of the next IDs of u; 
10: if v = z. then 
11: append z to the list; 
12: c← c + 1.; 
13: terminate the check of z; 
14: end if 
15: end for 
16: end if 
17: end for 
18: if c = r . then 
19: append “success” to the list; 
20: else 
21: append “failure” to the list; 
22: end if 
23: end procedure 

Algorithm 10.3 The reachability testing algorithm 
1: procedure REACHABILITY(u, i, r .) 
2: f ← false.; 
3: run Enumeration(i, r).; 
4: for each ID z generated do 
5: if u = z. then 
6: f ← true.; 
7: end if 
8: end for 
9: if the final output is “success” then 
10: if f = true. then 
11: output “reachable”; 
12: else 
13: output “unreachable”; 
14: end if 
15: else 
16: output “failure”; 
17: end if 
18: end procedure



256 10 The Space Complexity

Algorithm 10.4 The extended reachability testing algorithm 
1: procedure EXTENDED-REACHABILITY(u, i, r .) 
2: f ← false.; 
3: run Enumeration(i, r).; 
4: for each ID z generated do 
5: if u = z. or u is one of the next IDs of z then 
6: f ← true.; 
7: end if 
8: end for 
9: if the final output “success” then 
10: if f = true. then 
11: output “reachable”; 
12: else 
13: output “unreachable”; 
14: end if 
15: else 
16: output “failure”; 
17: end if 
18: end procedure 

Algorithm 10.5 An extended counting 
1: procedure EXTENDED-COUNTING( i, r .) 
2: c← 0.; 
3: for each ID u do 
4: run Extended-Reachability(u, i, r).; 
5: if the outcome is “failure” then 
6: output “failure”; 
7: else if the output is “reachable” then 
8: c← c + 1.; 
9: end if 
10: end for 
11: output c; 
12: end procedure 

For Extended-Reachability, since each element in R(i + 1)  R(i). is one 
computation step away from an element in R(i)., we run Enumeration to see if: 

(a) u appears as a member of R(i). 

(b) u follows from one of the elements of R(i). in one step 

Like before, we check that the Enumeration program ends with “success.” For 
Extended-Counting, we execute Extended-Reachability for all u ∈ V .. 

The overall algorithm for L. is Algorithm 10.6.



10.5 Examples of Space Complexity Classifications 257

Algorithm 10.6 A non-reachability testing algorithm 
1: procedure NON-REACHABILITY(x) 
2: r ← 1.; 
3: for i ← 1, . . . ,  V   1. do r ←.Extended-Counting(i, r).; 
4: if the execution is a failure then 
5: output “failure”; 
6: end if 
7: end for 
8: u←. the accept ID; 
9: f ←.Reachability(u,  V  , r).; 
10: if the execution is a failure then 
11: output “failure”; 
12: else if f is “reachable” then 
13: reject x; 
14: else 
15: accept x; 
16: end if 
17: end procedure 

This completes the proof.   
The NL = coNL. proof is extendable to any space-constructible  (log n). 

function. This is because the numbers of calculated IDs are proportional to the space 
the machine uses. We thus obtain the following result. 

Corollary 10.3 For all space-constructible functions f (n). such that f (n) =
 (log n)., NSPACE[f (n)] = co NSPACE[f (n)].. 

10.5 Examples of Space Complexity Classifications 

We now explore some representative problems of space complexity classes. 
By following an idea similar to the proof of Theorem 10.2, we can show that the 

validity testing of TM encodings requires only logarithmic space. 

Proposition 10.2 The language { M | M . is a TM }. is in L.. 

Proof Suppose we have a binary string, x, |x| = n., as an input and want to test its 
validity as a TM encoding. To simplify the test procedure, we can assume that the 
encoding has a prefix: 

. 0k10q10s1.

Here, k is the number of tapes, q is the number of states, and s is the number of 
symbols. We assume that the states numbered 1, 2, and 3 are the initial, the accept, 
and the reject states, respectively. In addition, we assume that the first symbol is the 
blank symbol. After the prefix, the transition table appears. The table has (q  2)sk .



258 10 The Space Complexity

elements separated by 11 with each element taking the form: 

. 0a110b11 · · · 0ak10bk .

Here, a1, . . . , ak ∈ {1, . . . , s}. and b1, . . . , bk ∈ {1, 2, 3}. with 1, 2, and 3 indicating 
the head movements L,  ., and R, respectively. 

We will design a logarithmic space-bounded machine N that conducts the 
correctness of x’s format. First, N marks log(n). cells on its work tapes to avoid 
using more than log(n). space. Next, using a DFA without using space at all, N 
checks whether the input x is in the correct format; i.e., x is a series of blocks of 
0s with a block of 1 in between. If the input does not pass the check, the input is 
not a valid encoding, so N rejects x. If the input passes the test, N extracts k, q, 
and s in binary. Then, N confirms that x has (q  2)sk . entries in the transition table 
and that each entry is in the correct format. This is where ingenuity is required to 
execute in log(n).. The main idea is to extract the components of each table entry 
on the work tape using the binary representations of the components and then verify 
that the components are in the required range; i.e., the symbol numbers are in [1, s]., 
and the head direction numbers are in [1, 3].. The encoding is invalid if the number 
of entries differs from (q 2)sk .. Algorithm 10.7 describes how this is executed.   

Using the same argument, we can show the following results: 

Proposition 10.3 The language 
{ M,w | M . is a TM, and w is an input to M}. 

is in L.. 

Theorem 10.8 The following four languages are in NL.: 

1. Edist = { M, 0k , 0  |  M . is a DFA, and the k-th and  .-th states of M are 
distinguishable }.. 

2. Eindist = { M, 0k , 0  |  M . is a DFA, and the k-th and  .-th states of M are 
indistinguishable }.. 

3. Eunique = { M, 0k |  M . is a DFA, and the k-th state of M is distinguishable from 
all states of M with smaller indices }.. 

4. Efinal = { M, 0k |  M . is a DFA, and the k-th state of M is distinguishable from 
all states of M with smaller indices, and is a final state }.. 

Proof 

(1) We already know that the encoding check of a TM is executable in the 
deterministic logarithmic space. Two states of M , p and q, are distinguishable 
if, and only if, there is a string a such that exactly one of δ(p, a). and δ(q, a). is a 
final state. If M has n states, the length of one such a can be no more than n. If  
exactly one of p and q is a final state, the value of a can be  .; otherwise, an NTM 
can execute a pair of concurrent nondeterministic walks, one from p and the 
other from q, for at most n steps. At each step, the machine nondeterministically 
selects a symbol α . from the alphabet, updates the two states using the symbol,



10.5 Examples of Space Complexity Classifications 259

Algorithm 10.7 A logarithmic-space validity test of a TM encoding 
1: procedure VALIDITY-TEST(x) 
2: n← |x|.; 
3: mark log(n). cells on each work tape; 
4: check if the 1s appearing between 0s are valid punctuations; 
5: if the check fails then 
6: reject x; 
7: end if 
8: extract k, q, s, blank, q0, qacc, qrej . in binary; 
9: if the extraction requires more space than marked then 
10: reject x; 
11: end if 
12: secure space for counting up to (q  2)sk .. 
13: if not enough space exists for counting then 
14: reject x; 
15: end if 
16: move the input head to the start of the table; 
17: c← 0.; 
18: while there remains a table entry do 
19: while moving the input head to the right, extract, in binary, the components of the 

entry; 
20: if the number of components is not 2k then 
21: reject x; 
22: end if 
23: if a symbol component is > s . or a head direction component is > 3. then 
24: reject x; 
25: end if 
26: c← c + 1.; 
27: if c > (q  2)sk . then 
28: reject x; 
29: end if 
30: end while 
31: if c < (q  2)sk . then 
32: reject x; 
33: end if 
34: accept x; 
35: end procedure 

and then checks whether or not exactly one of the two is a final state. Thus, the 
distinguishability problem is in NL.. 

(2) Since NL = coNL., the indistinguishability is in NL. as well. 
(3) An NTM can use the algorithm from (1) to test the distinguishability of the k-th 

state from all the states with lower indices. 
(4) An NTM can use the algorithm from (3) to test the distinguishability and then 

test if the k-th state is a final state. 
  

Exercises 
10.1 Show that if t (n). is time-constructible, it is space-constructible as well.



260 10 The Space Complexity

10.2 Show that { M, 0i , 0j  | M . is a DFA and the i-th state and j -th state are 
distinguishable }. is in L.. 

10.3 Prove Theorem 10.1. 

10.4 Show that for all integer constants c ≥ 1., (log n)c . is space-constructible. 

10.5 Show that for all rational constants c > 1.,  nc . is space-constructible. 
10.6 Show that 2n . is a space-constructible function. 

10.7 Show that for all space-constructible functions f (n). and g(n)., f (n) + g(n). 

and f (n) ∗ g(n).. 

10.8 Show that for all space-constructible functions f (n). and g(n). such that 
f (n) =  (n)., f (g(n)). is space-constructible. 

10.9 Prove Proposition 10.1. 

10.10 Prove Theorem 10.5. 

10.11 Show that the following language is in L.: 
{ M, 0k, 0 , 0a | M . is a DFA, k and  . are no more than the state number of M , 

and on the a-th symbol M transitions from the k-th state to the  .-th state }.. 
10.12 Suppose a TM has two binary numbers, a = a1 · · · am . and b = b1 · · · bn ., on  
two separate work tapes. The numbers appear in the reverse order with a left-end 
marker  . and  . as the right-end marker. In other words, the tapes’ contents are 
 am · · · a1 . and  bn · · · b1 .. Show how to compute a × b. in O(m+ n). space. 

10.13 Recall that a linear-bounded automaton is a single-tape TM such that the 
input appears between left- and right-end markers, and the head does not move out 
of the region between the end markers. Prove that the language an LBA accepts is 
in DSPACE[n].. 
10.14 Show that { M,N, i, j  | M . and N are square Boolean matrices having the 
same row and column numbers, and the (i, j). entry of M ×N . is true}. is in L.. 

10.15 Prove Corollary 10.3. 

10.16 Let f (n) =  (log n).. Show that if f (n). is space-constructible, f (n). is 
constructible in time 2cf (n)

.. 

10.17 Let f (n) =  (log n).. Based on the previous question, show that for all 
positive integers c, both 2cf (n)

. and 2cf (n)f (n). are time-constructible. 

10.18 Let f (n) = ω(log n).. Based on the previous questions, show that for some 
constant c, DSPACE[f (n)] ⊂ DTIME[2cf (n)f (n)].. 
10.19 Let L ⊆ 1∗ . and is in DSPACE[f (n)]. for some f (n) =  (log n).. Show that 
the set of binary integers t such that 1t ∈ L. is in DSPACE[f (2n)].. 
10.20 Prove that NL. is closed under Kleene-star.



References 261

10.21 Prove that NL. is closed under union. 

10.22 Prove that NL. is closed under intersection. 

Bibliographic Notes and Further Reading 
Savitch’s Theorem is by Savitch [2]. The Immerman-Szelepscényi Theorem is by 
the independent work of Immerman [1] and Szelepscényi [3]. 

References 

1. N. Immerman, Nondeterministic space is closed under complementation. SIAM J. Comput. 
17(5), 935–938 (1988) 

2. W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities. J. 
Comput. Syst. Sci. 4(2), 177–192 (1970) 

3. R. Szelepcsényi, The method of forced enumeration for nondeterministic automata. Acta 
Inform. 26, 279–284 (1988)



Chapter 11 
The Theory of NP-Completeness 

11.1 The Polynomial-Time Many-One Reducibility 

The original motivation for the NP.-completeness was to obtain a mathematical 
characterization of NP. and better understand the P. vs. NP. problem. Here, we 
introduce the polynomial-time many-one reducibility. 

11.1.1 The Definition 

First, we present the definition of polynomial-time many-one reducibility, which 
uses polynomial-time computable functions, as defined next. 

Definition 11.1 (Polynomial-Time Computable Functions) Let  . and  . be 
(possibly identical) alphabets. Let f be a function from  ∗

. to  ∗
.. The function 

f is polynomial-time computable if a polynomial time-bounded multi-tape TM M 
with an output tape exists such that for all input x, M halts with f (x).written on the 
output tape. 

Definition 11.2 (Polynomial-Time Many-One Reductions) Let  . and  .be (pos-
sibly identical) alphabets. Let A ⊆  ∗

. and B ⊆  ∗
.. A function f from  ∗

. to  ∗
. is 

a polynomial-time many-one reduction from A. to B . if: 

(i) f is polynomial-time computable
(ii) For all x ∈  ∗

., x ∈ A⇔ f (x) ∈ B .. 

If a polynomial-time many-one reduction exists from A to B,  we  say  A is 
polynomial-time many-one reducible to B and write A ≤pm B .. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_11

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11
https://doi.org/10.1007/978-3-031-84740-0_11


264 11 The Theory of NP-Completeness

When we speak of polynomial-time computability, we use the big-O notation, 
which can simplify the polynomial we use with one in the form cxc + c., such that c 
is a natural number. The constant c in the polynomial cannot be 0 because a machine 
needs to run for at least one step, even on an empty input.

11.1.1.1 Examples of Polynomial-Time Many-One Reductions 

We now present an example of polynomial-time many-one reductions. 
A Hamilton path in a graph G = (V ,E). is an ordering of vertices [u1, . . . , un]. 

such that for each i between 1 and n−1., (ui, ui+1) ∈ E .. Put differently, a Hamilton 
path [u1, . . . , un]. in G visits every vertex exactly once. Figure 11.1 presents an 
example of a Hamilton path. The path appearing in thick lines connects the upper 
left corner of the graph and its lower left corner. 

A Hamilton cycle in a graph G = (V ,E). is a sequence [u1, . . . , un, u1]. such 
that [u1, . . . , un]. is a Hamilton path and (un, u1). is another edge of the graph. 
Figure 11.2 presents an example of the Hamilton cycle. A graph having a Hamilton 
cycle is Hamiltonian. 

The search for a Hamilton path or cycle, if any, occurs in many practical 
situations. We capture this search with decision problems. 

Definition 11.3 

1. HAMPATH = { G, s, t  |. the graph G has a Hamilton path from s to t}.. 
2. HAMCYCLE = { G | . the graph G has a Hamilton cycle}.. 

Fig. 11.1 A Hamilton path. The left panel: a given graph. The right panel: a Hamilton path 
between the vertex in the upper-left corner and the vertex in the lower-right corner. The thick 
lines represent the edges of the path 

Fig. 11.2 A Hamilton cycle. The left panel: a given graph. The right panel: a Hamilton cycle. The 
path from Fig. 11.1 does not extend to a cycle because there is no edge between the paths’ two ends



11.1 The Polynomial-Time Many-One Reducibility 265

Suppose we map an arbitrary triple  G, s, t . for HAMPATH to  a  graph  H 
constructed from G by adding a new vertex u and connecting u with s and t . 
Since u is connected to only s and t , H has a Hamilton cycle if, and only if, G 
has a Hamilton path from s and t . We augment the mapping by producing  . if the 
input is not a valid encoding. The mapping is computable in polynomial time. Thus, 
HAMPATH ≤pm HAMCYCLE .. Figure 11.3 shows the reduction. 

Theorem 11.1 HAMPATH ≤p 
m HAMCYCLE .. 

Using an idea similar to the reduction we have just constructed, we can build a 
reduction going in the other direction (see Exercise 11.8). 

Theorem 11.2 HAMCYCLE ≤p 
m HAMPAT H .. 

11.1.2 The Definition of NP-Complete Languages 

The polynomial-time many-one reducibility is transitive; if A ≤pm B . and B ≤pm
C ., then A ≤pm C .. Thus, the polynomial-time many-one reducibility naturally 
induces a partial order among the languages in NP.. The reducibility also induces 
equivalence classes. A surprising fact is that NP. contains an equivalence class such 
that an arbitrary NP. language is polynomial-time many-one reducible to an arbitrary 
member of the equivalence class. In other words, every sequence of NP. languages 
ordered by ≤pm . reaches this equivalence class. We call this equivalence class NP-
complete. 

Definition 11.4 (NP-Complete) A language A is NP.-complete if (a) A ∈ NP. and 
(b) every language in NP. is polynomial-time many-one reducible to A. 

We call a language satisfying (b) NP-hard. 

Fig. 11.3 A many-one reduction from the Hamilton path problem to the Hamilton cycle problem. 
On the right panel, the big circle is the new vertex u. The dashed lines are the connections between 
s and u and between t and u



266 11 The Theory of NP-Completeness

Definition 11.5 (NP-Hard) A language A is NP.-hard if every language in NP. is 
polynomial-time many-one reducible to A. 

Thus, we can restate the definition of NP.-completeness as: 

. A language A is NP-complete ⇐⇒ A ∈ NP and NP-hard.

Note that NP.-hardness differs from NP.-completeness. For example, ACCEPTNTM ., 
the NTM version of ACCEPTTM .,  is NP.-hard and undecidable. This means that 
ACCEPTNTM . cannot be NP.-complete. 

A key property of NP.-complete languages is that they rise and fall together, as 
we state next: 

Proposition 11.1 The following properties are equal: 

1. P = NP.. 
2. Some NP.-complete language is in P.. 
3. All NP.-complete languages are in P.. 

The NP.-complete languages are closed under symmetric differences with any 
finite set. 

Proposition 11.2 Let A be an infinite NP.-complete language and S be a finite set. 
Then A S . is NP.-complete. 

11.1.3 A Canonical NP-Complete Language 

We previously stated that ACCEPTNTM . is NP.-hard. The polynomial time-bounded 
version of ACCEPTNTM . is NP.-complete. Because it includes machine encoding, we 
call  it  a  canonical NP-complete l anguage.

Definition 11.6 NTMCANONICAL =  { M, w, 0t  | M . is a multi-tape NTM, w is 
an input to M , t ≥ 1., and M on w accepts in t steps for some computation path}.. 

Theorem 11.3 NTMCANONICAL . is NP.-complete. 

Proof To show NTMCANONICAL ∈ NP., think of a TM N that on input x, checks 
if x =  M,w, 0t  . for some M , w, and t , simulates M on w for at most t steps 
nondeterministically if the check passes, and accepts if, and only if, M accepts in 
the simulation; N rejects if the check fails. We already know there is a polynomial-
time algorithm for the check. The simulation requires no more than |x|. steps, so N 
can be polynomial time-bounded. 

To show that NTMCANONICAL . is NP.-hard, let A be an arbitrary language in
NP. and M be a polynomial time-bounded NTM that accepts A.  Let p(n). be a 
polynomial bounding the running time of M .  Let  f be a function that maps each



11.1 The Polynomial-Time Many-One Reducibility 267

w to  M,w, 0p(|w|) .. For all w, w ∈ A. if, and only if, f (w) ∈ NTMCANONICAL .. 
Since M is fixed, f is polynomial-time computable. This proves t he theorem.   

11.1.4 Polynomial-Time Witness Schemes 

From the canonical NP.-complete problem, we draw a witness-based characteri-
zation of NP., the polynomial-time analog of the recursive witness scheme from 
Sect. 6.4.2. 

Definition 11.7 Let L ⊆  ∗
. be a language. A polynomial-time witness scheme 

is a pair (p(n),A). such that p(n). is a polynomial, A ∈ P., and for all x ∈  ∗
.: 

. x ∈ L ⇐⇒ (∃y ∈  ≤p(|x|))[ x, y ∈ A].

We call A a witness language of L, and each string y satisfying the condition on 
the right-hand side for x a witness for x’s membership i n L.

Intuitively, if A is a witness language of L, then for any string x ∈  ∗
., we can 

interpret the membership question of x in L as the question of whether or not there 
is a witness for x ∈ L.. 

Theorem 11.4 A language L is in NP. if, and only if, L has a polynomial-time 
witness scheme .

Proof Let L ⊆  ∗
. be a language in NP..  Let  M be a polynomial time-bounded 

single-tape NTM deciding L.  Let q(n). be a polynomial bounding the running time 
of M . We can assume that each ID of M has two possible IDs in the next step. Also, 
we can assume that once entering qacc ., M remains in the same ID indefinitely. 

We define the language A as follows:

A = { x, C1# · · · #Cq(|x|) | C1, . . . , Cq(|x|) . are IDs covering q(|x|). tape cells, C1 . is 
the initial configuration of M on x, Cq(|x|) . is an accepting ID of M , and for all i 

such that 2 ≤ i ≤ q(|x|)., Ci . is one of the possible next IDs of Ci−1}.. 
Clearly, A is in P.. There is a polynomial p(n) = O(q(n)2). such that the second part 
of the pair has a length of ≤ p(n).. Thus, (p(n),A). is a polynomial-time witness 
scheme for L. 

Conversely, suppose a language L has a polynomial-time witness s cheme
(p(n),A).. In that case, we can construct an NTM that, on input x, nondetermin-
istically selects y, |y| ≤ p(|x|)., and accepts if  x, y ∈ A. (and rejects otherwise). 
The TM witnesses that L ∈ NP..   



268 11 The Theory of NP-Completeness

11.2 The Satisfiability Problem (SAT) 

The first known NP.-complete problem is the satisfiability problem, which we can 
derive from the generic polynomial-time witness scheme from the previous section. 

11.2.1 The NP-Completeness of SAT 

Recall that a propositional formula with variables is satisfiable if a value assignment 
exists for the variables with which the formula’s value is true..  Le  t ϕ . be a Boolean 
formula with variables x1, . . . , xn .. We encode ϕ . using an alphabet having seven 
symbols: #., ;., ()., ¬., ∨., and ∧.. In the encoding, we replace each occurrence of 
xi . with #i ., surround the formula with a pair of parentheses, and attach #n;. in the 
encoding. For example, we encode the formula: 

. ¬(¬(x1 ∧ (¬x2 ∧ x3) ∧ (¬x1 ∨ x2 ∨ x3))) ∧ (x1 ∨ ¬x2)

into the string: 

. ###; ¬((¬(# ∧ (¬## ∧ ###)) ∧ (¬# ∨ ## ∨ ###)) ∧ (# ∨ ¬##)).

We can turn the seven-symbol encoding into a binary encoding by replacing each 
symbol with a unique three-bit number. 

Definition 11.8 SAT = { ϕ |  ϕ . is a satisfiable Boolean formula }.. 
We prove: 

Theorem 11.5 SAT is NP.-complete. 

Proof Think of an NTM that, on input ϕ ., nondeterministically generates a truth 
assignment to ϕ . and accepts if the assignment satisfies the formula. The machine 
decides SAT . and can run in polynomial time. Thus, SAT ∈ NP.. 

To prove that SAT . is NP.-hard, let L ∈ NP. and (p(n),A). be the witness scheme 
from the proof of Theorem 11.4: 

A = { x, C1# · · · #Cq(|x|) | C1, . . . , Cq(|x|) . are IDs covering q(|x|). tape cells, C1 . is 
the initial configuration of M on x, Cq(|x|) . is an accepting ID of M , and for all i 

such that 2 ≤ i ≤ q(|x|)., Ci . is one of the next IDs of Ci−1}.. 
We can assume that M does not move its head to the left when the head is on the 
leftmost cell. 

Suppose we want to reduce the membership of x in L to a formula. Let n = |x|.. 
We can encode each ID using O(q(n)). variables. 

• brat,c, 1 ≤ t ≤ q(n)− 1., and c = 1, 2.: The variable indicates that the branch M 
has chosen at step t is c. For each t , exactly one of brat,1 . and brat,2 .must be true..



11.2 The Satisfiability Problem (SAT) 269

• celt,j,h, 1 ≤ t ≤ q(n), 1 ≤ j ≤ q(n)., and 1 ≤ h ≤    .: The variable indicates 
that the cell at position j at step t is the h-th symbol. For each combination of t 
and j , celt,j,h . is true. for exactly one value of h. 

• stat,h, 1 ≤ t ≤ q( n)., and 1 ≤ h ≤  Q .: The variable indicates that M’s state at 
step t is the h-th state. For each t , stat,h . is true. for exactly one h. 

• post,j , 1 ≤ t, j ≤ q(n).: The variable represents the head position of M . For each 
t , post,j . is true. for exactly one j . 

ϕ . is built from these variables and represents  x, C1# · · · #Cq(n) ∈ A.. We build ϕ . 

as follows: 
First of all, for each variable group, we need to establish that exactly one variable 

in the group has the value true.. We can express the uniqueness using a simple 
formula. For an arbitrary set of variables y1, . . . , ym,m ≥ 2., the condition that 
exactly one of the members is true. can be expressed as: 

. (y1 ∨ · · · ∨ ym) ∧ (¬y1 ∨ ¬y2) ∧ · · · ∧ (¬ym−1 ∨ ¬ym).

The number of literals in the formula is m+m(m− 1)/2 = m(m+ 1)/2.. 
Next, we construct a formula representing that when t = 1., the variables 

represent the initial ID. sta1,h = true. for the index h representing the initial state. 
For each j , cel1,j,h = true. for the symbol appearing in cell j initially. Additionally ,
pos1,1 = true.. The representation of the initial ID is the conjunction of all of these 
conditions. The number of literals here is q(n)+ 2.. 

Next, we construct a formula representing that at step t = q(n).,  the  ID  is  
accepting. The formula is single literal staq(n),h ., where h is the index of qacc ..  The  
number of literals here is 1. 

Finally, we construct a formula representing that Ct+1 . is the next ID of Ct . 
corresponding to the nondeterministic choice c at step t . If the head is on the j -
th  cell  at  step  t , the symbol in the cell j   = j . is the same between steps t and t + 1.. 
This relation is expressible as: 

. post,j ∨ ((celt,j,h ∨ ¬celt+1,j,h) ∧ (¬celt,j,h ∨ celt+1,j,h).

This is equivalent to: 

. ¬post,j → (celt,j,h = celt+1,j,h).

If post,j = true., for each h such that 1 ≤ h ≤    .,  the  value  of celt+1,j,h . 

depends on brat ., celt,j,h ., and stat .. We can express this relation as the conjunction 
of subformulas of the form: 

.If post,j = true, celt,j,h = true, brat,c = true, and stat,r = true, then celt+1,j,h .



270 11 The Theory of NP-Completeness

This is equivalent to a five-literal disjunction: 

. ¬post,j ∨ ¬celt,j,h ∨ ¬brat,c ∨ ¬stat,r ∨ celt+1,j,h .

The combinations of h, c, r ., and h 
. are taken from the transition function of M . 

There are 2 Q    . combinations for each t and j . 
Similarly, we construct the state and head position formulas at step t + 1..  The  

number of literals required for the expression is:

. 3 · (q(n)− 1) · q(n) · (5 · 2 Q    ) = O(q(n)2).

Here, 3 represents the three distinct formula groups, q(n)−1. represents the number 
of choices for t , q(n). represents the number of choices for j , and 5 represents the 
size of the disjunction. 

Thus, the entire formula has O(q(n)2). literals, so the formula is computable in 
polynomial time. Because of the construction design, the formula is satisfiable if, 
and only if, M accepts L. 

This proves the theorem.   

11.2.2 NP-Complete Variants of SAT 

We now present variants of the satisfiability problem that are NP.-complete. 

11.2.2.1 The CNF Satisfiability 

A well-known variant of the NP.-complete satisfiability problem is the CNF 
satisfiability problem. 

A Boolean formula is in the conjunctive normal form (for short, CNF)  if  it  
is a conjunction of disjunctions such that each disjunction unites variables or their 
negations. In CNF formulas, the negation appears only before a variable. We call 
the combination of a negation and a variable a negative literal. As opposed to this, 
we call a variable not accompanying a negation a positive literal. We then can say 
that a CNF formula is a conjunction of disjunctive clauses, in which each term is a
literal.

For example, consider the formula: 

. x ∧ ¬y ∧ z ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y).

This is a CNF formula where the first three terms are disjunctions of single literals. 
By adding extra parentheses, the formula is equivalent to: 

.(x) ∧ (¬y) ∧ (z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y).



11.2 The Satisfiability Problem (SAT) 271

Next, we define a special SAT ., which restricts the formula to a CNF formula. 

Definition 11.9 CNFSAT . is the set of all satisfiable CNF formulas. 

The formula we constructed in the proof of Theorem 11.5 is already in the 
conjunctive normal form. So, we have: 

Theorem 11.6 CNFSAT . is NP.-complete. 

11.2.2.2 3SAT 

We can further restrict the format of the NP.-complete formula. We call a CNFSAT . 

where each disjunctive clause has at most three literals a 3CNF formula. 

Definition 11.10 3SAT = { ϕ |  ϕ . is a satisfiable 3CNF formula }.. 
It is possible to convert an arbitrary CNF formula into a 3CNF formula. For a 

clause (u1 ∨ · · · ∨ uk). such that k ≥ 4., we introduce a new variable v and change 
the clause to a f ormula:

. (v ∨ u3 ∨ · · · ∨ uk) ∧ (¬v ∨ u1 ∨ u2) ∧ (¬u1 ∨ v) ∧ (¬u2 ∨ v).

We can satisfy this formula by satisfying (u1 ∨ · · · ∨ uk). and assigning the value of 
u1 ∨ u2 . to v. This change reduces the number of literals in the first clause from k to 
k − 1.. By successively applying the modification, we can generate a 3CNF formula 
equivalent to the original. The modification requires k−3. additional variables, (k−
3). clauses with three literals, and 2(k − 3). clauses with two literals. 

Once the number of literals becomes ≤ 3. for all clauses, we can adjust the 
number to exactly 3. For a clause with just one literal, (u)., we can substitute the 
clause with a formula: 

. (u ∨ v1 ∨ v2) ∧ (u ∨ v1 ∨ ¬v2) ∧ (u ∨ ¬v1 ∨ v2) ∧ (u ∨ ¬v1 ∨ ¬v2).

Here, v1 . and v2 . are new variables. Satisfying this formula requires setting the value 
of u to true.. 

For a clause with just two literals, (u∨u )., we can inflate the clause by replacing 
it by its copies, introducing a new variable, and inserting the variable positively into 
one and negatively into the other. If v is the new variable, the formula that replaces 
the  clause  i  s:

. (u ∨ u ∨ v) ∧ (u ∨ u ∨ ¬v).

Satisfying this formula requires setting the value of u ∨ u 
. to true.. 

The conversion is easy to make, and it increases the size of the formula only by 
a constant factor. This means a polynomial-time many-one reduction exists from 
CNFSAT . to 3SAT ..



272 11 The Theory of NP-Completeness

Thus, we have proven: 

Theorem 11.7 3SAT . is NP.-complete, even if the number of literals in each clause 
must be three. 

Note that the construction of a Boolean formula representing an accepting 
computation applies not only to single-tape TMs but to any multiple-tape TM. 
To extend the proof technique to a situation where the machine has multiple 
tapes, we introduce variables representing the contents and the head position for 
each additional tape. The set of subformulas describing the machine’s permissible 
actions becomes more complex since each computation step handles all the tapes 
simultaneously. 

11.2.2.3 NAE-SAT 

An assignment for a CNF formula is a not-all-equal assignment (or an NAE 
assignment) if, for each clause, it satisfies one literal and fails to satisfy another. 
A variant of 3SAT . is NAESAT ., which asks if a 3CNF formula has a not-all-equal 
assignment. 

Theorem 11.8 NAESAT . is NP.-complete. 

Proof Showing NAESAT ∈ NP. is easy; we leave the task of proving the member-
ship to the reader. 

To show that NAESAT . is NP.-hard, let ϕ . be an arbitrary 3CNF formula, where 
each clause has exactly three literals. We modify ϕ . into a 4CNF formula ϕ 

. by 
turning each clause of the form (α ∨ β ∨ γ ). into: 

. (α ∨ β ∨ γ ∨ δ) ∧ (α ∨ β ∨ γ ∨ δ).

We use the same δ . for all the clauses. 
We claim that ϕ 

. has an NAE assignment if, and only if, ϕ . has a satisfying 
assignment. To prove this claim, suppose A is a satisfying assignment of ϕ .. Suppose 
we extend A to A 

. by adding w = false.. Then A 
. is an NAE assignment of ϕ 

.. 
Conversely, if A 

. is an NAE assignment of ϕ 
. such that A (w) = false.,  the  

remainder of A 
. becomes a satisfying assignment of ϕ .. Additionally, if A 

. is an 
NAE assignment of ϕ 

. such that A (w) = true., by switching between x and x . for 
all variables x, we get to the same situation. Thus, the complementary assignment 
of A 

. is a satisfying assignment of ϕ .. 
Now, we construct a new formula ϕ  

. by turning each 4-literal clause (x∨y∨ z∨
w). into: 

. (u ∨ x ∨ y) ∧ (u ∨ z ∨ w).

Here, the variable u is not shared with other clauses. We can verify that from each 
NAE assignment to the 4-literal clause, we can construct an NAE assignment to the



11.2 The Satisfiability Problem (SAT) 273

pair of 3-literal clauses (and vice versa) as follows: 

• Suppose A is an NAE assignment to the four variables. If the assignment is true. 
for both x and y in A. Then, the assignment to z or the assignment to w is false.. 
We can assign false. to u. Then the assignment to the two 3-literal clauses is an 
NAE assignment. 

• Suppose A is an NAE assignment to the four variables. If the assignment is true. 
for both z and w in A. Then, the assignment to x or the assignment to y is false.. 
We can assign true. to u. Then the assignment to the two 3-literal clauses is an 
NAE assignment. 

• If B is an NAE assignment to the two 3-literal clauses. If u = true. in the 
assignment, then either x or y is false., and either z or w is true.. Thus, the 
assignment to the four variables other than u is an NAE assignment to the 4-
literal c lause.

• If B is an NAE assignment to the two 3-literal clauses. If u = false. in the 
assignment, then either x or y is true., and either z or w is false.. Thus, the 
assignment to the four variables other than u is an NAE assignment to the 4-
literal c lause.

receive true. in 
Our reduction outputs ϕ  

. from ϕ ..  I  f ϕ . has n variables and m clauses, ϕ  
. has 

n+m+ 1. variables and 4m clauses. We see that the construction can be carried out 
in polynomial time. Thus, NAESAT . is NP.-complete.   

11.2.3 Some Complete Problems for coNP 

Since coNP. is the complementary class of NP., the unsatisfiability problem about 
Boolean logic is complete for coNP.. 

We define UNSAT . as the set of all 3CNF formulas that are unsatisfiable. 

Corollary 11.1 UNSAT . is ≤pm .-complete for coNP.. 

Let ϕ . be a Boolean formula. Let ϕc . be the negation of the formula. ϕc . can be a 
mirror image of ϕ ., where: 

• Every positive literal of ϕ . appears as a negative literal 
• Every negative literal of ϕ . appears as a positive literal 
• Every ∨. of ϕ . appears as an ∧. 

• Every ∧. of ϕ . appears as an ∨. 

For every truth assignment A of ϕ ., A satisfies ϕ . if, and only if, A fails to satisfy
ϕc .. Thus, the unsatisfiability problem is the question of whether or not all the truth 
assignments are satisfying. If every truth assignment is satisfying, the formula is a 
tautology. 

We define TAUTOLOGY . as the set of all 3CNF formulas that are unsatisfiable.



274 11 The Theory of NP-Completeness

Corollary 11.2 TAUTOLOGY . is ≤pm .-complete for coNP.. 

We can develop another tautology problem. Let ϕ . be a CNF formula. Then, ϕc ., 
the negation of ϕ ., is a disjunction of conjunctions. Every satisfying assignment 
of ϕ . is a non-satisfying assignment of ϕc .. The formula in this format is called a 
disjunctive normal form formula. Like 3CNF formulas, 3DNF formulas are DNF 
formulas where each clause has three literals. 

We define DNFTAUT . as the set of all DNF tautologies and 3DNFTAUT . as the set 
of all 3DNF tautologies. 

Corollary 11.3 DNFTAUT . and 3DNFTAUT . are ≤pm .-complete for coNP.. 

In general, for a language A in a class C. containing P., if every language in C. is 
≤pm .-reducible to A, we call A C.-complete. 

11.3 Fundamental NP-Complete Problems 

We have established a foundation for NP.-completeness. We can now use this 
foundation to prove the NP.-completeness for other problems. 

11.3.1 The Clique Problem 

The first problem we show to be NP.-complete is the clique problem. 
An undirected graph is a clique if an edge exists between every pair of vertices 

(see Fig. 11.4). 
The clique problem asks whether an undirected graph contains a clique of a 

specific size. 

