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Preface

I conceived the idea of writing this book in 2018 when I taught an undergraduate
Theory of Computation course at the University of Miami. [ used a popular textbook
for the course, but felt that incorporating results not appearing in the book could
make the learning experience more interesting. That feeling prompted me to start
writing this book, but it took me several years to complete it. Since the number
of pages in a textbook cannot be too large, the amount of materials I could add to
the book was limited. A short list of the materials not appearing as frequently in
undergraduate theory textbooks is as follows:

The Myhill-Nerode Theorem and its use for proving non-regularity of languages
(Chap. 3)

Constructing Chomsky Normal Form grammars with a quadratic size increase
(Chap. 4)

Constructing Greibach Normal Form grammars (Chap. 4)

An inherently ambiguous language and a proof of its inherent ambiguity
(Chap. 4)

Ogden’s and Pumping Lemmas for context-free languages using pushdown
automata as the computation model (Chap. 5)

The undecidability of the Context-Free Language’s totality problem (Chap. 8)
The undecidability of the inherent ambiguity problem (Chap. 8)

The two-tape time-efficient simulation by Hennie and Stearns (Chap. 9)
Time-constructibility (Chap. 9)

Separations of deterministic time complexity classes based on the Time Hierar-
chy Theorems (Chap. 9)

The Space Hierarchy Theorem (Chap. 10)

Ladner’s Theorem, which shows that if P £ NP, then there is a language that is
neither NP-complete nor polynomial-time decidable (Chap. 12)

The membership of Bounded Probabilistic Polynomial Time in the Polynomial
Hierarchy (Chap. 13) and in P/poly (Chap. 14)

The Isolation Lemma (Chap. 14)

NL < UL/poly (Chap. 14)

vii



viii Preface

Some of the proofs presented in this book are long or complex. I have attached a
proof overview to each lemma and theorem that is complex or long. A reader may
choose to read an overview before reading its accompanying full proof.

Additionally, an appendix of this book has a list of major results that are grouped
according to their types. A reader may consult with the appendix to know where to
find results.

I hope the reader will find studying with this book to be interesting. If you have
comments and corrections, please feel free to reach out to me.

I would like to thank the Springer team for granting me the opportunity to publish
this book, as well as technical help with resolving issues in LaTeX formatting.

I would like to thank Ashwin Lall, Ryan Lin, Kevin Ma, Hawken Rives, Burt
Rosenberg, and Melanie Xia for their helpful comments. My biggest thanks go to
Ellen Ogihara, who proofread the entire book and provided valuable suggestions to
me. Finally, this project was supported in part by the National Science Foundation
Award NSF-CNS-2310807.

Coral Gables, FL, USA Mitsunori Ogihara
2025
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Chapter 1 ®
Mathematics and Computer Science ST
Basics

1.1 Sets

The first topic is set theory.

A set consists of its members (or elements). We use € and > to denote the
set membership relation. We write x € S and S > x to mean that the element x
belongs to the set S. @, called the empty set, is a special set with no elements.

There are two ways to specify sets. One is to list the members, like “the set
consisting of 1, 2, 3, 4, and 5.” The other is to describe the requirement that a
prospective element must satisfy to belong to the set, like “the set of all integers
between 1 and 5. We encompass the list and description with curly brackets
({ and }) to denote mathematical sets. When listing, we write:

{the list of elements}.
If listing all the elements is impossible or impractical, ellipses are used, like:
{1,2,...,99,100} and {..., —4,-2,0,2,4,6...}.
For specifying these two sets by their membership requirements, we write:
{x | x isaninteger and 1 < x < 100} and {x | x is an even integer}.

Let A and B be sets. If every element of A belongs to B, we say that A is a subset
of B and B is a superset of A. We denote the relations with A € B and B D A,
respectively. If A € B and A # B, we say that A is a proper subset of B and B is
a proper superset of A and denote the relation with A C B and B D A.

For example, let A = {4,5,7}, B = {4,7}, and C = {8, 10}. Then, 4 € A,
4 € B,and 4 ¢ C. Also, A is a proper superset of B, B is a proper subset of A, and
A is neither a subset nor a superset of C. We can denote these relations with A D B,
BCA Ag C,and A p C.
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The cardinality (or the size) of a set is its number of elements. For a set S,
we write || S| to indicate the number of elements in S. For example, ||4]| = 0 and
{1, 2, 4, 8}|| = 4. If the number of elements in S is finite, we say that S’s cardinality
is finite and S is a finite set. Otherwise, we say that S’s cardinality is infinite and S
is an infinite set. We often write ||S|| < oo and ||S|| = oo to mean that S is finite
and S is infinite, respectively.

We will frequently use the following infinite sets of numbers:

¢ N s the set of all natural numbers {1, 2, 3, ...}.

e Zis the set of all integers, {..., —3,—-2,—1,0,1,2,3,...}.
¢ Qs the set of all rational numbers Q.

¢ R is the set of all real numbers.

For the last two, by attaching the superscript + (Q* and R™), we denote that their
subsets consist solely of positive members. As we will see later in Chap. 8, there
are two types of infinite cardinality, 8¢ and R. The first three sets above have the
cardinality 8o, and the last set has the cardinality Rj.

1.1.1 Set Operations

There are operations for constructing sets from other sets.

The power set of a set S is the set consisting of all subsets of S, including the
empty set and S itself. We write 25 or P(S) to denote the power set of S. If S = ¢,
the power set of S is the set consisting of just one set, {J; that is, {¢}}.

The intersection (or the meet) of sets A and B is the set consisting of all the
elements in both A and B. The union (or the join) of sets A and B is the set
consisting of all the elements in either A or B. We write A N B to denote the
intersection of A and B, and A U B for the union of A and B. The sets A and
B are disjoint if their intersection is empty. When A and B are disjoint, we may
write A + B instead of A U B.

For two sets A and B, the set difference of A from B is the set consisting of all
elements appearing in A but not in B. We write A \ B to denote the set difference of
A from B. The symmetric difference between sets A and B is the union of the two
set differences, A\ B and B\ A. In other words, the symmetric difference between A
and B is the set of all elements that appear in only one of the two sets. Alternatively,
it is the difference between the union of the two sets and the intersection of the two
sets. We denote the symmetric difference of A and B with AAB.

Often, a set A is presented with a universe from which its members are drawn.
When the universe is known, we write A or A€ to mean the complement of A; that
is, the set of all elements in the universe that are not elements of A. Note that A =
A for all sets A. Figure 1.1 demonstrates the intersection, union, and complement
vconcepts.
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ap o

Fig. 1.1 The fundamental set operations: intersection (left), union (center), and complement
(right)

Here are some examples. Let A = {4, 5,7}, B = {4, 7, 8}, and C = {8, 10}. Then
ANB={4,7,AUB ={4,5,7,8}, ANC =@,and BN C = {8}. Thus, A and C
are disjoint. Additionally, A \ B = {5}, and B \ A = {8}, and so AAB = {5, 8}.

De Morgan’s Laws relate the union and the intersection in light of the
complement operation. De Morgan’s Laws state that for all sets A and B, which
are subsets of a universe U,

AUB=ANBand ANB = AUB.

The Cartesian product of sets A and B is the set of pairs {(a,b) | a €
A and b € B}. We write A x B as the Cartesian product of A and B. For
example, if A = {1,2,3} and B = {5, 6}, the Cartesian product A x B
is {(1,5), (1,6), (2,5), (2,6), (3,5), (3,6)}. The concept of Cartesian products
extends to a collection of more than two sets. For sets Ay, ..., Ax, k > 2, the
Cartesian product of Ay, ..., A isthe set {(ai,...,ax) | a1 € Ay, ..., ar € Ag}.

1.2 Boolean Algebra

Next, we go over Boolean algebra.

Boolean algebra is an algebraic system built on two constant Boolean values
(true and false), variables representing a value, and Boolean algebraic operations.
The value pair (true, false) is often identified with (7, F) and (1,0). The two
fundamental values complement one another. We say that true is false’s negation
and false is true’s negation. We attach the symbol — in front or draw a line on top
to indicate the negation. Thus, —x and X similarly represent the negation of x. Note
that a double negation is an identity operation.

This logic has two other operations: conjunction and disjunction.

A conjunction is an operation that takes two or more Boolean values and
produces a new value representing if all the values are true. An expression
representing the conjunction of Boolean values lists the values with the symbol A
between each neighboring pair. For example, x A y A z represents the conjunction
of x, y, and z. We can draw elements from Boolean values and compute their
conjunction. If S is a set of Boolean values, we write A csx to mean the conjunction
of all values in S. We often call the conjunction the logical AND.
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A disjunction is an operation that takes two or more Boolean values and produces
a new value representing if at least one of the values is frue. An expression
representing the disjunction of Boolean values lists the values with the symbol Vv
between each neighboring pair. For example, x Vv y V z represents the disjunction of
X, y, and z. As with conjunction, we can write V,¢s to indicate the disjunction of
the (Boolean) values in the set S. We often call the disjunction the logical OR.

To the right is a table for the value of x A y
. o X|ylxAy
on all four possible combinations of values for x Tl T
and y. Here, we use T and F for true and false,
respectively. T\F| F
F|T| F
F|F| F

We can construct a Boolean formula using constants, variables, and Boolean
operations. A variable can appear in a Boolean formula as a literal. For each variable
x, a literal has two forms, x and x. The former is a positive literal, whose value
equals the value of x. The latter is a negative literal, whose value equals the x’s
negative value. The evaluation of a Boolean formula follows rules similar to that of
mathematical formulas, where —, A, and V correspond to —, *, and +, respectively.
Using parentheses changes the priorities, so we process the leftmost, inner-most pair
of parentheses first.

Both conjunctions and disjunctions are commutative. In other words, for all
Boolean formulas x and y, x Ay = y Ax,and x Vy = y VvV x. The two
operations are also associative. In other words, for all Boolean formulas x, y, and z,
XxA(YAZ) =xAy)Azand x V(¥ Vz) = (x Vy)Vz. Because of this associativity,
we can unite a series of Boolean objects with the same binary operation without
parentheses.

Both conjunctions and disjunctions also follow the distributive laws. For all x,
yviandz, x AV =xAY)VEAD,andx V(YA =X VY)AXV2I).

De Morgan’s Laws we reviewed in the set section apply to Boolean logic as well.
For all Boolean expressions X and Y, X UY = XNY,andXNY=XUY.

1.2.1 Implication and Equivalence

From the three fundamental Boolean logic operations, we can build relations.
Because of De Morgan’s Laws, it is sufficient to have either negation and conjunc-
tion or negation and disjunction to express all Boolean logic. Two critical operations
are implication: x — y, and equivalence: x = y. The implication x — y means,
“wherever x is true, y is true,” and the equivalence x = y means, “x and y have the
same values.” The implication x — y is equivalent to X V y. The equivalence x = y
is equivalent to (x — y) A (¥ — x) and thus equivalent to (x V y) A (¥ V x).
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The contrapositive (or contraposition) of an implication x — y is y — X. The
contrapositive has the same value as the original. We can derive that the two are
equal to each other using the following transformations:

x—=>N=EFVvy=@rvH=FVI) =G> ).

In addition to De Morgan’s Laws, distributive laws, removal of double negations,
and replacement of implications with disjunctions, we can use the following rules
for simplifying formulas:

* X AXxequals x;x Vxequals x.

* x A —x equals false; x vV —x equals true.
* x A false equals false; x V false equals x.
* X Atrue equals x; x V true equals true.

1.2.2 Predicates

Here, we define predicates.

A predicate is an expression involving variables such that the expression receives
a truth value (i.e., true or false) when all the variables in the expression receive a
value. A set of permissible values is associated with each variable in the predicate.
This set of permissible values is called the variable’s domain.

We may classify predicates based on its variables’ domains, like integer predi-
cates, real number predicates, and Boolean predicates. We also classify predicates
based on the number of its variables. We call a predicate with only one variable
a unary predicate, one with two variables a binary predicate, one with three
variables a ternary predicate, and so on. Generally, for a positive integer k, a k-ary
predicate is one with k variables. For example, P(x) = [x xx —3x + 2 > 0] is
a unary predicate with x as its variable. The domain of the variable x must admit
multiplication, addition, and subtraction. The value of the predicate is true for x > 2
and for x < —1. The predicate Q(x, y) = [x * y = 1] is a binary predicate whose
variables x and y must be in a domain that admits multiplication.

We often use the term binary relation as a synonym for the term “binary
predicate.” Let Q(x, y) be a binary predicate such that the domain of x and y is
D. The binary relation representing Q is the relationship between two elements
x and y in D such that Q(x, y) = true. We write x Ry to mean that the relation
representing Q exists between x and y. The pair (x, y) for which x Ry holds is:

{(x,y) | x,y € DA Q(x,y) = true}.

This set is a subset of the Cartesian product D x D.

There are three essential properties of binary predicates. Let Q(x, y) be a binary
predicate. We say that Q is reflexive if Q(x, x) is true for all choices of x. We say
that Q is symmetric if for all choices for x and y, Q(x, y) = Q(y, x). We say that
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Q is transitive if for all x, y, and z, Q(x, y) A Q(y, z) implies Q(x, z). If R is
reflexive, symmetric, and transitive, it is an equivalence.

A distinguished type of predicates is the tautology. A predicate is a tautology if
its value is frue regardless of the value assignments to the variables. For example,
the binary predicate [x > yVvx < y] with x, y € Ris a tautology because regardless
of the choices of the values for x and y in R, either x > y orx < y.

1.2.3 Truth Assignments and Quantifications

Given a Boolean formula with some variables, we can assign values to the variables
and evaluate the formula with those assigned values. The combination of the values
assigned to the variables is a truth assignment. Let P be a Boolean formula built
on some variables x1, ..., x,. Given a truth assignment « for P, we write P(x) to
denote the result of evaluation P with the truth assignment. We say that « satisfies
P if P(a) = true. We say that P is satisfiable if some truth assignment satisfies
P, unsatisfiable if no truth assignments satisfy P, and a tautology if every truth
assignment satisfies P.

It is possible to quantify variables in a predicate. We frequently use the
existential quantifier 3 and the universal quantifier V.

For a predicate P (x), (3x) P (x) means “for some choice for x, the value of P (x)
is true,” and (Vx)P(x) means “for all choices for x, the value of P(x) is true.”
Without using the quantifiers attached to x, the two predicates are expressed as
follows:

(3x) P(x) is equivalent to P (true) v P(false), and
(Vx) P(x) is equivalent to P (true) A P(false).

Because a quantification considers the two possible assignments to the variable to
which it is attached, you cannot assign a value to the variable externally.

Let P(x1,...,x,) be a formula free of quantifiers. We say that P is
satisfiable if (Ixq, ..., xu)[P(x1,...,xn) = true] and P is unsatisfiable if
Vx1, ..oy x)[P(x1, ..., Xxp) = false]. In addition, we say that P is a tautology if
vVx1, oo X)) [P (X1, ooy X)) = truel.

1.3 Functions

Here, we go over some important concepts about functions.

Let D and R be two nonempty sets. A function f from D to R associates with
a value in R to each element of D. We also use the word mapping in place of
“function.” We write

f:D—R
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to mean that f is a function from D to R. For an element x € D, the value of f
at x has the notation f(x). We refer to D and R as the domain and range of f,
respectively. We write dom( f) and range( f) to refer to them.

If there may be some x for which f(x) is undefined, we say that f is a partial
function. If there is no x for which f(x) is undefined, we say that f is a total
function. We usually omit the word “total.” We say that f is a one-to-one function
if for all x and x” € D, f(x) # f(x"). We say that f is an onto function if, for all
y € R, there is at least x € D such that f(x) = y. We say that f is a bijection if f
is both a one-to-one and an onto function. If f is a bijection, we use f~! to mean
the inverse function of f, i.e., the function that maps each y € R to the unique
(because of f being a bijection) x € D such that f(x) = y. The inverse function
f~!is a bijection. While f(x) represents the value with which f associates x, for
aset S C D, f(S) ={f(x) ]| x € S}. When f is an onto function, we can express
the property as (D) = R.

Let P(n) be a predicate where n’s domain is N. We say that P(n) holds for all
but finitely many r if there exists an integer n¢ such that for all n > ng, P(n) is
true. We write

(Ym)[P(n)]

to express this property.

1.3.1 Big-0 Notation

We use the “big-O” notation to compare the speed of growth of functions from N to
R. Let f(n) and g(n) be functions whose domain is N and range is R™. We define
the big-O relations between them as follows:

1. We write f(n) = O(g(n)) if there exists a constant ¢ > 0 and an integer n¢ such
that for all but finitely many n, f(n) < cg(n).

2. We write f(n) = Q(g(n)) if there exists a constant ¢ > 0 and an integer n¢ such
that for all but finitely many n, f(n) > cg(n).

3. We write f(n) = o(g(n)) such that lim,_,, f(n)/g(n) = 0, i.e., for all ¢ > 0,
there exists an integer ng such that for all n > ng, f(n) < cg(n).

4. We write f(n) = w(g(n)) such that lim,_, f(n)/g(n) = oo, i.e., for all
constants ¢ > 0, there exists an integer ng such that for all integers n > ny,
fn) = cg(n).

5. We write f(n) = O(g(n)) if f(n) = O(g(n) and f(n) = QL(g(n)).

1.4 Languages

Here, we define the components for defining language classes.



10 1 Mathematics and Computer Science Basics
1.4.1 Alphabets and Strings

Let us begin with alphabets and strings.

An essential component of a language is the string, which is an assembly of
characters from the alphabet. An alphabet is any nonempty finite set. An element
of an alphabet is a symbol. Typically, we use an uppercase Greek letter to represent
an alphabet and other types of letters (e.g., the English alphabet and the lowercase
Greek letters) to represent a symbol in an alphabet.

A string (or word) over an alphabet is a sequence whose elements are from the
alphabet. We specify a word by putting the elements within the sequence from left to
right. We often refer to each symbol occurrence in a string as a character. In other
words, each string is a sequence of characters, with each character representing
a symbol in the alphabet. For example, if a string w is a sequence [a, b, a, b, c],
we write ababc to specify the sequence. The string w’s alphabet is a finite set of
symbols whose members include a, b, and c.

For a string w, |w| denotes the length of w. Note that the single vertical line
differs from the double vertical line we use for cardinality. The symbol € denotes
an empty string (or empty word) whose length is 0. Let ¥ be an alphabet and n
be a non-negative integer. For a non-negative integer n, X" represents the set of all
strings over X with a length equal to n. We define X =" to be the set of all strings
over X, whose length is less than 7, and =" to be the set of all strings over X,
whose length is at most n. Furthermore, X* is the set of all strings over X; that is,
¥* = U,>0X". Similarly, =% is the set of all nonempty strings over ¥; that is,
>t = Up>12".

For two strings u and v, u - v is the concatenation of u and v; that is, the string
we can create by appending v after u. We often omit the period in the middle and
write uv. For example, if u = abcab and v = cccbbb, uv = abcabcccbbb. If u is
empty, then uv and vu are identical to v. If w is the concatenation of # and v, i.e.,
uv, then u is a prefix of w, and v is a suffix of w. If w = uv and u # €, then v is a
proper suffix of w. Similarly, if w = uv and v # €, then u is a proper prefix of w.
A substring (or subword) of a string w is any string we can construct from w by
removing a (possibly empty) prefix and a (possible empty) suffix. In other words,
v is a substring of w if, and only if, strings x and y (possibly empty) exist, such
as w = xvy. A proper substring (or proper subword) is a substring that is not
equal to the original. For example, if w = bbaaba, then the substrings of w are €,
a, b, aa, ab, ba, bb, aab, aba, baa, bba, aaba, baab, bbaa, baaba, bbaab, and
bbaaba. Among these, €, b, bb, bba, bbaa, bbab, and bbaba are prefixes, and €, a,
ba, aba, aaba, baaba, and bbaaba are suffixes.

1.4.2 Languages and Their Classes

Here, we go over the general concepts about languages.
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A language over an alphabet X is any subset of £*. If A is a language over an
alphabet X, then its complement is ¥* — A. For example, if the language A is the
set of all strings over {a, b} containing at least one a, its complement is the set {b}*.

For languages Ay, ..., Apy,m > 1, A1--- Ay, ={a1---an |a1 € A1, ...,an €
A, }. For a language A, A* = {¢}U{a;---ay, | m > land ay,...,a, € A}. In
other words, A* = {¢]UAUAAUAAAUAAAAU--.. We call A* the Kleene-
star (or simply the star) of A. Additionally, we write A* for AA*. We call A™ the
Kleene-plus of A. We define (#)* to be €, not @.

A language class (or simply, class) is a collection of languages. The comple-
mentary class of a class, C, consists of the complements of the languages in C. We
use co-C to denote the complementary class of C.

1.5 Graphs and Trees

Here, we review graphs and trees.

1.5.1 Directed Graphs

We start with the definition of directed graphs.

A directed graph (or digraph) G is a pair (V, A), where V is a finite set and
A C V x V. The elements of V are the vertices (or nodes) of the graph G, and
the elements of A are the [directed] edges (or the arcs) of G. Let ¢ = (u, v) be
a directed edge. We call the endpoint u as the source vertex (or the source node)
of e and the endpoint v as the destination vertex (or the destination node) of e.
Furthermore, ¢ is an incoming edge to v and an outgoing edge from 1. We often
use a directed graph to represent a binary relation between a set of finite objects,
with A encoding the relation. Figure 1.2 shows an example of a directed graph.

Fig. 1.2 An example of a

directed graph. The circles
are vertices, and the arrows
are edges
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1.5.2 Reachability

Let G = (V, A) be a directed graph. A path in G from a vertex u to a vertex v is a

series of vertices m = [uy, ..., u;,], m > 1, such that:
e Uy =u.
* U, =v.

o forallisuchthatl <i <m — 1, (u;, uj11) € A.

We call the two endpoints of the path # and v the source and destination of the
path, respectively, or the start and end of the path. We say that v is reachable from
u in G if G has a path from u to v. The length of a path [uq, ..., u;]ism — 1.

If the source and the destination are identical, we call this a cycle. A cycle is
simple if no vertices appear twice other than its start and end vertices. A directed
graph is acyclic (or cycle-free) if it contains no cycles (see Exercises 1.10 and 1.11).
Each acyclic graph has at least one vertex without incoming edges and at least one
vertex without outgoing edges. These vertices are called source vertices and sink
vertices, respectively. Figure 1.3 shows an example of an acyclic directed graph.

Since the edges are between two vertices, we often use a matrix to represent a
graph. Let G = (V, A) be a directed graph. Let n = ||V||. Let uy, ..., u, be an
enumeration of G’s vertices. We define the matrix M representing G tobe ann x n
matrix with elements m;;, 1 < i, j < n, such that for all i and j between 1 and n,

mj = 1if there is a directed edge from u; to u j, and O otherwise.

We call the matrix the adjacency matrix of G (based on the ordering of the
vertices).

Once we have established a matrix representation of a directed graph G, we can
compute the reachability for all pairs of vertices using matrix multiplication. Let
G = (V, A) be a directed graph and M be the adjacency matrix of G. Let n be the
number of vertices in G. Let I be the identity matrix of size n, the n X n matrix
with 1 at all diagonal positions, and 0 elsewhere. For each k such that 1 < k < n,
define My to be the k-th power of M where the arithmetic is Boolean, with the
value of 1 representing true, the value of O representing false, the multiplication
representing the conjunction, and the addition representing the disjunction. In other
words, the matrix product calculation treats the entries as integers but reduces any
integer greater than 1 to 1. Then for each k such that 1 < k < n, and for each pair

Fig. 1.3 An acyclic graph.
The squares are the source
vertices (at the upper-left and
lower-right corners). The
stars are the sink vertices (at
the upper-right and lower-left
corners)
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@, j), 1 <i,j < n,the (i, j)-th element of M} is 1 if, and only if, there is a path
from u; to u; with at most k edges (see Exercise 1.13).

A graph G’ = (V’/, A’) is a subgraph of another graph G = (V, A) if V' C V
and A" C A.If G’ is a subgraph of G and G’ is different from G, then G’ is a proper
subgraph of G.

Let G = (V, A) be a directed graph. For V' C V, the vertex-induced subgraph
of G concerning V'’ is the directed graph G’ = (V’, A’) such that A’ = {(x, y) |
x €V,y e V,and (x,y) € A}. Let A” C A. The edge-induced subgraph of G
concerning A’ is the directed graph G’ = (V’, A’) such that V' = {x | x is an
end-point of some edge in A'}.

A strongly connected component of a directed graph G = (V, A) is a set
S C V such that in the subgraph of G induced by S, every pair of nodes (u, v)
is connected in both directions. A maximally strongly connected component of
a directed graph G = (V, A) is a strongly connected component of G with the
property that no proper superset of S is a strongly connected component of G.
Figure 1.4 shows connected components of a graph. There are two ways to derive a
subgraph: vertex-induced subgraphs and edge-induced subgraphs.

1.5.3 Undirected Graphs

Here, we go over the definitions of undirected graphs.

An undirected graph (or simply a graph) is a pair G = (V, E) such that £ C
V x V and for all x and y, (x, y) € E if, and only if, (y, x) € E. In other words, an
undirected graph is a directed graph where the arcs are symmetric. When drawing
an undirected graph, we collapse the arcs in opposite directions between each pair
of vertices into a single line with no arrowheads.

Let G = (V, E) be an undirected graph. For each (x,y) € E, we say that
x is adjacent to y and y is adjacent to x. We define subgraphs, vertex-induced
subgraphs, and edge-induced subgraphs in the same manner as we did for directed
graphs. We define paths similarly, but note that each edge on a path has no direction.

While self-loops are permissible edges in directed graphs, in undirected graphs,
the lack of direction in undirected graphs makes the existence of self-loops pointless.
We, therefore, assume that there are no self-loops in undirected graphs. Figure 1.5
shows an undirected graph.

Fig. 1.4 A connected
component. The highlighted
edges and vertices form fully
connected components. Two
components appear here
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Fig. 1.5 An undirected graph

In an undirected graph, if there is a path from a vertex u to v, there is a path
from v to u. This symmetry occurs because edges have no direction. Therefore,
the definition of connected components in undirected graphs is different from the
definition of connected components in directed graphs.

A clique (or complete graph) is a graph in which every pair of vertices has an
edge between them. For an integer k > 1, a k-clique is a clique having k vertices.

1.5.4 Trees

Here, we go over the definitions of trees.

A tree is a fully connected undirected graph without loops. Choosing one vertex
as its root provides an orientation of each edge for specifying a cycle-free path
from the root to each vertex. Such straight paths are unique. Thus, we can classify
the vertices in a tree based on the length of the path to the root:

* There is only one vertex at distance O from the root, which is the root itself.
e Foreachi > 1, a vertex is at a distance i from the root if the shortest path from
the root to the vertex has length i. The shortest path is necessarily cycle-free.
Put differently, a vertex is at a distance i from the root if it does not have a
distance of < i and is adjacent to another vertex whose distance from the root is
i—1.

The depth of a vertex in a rooted tree (i.e., a tree with a designated root) is the
length of the shortest path from the root. Given a rooted tree, a vertex’s parent
appears immediately before the vertex on the shortest path from the root. A leaf of
a rooted tree is a vertex without children in this hierarchical structure. The height
of a tree is the length of the longest path from its root to any leaf. A binary tree is a
rooted tree in which every non-leaf has at most two children. A forest is a collection
of trees.

Figure 1.6 shows an example of a tree.
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Fig. 1.6 A tree. The numbers root
represent the depth of the
path 1

1.6 Proof Methods

This section covers proof methods.
In proof by inference, we start from a set of facts and assumptions and apply
logical inference to conclude. A simple example of this is an inference of this form:

if S C T and x is an element of S, then x is an element of T.

A way to show that a statement “for every x, P (x) holds” is to find an x for which
P (x) does not hold. A x that contradicts the statement is a counterexample. For
example, the statement “for all odd prime numbers n, n> + 4 is a prime number” is
false. While 3244 = 13,52 +4 = 29, and 77 +4 = 53 are all prime numbers, 11>+
4=125=>5%isnota prime number. Thus, n = 11 serves as a counterexample.

Proof by contradiction is a method for showing that a statement is true by
demonstrating that the assumption that the statement is false leads to a contradiction
of that belief. In other words, we prove that a statement S is true by showing that
S — false, whose contrapositive is true — S. Since true holds with no assumption,
we know that S is true.

A well-known example of this proof method is “4/2 is not a rational number.”
The proof goes as follows:

1. By contradiction, assume ~/2 is a rational number.
2. If +/2 is rational, there exist two strictly positive integers m and n such that

V2=12
3. We cannassume that m and n are relatively prime to each other, i.e., the greatest
common divisor of m and n is 1.
4. From the above, we can assume that m or n is an odd number.
5. By taking the square of each side of the equality, we get 2 = ”’:—; By moving

terms, we have 202 = m?2.

6. Since 2 appears on the left-hand side of the equation, m is even. Let m = 2p for
some integer p.
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7. By substituting 2p for m, we get 2n> = 4p?. By dividing both sides by 2, we get
n? =2p2.

8. Using the same argument, we have n = 2¢q for some integer g.

9. Thus, both m and n are divisible by 2, which contradicts Step 4. Hence, V2
cannot be rational.

Another example of proof by contradiction is the pigeon-hole principle. The
principle, in the standard form, states that if m and n are positive integers and m > n,
then labeling m elements with one of the n labels produces a pair of elements having
the same labels. The proof of the principle is as follows:

* Suppose we have already assigned a label to some n elements. Our claim holds
if we have already assigned an identical label to two elements. Otherwise, the n
elements have used up all the n labels, so we must assign an already-used label
to one of the remaining elements.

An extended version of this principle is the following:

e For all integers k > 1, if there are m > kn elements to label, we must label a
group of k 4 1 elements identically.

The extended version’s proof follows the same argument as the standard version.
Figure 1.7 illustrates this principle.

Proof by induction is a method for proving a statement P (n) for all integers
in a possibly infinite series of integers {m;};>. Initially, the proof shows that P (n)
holds for some initial values n = my,...,n = my for some k > 1 (the base
case(s)). Then, it shows that for all £ > k, if P(n) holds forn = my,...,n = my,
then it holds for n = my4 (the induction step).

An example of proof by induction is:

(Vn>1)|: li=

i=1

n(n+1):|

Fig. 1.7 The pigeon-hole
principle. There are four
pigeons and three holes. One

hole gets two pigeons Q

3

®¢Q$
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We can prove this property as follows:

* The base case of our induction proof is n = 1. If n = 1, the left-hand side of
the equation is equal to le 11 =1, and the right-hand side is equal to = 12 =1
Thus, the equality holds.

* For the induction step, suppose k > 1, and the equality holds for all values of n
that are at most k. Specifically, we have

a k(k+ k1)
20

Then,

k+1

Zl—k+1+21

k(k+1)
2
_2(k+ 1) +k(k+ 1)
2
_(k+ Dk +2)
—

=k+1+

and so the equality holds for k + 1. This means that for all integers k > 1, if the
equality holds for n = k, then the equality holds for n = k+ 1. Since the equality
holds for n = 1, we have the equality holds for all values of n > 1.

1.7 Algorithmic Concepts

Here, we review some algorithm concepts.

Exhaustive search refers to a search strategy in which we generate all candidates
for an answer with some (usually simple) procedure and then check each candidate
to see if it satisfies our search criteria.

A well-known problem where exhaustive search is used to solve is the reacha-
bility problem. This is the problem of testing, given G, u, and w as input such that
G is a directed graph and u and w are vertices of G if G has a path from u to w. We
can solve the problem using an exhaustive search as follows:

Let G = (V, A) with ||V]| = n. Let numbers 1, ..., n represent the vertices.
We can solve the problem using the following exhaustive search: we generate all
nonempty sequences having lengths n with entries from {1, ..., n}, say [i1, ..., i,],
and testing whether a prefix of the sequence represents a path from # and w in the
following sense:
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e forsomek > 1,i; = u, iy = w,and forall j suchthat 1 < j <k — 1, thereis a
directed edge fromi; toij4q.

The beauty of this exhaustive approach is simplicity. The search, however, may
generate several invalid sequences, such as those that do not start with u or contain
w.

A greedy algorithm is a search algorithm where we build a solution through
repeated scanning of building blocks. Using Algorithm 1.1, we can solve the
reachability problem by building the set S of all vertices reachable from u.

An inductive algorithm finds the solution to a problem by gradual construction.
There, we start from a solution to a simple subproblem. We then extend the solution
to a larger subproblem. By repeating the extension, the subproblem becomes the
whole problem, and we obtain the answer.

Algorithm 1.1 A greedy algorithm for reachability

1: procedure GREEDY-REACHABILITY(G, u, w)
2: G = (V, A) is a directed graph; u, w € V;

3: initialize S < {u};

4: repeat

5: foreachy € V — S do

6: if some x € § exists such that (x, y) € A then
7: S« SU{yh

8: end if

9: end for

10: until no additions occur during the for loop
11: if w € S then

12: assert w is reachable from u;
13: else
14: assert w is not reachable from u;
15: end if

16: end procedure

Exercises
1.1 Let A = {a, b, c} and B = {a, d, f}. State the elements of the following sets:
AUB,ANB,A\B,B\ A,and AAB.

1.2 State the power set of A = {a, b, c}.
1.3 List the elements of {a, b} x {c, d}.

14 Let¢p(x,y,z) = (x Vy) A (—x V z). State the value ¢ for each possible truth
assignment.

1.5 For each of the following properties P, prove or disprove whether P is
symmetric, reflexive, or transitive.

1. P(x,y) = x < y where the domain of x and y is R.
Hint: x < y is equivalent to “there exists some strictly positive d such that
y—x=d”
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2. P(x,y) = |x — y| <5 where the domain of x and y is R.

3. P(S,T)=|ISNT| =1, where S and T are sets.

4. P(G, H) is G is a subgraph of H, where both G and H are undirected graphs.
5. P(X,7Y) is the predicate X N'Y = ¢, where X and Y are sets.

1.6 Let £ = {a, b} be an alphabet. List the elements of £=3.

1.7 Let S = {1}. State the elements of P(S), P(P(S)), and P(P(P(S))).

1.8 Use proof by induction to show for all n > 1 that Y !_, 2= w.

1.9 Using the pigeon-hole principle, prove that for all n > 2, if 7 is a path in an
n-vertex graph (or directed graph) and has length gegn, then 7 contains a cycle.

1.10 Prove that if C is a non-simple cycle in a directed graph G = (V, A), C =
[u1, ..., un] contains at least one simple cycle.

1.11 Prove that if P is a non-simple path from u{ to u,, (u; # uy) in a directed
graph G = (V, A), we can obtain a simple path from u; to u, by repeatedly
removing simple cycles in P.

1.12 Use the property from Exercise 1.10 to prove that if a directed graph is fully
connected, every pair of vertices (u, v) has a simple cycle containing both u and v.

1.13 Prove the property on Page 13, i.e., for each k such that 1 < k < n, the k-th
power of the adjacency matrix of a directed graph represents the reachability with
at most k edges.

1.14 Prove that for all n > 2, all undirected graphs with n vertices and n edges
have a cycle whose length is > 2.
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Chapter 2 ®
The Regular Languages Qe

2.1 The Finite Automaton (DFA) Model

Here, we introduce the finite automaton model and study its computational power
for recognizing languages.
Imagine the following “turning game”:

* A friend blindfolds you and stands you facing North.

* The friend then gives you a series of commands. You have yet to learn how long
the series will be.

* Each command you receive is one of “right face,” “left face,” and “about face.”
You respond to the three types of commands by turning 90° to your right, turning
90° to your left, and turning 180°.

* At some point, the friend informs you that the commands are complete. At the
end, the friend asks you to state which direction (North, East, South, or West)
you are facing.

* You win if you state the correct answer to the question.

Let’s simplify the problem by changing the goal to the following: you need to
identify if you are facing east at the end.

How do you tackle the game? A simple solution to the problem is as follows:

You let the numbers 0, 1, 2, and 3 represent the cardinal directions (North, East,
South, and West, respectively) and use the numbers to memorize the direction you
are facing. The initial direction is North, so the number you memorize is 0. When
you receive a command, you update your direction by adding an integer from 1, 2,
and 3 and then reducing to an integer between 0 and 3 by subtracting four if the
value after addition is greater than or equal to 4. The quantity to add is 1, 2, and 3
if the command is “right face,” “about face,” and “left face,” respectively. After the
command sequence, you have only to examine the value you have. If the number is
1, the direction is the east; otherwise, it isn’t.
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Fig. 2.1 The “turning game”
solution. The letters ‘a’, ‘r,
and ‘1’ respectively represent
the commands “about face,”
“right face,” and “left face.”
Each circle has a label
representing the direction and
the number representing it

Fig. 2.2 A finite automaton
for the “turning game”

Figure 2.1 shows a diagram representing this idea.

2 The Regular Languages

Let us build a new diagram by removing the North, East, South, and West
annotations, replacing the “Start” marking with an arrow pointing to it, replacing
the “End” marking with an interior concentric circle, and replacing the direction
number x with g, for x = 0, 1, 2, 3. The resulting diagram, Fig. 2.2, is the finite

automaton produced from this strategy.

2.1.1 The Definition

A formal definition of the finite automaton model is as follows:

Definition 2.1 A (deterministic) finite automaton (DFA or FA) is a quintuple
(0, %,38,q0, F) where Q and X are finite sets, § is a function from Q x X to Q,
qo € O, and F is a nonempty subset of Q. We call the five components the state set,
the alphabet, the transition function, the initial state, and the final states, respectively.

The transition §(p, a) = g means if the present state is p and the input character

is a, then the next state is g.
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‘We define the computation of a DFA using the transition function. Given an input
w = wp--- Wy, the DFA processes the characters wy, ..., wy,, in the order they
appear. M initializes its state with go. Then, fori = 1, ..., m, M processes w; and
updates its state by using the value of é given the present state and the symbol w;
as the input. The DFA M accepts if it arrives one of the final states after processing
the input.

We use the following mathematical formulation to express this idea.

Definition 2.2 Let M = (Q, X, 8, qo, F)) be a DFA. For all states p € Q, define
8(p,e) = p, and for all states p € Q, for all integers m > 1, and for all
wi, ..., W, € X, define

(P, wy -+ Wy) =88+ 8 (p, wp), w2), -+, W—1), Wy).

It is possible to redefine the formula using a state series [py, ..., pm] to define
8(p, wy - - - wy) as follows:

* po=p-
e Foreachi suchthat1 <i <m, p; = (pi—1, w;).
* (p,wi- W) = Pm.

We now define the notion of acceptance.

Definition 2.3 Let M = (Q, X, 8, qo, F) be a DFA and let w € T*. We say that
M accepts w if §(qp, w) € F.

We can state the DFA for the “turning game” as M = (Q, X, 8, qo, F), where
0 =1{q90.91.q2.q3}, = = {a,r, 1}, g0 = 0, F = {q1}, and § has the following
transition table:

State |a |r [

q0 q2 91 | g3
q1 q3 192 |90
92 q0 |93 |41
93 q1 1490 92

Here are two examples of the moves that the “turning game” DFA makes.

e If the input is alrlar, the resulting state-sequence is

[90, 92, 91, q2, q1, 93, qo0].

This implies §(qo, alrlar) = qo. The DFA thus does not accept the input.
» If the input is aaalllrr, the resulting state-sequence is

[90, 92. 90, 92, q1, 90, 93, 90, q1].
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This implies §(0, aaalllrr) = 1. The DFA thus accepts the input.

We can use a drawing like Fig.2.2 for presenting a DFA using the following
general rules:

* Use a circle to represent a state.

* Connect states p and g with an arrow going from p to ¢ if a symbol produces a
change from p to q.

e Label each arrow with a list of all the symbols that produce the change with a
comma in between.

* Draw a special arrow pointing to the initial state.

¢ For each final state, double the circle.

We now define the regular languages.

Definition 2.4 Let L C X* be a language. Let M = (Q, X, 8, qo, F) be a DFA.
We say that M accepts L if for all w € X*, M accepts w if, and only if, w € L. We
write L(M) to represent the language M accepts.

Definition 2.5 We say that a language is regular if a DFA accepts it. We use REG
to represent the class of all regular languages.

2.1.2 Example DFAs

Let us look at some DFA examples.

Example 2.1 Let A = {w | w € {0, 1}* and w has an odd number of Os}. We need
just two states, go and g1, where gq is the initial state and g is the final state. The
transition function and the transition diagram are as follows:

State |0 1
q0 q0 |41
q1 q1 | 40

a 1

Let us examine the behavior of the DFA with a couple of input strings.
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On input 001101, the DFA in state go follows the state sequence [qo, 90, 90, 91, 40,
qo, q1] upon encountering the characters 0, 0, 1, 1, 0, and 1. The last state of the
sequence is g1, so the DFA accepts the input.

On input 10101010, the DFA starts in state go and follows the state sequence
[g0. 91, 91, 90, 90, 41, q1, o] upon encountering the characters 1,0, 1,0, 1,0, 1,
and 0. The last state of the sequence is g, so the DFA accepts the input.

Example 2.2 Let B = {w | w € {a, b}* and w has abb as a suffix}. We need four
states, qo, 41, g2, and g3, where g is the initial state and g3 is the only final state.
The transition function and the transition diagram are as follows:

State |a | b

40 q1 |90
q1 q1 |92
q2 q1 1493
93 q1 | 490

The states have the following meanings:

q1 represents the situations where the input has a at the end.
q> represents the situations where the input has ab at the end.
q3 represents the situations where the input has abb at the end.
qo represents all other situations.

The automaton’s action is as follows:

When the DFA receives an a, it transitions to g regardless of where it is.
When the DFA receives a b, it transitions from ¢ to g2, g2 to g3, and g3 to go; if
it is in state g, it remains there.

Let us examine the behavior of the DFA with a couple of examples:

On input aab, starting from ¢go, the DFA follows the state sequence
[q0, 91, q1, g2]. Thus, the DFA does not accept w.

On input aabbbabb, starting from ¢, the DFA follows the state sequence
[q0. 91, 91, 92, 43, 90, q1, 92, q3] arriving at g3, The DFA thus accepts w.
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Example 2.3 Let C = {w | w € {a, b}* and w contains an a somewhere and then
a b some place after the a}. Let w be an arbitrary member of C. Then w must be
xaybz, where x, y, z € {a, b}*. It is possible to choose x and y so that x has no as
and y has no bs. (We prove this property in Exercise 2.1.) In other words, we may
choose x to consist only of b and y to consist only of a. This observation leads to
the following transition function, for which we need only three states, go, ¢q1, and
g2, where qy is the initial state and g is the only final state. We derive the transition
function and the transition diagram as follows:

State |a | b
q0 q1 | 490
q1 q1 |92
q2 q2 |92
b b
a b

(@

Let us examine the behavior of the DFA with a couple of examples:

e On input w = bbaabbabbb, the DFA follows the state sequence
[q0, 90, 90, 91, 91, 92, 92, Q2. G2, G2, g21. Thus, the automaton accepts w.

* Oninput w = baa, the DFA follows the state sequence [qo, g0, g1, 1] Thus, the
automaton does not accept w.

Example 2.4 Let D = {w | w € {a, b}* and contains aa or bb as a substring}. We
can construct a DFA for D with four states: g, g1, g2, and g3. We designate go as
the initial state in which the DFA has yet to read any character. We also designate
g3 as the final state in which it has found that the input contains aa or bb, whichever
comes first. Once arriving at g3, the DFA will remain in g3. The states ¢; and g3 are
intermediate states. The state g1 represents the state where the DFA has just seen
one a, and the character preceding the a, if any, is a b. The state g, represents the
state where the DFA has just seen one b, and the character preceding the b, if any,
is an a. In state gy, if the character is an a, the DFA has found an occurrence of
aa, so it advances to the state g3. Otherwise, the character is a b. Since the previous
character is an a (because the state is g1 ), the DFA advances to ¢g. Similarly, in state
q2, if the character is a b, the DFA has found an occurrence of bb, so it advances
to the state g3. Otherwise, it advances to g;. In state go, the DFA advances to ¢ if
the character is an a and to ¢ if the character is a b. The transition function and the
transition diagram are as follows:
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State

q0
q1
q2
q3

Let us examine the behavior of the DFA using two examples:

a

q1
q3
q1
q3

b

q2
q2
q3
q3
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e Letw = ababb. The state sequence that the DFA follows is [qo, g1, 92, 91, g2, q3]-

Thus, the DFA accepts w.

e Letw = bababa. The DFA follows the state sequence [qo, 92, 91, 92, 91, 92, 1]

Thus, the DFA does not accept w.

Example 2.5 Let E = {w | w € {a, b}* and w contains neither aa nor bb as a

substring}. The language is complementary to the language D from the previous
example. We can use the same DFA for D but treat go, q1, and ¢» as final states

instead of g3.

State

q0
q1
92
93

a

q1
q3
q1
q3

b

q2
q2
q3
q3



30 2 The Regular Languages
2.2 The Nondeterministic Finite Automaton (NFA) Model

Here, we study a variant of the DFA model called the nondeterministic finite
automaton (NFA) model.

2.2.1 The Definition

Let us begin with the definition of the NFA model.

The term “nondeterministic” refers to the property that the state-symbol com-
binations may have any number of choices for the next state, and the automaton
may choose any available state. In addition, the automaton may not need to read a
character to make a state transition.

There are two factors that distinguish NFAs from DFAs. First, by adding the
empty string € to the alphabet, we can change the states without consuming an
input character. Second, by expanding the range of the transition function from one
state to any number of states, we give the finite automata choices for which state it
transitions to. We call the transitions with € e-transitions or e-moves.

Intuitively, how does an NFA operate? In the “deterministic” case we discussed
earlier, a DFA followed whatever its transition function instructed at each state and
each character it read. The deterministic cad has no ambiguity in how to operate.

In the case of an NFA, however, the automaton may see multiple possibilities for
potential actions to take. This means that the automaton may use nondeterministic
decisions to compute. Additionally, the automaton may keep running unless it finds
no available transitions.

The automaton’s action is basically as follows:

1. Checking the end of input. The automaton checks if there is any character
remaining in the input. If there is no remaining character, the automaton advances
to (2); otherwise, it advances to (4).

2. Checking the availability of e-transitions at the end of input. If an e-transition
is available, the automaton advances to (3); otherwise, it advances to (4).

3. Selecting the use/not-use of e-transitions at the end of input. The automaton
chooses whether or not to use an e-transition. If it chooses to use one, the
automaton advances to (6); otherwise, it advances to (4).

4. Accepting/not-accepting at the end of input. If the state is final, the automaton
accepts; otherwise, it halts without accepting.

5. Checking the availability of transitions. The automaton checks if there is
a possible move. If a transition is possible, the automaton advances to (6);
otherwise, it halts without accepting.

6. Selecting a transition and executing it. The automaton selects one transition
and executes it.

Figure 2.3 shows how an NFA operates.



2.2 The Nondeterministic Finite Automaton (NFA) Model 31

Start

Any symbols left?

available?
VES YES
YES YES

In a final state?

Halt without accepting

Select and execute one
transition

Halt without accepting

Fig. 2.3 The operation of an NFA

The mathematical representation of an NFA is a quintuple (Q, X, 8, qo, F). The
presentation looks similar to a DFA but uses a different type of function for §. First,
we incorporate the e-transitions by changing the domain of the transition function
to X U {e€}, in which we use X, for notation. Second, we incorporate the diversity
of possible transitions on a symbol by changing the range of the transition function
8 to 29, which is the power set of Q.

Definition 2.6 Let M = (Q, %, 8, qo, F) be an NFA. Let w € X*. The automaton
M accepts w if it selects its transitions to complete reading all the input characters
and then arrive at a final state.

In a more mathematical expression, M accepts w if, and only if, there exists a
sequence of states 7 = [q1, - .., gn] and a sequence of symbols A = [£y, ..., €,]
from X that satisfy the following conditions:

* gn €F.
e Forallisuchthatl <i <m,q; € 8(gi—1,%;).
e The string ¢; - - - £,, is constructible from w by inserting €.

Definition 2.7 For an NFA M, we write L (M) to represent the language M accepts;
that is, the set of all w € X* such that M on w accepts.

Next, we give examples of NFAs.
Example 2.6 Let F be the set of all strings w in {a, b}* that satisfy:

(a) w=e¢e.
(b) w ends with aa.
(c) w ends with bb.
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We can design a five-state NFA that accepts F. The state set is {qo, ..., g4}, the
initial state is go, and the final state set is {go, g4}. The transition table and the
transition diagram of the NFA are as follows:

State | a b €
q0 q1
q1 41,492 491,93

q2 g4

q3 q4

q4

The intuition behind this program is the following:

¢ The initial state is go, which is also a final state. The NFA may move to g or
remain in go. If the input is € and the automaton remains in gq, the automaton
accepts the input. If the input is € and the automaton moves to g, the computation
ends with accepting the input. If the input is not €, the automaton can use the €-
transition to move to g .

* In g1, the automaton consumes an indeterminate number of characters using the
self-loop and can move to ¢> on an a and g3 on a b. The automaton halts without
accepting if the input ends before moving to g> or g3.

* In gy, if the character is an a, the automaton advances to g4; otherwise, it halts
without accepting. In addition, if no more characters exist, the automaton stops
without accepting.

* In g3, if the character is a b, the automaton advances to g4; otherwise, it halts
without accepting. In addition, if no more characters exist, the automaton stops
without accepting.

¢ In g4, if any character remains, the automaton halts without accepting. Otherwise,
since ¢4 is a final state, the automaton accepts.

An intuitive description of the NFA is as follows:

At the start, if the input is €, the automaton accepts. Otherwise, the automaton
advances to a state that consumes an indefinite number of input characters. In
addition, in the same state, on seeing an a, the automaton may advance to a final
state where it anticipates reading one more character before the end of input, and



2.2 The Nondeterministic Finite Automaton (NFA) Model 33

the last character is an a. Alternatively, on seeing a b in the same state, the automaton
may advance to the same final state as in the case of a, where it anticipates reading
one more character before the end of input, and the last character is an b.

If the automaton’s choices fail to meet its anticipation, it halts without accepting.
However, if the input is a non-e member of F, the automaton can make choices so
that it arrives at the final state g4.

The nonmembers of F are a, b, and those ending with either ab or ba. If the
input is not a language member, the automaton cannot arrive at g4.

‘We can construct a DFA that accepts the language with five states. The number of
states is the same, as shown next, but the automaton needs three final states instead
of two.

Example 2.7 Let G be the set {abc, abcabc, abcabcabc, . . .}: i.e., any number of
repetitions of abc, excluding €. We can build an NFA for G with four states: gy,
q1, 92, and g3, where g is the initial state and g3 is the final state. The transitions
among these states are as follows:

State |a |b ¢

] q1

q1 [7p)

9 q3
q3 q1

Next is the diagram of the NFA.

@) @

a

We can design a deterministic version of the language, as shown next. The
deterministic version looks more complex.
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The principal idea in the design of the nondeterministic version is as follows:

We first construct a DFA that anticipates receiving a cycle of abc. The construc-
tion uses a non-final sink state. Once the automaton gets to the sink state, it will loop
at that state until the end of the input. We then get rid of the transition to the sink
state.

2.2.2 Converting NFAs to DFAs

The condition for acceptance of an NFA is existential; it accepts its input if, and only
if, nondeterministic selections of actions at each computation point take it to a final
state. The existential nature gives us the impression that NFA can accept languages
that deterministic ones cannot. Surprisingly, the NFA model is only as powerful as
the DFA model. Below, we will show that the quest for a series of selections by
NFAs is something that DFAs can simulate as well.

Before formally presenting how such simulations are possible, we make a
simple but important observation about the behavior of an NFAs. An NFA may
nondeterministically choose to follow a series of e-transitions before and after
consuming an input character. The automaton may be able to follow e-transitions
indefinitely if we can form a loop using e-transitions only. This may raise a concern
that the automaton may not stop. However, according to Exercise 1.11, if there is
a loop on a path, we can create a loop-free path without changing its start and end
points. Furthermore, according to Exercise 1.9, each loop-free path has no more
nodes than there are states. These properties imply that we can assume that the
number of successive e-transitions shall be strictly less than the number of states
(the path length is the number of nodes minus 1).

Proposition 2.1 Suppose an NFA M has k states. If M can transition from one state
to another on e-transitions only, it can do so in at most k—1 steps. Thus, if M accepts
an input having a length of n, it can arrive at a final state in <n+(k—-1)(n+1) =
kn + k — 1 steps.
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The proposition means we can answer if an NFA M accepts an input w by
examining all its computations with a length of k|w| + k — 1.

2.2.2.1 The Pseudo-Nondeterministic Finite Automaton (Pseudo-NFA)
Model

Proposition 2.1 states that whether or not a k-state NFA accepts its n-character input
can be determined by examining all its computation paths having a length of <
kn + k — 1. We can shorten the search depth to |w| using some precomputation.
Let M = (Q, £,4, qo, F) be an NFA and k = || Q||. Let us pick an enumeration,
P1,---, Pk, of M’s state so that gg = p;. We think of the directed graph derived
from the state diagram of M by keeping only e-transitions. The graph’s adjacency
matrix, T¢, is k x k and given as follows:

For all i and j, the (i, j) entry of T is 1 if i = j or p; € d(p;, €); the entry
is 0 otherwise.
Similarly, we define 7, for each symbol a:

For all i and j, the (i, j) entry of T, is 1 if p; € 6(p;, €); the entry is O otherwise.

Note that the diagonal entries of T, may or may not be 1.

For each ¢ > 1, (T.)" represents the e-transitions-only reachability in £ steps.
Let T, = (T.)*~". Then, for all i and j, the (i, j) entry of T, is 1 if, and only if, p;
is reachable from p; by following any number of e-transitions.

Using ﬁ and T,, a € X, we can construct a pseudo-NFA M = (0, %, 3, 0, F),
where § is an updated transition without e-transitions and go € I € Q. The pseudo-
NFA M starts from a state nondeterministically chosen from 6, uses §to process the
input, and accepts when it finishes in a final state. The set 8 consists of all states that
M can reach from go(= p1) with e-transitions. The set 6 can be obtained from f}.
It is the set of states represented by the indices where the entry is 1 in the first row
of ﬁ.

Foreachq € Q anda € %, 8 (g, a) is the set of all states M can reach from g by
following some e-transitions, a directed edge labeled by a, and some e-transitions.
The transition function & on a symbol a is given by:

T, = T T,T..

Here, for all i and j, p; € S(pi, a) if, and only if, the (i, j) entry of the matrix
product is 1. Because of the incorporation of e-transitions in $, no separate €-
transitions are needed in 8, and M accepts the same language as M. Algorithm 2.1
presents the algorithm for computing the pseudo-NFA. The running time of the
algorithm is o&3 (I + logk)) (see Exercise 2.21).
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Algorithm 2.1 An algorithm for computing an equivalent pseudo-NFA

1: procedure PSEUDO-NFA-CONVERSION(M)

2: receive an NFA M = (Q, ¥, 6, qo0, F);

3 enumerate the states of Q as py, ..., pr where go = p1;

4: construct a k x k 0/1 matrix T; as follows:

5: for all i and j, the (i, j) entry of T¢ is 1 if i = j or p; € 8(p;, €); itis O otherwise;
6.

7

8

fe <~ (Te)k71§
for eacha € X do
: construct a k x k 0/1 matrix T,: for all i and j, the (i, j) entry is 1 < p; € 8(p;, a);
9: T, < BT,B;

10: end for

11: 0 < the set the first row of B represents;

12: for eachi suchthat 1 <i <k do

13: foreacha € X do

14: S(p,, a) < the set the i-th row of T represents;
15: end for

16: end for

17: return (Q, %, 4,60, F);
18: end procedure

2.2.2.2 Converting NFAs to DFAs

We now use M to construct a DFA N = (Q', %, &', qy. F') for L(M). The state
set Q' =22, i.e., the set of all combinations of states in Q. The transition function
takes each state combination to another on each symbol. The initial state g, is 0; i.e.,
the set of all possible initial states of M. The final state set F” is {S|SNF # @};ie.,
the set of all combinations containing some element of F. The transition function 8’
is determined from §: for each S € 22 and eacha € %,

§'(S. a) = Upesd(pi. a).

If v is the vector representing S, §'(S, a) can be calculated as the set representing
T,

Since M accepts the same language as L(M) and is without e-transitions, N
captures the exhaustive search for an accepting computation of M. Thus, N is a
DFA accepting L(M).

Hence, we have proven the following theorem:

Theorem 2.1 NFAs accept only regular languages.

2.2.2.3 A Greedy Conversion Algorithm

In the proof of Theorem 2.1, the DFA we derived from the NFA with k states has
2k states. Some of the states may be unreachable from the initial state. Such states
are irrelevant, and we can safely remove them. While we can eliminate them after
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Algorithm 2.2 An algorithm for computing a DFA from a pseudo-NFA

procedure PSEUDO-NFA-TO- DFA(M )
receive a pseudo -NFA M = (Q, %, 8 6, F) along with T foralla € X;

1:

2:

3 Q' «2¢

4: q(/) <« 9;

5: F' < {S|SNF #0@};

6: for each S € 29 do

7 for a € ~ do

8: v < the vector representing S;
9: U <~ vf"a;
10: S’ <« the set representing u;
11: 8'(S,a) < §';
12: end for
13: end for

14: return (Q', %, &', g, F');
15: end procedure

completing the construction, we can construct the deterministic one dynamically so
that we never consider the unreachable states, as shown in Algorithm 2.3.

An alternate, dynamic approach would be to combine the construction of the
transition function and the exclusion of unreachable states, as follows:

Algorithm 2.3 A greedy algorithm for constructing a DFA from an NFA

1: procedure GREEDY-DFA-CONSTRUCTION(M)
2: receive M = (Q, £, 6, q0, F) is an NFA

3: construct a pseudo-NFA M= 0, %, 5.0, F) along with T foreacha € ¥;
4: initialize a set Q' <« {6};

5: initialize a queue R <« (6);

6: while R # ¢ do

7 dequeue the first element s from the queue R;
8: for eacha € X do

9: t < 8(s,a);

10: record §'(s, a) = t;

11: if 1 ¢ Q' then

12: Q' <~ Q' Ut}

13: add ¢ to the queue R;
14: end if
15: end for

16: end while
17: return (Q', X, 48,6, F);
18: end procedure

In this algorithm, we will examine, for each state combination that emerges
during exploration, which combinations are reachable from the first combination
by reading a symbol. Each time a new combination emerges, we will add it to
a list of state combinations. The exploration begins with the combination of all
states reachable from the initial state by following any number, including 0, of
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e-transitions. There is no guarantee that this meager construction can reduce the
number of states from 2% to a smaller value. We can only guarantee that any
combination unreachable from the initial combination is not part of the DFA.

Example 2.8 Let A be the language of all nonempty strings in {a, b}* starting with
an a and ending with a b in which neither symbol repeats more than twice. The
members of the language A include ab, abb, aab, aabb, abab, abbaab, etc. The
nonmembers of the language include a, b, aaabb, abbb, baa, aba, etc. We design
the following NFA that accepts A. The final state is g4. The automaton repeats a
four-step cycle of [either € or a, a, either € or b, b] with the last position being the
final state.

State |a |b €

90 q1 q1

q1 q2

q2 q3 | g3

93 94

q4 q1 q1
€,a

In this order, we assign indices 1, ..., 5 to the five states qq, . .., ga. We obtain
the matrices T, T,, and T}, as follows:

11000 01000 00000
01000 00100 00000
T.=]100110|,7,=]100000]|,.7,=]00010
00010 00000 00001
01001 01000 00000

We have YA} = T,. By combining YA} and T, and T}, we get f"a and f"b:

01110 00000
00110 00000
T,=]100000|.7,=]01011
00000 01001
01110 00000

The initial state 6 is {go, g1}. Any state combination containing g4 is a final state.
We then obtain a DFA from the NFA using Algorithm 2.3 as follows:
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1. We initialize the set Q' as {{qo, ¢1}} and the queue R as [{qo, q1}].

2. We remove the first element {go, g1} of R as s. Receiving an a in s results in the
state set {g1, g2, g3}. Receiving a b in s results in the state set ¢ because it has
nowhere to go. Both {g1, g2, g3} and ¥ are new combinations. We add both to Q’
and R. Q' becomes {{q0, g1}, {1, 92, q3}, ¥}, and R becomes [{g1, ¢2, g3}, 1.

3. We remove the first element {q1, g2, g3} of R as s. Receiving an a in s results
in the state set {g2, g3}. Receiving a b in s results in the state set {q1, g3, g4}.
Both {¢2, ¢3} and {q1, g3, g4} are new combinations. We add both to Q' and
R. Q' becomes {{q0, q1}, {91, 92, 43}, ¥, {92, 43} {91, 43, 94}}, and R becomes

¥, {92, g3}, {q1. g3, qa}].
4. We remove the first element @ from R as s. Receiving an a or a b results in .

We have already seen ¢, so there is no update on Q' or R.

5. We remove the first element {¢g>, g3} from R as s. Receiving an a in s results
in the state set . Receiving a b in s results in the state set {q1, g3, g4}. Both
combinations are already in Q’, so neither Q’ nor R receives an update.

6. We remove the first element {g1, g3, g4} from R as s. Receiving an a in s results
in the state set {q1, q2, ¢3}. Receiving a b in s results in the state set {g1, g4}. We
already have {q, g2, g3} in Q’, so we add only {q, g4} to both Q" and R. The
set Q' becomes

{{qo. g1}, {91, q2, 93}, 9, {92, g3}, {91, 43, 94}, {91, q4}},

and R becomes [{q1, qa}].

7. We remove the first element {g;, g4} from R as s. Receiving an a in s results in
the state set {q1, g2, g3}. Receiving a b in s results in the state set . We have
seen both, so there are no new additions to Q’ or R.

8. The queue R has become empty. Thus, we have completed the exploration. Let

us refer to the six state sets in Q' by ro, ..., rs in the order we have discovered
them; i.e.,

ro = {qo. q1},

r1 ={q1. q2. g3},

ry =0,

r3 = {q2, g3},

r4 = {q1, g3, g4}, and
rs = {q1, q4}.

The final states of the DFA are those that have gq4; they are r4 and rs. We obtain the
following DFA based on the analysis we have just done.
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State |a |b

ro r o |n
r r3 | r4
n n |n
r3 rn g
r4 re | rs
s ro\r

2.2.3 Constructing Regular Languages from Other Regular
Languages

Here, we consider composing regular languages into new languages and examine if
the new languages remain regular.

Let x be an operation for creating a language from some languages. Depending
on the number of languages x requires for its production, we call it a unary
operation, binary operation, ternary operation, and so on. We think of applying
x to all languages in a class C to generate a new one, C’; that is, C’ collects all you
can produce by applying x to some members of C. We ask whether or not C’ is the
same as C. If it is, we say that C is closed under y. We also say that x is a closure
property of C.

The operations we already know are complementation, union, intersection,
concatenation, and Kleene-star. Of these, the first and the last are unary operations.
The other three may take two or more operands. An operation involving more than
two languages can be represented by a sequence of binary operations. Thus, we need
only consider the binary version.

The previous section (Sect. 2.2.2) shows that NFAs are computationally equiva-
lent to DFAs. This equivalence is a powerful tool with which we can show that the
class of regular languages is closed under all Boolean operations and the Kleene-
star.

Theorem 2.2 The class of regular languages is closed under complement, union,
intersection, concatenation, and Kleene-star.
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Proof Overview
We previously showed the equivalence between the deterministic and NFA
models. We prove this theorem using that equivalence.

e To prove the closure property under complement, we switch the roles
between final and non-final states in the DFA at hand.

* To prove the closure property under union, we construct an NFA that, at
the start, selects the execution between two DFAs.

e Then, using the DeMorgan Laws, we prove the closure property under
intersection.

* To prove the closure property under concatenation, we construct an NFA
that executes the first DFA, nondeterministically switches from the first to
the second when it is in any final state, and then accepts when it finishes
reading the input in any final state of the second.

* To prove the closure property under the Kleene-star, we construct an NFA
with a new initial state from which makes an e-transition to the initial state
of the DFA at hand. The automaton can return to the additional state with
an e-transition from each final state. Adding the new initial to the final
states makes the nondeterministic one accept the Kleene-star.

* To prove the closure property under the Kleene-plus, we connect the given
DFA to the NFA for the Kleene-star.

Proof Let L and L' be arbitrary regular languages. Let M = (Q, %, 6, qo, F) and
M' = (Q', .6, q), F') be DFAs accepting L and L’, respectively. We may assume
0N Q" = @. Let the two diagrams representing the computation of M and M’ be as
in Fig. 2.4.

[Complement] We define N as the DFA (Q, ¥, §, qo, Q — F); that is, the same
automaton as M but the final states are the non-final states of M’. It is easy to see
that for all w € X*, M on w arrives at a final state if, and only if, N on w arrives at
a non-final state. Thus, N accepts the complement of L. This proves that the class
of regular languages is closed under complement.

[Kleene-Star] We construct, from M, an NFA N by adding a new initial state pg.
po also becomes a unique final state. Additionally, we add an e-transition from pg
to go and an e-transition from each state in F' to pg (see Fig.2.5). Adding pg as the
initial and a final state allows N to accept €. The e-transition from pg to go allows
N to commence the computation of M from g, without reading any character. The
e-transition from each member of F to pg, along with the e-transition from pg to
qo, allows N to restart the computation of M from any final state of M. Thus, for all
strings w of the form w; - - - wy, such that wy, ..., w, € L, N can accept w. This
means that L* C L(N).
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Fig. 2.4 The two DFAs: M
and M’

M/

Fig. 2.5 The construction of
an NFA accepting L*

M

Conversely, let w be a string that N accepts. We take an arbitrary state sequence
7 that N follows when it accepts w. We divide m into sub-sequences wherever
po appears and eliminate po from the sub-sequences. Let mq, ..., mx be the sub-
sequences. Let wy, ..., wg be the substring of w that N processes with the sub-
sequences, respectively. We have the following properties:

* Since 7 is a state sequence when N accepts, 7w begins and ends with pg. Thus,

T = poT1po " POTk PO-

* An e-transition to g is the only one transition from pg. Every transition to py is
an e-transition from a state in F. Thus,

W = €EW]E - - EWLE.