Definition 11.11 CLIQUE = { G, k |  G. has a k-clique }.. 
We assume that the encoding of G and k takes t he form:

. 0n#a11 · · · a1n# · · · #an1 · · · ann#0k.

Here, n is the number of vertices of the graph, and (aij ). is the adjacency matrix of 
the graph G. In other words, for all i and j such that i  = j ., aij = 1. if an edge joins 
the i-th and j -th vertices; aij = 0. otherwise. Since the size of the largest possible 

Fig. 11.4 Examples of cliques. From the left: a 1-clique, a 2-clique, a 3-clique, a 4-clique, and a 
5-clique



11.3 Fundamental NP-Complete Problems 275

clique of an n-vertex graph is n, regardless of the use of binary or unary encoding 
for k, the encoding length of  G, k . is  (n2).. 

Now, we prove that the problem is NP.-complete. 

Theorem 11.9 CLIQUE . is NP.-complete. 

Proof We prove the NP.-completeness of CLIQUE . in two steps. The first step is to 
show that CLIQUE . is in NP.. We do this by way of Algorithm 11.1. As we observed 
above, a TM can verify the validity of the input w and extract the graph G and 
the integer k in O(|w|2). steps. Once this verification is complete, the machine can 
nondeterministically select vertices of G;  see  if  k vertices have been selected and 
if every pair of vertices in the chosen set has an edge. If the set passes the test, the 
machine accepts it; if the set does not pass the test, the machine rejects it. The algo-
rithm decides correctly and requires O(n2) = O(|w|2). steps. Thus, CLIQUE ∈ NP.. 

Algorithm 11.1 A TM that recognizes CLIQUE . 

1: procedure CLIQUE(w) 
2: check the validity of w as an encoding of a graph and an integer; 
3: if w is valid then 
4: extract the graph G = (V ,E). and the integer k ≥ 1.; 
5: else 
6: reject w; 
7: end if 
8: extract the number of vertices, n,  of  G; 
9: for i ← 1, . . . , n. do 
10: nondeterministically select a Boolean value bi .; 
11: end for 
12: compute the number, c,  of  i such that bi = true.; 
13: if c < k . then 
14: reject w; 
15: end if 
16: for i ← 1, . . . , n. do 
17: for j ← 1, . . . , n. do 
18: if i  = j . and the adjacency matrix of G has 0 in row i and column j then 
19: reject w; 
20: end if 
21: end for 
22: end for 
23: accept w; 
24: end pr ocedure

The second step is to show that CLIQUE . is NP.-hard. We only need to construct 
a ≤pm .-reduction from an arbitrary known NP.-hard language to CLIQUE .. We select 
3SAT . for the purpose. 

Suppose ϕ . is a 3CNF formula of n variables and m clauses, each having three 
literals. We construct a graph G with 3m vertices. The 3m vertices match t he 3m
literals in ϕ .. We then join every pair of vertices from two different clauses unless 
one literal complements the other (such as x and x .). The required size for a clique 
is m; that is, the output of the reduction is  G,m .. Figure 11.5 shows an example



276 11 The Theory of NP-Completeness

Fig. 11.5 An example of a 
graph constructed for 
reducing 3SAT . to CLIQUE . 

where the formula is: 

. (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ w) ∧ (x ∨ y ∨ w).

We now show that G has an m-clique if, and only i f, ϕ . is satisfiable. 
First, suppose the formula ϕ . is satisfiable. We select one satisfying assignment 

of ϕ . and then, from each clause, select one literal that this satisfying assignment 
satisfies. There are exactly m literals, so the number of nodes we choose is m.  No  
two of the chosen vertices are complementary, so every pair is joined by an edge. 
This means that the m vertices we choose form an m.-clique. 

Next, suppose the graph has an m.-clique. Since no edge joins vertices 
representing the same clause, the clique must pick one vertex from each clause. 
Since the edge cannot join two complementary vertices, for each variable x,  at  
most one vertex in {x, x}. appears in the clique. We construct an assignment A by 
selecting, for each variable x, A(x) = true. if a vertex representing x is in the clique, 
and A(x) = false. otherwise. The assignment A is an extension of what the clique 
represents, and it satisfies ϕ .. 

Constructing  G,m . from ϕ . is straightforward and can be done in polynomial 
time. Thus, 3SAT ≤pm CLIQUE ..   

11.3.2 The Vertex Cover Problem 

Next, we study the problem VERTEXCOVER .. 
A vertex cover of an undirected graph G = (V ,E). is a set S ⊆ V . such that for 

all edges (u, v) ∈ E ., u or v is in S. Figure 11.6 shows an example of a vertex cover. 
The vertex cover problem asks whether or not a graph has a vertex cover of a 

specific size (or smaller). 

Definition 11.12 VERTEXCOVER =  { G, 0k | G. is an undirected graph, k ≤ n. 

is an integer, and G has a vertex cover with a cardinality of ≤ k}.. Here, n is the 
number of vertices in G.



11.3 Fundamental NP-Complete Problems 277

Fig. 11.6 A graph and one of its vertex covers. The right panel shows a vertex cover with eight 
graph vertices in the left panel. The double circles indicate the elements of the cover 

We know that k ≤ n. because the vertex set of a graph is a vertex cover. 
Theorem 11.10 VERTEXCOVER . is NP.-complete. 

Proof As with the proof for Theorem 11.9, this proof consists of showing 
that VERTEXCOVER ∈ NP. and showing VERTEXCOVER . is NP.-hard. For 
VERTEXCOVER ∈ NP., we can use an algorithm similar to the one we used for 
CLIQUE .. 

Algorithm 11.2 A TM that recognizes VERTEXCOVER . 

1: procedure VERTEX-COVER(w) 
2: check the validity of w as an encoding of a graph and an integer; 
3: if w is valid then 
4: extract the graph G = (V ,E). and the integer k ≥ 1.; 
5: else 
6: reject w; 
7: end if 
8: extract the number of vertices, n,  of  G; 
9: if k > n. then 
10: reject w; 
11: end if 
12: for i ← 1, . . . , n. do 
13: nondeterministically select a Boolean value bi .; 
14: end for 
15: compute the number, c,  of  i such that bi = true.; 
16: if c  = k . then 
17: reject w; 
18: end if 
19: for i ← 1, . . . , n. do 
20: for j ← 1, . . . , n. do 
21: if (i, j) ∈ E . and both bi . and bk . are false. then 
22: reject w; 
23: end if 
24: end for 
25: end for 
26: accept w; 
27: end procedure



278 11 The Theory of NP-Completeness

Since k ≤ n.,  if  w is a valid encoding, its length is  (n2).. The double loop 
with which the machine conducts the verification requires O(n3). time, and so the 
running time of the algorithm is O(n3) = O(|w|1.5).. Thus, the algorithm witnesses 
that VERTEXCOVER ∈ NP.. 

To show that VERTEXCOVER . is NP.-hard, let ϕ . be an instance of 3SAT . with n 
variables x1, . . . , xn . and m clauses, Cj = (λj,1 ∨ λj,2 ∨ λj,3), 1 ≤ j ≤ m..  We  
construct a graph G = (V ,E). where  V  = 2n + 3m. and e = n + 6m. edges. In 
addition, we set k = n+ 2m.. The vertices of G are: 

xi,1 . and xi,2 . for each i such that 1 ≤ i ≤ n. and 
aj,1 ., aj,2 ., and aj,3 . for each j such that 1 ≤ j ≤ m.. 

The edges of E have the following groups:

• (xi,1,  xi, 2). for each i such that 1 ≤ i ≤ n. 
• (aj,1,  aj, 2)., (aj,2, aj,3)., and (aj,3, aj,1). for each j such that 1 ≤ j ≤ m. 

• (aj,h,  xi, 1). for each i, j , and h such that 1 ≤ i ≤ n., 1 ≤ j ≤ m., 1 ≤ h ≤ 3., and 
λj,h . is the literal xi . and 

• (aj,h,  xi, 2). for each i, j , and h such that 1 ≤ i ≤ n., 1 ≤ j ≤ m., 1 ≤ h ≤ 3., and 
λj,h . is the literal xi . 

Figure 11.7 shows an example of this. The formula is: 

. (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ w) ∧ (x ∨ y ∨ w).

We claim the graph has a vertex cover with a cardinality of n + 2m. if, and only 
if, ϕ . is a satisfiable formula. 

Fig. 11.7 A vertex cover instance. The top vertices correspond with the literals, and the bottom 
triangles correspond with the clauses. The dashed lines represent the connections between the 
literal vertices and their appearances



11.3 Fundamental NP-Complete Problems 279

For each i, covering (xi,1, xi,2). requires placing one of xi,1 . and xi,2 . in the vertex 
cover. Covering the triangle among aj,1, aj,2 ., and aj,3 . requires minimally placing 
two in the vertex cover. Since the cardinality of the vertex cover must be at most 
n+ 2m., we know that we must select exactly one from xi,1 . and xi,2 . for each i, and 
exactly two from aj,1, aj,2 ., and aj,3 . for each j . Each of the triangle vertices has 
one edge between an x vertex. Let us pick a triangle (a, a , a  )..  Let  x, x 

., and x  
. 

be the x vertices on the other end; i.e., we have edges (a, x)., (a , x )., and (a  , x  ).. 
To cover all three edges under the maximum size constraint, we must place one of 
x, x 

., and x  
. in the vertex cover (say, x) and place a 

. and a  
. in the vertex cover. 

Figure 11.8 demonstrates this idea. 
Suppose the vertex selection is possible in this manner. The chosen x vertices can 

be viewed as a truth assignment, and the edges from the triangle vertices connecting 
to the x vertices indicate the literals satisfied by the assignment. This means that the 
formula is satisfiable. 

Next, suppose ϕ . is satisfiable. Select one satisfying assignment A of ϕ ..  From  
A, we can construct a vertex cover. We choose vertices from the x vertex groups 
corresponding to the truth assignment. We exclude one satisfied literal from each 
triangle and select the remaining two. The cover has n+ 2m. vertices. 

It is not difficult to see that we can construct G from ϕ . in time O(|ϕ|2). since 
n+ 2m = O(|ϕ|).. Thus, VERTEXCOVER . is NP.-hard.   

11.3.3 The 3-Coloring Problem 

For an integer k,  the  k-coloring problem is the problem of deciding, given a graph 
G and a set of k colors C, if a color can be assigned to G’s vertices so that for each
edge (u, v). of the graph, u and v have different colors. 3-coloring is the k-coloring 
problem for k = 3.. 

We define 3COLOR . as the language of all graphs having a 3-coloring. 

Fig. 11.8 The local 
connection surrounding a 
triangle



280 11 The Theory of NP-Completeness

Fig. 11.9 A 3-coloring instance generated from an instance of NAESAT .. The graph has one more 
vertex than the graph for VERTEXCOVER.. The extra vertex appears at the top. The top vertex is 
adjacent to all assignment vertices 

Theorem 11.11 3COLOR . is NP.-complete. 

Here is a rough outline of the proof. Suppose we apply the reduction from 3SAT . 

to VERTEXCOVER . (as appearing in the proof of Theorem 11.10) to an instance of 
NAESAT .. The reduction generates the same structure as in the VERTEXCOVER ..  We  
add one vertex to the graph and connect the new vertex to the assignment vertices for 
selecting between assignments in VERTEXCOVER .. The resulting graph is Fig. 11.9. 
We can show that the graph has a 3-coloring if, and only if, the formula has an NAE 
truth assignment. We leave the rest of the proof to the reader (see Exercise 11.12). 

11.3.4 The Hamilton Path Problem 

Here, we prove that HAMPATH . is NP.-complete. 
Consider the following nondeterministic algorithm to show that HAMPATH ∈ NP. 

(Algorithm 11.3).



11.3 Fundamental NP-Complete Problems 281

Algorithm 11.3 A TM that recognizes HAMPATH . 

1: procedure HAMILTONIAN-PATH(w) 
2: check the validity of w as an encoding of an instance of HAMPATH .; 
3: if w is valid then 
4: extract the graph G = (V ,E)., the start vertex s, and the end of t ; 
5: else 
6: reject w; 
7: end if 
8: extract the number of vertices, n,  of  G; 
9: for i ← 1, . . . , n. do 
10: nondeterministically select an integer ui . between 1 and n; 
11: end for 
12: if u1  = s . or un  = t . then 
13: reject w; 
14: end if 
15: for i ← 1, . . . , n. do 
16: for j ← 1, . . . , n. do 
17: if uj = i . then 
18: break the internal loop; 
19: end if 
20: end for 
21: if the internal loop did not break then 
22: reject w; 
23: end if 
24: end for 
25: for i ← 1, . . . , n− 1. do 
26: if (ui , ui+1). is not in E then 
27: reject w; 
28: end if 
29: end for 
30: accept w; 
31: end procedur e

Note that the algorithm verifies that the sequence [u1, . . . , un]. generated is one 
from s and t , visits each vertex at least once, and has an edge between each 
neighboring pair of vertices. If the sequence satisfies the criteria, then, since n is 
the number of vertices, the sequence visits each vertex exactly once and thus is a 
Hamilton path from s to t . The verification happens via rejecting any sequence that 
fails to satisfy an y criterion.

To determine that HAMPATH . is NP.-hard, we use VERTEXCOVER ..  Let  G, 0k . be 
an instance of VERTEXCOVER ..  Let G = (V ,E).. 

We create a 12-vertex graph for each edge e = (u, v). in E. The 12-vertex graph 
consists of two parallel straight lines, with six vertices on each side. The sixth 
vertices are sequentially numbered from 1 to 6 on each side. Then, we connect the 
first on each side with the third on the other. We also connect the fourth on each side 
with the sixth on the other (see Fig. 11.10). In many NP.-completeness proofs, we 
use a structure that forces a specific action, traversal, assignment, etc., under some 
constraints, and we call such a structure a gadget.



282 11 The Theory of NP-Completeness

Fig. 11.10 The Hamilton path gadget and its three Hamilton-path traversals 

In the figure, the top panel is the 12-vertex gadget. The two parallel series appear 
as the top and bottom six-vertex lines, with the ends on the left representing the entry 
points, and the ends on the right representing the exit points. In our construction, 
each gadget’s middle eight points (the second through the fifth on both sides) have 
no other connections. This means that each Hamilton path that traverses the gadget 
must traverse it in one of the three possible ways, as the bottom panel of the figure 
shows. Let us consider the top line as the vertex u of the edge e = (u, v). and the 
bottom line as the vertex v of the edge. The three traversals can be interpreted as 
placing only u in the vertex cover, placing only v in the vertex cover, and placing 
both u and v in the vertex cover , respectively.

We introduce vertices s1, . . . , sk+1 . additionally. For each u ∈ V .,  let e1, . . . , em . 

be an enumeration of all the edges one of whose endpoints is u. We then connect 
the m gadgets corresponding to the m edges by simply joining the exit vertex on the 
u side of ei . and the entry vertex on the u side of ei+1 . with an edge for all i such 
that 1 ≤ i ≤ m − 1..  We  also  join sj . with the entry point of the u side of e1 . for 
all j such that 1 ≤ j ≤ k . and the exit point of the u side of em . for all j such that
2 ≤ j ≤ k + 1.. 

This completes the construction. Let us call this graph H . We claim that H has a 
Hamilton path between s1 . and sk+1 . if, and only if, G has a k-vertex cover .

We present how this instance of the Hamilton path problem looks like using a 
simple square with four vertices and four edges (see Fig. 11.11). By selecting two 
vertices diagonally opposite each other, we can construct a two-vertex cover. We 
thus set the value of k to 2.

As we have seen before, the Hamilton path problem is polynomial-time many-
one reducible to the Hamilton cycle problem. By employing an algorithm very close 
to the one from Algorithm 11.3, we can show that the latter problem is in NP..  The  
observations lead to the following result.

Corollary 11.4 HAMCYCLE . is NP.-complete. 

Since HAMCYCLE ≤pm HAMPATH . (Theorem 11.2), we have the following result. 

Corollary 11.5 HAMPATH . is NP.-complete.



11.3 Fundamental NP-Complete Problems 283

Fig. 11.11 Conversion to HAMPATH . to VERTEXCOVER.. The top panel is a graph for which we 
need to find a vertex cover. For this instance, the edges can be covered with two vertices. Two 
choices exist for the two vertices: a and d or b and c. The middle panel is the graph generated. The 
two vertices labeled s2 . (one on the left and the other on the right) are identical. The bottom panel 
is a Hamilton path representing a solution to the vertex cover problem, where the two end points 
of a required path are a and c. The dashed line represents the connection between the two identical 
nodes labeled s2 .



284 11 The Theory of NP-Completeness

11.3.5 NP-Completes Problems About Integers 

Some NP.-complete problems are concerned with organizing integers. 
The subset sum problem is the problem of deciding, given a list of positive 

numbers a1, . . . , am . and a positive number T , whether or not there is a sublist from 
the list whose total is equal to T . As a set, the list a1, . . . , am . is a multi-set; any value 
can appear multiple times on the list. For example, given a list [1, 2, 2, 7, 10, 25, 9]., 
and a target of 14, the answer to the question of the problem is in the affirmative, 
since 2 + 2 + 10 = 14.; if the target becomes 6, the answer is in the negative. 

We define SUBSETSUM . as the set of all subset sum problem instances with 
affirmative answers. It is easy to see that the problem is in NP.. Given an instance, 
consider nondeterministically deciding whether to use each number on the list in the 
sum and then testing whether the total of the chosen numbers is equal to the target. 
It is possible to implement the algorithm on an NTM so that it runs in polynomial 
time. 

Let ϕ = C1 ∧ · · · ∧ Cm . be an instance of 3SAT . with variables x1, . . . , xn ..  We  
introduce four sets of quantities a1, . . . , an ., b1, . . . , bn ., c1, . . . , cm ., and d1, . . . , dm . 

as follows: 

• For each i such that 1 ≤ i ≤ n.,  the  value  o  f ai . is 10m+i−1
. plus the sum of 

10j−1, 1 ≤ j ≤ m., such that the literal xj . appears in the clause Cj .. 
• For each i such that 1 ≤ i ≤ n.,  the  value  o  f bi . is 10m+i−1

. plus the sum of 
10j−1, 1 ≤ j ≤ m., such that the literal ¬xj . appears in the clause Cj .. 

• For each j such that 1 ≤ j ≤ m., cj = 10j−1
. and dj = 2 · 10j−1

.. 

We define T = m+n−1
i=m 10i + 4

 m
j=1 10

j−1
.. 

We claim that ϕ . is satisfiable if, and only if, the instance a1, . . . , dm . (i.e., the list 
of the 2n + 2m. numbers) with the target T is a positive instance of the subset sum 
problem. To see how the claim holds, we use the power-of-10 denominations and 
examine both the numbers on the list and the total. Every number in the 2n + 2m. 

number list has a 0 or a 1 at each position. For each position i among the lowest m 
positions, exactly five numbers have a 1 at that position. Three of the five correspond 
to the literals of the clause. The remaining two come from ci . and di .. For each of the 
remaining n positions, only two numbers have a 1 at that position. The total of the 
numbers is 2

 m+n−1
i=m 10i+6

 m
j=1 10

j−1
., and there is no chance for these numbers 

to produce a carry. Thus, the target T is achievable by selecting exactly one from
ai . and bi . for each i . and some cj .s and dj .s. We note that for each of the lowest m 
positions, there can be a maximum of two contributions using cj . and dj ..  Thus,  to  
achieve T , the combinations of ai . and bi . must be such that each of the lowest m 
positions has 1, 2, or 3. To raise 1, 2, and 3 to 4 at a position j is by adding cj + dj ., 
dj ., and cj ., respectively. If the value at position j is 0, since cj + dj . has only 3 at 
the position, the value cannot go up to 4. 

From these observations, we conclude that T is achievable if a truth assignment 
of ϕ . satisfies at least one literal for each clause. We have thus proven the following 
theorem.



11.3 Fundamental NP-Complete Problems 285

Theorem 11.12 SUBSETSUM . is NP.-complete. 

Here is an example. Let 

. ϕ = (x1 ∨x2 ∨x3)∧ (x2 ∨x3 ∨x4)∧ (x1 ∨x2 ∨x4)∧ (x1∨x2 ∨x4)∧ (x1∨x3 ∨x4).

The formula has a few satisfying assignments. One of them is x1 = x2 = x3 = x4 =
true.. Summing a1 ., a2 ., a3 ., and a4 . together yields the decimal 111112122. Adding c5 ., 
d5 ., d4 ., c3 ., d3 ., d2 ., and d1 . to the partial sum yields the target 111144444 in decimal. 
(see Fig. 11.12). 

11.3.5.1 The Partition Problem 

Partition is the problem of computing, given a list of positive integers a1, . . . , am ., 
a split of the m numbers into two groups so that the difference between the total 
of one part and the total of the other part is the smallest. We are interested in the 
computational complexity of decision problems so that we can cast the computation 
problem as a decision problem. PARTITION . is the set of all integer lists  a1, . . . , am . 
having a split (I, J ). of the indices {1, . . . , m}. such that 

. 
 

i∈I
ai =
 

j∈J
aj .

Theorem 11.13 PARTITION . is NP.-complete. 

Fig. 11.12 The subset sum 
instance representing 
ϕ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨
x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧
(x1 ∨x2 ∨x4)∧ (x1 ∨x3 ∨x4).



286 11 The Theory of NP-Completeness

We can prove this theorem by reducing NAESAT . to SUBSETSUM . and removing 
all di .s. Alternatively, we can reduce SUBSETSUM . to PARTITION . by adding two 
integers U and V , where U = V +D . and D is the absolute value of the sum of all 
the integers on the list minus the target. We leave the task of proving this theorem 
to the reader (see Exercise 11.11). 

11.3.5.2 The Knapsack Problem 

Knapsack is the problem of packing items in a sack with a weight capacity so that 
the total weight of the items does not exceed the sack’s capacity and that the total 
value of the sack is greater than or equal to an amount. Here, we use a pair of positive 
integers (w, v). to represent an item, where w is the weight and v is the item’s value. 

We define the language KNAPSACK . as follows: 

KNAPSACK = { w1, v1, . . . , wk, vk,W, V  | k ≥ 1, w1, v1, . . . , wk, vk,W, V ∈ N., 
and for some I ⊆ {1, . . . , k}.,  i∈I wi ≤ W . and

 
i∈I vi ≥ V }.. 

Theorem 11.14 KNAPSACK . is NP.-complete. 

We can show the NP.-hardness of KNAPSACK . by reducing SUBSETSUM ..  We  
leave the proof to the reader (Exercise 11.14). 

11.3.5.3 The Scheduling Problem 

Scheduling (within intervals) is the following problem: 
We have a list of tasks t1, . . . , tk .. For each i,  th  e ti .has its release time ri ., deadline 

di ., and length to complete li .. All the quantities are integers. The task is to find out if 
we can assign an integer start time si . to each task ti . so that the following conditions 
are met: 

• Each task starts on or after its release time and is completed by its deadline; i.e., 
for all i such that 1 ≤ i ≤ k ., ri ≤ si . and si + li ≤ di .. 

• No two tasks overlap (except for starting one at the time the other is complete); 
i.e., for all i and j such that 1 ≤ i < j ≤ k ., either si + li ≤ sj . or sj + lj ≤ si .. 

Theorem 11.15 SCHEDULING . is NP.-complete. 

We can show the NP.-hardness of SCHEDULING . with a ≤pm .-reduction from 
PARTITION ..  Let a1, . . . , am . be an arbitrary instance of PARTITION ..  Le  t B =
a1 + · · · + am .. Then, B must be an even number for partitioning to be possible. 
Let H = B/2.. The question for partitioning is whether or not there is a subset 
whose total is equal to H . The total of the remaining elements is necessarily 
B − H = B − B/2 = B/2 = H ..  We  turn a1, . . . , am . to m tasks, where ri = 0., 
di = B + 1(= 2H + 1)., and li = ai . for each i. We then add another task tm+1 . such 
that rm+1 = H ., dm+1 = H + 1., and lm+1 = 1.. The start time, sm+1 .,  of tm+1 . must



11.3 Fundamental NP-Complete Problems 287

be H . The other tasks start before H and are completed before H or afterH +1. and 
before B. We can show that the desired partitioning is possible if the other tasks can 
be scheduled. We leave the rest of the proof to the reader (Exercise 11.15). 

11.3.6 NP-Complete Problems About Matching and Set 
Partitioning 

Another NP.-complete problem is about matching and dividing sets. 
An instance of three-dimensional matching consists of three sets A, B, and C 

having the same size (i.e.,  A =  B =  C .) and a set of triples T ⊆ A×B ×C .. 
Our question is whether or not a set S ⊆ T . exists so each element of A, B, and 
C appears exactly once in S. For example, suppose A,B,C ., and T are given as 
follo ws:

. A = {a1, a2, a3, a4},
B = {b1, b2, b3, b4},
C = {c1, c2, c3, c4}, and
T = {(a1, b2, c3), (a2, b3, c4), (a3, b4, c4), (a3, b4, c1), (a4, b1, c2), (a4, b2, c3)}.

Then, a matching is achievable with the following subset: 

. {(a1, b2, c3), (a2, b3, c4), (a3, b4, c1), (a4, b1, c2)}.

This problem-solving can be implemented in many practical situations. For exam-
ple, think of a university having students meet counselors in offices. The number 
of students equals the number of counselors and the number of offices. Each 
counselor has some preferred offices for a meeting, and each student has some 
preferred counselors to meet with. Also, the meetings will occur concurrently in 
some places in the university, and the number of places available will equal the 
number of recruits. Joining these two sets of preferences provides triples of preferred 
combinations of a student, a counselor, and an office. We then ask if we can organize 
counseling sessions according to the triples of preferences. 

Now, we define 3DM. as the set of all positive instances for the three-dimensional 
matching problem. 

It is not hard to show 3DM ∈ NP.. Given an input (A,B,C, T ).of the problem, we 
can think of nondeterministically choosing whether or not to include each element 
of T in the subset S and then whether the subset S creates a matching of the
components.

We prove the NP.-hardness by reducing CNFSAT . to the problem. Let ϕ = D1 ∧
· · · ∧ Dm . be a CNF formula of some n variables x1, . . . , xn ..  Let d1, . . . , dm . be 
the numbers of literals appearing in clauses D1, . . . , Dm ., respectively. Let d0 =



288 11 The Theory of NP-Completeness

d1 +· · ·+dm .. The total number of literals in ϕ . is d0 .. The elements in A have names 
a, e, and g; the elements in B have names b, f , and h; and the elements in C have 
names c and c.. 

First, for each clause Dj ., we introduce elements aj1, . . . , ajn ., bj1, . . . , bjn ., 
cj1, . . . , cjn ., and cj1 . . . , cjn .. 

In addition, for each clause Dj ., and for each i such that 1 ≤ i ≤ n., we introduce 
triples (aji, bji , cji). and (aj,i+1, bji , cji).. Here, we will treat aj,n+1 . as aj1 .. 

We can visualize these elements and triangles as an alternating cycle as as and bs, 
[aj1, bj1, aj2, bj2, . . . , ajn, bjn, aj1]., where the neighboring pairs form triangles 
with cj1, cj1, cj2, cj2, . . . , cjn, cjn . (see Fig. 11.13). The elements as  or  bs occur in 
no other triples. Matching the as and bs thus needs these triples. Since the triples 
appear in a cycle so that each neighboring pair of triples shares one element in 
common, you must use exactly every other triple to cover all the a .s and b.s. There are 
two ways to pick every other triple: starting with the first one and starting with the 
second one. The former covers all cs but leaves behind all c.s, and the latter covers 
all c .s but leaves behind all cs. We view the selections for as and bs as representing 
the truth assignments to the variables of ϕ . as follows. If cji .s remain for j , then the 
assignment to xj . is true., and if cji .s remain for j , then the assignment to xj . is false.. 

Next, for each clause Dj ., we introduce elements ej . and fj . and triples 
(ej , fj , cjk). for each k such that xk . is a literal appearing in Dj . and triples 
(ej , fj , cjk). for each k such that xk . is a literal appearing in Dj .. The elements 
es and f s have no other occurrences in triples, so for each j , we need to select one 
triple having ej . and fj .. After making the choices for a . and b., the choices for e. and 
f . must use the remaining ones. Covering es and f s requires selecting exactly one 
literal from each clause (see Fig. 11.14). 

Finally, we introduce gjk . and hjk ., 1 ≤ j ≤ m. and 1 ≤ k ≤ n−1.. Then, for each 
j such that 1 ≤ j ≤ m., we introduce triangles (gik, hjk, cji). and (gik, hjk, cji). for 
1 ≤ k ≤ n− 1. and 1 ≤ i ≤ n.. For each j such that 1 ≤ j ≤ m., to match the gs and 
hs, we need to pick n− 1. elements from untouched cs  o  r c. from the corresponding 
index j . If the matching from the second step is successful, there are exactly n− 1. 
elements in the cs and c.s  for  j , so matching is possible.

Fig. 11.13 The variable 
assignment triples for 3DM.. 
The triangles represent 
triples. The drawing shows 
the instance where there are 
only two variables 
(corresponding to the second 
indices i and 2). Because of 
the overlap among the 
vertices as  and  bs, any 
matching solution must select 
exactly one of the top-bottom 
and left-right triangle pairs



11.3 Fundamental NP-Complete Problems 289

Fig. 11.14 The clause triples 
for 3DM.. The triangles with 
dotted lines are those from 
Fig. 11.13. The clause has just 
two literals: x1 . and x2 ..  The  
solid-line triangles represent 
the literals. Exactly one of the 
two is part of the matching

The ranges of indices i, j , and k are {1, . . . , n}., {1, . . . , m}., and {1, . . . , n − 1}., 
respectively. The number of elements in the three sets, A, B, and C, is as follows: 

1. A has mn aji .s, m ej .s, and m(n− 1). gjk .s. 
2. B has mn bji .s, m fj .s, and m(n− 1). hjk .s. 
3. C has mn cji .s and mn cji .s. 

Each group has 2mn elements. 
From how we constructed the elements and triples, it is clear that the instance 

has a matching, which is convertible to a satisfying assignment of ϕ .. Also, it is easy 
to see that the instance’s construction requires O(mn). steps. Thus, the construction 
is a polynomial-time many-one reduction from CNFSAT . to 3DM.. 

We have thus proven the following: 

Theorem 11.16 3DM. is NP.-complete. 

11.3.7 More Examples of NP-Complete Problems 

Here are a few more examples of NP.-complete languages. Their NP.-completeness 
proofs are based on those from an earlier part of the section. 

11.3.7.1 Exact Cover by Three Sets (X3C) 

Exact cover by three sets (X3C) is the problem of deciding, given a universe U 
and a list of triples T1, . . . , Tm ⊂ U ., if there is a partition of U into triples from the 
list. We define X3C. as the language of all positive instances of X3C. 

Theorem 11.17 X3C. is NP.-complete.



290 11 The Theory of NP-Completeness

We leave the proof to the reader (Exercise 11.7). 

11.3.7.2 The Independent Set Problem 

Let G = (V ,E). be a graph and let S ⊆ V .. We say that S is an independent set of 
G if G has no edge connecting any two vertices of S. We define INDEPENDENTSET . 

as the language of all graph-integer pairs  G, k . such that G has an independent set 
having a size of ≥ k .. 
Theorem 11.18 INDEPENDENTSET . is NP.-complete. 

Again, we leave the proof to the reader (Exercise 11.10). 

Exercises 
11.1 Prove that the polynomial-time many-one reductions are transitive; that is, for 
all languages A, B, and C,  if A ≤pm B . and B ≤pm C ., then A ≤pm C .. 

11.2 Prove that the polynomial-time many-one reductions are reflexive; that is, for 
all languages A, A ≤pm A.. 

11.3 Prove Proposition 11.2. 

11.4 Let A ⊆  ∗
. be nontrivial; that is, A is neither ∅. nor  ∗

.. Prove that A is 
polynomial-time many-one reducible to neither ∅. nor  ∗

.. 

11.5 Prove Proposition 11.1. 

11.6 In the definition of polynomial-time witness schemes (Definition 11.7), |y| ≤
p(|x|).. Show that the definition can be changed to |y| = p(|x|).. 
11.7 Show that X3C. is NP.-complete. 

Hint: You can prove the NP.-hardness using the proof of Theorem 11.16.  This  
time, you can collapse the three-dimensional Cartesian product A × B × C . to turn 
it into a set A ∪ B ∪ C .. 

11.8 Theorem 11.1 shows a reduction from the Hamilton path problem to the 
Hamilton cycle problem. Using a similar idea, give a polynomial-time many-one 
reduction from the Hamilton cycle problem to the Hamilton path problem. 

11.9 Show that a vertex-set C is a vertex cover of a graph G = (V ,E). if, and only 
if, V − C . is an independent set of G. 

11.10 Based upon the property you have proven in Exercise 11.9, show that 
INDEPENDENTSET . is NP.-complete. 

11.11 Prove Theorem 11.13; i.e., PARTITION . is NP.-complete. 

11.12 Complete the NP.-completeness proof of 3COLOR . by showing (a) 3COLOR . 

is in NP. and (b) the generated graph has a 3-coloring if, and only if, the formula has 
an NAE assignment.



11.3 Fundamental NP-Complete Problems 291

11.13 Show that if the number of available colors is only two, the coloring problem 
is in P.. 

11.14 Show that KNAPSACK . is NP.-complete. 
Hint: To prove NP.-hardness for the problem, use the construction from 3SAT . to 

SUBSETSUM .. Try using the value of an element in SUBSETSUM . item as both the 
weight and the value. 

11.15 Complete the proof of Theorem 11.15. 

11.16 An edge-weighted graph is a graph (V ,E). with edge weight assignment 
W : E → N..  The  traveling salesman problem asks, given an edge-weighted graph 
G, a vertex s, and cost c, whether or not there is a Hamiltonian cycle from s whose 
total edge weight is at most c. Prove that the traveling salesman problem is NP.-
complete. 

11.17 A dominating set of a directed graph G = (V ,E). is a set D ⊆ V . such 
that for all u ∈ V − D ., there is an arc from some v ∈ D . to u. We define 
DOMINATINGSET . as the set of all  G, k . such that G contains a dominating set 
with  a  size of ≤ k .. Prove that DOMINATINGSET . is NP.-complete. 

Hint: Use the reduction from 3SAT . to VERTEXCOVER . and argue that the input 
formula with n variables and m clauses is satisfiable if, and only if, the graph has a 
dominating set with a size of n+m.. 

11.18 Prove that the following state minimization problem of a nondeterministic 
finite automaton is coNP.-hard; given an NFA M and an integer k, test if there is an 
NFA equivalent to M whose number of states is ≤ k .. 

Hint: Given an n-variable 3CNF formula ϕ ., construct an NFA that accepts its 
input w ∈ {0, 1}∗ . if |w| < n. or its n-character prefix is not a satisfying assignment. 

11.19 Verify that from any NAE assignment to (x ∨ y ∨ z ∨ w)., we can construct 
an NAE assignment to (u ∨ x ∨ y) ∧ (u ∨ z ∨ w)., and vice versa. 

11.20 1-IN-3-SAT is the language of all 3CNF formulas having a truth assignment 
that satisfies exactly one literal per clause. Show that 1-IN-3-SAT . is NP.-complete. 

Hint: We can reduce 3SAT . to 1-IN-3-SAT . by constructing from each formula 
3CNF formula ϕ = C1 ∧ · · · ∧ Cm . as follows: 

For each clause C = (λ1 ∨ λ2 ∨ λ3). of ϕ ., introduce eight new variables 
a, b, c, d, e, f, g, α, β . and replace the clause with the formula: 

. (λ1 ∨ a ∨ d) ∧ (λ2 ∨ b ∨ d) ∧ (λ3 ∨ c ∨ g) ∧ (a ∨ b ∨ e)
∧(c ∨ d ∨ f ) ∧ (g ∨ α ∨ β) ∧ (g ∨ α ∨ β).

Show that the new formula has a 1-in-3 assignment if, and only if, ϕ . is satisfiable.



292 11 The Theory of NP-Completeness

11.21 Prove that 2SAT, the CNF satisfiability in which the number of literals per 
clause is no more than 2, is in P.. 

11.22 Prove that the following problem is NP.-complete: 
Given a Boolean formula ϕ . and a satisfying assignment α ., decide whether or not 

ϕ . has a satisfying assignment other than α .. 

11.23 Prove that the following problem called LONGESTPATH is NP.-complete: 
Given a graph G and an integer W , decide whether or not G has a simple path 

having a length of ≥ W .. 

11.24 Prove that for each k ≥ 1., the clique problem where the target clique size is 
fixed to k is in P.. 

Bibliographic Notes and Further Reading 
The central driving force of computational complexity theory has been the P. verus 
NP. problem. Complexity theorists used to think that the problem emerged after 
the introduction of time-bounded TM computation (i.e., Hartmanis and Stearns’ 
paper [4] in 1965). However, a surprising discovery was made at the end of the 1980s 
to show that the question had already been asked a decade earlier. The discovery is 
Kurt Gödel’s letter to John von Neumann. In this letter, Gödel noted that there are 
problems solvable in deterministically quadratic time and asked von Neumann if a 
TM solving calculus in logic can be made to run in quadratic time (see [3, 8]). We 
can translate Gödel’s question as whether or not PSPACE ⊆ DTIME[n2].. 

The concept of NP.-completeness is by the independent work of Cook [1] and 
Levin [6]. While Levin’s work shows that the problems searching for witnesses 
can be converted to SAT ., Cook’s work shows that the acceptance problem of a 
polynomial time-bounded NTM can be converted to TAUTOLOGY .. 

Karp [5] formalized Cook’s approach into the notion of the polynomial-
time many-one reductions. In this paper, Karp demonstrated the importance 
of NP.-completeness by presenting 21 complete problems that are practically 
important. HAMPATH ., HAMCYCLE ., SUBSETSUM ., 3SAT ., VERTEXCOVER ., 
INDEPENDENTSET ., 3COLOR ., KNAPSACK ., and CLIQUE . were among these 21 
problems. The polynomial-time many-one reduction is often called the polynomial-
time Karp reduction. 

In contrast with Karp’s approach, Cook’s approach has a property that the 
answer obtained from TAUTOLOGY . is negatively interpreted; the answer about 
satisfiability is positive if, and only if, the answer about TAUTOLOGY . is negative. 
The next chapter of this book introduces a more flexible reduction. In this method, 
the membership of an input string may be determined using not just a single 
membership question but a dynamically generated series of questions. This flexible 
type of reduction is generally called the polynomial-time Turing reduction but is 
also often called the Cook-Levin reduction (or simply Cook reduction). 

The polynomial-time witness preserving reduction is by Garey and Johnson [2]. 
The reduction is called the “strong” NP.-completeness in Garey and Johnson’s work. 
Numerous papers have presented newly found NP.-complete problems. There is no



References 293

exact count of problems that have been shown to be NP.-complete in the literature, 
but the number could be way over 10,000. The book by Garey and Johnson 
is the standard reference for NP.-complete problems; this book lists about 700 
problems as NP.-complete. Their book also categorizes the techniques for proving 
NP.-completeness. 

The NP.-completeness of NAESAT . and 1-IN-3-SAT . is by Schaefer [7]. In the 
paper, Schaefer studied the logical templates for defining the value of clauses when 
the clauses are conjunctively connected and showed that for each template, the 
satisfiability problem is either polynomial-time decidable or NP.-complete. 

References 

1. S.A. Cook, The complexity of theorem proving procedures, in Proceedings of the Third Annual 
ACM Symposium on Theory of computing (Association for Computing Machinery, New York, 
1971), pp. 151–158 

2. M.R. Garey, D.S. Johnson, Computers and intractability, vol. 174 (Freeman San Francisco, 
1979) 

3. J. Hartmanis, Gödel, von Neumann and the P=?NP problem, in Current Trends in Theoretical 
Computer Science: Essays and Tutorials (World Scientific, Singapore, 1993), pp. 445–450 

4. J. Hartmanis, R.E. Stearns, On the computational complexity of algorithms. T Am. Math. Soc. 
117, 285–306 (1965) 

5. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computa-
tions, ed. by R.E. Miller, J.W. Thatcher (Plenum, New York, 1972), pp. 85–103 

6. L.A. Levin, Universal sequential search problems (in Russian). Problemy Peredachi Informatsii 
9(3), 115–116 (1973) 

7. T.J. Schaefer, The complexity of satisfiability problems, in Proceedings of the Tenth Annual 
ACM Symposium on Theory of Computing (1978), pp. 216–226 

8. A. Urquhart, Von Neumann, Gödel, and complexity theory. Bull Symbol Logic 16(4), 516–530 
(2010)



Chapter 12 
Beyond NP-Completeness 

12.1 The Complexity of Finding a Witness 

In the previous chapter, we saw that the languages in NP. are characterized using 
a polynomial-time witness scheme. How difficult is finding a witness given an 
instance for a language in NP.? In this section, we study the problem of finding 
an optimal witness. Here, we give a linear order among witnesses and compute 
the largest or smallest witness among them if a witness exists. The key concept in 
finding an optimal witness is the polynomial-time Turing reducibility. 

Recall from Definition 11.9 that CNFSAT . is the problem of deciding whether or 
not a CNF formula is satisfiable. We used the oracle TM model in Sect. 8.5 and 
defined the arithmetical hierarchy. Recall that a language oracle A is a unit-cost 
black box that provides the membership of an arbitrary string in A. With CNFSAT . as 
the oracle, we can compute a satisfying assignment of any satisfiable CNF formula 
in polynomial time. Let ϕ . be  a  CNF  formula  with  n variables x1, . . . , xn ..  We  us  e
Algorithm 12.1 to find, if one exists, a satisfying assignment to the formula ϕ .. 

Does the algorithm correctly compute a satisfying assignment when ϕ . is 
satisfiable? Since the oracle correctly answers the question about the satisfiability 
of CNFSAT ., the algorithm proceeds to Line 6. We thus know that ϕ0 . is a satisfiable 
CNF formula. Then, using induction on i from i = 1. to i = n., we can prove that 
ϕi . is a satisfiable CNF formula and that the assignment   . at the end of round i 
reduces ϕ . to ϕi .. Suppose the two properties hold for j such that 0 ≤ j ≤ n− 1. and 
i = j + 1.. The algorithm generates ψ0 . and ψ1 . by setting the value of xi . to false. and 
true., respectively. Since by assumption, we know that ϕj . is satisfiable and   . reduces 
ϕ0 . to ϕj ., we know that ψ0 .or ψ1 . is satisfiable. The way the algorithm selects ϕi . from 
ψ0 . and ψ1 . thus ensures that ϕi . is satisfiable, and the new list   . reduces ϕ0 . to ϕi .. 
Note that ψ0 . and ψ1 . are computable from ϕj . by setting the value of xi . to false. and 
true., respectively. We will simplify the formula after the value assignment to xi ..For 
ψ0 ., every clause containing the literal xi . is satisfied, so we will remove the clause 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_12

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 12&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12
https://doi.org/10.1007/978-3-031-84740-0_12


296 12 Beyond NP-Completeness

Algorithm 12.1 An algorithm for finding a satisfying assignment using an oracle 
1: procedure FIND-SATISFYIING-ASSIGNMENT( ϕ .) 
2: ϕ . is a CNF formula; 
3: ask the oracle if ϕ . is satisfiable; 
4: if the oracle returns “no” then 
5: assert that ϕ . is not satisfiable; 
6: end if 
7:   ← [].; 
8: ϕ0 ← ϕ .; 
9: for i ← 1, . . . , n. do 
10: construct ψ0 . from ϕi−1 . by setting xi = false.; 
11: construct ψ1 . from ϕi−1 . by setting xi = true.; 
12: ask the oracle if ψ0 . is satisfiable; 
13: if the oracle answers “yes” then 
14: append xi = false. to   .; 
15: ϕi ← ψ0 .; 
16: else 
17: append xi = true. to   .; 
18: ϕi ← ψ1 .; 
19: end if 
20: end for 
21: report   . as a satisfying assignment; 
22: end procedure 

entirely from the formula; in addition, we will remove all remaining occurrences of 
xi ..  For ψ1 ., every clause containing the literal xi . is satisfied, so we will remove the 
clause from the formula; in addition, we will remove all remaining occurrences of 
xi .. The simplification process ensures that the resulting formulas are CNF formulas. 

Note that the simplification process may empty a clause. Such a clause is unsat-
isfiable; thus, any formula containing an empty clause is unsatisfiable. Fortunately, 
since ϕi−1 . is satisfiable, such an empty clause will appear in at most one of ψ0 . and 
ψ1 .. 

Here is an example. Let 

. ϕ = (x1∨x2∨x3)∧ (x2∨x3∨x4)∧ (x1∨x2∨x4)∧ (x1∨x2∨x4)∧ (x1∨x3∨x4).

The formula is satisfiable, with several satisfying assignments. So, given ϕ . as input, 
the algorithm proceeds to Line 6. For i = 1.,ψ0 = (x2∨x3)∧(x2∨x3∨x4)∧(x2∨x4). 

and ψ1 = (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4).. Both formulas are satisfiable, so 
the algorithm chooses φ0 .with x1 = false. and adds it to   .. 

For i = 2., ψ0 = (x3) ∧ (x3 ∨ x4). and ψ1 = (x4).. Both formulas are satisfiable, 
so the algorithm chooses φ0 .with x2 = false. as an addition to   .. 

For i = 3., ψ0 = (x4). and ψ1 = ()..  Only ψ0 . is satisfiable. The algorithm chooses 
φ0 .with x3 = false. as an addition to   .. 

For i = 4., ψ0 = true. and ψ1 = ()..  Only ψ0 . is satisfiable. The algorithm chooses 
φ0 . with x4 = false. as an addition to   .. Thus, in the end, the algorithm reports that 
x1 = x2 = x3 = x4 = false. is the satisfying assignment it has found.



12.1 The Complexity of Finding a Witness 297

Note the task at hand is to compute a satisfying assignment, so the order in which 
ψ0 . and ψ1 . become queries can be arbitrary. Note that a fixed polynomial also serves 
as an upper bound of the algorithm’s actions for each i in n. Thus, the algorithm 
runs in polynomial time.

Definition 12.1 Let L be an NP.-language and (p(n),A). be a polynomial-time 
witness scheme for L. Suppose that the scheme (p(n),A). has the property that 
for each member of L, a witness is computable in polynomial time using L as the 
oracle. Then, we say that the search reduces in polynomial time to the decision 
for L .

The above phenomenon for CNFSAT . now can be stated as: 

Theorem 12.1 The search reduces in polynomial time to the decision for CNFSAT .. 

Using a similar idea, we can show an algorithm for solving the subset sum 
problem (see Sect. 11.3.5). We say that an instance I = [a1, . . . , am, T ]. is trivial 
if T is 0, since the sum of 0 is always achiev able.

Algorithm 12.2 Finding a solution to the subset sum problem 
1: procedure SOLVING-SUBSETSETSUM(I ) 
2: receive I =  a1, . . . , am, T  . as the input 
3: ask the oracle if I is a positive instance; 
4: if the oracle returns “no” then 
5: assert T is not achievable; 
6: end i f
7:   ← [].; 
8: while I is not trivial do 
9: a ← I .’s first element; 
10: construct from I a new instance I  . by removing a; 
11: ask the oracle if I  . is a positive instance; 
12: if the oracle answers “no” then 
13: update I by removing a and subtracting a from T ; 
14: add a to   .; 
15: else 
16: update I by removing a; 
17: end if 
18: end while 
19: report   . as a solution; 
20: end procedure 

In Line 9, the algorithm asks whether the element x must be used to achieve the 
total. If x must be used, removing x from the list makes it impossible to achieve 
the total. Thus, we add x to the list   ., and then, since x is an essential member, 
we subtract x from T , accounting for the contribution from x. Otherwise, x is not 
essential; T is achievable without using x. So, we remove x from the list without 
changing T . This algorithm will check, for each element, whether or not the element 
must be used, and then, depending on the answer received, update   ., I , and T . 
When T becomes 0, we have found a solution: the list   ..



298 12 Beyond NP-Completeness

Theorem 12.2 The search reduces in polynomial time to the decision for 
SUBSETSUM .. 

12.2 The Polynomial-Time Turing Reducibility 

We can generalize the concept of “search reduces in polynomial time to the 
decision” and define polynomial-time Turing reductions. 

By extending Definition 8.9, we define oracle TMs deciding languages in 
polynomial time. 

Definition 12.2 Let A be a language. The class PA
. is the collection of all languages 

L satisfying the following condition:

• There is a deterministic oracle TM M such that L = L(MA)., and M is 
polynomial time-bounded regardless of its oracle.

Definition 12.3 A language L is polynomial-time Turing-reducible to a language 
A if L ∈ PA

.. We write L ≤p

T A. to mean that L is polynomial-time Turing reducible 
to A .

We often call the polynomial-time Turing reducibility Cook-reduciblity and the 
polynomial-time many-one reducibility Karp-reducibility. The above definition 
guarantees that the reduction runs in polynomial time regardless of its oracle. 
As shown next, the polynomial-time Turing reducibility in which the oracle 
TM is polynomial time-bounded regardless of its oracle is as powerful as the 
polynomial-time Turing reducibility in which the oracle TM may not be polynomial 
time-bounded if the oracle is not A. 

Proposition 12.1 Let A be a language. The class PA
. is the collection of all 

languages L for which there exists some deterministic oracle TM M suc h that
L = L(MA). and for all oracles X, and M is polynomial time-bounded when A 
is the or acle.

Proof Suppose L is a language in PA
.with M as the oracle TM. Let p(n) = knk+k . 

be a polynomial bounding the running time of M with oracle A. We define D as a 
multiple-tape oracle TM with one work tape added to M . On input x, D computes
1p(|x|) .on one tape and moves the head on the tape to the leftmost 1. D then simulates 
M on x. At each step in the simulation, D moves the head on 1p(|x|) . by one cell to 
the right. If the head reaches the cell immediately following 1p(|x|) ., D stops the 
simulation and rejects x. If the simulation completes while the head is on 1p(|x|) ., D 
accepts or rejects accordingly. 

Constructing the unary representation of p(|x|). requires O(p(|x|)). steps. Since 
the simulation has a hard stop at step p(|x|)., D runs in timeO(p(|x|)). for all inputs 
regardless of its oracle. Since the computation of D is by simulation of M and early 
termination results in rejection, for all oracle X, L(DX) ⊆ L(MX).. Since early



12.2 The Polynomial-Time Turing Reducibility 299

termination does not occur when the oracle is A, L(DA) = L(MX).. This proves the 
proposition.    

We can normalize the computation of the oracle TM by requiring it to make the 
same number of queries regardless of its oracle. 

Proposition 12.2 Let A be a language. The class PA
. is the collection of all 

languages L for which there exists some deterministic oracle TM M suc h that
L = L(MA). and for all oracles X, M is polynomial time-bounded. In addition, 
for each input x, M asks the same number of queries regardless of its or acle.

Proof Let L ∈ PA
.. Recall the construction of D in the proof of Proposition 12.1. 

We define E as a new TM, with yet another tape to count the queries M makes. 
E runs the program for D, but using the string 1p(|x|) . prepared at the start on the 
new tape. E counts the queries made to the oracle. When the simulation is about to 
halt, E queries the oracle further and inflates the number to p(|x|).. E ignores the 
answers to the additional queries. The empty string can serve as the additional query 
string. The running time of E is at most p(|x|). plus the running time of D. Thus, E 
is polynomial time-bounded, accepts the same language as D for each oracle, and 
makes p(|x|). queries.    
Definition 12.4 Let C. be a language class. The class PC . is ∪A∈C PA

.. 

12.2.1 The Problem of Finding the Least Satisfying 
Assignment 

In this section, we study PNP ., the class of all languages that polynomial time-
bounded oracle TMs with some oracle in NP.. We will show that the class PNP . has a 
≤p
m .-complete language. 
Let ϕ . be a Boolean formula of some n variables. We represent a truth assignment 

to ϕ . by an n-bit sequence b = b1 · · · bn ., where for each i such that 1 ≤ i ≤ n., 
bi = 0. and bi = 1., respectively, mean that the assignment b assigns the value of
false. and true. to xi .. The bit representation of truth assignments naturally induces 
the complete order among the truth assignments for each formula. 

We define ODDMAXSAT . as the language of all CNF formulas ϕ . whose lexico-
graphically maximum satisfying assignment is odd. 

Theorem 12.3 ODDMAXSAT . is PNP .-complete.



300 12 Beyond NP-Completeness

Proof Overview 
We define an NTM that simulates the action of an oracle TM with a language 
in NP. as the oracle. An NTM can guess the answers that the oracle TM 
would receive from the oracle and guess the accept/reject decision that the 
oracle TM makes. Then, the oracle TM verifies all the “yes” answers and 
outcomes by simulating the NTM that decides the oracle language. We encode 
the computation of the NTM as a CNF formula as we did for the proof for the 
NP.-completeness of the satisfiability problem. The ordering of the variables is 
such that the guesses for the oracle answers come first, and the guess about the 
decision by the oracle TM comes last. The construction forces the satisfying 
assignments of the formula to encode the path matching the computation of 
the oracle TM, with the last variable representing the final decision the oracle 
TM makes. 

Proof Let L be a language in PNP .. By Proposition 12.2, there exists a polynomial 
time-bounded oracle TM E and a language A in NP. such that (i) L is the language 
that E decides with A as its oracle and (ii) there is a polynomial p(n). such that E 
makes p(|x|). queries for each input x regardless of its oracle. 

Let N be a polynomial time-bounded NTM that decides A.  Let q(n). be a 
polynomial that bounds the running time of N . For simplicity, let x be a string 
having length  . that E has its input. The machine E will make p( ). queries 
regardless of the oracle and then accept or reject. Think of simulating E on x with 
a (p( )+ 1).-bit string b = b1 · · · bp( )bp( )+1 . as a “guide” as follows: 

For each i such that 1 ≤ i ≤ p( )., we assume that the oracle’s answer is “yes” 
if, and only if, bi = 1.. The last bit of b, bp( )+1 ., represents the simulation result; the 
bit is 1 if, and only if, E accepted in the simulation. 

For each i such that 1 ≤ i ≤ p( ).,  let Q(b, i). be the i-th query E on x with b as 
the guide. We define W as the set of all (p( )+ 1).-bit strings b such that:

• (query consistency) For all i and j such that 1 ≤ i < j ≤ p( ).,  i  f Q(b, i) =
Q(b, j)., then bi = bj .. 

• (positive correctness For each i such that 1 ≤ i ≤ p( ).and bi = 1.,Q(b, i) ∈ A.. 

• (decision consistency)  The  value  of bp( )+1 . equals the outcome of E on x with 
b as the guide.

We can use an NTM, S, to test the membership of an arbitrary (p( )+ 1).-bit string 
b in W as follows, where the TM has x and b as the input:

• S simulates E on x using b as the guide and obtains Q(b, 1), . . . ,Q(b, p( )).. 
• S checks the query and decision consistencies. If either fails to hold, S rejects.
• S checks the positive correctness by nondeterministically simulating N on

Q(b, i). for each i such that 1 ≤ i ≤ p( ).. The simulation occurs sequentially



12.2 The Polynomial-Time Turing Reducibility 301

for the qualifying values of i ..  If  N accepts in all the simulations, S accepts; 
otherwise, S rejects.

The set W contains the guide, b̂., matching E’s computation on input x with A as 
the oracle. For all i such that 1 ≤ i ≤ p( )., Q(b̂, i) = 1 ⇐⇒ Q(b̂, i) ∈ A., and 
the (p( ) + 1).-th bit of b̂ . is 1 if, and only if, E on x accepts with A as the oracle. 
Let b be an arbitrary (p( ) + 1).-bit string strictly greater than b̂ ..  Let  i be the first 
position at which b and b̂ . disagree. Suppose i ≤ p( )..  We  have  (a)  for  al  l j such
that 1 ≤ j ≤ i ., Q(b, j) = Q(b̂, j).,  (b)  the  i-th bit of b is 1, and (c) the i-th bit of b̂ . 

is 0. The property (a) means Q(b, i) = Q(b̂, i).. The property (b) means b assumes 
thatQ(b, i). is in A. The property (c) means thatQ(b̂, i)  ∈ A.,  soQ(b, i)  ∈ A.. Since 
the i-th bit of b is 1, b fails the positive correctness test. Suppose i = p( + 1).; then 
b and b̂. are different only at the result of simulation, which is “accept” for b and 
“reject” f or b̂ .. Since b̂ . is the correct guide, E must reject x,  so  b fails the decision 
consistency test. Thus, b̂ . is the largest string in W . 

Consider an NTM T that, on input x (now we are talking about an arbitrary input 
x), generates a (p(|x|)+1).-bit string b nondeterministically, simulates S on the pair 
x and b, and accepts if S accepts and rejects if S rejects. The queries T generates 
are at most p(|x|). in length, and there will be p(|x|). queries. Since N is q(n). time-
bounded, we know that T is O(p(n)+ p(n) · q(p(n))). time-bounded. 

We now construct the satisfiability formula that represents an accepting compu-
tation of T on x according to the proof from Chap. 11. We identify the time, t0 ., 
at which the machine T completes its generation of b, and identify the p(|x|) + 1. 
variables y1, . . . , yp(|x|)+1 . that represent whether or not the p(|x|)+ 1. bits of b are 
1, respectively. We then perform the CNF conversion to the formula. After that, we 
renumber the variables so that y1, . . . , yp(|x|) . are the first p(|x|). variables of the 
formula in this order and yp(|x|)+1 . is the last variable. The satisfying assignments 
of this CNF formula represent accepting computation paths of T and thus also 
represent the members of W . The way that we renumbered the variables guarantees 
that the lexicographically maximum satisfying assignment of the CNF formula 
represents b̂.. Hence, the CNF formula’s maximum satisfying assignment is odd if, 
and only if, the last bit of b̂. is odd. The latter condition equals whether or not E 
accepts x with A as its oracle. 

This proves the theorem.    
We now modify the construction we have seen thus far by recalling the proof of 

Theorem 11.7. In the proof of Theorem 11.7, we converted CNF formulas to 3CNF 
formulas using a polynomial-time many-one reduction. 

Let ϕ . be a CNF formula and ψ . be the 3CNF formula that the reduction generates 
from ϕ .. Suppose ϕ . has n variables x1, . . . , xn . and ψ . has m variables. The m 
variables in ψ . consist of those in ϕ . and those representing the values of partial 
clauses of ϕ .. The construction preserves the satisfying assignments of ϕ . so that 
each satisfying assignment of ϕ . has a unique representation among the satisfying 
assignments of ψ ., which has the same assignments to x1, . . . , xn .. Also, there is no 
additional satisfying assignment of ψ . that does not represent a satisfying assignment 
of ϕ ..



302 12 Beyond NP-Completeness

Definition 12.5 Let f be a polynomial-time many-one reduction from an NP.-
language L1 . to an NP.-language L2 ., where languages A1 ∈ P. and A2 ∈ P. serve 
as the witness scheme languages. We say that f is “witness-preserving” if there is 
a pair of polynomial-time computable functions g(·, ·). and h(·, ·). such that for all x 
and y,  if f (x) = y ., then the following properties hold: 

• x ∈ L 1 . if, and only if, y ∈ L2 . (because f is a many-one reduction from L1 . to 
L2 .). 

• If x ∈ L1 . and w is a witness for x ∈ L1 . with respect to A1 ., then g(x,w). is a 
witness for y ∈ L2 .with respect to A2 .; that is,  y, g(x,w) ∈ A2 .. 

• If y ∈ L2 . and z is a witness for y ∈ L2 . with respect to A2 ., h(y, z). is a witness 
for x ∈ L1 .with respect to A1 .; that is,  x, h(y, z) ∈ A1 .. 

• For x ∈ L1 ., then for all witnesses w for x ∈ L1 . with respect to A1 ., 
h(y, g(x,w)) = w ., where y = f (x).. 

We write L1 ≤p

wit L2 . to mean that L1 . is polynomial-time witness-preserving 
reducible to L2 .. 

Returning to the reduction from CNFSAT . to 3SAT ., the reduction preserves the 
variables appearing in the input formula. In the case where the input CNF formula 
is satisfiable, each satisfying assignment of the input formula becomes a satisfying 
assignment of the output 3CNF formula, where the values of the additional variables 
are uniquely determined from the values of the variables in the input formula. 
Calculating the values of the additional variables serves as the function g. To go back 
from a satisfying assignment of the output 3CNF formula to a satisfying assignment 
of the input CNF formula, we only need to remove the values corresponding to the 
additional variables. The removal action serves as the function h. 

Proposition 12.3 CNFSAT ≤p 
wit 3S AT .. 

Noting that the witness-preserving reduction from CNFSAT . to 3SAT . preserves 
the lexicographic order among the satisfying assignments, we obtain the following 
result. 

Corollary 12.1 The 3CNF version of ODDMAXSAT . is PNP .-complete. 

When we return to the proof of Theorem 11.12, we notice that for each instance 
of SUBSETSUM . that the reduction generates from an instance of 3SAT ., there is 
a one-to-one correspondence between a satisfying assignment and a subset that 
achieves the target sum. More specifically, the choice between ai . and bi . represents 
the choice between the two truth assignments of the i-th variable, and the choice 
from the three combinations cj ., dj ., and cj +dj . represents the number of literals that 
the assignment satisfies in the j -th clause. Thus, we can easily convert a satisfying 
assignment to a subset that achieves the target total by supplementing it with cs 
and ds. Similarly, we can convert a subset that achieves the target to a satisfying 
assignment by eliminating cs and ds.



12.3 The Polynomial Hierarchy (PH) 303

We define ODDMAXSUM . as the problem of deciding, given an instance  L, T  . 
for SUBSETSUM ., whether or not the largest of all the subsets achieving the target has 
the last element of the list L. Based on the above discussion, we have the following: 

Corollary 12.2 The reduction from 3SAT . to SUBSETSUM . appearing in the proof of 
Theorem 11.12 is a witness-preserving reduction. 

Corollary 12.3 ODDMAXSUM . is PNP .-complete. 

12.3 The Polynomial Hierarchy (PH) 

In this section, we study the polynomial hierarchy, the polynomial-time analog of 
the arithmetical hierarchy from Sect. 8.5. 

12.3.1 The Definition 

As we did for the class P. with an oracle, we similarly define the classes NP. and 
coNP.with an oracle. 

Definition 12.6 Let A be a language. The class NPA
. is the collection of all 

languages L for which there exists some nondeterministic oracle TM M such that
L = L(MA).and with A as the oracle, and M is polynomial time-bounded regardless 
of its oracle.

Definition 12.7 Let C. be a class of languages. The class NPC . is ∪A∈C NPA
.. 

Definition 12.8 Let A be a language. The class coNPA
. is the collection of all 

languages L for which there exists some nondeterministic oracle TM M such that
L = L(MA).and with A as the oracle, and M is polynomial time-bounded regardless 
of its oracle.

Definition 12.9 Let C. be a class of languages. The class coNPC . is ∪A∈C coNPA
.. 

We define the polynomial hierarchy PH. as the following: 

Definition 12.10 We define { p
k }k≥0 ., { p

k }k≥0 ., and { p
k }k≥0 . as follows: 

1.  
p 
0 =  

p 
0 =  

p 
0 = P.. 

2. For all k ≥ 1.,  p
k = P 

p
k−1 .,  p

k = NP 
p
k−1 ., and  

p
k = coNP 

p
k−1 .. 

3. PH = ∪k≥0 
p 
k .. 

The following inclusions easily follow from the definition.



304 12 Beyond NP-Completeness

Fig. 12.1 The polynomial 
hierarchy. The figure shows 
within each class up to level 
3. Each class contains all the 
classes that appear at lower 
positions 

Proposition 12.4 The following properties hold: 

1. For all k ≥ 1., ( p

k−1 ∪ 
p

k−1) ⊆  
p
k ⊆ ( 

p
k ∩ 

p
k ).. 

2. For all k ≥ 0., co− 
p
k =  

p
k . and co− 

p
k =  

p
k .. 

Figure 12.1 shows the inclusions among the classes up to level 3. 

12.3.2 Logical Characterizations of PH 

Next, we obtain logical characterizations of  p
k . and  p

k . for k ≥ 1.. 
A quantified Boolean formula (QBF) is a formula constructed with ∨., ∧., ¬., ()., 

∃., and ∀.. Here, ∃x . with a Boolean variable x means “for a Boolean value assigned 
to x,” and ∀x .with a Boolean variable x means “for both Boolean values assigned to 
x.” In a quantified Boolean formula, a quantified variable may occur only after its 
quantifier. For example, a f ormula:

. x ∨ (∀x)(∃y)[(x ∨ y) ∧ (x ∨ y)]

is invalid because the first term x precedes the quantification of x. If we replace the 
first x with a different variable w, we get a v alid formula:

. F0 = w ∨ (∀x)(∃y)[(x ∨ y) ∧ (x ∨ y)].

We can evaluate the part after w∨.: 

. F1 = (∀x)(∃y)[(x ∨ y) ∧ (x ∨ y)].

Let F2 . be the formula inside the []..  If x = true., y = false. makes F2 = true., and 
if x = false., y = true. makes F2 = true.. This means F1 = true.. Hence, F0 . is 
equivalent to w.



12.3 The Polynomial Hierarchy (PH) 305

A formula is fully quantified if, for each variable appearing in it, its first 
occurrence is preceded by a quantifier. In the example, F1 . is fully quantified while 
F0 . is not. A fully quantified formula is equivalent to a Boolean constant. 

Definition 12.11 A QBF is in the prenex normal form (PNF) if all of its 
quantifiers appear before the appearance of any variable. 

F1 . is a PNF formula, but F0 . is not. Suppose we rewrite F0 . as: 

. (∀x)(∃y)[((x ∨ y) ∧ (x ∨ y)) ∨ w].

Then, F0 . is a PNF formula. 
We use PNF formulas to obtain local characterizations of  

p
k . and  

p
k ..  In  

the characterizations, we show that extensions of the satisfiability problem with 
alternating quantities are complete for  p

k . and  p
k .. 

Before getting to the statement and proof of the characterizations, we make 
simple observations about the NP. and coNP. computations with an oracle. 

Definition 12.12 A language A ⊆  ∗
. is polynomial-time conjunctive truth-

table reducible to a language B, denotedA ≤p
ctt B ., if there exists a polynomial-time 

computable function f such that for each x ∈  ∗
., f (x). is a list of strings 

y1, . . . , ym ., and x ∈ A. if, and only if, y1, . . . , ym ∈ B .. 

Definition 12.13 A language A ⊆  ∗
. is polynomial-time disjunctive truth-table 

reducible to a language B, denoted A ≤p

dtt B ., if there exists a polynomial-time 
computable function f such that for each x ∈  ∗

., f (x). is a list of strings 
y1, . . . , ym ., and x ∈ A. if, and only if, for some i such that 1 ≤ i ≤ m., yi ∈ B .. 

Proposition 12.5 For all language A, NPA
. and coNPA

. are closed under ≤p
ctt . and 

≤p

dtt . reductions. 

We leave the proof of the proposition to the reader. 
For a set of Boolean variables X,  let A(X). denote the set of all possible truth 

assignments to X. 

Theorem 12.4 The following properties hold: 

1. For all k ≥ 1., a language L is in  
p
k . if, and only if, there exists a polynomial 

r(n). and a language A ∈ P. such that for all x: 

. (∃a1 ∈  ≤r(|x|))(∀a2 ∈  ≤r(|x|)) · · · (Qkak ∈  ≤r(|x|))

[ x, a1, a2, · · · , ak ∈ A].

Here, for each j such that 1 ≤ j ≤ k ., Qj = ∃. if j is odd, and ∀. otherwise.



306 12 Beyond NP-Completeness

2. For all k ≥ 1., a language L is in  
p
k . if, and only if, there exists a polynomial 

r(n). and a language A ∈ P. such that for all x: 

. (∀a1 ∈  r(|x|))(∃a2 ∈  r(|x|)) · · · (Qkak ∈  r(|x|))

[ x, a1, a2, · · · , ak ∈ A].

Here, for each j such that 1 ≤ j ≤ k ., Qj = ∃. if j is even, and ∀. otherwise. 

Proof Overview 
The proof is by induction on k. Because of the complementarity between  p

k . 

and  p
k ., we only need to prove the statement for  p

k . or  p
k .. In the induction 

step, where k ≥ 2., we can assume that the nondeterministic oracle TM queries 
to the complete language for  

p

k−1 .. We use templates to specify possible 
queries of the machine. We encode the oracle TM’s computation using a 
quantified Boolean formula specifying the configuration of the templates, the 
query outcomes, and the overall computation. We substitute the queries with 
the templates and conform the formula to the required format. 

Proof The proof is by induction on k. For the base case, let k = 1..  Due  to  
Theorem 11.4, for each L ∈ NP., a polynomial p(n). and a language A ∈ P. exists 
such that for all x, x ∈ L. if, and only if, for some y such that |y| ≤ p(|x|)., 
 x, y ∈ A.. By taking the complement of the property, we get that for each 
L ∈ coNP., a polynomial p(n). and a language A ∈ P. exists such that for all x, 
x ∈ L 

. if, and only if, for all y such that |y| ≤ p(|x|).,  x, y ∈ A 
.. These two 

characterizations match the statements of the theorem. Thus, the base case holds. 
For the induction step, suppose k ≥ 2. and the characterizations hold for all 

smaller values of k.  Let  L be a language in  
p
k ..  Let  M be an oracle TM and B ∈

 
p

k−1 . such that M accepts L with B as the oracle. Suppose p(n). is a polynomial 
bounding the running time of M with B as the oracle. We can make p(n). large 
enough so that p(n). is time-constructible, and for all oracles X, MX

. is p(n). time-
bounded. We can also assume M has at most two nondeterministic choices at each 
step. We define the following witness language for L :

C = { x, y | |y| ≤ p(|x|)., y encodes an accepting computation path of M on x for 
some oracle, (a) all the positively answered queries on the path are in B, and (b) all 

the negatively answered queries on the path are in B}.. 
Then, for all x, x ∈ L. if, and only if, for some y such that |y| ≤ p(|x|).,  x, y ∈ C .. 
We define the following supersets of C. 
C1 = { x, y | |y| ≤ p(|x|)., y encodes an accepting computation path of M on x 

for some oracle, all the positively answered queries on the path are in B}..



12.3 The Polynomial Hierarchy (PH) 307

C2 = { x, y | |y| ≤ p(|x|)., y encodes an accepting computation path of M on x 
for some oracle, all the negatively answered queries on the path are in B}.. 

Then, for all x, 

.x ∈ L ⇐⇒ (∃y : |y| ≤ p(|x|))[ x, y ∈ C1 ∩ C2]. (12.1) 

The condition that y encodes an accepting computation is i n P.. Since P ⊆  
p

k−1 . 

and P ⊆  
p

k−1 ., C1 . is ≤p
ctt .-reducible to some language in  

p

k−1 . and C2 . is ≤p
ctt .-

reducible to some language in  
p

k−1 .. Because both σk − 1. and  
p

k−1 . are closed 
under ≤p

ctt .-reductions (Proposition 12.5), C1 ∈  
p

k−1 . and C2 ∈  
p

k−1 ..  By  the  
induction hypothesis, C1 . is characterized with a polynomial q1(n). and a language 
D1 ∈ P. such that for all z: 

. z ∈ C1 ⇐⇒ (∃u1 : |u1| ≤ q1(|z|))(∀u2 : |u2| ≤ q1(|z|))
· · · (Qk−1uk−1 : |uk−1|| ≤ q1(|z|))

[ z, u1, . . . , uk−1 ∈ D1].

Here,Qk−1 = ∃. if k−1. is odd, and ∀. otherwise. Similarly, C2 . is characterized with 
a polynomial q2(n). and a language D2 ∈ P. such that for all z: 

. z ∈ C2 ⇐⇒ (∀v1 : |v1| ≤ q2(|z|))(∃v2 : |v2| ≤ q2(|z|))
· · · (Rk−1vk−1 : |vk−1|| ≤ q2(|z|))

[ z, v1, . . . , vk−1 ∈ D2].