In addition, for each j suchthat 1 < j <k, w; € L(M).

Hence, L(N) = L(M)*. Figure 2.5 shows this construction.

[Union] We construct an NFA N from M and M’. The state set of N is QUQ'U{po},
where pg is a new initial state. The final state set of N is F'U F’. We preserve all the
transitions of M and M’ and add two new transitions: an e-transition from pg to go
and another from py to g(,. The automaton N operates by selecting between M and
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Fig. 2.6 The construction of
an NFA accepting L U L’

@

Y

&
=

M

Fig. 2.7 The construction of an NFA for LL’

M/

M’ without consuming an input character and then executes the DFA it has chosen.
The automaton N accepts if, and only if, the DFA it has chosen to execute accepts
the input. Thus, L(N) = L(M) U L(M").

Figure 2.6 shows this construction.

[Intersection] We note that for all languages L and L', L N L' = L U L. Because
the regular languages are closed under union and complement, L N L’ is regular if
both L and L' are regular. Direct construction of a DFA that accepts L N L’ uses the
state set R = Q x Q’, the Cartesian product of the two-state sets. The initial state
is (0, q(), and the final state set is F x F’. The transition function £ maps each
((g,q"),a) to (8(a), 8 (a)); that is, & applies § to the first component and & to the
second component of the state pair (g, g).

[Concatenation] We construct an NFA N from M and M’. The state set of N is
Q U Q’. The initial state is gg. The final state set is F’. The transition function of
N is the join of the transition functions of M and M’; if the state is in Q, N uses §,
and if the state is in Q’, N uses §’. We also add an e-transition from each final state
in F to q(/) (see Fig.2.7). We show that L(N) = LL’ as follows:

Suppose w € LL’ so that w = wjwy with w; € L and wp € L’. Then, N can
process wi. When N arrives at a final state of M at the end of wy, it jumps to g,
processes the remainder of the input, and accepts. Thus, w € L(N).

Conversely, suppose that L(N) accepts the input w. It must be the case that
after reading some characters of w, N transitions to g(. Let w; be the string that
N processes before jumping to g, and let w> be the remainder. We see that wy
takes N from gq to a state in F using the transition function of M and w, takes
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N from g to a state in F’ using the transition function of M’. Thus, w; € L and
wy € L’. This means that w € LL’. Hence, L(N) = LL'.
The proof of the theorem is now complete. O

2.3 Regular Expressions

While we define regular languages using DFAs and NFAs, there is an alternate way
of defining regular languages, which is by using regular expressions. In this section,
we define regular expressions and show that their expressive power is equal to that
of DFAs and NFAs.

2.3.1 The Definition

Let us begin with the definition of regular expressions.

A regular expression is a method for expressing a language using a pattern
that every language member must satisfy, but none of its nonmembers satisty.
A specification of a regular expression may use an alphabet, symbols from the
alphabet, €, @, (), U, *, and +. For a regular expression E, we write L(E) to indicate
the language E represents.

The regular expression construction uses the following inductive definition:

Base expressions

* () represents the empty set.

* ¢ represents the empty string.

* Foreacha € Z, a represents the string a.

* X represents the single-letter word whose unique letter is from X.

Induction

* For each regular expression E, (E) represents E.

 For each regular expression E, E* represents L(E)*.

* For each regular expression E, E™ represents L(E)™.

e For all m > 2 and regular expressions Ey, Ez, ..., Ey, E{Ey---Ey,
represents L(E{)L(Ey)--- L(Ey).

e For all m > 2 and regular expressions Ey, E>, ..., E,, EfUE,U---UE),
represents L(E1) U L(E) U ---U L(Ey).

Example 2.9 The language of all strings in {a, b, c¢}* that contain at least one of
aa, bb, and cc has a regular expression:

(@aUbUc)*(aa UbbUcc)(aUbUc)*.
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Using X for {a, b, c}, we have an alternate expression:

Y*(aa Ubb U cc)T*.
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Example 2.10 The language of all strings in {a, b}* that are either empty or ending

with one of aa and bb has a regular expression:

€ U (a, b)*(aa U bb).

2.3.2 Equivalence Between Regular Expressions and NFAs

We now see the equivalence between regular expressions and NFAs by proving the

following theorem.

Theorem 2.3 A language is regular if, and only if, it has a regular expression.

Proof Overview

The proof consists of two parts. Part One shows how to build an equivalent
NFA from any regular expression. The proof is inductive and matches the
inductive construction of regular expressions. Each symbol in the alphabet,
including €, has a two-state NFA accepting it. The induction operations for
constructing regular expressions are concatenation, union, Kleene-star, and
Kleene-plus. Theorem 2.2 shows that an NFA can execute these operations.
Thus, every regular expression has a matching NFA, representing a regular

language.

Part Two shows how to construct a regular expression from an arbitrary
NFA. The construction is complex. Given a DFA with states g1, . . . , gn, using
t as a parameter, we construct a regular expression corresponding to the path
from each state to another, where only states among ¢, .. ., g; are usable as
intermediate nodes. To build the expressions, we increase the value of ¢ from

0 (no intermediate nodes) to 7.

Proof [Every Regular Expression Defines a Regular Language] By definition,
every expression in the base case has a DFA that accepts it. For the inductive step,
the permissible operations are union, concatenation, Kleene-star, and Kleene-plus.
These are closure properties of regular languages. Since the base case defines regular
languages and the inductive step uses regular language closure operations, regular

expressions generate only regular languages.

[Every Regular Language Is Expressible as a Regular Expression] Let L be
an arbitrary regular language and M be an arbitrary NFA that accepts L. We modify
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the automaton by adding an e-transition to each state. Let M = (Q, X, 6, q1, F) be
the automaton we have just constructed, where Q = {q1, ..., qn}.

Foralli, j,and k suchthat1 <i <n,1 <j <n,and0 <k <n,let W, ; be
the set of all strings w, with the following properties:

* 8(gi, w) =qj.

e Letw = wy---wy, and let [po, ..., pm] be the state sequence that M follows
while processing w starting at state g;. Here, pp = ¢; and p,, = ¢;. Then, for
all £ such that 1 < £ < m — 1, there is some ¢ < k such that p; = ¢;. In other
words, the index of any state that M visits after leaving ¢; and arriving at g
while processing w is at most k.

Below, for each combination of i, j, and k, we will construct a regular expression
E; j k. The construction is by way of induction on k. We will then show for all i,
J, and k that L(E; jx) = W; j. Since for all integers i and j between 1 and n,
Wi, j.» has no restriction on the states between ¢; and g;, we have for all j such
that 1 < j < n that Wy j, is the set of all input that takes M to g;. Then, L
is Uj.q;er Wi, jn. The regular expression for L is the union of all Ey ;, such as
qj € F.
The regular expressions are as follows:

* (k =0) Foralli and j between 1 and n, E; ;¢ is a list of all @ € X such that
8(gi, a) = q; joined with the symbol U.
e (k>1) Foralli and j between 1 and n, we define

Eijx=Eijk-1YEri—1(Exik-1)"Ek jr-1-

Because E; j 1 appears in the definition of E; ; x as an element of the union, we
have, for all i and j,

L(E; jo) € L(E;ij1) S € L(Ejjn).
In addition, we know that the following holds by definition:
WijoCS Wij1 S-S Wjn.

We now claim that L(E; jx) = W; ; forall i, j, k by induction on k.

The base case is where k = 0. Let | <i <mand 1 < j < n. By definition,
Wi, j,0 is the set of all strings that takes M from state ¢; to g; without going through
any state between the two endpoints. This means that W; ;o = {a | a € ¢ and
d(gi, a) = q;}. The definition of E; ;¢ is precisely this. Thus, the claim holds for
k=0.

For the induction step, let 1 < k < n and suppose that the claim holds for all
smaller values of k; i.e., for all k" such that 0 < k" < k — I, L(E; jx) = W; jr
holds for all i and j. Pick any i and j. We will show that every element of L(E; j k)
isin W; ; x and every element of W; ;  isin L(E; j k).
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First, let w be an arbitrary word in L(E; j ;). Then w matches either E; j 1 or
E; k k—1(Ef i k—1)"Ek, j.xk—1. Suppose w matches E; ;1. Then, by our induction
hypothesis, we have w in

L(E;ijx—1)=Wijr-1 S Wik

sow € W; k. Suppose w does not match the expression E; ;;—1. Then w must
match the expression E; i k—1(Eg k,k—1)*Ek, j,k—1. By our induction hypothesis, the
three regular expression components represent W; i x—1, W,j’k’ w1> and Wi jr_1,
respectively. Of the three, W;  x—1 requires that the state sequence starts at g; and
ends at g, Wy k k-1 starts at g and ends at gi, and Wy ;1 starts at g; and ends
at g;. Therefore, we can “join” the three state sequences. Here, by “joining,” we
connect two sequences by identifying the last element of the first sequence and the
first element of the second sequence. In other words, the “join” of two sequences
a,...,b,cland [c,d, ... ,e]is[a,...,b,c,d, ..., e] The joint sequence starts in
g; and ends in g; In addition, k is the largest value of & such that g;, appears in
the sequence between the first and last elements of the sequence. Thus, in this case,
w € W; jk, too.

Conversely, let w be an arbitrary member of W; ;. Let IT = [p1,..., pu] be
an arbitrary state sequence that M may follow while processing w starting at ¢; and
ending at g, where p; = ¢g; and p,, = ¢;. Such a sequence may not be unique
because we have inserted an e-labeled self-loop to each state. Let T be the set of all
indices £ between 2 and m — 1 such that p; = gx. Letzq, ..., t; be an enumeration of
the indices in T in increasing order. This means that forall £ € {2,... ., m — 1} - T,
pe = gqp such that b < k — 1. Using T, we construct the following sequences
from IT:

Ty = [pla-~-7pt]]a
T = [Ptl’--wptz]a
7 = [Prys -5 Prls

Td—1 = [pld,1 s eeey Ptd],

7q = [Pigs s Pml-

Using the “join” operation from the previous paragraph, the joint sequence of

mo, ..., g is 1. Noting that a state sequence of M having length a £ > 1 can
process strings having a length £ — 1 only, we can decompose w into substrings
ug, ..., uq such that w = ug - - - ug, and for each h, 0 < h < d, M can process uj,

using the sequence ;. Since we have exhausted all the occurrences of g between
p2 and pp, 1 and IT is a state sequence for a member in W; ; x, we know that the
following properties hold:
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* ug € Wi
* up, .. ugo1 € W g k—1.
* ug € Wi jk—1.

From our induction hypothesis, the Ws appearing on the right-hand side are
equivalent to the regular languages corresponding to the same triple indices, as
follows:

o L(Eirk—1) = Wikk-1.
* L(Epki-1) = Wi k1.
o L(Egjk-1)-

Thus, we have:

* ug € L(Ej k—1)-
* up,...,ug—1 € L(Egx—1)-
* uq € L(Eg jk—1)-

Since w = ug---ug, w € L(Ei,k,kfl)L(Ek,k,kfl)*L(Ek,j,kfl)- This means
w € L(E; tx-1(Exkk—1)"Ex,jk—1)-

The regular expression on the right-hand side is the second component for E; j x.
Thus, w € L(E; j ).

From the two membership paragraphs, we get that W; ; x = L(E; j i), and so the
claim holds for k. Hence, we have the equality W; j = L(E; j ;) forall i, j, k, and
complete the proof for the induction step.

This proves the theorem. O

Let us see one example of applying the algorithm from Theorem 2.3 to generate
an equivalent regular expression from an NFA.

Example 2.11 Consider the NFA shown in Fig. 2.8. By inspecting the diagram, we
see that the language the NFA accepts has a regular expression (abc)*(e U a).

We first modify the automaton with the addition of e-loops, as shown in Fig. 2.9.
The enumeration of the states we use is p1, p2, p3.

The construction of the regular expressions proceeds as follows:

 First, we obtain the regular expressions for k = 0.

Fig. 2.8 A mystery NFA
with three states
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Fig. 2.9 The mystery NFA

after adding self-loops
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To
From | pi | p2 | p3
P1 € |la |9
P2 B e |b
P3 c |0

e For k = 1, we make p; available. The expression changes in the pair (p3, p2) as
a result of combining (p3, p1) and (p1, p2).

To
From | pi | p2 | p3
p1 € |la |9
P2 € |b
P3 c |ca

e For k = 2, changes occur in (p1, p3) as a result of combining (p1, p2) and
(p2, p3) and in (p3, p3) as a result of combining (p3, p2) and (p2, p3).

To
From |pi | p2 | p3
p1 € a |WUab
p2 € |b
P3 ca | €Ucab

» For k = 3, changes occur in all the pairs.

To
From | p; P2 P3
p1 e Uab(cab)*c |aUab(cba)*ca | (@ Uab)(cab)*
P2 b(cab)*c e Ub(cba)*ca b(cab)*
D3 (cab)*c (cba)*ca (cab)*(e U cab)
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We can manually simplify the expressions as follows:

To
From | p P2 P3
P1 (abc)* (abc)*a | (abc)*ab
P2 (bca)*bc | (bca)* (bca)*b
D3 (cab)*c | (cab)*ca | (caab*

* The expression for the language is now the union of the expressions for (p1, p1)
and (p1, p2). The union (abc)* U (abc)*a. Since (abc)* = (abc)*e, we can
rewrite the union as (abc)*(e U a).

2.3.3 Visualizing the Construction

While the construction algorithm in the proof runs correctly, and its correctness is
easy to establish using induction, the algorithm’s workings are somewhat complex
to visualize. If we focus on finding a regular expression for the language, we can
visually capture the algorithm.

Let L be a regular language and My be a finite automaton (deterministic or
nondeterministic) that accepts L. We add two designated states. One is a new initial
state with an e-transition to My’s initial state. The other is a new final state with
an e-transition to each of My’s final state. The new final state is the only final state
in the new automaton. Like before, we add an e-loop to each state from My. Let
M = (Q, %, 38, q1, {gn}) be the NFA we have thus constructed, where ¢; and g,, are
the states we have added.

Our visualization starts with a drawing of M, where for each pair (i, j) such that
there is an arrow from g; to g;, we replace its label with E; ; o. Then, for each k
such that 1 < k < n, and for all i and j, we replace the label of the arc from g;
to g; with E; j; if the arc exists; if there is no arc from g; to g; and E; jx is no
longer @, we draw a new arc from ¢; and g; with label E; ; ;. After completing the
revision concerning k, we erase g from the drawing if 2 < k < n — 1 because g is
no longer relevant to £ , ,. We present this idea in Fig. 2.10.

Here is a demonstration of the visualization. Suppose we have an NFA as
appearing in Fig. 2.11.

We start with an NFA with additional initial and final states, as in Fig.2.12.
To prepare for the conversion, we add ¢g; and ¢, as the initial and final states,
respectively. Additionally, we rename p1, p2, and p3 as g2, g3, and g4, respectively.
Furthermore, we add a self-loop labeled with € to g2, g3, and g4.

We then apply the label-replacement procedure three times in succession. The
first application uses g as the intermediate vertex, the second uses g3, and the last
uses g4. The results of the three applications are shown in Figs. 2.13, 2.14, and 2.15,
respectively.
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Fig. 2.10 The step for
incorporating an intermediate
point gx and eliminating the
intermediate point from the
diagram afterward. The top
panel shows before
short-circuiting. The bottom
panel shows after
short-circuiting. The dashed
arrows show those that we
can remove after this step

Fig. 2.11 An NFA with three
states
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Eg kk—1

Ei k-1

Corollary 2.1 summarizes the equivalence relations we have seen.

Corollary 2.1 The following are all the same:

e DFAs
* NFAs
* Regular expressions

Exercises

2.1 Example 2.3 states that for an arbitrary member w of C, w’s decomposition
xaybz can be such that x is free of a and y is free of b. Prove that such a

decomposition is indeed possible.

2.2 Construct a DFA that accepts {w | w € {a, b}* such that |w| is a multiple of 3}.
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Fig. 2.12 Initialization for the conversion. ¢ and g5 have been added as the initial and final states.
P1, P2, and p3 have been renamed as g2, g3, and g4, respectively. A self-loop labeled with € has
been added to g7, g3, and g4

Fig. 2.13 Applying the label-replacement procedure with ¢> as the intermediate point

Fig. 2.14 Applying the label-replacement procedure with g3 as the intermediate point

ab(cabUe)*caUaUe
()

Fig. 2.15 Applying the label-replacement procedure with g4 as the intermediate point. The label
on the remaining arrow is the final form of the regular expression
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2.3 Construct a DFA that accepts {w | w € {a, b}* such that w does not contain
aaa or bbb}.

2.4 Construct a DFA that accepts the set of all strings in {a, b}* with an odd number
of as and an odd number of bs.

2.5 Construct a DFA that accepts the complement of C = {w | w € {a, b}* such
that w contains an a and then a b someplace later}.

2.6 For each of the following languages over {a, b}, give a DFA accepting it, a DFA
for its star, and then a DFA that accepts the complement of its star.

1. {ab, ba}.
2. {a,ab, abb, abbb, .. .}.
3. {a, ab, abb, abbb, ...} U{b, ba, baa, baaa, .. .}.

2.7 Construct a two-state NFA for the complement of {a, ab, abb, abbb, .. .}*.

2.8 Let L be aregular language and let M = (Q, X, 8, qo, F) be a DFA that accepts
L.Let X’ be an alphabet that includes . Show that L is a language over the alphabet
%', and build, from M, a DFA for L as a language over ¥'.

2.9 In many programming languages, literal character sequences take the form of
"X," where X is a sequence in which each occurrence of " has a pair of \s: one \
in front and one \ elsewhere. For example, "\\\"a" is a syntactically correct literal
expression, while ""\\\" is not. Assuming that a programming language employs
an alphabet consisting of ", \, 0, 1, and -, design a five-state DFA for deciding the
language of syntactically correct literal character sequences.

2.10 In the United States, the expression of a currency amount combines the dollar
part with the cent part, using a period in between. A comma appears before every
power of a thousand in the dollar part. In the cent part, the expression is exactly
two digits, with a O before any amount less than 10. For example, “two billion
seventeen million nine hundred three thousands five hundred sixty-four dollars and
eight cents” has the expression 2, 017, 903, 564.08, while “four dollars and fifty
cents” has the expression 4.50. Also, “zero dollars and one cent” has the expression
0.01. Design a DFA for accepting valid currency expressions in the United States.

2.11 Modify the proof in Theorem 2.2 (of the closure of the regular languages
under the Kleene-star) to show that the class of regular languages is closed under
the Kleene-plus; that is, for all regular languages L, L is regular.

2.12 Design a three-state NFA for the language (abc)*, which is the language of
all strings that are some repetitions of abc.

2.13 Construct an NFA that accepts the complement of {w | w € {a, b}* such that
w contains an a and then someplace later has a b}.

2.14 Construct a three-state NFA that accepts L((aa)* U (bb)*).
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2.15 Let ¥ = {0, 1}. Construct a DFA that accepts L(Z*(01 U 10)X*). Also,
construct a DFA for the language’s complement.

2.16 Construct a DFA that accepts L(0T10™).
2.17 Design a three-state NFA for the language a*b*c*.

2.18 Let ¥ = {a,b}. Let M be an NFA (Q, %, 8, qo, F) where O = {qo, q1},
F ={q1}, and §’s transition table is as follows:

State |a |b |€

40 q0 91 | —
q1 - |q | X

Suppose we have the following four choices for the cell X corresponding to (g1, €):
{g1}, {90}, {q0,q1}, and @. For each of the four choices, state the language M
accepts.

219 Let M = (Q, %, 8, qo, F) be a DFA accepting a language L. Build an NFA
N from M, which accepts any string constructed from a member of L by replacing
exactly one character with a different character.

2.20 Let X be an alphabet of size > 2. Let @ be a binary operation on X that
produces a symbol from each pair of elements in . For all w € X7, define & (w)
inductively as follows:

e If w=a forsome X (ie., |lw| =1), & (w) = a.
e Ifw=xawherex e ¥Tanda € &, & (w) = B(BX), a).

Define L(®, a) as the set of all strings w € £ such that @ (w) = a. Show that
L (6, a) is regular.

2.21 Show that the running time of Algorithm 2.1 is O (k>(||Z|| + logk)), where
k=120l

2.22 Give arecursive algorithm to search for an accepting computation of a pseudo-
NFA whose recursion depth is the length of the input.

2.23 Use the NFA conversion algorithm (Algorithm 2.2) to convert each of the
following NFAs into a DFA:
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2.24 Let L be an arbitrary nonempty language over {O}. Show that L* is the union
of a finite set and {(0”)* | k > ¢} for some positive integers p and ¢.

Hint: Think of the set N = {n | 0" € L}. Then L* = {0" | n is 0 or the sum of
integers in N}.

2.25 Suppose M is a DFA accepting € and at least one other string and the initial
state is the only final state of M. Then for some nonempty w, L(M) includes w*.

2.26 A synchronizing sequence of a DFA M = (Q, %, 6, qo, F) is a string
that forces M to transition from any state to the same state. In other words, a
synchronizing sequence is a string w such that for some state &, §(q, w) = h for
all ¢ € Q. If a DFA has a synchronizing sequence, it is synchronizable. Give a
synchronizable DFA for L((01)*).

2.27 Following the previous question, show that no DFAs for {w € {0, 1} | w has
an odd number of Os} are synchronizable.

228 Let M = (Q, X, 4, qo, F) be a synchronizable DFA with n states. Show that
for each state-pair (p, g) such that p # ¢, a sequence w exists such that §(p, w) =
6(q, w) and |lw| < n(n —1)/2.

Hint: Use the pigeon-hole principle.

Bibliographic Notes and Further Reading

The finite automaton model originates from McCulloch and Pitts [5]. The model
also appears in the papers by Mealy [6], Moore [7], and Huffman [2]. The NFA
model is due to Rabin and Scott [8]. The pseudo-NFAs with multiple initial states
and the conversion to FAs are by Rabin and Scott as well [8]. As mentioned at
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the beginning of the chapter, DFAs and NFAs have many applications. Well-known
examples are the Knuth-Morris-Pratt (KMP) algorithm [3], a bibliographic search
algorithm by Aho and Corasick [1], and the lexical analyzer Lex [4].
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Chapter 3 )
Non-regularity Qe

3.1 Minimizing the State Number

This section studies the problem of minimizing a given DFA’s state number. The
minimization process involves identifying groups of states with the same roles as
the other members.

3.1.1 A Motivation

When two distinct DFAs accept the same languages, can we say which is better?
A famous principle for model comparison is Occam’s Razor, which states that we
must avoid unnecessary duplications. According to the principle, if one model is
smaller, the smaller model is better. How should we compare the sizes of two finite
automata? We can use the size of the transition function as a measurement. Since
the size of the alphabet is equal between the automata, we can use the number of
states as the measurement.

Now that we have determined that the number of states is our measurement
for size, we can ask if a DFA has a smaller equivalent automaton. The state
minimization problem asks to find the smallest equivalent DFA.

3.1.2 Distinguishable State-Pairs

The key with the state minimization problem is distinguishability. A distinguishable
pair of states consists of two states having different outcomes when processing the
remainder of an input.
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Let L be aregular language and let M = (Q, X, 8, qo, F) be a DFA that accepts
L. We can assume that every state in Q is reachable from go; otherwise, we erase
from Q all the states unreachable from ¢o and then return to the minimization
question. We solve the minimization problem by inquiring, for each pair of states
(p, q), if they are functionally different from each other (i.e., if there is a string that
leads M from p to a final state and leads M from ¢ to a non-final state). We call
such a pair distinguishable.

Here is a formal definition of distinguishability.

Definition 3.1 Let M = (Q, X, 4, qo, F) be a DFA. A state pair (p,q) of M
is distinguishable if there is some w € X* such that exactly one of §(p, w)
and §(q,w) is in F (and thus, the other is in Q — F). Otherwise, (p, g) is
indistinguishable.

We can view both distinguishability and indistinguishability as binary relations
between states.

Proposition 3.1 The distinguishability has the following properties.

1. Distinguishability is symmetric; i.e., a state pair (p,q) of a DFA M is distin-
guishable if, and only if, (g, p) is distinguishable.
2. Indistinguishability is an equivalence.
3. Distinguishability admits the following inductive definition:
For each state pair (p, q),

* [Base Case] if either (p,q) or (g, p) is in F x (Q — F), the pair is
distinguishable;

* [Induction Step] if there is a known distinguishable pair (s,t) and there
is a symbol a € X such that §(p,a) = s and §(q,a) = t, (p,q) is
distinguishable.

Proof Let M = (Q, £, 6, qo, F) be a DFA. As we did for proving the closure
property of regular languages under intersection (Theorem 2.2), we extend § to a
transition function that takes a pair of states in Q x Q and a string in £*. The
extended version of the transition function is given as follows:

§((p. @), w) = (8(p, w), (g, w)).

Here, p,q € Q and w € ¥*.
With this extended version of §, we have a new definition for distinguishable
pairs as follows:

A state pair (p, g) is distinguishable if there is some w € X *such that

§((p.q),w) € (Fx(Q—-F)UWQ—F) xF).
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The first property we prove is the symmetry of distinguishability. To prove this
property, we see that §((p, g), w) € (F x (Q — F)) U ((Q — F) x F) if, and only
if, 8((g, p), w) € (F x (Q — F))U((Q — F) x F). Thus, the relation is symmetric.

The second property we prove is the statement that indistinguishability is an
equivalence relation. To prove this property, we rephrase indistinguishability as
follows:

A state pair (p, g) is indistinguishable if, and only if, for all w € T*,
3((p,q),w) e (Fx FYU(Q —F) x(Q—F)).

The symmetry of the relation is apparent because each of the two Cartesian
products has two sets on either side. The reflexivity is easy to show because if
q = p, the two components of §(p, g, w) are identical. For the transitivity, suppose
both (p, q) and (g, r) are indistinguishable. Let w € X* be an arbitrary string.
Suppose 6(p, w) € F. Then §(q, w) € F because (p, q) is indistinguishable.
Then §(r, w) € F because (g, r) is indistinguishable. Because §(p, w) € F and
8(r,w) € F, we know (p, r) is indistinguishable. The same argument holds when
8(p,w) € Q — F. The relation is reflexive, symmetric, and transitive, so it is an
equivalence.

We will prove the last property as follows:

Suppose (p,g) is distinguishable. There is some w € X* such that
5((p,q),w) e Fx(Q—F)U(Q —F) x F.Select one suchw. If w =€, (p, q)
satisfies the base case of the inductive definition as appearing in the proposition
statement. If w # ¢, let wy, ..., w, be the symbols of w, where m = |w|. Let
(s0, t0) = (p, q) and for each i such that 1 <i < m, let (s;, t;) = §(si—1, ti—1, W;),
s0 §((p,q), w) = (Sm, tm). The pair (s;,, t,,) has just one element in F because
of the indistinguishability definition, so (s,, t,) satisfies the base case. Then
working backward in index i, from m down to 0, we know that §((s;—1, ti—_1), w;)
is a distinguishable pair, and thus (s;_1, t;—1) is distinguishable according to the
induction case. The last pair in the sequence is (p, g), therefore satisfying the
inductive definition.

Conversely, suppose that a pair (p, q) is indistinguishable according to the
inductive definition. If the pair satisfies the base case, then w = € in the original
definition. Otherwise, there is a series of additions to the set of indistinguishable
pairs, culminating in the addition of (p,q). Suppose the smallest number of
additions at (p,q) is m > 1. Let (bo, co), (b1,c1), ..., (bm, cy) be the series
of additions where (b, c,) = (p,q). The first pair (bg, cp) is a pair in the
base case. For each i such that 1 < i < m, there is a symbol a; such that
6((bi,ci),a;) = (bj_1,ci—1). Let a = apay—1---ay. Then, §(b,,,a) = bg and
8(cm,a) = co. Since (by, cg) is a base-case distinguishable pair, (bg, cp) satisfies
the requirement for a distinguishable pair.

This proves the proposition. O

The inductive definition from Proposition 3.1 gives Algorithms 3.1 and 3.2. Since
indistinguishability is an equivalence relation, we can partition the states into
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equivalence classes, where each equivalence class is the largest group of pairwise
indistinguishable states. We use a greedy algorithm to compute a collection of all
maximally large equivalence classes concerning indistinguishability. The sets X
appearing in the algorithm are all such maximally large equivalence classes, and
the set H is the collection.

Algorithm 3.1 A greedy algorithm for finding all distinguishable pairs

procedure INDISTINGUISHABLE-PAIRS(M)
: M = (0, %,6,qo, F)isaDFA;

1:

2

3 D« Fx(Q—F)U(Q—-F)xF; > the distinguishable pairs
4: I <~ (QxQ)—D; > the indistinguishable pairs
5: while 7rue do

6: S« {(p,q)€el|(3EaeX)é(p,a)d(g,a)) € D}

7 if S = ¢ then

8: terminate the loop;

9: else

10: D <« D+S;
11: I < 1-35;
12: end if

13: end while

14: report D as the set of all distinguishable pairs;
15: report / as the set of all indistinguishable pairs;
16: end procedure

Algorithm 3.2 An algorithm for finding all maximally indistinguishable groups
using Algorithm 3.1 that finds all indistinguishable pairs
1: procedure MAXIMALLY INDISTINGUISHABLE-GROUP(Q, I)

2: Q is the set of states;

3: 1 is the set of indistinguishable pairs;

4: R <« O; > the states requiring processing
5: H «~ > the collection of maximally indistinguishable states
6: while R # () do

7: select an arbitrary state p from R;

8: X <A{ql(p,q) el

9: R <~ R-X;
10: H«— HU{X};
11: end while
12: report H as the set of mutually indistinguishable groups;

13: end procedure

We construct a nondeterministic finite automaton (NFA) N from M by adding an
e-transition from each state p to every other state in the same equivalence class. The
introduction of the e-transitions allows transitions within each equivalence class.
Due to the definition of indistinguishability, following e-transitions does not change
whether or not the automaton accepts the input. Let us construct a DFA M’ from N
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Fig. 3.1 The input for the
state-minimization algorithm

Table 3.1 The distinguishability results. The distinguishability is symmetric, so only the lower
diagonal of the table is present. The letter i indicates that the pair is indistinguishable. The number
0 indicates that one pair element is in F and the other is in Q — F, so its distinguishability is in
the base case. The number 1 indicates that the distinguishability is after the base case

p i

q 1 i

r 0 0 i

s i 1 0 i

t 1 i 0 1 i

p q r s t

Fig. 3.2 The finite a b
automaton after application of _, Q @
the state-minimization - -
algorithm a a,b

using Algorithm 2.3 for constructing a deterministic automaton from an NFA. The
algorithm puts the members from each equivalence class together while keeping
each distinguishable state pair separate. We see that the process collapses each
equivalence class into a superstate. Because we have exhausted all distinguishable
pairs, the DFA we have constructed is not reducible to a smaller DFA.

Example 3.1 Here is an example of applying the statement minimization algo-
rithm. The input is a five-state finite automaton, as shown in Fig. 3.1.

By applying the algorithm, we get the following table showing the distinguisha-
bility and indistinguishability, as demonstrated in Table 3.1. Since the distinguisha-
bility and indistinguishability are symmetric, we present each pair only once. The
combination of Row x and Column y represents the pair (x, y) (and so (y, x) as
well). A 0 appearing on the table means the pair is distinguishable according to the
base case. A 1 appearing on the table means the pair is distinguishable according to
the induction step. An i indicates that the pair is indistinguishable.

We find that p and s are indistinguishable and that ¢ and ¢ are indistinguishable.
We obtain the minimal DFA from the table in Fig. 3.2.
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3.2 The Myhill-Nerode Theorem

In this section, we look at DFAs using equivalence classes.

Definition 3.2 Let X be an alphabet and L be a language over . Let u, v € X*.
We say that u and v are equivalent concerning L if for all strings z € ¥*, uz € L if,
and only if, vz € L. We write u =y, v to mean that u and v are equivalent concerning
L.

We leave the proof of the following proposition to the reader.
Proposition 3.2 For every language L, the relation =y is an equivalence.

We also have the following relatively simple properties about equivalence
classes. We also leave the task of proving the next proposition to the reader.

Proposition 3.3 Let L be an arbitrary language. We have the following:

1. For all equivalence classes S concerning L, either S C L or S C L.
2. For all equivalence classes S and T concerning L, if SNT # (, then either
SCTorT CS.

We say that an equivalence class S concerning a language L is maximal if no
other equivalence classes concerning L properly contain S.
Now, we can characterize regular languages using equivalence classes.

Theorem 3.1 (The Myhill-Nerode Theorem) A language L is regular if, and only
if, it has a finite number of maximal equivalence classes.

Proof Overview

The theorem comes from the minimum DFA we obtain using the minimiza-
tion algorithm. Every pair of states is distinguishable in the minimum DFA we
construct. In other words, for each pair, a string leads the automaton to a final
state from one and a non-final state from the other. Thus, the strings on which
the automaton arrives at one state and those on which the automaton arrives at
the other belong to different equivalence classes. Because of the construction,
the equivalence classes are maximal.

Conversely, given a group of maximal equivalence classes, appending one
specific symbol to every word in an equivalence class transforms the class
into an equivalence class. Because of the maximality, the target equivalence
class must be one of the maximal equivalence classes.

Proof Suppose L is a regular language. Let M = (Q, X, §, qo, F') be an arbitrary
DFA for L. Suppose we have constructed a DFA M* = (Q*, ¥, §*, ¢, F*) from
M with the minimization algorithm in Sect.3.1.2. For each state ¢ € Q*, define
W (q) as the set of all strings that take M* from its initial state to ¢q. For each state
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g and each pair (x, y) in W(q), we have x = y because they take M* to the same
states. Also, for all states ¢ and ¢’ in Q* such that ¢ # ¢/, a string z takes M* to
acceptance from only one of ¢ and g’. Otherwise, the algorithm would have found
indistinguishable ¢ and ¢’. This means the equivalence classes W(gq), g € Q* are
maximal. Since M* is a DFA, Q* should be a finite set, so the number of maximal
equivalence classes concerning =y is finite.

Conversely, suppose [C1, Ca, ..., Cp,] is an enumeration of all maximal equiva-
lence classes of L. We claim that for all i suchthat 1 <i < m, and foralla € X,
Cia C C; for some j such that 1 < i < m. We prove this claim by contradiction.
Assume that the claim does not hold. Then we can select some i, some a, and some
u,v € C; such that ua and va belong to separate classes (say, C; and Cy), where
J < k. We select an arbitrary pair of C; and Cy satisfying this condition. Let x and
y be any members of C; and Cy, respectively. Let w be an arbitrary member of X*.
Since C;, Cj, and Cy, are equivalence classes, we have:

uaw € L < vaw € L,
xw e L < wuaw € L, and

yw e L < vaw € L.
Thus,
xwel < ywelL.

We have arbitrarily chosen x, y, and w, so the equivalence implies that C; UCy is an
equivalence class. If we remove Cj from the enumeration and add all its members
to C;, we obtain the following new enumeration:

[C]5"'7Cj15cjUCk7Cj+]5"' 5Cklack+17""cm]'

This new enumeration partitions X* with just m — 1 equivalence classes. However,
we assume that m is the number of maximal equivalence classes. So, we have a
contradiction. Thus, the claim holds.

Now, we can build a DFA based on the equivalence classes. We introduce
states ¢q1, . . ., g representing the membership in Cy, ..., Cy,. Based on the above
“unique index” observation, we can develop a transition function §; for all i such that
1 <i<m,anda € X, 8(qg;, a) = q; where j is such that for all w € C;, wa € C;.
Let go be g; such that € € C;. Let F be the set of all g; such that C; C L. Since
Ci, ..., Cy are equivalence classes concerning L, either C; C LorC; C * — L
(see Proposition 3.3). Thus, M = (Q, X, §, qo, F) is a DFA that accepts L. |
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3.3 Proving Non-regularity

There are languages for which proving regularity seems impossible. Can we prove
that a language is not regular? We can use the Myhill-Nerode Theorem to prove this
impossibility. Later in this section (Sect. 3.3.2), we show an alternate approach, “the
Pumping Lemma.”

3.3.1 Proving Non-regularity Using the Myhill-Nerode
Theorem

Let us explore using the Myhill-Nerode Theorem to prove non-regularity.

The Myhill-Nerode theorem states that a language is regular if, and only if, the
number of maximal equivalence classes for the language is finite, where two strings
u and v are equivalent concerning a language L if for all strings w, uw € L if, and
only if, vw € L.

From the definition of equivalence classes, we obtain the following property:

Proposition 3.4 For all strings u and v, u %y, v if, and only if, a string w exists
such that uw € L and vw € L oruw € L and vw € L.

Based on this proposition, we immediately obtain a characterization of non-
regular languages in the form of a lemma. In the following lemma, the strings w;;
serve as the prefix, witnessing that x; and x; belong to separate equivalence classes.

Lemma 3.1 A language L C X* is non-regular if, and only if, there exists
X1, X2, ... satisfying the following condition:

(*) Foralliand j suchthat 1 <i < j, x; #L xj. In other words, for all i and j
suchthat 1 <i < j, there exists some w;; such that x;w;j € L if, and only if,
XjWij ¢ L.

Using Lemma 3.1, we can use the following strategy for proving that a language
L is not regular:

* Define an infinite sequence {x;};>1.
* Define an infinite double-index sequence {w;, j}j>i>1.
* Argueforalli and j such that1 <i < j, x;w;; € L if, and only if, x;w;; & L.

Finding the sequences x and w is cumbersome because of the double-indexing in
w. We thus slightly simplify the statement as follows:

Lemma 3.2 A language L C X* is non-regular if there is a series of string pairs
{(xi, wi)}i>1 satisfying the following:

e FEitherforalli > 1, x;jw; € Lorforalli > 1, xjw; & L.
* Foralliand j suchthat j > i > 1, either x;w; € L and x;w; ¢ L or xjw; € L
and xjw; & L.
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Proof Suppose a sequence of pairs exists that satisfy the conditions. Let A = L
if it is the case that forall i < 1, x;w; € L and A = L otherwise. The maximal
equivalence classes concerning L are the same as those concerning L. For each
i > 1, let E; be the maximal equivalence class concerning A that contains x;. Then,
for all i and j such that j > i > 1, we have either

¢ Xiw; Q/A andx,-wi e A.
¢ Xjw; g A andxjwj € A.
Either property implies that E; # E;. Thus, the classes Eq, E3, ... are pairwise-
different and maximal. Since the Myhill-Nerode Theorem states that the number of
maximal equivalence classes is finite for any regular language, we know that L is
not regular. o

Using Lemma 3.2, we can show the following.

Example 3.2 The language L = {0"1" | n > 1} is not regular.
Foreachi > 1,letx; = O't'1 andletw; = 1°. Let A = L. Foralli > 1, we
have:
® X ¢A.
e x;w; € A. ' ' o
o forall j >i,xjwj = it i g0 xiwj € A.
Thus, by Lemma 3.2, A(= L) is not regular.

Example 3.3 The language L = {O"2 | n > 1} is not regular.
Foreachi > 1, letx; = O’A2+l and let w; = 0% LetA = L.Foralli > 1, we
have:

o x; & Abecause i> < i>+1 < (i + 1)? s0i? + 1 is not a perfect square.

e xjw; € Abecause (iZ+ 1) +2i = (i + 1)%.

» for all integers i and j such that j > i > 1, x;w; = 0 such that j2 < k =
JP4142 < j24+142j = (j+ 1)?sok is not a perfect square, and thus,
Xjw; is not in A.

Thus, by Lemma 3.2, A(= L) is not regular.

3.3.2 Proving Non-regularity Using the Pumping Lemma for
Regular Languages

An alternate method for proving non-regularity is using a Pumping Lemma for
regular languages. In this section, we prove the lemma and learn how to use it to
prove non-regularity.
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3.3.2.1 The Pumping Lemma

Here, we state and prove the lemma.

Lemma 3.3 (The Pumping Lemma for Regular Languages) Suppose a lan-
guage L is regular. Then there exists an integer p > 1 such that for all strings
w € L having a length of > p, w has a partition uvx satisfying the following
conditions:

1. |v| > 1
2. |luv| < p. .
3. foralli >0, uv'x e L < w € L.

We call the constant p the pumping constant (or the pumping length) of L.

Proof Let L be aregular language and M = (Q, X, 8, qo, F) be a DFA that accepts
L.Letp =|Q|.Letw, |lw| > p,and w = a; ---apb suchthatay, ..., a, € X and
b € X*. Foreachi suchthat 1 <i < p,letq; = 8(qo,a; ---a;) and ¢’ = 8(qo, w).
The states go, g1, . . ., qp are from Q. By the pigeon-hole principle, a pair (gy, g;)
exists suchthat) <s <t < pand gy, = ¢q;. Letu = ay---a5, v = as4+1 - - - a;, and
X = a41---apb. Then luv| =t < p,|v| =t —s > 1, and uvx = w. Because
qs = q:, 8(qs, v) = gy, and so, for all i > 0, §(g;, v') = ¢5. Also, because g; = ¢,
and 6(qo, uv) = g, 6(qo, x) = 8(qo, uvix) for all i > 0. Thus, for all i > 0,
uv'x e L <= welL.

This proves the lemma. O

Figure 3.3 shows the idea behind the Pumping Lemma.
Here, we state the exact contrapositive of the lemma.

* Let L be a language. Suppose that for all integers p > 1, there is a string w € L
having a length of > p satisfying the following property:

(*)  For all decompositions of w as uvx satisfying |uv| < p and |v| > 1,
uv'x ¢ L for some i > 0.

Then, L is not regular.

We observe that every |w| satisfying the condition for some p satisfies the condition
for any smaller value of p. From this observation, we obtain the following slightly
relaxed version of the contrapositive.

Lemma 3.4 A language L is not regular if the following holds:

For infinitely many p, there is a string w having a length of > p such that for
every partition uvx of w satisfying |uv| < p and |v| > 1, uv'x € L and w € L or
uvix e Land w & L.

We can extend the Pumping Lemma further by replacing the characters
ai, ...,ap appearing in the lemma’s proof with nonempty strings.

Lemma 3.5 Let L C X* be an arbitrary regular language. Then, there is a
constant p > 1 with the following property:
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>p
<p
w U v T
q0 ds qt qm € F
T
U T
qo qs gm €F
:
I X2 X | v
(o] qs qt qt Gm € F
A A

Fig. 3.3 The idea behind the Pumping Lemma. The top panel is a decomposition whose existence
is guaranteed by the lemma. The middle panel is the string generated by removing v from w. The
bottom panel is the string generated by inserting v

Forallay,---ap € S+ andb € T*, there exist s and t suchthat) <s <t < p
and for alli > 0,

a1-~~as(as+1-~-at)’a,+1~~apbe L < ay---apbelL.

3.3.2.2 Proving Non-regularity Using the Pumping Lemma

Let us learn how to use the Pumping Lemma to prove non-regularity.

For a string w, let wR® denote its reverse, i.e., the string in which the characters
of w appear in the reverse order. For example, if w = abcccaabb then wR =
bbaacccha.

R

A string is a palindrome if w = w™.

Example 3.4 Let X be an arbitrary alphabet having a size of > 2. Let A be the set
of all palindromes over ¥. Then A is not regular.

We use the contrapositive (Lemma 3.4) to prove that A is not regular.

We choose any two distinct symbols, o and B. Let p be an arbitrary positive
integer. We select o” Bar? for the value of w. The string is a palindrome, and so is
inA.Letw =ay---apb, wherea; = --- =a, =a and b = fa?. Let c and d be
integers such that 0 < ¢ <d < p. Thenu =o€, v = a9 ¢ and x = ap_dﬁoﬂ’. We
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have uvox(z ux) = otp_d+cﬂap. Since d > ¢, uvx ¢ A, and so we have found
an i such that

uvixgz’L — wel.

Thus, A is not regular.

We can view the non-regularity proof as the following “pumping game” you play
against an adversary:

1. The adversary specifies the pumping constant p.

2. You specify w and ay, ..., ap, b such that w = ay - - -a,b, where ay, ..., ap are
nonempty.

3. The adversary chooses ¢ and d, 0 < ¢ < d < p, thereby breaking down w into
uvx, where u = ay---ac, v =acq1---ag,and w = ay - - - apb.

4. You select the value of i from {0, 2, 3, ...} and argue that uv'x ¢ L in the case
where w € L and uv'x € L otherwise.

The language L is non-regular if, and only if, you have a winning strategy in the
“pumping game.” You can prove non-regularity by presenting a winning strategy.

In Example 3.2, we showed that the language {0" 1”7 | n > 0} is not regular using
the Myhill-Nerode Theorem. Here, we prove the non-regularity using the Pumping
Lemma.

Example 3.5 The language B = {0"1" | n > 0} is not regular. Here is the winning
strategy in the “pumping game” for B.

For any adversarial choice p, you select w = 0”17 and seta; = --- =a, =0
and b = 17. The string w € B. For any adversarial choice of ¢ and d, you select
i = 0.The string v is ae41 - - - ag = 097¢, and so uv'x is 0P~4*+¢17_ Since d —c > 0,
ux ¢ B. Thus, B is not regular.

Example 3.6 The language C = {0"1"2° | 0 < m < n < s} is not regular. Here is
the winning strategy in the “pumping game” for C.

For any adversarial choice p, you select w = 071727 andseta; = --- =a, =0
and b = 1727 The string w € C. For any adversarial choice of ¢ and d, you select
i = 2. The string v is acy 1 - - -ag = 097¢, uv?x = 0P+4=¢1P2P Since the O-part is
longer than the 1-part, uv’x ¢ C, its membership differs from that of w. Thus, C is
not regular.

3.3.3 Proving Non-regularity Using Closure Properties

If non-regularity proofs appear challenging to establish, we can use a closure
property to convert the language to another and then prove that the new language is
non-regular.



3.3 Proving Non-regularity 69

The principle idea is the following proposition.

Proposition 3.5 Let A be a language. Let B be a language we construct from A
with a series of operations under which the regular languages are closed. If B is not
regular, then A is not regular.

We leave the proof of the proposition to the reader (see Exercise 3.3).
We already know that REG (the class of all regular languages) is closed under
complement, union, intersection, concatenation, and the Kleene-star.

Definition 3.3 Let a be a symbol and w be a string. By #,(w), we denote the
number of occurrences of a in w.

Example 3.7 Let A = {w € {a, b}* | #,(w) # #,(w)}. We show that A is not
regular.

Let B = L(a*b*). Then B is regular. Let C = A N B. If A is regular, then C
is regular. Assume C is regular. Let p be the pumping constant for C. Let w =
aPbP*P'. We obtain a partition w = uvx by the lemma. Here, |uv| < p, [v| > 1,
and for alli > 0, uv'x € C. Both u and v are in {a}*. Since |v| < p, |v| is a divisor
of p!. Let w' = uv!TP/I’lx. Then w’ = aP*P'bP*P" and is not a member of C.
Thus, C is not regular; thus, A is not.

Another approach is to use D = AN B. Then D = {a"b" | n > 0}. If A is
regular, then D is regular because the class of regular languages is closed under
complement and intersection. Then, using the proof for Example 3.5 with a in place
of 0 and b in place of 1, we get that D is not regular. Thus, A is not regular.

Exercises
3.1 Prove Proposition 3.2.

3.2 Prove Proposition 3.3.
3.3 Prove Proposition 3.5.

3.4 Prove that {w € {a, b, c}* | #,(w), #,(w), and #.(w) are pairwise different} is
not regular.

3.5 Using the Pumping Lemma, prove that {0 | p is a prime number} is not
regular.

3.6 Prove that {a"b"a® | m +n = d} is not regular.

3.7 Show that the class of regular languages is closed under reverse. In other words,
show that for each regular language L, LR = {w® | w € L} is regular.
Hint: From a DFA accepting L, construct an NFA accepting LX.

3.8 Let & = {a, b}. Define A = {w* | w € T* and k > 2}. Prove that A is not
regular.

3.9 Let X and T be alphabets. Let f be a mapping from £* to I'*. For each L C
¥, let f(L) = {f(w) | w € L}. We say that f is homomorphic if for all x and y
in % f(xy) = f(x)f(y). Answer the following questions:
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. Prove that if f is homomorphic, then f(e¢) = €.

. Prove that if f is homomorphic, then for all # > 1 and w = wj ---w, such
that wy, ..., w, € &, f(w) = f(wy)--- f(wy), i.e., the mapping f(w) is the
concatenation of the symbol-wise image.

3. Prove that the class of regular languages is closed under homomorphism, i.e., for
all alphabets X and I', for all homomorphic function f from X* to I'*, and for
all regular languages L € ¥*, f(L) is regular.

Hint: From a DFA accepting L and a homomorphic function f, construct
an NFA that nondeterministically traverses the DFA and matches the transition
image with the input.

4. Prove that the class of regular languages is closed under inverse homomorphism;

i.e., for all alphabets ¥ and I', for all homomorphic function f from X* to I'*,

and for all regular languages A C I'*, every language L € X* such that f(L) =

A is regular.

N —

3.10 Use the Myhill-Nerode Theorem to prove that the language {0"1" | m > n}
is not regular.

3.11 Use the Myhill-Nerode Theorem to prove that the language Lpime = {07 | p
is a prime number} is non-regular.

Hint: Show that the language members belong to different equivalence classes.
Suppose x = 0P and y = 07 such that p < ¢ belong to different equivalence
classes. Let z = 097P. Argue that xz' is in Lptime for all i > 0 and draw a
contradiction.

3.12 Prove that the language Lprime = {07 | p is a prime number} is non-regular in
the following manner:

1. Let L C {O}* be a regular language. Suppose there exists some a and b such that
a < b and for all i between a and b,

0'e L «— icf{a, b}

Use the Myhill-Nerode Theorem and prove that for all i and j such thata < i <
j < b, 0" and 0/ belong to different equivalence classes for L.

2. It is known that the gap between a prime number and the next prime number
is unbounded. In other words, for each integer B, a pair of consecutive prime
numbers, (p, g), exists such that ¢ — p > B. Prove that there exists an infinite
sequence of triples {(a;, b;, gi)}i>1 such that the sub-sequence gi, g2,... is
length increasing and for all i > 1, a; and b; are consecutive prime numbers
and b; —a; = g;.

3. Combine (1) and (2) to show that the number of equivalence classes for Lprime is
unbounded.

3.13 Define HALF(L) of a language L as the language {x | x for some y, |y| = |x|,
xy € L}. Prove that HALF(L) is regular for each regular language.
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3.14 Let k > 2 be a positive integer. As an extension of the previous problem,
define PREFIX,t(L) of a language L as the language {x | x for some y, |y| =
(k — 1|x|, xy € L}. Prove that PREFIX| /(L) is regular for each regular language.

3.15 Foralanguage L,let CYCLE(L) as {xy | yx € L}. In other words, CYCLE(L)
is the language constructed from L by choosing an arbitrary string in L, choosing
an arbitrary prefix of the string, and then moving the prefix to the end. For example,
the CYCLE-operation produces aabc, abca, bcaa, and caab from aabc. Show that
the regular languages are closed under the CYCLE operation.

3.16 Prove Lemma 3.5.

3.17 For two languages A and B, define MINGLE(A, B) as {aiby---auby |
ai,...,am, b1, ..., by are symbols, ay, --- ,a,, € A, and by, ..., b, € B}. Show
that for all regular languages A and B, MINGLE(A, B) is regular.

3.18 Let L be a regular language and ¢ be an integer. Show that {w | |w| > € and
w € L} is regular.

3.19 For a language L, define MID3(L) as the language of strings w such that for
some x, y, |x| = |y| = |w|, xwy € L. Show that MID3(L) is regular for each
regular language L.

3.20 For a language L, define NOMID3(L) as the language of strings xy such that
for some w, |x| = |y| = |w|, xwy € L. Show that the regular languages are not
closed under NOMID3.

3.21 Show that if L € {0}* is regular, NOMID3(L) is regular.
3.22 Let X be an alphabet. For languages A, B C X¥*, we define the right-quotient
of A by B, denoted A/B, as

{we X" | 3x € B)[wx € A]}.

In other words, the right-quotient of A by B is the set of all strings that can be turned
into a member of A by appending a member of B. Prove that the class of regular
languages is closed under the right-quotient operation.

3.23 Let X be an alphabet. For languages A, B C X*, we define the left-quotient
of A by B, denoted A \ B, as
{fweX*| 3x € B)[xw € A]}.

In other words, the left-quotient of A by B is the set of all strings that can be turned
into a member of A by attaching after a member of B. Prove that the class of regular
languages is closed under the left-quotient operation.
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3.24 Let P = {0F | kisnota power of 2}. Prove that P is not regular.

Bibliographic Notes and Further Reading
Kleene [9, 10] considered the regular expression as a mathematical formulation
of McCulloch and Pitt’s nerve net (i.e., neural net) model [11]. In the above
work, Kleene first proved the equivalence between the regular expressions and the
nondeterministic finite automata. The equivalence proof that uses e-transitions is
created by McNaughton and Yamada [12] and Brzozowski [2, 3]. The Pumping
Lemma is by Bar-Hillel, Perles, and Shamir [1]. The Myhill-Nerode Theorem
(Theorem 3.1) is by Nerode [13] and Myhill [4]. The closure properties of
regular languages are studied well in the literature. The closure properties under
homomorphisms, inverse homomorphisms, and quotient are due to Ginsburg and
Rose [6, 8] and Ginsburg and Spaniel [7].

Methods exist other than the Pumping Lemma and the Myhill-Nerode Theorem
to prove non-regularity (see Gasarch’s Survey [5]).
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Chapter 4 )
The Context-Free Languages Qe

4.1 The Context-Free Grammar (CFG)

This section introduces context-free grammar and presents some examples.

4.1.1 The Definition

Let us start with the definition of context-free grammars and context-free languages.

A context-free grammar (CFG) is an apparatus for producing language mem-
bers through a series of simple substitutions. The substitution process starts with
a string consisting solely of one specific symbol, which we call the start variable.
The symbols that may appear in the string during the process consist of two groups.
The first group is the collection of terminals, which do not permit substitutions. The
second group is the collection of variables. Each variable is substitutable with a
string consisting of terminals and variables. The variables have an arbitrary number
of possible substitutions. The substitution procedure selects an arbitrary variable and
applies an arbitrary replacement from the available replacements. The procedure is
executed until the string becomes terminal-only. The language the grammar defines
is the collection of all terminal-only strings that you can produce from the start
variable.

Here is a formal definition of CFGs. A CFG is a quadruple G = (V, X, R, S),
where V is a nonempty set of variables (or non-terminals), ¥ is a nonempty set of
terminals, R is a nonempty set of production rules (or derivation rules) and is a
subset of V x (VUX)*, and S € V is the start variable. You can substitute symbols
with a sequence of variables and terminals. Each production rule specifies which
symbol can be substituted with which sequence. You cannot substitute terminals.
The terminals and the variables are disjoint. We write each production rule as x —
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w, where x € V and w € (V U X)*. For a production rule » : x — w, |w| is the
length of », and each character of w is a component of w.

The rule x — w signifies that any string z € (V U X)* containing at least
one occurrence of x is rewriteable into a string in which w replaces one arbitrary
occurrence of x in z. More specifically, suppose z € (V U X)* is equal to uxv such
that u,v € (VU X)*and x € V, and x — w € R. Then, applying the rule to the x
produces uwv. We say that G produces (or derives) uvw from z (according to G)

. G . . G,
and write z = uwv. For strings z and 7’ € (V U )*, we write z =% 7/ to mean
that G produces 7' from z with multiple successive substitutions. In other words,
there exist some z1, ...zx € (V U X)* such that

G G G
1l = 22 =G 33" k-1 = Zk-

Here, z = z; and 7/ = z;. We call the series [z, ..., zx] a production sequence
o G G, o

(or a derivation sequence) of 7' from z. For both = and =% we omit G if the

grammar G is evident from the context.

Definition 4.1 ForaCFG G = (V, X, R, S), L(G) is the set of all w € X* that we
can derive from the start variable S. We say that G produces L(G).

Definition 4.2 A language L is context-free if a CFG produces L.

Definition 4.3 CFL is the class of all context-free languages.

We often combine rules for substituting the same variables for presenting
production rules using | to enumerate the right-hand side of the production rules. If
there are rules A — wq, ..., A > wg, we write:

A—>w1|~-~|wk.

4.1.2 Examples of CFGs

Let us see some examples of CFGs.

Example 4.1 Our first example is A = {a"b" | n > 0}. We can develop a grammar
for A with just one variable, S, which also serves as the start variable. The empty
string is a language member. We thus introduce the rule S — €. We observe that a
nonempty string w is a member of A if, and only if, w = aw’b such that w’ € A.
This observation gives arule S — aSb. These two rules are sufficient for generating
A. Thus, our grammar is G = ({S}, {a, b}, R, S) where R = {S — €, S — aSb}.
Using |, we present the production rules as:

S — ¢ | aSh.
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When considering a sequence of productions, the variable subject to production
can be ambiguous. We can make this explicit by attaching a marker to it. We use
underlines for the specification here. With this grammar, we obtain the following
production sequences:

S =c¢,
S =— aSb = ab,
S = aSb = aaSbb = aabb, and
S = aSb = aaSbb — aaaSbbb —> aaabbb.
With a slight change in the rules, we can construct a grammar for {a"b" | n > 1}

(see Exercise 4.3).

Example 4.2 Our next example is the language B of all palindromes over the
alphabet {a, b}; thatis, B = {w | w € {a, b}* and w = wk}, where wX denotes the
reverse of w.

We can produce the language using CFG with just one variable. The idea is that a
string u, |u| > 2, is a palindrome if, and only if, # = xwx, where w is a palindrome
and x is either a or b. From the observation, we obtain the rules:

S—c¢€|al|b|aSa|bSh.
With this grammar, we obtain the following production sequences:

S=¢,
S=a,
S=b,
S = aSa = aa,
S = aSa = aaa,
S = bSb = aaa, and
S = aSa = abSba = abba.
With a slight change in the rules, we can construct a grammar for the language of all

nonempty palindromes and a grammar for the language of all nonempty even-length
palindromes, etc. (see Exercise 4.4).

Example 4.3 Our next example is {a’b/c* | a = j or j = k}. The language is
equal to
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{@b' |i>0}-{c/ | j=0yUla’ |i=>0}-{b/c/ | j >0}

Here, - is the concatenation.
Using this decomposition, we construct a grammar with five variables:
S,A,C,T,and U.

* S is the start variable for selecting between two components, 7C and AU.
e A is for producing any number of as.

e ( is for producing any number of cs.

s T is for producing {a'b’ | i > 0}.

* U is for producing {b/c/ | j > 0}.

The rules are as follows:

S—TC| AU,
C — €| cC,

A — €| aA,

T — €|aTb, and
U — €| bUc.

Example 4.4 The last example is the language C of all strings over {a, b} in which
a occurs the same number of times as b. We can state the membership of a string in
C using induction:

* A nonempty string w is in C if, and only if, either

— w = aw’p such that & and B are opposite members of the alphabet and w’ is
a member of the language
— w = uv such that  and v are nonempty members of C

To see why the induction works, let w = aw’B be a nonempty member of the
language with o, 8 € {a, b}. We consider two cases: « # B and o = f. First,
suppose o # B. The two characters collectively contribute 1 to the number of as in
w and 1 to bs in w. Since w is in C, w’ must be in C.

Next, suppose o = B. Suppose, further, « = a. Let wy, ..., w, be the prefixes
of w in the increasing order of length, where wg = ¢ and w,, = w. For each i such
that 0 < i < n, let d; be the difference in the occurrences between a and b in w;.
For all i suchthat 0 <i <n —1,d;4+1 — d; is 1 if w’s character at position i + 1 is
a and — 1 otherwise (i.e., the character is b). So, we have:

* Since w is a language member, we have d, = 0.
* Since w’s last symbol is a, d,—1 = —1.

e Since wg = €, dy = 0.

e Sincew; =a,d; = 1.
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Since d; is positive, d,_; is negative, and the change from d; to d;+1 is £ 1, an
index j must exist between 2 and n — 2 such that d; = 0. Pick any such j. Then, w;
belongs to the language. This implies that w’s suffix after s; is a language member.
Thus, w = uv, where both u and v are language members.

The proof for the case where « = B = b is the same, with the roles switched
between a and b.

From the observation, we obtain a grammar with just one variable, S, with the
rules:

S — ¢ |aSh|bSa|SS.

The last rule, S — S, has two occurrences of S. The double occurrences of S make
it possible to split the production into two successive ones.
Here are some examples of producing members of the language.

S =SS = SaSb — SaSb — baaSb — baab and
S= 85 = baS = baSS = baSbSa — baSba —> baba.

4.1.3 Production Trees

Let us explore the concept of production trees, which is a way to visualize the action
of CFGs.

A production tree (or derivation tree) is an upside-down tree that presents
derivation. Each node of a production tree has an element from V U X U {€} as
its label. A production tree has only one root. When drawing a production tree, we
place its root at the top and leaves at the bottom. If the label of a node in a production
tree is a variable, say x, the node may have children. The children come from one of
the rules for substituting x, and the concatenation of the children’s labels matches
the right-hand side of the rule. If a production tree’s root is labeled by A and the
concatenation of its leaf labels is w, the tree corresponds to A = w. A production
tree is complete if the root’s label is the start variable and no leaf has a variable as
its label (i.e., the leaves have labels belonging to ).

Figure 4.1 shows a complete production tree.

Note that if a production tree has X as its root and w as its leaf labels, the tree
represents X = w. We can view this production as a new production rule and
add it to the grammar. This new rule is redundant and consistent with the grammar
because it can be decomposed into a sequence of existing derivation rules. Thus, the
addition preserves the grammar’s language. This observation gives the following
proposition.
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2N

S

AN

€ € b S a

Fig. 4.1 A production tree according to the palindrome’s grammar. The tree corresponds to the
production of abba

a S

Proposition 4.1 Let G be a CFG and T be a production tree. Suppose we construct
a grammar H by adding the rule corresponding to the production tree. Then
L(G) = L(H).

4.1.4 Leftmost and Rightmost Productions

In this section, we explore leftmost and rightmost productions.

We sometimes observe that a CFG can produce some members through different
sequences of productions. For example, abba in the language from Example 4.4 has
at least two productions:

S =—= 8S — abS = abba and § — SS —> Sba —> abba.

We ask if we can define a preference order so that there is always a unique,
most preferable production. In response to the question, we consider the leftmost
production, which dictates that applying a production rule must be to the leftmost
variable. Similarly, we define the rightmost production. For example, with our
grammar for producing all strings having the same number of as as bs, the following
is a leftmost production:



4.1 The Context-Free Grammar (CFG) 79

S= SS = abS = abba.

Definition 4.4 A CFG for a language is unambiguous if, for each language
member, there is only one leftmost derivation sequence for the member. Otherwise,
we call the grammar ambiguous.

Note that the grammar for the palindromes over {a, b} from Example 4.2 is
unambiguous because the variable S always appears once in the string the grammar
produces.

Is every context-free language unambiguous? Can we construct an unambiguous
grammar for each context-free language?

Definition 4.5 A CFL is inherently ambiguous if it lacks unambiguous CFG.

The question in the above is restated as: is there an inherently ambiguous CFL?
The answer to the question is positive; we will postpone this discussion to the
next chapter.

4.1.5 Closure Properties of CFLs

In this section, we explore the closure properties of CFLs.
Proposition 4.2 CFL is closed under union, concatenation, and the Kleene-star.

Proof Let L and L, be two CFLs. Let G; = (Vi, X1, R, S1) and G, =
(Va, 2, Ry, S2) be two CFGs for the two languages, where L1 = L(G1) and
L, = L(G3). We can assume that Vi NV, = {J by renaming the variables.
Define V. = V; U V, U {§}. Here, S is a new variable, ¥ = X U X, and
R =R URU{S - 51,5 — S}, where S — S is a rule that turns S to S
and § — S, is a rule that turns S to S>. Now define G = (V, £, R, S). Using
one of the additional rules, we select one of G| and G, and then execute derivation
according to the chosen grammar. Thus, G is the grammar for L1 U L.

Define R = R{ U Ry U {S — 815}, and define G’ = (V, X, R’, S). With
this new rule, the grammar produces S1 5, from S. The two, S and S, respectively
produce members of L and Lj. Thus, G’ is a grammar for L L,.

Define V" = V| U {S”} where S” is a new variable. Define R” = Ry U {S" —
€,S” — §"8}. Define G” = (V”, Z1, R”, S”). We can exclusively produce (S;)*
using the two new rules. Then, by applying independent derivations to the S;’ s, we
can produce a member of L(G)*. Thus, G” is a grammar for (L)*. |

Theorem 4.1 CFL is not closed under complement. It is also not closed under

intersection.

Proof Let A = {0"1"2" | n,t > 0}and B = {0"1"2" | n,t > 0}.Let L = AN B.
We saw in Example 5.7 that L is not context-free. Both A and B are context-free.
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If the class of context-free languages were closed under intersection, L would be
context-free. Thus, by contradiction, the class is not closed under intersection.
Note that the class is closed under union. Under the De Morgan laws, if the class
were closed under complement, it would be closed under intersection. Thus, by
contradiction, the class is not closed under complement. m]

4.2 Normal Forms of CFGs

Here, we study two normal forms of CFGs. Because of the form’s flexibility,
analyzing a CFG’s behavior is challenging. The normal forms will help in this
analysis.

4.2.1 The Chomsky Normal Form (CNF) Grammars

Let us start with the Chomsky Normal Form grammar.

The Chomsky Normal Form (CNF) is a regular form where each grammar
consists of only three types of rules. A grammar G = {V, X, R, S} is in the
Chomsky Normal Form if R consists only of the following three types:

1. §—>e.
2. X - aforsomea € X.
3. X > YZ,where Y, Z € V — {S}.