Here, Rk−1 = ∃. if k − 1. is even, and ∀. otherwise. 
In Eq. 12.1, we replace the membership conditions in C1 . and C2 .with the charac-

terizations of C1 . and C2 .. Since the two characterizations use two independent series 
of quantified strings, u1, . . . , uk−1 . and v1, . . . , vk−1 ., we can list the elements of the 
two quantifier sequences in an alternating order: u1, v1, u2, v2, . . . , uk−1, vk−1 ..  The  
resulting formula is:

. x ∈ L

⇐⇒ (∃y : |y| ≤ p(|x|))(∃u1 : |u1| ≤ q1(|y|))(∀v1 : |v1| ≤ q2(|y|))
(∀u2 : |u2| ≤ q1(|y|))(∃v2 : |v2| ≤ q2(|y|)) · · ·
(Qk−1uk−1 : |uk−1|| ≤ q1(|y|))(Rk−1vk−1 : |vk−1|| ≤ q2(|y|))
[  x, y , u1, . . . , uk−1 ∈ D1 ∧   x, y , v1, . . . , vk−1 ∈ D2]. (12.2) 

Since D1 . and D2 . are in P., the last condition is in P.. 
For two arbitrary binary strings s and t ,  let s#t . denote the string constructed 

from s and t by encoding each character b appearing in s and t as the two-character



308 12 Beyond NP-Completeness

string b0 and connecting the elongated strings with 11 between them. The length 
of s#t . is 2(|s| + |t | + 1).. We can extract s and t from s#t . by splitting it into the 
parts before and after the first occurrence of 11 and then collecting the characters at 
even-numbered positions. By joining the neighboring string pairs having the same 
quantifies, we get: 

. w1 = y1#u1, w2 = v1#u2, . . . , wk−1 = vk−2#uk−1, wk = vk−1.

The quantifiers attached to them alternate starting with ∃.. Before joining, the parts 
of each pair have a length of at most q(p(|y|)).. Thus, there is a polynomial r(n). 
such that |w1|, . . . , |wk| ≤ r(|x|).. 

We define a language A as the set of all  x,w1, . . . , wk . satisfying the last part 
of Eq. 12.2: 

.   x, y , u1, . . . , uk−1 ∈ D1 ∧   x, y , v1, . . . , vk−1 ∈ D2].

Here, y, u1, . . . , uk−1, v1, . . . , vk−1 . are extracted from x,w1, . . . , wk .. Since D1 . 

and D2 . are in P., A ∈ P.. Thus, for all x, 

. x ∈ A ⇐⇒ (∃w1 : |w1| ≤ q(|x|))(∀w2 : |w2| ≤ q(|x|))
· · · (Skwk : |wk| ≤ q(|z|))
 x,w1, . . . , wk ∈ A. (12.3) 

Here, Sk = ∃. if k is odd, and ∀. otherwise. Thus, the claim holds for k. 
Since  p

k . is the complement of  p
k ., by taking the complement of the characteri-

zation, we obtain the characterization for  p
k ..    

The membership condition in Eq. 12.3 is in P.. Since P ⊆ NP ∩ coNP.,  the  
condition is expressible as (∃h1)[ϕ1(x,w1, . . . , wk, h1). such that ϕ1 . is a 3CNF 
formula and (∀h2)[ϕ2(x,w1, . . . , wk, h2). such that ϕ2 . is a 3DNF formula. By 
choosing the former when Sk = ∃. and the latter when Sk = ∀., we obtain 
characterizations where the base formula is a 3CNF or a 3DNF. 

Corollary 12.4 The following properties hold: 

1. For all k ≥ 1., a language L is in  
p
k . if, and only if, there exists a polynomial 

r(n). and a Boolean formula ϕ . such that for all x: 

. (∃a1 ∈  ≤r(|x|))(∀a2 ∈  ≤r(|x|)) · · · (Qkak ∈  ≤r(|x|))

[ϕ(x, a1, a2, · · · , ak) = true] .

Here, for each j such that 1 ≤ j ≤ k ., Qj = ∃. if j is odd, and ∀. otherwise; ϕ . is 
a 3CNF formula if k is odd, and a 3DNF formula otherwise.



12.4 Between P and NP-Complete 309

2. For all k ≥ 1., a language L is in  
p
k . if, and only if, there exists a polynomial 

r(n). and a Boolean formula ϕ . such that for all x: 

. (∀a1 ∈  ≤r(|x|))(∃a2 ∈  ≤r(|x|)) · · · (Qkak ∈  ≤r(|x|))

[ϕ(x, a1, a2, · · · , ak) = true] .

Here, for each j such that 1 ≤ j ≤ k ., Qj = ∃. if j is even, and ∃. otherwise; ϕ . is 
a 3CNF formula if k is even and a 3DNF formula otherwise .

Theorem 12.5 For each k ≥ 1., the following statements are equivalent: 

1. PH =  
p 
k .. 

2. PH =  
p 
k .. 

3.  
p 
k =  

p
k .. 

4.  
p 
k ⊆  

p
k .. 

5.  
p 
k ⊆  

p
k .. 

Proof We prove the theorem by showing that (1)–(4) are equivalent to (5). 
Evidently, (3) is equivalent to (5) due to the complementary between  p

k . and  
p
k .. 

By taking the complement, we know that (1) is equivalent to (2) and (4) is equivalent 
to (5). Since  

p
k ⊆  

p

k+1 ., (4) implies (4). Also, since  
p

k+1 ⊆ PH., (1) implies (5). 
Similarly, (2) implies (5). 

We are now left to show (5) implies (1). To show this, assume (5) is true. We 
consider an arbitrary formula, say ϕ ., which is in the shape for Sk+1 .; ϕ . has k + 1. 
alternating quantifiers starting with ∃.. If we remove the first quantifier from ϕ .,  the  
shape of the formula matches the shape of the formulas for Pk .. Because of this 
match, the Pk . formula is ≤p

m .-reducible to an Sk . formula by our assumption. We 
then substitute in ϕ . the part matching the shape for Pk .with the formula obtained by 
executing the reduction. Then, the new formula has two consecutive ∃. quantifiers at 
the start. These two consecutive quantifiers can be collapsed into one ∃. quantifier. 
After the collapse, the formula matches the shape for Sk ..    

12.4 Between P and NP-Complete 

Here, we look at the area between P. and NP.. We know that if P  = NP., NP − P. 

contains all NP.-complete languages. Does the area contain anything other than NP.-
complete? The answer is yes, as we prove next. 

Theorem 12.6 If P  = NP., then there is a language in NP. that is neither NP.-
complete nor in P..



310 12 Beyond NP-Completeness

Proof Overview 
Assume P  = NP.. We select an arbitrary NP.-complete language S.  We  
construct a non-decreasing function t : N → N.. The range of t is N. 

or [0, q]. for some q. While constructing t , we construct a language A 
using two alternating sequences of diagonalization. One sequence ensures 
that A  ∈ P., and the other ensures that S is not ≤p

m .-reducible to A.  We  
design the construction so that the range of t is finite if, and only if, one of 
the diagonalization sequences stops advancing. The latter condition implies
S ∈ P.. 

Proof Assume P  = NP.. We will construct a language A ∈ NP − P. that is not 
NP.-complete. Let  = {0, 1}..  Let S ⊆  ∗

. be an arbitrary NP.-complete language. 
Since P  = NP. and S is NP.-complete, S  ∈ P.. Since S  ∈ P.,  we  have S  ∈ {∅,  ∗}..  We  
select y0 ∈ S ..  Let DS . be an arbitrary deterministic TM that decides S. We are not 
concerned with the running time of DS .. 

Along with A, we construct a polynomial time-bounded TM T that receives an 
input in {0}∗ . and produces an output in {0}∗ .. We define t (n). as the length of the 
output that T produces on input 0n ..  Using t (n). and S, we define A as follo ws:

. A = {x | x ∈ S and t (|x|) is even}.

In other words, for all n ≥ 0. such that t (n). is even, the length-n portion of A is 
identical to the length-n portion of S, and for all n ≥ 0. such that t (n). is odd, the 
length-n portion of A is empty. Consider the following f : 

For all x:

. f (x) =
 
x if t (|x|) is even,
y0 otherwise.

Since t is polynomial-time computable, f is polynomial-time computable. Because 
of the definition of A and the choice of y0 ., for all x, x ∈ A ⇐⇒ f (x) ∈ S .. 
Thus, f is a polynomial-time many-one reduction from A to S. This implies that
A ∈ NP..    

12.4.1 Two Enumerations of TMs 

We use two enumerations of TMs: TM deciders M1,M2, . . .. and TM transducers 
R1, R2, . . ... All the machines have  . as the input alphabet, and the transducers 
R1, R2, . . .. have  . as the output alphabet.



12.4 Between P and NP-Complete 311

For both enumerations, for all i ≥ 1.,  the  i-th machine in the enumeration is 
the i-th member of  ∗

. in lexicographic order. We employ an encoding scheme that 
permits trailing 0s, as we did in the proof of Theorem 9.5. Due to the trailing 0s, 
each TM appears infinitely many times in its respective enumeration. Because of 
the trailing-0 attachment, many strings in  ∗

.disqualify as an encoding of a TM. We 
assume that all trivial deciders reject all inputs and outputs  .. As we have seen many 
times in this book, checking the validity of an encoding is decidable. Specifically, 
due to Theorem 10.2, the extraction of the TM from its binary encoding is in L.,  so  
it is doable in polynomial time.

The machine T imposes a clock on the machines it simulates. For all i ≥ 1., 
the simulation of the i-th machine runs with i · ni + i . as the maximum number of 
steps, the input is rejected for Mi ., and the output is  . for Ri .. Despite the hard stop, 
because we attach trailing 0s, every machine reappears with more 0s and thus with 
more computation time. 

12.4.2 T ’s Program 

We define t (0) = 0. and t (1) = 1.. The machine T must output  . on input  . and 0 
on input 0. The production of these inputs requires n+ 1. steps for n = 0, 1..  We  s  et
p(n) = n+ 1. and set the running time of T to something greater than p(n).. 

For n ≥ 2., the action of T on input 0n . goes as follows: 

Phase 1: Obtain p(n). in unary T computes 0p(n) . on one tape. 
Phase 2: Recomputation In p(n). steps, T executes its program and tries to 

recompute t (n ). for as many possible values for n = 1, 2, . . . , n− 1..  The 0p(n) . 
from Phase 1 is used to limit the number of steps for the recalculation to at most 
p(n).. 

Phase 3: Preparation for the next stage Let h be the maximum value of n . for 
which T could recompute t (n ). in the allocated p(n). steps. Set m = t (h). and 
j =  (m+1)/2 .. T will output 0m . or 0m+1

. and will use Phase 5 for determining 
which. 

Phase 4: Machine decoding If m is even, extract the machine Mj . from the j -th 
smallest binary string; if m is odd, extract the machine Rj . from the j -th smallest 
binary string. 

Phase 5: Simulation 1. If m is even, execute the follo wing:

a. Using  no  more  than p(n). steps, try to test the following condition for as 
many x as possible:

. Mj on x accepts if, and only if, x ∈ A.

Here, the lexicographic order is used to generate the candidates for x. 
Testing the membership in A may require running T ’s program and 
executing S’s decider, DS ..



312 12 Beyond NP-Completeness

b. If the result is positive for all the tests, the output is 0m .; otherwise (i.e., the 
result is negative for at least one test), the output is 0m+1

.. 

2. If m is odd, do the follo wing:

a. Using no more than p(n). steps, for as many strings x in  ∗
. as possible, 

check the condition: 

. x ∈ S if, and only if, the output of Rj on x ix in A.

Testing the condition may require recomputing T and simulating the 
decider DS .. 

b. If the result is positive for all the tests, the output is 0m .; otherwise (i.e., the 
result is negative for at least one test), the output is 0m+1

.. 

This completes the description of the algorithm. 
Overall, T executes the follo wing:

• Obtain h, 1 ≤ h ≤ n− 1., m = t (h)., and index j . 
• Using p(n). as the time limit, check if there is evidence that Mj . does not act as a 

decider for A or Rj . does not act as a ≤p
m .-reduction from A to S. If no evidence 

is found, output m; otherwise, output m+ 1.. 

The program uses the value of m to determine which machine to test the condition 
in Phase 5 .

12.4.3 T ’s Running Ti me

Let us analyze the running time of T . The running time is O(p(n)). for Phases 
1, 2, 3, and 5. The time required for extracting the machine in Phase 4 is O(n). 

because T only must remove the trailing 0s. Thus, the total running time of T is
O(p(n)).. This means that T is polynomial time-bounded, and thus t is polynomial-
time computable.

12.4.4 t’s Range and Its Non-decreasing Property 

Now, let us examine the output of T . In Phase 5, T may output 0m+1
. if, and only if, 

T produces 0m . on some smaller input. This means that the range of t is consecutive, 
i.e., the interval [0, q]. for some integer q or the entire set of nonnegative inte gers.

We claim that t is non-decreasing. The proof is by induction on n. The base case 
is when n = 0.. We know that t (0) = 0 ≤ t (1) = 1 = t (0) + 1.. Thus, the claim 
holds for n = 0.. For the induction step, let n ≥ 1. and suppose that the claim holds 
for all smaller values of n. Let us compare the actions of T on input 0n . and input



12.4 Between P and NP-Complete 313

0n+1
..  Let hn,mn ., and jn . be the values of h, m, and j on input 0n ., respectively. 

Let hn+1,mn+1 ., and jn+1 . be the values of h, m, and j on input 0n+1
., respectively. 

Since T has only one extra step in the simulation, hn ≤ hn+1 ≤ hn + 1.. Since T 
must recompute t from t (0)., hn < n − 1. and hn+1 < (n + 1) − 1 = n.. So, by the 
induction hypothesis, the strict non-decreasing property holds for both t (hn). and 
t (hn+1)., which are mn . and mn+1 ., respectively. 

We consider two cases: mn = mn+1 . and mn  = mn+1 .. Suppose mn = mn+1 ..  The  
machine T simulates on input 0n . is identical to the machine T simulates on i nput
0n+1

.. Since T has more time to use in simulation, if it finds a counterexample on 
input 0n ., it finds a counterexample on input 0n+1

.. Thus, the possible value pairs for 
(t (n), t (n+1)). are (mn,mn)., (mn,mn+1)., and (mn+1,mn+1).. Hence, the claim 
holds. Next, suppose mn  = mn+1 .. By our induction hypothesis, mn < mn+1 .. Since 
t (n) ≤ mn + 1 ≤ t (n+ 1). and t (n+ 1) ≥ mn+1 .,  we  have t (n) ≤ t (n+ 1).,  so  the  
claim holds.

Since t is non-decreasing without a gap, for all n ≥ 0., t (n) ≤ t (n + 1) ≤ t (n). 

(see Exercise 12.11). 

12.4.5 t’s Unboundedness 

We claim that for each q, there is some n such that t (n) ≥ q .. The proof is by 
contradiction. Assume, by contradiction, that a value n0 . exists such that t (n) = q . 

for all n ≥ n0 .. For all sufficiently large n, T arrives at h such that t (h) = q . and 
j =  (q + 1)/2 . and finds no counterexamples in the equivalence tests; otherwise, 
t (n).would be q+ 1.. Suppose q is an odd number. Then,Mj . passes the equivalence 
test for all inputs, so Mj . decides S. Since Mj .’s running time is j · nj + j ., we get 
S ∈ P.. This is a contradiction. 

On the other hand, suppose q is an even number. Then,Rj .passes the equivalence 
test for all inputs, so Rj . reduces S to A. Since Rj .’s running time is j · nj + j . and 
S is NP.-complete, we get that A is NP.-complete. However, h(n) = q . for all n ≥ n0 . 

and q is odd. Since A consists of all w ∈ S . such that t (|w|). is even, every member 
of A has a length of < n0 .. This means that A is finite. Since finite sets are i n P.,  this  
implies P = NP.. This is a contradiction. Hence, t is unbounded.

12.4.6 The Final Touch 

Since the value of hn . increases by at most 1 and jn . is one-half of mn ., the equivalence 
tests are conducted for all Mj .s and Rj .s. The unboundedness of t (n). guarantees that 
T finds a counterexample for all of them. Thus, A  ∈ P. and S is ≤p

m .-reducible to A. 
This completes the proof of the theorem.



314 12 Beyond NP-Completeness

12.5 PSPACE-Complete Problems 

In this section, we explore complete problems for PSPACE.. 

12.5.1 Quantified Boolean Formulas (QBF) 

We define a canonical complete problem with quantified Boolean formulas. 

Definition 12.14 We define PSPCANONICAL = { M,x, 1s | M . is a deterministic 
offline TM and accepts x using no more than s tape cells}.. 

The completeness of PSPCANONICAL ., stated next, is easy to prove. We leave the 
proof to the reader (Exercises 12.18 and12.19). 

Proposition 12.6 PSPCANONICAL . is PSPACE.-complete under ≤p
m .-reductions. 

The canonical complete problem does not help find problems complete for 
PSPACE.. Therefore, we obtain a logical characterization. 

Recall that we defined the polynomial hierarchy, specifically the  
p
k . classes, 

using a stack of nondeterministic oracle TMs. Also recall that we characterized 
the  p

k . classes using alternating quantifiers (Theorem 12.4). In the characterization, 
we guessed a prospective accepting computation path and verified its correctness 
with queries to languages in  

p

k−1 . and  
p

k−1 .. We apply an idea similar to the 
characterization here in this proof. The idea comes from the proof for Savitch’s 
theorem (Theorem 10.4). The level in the polynomial hierarchy corresponds to the 
exponent in the reachability distance. 

Definition 12.15 TQBF . is the problem of determining the value of fully quantified 
Boolean formulas. 

Theorem 12.7 TQBF . is ≤p
m .-complete for PSPACE.. 

Proof Let L be a language in PSPACE. and M be a polynomial space-bounded 
deterministic TM M that decides L. We may assume that M is a single-tape 
machine. Additionally, we may assume that M has a unique accepting ID qacc  ∗

. 

(see Exercise 12.20) In other words, all the tape cells are blank, and the head is on 
the leftmost cell of the tape in the ID. Because M is polynomial space-bounded, a 
polynomial p(n). exists such that for all x, we can encode each possible ID during 
the execution of M on x as a p(|x|).-bit string, thus as p(|x|). variables. 

Let us fix an input x having a length of n.  LetW.be the variables representing the 
ID of M and A. be the set of all truth assignments to W.. A unique truth assignment 
in A. represents the initial ID of M on x. In addition, a unique truth assignment in
A. represents the accepting ID of M .  Let Aini . and Aacc . be the unique initial and 
accepting IDs, respectively. We can identify A. as {0, 1}p(n) .. For each X, Y ∈ A. 

and d ≥ 0., we define R(X, Y, d). as the tertiary relation Y is reachable from X in at



12.5 PSPACE-Complete Problems 315

most 2d . steps. As with the proof for Savitch’s theorem (Theorem 10.2), we use the 
following recursion on the value of d where d ≥ 1.: 

. R(X, Y, d)

⇔ (X = Y ) ∨
(∃Z)(∀U,V )[((U = X ∧ V = Z) ∨ (U = Z ∧ V = Y )) ⇒ R(U, V, d − 1)].

We can express the condition as a formula without the implication: 

. R(X, Y, d)

⇔ (X = Y ) ∨
(∃Z)(∀U,V )[((U  = X ∨ V  = Z) ∧ (U  = Z ∨ V  = Y )) ∨ R(U, V, d − 1)].

For d = 0., instead of the recursion, we have the following property: 

. R(X, Y, 0) ⇐⇒ (X = Y ) ∨ Y is the next ID of X.

In proving SAT .’s completeness, we introduced a propositional formula representing 
the “next ID” relation. We use the same formula here. The “next ID” is expressible 
as a propositional formula. We recursively substitute the R predicate with a smaller 
d until d = 0.. Here we attach the subscript d to U , V , and Z at level d. The recursive 
substitution produces the f ollowing:

. R(X, Y, d) ⇐⇒ (∃Zd)(∀Ud, Vd)(∃Zd−1)(∀Ud−1, Vd−1) · · · (∃Z1)(∀U1, V1)[φ].

Here, φ . consists of the equality testing for all levels and the “next ID” test. By 
quantifying X and Y with ∃. and adding the conditions representing X = Aini . and 
Y = Aaccept . conjunctively, we get the formula for M’s acceptance of x: 

. ψ = (∃X, Y,Zd)(∀Ud, Vd)(∃Zd−1)(∀Ud−1, Vd−1) · · · (∃Z0)(∀U0, V0)

[X = Aini ∧ Y = Aaccept ∧ φ]. (12.4) 

This is a TQBF . formula. Since  A = 2p(n) .,  if  M accepts x, then it does so in 2p(n) . 
steps. Thus, we can set d = p(n).. This proves the theorem.    

We can turn a TQBF . formula into a normalized form. First, since Eq. 12.4 is 
a propositional formula, we can change it to a 3CNF formula with additional 
variables. This change raises the complexity of the equation from P. to NP.,  but  the  
overall complexity of ψ . is unchanged. Next, we insert irrelevant variables to the 
formula so that the quantifiers alternate between ∃. and ∀. variable after variable,



316 12 Beyond NP-Completeness

starting and ending with ∃.. The resulting formula is in the format: 

. (∃x1)(∀x2)(∃x3) · · · (Qk−1xk−1)(∃xk)φ(x1, . . . , xk).

Here, k is odd, and φ . is  a  3CNF  formul  a.

Corollary 12.5 The TQBF . problem is PSPACE.-complete, where the number of 
variables is odd, the base formula is 3CNF, the quantifiers alternate variable after 
variable, and the starting and ending quantifiers are ∃.. 

12.5.2 Games and Winning Strategies 

From the characterization in Corollary 12.5, we obtain game-based complete 
problems. 

The first complete problem is the following two-player logic game. In this game, 
the players receive a Boolean formula φ(x1, . . . , x2n). and assign values to the 
variables in 2n rounds. In an odd-numbered round r , Player 1 selects the value f or
xr .; in an even-numbered round r , Player 2 selects the value for xr ..  After  2n rounds, 
they evaluate the formula with the chosen variables. Player 1 wins if the formula is
true.; Player 2 wins otherwise. 

Definition 12.16 FORMULAGAME = { φ |  φ . has some 2n variables, and Player 1 
has a winning strategy in the game}.. 

Theorem 12.8 FORMULAGAME . is PSPACE.-complete. 

Proof To show that FORMULAGAME . is in PSPACE.,  let φ(x1, . . . , x2n). be a 2n-
variable Boolean formula. For each b, c ∈ {0, 1}.,  let φbc . be the formula constructed 
from φ . by assigning b to x1 . and c to x2 .. Then: 

. φ ∈ FORMULAGAME ⇐⇒ (∃b)(∀c)[φbc ∈ FORMULAGAME].

We think of a TM that uses recursive calls and evaluates the membership of φ . in 
FORMULAGAME .. The machine then determines the membership using four possible 
assignments to the variable pair (b, c). with four recursive calls. If the results are 
positive for (0, 0). and (0, 1). or positive for (1, 0). and (1, 1)., the machine accepts 
φ .; otherwise, the machine rejects φ .. Each of the four calls has two fewer variables. 
The depth of the recursive algorithm is thus n, so the space required for the recursive 
evaluation is O(n · |φ|).. Thus, FORMULAGAME ∈ PSPACE.. 

To show the ≤p
m .-hardness of FORMULAGAME ., we use Corollary 12.8, where 

the complete problem demands alternating quantifiers. Suppose we are given the 
following PNF formula with alternating quantifiers: 

.ψ = (Q1x1)(Q2x2) · · · (Qkxk)[φ(x1, . . . , xk)].



12.5 PSPACE-Complete Problems 317

Here, Q1, . . . ,Qk . alternate between ∃. and ∀.. We make two possible modifications 
to ψ . so the quantification sequence starts with ∃. and ends with ∀.. First, if Q1 . is ∀., 
we insert a new starting quantification (∃x0).with a new variable x0 . not appearing in 
φ .. Second, if Qk . is ∃., we insert a new ending quantification (∀xk+1).with a variable 
xk+1 . not appearing in φ .. Neither modification alters the value of the formula. 
The addition of the two variables does not alter the value of the QBF. Now, the 
truth value of the QBF can be obtained from the membership of the formula in 
FORMULAGAME ..    

Algorithm 12.3 Recursive algorithm for FORMULAGAME . 

1: procedure FORMULA-GAME( φ .) 
2: if φ . has no free variables then 
3: return the value of the formula; 
4: end if 
5: construct formulas φ00, φ01, φ10, φ11 .; 
6: make recursive calls and obtain the membership of 
7: the four sub-formulas in FORMULAGAME.; 
8: if φ00 = φ01 = true. then 
9: return 1; 
10: else if φ10 = φ11 = true. then 
11: return true.; 
12: else 
13: return false.; 
14: end if 
15: end procedure 

12.5.3 The Geography Game 

The PSPACE.-complete problem is Geography. 
Geography is reminiscent of the Japanese word game “Shiritori.” In Shiritori, the 

players take turns stating a word. Before playing the game, the players agree on 
the word category (e.g., animals, vegetables, and country names). The first player 
is free to choose the initial word. After that, the players must state a word whose 
first syllable is identical to the previous player’s last syllable. The vocabulary is 
imaginary, and other players must endorse each word. If the word is not endorsed, 
the player must select another word. Since the Japanese language does not have 
words starting with the syllable “N,” a player must not use a word ending with “N.” 
The player who cannot make the connection loses the game. For example, if animals 
are chosen as the category, the words may connect like: 

“ne-ko” (the cat), “ko-ji-ka” (the fawn), “ka-mo-no-ha-shi” (the duck-bill), 
“shi-ma-u-ma” (the zebra), “ma-n-gu-u-su” (the mongoose), “su-zu-me” (the 

sparrow).



318 12 Beyond NP-Completeness

We generalize the game as Geography, where the players agree on vocabulary. 
In Geography, the problem is represented as a directed graph with multiple edges. 

The graph’s vertices are the syllables, and the edges are the words connecting 
syllables. When a player selects an edge, the vertex of origin moves along the edge, 
and the edge is removed from the graph. We bound the number of edges by some 
polynomial in the number of vertices. To achieve this, we use an edge list. We may 
consider an adjacency matrix with integer entries to encode the problem, but such 
a graph may have an exponential number of edges. We also restrict the number of 
players to two, and the player having no available edges loses the game. Since there 
are two players, the opponent of the losing player is the winner. 

Definition 12.17 GEOGRAPHY = { G, s |  G. is a multiple-edge directed graph, s 
is a vertex in G, and Player 1 has a winning strate gy}.. 

We again reduce TQBF . to prove the following: 

Theorem 12.9 GEOGRAPHY . is PSPACE.-complete. 

Proof We use a recursive algorithm to show GEOGRAPHY ∈ PSPACE..  In  the  
recursive algorithm for FORMULAGAME ., the recursion keeps Player 1 in the initial 
question as the first player in the recursive calls. Here, we reverse the order of the 
players in each recursive call. By symmetry, for all i such that 1 ≤ i ≤ k ., 

Player 1 has a winning strategy in  G, s ⇐⇒ . Player 2 has no winning strategy in 
 Gi, ui . for some i. 

The algorithm uses this fact. At each recursive call, the graph loses one edge. Since 
the number of edges is no more than the length of the input, the recursion depth is 
linear. Thus, the program runs in polynomial space. 

We use the variable-wise quantifier-alternating version of TQBF . from Corol-
lary 12.5. Suppose the following ψ . is an instance of TQBF .: 

. (∃x1)(∀x2) · · · (∀x2k)(∃x2k+1)[φ(x1, . . . , x2k+1)].

Here, φ . is a 3CNF formula. Let m be the number of clauses in φ .. We construct a 
Geography game from ψ . such that ψ = true ⇐⇒ .Player 1 has a winning strategy. 

A key ingredient in the construction is the gadget in Fig. 12.2. Suppose a player 
must choose an edge from the top vertex. There are only two ways to go from top to 
bottom: to the left and right. Both require three steps, meaning the same player picks 
the branch at the bottom and follows the last edge. If there are no other outgoing 
edges from the middle vertices, the selection eliminates the use of the child that the 
first player chooses. 

Fig. 12.2 The variable 
selection gadget in the 
reduction to GEOGRAPHY.



12.5 PSPACE-Complete Problems 319

We connect 2k + 1. copies of the five-vertex gadget in a sequence by identifying 
the bottom vertex of a gadget with the top vertex of the next gadget. We locate the 
game’s starting point to the top vertex of the gadget sequence. Since the top and last 
players inside each gadget are identical, and the number of gadgets is odd, the first 
and last players in the gadget series are the same. 

After constructing the sequence, we connect the bottom edge of the last gadget to 
a vertex with m outgoing edges, connecting to m vertices representing the clauses. 
Each clause-representing vertex has three children, representing the literals in the 
clause. We identify the literal vertices with corresponding assignments in the five-
vertex gadget sequence (see Fig. 12.3). 

Multiple choices are available at the start of each gadget, at the clause selection, 
and at the literal selection. The multiple choices Player 1 receives are at the odd-
numbered five-vertex gadgets and the literal choice. The multiple choices Player 2 
receives are at the even-numbered five-vertex gadgets and the clause choice. For 
the multiple choices available at the five-vertex gadgets, Player 1 receives all the 
assignment selections for the existentially quantified variables. In contrast, Player 
2 receives all the assignment selections for the universally quantified variables. At 
literal selection, if the selection matches the truth assignment, there is no edge to 
traverse from there. If the literal selection disagrees with the truth assignment, there 
is an arrow that Player 2 can follow; following this arrow, the players arrive at a 
vertex with no more outgoing edges. Thus, after arriving at the clause selection, 
Player 1 wins the game if, and only if, the clause Player 2 chooses is satisfiable. 
Thus, Player 1 has a winning strategy if, and only if, ψ = true.. 

The construction of the graph can be carried out in time polynomial in |F |.,  so  
the reduction is a ≤p

m . reduction. This proves the theorem.    

Fig. 12.3 The construction 
for reducing TQBF . to 
GEOGRAPHY.



320 12 Beyond NP-Completeness

Algorithm 12.4 Recursive algorithm for GEOGRAPHY . 

1: procedure GEOGRAPHY(G, s .) 
2: if s has no outgoing edges then 
3: return false.; 
4: end if 
5: obtain the list of all out-going edges of s as e1 = (s, u1), . . . , ek = (s, uk).; 
6: for i ← 1, . . . , k . do 
7: construct Gi . by removing ei . from G; 
8: make a recursive call about  Gi, ui . and obtain the result ri .; 
9: if ri . is false. then 
10: return true.; 
11: end if 
12: end for 
13: return false.; 
14: end procedure 

Exercises 
12.1 Suppose C. is a complexity class. Prove that PC = Pco−C ., NPC = NPco−C ., and 
coNPC = coNPco−C .. 

12.2 Suppose C. is a complexity class with a ≤p
m .-complete set A. Prove that PC =

PA
., NPC = NPA

., and coNPC = coNPA
.. 

12.3 Prove that NPA
. for every language A, NPA

. is closed under ≤p
ctt .. 

12.4 Prove that for every language A, coNPA
. is closed under ≤p

dtt .. 

12.5 Prove that the polynomial-time Turing reducibility is reflexive and transitive. 

12.6 Prove that the search reduces in polynomial time to the decision for 
VERTEXCOVER .. 

Hint: Using a greedy algorithm, we can eliminate vertices that do not contribute 
to a vertex cover of the required size. 

12.7 Prove that the search reduces in polynomial time to the decision for CLIQUE .. 
Hint: Using a greedy algorithm, we can eliminate edges that do not contribute 

to a clique of the required size. 

12.8 Prove that the search reduces in polynomial time to the decision for 
PARTITION .. 

Hint: We can increase the value of a pair of elements with the same amount to 
check if they are in different parts. 

12.9 Prove that the search reduces in polynomial time to the decision for 3DM.. 

12.10 The proof of Theorem 12.4 converts a 3DNF to a 3CNF with the variables 
existentially quantified. Suppose the DNF φ . has m clauses in the f orm:

.φ = ( 1,1 ∧  1,2 ∧  1,3) ∨ · · · ∨ ( m,1 ∧  m,2 ∧  m,3).



12.5 PSPACE-Complete Problems 321

We refer to the i-th  clause  as Di .. Construct a full CNF formula for (∃i : 1 ≤ i ≤
m)[Di]. by introducing two sets of variables. The first set is ai . such that 1 ≤ i ≤ m., 
indicating which Di . is true.. The second set is bi . such that 2 ≤ i ≤ m., representing 
a1 ∨ · · · ∨ ai .. 

12.11 In the proof of Theorem 12.6, we used the property t (n+1) ∈ {t (n), t (n)+1}. 
for all n ≥ 0.. Prove this property by combining the two properties of t ; t’s range is 
contiguous, and t is non-decreasing.

12.12 Recall that INDEPENDENTSET . is the set of  G, k . such that G has an inde-
pendent set of size k. Give an algorithm for computing one maximum independent 
set of a graph G using INDEPENDENTSET . as the oracle. 

12.13 Recall that HAMPATH . is the set of  G, s, t . such that G has a Hamiltonian 
path from s to t . Show that the search reduces in polynomial time to the decision for
HAMPATH .. 

12.14 Recall that HAMCYCLE . is the set of graphs  G . such that G has a 
Hamiltonian cycle3. Show that the search reduces in polynomial time to the decision 
for HAMCYCLE .. 

12.15 Let A be an arbitrary language in NP ∩ coNP.. Show that NPA = NP.. 

12.16 Let A be an arbitrary language in NP ∩ coNP.. Show that PA ⊆ NP ∩ coNP., 
and so NP ∩ coNP = PNP∩coNP .. 

12.17 Let M be a polynomial time-bounding NTM such that for all inputs x, M 
on x makes at most c log |x|. nondeterministic choices on every computation path. 
Show that the language M accepts is i n P.. 

12.18 Prove that the canonical complete problem in Proposition 12.6 is in PSPACE.. 

12.19 Prove that the canonical complete problem in Proposition 12.6 is PSPACE.-
hard under the polynomial-time many-one reductions. 

12.20 Prove that single-tape TMs can be normalized so that the format of their 
accepting IDs is qacc  ∗

.. 

Bibliographic Notes and Further Reading 
The definition of oracle TMs is by Turing [6]. The completeness of ODDMAXSAT . 

for PNP . (Theorem 12.3) is by Krentel [1]. The polynomial hierarchy was first studied 
by Meyer and Stockmeyer [3, 5]. The logical characterization of PH. (Theorem 12.4) 
is from the work of Stockmeyer [5]. Theorem 12.6 is by Ladner [2]. 

The completeness of FORMULAGAME . and GG. is by Schaefer [4].



322 12 Beyond NP-Completeness

References 

1. M.W. Krentel, The complexity of optimization problems, in Proceedings of the Eighteenth 
Annual ACM symposium on Theory of computing (ACM, New York, 1986), pp. 69–76 

2. R.E. Ladner, On the structure of polynomial time reducibility. J. ACM 22(1), 155–171 (1975) 
3. A.R. Meyer, L.J. Stockmeyer, The equivalence problem for regular expressions with squaring 

requires exponential space, in Proceedings of the Thirteenth Annual IEEE Symposium on 
Switching and Automata Theory, vol. 72 (1972), pp. 125–129 

4. T.J. Schaefer, On the complexity of some two-person perfect-information games. J. Comput. 
Syst. Sci. 16(2), 185–225 (1978) 

5. L.J. Stockmeyer, The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976) 
6. A.M. Turing, Systems of logic based on ordinals. Proc. Lond. Math. Soc. Ser. 2 45, 161–228 

(1939)



Part V 
Advanced Topics in Computational 

Complexity Theory



Chapter 13 
The Probabilistic Polynomial-Time 
Classes 

13.1 The Probabilistic Turing Machine Model 

This section introduces the probabilistic TM model and the classes defined with this 
model. 

13.1.1 The Definition 

Let us begin with the definition of the probabilistic TM model. 
A probabilistic TM has access to a random bit generated with a probability of 

1/2. at each step. The random bits are mutually independent, so their values have no 
correlations with their previous values. Put differently, the transition function of a 
probabilistic TM has one or two values for each state-symbol combination. At each 
step, if the transition function has only one value, the machine chooses the action; 
if the function has two values, the machine picks one of the two possibilities with a 
probability of 1/2.. 