Because of this restriction, the first type appears in the grammar only when € €
L(G). The third type prohibits S from appearing on the right-hand side of any rule.
None of the CFGs we have seen so far are CNF grammars. As we see later, we
can construct an equivalent Chomsky Normal Form grammar from every CFG.
Here is an equivalent CNF grammar for A = {a¢"b" | n > 0}. We construct a
CNF grammar from the one in Example 4.1.2, where the rules are S — € | aSb. The
CNF grammar has five variables (S, A, B, X, and T') and has the following rules:

S—>¢€|AB| AX,
A —a,
B — b,
X — TB, and
T — AB | AX.
The thought process for arriving at the grammar is as follows:

First, we introduce variables A and B for producing terminals a and b,
respectively, and have no other roles. We replace each occurrence of a with A and
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each occurrence of b with B. Since S cannot appear on the right-hand side, we
duplicate the rules for S with 7 on the right-hand side, like S — ATB | AB | €
and T — AT B | AB. We introduce a variable X and a rule X — T B and replace
AT B with AX. The set of rules we obtain from these modifications is
as follows:

S — €,

S — AX,

S — AB,

X - TB,

T — AX,

T — AB,

A — a, and

B — b.
Here are examples of the production sequences with the grammar:

S =c¢,
S =— AB — aB — ab, and
S = AX —= aX =— aTB — aABB — aaB — aabB —> aabb.

The grammar is unambiguous. The nonempty strings that the grammar produces
with leftmost production are one of the following patterns:

aiABi+1,

(,li+1 XBl ,

ai+j+1biBj+1,

aH'lTBH'l, and

. a' AXB'.

N

Here, i > j > 0. Note the following properties:

e Applying A — a to (1) produces (3).
* Applying X — AB to (2) produces (1).
* Applying X — T B to (2) produces (4).
e Applying B — b to (3) produces (3).
e Applying T — AB to (3) produces (1).
e Applying T — AX to (3) produces (5).
e Applying A — a to (5) produces (3).
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* Note that the number of occurrences of A or a equals the number of occurrences
of B or b in all the patterns.

Thus, the grammar is unambiguous.
In a CNF grammar, applying a rule of the form X — Y Z increases the length of
any final (i.e., terminal-only) string by 1.

Proposition 4.3 To produce a string having a length n > 2 with a CNF grammar,
we must apply rules of the form X — Y Z n—1 times and rules of the form X — an
times.

This proposition plays a crucial role in our attempt to establish methods for showing
languages to be non-context-free in Sect. 5.4.3.

4.2.2 Normalizing CFGs to CNF Grammars

Every CFG is convertible to a CNF grammar. The following theorem shows such a
conversion is possible.

Theorem 4.2 For every CFL, a CNF grammar produces the language.

Before getting into the construction’s details, let us define some terminology
about production rules. The classifications are not exclusive.

e We call a length-0 rule an € rule.

e A variable from which € can be produced is a nullable variable.

* A rule having a length of > 1 if a terminal-only rule if its right-hand side
consists only of terminals, a variable-only rule if its right-hand side consists
only of variables, and a mixed rule otherwise.

* A length-1 variable-only rule is a unit rule.

* Arule witha > 3 length is a long rule.

Proof Overview
We convert an arbitrary CFG G = (V, ¥, R, S) to an equivalent CNF
grammar through the following steps:

1. For each terminal, we introduce a variable with a length-1 rule that
produces the terminal, and we replace every occurrence of the terminal
in the existing rules with the variable if the rule has a length of > 2.

The process eliminates all the mixed rules.

2. We introduce a new variable and duplicate each rule from the start variable
to the new variable; after the duplication, we make the new variable the
start variable.

(continued)
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The process eliminates the start variable on the right-hand side of the
rules.

3. We identify all nullable variables. If the new start variable is nullable, we
record the information and introduce an € rule from the start variable at the
end.

4. We turn all long rules into a series of length-2 rules while duplicating
each length-2 rule containing a nullable variable, with one of the nullable
variables erased.

We then eliminate all € rules.

. We identify all unit rules and their chains.

6. We short-circuit all unit rules to create length-2 rules and terminal-only
rules.

After that, we remove all unit rules.

7. If we found earlier that the grammar produces €, we add an € rule from the

(new) start variable.

9}

Proof Let G = (V, X, R, S) be an arbitrary CFG. We will convert G to a CNF
grammar through the seven steps in the overview.

Step 1: For each terminal a € X, we introduce a variable X, and a rule X, — a
and then, in every other rule, replace each occurrence of a with X,. The process
replaces a rule containing k terminals with a production consisting of a series of
k + 1 rules. After the modification, no mixed rules exist in the grammar.

Step 2: We use a greedy algorithm to identify nullable variables. Let N be the
variables found to be nullable. The initial members of N are those variables with
€ rules. Let V be the present set of all variables. Let W = V — N. We repeat the
following until no element is moved from W to N; if a variable X € W exists with
arule X — w,w € N*, move X from W to N. After the addition, we record if
S — e.

Step 3: We introduce a new variable Sy, and for each rule, S — w, add Sy — w.
Step 4:  For each variable-only rule A — X --- X, such that £ > 2, we apply the
following:

e If¢ =2 and X is nullable, we add a new rule A — X5>.

e If¢ =2 and X, is nullable, we add a new rule A — X.

e If¢ > 3, we add a new variable Y, replace the rule with A — XY and ¥ —
X7 - -+ Xy. In addition, if X is nullable, add another rule A — Y.

After this process, we remove all € rules.

Step 5:  We find all existing unit rules and those induced by combining them. We
initialize U as the set of all unit rules in the grammar. We then repeat the following:
as long asrules X — Y and Y — Z existin U such that X — Z is notin U and
X#Z,addX - ZtoU.



84 4 The Context-Free Languages

Step 6: For each unit rule X — Y in U and non-unit rule ¥ — w, we add a rule
X — w.
Step 7:  If So — € is arequired rule, add it to the grammar.

Algorithms 4.1 and 4.2 present a pseudocode of the conversion algorithm. O

Algorithm 4.1 An algorithm for converting a CFG to an equivalent CNF grammar

(part 1)

1: procedure CNF-CONVERSION-PARTI(G = (V, X, R, S)) > Step 1

2 for eacha € X do

3 add X, to V;

4 add X, > ato R;
5: end for
6.
7
8

for each rule X — w, |w| > 2 do
if w contains a terminal then
w’ — w with each a € o replaced with X;

9: replace X — w with X — w’;
10: end if
11: end for > Step 2

12: N <« {X | X has an € rule};
13: W <« V —N,;
14: while (3X € W)3X — w € Ryp)w € N* do

15: for each such X do

16: add X to N;

17: end for

18: end while

19: B < SeEN; > Step 3
20: add Sp to V;

21: for each rule S — w do

22: add So > wto R;

23: end for

24: replace S with Sp;
25: end procedure

Example 4.5 Here is a demonstration of how the conversion algorithm works. Let
G be a grammar for {(aa)"(bb)" | n > 0}. The rules are:

S — €| aaSbb | €.

e In Step 1, we add variables X, and X, add rules X, — a and X; — b, and then
change the rules for S to:

S — €| XagXaSXpXp | €.

* Step 2 finds N = {S} as the set of nullable variables. We record 8 as true.
* In Step 3, we introduce Sp and the rules:
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Algorithm 4.2 An algorithm for converting a CFG to an equivalent CNF grammar

(part 2)

1: procedure CNF-CONVERSION-PART2(G = (V, £, R, §))
R < 0
while R is not empty do
selectoneruler : A — win R;
if jw| > 1 then
add r to Ry;
remove r to R;
if |w| = 2 then

25:
26:

27: end while
28: R < Ry;

let w = X1 X»;
add r to Ry;
if X1 € N then

add A — X5 to Ry;
end if
if X, € N then

add A — X to Ry;
end if

else

letw= XX, Xg;
add a new variable Y
add A — X Y to Ry;
addY — X,--- X/ toR;
if X; € N then

add A — Y to Ry;
end if

end if

29: end procedure

> Step 4

So — €| XgXoSXpXp | €.

* In Step 4, we decompose long rules, possibly erasing occurrences of the nullable

S. The new variables are Y| and Y,, and the new rules are:

S — XY,

Y1 = X SXpXp,
Y — X,Y»,

Y, - SXpXp,
Yo = XpXp,

Y, — SY3,

Y, — Y3,

Ys — XpXp, and
So — X,.Y.
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Algorithm 4.3 An algorithm for converting a CFG to an equivalent CNF grammar

(part 3)
1: procedure CNF-CONVERSION-PART3(G = (V, £, R, §)) > Step 5
2: U < all the unit rules;
3: while true do
4: if3X,Y,ZeV,X—->YeRY—>ZecR X—>Z¢R,X # Zthen
5: add X - ZtoU;
6: else
7: terminate the loop;
8: end if
9: end while > Step 6
10: foreach X — Y, Y — w € Rdo
11: if Y - w ¢ U then
12: add arule X — w;
13: end if
14: end for
15: remove all rules in U from R; > Step 7
16: if B = true then
17: add arule So — ¢;
18: end if
19: return the grammar;

20: end procedure

Here, the second and fourth rules require further decompositions.

In Step 5, we find all unit rules. There is only one unit rule: Y, — Y3.
Step 6 combines unit and non-unit rules to produce Y5 — X3X3.
Finally, in Step 7, we add Sop — €.

The final set of rules is:

So — XqY1,
X, — a,
Xp — b,
S — X,Yi,
Y1 — X,Yo,
Y, - §Y3,
Y, — XpXp, and
Y3 = XpXp.
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4.2.3 The Greibach Normal Form (GNF) Grammars

CFLs have another normalized form, the Greibach Normal Form (GNF). Intu-
itively, in a Greibach Normal Form grammar, terminals may appear only as the first
symbol on the right-hand side of the rules.

Definition 4.6 A CFG G = (V, X, R, S) not producing ¢ is a Greibach Normal
Form (GNF) grammar if every rule is of the form X — aY for some X € V,
aceY,andY € V*,

If a GNF grammar G produces €, S does not appear on the right-hand side of any
rules, and G has arule § — €.

We can construct a Greibach Normal Form grammar from an arbitrary CFG not
producing €.

Theorem 4.3 For every CFL not producing €, a Greibach Normal Form grammar
produces the language.

Proof Let G = (V, X, R, S) be a Chomsky Normal Form grammar for a language
L. We fix some ordering of the variables, Ay, ..., A, where A; = S. We may add
new variables A1, Ax42, etc., during the conversion. The addition will be in this
order, and it will be one variable at a time.

We classify the rules we handle into the following four types:

1. (Terminal-leading) A — aw wherea € ¥ and w € (X U V)*.
2. (Index-increasing) A; — Ajw wherei < jand w € (£ U V)*.
3. (Index-decreasing) A; — Ajw wherei > jand w € (X U V)*.
4. (Index-preserving) A; — A;w where w € (X U V)*.

Our task is to convert the grammar so there are only terminal-leading rules. We
accomplish this task in two phases. First, we eliminate all index-increasing and
index-preserving rules. Then, we eliminate index-decreasing rules.

The elimination in the first phase occurs in the decreasing order of the index
to the variables, starting with Ay and ending with Aj. For the base case, Ay is the
variable. Since Ay is the start variable, and the start variable of a CNF grammar does
not appear on the right-hand side of any production, A has no index-increasing or
index-preserving rules. Thus, the requirement for A; has already been met.

For the induction step, let 1 < i < k — 1, and suppose that the requirement has
been met for A;41, ..., Ax. Suppose A; has an index-increasing rule A; — Ajw
such that j > i. We construct a new rule by combining A; — Aj;w and each
rule of the form A; — u. We then replace A; — Aj;w with the new rules. The
replacement may produce an index-increasing rule of the form A; — A,v, but, due
to our induction hypothesis, p < j. Thus, by repeatedly applying the replacement
procedure to any index-increasing rule from A;, all index-increasing rules from A;
can be eliminated.

After the elimination, suppose A; has an index-preserving rule. If A; has no
index-increasing or terminal-leading rules, we cannot turn a string containing A; to
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terminals, so we will remove all rules from A; and those with A; on the right-hand
side. Let

A = ap| - [an

be an enumeration of all index-decreasing or terminal-leading rules from A;.
Additionally, let

A = AiBi| - | AiBn

be an enumeration of all index-preserving rules from A;. If we construct a string
by combining these rules so that the right-hand side does not start with A;, then the
string must be in the form:

Ai g apﬁll o ',qu

for some ¢ > 0 and [y, ...,I; between 1 and n. We introduce a new variable B
(which receives the smallest available variable index) and replace the rules from A;
with the following rules:

Ai - oy | - |ay|aB| | ayBand

B—Bi|---|BulP1B]---|BnB.

The rules from A; free of B that we can produce from the new rules are exactly of
the form:

A — apfy -~-,qu,q > 0.

After the replacement, A; has no recursive rules. Also, since B has the highest
index, each rule from B is index-decreasing or terminal-leading. This completes
the induction step for A;.

In the second phase, we eliminate all the index-decreasing rules, starting from
A1 and moving toward the variable with the highest index. The construction is
inductive. The base case is Aj. Since A has no preceding variable in the ordering,
all its rules are terminal-leading. Thus, the requirement has already been met for A;.

For the induction step, leti > 2 and suppose we have completed the construction
for Ay, ..., Aj_1. Let A; — Ajw be an arbitrary index-decreasing rule from A;,
where j < i. By our induction hypothesis, every rule from A; is index-decreasing.
We create new rules by replacing A; in A; — Ajw with each rule from A; and
substitute A; — Ajw with the new rules. The new rules are terminal-leading. In
this manner, we complete the construction for A;.

Algorithm 4.4 presents the conversion algorithm. O
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Algorithm 4.4 An algorithm for converting a CNF to a GNF

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:

1:
2:
3
4:
5:
6
7
8

procedure GNF-CONVERSION(G)
receive a CNF grammar G = (V, £, R, S);
enumerate the variables of V as Ay, ..., Ay where S = Ag;
initialize the maximum index u as k;
fori=k—1,...,1do

while R has an index-increasing rule from A; do
selectonerule r : A; — Ajw;

find all rules from A;: A; — uy | -+ - | ug;
add A; > uyw | -+ | usw
remove r from R;
end while
find all terminal-leadings from A;: A; — a1 | -+ | am;
find all index-preserving rules from A;: A; — A;B1| -+ | Bns
ifn > 1 Am =0 then > A; cannot produce terminal-only strings

foreachruler : A — win R s.t. A = A; or A; appears in w do
remove r from R;
end for
else if n, m > 1 then
w<—pu+1LV<—VU{A.)

add A; — oAy | -+ | |apAy tOR;

addA, — Bi| --- | B toR;

add A — B1A, | - | BuAy tOR;

remove all the index-preserving rules from A;;
end if

end for
fori =1,...,ndo

foreachruler: A; - Ajw e Rs.t.i > jdo

find all rules from Aj: Aj — uy | -+ | uy;
addA; > ujw | - |uswto R
remove r from R;

end for

end for

33: end procedure

Example 4.6 Here is an example of converting a CNF to a GNF. Let G =
(V, 2, R, As5) be a CNF grammar such that V = {Ay, ..., As}, ¥ = {a, b}, and R
consists of the following rules:

Al — a,

Ay —> b,

Az — A4Ay | b,
Agq4 — A1Ajz, and
As —> A1As.

The grammar is for {a"b" | n > 1}. As’s rule is index-decreasing; so is A4’s. A3’s
first rule A3 — A4 A» is index-increasing, so requires a replacement. We substitute
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the A4 on the right-hand side with A1 A3 to create a new rule A3 — AjA3As. As
and A1 have only a terminal-leading rule, so no change is necessary. We thus have:

Al — a,

Ay — b,

Az — A1A3A2 | D,

A4 g A]Ag, and

A5 — A1A3.
Now, we turn all the rules into terminal-leading. No changes are needed for A; and
Aj. We substitute the A at the start of the remaining rules with a to get A3 —
aA3zAs, A4 — aAs, and As — aAs. The final composition of the rules is:

A] — a,

Ay —> b,

A3 — aA3zA;y | b,

A4 — aAsz, and

As — aAs.
Exercises
4.1 Show that regular languages are already context-free using the following
argument:

Let M = (Q, X, §, qo, F) be a DFA for some regular language L. For each pair
of states (p, g) € Q x F, think of a variable S, , representing all strings in X* that
take M from p to g. Let S be the start variable of the grammar you will construct.
There shall be rules § — Sy, 4 for all g € F. Present the rules for the remaining
variables.

4.2 Give a CFG for {¢"b" |m > 1 andn > 1}.

4.3 Give a CFG for {a"b" | n > 1}.

4.4 Give a CFG for the nonempty palindromes over {a, b}.
4.5 Give a CFG for {a"b"c™ | m,n > 1}.

4.6 Using the grammar from the previous question, present a leftmost production
tree for aabcc and aabbcc.

4.7 Give a CFG for the set of all strings over {0, 1} containing the same number of
Os as 1s.

4.8 Give a CFG for the set of all strings over {0, 1} containing strictly more Os than
Is.
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4.9 Give a CFG for the set of all strings over {0, 1} containing unequal numbers of
0Os and Is.

4.10 The Dyck language D is the set of all strings over the alphabet {[, ]} such that
for all w, w € D if, and only if, u has the same number of [s as |s and all prefixes of
w has no less [s than ]s. Prove that the Dyck language is context-free by constructing
its CNF grammar.

4.11 Letk > 1.Let[;,]; where 1 < j < k be k pairs of brackets. As an extension
of the Dyck language from the previous question, define Dy as the set of strings w €
{1, 115 ---, [k, Jx}* such that for all i, the string constructed from w by erasing all
characters except for [;, ]; is the member of the Dyck language with [= [; and ] =];.
Give a CFG for L.

4.12 Let A be a regular language. Define L = {xy® | |x| = |y| and xy € A}. Show
that L is context-free.

413 Let k > 2. Let Ly, ..., Ly be CFLs not containing an €. Suppose G| =
V1,21, R, 81), ..., G = (Vk, Zk, R, Sk) are CNF grammars for Ly, ..., Lg,
respectively. Define

(L1Ue)----- (Ly Ue)) — {e}.

In other words, L is the concatenation of some m strings from Ly, ..., Ly, where
the m parts have increasing source indices, and 1 < m < k. Show how to construct
a CNF grammar for L using the existing CNF grammar for each source language.

4.14 Let ¥ be an alphabet. Let $ be a symbol not in ¥. Define B = {x$y | |x| #
|y|}. Show that B is context-free.

4.15 Let X be an alphabet. Let # and $ be two symbols not in X. Define C =
(#wSwk# | w € T*} and D = H#wSyR# | w,y € T* and y # wk}. Show that
both C and D are context-free.

4.16 Let X be an alphabet. Let k¥ > 1 be an integer. Let IT be a nonempty subset
of ©% x XX, Let # and $ be two symbols not in X. Define E = {(#uxv$wyuR# |
u,v,w € ¥ and (x, y) € I1}. Show that E is context-free.

4.17 Let ¥ be an alphabet and let # be a symbol not in X. Let F =
{#w#- - -#wy# | m is positive and even, and |wi| = --- = |wyl}. Prove that
F is context-free.

418 Let A = {w | w € {0, 1, 2}* and among the numbers of Os, of 1s, and 2s, at
least two of them have the same values}. Show that A is context-free by providing
its CFG.

4.19 Regarding the grammar you provided for the previous question, present the
leftmost production trees for 0012110222 (0 and 1 appear three times each) and
2012012 (each symbol appears twice).
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4.20 Define the size of a CFL as the sum of its number of rules and the total length
of the right-hand side of the rules. Show that with our CNF conversion method, a
grammar with a size of s becomes a CNF grammar with a size of O(s? log(s)).
You may assume that the individual elements of the alphabet and variables have a
constant size.

4.21 A variable in a CFG is useless if the variable does not appear in any production
from the start variable or does not produce a terminal-only string. Give an algorithm
for finding all useless variables in an arbitrary CFG.

4.22 Show that the language {w | w € {0, 1}* and w has twice as many Os as 1s} is
context-free by providing a CFG for the language.

4.23 Show that the class of context-free languages is closed under the reverse
operation; i.e., for all context-free language L, L% is context-free.

4.24 Let G| and G; be CNF grammars for two context-free languages, L1 and L»,
respectively. Show how to construct CNF grammars for L1L, and L1 U L, using
G and Gs.

4.25 Let G be a CNF grammar for a context-free language L. Let L’ be the set of all
prefixes of the members of L. State how to modify the grammar G into a grammar
for L', where the grammar is like a CNF grammar, and the € rule is available to any
variable.

4.26 Prove that if every rule in a Greibach Normal Form grammar G has at most
one variable on the right-hand side, then L(G) is regular.

4.27 Show how to construct from an arbitrary DFA M, a Greibach Normal Form
grammar for L(M) where the right-hand side of each production is €, a terminal,
and a terminal followed by a variable.

4.28 In a CNF grammar, the rule’s right-hand side, consisting solely of variables,
has a length of 2. If we increase the required number of variables to exactly three,
can we still convert an arbitrary CFL grammar to a normal-form grammar?

4.29 Let G be a CNF grammar (V, X, R, As), where V = {A(,..., A5}, ¥ =
{0, 1, 2} and R consists of the following rules:

A — 0,

Ay —> 1,

A3z — A4As | ArAg,

Ay —> A1A3 | A3A4 | 2, and

As — AgAy.

Convert G to a GNF grammar using the conversion algorithm from Sect. 4.2.3.
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430 Let G = (V, X, R, S) be a CNF grammar with V = {Ay, ..., Ay} such that
for all i between 1 and m, no variables having an index < i appear in production
rules for A;. Prove that such a grammar necessarily produces a finite language.
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Chapter 5 ®
The Pushdown Automaton Model Chock or

5.1 The Pushdown Automaton (PDA) Model

First, we introduce the pushdown automaton computation model. We then show its
equivalence to CFLs.

5.1.1 The Definition

Let us begin by defining the model. A pushdown automaton (PDA) is an NFA with
an additional storage device, the stack.

A pushdown automaton’s stack is similar to the stack (last-in, first-out) data
structures but lacks the native testing of emptiness. A PDA uses a symbol indicating
the stack’s bottom to compensate for that lack. The symbol is referred to as an
initial symbol (or bottom symbol). A PDA is expected to place the symbol at the
computation’s start and refrain from using the symbol at other stack positions.
The designation of the initial symbol may or may not be part of the PDA’s
definition. In one step, like NFAs, the PDA reads at most one input symbol in the
stream and removes the last symbol from the stack. We call the removal operation
“popping.” Depending on the input symbol, the stack symbol, and the state, the PDA
nondeterministically decides its next state and the string to append to the stack. We
call the append operation “pushing.”

Formally, a PDA is a seven-tuple (Q, ¥, T, §, qo, L, F). The components of the
tuple have the following roles:

e (Q is the set of states.
¢ ¥ is the input alphabet.
e T is the stack alphabet.
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¢ § is the transition function and is a mapping from Q x . x ['c to P(Q x I'*),
i.e., the power set of Q x I'c. Here, ¥, = X U {¢}.

* go € Q is the initial state.

e 1 e T is the initial symbol (or bottom symbol).

e F C Q is the final state set.

The move (r, x) € 8(q, a, b) withg,r € Q,a € Z¢, b € T'¢, and x € I'* means:

» If the PDA is in g, reads a in the input, and pops b from the stack, it pushes x
onto the stack and enters r.

A PDA is nondeterministic because of the following nature of its computation:

(a) A PDA can choose between reading the input character (when available) and
not reading it.

(b) A PDA can choose between popping the stack’s top symbol (when available)
and not popping it.

(c) Multiple choices (or no choices) may exist for each combination of state, input
symbol, and stack symbol.

We often use a drawing as in Fig. 5.1 for graphical presentations of PDAs.
There are multiple variants of PDAs depending on the way they operate on the
stack and when they choose to accept.

¢ The Stack Initialization

— A PDA’s computation may start with an empty stack.
— A PDA’s computation may start with a single initial symbol in its stack.

¢ The Initial Symbol

— A PDA has a fixed initial symbol.
— A PDA has no fixed initial symbol.

* The Popping Operation

— A PDA must pop from its stack at each step. If popping is required, a PDA
must start its computation with its initial symbol in its stack. Additionally,
a PDA stops computing when the stack becomes empty because it cannot
execute a popping operation.

— A PDA may choose not to pop from its stack at any step.

Fig. 5.1 A typical drawing top
of a PDA. The vertical cells tape A
represent the stack. The stack B | stack
contents are LaBA from the | a ‘ b ‘ b ’ a ‘ b ‘ a ‘
bottom to the top a
1
bottom

state
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¢ The Pushing Operation

— If popping is required, a PDA needs to push more than one character.
— If popping is not required, a PDA may be restricted to push one character at a
time.

The Acceptance Condition

— The PDA accepts when it enters a final state after reading its entire input.

— The PDA accepts when it enters a final state after reading its entire input and
emptying its stack. The PDA accepts when the state becomes final and the
stack becomes empty.

These variants are all equivalent. In this section, we consider the model in which:

* A PDA starts its computation with the initial symbol in the stack and
» It accepts its input by entering a final state after reading the entire input and
emptying its stack.

For a PDA, we combine the state, the remaining input characters, and the stack
content from bottom to top to present its instantaneous description (ID). In one
step, if the PDA reads from the input, we remove the first character of the remaining
input. In one step, if the PDA pops from the stack, we remove the string’s first
character representing the stack content. Similarly, if the PDA pushes onto the stack,
we insert the symbol as the string’s first character. The initial ID of the PDA with
w as its input is (go, w, L) since the computation starts with the empty stack. An
accepting ID of the automaton is (p, €, @) with p € F for any « € I'*, since the
requirements for acceptance are an empty input and an arrival at a final state.

Definition 5.1 A PDA M accepts its input w if the ID of M on input w reaches
one of its accepting IDs starting from its initial ID. We denote the language that M
accepts (i.e., {w | M on x accepts}) by L(M).

5.1.2 Examples of PDAs

Here, we show that some non-regular languages we previously saw have PDAs to
accept them.

Example 5.1 The example here is {a"b" | n > 0}. Anticipating that the input
matches the regular expression a*b*, our PDA puts the leading as onto the stack.
When the input switches to b, the PDA starts popping from the stack for each
b appearing in the input. If the input is a language member, the stack becomes
empty at the same time the input becomes empty; otherwise, the matching process
prematurely ends with either input characters remaining or the stack remaining
nonempty.
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We can program this idea using only three states, qo, g1, and g2, where g is the
initial state and ¢ is the final state. The stack alphabet is {_L, a}. There are only
three combinations of state and symbols for which we have nonempty values for the
transition function:

8(qo, a, L) = {(q0, a L)},

8(qo, a, a) = {(qo, aa)},

8(qo, b, a) = {(q1, €)},

8(q1,b,a) = {(q1,€)}, and

8(q1, €, L) = {(q2, €)}.
The first action is to start creating as in the stack. The second action is to continue
creating as in the stack. The third action is to switch to matching a and b upon
seeing the first b. The fourth action is to continue matching a and b. The last action
is to remove the initial symbol and enter the final state for termination.

We show how the PDA may accept aaabbb using the changes in its ID:

(g0, aaabbb, 1) — (qo, aabbb, La) — (qo, abbb, Laa)

— (qo, bbb, Laaa) — (q1, bb, Laa) — (q1, b, La)

— (q1.€, 1) = (g2, €, €).
Here, the symbol — represents a change in a single step. Figure 5.2 shows the
PDA’s possible choices. The computation starts from the middle top ID, and the

successful computation ends at the bottom right ID. A possible computation path
with abbb as the input is as follows:

(g0, abbb, 1) — (qo, bbb, La) — (q1, bb, L1).

Fig. 5.2 The computation

path for {a"b" | n > 0} on ‘ (qo, aaabbb, 1) ‘ — (q1,bb, Laa)
input aaabbb
(qo, aabbd, La) (q1,b, La)
(qo7 abbb, J_aa) (QL €, J—)
A

(qo, bbb, Laaa) —— (92, €, €)
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At this point, there is nothing for the automaton to do, so the automaton halts without
accepting the input.

Example 5.2 In this example, we consider the language of palindromes over the
alphabet {a, b}. Our PDA has two states, the initial go and the final ¢;. In gq, the
automaton builds a prefix that the PDA reverse-matches:

1. If the stack symbol is the initial symbol, the PDA may enter g; without pushing
onto the stack.

2. If the stack symbol is the initial symbol, the PDA may push the symbol after the
initial symbol and stay in gy.

3. If the stack symbol is not the initial symbol, the PDA may add it to the stack and
stay in qg.

4. If the stack symbol is not the initial symbol, the PDA may add it to the stack and
enter ¢.

5. If the stack symbol is not the initial symbol, the PDA may enter g, without adding
the input character to the stack.

In g1, the automaton reads an input character and pops a character from the stack.
When no input character remains, the stack has only the initial symbol, and the state
is g1; the PDA may then remove the initial symbol.
Here is the transition function, where x € {a, b} and y is an arbitrary symbol in

{a, b}:

(qo, €, L) = {(q1, ©)},

(g0, x, L) = {(q0, Lx), (q1, )},

(go, x, y) = {(qo0, yx), (g1, x), (q1, yX)},

(g1, x,x) = {(q1,€)}, and

(g1, €, L) = {(g2, )}
With this program, a PDA finds the input abbba to be a member as follows:

(go, abbba, L) — (qo, bbba, La) — (qo, bba, Lab)
— (q1, ba, Lab) — (q1,a, La) — (q1.€, L) — (g2, €, €).

With this program, a PDA finds the input abba to be a member as follows:

(g0, abba, 1) — (qo, bba, La) — (q1, ba, Lab)
— (q1,a, La) — (q1,¢€, L) = (q1,¢€,€).

An example of how the PDA works appears in Fig. 5.3.
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qo, abbba 1) \

(go, bbba, La) (g1, abbba, €)

(g0, bbi, lab)\‘ (q1,bba, La)
—

/ (q11 ba’y (q()v bUn J-abb) (Q17 ba: J-a)
(g1,a, La) (q1,a, Lab) (go, a, iabbb)\‘ (q1,a, Labb)

1 b~
(q1,€, 1) bbba) (q1, €, Labbb)

(q0, €, La

(QQ, ) 6)

Fig. 5.3 The computation path of our PDA for the palindrome over {a, b} on input abbba

Example 5.3 Our last example is the language of all strings over {a, b} where a
occurs the same number of times as b. Our program uses two states, go and g1,
where ¢ is the initial state and g is the final state. The stack alphabet is {_L, a, b},
where L represents the bottom of the stack. Our PDA scans the input and computes
the running difference in the number of occurrences between as and bs using the
symbols in excess. The stack content is La* when the difference is positive k (i.e.,
more as than bs and the difference is k) and Lb¥ when the difference is — k (i.e.,
there are more bs than as and the difference is k). The stack content is L exactly
when there is no difference. The PDA may pop L without reading the input and
enter go. The state ¢ has no action. The following shows the transition function of
the PDA, where x is a symbol in {a, b} and y is the opposite symbol of a.

8(qo, x, L) = {(qo0, Lx)},
8(qo, x, x) = {(q0, xx)},
3(qo, x, y) = {(qo0, €)}, and

8(qo. €, L) = {(q1, ©)}.

For the list, the transition function offers exactly one value for each triple of a state,
an input symbol, and a stack symbol.
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5.2 Equivalence Between CFLs and PDAs

This section proves that PDAs’s computational power is equivalent to the expressive
power of context-free grammars.

Theorem 5.1 Each context-free language has a PDA accepting it.

Proof Overview

From a CNF grammar of an arbitrary context-free language, we develop a
PDA that executes leftmost production while comparing the input character
each time it applies some single-terminal rule.

Proof Let L be an arbitrary context-free language. Let G = (V, X, R, §) be a CNF
grammar for L. We construct a PDA, M = (Q, £, T, 34, qo, L, F), that executes
leftmost production accoording to G, as follows:

e The stack alphabet of M, I",is V U {_L}.

¢ The state set of M, Q, is {qo, q1, g2}, Where gq is the initial state and ¢, is a
unique final state.

e In state g, two possible actions exist. First, the PDA replaces the L with
the string LS without reading the input. Second, in the case where € €
L(G), the PDA may enter g, after popping the L, without reading the input.
Mathematically, these actions can be expressed as:

8(qo, €, L) = {(q1, LS), (g2, €)}.

* In state g1, the PDA has three types of actions:

1. The PDA may try to match the character it pops from the stack and the input
character it reads. Suppose the character from the stack is A and the input is
a. The PDA continues in state g if arule A — a exists in G without pushing;
the PDA has no action to perform otherwise.

2. The PDA may choose to pop a character from the stack and push two
characters onto the stack. Suppose the character from the stack is A and there
isarule A — BC, where B and C are variables. The PDA pushes C and then
B and remains in q.

3. The PDA may pop a character from the stack and, if the character is L,
enter g;.
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These possible actions are represented as the following values in the transition
function.

1. Forall A € V and a € X such that A — a is a production rule of G,
(q1,€) € 8(q1,a, A).

2. For all A, B, and C in V such that A — BC is a production rule of G,
(q1,CB) € 8(q1, €, A).

3. (q2,€) €8(q1,€, ).

The transitions of the first type correspond to using a rule that replaces a variable
with a terminal. The transitions of the second type correspond to using a rule that
replaces a variable with some two variables, including itself. The transition of
the last type terminates the computation. Thus, the computation that M executes
corresponds to the leftmost production.

Since all the transitions in ¢; demand popping from the stack, once it becomes
empty, M terminates its computation. For a PDA to accept the input, it must
consume the input completely and empty the stack. This requirement means that
there are just two possibilities for M to accept: (1) directly entering from gg to
g» without a push and (2) popping the bottom of the stack and reading the last
character of the input at the same time. From these observations, the strings M
accepts completely match those that G produces using leftmost production.

The proof is now complete. O

Theorem 5.2 For each PDA, there is a context-free grammar that produces the
language it accepts.

Proof Overview

From an arbitrary PDA M = (Q, £, T, 6, qo, L, F), we develop a context-
free grammar. A key idea here is the introduction of the variable H, , for
each p,g € Q. From the variable H), 4, the grammar derives all strings in
> * that M can process while transitioning from state p to ¢ in the following
stack-height preserving manner; the stack height at the start and the stack
height at the end are equal, and during the process, the stack height never goes
below the starting height. We also introduce variables U, 4 ., where ¢ € T, for
deriving all input symbols that M can process in one step by making a state
transition from p to g and pushing an a onto the stack. We also introduce
variables Dy 4 ., where ¢ € T, for deriving all input symbols that M can
process in one step by making a state transition from p to g and popping
an a from the stack. Finally, we introduce variables S, , for deriving all the
symbols M can process in one step while transitioning from p and g without
touching the stack. We can build recursive relations on the three variable
sets.
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Proof Let M = (Q, %,T,8,qo0, L, F) be an arbitrary PDA. We modify M as
follows:

* We add a new initial state. The PDA starts with an empty stack. In the new initial
state, the PDA pushes _L onto the stack without popping from the stack or reading
the input.

* After the new initial step, for each m > 0, we stretch each pushing action of m
characters onto the stack into a series of m steps after the pop step. In each of the
m subsequent steps, the PDA pushes one character onto the stack without reading
the input. In the last of the m steps, the PDA changes its state to the target state.

* We introduce a new final state, p r. From each state in F', there is a transition to
the new state without reading the input and without touching the stack. We make
the new state a unique final state. In the state p s, M pops as long as the stack is
nonempty, i.e., §(pyr, €, X) = {(py,e)} forall X e I'.

A concrete description of the modifications is as follows:

e We add a new state py with the unique action §(po, €, €) = {(go, L)}

* We add a new final state py with the action &(gr, €, X) = {(py,€)} for all
X eT.

* Weset Fto{pr}.

e For each transition (r,y1---yn) € ©6(g,a,x) such that m > 1 and

X, ¥V1,...,ym € T, we assign a unique index k and introduce states
Dk.1, - -+ Pk.m» change the transition for 6(q,a,a) to {(pk.1,€)}, and then
introduce:

8(pr,1,€,€) = {(pr2, YD}
8(pr2,€,€) = {(pr3, y2)}

5(pk,m—2v €,€) = {(pk,m—l» Ym — 2)},
8(pk,m—lve’€) = {(pk,m1 Ym — 1)}’ and
a(pk,n‘laeve) = {(r9 ym)}-

Figure 5.4 illustrates the modifications to the initial and final states.

Figure 5.5 illustrates the stretching of a step involving pop and push.

Suppose we have modified M so that it satisfies the two requirements. By “stack-
preserving computation from p to g,” we refer to the action of M as follows:

* M begins its computation in state p with stack height 4 > 0 and arrives in state
q with stack height &.
* During the computation, the stack height is always greater than or equal to A.

For each pair, (p,q) € Q x Q, let W(p, q) denote the set of all character
sequences M processes in any stack-preserving computation from p to g. Since the



104 5 The Pushdown Automaton Model

the new initial state, M,
pushes the initial symbol

Pg, €

the original computation

Sl

,

T

the new final state;

the original initial state any original final state .
automaton keeps popping

Fig. 5.4 The modifications for the initial and final states. The middle section in the rectangle
represents the computation corresponding to the original behavior of M

B, B,
LA B, A ] |B] [ B B, By B,
p —> 4m = p —> Qo q1 q2 qm = q
prior to stretching after stretching

Fig. 5.5 The modification for the pop-then-push operations. The first action is popping only. Then,
a series of pushes builds the result one character at a time. The final step is for transitioning to the
target state

computation of M starts with the empty stack and M must empty its stack before
accepting, we have

L(M) = W(po, ps).

For each pair, (p, g) € Q x Q, we introduce a variable in the grammar H), .
We introduce two variable groups, U 4. and D, 4 ¢, for each (p,g,c) € Q x
O xTI'.Both U, 4. and D, 4 . produce subsets of .

 The production rules from U, 4 . take the form U, 4 . — a, where a is a symbol
in ¥, such that §(p, a, €) includes (g, c); i.e., the PDA may transition from p to
g when it reads a in the input and, as a result, pushes ¢ onto the stack.

 The production rules from D, , . take the form D, , . — a, where a is a symbol
in ¥, such that §(p, a, c) includes (g, €); i.e., the PDA may transition from p to
g when it reads a in the input and pops ¢ from the stack.
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We also add a variable group S, 4 for each (p,q) € O x Q.

* The production rules from S, , take the form S, , — a, where a is a symbol
in X, such that §(p, a, €) includes (g, €); i.e., the PDA may transition from p to
g when it reads a in the input with no action on the stack. If p = ¢, the rules
include S, , — €.

For H) 4, we have the following possibilities:

* The transition from p to g occurs in one step, i.e., Hp 4 — Sp 4.

» After departing p, the PDA returns to the same stack height and then reaches ¢,
ie,Hy,, — H, H,, forsomer e Q.

e In p, the PDA enters some state » while raising the height by 1 to 4 4+ 1 by
pushing some ¢ onto the stack, maintains the minimum height 4 + 1, arrives in
some state s with # + 1 as the height, and then enters g by popping ¢ from the
stack, i.e., H, ; — Up  cH; sDg 4. forsomer,s € Qandc eI

Some variables in the S, U, and D groups may be without rules to apply. By
definition, a CFG may contain variables without rules, so keeping such variables
does not prevent the grammar from being context-free. However, if we want to
clean up the grammar by eliminating them, we can eliminate all rules in which
such variables appear on the right hand and then eliminate such variables.

We now show that the grammar produces the language that the PDA accepts.
For each variable X, let L(X) denote the set of all strings in X* the grammar can
produce starting from X. Since L(M) = W(po, ps), we can establish our goal by
showing, for all p,q € Q, L(Hp 4) = W(p, q). We show this equality by proving
that the following inclusions hold true for all p, g € Q:

1. L(Hp 4) € W(p, q); ie., for each full production tree with H), , as the root, a
computation of M in W(p, g) corresponds to the tree.
2. W(p,q) S L(Hpy); ie., for each computation of M in W(p,q), a full
production tree corresponds to the computation.
O

First, we prove the following:
Proposition 5.1 L(H, ,) € W(p, q).

Proof We prove the claim by induction on the production tree’s height, /. Let T be
a full production tree with H), ; as the root. Let w be the string T' produces. Let i
be the height of 7. Since H variables lack production rules that produce terminals,
h > 2. Thus, the base case is & = 2. If the root has some H variable as a child, the
tree’s height is > 3. Thus, the root has no H variable as a child. The lack of H as a
child leaves only one possibility: H, ;, — S, ; — a where a € X.. The production
Sp,q — a corresponds to the transition §(p, a, €) > (g, €), which is reading a and
transitioning from p to g without touching the stack. Since M does not touch the
stack, the stack remains the same, which implies that a € W), ,. Thus, the claim
holds for the base case.
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For the induction step, let 4 > 3 and suppose that the claim holds for all smaller
values of h. If the root has only one child, the child must be S, ,, but then the tree’s
height is 2, which contradicts our assumption. Thus, the children must be one of the
following:

* Hp,, H,, from left to right for some r € Q
* Upre, Hyg, Dy g o fromleft torightforr,s € Qandc € I'.

For the first case, both children have a height of < & — 1. By our induction
hypothesis, the subtrees produce strings in W (p, r) and W (r, q), respectively. Since
M preserves the height, W(p, r)W(r, q) is a member of W(p, ¢g). For the second
case, the middle subtree has height 4. The subtree produces a W (r, s) string by
our induction hypothesis. The flanking children U, ;. and Dy, must produce a
terminal each. The left increases the height by 1, and the right decreases the height
by 1. Overall, the tree corresponds to some computation that preserves the height.
Thus, the claim holds for 4. |

Next, we prove the inclusion in the opposite direction.
Proposition 5.2 L(H, ;) 2 W(p, q). O

Proof We prove this by induction on the number of steps M makes. Let w be a
member of W(p, g). Let m be stack preserving computation from p and g that
processes w. Let 7 be the number of steps in 7. We prove w € L(H), 4) by induction
ont.

For the base case, let #+ = 0. Since the computation has 0 steps, it must be the
case that w = € and p = g. We have w € L(H), ,) because of the rule H, , —
Sp,p — €. Thus, the claim holds for the base case.

For the induction step, let ¢+ > 1. Assume that the claim holds for all smaller
values of ¢. Suppose M increases the stack height at the beginning of 7 and
decreases the height at the end of m. Let r be the state M enters in the first
step, and let ¢ be the symbol it pushes. Let s be the state from which M enters
q at the last step. M must pop c¢ from the stack at the last step. Let o be the
input character that M processes in the first step, and let 8 be the input character
that M processes in the last step. Let u be the input characters that M processes
in between. Because of the assumptions we have made, we can apply the rule
Hyq — UprcHrsDs g — aHp gD 4 — oH, . The path 7 without its first
and last steps starts in r, ends in s, and has length ¢ —2. By our induction hypothesis,
this means that L (H, ;) includes u. Thus, L(H), ;) includes w = aup.

On the other hand, suppose that during 7, the stack height returns to the same
value as the start before it reaches the end. We split & into two parts, 1 and 7>,
where 1 is the computation until the first return to the same stack height and 3 is
the remainder. Let r be the state that M reaches when it completes 1. Let u be the
input characters that M processes during 71 and v be the input characters that M
processes during . Since both 71 and 7, are nonempty, their lengths are smaller
than ¢. By our induction hypothesis, this means that u € L(Hp ) and v € L(H, ).
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Since the rule Hp, ; — Hp , H, 4 is available for all combinations of p, g, and r, we
know that L(Ap 4) contains w = uv. Thus, the property holds for z.
Hence, the claim holds for all values of ¢, and so, L(A ;) 2 H(p, q). m]

‘We have proven both claims and therefore, the theorem holds.

Example 5.4 Let us examine the following PDA for {a"b" | n > 1}.

3(qo, €, €) = {(g3, €), (q1, D)},

3(q1,a, €) = {(q1,a)},

8(q1, b,a) = {(q2, )},

8(q2, b, a) = {(q2, €)}, and

3(q, €, L) = {(g3, €)}.
Here, g is the initial state for pushing the initial symbol, and g3 is the final state.

We simplify the notation in the variable names by using the subscripts O, ..., 3

instead of qq, . .., g3, respectively. There are 4 x 4 = 16 state combinations and 3
stack symbols (L, a, and €). Since there are four variable groups (H, S, U, and D),

the number of possible variables in the grammar is 16 x 3 x 4 = 192. However,
most of the variables are irrelevant. We need only the following variables and rules:

Hp3 — 80,3,
S0.3 — €,
Hos — Uo,1, L Hi2D23,1,
Hi> — Ui1,aH1,2D22 4,
Hiy — Si2,
S1,2 —> €,

Uo1,L — €,

Dy31 — €,

Uil.a — a, and

D354 — b.

Since PDAs and context-free languages are equivalent in their power, we
can prove the proposition with PDAs instead. We leave the reader to prove the
proposition using PDAs (see Exercise 5.8).

Theorem 5.3 The class of context-free languages is closed under intersection with
regular languages.
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Proof Overview

From an arbitrary pair of PDA and DFA, we can construct a new PDA that
concurrently simulates the two automata and accepts when both do. The state
set of the new PDA is the Cartesian product of the states of the PDA and DFA.
The new PDA’s transition function processes each input symbol individually
for the PDA and the DFA; the state for the DFA is unchanged if the input
symbol is €. The final state set of the new PDA is the Cartesian product of the
final state sets of the PDA and the DFA.

Proof Let ¥ be an alphabet. Let L; be a context-free language over the
alphabet X. Let L, be a regular language over the alphabet X. Let M| =
(01,%,T1, 61,491, L, F1) be a PDA that accepts L. Let My = (Q», X, 82, g2, F2)
be a finite automaton that accepts L,. Our goal is to show that L1 N L, is context-
free. We accomplish this goal by designing a PDA that accepts the intersection.

Define Q = Q1 x 02, q0 = (q1,92), and F = F| x F,. Define the transition
function § as follows:

e Forallw € X, p1,r1 € Q1, p2,72 € Q2,and b, c € T, if (rq, ¢) is one of the
values of 81 (p1, «, b) and rp = 62(p2, @), then (r; X rp, ¢) is one of the values
of 6(p1 X p2,a, b).

e Forall p1,r; € Q1, p» € OQ2,and b, ¢ € T, if (r1, ¢) is one of the values of
81(p1, €, b), then (r; x po, c) is one of the values of §(p1 x p2, «, b).

The former means that the new PDA processes o as M1 and M, at the same time,
and the latter means that the new PDA processes « as M. However, since the input
character is €, it will not change the state on the M; side.

The new PDA is (Q, £, T, 6, qo, L, F). The PDA accepts if, and only if, it
finishes reading the input with the product state in F' and the empty stack. Thus,
the new PDA accepts its input if, and only if, both M and M> do. a

5.3 The Deterministic Pushdown Automaton (DPDA) Model

We know NFAs are as equally powerful as DFAs. Can we show a similar result for
PDASs? In other words, if we define a deterministic PDA model, will the model be
as powerful as the PDA model? We study this question in the following section.

Definition 5.2 A deterministic pushdown automaton (DPDA) is a pushdown
automaton (Q, X, T, §, qo, L, F) with the following properties:

e Forallg € Q,a € ¥c,and x € T', §(q, a, b) has at most one element, i.e., either
no move at all or exactly one move.
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e Forallg € Q and x € T, if (g, a, b) is nonempty for some a € X, then
8(q, €, b) is empty; i.e., if the pushdown automaton can process an input symbol
with this combination, then it cannot process €.

The two properties guarantee that each ID of the pushdown automaton has no more
than one possible next ID.

Definition 5.3 A language is deterministically context-free if a DPDA accepts it.
DCFL is the set of all deterministically context-free languages.

For a DPDA, we remove the set notation {} from the values of its transition
function. Specifically, if §(q, a, b) = {(r, ¢)}, we write 6(q, a, b) = (r, s); we still
write §(¢q, a, b) = @ if the function does not have values at (g, a, b).

Example 5.5 The PDA from Example 5.1 (for the language {a”"b" | n > 0}) does
not appear to be deterministic. However, the language is deterministic, as an extra b
is attached at the end of each member. The new language is {a"b"*! | n > 0}.
The PDA for the revised version is as follows:

3(qo, a, L) = (qo, La),

8(qo, b, 1) = (g2, 1),

d(qo, a, a) = (qo, aa),

3(qo, b, a) = (q1, €),

8(q1,b,a) = (q1,€), and

3(q1, b, L) = (q2, D).

The initial state is gg, and the final is g5.

Example 5.6 If the input must be nonempty, the language {a"b" | n > 1} is
deterministic. We introduce an additional stack symbol L,. The symbol combines
1 and a into one. The PDA M for the revised version is as follows:

8(qo,a, L) = (qo, La),
8(qo, a, La) = (g0, La),
8(qo, a, a) = (qo, aa),
8(q1,b,a) = (q1,€), and
8(q1,b, La) = (g2, 1).
The initial state is go, and the final is g». The accepting ID is (g2, €, L). The
automaton can enter g if the input has a prefix a”b" for some n > 1. If there

is some character after the prefix, there is no action to perform for the pushdown
automaton. This means the input with an extra character is not in L(M).
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Theorem 5.4 The class of deterministic context-free languages is closed under
complement.

Proof Overview

We modify an arbitrary DPDA so that it will read its entire input and arrive at a
non-final state with an empty stack. Then, we can make the DPDA accept the
language’s complement by switching between the final and non-final states.

Proof Let M = (Q, X, T, 8, qo, L, F) be a DPDA that accepts some language L.
We apply a series of modifications to M. First, we introduce a new initial symbol 1,
a new initial state ¢, and a new non-final sink state g;. We then add the following
transitions:

. 8(gle, L) = (qo, L'L).

e 8(q,a, 1’y = (g5, L") foreachqg € Qanda € X.

* 8(gs,a, X) = (g5, X) foreacha € X.

e 8(q,a,X) = (qs,X) foreach g € Q and a € ¥ such that (g, a, X) = @ for all
ac X

These modifications ensure the following:

(a) The pushdown automaton now preserves the new initial symbol L at the bottom
of the stack.

(b) If the original pushdown automaton pops everything above L’ with part of the
input remaining, the new automaton continues reading the input until the end.

(c) If the pushdown automaton enters gy, it will keep reading the input without
changing the stack content.

(d) If the pushdown automaton enters a state and sees a stack symbol with no
possible moves regardless of the input symbol, it enters gj.

Next, we ensure the computation never enters an infinite loop so it finishes reading
the input. An infinite loop occurs with a chain of € moves that don’t decrease the
stack height below the height at the start, bringing the state and the stack symbol
back to the original combination. Let mg = || Q||||I"|| where Q and I" are the original
states and the stack symbols, respectively. A minimal loop is one without repetition.
Every minimal loop has a length of < m(. We can find all minimal loops using an
exhaustive search. For each pair (pg, Xo) € Q x X, we try executing € moves from
3(po, €, Xo) and check if the execution does not pop below the X at the start and if
(po, Xo) returns. Put differently, each sequence we search for satisfies the following
properties:

e The sequence has the form &(pg, €, Xo) = (p1, Y1), ..., 6(Pm—1,€, Xm—1) =
(Pms Ym).

* P0= Pm-

e We define wy, ..., wy, by
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- wo = Xp.
— For eachi > 1, w; is the concatenation of w;_; without the last character
followed by Y;.

Then,

— None of wy, ..., wy, are empty.

— The last character of Y, is equal to Xg.

— Foralli suchthat 1 <i <m — 1, either p; # po or Xy is not equal to the last
character of w;.

Because of the last property, we can apply the pigeon-hole principle, so m < my =
1Ol x |IT'||. After finding all minimal infinite loops, we replace §(p;, €, X;) =
(pi+1, Yiq1) with 6(p, €, X) = (g5, X) forall i suchthat0 <i <m — 1.

The elimination of infinite loops forces every computation to read the entire input
without changing the language the pushdown automaton accepts. The pushdown
automaton remains deterministic.

We now swap the roles between the final and non-final states. The resulting
pushdown automaton accepts the complement of L(M). O

Since CFL is not closed under complement (Theorem 5.6) and {a"b" | n > 0} is
deterministic context-free and is non-regular, we have the following result.

Corollary 5.1 REG C DCFL C CFL.

5.4 Proving Non-context-Freeness

In this section, we study how to prove languages are not context-free.

5.4.1 The Pumping Lemma for CFLs

We previously used the Pumping Lemma to prove the existence of non-regular
languages. A similar result exists for context-free languages, but its statement is
more complicated.

Lemma 5.1 (The Pumping Lemma for Context-Free Languages) Let L be an
arbitrary context-free language. A constant p > 0 exists such that for all w €
L, |w| > p, there is a decomposition w = uvxyz with the following properties:

L. Jvxy| < p.
2. Jvy| > L. o
3. Foralli >0, uv'xy'z € L.
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Proof Overview

The proof contains two critical ideas. A long, straight path in a production
tree has two nodes whose labels are identical. If a production tree of a CNF
grammar produces a long enough string, then the tree has a long, straight
path.

Proof Let L be a context-free language. Let G = (V, X, R, S) be a CNF grammar
for L. Let n be the number of variables in V. Let p = 2". Let w = wy - - w;, be
L’s member having a length of m > p. Let T be a full production tree for w. For
each node 4 in T, let A(h) denote the number of leaves in the subtree rooted at T'.

Let go be the root of T. We construct a straight path go, g1, ..., gk in T where
the node g; has a unique child. Since G is a CNF grammar, the node gy is the parent
of a leaf. To construct the path, we repeat the following process until the new node
has a unique child.

* Suppose we have selected gy, . .., g¢, where gy has two children (because G is a
CNF grammar). We compare the two children of g, using the number of leaves.
We select the child with the larger number of leaves as g;41. We break a tie
arbitrarily.

Let [go, - .., gk] be the path. For all £ such that 0 < £ <k — 1, A(ge+1) = A(ge)/2.
Since A(gr) = 1 and A(go) = ||JI| = p = 2", k > n. Figure 5.6 shows our
selections for the sequence [go, ..., gkl

Fig. 5.6 The node selection
for Lemma 5.1. The square
nodes are the ones on the
chosen path. The chosen
nodes have at least the same
number of leaves as their
siblings
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Let Xo,..., Xx be the sequence of variables that appear as the labels of
80, - -+, 8k- Since n is the number of variables and k > n, by the pigeon-hole
principle, there are two indices, ¢ and d, such that 0 < ¢ < d < n such that
X. = X4. Since selecting ¢ and d is possible whenever k > n, we can choose ¢ and
dsothatk —n < c¢ < d < k. Then, we have:

1 < A(ga) < A(ge) <2".

Let x be the word the subtree rooted at g[; produces. The subtree rooted at g,
produces the string vxy since g4 is a descendant of g.. In other words, v appears to
the left of x, and y appears to the right of x. The tree T produces the string uvxyz,
where u is to the left of vxy, and z is to the right of vxy in the production tree.
Since the labels of g. and g, are equal, substituting the subtree rooted at g, with
the subtree rooted at g; produces a valid full production tree. Also, substituting
the subtree rooted at g; with the subtree rooted at g. produces a valid production
tree. The former produces the word uxz, and the latter, uvvxyyz. In addition, the
latter contains gz and g, with g4 as a descendant of g.; the same substitution,
i.e., the substitution of g4z with g., works again. This substitution gives a new
tree, which produces uvvvxyyyz. By repeating this substitution, we obtain strings
uv'xy'z. Here, i = 0 produces uxz. Figure 5.7 shows the relations among the five
components.

Fig. 5.7 The decomposition of w as the lemma states. The node label A is common between the
node that produces vxy and the one that produces x
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Since A(g:) < 2", lvxy| < 2". In addition, |vy| is A(g;) — A(gq). According
to the way we construct gy, .. ., g5, the difference is strictly positive. We have thus
proven the lemma. O

5.4.2 Inherent Ambiguity of CFLs

In Sect. 4.1.4, we asked if every context-free language has an unambiguous gram-
mar. We prove here that there is an inherently ambiguous language. The proof uses
ideas reminiscent of the Pumping Lemma.

Theorem 5.5 The following language is inherently ambiguous:

L={a"b""d"™ |n,m > 1}U{a"b"c"d" | n,m > 1}.

Proof Overview

We apply some normalization to an arbitrary grammar for L. We then extract
two separate grammars from the normalized grammar, where one will be
responsible for the first component of the union where n # m and the other
will be responsible for the second component of the union where n % m. The
two grammars have only the start symbol in common. We then show that for
some n, both grammars generate a”b"c"d". This implies that the word has
two leftmost production trees. Thus, L is inherently ambiguous.

Proof Let Ly = {a"b"c™d™ | n,m > 1} and Ly, = {a"b"c™d" | n,m > 1}. Let
G be an arbitrary grammar for L. We first apply some procedures from the CNF
conversion (see Sect.4.2.2 and Exercise 4.21) to remove all useless variables and
eliminate both € and unit rules. Additionally, we ensure that S does not appear on
the right-hand side of the production rules. We then check if the grammar has a
variable X # S such that X never reappears in any production tree rooted at X. We
can eliminate all such variables X by replacing each occurrence of X on the right-
hand side of any rule with one of the rules from X, as we did in eliminating unit rules
in the conversion algorithm to CNF. (This idea is reminiscent of the elimination of €
and unit rules.) More specifically, if X is such a variable and ¥ — w is a production
rule containing an occurrence of X, we independently replace each occurrence of X
with each rule X — z. If w has k occurrences of X and X has d rules, we create d*
rules. We then replace Y — w with the d* rules.

These modifications preserve the ambiguity; i.e., the original G is ambiguous if,
and only if, the modified G is ambiguous.

After completing the modifications, every variable A € V —{S} has a production

G, . . .
of the form A = x1Ax such that x; and x; consist only of terminals, and either x
or x, is nonempty. Since there are no useless variables, a production tree rooted at
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Fig. 5.8 The production tree S

involving A & x; Ax,. The
top A can be substituted with
the bottom A and vice versa

N
AN

S produces a string containing A, and a production tree rooted at A can produce a
terminal-only string. Then, using the same idea as the Pumping Lemma, we have:

some y; and y, € X* exist such that for all k > 0, yl(xl)ka(xz)kyz e L.

Figure 5.8 shows this idea.
We find the following properties of x; and x»:

1. Neither x| nor x; are empty.
2. Neither x1 nor x, have two different symbols. Specifically,

a. If x; = a’ for some ¢t > 1, then xo = b’ ord"’.
b. If x; = b’ for some ¢ > 1, then x, = ¢'.

c. If x; = ¢! forsome ¢t > 1, then x, = ¢'.

d. X1 € d*.

=
=

Thus, the variables A other than § are exactly one of the following types:

o A S gk Abk for some k.

o AL gk Adk for some k.

e A %Sk bk Ack for some k.

e A (;}* ck Ad* for some k.

Otherwise, we can combine two distinct types of a single variable to create a new
x1Ax; such that either x; or x» has two different symbols. Let us partition the
variables into four groups according to the four properties. Let X5, X4, Xp¢, and
X cq be the groups, respectively. We see that the following are the only possible rules
in G.

e For L;:

- S = d"'u1b""vid™ forsomen,m > 0,u; € Xop U{e}, and upy € X4 U{€},
whereif u; = ¢,thenn > 1, and if up = ¢, thenm > 1.

— Xgp —> a"ub” forsomen > 0, x4 € Xgp, and u € X,p U {e}, where if u = ¢,
thenn > 1.

— Xeqg —> Mud™ for some m > 0, xoq € Xoq, and u € X.q U {€}, where if
u=c¢,thenm > 1.
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e For Lj:

— u— a"vd" forsomen > 1,u € SUX,q,and v € X,q4.
— u— a"bmvcd" forsomen,m > 1,u € SU Xyq, and v € X U {€}.
— u — b™vc™ forsomem > 1 and u € Xp. U {€}.

We construct a grammar G using the first group of rules and a grammar G using
the second group. The variable set of G is {S} U X5 U X4, and the variable set of
Gois {S}U X4q U Xpe. S is the only variable in common. Let § — «1,...,S — o5
be an enumeration of the rules from S in G. For each (n, m) such that n # m,
a"b"c"d™ is produced from one of «j, ..., o;. Because of the types of available
rules in G, we can show that for each i, if a”b" ¢ d™ and a®b*c'd" can be produced
from a, so are a"b"c'd" and a®b*c™d™. Thus, for each i, sets of integers N; and M;
exist such that:

{(n,m) | o G:’>* a'b"c"d",n #m} = N; x M;.
Because G is responsible for a”?b"c™d™ such that n # m, we have:
(Nt x M) U ---U(N, x My) 2 {(n,m) | n,m > 1,n # m}.

We argue that this union includes all but finitely many (n, n), n > 1. In other words,
G produces all but finitely many a”*b"c"d",n > 1.

Assume, by way of contradiction, that Ny x Mj U ---U N, x M, misses (n, n)
for infinitely many n. For each i such that 1 <i <r,let

Qi={n|(n,n) &Ny xMj)U---U(Ny x M)}

We know Q1 € Q> € --- € Q,. By our assumption, Q; is infinite. For each
q € Q1, N1 does not have ¢, or M does not. Since Q1 is infinite, either Q1 \ Ny or
01 \ M is infinite. We select Q1 \ Nj if it is infinite and Q1 \ M/ otherwise. We
call the chosen set J;. Then, J; € Q1 € Q5 and J; is infinite. Since J; is infinite,
either J; \ N, or J; \ M> is infinite. We select J; \ N if it infinite one and J; \ M3
otherwise. We call the chosen set J;. Then, J», € QO € Q3 and J> is infinite. By
repeating this process fori = 3, ..., r, we obtain J.. We have:

Jrgjr—lg"'gjlnggQZQ"'QQr-

Thus, J, is missing entirely from N; or M; for each i. This means that for each pair
(n,m) € J. x Jy, (n, m) does not appear in Ny x M{U- - -UN, x M. This contradicts
that L(G) D Ly. Thus, L(G) misses only a finite number of a”b"c"d".

We can apply the same argument to G to show that L(G») misses only a finite
number of a"b"c"d". This implies G| and G, generate a"b"c"d" for infinitely
many n. Since the two grammars have only § in common, and S never appears
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on the right-hand side of the rules, every such a”b"c¢"d" has two different leftmost
productions, one from G and the other from G,. Thus, L is inherently ambiguous.
This proves the theorem. O

5.4.3 Non-context-Free Languages

Using the lemmas from Sect. 5.4.1, we can prove languages to be non-context-free.
As our first example, consider {a"b"c" | n > 0}.

Example 5.7 L = {a"b"c" | n > 0} is not context-free.

Assume, on the contrary, that L is context-free. Let p be the constant for the
language according to the Pumping Lemma (Lemma 5.1). Let w = aPbPcP.
According to the lemma, we can decompose w as uvxyz such that |[vxy| < p,
lvy| > 1, and for all i > 0, uv[xyiz is the member of L. Let w’ = uxz. By our
supposition, w’ must be a member of the language. Since |vxy| < p, vxy is either
part of aPb? or part of b”cP. Suppose the former is the case. Since |vy| > 1, the
number of as appearing in w’ is less than p, or the number of bs appearing in w’ is
less than p. However, since vxy is part of a”b?, the number of ¢s in w’ is p. Thus,
w’ cannot be a language member, a contradiction. Similarly, we draw a contradiction
if uvy is part of bPc?. Thus, L is not context-free.

An alternative proof looks at the distance between the last a and the first c. Since
the language members have three parts of equal length, the inflatable parts, (v, y),
must collectively contain the same number of as as bs and cs. However, the distance
between the last a and the first c is p, and the length of vxy is at most p. So, a, b, and
¢ do not appear together in vy. Figure 5.9 presents how we visualize the limitation
of covering with vxy of the input string a”b?c?.

Since the class of context-free languages is closed under concatenation, we
obtain the following:

Theorem 5.6 The class of context-free languages is not closed under intersection.
1t is not closed under complement either.

Proof Let L1 = {a"b" | n > 0}, Ly = {b"c" | n >0}, Lz = {c" | n = 0},
and Ly = {a" | n > 0}. All four languages are context-free (actually, L3
and L4 are regular). Because the class of context-free languages is closed under
concatenation (Proposition 4.2), we know that L{L3 and L4L, are context-free.

Fig. 5.9 The pumping on p——F ¢
aPbPcP. The lines represent o—8—x °

the longest stretches that vxy aa---aa bb---bb cc---cc
can cover N—_——— — 7 ——
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The two concatenations are {a"b"c¢™ | m,n > 0} and {a™b"c" | m,n > 0}; the
intersection of the two is {a"b"c¢" | n > 0}. This intersection is not context-free.
Thus, the class of context-free languages does not have the closure property under
intersection.

By DeMorgan’s Laws, we can express the intersection of two languages, A and
B, using complement and union as:

AUB.

Thus, the class of context-free languages does not have the closure property under
complement. O

5.4.4 OQOgden’s Lemma

A more flexible version of the Pumping Lemma is called Ogden’s Lemma. We
mark some characters of a given string from the rest. We then pretend the unmarked
characters do not exist and obtain a decomposition of the input.

Below is the lemma.

Lemma 5.2 (Ogden’s Lemma) For each context-free language L, there is a
constant p > 1 with the following property:

e Forall w € L, |[w| = p, and for all selections of > p positions, w is
decomposable as uvxyz such that:

1. x covers at least one marked position.

2. vxy covers at most p marked positions.

3. Both u and v cover at least one marked position, or both y and z cover at
least one marked position.

4. Foralli >0, uvixyiz is a member of L.

There is a simpler version of Ogden’s Lemma, which immediately follows from
the first version.

Lemma 5.3 (A Simpler Version of Ogden’s Lemma) For each context-free
language L, there is a constant p > 1 with the following property:

e Forall w € L, |[w| = p, and for all selections of > p positions, w is
decomposable as uvxyz such that:

1. vxy covers at most p marked positions.
2. uv covers at least one marked position.
3. Foralli > 0, uv'xy'z is a member of L.
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Proof Overview

Given a CNF grammar G = (X, V, R, S), we choose p = 241Vl Given w
with its > p marked positions, we examine a production tree of w and select
a straight path by always selecting the branch covering more marked positions
than the opposite branch. The path length is > 4| V|| 4+ 1. We look at the last
4|V || + 1 nodes. For some variable A, five nodes exist labeled with A, where
the marked positions are split between their children. Three of the five choose
their left branch, or three choose their right branch. From such a triple, we can
produce the desired decomposition.

Proof Let G = (V, £, S, R) be a CNF grammar. Let r = |V| and p = 2. Let
w e Land |w| =n > p.LetJ C {1,...,n} be a set that specifies the chosen
positions. Let || J|| = m > p. Let T be an arbitrary production tree of w. Because
G is a CNF grammar, T is fully binary, except the parent of each leaf has only one
child. Each leaf of T is labeled with a terminal, and every non-leaf of 7 is labeled
with a variable. For each node e of T, let ;(e) be the number of marked positions
appearing at the leaf level of the subtree rooted at e. The w value of the root is
|J|| = m, and for every non-leaf, its u value is the sum of its children’s p values.
We construct a straight path from the tree’s root by selecting, at each non-leaf node,
the branch with a larger u value than the opposite branch. Here, a tie can be broken
arbitrarily. Let P = [uo, ..., u)] be the downward path. Let M = [uo, ..., ur] be
the sequence w(uo), ..., u(ug). M is non-increasing with no = m and ux = 1.
Also, for each i such that u; > wit1, ui < 2ui41 (equivalently, wir1 > ui/2).
Since m > p = 2%, u; > ;41 holds for at least 4t = [log(p)] values of i. We
select the last 4¢ indices i satisfying u; > w;4+1 and the first i such that u; = 1.
Let P = [vo, ..., va;] be the node sequence derived from the chosen indices in the
order they appear on P. Let M = [, ..., 4] be Ps accompanying p sequence.
We have the following properties of M:

® VY = 1.
e Forallisuchthat0 <i <4t,viy1 < v <2vi41.
e v <2¥=p<m.

The branch selections at these nodes are either left or right. Let S; be the nodes
where the branch is the left one plus v4;. Let Sg be the nodes where the branch is
the right one plus v4;. The intersection of Sy, and Sg is {v4;}. So, ||S.|| = 2t + 1 or
ISrIl > 2¢ + 1. Figure 5.10 shows the path construction.

Suppose the former is the case. Since ¢+ = || V||, the pigeon-hole principle states
that some three nodes in S; have an identical label. Let «, 8, and y be the three
nodes in order of appearance in the path P. Let A be the label of the three nodes.
Among the three, o and B split the value of w and choose the left branch. Let
u,v,x,y,and z be as follows:
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Fig. 5.10 The node selection
for Ogden’s Lemma. The
triangles are those children
who receive no marked
leaves. Their siblings inherit
all the marked leaves from
their parents. The squares are
thosepwhere the tW(()l children > 24t7 !
split marked leaves. The
squares become elements of
the sequence

> 24t

> 24t—2
d Y > 24t—3
>4
>3
=2

ey is the terminal string to the left of 8.

¢ v is the terminal string appearing to the left of y in the subtree rooted at S.
e Xx is the terminal string in the subtree rooted at y .

* v is the terminal string appearing to the right of y in the subtree rooted at 8.
¢ zis the terminal string to the right of 8.

Since the three nodes have the same label, we can replace the subtree rooted at 8
with a copy of the subtree rooted at y, or vice versa, to produce a production tree
that produces a string in L. Thus, for all i > 0, uvixyiz € L. Since the right child
of « and the right child of 8 receive some marked positions, y and z cover at least
one marked position. In addition, x covers w(y) > 1 marked positions. Similarly,
vxy covers 1(B) < p marked positions.
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For the proof for ||Sg| > 2" + 1, we switch the roles between the left and right
branches. This proves the lemma. O

When the Pumping Lemma does not help prove that a language is not context-
free, we can use Ogden’s Lemma.

Example 5.8 Let a, b, and ¢ be symbols. L = {a'b¥ck | i # j,i # k, and j # k)
is not context-free.

Assume, by way of contradiction, that L is context-free. Let p be the constant
from the simpler version of Ogden’s Lemma. Let w = a?b?TP'¢P+2P" be a chosen
member of L. We select the positions 1, ..., p and apply the lemma. We obtain
a decomposition w = uvxyz such that vy has at least one a and for all i > 0,
uvixy'z € L.If v or y has different symbols, uvvxyyz has ba or cb as a string,
which is not a member. Thus, v and y have only one symbol. Specifically, v € a*.
We have the following three possibilities:

e« If vy € a*, let £ = |vy| and choose i = p!/¢ + 1. Then, uv'xy'z =
aP+P'pPrieP+2P This does not belong to L, so we have a contradiction.

e Ifv € at and y € b', let £ = |v| and choose i = 2p!/¢ + 1. Then,
uvixy'z = aP 2P prr!+E=DIylP+2P This does not belong to L, so we have a
contradiction.

e Ifv € atand y € c*, let £ = [v| and choose i = p!/€ + 1. Then,
uvixylz = aPtr'pptricp+2r'+G=DIyl This does not belong to L, so we have
a contradiction.

In all three cases, we can produce a nonmember from a member. Thus, L is not
context-free.

5.4.5 Proving Ogden’s Lemma by Analyzing a PDA’s Behavior

This section presents an alternate proof of Ogden’s Lemma, which analyzes PDAs.

Suppose we want to compute the pumping constant of Ogden’s Lemma from a
PDA. Assuming that the PDA empties its stack before accepting, we can convert the
PDA to a CFL grammar, convert the grammar to a CNF grammar, and then obtain
the constant from the number of variables in the CNF grammar. This approach
works as long as the PDA is nondeterministic because we can modify it to empty the
stack before accepting. The stack-emptying property is not necessarily applicable
to DPDAs. Thus, this raises the question of whether or not Ogden’s Lemma can be
proven by analyzing the PDA’s behavior, which may not empty its stack. The answer
to this question is positive, as we shall see next.

Proof Let L be a context-free language. Let M = (Q, £,T,qo,8, L, F) be
a pushdown automaton, possibly deterministic, that accepts L. Without loss of
generality, we may assume the following:
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* M starts with L in the stack and one e-move.

e Foreachg € Q,a € X, and b € T, every element (¢’, x) in §(g, a, b) satisfies
that x = € or bc for some ¢ € I'. In other words, M removes the top symbol and
decreases the stack height by 1; alternatively, M adds a new symbol after pushing
the top symbol back to the stack, which increases the stack height by 1.

We define the following size parameters:

A =4]0IT| +1,
=121 01Tl + 1,
O =A+1I,

pi = A®T!1 = foralli such that 0 < < ©, and
p = po= A
Let w be a string in L (M) such that [w| > p. Suppose M has an n-step computation

path 7 to accept w and a set J of m > p positions have been designated. For any
step j such that 1 < j < n, let us use the following notation:

e ID(j) is the instantaneous description (ID) at steps j.
 char(j) is the input M processes at step j.

» stack() is the stack string of M at step j.

* top(j) is the stack string of M at step j.

 state() is the stack string of M at step j.

* height(j) is the stack height of M at step j.

We note that at n — |w| places, input, = € and
w = char(1) - - - char(n).

We partition 7 into m + 1 segments Vp, ..., V.

* Vj is the computation before processing the first marked position.

* V, is the computation from step m that processes the last marked position to the
last step.

* For each j such that 1 < j < m — 1, V; is the computation from the step M
processes the j-th marked position and the step immediately before M processes
the (j + 1)-th marked position.

By definition,

(*) forall j > 1, V; processes exactly one marked position, and the processing
occurs at the first step of V;.

Figure 5.11 shows the partition into Vj, ..., V. Our decomposition w = uvxyz
relies on the changes in the stack height in each segment. The stack height in a
segment, Vi, starts with a value, reaches the maximum within the segment, and
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Wl vl L Ve Ve

Fig. 5.11 The partition of the input into Vp, ..., V,,. The highlighted rectangles represent the
individual marked positions

ZA\NVASA

f f i i !

start bottom end start bottom end

Fig. 5.12 Two examples of a segment’s internal structure. In the left panel, there is only one step
number at which the bottom height is achieved, and the two sequences have a length of > 1. In
the right panel, the bottom height is achieved at two places, and the upward sequence has only one
element

ends at some value. The minimum height may be equal to the start value and the
end value. Also, the minimum may appear multiple times in the segment. For each
k such that 0 < k < m, we formalize the change (see Fig. 5.12) as follows:

We denote the minimum height in Vi by boty, the starting height by start, and
the ending height by endj.

downy is the sequence of the positions where the stack height moves from the
starting value to botj. The sequence specifies the first positions where the height
value becomes starty, starty — 1, ..., boty + 1, and botj occur, respectively.
These positions exist because M cannot remove more than one top symbol in
one step and start; > boty by the minimality of bot as the height. The length
of downy, is thus start; — bot; + 1.

upy, is the sequence of the positions where the stack height moves from bot; to
the ending value. The sequence specifies the last positions where the height value
becomes boty, boty + 1, ..., endy — 1, endy, respectively. These positions exist
because M can push only one symbol in one step and boty < endj because of
the minimality of boty. The length of up, is thus endy — boty + 1.

We construct a finite sequence of segment blocks that shrink in size, where the

index to the sequence starts from 0. By “block” we mean that it is a set of segments
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having consecutive indices, like {V; | a < j < b} for some a,b,0 < a <
b < p. We represent a block using its corresponding index interval [a, b]. We let
I, = [, ri] denote the index interval at k. We also let fk denote the open interval
corresponding to I; that is, [€x + 1, rx — 1]. The initial interval Iy is [0, p]; i.e.,
£o = 0 and ro = p. In addition, fo = [1, p — 1]. We also define a height sequence
ho, h1, ... corresponding to Iy, I, .. ., and the value of A is 0. For each k > 1, we
define

hx = min{bot j | j € Ir—1} and Hy = {j | j € Ix—1 and boty = hy).

In other words, Ay is the lowest height across the segments with indices in ik_ 1, and
H; is the segment indices where the lowest height is achieved. O

By the minimality of &y, the following holds:
Proposition 5.3 Forallk > 1, a string s € [ exists such that:

1. Forall j € Iv, sisa prefix of all stack strings appearing in the segment V.
2. Forall j € Hy, s appears as the stack string in V; at the position the last element
of down j specifies and at the position the first element of up ; specifies.

Additionally, we have:

Proposition 5.4 Foreachk > 1, let & be the smallest index in Hy and vy be the last
element of downg,. If boty, | < hy and & > £x_1+2, then endy, | > hy, so Upy,
contains a position at which the stack string is equal to s from Proposition 5.3 Part
1.

The claim holds due to the following argument:

Assume, on the contrary, endy, | < hy — 1. Since the amount of change in the
stack height is =+ 1, starty,_,+1 < hi. Then, boty, 41 < hi, and so, €1 + 1
should belong to Hy. However, the smallest element in Hy is > £;_1 + 2. This is
a contradiction. Thus, the stack height reaches Ay in up,, ;. Let s" be the stack
string where the height becomes /. After this point, the stack height returns to A
for the first time at vy, so s’ = s.

After constructing iy and Hj, we consider two major cases.

54.5.1 (Casel) |Hi|| =40l +1

For each segment index j in Hy, we select the first position at which bot ; occurs
and make it represent the block V;. Put differently, the position is the last element
in the position sequence down ;. Let fi, ..., f; be the positions, where t = || H||.
Let s be the stack prefix from Proposition 5.3. Since ||H| > 4||Q| + 1, by the
pigeon-hole principle, there are five distinct indices a, b, ¢, d, e such that 1 < a <
b <c <d < e <tand state( f;) = state( fp) = state(f.) = state(fy) = state(f,).
We select an arbitrary quintuple. The five members satisfy the following:
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ID(fa) = ID(fp) =ID(fe) = ID(fa) =1ID(fe)-

Let

ug = char(f,) - --char(f, — 1) and v = char(f,) - - - char(f, — 1).
Because a < b < c, ug fully covers the segments V41, ..., Vo_1: in particular,
Vp. In addition, because ¢ < d < e, v fully covers the segments V.41, ..., Vo_1:in

particular, V. Thus, 1 and v contain at least one marked position.

We terminate the construction. We decompose w into uvz, where u is w’s prefix
preceding v and z is w’s suffix after v. Here, ug is now part of u. Let x = y = €.
Then, w = uvwyz, and for all i > 2, uvixyiz = uv'x; because the IDs before and
after proceeding of v are equal, M accepts this string.

Additionally, since the stack has s as a prefix between f, and f, it is safe to
remove v without changing the outcome. This means that M accepts uz, which is
equal to uzy. Thus, for all i > 0, M accepts uv'xy'z.

Because u contains uq, the number of marked positions is at least one in u.
Additionally, because we have been dealing with Vi, ..., V), there are only p
marked positions, and so the number of marked positions in vxy is at most p. The
decompostion therefore satisifies the requirements.

Figure 5.13 shows the discovery of pumping structure in this case.

5.4.5.2 (Case2) ||Hill <40l

Let d = ||Hil|l and «y, ..., aq be the indices in Hy in the increasing order. We
consider d + 1 index intervals with overlapping endpoints.

the same states

H//\\\
|

Fig. 5.13 Pumping structure discovery Case 1. Each tall box represents the stack in a block at its
bottom positions. The stack strings with solid-colored top rectangles are identical. The stack strings

in other boxes are taller. By the pigeon-hole principle, among the stack strings with solid-colored
top rectangles exist two with the same states

z

Hy,
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[i—1, a1, [ar, az], ..., [ag—1, aq], lag, ri—1].

From these intervals, we select the largest one as Ix. There are d + 1 candidate
intervals, every pair of neighboring candidates share one segment, and d < 2|/ Q].
Thus, we have

[ l—1ll +d - |11l - k1]l
d+1 d+1 ~2101+1

el =

Since p = (2]|Ql + 1)®*!, by induction on k, we have
1]l = ol + DO =* = py.

Because of the way we constructed /s and Hys, we have the following:
Proposition 5.5 Forallk > 1, hy > hy_1. |

We consider the following situations:

5.4.5.3 (Subcase 2a) k = A, We Have Kept Choosing the Last Block Index
p as the Right End of the Interval At Each Step (i.e.,
ro=---=ra = p),and hp < bot,

For each j such that 1 < j < A, we designate the first element of up j in the
segment Vg, as fj and s; = stack(f;). Since the right end of the index interval has
been p, we have chosen the last candidate interval at each step. Thus,

€ <4l <--- < 4.

By Proposition 5.3, we have:

(*) Foreach j such that 1 < j < A, s; is a prefix of the stack string at all
positions between f; and fa.

Since A = 4| Q|||IT'|| + 1, there are five positions (a, b, ¢, d, ¢) among f1, ..., fa,
suchthata < b < ¢ < d < e, state(a) = state(b) = state(c) = state(d) = state(e)
and top(a) = top(b) = top(c) = top(d) = top(e). As with Case 1, let

ug = char(a) - - - char(c — 1) and v = char(c) - - - char(e — 1).

We terminate the construction. We take the same form of decomposition as with
Case 1; w = uvzxy, where u is w’s prefix before v, z is w’s suffix after v, and
x =y = €. Since ha < bot), sp remains as a prefix of the stack for all positions
after fa. Thus, we can freely remove v or add multiples of v to produce the same
outcome. For all i > 0, M on uv'xy'z accepts. Figure 5.14 presents this case.
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size-decreasing intervals >
+—>
-

the same states and

top symbols

\\///\

shortest stack in the low ends  shortest stack in the last block

Fig. 5.14 Pumping structure discovery Subcase 2a. The high end of the interval is always V), in
the interval sequence, and the bottom height of V), is greater than the bottom height of the low
ends. The high end of the intervals is always the last block. The low end of the intervals constantly
moves to the right. By the pigeon-hole principle, two highlighted stack strings have the same top
symbols and are in the same states

5.4.54 (Subcase2b) k=0 =A+11

Let J = {A+1,..., Ia+n1}, that is, the values for k in the last IT steps. Our
construction ensures the following properties hold for all k € J:

1. Because the intervals are proper sub-intervals of their predecessors, either £; >
b1+ 1lorry <rp—; — 1.

2. By Proposition 5.5, hy > hj_1.

3. Because botg = boty, = 1, boty, < hy, and because Subcase 2a did not occur
at step A, bot,, < hy.

4. By (3) and Propositions 5.3 and 5.4, a position in up,, exists where the stack
height is iy, and a position in down,, exists where the stack height is /.

Let these positions be f; and gi, respectively.

We have

Sat1r <o < favnm < ga+m < - < €A+l

Since IT = 12||Q|]3|IT|| + 1, the pigeon-hole principle states that there exists a
combination of ¢, » € Q and 8 € T such that for > 13 values of k, the state at fj
is g, the top symbol at fj is B, and the state at g is r. We select one combination
of g, r, and B and, in the combination, thirteen k values to form a set 7. Due to 1,
for all k and k” in T such that k < k’, either f; comes from one of the preceding



128 5 The Pushdown Automaton Model

segments of f or g7 comes from one of the preceding segments of gi. Then, seven
indices ki, ..., k7 exist such that either f,, ..., fi, are from different segments or
8kss - - - » 8k, are from different segments. Suppose the former is the case. Let

uo = char(fi,) - - - char(fi;),

v = char(fg,) - - - char( fi,),
x1 = char(f,) - - - char(f,),
x3 = char(f,) - - - char(gys),

X = xy1xp, and

y = char(gg;) - - - char(gy;).

Let u be w’s prefix before v, which contains ug, and z be w’s suffix after y. We
have:

v raises the stack height from /y; to Ay, brings the state from the one at f, to
the same one, then places the same stack symbol as the top symbol at fi,.

* x brings the height to the same level as fi, and brings the state to g.

* y lowers the stack height from A, to s, and brings the state back to g.

* u contains Vj,, so covers at least one marked position.

* v contains Vg, so covers at least one marked position.

* x contains Vi, so covers at least one marked position.

Thus, M accepts uxz and for all i > 2, uv' xyi z. The number of marked positions
in vy is at least one. The number is at most p because y ends before the last point
of down . We have thus found a desired decomposition. Figure 5.15 presents this
case.

5.4.5.5 (Subcase 2c¢) Neither Subcase 2a Nor Subcase 2b Holds

We proceed to the next value of k.
This is the end of the construction. Case 1, Subcase 2a, and Subcase 2b
collectively cover all possible situations. We have now proven the lemma. O

Exercises
5.1 Show that the language {0°1’ | s > r > 0} is context-free by designing a
pushdown automaton accepting it.

5.2 Show that the language {0"1"2™ | n,m > 0} is context-free by designing a
pushdown automaton accepting it.

5.3 Show that the language {0"1"2" | n,m > 0} is context-free by designing a
pushdown automaton accepting it.
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Fig. 5.15 Pumping structure discovery Subcase 2b. The intervals in decreasing sizes offer sections
that are simultaneously repeatable. The arrows at the bottom indicate the intervals. The tall
rectangles are stack strings, and the top rectangles are the top symbols of the stack. The states
are equal on the solid-colored rectangles on the right-hand side. Among the solid-colored bars on
the left-hand side, the states and the top symbols are identical

5.4 Show that the language {w | w € {0, 1}* and w has twice as many Os as 1s} is
context-free by giving its pushdown automaton.

5.5 Let M be a PDA. Suppose M may not empty its stack before accepting. Show
that M can be modified so that it empties its stack before accepting.

5.6 Let M be aPDA. Show that M can be modified so that M decreases or increases
its stack height by 1 at each step.

5.7 Prove that the normalization from the previous question (i.e., the stack height
increases by 1 or decreases by 1) applies to DPDA as well.

5.8 Prove Proposition 4.2 using a PDA.

5.9 Show that {0"1"2™ | n,m > 1} is a deterministic context-free language by
designing a DPDA accepting it.

5.10 Show that for each k > 1, {0"t%1" | n > 1} is a deterministic context-free
language by designing a DPDA accepting it.

5.11 A homomorphism f from an alphabet ¥ to another alphabet ® is prefix-free
if for all @, b € X such that a # b, f(a) is not a prefix or f(b) and f(b) is not
a prefix of f(a). Prove that for all deterministic context-free languages L C X*
and prefix-free homomorphisms f from ¥ to ®, f(L) € ©* is a deterministic
context-free language.
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5.12 Define prefix-free homomorphisms as in the last question. For each language
L and for each prefix-free homomorphism f, define f (L) ={w | f(w) € L}.
Prove that for all deterministic context-free languages L C ®* and prefix-free
homomorphisms f from ¥ to ®, f ’I(L) C ©O* is a deterministic context-free
language.

5.13 Show that for each PDA, there is an equivalent PDA with a binary stack
alphabet.

5.14 Using the Pumping Lemma, prove that {a"b"a" | n > 0} is not context-free.

5.15 Using Ogden’s Lemma (the simpler version), prove that {a'b ck | J =
max({i, k}} is not context-free.

5.16 Using Ogden’s Lemma (the simpler version), prove that {a’b/ck | j <
min{i, k}} is not context-free.

5.17 Using Ogden’s Lemma (the simpler version), prove that {a'b/ck | i = j +# k)
is not context-free.

5.18 By simulating PDAs, show that the class of context-free languages is closed
under the prefix operation; i.e., for all context-free languages L, the language {w | w
is a prefix of some member of L} is context-free as well.

5.19 Show that the class of context-free languages is closed under the proper prefix
operation; i.e., for all context-free language L, {w | w is a proper prefix of some
member of L} is context-free as well.

5.20 Use either the Pumping Lemma for context-free languages or Ogden’s Lemma
to prove {a"b"a"b" | n > 1} is not context-free.

5.21 For a language L, NOMID3(L) is {xy | |x| = |y| and for some w, |w| = |x|,
xwy € L}. Show that the context-free languages are not closed under the NOMID3
operation.

Hint: Use {a"b"c"a?b? | n,m, p > 1} is context-free.

5.22 Let M be a pushdown automaton that empties its stack whenever it accepts.
Construct a pushdown automaton N from M that reverses the action to accept
L(M)R.

5.23 Let L and L, be two languages in X*. The marked concatenation of L and
Lyis{u$v | u € Ly and v € Ly}, where $ ¢ X. Show that DCFL is closed under
marked concatenation.

524 Let A = {a"b" | n > 1}, B = {@"b"" | n > 1}, C = AUB, and
D = {a"b"cd™ | n > 1}. Show that C € DCFL implies D € CFL, so DCFL is not
closed under union.

5.25 Based on the previous result, prove that DCFL is not closed under intersection.
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Bibliographic Notes and Further Reading

The pushdown automaton model was first studied by Oettinger [7] and Schiitzen-
berger [10]. The equivalence between CFLs and PDAs is by Chomsky [3] and
Evey [4]. The Pumping Lemma for context-free languages is by Bar-Hillel, Perles,
and Shamir [1]. Ogden’s Lemma is by Ogden [8]. Ogden proved results called
intercalation theorems, which extend the Pumping Lemma for more powerful
computation models [9]. The exposition of Ogden’s Lemma was adopted from [9].
Boasson [2] showed pumping lemmas for various models. Bar-Hillel, Perles, and
Shamir [1] showed various closure properties of CFLs. DPDA is by Haines [6] and
Ginsburg and Greibach [5].
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Chapter 6 ®
The Turing Machines Qe

6.1 The Turing Machine (TM) Model

In this chapter, we study the Turing machine computation model. The model
resembles the finite automaton model but is more complex.

6.1.1 The Definition

Here is the definition of the model.
A Turing machine (TM) operates in discrete time and has three components:

e Tape: The tape of a TM is a sequence of cells. Each cell holds a symbol from
the TM’s tape alphabet. The cells have unique sequential indices (or positions).
The range of cell indices may be infinite or finite. The finite-index model is the
Linear Bounded Automaton model (we will study this model in Chap. 7). When
the range is unlimited, the minimum is 1 or undefined. In the former case, the
tape is one-way infinite; in the latter case, the tape is two-way infinite. We will
consider mainly one-way infinite tapes in this book.

* Head: The head is an apparatus for a TM utilized to access the tape’s content. At
each computation step, a TM has access to exactly one cell through its head. A
TM can read the symbol written in the cell and store a symbol in the same cell.
To prepare for the next step, a TM may move the head to a neighbor of the cell
on which the head is located; alternatively, it may keep the head in the same cell.
The move decreasing the cell index by 1 is a left move, and the move increasing
the cell index by 1 is a right move, If a TM tries to move its head in a direction
where no additional cell is available, the head remains in the same position. We
call this phenomenon a bounceback.
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Fig. 6.1 A TM with a tape
one-way infinite tape [aloJalb]c]nulu]
head

qo0
finite control

¢ Finite control: The finite control is where a TM determines its action. Like
automata, a TM holds a state from its finite state set in its finite control. A TM
determines which symbol it will write, to which direction it will move its head,
and to which state it will transition. This determination is based on the present
state and the symbol stored in the cell on which the head is located.

Figure 6.1 is a typical drawing of a TM, where the TM has a one-way infinite
tape.

A TM commences and terminates its computation as follows:

At the start of computation, the tape of a TM holds its input in the cells starting
from index 1, its head is on Cell 1, and its state is the initial state, denoted as ¢o.
The cells not occupied by the input hold a special “blank” symbol, which we denote
with L. If the input is €, the head reads LI at the start of the computation. Otherwise,
the head reads some symbol not equal to LI. Thus, a TM can tell if the input is €
when it starts computing.

Once the computation commences, a TM uses its finite control to determine and
execute its action. The computation terminates when the state becomes one of two
special states, gacc and grej. We call these states the accepting state and rejecting
state, respectively. We say that the machine accepts when it enters g, and rejects
when it enters gre;.

6.1.1.1 The Mathematical Definition

Formally, a TM is an eight-tuple (Q, I', U, X, 8, g0, Gace» qrej)» Whose components
are as follows:

e () is the state set.

e T is the tape alphabet.

e U is the blank symbol.

e ¥ is the input alphabet and is a subset of ¥ C (I" — {U}).

e §: 0 xI' = QO xT x D is the transition function, where D = {L, R, —}. The
elements L, R, and — represent the left head move, the right head move, and the
stationary head move, respectively.

We define the transitions in states gacc and grej as 6(gace, @) = (qacc, @, —) and
3(qrej, @) = (grej, a, —) foralla € T.

* go € Q is the initial state.

* gacc € Q is the accepting state.

* grej € O, Grej F# qGacc 1 the rejecting state.
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The computation by a TM on an input has three possible outcomes:

e The TM accepts the input.
e The TM rejects the input.
¢ The TM runs forever.

6.1.1.2 Recognition and Decision

Here, we define the concepts of recognition and decision by TMs.
Definition 6.1 Let M = (Q,I', U, ¥, 8, g0, Gacc, Grej) be a TM.

1. The language that M recognizes is:
{w|w e X* and M on w accepts}.

We denote the language by L(M).
2. The language that M co-recognizes is:

{w| w € ¥*and M on w does not accept}.

3. If M halts on all inputs, we say M decides L(M) (Table 6.1).
We then define the following language classes:
Definition 6.2 A language is recursive or decidable if a TM decides the language.

A language is co-recursive or co-decidable if a TM decides its complement.

Definition 6.3 If a TM accepts the language, a language is recursively enumer-
able.
If a TM accepts its complement, a language is co-recursively enumerable.

By swapping the roles between gacc and grej, we obtain the following proposition:

Proposition 6.1 A language A is recursive if, and only if, its complement, A, is
recursive.

Table 6.1 The terminology we use in describing languages that TMs characterize according
to their behavior

Outcome on Outcome on
Class Terminology members non-members
Recursively enumerable Recognition Accept Reject or run forever

Co-recursively enumerable | Co-recognition | Reject or run forever | Accept
Decidable Decision Accept Reject
Co-decidable Co-decision Reject Accept
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Definition 6.4 R, RE, and coRE, respectively, denote the classes of all languages
that are decidable, recursively enumerable, and co-recursively enumerable.

6.1.2 Examples of TMs

Let us explore some examples of TMs.

The first TM example decides L = {a"b"a" | n > 0}. From Exercise 5.14,
we know that L is not context-free. Let w € {a, b}* be an arbitrary input. As
mentioned earlier, a TM can tell at the start if w = €. We thus design a TM, M,
to accept €. If w # €, M repeatedly “finds and erases” the leftmost a, the leftmost
b appearing after the a, and the rightmost a appearing after the b. More specifically,
while executing the search for the three characters, M “erases” the triple by turning
the three characters into L, x, and L, respectively. When no more triple is found, if
the tape has no a or b, M learns that the input was a member of L, so enters gucc.
Otherwise, M enters grej.

In other words, M turns some leading as into Us, an equal number of trailing as
into Us, and the same number of leading bs into x. After erasing k triples, the tape
holds a string with the following form:

uuaaxxbbzaauuu
~—— —— [ —

k k k

Here, z is some string in {a, b}*. After successfully finding and erasing a trio, M’s
next target for erasure consists of three characters as follows:

1. First, the character immediately to the right of the leading Lis must be found. This
character is a or x. For the search to continue, the character must be a.

2. Next, the character to the right of the run of xs must be found. This character is
b or L. For the search to continue, the character must be b.

3. Finally, the character immediately to the left of the trailing Us must be found.
This character is a, b, or L. For the search to complete, the character must be a.

If the character does not have a match in (2) or (3), that indicates that the search
failed, so the TM rejects the input. If the character does not match in (1), the TM
checks if the tape content matches Lt x U™,

Algorithm 6.1 shows the algorithm for M. As stated earlier, by requiring the
middle to be the leftmost b after the first a, we plan to change the input of the form
a' bl a* with positive i, j, and k into:

Ua~txpi gk 1y,
Ifi, j, and k are all > 2, we change the tape content further into:
J=2 k=2

Uua' " 2xxb L L.
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Algorithm 6.1 A TM algorithm for {a"b"a" | n > 0}

1: procedure TESTING-FOR-a"b"a" (w)
2: the computation begins with the head on the input’s leftmost character;
3: if the character is L then
4: accept;
5: end if
6: while true do
7: search to the right foran a, a b, or a L; > the initial check
8: if the character at the head position is LI then
9: enter gacc;
10: else if the character is b then
11: enter grej;
12: else if the character is x then
13: scan to the right to locate a non-x;
14: if the character is Ll then
15: enter gacc;
16: else
17: enter grej;
18: end if
19: else > the character is a
20: replace the a with LJ;
21: scan to the right to locate a b or a L;
22: if the character is U then
23: enter grej;
24. end if
25: replace the b with an x;
26: scan to the right for a Ly;
27: move the head to the left neighbor of the L;
28: if the character is not a then
29: enter grej;
30: end if
31: replace the a with Li;
32: scan to the right for a Ly;
33: move to the right neighbor of the Li;
34. end if

35: end while
36: end procedure

In general, if i, j, and k are > m, after m rounds, we change w to:
L ai—mxmbj—mak—m L

Ifi = j = k = m, then w will become U™ x™1".

Figure 6.2 shows the program as a diagram. The letters a and r appearing in
the circles represent acceptance and rejection, respectively. The arrows represent
transitions between states. A label of the form Y /Z, D on an arrow specifies that the
transition occurs when the symbol is ¥ and that the machine writes Z and moves
the head to the direction of D.
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gacc

u/u, —

>

aja,R;b/b,R;x/x, R
afa,L;b/b, Lyx/x, L

b/b, —; x/x,—;U/U, —

u/u, —

CL/U,., -3 b/b7 -
Fig. 6.2 A diagram for a TM that accepts {a"b"a" | n > 0}

Table 6.2 The transition

Symbol
table of the TM for {a"b"a"}

State | a b X u

490 (g1, U, R) | (grej> b, =) | (g5,x, R) (Gaces U, —)
q (q1.a.R) (92, x.R) |(q1.%. R) | (qrej, U, )
@ |(@a.-) (@b =) (@3B (gL
q3 (g4, 1, L) (Grej> b, =) | (Grej, X, =) | (grej, L, _)T
g4 (ga,a,L) | (g4,b,L) |(ga,x,L) |(qo,U,R)
495 (Grejs @, —) | (qrejs b, —) | (g5, %, R) (Gace, U, —)

We encode the algorithm into a transition function §. We represent Step i with
gq; for all i between 1 and 6. The computation halts when the state becomes gycc Or
grej- The transition function § is in Table 6.2. In the table, the rows are the states, the
columns are the symbols, and the entries are the values of the transition function.
The 1 symbol indicates the transitions that never occur. This table suggests ¥ =
{a,b}, O =1{qo, - -, 4q5, Gace> Grej}, I’ = {a, b, X, L}, and gq as the initial state.

Figures 6.3, 6.4, and 6.5 present how the program runs on a>b3c? as a series of
diagrams representing the tape, the head position, and the state, respectively. The
order of the diagrams is row-wise.
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[alafalb]b[b]afa]a]u

qo

[ufafalb]b[b]afala]u

q1

[ulafa]z[b]bla]a]a]u

q2

[ulafa]z[b]b]a]a]a]u

q2

[ulafa]z[b]bla]ala]u

q2

[ufafa]z[b]bla]a]a]u

q3

[Wfalafz]b]bla]a]u]y

q4

[Lfafa]z[b]b]a]a]u]u

g4

[L]afa]z]b]b]ala]u]u

q4

[Wlaafz]b]bla]aulu

g4

[ufafafb]b[b]afa]a]u

q1

[Wfalafb]b]b]ala]a]u

q1

[L]afa]z]b[b]afa]a]u

q2

[Ufafa[z]b]b]afa]a]u

qz

[ufafa]z[b]blafa]a]u

q2

[L]afa]z]b[b]a]a]u]u

q4

[]afalz]b]b]a]a]u]u

q4

lulalal?lblblalaMu

q4

lul?lalwlblblalaulu

g4

[ufafa]z]b]b[a]a[ulu

do

Fig. 6.3 Handling the first triple and searching for the next triple
6.1.3 Instantaneous Descriptions

Here, we define a TM’s instantaneous descriptions.

We use the term configuration to refer to the status of a TM at a step of
its computation. The configuration comprises of the state, the tape’s content,
and the head’s position. A pictorial representation like Fig.6.1 can present a
configuration. However, encoding the configuration as a character sequence is much
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[w]ufala]b]b]afa]ufu

q1

[]ufaefz]b]b]ala]ufu

q1

ﬂﬂﬂ L

q2

[wlufafa]a]bla]a]U]y

q2

[lufale]z[b]a]uuly

g4

[]ulefz]a]b]aulufu

q4

Wlule]e]z]b]a]ufufu

q4
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[ulufala]b]b]alalu]u

q1

[ulufala]z]bla]alu]u

q2

[wlufale]z]blalalu]y

q2
M@lel‘lblal?lum
q3

[ulufale]z]bla]u]u]u

q4

[L]ufa]ez]bla]ufu]u

q4

DEDEEIOHEE

q4

Fig. 6.4 Handling the second triple

more convenient than a pictorial representation for treating it mathematically. We
call such an encoding instantaneous description (ID).

There are multiple ways to encode configurations into ID.

Consider a configuration where the tape holds aabbcaabb L U - - -, the head is
on the ¢, and the state is g3. By treating g3 as a symbol not part of the tape alphabet,
we encode the ID as the string:

aabbgzcaabb Lk

The encoding format assumes that the state-representing symbol appears immedi-
ately to the left of the symbol at the position of the head. Therefore, an ID must
match the regular expression (I')*QI'". We truncate the infinite stretch of blank
appearing in the tape to a finite string but do not restrict its length after truncation.
In other words, we do not demand that the IDs be as short as possible. Thus, for
each configuration, there exist infinitely many strings representing it because if w is
an ID, then so is wL.

Sometimes, we use an alternate representation in which the state-representing
symbol appears at the beginning, and a symbol with a marking indicates the location
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[w]ufaefa]z]blau]u]u

q0

Olululalzlolalulo]
t

q1

[Llulufz]=[z]au]u]u

q2

[Llufufz]=]z]a[ulu]y

q3

lufulz]z]s[ulu]u]y

g4

ufufulz]«zJulululu

q4

[Llufulz]e]=[ululu]y

qs

Y 2 2 [

qs

] Y 2 ) A ) )
f

q1

wufufzTe]blalulu]u

q1

ufufufzfzlz]aJululu

q2

[Llufufz =]z [ulululy

q4

WUIU\}EWI?«"IUMHIU

q4

[Llufulz]=]z[ulululy

qo0

[ Y T )

qs

(wlufu e el=Tulululy

Qacc

Fig. 6.5 Handling the last triple and then checking if no a or b is remaining

143

of the head. For a TM whose tape alphabet is I, we consider its marked version r,
whose letters are those from I with a squiggle. If the state set of the machine is Q,
then the IDs with a state-representing symbol match the regular expression I'* QT',
and those without it match QT'*I'T". Figure 6.6 shows changes in the ID with this
alternate representation.

We present a TM for the palindromes over {1, 2}. Let L denote the language. The
basis of the program is the following recursive definition for L:

e Let w be astring over {1, 2}. If |w| < 1, w € L. Otherwise, w € L if and only if
w = cycforsomec € {1,2}and y € L.

Imagine checking to see if the tape content is in the form U* cycU* for some ¢ €
{1,2} and y € {1, 2}* and, if so, replacing each c to L. Imagine, also, repeating
the check and replacements until the tape content reduces to LI* (@ U b U €)u*. For
example, we make a series of reductions of an input string 1221221 to generate:
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Fig. 6.6 Processing of the
first triple with a state as the
leading symbol

C CCC

q0
= q1
= q2
= q2
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Q2 Q2Q QLR
=
S
S
Q
Q22 Q2R Q QR
CCCCCQQ Q9 Q9
CCCCCoCcCCELC

The last element in this series has only one non-LI, which is the 1 in the middle.
An examination of this last ID reveals that the input was a palindrome.
Algorithm 6.2 is the program demonstrating this.

Algorithm 6.2 A TM algorithm for the palindrome over {1, 2}

1: procedure PALINDROME-TES(w)
2 receive input w € {0, 1};
3 while true do
4 if the cell has U then
5: enter Gacc;
6 else
7 ¢ < the symbol in the cell;
8: write U in the cell;
9: scan to the right for L;
10: move the head to the left neighbor;
11: if the cell has LI then
12: enter gacc;
13: else if the cell has a symbol different from ¢ then
14: enter grej;
15: else
16: the cell has c;
17: write U in the cell;
18: scan to the left for Li;
19: move the head to the right neighbor;
20: end if
21: end if

22: end while
23: end procedure

We can implement the algorithm using states qo, q1, g2, 43, g4, and g5, where g
is the initial state. The states play the following roles:



6.1 The Turing Machine (TM) Model 145

* In go, the TM examines the leftmost character yet to turn into LI. The TM
proceeds to gy if no character must turn into L; otherwise, the TM has identified
a 1 or a 2 as the leftmost character to turn that into L. If the character is 1, the
TM proceeds to g after changing the character to L. If the character is 2, the TM
proceeds to g5 instead after changing the character to LI. The TM memorizes the
erased character by choosing between ¢ and ¢».

* In g, the TM scans to the right, looking for LI. After finding one, the TM moves
the head to the left neighbor of the LI and enters g3.

* In g3, the TM scans to the right, looking for LI. After finding one, the TM moves
the head to the left neighbor of the LI and enters g4.

e In g3, if the character is U, it indicates that the character the TM has erased
was the middle character in an odd-length palindrome, so the TM enters gucc
immediately. If the character is 2, it is a mismatch with the character the TM has
erased, so the TM enters grej immediately. If the character is 1, it matches the
character the TM has erased, so the TM changes the character to LI and enters gs.

* Similarly, in gq4, if the character is L, it indicates that the character the TM has
erased was the middle character in an odd-length palindrome, so the TM enters
gacc immediately. If the character is 1, it is a mismatch with the character the TM
has erased, so the TM enters grej immediately. If the character is 2, it matches the
character the TM has erased, so the TM changes the character to LI and enters gs.

* In g5, the TM moves the head to the left, looking for LI. Upon finding one, the
machine moves the head to the right neighbor of the LI and enters gg.

Here is the TM’s transition table.

Symbols

States | 1 2 u

q0 (g1,U,R) | (g2,U, R) | (qacc,U;—)
q1 (g1,1,R) |(q1.2,R) |(g3,u,L)
2 (2.1, R) |(q2,2,R) |(qa,U,L)
q3 (g5,4, L) (Qrej» 2,-) | (Gace> U, —)
q4 (Qrej5 1,—) | (g5,4,L) (Gace, U, —)
qs (g5.1,L) |(g5.2,L) |(q0,U, R)

Figure 6.7 is the transition diagram of the TM.
Figure 6.8 shows how the machine accepts an input of 1221221.

6.1.4 Fundamental Subroutines

Designing TM programs is challenging because of two features of the TM model.
One is that the tape access is sequential, and the other is that the cell index
is unknown. We respond to this challenge by adding special symbols, like the
initial/bottom symbol for PDA.
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Fig. 6.7 A diagram for the palindromes over {1, 2}
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Fig. 6.8 Processing of 1221221
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6.1.4.1 Restoring the Input

We can modify the program for {a"b"a" | n > 0} so that the TM changes the input
back to the original after making its accept/reject decision. The main idea is to use
three symbols (@, a’, and a”) for erasing as. The TM uses these new symbols and
behaves as follows:

1. As before, the machine immediately accepts or rejects if the symbol it sees at the
start is LI or b, respectively.
2. The erasure process goes as follows:

(a) The TM erases the as in the first segment with a’, not L, except it uses a
instead for the very first a,

(b) The TM erases the as in the third segment with a”, not L.

(c) The TM erases bs with x as before.

(d) The search to the right for L will become a search for a”.

(e) The search to the left for L will become a search for a’.

3. When the TM is about to accept or reject, it executes the following restoration
process:

(a) The TM enters non-halting states pa and pg instead of gacc and grej,
respectively.

(b) In p4 and pg, the TM moves the head to the right in search of L.

(c) When U is found, the TM enters p/; from p, and p, from pp. It then begins
to move the head to the left.

(d) While moving the head to the left, the TM replaces a’s and a”s with a and
xs with b.

(e) When it arrives at a, the TM writes a and enters gacc from p;‘ and grej from

Pk-
These changes altogether give the following property to the machine:

e When the machine accepts or rejects, the input returns to the original, and the
head is on the leftmost cell.

The reader is encouraged to write a code for the input-restoring version (see
Exercise 6.3).

Next, we will study two fundamental operations of inserting a string at a location
on the tape and deleting a section of input.

6.1.4.2 Insertion

Suppose a TM, whose state set is O and whose alphabet is I", has the task of
changing the tape contents by inserting one character at the head’s present position.
In terms of ID, the TM must turn its present ID upw to usocw, where s, € Q,
a€T,ueT* and w € (' — {U})*u. The change is easy if w = U; the TM
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writes o, keeps the head at the present location, and enters s. Otherwise, the TM can
accomplish this task as follows:

* Addastate i, s foreacha € T.
¢ Add asymbol a.

The TM’s program is as follows:

1. Atthe start, let a be the symbol appearing in the cell on which the head is located.

2. The TM writes a, moves the head to the next cell, and enters i, .

3. In the next phase, if the state is i, and the cell has b, the TM writes a, moves
the head to the right neighbor, and enters ip ;. The TM will remain in the phase
until it enters iy, ;.

4. In iy, 4, the TM scans to the left for a without changing the cell’s content.

5. When it reaches &, the TM writes «, keeps the head in the same position, and
enters s.

Here is an example of how the insertion algorithm works. Suppose a TM’s
present ID is aapbbcdll with p € Q, and the TM needs to insert an e between
aa and bb and enter ¢g. Using the state-in format, we see the program execution as
follows:

a a p b b ¢ d U = a a e ipy b ¢ d U
= a a e b ipy ¢ d U = a a e b b iy d U
= a a e b b c¢ igy U = a a e b b ¢ d ius
= a a e b b c¢ iys d = a a e b b iys ¢ d
= a a e b iy b ¢ d = a a e iyy b b ¢ d
= a a iyy € b b ¢ d = a a s e b b ¢ d

A TM can insert a constant number of characters using the above algorithm in
sequence.

6.1.4.3 Deletion

Suppose a TM whose state set is Q and alphabet is I" has the task of changing the
tape contents by deleting the character at the present position of the head. More
specifically, the machine must turn its present ID upw to usocw, where s, € Q,
ael,andu, w e T'*.

The machine can accomplish this task with the following additional symbols and
states:

* A state d, s for each a € I' (including L),
* A symbol &
e A state rg

The action of the machine is as follows:
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1. Let us say w begins with some a € I'". In one step, the machine writes a, moves
the head to the right neighbor, and enters r.

2. The present state is rs. The machine searches for LI to the right. Upon encounter-
ing one, the machine preserves the LI, moves the head to the left neighbor, and
enters d, 5.

3. The present state is d, s for some a € I'. If what the machine reads is some b
for some b € I', the machine writes a, moves the head to the left neighbor, and
enters dp, . If the machine reads b forsome b € T (b may equal a), the machine
writes a and enters s without moving the head.

Here is an example of how the deletion algorithm works. Suppose a TM has
cbabcc U U~ on its tape and needs to remove the a and enter s. Suppose the
present state is p and the head is on the cell holding the a. The program runs as
follows:

c b p a b c ¢ u = c b a rg b c c u
= c b a b rg c ¢ u = c b a b c Ty c u
= c b a b c c ry u = c b a b c dys c¢ U
= c b a b dey ¢ U U = c b a d.g b c Uou
= ¢ b dys a c c u u = c b s c c Uou

6.2 The Multi-tape TM Model

We can extend the previous TM model to one with multiple tapes.

6.2.1 The Definition

Multi-tape TMs (see Fig. 6.9) have one or more tapes besides the input tape. Multi-
tape TMs access their tapes with independently moving heads; i.e., the head’s
movement on a tape can differ from the other heads’ movement. We call a TM
having k tapes a k-tape TM. The TM model we previously studied is thus a single-
tape TM. We assign numbers 1 through & to the tapes of a k-tape TM. At the
computation’s start, Tape 1 has the input like the tape of a single-tape TM, and
the other tapes are all blank, with the head on the first cell at the computation’s start.

A multi-tape TM executes its computation in the following manner. At each
computation step, a multi-tape TM decides its action depending on the present state
and the symbols it reads through its heads. Like single-tape TMs, the action consists
of writing on the cells through the heads, moving the heads, and updating the state.
A k-tape TM’s transition function maps from Q x ¥ to Q x (X x D), where
D = {L, —, R}. We often refer to one-tape TMs as single-tape TMs.
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Fig. 6.9 A two-tape TM Tape 1
a b a b c b ‘ U ‘ ‘
Head 1
qo | finite control
Head 2
Tape 2
Lofofelofelefe] |

A multi-tape TM variant is the offline TM. Tape 1 of an offline TM is ready-
only and holds the input. Since a TM cannot detect the left end of the tape without
placing a marking, the input tape has marks immediately on the left and right of the
input. These marks are special symbols that the machine must not write anywhere
else. The other tapes permit reading and writing. We use the offline TM model to
assess the amount of storage a TM must use.

6.2.2 Examples of Multi-tape TMs

Here, we present TM algorithms that take advantage of the availability of multiple
tapes.

Conceiving algorithms for TMs is often easy when additional tapes are available.
Let us examine {a"b"a" | n > 0} from the previous section. A two-tape TM may
use the following algorithm for deciding the language:

e If the input is €, accept.

 If the input starts with a b, reject.

* Copy the prefix of the input consisting of a to Tape 2.

 Accept if the remainder of the input matches b*a™ such that the b-portion and
the a-portion have the same lengths as the copy on Tape 2; reject otherwise.

More specifically, we envision using the following algorithm, where c¢; represents
the symbol Head 1 is seeing and c¢; represents the symbol Head 2 is seeing:

1. Initial Check If ¢; = U, accept; if ¢ = b, reject; if ¢; = a, write an x on
Tape 2 as the end marker, move Head 2 to the right neighbor, and proceed to the
next step.

2. Copying the leading as If ¢; = a, write a on Tape 2 and move both heads to
the right neighbor; if ¢ = U, reject; if ¢c; = b, move Head 2 to the left neighbor
without moving Head 1 and proceed to the next step.

3. Matching the copied as and the following bs If c; = b and ¢; = a, move
Head 1 to the left neighbor and Head 2 to the right neighbor; if ¢; = U, reject;
if c; = b and ¢y = x, reject; if ¢c; = a and ¢ = x, move Head 2 to the right
neighbor without moving Head 1 and proceed to the next step.
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Table 6.3 The transition table of a two-tape TM that decides {a"b"a" | n > 0}. The symbol
combinations that do not appear on the table are impossible. The empty cells are impossible
symbol pairs

q90 q1 q2 q3

(TN)) (Gace, U, —, U, —) (Qrej» u,—,u,—) (qace, U, —, U, —)

(a,1) |(q1,a,—,x,R) (g1,a,R,a, R) (grej, a, — U, —)

(b, L) (Qrejs b,—,U,—) (q2,b, —, U, R)

(b,a) (g2,b,L,a, L)

(a,x) (g3.a,—,x,R)

(a, b) (g3,a,R,b, R)

(a,a) (Grej, a, — a, —)

(0, x) (Grejs b, — x, —)

U, a) (Grejs U, — a, —)

Fig. 6.10 The ID sequence go alaububualal

of the TM accepting aabbaa g dxalbuUubuUualUal
g axdablUbUaUal
g axaabablOauau
¢ axaababuauau
¢ axadbabUuauUau
¢ aXaabablalal
g3 axadbablualal
gy axaabablalal
gy axaababUauauldu
Gacaxaabablauauiu

4. Matching the copied as and the trailing as If c; = ¢y = a, move both heads
to the right neighbor; if exactly one of c¢; and ¢; is a, reject; if c; = ¢ = L,
accept.

We can implement the algorithm using four non-halting states (qo, g1, g2, and ¢3)
in addition to gacc and grej. The initial state is go. We transpose the transition Table
6.3 so that the columns represent the states and the rows represent the symbol pairs.

For multi-tape TMs, we similarly define configurations and IDs like that for
single-tape TMs. Since the heads of multi-tape TMs move independently, the
positions of the heads may differ among the heads. Thus, we use IDs by placing
a state-representing symbol at the start.

Figure 6.10 shows an ID sequence of the two-tape TM defined for the input
aabbaa.
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6.2.3 Simulating Multi-tape TMs Using Single-Tape TMs

Although the availability of multiple tapes enriches the algorithm design strategies,
single-tape TMs can do whatever multi-tape TMs can do. We delve into this on a
technical level by proving the following theorem.

Theorem 6.1 A language is decidable if, and only if, a multi-tape TM decides the
language.

Proof Overview

A single-tape TM can simulate a multi-tape TM by storing an ID of a multi-
tape TM on its sole tape. The format of the single-tape encoding can be
one connecting the tape contents with a delimiter in between (horizontal
concatenation) or one grouping the tape cells at the same cell indices together
(vertical slicing). We use the latter in this proof. After converting the input
to an initial ID, the machine keeps updating the string by following the
instructions of the multi-tape machine until the ID becomes either accepting
or rejecting. At this point, the single-tape machine accepts or rejects the input.

Proof Letk > 2. Let M = (Q,T', 1, X, 8, o, Gacc, Grej) be a k-tape TM. We aim
to design a single-tape TM, S, that simulates M.

We encode the IDs of M using a format in which the state-representing symbol
appears at the start. Since there is no limit on the size of the alphabet, we introduce a
set of symbols representing (I"'UT")¥. Each k-tuple encodes the k symbols appearing
in the cells with the same cell number.

The TM S’s input tape alphabet equals M’s. The tape alphabet of S is the union
of I', Q, and (I U T")¥. The squiggle version of the alphabet indicates the existence
of the head on the cell. Using this extended alphabet, the first five steps of the two-
tape program with input aabbaa have the series of single-tape encodings as shown
in Fig.6.11.

We now return to the simulation.

An alternate view of the encoding using multiple symbols appearing in the same
cells uses tape tracks. A reader familiar with cassette tapes may know that the
tapes are horizontally divided into four tracks, representing the left and right audio
channels of Side A and Side B. The components are vertically represented in this
representation, and the elements at the same component positions are viewed as
tracks. The previous presentation thus can be presented using tracks as shown in
Fig.6.12

We now return to the simulation.

We use 6 to represent the transition function of S. In this simulation, S first
addresses any case where the input is empty. We can assume that S knows whether
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S
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Fig. 6.11 An example of double-character encoding. Two symbols appearing in one box are a
double-character encoding

Fig. 6.12 An example of

double-track encoding. Two qo
symbols aligned vertically are

at the same cell positions
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or not € € L(M). In the first step, if S sees the character is LI, S accepts or rejects
accordingly. Otherwise, S executes the following simulation program.

The machine S prepares for simulation by converting the input to a k-tuple form
with a leading state-representing symbol. If the input is x7 - - - x,,,, where m > 1 and
X1, ..., %y €I, then S converts it to:

k—1

~ ~k—1 _
q0 xll_lk X U xml_lk 1.

We can adapt the insertion algorithm from the previous section for the conversion
(see Exercise 6.12).
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The simulation’s main idea is to scan the tape to identify which k symbols M is
presently seeing through its heads.

A straightforward method for the discovery task is to make k round-trips of the
tape content. At the j-th round, the goal of the round-trip is to discover the symbol
on the j-th tape. Scanning the head from the left end to the cell index where any head
has ever reached reveals the symbol as the j-th component, which has a squiggle in
the k-tuple encoding. There is exactly one such tuple, so the scan successfully finds
the symbol. While making the k round-trips, S can record M’s state as part of its
state. More specifically, S’s state can combine the following:

* Anindication that S is in the discovery mode

¢ The value of the trip number j

e The direction (left or right) in which § is moving the head

e The symbols S has discovered (the number of symbols is j — 1 for a forward scan
and j otherwise)

We imagine that this information is accumulated in the state. The number of possible
combinations is fixed and independent of the input length. To initialize a round-trip,
S moves the head to the left until it encounters a cell holding a state of M.

Once the k symbols have been identified, S can decide how the tape should be
updated, as well as the state of M in the next step. Then, using another set of k
round-trips, S can update the content of its tape.

Now, let us get into the details of the simulation. The simulation uses six steps as
follows:

1. For j =1, ..., k, move the head to the right to locate the cell containing a k-tuple
whose j-th component has a squiggle. Upon finding the cell, memorize the j-th
component, and move the head back to the leftmost cell (i.e., the cell containing
a state-representing symbol).

After completing the discovery, determine the instruction M is about to
perform. Accept if M has reached g, and reject if it has reached gyej. Otherwise,
rewrite the state-representing symbol.

2. If M does not halt, move the head to Cell 2. If a squiggle appears on some
tape and the head on the tape must move to the left, the head’s actual move is
stationary because of the bounceback. The machine S revises the head’s move to
stationary. Move the head to Cell 1.

3. Foreach j =k, ..., 1, scan to the right, looking for a cell whose j-th component
has a squiggle. Then:

(a) Rewrite the j-th component according to the action M is to take.

(b) If the head movement is to the right, remove the marking and reattach it to
the right neighbor. If the right neighbor is not in a k-tuple form, change it to
a k-tuple form (it must be “all LI””) before adding the mark.

(c) If the head movement is to the left, remove the marking on the j-th
component and reattach to the left neighbor.

(d) Move the head back to the leftmost cell.

We now describe the implementations of this algorithm. O
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6.2.3.1 Discovering the Symbols
This step uses states of the form:

gfnd(ai, ...,aj—1,N, 1 <j<k,ay,...,a; €T
and

Gfound (@i, - - . ,aj), 1<j<ka,.. .,aj € r.

For each j, the former type is used to find the cell with a squiggle on the j-th
component. In the state gfing(ai, ..., a;—_1, ?), S moves the head to the right. Upon
encountering a cell with a squiggle on the j-th component, S switches to the latter
type with the symbol on the j-th component, say, a;, replacing the state name’s j-th
component. The new state is thus gfound (@1, - . ., @j—1, a;). In the state, S moves the
head to the left until it returns to Cell 1. Upon returning to Cell 1, if j < k, the state

switches to gfina(a1, ..., a;, 7). If j = k, § examines M’s state, say, p, in Cell 1
and determines the action of M given by:

5(p1a17-~'1ak) = (p/9b17°"1bkvelv"'1ek)'
Here, p’ € Q,b1,...,by € T,andey, ..., e; € D.The determination is by entering
a state. The state is gacc if p' = Gacc and grej if p’ = grej. Otherwise, S writes p’ in

Cell 1 and enters the state:

ri(bi,e1, ..., by, ex).

6.2.3.2 Determining What to Update
If the state is ri (b1, e1, ..., bk, er), S moves to the right neighbor (Cell 2) and

changes the state to r(by, ey, ..., bk, ex). If the state is ra(by, ey, ..., br, er), S
scans the symbol in Cell 2, returns to Cell 1, and changes the state to:

quite(b17 6/19 K] bk: e]/()
Here, for all j, e} = ej, if either the squiggle is absent on the j-th component
of k-tuple symbol in Cell 2 or e; = L; otherwise, e;. = —. Replacing e; with e}
incorporates the bounceback on Tape ;.

6.2.3.3 Executing the Updates

The machine uses three groups of states:
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L. quite(blsels"'vbjyej)
2" QWrite+(bla€17---»bj,ej)
3‘ qWI‘it[en(blvelv"'sbjaej)

Here,1 < j <k, r € Q,b1,...,b; € I',and ey, ...,e; € D. The first group is
for scanning to the right for the cell with the squiggle on the j-th component. Upon
finding the cell, the machine changes the j-th component to b; without squiggle.
In addition, the machine moves the head to the right neighbor if ¢; = R and to

the left neighbor if e; = L. Then the machine enters gwrite+ (b1, €1,...,bj, €;).
In gwiite+ (b1, €1, ...,bj, e;), the machine adds squiggle to the j-th component
and enters Gwritten (b1, €1, - . ., b}, €;), in which the machine moves the head to the

leftmost position. Returning the head to the leftmost position completes the round
for j, so the machine switches to the next round, j — 1. Upon entering gwritten()> S
changes its state to gfnd(?) and commences the simulation of the next step of M.
The simulation requires k round-trips in Step 1 and Step 3 for each stepof M. O

If the multi-tape TM has reached the farthest position d, each round-trip may
require as many as 2d steps. With k tapes to examine individually, each procedure
may require as many as 2kd steps. It is possible to compress the k trips into one by
discovering the symbols the heads see in the increasing order of their position. We
leave the detail of the algorithm to the reader (see Exercise 6.12), but the alternate
procedures require <2d steps for discovery and <2d + 2k steps for rewriting.

The proof above applies to recognizers.

Theorem 6.2 A language is recursively enumerable if, and only if, a multi-tape TM
recognizes the language.

6.2.3.4 R/s the Intersection of RE and coRE

Here, we study the relations between R and RE.
The multi-tape TM model offers an essential characterization of R.

Theorem 6.3 R = RE N coRE; that is, a language is recursive if, and only if, it is
both recursively enumerable and co-recursively enumerable.

Proof Overview

A two-tape TM can simulate two single-tape TMs concurrently. If the
two machines recognize complementary languages, the concurrent two-tape
simulation finds which of the two machines accepts the input. The two-tape
machine can then decide whether or not it should accept the input.
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Proof Let A C X* be a recursive language. Then, by Proposition 6.1, A is
recursive. Since a recursive language is already recursively enumerable, we know
that A and A are recursively enumerable. Thus, R € RE N coRE.

Conversely, suppose that a language A is recursively enumerable and co-
recursively enumerable. Let M = (Q, T, U, X, 8, qo, Gacc, grej) be a recognizer for
A Let M = (Q',T",1, X, 8, g, qacc, qrej) be a recognizer for ‘A. Then, for all
puts x,

e Ifx € A, then M on x accepts and M» on x does not accept.
e Ifx & A, then M| on x does not accept and M; on x accepts.

We construct a two-tape TM N for A. On all inputs x, N simulates M on input
x using Tape 1 and M> on x using Tape 2 concurrently. The TM N prepares its
concurrent simulations using the following algorithm:

1. If the head on Tape 1 sees LI at the start, the input is €. The TM N accepts or
rejects depending on whether or not € is a member of A.

2. Otherwise, N creates a copy of the input on Tape 2. After that, N moves each
head to Cell 1 (see Exercise 6.10).

3. The TM N concurrently simulates M with Tape 1 and M, with Tape 2, one step
at a time. The transition function, 6, during the simulation, uses the Cartesian
product Q1 x Q5 as the states:

0((q,q"),a,a") = ((p,p),b,d, b, d).

Here,a € T',a' € T, 8(q,a) = (p,b,d), and 8'(¢',a’) = (p’,b’,d’). There
are two exceptions; if p = gacc OF p' = Qrej» USE gacc in place of (p, p'), and if
P = qrej OF P’ = Gacc, USE grej in place of (p, p').

As discussed earlier, exactly one of the two simulations enters gacc, S0 N accepts all
members of A and rejects all members of A. Thus, N decides A. O

6.3 The Nondeterministic Turing Machine (NTM) Model

We stipulate that the transition function of a TM does not necessarily have exactly
one value for all state-symbol combinations. This stipulation gives rise to the
nondeterministic Turing machine (NTM) model. In contrast with NTMs, we
call the TM model we have studied in the previous sections deterministic Turing
machines (DTMs).

A mathematical definition of an NTM uses the same kind of tuples as the DTM,
i.e., the definition uses an eight-tuple (Q,T', U, X, 8, o, gacc, qrej)- Here, § is a
mapping from Q x I" to the power set of O xI" x D, where D = {L, R, —}. An NTM
may abort its computation if there is no action to perform in the transition function.
NTMs offer no guarantee of condensed outcomes. On one halting computation path,
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the machine may enter gucc, while on another path, the machine may enter gre;.
NTMs also may produce computation paths that run forever.

We say that an NTM accepts an input x if it enters g,c. for some computation
path with x as the input.

Definition 6.5 An NTM M recognizes a language if for all inputs, x, the following
properties hold:

e If x is in the language, M accepts x on some computation path.
e If x is not in the language, M does not accept x on any computation path.

We introduce an NTM with a guarantee of halting.
Definition 6.6 A halting NTM halts on all inputs regardless of its action choices.

Definition 6.7 An NTM M decides a language if M is a halting machine and
recognizes the language.

The single-tape simulation technique for DTMs can be applied to NTMs.

Theorem 6.4 For each multi-tape NTM N, a single-tape NTM S recognizes the
same language as N. Furthermore, if N is a decider; S is a decider.

Like the finite automaton models, the availability of nondeterministic choices
does not increase the fundamental computation power of TMs.

Theorem 6.5 A language is recursively enumerable if, and only if, an NTM
recognizes it. Furthermore, a language is recursive if, and only if, an NTM decides
it.

Proof Overview

Since each DTM is a special NTM, every language a DTM decides is
decidable by an NTM, and every language a DRM recognizes is recognizable
by an NTM. Thus, our task is to show that every language an NTM decides is
decidable by a DTM and every language an NTM recognizes is recognizable
by a DTM. The single-tape simulation method from the proof of Theorem 6.1
also applies to NTMs, so we consider simulating single-tape NTMs with
multi-tape DTMs. Specifically, we show that for each single-tape NTM N,
a three-tape DTM can simulate S. We construct S so that for each input x, S’s
simulation has the following outcome:

» If N accepts x, S finds an accepting computation of N on x in a finite time
and accepts x.

e If N does not accept x, S does not accept.

* If N is a halting machine, S rejects x.

(continued)
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The three-tape simulator tries all computation paths whose lengths are no
more than £, with ¢ increasing from 1 to higher numbers. Since S examines
N’s computation paths exhaustively, if N accepts, S eventually finds an
accepting computation path when ¢ is large enough.

Proof All DTMs are NTMs, by definition. Thus, each recursively enumerable
language has an NTM recognizer, and each recursive language has an NTM decider.

For the other inclusions, we show that NTMs can be simulated by DTMs. Let
N = (0,T',u, X, 8, q0, Gacc» grej) be an arbitrary single-tape NTM. We modify
N so its transition function has at most two possible values for each state-symbol
combination.

e If §(q,a) has m > 3 values (r1,b1,dy), ..., (rm, bm,dp), we add m — 2
intermediate states, say pip, pa2, ..., Pm—2, and a series of transitions:

— §(q, a) has two values, (r1, b1, dy) and (p1, a, —).

— Foreachisuchthat1 <i <m—3,5(p;, a) has two values, (r;+1, bi+1, di+1)
and (pi+1,a, —).

— 8(pm—2, a) has two values, (r—1, bp—1, dn—1) and (v, by, di).

Figure 6.13 shows the result of such a conversion. The modification preserves the

overall acceptance behavior. The original version of N accepts if, and only if, the
modified version accepts.

6(p, a) d(p; a)

@) O O O (p1,a,—)
(r1,b1,d1) (T by di) (r1,b1,d1) o(p1, @)

O O (p2,a,-)
(r2, b2, dz) "
6(pm,71 9 CL)

("Am—h bm—lf dm—l) O
(Tw17 bm7 dm)

Fig. 6.13 The mechanism for reducing the number of branches to 2. The boxes represent the input
to the transition function, and the circles represent the elements and values of the transition function
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Fig. 6.14 Simulating an ala|U|U
NTM deterministically using muu....
three tapes. The top three Ujufufulufulu
lines show the tape contents .......
at the start of computation.

The bottom three lines show
the tape contents immediately
after preparation

[#lo]5]5]ala]u]u]
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The role of the three tapes is as follows:

e On Tape 1, S preserves the input.
e On Tape 2, S generates computation paths.
e On Tape 3, S simulates N’s tape.

Let x be an arbitrary input to M. The string x also appears on S’s Tape 1 at the start.

The machine S prepares for its simulation by inserting a left-end marker, #, on
all three tapes, and then appends O on the second tape (see Fig. 6.14). We can adapt
the character insertion algorithm from Sect. 6.1.1 for this purpose.