There are two ways to measure the computation time of a probabilistic TM. 
One way is to use the maximum computation time among all possible computation 
paths, and the other is to use the expected computation. When we use the expected 
computation time measurement, a probabilistic TM may run for a very long time 
The time bounds in this chapter use the maximum computation time. 

Definition 13.1 Let t (n). be a function from N. to N.. A probabilistic TM M is 
t (n). time-bounded if, for all inputs x, M on input x terminates within t (|x|). steps 
regardless of M’s probabilistic choices. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_13

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 13&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13
https://doi.org/10.1007/978-3-031-84740-0_13


326 13 The Probabilistic Polynomial-Time Classes

Given a time-bounded probabilistic TM M , an input x,  two  IDs  I and I  ., and 
an integer s ≥ 0., we can assess the probability that M transitions from I to I  . in s 
steps. The assessment can be inductive in the following manner:

• If s = 0., the probability is 1 if I = I  ., and 0 otherwise. 
• If s > 0.,  le  t I1 . and I2 .be the two possible next IDs of I , where I1 .may be identical 

to I2 ..  Le  t p1 . and p2 . be the probability of reaching I  . in s − 1. steps from I1 . and 
I2 ., respectively. The probability in question is: 

. 
1

2
· p1 + 1

2
· p2 = p1 + p2

2
.

Using the transition probability between IDs, we define our first probabilistic 
complexity class, BPP., as the class having bounded-error polynomial-time 
randomized algorithms. 

Definition 13.2 BPP. is a class of languages L for which there exists a polynomial 
time-bounded TM M such that for all x,

1. If x ∈ L., the probability that M on x accepts is ≥ 1/2+  . 
2. If x  ∈ L., the probability that M on x rejects ≥ 1/2+  . 
Here,  . is a positive constant. 

We say that M’s computation is successful if its definition is consistent with 
the input’s membership (i.e., accepting for a member and non-accepting for a 
nonmember). Using this notion, we can state that a language L is in BPP. if there is 
a polynomial time-bounded probabilistic TM whose success probability is 1/2+  .. 
We also define M’s error probability as 1 minus the success probability. Thus, BPP. 

is the class of languages with a probabilistic polynomial-time decider whose error 
probability is ≤ 1/2−  .. 

The following result can be easily derived from the definition. 

Proposition 13.1 BPP = co− BPP.. 

Proof Let M be a probabilistic TM witnessing L ∈ BPP..  Let M  
. be the TM 

that runs the program of M and accepts/rejects its input if, and only if, M 
rejects/accepts. The bound on the error probability is the same between the members 
and nonmembers. Since M is polynomial time-bounded, M  

. is polynomial time-
bounded. Thus, M  

.witnesses that L ∈ BPP..   
Three subclasses of BPP. exist: 

• RP. is the subclass of BPP.where the error probability for nonmembers is 0. 
• coRP. is the subclass of BPP.where the error probability for members is 0. 
• ZPP = RP ∩ coRP..



13.1 The Probabilistic Turing Machine Model 327

We often refer to BPP. as “bounded-error probabilistic polynomial time,” RP. as 
“one-side bounded-error probabilistic polynomial time,” and ZPP. as “zero-error 
probabilistic polynomial time.” 

Proposition 13.2 RP ⊆ NP., coRP ⊆ coNP., and ZPP ⊆ NP ∩ coNP.. 

The constant error bound of BPP. seems too large. We can reduce the error 
probability of BPP. languages to 2−r(n) . for an arbitrary polynomial r(n)..  The  
reduction is achieved using the following Chernoff-Hoeffding bound.

Lemma 13.1 (The Chernoff-Hoeffding Bound) Let X1, . . . , Xn . be independent 
random variables whose values are from {0, 1}.. Let S = X1 + · · · + Xn . and E be 
S’s expectation. Then, for all t > 0., 

. Pr[S ≥ E + t] ≤ exp

 
−2t2

n

 
.

An intuitive description of the Chernoff-Hoeffding bound is that the sum of 
independent Boolean variables is unlikely to be away from its expectation. With 
multiple executions of a bounded-error decision algorithm, we can widen the gap 
between the expected number of accepts when the input is a member and the 
expected number of accepts when the input is a nonmember. 

Lemma 13.2 Let M be a probabilistic TM that accepts a language L with a success 
probability of 1/2+  . for some positive  .. Let p(n). be an arbitrary polynomial and 
c ≥ 1

2 2
. be an integer. Let M  

. be a probabilistic TM that, given an input x, simulates 
M on x cp(|x|). times independently and accepts if, and only if, at least one-half of 
the simulations accept. Then, for all x, the following properties hold: 

1. If x ∈ L., the probability that M  
. on x accepts is ≥ 1− 2−p(|x|) .. 

2. If x  ∈ L., the probability that M on x rejects ≥ 1− 2−p(|x|) .. 

Proof Let L, M , M  
., p, and c be as in the hypothesis of the lemma. Let x be an input

to M  
. and n = |x|..  Le  t Xi . be the variable indicating the success/failure of the i-th 

simulation, where 1 ≤ i ≤ cp(n).; i.e., Xi = 1. if the i-th simulation is successful, 
and 0 otherwise. We know Pr[Xi = 1] ≥ 1/2 +  . independently for each i.  We  
define S and E as with Lemma 13.2. Then, E ≥ (1/2+  )(cp(n)).. Since M  

. takes 
the majority vote, it makes an error when S < cp(n)/2.. SinceE ≥ (1/2+ )(cp(n))., 
an error occurs when: 

. E − S ≥  cp(n).

Let t =  cp(n).. According to Lemma 13.1, the probability that the deviation,E−S ., 
is ≥ t . is at most: 

. exp

 
−2( cp(n))2

cp(n)

 
= exp(−2 2cp(n)).



328 13 The Probabilistic Polynomial-Time Classes

Since c ≥ 1/(2 2)., the right-hand side is at most: 

. exp(−p(n)) < 2−p(n).

Thus, M  
. has an error probability of < 2−p(n) ..   

13.2 Primality Testing Algorithms 

The most famous problem in BPP. is primality testing: a problem of testing if an 
integer given in binary is a prime number. 

13.2.1 Number Theory Basics 

We begin with a review of relevant concepts and results in number theory. 
An integer m divides n (or m is a divisor of n) if the remainder of n di vided by

m, n mod n., is 0. In other words, m divides n if n = dm. for some integer d.  We  
writem | n. to mean that m divides n.  A  trivial divisor of n is 1 and n.  A  nontrivial 
divisor of n is a divisor between 2 and n − 1.. A natural number n ≥ 2. is a prime 
number if, for all b, 2 ≤ b ≤ n−1., the remainder of n divided by b is not 0 (i.e., no 
integer between 2 and n− 1. is n’s divisor). A natural number n ≥ 2. is a composite 
number if it is not a prime number. 

The list of the prime numbers <100. are: 

. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 93, 97.

The following proposition states that each positive integer is uniquely expressed 
as the product of prime numbers. The proof is left to the reader (see Exercise 13.9). 

Proposition 13.3 Each integer n ≥ 1. is uniquely decomposed as the product of 
distinct prime powers. In other words, for each integer n ≥ 1., there exists exactly 
one combination of positive integers k, p1, . . . , pk, e1, . . . ek . such that 

. n = (p1)e1 · · · (pk)ek .

Here, p1 < · · · < pk . are prime numbers. 

We call this decomposition the prime factorization of n. 
Given integers m and n such that m or n is nonzero, the greatest common divisor 

(GCD) of m and n, denoted by gcd(m, n)., is the largest positive integer d such that 
d is a divisor of m and n. Also, integers m and n are relatively prime to each other



13.2 Primality Testing Algorithms 329

if gcd(m, n) = 1.. A concept related to the greatest common divisor is the least 
common multiple of nonzero integers m and n, lcm(m, n)., which is the smallest 
positive integer d such that m and n divide d. For two strictly positive integers m 
and n, lcm(m, n). is given as 

. lcm(m, n) = m · n
gcd(m, n)

.

Both these two quantities extend to more than two numbers. 
There is an efficient method for computing the GCD of two integers. The results 

in this chapter do not depend on the algorithm, but we present this method in 
Algorithm 13.1 for completeness. In the algorithm, m mod n. is the remainder of 
m divided by n. The algorithm computes gcd(m, n). and integers a and b such that
am + bn = gcd(m, n).. In the algorithm, am + bn = g . is an invariant condition 
of the loop; i.e., it is a condition that is maintained before and after executing the 
loop’s body. Another invariant is e, which is the number of exchanges that occurred 
between m and n .

Algorithm 13.1 A recursive method for computing gcd(m, n). 
1: procedure GCD(m, n.) 
2: m ≥ 1. and n ≥ 1.; 
3: a← 0.; b← 1.; g← n.;  am+ bn = g . 
4: e← 0.; 
5: while m > 0. do 
6: if m < n. then 
7: exchange values between m and n; 
8: exchange values between a and b ;
9: e← e + 1.; 
10: else 
11: r ← m mod n.; 
12: d ← (m− r)/n.; 
13: a← 1− d · a .; 
14: b← −d · b.; 
15: g← r .; 
16: end if 
17: end while 
18: if e is even then 
19: return (a, b, g).; 
20: else 
21: return (b, a, g).; 
22: end if 
23: end procedure 

In primality testing, congruence classes play a crucial role. 
Let n ≥ 2. be an integer. We say an integer a is congruent to another integer 

b modulo n  if  n divides the difference a − b. and write a ≡ b (mod n).. With Zn ., 
we denote the set of numbers reduced using the congruence modulo n. There are n



330 13 The Probabilistic Polynomial-Time Classes

congruence classes in Zn .. We denote the class equivalent to a with [a]n .. The typical 
representatives are 0, . . . , n− 1.,  but − 1. also serves as a representative for [n− 1].. 
If the modulus n is evident from the context, we write [a].,  or  simply  a, to mean the 
modulo-n congruence class, including a. 

The set Zn . is an n-element commutative ring since it has the following 
properties: 

• Zn . is an additive group. 

– Zn . is closed under addition with [0]. as the identity element. 
– Each element [a]. has the negative element [−a].. 
– The addition admits the associative law; i.e., for all a, b., and c: 

. ([a] + [b])+ [c] = [a] + ([b] + [c]).

– The addition admits the commutative law; i.e., for all a and b :

. [a] + [b] = [b] + [a].

• Zn . is a multiplicative monoid. 

– Zn . is closed under multiplication with the identity element [1].. 
– The multiplication admits the associative law; i.e., for all a, b., and c: 

. ([a] · [b]) · [c] = [a] · ([b] · [c]).

– The multiplication admits the commutative law; i.e., for all a and b :

. [a] · [b] = [b] · [a].

• The combination of multiplication and addition admits the distributive laws; i.e., 
for all a, b., and c: 

. ([a] + [b]) · [c] = [a] · [c] + [b] · [c] and
[c] · ([a] + [b]) = [c] · [a] + [c] · [b].

In addition to Zn ., we consider Z∗
n .. Z

∗
n . is the set of congruence classes of n that 

are relatively prime to n (i.e., each member [a]. satisfies gcd(a, n) = 1.). Z∗
n . is 

a commutative multiplicative group with [1]. as the identity element. When n is a 
prime number, Z∗

n . consists of all the n − 1. congruence classes other than 0. When 
n is a composite number, the size of Z∗

n . is less than n− 1.. For example, Z∗
5 . consists 

of four classes, [1]5 ., [2]5 ., [3]5 ., and [4]5 ., while Z∗
6 . consists of just two congruence 

classes, [1]6 . and [5]6 ..



13.2 Primality Testing Algorithms 331

13.2.1.1 Fermat’s Little Theorem 

The main idea of the primality testing algorithm is the following Fermat’s little 
theorem. 

Theorem 13.1 (Fermat’s Little Theorem) For all odd prime numbers p and all 
nonzero a ∈ Z∗

n ., a
p−1 ≡ 1 (mod p).. 

Proof Let p be an odd prime number. Let a be an integer, 1 ≤ a ≤ p− 1.. Think of 
p − 1.multiples of a as follo ws:

. 1 · a, 2 · a, . . . , (p − 1) · a.

Since p is a prime number, none of the products are multiples of p. Also, none of 
the two different multiples of p−1. are equal. Thus, as congruence classes, we have: 

. [1 · a] · [2 · a] · · · [(p − 1) · a] = [1] · · · [p − 1].

The left-hand side is equal to: 

. ([1] · · · [p − 1]) · [a]p−1.

The product [1] · · · · · [p − 1]. is not 0, so can simply the equation by dividing both 
sides by its inverse. This produces: 

. [a]p−1 = [1].

By removing the [·]. notation, we get ap−1 ≡ 1 (mod p)..   
The theorem raises hopes that we can test the primality of an odd integer n ≥ 3.by 

checking if for some a such that 1 ≤ a ≤ n− 1., n fails to satisfy an−1 ≡ 1 mod n.. 
Unfortunately, satisfying an−1 ≡ 1 (mod n). for all a such that gcd(a, n) = 1. 
does not guarantee the primality. There are composite numbers n such that for all 
a relatively prime to n, an−1 ≡ 1 (mod n).. We call such numbers the Carmichael 
numbers. There are infinitely many Carmichael numbers, and their existence makes 
it impossible to use Fermat’s little theorem to detect compositeness. As we will see 
later in this chapter, we can test the primality of n by examining how the s eries
a, a2, . . . , an−1

. approaches 1 for a random a. 

13.2.1.2 The Chinese Remainder Theorem 

We build the test using the following theorem, called the Chinese Remainder 
Theorem.



332 13 The Probabilistic Polynomial-Time Classes

Theorem 13.2 (The Chinese Remainder Theorem) Let k ≥ 2.. Let n1, . . . , nk . 
be positive integers that are relatively prime to each other. Let N = n1 · · · nk .. Let 
r1, . . . , rk . be integers such that for all i, 0 ≤ ri ≤ ni .. There exists exactly one 
R, 0 ≤ R ≤ N − 1., such that R ≡ ri (mod ni). for all i. 

Proof We can prove the theorem by induction on k. The base case is k = 2..  We  
claim that integers m1 . and m2 . exist such that 

. m1n1 +m2n2 = 1.

We prove the existence by contradiction. Assume that the smallest positive integer 
you can construct as m1n1 +m2n2 . is d > 1.. Since n1 . and n2 . are relatively prime to 
each other, d is relatively prime to n1 . or n2 .. Suppose d is relatively prime to n1 ..  Le  t
n1 = sd + t ., where s is the quotient of n1 . divided by d and t the remainder. Then:

. s(m1n1 +m2n2) = sd = n1 − t,

so: 

. t = n1 − s(m1n1 +m2n2) = (1− sm1)n1 − sm2n2.

The same can be done for n2 . if n2 . is relatively prime to d. In both cases, 1 ≤ t < d .. 
This contradicts the minimality of d. Thus, the desired m1 . and m2 . exist. 

Now we define R = m2n2r1 + m1n1r2 +  n1n2 .. Here, we choose  . so that R 
falls between 0 and n1n2 − 1..  We  hav  e:

. R = m1n1r2 +m2n2r1 +  n1n2
=  n1n2 +m1n1r2 −m1n1r1 +m1n1r1 +m2n2r1

=  n1n2 +m1n1(r2 − r1)+ (m1n1 +m2n2)r1

=  n1n2 +m1n1(r2 − r1)+ r1
= ( n2 +m1(r2 − r1))n1 + r1.

Thus, R ≡ r1 (mod n1).. Additionally: 

. R = m2n2r1 +m1n1r2 +  n1n2
=  n1n2 +m2n2r1 −m2n2r2 +m2n2r2 +m1n1r2

=  n1n2 +m2n2(r1 − r2)+ (m1n1 +m2n2)r2

=  n1n2 +m2n2(r1 − r2)+ r2
= ( n1 +m2(r1 − r2))n2 + r2.

Thus, R ≡ r2 (mod n2)., and the claim holds for k = 2..



13.2 Primality Testing Algorithms 333

For the induction step, suppose k ≥ 3., and the claim holds for all smaller values 
of k.  Let N0 = n1 · · · nk−1 . and R0, 0 ≤ R0 ≤ N0 − 1., be such that for all i such 
that 1 ≤ i ≤ k − 1., R0 ≡ ri (mod ni).. We apply the base case to the pair N0 . and 
nk . to find m1 . and m2 . such that 

. m 
1N0 +m 

2nk = 1.

We then define: 

. R = m 
2nkR0 +m 

1N0rk +   N0nk.

Here,   . puts R between 0 and N0nt − 1..  We  hav  e:

. R =   N0nt + (m 
2ntR0 −m 

2nt rt )+ (m 
2nt rt +m 

1N0rt )

=   N0nt +m 
2nt (R0 − rt )+ (m 

2nt +m 
1N0)rt

≡ rt (mod nt ),

and similarly: 

. R ≡ R0 (mod N0).

Because of the definition of R0 ., the last congruence gives R ≡ ri (mod ni). for all i 
such that 1 ≤ i ≤ k − 1.. Thus, the claim holds for k. 

Hence, the claim holds for all k, so the induction is complete. The proof of R’s 
uniqueness is left to the reader (see Exercise 13.13).   

The following result immediately follows from the Chinese Remainder Theorem. 
We leave the proof to the reader (see Exercise 13.14). 

Corollary 13.1 Let k ≥ 2.. Let n1, . . . , nk . be positive integers that are relatively 
prime to each other. Let N = n1 · · · nk .. Then, for all integers r , r ≡ 1 (mod N). 
if, and only if, r ≡ 1 (mod ni). for all i. Additionally, for all integers r , r ≡ −1
(mod N). if, and only if, r ≡ −1 (mod ni). for all i. 

13.2.1.3 Generators 

Since Z∗
n . is a multiplicative group, for each a ∈ Z∗

n ., a positive integer k exists such 
that ak ≡ 1 (mod n). (see Exercise 13.11). The smallest positive integer d is the 
order of a in Z∗

n .. We denote it with ordn(a).. By convention, if a  ∈ Z∗
n ., the order of 

a is ∞.. 
Fermat’s little theorem states that for all prime numbers p and integers a not 

divisible by p, the order of a is a divisor of p− 1.. Is there an integer a whose order



334 13 The Probabilistic Polynomial-Time Classes

is p−1.? If an element a has order p−1., then a, a2, . . . , ap−1
. are different elements 

and thus cover the entire Z∗
p .. We call an element with an order p − 1. a generator 

for Z∗
n .. 

For each power of a prime number pe . such that p is a prime number and e is a 
positive integer, ϕ(pe) = pe−1(p−1).. ϕ(pe). is the cardinality of the multiplicative 
group Z∗

pe .. The proof of the following theorem is complex. We give only the 
statement of the theorem. 

Theorem 13.3 For every odd prime number p and a positive integer e, (Zpe)∗ . has 
a generator. The order of the generators is ϕ(pe) = pe−1(p − 1).. 

We can say more about the existence of generators. We leave the proof of the 
following proposition to the reader (see Exercise 13.15). 

Proposition 13.4 If Z∗
n . has a generator, Z∗

n . has ϕ(ϕ(n)). generators. 

We also have the following result. Again, we leave the proof to the reader (see 
Exercise 13.16). 

Proposition 13.5 If g is a generator in Z∗
n . and e is a positive integer , ordn(ge) =

ϕ(n)/(gcd(ϕ(n), e)).. 

13.2.2 The Miller-Rabin Test 

Now, we state our probabilistic primality testing algorithm. Primality testing is 
vital in modern cryptography, specifically in the celebrated Rivest-Shamir-Adleman 
security (hereby RSA). The RSA cryptography uses the following simple property: 

If an integer triple (n, e, d). satisfies ed ≡ 1 (mod ϕ(n))., then for all m ∈ Zn ., 
(me)d ≡ m.. 

RSA’s participants independently select their own triple (n, e, d). and publish (n, e).. 
To send a secret message to a recipient whose published key is (n, e)., the sender 
converts the message as a series of numbers in Zn ., raises each number to the power 
of e in modulo n, and sends the sequence of powers to the recipient. The recipient 
raises the received numbers to the power of d modulo n and recovers the message.

Traditional cryptosystems requiredM(M − 1)/2. sets of keys to serve M . people 
for their pairwise secret communications. The public-key system was revolutionary 
in that the system with M people needs only M sets of keys because communica-
tions to a receiver use the same set of k eys.

The security of the system comes from the difficulty of computing ϕ(n).without 
knowing n’s prime factors. A typical choice for n is the product of two large primes, 
say p and q, where ϕ(n) = (p − 1)(q − 1)/ gcd(p − 1, q − 1).. For each selection 
of e that is relatively prime to ϕ(n)., d can be easily computed using the process 
of computing gcd(e, ϕ(n)).. Assuming that factoring large integers is a practically



13.2 Primality Testing Algorithms 335

impossible problem, an eavesdropper cannot compute d from n and e without 
knowing the prime factors p and q.

If we take the difficulty of factoring integers for granted, a crucial question is 
finding large prime numbers. The prime number theorem states that the proportion 
of prime numbers below X is  (1/ log(X)).. Thus, you can expect to encounter 
a prime number by selecting logX . candidates below X. But how do you test 
if a number is a prime number? This question leads us to whether or not we 
can effectively test the primality of any given number. Formally, we consider the 
following two decision problems in Definition 13.3. 

Definition 13.3 PRIMES =  {n | n. is a prime number }. and COMPOSITES = {n |
n ≥ 2. is a composite number }.. 

In this section, we prove the following: 

Theorem 13.4 PRIMES . is in coRP., and so it is in BPP.. 

Proof We use the so-called Miller-Rabin test to show PRIMES ∈ coRP..  Here  is  a  
brief description of the algorithm. After eliminating nontrivial cases, we decompose
n − 1. as an integer product b2d . where b is an odd integer. Then, we select a ∈ Zn . 
uniformly at random and compute, in modulo n, the following series: 

. ab, ab·2, ab·4, . . . , ab·2d .

If n is a prime number, the final quantity is 1, and if the series does not start with 1, 
the last value before 1 is − 1.. So, if the final value is not 1 or the last value before 1 
is not − 1., n is a composite number. We will show that if n is a composite number, 
the probability of selecting an a witnessing the compositeness is ≥ 1/2.. 

The algorithm relies on the ability to select a uniformly at random from
{0, . . . , n−1}.. It is tempting to assume a universal random number generator for the 
purpose. However, our TM model permits at most two possible moves for each state-
symbol combination, and the selection between the two occurs with a probability 
of 1/2.. So, assuming the ability to produce a random a for an arbitrary n may 
be unrealistic. This leads to the question of whether or not selecting a for a fixed 
number of branches is possible. Indeed, we can do that with an exponentially small 
probability of failure. 

The selection of a goes as follows: 
We choose an integer  . greater than the bit length of n and a positive integer k. 

We let N = 2k ., r = N mod n., and s = N − r .. We then pick  . independent bits 
and compute x as the  .-bit integer these independent bits collectively represent. The 
range of x is [0, N−1]. and each x appears with a probability 1/N .. We then check if 
x < s ..  If x < x .,  we  set a = x mod n.. Otherwise, we assert that the random number 
generation was unsuccessful. Assume that  = k log n .. Then, the probability of 
failure is:



336 13 The Probabilistic Polynomial-Time Classes

. 
r

N
≤ n− 1

N
<
n

N
≤ n

nk
= 1

nk−1 .

We call the algorithm the “primitive random number generator” (see Algo-
rithm 13.2). 

Algorithm 13.2 An algorithm for primitive random number generation 
1: procedure RANDOM-NUMBER( n, k .) 
2:  ← k log n .; 
3: N ← 2 .; 
4: r ← N mod n.; 
5: s ← N − r .; 
6: generate  . independent random bits β1, . . . , β . and form x, 0 ≤ x ≤ N − 1.; 
7: if a ≥ s . then 
8: return − 1., indicating a failure; 
9: else 
10: return x mod n.; 
11: end if 
12: end procedure 

We also recall the binary exponentiation algorithm (Algorithm 13.4) for comput-
ing ab mod n. for any positive a, b., and n. 

Algorithm 13.3 A binary exponentiation algorithm 
1: procedure BINARY-EXPONENTIATION(a, b, n.) 
2: denom ← a .; 
3: prod ← 1.; 
4: for i ← 1, . . . , q . do 
5: if bi = 1. then 
6: prod ← prod ∗ denom mod n.; 
7: end if 
8: end for 
9: return prod .; 
10: end procedure 

Now, we present the Miller-Rabin test in Algorithm 13.4.



13.2 Primality Testing Algorithms 337

Algorithm 13.4 A probabilistic primality testing 
1: procedure PROBABILISTIC-PRIMALITY-TESTING(n) 
2: if n = 2, 3. then 
3: assert that n is a prime number and stop; 
4: else if n is even then 
5: assert that n is a composite number and stop; 
6: end i f
7: decompose n− 1. into b2d .where b is an odd integer; 
8:  ← 2 log n .; 
9: for  + 1. times do 
10: call Random-Number(n, 2). to obtain a random integer a, 0 ≤ a ≤ n− 1.; 
11: if the generation fails or a = 0. then 
12: advance to the next round; 
13: end if 
14: using Binary-Exponentiation to compute c0 = ab mod n.; 
15: for j ← 1, . . . , d . do 
16: compute ci = c2i−1 mod n. using repeated squaring; 
17: end for 
18: if cd  = 1. then 
19: assert that n is a composite number and stop; 
20: else if for some j such that 0 ≤ d − 1., cj+1 = 1. and cj  = 1, n− 1. then 
21: assert that n is a composite number and stop; 
22: end if 
23: end for 
24: assert that n is a prime number and stop; 
25: end pro cedure

Algorithm 13.4 works correctly for n = 3. and all even n. Suppose n ≥ 5. is an 
odd integer. Let ρ = 22 mod n. and σ =  2  ., i.e., the remainder and quotient of 
22 .divided by n. The algorithm fails if the random number generation fails or a = 0. 
is generated. Let ρ .be the probability that the random number generation fails. Then, 
the probability of a round not making an assertion is: 

. ρ + (1− ρ)1
n
≤ 1

n
+ 1

n
= 2

n
.

Thus, the algorithm advances further with a probability of ≥ n−2
n

.. 
If the algorithm advances further and n is a prime number, by Fermat’s little 

theorem, an−1 ≡ 1 (mod n).. Since n is a prime number n, 1 and − 1. are the only 
solutions for x2 ≡ 1 (mod n).. So, cd = 1. and if ci = 1. and ci−1  = 1., ci−1 = n−1.. 
Thus, n passes the test. 

If the algorithm advances further and n is a composite number, we analyze the 
probability that the algorithm asserts that n is prime as f ollows:

Suppose gcd(a, n) = 2.. Then, c0, . . . , cd . are all multiples of gcd(a, n)., which 
is ≥ 2., and so the test fails. Suppose gcd(a, n) = 1.. Let the following be the prime



338 13 The Probabilistic Polynomial-Time Classes

factorization of n: 

. n = pe11 · · ·pekk .

Here, p1, . . . , pk . are odd prime numbers in the increasing order, e1, . . . , ek . are 
strictly positive, and if k = 1., e1 ≥ 2.. 

For each i,  let ni = peii . and gi . be an arbitrary generator of Z∗
ni

.. Since n1, . . . , nk . 
are relatively prime to each other, the Chinese Remainder Theorem states that a’s 
congruence class in Z∗

ni
..  Let r1, . . . , rk . be a’s congruence classes in Z∗

n1
, . . . , Z∗

nk
., 

respectively. If rn−1
i  ≡ 1 (mod ni). for some ni ., the Chinese Remainder Theorem 

gives that an−1  ≡ 1 (mod n).. Since we are assuming that an−1 ≡ 1 (mod n)., 
rn−1
i ≡ 1 (mod ni). for all i. Because we are assuming a is relatively prime to n, 
the selection o f ri . is equivalent to selecting ui . uniformly from [0, ϕ(ni) − 1]. and 
then setting ri = guii .. 

Since b and d are fixed throughout the execution of the algorithm, and the 
calculation starts with powering a to ab ., we can view that the generator gi . is already 
raised to the power of b. More specifically, let hi = gbi mod ni . and μi = ordni (hi).. 
We can view the selection process as follows: 

• We select ti . from 0, . . . , μi − 1. uniformly, with each having the probability of 
μi . to be selected. 

• We then compute ri = (hi)ti mod ni . and integrate the ri .s  into  a .

Since b is an odd number and the generator’s order is a multiple of 2, we see t hat
μi . is an even number. The test we are conducting is the occurrence of − 1. as the 
value immediately before the first occurrence of 1, so the value we choose for ti . has 
a property that μi/ gcd(μi, ti). is a power of 2. 

We consider two cases: k = 1. and k ≥ 2.. First, suppose k = 1.. Then, n − 1 =
(p1)

e1 − 1.. The quantity is not a multiple of p1 .,  so  b is not a multiple of p1 .. Since 
ϕ(n1). is a multiple of p1 ., μ1 . is a multiple of p1 .. This means the probability that the 
r1 .’s order is a power of 2 is at most 1/p1 < 1/2.. 

Next, suppose k ≥ 2.. For each i, μi/ gcd(μi, ti). is a power of 2, and at least two 
possibilities exist for the power. The possibilities are as follows: 

• ti . is odd. 
• ti . is divisible by 2 but not 4. 
• ti . is divisible by 4 but not 8. 
• etc. 

Since we make a uniform choice for ti ., none of these cases occur with a probability 
> 1/2.. We translate these possibilities into the value of cj .s. We see that the 

translated events are as follows: 

• c0 ≡ 1 (mod ni ).. 
• c0 ≡ −1 (mod ni).. 
• c1 ≡ −1 (mod ni).. 
• etc.



13.2 Primality Testing Algorithms 339

In addition, these events occur with a probability ≤ 1/2..  For  n to pass the test, the 
event must be equal for all i. Since k ≥ 2., and at least two choices exist for the 
event, the probability that n passes the test is at most 2(1/2)k = 1/2.. 

Summarizing the analysis above, if we make the algorithm assert n as a prime 
number if the random number generation fails, a composite number n passes one 
round of test with a p robability of:

. 
2

n
+
 
1− 2

n

 
· 1
2
= 1

2
+ 1

n
= 1

2

 
1+ 1

2n

 
.

Since we execute the test for  + 1. times independently, the probability that a 
composite number n passes all the tests is at most:

. 

 
1

2

 
1+ 1

2n

   +1

≤ 1

2
·
 
1

2

 log n  
1+ 1

2n

 2n·  +1
2n ≤ 1

2n
e
1
2 ≤ 1

n
.

This means the following: 

• If n is a prime number, the algorithm asserts that with probability 1.
• If n is a composite number, the algorithm asserts that n is a prime number with 

probability at most 1/n.. 

What is the algorithm’s running time? The addition and subtraction in Zn . are 
executable in O(log n).. The multiplication in Zn . is executable in O((log n)2).. 
Computing b and d requires O(log n).. Using the binary exponentiation, computing 
the powers c0, . . . , cd . for each a requires O(log n). multiplication, so it requires 
O((log n)3). steps. The number of repetitions is O(log n)., so the total computation 
time is O((log n)4).. 

We have thus proven the theorem.   

13.2.2.1 Miller’s Algorithm 

Algorithm 13.4 relies on the high probability of selecting a favorable witness a 
whenever n is a composite number. There is a formal term for the favorable a;  for  
a composite number n and an integer a such that 1 ≤ a ≤ n − 1., we say that n 
is pseudoprime to the base n if the test passes when the algorithm picks a as the 
base. If we use a deterministic method for generating the values for a,  how  many  as 
do we need to get to one for which n is not a pseudoprime? Specifically, if we select 
a from the increasing sequence 2, 3, 4, 5, · · · ., when do we get to a favorable a? 
A mathematical conjecture finds the smallest favorable a is O(log n).. One round 
of algorithm execution requires O((log n)3). steps. Based on the conjecture, the 
deterministic version runs in time O((log n)4).. The correctness of the conjecture is 
yet to be verified, but experimentally, most odd composite numbers have a witness



340 13 The Probabilistic Polynomial-Time Classes

≤5.. The Miller test is a special case of the Miller-Rabin test where the deterministic 
selection is used to pick a from the increasing sequence 2, 3, 4, · · · .. 

While the Miller-Rabin test puts PRIMES . in coRP., and thus, also in coNP.,  we  
wonder if PRIMES ∈ RP.. Although we do not present the proof, it is known that 
PRIMES ∈ RP., so the problem is in ZPP.. 

Theorem 13.5 PRIMES,COMPOSITES ∈ ZPP.. 

Recall that the algorithm’s action is deterministic after choosing the value for a. 
If we use an increasing sequence of values 2, 3, 4, . . .. for a, at which value of a 
do we find a is a composite number? Research has found that n up to 1, 373, 653., 
either 2 or 3 for a works. 

It is now known that PRIMES . is P.. 

Theorem 13.6 PRIMES ∈ P.. 

13.2.3 The Polynomial Zero-Testing Problem 

Another example of a polynomial-time randomized algorithm is the zero-testing of 
multivariate polynomials over a finite field. 

Let S be a finite field whose additive identity is 0. Let p(x1, . . . , xn). be a 
polynomial over the variables x1, . . . , xn .. Each term of the polynomial takes the 
form αxe11 · · · xenn .with α ∈ S − {0}. and e1, . . . , en ≥ 0..  The  total degree of a t erm
αx
e1
1 · · · xenn . is e1+· · ·+en ..  The  total degree of p is the maximum total degree of its 

terms. The polynomial p(x1, . . . , xn). is a 0.-polynomial if for all (a1, . . . , an) ∈ Sn ., 
p(a1, . . . , an) = 0.. 

Definition 13.4 The zero-polynomial testing problem over a finite field S is the 
problem of deciding, given a polynomial p(x1, . . . , xn). having a total degree of d, 
whether or not p is a 0 -polynomial.

Proposition 13.6 Let p be an n-variate polynomial over a finite field S with a total 
degree d. If p is not a 0-polynomial, p has no more than d S n−1

. roots. 

Proof We prove the proposition by induction on n.  Let  S be a finite field. Let d ≥ 1.. 
Suppose p(x1, . . . , xn). is a non-0, n-variate polynomial over a finite field S with a 
total degree d. 

The base case is n = 1.. Since S is a field, no pair of elements in S−{0}. produces 
0 as the product. Thus, the number of roots is at most d. 

For the induction step, suppose n ≥ 2., and the claim holds for all smaller values 
of n. Since the total degree is at most d, we can express p as: 

.

d 
j=0

x
j

1pj (x2, . . . , xn).



13.3 Relations Between BPP and PH 341

Here, pj (x2, . . . , xn). is a polynomial over x2, . . . , xn .. Let  e be the largest j such that
pj (x2, . . . , xn). is not a 0-polynomial. The total degree of pj . is at most d − e..  Due  
to the inductive hypothesis, the number of choices for x2, . . . , xn . to make pe = 0. 
is (d − e) S n−2

.. If the choices for x2, . . . xn . do not reduce pe . to 0, they reduce p 
to a polynomial over the variable x1 . with a degree at most e. The polynomial has 
at most e roots. Thus, the number of choices for x1, . . . , xn . that turn p into 0 is at 
most:

.  S · (d − e) S n−2 + e ·  S n−1 = d S n−1.

Thus, the property holds for n.   
Theorem 13.7 Assuming the total degree is at most  S /2., the zero-polynomial 
testing problem is in BPP.. 

Proof Suppose we select x1, . . . , xn . uniformly at random. Like with the algorithm 
for primality testing, we may assert that the test is inclusive with a small probability. 
Otherwise, we evaluate the polynomial at the chosen x1, . . . , xn . and assert the 
polynomial to be a non-0 polynomial if, and only if, the value is not 0.   

The BPP.-membership of the zero-polynomial testing problem has many applica-
tions, which this book does not cover. 

13.3 Relations Between BPP and PH 

What is the relationship between BPP. and NP.? From the definition, we know that 
RP ⊆ NP. and coRP ⊆ coNP.. Whether NP ⊆ BPP. or BPP ⊆ NP. is unknown, but 
we can show that BPP ⊆   p2 .. 

Theorem 13.8 BPP ⊆   p 
2 .. 