The string appearing on Tape 2 after the marker is a binary representation
encoding the branches to follow. Since the transition function of N has at most
two possible values for each state-symbol combination, the i-th character after the
marking represents which of the two branches S must follow. The interpretation is
0 for the first choice and 1 for the second. The machine S follows the computation
of N using the branch sequence as a guide. S simulates N for no more steps than
there are bits in the guide.

When S finishes its simulation on the present path, it rewrites the encoding into
the next path. The machine accomplishes this updating by changing the leftmost 0
or the leftmost LI, whichever comes first, to 1 while changing each 1 it encounters
during the search to 0. The paths generated in this manner will be:

#0, #1, #00, #10, #01, #11, #000, #100, #010, #110, #001, #101, #011, #111, . ...

We can view these as the downward paths on an infinite complete binary tree and
think of § as executing a breadth-first search on the tree.

Now, let us see the details of the deterministic simulation.

Before each simulation, Tape 3 has #LI- - - LI as its content. The machine S copies
x on Tape 1 to Tape 3 after the #. Then, S commences the simulation of N in the
following manner:
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* Tape 3 serves as the tape of N.

e If Head 3 sees a # as the result of moving the head to the left, it means N has
experienced a bounceback. Thus, S moves the head to Cell 2 before executing
the next step of N.

* During the simulation, S marks the farthest cell reached on Tape 3 using a marker,
such as a squiggle. If the head is about to go beyond the marker, S removes it and
attaches it to whatever appears in the right neighbor (the cell must hold LI).

* Let p be the present state of N and let a be the symbol appearing on Tape 3. The
simulation of one step of N is as follows:

— If 6(p, a) has no value, S aborts the simulation because there is no action to
perform.

— If 6(p, a) is not empty and the symbol that Head 3 sees is LI, S aborts the
simulation because the path on Tape 3 is not long enough.

— If 6(p, a) has only one value and the symbol that Head 3 sees is not LI, S
advances with §(p, a).

— If §(p, a) has two values and the symbol that Head 3 sees is 0, S advances
with the first value.

— If §(p, a) has two values and the symbol that Head 3 sees is 1, S advances
with the second value.

— If the state of N has become g, S accepts immediately.

— If the state of N has become grej, S moves on to the next path.

» Before proceeding to the next path on the list, S moves the heads on Tapes 1
and 2 back to the leftmost position and clears all the cells it has touched during
the simulation. For the erasure, S moves Head 3 to the marking for the farthest
position and then brings it back to the leftmost position while writing LI in each
cell.

* After the erasure, S updates the computation path on Tape 2.

If x € L(N), at least one computation path exists along which N on x accepts. Since
S generates all possible computations, S eventually finds that N on x accepts and
thus accepts. Otherwise, N on x never accepts. Thus, S accepts the same language
as M. O

In the case where M is a halting machine, for every input x ¢ A, there exists an
integer £ such that all computation paths having length £ lead M to rejection without
abortion. The machine S checks the “all rejection” property during its simulation
and rejects x if that happens. We explore modifying the action of § in detail as an
exercise (see Exercise 6.14).

Theorem 6.6 A language is decidable if, and only if, an NTM decides the language.
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6.4 Alternate Definitions of RE

This section explores two alternate ways to define recursively enumerable lan-
guages. One is by using enumerators, and the other is by using witness schemes.

6.4.1 Enumerators

The name “recursively enumerable” comes from the fact that each language in the
class has a method for producing all members.

A language A’s enumerator is a multi-tape TM that writes a list of all members
of A on one tape, where each member appears exactly once on the list. More
specifically, an enumerator E operates as follows:

e The input is irrelevant to the action of E.

e If A is infinite, E runs forever.

* One tape of E is an “output tape.” An output tape is write-only in that (a) the
transition function of E ignores that the output tape sees, and (b) the output tape’s
head does not move to the left.

* When E discovers a new member of A, E appends # and the latest member to
the output tape. The list thus takes the form of:

#x 1 HxoHtxzH- - .

We show that all recursively enumerable languages have enumerators. Then, we
show that all languages with enumerators are recursively enumerable.

Theorem 6.7 A language is recursively enumerable if, and only if, it has an
enumerator.

Proof Overview

Let M be an arbitrary deterministic single-tape TM. We use a five-tape DTM
and simulate M. The simulator runs with a round number ¢ = 1, 2, 3, etc.
In the round ¢, the simulator examines each string whose length is < £ by
simulating at most £ steps of M’s program. Each time the simulator finds that
M accepts an input (say, x), the simulator checks whether or not x is already
on the list; if not, the simulator adds x to the list. The five tapes are for £,
input, M’s simulation, output, and output’s copy, respectively.
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Proof Let A C X* be recursively enumerable. Let M be a single-tape TM that
accepts A. Our enumerator, E, has four tapes. A high-level description of E’s
algorithm is Algorithm 6.3.

Algorithm 6.3 An enumerator for A

1:
2
3
4:
5:
6.
7
8

9:

10:
11:

13:
14:

procedure ENUMERATOR-FOR-A
initialize the output as the empty string;
for? < 1,2,3,...do
for w € £=¢ do
simulate M on w for at most ¢ steps;
if M accepts w then
if w does not appear on the output then
append #w to the list;
add w to A;
end if
end if
end for
end for
end procedure

The algorithm’s four-tape implementation is as follows:

Tape 1 is for specifying the value of £.

Tape 2 generates the members of X=¢.

Tape 3 is where E runs simulations of M.

Tape 4 is the output of E: i.e., #wi#wy#- - - that E finds as members of L(M).
There is no left move of the head on Tape 4.

Tape 5 is an exact copy of Tape 4.

The simulation goes as follows:

The simulator £ moves Head 1 to Cell 2. The simulator £ moves Head 2 to Cell
2. The simulator E copies the input from Tape 2 to Tape 3.

The simulator E executes M using Tape 3 as its tape. During the simulation, it
records the rightmost place Head 3 has visited using a squiggle. At each step, E
moves Head 1 to the right neighbor. The simulation ends when Head 1 sees L or
M’s state becomes Gacc OF Grej-

— If Head 1 arrives at a cell showing LI, E aborts the simulation for the present
input.

— If M’s state becomes grej, £ moves to the next simulation.

— If M’s state becomes g,cc, E compares the input with the strings appearing on
Tape 5.

The simulator E moves Head 2 to Cell 1 and compares the content to the
right of # with each member appearing in Tape 5.

It compares each string after # with the input in Tape 2, character by
character.
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If there is no match (different symbols or either string longer than the
other), E moves to the following comparison by moving Head 2 to Cell
1.

If there is a match, E has already identified the input as a member, so it
moves to the next simulation. Otherwise, E appends # and the input to
Tapes 4 and 5.

— In all cases, the preparation for the next simulation is as follows:

Move all the heads to Cell 1.

On Tape 2, E scans to the right from # and locates a cell holding a symbol
not equal to a.. If the symbol is az such that d < c, change it to ag41;
otherwise, change it to a;. During the scan, change each a. to aj. Also,
when Head 2 moves to the right neighbor, E moves Head 1 to the right
neighbor.

After updating is complete, if Head 1 sees LI, the content of Tape 2 must
be #aj ---a;. The simulator E changes the U to 0, indicating that the
simulation for round ¢ is over.

Let w be an arbitrary member of A. Let 7y be an integer such that M on w enters
Gacc at step T. Let 71 be the larger of |w| and #y. Then E simulates M on w for all
£ > |w| and finds that M on w accepts for all £ > ¢1. Specifically, the latter occurs
when ¢ = 1 for the first time, so E adds w to the output. This completes the proof
that every recursively enumerable language has an enumerator.

Conversely, suppose a language A has an enumerator E. Let D be a TM that, on
input x, runs E, compares x with each new member on the list that E produces, and
accepts if there is a match. Because E is an enumerator if x is a member of A, E
eventually adds x to the list, although D does not necessarily know when. On the
other hand, if x is not a member of A, E never produces x on the list, so D never
accepts x. Thus, D accepts A. O

An enumerator may not make its enumeration in lexicographic order. For
example, if M accepts 00 in eight steps, 0001 in six steps, 1100 in six steps, and
all other members in more than eight steps, then the output E generates starts with

#1100#0001#00# - - - .

Furthermore, if an enumerator produces its output strings in the lexicographic order,
then A is recursive. We prove this in Exercise 6.11.

6.4.2 Witness Schemes

Another characterization of RE is by way of witness languages.
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Let L be recursively enumerable. Let M be a TM that recognizes L. Define A as
the language of all pairs (x, C1#---#C,,) such that Cy, ..., Cy,, are IDs of M, C;
is the initial ID of M on x, Cy, is an accepting ID, and for all i such that 1 < i <
m — 1, Ci4 is the next ID of C; }. The language A is decidable, and for all x:

x €L << @y){x,y) €Al

In this formulation, A is a recursive witness language for L, and any y satisfying

the right-hand side of the equivalence is a witness for x € L concerning A. Based

on the membership condition, we can show that L is in RE (see Exercise 6.30).
Thus, we have:

Theorem 6.8 A language L is in RE if, and only if, L has a recursive witness
language.

6.5 Computing Functions Using TMs and the Church-Turing
Thesis

We define TMs that compute functions by extending the idea from Theorem 6.7. A
TM that computes a function is a transducer, while a TM that decides a language
is a decider. A transducer accepts all inputs; its output is the tape’s content when it
halts, ignoring the trailing LI.

Definition 6.8 Let X and I" be alphabets. Let f be a function from X* to I'*. We
say that f is computable if a TM M is a transducer such that for all x € X*, the
output of M on input x is f(x).

Although transductions appear more complex than decisions, we can build
transductions from decisions. Let f be a function from X* to ['*. Let # be a symbol
notin X UT. Let O be another symbol.

Define:

A = {(x#0*#a | x € £*,k > 1,a € T, and the k’s character of f(x) is a}.

Proposition 6.2 The function f is computable if, and only if, Ay is decidable.

We leave the proof of the proposition to the reader.

We can encode an arbitrarily long list of arbitrary large integers using just one
tape of a TM and process it dynamically with insertion, deletion, indexing, and
search as permissible operations (see Exercise 6.18). The ability to mimic a dynamic
list empowers TMs to simulate an arbitrary computer code. The observation
emboldens us to hypothesize that TMs can compute everything that is computable;
we call this idea the Church-Turing thesis.

Conjecture 6.1 A function on natural numbers is computable with an algorithm if],
and only if, it is computable by a TM.
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A computing system that can compute something a TM cannot is unknown.
However, researchers have shown that the TM model is as powerful as all known
programming languages, and the bit size of each dataset and the number of variables
are unlimited.

Exercises
6.1 Give a single-tape TM program for the following languages:

. {w € {a, b} | w has the same number of as as bs}.

. {w € {a, b}T | |w| is even and w is not a palindrome}.
. Aw#w | w € {a, b}T}.

Ad'bick|0<i<j<k).

Ad"b*c" | n = 0}.

A W =

9,1

6.2 The program for {a"b"a" | n > 0} we reviewed had six states other than gacc
and ¢yej. We can reduce the number of states from six to five by changing the order
of finding a triple to the leftmost a, the rightmost a, and the rightmost b in between.
Give a TM that accommodates this modification.

6.3 It is possible to generalize the idea of input preservation by introducing an
auxiliary tape alphabet I' x I' and its squiggled version in addition to I". Here,
(a,b) € T x T represents that the cell had a originally, which now is replaced with
b. Each element (&, b) in the squiggled version is for use in Cell 1.

Describe how a TM can use the Cartesian-product alphabets and recover the
1nput.

6.4 Suppose a two-tape TM has a string #a on Tape 1 and #b on Tape 2, where both
a and b are binary. Write a code for this machine to compare a and b for equality.
You may assume the following: (a) At the start, the heads are on the cells that contain
#. (b) At the end of the comparison, the TM enters gacc if @ = b and g.j otherwise.

6.5 Suppose a two-tape TM has #xz on Tape 1 and #y on Tape 2, where x, y, z €
{0, 1}*. Write a code for this machine to insert y between x and z in the following
manner:

(a) At the start, the head of Tape 1 is on the cell immediately to the right of x.
Also, the head of Tape 2 is on the cell immediately to the right of y.

(b) The machine appends #z after y on Tape 2 while erasing z on Tape 1.

(¢) Copy yz (without the # between y and z) after #x on Tape 1.

(d) Remove #z from Tape 2.

(e) Move the heads to # and enter gacc-

6.6 Suppose a three-tape TM has #0% on Tape 1, #0” on Tape 2, and # on Tape 3,
where the heads are initially on their respective #s. Write a program for the TM to
append 0°*? after the # on Tape 3, move the heads back to their #s, and enter gacc.

6.7 Suppose a three-tape TM has #0% on Tape 1, #0” on Tape 2, and # on Tape 3,
where the heads are initially on their respective #s. Write a program for the TM to
append 09/ after the # on Tape 3, move the heads back to their #s, and enter gacc.



6.5 Computing Functions Using TMs and the Church-Turing Thesis 167

6.8 Write a program for a two-tape TM that receives a binary number n > 1 on
Tape 1 and produces #0" on Tape 2. Here, n is the integer the input represents. The
machine must terminate its computation by entering g,. with Head 2 on the #. Note
that the integer that a binary number b - - - by, represents is

(C (D1 %24 b2) %24 b3) -+ ) %24 byp—1) * 2+ bpy.

We can execute “times 2 then plus b” as follows:

* Presently Tape 2 has #0X for some k > 1.

* There is an additional bit b indicating the #0* must turn into #0?+?,

* Turn each O on Tape 2 to 2, starting from the leftmost one, and for each 0, append
a 1 at the end.

* After this, the tape contains #2X 1. Append one 1if b = 1.

* Move Head 2 back to # while turning each 1 and each 2 to 0.

6.9 Prove Proposition 6.1.

6.10 Write a program for a two-tape TM that copies the input from Tape 1 to Tape
2. After copying, the machine moves the heads to the leftmost positions and enters
a state r.

6.11 Prove that if there exists an enumerator for a language A that produces the
members of A in the lexigraphic order, then there is a TM that decides A.

6.12 In the proof of Theorem 6.1, the simulation S made k round-trips to find the
symbols that the k heads are seeing. It is possible to combine the k round-trips into
one by changing the states S uses for discovery so that they record for which tapes
S has found the symbol the head is scanning. Provide details for S to execute this
discovery.

6.13 Continuing the previous question, describe how S can execute all its actions
during k round-trips in just one round-trip.

6.14 Complete the proof of Theorem 6.5 by showing that a DTM can check to see
if the present path length covers all possible computation paths of the NTM N.

6.15 Prove Proposition 6.2.

6.16 A two-tape NTM can simulate an arbitrary PDA using the second tape as the
stack. Describe how a two-tape NTM can execute such a simulation.

6.17 Think of a PDA with two stacks such that the input appears in the second stack
from top to bottom with a special symbol $ appearing at the last symbol of the input
as the bottom sign. Show that such a “two-stack PDA” can simulate an arbitrary
single-tape TM.

6.18 Describe how to implement a dynamic list of non-negative integers on a multi-
tape TM, where an element n on the list takes the encoding 0", a symbol # appears
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at the start of the list, and $ appears between elements. The operations that the list
needs to accommodate are:

* Insertion of an element 0" at the k-th position on the list, where OF is the string
that specifies k

* Deletion of an element at the k-th position, where OF is the string that specifies k

* Obtaining the element at the k-th position, where O is the string that specifies k

e Obtaining the length, £, of the list as 0¢

* Returning the position of the first occurrence of 0"

6.19 Show that we can augment each TM M so that at the time of termination,
the tape cells hold the blank on each tape, and all the heads are in their leftmost
positions.

6.20 Let L be an arbitrary language and o be an arbitrary symbol. Define L' =
{aw | w € L}. Show that L is decidable if, and only if, L’ is decidable. In addition,
prove that L is recognizable if, and only if, L’ is recognizable.

6.21 Prove that R is closed under union, intersection, and complement.
6.22 Prove that R is closed under Kleene-star.

6.23 Prove that RE is closed under union and intersection.

6.24 Prove that RE is closed under Kleene-star.

6.25 The marked union of languages A and B is {Ow | w € A} U {lw | w € B}.
We write A @ B as the marked union of A and B. We say that a language class C has
the closure property under marked union if for all A, B € C, A @ B is in C. Prove
that the class of recursively enumerable languages has the closure properties under
marked union.

6.26 Prove that the class of recursive languages has the closure properties under
marked union.

6.27 Describe how a TM with a one-way-infinite tape can simulate another with a
two-way-infinite tape.

6.28 Recall that if a TM attempts to move its head to the left when the head is
on the leftmost cell, the head does not move. Let M be a single-tape TM that
may attempt to make such a move. Answer how this impossible attempt can be
avoided by introducing new symbols and modifying M’s transition function without
changing the language that M recognizes.

6.29 Let M be a single-tape TM whose possible head moves are L, —, and R.
Answer how another single-tape TM N whose possible head moves are L and R
only can simulate M without slowdonw; for all #, N can simulate 7 steps of M in at
most ¢ steps.

6.30 Show that if a language is characterized as the set of all x such that for some
v, (x,y) € A, where A is recursive, then the language is recursively enumerable.
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6.31 Show that if L has a recursive witness scheme as in the previous question and
a recursive function exists that computes an upper bound on the length of a witness,
then L is recursive.

Bibliographic Notes and Further Reading

Turing introduced the TM in his 1936 paper [8]. In the same year, Church [1],
Kleene [4], and Post [6] published their papers proposing models as equally
powerful as the TM model. Their papers are available in a compendium by
Davis [3] along with their historical importance. The Church-Turing thesis and
other equivalent models for the recursively enumerable can be found in Davis [2],
Kleene [5], and Rogers [7].
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Chapter 7 ®
Decidable Languages Qe

7.1 The Universal TM Model

Here, we will explore the concept of encoding computing devices.

7.1.1 Encoding Schemes

First, we study the properties of TMs and other computing models by defining
languages whose members are computing models for which certain conditions hold.
This necessitates a scheme for encoding individual computing devices as strings
without ambiguity. The previous chapters described devices and their inputs using
symbols, mathematical notation, diagrams, and plain text. While we can make those
descriptions as accurate as possible, they are complex and can be redundant. Can
we simplify those descriptions while maintaining their accuracy?

The answer to this question is positive. Let us derive some simple encoding
schemes. A crucial observation necessary here is that the references we make to
device components are only abstract. We know that language classes are closed
under one-to-one character replacements. Let ¥ and ¥’ be arbitrary alphabets
of equal size. Let & be an arbitrary bijection from X to ¥’. Then, & acts as a
homomorphism from the languages over T to the languages over X’. Let L be an
arbitrary language over . Let L’ = h(L). For all language classes C, L € C if, and
only if, L' € C.

The preservation of class membership under a bijection between alphabets
reveals that to study complexity, we need to know how the symbols in the alphabet
are related. A similar universality exists in variables within context-free grammars
and stack alphabets in PDAs. Thus, we can treat automata and grammars as lists of
indices where the indices appear in a specific order.
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For example, the following list adequately describes an NFA (Q, X, é, qo, F):

. The cardinality of || Q||

. The index of gp in QO

. The cardinality of F

. A list of indices of the states in F'

. The size of X,

. €’sindex in X

. A list of triples (i.e., the state in the present step, the symbol, and the state in the
next step) representing the elements of &

~N N R W=

Here, the indices can be represented as tally strings in {0}*; i.e., O represents k as
an index. In addition, these indices should be separated with a delimiter in between,
and we will use a tally string in {1}*, e.g., 1. While a single type of delimiter may
be sufficient for encoding NFAs, using multiple delimiters may make extracting
information easier.

Suppose the NFA is Q = {p1, p2}, £ = {a1, a2}, 90 = p1,and F = {p>} and §
comprises of

(p1,a1) = {p2}, (p1, €) = {p2}, and(p2, a2) = {p2}.
Then, the encoding can be:

001110111011100111 000111010100 11 01000100 11 00100100.

Here, we use three different delimiters: 111 for the top level, 11 between the
transition function’s triples, and 1 for separating three elements in triples.

If necessary, we can turn these binary encodings into unary encodings. For
example, we can use 0™ to encode the binary string whose lexicographic order is m.

We will use these encodings in our studies without specifying the formats used.
From now on, we assume an encoding scheme for each computing object type
and use (X) to represent the encoding. We can connect multiple encodings using a
punctuation mark that does not appear in the individual parts. We use (X1, ..., Xi)
to represent an encoding of objects X1, ..., Xy in such a manner. We call this the
semantic encoding function.

7.1.2 Fundamental Problems

Now that we have our encoding scheme, we can study how difficult it is to determine
the properties of computing devices and the languages they define. We assign the
task of determining the properties to TMs. TMs of this sort are similar to those
we have seen previously. However, they are expected to (a) receive an encoding as
input, (b) validate the encoding while extracting the components of the device(s),
(c) analyze the extracted device(s), and (d) simulate the device(s). Such TMs can
simulate all TMs. These are called universal Turing machines (‘“universal TMs”).
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While the choices of the problems to study may be broad, we have a strong
interest in the following fundamental questions:

¢ Acceptance Is a string x a member of a language A?

* Emptiness Does a language A have any members?
 Infiniteness Does a language A have infinitely many members?
* Totality Does a language A include all possible members?

¢ Equality Is a language A equal to another language B?

* Containment Is a language A a subset of another language B?

Which language classes shall we consider for these questions? The language
classes we have seen are REG, CFL, DCFL, R, and RE. For R, there is no obvious
way to specify TMs that are deciders. We thus exclude R and consider only
the four remaining classes: REG, CFL, DCFL, and RE. As for REG, we know
regular expressions, FAs, and NFAs are equivalent through conversion algorithms.
Similarly, for CFL, we know that CFGs, normal-form CFGs, and PDAs are
equivalent through conversion algorithms. Thus, we can use any alternative to
specify these language classes.

Since we have six types of problems, the total number of fundamental questions
we will examine is twenty-four. We combine a property type T and a class type D
and write Tp to specify the problem. For example, ACCEPTREG is:

* The language of all combinations (M, w) such that M is a regular language and
w e L(M)

We will identify which of the 24 problems are decidable and, if they do not appear
decidable, prove that they are undecidable.
Table 7.1 shows each problem’s decidability property.

Table 7.1 The decidability table. The columns are computing devices representing language
classes. Cells D and U indicate the decidable and undecidable problems, respectively. Underneath
the D/U indicator is the place where the proof appears. The * indicates that the proof is not provided
in the book

Type FA DPDA PDA ™
Acceptance D D D U

Theorem 7.1 Corollary 7.3 Theorem 7.7 Theorem 8.2
Emptiness D D D U

Theorem 7.2 Corollary 7.3 Exercise 7.9 Corollary 8.2
Infiniteness D D D 0]

Theorem 7.3 Corollary 7.3 Exercise 7.11 Corollary 8.2
Totality D D 6] U

Theorem 7.4 Corollary 7.3 Theorem 8.5 Corollary 8.2
Containment D U U U

Theorem 7.5 Theorem 8.7 Corollary 8.5 Corollary 8.3
Equality D D* U U

Theorem 7.6 Theorem 7.8 Corollary 8.4 Corollary 8.3
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In addition to the twenty-four questions, we study the following question about
TMs:

e The Halting Problem: Does a TM halt on all inputs?

We show that this problem is undecidable in Theorem 8.3.

7.1.3 Using Universal TMs

The universal TM model mentioned earlier is a primary tool for the classification
process.

A universal TM operates similarly to the simulators from Chap. 6. However, the
simulations here are more complex than the previous ones because the universal TM
simulators need to decode the language objects appearing as part of the input. The
size of the objects, e.g., the size of the alphabet, has no limits. Thus, the simulators
need to deal with objects of an arbitrary size. To clarify this requirement, consider
a problem type T and an object type D. Our universal TM has a fixed number of
tapes and receives a binary (or unary) string that could encode an instance. The
format of the encoding depends on T and D. A basic algorithm, which appears in
Algorithm 7.1, is for the universal TM to test the membership of its input in the
language Tp. We may expect that for each combination of 7" and D, the number of

Algorithm 7.1 A universal TM algorithm for Tp

1: procedure MEMBERSHIP-FOR-Tp(w)

2 w is an input;

3 check the validity of input as an encoding;

4 if w is invalid then

5: accept or reject according to the definition of Tp;
6 else

7 prepare for a simulation by extracting components from w;
8: simulate to test the membership property;

9: if the simulation is complete then
10: accept reject according to the definition;
11: end if
12: end if

13: end procedure

components separated by 111 in any valid input is a constant. We can give a fixed
number of tapes to our universal TM solving Tp for extracting the components
embedded in the input and checking the validity. After successfully verifying the
input, our universal TM does some work to check the property 7.
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7.2 Decidable Fundamental Problems

Here, we present some decidable problems.

7.2.1 Decidable Problems About Regular Languages

We first present decidable problems about regular languages.

7.2.1.1 Acceptance

The accepting problem about regular languages is decidable.

Theorem 7.1 The following language is decidable:

ACCEPTEp = {(M, w) | M is a DFA acceptingw}.

Proof We will develop a multi-tape universal TM, U, that decides the language
ACCEPTEA. We assume that the input alphabet of U is in binary. Let x be an input
U. U operates as follows:

First, U checks the validity of the input. While confirming the validity, U extracts
the DFA and its associated input from x. Let us call the DFA M and the input w.
U can use its tapes to store the components of M. If the validity checking fails, U
rejects x immediately.

Next, U simulates M and an input w, which will terminate in a finite number of
steps. Then, U accepts x if M accepts w in the simulation and rejects x otherwise.

Next are more details about the action of U.

U extracts the following information about M, according to its expected
encoding scheme:

1. The cardinality of the state set

2. The cardinality of the alphabet

3. The transition table as a list of triples, where the components of each triple are
separated by 1 and the triples are separated by 11

4. The index of the initial state

5. The list of final states with 1 in between

6. The input w as a sequence of numbers separated by 1

U writes these numbers as tallies of O (as they appear in the input w). U may write
these six components on six separate tapes. In addition, U may write the components
with a left-end mark (e.g., #) in front for convenience.

The validity checks U conducts are the following:
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The transition table must be a series of triples in the format mentioned previously.
In each triple, the first and third components must be between 1 and the state set’s
cardinality, and the second component must be between 1 and the alphabet’s
cardinality. In addition, for each combination of a state number and a symbol
number, a unique triple must exist whose first component matches the state
number and whose second component matches the symbol number.

The initial state must be between 1 and the state set’s cardinality.

Each final state must be between 1 and the state set’s cardinality.

Each element of the input w must be between 1 and the alphabet’s cardinality.

Figure 7.1 presents the contents of the six tapes that U extracts from the input.
Let (Q, X, 6, qo, F) be the DFA M. After confirming the validity, U operates as

follows:

1.

2.

U will use yet another tape to record M’s state during simulation. U initializes
the value with the initial state number.

U reads the index of each symbol in w. For each symbol index, U compares
the present state and symbol numbers with the first two components of all the
triples in the transition information. A unique match must exist because the
(M, w) passed the validity test. U extracts the third component from the triple
and updates M’s state with the third component.

. Upon processing all the input symbols, U compares M’s state with each final

state. If a match exists, U accepts x; otherwise, it rejects x.

Comparing two numbers appearing in separate tapes is relatively easy for U since
the numbers are tallies. U can compare them by moving the heads on the two tapes
in one direction, starting from one end of the tally, aiming for the other end, and
checking if the heads will simultaneously arrive at any symbol other than 0.

We see that U can execute all its work in a finite amount of steps. Thus, U decides

ACCEPTEA. .
Fig. 7.1 The six tapes after |:
extracting information from #0000U

the input
P 400U

‘#010100110100100011 ---110000100100

#0U
#00100010000
#010100100
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7.2.1.2 Emptiness

Like the acceptance problem, the emptiness problem is decidable.

Theorem 7.2 The following language is decidable:

EMPTYRa = {(M) | Mis a DFA that accepts no input}.

Proof Overview
Unlike the acceptance problem, the emptiness problem does not specify
an input. We can consider simulating the DFA on each possible input to
determine if a given DFA accepts any input. This question is complementary
to the emptiness question. The input can be generated one after another in
lexicographic order. If the DFA accepts any input, we know the emptiness
question is negative. However, the simulation will never stop if the DFA
accepts no input. Thus, the strategy puts the emptiness problem in coRE but
not necessarily in R. Is there a way to terminate the simulation when the DFA
does not accept input? Indeed, there is a strategy for termination. According
to the Pumping Lemma, if an m-state DFA accepts a string w having a length
> m, the removal of the y-part of the xyz decomposition produces a string
the DFA agrees with that is shorter than w. Thus, the examination of input
in lexicographic order can be terminated when we discover that no strings
having a length <m are accepted.

Proof We develop a universal TM, U, that decides the language. As with the proof
of Theorem 7.1, the initial action of U is to validate its input x as an encoding of
a DFA and extract the information from that input. As with the previous proof, U
rejects x if U finds that x is invalid.

Assuming that x is valid, U advances to testing emptiness. Let M be the DFA
and n be the cardinality of M’s state set.

We then use the following proposition in the emptiness test:

Proposition 7.1 A DFA with n states accepts a nonempty set if, and only if, it
accepts a string having a length <n. O

Proof Let M be an arbitrary DFA and n be the number of states of M. Suppose M
accepts no input. Then, M accepts no input with a length <n.

Conversely, suppose M accepts at least one string. If there is one having a length
<n, we are done. So, think of a string u = uy - - - ux that M accepts, whose length
k > n. Here, uy, ..., u; are from M’s alphabet. Then, we can use the Pumping
Lemma for regular languages (Lemma 3.3) to obtain xyz as a decomposition of u,
where |y| > 1 and M accepts xz. If [xz| < n, we have identified a string M accepts
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whose length is less than n. Otherwise, we can re-apply the Pumping Lemma to xz
to construct another shorter member.

We can repeat the decomposition-then-removal procedure until we find a string
M accepts whose length is <n. Thus, the proposition holds. O

We can now use Proposition 7.1 to test the “emptiness.” In this test, U generates
all inputs for M having a length less than » in lexicographic order. U can use the
algorithm for the acceptance problem to test if M accepts any prospective members.

The generation of prospective members can follow an idea reminiscent of the
path generation for deterministically simulating NTMs (Theorem 6.4) as follows:

For a prospective member whose symbol indices are ji, ..., j;, its representation
for simulation is

#0/110721-.-10% -+ - .
* If j; < n,the next candidate is the same as the current one, expect that j, becomes

J¢ + 1. U accomplishes this by replacing the leftmost LI with 0.
e If j; = n and there is some k such that jix < n, U finds the largest such k, inserts

0 after 0/%, and reduces each of jiy1,--- , j; to 1.

e Ifjil=---=ji=mandt < m — 1, U turns each of jj,---, j; into 1 and
appends 10.

e If ji=---j; =mandt =m — 1, U terminates the simulation.

This completes the description of U’s algorithm.

An alternate proof of the theorem uses reachability; a DFA accepts some input
if, and only if, one of its final states is reachable from the initial state by following
its transition function (see Exercise 7.1).

7.2.1.3 Infiniteness

The infiniteness problem about regular languages is decidable.

Theorem 7.3 The following language is decidable:
INFINITEgs = {(M) | M is a DFA and accepts infinitely many inputs}.

Proof Using the Pumping Lemma, we can show that if an n-state DFA accepts
a string with a reappearing state, we can construct, from that string, a member
having a length between n and 2n by pumping. Based on this observation, consider
a universal TM that extracts a DFA from the input and tests whether or not the
DFA accepts a string whose length is in the interval [n, 2n]. The universal TM
exhaustively examines all the strings in the length range. The universal TM accepts
if the encoding is valid, and the DFA accepts at least one such input. Then the
machine witnesses that INFINITEEA . |
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7.2.1.4 Totality

The totality problem about regular languages is decidable.

Theorem 7.4 The following language is decidable:
TOTALRA = {{(M) | M is a DFA and accepts all inputs}.

Proof Let M = (Q, %, 8, qo, F) be a DFA. Construct M’ from M by substituting
its final state set F with Q — F. Then, M accepts * if, and only if, M’ accepts .
From Theorem 7.2, we already know that the emptiness problem is decidable. Let
Up be a universal TM that decides EMPTYEa. Define a new machine U from Uy as
follows:

After executing the initial check on the code, if the input is a valid DFA encoding,
U replaces the list of final states with the states that do not appear on the list. Then,
U enters the post-verification part of Uy. Finally, U accepts if Uj accepts and rejects
if Uy rejects.

This program halts on all inputs and correctly decides the totality problem. O

7.2.1.5 Containment

The containment problem about regular languages is decidable.

Theorem 7.5 The following language is decidable:
SUBSETpa = {(M, N) | M and N are finite automata and L(M) C L(N)}.

Proof Think of a universal TM that, on input w, behaves as follows:

1. Attempt to decompose the input into the five components (the states, the alphabet,
the transition function, the initial state, and the final states) of M and the five
components of N. If the attempt is not successful, reject it immediately.

2. Check if the five components are valid for representing finite automata and if the
alphabet size is the same for both. If the check fails, reject the input immediately.

3. Construct a new DFA for L(M) " L(N). If M = (Q,X%,8,q0, F) and N =
(Q', 2,8, qp, F'), then the new DFA, H = (R, £, 6, po, G), has the following
components:

s R=0x0Q.
* 0((q,q),a) = (8(g,a),8(q’,a)) foralla € X.

* po = (qo. q¢)-
« G=F x(Q —F).

Letk = | Q| and k¥’ = || Q’||. Since the states require sequential numbering, the
universal TM combines the index i for a state in Q and the index j for a state in
Q' into (i — Dk’ + j.
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4. The universal TM then conducts the emptiness test. The universal TM carries out
this test by checking to see if H accepts any string having a length less than || R||.
If H accepts any such string, L(H) # ; otherwise, L(H) = (.

5. The universal TM accepts the input if H accepts ¥ and rejects the input otherwise.

The universal TM halts on all inputs. Also, for all inputs that encode some two finite
automata, M and N, the universal TM accepts if, and only if, L(M) N L(N) = 4,
which is equivalent to L(M) € L(N).

This proves the theorem. O

7.2.1.6 Equality

The equality problem is also decidable for regular languages.

Theorem 7.6 The following language is decidable:
EQUALEs = {{M, N) | M and N are finite automata and L(M) = L(N)}.

Proof A language A equals a language B if, and only if, AAB = . So, given
DFAs M and N, the question as to whether or not L(M) = L(N) can be answered
as follows:

We construct a DFA for accepting the symmetric difference between L (M) and
L(N); we then check if the DFA accepts the empty set. This proves the theorem. 0O

7.2.1.7 Decidable Problems About NFAs and Regular Expressions

As mentioned earlier, we can also specify the six fundamental problems from
Sect.7.1.2 using NFAs. A slight difference, if any, is that the validation of a
transition table is less strict. The requirement that the transition table must contain
an entry for each combination of a state number and a symbol number does not
apply to NFAs.

From the above observation, we obtain the following result:

Corollary 7.1 ACCEPTNgA, EMPTYNEA, EQUALNEA, TOTALNEA, and SUBSETNFA
are decidable.

Similarly, we can develop a strategy for converting an arbitrary regular expres-
sion to a DFA.

Corollary 7.2 ACCEPTRgx, EMPTYREX, EQUALREx, TOTALREX, and SUBSETREX
are decidable.
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7.2.2 Decidable Problems About CFLs

As we discussed earlier in this chapter, CFGs, CNF grammars, and PDAs are
equivalent using the conversion algorithms. Thus, we can study the problems with
CFLs using any of these three models.

Theorem 7.7 ACCEPT(CEG is decidable.

Proof We will develop a universal TM for the language, we will call the machine
U.

Suppose we want to decide if a binary string x belongs to ACCEPTcfEG. As with
decision problems for regular languages, the first thing U does is check the validity
of x as a CFG encoding. The components U extracts are:

. The number of variables in the grammar
. The number of terminals in the grammar
. The production rules of the grammar

. The index of the start variable

. The input string as a sequence of indices

[ OSSR

The scheme requires a distinction between variable indices and terminal indices. For
example, the distinction can be achieved by assigning a variable index d to 0°? and
a terminal index d to 0241, where the length of the former tally is an even number;
in contrast, the length of the latter tally is an odd number. We can then assume the
following:

¢ The rules are separated by 111.
¢ The left-hand side and the right-hand side of each rule are separated by 11.
¢ The elements on the right-hand side of each rule are separated by 1.

Suppose the validation is successful. Let n be the length of w. U can convert
the grammar G to its equivalent CNF grammar H by executing the conversion
algorithm from Sect. 4.2.2. Then, U can enumerate all possible leftmost production
trees that use n — 1 rules whose form is A — BC and n rules whose formis A — a.
If any of the leftmost productions generates w, w € L(G); otherwise, w &€ L(G).

The number of leftmost productions U examines is finite, so U decides
ACCEPTCEG. m]

Exercises 7.9 and 7.11 are about the decidability of the emptiness and infiniteness
problems for context-free languages.

Since DPDAs are PDAs, decidable problems for context-free languages are
decidable for DCFLs. Additionally, since the class of DCFLs is closed under
complement, the totality problem for DCFLs is decidable.

Corollary 7.3 ACCEPTpppa, EMPTYpppa, TOTALpppa, and INFINITEpppa are
decidable.
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The decidability of the DCFL equivalence problem remained unsolved until it
was positively resolved at the end of the twentieth century. The proof is very long,
so we only state the result.

Theorem 7.8 EQUALpppa is decidable.

The decidability contrasts with the equality problem about PDAs, which is
undecidable (see Corollary 8.4).

Exercises
71 LetM = (Q, X, 6, qo, F) be aDFA. Let G = (Q, A) be a directed graph such
that

A={(p.q) | 8(p,a) = q for some a € X}.

Prove that M accepts at least one input if G has a directed path from gp to some
p € F. Then use the result to show that EMPTYF, is decidable.

7.2 Let M be a DFA with n states. Based on the Pumping Lemma, prove that M
accepts infinitely many inputs if, and only if, it accepts a string with a length between
n and 2n.

7.3 The general strategy for universal TMs appearing in Sect.7.2.1.7 states that
the universal TM must check the validity of the input components. Describe the
conditions the components must satisfy to be valid, assuming that the components
are the number of states, the size of the alphabet, the transition function, the initial
state, the final states, and the input.

7.4 Building off the previous problem, describe the conditions the components
must satisfy to be a valid encoding of a regular expression appearing as a string.

7.5 Show that the following language is decidable:
{{M) | M is a single-tape TM and makes a left move regardless of its input}.
Hint: We can modify M so that it makes no stationary moves, construct a DFA
accepting all inputs on which M makes a left move (M keeps reading input until it
makes a left move), and test if the DFA accepts all inputs.

7.6 Show that the problem of deciding if an NFA has an equivalent DFA with no
more than a specified number of states is decidable.

7.7 Show that the following language is decidable:

{(G) | Gis a CFG and has a variable Asuch thatAdoes not appear on the

right-hand side on any production starting from the start variable}.
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7.8 Show that the following language is decidable:

{(E, k) | E is aregular expression, k is a positive integer, and there exists a DFA

with at most & states that accept L(E)}.

7.9 Show that EMPTY g is decidable.
7.10 Show that the following language is decidable:
{{(G,k) | G is a CFG, k is an integer, and L(G) has a string whose length is k}.
7.11 Show that INFINITEcEg is decidable.
7.12 Show that the following language is decidable:
{{P) | P is a deterministic PDA}.

7.13 Show that the following language is decidable:
{{G) | G is a CNF grammar}.

7.14 Show that the following language is decidable:
{{(G) | G is a GNF grammar}.

7.15 Show that the following language is decidable:

{{G, w) | G is a CNF grammar and G has a unique leftmost production tree that

produces w}.

7.16 A linear bounded automaton is a single-tape TM such that the input appears
between left-end and right-end markers and the head does not move out of the region
between end markers. Prove that linear bounded automata recognize only decidable
languages.

7.17 Show that the following language is decidable:
{(A, B) | A and B are DFAs, L(A) N L(B) =@, and L(A) U L(B) = ¥*}.

7.18 Let L C X*. Show that L* = ¥* if, and only if, ¥ C L.

7.19 Based on the previous question, prove that the problem of testing if a CFL L
satisfies L* = ¥* is decidable, where L is given by its CNF grammar.

7.20 Prove that {{M) | M is a PDA and accepts €} is decidable.

Bibliographic Notes and Further Reading

The concept of universal TMs is by Turing [5]. The decidability of the equivalence
problem of DPDA is by Sénizergues [3]; the proof is complex. A less complex proof
is given by Stirling [4]. CFL’s decidability is by Cocke and Schwartz [1] but first
appeared in Younger [6] and Kasami [2].
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Chapter 8 ®
Undecidable Languages Qe

8.1 The Halting Problem

In this section, we present some fundamental results about undecidable problems.

8.1.1 Proving Impossibility Using Diagonalization

We begin with the diagonalization technique, which takes an enumeration of all the
members in an infinite set and creates something different from each one.

An infinite set S is countable if there is a sequence s, 52, 53, . .. such that § =
{s1, 52, 53, .. .}. This definition of countability permits the reappearance of the same
value in the sequence. If necessary, this reappearance can be eliminated by selecting
asub-sequence {s; | i =1lori > 2ands; #s; forall jsuchthatl < j <n—1}.

Examples of countable sets are N, Z, and Q. The set of real numbers, R, is
different from the three and is uncountable using the following diagonal argument:

Proposition 8.1 R is uncountable.

Proof Assume, by way of contradiction, that R is countable. Then, there is an
enumeration, si, s2, 83, ..., such that R = {s1, 52, 53, ...}. We define a new real
number ¢ such that 0 < ¢ < 1 as follows:

e Forall j > 1,if s;’s digit in the j-th place after the decimal point is d, the t’s
digit in the same place is equal to the remainder of d + 1 divided by 10.

For example, if 51 = 7.980123 ..., s = —123.443, s3 = 3.00789, s4 = 5.5555,
s5 = 5.147014 .. ., etc., then t = 0.05862 ... A mathematical expression for 7 is:
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> "((Lsi * 10°]) mod 10)/10'.

i>1

This number ¢ is real. Then, owing to the assumption that R is countable, there
is an index j such that + = s;. Let us pick one such j. However, because of the
construction, ¢ and s; have different digits in the j-th place after the decimal point.
This is a contradiction. Thus, R is not countable. m|

Since Rp and R are the cardinalities of N and R respectively, the diagonalization
result implies that Ry # .

Now, we apply the diagonalization argument to languages. Let M1, M3, ... be
an enumeration of single-tape TMs given as follows:

For each i > 1, if the i-th nonempty binary string passes the encoding test
according to the encoding scheme from Sect.7.1.1, then M; is the TM that the
binary string encodes; otherwise, it is a TM accepting no inputs with {0} as its input
alphabet. For every language A € RE, there is an index i such that L(M;) = A.

Definition 8.1 Define Ly, = {0' | M; does not accept 0/, where 0 is the first
symbol of the unary encoding of some TM D, and D does not accept 0"}.

As we will prove in Exercise 8.4, Lgizg € cORE. However, Lgi,; ¢ RE. Assume,
on the contrary, that Lg;,, € RE. Then, there is an index i such that M; recognizes
L giqag. We observe the following:

* Suppose M; accepts 0'. Then, due to the definition of L giag, o & Lgiag, Which
implies that M; does not accept 0'.

* Suppose M; does not accept 0'. Then, due to the definition of Lgiag, 0 e L giag,
which implies that M; accepts 0'.

Therefore, we have a contradiction.
We have thus proven the following:

Theorem 8.1 L,z € (coRE \ RE).

Let us define Ly as the complementary language of Lgiqg as follows:
Definition 8.2 Define Ly = {(D) | D accepts (D)}.

Since Lgiqg € coRE \ RE, we have:
Corollary 8.1 Ly € RE\ coRE.

We leave the proof of the result to the reader (Exercise 8.5).
Using Lyer, we can show the following language is not decidable.

Definition 8.3 Define ACCEPTTM = {(G, w) | G is a DTM, w is an input to G,

and G on w accepts}.

Theorem 8.2 ACCEPTTV is undecidable. More specifically, ACCEPTTM is recur-
sively enumerable but not recursive.
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We leave to the reader the task of proving that ACCEPTTy is in RE (Exercise 8.6).

We show that ACCEPTTM ¢ coRE by contradiction.

By way of contradiction, assume that ACCEPTTy is in coRE. Since we already
know that ACCEPTTM € RE, we have ACCEPTTM € R. Let E be a TM that decides
ACCEPTTM. Using E as a subroutine, we can construct a three-tape TM that decides
Lejr. We present its algorithm in Algorithm 8.1.

Algorithm 8.1 A TM F for Ly, with E as a subroutine for ACCEPTTM

1: procedure TURING-MACHINE-FOR-Ljr(w)

2 receive a unary input x = 0%;

3 if |x| = O then

4: reject x;

5: else

6: on Tape 2, construct the k-th nonempty binary string;
7 check if the string encodes some TM;

8 if the encoding is invalid then

reject x;
10: else
11: extract the machine M that x encodes;
12: on Tape 3, construct the encoding (M, x);
13: simulate E assuming that Tape 3 is E’s only tape;
14: if E accepts then
15: accept x;
16: else
17: reject x;
18: end if
19: end if
20: end if

21: end procedure

By our assumption, E decides ACCEPTTM, so F halts on all inputs. Then, for
all inputs x, M on x accepts if, and only if, E accepts x. This implies that Ly is
decidable, which is a contradiction. Thus, ACCEPTTpM is undecidable.

8.1.2 The Halting Problem

The next undecidable problem is the Halting Problem. The Halting Problem asks
if a given TM halts on all inputs.

Definition 8.4 Define HALTTM = {(M) | M is a TM that halts on all inputs}.

Theorem 8.3 HALTT\v is undecidable.

Proof We can prove the theorem by contradiction. Assume, on the contrary, that
HALTTM is decidable. Let £ be a TM that decides HALTTym. We construct the
following TM, F, from E.
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. Receive a binary string x.

. Test if x is an encoding of the form (M, w) such that M is a TM and w is an
input to M.

. If x does not pass the test, reject x.

4. Construct (N), where N is a TM that, on each input y, behaves as follows:

N —

W

a. Ntestsif y = w.

b. If y # w, N accepts y.

c. If y = w, N moves the head to the leftmost cell and simulates M.
d. If M accepts, N accepts; if M rejects, N enters an infinite loop.

5. Run E on (N).
6. If E accepts, accept w; otherwise, reject w.

N is specific to M and w; it has w as part of its code and compares w with its input
v, character by character.

Since E halts on all inputs, F halts on all inputs as well. In addition, N accepts
all inputs if M accepts w and runs forever on all inputs otherwise. Thus, N halts on
all inputs if, and only if, M on w accepts. Since we assume that E decides HALTTy,
we have a program that decides ACCEPTT)M, Which is a contradiction. O

8.1.3 Some Variants of the Halting Problem

Since the TM from the proof of Theorem 8.3 accepts either all inputs or no inputs,
we obtain the following result:

Corollary 8.2 EMPTYTM, INFINITETM, and TOTALTM are undecidable.

Since both TMs accepting no inputs and TMs accepting all inputs can be
constructed, we have the following result:

Corollary 8.3 SUBSETTM and EQUALTy are undecidable.

8.2 Many-One Reductions and Rice’s Theorem

Here, we study two general techniques for proving undecidability. One technique is
the many-one reduction, which, instance by instance, transforms a decision problem
into another. The other technique is Rice’s Theorem, which states that all nontrivial
properties of TMs are undecidable.
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8.2.1 Many-One Reductions

We begin with the use of many-one reductions.

We have seen undecidability proofs that take the form: “If X were decidable,
then a problem Y that is already known to be undecidable would be decidable, and
so X must be undecidable.” We study this type of argument here, where every input
about one language can be translated into some input about another problem.

Definition 8.5 Let A C X* and B C I'™* be two languages, where X and I' are two
(possibly equal) alphabets. We say that A is many-one reducible to B if there is a
computable function f from £* to I'* such that for all x € ¥*, x € A if, and only
if, f(x) € B.

We write A <,; B to denote that A is many-one reducible to B.

The many-one reducibility is a tool for finding upper and lower bounds to the
difficulty of problems.

Proposition 8.2 If A <,, B and B is recursive, then A is recursive. Conversely, if
A is not recursive and A <,, B, B is not recursive.

Proof Suppose A <, B. Then, a reduction, f, exists from A to B. Let R be a TM
that computes f.

Suppose B is recursive. We select a TM M that decides B. We may assume that
M is a single-table TM.

Let N be a TM that for each input x executes the following algorithm:

1. Compute f(x) using R, where a normal read/write tape plays the role of the
output tape of R.

2. Simulate M assuming the tape that played the role of R’s output tape is M’s tape.

3. Accept x if M accepts; reject x otherwise.

Since R and M halt on all inputs, N halts on all inputs as well. Because of the
translational property of many-one reductions, N accepts its input if, and only if,
the input is a member of A. Thus, A is recursive. O

The many-one reducibility is a relation between languages. It is reflexive and
transitive but not symmetric.

Proposition 8.3 The many-one reducibility is reflexive and transitive.
Proposition 8.4 The many-one reducibility is not symmetric.

We leave the proofs of the above propositions to the reader.
Here is an example of using the many-one reducibility to show the undecidability
of a language.

Example 8.1 Define A = {xx | x = (M) for some TM M where M does not
accept x}. A is not recursive for the following reason:

Assume A is recursive. Then, there is a TM M that decides A. For all x, x € L
if, and only if, xx € A. Define f as the function that maps each x to xx. The function
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f is computable by a TM that copies its input to the output tape twice. Then f is a
many-one reduction from Ly to A. Since Ly is not recursive, we have A ¢ R by
Proposition 8.2.

8.2.2 Rice’s Theorem

Next, we show Rice’s Theorem.
Rice’s Theorem is a technique for proving the undecidability of properties of
TMs.

Definition 8.6 Let Q be any property of recursively enumerable languages; i.e., for
each recursively enumerable language L, L either satisfies the requirement for Q or
it doesn’t. We say that Q is nontrivial if there is a recursively enumerable language
that has Q and there is another recursively enumerable language that does not have

0.

Theorem 8.4 (Rice’s Theorem) Every nontrivial property of recursively enumer-
able languages is undecidable. More specifically, for each nontrivial property Q,
Lo ={(M) | MisaTM, and L(M) has the property Q} is undecidable.

Proof Let Q be an arbitrary nontrivial property of recursively enumerable lan-
guages. Let A be a recursively enumerable language with Q, and let A, be a
recursively enumerable language without Q. Let M and M3 be TMs that recognize
A1 and A,, respectively. We can assume that Aj or Aj is @.

Suppose Ay = @. Let X be an alphabet such that Ay € X*. Let My be a TM
that runs forever on every input. Then L (M) = ). We may assume that My’s input
alphabet is . Let f be the function that maps each w as follows:

1. If w # (M, x) such that M is a TM and x is an input to M, f(w) = (Mp).
2. Otherwise, f(w) = (N), where on each input y € £*, N behaves as follows:

* N simulates M on x.
e N simulates M on y if M accepts x.
e N simulates M on y otherwise.

Let T be a TM such that f(w) = (T). If w = (M, x) such that M accepts x,
L(T) = A; so L(T) has Q; otherwise, L(T) = @ so L(T) does not have Q.
Thus, ACCEPTTM <, L. Since ACCEPTTy is undecidable (Proposition 8.2), L
is undecidable.

The proof where @ has the property Q is similar. We leave the proof to the reader
(see Exercise 8.11). |
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8.3 Undecidable Problems About CFLs

In this section, we prove the undecidability of some problems concerning CFLs.

8.3.1 The Totality Problem About CFLs

The totality problem is the opposite of the emptiness problem. In the case of regular
languages, both the emptiness and totality problems are decidable. In the previous
chapter, we saw that the membership and emptiness problems about context-free
languages are decidable. We show here the totality of context-free languages is an
undecidable problem.

Theorem 8.5 TOTALCEg is undecidable.

We can say something more specific about the problem. Let NONTOTALcEG be
TOTALCEG’s complementary problem (i.e., the problem of deciding if a context-free
language has a nonmember).

Theorem 8.6 TOTALcprg € coRE \ RE, and NONTOTALcFrG € RE \ coRE.

Figure 8.1 shows the classification of the two decision problems.

NONTOTALcrg € RE comes from ACCEPTcpg being decidable (Theorem 7.7).
For proving that L(G) # X*, we try checking w € L(G) for all w in lexicographic
order using a recursive algorithm. Each membership testing halts. If L(G) # ¥*, we
eventually encounter the smallest nonmember, w, of L(G) in lexicographic order.
Upon encountering such w, we accept. Algorithm 8.2 shows the algorithm.

Let’s turn to the proof of Theorem 8.5.

Proof To prove the undecidability of TOTALcpg, we translate the acceptance
problem of TMs to NONTOTALcrg. We can capture the translation as a many-one
reduction, f, from ACCEPTTy to NONTOTALCFRG. In other words, for an arbitrary
binary string x, x € ACCEPTTy if, and only if, f(x) € NONTOTALCFG.

The computation of f(x) begins by checking the validity of x as an encoding of
some machine, say M, and an input, w, to it. If x fails the test, x is a nonmember
of ACCEPTTM, so we set the value of f(x) to some nonmember of NONTOTALCEG.
The trivial nonmember can be the empty string because an empty string cannot

Fig. 8.1 TOTALCgG and RE coRE
NONTOTALCEG
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Algorithm 8.2 A TM that recognizes NONTOTALCEG

1: procedure TM-FOR-NONTOTALcEG(w)

2: check the validity of w as an encoding of a context-free grammar;
3 if w is valid then

4: extract the grammar G = (V, X, R, §) from w;

5: else
6

7

8

reject w;
end if
convert G to a CNF grammar G’ = (V'Z, R, S');

for? < 0,1,2,...do
10: for each u € ©¢ do
11: for each sequences s of 2¢ — 1 production rules do
12: if s represents a leftmost derivation producing u then
13: terminate the loop generating s;
14: end if
15: end for
16: if no s produces u then
17: accept w;
18: end if
19: end for
20: end for

21: end procedure

encode any grammar. On the other hand, if x passes the test, f(x) isa CFG G =
(V, 2, R, S) such that M accepts w if, and only if, G’s production omits some string
in X*,

The construction of the grammar goes as follows:

Let M = (Q, X.T', 8, 90, Gacc» Grej) be an arbitrary single-tape TM. Let # and
$ be two symbols notin I". Let ® = X U Q and { = © U {#, $}. We define the
language Zjs »  ¢* as the set of all strings of the form

#C1$D 1 #Co$Do# - - - #C,,$D,, #

satisfying the following conditions:

Ci,...,Cpand Dy, ..., D, are in '*QI'*.

. Forallisuchthatl <i <m, D;, = Cl.R.

- NCil = D1l =---=|Cp| = |Dpl.

. Cj is the initial ID of M on input x (with an arbitrary number of trailing LIs).

. Cpy is an accepting ID of M: i.e., in T*guc["™ (with an arbitrary number of
trailing Lis).

6. Foralli suchthat 1 <i <m — 1, Cj4+1 is M’s ID immediately after C; (with an

arbitrary number of trailing LIs).

For each w € Zy ,, the sub-sequence Cy, ..., C,, appearing in it represents the
accepting computation of M of x. Thus,

M accepts x if, and only if, Zys » # 0.
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By taking the complement of each side, we have:
M does not accept x if, and only if, Zys , = ¢*.

We can thus test the membership (M, x) in ACCEPTTM using the totality of Zyy .
The membership conditions for w € Zy , are as follows:

.w g #HOFQUHSI* QT *)*#.

. w contains a substring #u$v# such that u, v € ©* and v # u®.

3. w contains a substring #u$v# such that u, v € ®* and |u| # |v| or a substring
$u#v$ such that u, v € @* and |u| # |v|.

4. w has a prefix #u$ such that u is in ®* and does not match the regular expression
qoxvu*.

5. w has a suffix $u# such that u is in ®* and does not match the regular expression
[ Gace "

6. w has a substring $u#v$ such that u and v are in ®* and v is not M’s ID

immediately after u%.

DN —

Among these conditions, (1), (4), and (5) are each testable with a DFA, and
thus context-free. The remaining conditions are also context-free, according to
Exercises 4.14 and 4.15 Since the class CFL is closed under union, the Zj; x is
context-free.

This proves the theorem. O

We obtain the following corollaries from Theorem 8.5.
Corollary 8.4 EQUAL(Cgq is undecidable.

Proof Consider the following function f:

Let x be an arbitrary binary string. If x is not encoding a CFG, f(x) is a fixed
nonmember of EQUALCgg. Otherwise, f(x) = (G’, G), where G’ is a grammar that
produces ®* and © is G’s terminal set. For the latter case, L(G) = ©* if, and only
if, L(G") = L(G). Thus, f is a many-one reduction from TOTALCEG t0 EQUALCEG.

This completes the proof. O

The function f from the proof is also a many-one reduction from TOTALcFG to
SUBSETCFG.

Corollary 8.5 SUBSETcEG is undecidable.

The proof is left to the reader (see Exercise 8.3).

8.3.2 Undecidable Problems About DCFLs

Here, we prove two undecidability results about DCFLs.

Theorem 8.7 SUBSETpppAa is undecidable.
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Proof Overview

We use the palindrome-like language Zj , from Sect.8.3.1. We slightly
modify Zy . so that the last # is replaced with another symbol, #, to mark the
end. We show that the language is the intersection of two DCFL languages.
Since DCFL is closed under complement, we can complement one of the two
languages. The complemented language includes the other language if, and
only if, the modified version of Zy, , is empty.

Proof We use the language Z s , from Sect. 8.3.1. We assume here that M does not
attempt a left move when the head is on the leftmost cell, and so does not experience
a bounceback. We define Z;w, . a8 Zy » with the last # replaced with a new symbol,

#.Let © = QUTand ¢ = O U {#,$, #). We decompose Z;VI .. as the intersection
of the following two languages, Ry and R».

e Ry is the set of all strings of the form
#C1$D1#Co$ Dot - - - #Cy S Dyt

such that:

- m>2.
- Cy,-+,Cp eT*QI'™.
— Forallisuchthatl <i <m, D; = CR.

* R is the set of all strings of the form
#C1$D1#Co$Do# - - - #Cy $Dy #

such that:

- m > 2.

- Cp,-+-,Cp eT*QI™.

C1 matches the regular expression g xLI*.

D,,, matches the regular expression I'*gac.I'*.

Forall i suchthat1 <i <m —1, C;4 is the ID resulting from executing M’s
action on (D;)X.

Combining all the requirements for R; and R; is equivalent to the conditions for
Z;l/l,x’ SO Z;t/l,x = Ri N R,.

Ry is a series of palindromes such that each component is in a regular language
with a marker between palindromes, a marker at the halfway point of each
palindrome, and # as the end marker; thus, it is in DCFL (see Exercise 8.16). R, has
a structure similar to Ry with #C added as a prefix and Dm# as a suffix. In addition,
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although the string D;#C; is similar to a palindrome, it is not a palindrome. We
can also show that R, is a DCFL (see Exercise 8.17).

Now, let R; = R,. Since the class of DCFLs is closed under complement, R3 is
a DCFL. If Z;M,x =@, RiINRy =0,s0 R C R3. If Z;W,x # ¢, each member of
RiNRy = ij’x isin Ry but not in R3, so Ry € R3. Thus, x € L(M) if, and only
if, Ry Z Rs.

Since we can construct R; and R3 from the description of M and x, we can
reduce the acceptance question to the DCFL inclusion problem. O

8.4 Post’s Correspondence Problem (PCP)

A well-known undecidable problem is Post’s Correspondence Problem. Using the
concept of accepting ID sequences, we define Post’s Correspondence Problem as a
puzzle-like problem. In this section, we show that Post’s Correspondence Problem
is undecidable.

8.4.1 The Definitions of PCP and MPCP

Here, we define the problem.

Let X be an alphabet. An instance of Post’s Correspondence Problem over
Y is a collection, P, of string pairs, (¢1, b1), ..., (t, bx), for some k > 1, such
that t1, ..., 1, by, ...,br € X*. We call each pair a domino tile. In addition, for
a domino tile (¢, b), we call ¢ the top portion and b the bottom portion. Let s =
[p1, ..., pm] be a sequence whose elements are from P. The top string of s is the
concatenation of all its top portions. The bottom string of s is the concatenation of
all its bottom portions. The sequence s is a match (or a complete match) if its top
string is identical to its bottom string. The sequence s is a partial match if either
the top string is a proper prefix of the bottom string or the bottom string is a proper
prefix of the top string. In the former, we call the part of the top string extending
beyond the bottom string the top protrusion. In the latter, we call the part of the
bottom string extending beyond the top string the bottom protrusion. The problem
asks whether or not P has a nonempty sequence with a match. We call a sequence
that has a match a solution.

Here is an example. Suppose that the following four domino tiles are the elements
of an instance of Post’s Correspondence Problem:

p1 = (aaa, a), p» = (b, aaaabc), p3 = (cdd, d), ps = (e, de),

or, with the stacked presentations
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| aaa | b | cdd e
=, P2= aaane |2 T | a A= e |

There is a solution [py, p1, p2, p3, pal, whose top and bottom strings are equal

to aaaaaabcdde. The sequences [p1], [p1, p1l, [p1, P1, p2], and [p1, p1, P2, p3]
produce partial matches:

|:aaa:| [aaaaaa:| |:aaaaaab ] and [aaaaaabcdd:|

a | aa " | aaaaaabc |’ aaaaaabed |’

with a top protrusion aa, a top protrusion aaaa, a bottom protrusion ¢, and a top
protrusion d, respectively.

For each instance of PCP, we encode the symbols of its alphabet in binary so
that they are identical in length. A domino tile’s top and bottom portions are the
concatenations of the binary representations. Then, using the forward slash as a
separator between the top and bottom of each domino tile, and the comma as a
separator between the domino tiles, we obtain an encoding of the instance with a
four-letter alphabet. Then, representing the four letters with two bits, we obtain a
complete binary encoding of the instance.

We now define the language of Post’s Correspondence Problem.

Definition 8.7 Define PCP = {(P) | P is an instance of Post’s Correspondence
Problem and P has a solution}.

We define a variant of PCP, which we call the Marked Post’s Correspondence
Problem (MPCP). Each instance of MPCP designates one tile as the start tile; every
match must begin with the start title.

Definition 8.8 Define MPCP = {(P) | P is an instance of the Marked Post’s
Correspondence Problem, and P has a solution}.

8.4.2 The Undecidability of MPCP

In this section, we prove the undecidability of MPCP.
Theorem 8.8 MPCP is undecidable.

8.4.2.1 An Accepting ID Sequence

We adapt the concept of accepting ID sequences from the proof of Theorem 8.5.
Let M = (Q,T'U, X, 8, g0, Gacc, grej) be an arbitrary single-tape TM. Let L =
L(M). We may assume the following:
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* M has just one accepting ID; the head is on the leftmost cell, the tape has L
everywhere, and the state is gacc.
* M never attempts to move the head on the leftmost cell to the left neighbor.

If M does not meet the requirements, we will augment the transition function of M
with the addition of new states and symbols in the following manner:

* M marks the leftmost cell. M will keep the mark throughout its computation. It
will not mark other cells with the same marker.

* M places a different mark on all other cells it visits. The mark will be removed
just before the input is accepted.

* For cleaning, M scans the head to the right, looking for a LI without any mark.
Upon finding the unmarked LI, M starts scanning to the left, looking for the left
end of the tape (the left end was marked at the first step of computation). While
looking for the left end, M writes Ll in every cell it visits. Upon arriving at the
leftmost cell, M writes Ll in the cell and then enters gacc.

Let # be a symbol not in ' U Q. Let w € X* be an input to M. We will construct
a set of domino tiles P and designate one tile as the start domino tile. Let 7 =
#C# - - - #C,#, where Cq, ..., C,;, € L(I'*QTI'*). We say that 7 is an accepting ID
sequence of M on w if the following conditions are met:

e Cy,...,Cy, areIDs.

* Foreachi between 1 and m — 1, C;’s next ID is Cj 4.
* ( is the initial ID of M on input w: gow.

e (y, is the unique accepting ID of M: gacc-

Then, M on w accepts if, and only if, an accepting ID sequence of M on w exists.

8.4.2.2 Designing Domino Tiles

Here, we describe the design of the domino tiles for MPCP.
The domino tiles are as follows:

1. The Start Domino Tile The designated start domino tile is

#qow#
" .
The start domino tile creates gow# as the top protrusion. The protrusion encodes
the initial ID of M on w.
2. The Computation Domino Tiles We introduce domino tiles for transforming

the top protrusion representing a non-accepting ID of M to one representing the
next step.
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. L X
a. For each x € " U {#}, we introduce a domino tile, |: i| that clears one letter
X
in the protrusion and appends the same domino tile on the top.
. . . LI# .
b. We also introduce a domino tile [# j|, whose role is to extend the top

protrusion by transforming the last # to LI #, thereby inserting LI at the end.
c. Forall (p, a) € (Q —{qacc, grej}) x I such that the move of the head is R, we

introduce
bq
pa]’
where 8(p, a) = (g, b, R).

d. Forall (p, a) € (Q — {gacc qrej}) X I' such that the move of the head is —, we

introduce
qb
pal’
where §(p, a) = (q, b, —).

e. Forall (p,a) € (O — {qacc, grej}) x I such that the move of the head is L and
for all ¢ € I", we introduce
qcb
cpa |’

3. The Clean-up Domino Tile We introduce domino tiles for transforming the top
protrusion (representing an accepting ID of M) into a protrusion shorter by one

.. L .
character. In addition to |:|_|:| from the above, we also introduce

%)

4. The Final Domino Tile We introduce one domino tile to clear the top protrusion

of Gacct, which is [6 }
acc

8.4.2.3 The Correctness

We now prove the correctness of the construction for MPCP.
Let P denote the instance we have just described. We show that P has a solution
if, and only if, M accepts w.
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First, suppose M on w accepts. Suppose a sequence of domino tiles, s, has the

top and bottom strings in the following form with C as an ID:
|:#W#C #i|
#W#

Here, C# is the top protrusion and C is an ID. We must attach a series of domino
tiles whose bottom part matches the top protrusion. The protrusion C# contains
exactly one symbol representing a state (say ¢), and the symbol immediately
following the state-representing symbol is a tape symbol (say ¢). If this state-
representing symbol is not g, the piece that we select for matching the pattern
ga in the top protrusion must be the one that represents M’s transition &(q, a).

Thus, if g is not g,¢c, in the new top protrusion we have part representing the local
change that occurs by executing the transition §(q, a). If this state-representing

Gacc

symbol iS gacc, We must use :| instead. Using these domino tiles to clear

Gacc
the protrusions necessitates using domino tiles without state-representing symbols.

Unless C = @acc, the available domino tiles are for clearing one character and
appending the same character, except for clearing # and appending LI # or clearing
L # and appending #. Except for the final domino, every domino tile in which #
appears has the property that # appears as the last character on the top and as the
last character on the bottom. This means that matching the # at the end of the top
protrusion C# appends # at the end of the next protrusion. Thus, an extension of the
partial match is:

HWHCHD#
HWHCH#

Here, D satisfies one of the following two properties:

e D is astring representing M’s ID immediately after the ID that C represents.
* D = Qaccv and C == qaccvl—, fOI‘ S F*.

Since the start domino tile has the initial ID of M on w and the final domino tile is
the only domino tile with a state only on the bottom portion, we conclude that M
on w accepts if, and only if, there is a sequence beginning with the start domino tile
producing a complete match as follows:

HC1#CoH - HCH - - - #Chp i qacct
HC1H#CoH - HCH - - - #Ch i qacctt |

Here, k and ¢ are non-negative. Additionally, the following three properties hold:

e Foralli suchthat2 < i <k, Cy represents M’s ID immediately after the ID that
Ck—1 represents.

* (% is an accepting ID and is equal to qaccl_l(“.

e Forall jsuchthat 1 < j <€, Crpe iS gaccltT17%.
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The proof of the theorem is now complete.

Example 8.2 Here is an example. Suppose D = R. In addition, suppose v is
nonempty and vy ... v, with vy, ..., vy € I'. We use

L L e e L

Then, we can extend the partial match to

HC1#Co# - - - #C_1#ucpav#tuca' p'v#
#Cl#C2#~ . ~#Ck_1#ucpav# '

The new protrusion is uca’ p’v#, representing Cy. If v is empty, we use
p 14 p g pty.

i
|:u11|,...,|:ur:|,[c],|:ap],andthen [u#:|.
Uuj U, c pa #

The partial match becomes

#C | #Co#t - - - #C_ 1 #ucpattuca' p’ L #
HCO1HCo#t - #Cr_1#ucpa# '

We have omitted the empty v from the expression. The string uca’ p’Li represents
M’s ID immediately after the ID ucpa. In the case where D = R, pa becomes bq,
and the domino sequence becomes

#C1#Co#t - - - #C_ 1 #ucpav#tucbgv#
HC\#Co# - - - #Cy_1#ucpav# ’

The protrusion represents M’s ID immediately after the ID that Cy_; represents.

When v is empty, when attaching a # on the bottom, we need to insert at least
one LI after ¢g. This is because the extension domino tile needs a symbol from I" to
the right of a symbol from Q on the bottom side and appending a # after ¢ on the
top makes using any such domino tiles impossible. So, in this case, we use

)

instead of

The new partial match is
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#C1#Co#t - - - #Cr_1#ucpattucbg U #
#Cl#Cz#- . -#Ck_l#ucpa# ’

We have removed the empty v from both sides.
Suppose D = —. We use

oL L LD L ][] o 2]

This extends the partial match to

HC | #Co#t - - - #C_ 1 #ucpavitucp'a' v
HC1#HCo#t - - #Cr_1#ucpav# '

The new protrusion is ucp’a’v#, representing M’s ID immediately after ucpav.
Suppose D = L and ¢ # €. We use

!/ /
[u]]’.‘”[ur}[pca },[vl],...,[v‘}, and then |:#]
uj ur cpa V] Vg #

This extends the partial match to

HC | #HCo# - - - #C_ 1 #ucpav#tup’ca v
HC|#Co# - - - #C_1#ucpav# ’

The new protrusion is up’ca’v#, representing M’s ID immediately after ucpav.

Suppose D = L and u = ¢ = €. Since we are assuming that M does not move
the head to the left on the leftmost cell, this situation never occurs.

Since the start domino tile has a string representing the initial ID and a # as its
protrusion, the above observation informs us that we can extend the partial match
of the start domino tile to a string representing an accepting ID with a #, if M on w
accepts.

Once the protrusion becomes an accepting ID, we can start shrinking the
protrusion. Suppose the partial match is

#C1#C# - - - #CrHucqaec v
#HC#C#t - - - #HC 1 H#

with u,v € T and ¢ € T'. Suppose u = uy...u, and v = vy ...vs. We use the

sequence
]l e L] L ]
ur 7 Lur ] Leqace [T Lvn T Lus ] L#
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This extends the partial match to

#C1#CH# - - - #CrHucqacc VHUGacc VH
HC1#HCo# - - - #C#ucqcc vH '

We thus decrease the length of the protrusion by one.
Similarly, when the partial match is

H#C1#Cr# - - - #C H#uqgacccv#
H#O|#C# - - - #HC H#

withu e I'*, v e ', and ¢ € T. Suppose #u = uy...u, and v = vy...v;. We
extend the partial match using the sequence

AR PAR R R MR M |

This extends the partial match to

H#C1H#HC# - - - #CrHUCGacc VHUGacc VR
HC1H#HCr# - - - #CrH#ucqac v# .

Thus, we decrease the length of the protrusion by one character.
Using the two length-reduction processes, the protrusion becomes gacc#, which
we can clear with the domino tile
GaccH ]

8.4.3 The Undecidability of PCP

We now prove the undecidability of the PCP problem.
Theorem 8.9 PCP is undecidable.

We will modify the construction in the previous proof to show that PCP is
undecidable. Let % be a new symbol not in I' U Q U {#}. Construct from the
above instance, P, of Post’s Correspondence Problem, a new instance, P*, with
the following modifications:

* For each domino tile, insert a * after each symbol for its top string and before
each symbol for its bottom string.

* Insert a x before the first symbol of the top string of the start domino tile.

» Insert a *x after the last symbol of the bottom string of each closing domino tile.
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The last two additional modifications enforce the starting of a match with the new
start domino tile and the ending of a match with the new final domino tile. Since the
insertion of % is between symbols, once we have fixed the first and the final domino
tiles, the construction of a match will proceed as before.

‘We have thus proven Theorem 8.8.

8.5 Beyond RE

Here, we study the realm beyond the recursively enumerable and the co-recursively
enumerable.

We have learned that there are languages in RE \ coRE and coRE \ RE. Do RE
and coRE jointly cover all the languages? Certainly not. Some languages are neither
RE nor coRE. We can construct a language outside RE U coRE by taking the union
of a language not in RE and one not in coRE. Define:

L ={0w | w e ACCEPTTM} U {lw | w € ACCEPTTM]}.

We can construct a many-one reduction from ACCEPTTM to L because for all w,
w € ACCEPTTy if, and only if, Ow € L. Similarly, we can construct a many-one
reduction from ACCEPTTM to L because for all w, w € ACCEPTty if, and only if,
lw € L. Since ACCEPTTy is in RE \ coRE and ACCEPTT) is in coRE \ RE, L is
thus neither coRE nor RE.

We can systematically construct language classes that are increasing in difficulty.
We will use the oracle Turing machine (oracle TM) model for this purpose. An
oracle TM has a mechanism for executing an external black-box subroutine that can
answer the membership question of some language. The calls to the subroutine are
through an oracle tape, which is different from the input tape. Like the output tape,
the query tape is write-only (see Sect. 6.4). The transition function of an oracle TM
is independent of the symbol appearing in the cell that the head on the oracle tape is
seeing, and does not move the head on the query tape to the left.

An oracle TM calls the subroutine by entering a query state. This special state
is gquery- Upon entering gquery, the subroutine checks the membership of the query
string (ignoring the infinitely long suffix of the blank character). The subroutine
reports the result of its membership checking by setting the state of the oracle TM.
If the query is a member, the subroutine sets the state to gyes; otherwise, it sets to gno.
After processing the query, the subroutine erases all non-blank characters appearing
on the query tape and moves the head on the query tape to the leftmost position.

An oracle TM does not control the language that appears as its subroutine
(oracle), but its program may expect a specific language as the oracle. We design
an oracle TM assuming that a specific language plays the role of the oracle. This
means that the program’s decisions may be incorrect if a wrong language is used as
the oracle.
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Definition 8.9 We say that an oracle TM M accepts a language L with O as its
oracle if for all x,

e Ifx € L, M on input x with O as its oracle accepts
e Ifx ¢ L, M on input x with O as its oracle rejects

We define the concepts of recognition and co-recognition similarly.
We define the arithmetical hierarchy {A;, 2, ITi}r>0 as follows.

Definition 8.10 Define Ag = Xy = Ilyp = R, and for all k > 1, define Ay, Xk, and
Iy as follows:

* Ay is the collection of all languages L some oracle TM decides with some
language in Xj_1 as the oracle.

» X is the collection of all languages L some oracle TM recognizes with some
language in X_1 as the oracle.

* Tl is the collection of all languages L some oracle TM co-recognizes with some
language in Xj_1 as the oracle.

Figure 8.2 shows the relations among the first three levels of the arithmetical
hierarchy.

Here are some known examples of languages in the arithmetical hierarchy at
levels greater than 1.

e {(M,N) | M and N are TMs and they recognize the same languages} is in
I, — (X UIIY).

e {{M) | M is a TM and does not halt on at least one input} is in ¥ — (X1 U ITy).

e {(M)| MisaTM and L(M) is recursive} is in X3 — (Xp U I1p).

Theorem 8.10
1. A\ =R, 1 =RE, and Il; = coRE.

Fig. 8.2 The arithmetical
hierarchy. The classes that
appear higher contain the
classes that appear lower
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Each class C in the arithmetical hierarchy has closure properties under union,
intersection, and marked union.
Forall k, A, = X N I1g.

Proof

ey

@

Let M be an oracle TM that recognizes L and uses a language A as its oracle.
Suppose A is in X. Since ¥y = R by definition, a single-tape TM N decides A.
We assume that N has a property that, before accepting or rejecting, writes the
blank in all cells holding non-blank symbols and moves the head to the leftmost
cell (see Exercise 6.19).

We combine M’s and A’s programs and construct a TM, T, that recognizes
L. The tape alphabet of T is the unions of those of M and N. The input tape
alphabet of T is the unions of those of M and N. In constructing the latter
union, we can assume that the two machines have the same blank symbol. The
number of tapes of T is the same as that of M. The roles of the tapes are the
same between the two machines, except that we will treat the query tape of M
as a regular tape.

On each input x, the machine T executes the code for M with the following
modifications:

e While simulating M, T keeps track of the position of the head on the “query
tape,” which is a regular tape.

* When M is about to enter gquery, I moves the head on the “query tape” to
its leftmost position. Then, T executes the program of N, assuming that the
“query tape” is the tape of N. Since N is a single-tape machine, during the
simulation of N, T does not touch other tapes.

* Since N is a decider, the simulation of N ends in gacc Or grej eventually. If
the simulation ends in gacc, T changes its state to gyes, and if the simulation
ends in gej, T changes its state to gyo. Then, T returns to the simulation of
M.

* When the simulation of N takes T to either gacc Or grej of M, T accepts or
rejects accordingly.

Since T substitutes queries with simulations of N, we can treat gyes and gno of
T as regular states. We can think of 7" as a non-oracle TM with this treatment.

For an arbitrary query M makes, if the query string is a member of A, the
simulation takes T to gacc of N, and so T goes back to the simulation of M
in gyes; otherwise, the state that T arrives at is grej, and so T goes back in gpo.
Thus, we conclude that T on x would behave like M on x, with A as the oracle.
Therefore, T recognizes the same language as M with A as the oracle; that is,
L.

Using the same argument as the above, we can show that IT; equals coRE
and Aj equals R.
The proof uses an induction on the level, &, of the hierarchy. For k = 0, the three
classes are each equal to R. From Exercises 6.21 and 6.25, we know that R has
the closure properties in question. For & > 1, assume that we have already
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established the closure properties for all levels < k. Let L; and L, be two
languages in X. Let M; and M be, respectively, the machines that recognize
L1 and L, with oracles Aj and Az in ¥¢_1.Let Ag = A1 D A3. By our induction
hypothesis, Ag € Xj_1. Let M{ be a TM that operates as if it were M| but
would insert a 0 at the beginning of each query string M would produce. The
machine M| recognizes L with oracle Ag. Let M), be a TM that operates as if
it were M5 but would insert a 1 at the beginning of each query string M, would
produce. The machine M/, recognizes L, with oracle Ag. Now, by following the
solution to Exercise 6.23, we can show that a TM recognizes L1 U L, with Ag
as the oracle and that another one recognizes L1 @ L, with Ag as the oracle.
These machines witness that the two new languages are in Xj. The proofs for
Il and Ay are similar, so we skip them.

For k = 0, since Ag = ¥y = [1p = R by definition, we have Ay = o N .
Fork = 1, since A; =R, ¥; = RE, and Ilp = coRE, we have A| = X; N I1;.
Fork > 2,let L} € ¥y and Ly € I1;. There is an oracle TM M and a language
A1 € ¥i_1 such that M| recognizes L with A as the oracle. There is an oracle
TM M, and a language A, € Xj_1 such that M, co-recognizes L, with A, as
the oracle. Let Ag = A1 @ Aj. The language Ag is in Xi_;.

By following the argument from (2), we can obtain oracle TMs M/ and M}
such that M { recognizes L with A as the oracle and Mé co-recognizes L, with
Ay as the oracle. We can assume that both M| and M} have only two tapes, each
using the second tape as the query tape.

Think of an oracle TM, My, that, like the machine from the proof of
Theorem 6.3, attempts to simulate M| and M) concurrently. The machine
My has six tapes, where the fifth is the query tape and the sixth is for bit
counting. Mo uses its first two tapes for simulating M| and the next two tapes
for simulating M. As with the previous part of the proof, we will treat the query
tapes of M| and M} as regular tapes.

The first action of M) is to copy the input from Tape 1 to Tape 3.

Next, My simulates M { and Mé on their respective tapes (the first, second,
third, and fourth). The simulations will be one step and one machine at a time.
When it is about to simulate a step of M1, My writes 1 on Tape 6 and keeps the
head at the same position. Similarly, when it is about to simulate a step of M>,
M writes 2 on Tape 6 and keeps the head at the same position.

When M { enters gquery, Mo does the following:

a. Copy the contents of Tape 2 to Tape 5 with O in front.
b. Clear Tape 2 and move the head on Tape 2 to the leftmost position.
c. Enter qquery-

Similarly, when M} enters gquery, Mo does the following:

a. Copy the contents of Tape 4 to Tape 5 with O in front.
b. Clear Tape 4 and move the head on Tape 4 to the leftmost position.
c. Enter gquery-
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Upon returning from querying, the state is either gyes Or gno. To identify
the machine whose query it has executed, My examines the cell on Tape 6. If
the cell holds 1, then M assumes that the state of M { has changed to gyes or
gno accordingly. If the cell holds 2, then My assumes that the state of Mé has
changed to gyes Or gno accordingly.

After simulating one step action of M7, if the state of M { becomes guec, then
T accepts; after simulating one step action of M), if the state of M} becomes
Gacc, then T rejects.

For all oracles X, the above program of 7' correctly simulates M| and M}
with oracle X. By our assumption, for each input w, if the oracle is Ao, either
M/ on x accepts or M) accepts (we cannot necessarily guarantee the property
if the oracle is not equal to Ag). Thus, for each input x, T on x either accepts or
rejects, and the decision 7" makes is correct for L.

This proves the theorem.

The inclusions are proper.
Theorem 8.11

1. For all k > 1, Xy and Tl are incomparable; that is, Ay C Xy € Ty and
Ay C T € %
2. Forallk > 2, Ay D Zp—1 UTlg_1.

Proof We use an argument similar to Sect. 8.1.1 to show that neither X; nor [T
include one another.

For (1), we prove the separations by induction on k. The first two properties of
the theorem hold for & = 1 because X; = RE, I1; = coRE, and A; = R. For
the induction step, let k = 2 and suppose that the theorem’s properties hold for all
smaller values of k.

We use the unary TM encoding from Sect. 7.1.1. We define D to be the set of all
strings w of the form 0% 10%-11 ... 109! such that

o %1 e 0% are valid encodings of deterministic oracle TMs.
+ 0% is a valid encoding of a deterministic TM.
* Under the following formulation, w ¢ Ay:

— My, ..., M are the machines that Od", e, 0 represent, respectively.

— Aj is the language that M| recognizes.

— Fori = 2,...,k, A; is the language that M; recognizes with A;_; as the
oracle.

The language D is in IT;. We can show the membership of D in Il using the
following series of mechanical languages, By, ..., Bg, where for each i such that
1 <i <k, B; is the set of all y of the form

0"10%10%-11 ... 10%
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such that 0" encodes some input y to M; and y € A;, where the definitions of M;
and A; are the same as those for D. We can see that B] € X{, By, € X»,..., By €
Y. Since By_1 € Xx_1, we know that D € I1;. Assume D in Xj. Then, there is a
series of TMs Ny, ..., N| witnessing the membership of D in X in the language
definitions of A, ..., A;. We define w = 0%10%-11...10% where the unary
strings encoding Ny, ..., N1. Then we know Ny accepts w with Ax_1 as the oracle
if, and only if, Ny does not take w with A;_ as the oracle; this is a contradiction.
Thus, D & X, and so, [Ty € . Using the compliment of D, we get that X3 Z Ii.
Hence, for all k, ¥; and ITj are incompatible. The incompatibility also implies that
Ar C 2k and A C T,

For 2),letk > 1.LetCy = {AD B | A € Xy and B € Ili}. The class Cx
is a subclass of Ay (see Problem 8.15). The class Cy cannot be a subset of X
because the inclusion implies [Ty < . For much the same reason, Cy &€ Ilk.
Thus, Ag+1 D 2y U . m|

Exercises
8.1 Show that Z is countable.

8.2 Show that Q is countable.

Hint: You can develop an enumeration in the following manner:

First, we enumerate all pairs of integers, (m, n), such that m,n > 1. We use a
nondecreasing sequence of values d representing m + n. The initial value of d is 2.
For each value d, we start the enumeration with the pair (1, d — 1) and increase the
value of the first component one by one. In other words, the enumeration for d is
1,d-1,2,d—-2),...,(d—2,2),(d— 1, 1). After enumerating all pairs having
the same value of d, we move on to the next value, d + 1.

We view each pair (m, n) as the representation of the rational number equal to
m/n. For all pairs (m, n) and all positive integers g, (mg, ng) represents the same
rational number as (m, n). We can design the enumeration so that we include exactly
one pair from the pairs representing the same rational numbers; that way, we can
avoid duplications.

We can then extend this enumeration so that it covers 0 and all negative rational
numbers.

8.3 Prove Corollary 8.5.

8.4 Prove that Lgj,e € coRE.

8.5 Prove Corollary 8.1.

8.6 Prove that ACCEPTTy is recursively enumerable.
8.7 Prove Proposition 8.3.

8.8 Prove that the problem of deciding, given three CFGs, G1, G2, and G3, whether
ornot L(G1) = L(G») U L(G»), is undecidable.

8.9 Prove that the equality problem between a CFL and a DFA is undecidable,
where the CFL is given by a CFG.
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8.10 Prove Proposition 8.4.
8.11 Prove Rice’s Theorem when the empty set has the property Q.

8.12 Using Rice’s Theorem, prove that the following language is undecidable:
{{M) | M is a single-tape TM and L(M)isregular}.

8.13 Using Rice’s Theorem, prove that the following language is undecidable:
{{M) | M is a single-tape TM and L (M) is finite}.

8.14 Using Rice’s Theorem, prove that the following language is undecidable:
{{M) | M is a single-tape TM and L(M)is empty}.

815 Letk > 1.LetCy = {0AU 1B | A € X and B € Il;}. Show that Cy is in

AVER N

8.16 Prove that R; in the proof of Theorem 8.7 is DCFL.

8.17 Prove that R; in the proof of Theorem 8.7 is DCFL.

8.18 Prove Corollary 8.3.

8.19 Prove that PCP is decidable if the strings in the domino pieces are over a
single-letter alphabet.

8.20 Prove that PCP is undecidable if the strings in the domino pieces are over a
two-letter alphabet.

8.21 We can prove that the ambiguity of CFLs is undecidable by constructing a
many-one reduction from PCP to it. Let I = ((#1, by), ..., (t, br)) be an instance
for PCP where each pair is a tile. We define a grammar G as follows:

* The symbols appearing in the tiles are terminals.
e There are k additional terminals dj, ..., dk.

¢ There are three variables: S, T, and B.

e The rules of the grammar are as follows:

S — T|B,

R R
T — diTt] |-+ | diTt; | €, and
B — diBbY |- | dkBtf | €.

Prove that this grammar is ambiguous if, and only if, / has a match, so PCP is
many-one reducible to the ambiguity problem.
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8.22 Rice’s Theorem makes it possible to state the undecidability of any nontrivial
property of the language a TM accepts. One such property is context-freeness. It
is not difficult to argue that not all languages TMs accept are context-free, but can
you provide a concrete example? In other words, can you construct a reduction from
ACCEPTTM such that the TM language generated from an instance of ACCEPTT)y is
context-free if, and only if, the instance is a positive member?

8.23 Consider the problem of testing if a CFL is properly contained in another
CFL, where their respective grammars give both CFLs. Show that the problem is
undecidable.

8.24 Show that the problem of deciding whether or not two RE languages are
incomparable (i.e., neither contain the other) is undecidable, where TMs give the
two languages.

8.25 Show that the problem of deciding whether or not two RE languages have
exactly one member in common is undecidable, where TMs give the two languages.

8.26 Show that the problem of deciding if a CFL has an equivalent grammar with
no more than a given number of variables is undecidable.

8.27 We say that a variable of a CFG is equivalent to another variable in the CFG if
the variables produce the same sets of terminal-only strings. Show that the problem
of deciding if two variables in a CFG are equivalent is undecidable.

Bibliographic Notes and Further Reading

The diagonal argument for showing that R is not countable is by Cantor [3].
The diagonal language is by Turing [9]. Post’s Correspondence Problem and its
marked version are by Post [6]. The undecidability of problems about context-free
languages is from Bar-Hillel, Perles, and Shamir [1], Ginsburg and Rose [4], and
Hartmanis [5]. The undecidability of unambiguity is by Cantor [2]. Rice’s Theorem
is by Rice [7, 8].
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Chapter 9 ®
The Time Complexity ST

9.1 The Time Complexity Measure

Computational complexity theory studies computational problems regarding how
much resources are necessary to solve them. Two types of resources are of concern:
time and space. In this chapter, we study the time complexity measure. The next
chapter will deal with the space complexity measure.

Definition 9.1 Let M be a TM that halts on all inputs. We define timey(x) as the
function that maps each input x to the number of steps M on x executes before
halting.

Definition 9.2 Let f(n) be a function from N to itself. We say that f(n) is a time-
bounding function if f(n) is non-decreasing and for all n, f(n) > n + 1.

This definition of time-bounding functions incorporates the following two
anticipated properties about how TMs behave:

* TMs must read their entire input before accepting or rejecting. (TMs need a
minimum of n + 1 steps to arrive at the cell that immediately follows the input.)
* TMs may operate for a longer time on a longer input.

Definition 9.3 Let f(n) be a time-bounding function and M be a TM. We say that
M is f(n) time-bounded if for all but finitely many n, timey;(x) < f(n) holds for
all inputs x having length n.

Definition 9.4 Let f(n) be a time-bounding function. Let L be a decidable
language. We say that L has time complexity f(n) if an f(n) time-bounded TM
decides L.
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We sometimes refer to this time complexity notion as the worst-case complexity
in the following sense:

¢ A TM deciding L faster than M may exist. Still, in the worst-case scenario, f (1)
is sufficient for solving L’s decision problem.

We use multi-tape TMs to define complexity classes.

Definition 9.5 For a time-bounding function f(n), we define:
DTIME[ f(n)] = {L | there exists a f(n) time-bounded TM deciding L}.

The following theorem shows that reducing the time bound to its constant
fraction does not change the DTIME classes.

Theorem 9.1 (The Linear Speed-Up Theorem) Ler f(n) be a time-bounding
function. Then, for all constants d > 1, DTIME[ f (n)] € DTIME[n + f(n)/d].

Proof Overview

A crucial idea behind the proof is compressing the tapes via combining
multiple symbols into one symbol. Given a k-tape TM M that decides a
language, we construct a k+ 1-tape TM whose alphabet can encode /# symbols
of M into just one symbol. Here, /4 is an integer parameter whose value we
can select. The k + 1-tape TM constructs, from its input, an alternate input.
The alternate input combines ~ symbols and then simulates M. The new
machine simulates d steps of M in just six steps. If M is to run for f(n)
steps on an input having a length of », the machine will run for approximately
n+ (f(n) +n) %8/ h steps. By choosing a value significant enough for %, the
computation time can be reduced by any constant factor.

Proof Let L be a language in DTIME[ f(n)], where f(n) is a time-bounding
function. Let M = (Q, Z, T, 8, o, gacc» qrej) be a TM that decides L in time f(n).
Let k be the number of M’s tapes. Let d > 1 be an arbitrary constant. Let 7 > 8d
be an arbitrary integer.

We will develop a simulator of M having k + 1 tapes. We call the simulator N.
N’s Tape 1 is exclusively for receiving M’s input. N uses the remaining k tapes for
running M’s program.

Let ' = {@ | a € T'}. Each symbol & in I indicates that the symbol is a and
the head of M is on the cell that holds the a. Let IT be the collection of all A-
tuples, (aj, ..., ay), from T. In addition, let TI" be the collection of all A-tuples
(ai,...,ap) fromI" U I" such that exactly one of a1, ..., aj is from . Let F be
a symbol representing the left end of the tape. We will identify the (L, ..., 1) in IT
with Lin I
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We group the cells on each tape of M into blocks of consecutive & cells; i.e., for
all i > 1, the i-th block consists of the cells at positions (i — 1)2 + 1, ..., ih. Each
symbol of IT can encode the content of a block, including the case in which the head
is on one of the cells. For example, if a, b, c € " and h = 4, a tuple-sequence

(abcc)(bbbb)(caca)(baba)
corresponds to the 16-symbol character sequence:
abccbbbbcacababa.

The a indicates that the head is on M’s 12th cell. We refer to a block that contains
the head position as the “center” block. We refer to the block immediately to the left
of the center block as the “left guard” and the block immediately to the right of the
center block as the “right guard.” Figure 9.1 shows this encoding idea.

Let x be the input and n = |x|.

N prepares its simulation by developing a block-wise representation of the input.
First, N writes F on Cell 1 of Tape 2 in one step. In the same step, N writes an
h-symbol tuple OL"~! on Cell 1 of Tapes 2 through k + 1. The h-tuple represents
the situation in which the A cells are all blank, and the head is on the leftmost cell
of the A cells.

Next, N reads Tape 1 from the left end to the first appearance of LI. While reading,
N collects the symbols appearing in each block of / cells and writes their #-symbol
representation on Tape 2. In addition, N adds the squiggle to the first element of the
first h-symbol representation. The number of /-symbol representations N creates
is [n/h] symbols. If the length of the input is not a multiple of %, the last block
contains some LI. Upon encountering the first LI, N knows it has reached the end of
the input and can stop scanning it. Upon completing this conversion, N moves Head
2 back to Cell 2, where a squiggle appears.

The preparation is now complete.

Now that Tapes 2 through k£ + 1 have representations that combine / cells into
one, N can simulate the action of M for & steps in just six steps via the following
manner:

1. At the beginning of the six-step simulation cycle, N knows the present state of
M. In addition, on each tape (Tapes 2 through k + 1), the head is on a cell that
indicates the head position of M of its corresponding tape; i.e., one of the &
symbols appearing in the cell is from T".

left neighbor
of the left guard

[@WEEE

left guard center right guard

DD [DodE |BLEE

Fig. 9.1 The block encoding and its traversal. The size of the blocks is four in the diagram
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2.

9]

is

Using three steps, N moves each head to the left guard, back to the center, and
then to the right guard. The three-step move brings each head to the position of
its right guard and reveals the 34 symbols appearing, where one of the middle &
symbols holds the squiggle.

. Since the cycle began with the knowledge of M’s present state and M cannot

move its heads more than % positions, N learns M’s actions during the next &
steps. The knowledge consists of the following:

a. On each tape, N learns the contents of the 3/ cells of M and the head position
within the 3% cells. N can interpret them as three .-symbol representations to
replace the present representations.

b. N learns which of the three cells must move the head on each tape.

c. N learns M’s state after the & steps.

. In the next three steps, N updates the contents of each tape and brings its head to

the designated new position. Among the three cells, replacement is required for
at most two, with the following possibilities:

a. The head must move to the left guard. All three cells may require updating.

b. The head must move to the center. All three cells may need updating.

c. The head must move to the right guard. The left guard does not require
updating.

Given that updating starts with the head on the right guard, these cases are
completed with the following corresponding head moves (the sequence of head
positions resulting from the moves appears within the parentheses):

a. —, L, L (right guard, center, left guard)
b. L, L, R (center, left guard, center)
c. L, R, — (center, right guard, right guard)

Figure 9.2 presents how the head moves during the six-step action.

. At the end of the sixth step, N updates M’s state.
. If the state becomes gacc OF grej, N accepts or rejects accordingly.

Suppose the length of the input is n. The number of steps N uses for preparation

I+ m+ 1D+ (n/hl—1).

The first term is the time required for initializing Tapes 3 through k + 1, the second
is for reading the input and creating the initial z-tuple encoding, and the third is for
moving Head 2 to its starting position. The quantity is at most:

n+n/h+2.
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Fig. 9.2 The block encoding left neighbor

K X left guard center right guard
and its traversal. The size of of the left guard
the blocks is four in the DEEE (DEEDE| [PEEE| DR
diagram. The numbers
1,..., 6 represent the head start
positions after steps 1, ..., 6, 1
respectively. The circles T 5
indicate where the cell can be \
updated when executing the /@

next step. (a—c) correspond to /®\‘

the cases that appear on 5
p.218 !
6

After the initialization, the time N spends on the simulation is:

6[]0(”)—‘ <6. 1™ 16

h h

Combining the two, the running time of N is at most:

n+%+2+6-$+6§n+7-$+8.

The last inequality holds because f(n) is a time-bounding function, so f(n) > n+1.

Since & is a constant, for all but finitely many n, f(n)/h > 8. Thus, for all but
finitely many #, the running time is at most:

o )

Since £ is an integer greater than or equal to 84, /8 > d, the running time is at most
n—+ f(n)/d for all but finitely many n. Thus, DTIME[ f (n)] < DTIME[n+ f (n)/d].
This proves the theorem. O

We obtain the following result from the theorem.

Corollary 9.1 Suppose f(n) satisfies f(n) > (1 + a)n for all but finitely many
n, where o is a positive constant. Then, for all constants ¢ > 0, DTIME[ f (n)] =
DTIME[cf (n)].

We leave the proof to the reader (see Exercise 9.2).
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9.2 Time-Efficient Simulations of Multi-tape TMs

An important issue to address when simulating time-bounded TMs is the time effi-
ciency. In the proof of Theorem 9.1, the simulator N has k + 1 tapes when the orig-
inal machine M has k tapes. Exercise 9.1 asks to reduce the number of tapes to k by
reusing the input tape. If we limit the number of tapes of N to a fixed constant, some
nontrivial amounts of “slowdown” appear. The simulations require O(z(n)?) steps
when N has just one tape, but the multiplicative ¢ (n) factor will shrink to log(z(n))
when N has two tapes. In this section, we prove these two simulation results.

9.2.1 Simulating with One Tape

First, we analyze the efficiency when the simulator has only one tape.

Theorem 9.2 (The Single-Tape Simulation Theorem) Let t(n) be a time-
bounding function. Let L be a language in DTIME[t (n)]. Then L € DTIME]¢ (n)z]
by a single-tape TM.

Proof Overview

We recall the proof of Theorem 6.1, where we showed that a two-tape TM
can simulate a multi-tape TM. When the content of a multi-tape TM appears
on one tape, determining the TM’s action requires scanning the entire tape
because the heads may be scattered in the region covered by the heads. After
d steps, the cell indices that the heads have covered are between 1 and d.
Simulating the action of the TM at step d thus requires O (d) steps. Given that
the TM has a time bound of #(n), the simulation requires O (¢ (n)?) steps.

Proof Let k > 1 be an integer. Let M be a k-tape TM that decides some language
L. We construct an M’s simulator N. Let ¢ (n) be a time-bounding function such that
M runs in time #(n). Let " be the tape alphabet of M. We combine the ideas from
the proofs of Theorems 6.1 and 9.1 and expand the alphabet I" by adding all k-tuples
(I' U T)X. Each k-tuple encodes the cells of M’s tapes at the same cell index, along
with k independent markers indicating the head position.

The initial preparation for the simulation requires rewriting the tape contents
where the input appears in its k-tuple version, with an end marker appearing before
the tape contents’ encoding. Then, N conducts a step-by-step simulation of M,
making k round trips on the tape to determine the action M is to perform and then k
more round trips to rewrite the tape contents.

The length of the tape that a round trip covers at time £ is at most 2 + max{n, £},
where 7 is the length of the input. The quantity £ is at most ¢ (n) since M halts in
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at most #(n) steps, and so one step of M requires at most O (k - t(n)) steps. The
initial conversion requires O (n) steps. Since M halts in 7 (n) steps, the total number
of steps that N runs is at most O(n) + O(t(n) -k - t(n)) = O(k - t(n)?). Since we
can think of k as a constant, N decides L in time O (¢ (n)?).

This proves the theorem. O

9.2.2 Simulating with Two Tapes

In the previous section, we saw that a single-tape TMs can simulate #(n) time-
bounded TMs in O ((z(n))?) steps. While this quadratic time increase is unavoidable
for single-tape simulation, adding one more tape reduces the time required for
simulation to O(t (n) log(t (n))).

Theorem 9.3 For all time-bounding functions and L € DTIME[t (n)], a two-tape
TM decides L in time O (t(n) log(t(n))).

Proof Overview

We assume that the simulator’s Tape 1 is two-way infinite with two tracks (i.e.,
each cell can hold two symbols), and Tape 2 is one-way infinite. By doubling
the number of tracks, the two-way infinite Tape 1 can be simulated with a
one-way infinite tape; for all p, Cell p represents Cells =+ p.

The simulation’s principle idea is to keep the character of the cell (on which
the head is supposed to be) to Cell 0. To realize this arrangement, the tape is
divided into blocks. When the first character of a block must move to Cell
0, the characters in the entire block move. Starting from Cell 0, the positive
index cells are divided into blocks 0, 1, 2, 3, .. .. These blocks exponentially
increase in size; their sizes are 20, 2!, 22 23 ... The same power-of-2 block-
size allocation is applied to the region with negative indices.

During the simulation, the block having an index of i (or — i) covers 0, >
or 2i*1 consecutive cells of the TM subject to simulation. This means that the
characters travel from one block to another. The exponential increase in block
sizes results in a running time of O (¢ (n) log(z(n))).

We devote the rest of this section to the proof of this theorem.

9.2.2.1 The Tape Organization

We first learn the tape organization of the two-tape simulator.
Let k > 2. Let #(n) be a time-bounding function. Let M be a k-tape TM that
runs in time #(n). We will develop a two-tape simulator, S, of M. Tape 1 of S has
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2k + 2 tracks (i.e., each cell has holds 2k + 2 symbols); Tape 2 has three tracks. Of
the 2k + 2 tracks of Tape 1, S allocates rwo tracks to each tape of M. The remaining
two tracks have particular roles; one provides block-wise coloring, and the other
indicates the point closest to Cell O in each block. The markings appearing on the
last two tracks will be commonly used among all the tape simulations. Tape 2 of S
is a scratch area.

The head positions of Tape 1 are two-way infinite:

.., —3,-2-1,0,1,2,3,....

As we examined in Exercise 6.27, we can implement two-way infinite tapes on one-
way infinite ones by “folding” the tapes at position O (see Fig. 9.3). Folding a tape in
half doubles the number of tracks. We understand that the actual coding of S uses the
one-way infinite representation of two-way infinite tapes using (2k +2) %2 = 4k +4
tracks. The discussion here uses a two-way infinite tape.

The descriptions in the remainder of this section are for M’s Tape 1. If k > 2,
our simulator repeats the simulation for Tapes 2, 3, ..., k.

The two tracks corresponding to each tape of M are the “lower” and the “upper”
tracks. At each cell position, we refer to the upper- and lower-track combinations
as “domino tiles.” This view is reminiscent of Post’s Correspondence Problem from
Sect. 8.4. Each domino has an upper-track character and a lower-track character;
these characters are from M’s tape alphabet. We will introduce the symbol LI, which
is different from the blank symbol of M. The new symbol is equivalent to the empty
string €, indicating that the character is empty. Let o and S be the characters of the
lower and upper tracks in a domino, respectively. After each round of the simulation,
the symbols satisfy the following conditions:

R1) If ¢« =y, then B = L.
(R2) The domino represents 8 as M’s tape content.

5 4 3 -2 1 0 1 2 3 4 5

two-wayinfinite| y | y |[w |y |z |a|b|c|b|a]|ec

top layer a|lb|lc|b|lalc

one-way infinite
bottom layer — | Z|Y | WY |Y

4 -2 -3 -4 -5

Fig. 9.3 Implementing a two-way infinite tape by a two-track, one-way infinite tape. Top panel:
the contents of a two-way infinite tape requiring a one-way tape representation. Bottom panel:
after folding, the bottom layer of the column at position 0 is empty. The numbers represent the cell
positions in the two-way tape
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We partition Tape 1 into blocks of consecutive cells, B;,i = 0, £1, 2, etc. The
block By has just one cell and is at the cell position 0. The blocks with positive
indices stretch to the right of By, with B; immediately to the right of By, B>
immediately to the right of By, etc. The blocks with negative indices stretch to the
left of By, with B_; immediately to the left of By, B_, immediately to the left of
B_, etc.

The size of a block is the number of domino tiles in it. For each p > 1, the blocks
B, and B_ ), have 27~! domino tiles. Therefore, the character-based capacity of B,
and B_), is thus 2P~ + 2 = 2”. The simulation maintains the following invariant
holds for each block and each tape after simulating one step of M:

(R3) The occupancy condition of the cells is one of the following three:

e All characters are LI.
* None of the characters are LI.
¢ All lower characters are non-LI, and all upper characters are LI.

(R4) Combining (R3) with (R1), we have for all index p or — p:

* Empty The upper and the lower characters in every domino tile are empty.
The block represents €.

* Packed Both upper and lower characters are nonempty. The block repre-
sents a string of 27 characters.

* Half-packed Only the upper characters are empty. The block represents a
string having 27! characters.

Figure 9.4 shows the divisions into blocks representing two tapes of M. Figure 9.5
shows the coloring and marking tracks.

9.2.2.2 The Tape Coloring and Marking

Next, we describe the marking and coloring of the tape.

cellindex 8 -7 6 5 4 3 2 -1 0 1 2 3 4 5 6 7 8 9

G|E|C|A © g i k | m upper
Tape 1
F|D|B alb|d|e]| f|[h]] | lower
upper
Tape 2
WIlY|[X]|X x| #|a|c|#|p|#]|q lower
block 4 3 3 3 3 2 2 -1 0 1 2 2 3 3 3 3 4 4
index

Fig. 9.4 Two tapes with two tracks each. The coloring rule is discussed in Sect. 9.2.2.2
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cellindex -8 -7 6 -5 4 3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

upper G|E|C|A c g i k [ m
lower H|F|D|B al|lb|(d|e]| f]|h j |
color = = = -+ |+ - z -+ |+ ] - = = =
marking X X | x| x| x| X X
block index -3 -2 -1 0 1 2 3
T 0 e R R e R B R R

—

Fig. 9.5 One pair of tracks, and the color and marking tracks. The section corresponding to Cells
— 8 through Cell 12 is shown

The color track contains one of three symbols: z, +, or —. The color symbols are
fixed throughout the simulation. The color assignments are as follows:

(RS) The symbol z is exclusively for By. For other blocks, + and — appear in all
the domino tiles in B, with an even p and an odd p, respectively.

The marker track contains one of two symbols: x or L. The marker x appears in the
cell closest to Cell 0. The other cells have the marker LI.

When S visits a block, it scans the entire block. If the visit is for the first time,
S assigns a value to the color and marker tracks. At the start of the computation, §
places the color z on By and the marker x on By. When S encounters a cell without
color, it suspends its present task and assigns a color to the uncolored block in the
following manner:

1. § can memorize the color of the cell it departs from when moving the head to
the next cell; it can immediately determine the color y of the uncolored block.
If the color in its memory is z, then the color to assign is —; otherwise, it is the
opposite of the color in memory. In addition, S places x as the marker.

2. § starts moving Head 1 to the left. For each cell with the previous color, S writes
1 on Tape 2 and moves Head 2 to the right. The process stops when Head 1
encounters the block marker x in the marker track. Let £ be the number of 1’s §
writes on Tape 2.

3. S erases the 1¢ on Tape 2 by moving the head straight back to the opposite end.
For each move of Head 2, S writes y on two color cells. The total number of
cells S writes y is 2¢.

4. S moves Head 1 back to the leftmost cell of the newly found block, where S sees
the marker. The procedure is now complete.

Figure 9.6 shows the length of the 1s on Tape 2 and the color assignment of the new
block. The duration of the procedure is as follows:
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cell index -1 0 1 2 83 4 5 6 7 8
Tape 1 upper ® g i k | m
Tape 1 lower a|b|d]e f h i |
Color 0 - + | + = = - -
Marking X | x| x X
4 20
1
Tape 2 ‘ ‘1‘1‘1‘1‘ ‘ ‘ ‘ Y=+
+——>
l
Color 0| - |+ |+ - - - E I B I I I I S S
Marking X | x | x X X

Fig. 9.6 The coloring procedure

¢ In the case of Bj, the duration is 2.
¢ In the case of B p» P > 2, the duration is the sum of the following:

— ¢ for writing 1¢.

— ¢ for moving Head 1 to the start of the new block.
2¢ for writing y in the 2¢ cells.

— 2¢ for moving Head 1 back to the first cell of B.

The total is 6£. This bound applies to B; also.

When the head movement is in the opposite direction, it is handled similarly by
swapping the roles between left and right.

9.2.2.3 The Simulation Procedure

We are now ready to describe the simulation procedure.

S records M’s tape contents using a dynamic procedure, in which § moves the
tape contents so that the cell on which M’s head is located will appear in By for all
tapes. S executes the procedure separately for the k tapes. The procedure demands
that S uses multiple steps to simulate M’s one step. After completing one step of
M, each block is empty, half-empty, or packed. At the start of the computation, the
input tape of S has only one track. The simulator treats a cell with some symbol
a appearing in the single-track mode as having a in the lower track and the empty
symbol in the upper track.
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When the head of M must move to the right, S does the following:

* Push to the left S vacates the lower character of the domino tile in By by moving
the character appearing in By to the left (the blocks B_1, B_3, ...).

e Pull from the right S finds the first nonempty domino tile to the right (the blocks
B1, By, ...) and moves it to the lower character of By.

By symmetry, when the head of M must move to the left, S does the following:

* Push to the right S vacates the lower character of the domino tile in By by
moving the character appearing there to the right (the blocks By, By, .. .).

e Pull from the left S finds the first nonempty domino title to the left (the blocks
B_1, B_3, ...) and moves it to the lower character of By.

The push-to-the-left action is symmetric to the push-to-the-right action, except that
the upper character switches roles with the character track (because in every cell, the
lower character precedes the upper character). The same is the case for the pulling
actions. Noting the symmetry, we see only how § pushes to the right and how it
pulls from the right.

9.2.2.4 Pushing Blocks to the Right

Suppose we must push the character in B to the right. The algorithm that S executes
is as follows:

1. § searches for any non-packed domino title to the right. While searching, S
copies the contents (as domino titles) from Tape 1 to Tape 2. The upper and
lower characters S encounters are nonempty during copying. Since Tape 2 has
two tracks, S copies the characters domino-wise: i.e., upper to upper and lower
to lower.

2. After arriving at a non-packed domino tile, if the domino tile is empty, S does
the following:

a. S continues scanning until the end of the block. The end is identifiable using
the coloring and marking tracks. S keeps Head 2 at the same position.

b. While moving Heads 1 and 2 to the left (back to the last packed block), S
copies the two symbols in the domino tile appearing in Tape 2 to the lower
track of Tape 1 and then clears the upper track of Tape 1. S counters Head 1’s
one move with Head 2’s two moves.

c. For some g > 2, the number of characters moved equals:

29 4297 oy 442 =20F 2,

This means that the copying ends at By, with B; vacant. S moves the lower
character of By to B;’s lower character and clears Bj’s upper character.
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3. Otherwise, the non-packed block is half-packed. S does the following:

a. S continues scanning until the end of the block and appends the contents of
the lower track of the domino tiles by combining two symbols as a pair.

b. While moving Heads 1 and 2 back to the left, S copies a pair of symbols from
Tape 2 to Tape 1 as long as the head on Tape 1 is in the same non-packed
block it has found.

c. While moving Heads 1 and 2 back to the left, S copies the two symbols
appearing in Tape 2 to the lower track of Tape 1 and clears the upper track
for Tape 1. S counters Head 1’s one move with Head 2’s two moves.

d. Like before, copying ends at By, with By vacant. S moves the lower character
of By to By’s lower track and clears B;’s upper character.

In both cases, S erases the contents of Tape 2 during the moving-back process.

Figure 9.7 shows the two cases of the push operation. Let us analyze the running
time of the push operations. Head 1 moves straight to the right and then straight to
the left. Let B, be the block § finds to be non-packed. The movement to the right
stops at the cell immediately to the right of B, which is at:

142442 14 1=2r

Thus, the running time of the push operation is 2 - 27.

o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
b|d|d b|d|d
alb|lc|c|e| f|lg]|h al|lb|lc|c
z - o+ o+ - - - z - o+ o+ - - -
b|d|d|f]|h b|d|d
blclc|lelg b|lc|c
o 1 2 383 4 5 6 7 o 1 2 383 4 5 6 7
d|d| f|h
alb|b|lc|c|lel|g alb|b|c|d|c]|d
z - + + - - - - z - + + - - -

Fig. 9.7 The two cases of the push operation. Left panel: the case where the non-packed block is
half-packed. Right panel: the case where the non-packed block is empty. The top represents the
symbols in the two tracks before the push operation, and the bottom represents the symbols after
the push operation. The middle part is the copy S creates on Tape 2
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9.2.2.5 Pulling Blocks from the Right

We next explain the operation for pulling from the right. S executes the following:

1. § scans to the right for a nonempty block.

2. When a nonempty block is found, S continues scanning to the right and copies
its contents to Tape 2.

3. If the nonempty block is packed, S moves Heads 1 and 2 to the left. While doing
this, S spreads each symbol pair appearing on Tape 2 to the lower track over two
cells on Tape 1. Also, while doing this, S erases the contents of Tape 2.

4. If the nonempty block is not packed, S moves Head 1 to the left while erasing
the character appearing on the lower track while keeping Head 2 in the same
position. Upon entering the previous block, S starts moving Tape 2 to the left
and copies the contents on Tape 2 to Tape 1. During the execution, S erases the
contents of Tape 2.

Figure 9.8 shows the two cases of the pull operation. Let us analyze the running time

of the pull operations. Let B, be the block § finds to be nonempty. The movement

to the right stops at the cell immediately to the right of B),, which is at position:
142442 p1=2r

Thus, the running time of the push operation is 2 - 27.

y|w|B]|D

x|z |A]|C X|Y|Z|W
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
x|ylz|w|]A|B]|C|D X|Y|Z|W
z - + + - - - - z - + + - - -

Fig. 9.8 The two cases of the pull operation. Left panel: the case where the nonempty block is
packed. Right panel: the case where the nonempty block is half-packed. The top represents the
symbols in the two tracks before the push operation, and the bottom represents the symbols after
the push operation. The middle part is the copy S creates on Tape 2
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9.2.2.6 An Analysis of the Running Time

Let us analyze the time it takes S to execute the simulation.

Let n be the length of the input. Let r; be the index of the farthest block S
reaches to the right. Since the running time of M has 7(n) as an upper bound,
r1 < [log(¢(n))]. Let — rp be the index in the opposite direction. We know
ro < [log(t(n))]. Let ro = [log(¢(n))]. The time that it takes for S to perform
coloring is at most:

ro
2 2(7 2Py <4270 < 14 . 21102 ()) — 284 (py).
p=1

The scaling factor of 2 applies here because we are looking at two directions.

The push or pull operation ending in B, (or B_)) leaves all the blocks between
that and By half-packed. The next time the same block receives modifications is
when either

(A) all the half-packed blocks in between become packed, and another push occurs
or
(B) all the half-packed blocks in between become empty, and another pull occurs.

The number of steps necessary for S to run before either incident happens is the sum
of the half-sizes of the blocks plus 1, which is:

A+24--+2P"H 41 =21

Since the running time of M is at most ¢ (), the event that reaches B, or B_, occurs
no more frequently than once in 27 steps and requires 2 - 27 steps to complete. Thus,
the largest p we need to consider is [log(¢(n))] = ro. Since each step involves one
push operation and one pull operation, the contributions from the push and pull
operations are:

ro
ZF(H)W 2-27)

Z2t(n) 2.27)
ro

:16Zt(n)
i=1

16t (n)ro

161 (n)(1 + log(t (n))).

IA
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This amount is for simulating one tape. S has k tapes to simulate. By combining the
amount with the time for the coloring operation, the total running time of S is at
most:

28t (n) + k - 16t (n)(1 + log(t(n)))
= 44t (n) + 16k - t(n) log(t (n))
= O(t(n)log(t(n))).

Here, k is a constant. Therefore, the big O can include k. The analysis we have seen
is an example of amortized analysis, which uses the idea that costly operations do
not occur very often.

The proof of the theorem is now complete.

9.3 The Time Hierarchy Theorems

The simulation results from the previous section enable us to prove proper inclusions
between time complexity classes. Proving proper inclusions about time complexity
classes requires a “clock” that provides some steps allocated for simulation. A time-
bounding function f (n) can be turned into a clock if there is a TM that stops in steps
1/ on each input 17, where 1 is an arbitrary symbol. Time-constructible functions
are those we can turn into a clock.

Definition 9.6 A time-bounding function f(n) is time-constructible if there is a
multi-tape TM that, on all inputs x, stops in 1/(*D steps.

Only some time-bounding functions are time-constructible. Showing time-
constructibility is a cumbersome task. The following theorem helps in finding
time-constructibility.

Theorem 9.4 A time-bounding function t (n) is time-constructible if, and only if, a
TM that computes 1'™ from 1™ in O (t(n)) steps exists.

We now use time-constructibility to show separations between time complexity
classes.

Theorem 9.5 Suppose f(n) and g(n) are time-bounding functions, g(n) is time-
constructible, and g(n) = w(f(n)log(f(n))). Then:

DTIME] f (n)] C DTIME[g(n)].
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Proof Overview

We construct a language of TM machine encodings with an arbitrary number
of trailing Os. The language’s membership condition is that the machine
does not accept the encoding as an input in f(r) steps. Since g(n) is time-
constructible, a TM can count for g(n) steps while simulating an arbitrary
machine M. Using the two-tape simulation technique, simulating M for f(n)
steps is possible in ¢f (n) log(f(n)) steps for some constant. Because of the
w-relation, the quantity cf (n) log(f(n)) is less than g(n) for all but finitely
many 7, and the simulator can make a decision opposite to M’s decision.

Proof Let f(n) and g(n) be as appearing in the statement of Theorem 9.5. Let T
be a TM witnessing that g(n) is time-constructible.

Algorithm 9.1 A TM that decides the diagonal language

1: procedure DIAGONAL-LANGUAGE(w)

2 w is a binary string;

3 copy w to a separate tape;

4 simulate 7 on w to generate 18 (Iwbh,

5: using g(|w|) as the time limit, execute the following;
6.

7

8

if w does not have a suffix of the form 10” for some p > 1 then

reject w;
: end if
9: check the validity of the machine portion of w;

10: if the machine fails the test then
11: reject w;
12: end if
13: extract M for simulation;
14: simulate M on w;
15: if M accepts then
16: reject w;
17: else if M rejects then
18: accept w;
19: end if
20: if the execution reaches the time limit then
21: accept w;
22: end if

23: end procedure

Define D as the set of all strings w of the form (M)10¢ satisfying the following
two conditions:

* M is a TM whose input alphabet has a size of > 2.
* M on w does not accept w within f(n) steps.
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We assume that the encodings of the TMs follow the number-based scheme from
Sect.7.1.1. In the encoding, tallies of 1s serve as delimiters, where the length of the
tally represents its meaning. We present the algorithm for N in Algorithm 9.1.

Algorithm 9.2 A TM encoding test
1: procedure POLYNOMIAL-TIME-ENCODING-TEST(x)

2: x is a binary string;
3: try to extract the number of tapes, k;
4: try to extract the number of states, ¢;
5: try to extract the tape alphabet size, s;
6: try to extract the indices of the blank system, go, gacc, and grej;
7. if the extraction fails then
8: return false;
9: end if

10: extract the transition table;

11: if the table is incomplete then

12: return false;

13: end if

14: return true;

15: end procedure

We can use Algorithm 9.2 to test the validity of the encoding.
Let n be the length of the input w. The running time of N is then:

2n + 0(g(n)) + g(n) = O(g(n)).

Since g(n) is a time limit that applies to the entire computation, we assess the
running time of Algorithm 9.2 as O(r?). By the linear speedup theorem, the
language D is in DTIME[g(n)].

By contradiction, we show that D is not in DTIME][ f (n)]. Assume M is a TM
that decides D and has f(n) as its time bound. Let w be an arbitrary input to N that
contains the description of M. Let n be the length of w. Let r be the length of the
description.

The encoding-checking consists of decoding the sizes of the input and tape
alphabets, the size of the state set, and the transition table. Since the size information
is unary, the decoding is possible in O (r?) steps. In the simulation of M on w, N
can use the time-efficient simulation from Theorem 9.3. Since the alphabet size and
the number of tapes of M are variable, N must use multiple cells to encode one
character on one tape of M. Each element of the transition table has entries greater
than or equal to the number of tapes. Also, the element size of the table is greater
than or equal to the size of the alphabet. Thus, the number of bits necessary to
encode one symbol on one M’s tapes is at most r. Determining which action to
perform requires matching the symbols and the state with the transition tape. The
determination is thus possible in O (r2). The running time of simulation, without the
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time limit of 18® _ is:

0 + O(f () + O((r?) f (n) log(f (n)))
= O((r*) f () log(f (n))).

Let co be a constant such that the time requirement is at most cor? f(n) log(f(n)).
Since we have fixed r and g(n) = w(f(n)log(f(n))), for all infinitely many =,
cor f (n) log(f(n)) < g(n). Therefore, for infinitely many inputs w in which M
appears, N produces the result contradicting M. Hence, M does not accept the
language D. Thus, D ¢ DTIME] f (n)]. O

The single-tape simulation technique (Theorem 9.2) produces a weaker version
time hierarchy theorem.

Theorem 9.6 Let f(n) and g(n) be time-constructible time-bounding functions
such that g(n) = w(f(n)?). Then:
DTIME[ f (n)] C DTIME[g(n)].
For each rational number o > 1, define n® as representing [#%7. This function is
time-constructible (see Exercise 9.3). 9.3 We thus obtain the following result.

Corollary 9.2 For all rational constants ¢ and d such that ¢ > d > 1,
DTIME[r¢] ¢ DTIME[r¢].

9.4 The Nondeterministic Time Complexity

Next, we define nondeterministic analogs of the deterministic time complexity
classes.

Definition 9.7 Let f(n) be a time-bounding function. We say that a nondetermin-
istic TM M is f(n) time-bounded if, for all inputs x, M on x halts within f(|x])
steps regardless of its nondeterministic choices.

Definition 9.8 Let f(n) be a time-bounding function. Let L be a decidable
language. We say that L has nondeterministic time complexity f(n) if a non-
deterministic TM is deciding L that is f(n) time-bounded.

Definition 9.9 For a time-bounding function f (n), we define NTIME[ f (n)] as the
set of all languages that have nondeterministic time complexity f(n).

The linear speedup theorem also holds for nondeterministic complexity.
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Theorem 9.7 (The Nondeterministic Linear Speedup Theorem) Ler f(n) be a
time-bounding function. Then, for all constants d > 1:

NTIME [ f(n)]
[f(m)] S NTIME | n 4 —— |.

Corollary 9.3 Suppose f(n) satisfies f(n) > (1 + «)n for all but finitely many
n, where « is a positive constant. Then, for all constants ¢ > 0, NTIME[ f (n)] =
NTIME[cf (n)].

Since deterministic TMs are nondeterministic TMs without nondeterministic
actions, the following proposition holds:

Proposition 9.1 For all time-bounding functions f(n):
DTIME[ f (n)] € NTIME[ f (n)].

Using the deterministic simulation of NTMs (Theorem 6.5) for simulating time-
bounded NTMs, we obtain the following theorem:

Theorem 9.8 (The Nondeterministic Time Hierarchy Theorem) For all time-
bounding functions f(n):

NTIME[ f (n)] € U.> DTIME[2¢/ )],

9.5 Fundamental Time Complexity Classes

We now define the standard time complexity classes.

We group all polynomials. Since the time-bounding function requires that
f(n) = n + 1, the time-bounding functions are upper bounds, and there are linear
speedup theorems, we will consider only polynomials of the form c¢n¢+c in defining
the standard complexity classes.

Definition 9.10 P is the class of all decidable languages with some deterministic
TM whose running time is O (cn¢ + ¢) for some integer c. In other words:

P = U.>1DTIME[cn + c].

By the second time hierarchy theorem (Theorem 9.5), we can show that there
are hierarchies of time complexity classes inside P. For example, if g(n) is a time-
constructible polynomial and f(n)log(f(n)) = o(g(n)), then DTIME][ f (n)] C
DTIME[g(n)]. While these hierarchies give partitions of P, we treat P as the class
of all tractable problems.

Another important class is NP. This is the nondeterministic analog of P.
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Definition 9.11 NP is the class of all decidable languages with some nondetermin-
istic TM whose running time is O (cn® + ¢) for some integer c. In other words:

NP = U,>|NTIME[cn¢ + c].

In addition, we also define coNP as the complementary class of NP.

Definition 9.12 coNP is the class of all languages whose complements are in NP.
In other words:

coNP = {A | A € NP}.

An extension of the polynomials is the group of exponential functions: 2¢"“*¢ for
allc > 1.

Definition 9.13 EXPTIME is the class of all decidable languages with some
deterministic TM whose running time is O (2¢"*¢) for some integer c. In other
words:

EXPTIME = U, DTIME[2" *€].

Definition 9.14 NEXPTIME is the class of all decidable languages with some
nondeterministic TM whose running time is O (2€"°+¢) for some integer c. In other
words:

NEXPTIME = U, NTIME[2¢" €],

Definition 9.15 coNEXPTIME is the class of all languages whose complements
are in coNEXPTIME. In other words:

coNEXPTIME = {A | A € NEXPTIME}.

The following class inclusions hold:

Proposition 9.2 P € NP N coNP € NP U coNP € EXPTIME € NEXPTIME N
coNEXPTIME € NEXPTIME U coNEXPTIME.

Figure 9.9 shows the relationship stated in Proposition 9.2.

By using either of the time hierarchy theorems (Theorems 9.5 and 9.6), we can
prove that P C EXPTIME. From this separation, we immediately learn that P, NP,
and coNP are proper subclasses of EXPTIME, NEXPTIME, and coNEXPTIME.
Except for these separations, we do not know if any inclusion appearing in the
sequence in Proposition 9.2 is proper. Specifically, whether or not P = NP is a
fundamental question in computational complexity theory. We refer to the problem
as the P vs. NP problem.
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Fig. 9.9 Inclusions among
the standard time complexity
classes

coNEXPTIME

NEXPTIME

EXPTIME

Table 9.1 The closure properties of the standard time complexity classes

Class Intersection | Union | Concatenation | Complementation | Kleene-star
P Y Y Y Y Y
NP Y Y Y ? Y
EXPTIME Y Y Y Y Y
NEXPTIME Y Y Y ? Y

For most of the above classes, we know which closure properties they have.
Table 9.1 presents the list of the closure properties, where the question mark
represents that the field does not know whether or not the class has the property.

9.6 Examples of Time Complexity Classifications

We present example problems from the classes defined in the previous section.
First, the validity tests of TM encodings are in P.

Proposition 9.3 The language {{(M) | M is a TM} is in P.
Using the same argument, we can show:

Proposition 9.4 The language {{(M, w) | M is a TM, and w is an input to M} is in
P.

The task of proving these propositions is left to the reader (see Exercises 9.10
and 9.11).

9.6.1 The DFA State Minimization Problem

We first show that the state minimization problem of DFA is in P.
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Proposition 9.5 The language {(M,0%) | M is a DFA, and there is an equivalent
DFA with < k states} is in P.

Proof After verifying the input’s validity, we execute Algorithm 9.3 adapted from
Sect. 3.1.

Algorithm 9.3 A TM that decides the minimum number of states
1: procedure MINIMUM-NUMBER-OF-STATES(M, k)

2: M = (0, %, 6, qo, F) is a DFA, k is an integer;
3 0={p1.....psk

4: instantiate an s x s table T

5: store 0 in T'[i, j] for all i and j between 1 and s;
6: fori < 1,...sdo

7 for j < 1,...,sdo

8: ifpe F < p; ¢ F then

9: store 1 in T'[i, j;

10: end if

11: end for

12: end for

13: repeat

14: f <0

15: fori < 1,...,qdo

16: forj < 1,...,qdo

17: if 7[i, j] = O then

18: fora € X do

19: k < such that py = 8(p;, a);
20: £ < such that pg = 8(p;, a);
21: if Tk, £] = 1 then

22: store 1in T'[k, £] and T[4, k];
23: f <1

24: end if

25: end for

26: end if

27: end for

28: end for

29: until £ # 0
30: J<«—{jll<j<sandforall¢suchthatl <¢ <j—1,T[¢, j]=1};
31: if j = k then

32: accept (M, k);
33: else

34: reject (M, k);
35: end if

36: end procedure

Let n be the length of the input. The sizes of Q and X are at most n, and so the
size of T is at most n2. The “repeat-until” loop at Line 7 appears to be the most
time-consuming part. The algorithm executes its external loop at most n? times.
The algorithm executes its internal double loop at most n% - n = n times. For each
combination of i, j, and a, scanning the input is necessary to find the transition
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functions, which gives an O (n) overhead. Thus, the algorithm’s running time is
O(n?-n? - n) = 0(nd. Therefore, the language is in P. |

Similarly, we can show that the following problems are in P.
Proposition 9.6 The following problems are in P.

* Npp={(M, 0% | M is a DFA and the k-th state of M is distinguishable from all
states of M with smaller indices}.

o Npnal = {(M, 0% | M is a DFA and the k-th state of M is distinguishable from
all states of M with smaller indices and is a final state}.

* Nyans = {(M, 0k, 0¢, 0%) | M is a finite automaton, the k-th and the £ states of
M are representative states, and on the a-th symbol, the states the k-th represents
transition to the states the {-th represents}.

9.6.2 The Problem of Converting an NFA to a Regular
Expression

We now explore the time complexity of converting NFAs to regular expressions.

Suppose we apply the algorithm from the proof of Theorem 2.3 to generate a
regular expression from an NFA. The expression we generate could be very long.
Suppose N is an NFA from which we will generate a regular expression. Let m be
the number of states of N. The graph we use in the generation has m + 2 nodes.
Each arrow in the graph has a label of the form:

(a1 Uazy Uayp).

Here, ay, ..., ap are from X, and X is the alphabet of N. Suppose ay, ..., a, have
unary representations and the other symbols in the expression; i.e., the parentheses,
U, and * are single symbols. Then, the initial labels have a length of at most:

m—+1 2
1 1
(Zi>+m+2:@+m+2:@+1_

i=1
2
The last quantity in the equation is at least (’";1) and at most (m + 1)2.
Suppose the construction still needs to be completed (i.e., at least three nodes
are remaining), and the maximum of the lengths of the labels is at most €. The
consolidation of a node x changes the label of the arrow (u, v) to:

(LU lzl§l4).

Here, [y, I, I3, and I4 are the labels on the arrows from u to v, from u to x, from
x to x, and from x to v, respectively. Since each label before the consolidation has
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a length of < ¢, the new label has a length of < 4¢ 4 4. For each i such that
0 <i < m,let ¢; be the maximum length after the i-th conversion. Then we have
the recurrence ¢; = 4¢; 1 +4 and £y < (m + 1)2. The solution to the recurrence is
; +4/3) =4;—1 +4/3), so we have:

.4
0 = 092% — 3
Specifically, for i = m, we have:
2m 4 2~2m
L = £p2 —§=(~)(m 27y,

The value of m can be ®(n) (where n represents the length of the encoding) if we
restrict the size of the alphabet to be constant, so we have that the expression can be
O (n?29™). Now, define the following languages:

* Riengh = {{N,£) | N is an NFA, and the expression we obtain from N has a
length of at most £, where £ is a binary integer}.

* Rsymbol = {{N, £, a) | N is an NFA, ¢ is a binary integer, a € {0, 1, (,), U, *},
the expression we obtain from N has a length of at least £, and the £-th symbol
of the expression is a}.