Proof Overview 
Let L ∈ BPP.. Lemma 13.2 gives a probabilistic TM M whose running time 
is q(n)., and success probability (accepting when the input is a member and 
rejecting when the input is a nonmember) is 1 − 2−n .. We define an easy-to-
compute bijection from the set of all computation paths to itself. The bijection 
uses each computation path as its seed, so the number of bijections is 2q(n) .. 
For x ∈ L., there is a small set of seeds such that every computation path of 
M on x is an accepting path after applying the bijection to the path with one 
of the seeds; there is no such set if x  ∈ L.. The existence of such a set of seeds 
is testable in   p2 ..



342 13 The Probabilistic Polynomial-Time Classes

Proof Let L be a language in BPP.. Because of Lemma 13.2, a machine M exists 
with an error probability less than 2−n ..  Let q(n). be a polynomial bounding the 
running time of M . 

Let x be an arbitrary input of M and n = |x|..  Let m = q(n). and S =   m .. S is 
the set of all computation paths of M on x. For all u and y ∈ S ., we define u ⊕ y . 
as the bit-wise exclusive-or of u and y. The operation ⊕. is symmetric. For all y and 
z ∈ S ., there exists exactly one u ∈ S . such that u ⊕ y = z.. We define Q(u, y). as a 
condition stating that u⊕ y . is an accepting computation path of M on x. 

For each u,  let W(u). be the set of all y such that Q(u, y). holds. We have the 
following properties: 

1. If x ∈ L.,  S −  W(u) < 2−n S .. 
2. If x  ∈ L.,  W(u) < 2−n S .. 
We claim: 

. x ∈ L ⇐⇒ (∃(u1, . . . , um) ∈ Sm)[W(u1) ∪ · · · ∪W(um) = S].

In other words, 

x ∈ L. if, and only if, we can pick u1, . . . , um . from S so that for a ll
y ∈ S ., y ∈ W(ui). for some i. 

Let’s prove the claim. First, suppose x ∈ L.. For each y ∈ S ., the proportion of u ∈ S . 

such that y  ∈ W(u). is < 2−n ., so the proportion of u1, . . . , um . such that y  ∈ W(ui). 
for every i,  is (2−n)m = 2−nm .. We consider the proportion of (u1, . . . , um) ∈ Sm . 

such that for some y ∈ S ., y  ∈ W(ui). for all i. There are 2m . possible choices 
of y, so the proportion is at most 2m · 2−nm < 1.. This implies that there exists 
(u1, . . . , um) ∈ Sm ., S = W(u1) ∪ · · · ∪W(um).. 

On the other hand, suppose x  ∈ L.. Since  W(u) / S < 2−n ., for all 
u1, . . . , um .,  W(u1)∪· · ·∪W(um) / S < n2−n < 1.. Thus, for all (u1, . . . , um) ∈
Sm ., there exists some y such that y  ∈ W(u1) ∪ · · · ∪W(um).. 

The claim holds. 
For all u, y, z ∈ S .,  if z = u⊕ y ., then y = z ⊕ u.. The condition W(u1) ∪ · · · ∪

W(um) = S . is equivalent to the condition: 

. for all z ∈ S, one ofQ(u1 ⊕ z), . . . ,Q(um ⊕ z) holds.

The condition is in  p2 . because Q evaluates the computation of M on one path. 
Thus, L’s membership condition above is in   p2 .. 

The membership L ∈  p2 . holds because BPP = co−BPP..   



13.4 The Class PP 343

13.4 The Class PP 

Each language in BPP. has a polynomial time-bounded probabilistic TM that 
correctly decides the membership with a 1/2 +  . probability. The constant  . is 
the probabilistic machine’s advantage over a random membership guess. We now 
introduce the probabilistic polynomial-time class PP., whose advantage is negligible. 

Definition 13.5 A language L ∈ PP. if a probabilistic polynomial-time TM M 
exists such that for all inputs x, x ∈ L. if, and only if,M on x accepts with probability 
at least 1/2.. 

We can easily see that BPP. and NP. are subclasses of PP.. 

Proposition 13.7 BPP ⊆ PP.. 

Proposition 13.8 NP ⊆ PP.. 

Additionally, we have: 

Proposition 13.9 PP = co−PP.. 

We know that BPP ⊆   p2 .. Does a similar containment hold for PP., i.e., PP ⊆   pk . 

for some k? The answer is no, unless the polynomial hierarchy is finite, due to the 
following Toda’s theorem, which we state without a proof. 

Theorem 13.9 (Toda’s Theorem) PH ⊆ PPP .. 

Exercises 
13.1 An alternate definition of a probabilistic TM uses a read-only one-way infinite 
random-bit tape on which an infinitely long binary string appears at the start. The 
bit at each position is chosen independently with probability 1/2.. Prove this model 
is equivalent to the one given in this chapter. 

13.2 An alternate definition of BPP. uses 1/3. as the threshold instead of 1/2 +  .. 
Prove that the two definitions are equal. 

13.3 Let p(n). be a polynomial. Let M be a probabilistic TM with a property that if 
M on input x accepts, then M accepts in ≤ p(|x|). steps. Show that a probabilistic 
TM N and a polynomial q(n). exist such that for all inputs x, N on x halts in ≤
q(|x|). steps and the probability of M on x accepts equals the likelihood of N on x
accepts.

13.4 We use the majority vote on the outcomes derived from multiple executions 
of a probabilistic TM to amplify the success probability. Prove that, for languages 
in RP., we can replace the majority vote with the condition “the machine accepts 
on at least one execution” for amplifying the success probability. Assuming that the 
success probability is 1/2 +  ., analyze how many executions will be necessary to 
increase the likelihood to 1− (1/2)n . for inputs with a length of n.



344 13 The Probabilistic Polynomial-Time Classes

13.5 Prove that PBPP = BPP.. 
Hint: Think of a polynomial time-bounded deterministic oracle TM M that 

accepts a language in PBPP .withA ∈ BPP. as the oracle. Let N be a probabilistic TM 
with whichA ∈ BPP.. We can assume that N ’s probability of failure is exponentially 
small. We can simulate M by handling each query with a simulation of N .

13.6 Prove Proposition 13.2. 

13.7 Prove if NP ⊆ BPP., NP = RP.. 
Hint: Assuming a BPP.-algorithm for SAT ., you can find the maximum satisfying 

assignment and verify the correctness of the assignment. 

13.8 Combine known results to prove NP ⊆ BPP ⇒   
p

2 =  p2 .. 

13.9 Prove Proposition 13.3; i.e., each integer n ≥ 1. is uniquely expressible as the 
product of distinct prime powers. 

13.10 With the GCD algorithm presented in Algorithm 13.1,  if m > 0.,  the  value  
of n will become ≤ n/2. in one or two executions of the loop-body. Prove this 
property. Then, prove that the running time of the algorithm is O((log(m+ n))3).. 
13.11 Prove that for all integers n ≥ 2. and a ∈ Z∗

n ., a positive integer k exists such 
that ak ≡ 1 (mod n).. 

13.12 Prove if p is an odd prime number, and e ≥ 1. is an integer, then the equation 
x2 ≡ 1 (mod pe). has only ± 1. as its solution. 

Hint: Examine the coefficients of αp ± 1 (mod pe).. 

13.13 Prove that the R in the Chinese Remainder Theorem (Theorem 13.2)  is  
unique.

13.14 Prove Corollary 13.1. 

13.15 Prove Proposition 13.4. 

13.16 Prove Proposition 13.5. 

13.17 Prove that BPP ⊆ PP.. 

13.18 Prove that NP ⊆ PP.. 

13.19 Prove that PP = co−PP.. 

13.20 Based on Toda’s theorem, show that if PP ⊆   pk ., then PH =  pk+1 .. 

Bibliographic Notes and Further Reading 
Probabilistic TM models and the classes BPP., RP., coRP., ZPP., and PP. were 
introduced by Gill [6]. The results about BPP. appearing in Exercises 13.5 and 13.7 
are  by  K  o [8]. Simon’s independent work introduced and studied the class PP. 

(under a different name of CP., meaning the “counting polynomial time”). Simon 
also considered the class C=P., a superclass of coNP., and a subclass of PP.. Toda’s 
theorem [18] is by Toda. Related to this, Toda and the author of this textbook showed 
that an analog of Toda’s theorem, NPC=P ., holds for C=P. [19].



References 345

The inclusion of BPP. in the polynomial hierarchy theorem 13.8 is due to the 
independent work of Lautemann [9] and Sipser [16]. 

The Chernoff-Hoeffding bound integrates independent but related results by 
Chernoff [4] and Hoeffding [7]. 

Many accessible elementary number theory books exist. The reader may consult 
with [3]. Miller’s test is by Miller [10]. Miller’s conjecture about the minimum 
base serving as a witness for compositeness is based on the generalized Riemann 
hypothesis. Rabin’s primality testing algorithm is fully probabilistic and appears 
in [13]. While the Miller-Rabin test puts PRIMES . in coRP., and thus, in coNP.,  it  
was unknown if PRIMES ∈ RP.. The result about the smallest bases with which 
pseudoprimes can be detect is by Pomerance, Selfridge, and Wagstaff [11]. 

Theorem 13.5 is by Adleman and Huang [1]. Its proof is more than 100 pages in 
length. Before the resolution, the only known result was PRIMES ∈ NP.by Pratt [12]. 
Theorem 13.6 is by Agrawal, Kayal, and Saxena [2]. The RSA cryptography is by 
Rivest, Shamir, and Adleman [14]. Although not covered in this chapter, Solovay 
and Strassen [17] proposed a primality testing algorithm that uses Euler’s primality 
criterion based on the Jacobi symbol. Compared with PRIMES ∈ coRP., showing 
PRIMES ∈ RP.was more challenging. 

The zero-polynomial testing algorithm was discovered independently by Demillo 
and Lipton [5], Zippel [20], and Schwartz [15]. 

References 

1. L.M. Adleman, M.-D.A. Huang, Primality Testing and Abelian Varieties Over Finite Fields 
(Springer, Berlin, 2006) 

2. M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P. Ann. Math. 160(2), 781–793 (2004) 
3. J.A. Anderson, J.M. Bell, Number Theory with Applications, 1st edn. (Prentice-Hall, Upper 

Saddle River, 1997). 
4. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of 

observations. Ann. Math. Stat. 23(4), 493–507 (1952) 
5. R.A. Demillo, R.J. Lipton, A probabilistic remark on algebraic program testing. Inform. 

Process. Lett. 7(4), 193–195 (1978) 
6. J. Gill, Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6(4), 

675–695 (1977) 
7. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat. 

Assoc. 58(301), 13–30 (1963) 
8. K.-I. Ko, Some observations on the probabilistic algorithms and NP-hard problems. Inform. 

Process. Lett. 14(1), 39–43 (1982) 
9. C. Lautemann, BPP and the polynomial hierarchy. Inform. Process. Lett. 17(4), 215–217 

(1983) 
10. G.L. Miller, Riemann’s hypothesis and tests for primality. J. Comp. Syst. Sci. 13(3), 300–317 

(1976) 
11. C. Pomerance, J.L. Selfridge, S.S. Wagstaff, The pseudoprimes to 24 · 109 .. Math. Comp. 35, 

1003–1026 (1980) 
12. V.R. Pratt, Every prime has a succinct certificate. SIAM J. Comput. 4(3), 214–220 (1975) 
13. M.O. Rabin, Probabilistic algorithm for testing primality. J. Number Theory 12(1), 128–138 

(1980)



346 13 The Probabilistic Polynomial-Time Classes

14. R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM 21(2), 120–126 (1978) 

15. J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities. J. ACM 
27(4), 701–717 (1980) 

16. M.J. Sipser, A complexity theoretic approach to randomness, in Proceedings of the Fifteenth 
Annual ACM Symposium on Theory of Computing, STOC ’83 (1983), pp. 330–335 

17. R. Solovay, V. Strassen, A fast Monte-Carlo test for primality. SIAM J. Comput. 6(1), 84–85 
(1977) 

18. S. Toda, PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 
(1991) 

19. S. Toda, M. Ogiwara, Counting classes are at least as hard as the polynomial-time hierarchy. 
SIAM J. Comput. 21(2), 316–328 (1992) 

20. R. Zippel, Probabilistic algorithms for sparse polynomials, in Symbolic and Algebraic Compu-
tation, ed. by E.W. Ng (Springer, Berlin, Heidelberg, 1979), pp. 216–226



Chapter 14 
Circuit Complexity and Unambiguity 

14.1 The Circuit Computation Models 

In this section, we study the circuit model and the class of languages recognized by 
a series of polynomial-size circuits. 

14.1.1 The Boolean Circuit Model 

The primary circuit model is the Boolean circuit model, which operates on Boolean 
values. A Boolean circuit is a vertex-labeled acyclic directed graph, whose vertices 
are called the gates and are expected to compute Boolean functions. The vertex 
labels are the Boolean functions they compute. We call the edges connecting 
between gates the wires. The source vertices of the circuit are for receiving the 
circuit’s input and are called the input gates. The value at each input gate is fixed 
before the computation according to the input received. The value a gate computes 
is transmitted along its outgoing edges to each destination vertex. Each non-input 
vertex computes its function according to the input values it receives. The circuit’s 
sink vertices serve as the output gates. We can envision Boolean signals traveling 
from the input and output gates. We sometimes call Boolean circuits feed-forward 
Boolean circuits to reflect upon this idea. The number of source vertices is the 
input size, and the number of sink vertices is the output size. Each non-input 
vertex has a Boolean function as its label, and it computes the Boolean function 
of the values calculated at its source gates. The in-degree of the gate matches the 
argument number of the Boolean function. 

Two quantities exist for measuring a circuit’s resource requirements: the size 
and depth. The size of a circuit is the number of vertices in the network, and the 
depth is the length of the longest source-to-sink path in the network. For a circuit C, 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0_14

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84740-0protect T1	extunderscore 14&domain=pdf
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14
https://doi.org/10.1007/978-3-031-84740-0_14


348 14 Circuit Complexity and Unambiguity

size(C). and depth(C). represent the size and the depth of C, respectively. Note that 
depth(C) ≤ size(C).. 

Given a circuit C and its input x, we denote its output with C(x).. Since a circuit 
is acyclic, we determine C(x). by stratifying the gates into levels according to the 
distance from the input gates, where the input gates are at level 0, and the output 
gates are at level depth(C).. The level of a non-input gate is 1 plus the maximum 
level of the gates from which the gate receives the input signals. 

We classify circuits according to the basis, the set of functions that can appear at 
the gates. Any complete Boolean basis can be used to compute any Boolean function 
using a circuit. The most typical basis is {∨,∧,¬}.; {∨,∧}. can be used instead. A 
circuit with {∨,∧}. as the basis is a monotone circuit. For a monotone circuit, we 
augment its input by adding the negation of each input value, which doubles the 
number of source vertices in the graph. 

We classify circuits by the maximum number of inputs we can feed to the basis 
functions. When the in-degree is 2 for both types, a circuit is a bounded fan-in 
circuit. When the in-degree has no upper bounds, a circuit is an unbounded fan-in 
circuit. When the in-degree is at most two for only one type, a circuit is a semi-
unbounded fan-in circuit. 

When drawing a circuit, we often place the input gates at the bottom and the 
output gates at the top. Figure 14.1 shows an example. 

Since a Boolean circuit has a fixed input size, we require a circuit for each input 
size n. Unlike the computation models we previously studied, circuit models thus 
require a family of circuits indexed by the input size, where the indices start from 1. 
The lack of input values for size-0 inputs justifies the exclusion of input size 0. 

Definition 14.1 Let C = {Cn}n≥1 . be a circuit family. We say that C. decides a 
language L ⊆ {0, 1}∗

. if for all n and x, |x| = n., x ∈ L. if, and only if, Cn(x) = 1.. 

Since the circuit-based decision of languages requires an infinite sequence of 
circuits for all input sizes, we consider how to obtain the circuit for each length. We 
say that a circuit family C. is uniform if there is a TM that, for every n, produces Cn . 
from n. An input to the machine is the single-letter encoding, 1n ., of  n. The encoding 
of a Boolean circuit can be the adjacency matrix of a vertex-labeled directed graph. 
We can assume that the first n vertices in the matrix are the input gates, and the

Fig. 14.1 A four-input 
Boolean circuit that tests 
whether or not bits 1 and 2 
are equal, and bits 3 and 4 are 
equal. The size of the circuit 
is 13, and the depth is 4



14.1 The Circuit Computation Models 349

last vertex is the output gate. In the case of a model in which the negation of the 
input is readily available, the n vertices after the input are the negation of the input. 
Along with the connectivity, a bit sequence representing the gate types is part of the 
encoding. For example, we can use two bits each with 00 for the input, 01 for ∨., 
10 for ∧., and 11 for ¬.. A family without the specification of the uniform circuit 
production is a nonuniform circuit family. 

There are multiple uniformity types in use. Among them, the most typical 
are logspace uniformity and P uniformity. The former requires the circuit that 
produces the TM to use space O(log n)., and the latter requires that the machine 
runs in polynomial time. In this section, we use P.-uniformity, but the results also 
hold for logspace uniformity. 

We now define some circuit complexity classes. 

Definition 14.2 For each k ≥ 0., ACk . is the class of languages decidable by a P.-
uniform family of polynomial-size, O((log n)k).-depth unbounded-fan-in circuits. 

We define AC = ∪k≥0ACk .. 

Definition 14.3 For each k ≥ 0., NCk . is the class of languages decidable by a P.-
uniform family of polynomial-size, O((log n)k).-depth bounded-fan-in circuits. 

We define NC = ∪k≥0NCk .. 

Definition 14.4 For each k ≥ 0., SACk . is the class of languages decidable by 
a P.-uniform family of polynomial-size, O((log n)k).-depth semi-bounded-fan-in 
circuits. 

We define SAC = ∪k≥0SACk .. 

Definition 14.5 PSIZE. is the class of languages decidable by a P.-uniform family 
of polynomial-size circuits. 

Among NC., SAC., and AC., the fan-in is the most restrictive in NC. and the most 
flexible in AC.. So, we immediately have the following proposition. 

Proposition 14.1 For all k ≥ 0., NCk ⊆ SACk ⊆ ACk .. 

For each m, the  ∨. of m inputs can be computed by a bounded fan-in circuit 
of 2-fan-in ∨. gates having a size of m − 1. and a depth of  logm .. The same  
holds for ∧.. Suppose we substitute each gate with its bounded-fan-in version, given 
an unbounded-fan-in circuit having a size of s and a depth of d. Since each gate 
in the original circuit has at most s inputs, the substitution increases the size to
O(s2).. Also, since the longest path in the original is d, the substitution increases 
the depth to O(d log s).. Suppose we apply the substitution to all members in an 
AC. circuit family whose size is O(p(n)). and depth is O((log n)k).. The resulting 
circuit family still accepts the same language and has size O((p(n))2). and depth 
((log n)k log(p(n))).. Since p(n). is polynomial, the size of the resulting circuit is 
still bounded by some polynomial, and the depth isO((log n)k+1).. This observation 
gives the following proposition:



350 14 Circuit Complexity and Unambiguity

Proposition 14.2 ACk ⊆ NCk+1
.. 

Thus, we have a hierarchy of circuit classes. 

. NC0 ⊆ SAC0 ⊆ AC0 ⊆ NC1 ⊆ SAC1 ⊆ AC1 ⊆ · · · ⊆ PSIZE.

It is unknown which containments in the sequence are proper, except for the 
following two. 

Proposition 14.3 NC0 ⊂ SAC 0 .; i.e., NC0
. is properly contained in SAC0

.. 

Theorem 14.1 AC0 ⊂ NC1
.; i.e., AC0

. is properly contained in NC1
.. 

The first one is easy to prove since constant-depth bounded-fan-in circuits can 
examine only a constant number of input bits. We leave the task of proving the 
proposition to the reader. 

Proving the second proper containment is elaborate. The proof uses the so-called 
random restriction technique, which selects some input bits and selects their values 
according to a probability distribution. 

Both containment results hold regardless of the uniformity condition. 

14.1.2 Relations Between Boolean Circuit-Based Classes and 
TM-Based Classes 

Comparing TM-based and circuit-based complexity classes requires the conversion 
of an arbitrary alphabet to a binary alphabet. Given an alphabet size of m, we encode 
the alphabet’s symbols using unique m-bit strings with exactly one bit set to 1. The 
position at which the sole bit 1 appears gives the symbol’s index, which can be 
quickly recovered from the s-bit string. The binary encoding increases the input 
length from n to nm.. From this point on, we consider only languages of binary 
strings. 

The following result, whose proof is left to the reader, connects polynomial-time 
Turing-machine computation and polynomial-size circuit computation. 

Proposition 14.4 P = PSIZE.. 

This proposition raises the question of whether or not subclasses of P. have 
relations with subclasses of PSIZE.. The following proposition makes such a 
connection. 

Theorem 14.2 NL ⊆ SAC 1 .. 

Proof Let L be a language in NL.. LetM = (Q, {0, 1},  , δ, q0, qacc, qrej). be a one 
work tape offline nondeterminic TM that accepts L. In the proof of Theorem 10.7, 
we analyzed the reachability of a directed graph connecting between IDs of a 
machine. In that graph, for each pair of IDs I and J , we drew an edge from I to J



14.1 The Circuit Computation Models 351

if M could transition from I to J in one step. Any ID of a TM consists of its state, 
head positions, and tape contents. Because M is O(log n). space-bounded, for each 
input having a length of n, the encoding of ID has a length of c log n). in binary, and 
a polynomial p(n) = 2c log n

.. Let I1, . . . , Ip(n) . be an enumeration of all (c log n).-bit 
strings. All the possible IDs of M on inputs having a length of n are among them. 
We build a reachability graph with these IDs as the vertices as follows:

 A unique ID corresponds to the initial ID.
 A unique ID corresponds to a unique accepting ID.
 The indices of the initial and accepting IDs are the same for all inputs having a 

length of n.
 If s = t ., the self-loop (Is, It ). exists.
 For other prospective edges e = (Is, It ). such that s  = t ., there are four 

possibilities: 

– e is absent regardless of the i nput.
– e is present regardless of the i nput.
– e is present if a bit xk . of the input is 0 for some k. 
– e is present if a bit xk . is 1 for some k. 

We can use (p(n))2 . bits to encode the reachability graph’s adjacency matrix, G, 
on input x. The matrix is computable from the input by examining at most one 
input bit for entry. Let H = Gp(n) . with {∨,∧}. as the basis. We can compute H 
using 2 log(p(n)) . matrix multiplications. Each entry in the matrix product is the 
inner product of a row vector and a column vector having a dimension of p(n). 
with a p(n).-fan-in ∨. and p(n).i two-fan-in ∧.s. In other words, given two matrices 
A = (aij ). and B = (bij )., the  aij . of the product AB is: 

. ai1 · b1j + ai2 · b2j + · · · + ai,p(n) · bp(n),j .

Here, (ai1, . . . , ai,p(n)). is the i-th row vector of A, and (b1j , . . . , bp(n),j ). is the j -th 
column vector of B. Thus, the computation of single matrix multiplication can be 
carried out with a depth-2 semi-unbounded-fan-in circuit. Since the computation 
of H requires a sequence of O(log(p(n))) = O(log n). matrix multiplications, 
an O(log n).-depth semi-unbounded circuit is sufficient for computing H . After  
computing H , we can check if M accepts x by examining H ’s entry corresponding 
to the edge from the initial ID to the accepting ID. 

As we observed, the bit of the matrix is 0, 1, xk . for some k, or  ¬xk . for some k. 
Assuming that the input is augmented by its negation, 0 is producible with an ∧. of 
x1 . and ¬x1 ., and 1 is producible with an ∨. of x1 . and ¬x1 .. Thus, the depth of the 
circuit is O(log n).. The size of the circuit is: 

. 2 + (p(n)2(p(n)+ 1)(2 log(p(n))) = O(p(n)3 log n).

Thus, the circuit is a polynomial-size circuit. This proves the theorem.   



352 14 Circuit Complexity and Unambiguity

14.1.3 The Arithmetic Circuit Model 

An extension of the Boolean circuit model is the arithmetic circuit model that 
operates in a finite field F (such as Zp . for some prime number p). In this model, a 
circuit receives a series of elements from a field F and processes the input through 
field operations (+,−., and ∗.). Since the operations are binary and unary, we only 
consider bounded fan-in circuits as viable models. 

Definition 14.6 Let F be a finite field. For each k, NCkF . is the class of problems 
computable using polynomial-size, O((log n)k).-depth bounded-fan-in arithmetic 
circuits over F . 

A wide variety of problems in linear algebra over F are known to be in NCkF ., 
including the following result, which we state without proof: 

Theorem 14.3 For every finite field F , the determinant of a matrix over F is in the 
logspace-uniform NC2

F .. 

Given the logspace-uniform NC2
. computability of the determinant in the field F , 

several circuit complexity results follow. 

14.2 The Class P/poly 

P/poly. is the nonuniform version of the polynomial-size circuit complexity class. 

Definition 14.7 P/poly. is the class of languages decidable by a nonuniform family 
of polynomial-size circuits. 

Proposition 14.4 states the equality between P. and PSIZE.. We have the following 
result since P/poly. is the nonuniform version. 

Proposition 14.5 P ⊆ P/poly.. 

P/poly. has an alternate definition that employs languages in P.. 
A sequence {wn}n≥1 . is polynomial length-bounded if there is a polynomial 

p(n). such that for all n ≥ 1., |wn| ≤ p(n).. 

Definition 14.8 A language L is in P/poly. if a polynomial length-bounded 
sequenceW = {wi}i≥1 . and a language A ∈ P. exists such that for all x: 

. x ∈ L ⇐⇒   x,w|x| ∈ A.

We call the string sequence W the advice, and call A the witness language. The 
equality of the two definitions is easy to prove (see Exercise 14.6). 

How large is the class P/poly.? We know BPP ⊆ P/poly.. 

Theorem 14.4 BPP ⊆ P/poly..



14.2 The Class P/poly 353

Proof Suppose L ∈ BPP.. As with the proof for Proposition 14.4, we consider 
the binary input alphabet. By Lemma 13.2, a polynomial-time probabilistic TM M 
exists such that M’s error probability is less than 2−2n

.. Let  p(n). be a polynomial 
bounding the running time of M . Let  n be an integer. We consider all computation 
paths, in {0, 1}p(n) ., for all inputs having a length of n. Since there are 2n . inputs 
having a length of n and the error probability is less than 2−2n

., the aggregate total 
of the error probability values is < 1.. This means that there is a computation path 
producing an error for no inputs. We select such a path and appoint it as the advice 
for length n. The witness language is the set of pairs   x, y . such that M accepts x 
using y as the computation path. This circuit has its size bounded by O(p(n)2). and 
correctly decides the membership of all inputs having a length of n.   

Does the containment in P/poly. hold for other classes? A natural candidate for 
this containment is NP.. We do not have a definitive answer, but we know NP ⊆ BPP. 

implies the collapse of the polynomial hierarchy. 

Theorem 14.5 If NP ⊆ P/poly., then  p2 ⊆  
p

2 .. 

Proof Overview 
Let L be an arbitrary language in  p2 .. Due to Theorem 12.4, L has a 
“universal” witness scheme in NP.; a string x ∈ L. if, and only if, for 
all y, |y| ≤ q(|x|)., f (x, y). is satisfiable, where f is a polynomial-time 
computable function that maps an arbitrary pair of strings to a 3CNF formula. 
There is a polynomial r(n). bounding the length of the formula f produced 
from x with any y, |y| ≤ q(|x|)., as the input. Every nontrivial 3CNF formula 
has the disjunctive self-reducibility as we observed in Sect. 12.1; a 3CNF  
formula ϕ . is satisfiable if, and only if, ϕ0 . or ϕ1 . is satisfiable, where ϕ0 . and 
ϕ1 . are constructed from ϕ . by assigning false. and true. to the first variable ϕ ., 
respectively. 

Assume NP ⊆ P/poly.. A pair of polynomial p(n). bounding the length 
of advice and a polynomial-time witness language A puts 3SAT . in P/poly.. 
Let x be a string we want to test if x ∈ L.. Suppose we nondeterministically 
guess r(|x|). advice strings w1, . . . , wr(|x|) . and conduct the following test for 
all nontrivial formulas ϕ . having a length ≤ r(|x|).: 
(i) We generate ϕ0 . and ϕ1 . from ϕ . by assigning the value of false. and true. 

to the first variable of ϕ ., respectively. 
(ii) We use A and the guessed advice strings to compute the satisfiability of 

the three formulas, ϕ ., ϕ0 ., and ϕ1 .. 
(iii) We check if the three values we computed in (ii) are consistent with the 

self-reducibility of 3SAT .; i.e., ϕ . is satisfiable if, and only if, ϕ0 . or ϕ1 . is 
satisfiable. 

(continued)



354 14 Circuit Complexity and Unambiguity

By the assumption that 3SAT . is in P/poly., a sequence of advice strings passes 
the test. Once we have such a sequence, we can determine the membership 
of x in L by checking if, for all y, f (x, y). produces a 3CNF formula that 
satisfies the advice sequence and A. The correctness verification of the advice 
sequence is in coNP.. The membership test for x is in coNP. for each fixed 
advice sequence. Thus, we have  p2 ⊆  

p

2 .. 

Proof Assume NP ⊆ P/poly.. Then a polynomial advice scheme exists for the NP.-
complete 3SAT .; there exists a language A ∈ P. and a polynomial length-bounded 
advice sequence {wn}n≥1 . such that for all 3CNF formulas ϕ ., ϕ ∈ 3SAT . if, and only 
if,   ϕ,w|ϕ| ∈ A.. Let  p(n). be a polynomial such that for all n, |wn| ≤ p(n).. 

Let L be an arbitrary language in  p2 .. There exists a polynomial q(n). and a 
language B ∈ NP. such that for all x, x ∈ L. if, and only if, for all z such that
|z| = q(|x|).,   x, z ∈ B .. Let  f be a ≤pm .-reduction from B to 3SAT .. Then, we 
have a characterization of L; for all x, x ∈ L. if, and only if, for all z such that
|z| = q(|x|)., f (x, z) ∈ 3SAT .. Because f is polynomial-time computable, there 
exists a polynomial r(n)., such that for all x such that |x| = n., and for all z such that
|z| = q(n)., |f (x, z)| ≤ r(n).. 

Let s(n) = p(r(n)).. By combining the two characterizations, for all x, x ∈ L. if, 
and only if, there exists a sequence of advice W = [w1, . . . , ws(|x|)]. satisfying the 
following conditions: 

(i) W ’s elements serve as correct advice strings for all formulas whose length is at 
most r(|x|). with A as the witness l anguage.

(ii) For all z such that |z| = q(|x|)., f (x, z). is satisfiable according to W and A .

We use the following disjunctive self-reducibility of SAT ., which 3SAT . also 
possesses, to test (i): 

A nontrivial formula ϕ . is satisfiable if, and only if, ϕ0 . or ϕ1 . is satisfiable, where 
ϕb . is the formula obtained from ϕ . by assigning the value b to its first variable. 

Test for (i) is this for all formulas ϕ .:

 If ϕ . has only one variable, ϕ ∈ 3SAT ⇐⇒   ϕ,W|ϕ| ∈ A..
 If ϕ .has more than one variable, ϕ ∈ 3SAT ⇐⇒   ϕ0,W|ϕ0| ∈ A∨  ϕ1,W|ϕ1| ∈
A.. 

Using induction on the number of variables, we can show that if W satisfies the two 
conditions, W serves as a correct advice sequence for all formulas ϕ . whose length 
is at most s(n). (see Exercise 14.7). 

Since A ∈ P., the tests for (i) and (ii) are in coNP.. Thus, L is the set of all x for 
which a sequence W passes the coNP. tests for (i) and (ii). This implies that L ∈  p2 .. 

This proves the theorem.   
The concept of P/poly. with polynomial length-bounded advice and a witness 

language in P. naturally extends to other witness language classes.



14.3 Unambiguous Accepting Computation Paths of NTMs 355

Definition 14.9 Let C. be a language class. A language L is in C/poly. if there exists 
a polynomial p(n)., a language A ∈ C., and a sequence of strings {Wn}n≥1 . such 
that: 

1. For each n ≥ 1., |Wn| ≤ p(n). 

2. For all x, x ∈ L ⇐⇒   x,W|x| ∈ A. 

14.3 Unambiguous Accepting Computation Paths of NTMs 

We now look into the question of ambiguity in NTM computation. 
Previously, we referred to the multiple possibilities in leftmost production trees 

as ambiguity. Suppose we have a CNF grammar G. Think of an NTM M for testing 
the membership in L(G).. Suppose M’s algorithm is to start from the start variable, 
apply 2|w| − 1. times any applicable production rule to the leftmost variable, and 
check if w emerges. The TM places L(G) ∈ NTIME[n].. Also, if G is unambiguous, 
then M has only one accepting computation path for each member of L(G).. We call 
such a TM unambiguous. We define a subclass UP. of NP. as follows: 

Definition 14.10 UP. is the class of languages a polynomial-time ambiguous NTM 
accepts. 

The class UP. resides in is between P. and NP.; i.e., P ⊆ UP ⊆ NP.. It is still being 
determined whether or not either inclusion is proper. Also unknown is if UP = NP. 

implies the collapse of the polynomial hierarchy. 
A problem similar to UP. is the problem of testing if a 3CNF formula has exactly 

one satisfying assignment. We refer to this problem as USAT.. The uniqueness in 
USAT. differs from that in UP.. USAT. asks if the number of satisfying assignments 
is exactly 1, where each candidate formula may have any number of satisfying 
assignments. In contrast, if we encode the computation of a TM witnessing a 
language in UP., the formula is guaranteed to have 0 or 1 satisfying assignment(s). 
In addition, coNP. is a subclass of USAT.. 

The following result, which we can prove using the isolation lemma, connects 
NP. and USAT.. 

Theorem 14.6 A randomized polynomial-time algorithm for SAT . exists such that 
for each input formula ϕ ., the algorithm generates a polynomial number of formulas 
ψ1, . . . , ψm ., with the following properties:

 If ϕ . is not satisfiable, none of ψ1, . . . , ψm . is satisfiable.
 If ϕ . is satisfiable, the probability that one of ψ1, . . . , ψm . has exactly one 

satisfying assignment is ≥ 1/.. 

Put differently, SAT . is randomized polynomial-time disjunctively truth-table 
reducible to USAT.. 

We postpone the proof of Theorem 14.6 to the Exercises section.



356 14 Circuit Complexity and Unambiguity

A logarithmic-space analog of UP. is the unambiguous NL., denoted as UL.. 

Definition 14.11 UL. is the class of languages a logarithmic space-bounded 
ambiguous NTM accepts. 

Interestingly, as stated next, we know the equality UL = NL. if polynomial 
length-bounded advice is available. 

Theorem 14.7 NL/poly = UL/poly.. 

Proof Overview 
The proof of NL = coNL. (Theorem 10.7) employed an inductive counting 
method for the reachability problem in a directed graph representing the 
computation of a nondeterministic logarithmic space-bounded machine. We 
augment the proof in four ways. 

1. We consider assigning random weights to each edge. We show that with 
probability ≥ 1/2., the weight assignment induces a unique minimum-
weight path between any vertex pair (s, t). such that t is reachable from 
s .

2. We show that when there are some polynomial number of independent 
weight assignments, one of the weight assignments induces a unique 
minimum-weight path. 

3. Using an argument similar to BPP ⊆ P/poly. (Theorem 14.4), we show 
that a sequence of weight functions works for all n-vertex graphs. 

4. We show that the inductive counting method is extensible to the case where 
minimum-weight paths are unique. 

Proof Let M be a logarithmic space-bounded nondeterministic single-tape offline 
TM. Let L = L(M).. The ID of an offline TM comprises the tape content, the head 
positions, and the state. As with the proof from earlier in this chapter, let p(n). be 
a polynomial that bounds the number of IDs of M . We can assume that each graph 
we consider has exactly p(n). vertices for some n, and Vertices 1 and p(n). are the 
initial ID and the accepting ID, respectively. Since our interest is in reachability, we 
can safely remove all the self-loops. 

We will show that there is a reachability algorithm in UL/poly.. Then, we can 
construct an algorithm for L in UL/poly.. The algorithm dynamically generates the 
instance of the reachability problem from its input and runs the UL/poly. algorithm 
on the graph. 