Proposition 9.7 Riength and Rsymvol are in EXPTIME.

The proof is left to the reader (see Exercise 9.7).

9.6.3 The CFL Membership Problem

We show that each context-free language is in P.

Theorem 9.9 Each context-free language belongs to P.

Proof Overview
We use inductive programming. Let G = (V, X, R, S) be a CNF formula and
w, |lw| = m, be an input whose membership in L(G) we want to test. We

compute the sets T[i, j],1 < i < j < n, of all the variables that produce
w;---wj. w € L(G) if, and only if, S € T'[1, n]. Here, where i = j, T'[i, j]
directly comes from the form A — a rules, where a € X. In addition, where
i < j, we think of applying a rule r in the form of A — BC such that
B eT[i,¢]and C € T[£ + 1, j] for some ¢ between i and j — 1. We try all
combinations of the rules r and £ and identify all qualifying variables A.
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Proof Let L be a context-free language. Let G = (V, 2, R, S) be a CNF (Chomsky
normal form) grammar for L. Let w = wy - - - wy,, where wy, ..., w, € X. For each
pair of integers i and j such that 1 < i < j < m, let T[i, j] denote the set of

all variables A such that A g w; ---wj. We can compute the tables 7 using
inductive programming as appears in Algorithm 9.4, and accept w if, and only if,
T[1, m] contains S. The algorithm uses the fact that each CNF grammar has only
two forms of rules: A — a and A — BC. In other words, T'[i, i] should consist
solely of the variables that produce w; in one step; for all i and j, T'[i, j] should
consist of all variables A with a rule A — BC such that B produces T'[i, ¢g] and C
produces T'[g + 1, j] for some g such thati < g < j — 1. The algorithm’s running
time is cubic in n since there is a triple loop. The language L is thus O (n3). O

Algorithm 9.4 An algorithm for CFL membership test

1: procedure CFL-MEMBERSHIP(w)
2: G = (V,%,R,S) is a fixed CNF grammar;

3: let w = wy - - - wy, be an input;

4: if n = 0 then

5: if S — € isin R then

6: accept w;

7. else

8: reject w;

9: end if

10: else

11: fori < 1,...,ndo

12: Tli,i]«<{A| A— w; € R};

13: end for

14: for¢ < 2,...,ndo

15: fori < 1,...,n—¢+1do

16: Tl,i+£¢—1] « 0;

17: fork < i,....,.n—{do

18: ifarule A — BC exists where B € T[i,kland C € T[k+ 1,i + £+ 1]
then

19: T, j1 < T, jJU{A};

20: end if

21: end for

22: end for

23: end for

24: if S € T[1, n] then

25: accept w;

26: else

27: reject w;

28: end if

29: end if

30: end procedure

Next, we consider the conversion algorithm from an arbitrary CFG to a CNF
grammar that appears in the proof of Theorem 4.2. Recall that the algorithm
processes a grammar G = (V, X, R, §) as follows:
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. Eliminate mixed rules by introducing a variable for each terminal.

. Introduce a new start variable.

. Find all nullable variables using a greedy search algorithm.

. Decompose long rules into rules with a length of at most 2 while independently
choosing whether or not to include each nullable variable at each stage of
decomposition.

. Eliminate all € rules.

. Find all chains of unit rules using reachability.

. Create new rules by combining all chains of unit rules and all non-unit rules.

. Eliminate all unit rules.

BN =

o0 3 O\ W

As we observed in Exercise 4.20, the number of new variables and rules introduced
in the conversion process is O(m?), where m = |V| + |Z| + |R|. In addition,
discovering nullable variables, decomposing long rules, finding unit-rule chains, and
combining the chains and non-unit rules can be carried out in polynomial time.
Thus, the entire construction can be done in polynomial time.

To translate the conversion problem into decision problems, the following
languages can be used:

e Cyariables = {(G, 0%) | G is a CFG, and the conversion program produces a rule
with at most k variables}.

¢ Cerminal—rule = {{G, 0"10%) | G is a CFG, and the converted CNF has a rule that
produces the s-th terminal from the r-th variable}.

* Cyplit—rule = {(G,0710°10") | G is a CFG, and the converted CNF has a rule
that turns the r-th variable into a concatenation of the s-th variable and the ¢-th
variable}.

¢ Csart = {{G,0") | G is a CFG, and the converted CNF’s start variable has r as
its index}.

Proposition 9.8 Cyariaples, Crerminal—rules Csplit—rules and Cygay are in P.

Exercises

9.1 The simulator in the proof of Theorem 9.1 has one more tape than the original.
Prove that it is possible to eliminate the need for one extra tape by reusing the input
tape after reading the input.

9.2 Prove Corollary 9.1.
9.3 Show that for all rational constants ¢ > 1, [cn® 4 ¢] is time-constructible.
9.4 Show that [nlogn] is time-constructible.

9.5 Show that 2" is a time-constructible function. Hint: In the proof of Theo-
rem 6.4, we designed a method for generating all computation paths of an NTM
with at most two branches at each computation step. We can modify the method so
that for each n > 1, the method uses 2" + ¢ steps to generate all paths having length
n.
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9.6 Let f(n) and g(n) be time-constructible. Show that f(n) + g(n) is time-
constructible.

9.7 Let f(n) and g(n) be time-constructible. Show that g(f(n)) is time-
constructible.

9.8 Let f(n) and g(n) be time-constructible. Show that f(n) x g(n) is time-
constructible.

9.9 Prove Theorem 9.8.

9.10 Prove Proposition 9.3.
9.11 Prove Proposition 9.4.
9.12 Prove Proposition 9.7.

9.13 In Theorem 9.9, we showed that each context-free language is in DTIME[n?].
Show that each context-free language is in NTIME[n].

9.14 In Theorem 9.9, we showed that each context-free language is in DTIME[n?].
Consider L = {(G, w) | G is a CNF grammar and w € L(G)} is in P. Show that L
is in DTIME[n"].

9.15 Show that the language {(M, w, ) | M is a DPDA, w is an input to M, 7 is
a series of transitions of M, and M accepts w along the path} is in P.
Hint: The time complexity can be O (n?).

9.16 Define T = {(G, w, T) | G is a CNF grammar, w is a string over the terminals
of G, T is alabeled tree, and 7T is a valid tree producing w}. Show that T € P.

9.17 Show that {{M, 1) | M is a finite automaton and accepts a string having a
length of ¢} belongs to NTIME[#?] by giving a nondeterministic TM for it.

9.18 Show that the language from the previous question is actually in DTIME[#3],
noting that the symbols appearing can be arbitrarily chosen from the alphabet of M.

9.19 A bipartite graph is a graph with vertex sets U and V such that the edges
of the graph are between U and V. Show that the problem of deciding if a graph is
bipartite is in P.

9.20 Prove that NP is closed under the Kleene-star operation.
9.21 Prove that NP is closed under union.

9.22 Prove that NP is closed under intersection.

Bibliographic Notes and Further Reading

Hartmanis and Stearns [4] introduced the concept of time-bounded TM computa-
tion. Theorems 9.1 and 9.2 are from there. Grzegorzcyk [3] considered the number
of steps required for TMs to compute function. Using polynomials as time bounds
was suggested in Ritchie [7] and Cobham [1]. Using the polynomial time as the class
of tractable problems is by Edmonds [2]. Theorem 9.4 about time-constructible
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functions is by Kobayashi [6]. Theorem 9.3 is by Hennie and Stearns [5]. A
more potent form of nondeterministic time hierarchy theorem is given by Seiferas,
Fischer, and Meyer [8].
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Chapter 10 ®
The Space Complexity ST

10.1 The Space Complexity Measure

Let us begin with the definition of the space complexity measure.

The computation model for studying space complexity is the offline Turing
machine, a variant of the multi-tape model (see Fig. 10.1). In an offline TM, the
input appears on a read-only tape called the input tape.

Mathematically, the symbol the offline TM writes on its input tape is the same as
the symbol it reads. Because it is read-only, the input tape on an offline TM holds
the input between end markers. We often use - and — to represent the left and right
markers. At the start of computation, the head on the input tape of an offline TM is
on the cell immediately to the right of the left-end marker. If the input is an empty
string, the head is on the right-end marker; otherwise, it is on the first character of
the input. The other tapes permit reading and writing; we call these work tapes. We
measure the space a TM uses with the number of distinct cells it accesses during
computation, excluding read-only or write-only tapes.

Definition 10.1 Let f(n) be a positive non-decreasing function from N to N. A TM
M is f(n) space-bounded if for all inputs x, M on input x halts using no more than
f(]x|) cells on each work tape.

We require any space-bounding function to be positive and non-decreasing.

Definition 10.2 Any positive non-decreasing function from N to N is a space-
bounding function.

Now, we define space complexity classes using space-bounding functions.

Definition 10.3 For a space-bounding function f(n), we define:

DSPACE[ f (n)] = {L | there exists an f(n) space-bounded TM deciding L}.
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Fig. 10.1 An offline TM mputTape [ [ [ T T [ [ T T 4]
with two work tapes

Work Tape

. 0
Control \/‘ Work Tape

LIT T T TTT]

We can show the following space compression theorem by combining multiple
symbols into one. We leave the proof to the reader.

Theorem 10.1 (The Space Compression Theorem) For all space-bounding func-
tions f(n) and constants ¢ > 0, DSPACE] f (n)] = DSPACE[cf (n)].

Definition 10.4 A space-bounding function f'(n) is space-constructible if there is
a multi-tape TM with space-bound f (n) such that, for all inputs x, writes 1/(*D on
one tape and halts.

We can state a more stringent result about the definition of space-constructible
functions.

Proposition 10.1 If f(n) is space-constructible, there is an offline TM with one
work tape that produces + 11/ ™~=2 - on its work tape and hallts.

We leave the task of proving the proposition to the reader.

Theorem 10.2 Suppose f(n) and g(n) are space-bounding functions, f(n) =
w(g(n)), and g(n) is space-constructible. Then:

DSPACE] f (n)] C DSPACE[g(n)].

Proof The proof follows the same idea as the time hierarchy theorem (Theo-
rem 9.5). Suppose f (n) and g(n) are functions such that g(n) is space-constructible
and f(n) = o(g(n)) (in other words, g(n) = w(f(n))). Let S be a machine
witnessing that g(n) is space-constructible. We can assume that S has two work
tapes and produces 18" on the second work tape. We define N as an offline TM
with two work tapes executing Algorithm 10.1.
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Algorithm 10.1 A TM that decides the space diagonal language

1: procedure SPACE-DIAGONALIZATION(w)

2: simulate S on w to generate 180%D on a work-tape;
3 mark all its work tapes with — 180wD=2 4,

4: check w = (M, OZ), where M is a Turing machine;
5: if the check fails then
6.
7

8

reject w;
else

simulate M on w while counting the number of steps;
9: if M accepts within 2¢1"D steps without using unmarked space then
10: reject w;
11: else
12: accept w;
13: end if
14: end if

15: end procedure

Let L = L(N). Then L € DSPACE[g(n)]. We prove that L € DSPACE[g(n)] —
DSPACE[ f (n)] by contradiction. Assume L € DSPACE] f(n)]. Then, an f(n)
space-bounded TM M accepts L. Let w be (M, 0¢) for some £ > 0. Letn = |w| and
r be the portion length in M describing w. Suppose we give w to M and N. As we
saw in the proof of the time hierarchy theorem, the need for simulating M raises the
space requirement by a multiplicative factor of 2. Since M is f(n) space-bounded,
the space requirement for N to simulate M on w is rzf(n). If rzf(n) > g(n), N on
w may not finish simulating M on w. If r2 f (n) < g(n), N on w accepts w if, and
only if, M on w does not accept. Since M is fixed, we can consider r as a constant
and make ¢ arbitrarily large. Since f(n) = o(g(n)), for all but finitely many ¢,
r2 f(n) < g(n). We pick any such £. Then, w witnesses that M does not decide L.

This proves the theorem. O

From the space hierarchy theorem, we can draw many separation results. The
following two corollaries show examples of such results.

Corollary 10.1 For all rational constants ¢ and d such that 1 < ¢ < d,
DSPACE[n¢] C DSPACE[n].
Corollary 10.2 For all integer constants ¢ and d such that 1 < c¢ < d,
DSPACE[(log n)] € DSPACE[(logn)€].

Here, (logn)? = ([logn1)?.

We now define nondeterministic analogs of the deterministic space complexity
classes.
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Definition 10.5 Let f(n) be a space-bounding function. We say that an NTM M
is f(n) space-bounded if, for all inputs x, M on x halts without using more than
f(Jx]) cells on any tape regardless of its nondeterministic choices.

Definition 10.6 Let f(n) be a space-bounding function. Let L be a decidable
language. We say that L has nondeterministic space complexity f(n) if an NTM
decides L thatis f(n) space-bounded.

Definition 10.7 For a space-bounding function f(n), we define:
NSPACE[ f(n)] = {L | there exists an f(n) space-bounded NTM deciding L}.

We now obtain the nondeterministic analog of the deterministic space compres-
sion theorem (Theorem 10.1) by applying the same proof.

Theorem 10.3 (The Nondeterministic Space Compression Theorem) For all
space-bounding functions f(n) and constants ¢ > 0:

NSPACEJ f (n)] = NSPACE[cf (n)].

10.2 Savitch’s Theorem

Some major separation results in space complexity classes are derived from the
following Savitch’s theorem.

Theorem 10.4 (Savitch’s Theorem) For all space-constructible functions f(n)
such that f(n) = Q(logn), NSPACE[ f(n)] C DSPACE] f (n)2].

Proof Overview

Given an f(n) space-bounded NTM, we count the number of IDs, as with the
proof for Theorem 10.2. The number of IDs on an input having a length of n
is 0(2¢/™) for some constant ¢ > 0. We define a predicate that takes three
variables. The first two variables are IDs (C and C’). The last one is an integer
t. The predicate has a value of true if, and only if, C’ is reachable from C in
at most 2’ steps. For ¢ = 0, the predicate can be evaluated deterministically in
f(n) space. We develop a recursive procedure for evaluating the predicate by
exhaustively exploring all IDs as candidates for the halfway point.

Proof Let f(n) be a space-constructible function. Suppose f(n) = Q2(logn). Let
L be a language in NSPACE]J f (n)]. Let M be an NTM that decides L and is f(n)
space-bounded. We recall the proof of Theorem 6.1, where we showed that a two-
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tape TM can simulate a multi-tape TM. We treat the tapes of M in the same manner.
In addition, since f(n) is space-constructible, by using Proposition 10.1, M marks
f (n) cells on each work tape and, before accepting or rejecting, clears all the marked
cells and then moves the heads to the leftmost positions. Because of this property,
for each integer n, only one accepting ID exists for any input to M having a length
of n.

Let I" be the tape alphabet of M, and Q be the set of states of M. Let x be an
input to M. Let n = |x|. Since we are examining one specific input for M, we can
represent each ID of M on input x as a combination of the following components:

* The head position on the input tape, which is between 0 and n + 1 (assuming that
the markers appear at positions 0 and n + 1)

¢ The head position on the work tape, which is between 1 and f(n)

¢ The state number, which is between 1, ..., || Q||

* The tape contents ||T"||/

We encode each component in binary. This results in a binary encoding of each ID.
The number of bits used in the binary-encoded ID is:

Mog(n + DT+ [og(f (n)1+ TI1QIT+ f(n)[log T[T

This total is O (log(n)+ f(n)). Since f(n) = 2 (log(n)), there is an integer constant
¢, independent of n, such that the ID has length at most cf (n).
Note the following properties:

¢ Not all binary strings having a length of ¢f (n) encode an ID of M on x.

¢ For an arbitrary two strings u and v that are valid encodings of M on input x, only
cf (n) space is necessary for testing whether or not one of the possible moves of
M takes u to v in one step.

e For an arbitrary two strings u and v that are valid encodings of M on input x,
only cf (n) space is necessary for testing u = v.

For two binary strings having a length of c¢f (n) and an integer ¢ such that 0 <
t < cf(n), we define p(u, v, t) as the following predicate:

u and v are valid encodings of IDs of M on x, and v is reachable from u in at most
2! steps by following the nondeterministic actions of M.

Let u; be the initial ID of M on input x. Let u 4 be the accepting ID of M on input
x. Then, the following property holds:

M accepts x if, and only if, p(uy, ua, cf (n)) = true.

There is a recursive algorithm for testing p(u, v, ) with a space requirement of
O(tf (n)). The algorithm employs the following approach:

e Ift =0, testif u = v or v results from u in one step.
e Ifr > 1, for each legitimate w, test:

pu,w,t — ) Ap(w,v, t —1).
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In other words, we search for a halfway point w between u and v; i.e., w is reachable
from u in < 2!~ steps, and v is reachable from w in < 2/ -1 steps. We can
implement this approach as a depth-first search algorithm. Executing the search
requires remembering u, v, w, and ¢, as well as which side of the two terms is being
evaluated.

The recursion depth of this depth-first search is cf (n), and the information we
need to remember at each level requires < 3cf (n) bits. Thus, the algorithm requires
O(f(n)?) space. One subtle point is that the value of ¢ specifies “at most 2! steps.”
We may encounter a situation for some u, v, and t > 2 such that p(u, v, 1) is true
and (either u = v or v is reachable from u in one step). In such a situation, the
recursion will continue, but we can guarantee that if we keep choosing u (as the
middle point w in the ensuing recursion), we will find that p(u, v, t) is true.

This proves the theorem. O

From Savitch’s theorem, we obtain the following class separation result.

Theorem 10.5 (Nondeterministic Space Hierarchy Theorem) For all space-
bounding functions f(n) and g(n) such that f(n) = Q(logn) and g(n) =
w(f(n)?), NSPACE[ f (n)] € NSPACE[g(n)].

10.3 Fundamental Space Complexity Classes

We now define the standard space complexity classes.

Definition 10.8 L is the class of all decidable languages with some TM that is
O (log n) space-bounded.

Definition 10.9 NL is the class of all decidable languages with some TM that is
O (logn) space-bounded.

Definition 10.10 coNL is the class of all languages whose complements are in NL.
In other words, coNL = {A | A € NL}.

Definition 10.11 PSPACE is the class of all languages that are decidable with
some TM that is O (cn¢ + ¢) space-bounded for some ¢ > 1; that is, PSPACE =
Ue>1DSPACE[cn€ + c].

Definition 10.12 EXPSPACE is the class of all decidable languages with some
TM that is 0(20"(“) space-bounded for some ¢ > 1; that is, EXPSPACE =
Ues1DSPACE[2¢7 €],

We know that the following relations hold (see Fig. 10.2).

Theorem 10.6 L € NL € P € NP € PSPACE C EXPTIME € NEXPTIME C
EXPSPACE.
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Fig. 10.2 Inclusions among
the standard time and space EXPSPACE
complexity classes NEXPTIME ONEXPTIME
EXPTIME
PSPACE = NPSPACE
NP coNP
P
NL = coNL
L

Proof L C NL, P C NP, and EXPTIME C NEXPTIME are clear from the
definition.

Suppose a language is in NTIME[ f (n)] for some time-constructible function
f(n) = w(n) and an NTM M. As with the proof of Theorem 6.6, we can assume
that M has at most two choices of actions at each computation step. Let 7 be a TM
witnessing that f(r) is time-constructible.

We can design a TM N that simulates M using an exhaustive search as follows:

+ Using T, N obtains 1/,

e N generates all binary strings having a length of f(n) using one tape. Then, for
each string it generates, N simulates M on input x using the binary string as a
guide.

» If any simulation leads to acceptance, N accepts; if none leads to acceptance, N
rejects.

The simulator N witnesses that L(M) € DSPACE[ f (n)]. Thus, we know NP C
PSPACE and NEXPTIME < EXPSPACE.

In the proof of Savitch’s theorem, we noted that if an NTM is f(n) space-
bounded, then its halting computation has a length of at most ¢/ ™ for some constant
¢ > 0. We can make a better argument as follows:

Let x be an input to M having a length of n. Let G be a graph whose vertices are
the IDs of M on input x. The number of vertices of G is at most ¢/ ™. In the graph
G, we draw an edge from a node u to another node v if v is one of the possible next
IDs of u. Then, M on x accepts if, and only if, there is a path from the initial ID to
one of the accepting IDs (we can modify M so there is only one accepting ID). A
TM can test the reachability by writing down the adjacency graph and then running a
depth-first or breadth-first search to obtain a list of vertices reachable from the initial
ID. There is a polynomial time algorithm for depth-first and breadth-first searches,
and so the running time of the machine can be O (¢ ™)) for some integer d. We
can rewrite the running time as 0(2°‘f (”)) for some constant «. Thus, NL C P and
PSPACE < EXPSPACE. O

Because of the hierarchy theorems, we know that in the aforementioned sequence
of inclusions, there is a gap between NL and PSPACE, between PSPACE and
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Table 10.1 The closure properties of the standard space complexity classes

Class Intersection Union Concatenation Complement Kleene-star
L Y Y Y Y ?
NL Y Y Y Y Y
PSPACE Y Y Y Y Y
EXPSPACE Y Y Y Y Y

EXPSPACE, and between P and EXPTIME. Is any inclusion from the aforemen-
tioned sequence proper? That is an open question.

For most of the above classes, we know which closure properties they have.
Table 10.1 presents the list of these closure properties. The question mark in the
table indicates that the field does not know whether or not the class has the property.

10.4 The Reachability Problem

A remarkable finding in computational complexity theory is that for all space-
constructible functions, f(n) = Q(logn), NSPACE[ f(n)] is closed under com-
plement. Specifically, since logn is a space-constructible function, we know NL =
coNL.

Theorem 10.7 (The Immerman-Szelepscényi Theorem) NL = coNL.

Proof Overview

We can test the membership for a language in NL as the reachability in a
directed graph, whose nodes represent the IDs of an NTM with a logarithmic
space bound and whose directed edges represent the possible transitions of the
machine. A polynomial of the input length bounds the size of the graph. We
will develop a nondeterministic logarithmic-space algorithm for computing
the number of vertices that are reachable from the vertex representing the
initial ID. After learning the number, it is possible to use a nondeterministic
algorithm to check the reachability. Our nondeterministic algorithm for the
complement accepts if no accepting IDs are among the reachable vertices.

Proof Let L be alanguage in NL. Let M be an NTM that decides L and has a c logn
as its space bound for some constant ¢ > 0. We will develop a nondeterministic
logarithmic space algorithm for deciding the membership in L.

We may assume that M has only one work tape. Let Q be the state set of M and
I be the work-tape alphabet of M. Let I be the T with squiggle. Let us simplify the
notation by equating log a and [log a] for all positive integers a. We aim to develop
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an NTM that decides L using O (logn) space. We call the target TM N, which has
a constant number of tapes. Our design will ensure that N uses O(logn) cells on
each tape, so the overall space requirement is O (log n).

Let x be an input for which we want to test whether or not x € L.Forx = e,
N can behave as a DFA and accept or reject according to the membership of e it
already knows, so we assume that |x| > 1.

Recall the binary path generation procedure from the proof of Theorem 6.6.
A TM can generate an infinite series of binary numbers where the bits appear in
the reverse order; that is, 1,01, 11, 001, 101, 011, 111, 0001, 1001, .... A TM can
count the occurrences of an event by executing an update each time it occurs. In
particular, N can generate the binary representation of |x| 4+ 2 with the bits in the
reverse order. By applying updates to the binary number until the number takes
the form 071, N' can generate log |x| in binary. Then, by copying the expression ¢
times, N can mark a region having a length of exactly clog |x|. Let us assume that
N computes these binary representations immediately after marking the left end of
each work tape.

Let « be the length of the binary representation of ||Q]|. Let & be the length of
the binary representation of |x| + 2. Let V = {0, 1}***(I" U [)clog(xD) Using a
string in V, we can encode each ID of M on input x as follows:

* The first x characters represent an index to an element in Q.
¢ The next & characters represent a position between 1 and |x| 4 2.
¢ The next clog(|x|) characters represent the contents of the work tape of M.

Not all strings in V are valid, but N can check whether or not an element in V that
appears on one work tape is a valid encoding, via referring to the strings it generated
earlier in the computation. The validity is the conjunction of three conditions; the
first component represents a value between 1 and ||Q||, the second component
represents a value between 1 and |x| + 2, and the third component has exactly one
symbol from I". N can execute the iteration and check on a single tape using space:

k + & 4 clog|x| = O(log|x]|).

Thus, we treat all members of V as possible IDs. In addition, N can generate the
possible next ID of any u € V in O(log|x|) space. For this generation, N extracts
the input head position from #, moves the input head to that position, and reads the
input character at that position. Since the content of the work tape, the position of
the work-tape head, and the present state number are available in #, N can determine
the next action to occur. After determining the action, N can compute, from u, the
ID at the next step, which consists of the updated head positions, the updated work-
tape content, and the updated state number. Finally, N can check whether or not an
arbitrary two strings in V are identical. Thus, N has the capacity in the deterministic
logarithmic space to:

* Produce the initial and the accept IDs
 Iterate all members of V
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* Check the validity of any member of V
e Compute the next IDs of any member of V
* Check the equality of an arbitrary ID pair

For each i such that 0 <i < ||V, we define R(i) as follows:

R(i) = the set of all elements in E that represent IDs of M on input x and reachable
from the initial ID in at most i steps.

In addition, for each i such that 0 < i < ||V|, we define p(i) = ||R(@)||. We
inductively compute p(i) fori = 0, ..., ||V]. The basis is R(0). The set consists
only of the initial ID, so p(0) = 1.

We build the inductive computation on four nondeterministic algorithms:

¢ Enumeration(i, r) nondeterministically lists the elements of R(i), assuming
r=p().

¢ Reachability(u, i, r) tests whether or not u € R(i), assuming r = p(i).

¢ Extended-Reachability(u, i, r) tests whether or not # € R(i 4+ 1), assuming
r=p().

¢ Extended-Counting(i, r) produces p(i + 1), assuming r = p(i).

All four require the knowledge of p(i) and O(log(n)) space and may produce
“failure” as the output. While the computation may fail, we can guarantee that if
r = p(i), all four methods have a non-failing path, and for each non-failing path,
the output is correct. We present them in Algorithms 10.2, 10.3, 10.4, and 10.5.

The way the algorithms work is as follows:

First, for the Enumeration program, for each u € V, we examine whether or not
u € R(i) by running M on x from the initial ID for i steps. For each u that is found
to be in R(i), we output u. We also count the number of elements in R(i) we have
found. When we have checked all members of V, we check if the count equals r. If
they are equal, we have successfully enumerated all members of R (i), so we output
“success”; otherwise, we output “failure.” The “success” and “failure” assertions do
not appear until the end. If the count equals r, for each u € R(i), we found a path
to u within i steps so that there is a successful computation path. Also, if the count
is < r, the computation is unsuccessful, as there are unidentified IDs in R(i).

The Reachability program runs the Enumeration program and checks if u appears
in the enumeration, and the execution ends with “success.” If both occur, we have
found that u € R(i).



10.4 The Reachability Problem

255

Algorithm 10.2 The enumeration algorithm

1: procedure ENUMERATION(, r)
2 c < 0;
3 for eachID z € E do
4: u < the initial ID of M on x;
5: if u = z then
6: c<c+1;
7. else
8: for j < 1,...,ido
9: nondeterministically choose v from a pool of the next IDs of u;
10: if v = z then
11: append z to the list;
12: c<«c+1;
13: terminate the check of z;
14: end if
15: end for
16: end if
17: end for
18: if c = r then
19: append “success” to the list;
20: else
21: append “failure” to the list;
22: end if

23: end procedure

Algorithm 10.3 The reachability testing algorithm

1: procedure REACHABILITY(u, i, r)
2 f < false;
3 run Enumeration(i, r);
4: for each ID z generated do
5: if u = z then
6: f <« true;
7 end if
8: end for
9: if the final output is “success” then
10: if f = true then
11: output “reachable”;
12: else
13: output “unreachable”;
14: end if
15: else
16: output “failure”;
17: end if

18: end procedure
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Algorithm 10.4 The extended reachability testing algorithm

1: procedure EXTENDED-REACHABILITY (i, i, 1)
2 f < false;
3 run Enumeration(i, r);
4: for each ID 7 generated do
5: if u = z or u is one of the next IDs of z then
6: f < true;
7: end if
8: end for
9: if the final output “success” then
10: if f = true then
11: output “reachable”;
12: else
13: output “unreachable”;
14: end if
15: else
16: output “failure”;
17: end if

18: end procedure

Algorithm 10.5 An extended counting

1: procedure EXTENDED-COUNTING(i, 1)
2: c <« 0;

3: for each ID u do
4: run Extended-Reachability(u, i, r);
5: if the outcome is “failure” then
6: output “failure”;
7: else if the output is “reachable” then
8: c<«c+1;
9: end if
10: end for
11: output c;

12: end procedure

For Extended-Reachability, since each element in R(i + 1) — R(i) is one
computation step away from an element in R (i), we run Enumeration to see if:

(a) u appears as a member of R(i)

(b) u follows from one of the elements of R(7) in one step

Like before, we check that the Enumeration program ends with “success.” For
Extended-Counting, we execute Extended-Reachability for all u € V.

The overall algorithm for L is Algorithm 10.6.
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Algorithm 10.6 A non-reachability testing algorithm

1: procedure NON-REACHABILITY(x)
2 r<1;
3 fori < 1,...,|V|| —1dor < Extended-Counting(i, r);
4 if the execution is a failure then
5: output “failure”;
6: end if
7: end for
8: u < the accept ID;
9: f < Reachability(u, |V, r);
10: if the execution is a failure then
11: output “failure”;
12: else if f is “reachable” then
13: reject x;
14: else
15: accept x;
16: end if

17: end procedure

This completes the proof. O

The NL = coNL proof is extendable to any space-constructible €2(logn)
function. This is because the numbers of calculated IDs are proportional to the space
the machine uses. We thus obtain the following result.

Corollary 10.3 For all space-constructible functions f(n) such that f(n) =
Q (logn), NSPACE] f (n)] = co—NSPACE[ f (n)].

10.5 Examples of Space Complexity Classifications

We now explore some representative problems of space complexity classes.
By following an idea similar to the proof of Theorem 10.2, we can show that the
validity testing of TM encodings requires only logarithmic space.

Proposition 10.2 The language {{(M) | M is a TM} is in L.

Proof Suppose we have a binary string, x, |[x| = n, as an input and want to test its
validity as a TM encoding. To simplify the test procedure, we can assume that the
encoding has a prefix:

0¥10710°1.

Here, k is the number of tapes, ¢ is the number of states, and s is the number of
symbols. We assume that the states numbered 1, 2, and 3 are the initial, the accept,
and the reject states, respectively. In addition, we assume that the first symbol is the
blank symbol. After the prefix, the transition table appears. The table has (g — 2)s*
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elements separated by 11 with each element taking the form:
04110711 - - - 0% 10%.

Here, ay,...,ar € {1,...,s}and by, ..., by € {1,2,3} with 1, 2, and 3 indicating
the head movements L, —, and R, respectively.

We will design a logarithmic space-bounded machine N that conducts the
correctness of x’s format. First, N marks log(n) cells on its work tapes to avoid
using more than log(n) space. Next, using a DFA without using space at all, N
checks whether the input x is in the correct format; i.e., x is a series of blocks of
Os with a block of 1 in between. If the input does not pass the check, the input is
not a valid encoding, so N rejects x. If the input passes the test, N extracts k, ¢,
and s in binary. Then, N confirms that x has (g — 2)s* entries in the transition table
and that each entry is in the correct format. This is where ingenuity is required to
execute in log(n). The main idea is to extract the components of each table entry
on the work tape using the binary representations of the components and then verify
that the components are in the required range; i.e., the symbol numbers are in [1, s],
and the head direction numbers are in [1, 3]. The encoding is invalid if the number
of entries differs from (¢ — 2)s*. Algorithm 10.7 describes how this is executed. O

Using the same argument, we can show the following results:

Proposition 10.3 The language

{{M,w) | MisaTM, and w is an input to M}
isin L.
Theorem 10.8 The following four languages are in NL:

1. Egis = {(M,0F,0% | M is a DFA, and the k-th and (-th states of M are
distinguishable}.

2. Eingist = {{M, oF, 0% | M is a DFA, and the k-th and ¢-th states of M are
indistinguishable}.

3. Eunique = {(M, ok Y | M is a DFA, and the k-th state of M is distinguishable from
all states of M with smaller indices}.

4. Efna = {(M,0%) | M is a DFA, and the k-th state of M is distinguishable from
all states of M with smaller indices, and is a final state}.

Proof

(1) We already know that the encoding check of a TM is executable in the
deterministic logarithmic space. Two states of M, p and ¢, are distinguishable
if, and only if, there is a string a such that exactly one of §(p, a) and §(g, a) is a
final state. If M has n states, the length of one such a can be no more than n. If
exactly one of p and q is a final state, the value of a can be €; otherwise, an NTM
can execute a pair of concurrent nondeterministic walks, one from p and the
other from ¢, for at most n steps. At each step, the machine nondeterministically
selects a symbol « from the alphabet, updates the two states using the symbol,
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Algorithm 10.7 A logarithmic-space validity test of a TM encoding

1: procedure VALIDITY-TEST(x)

2: n < |x|;

3 mark log(n) cells on each work tape;

4: check if the 1s appearing between Os are valid punctuations;
5: if the check fails then
6
7
8

reject x;
end if
extract k, g, s, blank, go, gacc, grej in binary;

if the extraction requires more space than marked then
10: reject x;
11: end if
12: secure space for counting up to (g — 2)s*.
13: if not enough space exists for counting then
14: reject x;
15: end if
16: move the input head to the start of the table;
17: c < 0;
18: while there remains a table entry do
19: while moving the input head to the right, extract, in binary, the components of the
entry;
20: if the number of components is not 2k then
21: reject x;
22: end if
23: if a symbol component is > s or a head direction component is > 3 then
24 reject x;
25: end if
26: c<«c+1;
27: if ¢ > (g — 2)s* then
28: reject x;
29: end if

30: end while
31: if ¢ < (¢ — 2)s* then

32: reject x;
33: end if
34: accept x;

35: end procedure

and then checks whether or not exactly one of the two is a final state. Thus, the
distinguishability problem is in NL.

(2) Since NL = coNL, the indistinguishability is in NL as well.

(3) An NTM can use the algorithm from (1) to test the distinguishability of the k-th
state from all the states with lower indices.

(4) An NTM can use the algorithm from (3) to test the distinguishability and then
test if the k-th state is a final state.

O

Exercises
10.1 Show that if 7 (n) is time-constructible, it is space-constructible as well.
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10.2 Show that {(M,0",0/) | M is a DFA and the i-th state and j-th state are
distinguishable} is in L.

10.3 Prove Theorem 10.1.

10.4 Show that for all integer constants ¢ > 1, (logn)¢ is space-constructible.
10.5 Show that for all rational constants ¢ > 1, [rn¢] is space-constructible.
10.6 Show that 2" is a space-constructible function.

10.7 Show that for all space-constructible functions f(n) and g(n), f(n) + g(n)
and f(n) x g(n).

10.8 Show that for all space-constructible functions f(n) and g(n) such that
f(n) = Q(n), f(g(n)) is space-constructible.

10.9 Prove Proposition 10.1.
10.10 Prove Theorem 10.5.

10.11 Show that the following language is in L:
{{M, 0k, 0¢, 0%) | M is a DFA, k and £ are no more than the state number of M,
and on the a-th symbol M transitions from the k-th state to the ¢-th state}.

10.12 Suppose a TM has two binary numbers, a = ay ---a,, and b = by - - - b, on
two separate work tapes. The numbers appear in the reverse order with a left-end
marker F and U as the right-end marker. In other words, the tapes’ contents are
Fap---aiuand by, ---bju. Show how to compute a x b in O (m + n) space.

10.13 Recall that a linear-bounded automaton is a single-tape TM such that the
input appears between left- and right-end markers, and the head does not move out
of the region between the end markers. Prove that the language an LBA accepts is
in DSPACE[n].

10.14 Show that {(M, N, i, j) | M and N are square Boolean matrices having the
same row and column numbers, and the (i, j) entry of M x N is true} isin L.

10.15 Prove Corollary 10.3.

10.16 Let f(n) = Qdogn). Show that if f(n) is space-constructible, f(n) is
constructible in time 26/

10.17 Let f(n) = Qogn). Based on the previous question, show that for all
positive integers ¢, both 2¢/ ™ and 2</™ £ (n) are time-constructible.

10.18 Let f(n) = w(logn). Based on the previous questions, show that for some
constant ¢, DSPACE[ f (n)] € DTIME[2/ ™ £ (n)].

10.19 Let L C 1* and is in DSPACE][ f (n)] for some f(n) = Q(logn). Show that
the set of binary integers ¢ such that 1’ € L is in DSPACE[ f (2")].

10.20 Prove that NL is closed under Kleene-star.
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10.21 Prove that NL is closed under union.

10.22 Prove that NL is closed under intersection.

Bibliographic Notes and Further Reading
Savitch’s Theorem is by Savitch [2]. The Immerman-Szelepscényi Theorem is by
the independent work of Immerman [1] and Szelepscényi [3].
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Chapter 11 ®
The Theory of NP-Completeness Qe

11.1 The Polynomial-Time Many-One Reducibility

The original motivation for the NP-completeness was to obtain a mathematical
characterization of NP and better understand the P vs. NP problem. Here, we
introduce the polynomial-time many-one reducibility.

11.1.1 The Definition

First, we present the definition of polynomial-time many-one reducibility, which
uses polynomial-time computable functions, as defined next.

Definition 11.1 (Polynomial-Time Computable Functions) Let ¥ and I" be
(possibly identical) alphabets. Let f be a function from X* to I'*. The function
f is polynomial-time computable if a polynomial time-bounded multi-tape TM M
with an output tape exists such that for all input x, M halts with f(x) written on the
output tape.

Definition 11.2 (Polynomial-Time Many-One Reductions) Let ¥ and I" be (pos-
sibly identical) alphabets. Let A € ¥* and B C I'*. A function f from X£* to I'* is
a polynomial-time many-one reduction from A to B if:

(i) f is polynomial-time computable
(i) Forallx € ¥*,x € A & f(x) € B.

If a polynomial-time many-one reduction exists from A to B, we say A is
polynomial-time many-one reducible to B and write A <}, B.
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When we speak of polynomial-time computability, we use the big-O notation,
which can simplify the polynomial we use with one in the form cx¢ + ¢, such that ¢
is a natural number. The constant ¢ in the polynomial cannot be 0 because a machine
needs to run for at least one step, even on an empty input.

11.1.1.1 Examples of Polynomial-Time Many-One Reductions

We now present an example of polynomial-time many-one reductions.

A Hamilton path in a graph G = (V, E) is an ordering of vertices [uy, ..., u,]
such that for each i between 1 and n — 1, (u;, u;4+1) € E. Put differently, a Hamilton
path [uj,...,u,] in G visits every vertex exactly once. Figure 11.1 presents an

example of a Hamilton path. The path appearing in thick lines connects the upper
left corner of the graph and its lower left corner.

A Hamilton cycle in a graph G = (V, E) is a sequence [uq, ..., uy,, u1] such
that [uq, ..., u,] is a Hamilton path and (u,, u;) is another edge of the graph.
Figure 11.2 presents an example of the Hamilton cycle. A graph having a Hamilton
cycle is Hamiltonian.

The search for a Hamilton path or cycle, if any, occurs in many practical
situations. We capture this search with decision problems.

Definition 11.3

1. HAMPATH = {(G, s, t) | the graph G has a Hamilton path from s to 7}.
2. HAMCYCLE = {{(G) | the graph G has a Hamilton cycle}.

Fig. 11.1 A Hamilton path. The left panel: a given graph. The right panel: a Hamilton path
between the vertex in the upper-left corner and the vertex in the lower-right corner. The thick
lines represent the edges of the path

Fig. 11.2 A Hamilton cycle. The left panel: a given graph. The right panel: a Hamilton cycle. The
path from Fig. 11.1 does not extend to a cycle because there is no edge between the paths’ two ends
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Suppose we map an arbitrary triple (G, s,t) for HAMPATH to a graph H
constructed from G by adding a new vertex u and connecting u with s and ¢.
Since u is connected to only s and ¢, H has a Hamilton cycle if, and only if, G
has a Hamilton path from s and . We augment the mapping by producing € if the
input is not a valid encoding. The mapping is computable in polynomial time. Thus,
HAMPATH <%, HAMCYCLE. Figure 11.3 shows the reduction.

Theorem 11.1 HAMPATH <, HAMCYCLE.

Using an idea similar to the reduction we have just constructed, we can build a
reduction going in the other direction (see Exercise 11.8).

Theorem 11.2 HAMCYCLE <? HAMPATH.

11.1.2 The Definition of NP-Complete Languages

The polynomial-time many-one reducibility is transitive; if A </ B and B <}
C, then A <[ C. Thus, the polynomial-time many-one reducibility naturally
induces a partial order among the languages in NP. The reducibility also induces
equivalence classes. A surprising fact is that NP contains an equivalence class such
that an arbitrary NP language is polynomial-time many-one reducible to an arbitrary
member of the equivalence class. In other words, every sequence of NP languages
ordered by <2 reaches this equivalence class. We call this equivalence class NP-

complete.

Definition 11.4 (NP-Complete) A language A is NP-complete if (a) A € NP and
(b) every language in NP is polynomial-time many-one reducible to A.

We call a language satisfying (b) NP-hard.

Fig. 11.3 A many-one reduction from the Hamilton path problem to the Hamilton cycle problem.
On the right panel, the big circle is the new vertex u. The dashed lines are the connections between
s and u and between ¢ and u
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Definition 11.5 (NP-Hard) A language A is NP-hard if every language in NP is
polynomial-time many-one reducible to A.

Thus, we can restate the definition of NP-completeness as:
A language A is NP-complete <= A € NP and NP-hard.

Note that NP-hardness differs from NP-completeness. For example, ACCEPTNTM,
the NTM version of ACCEPTTM, is NP-hard and undecidable. This means that
ACCEPTNTM cannot be NP-complete.

A key property of NP-complete languages is that they rise and fall together, as
we state next:

Proposition 11.1 The following properties are equal:

1. P=NP.
2. Some NP-complete language is in P.
3. All NP-complete languages are in P.

The NP-complete languages are closed under symmetric differences with any
finite set.

Proposition 11.2 Ler A be an infinite NP-complete language and S be a finite set.
Then AAS is NP-complete.

11.1.3 A Canonical NP-Complete Language

We previously stated that ACCEPTNTM is NP-hard. The polynomial time-bounded
version of ACCEPTNTM is NP-complete. Because it includes machine encoding, we
call it a canonical NP-complete language.

Definition 11.6 NTMCANONICAL = {{M, w, 0") | M is a multi-tape NTM, w is
an input to M, t > 1, and M on w accepts in ¢ steps for some computation path}.

Theorem 11.3 NTMCANONICAL is NP-complete.

Proof To show NTMCANONICAL € NP, think of a TM N that on input x, checks
if x = (M, w,0") for some M, w, and ¢, simulates M on w for at most ¢ steps
nondeterministically if the check passes, and accepts if, and only if, M accepts in
the simulation; N rejects if the check fails. We already know there is a polynomial-
time algorithm for the check. The simulation requires no more than |x| steps, so N
can be polynomial time-bounded.

To show that NTMCANONICAL is NP-hard, let A be an arbitrary language in
NP and M be a polynomial time-bounded NTM that accepts A. Let p(n) be a
polynomial bounding the running time of M. Let f be a function that maps each
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w to (M, w, 0P(*Dy For all w, w € A if, and only if, f(w) € NTMCANONICAL.
Since M is fixed, f is polynomial-time computable. This proves the theorem. O

11.1.4 Polynomial-Time Witness Schemes

From the canonical NP-complete problem, we draw a witness-based characteri-
zation of NP, the polynomial-time analog of the recursive witness scheme from
Sect. 6.4.2.

Definition 11.7 Let L € X* be a language. A polynomial-time witness scheme
is a pair (p(n), A) such that p(n) is a polynomial, A € P, and for all x € X*:

xelL < Ayex=PF)[(x,y) e Al

We call A a witness language of L, and each string y satisfying the condition on
the right-hand side for x a witness for x’s membership in L.

Intuitively, if A is a witness language of L, then for any string x € X*, we can
interpret the membership question of x in L as the question of whether or not there
is a witness for x € L.

Theorem 11.4 A language L is in NP if, and only if, L has a polynomial-time
witness scheme.

Proof Let L C X* be a language in NP. Let M be a polynomial time-bounded
single-tape NTM deciding L. Let g(n) be a polynomial bounding the running time
of M. We can assume that each ID of M has two possible IDs in the next step. Also,
we can assume that once entering g,cc, M remains in the same ID indefinitely.

We define the language A as follows:

A={{x,Ci#---#Cyqx)) | C1, ..., Cyqx| are IDs covering g (|x|) tape cells, Cy is
the initial configuration of M on x, Cy(jx) is an accepting ID of M, and for all i
such that 2 < i < g(]x|), C; is one of the possible next IDs of C;_1}.

Clearly, A is in P. There is a polynomial p(n) = O(g(n)?) such that the second part
of the pair has a length of < p(n). Thus, (p(n), A) is a polynomial-time witness
scheme for L.

Conversely, suppose a language L has a polynomial-time witness scheme
(p(n), A). In that case, we can construct an NTM that, on input x, nondetermin-
istically selects y, |y| < p(|x|), and accepts if (x, y) € A (and rejects otherwise).
The TM witnesses that L € NP. |
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11.2 The Satisfiability Problem (SAT)

The first known NP-complete problem is the satisfiability problem, which we can
derive from the generic polynomial-time witness scheme from the previous section.

11.2.1 The NP-Completeness of SAT

Recall that a propositional formula with variables is satisfiable if a value assignment
exists for the variables with which the formula’s value is true. Let ¢ be a Boolean
formula with variables xi, ..., x,. We encode ¢ using an alphabet having seven
symbols: #, ;, (), —, V, and A. In the encoding, we replace each occurrence of
x; with #, surround the formula with a pair of parentheses, and attach #"; in the
encoding. For example, we encode the formula:

—(=(rr A (mx2 AX3) A (X Vo VX3))) A (X V Txg)
into the string:
H#i (@ A (A H#HHED) A (S V #EV #ED) A (VD).
We can turn the seven-symbol encoding into a binary encoding by replacing each
symbol with a unique three-bit number.
Definition 11.8 SAT = {{(¢) | ¢ is a satisfiable Boolean formula}.
We prove:

Theorem 11.5 SAT is NP-complete.

Proof Think of an NTM that, on input ¢, nondeterministically generates a truth
assignment to ¢ and accepts if the assignment satisfies the formula. The machine
decides SAT and can run in polynomial time. Thus, SAT € NP.

To prove that SAT is NP-hard, let L € NP and (p(n), A) be the witness scheme
from the proof of Theorem 11.4:

A= {(x,Ci#---#Cyx)) | C1, ..., Cy(x) are IDs covering g (|x|) tape cells, Cy is
the initial configuration of M on x, Cy(|x|) is an accepting ID of M, and for all i
such that 2 <i < g(Jx|), C; is one of the next IDs of C;_1}.

We can assume that M does not move its head to the left when the head is on the
leftmost cell.

Suppose we want to reduce the membership of x in L to a formula. Let n = |x].
We can encode each ID using O (g (n)) variables.

* bra;.,1 <t <q(n)—1,and c = 1, 2: The variable indicates that the branch M
has chosen at step ¢ is c. For each ¢, exactly one of bra;,; and bra; » must be true.
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e celyjpn, 1 <t <qn),1<j<gqm),and1 <h < |T|: The variable indicates
that the cell at position j at step ¢ is the k-th symbol. For each combination of ¢
and j, cel; j j is true for exactly one value of /.

e sta;p,1 <t <g(n),and 1 < h < ||Q|: The variable indicates that M’s state at
step ¢ is the A-th state. For each ¢, sta;  is true for exactly one h.

* pos; j, 1 <t, j < q(n): The variable represents the head position of M. For each
1, pos,_ ; is true for exactly one j.

¢ is built from these variables and represents (x, C1#---#Cy(,)) € A. We build ¢
as follows:

First of all, for each variable group, we need to establish that exactly one variable
in the group has the value frue. We can express the uniqueness using a simple
formula. For an arbitrary set of variables yi, ..., ¥, m > 2, the condition that
exactly one of the members is true can be expressed as:

LV V) AV =) A A CYi—1 VY T Ym).

The number of literals in the formulais m +m(@m — 1)/2 = m@m + 1)/2.

Next, we construct a formula representing that when + = 1, the variables
represent the initial ID. sta; , = true for the index & representing the initial state.
For each j, cely,j ;, = true for the symbol appearing in cell j initially. Additionally,
pos; | = true. The representation of the initial ID is the conjunction of all of these
conditions. The number of literals here is g (n) + 2.

Next, we construct a formula representing that at step t = ¢(n), the ID is
accepting. The formula is single literal stag(,),,, where h is the index of gacc. The
number of literals here is 1.

Finally, we construct a formula representing that C;;; is the next ID of C;
corresponding to the nondeterministic choice ¢ at step ¢. If the head is on the j-
th cell at step 7, the symbol in the cell j # j is the same between steps 7 and ¢ + 1.
This relation is expressible as:

pos; ;j vV ((cely, jn v —celip1,jn) N (—cely jn Vo celir jn).
This is equivalent to:
—pos; j — (cely jn = celit1,j,n)-
If pos, ; = true, for each h such that 1 < h < |||, the value of celryi jn
depends on bra,, cel; j j, and sta,. We can express this relation as the conjunction

of subformulas of the form:

pros,’j = true, cel; j , = true, bra, . = true, and sta, , = true, then cel, 1 j .
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This is equivalent to a five-literal disjunction:
—pos; j vV —cels jn v —brag vV —stag p NV oceliyy o

The combinations of &, ¢, r, and h’ are taken from the transition function of M.
There are 2|| Q||||I"|| combinations for each ¢ and j.

Similarly, we construct the state and head position formulas at step ¢ + 1. The
number of literals required for the expression is:

3-(g(n) — 1) -q(n) - (5-2[ QT = O(g(n)).

Here, 3 represents the three distinct formula groups, g (n) — 1 represents the number
of choices for ¢, g(n) represents the number of choices for j, and 5 represents the
size of the disjunction.

Thus, the entire formula has O (g (n)?) literals, so the formula is computable in
polynomial time. Because of the construction design, the formula is satisfiable if,
and only if, M accepts L.

This proves the theorem. O

11.2.2 NP-Complete Variants of SAT

We now present variants of the satisfiability problem that are NP-complete.

11.2.2.1 The CNF Satisfiability

A well-known variant of the NP-complete satisfiability problem is the CNF
satisfiability problem.

A Boolean formula is in the conjunctive normal form (for short, CNF) if it
is a conjunction of disjunctions such that each disjunction unites variables or their
negations. In CNF formulas, the negation appears only before a variable. We call
the combination of a negation and a variable a negative literal. As opposed to this,
we call a variable not accompanying a negation a positive literal. We then can say
that a CNF formula is a conjunction of disjunctive clauses, in which each term is a
literal.

For example, consider the formula:

XATYAZA(XV YV AKXV -y

This is a CNF formula where the first three terms are disjunctions of single literals.
By adding extra parentheses, the formula is equivalent to:

OAEDA@DQA(XVYV ARV Y.
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Next, we define a special SAT, which restricts the formula to a CNF formula.
Definition 11.9 CNESAT is the set of all satisfiable CNF formulas.

The formula we constructed in the proof of Theorem 11.5 is already in the
conjunctive normal form. So, we have:

Theorem 11.6 CNFESAT is NP-complete.

11.2.2.2 3SAT

We can further restrict the format of the NP-complete formula. We call a CNFSAT
where each disjunctive clause has at most three literals a 3CNF formula.

Definition 11.10 3SAT = {(¢) | ¢ is a satisfiable 3CNF formula}.

It is possible to convert an arbitrary CNF formula into a 3CNF formula. For a
clause (u1 Vv --- V uy) such that k > 4, we introduce a new variable v and change
the clause to a formula:

WVusV---Vu) A(—vVvVur Vuy) A(—up Vo)A (—uy V).

We can satisfy this formula by satisfying (u1 V - - - V uy) and assigning the value of
u1 V up to v. This change reduces the number of literals in the first clause from & to
k — 1. By successively applying the modification, we can generate a 3CNF formula
equivalent to the original. The modification requires k — 3 additional variables, (k —
3) clauses with three literals, and 2(k — 3) clauses with two literals.

Once the number of literals becomes < 3 for all clauses, we can adjust the
number to exactly 3. For a clause with just one literal, (#), we can substitute the
clause with a formula:

uvUVIVVR)AW@WNVYLV—D)A @Y -V Vo)A (u Vv —v Vo).

Here, v| and v; are new variables. Satisfying this formula requires setting the value
of u to true.

For a clause with just two literals, (# V u’), we can inflate the clause by replacing
it by its copies, introducing a new variable, and inserting the variable positively into
one and negatively into the other. If v is the new variable, the formula that replaces
the clause is:

wvu VoA @vu v-v).

Satisfying this formula requires setting the value of u Vv u’ to true.

The conversion is easy to make, and it increases the size of the formula only by
a constant factor. This means a polynomial-time many-one reduction exists from
CNFSAT to 3SAT.
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Thus, we have proven:

Theorem 11.7 3SAT is NP-complete, even if the number of literals in each clause
must be three.

Note that the construction of a Boolean formula representing an accepting
computation applies not only to single-tape TMs but to any multiple-tape TM.
To extend the proof technique to a situation where the machine has multiple
tapes, we introduce variables representing the contents and the head position for
each additional tape. The set of subformulas describing the machine’s permissible
actions becomes more complex since each computation step handles all the tapes
simultaneously.

11.2.2.3 NAE-SAT

An assignment for a CNF formula is a not-all-equal assignment (or an NAE
assignment) if, for each clause, it satisfies one literal and fails to satisfy another.
A variant of 3SAT is NAESAT, which asks if a 3CNF formula has a not-all-equal
assignment.

Theorem 11.8 NAESAT is NP-complete.

Proof Showing NAESAT € NP is easy; we leave the task of proving the member-
ship to the reader.

To show that NAESAT is NP-hard, let ¢ be an arbitrary 3CNF formula, where
each clause has exactly three literals. We modify ¢ into a 4CNF formula ¢’ by
turning each clause of the form (o v B Vv y) into:

(@VBVYyVEHA@VBVYVSI.

We use the same § for all the clauses.

We claim that ¢’ has an NAE assignment if, and only if, ¢ has a satisfying
assignment. To prove this claim, suppose A is a satisfying assignment of ¢. Suppose
we extend A to A’ by adding w = false. Then A’ is an NAE assignment of ¢’.

Conversely, if A’ is an NAE assignment of ¢’ such that A’(w) = false, the
remainder of A’ becomes a satisfying assignment of ¢. Additionally, if A’ is an
NAE assignment of ¢’ such that A’(w) = true, by switching between x and x for
all variables x, we get to the same situation. Thus, the complementary assignment
of A’ is a satisfying assignment of ¢.

Now, we construct a new formula ¢” by turning each 4-literal clause (x Vy Vv z Vv
w) into:

uUuvxvy)yA@vzvuw).

Here, the variable u is not shared with other clauses. We can verify that from each
NAE assignment to the 4-literal clause, we can construct an NAE assignment to the
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pair of 3-literal clauses (and vice versa) as follows:

* Suppose A is an NAE assignment to the four variables. If the assignment is true
for both x and y in A. Then, the assignment to z or the assignment to w is false.
We can assign false to u. Then the assignment to the two 3-literal clauses is an
NAE assignment.

* Suppose A is an NAE assignment to the four variables. If the assignment is true
for both z and w in A. Then, the assignment to x or the assignment to y is false.
We can assign true to u. Then the assignment to the two 3-literal clauses is an
NAE assignment.

* If B is an NAE assignment to the two 3-literal clauses. If u = true in the
assignment, then either x or y is false, and either z or w is true. Thus, the
assignment to the four variables other than u is an NAE assignment to the 4-
literal clause.

* If B is an NAE assignment to the two 3-literal clauses. If u = false in the
assignment, then either x or y is true, and either z or w is false. Thus, the
assignment to the four variables other than u is an NAE assignment to the 4-
literal clause.

receive true in

Our reduction outputs ¢” from ¢. If ¢ has n variables and m clauses, ¢” has
n + m + 1 variables and 4m clauses. We see that the construction can be carried out
in polynomial time. Thus, NAESAT is NP-complete. O

11.2.3 Some Complete Problems for coNP

Since coNP is the complementary class of NP, the unsatisfiability problem about
Boolean logic is complete for coNP.
We define UNSAT as the set of all 3CNF formulas that are unsatisfiable.

Corollary 11.1 UNSAT is <k -complete for coNP.

Let ¢ be a Boolean formula. Let ¢ be the negation of the formula. ¢ can be a
mirror image of ¢, where:

» Every positive literal of ¢ appears as a negative literal
» Every negative literal of ¢ appears as a positive literal
* Every V of ¢ appears as an A
* Every A of ¢ appears as an V

For every truth assignment A of ¢, A satisfies ¢ if, and only if, A fails to satisfy
¢°. Thus, the unsatisfiability problem is the question of whether or not all the truth
assignments are satisfying. If every truth assignment is satisfying, the formula is a
tautology.

We define TAUTOLOGY as the set of all 3CNF formulas that are unsatisfiable.



274 11 The Theory of NP-Completeness

Corollary 11.2 TAUTOLOGY is <E-complete for coNP.

We can develop another tautology problem. Let ¢ be a CNF formula. Then, ¢°,
the negation of ¢, is a disjunction of conjunctions. Every satisfying assignment
of ¢ is a non-satisfying assignment of ¢¢. The formula in this format is called a
disjunctive normal form formula. Like 3CNF formulas, 3DNF formulas are DNF
formulas where each clause has three literals.

We define DNFTAUT as the set of all DNF tautologies and 3DNFTAUT as the set
of all 3DNF tautologies.

Corollary 11.3 DNFTAUT and 3DNFTAUT are <k -complete for coNP.

In general, for a language A in a class C containing P, if every language in C is
<P -reducible to A, we call A C-complete.

11.3 Fundamental NP-Complete Problems

We have established a foundation for NP-completeness. We can now use this
foundation to prove the NP-completeness for other problems.

11.3.1 The Clique Problem

The first problem we show to be NP-complete is the clique problem.

An undirected graph is a clique if an edge exists between every pair of vertices
(see Fig. 11.4).

The clique problem asks whether an undirected graph contains a clique of a
specific size.

Definition 11.11 CLIQUE = {(G, k) | G has a k-clique}.

We assume that the encoding of G and k takes the form:
0*tayy - - a#- - #an -+ ~ann#0k.
Here, n is the number of vertices of the graph, and (a;;) is the adjacency matrix of

the graph G. In other words, for all i and j such thati # j, a;; = 1 if an edge joins
the i-th and j-th vertices; a;; = O otherwise. Since the size of the largest possible

4

Fig. 11.4 Examples of cliques. From the left: a 1-clique, a 2-clique, a 3-clique, a 4-clique, and a
5-clique
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clique of an n-vertex graph is n, regardless of the use of binary or unary encoding
for k, the encoding length of (G, k) is O1n?).
Now, we prove that the problem is NP-complete.

Theorem 11.9 CLIQUE is NP-complete.

Proof We prove the NP-completeness of CLIQUE in two steps. The first step is to
show that CLIQUE is in NP. We do this by way of Algorithm 11.1. As we observed
above, a TM can verify the validity of the input w and extract the graph G and
the integer k in O (Jw|2) steps. Once this verification is complete, the machine can
nondeterministically select vertices of G; see if k vertices have been selected and
if every pair of vertices in the chosen set has an edge. If the set passes the test, the
machine accepts it; if the set does not pass the test, the machine rejects it. The algo-
rithm decides correctly and requires on?) = 0(|w|2) steps. Thus, CLIQUE € NP.

Algorithm 11.1 A TM that recognizes CLIQUE

1: procedure CLIQUE(w)

2: check the validity of w as an encoding of a graph and an integer;
3 if w is valid then

4 extract the graph G = (V, E) and the integer k > 1;
5: else
6.

7

8

reject w;
end if
: extract the number of vertices, n, of G;
9: fori < 1,...,ndo
10: nondeterministically select a Boolean value b;;
11: end for
12: compute the number, c, of i such that b; = true;
13: if ¢ < k then
14: reject w;
15: end if
16: fori < 1,...,ndo
17: for j < 1,...,ndo
18: if i # j and the adjacency matrix of G has 0 in row i and column j then
19: reject w;
20: end if
21: end for
22: end for
23: accept w;

24: end procedure

The second step is to show that CLIQUE is NP-hard. We only need to construct
a <[ -reduction from an arbitrary known NP-hard language to CLIQUE. We select
3SAT for the purpose.

Suppose ¢ is a 3CNF formula of n variables and m clauses, each having three
literals. We construct a graph G with 3m vertices. The 3m vertices match the 3m
literals in ¢. We then join every pair of vertices from two different clauses unless
one literal complements the other (such as x and Xx). The required size for a clique
is m; that is, the output of the reduction is (G, m). Figure 11.5 shows an example
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Fig. 11.5 An example of a T y w
graph constructed for
reducing 3SAT to CLIQUE

T ) w

where the formula is:
EXVYVOAXVIVIODAETVIVWAKXVYVwWw).

We now show that G has an m-clique if, and only if, ¢ is satisfiable.

First, suppose the formula ¢ is satisfiable. We select one satisfying assignment
of ¢ and then, from each clause, select one literal that this satisfying assignment
satisfies. There are exactly m literals, so the number of nodes we choose is m. No
two of the chosen vertices are complementary, so every pair is joined by an edge.
This means that the m vertices we choose form an m-clique.

Next, suppose the graph has an m-clique. Since no edge joins vertices
representing the same clause, the clique must pick one vertex from each clause.
Since the edge cannot join two complementary vertices, for each variable x, at
most one vertex in {x, X} appears in the clique. We construct an assignment A by
selecting, for each variable x, A(x) = true if a vertex representing x is in the clique,
and A(x) = false otherwise. The assignment A is an extension of what the clique
represents, and it satisfies ¢.

Constructing (G, m) from ¢ is straightforward and can be done in polynomial
time. Thus, 3SAT <& CLIQUE. o

11.3.2 The Vertex Cover Problem

Next, we study the problem VERTEXCOVER.
A vertex cover of an undirected graph G = (V, E) is a set S € V such that for
all edges (u, v) € E,uorvisin S. Figure 11.6 shows an example of a vertex cover.
The vertex cover problem asks whether or not a graph has a vertex cover of a
specific size (or smaller).

Definition 11.12 VERTEXCOVER = {(G, 0%) | G is an undirected graph, k < n
is an integer, and G has a vertex cover with a cardinality of < k}. Here, n is the
number of vertices in G.
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N

)

Fig. 11.6 A graph and one of its vertex covers. The right panel shows a vertex cover with eight
graph vertices in the left panel. The double circles indicate the elements of the cover

We know that k& < n because the vertex set of a graph is a vertex cover.
Theorem 11.10 VERTEXCOVER is NP-complete.

Proof As with the proof for Theorem 11.9, this proof consists of showing
that VERTEXCOVER € NP and showing VERTEXCOVER is NP-hard. For
VERTEXCOVER € NP, we can use an algorithm similar to the one we used for
CLIQUE.

Algorithm 11.2 A TM that recognizes VERTEXCOVER

1: procedure VERTEX-COVER(w)

2 check the validity of w as an encoding of a graph and an integer;
3 if w is valid then

4: extract the graph G = (V, E) and the integer k > 1;

S: else

6: reject w;

7 end if

8: extract the number of vertices, n, of G;

9: if k > n then

10: reject w;

11: end if

12: fori < 1,...,ndo

13: nondeterministically select a Boolean value b;;
14: end for

15: compute the number, ¢, of i such that b; = true;
16: if ¢ # k then

17: reject w;

18: end if

19: fori < 1,...,ndo

20: for j < 1,...,ndo

21: if (i, j) € E and both b; and by, are false then
22: reject w;

23: end if

24 end for

25: end for

26: accept w;

27: end procedure
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Since k < n, if w is a valid encoding, its length is @(nz). The double loop
with which the machine conducts the verification requires O (n?) time, and so the
running time of the algorithm is 0n?) = O(jw|"d). Thus, the algorithm witnesses
that VERTEXCOVER € NP.

To show that VERTEXCOVER is NP-hard, let ¢ be an instance of 3SAT with n
variables xi,...,x, and m clauses, C; = (A;1 VA2V A;3),1 < j < m. We
construct a graph G = (V, E) where |V| = 2n + 3m and e|| = n + 6m edges. In
addition, we set k = n + 2m. The vertices of G are:

xi,1 and x; » for each i such that 1 <i <n and
aj1,aj2,and aj3 foreach j suchthat 1 < j < m.

The edges of E have the following groups:

* (xi1,x;2) foreachi suchthatl <i <n

* (aj1,aj2),(aj2,a;3),and (a;3,aj,) foreach jsuchthat1 < j <m

* (ajp,xi1)foreachi, j,and hsuchthatl <i <n,1<j<m,1<h<3,and
Aj.n 1s the literal x; and

* (ajn,xi2) foreachi, j,and h such that 1 <i
Aj,n 1s the literal x;

IA

n,1 <j<m,1<h<3,and

Figure 11.7 shows an example of this. The formula is:
EXVYVOAXVIVIOAETVIVW)AKXVYVw).

We claim the graph has a vertex cover with a cardinality of n + 2m if, and only
if, ¢ is a satisfiable formula.