Let G = (V ,E). be an m-vertex graph and t be a vertex pair. Let v1, . . . , vm . be 
an enumeration of G’s vertices. We want to test whether or not vm . is reachable from 
v1 .. Let  W be a random edge-weight function, where each prospective edge receives 
an integer weight chosen independently and uniformly at random from the interval



14.3 Unambiguous Accepting Computation Paths of NTMs 357

[1, 4m3].. Let  u and e be such that u is a vertex, e is an edge, u is reachable from
v1 ., and e appears on some path from v1 . to u. We say that e’s weight is singular for 
u if there are two minimum-weight paths from v1 . to u, where one passes through 
e, and the other avoids e. If  e is singular for u, increasing e’s weight turns all the 
paths containing e into non-minimal ones, and decreasing e’s weight turns all the 
paths avoiding e into non-minimal ones. We extend the definition of singularity 
to the weight assignment W . We say that W is singular if, for some u and e, e’s 
edge in W is singular for u. Each e has at most one singular weight for each u. 
There are m possibilities for u, so the proportion of e’s singular weight choices for 
some u is at most m out of 4m3

.. The proportion equals 1 out of 4m2
.. There are 

2m2
. possibilities for e. The proportion of singular W s is maximized where each 

singular W gives the singularity of one edge e. Thus, the proportion of singular W 
is ≤ (1/4m2)(2m2) = 1/2.. 

Suppose Y =   W1, . . . ,Wm2 . is a sequence of weight assignments. We say that 
Y is singular if all its weight assignments are singular. If the weight assignments 
are independently chosen, the probability that Y is singular is at most 1/2m

2
.. There 

are m(m − 1). possible directed edges in an m-vertex directed graph without self-
loops, so there are 2m(m−1)

. possible m-vertex directed graphs. This means that the 
proportion of singular Y is ≤ (1/2m

2
)(2m(m−1)) = 1/2m ., so some Y is singular for 

no graphs. Let us choose one such Y as the advice for all m-vertex graphs. 
We will now show that for each graph G and a weight assignment W , there is

a UL.-type algorithm for testing W ’s singularity; the algorithm runs nondetermin-
istically in logarithmic space and asserts W is singular/non-singular in exactly one 
computation path. The algorithm aborts the computation without a conclusion in the 
other computation paths. 

From G and W , we construct a graphGW .by replacing an edge e = (u, v).having 
a weight w to a path [u0, . . . , uw]. by introducing new vertices u1, . . . , uw−1 ., where 
u0 = u. and uw = v .. The new vertices are not shared with other such paths. The 
graph GW . has ≤ m(4m3). vertices. Since GW . represents each weighted edge as a 
path, W is non-singular if, and only if, every vertex reachable from v1 . has a unique 
shortest path from v1 .. Also, the shortest path from v1 . to vm . inGW ., if any, has a path 
length of at most m · (4m3) = 4m4

.. 
For each d such that 0 ≤ d ≤ 4m4

., let  ρd . be the number of vertices in GW . 

reachable from v1 . in at most d steps, and σd . be the sum of the shortest path length 
from 1 to the vertices in ρd .. For all d, ρd ≤ 4m4

. and σd ≤ (4m4)2 = 16m8
.. Also,  

ρd = 1. (i.e., only v1 . is reachable from v1 . with a distance of 0), and σ0 = 0.. 
We show that ρd . and σd . are computable from ρd−1 . and σd−1 . in UL. in the 

following manner: 
We initialize two counts R and S to 0. Then, for each vertex v in Gw ., we  

nondeterministically follow a path from v1 . having a length of 1, . . . , d − 1. in this 
order to see if the path leads to v. If we find such a path, we add 1 to R and the 
path length to S. When the examination is complete for all vertices, the following



358 14 Circuit Complexity and Unambiguity

properties hold:

 R  >  ρd−1 . never occurs.
 If R < ρd−1 ., the search missed a vertex reachable in ≤ d − 1. steps, so we abort 

the computation.
 If R = ρd−1 . and S > σd−1 ., the search found a non-minimal path, so we abort 

the computation.
 If R = ρd−1 ., S < σd−1 . never occurs.
 If R = ρd−1 . and S = σd−1 ., assuming thatGW . is non-singular for all the vertices 

reachable in ≤ d − 1. steps, there is only one computation path that finds R =
ρd−1 . and S = σd−1 .. 

Now, using the verification procedure of R and S, we compute δ = ρd − ρd−1 .. We  
initialize δ . with 0. We then repeatedly run the verification procedure to check, for 
each vertex u, if it satisfies the following sequence of conditions:

 If the distance of u from v1 . is ≤ d − 1., no further action for u.
 If the distance of u from v1 . is ≥ d ., count the vertices u 

. whose distance from v1 . 
is exactly d − 1., and there is an edge (u , u)..

 If this count is ≥ 2., W is singular, so abort the computation.
 If the count is 1, add 1 to δ .. 

After the checks are complete for all u, we add δ . to ρ . and δ · d . to σ .. 
We rerun the verification after computing ρ4m4 .. We accept if the target vertex is 

among the vertices at a distance ≤ 4m4
. and reject otherwise. 

The proof is complete.   
Exercises 
14.1 Prove NC0 ⊂ SAC0

.. 

14.2 Prove P = PSIZE.. 

14.3 We can prove something more substantial than the equality from the previous 
question; for each language in P., there is a logspace-uniform family of polynomial-
size circuits accepting it. Prove this inclusion. 

14.4 Theorem 14.3 states that the determinant of a matrix over a field F can be 
computed in NC2

F .. Based on this theorem, show that NC2
F . circuits can solve the 

system of linear equations over F ,Ax = b., where A is a square matrix of dimension 
n, b is an n-dimensional vector, and x is a vector of n indeterminates.

14.5 Prove that P/poly. contains a non-recursive language. 
Hint: Construct a language in {0}∗

.. A polynomial size-circuit family can 
recognize the language (the size can be linear in the length of the input). The 
construction can be based on HALTTM . or any non-recursive language. 

14.6 Prove that the circuit-based and the advice-based definitions of P/poly. are 
equivalent.



14.3 Unambiguous Accepting Computation Paths of NTMs 359

14.7 In the proof of Theorem 14.5, we stated that the candidate advice sequence 
W serves as a correct advice sequence if it satisfies the disjunctive self-reducibility 
condition. Prove this property using induction on the number of va riables.

14.8 Show that SUBSETSUM . is disjunctive self-reducible. 

14.9 Show that 3DM. is disjunctive self-reducible. 

14.10 A sequence {wn}n≥1 . is logarithmic length-bounded if there is a constant 
c such that for all n ≥ 1., |wn| ≤ c log n.. Let  P/log. be a version of P/poly. where 
the advice sequence is logarithmic length-bounded. Show that if NP ⊆ P/log., then 
NP = coNP.. 

Hint: Think of the version of SAT ., SAT = {w01t | w ∈ SAT}.. Assuming 
NP ⊆ P/log., we can try all possible advice strings to find the correct advice and 
then use it to determine the satisfiability. 

14.11 Show that NL/poly = coNL/poly = UL/poly.. 

14.12 We define CIRCUITSAT . as the problem of deciding if a Boolean circuit 
outputs 1 for some input. Show that CIRCUITSAT . is NP.-complete. 

14.13 Show that PP/poly = P/poly.. 

14.14 Show that the reachability circuit in the proof of Theorem 14.2 is producible 
in O(log n). space, and so NL. is in the logspace-uniform SAC1

.. 

14.15 Show that TAUTOLOGY . is ≤pm .-reducible to USAT.. 

14.16 We can prove Theorem 14.6 using a weight assignment scheme similar to 
the one we used in the proof of Theorem 14.7. Let  ϕ . be a 3CNF formula with n 
variables. Suppose we assign independent integer weights from [1, 2n]. uniformly 
at random to the n variables. We define each truth assignment’s weight as the 
total weights of the variables that receive true. as the assignment. Show that the 
probability that the minimum-weight satisfying assignment is unique is ≥ 1/2.. 

14.17 Let ϕ . be a formula with n variables, x1, . . . , xn ., and W = [w1, . . . , wn]. be 
a weight assignment to ϕ .’s variables where each weight is from {1, . . . , 2n}.. Show 
that for each integer t between 1 and 2n2

., a formula ϕt .with additional variables such 
that in every satisfying assignment ϕt ., if any, the total weight of xi . that receives true. 
is exactly t . 

14.18 Complete the proof of Theorem 14.6 based on the answers to the previous 
two questions. 

14.19 Show that the parity function is computable in NC1
.. 

14.20 Sorting is the problem of, given a sequence of bits a1, . . . , an ., reordering the 
bits so that any 0 appears before any 1. For example, sorting [0, 1, 0, 0, 1, 0]. results 
in [0, 0, 0, 0, 1, 1].. Show that a depth-1 bounded-fan-in circuit can sort two bits. 

14.21 Continuing the previous question, MERGESORT . sorts numbers by recur-
sively splitting the input numbers into halves, sorting each half, and then merging



360 14 Circuit Complexity and Unambiguity

the sorted halves to generate a global sorted sequence. Show that merging two 
sorted halves of 2m . elements can be accomplished by a depth-O(m). bounded-fan-in 
circuit. 

Hint: Connecting the result from the second half in the reverse order gives a 
pattern 0i1j0k .. Sorting is complete by shifting the 1s to the right. 

14.22 Continuing the previous questions, show that sorting is in NC2
. by a circuit 

that employs MERGESORT .. 

14.23 An important Boolean function is the threshold function, which receives 
some n input bits and a parameter t in the form 0n−t1t . and answers whether or 
not the number of 1s in the input is greater than or equal to t . Show that an NC0

. 

circuit placed on top of a sorting network can compute the threshold function. 

Bibliographic Notes and Further Reading 
The inclusion of NL. in SAC1

. (Theorem 14.2) is by Sudborough [17]. Proposi-
tion 14.2 is by Ruzzo [15]. The naming NC. (“Nick’s Class”) was suggested by 
Cook [7] to honor Nick Pippenger, who extensively studied the model [13]. The 
separation between AC0

. and NC1
. is by the independent work of Furst, Saxe, and 

Sipser [8] and Ajtai [2], who showed that AC0
. cannot compute the parity function 

(the function that answers whether or not the number of 1s in the input is odd). 
Theorem 14.3 is by Chistov [6]. An excellent exposition of circuit-based 

solutions to the determinant and other problems in linear algebra was given by von 
zur Gathen’s article [19]. 

An NC1
. sorting network is known to exist via Ajtai, Komlós, and Szemerédi [3]. 

The construction is very intricate and goes beyond the coverage of this book. 
Paterson [12] offers a simplified construction. 

Karp and Lipton [10] proved the collapse of the polynomial hierarchy with the 
assumption of NP ⊆ P/poly. (Theorem 14.5). 

Theorem 14.4 is a generalization of Adleman’s earlier observation that RP ⊆
P/poly. [1] and appears in Bennett and Gill [5] and Schöning [16]. The bound 
appears in many probability textbooks, including one by Alon and Spencer [4]. 

Valiant and Vazirani [18] showed Theorem 14.6 using a series of random vectors 
to filter the satisfying assignments by applying the inner product. Using weight 
assignments to generate unique minimal weight paths is by Mulmuley, Vazirani, 
and Vazirani [11]. Both filtering techniques are referred to as isolation techniques. 
Theorem 14.7 is by Reinhardt and Allender [14]. The proof of Theorem 14.6 
here adapts the isolation technique by Mulmuley, Vazirani, and Vazirani [11], 
as appearing in Hemaspaandra and Ogihara [9]. The former technique played a 
significant role in the proof of Toda’s theorem (Theorem 13.9).



References 361

References 

1. L.M. Adleman, Two theorems on random polynomial time, in Proceedings of the 19th Annual 
Symposium on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16–18 October 
1978, STOC ’78 (IEEE Computer Society, 1978), pp. 75–83 

2. M. Ajtai,  1
1 .-formulae on finite structures. Ann. Pure Appl. Logic 24(1), 1–48 (1983) 

3. M. Ajtai, J. Komlós, E. Szemerédi, An o(n log n). sorting network, in Proceedings of the 
Fifteenth Annual ACM Symposium on Theory of Computing (1983), pp. 1–9 

4. N. Alon, J.H. Spencer, The Probabilistic Method. Wiley Series in Discrete Mathematics and 
Optimization (Wiley, New York, 2015) 

5. C.H. Bennett, J. Gill, Relative to a random oracle A., PA  = NPA  = coNPA . with probability 1. 
SIAM J. Comput. 10(1), 96–113 (1981) 

6. A.L. Chistov, Fast parallel calculation of the rank of matrices over a field of arbitrary 
characteristic, in International Conference on Fundamentals of Computation Theory (Springer, 
Berlin, 1985), pp. 63–69 

7. S.A. Cook, A taxonomy of problems with fast parallel algorithms. Inform. Control 64(1–3), 
2–22 (1985) 

8. M.L. Furst, J.B. Saxe, M.J. Sipser, Parity, circuits, and the polynomial-time hierarchy. Math. 
Syst. Theory 17(1), 13–27 (1984) 

9. L.A. Hemaspaandra, M. Ogihara, The Complexity Theory Companion (Springer, Berlin, 2013) 
10. R.M. Karp, R.J. Lipton, Some connections between nonuniform and uniform complexity 

classes, in Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC  
’80 (Association for Computing Machinery, New York, 1980), pp. 302–309 

11. K. Mulmuley, U. Vazirani, V. Vazirani, Matching is as easy as matrix inversion. Combinatorica 
7, 105–113 (1987) 

12. M.S. Paterson, Improved sorting networks with o(logN). depth. Algorithmica 5(1), 75–92 
(1990) 

13. N. Pippenger, On simultaneous resource bounds, in Proceedings of the Twentieth Annual 
Symposium on Foundations of Computer Science, FOCS ’79 (IEEE, Piscataway, 1979), pp. 
307–311 

14. K. Reinhardt, E.W. Allender, Making nondeterminism unambiguous. SIAM J. Comput. 29(4), 
1118–1131 (2000) 

15. W.L. Ruzzo, Tree-size bounded alternation (extended abstract), in Proceedings of the Eleventh 
Annual ACM Symposium on Theory of Computing, STOC ’79 (Association for Computing 
Machinery, New York, 1979), pp. 352–359 

16. U. Schöning, Complexity and Structure (Springer, Berlin, 1986) 
17. I.H. Sudborough, On the tape complexity of deterministic context-free languages. J. ACM 

25(3), 405–414 (1978) 
18. L.G. Valiant, V.V. Vazirani, NP is as easy as detection unique solution. Theor. Comput. Sci. 47, 

85–93 (1986) 
19. J. von zur Gathen, Parallel linear algebra, in Synthesis of Parallel Algorithms, ed. by J. Reif 

(Morgan Kaufmann, Los Altos, 1993), pp. 574–615



Appendix A 
A List of Major Results 

A.1 Characterizations of Language Classes 

•   
p 
k ,  

p 
k , k ≥ 1. 

–   
p 
k =. the languages in P. with k preceding quantifiers that start with ∀. and 

alternate (Theorem 12.4); 3CNF formulas in place of the languages in P. if k 
is odd; 3DNF formulas if k is even (Corollary 12.4). 

–  
p 
k =. the languages in P. with k preceding quantifiers that start with ∃. and 

alternate (Theorem 12.4); 3CNF formulas in place of the languages in P. if k 
is even; 3DNF formulas if k is odd (Corollary 12.4).

 CFL. 

– CFL =. the languages with a CNF grammar (Theorem 4.2). 
– CFL =. the languages with a GNF grammar (Theorem 4.3).

 P. 

– P =. the languages accepted by polynomial time-bounded nondeterministic 
TM making O(log(n)). nondeterministic choices (Exercise 12.17).

 NP. 

– NP =. the languages having a polynomial-time witness scheme (Theo-
rem 11.4).

 R. 

– R =. the languages decidable by a multi-tape TM (Theorem 6.1). 
– R =. the languages decidable by an NTM (Theorem 6.6).

 RE. 

– RE =. the languages accepted by a multi-tape TM (Theorem 6.2). 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2025 
M. Ogihara, An Introduction to Theory of Computation, 
https://doi.org/10.1007/978-3-031-84740-0

363

https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0


364 A A List of Major Results

– RE =. the languages accepted by an NTM (Theorem 6.5). 
– RE =. the languages having an enumerator (Theorem 6.7). 
– RE =. the languages having a witness language in R. (Theorem 6.8).

 REG. 

– REG =. the languages NFAs accept (Theorem 2.1). 
– REG =. the languages with regular expressions (Theorem 2.3). 
– REG =. the languages with a finite number of equivalence classes (the Myhill-

Nerode theorem) (Theorem 3.1). 

A.2 Relations Between Language Classes

  k,  k, k . 

–  k =  k ∩   k . for all k ≥ 1. (Theorem 8.10). 
–  k ∪  k ⊂  k+1 . for all k ≥ 1. (Theorem 8.11). 
–  k . and   k . are incomparable for all k ≥ 1. (Theorem 8.11).

 AC,NC,SAC. 

– AC0 ⊂ NC 1 . (Theorem 14.1). 
– NC0 ⊂ SAC 0 . (Proposition 14.3). 
– NCk ⊆ SACk ⊆ ACk . for all k ≥ 0. (Proposition 14.1); ACk ⊆ NCk+1

. for all 
k ≥ 0. (Proposition 14.2).

 BPP,RP,  z  pp . 

– BPP ⊆ PP. (Theorem 13.7); BPP ⊆ P/poly. (Theorem 14.4); BPP ⊆  
p

2 . 

(Theorem 13.8). 
– NP ⊆ RPUSA T

. (Theorem 14.6). 
– PBPP = BPP. (Exercise 13.5). 
– RP ⊆ NP., coRP ⊆ coNP., ZPP ⊆ NP ∩ coNP. (Proposition 13.2).

 CFL. 

– CFL ⊆ P. (Theorem 9.9).

 L. 

– L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE. 

(Theorem 10.6).

 NL. 

– NL = coNL. (Theorem 10.7).

 NP. 

– NP ⊆ P/poly ⇒   
p 
2 ⊆  p2 . (Theorem 14.5).



A A List of Major Results 365

– NP ⊆ BPP ⇒ NP = RP. (Exercise 13.7). 
– NPNP∩coNP = NP. (Exercise 12.15); PNP∩coNP = NP∩coNP. (Exercise 12.16).

 NSPACE. 

– NSPACE[f  (n)]  =  co-NSPACE[f (n)]. for all space-constructible functions 
f (n) =  (log(n)). (Corollary 10.3).

 P. 

– P ⊆ NP ∩ coNP ⊆ NP ∪ coNP ⊆ EXPTIME ⊆ NEXPTIME ∩
coNEXPTIME ⊆ NEXPTIME ∪ coNEXPTIME. (Proposition 9.2). 

– P ⊆ P/poly. (Proposition 14.5). 
– P = PSIZE. (Proposition 14.4).

 PH. 

– PH =  p 
k ⇐⇒ PH =   p 

k ⇐⇒  
p 
k =   p 

k ⇐⇒  
p 
k ⊆   pk ⇐⇒   

p
k ⊆

 
p
k . (Theorem 12.5). 

– PH ⊆ P PP
. (Theorem 13.9).

 R. 

– P/poly   ⊆ R. (Exercise 14.5). 
– R = RE ∩ coRE. (Theorem 6.3).

 REG. 

– REG ⊂ CFL. (Exercise 4.1). 
– REG ⊂ DCFL ⊂ CFL. (Corollary 5.1). 

A.3 Closure Properties of Language Classes

   k, k ., for all k ≥ 0., are closed under: 

– ∪., ∩., the marked union (Theorem 8.10).

 CFL. is closed under: 

– R . (Exercise 4.23); ∪., ·., ∗ . (Proposition 4.2); ∩. with REG. (Theorem 5.3). 
– PREFIX(·). (Exercise 4.25); the proper prefix (Exercise 5.19).

 DCFL. is closed under: 

– c . (Theorem 5.4). 
– The “marked” concatenation (Exercise 5.23). 
– The prefix-free homomorphisms (Exercise 5.11); the prefix-free inverse 

homomorphisms (Exercise 5.12).



366 A A List of Major Results

 NL. is closed under: 

– c . (Theorem 10.7); 
– ∗ . (Exercise 10.20); 
– ∪. (Exercise 10.21); 
– ∩. (Exercise 10.22).

 NP. is closed under: 

– ∗ . (Exercise 9.20); 
– ∪. (Exercise 9.21); 
– ∩. (Exercise 9.22). 
– ≤p 

ctt . and ≤pdtt . even if NP. has an oracle (Exercise 12.5).

 NP.-complete is closed under: 

–  . with a finite set (Proposition 11.2).

 R. is closed under: 

– ∪,∩., c . (Exercise 6.21); the marked union (Exercise 6.25); ∗ . (Exercise 6.22).

 RE. is closed under: 

– ∪., ∩. (Exercise 6.23); the marked union (Exercise 6.26); ∗ . (Exercise 6.24).

 REG. is closed under: 

– c ,∪,∩, ·., ∗ . (Theorem 2.2). 
– CYCLE(·). (Exercise 3.15). 
– HALF(·). (Exercise 3.13). 
– Homomorphisms and inverse homomorphisms (Exercise 3.9). 
– PREFIX1/k(·). (Exercise 3.14). 
– MID3(·). (Exercise 3.19). 
– NOMID3(·). if the alphabet size is 1 (Exercise 3.21). 
– The right quotient (Exercise 3.22); the left quotient (Exercise 3.23). 

A.4 Non-closure Properties of Language Classes

 CFL. is not closed under c ., ∩. (Theorem 4.1); NOMID3(·). (Exercise 5.21).
 DCFL. is not closed under union (Exercise 5.24); intersection (Exercise 5.25).
 REG. is not closed under the “no middle third” operation (Exercise 3.20). 

A.5 Classifications of Specific Languages

 CFL.



A A List of Major Results 367

– The Dyck language (Exercise 4.10); The k-th Dyck language (Exercise 4.11).

 coNP.-complete 

– TAUTOLOGY . (Corollary 11.2); DNFTAUT ., 3DNFTAUT . (Corollary 11.3).

 L. 

– Deterministic TM.s encoded in binary (Proposition 10.2). 
– Deterministic TM.s with an input, encoded in binary (Proposition 10.3).

 NP.-complete 

– 3DM. (Theorem 11.16). 
– CLIQUE . (Theorem 11.9). 
– HAMCYCLE . (Corollary 11.4); HAMPATH . (Corollary 11.5). 
– INDEPENDENTSET . (Theorem 11.18). 
– NTMCANONICAL . (Theorem 11.3). 
– SAT . (Theorem 11.5); CNFSAT . (Theorem 11.6); 3SAT . (Theorem 11.7); UNSAT . 

(Corollary 11.1); NAESAT . (Theorem 11.8); 1-IN-3-SAT . (Exercise 11.20). 
– SUBSETSUM . (Theorem 11.12); KNAPSACK . (Theorem 11.14); PARTITION . 

(Exercise 11.11); SCHEDULING . (Theorem 11.15). 
– VERTEXCOVER . (Theorem 11.10); 3COLOR . (Theorem 11.11); DOMINATINGSET . 

(Exercise 11.17). 
– X3C. (Exercise 11.7).

 P. 

– TM.s encoded in binary (Proposition 9.3). 
– TM.s with an input, encoded in binary (Proposition 9.4). 
– FA.s whose state-set size is reducible to a given number (Proposition 9.5).

 PNP
.-complete 

– ODDMAXSAT . (Theorem 12.3); the 3CNF-version (Corollary 12.1). 
– ODDMAXSUM . (Corollary 12.3).

 PSPACE.-complete 

– FORMULAGAME . (Theorem 12.8). 
– GEOGRAPHY . (Theorem 12.9). 
– PSPCANONICAL . (Proposition 12.6). 
– TQBF . (Theorem 12.7); with a 3CNF as the base, alternating quantiers starting 

with ∃. (Corollary 12.5).

 R. 

– ACCEPTFA . (Theorem 7.1); EMPTYFA . (Theorem 7.2); INFINITEFA . (Theo-
rem 7.3); TOTALFA . (Theorem 7.4); SUBSETFA . (Theorem 7.5); EQUALFA . 

(Theorem 7.6). 
– ACCEPTNFA ., EMPTYNFA ., EQUALNFA ., TOTALNFA ., SUBSETNFA . (Corol-

lary 7.1).



368 A A List of Major Results

– ACCEPTREX ., EMPTYREX ., EQUALREX ., TOTALREX ., SUBSETREX . (Corol-
lary 7.2). 

– ACCEPTCFG . (Theorem 7.7); EMPTYCFG . (Exercise 7.9); INFINITECFG . (Exer-
cise 7.11). 

– ACCEPTDPDA ., EMPTYDPDA ., TOTALDPDA ., INFINITEDPDA . (Corollary 7.3); 
EQUALDPDA . (Theorem 7.8). 

– FA.s whose state-set size is reducible to a given number (Exercise 7.8). 
– PCP. over a single-letter alphabet (Exercise 8.19).

 RE. 

– NONTOTALCFG . (Theorem 8.6). 
– One-tape TM.s not making left moves (Exercise 7.5).

 Undecidable 

– ACCEPTTM . (Theorem 8.2); HALTTM . (Theorem 8.3); EMPTYTM ., INFINITETM ., 
TOTALTM . (Corollary 8.2); SUBSETTM . and EQUALTM . (Corollary 8.3). 

– TOTALCFG . (Theorem 8.5); EQUALCFG . (Corollary 8.4); SUBSETCFG . (Corol-
lary 8.5). REGULARTM . (Exercise 8.12); FINITETM . (Exercise 8.13); EMPTYTM . 

(Exercise 8.14). 
– TM.s encoded in unary not accepting themselves (Theorem 8.1). 
– TM.s accepting themselves (Corollary 8.1). 
– SUBSETDPDA . (Theorem 8.7). 
– PCP. (Theorem 8.9); MPCP. (Theorem 8.8); PCP. over a binary alphabet 

(Exercise 8.20). 
– Rice’s Theorem: every nontrivial property about TM.s (Theorem 8.4).

 Other classification results 

– PRIMES ∈ coRP. (Theorem 13.4); COMPOSITES ∈ RP. (Theorem 13.4). 
– PRIMES ∈ RP. (Theorem 13.5); COMPOSITES ∈ coRP. (Theorem 13.5). 
– PRIMES ∈ P. (Theorem 13.6). 
– Zero-Polynomial Testing is in BPP. if the total degree is ≤  S /2. (Theo-

rem 13.7). 

A.6 Polynomial-Time Many-One and Witness Reductions

 ≤m . is reflexive and transitive (Proposition 8.3); not symmetric (Proposition 8.4).
 ≤p 

m . is transitive (Proposition 11.1); reflexive (Proposition 11.2).
 3SAT ≤p 

wit SUBSETS UM . (Corollary 12.2).
 A ≤m B ∧ B ∈ R ⇒ B ∈ R., for all A,B . (Proposition 8.2).
 CNFSAT ≤p 

wit 3S AT . (Proposition 12.3).
 HAMPATH ≤p 

m HAMCYCLE . (Theorem 11.1); HAMCYCLE ≤pm HAMPATH . 

(Theorem 11.2).



A A List of Major Results 369

 P = NP ⇐⇒ . all NP.-complete languages are in P. (Proposition 11.1).
 P   = NP ⇒ (∃A ∈ NP− P)[A. is not NP.-complete] (Theorem 12.6).
 Search reduces in polynomial time to decision for CNFSAT . (Proposition 12.1).
 Search reduces in polynomial time to decision for SUBSETSUM . (Proposi-

tion 12.2). 

A.7 Pumping Lemmas

 REG.: 

– For all L ∈ REG., there exists p ≥ 1. such that (∀w ∈ L : |w| ≥
p)(∃u, v, x)[w = uvx, |uv| ≤ p, |u| ≥ 1, and (∀i ≥ 0)[uvix ∈ L]]. 
(Lemma 3.3). 

– For all L ∈ REG., there exists p ≥ 1. such that (∀w = a1 · · · apb ∈
L : |a1|, . . . , |ap| ≥ 1)(∃s, t : 1 ≤ s < t ≤ p)(∀i ≥
0)[a1 · · · as−1(as · · · at )iat+1 · · · apb ∈ L]. (an extended version) (Lemma 3.5).

 CFL.: 

– For all L ∈ CFL., there exists p ≥ 1. such that (∀w ∈ L : |w| ≥
p)(∃u, v, x, y, z)[w = uvxyz, |vxy| ≤ p, |vy| ≥ 1, and (∀i ≥ 0)[uvixyiz ∈
L]]. (the pumping lemma) (Lemma 5.1). 

– For all L ∈ CFL., there exists p ≥ 1. such that (∀w ∈ L : |w| ≥ p)(∀S ⊆
{1, . . . , |w|},  S ≥ p)(∃u, v, x, y, z)[w = uvxyz, x . covers ≥ 1. index in S, 
vxy covers ≤ p . indices in S, either both u and v cover ≥ 1. in S or both y 
and z cover ≥ 1. index in S, and (∀i ≥ 0)[uvixyiz ∈ L]. (Ogden’s lemma) 
(Lemma 5.2). 

– For all L ∈ CFL., there exists p ≥ 1. such that (∀w ∈ L, |w| ≥ p)(∀S ⊆
{1, . . . , |w|},  S ≥ p)(∃u, v, x, y, z)[w = uvxyz, vy . covers ≥ 1. index in 
S, vxy covers ≤ p . indices in S, and (∀i ≥ 0)[uvixyiz ∈ L]. (a simpler 
Ogden’s lemma) (Lemma 5.3). 

A.8 Normalization and Behavior of Computing Objects

 BPP.’s error probability can be exponentially decreased (Lemma 13.2).
 CNF grammars need 2n − 1. rule applications for producing strings having a 

length of n (Proposition 4.3).
 DPDA.s can be normalized so they increase or decrease the stack height by 1 at 

each step (Exercise 5.7).
 Inherently ambiguous CFL. languages exist (Theorem 5.5).
 NFA.s with k states can accept x in ≤ k|x| + 1. steps (Proposition 2.1).



370 A A List of Major Results

 Single-tape TM.s can be normalized so that their accepting ID is qacc ∗ . (Exer-
cise 12.20).

 PDAs can be normalized so that they increase or decrease the stack height by 1 
at each step (Exercise 5.6).

 Two-stack PDAs can simulate TM.s (Exercise 6.17). 

A.9 Time and Space Constructibility

 Let f (n). be a time-bounding function. Then: 

– DTIME[f  (n)] ⊆  DTIME[n+ cf (n)]. for all c such that 0 < c < 1. (the linear 
speedup theorem (Theorem 9.1). 

– DTIME[f  (n)] ⊆  DTIME[f  (n)2]. by one-tape simulators (Theorem 9.2). 
– DTIME[f  (n)]  ⊆  DTIME[f  (n) log(f (n))]. by two-tape simulators (Theo-

rem 9.3). 
– DTIME[f  (n)]  ⊂  DTIME[g(n)]. for all time-constructible g(n) =
ω(f (n) log(f (n))). (the Time Hierarchy Theorem) (Theorem 9.5). 

– DTIME[f  (n)]  =  DTIME[ cf (n)]. for all c > 0. and f (n). such that (∃α >
0)(∀∞n ≥ 1)[f (n) ≥ (1+ α)n]. (Corollary 9.1). 

– DTIME[f  (n)] ⊆  NTIME[f  (  n)]. (Proposition 9.1). 
– NTIME[f  (n)]  ⊆  NTIME[n + cf (n). for all c such that 0 < c < 1. (the 

nondeterministic speedup theorem) (Theorem 9.7). 
– NTIME[f  (n)]  =  NTIME[ cf (n)]. for all c > 0. and f (n). such that (∃α >

0)(∀∞n ≥ 1)[f (n) ≥ (1+ α)n]. (Corollary 9.3). 
– NTIME[f  (n)] ⊆ ∪c≥1DTIME[2cf (n)]. (Proposition 9.8).

 Let f (n). be a space-bounding function. Then: 

– DSPACE[f  (n)]  ⊆  DSPACE[ cf (n)]. for all c such that 0 < c < 1. (the space 
compression theorem) (Theorem 10.1). 

– DSPACE[f  (n)]  ⊂  DSPACE[ cf (n)]. for all c > 1. (the space hierarchy 
theorem) (Theorem 10.2). 

– DSPACE[nd ]  ⊂  DSPACE[ nc]. for all c, d . such that c > d ≥ 1. (Corol-
lary 10.1). 

– DSPACE[(log(n))d ]  ⊂  DSPACE[(log(n))c]. for all c, d ∈ Q. such that c >
d ≥ 1. (Corollary 10.2). 

– NSPACE[f  (n)]  ⊆  NSPACE[ cf (n)]. for all c such that 0 < c < 1. (the 
nondeterministic space compression theorem) (Theorem 10.3). 

– NSPACE[f  (n)] ⊆  DSPACE[f  (n)2]. (Savitch’s theorem) (Theorem 10.4). 
– NSPACE[f  (n)]  ⊆  NSPACE[g(n)]. for all space-constructible g(n) =
ω(f (n)2). (the nondeterministic space hierarchy theorem) (Theorem 10.4).

 f  (  n). is time-constructible ⇐⇒ . a TM exists that for all inputs 1n ., produces 
1t (n) . in O(t(n)). steps (Theorem 9.4).

 (log(n))c . is space-constructible for all c ≥ 1. (Exercise 10.4).



A A List of Major Results 371

  nc . is space-constructible for all rational numbers c > 1. (Exercise 10.5).
 2n . is space-constructible (Exercise 10.6).
 The space-constructible functions are closed under addition and multiplication 

(Exercise 10.7).
 The time-constructible functions are closed under addition, multiplication, and 

composition (Exercise 9.7).
 If f (n). and g(n). are space-constructible and f (n) =  (n)., f (g(n)). is space-

constructible (Exercise 10.8). 

A.10 Number and Probability Theories

 Let S = X1 + · · · + Xn . where X1, . . . , xn . are independent random variables in 

{0, 1}.. Let  E be S’ expectation. Then, (∀t > 0)
 
Pr[S ≥ E + t] ≤ exp

 
− 2t2
n

  
. 

(the Chernoff-Hoeffding bound) (Lemma 13.1).
 For all n1, . . . , nk ∈ Z. that are pairwise relatively prime and a1 ∈ Zn1 , . . . , ak ∈

Znk ., there is exactly one integer b, 0 ≤ b < n1 · · · nk . such that b ≡ ai (mod ni). 
for all i (the Chinese Remainder Theorem) (Theorem 13.2).

 For all odd prime numbers p and for all a ∈ Z
∗
p ., ap−1 ≡ 1 (mod p). (Fermat’s 

Little Theorem) (Theorem 13.1).



Index 

Symbols 
+ . (Kleene-plus), 11 
∗ . (Kleene-star), 10 
  ., 31, 77 
∞. (infinity), 4 
∩. (set intersection), 4 
|| · ||. (cardinality), 4 
 · ., 253 
. (set complement), 4 
c . (set complement), 4 
[·]. (congruence class), 330 
∪. (set union), 4 
 . (right-end marker), 245 
∅. (empty set), 3 
 . (empty string), 10 
∃. (existential quantifier), 8, 304 
∀. (universal quantifier), 8, 304 
∀∞ . (almost all), 9 
∈. (is contained), 3 
∧. (logical AND), 5 
≤pT . (polynomial-time Turing reduction), 298 
≤pctt . (polynomial-time conjunctive truth-table 

reduction), 305 
≤pdtt . (polynomial-time disjunctive truth-table 

reduction), 305 
≤pwit . (polynomial-time witness-preserving 

reduction), 302 
≤m . (many-one reduction), 189 
∨. (logical OR), 5 
 . (contains), 3 
 ·  . (encoding function), 172 
≤pm . (polynomial-time many-one reduction), 

263 
G,∗ ⇒. (multi-step production), 74 

G ⇒. (production), 74 
{· · · }.(set), 3 
\. (set difference), 4 
 . (blank symbol), 136 
⊂. (proper subset), 3 
⊆. (subset), 3 
⊃. (proper superset), 3 
⊇. (superset), 3 
 . (symmetric difference), 4 
 . (left-end marker), 245 
 
p
k ., 303 

N., 4 
O(·)., 9 
 (·)., 9 
P(·)., 4 
  
p
k ., 303, 353 

Q., 4 
R., 4 
 ≤n ., 10 
 <n ., 10 
 n ., 10 
 ∗ ., 10 
 
p
k ., 303, 341, 353 

Z., 4 
ℵ0 ., 4, 186 
ℵ1 ., 4, 186 
co-., 11 
dom(·)., 9 
gcd., 329 
lcm., 329 
o(·)., 9 
 (·)., 9, 230 
range(·)., 9 
 (·)., 9 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2025
M. Ogihara, An Introduction to Theory of Computation,
https://doi.org/10.1007/978-3-031-84740-0

373

https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0
https://doi.org/10.1007/978-3-031-84740-0


374 Index

1-IN-3-SAT ., 291 
2SAT ., 291 
3CNF formula, (see Boolean formula, 

3-conjunctive normal form) 
3COLOR ., 279 
3-dimensional matching, (see 3DM.) 
3DM., 287, 320 
3DNFTAUT ., 274 
3SAT ., 271, 353 

A 
AC., 349 
ACCEPTCFG ., 181, 191 
ACCEPTDPDA ., 181 
ACCEPTFA ., 175 
ACCEPTNFA ., 180 
ACCEPTNTM ., 266 
ACCEPTREG ., 173 
ACCEPTREX ., 180 
ACCEPTTM ., 186 
Accepting 

by a finite automaton, 25 
by a nondeterministic finite automaton, 31 
by a nondeterministic Turing machine, 136, 

158 
by a pushdown automaton, 97 

Additive group, 330 
Adjacency, 13 
Adleman, L.M., 345, 360 
Agrawal, M., 345 
Aho, A.V., 56 
Ajtai, M., 360 
Algorithm 

bounded-error, 326 
divide and conquer, 249 
greedy, 18, 83, 320 
inductive, 18, 239, 356 
randomized, 326 
recursive, 249 

Allender, E.W., 360 
Alon, N., 360 
Alphabet, 10, 24 

augmented, 96 
input, 96, 136, 175 
marked, 143 
stack, 96 
tape, 135 

Ambiguity 
inherent, 114 
of accepting computation paths, 355 
of a context-free grammar, 79, 355 

Amortized analysis, 230 
Arc, (see Edge, directed) 

Arithmetical hierarchy, 204, 295, 303 
Assignment, 8 

not-all-equal, 272 
one-in-three satisfying, 291 
satisfying, 272 
truth, 8 

Associative law, 330 

B 
Bar-Hillel, Y., 72, 131 
Bennett, C.H., 360 
Bijection, (see Function, bijective) 
Boasson, L., 131 
Boolean algebra, 5 
Boolean formula, 6 

3-conjunctive normal form, 271 
conjunctive normal form, 270 
disjunctive normal form, 274 
fully quantified, 305 
prenex normal form, 305 
quantified, 304 
satisfiable, 8, 268 
unsatisfiable, 8, 273 

Boolean logic, 5, 6 
Boolean operation, 5 

conjunction, 5 
disjunction, 5 
logical AND, 5 
logical OR, 5 
negation, 5 

Bounceback, 135 
BPP., 326, 341, 352 
Brzozowski, J.A., 72 

C 
C=P., 344 
Cantor, D.G., 93 
Carmichael number, 331 
Cartesian product, (see Sets, Cartesian product 

of) 
Cartor, G., 185 
Cell, 135 
Cell block, 217 
CFG, (see Context-free grammar (CFG)) 
CFL., 74 
Character, 10 
Chernoff, H., 345 
Chernoff-Hoeffding Bound, 327 
Chinese Remainder Theorem, 331, 338 
Chistov, A.L., 360 
Chomsky, N., 93, 131 
Church, A., 169



Index 375

Church-Turing Thesis, 165 
Circuit 

arithmetic, 352 
basis, 348 
Boolean, 347 
bounded fan-in, 348 
constant-depth, 350 
depth., 348 
feed-forward, 347 
input size, 347 
monotone, 348 
non-uniform, 348, 352 
output size, 347 
semi-unbounded fan-in, 348 
size., 348 
unbounded fan-in, 348 
uniform, 348 

CIRCUITSAT ., 359 
Class, 11 

complementary, 11 
deterministic space complexity, 245 
deterministic time complexity, 215 
language, 11 
nondeterministic space complexity, 248 
nondeterministic time complexity, 233 
probabilistic time complexity, 326 

CLIQUE ., 274, 320 
Clique, 14, 274 
Clock, 311 
Closure 

of context-free languages under 
complement, 117 
concatenation, 117 

Closure property, 40, 68 
of context-free languages under 

intersection, 79 
intersection with a regular language, 

107 
Kleene-star, 79 
union, 79 

of NL. under 
intersection, 261 
Kleene-star, 260 
union, 261 

of NPA . under 
≤pctt ., 305 
≤pdtt ., 305 

of NP. under 
intersection, 242 
Kleene-star, 242 
union, 242 

of regular languages under 
complement, 41 
concatenation, 43 

cycle, 71 
first-half, 70 
intersection, 43 
Kleene-star, 41, 53 
left-quotient, 71 
middle-third, 71 
right-quotient, 71 
union, 42 

CNF formula, (see Boolean formula, 
conjunctive normal form) 

CNF grammar, (see Grammar, Chomsky 
normal form) 

CNFSAT ., 270, 295 
Cobham, A., 243 
Cocke, J., 183 
Co-decidable, 137 
Commutative group, 330 
Commutative law, 330 
Commutative ring, 330 
Completeness, 274 
Complexity 

time, 216 
Composite number, 328 
COMPOSITES., 335 
Computational complexity theory, 215 
Configuration, 142, 151 
coNEXPTIME., 235 
Congruence class, 329, 338 
Congruent, 329 
coNL., 250 
Connected component, 13 

strongly, 13 
coNP., 235, 273 
coNPA ., 303 
coNPC ., 303 
Context-free grammar (CFG), 73 

ambiguous, 209 
Context-free language (CFL), 74, 95, 239 

deterministic, 109, 193 
Contrapositive, 67 
Cook, S.A., 292, 360 
Corasick, M.J., 56 
coRE., 138 
Co-recursive, 137 
Co-recursively enumerable, 137, 156 
coRP., 327, 335 
Countable, 185 
CP., 344 
Cycle, 12 

simple, 12 

D 
Davis, M., 169



376 Index

DCFL, (see Context-free language, 
deterministic) 

Decidable, 137, 175 
Decider, 165 
Deciding 

by a deterministic Turing machine, 137 
by a nondeterministic Turing machine, 158 

Demillo, R.A., 345 
DeMorgan’s Laws, 118 
Derivation, (see Production) 
Derivation rule, (see Production rule) 
Derivation sequence, (see Production, 

sequence) 
Derivation tree, (see Production tree) 
Determinant, 352 
DFA, (see Finite automaton, deterministic) 
Diagonal argument, 185 
Diagram 

transition, 26 
Digraph, (see Graph, directed) 
Distinguishability, (see State, 

distinguishability) 
Distributive laws, 330 
Divisor, 328 

nontrivial, 328 
trivial, 328 

DNF formula, (see Boolean formula, 
disjunctive normal form) 

DNFTAUT ., 274 
DOMINATINGSET., 291 
Dominating set, 291 
Domino tile, 195 

clean-up, 198 
computation, 197 
start, 196, 197 

DPDA, (see Pushdown automaton, 
deterministic) 

DSPACE., 246 

E 
Edge 

directed, 11 
incoming, 11 
outgoing, 11 

Edmonds, J., 243 
EMPTYCFG ., 183 
EMPTYDPDA ., 181 
EMPTYFA ., 177 
EMPTYNFA ., 180 
EMPTYREX ., 180 
EMPTYTM ., 188 
Encoding 

multi-cell, 152 

scheme, 171 
validation, 171 

Enumeration, 47, 310 
equivalence class, 63 
ID, 254 
member, 164, 185 
of TM deciders, 310 
of TM transducers, 310 
rule, 116 
state, 35 

Enumerator, 162 
EQUALDPDA ., 182 
EQUALFA ., 180 
EQUALNFA ., 180 
EQUALREX ., 180 
EQUALTM ., 188 
Equivalence class, 62, 265, 330 

maximal, 62 
Euler’s criterion, 345 
Evey, R.J., 131 
Exact Cover by Three Sets, (see X3C.) 
Exponential Space (EXPSPACE), 250 
Exponential Time (EXPTIME), 235, 250 

F 
FA, (see Finite automaton (FA)) 
False, 5 
Fermat’s Little Theorem, 331 
Finite automaton (FA), 24 

deterministic, 24, 108 
nondeterministic, 30, 108, 180 

equivalent to FA, 34 
pseudo-nondeterministic, 35 

Finite control, 135 
Finite field, 340, 352 
Fischer, M.J., 243 
Floyd, R.W., 93 
Forest, 14 
FORMULAGAME., 316 
Function, 8 

bijective, 9 
domain of, 9 
inverse, 9 
non-decreasing, 215, 245 
one-to-one, 9 
onto, 9 
partial, 9 
polynomial-time computable, 263 
range of, 9, 30 
semantic encoding, 172 
space-bounding, 245 
space-constructible, 246 
time-constructible, 230



Index 377

total, 9 
transition, 24, 30, 136 

Furst, M.L., 360 

G 
Gadget, 281 
Game, 316 

turning, 23 
Garey, M.R., 292 
Gasarch, W., 72 
Gate, 347 

input, 347 
output, 347 

GCD, (see Greatest common divisor (GCD)) 
Generalized Riemann Hypothesis, 345 
Generator, 333 
GEOGRAPHY., 317 
Gill, J., 344, 360 
Ginsburg, S., 72, 93, 131 
GNF grammar, (see Grammar, Greibach 

normal form) 
Gödel, K., 292 
Grammar 

ambiguous, 79 
Chomsky normal form, 80, 101, 119, 181, 

183, 240 
CNF, 112 
context-free, 181, 239 
Greibach normal form, 87, 183 
unambiguous, 79, 81 

Graph, 11 
acyclic, 12 
complete, (see Clique) 
cycle-free, 12 
directed, 11 
edge-weighted, 291 
undirected, 13 

Greatest common divisor (GCD), 328 
Greibach, S., 131 
Greibach, S.A., 93 
Gross, M., 93 
Grzegorczyk, A., 243 

H 
Haines, L.G., 131 
HALTTM ., 187 
Halting Problem, 174, 187 
HAMCYCLE., 264, 282, 321 
Hamilton cycle, 264 
Hamiltonian, 264 
Hamilton path, 264 

HAMPATH, 264, 280, 321 
Hartmanis, J., 242 
Head, 135 

reading by, 135 
writing by, 135 

Head move 
left, 135 
right, 135 
stationary, 135 

Hemaspaandra, L.A., 360 
Hennie, F.C., 243 
Hoeffding, W., 345 
Homomorphism, 171 
Huang, M.-D.A., 345 
Huffman, D.A., 55 

I 
ID, (see Instantaneous description (ID)) 
Identity, 330 
Immerman, N., 261 
Immerman-Szelepscényi Theorem, 252 
Indistinguishability, (see State, 

distinguishability) 
INDEPENDENTSET., 290, 321 
INFINITECFG ., 183 
INFINITEDPDA ., 181 
INFINITEFA ., 178 
INFINITETM ., 188 
Instantaneous description (ID), 97, 142, 151 

accepting, 97, 192 
initial, 97, 192 

Isolation technique, 360 

J 
Jacobi symbol, 345 
Johnson, D.S., 292 

K 
Karp, R.M., 292, 360 
Kasami, T., 183 
Kayal, N., 345 
Kleene-plus, (see ++Kleene-plus) 
Kleene, S.C., 72, 169 
Kleene-star, (see ∗ .) 
KNAPSACK., 286 
Knuth, D.E., 56 
Kobayashi, K., 243 
Ko, K.-I., 344 
Komlós, J., 360 
Krentel, M.W., 321



378 Index

L 
L, 250 
Ladner, R.E., 321 
Lall, A., viii 
Language, 10 

diagonal, 231 
non-context-free, 117 

Lautemann, C., 345 
Laws 

associative, 6 
commutative, 6 
De Morgan’s, 5 
distributive, 6 

Ldiag ., 186 
Least common multiple (LCM), 329 
Length-bounded 

logarithmic, 359 
polynomial, 352 

Levin, L.A., 292 
Linear bounded automaton, 183 
Linear Speed-up Theorem, 216, 234 
Lin, R., viii 
Lipton, R.J., 345, 360 
Literal, 6 

negative, 6, 270 
positive, 6, 270 

Logic, 6 
contraposition, 6 
contrapositive, 6 
equivalence, 6 
implication, 6 
relation, 6 

Logic game, 316 
LONGESTPATH., 292 
Loop invariant, 329 
Lself ., 186 

M 
Ma, K., viii 
Mapping, (see Function) 
Marker, 160 

left-end, 149, 160, 216, 245 
right-end, 149, 245 

Matrix multiplication, 12, 351 
McCulloch, W.S., 55, 72 
McNaughton, R., 72 
Mealy, G.H., 55 
MERGESORT., 359 
Meyer, A.R., 243, 321 
Miller, G.L., 345 
Miller-Rabin test, 335 
Miller test, 340 
mod ., 329 

Moore, E.F., 55 
Morris, J.H., 56 
MPCP, (see Post’s Correspondence Problem, 

Marked) 
Mulmuley, K., 360 
Multiplicative monoid, 330 
Myhill, J., 72 
Myhill-Nerode Theorem, 62, 64 

N 
NAE assignment, (see Assignment, 

not-all-equal) 
NAESAT ., 272 
Nerode, A., 72 
Nick’s Circuit Class (NC), 349 
Node, 11 
Nondeterministic exponential time 

(NEXPTIME), 235, 250 
Nondeterministic finite automaton (NFA), 30 
Nondeterministic logspace (NL), 250, 350 
Nondeterministic polynomial space 

(NSPACE), 248 
Nondeterministic polynomial time (NP), 235, 

250 
Nondeterministic Space Hierarchy Theorem, 

250 
Non-terminal, (see variables) 
NONTOTALCFG ., 191 
Nontrivial property, 190 
NPA ., 303 
NPC ., 303 
NP-complete, 265 
NP-hard, 265 
NTIME., 233 
NTM, (see Turing machine, nondeterministic) 
NTMCANONICAL., 266 
Numbers, 4 

integer, 4 
natural, 4 
positive rational, 4 
positive real, 4 
rational, 4 
real, 4 

O 
Occam’s Razor, 57 
ODDMAXSAT ., 299 
ODDMAXSUM ., 303 
Oettinger, A.G., 131 
Ogden’s Lemma, 118 
Ogden, W.F., 131 
Ogihara, E., viii



Index 379

Ogihara, M., 344, 360 
Oracle, 203 

positive correctness, 300 
query consistency, 300 

P 
P., 234, 250 
P/log., 359 
P/poly., 352 
PA ., 298 
PC ., 299 
Palindrome, 67, 99, 143, 193 
Parikh, R.J., 93 
Partial order, 265 
PARTITION., 285, 320 
Paterson, M.S., 360 
Path, 12, 119 

computation, 106 
destination of, 12 
source of, 12 
straight, 112, 119 

PDA, (see Pushdown automaton (PDA)) 
equivance to CFL, 101 

Perles, M., 72, 131 
Pigeon-hole principle, 66, 111, 112, 119, 124, 

125, 127, 128 
Pippenger, N., 360 
Pitts, W.A., 55, 72 
PNF, (see Boolean formula, prenex normal 

form) 
PNP ., 299 
P vs. NP Problem, 235, 263 
Polynomial, 234 

multivariate, 340 
Polynomial hierarchy (PH), 303, 343 

characterization of, 306 
Post’s Correspondence Problem (PCP), 

195 
Marked, 196 

Post, E.L., 169 
Powering, 338 
Pratt, V., 345 
Pratt, V.R., 56 
Predicate, 7 

binary, 7 
domain, 7 
ternary, 7 
unary, 7 

Primality testing, 328 
Prime factorization, 328 
Prime number, 328 
Prime Number Theorem, 335 

PRIMES., 335 
Probabilistic polynomial time (PP), 343 
Probability 

error, 326 
success, 326 

Problem 
acceptance, 173, 175 
computation, 285 
containment, 173, 179 
decision, 285 
emptiness, 173, 177 
equality, 173, 180 
infiniteness, 173, 178 
totality, 173, 179, 191 

Production, 73 
leftmost, 79 
rightmost, 79 
sequence, 74 

Production rule, 73 
component of, 74 
length of, 74 

Production tree, 77, 112, 119 
Promerance, C., 345 
Proof, 15 

by contradiction, 15, 80, 313 
by counterexample, 15 
by induction, 16, 306, 332, 340 
by inference, 15 
by pigeon-hole principle ((see Proof, by 

piegeon-hole principle)) 
Pseudoprime, 339 
PSIZE., 349 
PSPACE., 250 
PSPACE.-complete, 314 
PSPCANONICAL., 314 
Pumping Lemma 

for CFL, 111 
for REG, 66 

Pushdown automaton (PDA), 95, 181 
deterministic, 108 

Q 
q0 ., 136 
qacc ., 136 
qno ., 203 
qquery ., 203 
qrej ., 136 
Quantified Boolean formula (QBF), 304 
Quantifier, 8 

existential, 8 
universal, 8 

qyes ., 203



380 Index

R 
R., 138 
Rabin, M.O., 55, 56, 345 
Random bit, 325 
Random number generator, 336 
Random polynomial time (RP), 327, 355 
Reachability, 12, 17, 249, 252, 356 
Recipient, 334 
Recognizing 

by a nondeterministic Turing machine, 158 
Recursive, 137 
Recursively enumerable, 137, 156, 158, 162, 

203 
Recursively enumerable languages (RE), 138 
Reducibility 

Cook, 292, 298 
Cook-Levin, 292 
Karp, 292, 298 
many-one, 189 
polynomial-time conjunctive truth-table, 

305 
polynomial-time disjunctive truth-table, 

305 
polynomial-time many-one, 263 
polynomial-time Turing, 292, 295, 298 
witness-preserving, 301 

Regular expression, 44, 180, 238 
equivalent to FA, 45 
inductive construction, 44 
visualizing construction of, 50 

Regular language (REG), 26 
Reinhardt, K., 360 
Rejecting 

by a nondeterministic Turing machine, 136 
Relation, 7 

binary, 7 
equivalence, 7, 58, 59, 62 
reflexive, 7, 59, 189, 290, 320 
symmetric, 7, 58, 59, 189 
transitive, 7, 59, 189, 265, 290, 320 

Relatively prime, 329 
Reverse, 67 
Rice’s Theorem, 188, 190 
Rives, H., viii 
Rivest, R.L., 345 
Rogers, Jr., H., 169 
Root, 14 
Rose, G.F., 72 
Rosenberg, B., viii 
Rosenkrantz, D.J., 93 
RSA cryptography, 334 
Rule 
 ., 82 
long, 82 

mixed, 82 
terminal-only, 82 
unit, 82 
variable-only, 82 

Ruzzo, W.L., 360 

S 
Satisfiability Problem, SAT ., 268 
Satisfiability Problem, (SAT .), 268 
Savitch’s Theorem, 248, 250, 314 
Savitch, W.L., 261 
Saxena, N., 345 
Saxe, J.B., 360 
Schaefer, T.J., 293, 321 
SCHEDULING., 286 
Schöning, U., 360 
Schützenberger, M.P., 93, 131 
Schwartz, J.T., 183, 345 
Scott, D., 55, 56 
Search 

depth-first, 250 
exhaustive, 17 

Search reduces to the decision, 297, 320 
CNFSAT ., 297 
SUBSETSUM., 298 

Seiferas, J.I., 243 
Self-loop, 13 
Self-reducibility, 359 
Selfridge, J,L., 345 
Semi-unbounded alternate circuits class (SAC), 

349, 350 
Sender, 334 
Sénizergues, G., 183 
Sets, 3 

cardinality of, 4 
Cartesian product of, 5, 43 
complement of, 4 
difference of, 4 
disjoint, 4 
element of, 3 
empty, 3 
finite, 4 
infinite, 4 
intersection of, 4 
join of, 4 
meet of, 4 
member of, 3 
membership, 3 
power, 4, 31 
size of, 4 
specification of, 3 
symmetric difference of, 4, 266 
union of, 4



Index 381

Shamir, A., 345 
Shamir, E., 72, 131 
Simon, J., 344 
Simulation 

of an NP.-oracle, 301 
single-tape, 220 
two-tape, 220, 221 

Single-tape Simulation Theorem, 
220 

Sipser, M.J., 345, 360 
Solovay, R., 345 
Space, 215 
Space Compression Theorem, 246 
Space Hierarchy Theorem, 246 
Spanier, E.H., 72 
Spencer, J.H., 360 
Squiggle, 143 
Stack, 95 

popping from, 95 
pushing onto, 95, 96 

Star, (see ∗ .) 
State, 24, 135 

accepting, 136 
distinguishability, 57 
final, 24, 96 
initial, 24, 96, 136 
minimization, 57, 291 
of a pushdown automaton, 96 
rejecting, 136 

State set, 24, 135 
Stearns, R.E., 242, 243 
Stirling, C., 183 
Stockmeyer, L.J., 321 
Strassen, V., 345 
String, 10 

concatenation, 10 
empty, 10 
prefix of, 10 
proper prefix of, 10 
proper suffix of, 10 
suffix of, 10 

Subgraph, 13 
edge-induced, 13 
proper, 13 
vertex-induced, 13 

Subset, 3 
proper, 3 

SUBSETCFG ., 193 
SUBSETDPDA ., 193 
SUBSETFA ., 179 
SUBSETNFA ., 180 
SUBSETREX ., 180 
SUBSETSUM., 284 
SUBSETTM ., 188 

Substring, 10 
proper, 10 

Subword, 10 
proper ((see Substring, proper)) 

Sudborough, I.H., 360 
Superset, 3 

proper, 3 
Symbol, 10 

blank, 136 
bottom, 95 
initial, 95, 96 

Szelepscényi, R., 261 
Szemerédi, E., 360 

T 
Tape, 135 

finite, 135 
infinite, 135 
input, 245 
one-way infinite, 135 
oracle, 203 
output, 162 
read-only, 245 
tracks, 152 
two-way infinite, 135, 222 
work, 245 
write-only, 203, 245 

TAUTOLOGY., 273, 359 
Tautology, 8, 273 
Terminal, 73 
Time, 215 
timeM ., 215 
Time complexity, 215 
Time Hierarchy Theorem, 230, 233 
TM, (see Turing machine (TM)) 

nondeterministic, 233 
normalization of, 299, 321 
oracle, 295 
probabilistic, 325 
single-tape, 321 
time-bounded, 215, 233 

Toda, S., 344, 360 
Toda’s Theorem, 343 
TOTALCFG ., 191, 193 
TOTALDPDA ., 181 
TOTALFA ., 179 
TOTALNFA ., 180 
TOTALREX ., 180 
TOTALTM ., 188 
TQBF ., 314 
Track, 222 
Tractable, 234 
Transducer, 165



382 Index

Transition 
diagram ((see Diagram, transition)) 
 ., 30 
table, 25 

Transition function, (see Function, transition) 
Traveling Salesman Problem, 291 
Tree, 11, 14 

binary, 14 
height of, 14 

True, 5 
Turing, A.M., 169, 183 
Turing machine (TM), 135 
k-tape, 149 
deterministic, 157 
halting, 158 
multi-tape, 149, 175 
nondeterministic, 157 
offline, 149, 245 
oracle, 203 
recognition by, 137 
simulation of, 152 
single-tape, 149 
space-bounded, 245, 247 
universal, 172 

U 
Ullian, J., 93 
Unambiguous Logspace (UL), 356 
Uncountable, 185 
Uniformity, 349 

logspace, 349 
P, 349 

Universe, 4 
UNSAT ., 273 
UP., 355 
USAT., 355 

V 
Valiant, L.G., 360 
Variable, 73 

nullable, 82 
start, 73 
useless, 92 

Vazirani, U., 360 
Vazirani, V.V., 360 
Vertex cover, 276 
VERTEXCOVER., 276, 320 
Vertices, 11 

depth of, 14 
destination, 11 
distance from, 14 
leaf, 14 
parent of, 14 
sink, 12 
source, 11, 12 

Von Neumann, J., 292 
Von zur Gathen, J., 360 

W 
Wagstaff, S.S., 345 
Winning strategy, 316, 318, 319 
Wire, 347 
Witness, 165, 267, 295 
Witness language, 267 
Witness scheme, 165, 295, 353 

polynomial-time, 267 
Word, (see String) 
Worst-case complexity, 216 

X 
X3C., 289 
Xia, M., viii 

Y 
Yamada, H., 72 
Younger, D.H., 183 

Z 
Zero-polynomial testing, 340 
Zippel, R., 345 
Zn ., 329 
Z∗n ., 330 
ZPP., 327

HDNLUL10G1049
Typewritten text
https://sanet.st/blogs/ebookdownload/


	Preface
	Contents
	List of Figures
	List of Algorithms
	Symbols, Acronyms, and Class Names
	Part I Preparation
	1 Mathematics and Computer Science Basics
	1.1 Sets
	1.1.1 Set Operations

	1.2 Boolean Algebra
	1.2.1 Implication and Equivalence
	1.2.2 Predicates
	1.2.3 Truth Assignments and Quantifications

	1.3 Functions
	1.3.1 Big-O Notation

	1.4 Languages
	1.4.1 Alphabets and Strings
	1.4.2 Languages and Their Classes

	1.5 Graphs and Trees
	1.5.1 Directed Graphs
	1.5.2 Reachability
	1.5.3 Undirected Graphs
	1.5.4 Trees

	1.6 Proof Methods
	1.7 Algorithmic Concepts


	Part II Formal Language Theory and Automata
	2 The Regular Languages
	2.1 The Finite Automaton (DFA) Model
	2.1.1 The Definition
	2.1.2 Example DFAs

	2.2 The Nondeterministic Finite Automaton (NFA) Model
	2.2.1 The Definition
	2.2.2 Converting NFAs to DFAs
	2.2.2.1 The Pseudo-Nondeterministic Finite Automaton (Pseudo-NFA) Model
	2.2.2.2 Converting NFAs to DFAs
	2.2.2.3 A Greedy Conversion Algorithm

	2.2.3 Constructing Regular Languages from Other Regular Languages

	2.3 Regular Expressions
	2.3.1 The Definition
	2.3.2 Equivalence Between Regular Expressions and NFAs
	2.3.3 Visualizing the Construction

	References

	3 Non-regularity
	3.1 Minimizing the State Number
	3.1.1 A Motivation
	3.1.2 Distinguishable State-Pairs

	3.2 The Myhill-Nerode Theorem
	3.3 Proving Non-regularity
	3.3.1 Proving Non-regularity Using the Myhill-Nerode Theorem
	3.3.2 Proving Non-regularity Using the Pumping Lemma for Regular Languages
	3.3.2.1 The Pumping Lemma
	3.3.2.2 Proving Non-regularity Using the Pumping Lemma

	3.3.3 Proving Non-regularity Using Closure Properties

	References

	4 The Context-Free Languages
	4.1 The Context-Free Grammar (CFG)
	4.1.1 The Definition
	4.1.2 Examples of CFGs
	4.1.3 Production Trees
	4.1.4 Leftmost and Rightmost Productions
	4.1.5 Closure Properties of CFLs

	4.2 Normal Forms of CFGs
	4.2.1 The Chomsky Normal Form (CNF) Grammars
	4.2.2 Normalizing CFGs to CNF Grammars
	4.2.3 The Greibach Normal Form (GNF) Grammars

	References

	5 The Pushdown Automaton Model
	5.1 The Pushdown Automaton (PDA) Model
	5.1.1 The Definition
	5.1.2 Examples of PDAs

	5.2 Equivalence Between CFLs and PDAs
	5.3 The Deterministic Pushdown Automaton (DPDA) Model
	5.4 Proving Non-context-Freeness
	5.4.1 The Pumping Lemma for CFLs
	5.4.2 Inherent Ambiguity of CFLs
	5.4.3 Non-context-Free Languages
	5.4.4 Ogden's Lemma
	5.4.5 Proving Ogden's Lemma by Analyzing a PDA'sBehavior
	5.4.5.1 (Case 1) "026B30D  Hk "026B30D  ≥4"026B30D  Q "026B30D  + 1
	5.4.5.2 (Case 2)  "026B30D  Hk "026B30D  ≤4 "026B30D Q"026B30D 
	5.4.5.3 (Subcase 2a) k = , We Have Kept Choosing the Last Block Index p as the Right End of the Interval At Each Step (i.e., r0 = @汥瑀瑯步渠= r = p), and h ≤botp
	5.4.5.4 (Subcase 2b) k =  =  + 
	5.4.5.5 (Subcase 2c) Neither Subcase 2a Nor Subcase 2b Holds


	References


	Part III Undecidability and Turing Machines
	6 The Turing Machines
	6.1 The Turing Machine (TM) Model
	6.1.1 The Definition
	6.1.1.1 The Mathematical Definition
	6.1.1.2 Recognition and Decision

	6.1.2 Examples of TMs
	6.1.3 Instantaneous Descriptions
	6.1.4 Fundamental Subroutines
	6.1.4.1 Restoring the Input
	6.1.4.2 Insertion
	6.1.4.3 Deletion


	6.2 The Multi-tape TM Model
	6.2.1 The Definition
	6.2.2 Examples of Multi-tape TMs
	6.2.3 Simulating Multi-tape TMs Using Single-Tape TMs
	6.2.3.1 Discovering the Symbols
	6.2.3.2 Determining What to Update
	6.2.3.3 Executing the Updates
	6.2.3.4 R Is the Intersection of RE and coRE


	6.3 The Nondeterministic Turing Machine (NTM) Model
	6.4 Alternate Definitions of RE
	6.4.1 Enumerators
	6.4.2 Witness Schemes

	6.5 Computing Functions Using TMs and the Church-TuringThesis
	References

	7 Decidable Languages
	7.1 The Universal TM Model
	7.1.1 Encoding Schemes
	7.1.2 Fundamental Problems
	7.1.3 Using Universal TMs

	7.2 Decidable Fundamental Problems
	7.2.1 Decidable Problems About Regular Languages
	7.2.1.1 Acceptance
	7.2.1.2 Emptiness
	7.2.1.3 Infiniteness
	7.2.1.4 Totality
	7.2.1.5 Containment
	7.2.1.6 Equality
	7.2.1.7 Decidable Problems About NFAs and Regular Expressions

	7.2.2 Decidable Problems About CFLs

	References

	8 Undecidable Languages
	8.1 The Halting Problem
	8.1.1 Proving Impossibility Using Diagonalization
	8.1.2 The Halting Problem
	8.1.3 Some Variants of the Halting Problem

	8.2 Many-One Reductions and Rice's Theorem
	8.2.1 Many-One Reductions
	8.2.2 Rice's Theorem

	8.3 Undecidable Problems About CFLs
	8.3.1 The Totality Problem About CFLs
	8.3.2 Undecidable Problems About DCFLs

	8.4 Post's Correspondence Problem (PCP)
	8.4.1 The Definitions of PCP and MPCP
	8.4.2 The Undecidability of MPCP
	8.4.2.1 An Accepting ID Sequence
	8.4.2.2 Designing Domino Tiles
	8.4.2.3 The Correctness

	8.4.3 The Undecidability of PCP

	8.5 Beyond RE
	References


	Part IV Computational Complexity and Resource-Bounded Turing Machine Computation
	9 The Time Complexity
	9.1 The Time Complexity Measure
	9.2 Time-Efficient Simulations of Multi-tape TMs
	9.2.1 Simulating with One Tape
	9.2.2 Simulating with Two Tapes
	9.2.2.1 The Tape Organization
	9.2.2.2 The Tape Coloring and Marking
	9.2.2.3 The Simulation Procedure
	9.2.2.4 Pushing Blocks to the Right
	9.2.2.5 Pulling Blocks from the Right
	9.2.2.6 An Analysis of the Running Time


	9.3 The Time Hierarchy Theorems
	9.4 The Nondeterministic Time Complexity
	9.5 Fundamental Time Complexity Classes
	9.6 Examples of Time Complexity Classifications
	9.6.1 The DFA State Minimization Problem
	9.6.2 The Problem of Converting an NFA to a Regular Expression
	9.6.3 The CFL Membership Problem

	References

	10 The Space Complexity
	10.1 The Space Complexity Measure
	10.2 Savitch's Theorem
	10.3 Fundamental Space Complexity Classes
	10.4 The Reachability Problem
	10.5 Examples of Space Complexity Classifications
	References

	11 The Theory of NP-Completeness
	11.1 The Polynomial-Time Many-One Reducibility
	11.1.1 The Definition
	11.1.1.1 Examples of Polynomial-Time Many-One Reductions

	11.1.2 The Definition of NP-Complete Languages
	11.1.3 A Canonical NP-Complete Language
	11.1.4 Polynomial-Time Witness Schemes

	11.2 The Satisfiability Problem (SAT)
	11.2.1 The NP-Completeness of SAT
	11.2.2 NP-Complete Variants of SAT
	11.2.2.1 The CNF Satisfiability
	11.2.2.2 3SAT
	11.2.2.3 NAE-SAT

	11.2.3 Some Complete Problems for coNP

	11.3 Fundamental NP-Complete Problems
	11.3.1 The Clique Problem
	11.3.2 The Vertex Cover Problem
	11.3.3 The 3-Coloring Problem
	11.3.4 The Hamilton Path Problem
	11.3.5 NP-Completes Problems About Integers
	11.3.5.1 The Partition Problem
	11.3.5.2 The Knapsack Problem
	11.3.5.3 The Scheduling Problem

	11.3.6 NP-Complete Problems About Matching and Set Partitioning
	11.3.7 More Examples of NP-Complete Problems
	11.3.7.1 Exact Cover by Three Sets (X3C)
	11.3.7.2 The Independent Set Problem


	References

	12 Beyond NP-Completeness
	12.1 The Complexity of Finding a Witness
	12.2 The Polynomial-Time Turing Reducibility
	12.2.1 The Problem of Finding the Least SatisfyingAssignment

	12.3 The Polynomial Hierarchy (PH)
	12.3.1 The Definition
	12.3.2 Logical Characterizations of PH

	12.4 Between P and NP-Complete
	12.4.1 Two Enumerations of TMs
	12.4.2 T's Program
	12.4.3 T's Running Time
	12.4.4 t's Range and Its Non-decreasing Property
	12.4.5 t's Unboundedness
	12.4.6 The Final Touch

	12.5 PSPACE-Complete Problems
	12.5.1 Quantified Boolean Formulas (QBF)
	12.5.2 Games and Winning Strategies
	12.5.3 The Geography Game

	References


	Part V Advanced Topics in Computational Complexity Theory
	13 The Probabilistic Polynomial-Time Classes
	13.1 The Probabilistic Turing Machine Model
	13.1.1 The Definition

	13.2 Primality Testing Algorithms
	13.2.1 Number Theory Basics
	13.2.1.1 Fermat's Little Theorem
	13.2.1.2 The Chinese Remainder Theorem
	13.2.1.3 Generators

	13.2.2 The Miller-Rabin Test
	13.2.2.1 Miller's Algorithm

	13.2.3 The Polynomial Zero-Testing Problem

	13.3 Relations Between BPP and PH
	13.4 The Class PP
	References

	14 Circuit Complexity and Unambiguity
	14.1 The Circuit Computation Models
	14.1.1 The Boolean Circuit Model
	14.1.2 Relations Between Boolean Circuit-Based Classes and TM-Based Classes
	14.1.3 The Arithmetic Circuit Model

	14.2 The Class P/poly
	14.3 Unambiguous Accepting Computation Paths of NTMs
	References


	A A List of Major Results
	A.1 Characterizations of Language Classes
	A.2 Relations Between Language Classes
	A.3 Closure Properties of Language Classes
	A.4 Non-closure Properties of Language Classes
	A.5 Classifications of Specific Languages
	A.6 Polynomial-Time Many-One and Witness Reductions
	A.7 Pumping Lemmas
	A.8 Normalization and Behavior of Computing Objects
	A.9 Time and Space Constructibility
	A.10 Number and Probability Theories

	Index