Fig. 11.7 A vertex cover instance. The top vertices correspond with the literals, and the bottom
triangles correspond with the clauses. The dashed lines represent the connections between the
literal vertices and their appearances
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For each i, covering (x; 1, x; 2) requires placing one of x; ; and x; » in the vertex
cover. Covering the triangle among a; 1, a;j 2, and a; 3 requires minimally placing
two in the vertex cover. Since the cardinality of the vertex cover must be at most
n + 2m, we know that we must select exactly one from x; | and x; » for each i, and
exactly two from a; 1, aj 2, and a; 3 for each j. Each of the triangle vertices has
one edge between an x vertex. Let us pick a triangle (a, a’, a”). Let x, x’, and x”
be the x vertices on the other end; i.e., we have edges (a, x), (a’, x'), and (a”, x”).
To cover all three edges under the maximum size constraint, we must place one of
x,x’, and x” in the vertex cover (say, x) and place @’ and a” in the vertex cover.
Figure 11.8 demonstrates this idea.

Suppose the vertex selection is possible in this manner. The chosen x vertices can
be viewed as a truth assignment, and the edges from the triangle vertices connecting
to the x vertices indicate the literals satisfied by the assignment. This means that the
formula is satisfiable.

Next, suppose ¢ is satisfiable. Select one satisfying assignment A of ¢. From
A, we can construct a vertex cover. We choose vertices from the x vertex groups
corresponding to the truth assignment. We exclude one satisfied literal from each
triangle and select the remaining two. The cover has n + 2m vertices.

It is not difficult to see that we can construct G from ¢ in time O (]¢|?) since
n 4+ 2m = O(|¢]). Thus, VERTEXCOVER is NP-hard. |

11.3.3 The 3-Coloring Problem

For an integer k, the k-coloring problem is the problem of deciding, given a graph
G and a set of k colors C, if a color can be assigned to G’s vertices so that for each
edge (u, v) of the graph, u# and v have different colors. 3-coloring is the k-coloring
problem for £ = 3.

We define 3COLOR as the language of all graphs having a 3-coloring.

Fig. 11.8 The local @ »

connection surrounding a N ’
triangle N ’

[
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Fig. 11.9 A 3-coloring instance generated from an instance of NAESAT. The graph has one more
vertex than the graph for VERTEXCOVER. The extra vertex appears at the top. The top vertex is
adjacent to all assignment vertices

Theorem 11.11 3COLOR is NP-complete.

Here is a rough outline of the proof. Suppose we apply the reduction from 3SAT
to VERTEXCOVER (as appearing in the proof of Theorem 11.10) to an instance of
NAESAT. The reduction generates the same structure as in the VERTEXCOVER. We
add one vertex to the graph and connect the new vertex to the assignment vertices for
selecting between assignments in VERTEXCOVER. The resulting graph is Fig. 11.9.
We can show that the graph has a 3-coloring if, and only if, the formula has an NAE
truth assignment. We leave the rest of the proof to the reader (see Exercise 11.12).

11.3.4 The Hamilton Path Problem

Here, we prove that HAMPATH is NP-complete.
Consider the following nondeterministic algorithm to show that HAMPATH € NP
(Algorithm 11.3).
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Algorithm 11.3 A TM that recognizes HAMPATH

1: procedure HAMILTONIAN-PATH(w)

2 check the validity of w as an encoding of an instance of HAMPATH;
3 if w is valid then

4: extract the graph G = (V, E), the start vertex s, and the end of ;
5: else
6

7

8

: reject w;
: end if
R extract the number of vertices, n, of G;
9: fori < 1,...,ndo
10: nondeterministically select an integer «; between 1 and n;
11: end for
12: if uy # s oru, # t then
13: reject w;
14: end if
15: fori < 1,...,ndo
16: for j < 1,...,ndo
17: if u; =i then
18: break the internal loop;
19: end if
20: end for
21: if the internal loop did not break then
22: reject w;
23: end if
24: end for
25: fori < 1,...,n—1do
26: if (#;, u;+1) is not in E then
27: reject w;
28: end if
29: end for
30: accept w;

31: end procedure

Note that the algorithm verifies that the sequence [u1, ..., u,] generated is one
from s and ¢, visits each vertex at least once, and has an edge between each
neighboring pair of vertices. If the sequence satisfies the criteria, then, since n is
the number of vertices, the sequence visits each vertex exactly once and thus is a
Hamilton path from s to . The verification happens via rejecting any sequence that
fails to satisfy any criterion.

To determine that HAMPATH is NP-hard, we use VERTEXCOVER. Let (G, 0F) be
an instance of VERTEXCOVER. Let G = (V, E).

We create a 12-vertex graph for each edge e = (u, v) in E. The 12-vertex graph
consists of two parallel straight lines, with six vertices on each side. The sixth
vertices are sequentially numbered from 1 to 6 on each side. Then, we connect the
first on each side with the third on the other. We also connect the fourth on each side
with the sixth on the other (see Fig. 11.10). In many NP-completeness proofs, we
use a structure that forces a specific action, traversal, assignment, etc., under some
constraints, and we call such a structure a gadget.
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(e,u,in) (e, u, out)

(e,v,in) (e, v, out)

Fig. 11.10 The Hamilton path gadget and its three Hamilton-path traversals

In the figure, the top panel is the 12-vertex gadget. The two parallel series appear
as the top and bottom six-vertex lines, with the ends on the left representing the entry
points, and the ends on the right representing the exit points. In our construction,
each gadget’s middle eight points (the second through the fifth on both sides) have
no other connections. This means that each Hamilton path that traverses the gadget
must traverse it in one of the three possible ways, as the bottom panel of the figure
shows. Let us consider the top line as the vertex u of the edge e = (u, v) and the
bottom line as the vertex v of the edge. The three traversals can be interpreted as
placing only u in the vertex cover, placing only v in the vertex cover, and placing
both u and v in the vertex cover, respectively.

We introduce vertices s, . . ., g+ additionally. Foreachu € V,leteq, ..., en
be an enumeration of all the edges one of whose endpoints is u. We then connect
the m gadgets corresponding to the m edges by simply joining the exit vertex on the
u side of e¢; and the entry vertex on the u side of e;; with an edge for all i such
that 1 < i < m — 1. We also join s; with the entry point of the u side of e; for
all j such that 1 < j < k and the exit point of the u side of ¢,, for all j such that
2<j<k+1

This completes the construction. Let us call this graph H. We claim that H has a
Hamilton path between s; and si if, and only if, G has a k-vertex cover.

We present how this instance of the Hamilton path problem looks like using a
simple square with four vertices and four edges (see Fig. 11.11). By selecting two
vertices diagonally opposite each other, we can construct a two-vertex cover. We
thus set the value of & to 2.

As we have seen before, the Hamilton path problem is polynomial-time many-
one reducible to the Hamilton cycle problem. By employing an algorithm very close
to the one from Algorithm 11.3, we can show that the latter problem is in NP. The
observations lead to the following result.

Corollary 11.4 HAMCYCLE is NP-complete.
Since HAMCYCLE <% HAMPATH (Theorem 11.2), we have the following result.

Corollary 11.5 HAMPATH is NP-complete.
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(e2,d,in)

(e1,a,in)

(627 d7 Zn)

Fig. 11.11 Conversion to HAMPATH to VERTEXCOVER. The top panel is a graph for which we
need to find a vertex cover. For this instance, the edges can be covered with two vertices. Two
choices exist for the two vertices: a and d or b and c. The middle panel is the graph generated. The
two vertices labeled s, (one on the left and the other on the right) are identical. The bottom panel
is a Hamilton path representing a solution to the vertex cover problem, where the two end points
of a required path are a and c. The dashed line represents the connection between the two identical

nodes labeled s>
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11.3.5 NP-Completes Problems About Integers

Some NP-complete problems are concerned with organizing integers.

The subset sum problem is the problem of deciding, given a list of positive
numbers ay, . . ., a, and a positive number T, whether or not there is a sublist from
the list whose total is equal to 7'. As a set, the listay, ..., a,, is a multi-set; any value
can appear multiple times on the list. For example, given a list [1, 2, 2, 7, 10, 25, 9],
and a target of 14, the answer to the question of the problem is in the affirmative,
since 2 + 2 + 10 = 14; if the target becomes 6, the answer is in the negative.

We define SUBSETSUM as the set of all subset sum problem instances with
affirmative answers. It is easy to see that the problem is in NP. Given an instance,
consider nondeterministically deciding whether to use each number on the list in the
sum and then testing whether the total of the chosen numbers is equal to the target.
It is possible to implement the algorithm on an NTM so that it runs in polynomial
time.

Let o = C1 A --- A Cy, be an instance of 3SAT with variables xp, ..., x,. We
introduce four sets of quantities ay, ..., an, b1, ..., by, C1, ..., cm,and dy, ..., dy,
as follows:

o For each i such that 1 < i < n, the value of @; is 10"1i~! plus the sum of
100711 < J < m, such that the literal x; appears in the clause C;.

o For each i such that 1 < i < n, the value of b; is 107+i~! plus the sum of
100711 < J < m, such that the literal —x; appears in the clause C;.

* Foreach jsuchthatl < j <m,c; = 107! andd; =2- 1071,

We define 7 = 74 =1 107 + 4 Y7 10771,

We claim that ¢ is satisfiable if, and only if, the instance ay, ..., d;, (i.e., the list
of the 2n + 2m numbers) with the target T is a positive instance of the subset sum
problem. To see how the claim holds, we use the power-of-10 denominations and
examine both the numbers on the list and the total. Every number in the 2n + 2m
number list has a 0 or a 1 at each position. For each position i among the lowest m
positions, exactly five numbers have a 1 at that position. Three of the five correspond
to the literals of the clause. The remaining two come from ¢; and d;. For each of the
remaining n positions, only two numbers have a 1 at that position. The total of the
numbers is 2 Zm+n '10i+6 e =1 10/=1, and there is no chance for these numbers
to produce a carry. Thus, the target T is ach1evable by selecting exactly one from
a; and b; for each i and some c;s and d;s. We note that for each of the lowest m
positions, there can be a maximum of two contributions using ¢; and d;. Thus, to
achieve T, the combinations of @; and b; must be such that each of the lowest m
positions has 1, 2, or 3. To raise 1, 2, and 3 to 4 at a position j is by adding ¢; +d;,
dj, and c;, respectively. If the value at position j is 0, since ¢; + d; has only 3 at
the position, the value cannot go up to 4.

From these observations, we conclude that 7 is achievable if a truth assignment
of ¢ satisfies at least one literal for each clause. We have thus proven the following
theorem.
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Theorem 11.12 SUBSETSUM is NP-complete.

Here is an example. Let
=@ VxX2VX3)AX2VX3VIH)ARXIVX2VIHA X VIV XA X VISV X4).

The formula has a few satisfying assignments. One of themis x| = x2 = x3 = x4 =
true. Summing a1, az, a3, and a4 together yields the decimal 111112122. Adding cs,
ds, ds, c3, d3, da, and d to the partial sum yields the target 111144444 in decimal.
(see Fig. 11.12).

11.3.5.1 The Partition Problem

Partition is the problem of computing, given a list of positive integers ay, . .., dp,
a split of the m numbers into two groups so that the difference between the total
of one part and the total of the other part is the smallest. We are interested in the
computational complexity of decision problems so that we can cast the computation
problem as a decision problem. PARTITION is the set of all integer lists (ay, ..., an)
having a split (/, J) of the indices {1, ..., m} such that

Zai = Zaj.

iel jeJ
Theorem 11.13 PARTITION is NP-complete.

Fig. 11.12 The subset sum

instance representing ai:
@ =(x1VxaVXx3) AV bp:
X3 VI ARV XVIE) A a:
(X1 VX2 VX)) ATV I3V X4) by:

5 Cy C3 C Cy
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We can prove this theorem by reducing NAESAT to SUBSETSUM and removing
all d;s. Alternatively, we can reduce SUBSETSUM to PARTITION by adding two
integers U and V, where U = V + D and D is the absolute value of the sum of all
the integers on the list minus the target. We leave the task of proving this theorem
to the reader (see Exercise 11.11).

11.3.5.2 The Knapsack Problem

Knapsack is the problem of packing items in a sack with a weight capacity so that

the total weight of the items does not exceed the sack’s capacity and that the total

value of the sack is greater than or equal to an amount. Here, we use a pair of positive

integers (w, v) to represent an item, where w is the weight and v is the item’s value.
We define the language KNAPSACK as follows:

KNAPSACK = {{w1, v1, ..., wr, vg, W, V) | k> 1, wi, vy, ..., wg, v, W,V €N,
and forsome I C {1,...,k}, > ;c;wi <Wand ) ,.;v; >V}

Theorem 11.14 KNAPSACK is NP-complete.

We can show the NP-hardness of KNAPSACK by reducing SUBSETSUM. We
leave the proof to the reader (Exercise 11.14).

11.3.5.3 The Scheduling Problem

Scheduling (within intervals) is the following problem:

We have a list of tasks 11, . . ., 1. For each i, the #; has its release time r;, deadline
d;, and length to complete /;. All the quantities are integers. The task is to find out if
we can assign an integer start time s; to each task #; so that the following conditions
are met:

» Each task starts on or after its release time and is completed by its deadline; i.e.,
foralli suchthatl <i <k,r; <s;ands; +1; <d;.

* No two tasks overlap (except for starting one at the time the other is complete);
ie,foralliand j suchthat1 <i < j <k, eithers; +1; <sjors; +1; <s;.

Theorem 11.15 SCHEDULING is NP-complete.

We can show the NP-hardness of SCHEDULING with a Slﬂ’l-reduction from
PARTITION. Let ay,...,a, be an arbitrary instance of PARTITION. Let B =
a; + --- + a,. Then, B must be an even number for partitioning to be possible.
Let H = B/2. The question for partitioning is whether or not there is a subset
whose total is equal to H. The total of the remaining elements is necessarily
B—H=B—-B/2=B/2=H.Wetunay,...,a, tom tasks, where r; = 0,
di = B+ 1(=2H + 1), and [; = a; for each i. We then add another task 7,1 such
that 41 = H,dpy4+1 = H + 1, and 41 = 1. The start time, $;,+1, of #,,4-1 must
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be H. The other tasks start before H and are completed before H or after H + 1 and
before B. We can show that the desired partitioning is possible if the other tasks can
be scheduled. We leave the rest of the proof to the reader (Exercise 11.15).

11.3.6 NP-Complete Problems About Matching and Set
Partitioning

Another NP-complete problem is about matching and dividing sets.

An instance of three-dimensional matching consists of three sets A, B, and C
having the same size (i.e., |A]| = ||B]| = ||C||) and a set of triples T € A x B x C.
Our question is whether or not a set § € T exists so each element of A, B, and
C appears exactly once in S. For example, suppose A, B, C, and T are given as
follows:

A ={ay, a2, az, as},
B = {by, b2, b3, b4},
C ={c1,¢2,¢3,c4}, and

T = {(a1, b2, ¢3), (a2, b3, c4), (a3, ba, cu), (a3, ba, c1), (as, b1, ¢2), (aa, b2, c3)}.
Then, a matching is achievable with the following subset:

{(a1, b2, c3), (a2, b3, c4), (a3, b, c1), (a4, by, c2)}.

This problem-solving can be implemented in many practical situations. For exam-
ple, think of a university having students meet counselors in offices. The number
of students equals the number of counselors and the number of offices. Each
counselor has some preferred offices for a meeting, and each student has some
preferred counselors to meet with. Also, the meetings will occur concurrently in
some places in the university, and the number of places available will equal the
number of recruits. Joining these two sets of preferences provides triples of preferred
combinations of a student, a counselor, and an office. We then ask if we can organize
counseling sessions according to the triples of preferences.

Now, we define 3DM as the set of all positive instances for the three-dimensional
matching problem.

Itis not hard to show 3DM e NP. Given an input (A, B, C, T) of the problem, we
can think of nondeterministically choosing whether or not to include each element
of T in the subset S and then whether the subset S creates a matching of the

components.
We prove the NP-hardness by reducing CNFSAT to the problem. Let ¢ = D1 A
- A D, be a CNF formula of some n variables xq, ..., x,. Let d;,...,d, be

the numbers of literals appearing in clauses Dy, ..., Dy, respectively. Let dy =
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di + - - - +dy,. The total number of literals in ¢ is dy. The elements in A have names
a, e, and g; the elements in B have names b, f, and h; and the elements in C have
names ¢ and c.

First, for each clause D, we introduce elements a;i, ..., ajn, bj1,...,bjn,
Cjls -+ Cjn, andc]_-l. .. ,C]_'n.

In addition, for each clause D, and for each i such that 1 <i < n, we introduce
triples (aj;, bji, cj;) and (a; 41, bji, cj;). Here, we will treat a; ,,41 as a;1.

We can visualize these elements and triangles as an alternating cycle as as and bs,
laj1.bj1,aj2,bj2,...,ajn, bjy,aj1], where the neighboring pairs form triangles
with ¢j1, ¢j1,¢j2,Cj2, ..., Cjn, Cjn (see Fig. 11.13). The elements as or bs occur in
no other triples. Matching the as and bs thus needs these triples. Since the triples
appear in a cycle so that each neighboring pair of triples shares one element in
common, you must use exactly every other triple to cover all the as and bs. There are
two ways to pick every other triple: starting with the first one and starting with the
second one. The former covers all ¢s but leaves behind all ¢s, and the latter covers
all cs but leaves behind all cs. We view the selections for as and bs as representing
the truth assignments to the variables of ¢ as follows. If ¢ ;s remain for j, then the
assignment to x; is true, and if ¢ j;s remain for j, then the assignment to x; is false.

Next, for each clause D;, we introduce elements e; and f; and triples
(ej, fj,cjk) for each k such that x; is a literal appearing in D; and triples
(ej, fj, Ccjk) for each k such that X; is a literal appearing in D;. The elements
es and f's have no other occurrences in triples, so for each j, we need to select one
triple having e; and f;. After making the choices for a and b, the choices for e and
f must use the remaining ones. Covering es and f's requires selecting exactly one
literal from each clause (see Fig. 11.14).

Finally, we introduce gjx and hj;, 1 < j <mand 1 < k < n— 1. Then, for each
Jsuch that 1 < j < m, we introduce triangles (gix, / jk, cj;) and (gik, h jk, ¢j;) for
1 <k<n-—1and1 <i <n.Foreach j such that 1 < j < m, to match the gs and
hs, we need to pick n — 1 elements from untouched cs or ¢ from the corresponding
index j. If the matching from the second step is successful, there are exactly n — 1
elements in the cs and cs for j, so matching is possible.

Fig. 11.13 The variable
assignment triples for 3DM.
The triangles represent
triples. The drawing shows
the instance where there are
only two variables
(corresponding to the second
indices i and 2). Because of
the overlap among the
vertices as and bs, any
matching solution must select
exactly one of the top-bottom
and left-right triangle pairs
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Fig. 11.14 The clause triples
for 3DM. The triangles with
dotted lines are those from
Fig. 11.13. The clause has just
two literals: x; and x;. The
solid-line triangles represent
the literals. Exactly one of the
two is part of the matching

The ranges of indices i, j, and k are {1, ...,n}, {1,...,m},and {1, ..., n — 1},
respectively. The number of elements in the three sets, A, B, and C, is as follows:

1. Ahasmn ajis,mejs,and m(n — 1) g jis.
2. Bhasmn bjis,m fjs,and m(n — 1) h jys.
3. C hasmn cj;s and mn cj;s.

Each group has 2mn elements.

From how we constructed the elements and triples, it is clear that the instance
has a matching, which is convertible to a satisfying assignment of ¢. Also, it is easy
to see that the instance’s construction requires O (mn) steps. Thus, the construction
is a polynomial-time many-one reduction from CNFSAT to 3DM.

We have thus proven the following:

Theorem 11.16 3DM is NP-complete.

11.3.7 More Examples of NP-Complete Problems

Here are a few more examples of NP-complete languages. Their NP-completeness
proofs are based on those from an earlier part of the section.

11.3.7.1 Exact Cover by Three Sets (X3C)

Exact cover by three sets (X3C) is the problem of deciding, given a universe U
and a list of triples 71, ..., T, C U, if there is a partition of U into triples from the
list. We define X3C as the language of all positive instances of X3C.

Theorem 11.17 X3C is NP-complete.
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We leave the proof to the reader (Exercise 11.7).

11.3.7.2 The Independent Set Problem

Let G = (V, E) be a graph and let S € V. We say that S is an independent set of
G if G has no edge connecting any two vertices of S. We define INDEPENDENTSET
as the language of all graph-integer pairs (G, k) such that G has an independent set
having a size of > k.

Theorem 11.18 INDEPENDENTSET is NP-complete.
Again, we leave the proof to the reader (Exercise 11.10).

Exercises
11.1 Prove that the polynomial-time many-one reductions are transitive; that is, for
all languages A, B, and C, if A 5& B and B 5{171 C, then A 5& C.

11.2 Prove that the polynomial-time many-one reductions are reflexive; that is, for
all languages A, A <k, A.

11.3 Prove Proposition 11.2.

114 Let A C X* be nontrivial; that is, A is neither ¥ nor X*. Prove that A is
polynomial-time many-one reducible to neither ¢ nor X*.

11.5 Prove Proposition 11.1.

11.6 In the definition of polynomial-time witness schemes (Definition 11.7), |y| <
p(lx]). Show that the definition can be changed to |y| = p(|x]).

11.7 Show that X3C is NP-complete.

Hint: You can prove the NP-hardness using the proof of Theorem 11.16. This
time, you can collapse the three-dimensional Cartesian product A x B x C to turn
itintoaset AUBUC.

11.8 Theorem 11.1 shows a reduction from the Hamilton path problem to the
Hamilton cycle problem. Using a similar idea, give a polynomial-time many-one
reduction from the Hamilton cycle problem to the Hamilton path problem.

11.9 Show that a vertex-set C is a vertex cover of a graph G = (V, E) if, and only
if, V — C is an independent set of G.

11.10 Based upon the property you have proven in Exercise 11.9, show that
INDEPENDENTSET is NP-complete.

11.11 Prove Theorem 11.13; i.e., PARTITION is NP-complete.

11.12 Complete the NP-completeness proof of 3COLOR by showing (a) 3COLOR
is in NP and (b) the generated graph has a 3-coloring if, and only if, the formula has
an NAE assignment.
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11.13 Show that if the number of available colors is only two, the coloring problem
isin P.
11.14 Show that KNAPSACK is NP-complete.

Hint: To prove NP-hardness for the problem, use the construction from 3SAT to
SUBSETSUM. Try using the value of an element in SUBSETSUM item as both the
weight and the value.

11.15 Complete the proof of Theorem 11.15.

11.16 An edge-weighted graph is a graph (V, E) with edge weight assignment
W : E — N. The traveling salesman problem asks, given an edge-weighted graph
G, a vertex s, and cost ¢, whether or not there is a Hamiltonian cycle from s whose
total edge weight is at most c¢. Prove that the traveling salesman problem is NP-
complete.

11.17 A dominating set of a directed graph G = (V, E) isaset D € V such
that for all u € V — D, there is an arc from some v € D to u. We define
DOMINATINGSET as the set of all (G, k) such that G contains a dominating set
with a size of < k. Prove that DOMINATINGSET is NP-complete.

Hint: Use the reduction from 3SAT to VERTEXCOVER and argue that the input
formula with n variables and m clauses is satisfiable if, and only if, the graph has a
dominating set with a size of n + m.

11.18 Prove that the following state minimization problem of a nondeterministic
finite automaton is coNP-hard; given an NFA M and an integer k, test if there is an
NFA equivalent to M whose number of states is < k.

Hint: Given an n-variable 3CNF formula ¢, construct an NFA that accepts its
input w € {0, 1}* if |w| < n or its n-character prefix is not a satisfying assignment.

11.19 Verify that from any NAE assignment to (x V y V z V w), we can construct
an NAE assignment to (z V x V y) A (# V z V w), and vice versa.

11.20 1-IN-3-SAT is the language of all 3CNF formulas having a truth assignment
that satisfies exactly one literal per clause. Show that 1-IN-3-SAT is NP-complete.
Hint: We can reduce 3SAT to 1-IN-3-SAT by constructing from each formula
3CNF formula ¢ = Cy A - -+ A Cyy, as follows:
For each clause C = (A1 V A2 V A3) of ¢, introduce eight new variables
a,b,c,d,e, f, g,a, B and replace the clause with the formula:

MvavdyAQavbvd)yA(QdzVvevg)A(aVvbVe)

Aevdy fFYA(gVavB)A(gvavp).

Show that the new formula has a 1-in-3 assignment if, and only if, ¢ is satisfiable.
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11.21 Prove that 2SAT, the CNF satisfiability in which the number of literals per
clause is no more than 2, is in P.

11.22 Prove that the following problem is NP-complete:
Given a Boolean formula ¢ and a satisfying assignment «, decide whether or not
¢ has a satisfying assignment other than «.

11.23 Prove that the following problem called LONGESTPATH is NP-complete:
Given a graph G and an integer W, decide whether or not G has a simple path
having a length of > W.

11.24 Prove that for each k > 1, the clique problem where the target clique size is
fixed to k is in P.

Bibliographic Notes and Further Reading

The central driving force of computational complexity theory has been the P verus
NP problem. Complexity theorists used to think that the problem emerged after
the introduction of time-bounded TM computation (i.e., Hartmanis and Stearns’
paper [4] in 1965). However, a surprising discovery was made at the end of the 1980s
to show that the question had already been asked a decade earlier. The discovery is
Kurt Godel’s letter to John von Neumann. In this letter, Godel noted that there are
problems solvable in deterministically quadratic time and asked von Neumann if a
TM solving calculus in logic can be made to run in quadratic time (see [3, 8]). We
can translate Godel’s question as whether or not PSPACE C DTIME[#r?].

The concept of NP-completeness is by the independent work of Cook [1] and
Levin [6]. While Levin’s work shows that the problems searching for witnesses
can be converted to SAT, Cook’s work shows that the acceptance problem of a
polynomial time-bounded NTM can be converted to TAUTOLOGY.

Karp [5] formalized Cook’s approach into the notion of the polynomial-
time many-one reductions. In this paper, Karp demonstrated the importance
of NP-completeness by presenting 21 complete problems that are practically
important. HAMPATH, HAMCYCLE, SUBSETSUM, 3SAT, VERTEXCOVER,
INDEPENDENTSET, 3COLOR, KNAPSACK, and CLIQUE were among these 21
problems. The polynomial-time many-one reduction is often called the polynomial-
time Karp reduction.

In contrast with Karp’s approach, Cook’s approach has a property that the
answer obtained from TAUTOLOGY is negatively interpreted; the answer about
satisfiability is positive if, and only if, the answer about TAUTOLOGY is negative.
The next chapter of this book introduces a more flexible reduction. In this method,
the membership of an input string may be determined using not just a single
membership question but a dynamically generated series of questions. This flexible
type of reduction is generally called the polynomial-time Turing reduction but is
also often called the Cook-Levin reduction (or simply Cook reduction).

The polynomial-time witness preserving reduction is by Garey and Johnson [2].
The reduction is called the “strong” NP-completeness in Garey and Johnson’s work.
Numerous papers have presented newly found NP-complete problems. There is no
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exact count of problems that have been shown to be NP-complete in the literature,
but the number could be way over 10,000. The book by Garey and Johnson
is the standard reference for NP-complete problems; this book lists about 700
problems as NP-complete. Their book also categorizes the techniques for proving
NP-completeness.

The NP-completeness of NAESAT and 1-IN-3-SAT is by Schaefer [7]. In the
paper, Schaefer studied the logical templates for defining the value of clauses when
the clauses are conjunctively connected and showed that for each template, the
satisfiability problem is either polynomial-time decidable or NP-complete.
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Chapter 12 ®
Beyond NP-Completeness ST

12.1 The Complexity of Finding a Witness

In the previous chapter, we saw that the languages in NP are characterized using
a polynomial-time witness scheme. How difficult is finding a witness given an
instance for a language in NP? In this section, we study the problem of finding
an optimal witness. Here, we give a linear order among witnesses and compute
the largest or smallest witness among them if a witness exists. The key concept in
finding an optimal witness is the polynomial-time Turing reducibility.

Recall from Definition 11.9 that CNFSAT is the problem of deciding whether or
not a CNF formula is satisfiable. We used the oracle TM model in Sect. 8.5 and
defined the arithmetical hierarchy. Recall that a language oracle A is a unit-cost
black box that provides the membership of an arbitrary string in A. With CNFSAT as
the oracle, we can compute a satisfying assignment of any satisfiable CNF formula
in polynomial time. Let ¢ be a CNF formula with n variables xi, ..., x,. We use
Algorithm 12.1 to find, if one exists, a satisfying assignment to the formula ¢.

Does the algorithm correctly compute a satisfying assignment when ¢ is
satisfiable? Since the oracle correctly answers the question about the satisfiability
of CNFSAT, the algorithm proceeds to Line 6. We thus know that ¢y is a satisfiable
CNF formula. Then, using induction on i from i = 1 to i = n, we can prove that
@; is a satisfiable CNF formula and that the assignment A at the end of round i
reduces ¢ to ¢;. Suppose the two properties hold for j suchthat0 < j <n — 1 and
i = j+ 1. The algorithm generates ¢ and 1/ by setting the value of x; to false and
true, respectively. Since by assumption, we know that ¢; is satisfiable and A reduces
@0 to ¢, we know that Yo or v is satisfiable. The way the algorithm selects ¢; from
Yo and v thus ensures that ¢; is satisfiable, and the new list A reduces ¢g to ¢;.
Note that vy and vy are computable from ¢; by setting the value of x; to false and
true, respectively. We will simplify the formula after the value assignment to x;.For
Yo, every clause containing the literal X; is satisfied, so we will remove the clause
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Algorithm 12.1 An algorithm for finding a satisfying assignment using an oracle

1: procedure FIND-SATISFYIING-ASSIGNMENT(¢p)
2: ¢ is a CNF formula;
3 ask the oracle if ¢ is satisfiable;
4: if the oracle returns “no” then
5: assert that ¢ is not satisfiable;
6: end if
7: A <~ [I;
8 @ < ¢
9: fori < 1,...,ndo
10: construct Yo from ¢; 1 by setting x; = false;
11: construct ¥r| from ¢;_ by setting x; = true;
12: ask the oracle if v is satisfiable;
13: if the oracle answers “yes” then
14: append x; = false to A;
15: @i < Yo;
16: else
17: append x; = true to A;
18: i < Y1;
19: end if
20: end for
21: report A as a satisfying assignment;

22: end procedure

entirely from the formula; in addition, we will remove all remaining occurrences of
x;. For ¢y, every clause containing the literal x; is satisfied, so we will remove the
clause from the formula; in addition, we will remove all remaining occurrences of
X;. The simplification process ensures that the resulting formulas are CNF formulas.

Note that the simplification process may empty a clause. Such a clause is unsat-
isfiable; thus, any formula containing an empty clause is unsatisfiable. Fortunately,
since ¢;_1 is satisfiable, such an empty clause will appear in at most one of 9 and
V1.

Here is an example. Let
@ =x1VX2VI)AXVX3VIHAXTVI2VI)A (X VIV X)) A X VI3V Xg).

The formula is satisfiable, with several satisfying assignments. So, given ¢ as input,
the algorithm proceeds to Line 6. Fori = 1, Y9 = (x2 VX3) A(x2 VX3 VX1) A(X2VX4)
and Y1 = (x2 VX3 V1) A (x2 VX5) A (X3 V x4). Both formulas are satisfiable, so
the algorithm chooses ¢g with x| = false and adds it to A.

Fori = 2, ¢¥9 = (x3) A (x3 V X1) and 1 = (x4). Both formulas are satisfiable,
so the algorithm chooses ¢ with x, = false as an addition to A.

Fori = 3, ¥y = (x12) and ¥; = (). Only v is satisfiable. The algorithm chooses
¢o with x3 = false as an addition to A.

Fori = 4, Yoo = true and {1 = (). Only v is satisfiable. The algorithm chooses
¢o with x4 = false as an addition to A. Thus, in the end, the algorithm reports that
X1 = xp = x3 = x4 = false is the satisfying assignment it has found.
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Note the task at hand is to compute a satisfying assignment, so the order in which
Yo and ¥| become queries can be arbitrary. Note that a fixed polynomial also serves
as an upper bound of the algorithm’s actions for each i in n. Thus, the algorithm
runs in polynomial time.

Definition 12.1 Let L be an NP-language and (p(n), A) be a polynomial-time
witness scheme for L. Suppose that the scheme (p(n), A) has the property that
for each member of L, a witness is computable in polynomial time using L as the
oracle. Then, we say that the search reduces in polynomial time to the decision
for L.

The above phenomenon for CNFSAT now can be stated as:
Theorem 12.1 The search reduces in polynomial time to the decision for CNFSAT.

Using a similar idea, we can show an algorithm for solving the subset sum
problem (see Sect. 11.3.5). We say that an instance I = [ay, ..., an, T'] is trivial
if T is 0, since the sum of 0 is always achievable.

Algorithm 12.2 Finding a solution to the subset sum problem
1: procedure SOLVING-SUBSETSETSUM(/)

2: receive I = {(ay, ..., ay, T) as the input

3: ask the oracle if / is a positive instance;

4: if the oracle returns “no” then

5: assert T is not achievable;

6: end if

7 A <[]

8 while / is not trivial do

9: a < I’s first element;
10: construct from / a new instance I’ by removing a;
11: ask the oracle if I’ is a positive instance;
12: if the oracle answers “no” then
13: update / by removing a and subtracting a from T;
14: adda to A;
15: else
16: update / by removing a;
17: end if
18: end while
19: report A as a solution;

20: end procedure

In Line 9, the algorithm asks whether the element x must be used to achieve the
total. If x must be used, removing x from the list makes it impossible to achieve
the total. Thus, we add x to the list A, and then, since x is an essential member,
we subtract x from 7', accounting for the contribution from x. Otherwise, x is not
essential; T is achievable without using x. So, we remove x from the list without
changing T'. This algorithm will check, for each element, whether or not the element
must be used, and then, depending on the answer received, update A, I, and T.
When T becomes 0, we have found a solution: the list A.
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Theorem 12.2 The search reduces in polynomial time to the decision for
SUBSETSUM.

12.2 The Polynomial-Time Turing Reducibility

We can generalize the concept of “search reduces in polynomial time to the
decision” and define polynomial-time Turing reductions.

By extending Definition 8.9, we define oracle TMs deciding languages in
polynomial time.

Definition 12.2 Let A be a language. The class P4 is the collection of all languages
L satisfying the following condition:

o There is a deterministic oracle TM M such that L = L(M?), and M is
polynomial time-bounded regardless of its oracle.

Definition 12.3 A language L is polynomial-time Turing-reducible to a language
Aif L € PA. We write L géf A to mean that L is polynomial-time Turing reducible
to A.

We often call the polynomial-time Turing reducibility Cook-reduciblity and the
polynomial-time many-one reducibility Karp-reducibility. The above definition
guarantees that the reduction runs in polynomial time regardless of its oracle.
As shown next, the polynomial-time Turing reducibility in which the oracle
TM is polynomial time-bounded regardless of its oracle is as powerful as the
polynomial-time Turing reducibility in which the oracle TM may not be polynomial
time-bounded if the oracle is not A.

Proposition 12.1 Let A be a language. The class P2 is the collection of all
languages L for which there exists some deterministic oracle TM M such that
L = L(M*) and for all oracles X, and M is polynomial time-bounded when A
is the oracle.

Proof Suppose L is a language in P4 with M as the oracle TM. Let p(n) = kn* +k
be a polynomial bounding the running time of M with oracle A. We define D as a
multiple-tape oracle TM with one work tape added to M. On input x, D computes
170xD) on one tape and moves the head on the tape to the leftmost 1. D then simulates
M on x. At each step in the simulation, D moves the head on 17(*D by one cell to
the right. If the head reaches the cell immediately following 17(*D D stops the
simulation and rejects x. If the simulation completes while the head is on 17D, D
accepts or rejects accordingly.

Constructing the unary representation of p(|x|) requires O (p(|x|)) steps. Since
the simulation has a hard stop at step p(|x|), D runs in time O(p(|x]|)) for all inputs
regardless of its oracle. Since the computation of D is by simulation of M and early
termination results in rejection, for all oracle X, L(DX) c L(MX). Since early
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termination does not occur when the oracle is A, L(D4) = L(MX). This proves the
proposition. O

We can normalize the computation of the oracle TM by requiring it to make the
same number of queries regardless of its oracle.

Proposition 12.2 Let A be a language. The class P is the collection of all
languages L for which there exists some deterministic oracle TM M such that
L = L(M?) and for all oracles X, M is polynomial time-bounded. In addition,
for each input x, M asks the same number of queries regardless of its oracle.

Proof Let L € PA. Recall the construction of D in the proof of Proposition 12.1.
We define E as a new TM, with yet another tape to count the queries M makes.
E runs the program for D, but using the string 17(*D prepared at the start on the
new tape. E counts the queries made to the oracle. When the simulation is about to
halt, E queries the oracle further and inflates the number to p(|x|). E ignores the
answers to the additional queries. The empty string can serve as the additional query
string. The running time of E is at most p(|x|) plus the running time of D. Thus, E
is polynomial time-bounded, accepts the same language as D for each oracle, and
makes p(|x|) queries. |

Definition 12.4 Let C be a language class. The class P€ is Ugec PA.

12.2.1 The Problem of Finding the Least Satisfying
Assignment

In this section, we study PNP, the class of all languages that polynomial time-

bounded oracle TMs with some oracle in NP. We will show that the class PN* has a
<P -complete language.

Let ¢ be a Boolean formula of some n variables. We represent a truth assignment
to ¢ by an n-bit sequence b = by -- - b,, where for each i such that 1 < i < n,
b; = 0 and b; = 1, respectively, mean that the assignment b assigns the value of
false and true to x;. The bit representation of truth assignments naturally induces
the complete order among the truth assignments for each formula.

We define ODDMAXSAT as the language of all CNF formulas ¢ whose lexico-
graphically maximum satisfying assignment is odd.

Theorem 12.3 ODDMAXSAT is PNP-complete.
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Proof Overview

We define an NTM that simulates the action of an oracle TM with a language
in NP as the oracle. An NTM can guess the answers that the oracle TM
would receive from the oracle and guess the accept/reject decision that the
oracle TM makes. Then, the oracle TM verifies all the “yes” answers and
outcomes by simulating the NTM that decides the oracle language. We encode
the computation of the NTM as a CNF formula as we did for the proof for the
NP-completeness of the satisfiability problem. The ordering of the variables is
such that the guesses for the oracle answers come first, and the guess about the
decision by the oracle TM comes last. The construction forces the satisfying
assignments of the formula to encode the path matching the computation of
the oracle TM, with the last variable representing the final decision the oracle
TM makes.

Proof Let L be a language in PNP. By Proposition 12.2, there exists a polynomial
time-bounded oracle TM E and a language A in NP such that (i) L is the language
that E decides with A as its oracle and (ii) there is a polynomial p(n) such that E
makes p(|x|) queries for each input x regardless of its oracle.

Let N be a polynomial time-bounded NTM that decides A. Let g(n) be a
polynomial that bounds the running time of N. For simplicity, let x be a string
having length ¢ that E has its input. The machine E will make p(£) queries
regardless of the oracle and then accept or reject. Think of simulating E on x with
a(p() + 1)-bit string b = by - - - bp@ybpey)+1 as a “guide” as follows:

For each i such that 1 < i < p({£), we assume that the oracle’s answer is “yes”
if, and only if, b; = 1. The last bit of b, b(¢)+1, represents the simulation result; the
bitis 1 if, and only if, E accepted in the simulation.

For each i such that 1 <i < p(¢€), let Q(b, i) be the i-th query E on x with b as
the guide. We define W as the set of all (p(£) + 1)-bit strings b such that:

¢ (query consistency) For all i and j suchthat 1 <i < j < p(¥),if Q(b,i) =
O(b, j),thenb; = b;.
¢ (positive correctness Foreachi suchthat1 <i < p({)andb; = 1, Q(b,i) € A.

* (decision consistency) The value of b, )| equals the outcome of E on x with
b as the guide.

We can use an NTM, S, to test the membership of an arbitrary (p(€) + 1)-bit string
b in W as follows, where the TM has x and b as the input:

e S simulates E on x using b as the guide and obtains Q (b, 1), ..., Q(b, p(£)).

» S checks the query and decision consistencies. If either fails to hold, S rejects.

e S checks the positive correctness by nondeterministically simulating N on
Q(b, i) for each i such that 1 < i < p(£). The simulation occurs sequentially
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for the qualifying values of i. If N accepts in all the simulations, S accepts;
otherwise, S rejects.

The set W contains the guide, b, matching E’s computation on input x with A as
the oracle. For all i such that 1 < i < p(£), Q(b,i) =1 <= Q(b,i) € A, and
the (p(£) + 1)-th bit of b is 1 if, and only if, E on x accepts with A as the oracle.
Let b be an arbitrary (p(£) + 1)-bit string strictly greater than b. Let i be the first
position at which b and b disagree. Suppose i < p(£). We have (a) for all j such
that 1 < j < i, Q(b, j) = Q(b, j), (b) the i-th bit of b is 1, and (c) the i-th bit of b
is 0. The property (a) means Q (b, i) = Q(l;, i). The property (b) means b assumes
that Q (b, i) isin A. The property (c) means that Q(l;, i)g A,s0 Q(b,i) & A. Since
the i-th bit of b is 1, b fails the positive correctness test. Suppose i = p(£ + 1); then
b and b are different only at the result of simulation, which is “accept” for b and
“reject” for b. Since b is the correct guide, E must reject x, so b fails the decision
consistency test. Thus, b is the largest string in W.

Consider an NTM T that, on input x (now we are talking about an arbitrary input
x), generates a (p(|x|) + 1)-bit string b nondeterministically, simulates S on the pair
x and b, and accepts if S accepts and rejects if S rejects. The queries T generates
are at most p(|x|) in length, and there will be p(|x|) queries. Since N is g(n) time-
bounded, we know that T is O (p(n) + p(n) - g(p(n))) time-bounded.

We now construct the satisfiability formula that represents an accepting compu-
tation of 7 on x according to the proof from Chap. 11. We identify the time, g,
at which the machine 7' completes its generation of b, and identify the p(|x|) + 1
variables y1, ..., ¥p(xp+1 that represent whether or not the p(|x|) + 1 bits of b are
1, respectively. We then perform the CNF conversion to the formula. After that, we
renumber the variables so that yi, ..., y,(x) are the first p(|x|) variables of the
formula in this order and y,(|x|)+1 is the last variable. The satisfying assignments
of this CNF formula represent accepting computation paths of 7 and thus also
represent the members of W. The way that we renumbered the variables guarantees
that the lexicographically maximum satisfying assignment of the CNF formula
represents b. Hence, the CNF formula’s maximum satisfying assignment is odd if,
and only if, the last bit of b is odd. The latter condition equals whether or not E
accepts x with A as its oracle.

This proves the theorem. O

We now modify the construction we have seen thus far by recalling the proof of
Theorem 11.7. In the proof of Theorem 11.7, we converted CNF formulas to 3CNF
formulas using a polynomial-time many-one reduction.

Let ¢ be a CNF formula and v be the 3CNF formula that the reduction generates
from ¢. Suppose ¢ has n variables xi,...,x, and i has m variables. The m
variables in Y consist of those in ¢ and those representing the values of partial
clauses of ¢. The construction preserves the satisfying assignments of ¢ so that
each satisfying assignment of ¢ has a unique representation among the satisfying
assignments of i, which has the same assignments to xi, ..., x,. Also, there is no
additional satisfying assignment of i that does not represent a satisfying assignment
of ¢.
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Definition 12.5 Let f be a polynomial-time many-one reduction from an NP-
language L; to an NP-language L,, where languages A; € P and A, € P serve
as the witness scheme languages. We say that f is “witness-preserving” if there is
a pair of polynomial-time computable functions g(-, -) and A (-, -) such that for all x
and y, if f(x) =y, then the following properties hold:

e x € L if, and only if, y € L, (because f is a many-one reduction from L to
L»).

e If x € Ly and w is a witness for x € L; with respect to Ay, then g(x, w) is a
witness for y € L, with respect to A»; that is, (y, g(x, w)) € Aj.

e Ify € Ly and z is a witness for y € L, with respect to Aj, h(y, z) is a witness
for x € L1 with respect to Ay; thatis, (x, h(y, 7)) € Aj.

e For x € Lj, then for all witnesses w for x € L; with respect to Aj,
h(y, g(x, w)) = w, where y = f(x).

We write L ffm Ly to mean that L; is polynomial-time witness-preserving

reducible to Lj.

Returning to the reduction from CNFSAT to 3SAT, the reduction preserves the
variables appearing in the input formula. In the case where the input CNF formula
is satisfiable, each satisfying assignment of the input formula becomes a satisfying
assignment of the output 3CNF formula, where the values of the additional variables
are uniquely determined from the values of the variables in the input formula.
Calculating the values of the additional variables serves as the function g. To go back
from a satisfying assignment of the output 3CNF formula to a satisfying assignment
of the input CNF formula, we only need to remove the values corresponding to the
additional variables. The removal action serves as the function 4.

Proposition 12.3 CNFSAT <. 3SaT.

Noting that the witness-preserving reduction from CNFSAT to 3SAT preserves
the lexicographic order among the satisfying assignments, we obtain the following
result.

Corollary 12.1 The 3CNF version of ODDMAXSAT is PNP-complete.

When we return to the proof of Theorem 11.12, we notice that for each instance
of SUBSETSUM that the reduction generates from an instance of 3SAT, there is
a one-to-one correspondence between a satisfying assignment and a subset that
achieves the target sum. More specifically, the choice between @; and b; represents
the choice between the two truth assignments of the i-th variable, and the choice
from the three combinations ¢ j»dj,and cj +d; represents the number of literals that
the assignment satisfies in the j-th clause. Thus, we can easily convert a satisfying
assignment to a subset that achieves the target total by supplementing it with cs
and ds. Similarly, we can convert a subset that achieves the target to a satisfying
assignment by eliminating cs and ds.
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We define ODDMAXSUM as the problem of deciding, given an instance (L, T')
for SUBSETSUM, whether or not the largest of all the subsets achieving the target has
the last element of the list L. Based on the above discussion, we have the following:

Corollary 12.2 The reduction from 3SAT to SUBSETSUM appearing in the proof of
Theorem 11.12 is a witness-preserving reduction.

Corollary 12.3 ODDMAXSUM is PNP-complete.

12.3 The Polynomial Hierarchy (PH)

In this section, we study the polynomial hierarchy, the polynomial-time analog of
the arithmetical hierarchy from Sect. 8.5.

12.3.1 The Definition

As we did for the class P with an oracle, we similarly define the classes NP and
coNP with an oracle.

Definition 12.6 Let A be a language. The class NP4 is the collection of all
languages L for which there exists some nondeterministic oracle TM M such that
L = L(M*) and with A as the oracle, and M is polynomial time-bounded regardless
of its oracle.

Definition 12.7 Let C be a class of languages. The class NP€ is Ugcc NPA.

Definition 12.8 Let A be a language. The class coNP# is the collection of all
languages L for which there exists some nondeterministic oracle TM M such that

L= m and with A as the oracle, and M is polynomial time-bounded regardless

of its oracle.

Definition 12.9 Let C be a class of languages. The class coNPC is Uycc coNPA.
We define the polynomial hierarchy PH as the following:

Definition 12.10 We define {Alf}kzo, {Ef}kzo, and {Hf}kzo as follows:

L Al=x=1)=P.

2. Forallk > 1, AP = P%-1, 57 = NP¥1, and 11/ = coNP¥ 1,
3. PH=U=0%/.

The following inclusions easily follow from the definition.
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Fig. 12.1 The polynomial :
hierarchy. The figure shows = 15
within each class up to level
3. Each class contains all the
classes that appear at lower Ar

positions a4 11

X = NP T = coNP
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Proposition 12.4 The following properties hold:

1. Forallk > 1, () UTI}_)) € Ay € (S NITY).
2. Forallk > 0, co—E,f = l'[,f and co—l'[,f = E,f.

Figure 12.1 shows the inclusions among the classes up to level 3.

12.3.2 Logical Characterizations of PH

Next, we obtain logical characterizations of E,f and I"I,i7 fork > 1.

A quantified Boolean formula (QBF) is a formula constructed with v, A, =, (),
3, and V. Here, 3x with a Boolean variable x means “for a Boolean value assigned
to x,” and Yx with a Boolean variable x means “for both Boolean values assigned to
x.” In a quantified Boolean formula, a quantified variable may occur only after its
quantifier. For example, a formula:

xV (V)@E[x Vv y)AGE VY]

is invalid because the first term x precedes the quantification of x. If we replace the
first x with a different variable w, we get a valid formula:

Fo=wv ¥)@nlkx vy AVl
We can evaluate the part after wv:
Fi =)@k vy) Axvyl
Let F> be the formula inside the []. If x = true, y = false makes F, = true, and

if x = false, y = true makes F» = true. This means F| = true. Hence, Fy is
equivalent to w.
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A formula is fully quantified if, for each variable appearing in it, its first
occurrence is preceded by a quantifier. In the example, F7 is fully quantified while
Fp is not. A fully quantified formula is equivalent to a Boolean constant.

Definition 12.11 A QBF is in the prenex normal form (PNF) if all of its
quantifiers appear before the appearance of any variable.

F1 is a PNF formula, but Fj is not. Suppose we rewrite Fj as:

VO)ENHx V) AGFVY)Vw]

Then, Fj is a PNF formula.

We use PNF formulas to obtain local characterizations of E,f and l'[,f . In
the characterizations, we show that extensions of the satisfiability problem with
alternating quantities are complete for X ,f and H£ .

Before getting to the statement and proof of the characterizations, we make
simple observations about the NP and coNP computations with an oracle.

Definition 12.12 A language A C X* is polynomial-time conjunctive truth-
table reducible to a language B, denoted A <’ B, if there exists a polynomial-time

computable function f such that for each x € X%, f(x) is a list of strings
Yis---, Ym,and x € A if, and only if, y{, ..., y,, € B.

Definition 12.13 A language A € X* is polynomial-time disjunctive truth-table

reducible to a language B, denoted A fgtt B, if there exists a polynomial-time

computable function f such that for each x € X*, f(x) is a list of strings
Y1s---, Ym,and x € A if, and only if, for some i suchthat 1 <i <m, y; € B.

Proposition 12.5 For all language A, NP4 and coNP are closed under <P, and
Sgn reductions.

We leave the proof of the proposition to the reader.
For a set of Boolean variables X, let A(X) denote the set of all possible truth
assignments to X.

Theorem 12.4 The following properties hold:

1. Forall k > 1, a language L is in Z,f if, and only if, there exists a polynomial
r(n) and a language A € P such that for all x:

(Ja; € Eir(m))(\?’az c Efr(lxl)) .- (Qkay € ESr(le))

[(x,a1,a2, - ,ar) € Al

Here, for each j suchthat1 < j <k, Q; = 3if j is odd, and ¥ otherwise.
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2. Forall k > 1, a language L is in H,f if, and only if, there exists a polynomial
r(n) and a language A € P such that for all x:

(Va; € £"FDy@ay € =Dy (Orar € =Dy

[<x7a1’a25 e 5ak> € A]‘

Here, for each j suchthat1 < j <k, Q; = 3if j is even, and ¥V otherwise.

Proof Overview

The proof is by induction on k. Because of the complementarity between E,f
and I17, we only need to prove the statement for £; or I . In the induction
step, where k > 2, we can assume that the nondeterministic oracle TM queries
to the complete language for X ,f_l. We use templates to specify possible
queries of the machine. We encode the oracle TM’s computation using a
quantified Boolean formula specifying the configuration of the templates, the
query outcomes, and the overall computation. We substitute the queries with
the templates and conform the formula to the required format.

Proof The proof is by induction on k. For the base case, let k = 1. Due to
Theorem 11.4, for each L € NP, a polynomial p(n) and a language A € P exists
such that for all x, x € L if, and only if, for some y such that |y| < p(|x]),
(x,y) € A. By taking the complement of the property, we get that for each
L’ € coNP, a polynomial p(n) and a language A’ € P exists such that for all x,
x € L’ if, and only if, for all y such that |y| < p(|x|), {(x,y) € A’. These two
characterizations match the statements of the theorem. Thus, the base case holds.

For the induction step, suppose k > 2 and the characterizations hold for all
smaller values of k. Let L be a language in Ef. Let M be an oracle TM and B €
Z,f_l such that M accepts L with B as the oracle. Suppose p(n) is a polynomial
bounding the running time of M with B as the oracle. We can make p(n) large
enough so that p(n) is time-constructible, and for all oracles X, M X is p(n) time-
bounded. We can also assume M has at most two nondeterministic choices at each
step. We define the following witness language for L:

C ={{x,y) |1yl < p(x|), y encodes an accepting computation path of M on x for
some oracle, (a) all the positively answered queries on the path are in B, and (b) all
the negatively answered queries on the path are in B}.

Then, for all x, x € L if, and only if, for some y such that |y| < p(|x|), (x, y) € C.
We define the following supersets of C.
C1 ={{x,y) | Iyl < p(x]), y encodes an accepting computation path of M on x
for some oracle, all the positively answered queries on the path are in B}.
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C2 = {{x, y) | Iyl = p(lx]), y encodes an accepting computation path of M on x
for some oracle, all the negatively answered queries on the path are in B}.
Then, for all x,

xel < Gy:lyl =plx)x, y) e CiNCal. (12.1)

The condition that y encodes an accepting computation is in P. Since P C Ef_l
and P C M} |, Cy is <K;-reducible to some language in =/ | and Cz is <[
reducible to some language in H,f_l. Because both ok — 1 and H,I:_l are closed
under <%-reductions (Proposition 12.5), C; € =/ | and C, € II/_,. By the
induction hypothesis, Cj is characterized with a polynomial g;(n) and a language
D € P such that for all z:

z€C) <= Qu;:|u1l = q1(z))Vuz @ luz| < q1(1z])
o (Qr—1uk—1 * ug—11l < q1(|z]))
[{z,u1, ..., ux—1) € D1].
Here, Qy—1 = 3if k — 1 is odd, and V otherwise. Similarly, C» is characterized with
a polynomial g2 (n) and a language Dy € P such that for all z:
z€ Cy < (Vv :|vi1l < q2(lz))(Fvz @ |v2| < g2(]z]))
< (Rk—1vk—1 * |vk—11] = q2(Iz]))
[{z,v1,..., v—1) € D2].
Here, R;_1 = 3if k — 1 is even, and V otherwise.
In Eq. 12.1, we replace the membership conditions in C and C» with the charac-
terizations of C and C». Since the two characterizations use two independent series
of quantified strings, u1, ..., ux—1 and vy, ..., vk—1, we can list the elements of the

two quantifier sequences in an alternating order: u1, vy, ua, v2, ..., Ug—1, Vg—1. The
resulting formula is:

xelL
— @y :Iyl = pUxD)Quy : lurl < qi(lyD) (Vi < Joil = g2(1yD)
(Vuz = uz] < qi(lyD)3Fvz = Jv2] < ga(lyD) -+
(Qk—1up—1 = lug—11l = g1 (1yD) (Re—1vk—1 : [ve—1ll = g2(lyD)
[({x, ¥),u1,...;uk—1) € D1 A {{x,y),v1,...,0—1) € D2]. (12.2)
Since D and D5 are in P, the last condition is in P.

For two arbitrary binary strings s and ¢, let s#¢ denote the string constructed
from s and ¢ by encoding each character b appearing in s and ¢ as the two-character
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string b0 and connecting the elongated strings with 11 between them. The length
of s#t is 2(|s| + |t] + 1). We can extract s and ¢ from s#¢ by splitting it into the
parts before and after the first occurrence of 11 and then collecting the characters at
even-numbered positions. By joining the neighboring string pairs having the same
quantifies, we get:

wi = yi#fuy, w2 = vi#ug, ..., W1 = Vg1, Wk = Vk—1.
The quantifiers attached to them alternate starting with 3. Before joining, the parts

of each pair have a length of at most g(p(]y|)). Thus, there is a polynomial r(n)
such that |wq|, ..., |wg| < r(x|).

We define a language A as the set of all (x, wq, ..., wi) satisfying the last part
of Eq. 12.2:
(Ce, ) ur, ..o ug—1) € Di A{(x, y), v, ..., vk—1) € Da].
Here, y,uy,...,uf—1,v1, ..., vp—1 are extracted from x, wy, ..., wg. Since Dj

and D, are in P, A € P. Thus, for all x,

x €A < Qwp:|wi| < g(x))Vwa @ |wa| < q(|x]))
< (Spw s lwe| < g(lz])
(x, wi, ..., wg) € A. (12.3)
Here, S; = 3if k is odd, and V otherwise. Thus, the claim holds for .

Since I"I,f is the complement of X7, by taking the complement of the characteri-
zation, we obtain the characterization for I"I,f . m]

The membership condition in Eq. 12.3 is in P. Since P € NP N coNP, the
condition is expressible as (3h1)[¢1(x, wi, ..., wk, h1) such that ¢ is a 3CNF
formula and (Vhy)[@2(x, wi, ..., wg, h2) such that ¢p is a 3DNF formula. By
choosing the former when Sy = 3 and the latter when Sy = V, we obtain
characterizations where the base formula is a 3CNF or a 3DNF.

Corollary 12.4 The following properties hold:

1. Forall k > 1, a language L is in Zf if, and only if, there exists a polynomial
r(n) and a Boolean formula ¢ such that for all x:

Qa; € 2= Dy (Vay € =Dy (Qray € Z="(FD)y
[o(x,a1,az, - ,ar) = true] .

Here, for each j such that1 < j <k, Q; = 3if j is odd, and ¥ otherwise; ¢ is
a 3CNF formula if k is odd, and a 3DNF formula otherwise.
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2. Forall k > 1, a language L is in H,f if, and only if, there exists a polynomial
r(n) and a Boolean formula ¢ such that for all x:

(Va; € ==Y 3g, € =Dy (Qrar € =)

[p(x,ai,an, - ,ax) = true] .

Here, for each j suchthat1 < j <k, Q; = 3if j is even, and 3 otherwise; ¢ is
a 3CNF formula if k is even and a 3DNF formula otherwise.

Theorem 12.5 For each k > 1, the following statements are equivalent:

PH:Z,;.
PH = I17.
2”:1‘1’5’.
I gzﬁ

spcm).

SR W~

Proof We prove the theorem by showing that (1)—(4) are equivalent to (5).
Evidently, (3) is equivalent to (5) due to the complementary between E,f and 1'[,[3 .
By taking the complement, we know that (1) is equivalent to (2) and (4) is equivalent
to (5). Since £ € A}, (4) implies (4). Also, since A, | € PH, (1) implies (5).
Similarly, (2) implies (5).

We are now left to show (5) implies (1). To show this, assume (5) is true. We
consider an arbitrary formula, say ¢, which is in the shape for Sy+1; ¢ has k + 1
alternating quantifiers starting with 3. If we remove the first quantifier from ¢, the
shape of the formula matches the shape of the formulas for P;. Because of this
match, the P, formula is 5;';1-reducible to an Sy formula by our assumption. We
then substitute in ¢ the part matching the shape for Py with the formula obtained by
executing the reduction. Then, the new formula has two consecutive 3 quantifiers at
the start. These two consecutive quantifiers can be collapsed into one 3 quantifier.
After the collapse, the formula matches the shape for Sg. O

12.4 Between P and NP-Complete

Here, we look at the area between P and NP. We know that if P # NP, NP — P
contains all NP-complete languages. Does the area contain anything other than NP-
complete? The answer is yes, as we prove next.

Theorem 12.6 If P # NP, then there is a language in NP that is neither NP-
complete nor in P.
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Proof Overview

Assume P # NP. We select an arbitrary NP-complete language S. We
construct a non-decreasing function + : N — N. The range of ¢ is N
or [0, g] for some g. While constructing ¢, we construct a language A
using two alternating sequences of diagonalization. One sequence ensures
that A ¢ P, and the other ensures that S is not <P _reducible to A. We
design the construction so that the range of ¢ is finite if, and only if, one of
the diagonalization sequences stops advancing. The latter condition implies
S eP.

Proof Assume P # NP. We will construct a language A € NP — P that is not
NP-complete. Let X = {0, 1}. Let S C X* be an arbitrary NP-complete language.
Since P # NP and S is NP-complete, S ¢ P. Since S ¢ P, we have S ¢ {#J, ¥*}. We
select yo € S. Let Dg be an arbitrary deterministic TM that decides S. We are not
concerned with the running time of Dyg.

Along with A, we construct a polynomial time-bounded TM T that receives an
input in {0}* and produces an output in {0}*. We define ¢(n) as the length of the
output that 7 produces on input 0”. Using 7(n) and S, we define A as follows:

A ={x|x € S and ¢(|x]) is even}.

In other words, for all n > 0 such that #(n) is even, the length-n portion of A is
identical to the length-n portion of S, and for all » > 0 such that 7(n) is odd, the
length-n portion of A is empty. Consider the following f:

For all x:

x ift(|x]) is even,
fo) = { (D

yo otherwise.
Since ¢ is polynomial-time computable, f is polynomial-time computable. Because
of the definition of A and the choice of yy, forall x, x € A < f(x) € S.
Thus, f is a polynomial-time many-one reduction from A to S. This implies that
A € NP. |

12.4.1 Two Enumerations of TMs

We use two enumerations of TMs: TM deciders M, M>, ... and TM transducers
R1, Ry, .... All the machines have ¥ as the input alphabet, and the transducers
R1, Ry, ... have ¥ as the output alphabet.
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For both enumerations, for all i > 1, the i-th machine in the enumeration is
the i-th member of X£* in lexicographic order. We employ an encoding scheme that
permits trailing Os, as we did in the proof of Theorem 9.5. Due to the trailing Os,
each TM appears infinitely many times in its respective enumeration. Because of
the trailing-0 attachment, many strings in X* disqualify as an encoding of a TM. We
assume that all trivial deciders reject all inputs and outputs €. As we have seen many
times in this book, checking the validity of an encoding is decidable. Specifically,
due to Theorem 10.2, the extraction of the TM from its binary encoding is in L, so
it is doable in polynomial time.

The machine 7 imposes a clock on the machines it simulates. For all i > 1,
the simulation of the i-th machine runs with i - n’ + i as the maximum number of
steps, the input is rejected for M;, and the output is € for R;. Despite the hard stop,
because we attach trailing Os, every machine reappears with more Os and thus with
more computation time.

12.4.2 T’s Program

We define #(0) = 0 and 7(1) = 1. The machine T must output € on input € and 0
on input 0. The production of these inputs requires n + 1 steps for n = 0, 1. We set
p(n) = n + 1 and set the running time of 7 to something greater than p(n).

For n > 2, the action of T on input 0" goes as follows:

Phase 1: Obtain p(n) inunary 7 computes 07" on one tape.
Phase 2: Recomputation In p(n) steps, T executes its program and tries to

recompute ¢ (n') for as many possible values for n’ = 1,2, ...,n — 1. The 0P™
from Phase 1 is used to limit the number of steps for the recalculation to at most
pn).

Phase 3: Preparation for the next stage Let / be the maximum value of n’ for
which T could recompute 7 (n’) in the allocated p(n) steps. Set m = ¢(h) and
j = [(m+1)/2]. T will output 0" or 0""*! and will use Phase 5 for determining
which.

Phase 4: Machine decoding If m is even, extract the machine M from the j-th
smallest binary string; if m is odd, extract the machine R; from the j-th smallest
binary string.

Phase 5: Simulation 1. If m is even, execute the following:

a. Using no more than p(n) steps, try to test the following condition for as
many x as possible:

M on x accepts if, and only if, x € A.

Here, the lexicographic order is used to generate the candidates for x.
Testing the membership in A may require running 7’s program and
executing S’s decider, Dy.
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b. If the result is positive for all the tests, the output is 0"; otherwise (i.e., the
result is negative for at least one test), the output is 0"+

2. If m is odd, do the following:

a. Using no more than p(n) steps, for as many strings x in X* as possible,
check the condition:

x € §if, and only if, the output of R; on x ix in A.

Testing the condition may require recomputing 7 and simulating the
decider Dyg.

b. If the result is positive for all the tests, the output is 0”*; otherwise (i.e., the
result is negative for at least one test), the output is 0”1,

This completes the description of the algorithm.
Overall, T executes the following:

e Obtainh,1 <h <n—1,m =1t(h),and index j.

* Using p(n) as the time limit, check if there is evidence that M; does not act as a
decider for A or R; does not act as a §ﬁ—reduction from A to S. If no evidence
is found, output m; otherwise, output m + 1.

The program uses the value of m to determine which machine to test the condition
in Phase 5.

12.4.3 T’s Running Time

Let us analyze the running time of 7. The running time is O(p(n)) for Phases
1, 2, 3, and 5. The time required for extracting the machine in Phase 4 is O (n)
because 7 only must remove the trailing Os. Thus, the total running time of T is
O(p(n)). This means that T is polynomial time-bounded, and thus ¢ is polynomial-
time computable.

12.4.4 t’s Range and Its Non-decreasing Property

Now, let us examine the output of 7. In Phase 5, T may output 0™+Lif, and only if,
T produces 0™ on some smaller input. This means that the range of 7 is consecutive,
i.e., the interval [0, ¢] for some integer g or the entire set of nonnegative integers.
We claim that 7 is non-decreasing. The proof is by induction on n. The base case
is when n = 0. We know that 1(0) = 0 < (1) = 1 = t(0) + 1. Thus, the claim
holds for n = 0. For the induction step, let n > 1 and suppose that the claim holds
for all smaller values of n. Let us compare the actions of 7 on input 0" and input
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0"+, Let h,,m,, and Jn be the values of A, m, and j on input 0", respectively.
Let hypy1, my41, and j,41 be the values of i, m, and j on input o+l respectively.
Since T has only one extra step in the simulation, &, < h,4+; < h, + 1. Since T
must recompute ¢ from 7(0), i, <n — 1l and h,4+1 < (n + 1) — 1 = n. So, by the
induction hypothesis, the strict non-decreasing property holds for both 7(#,) and
t(hy41), which are m,, and m,, 1, respectively.

We consider two cases: m,, = m, | and m,, # m, 1. Suppose m, = m,y. The
machine 7' simulates on input 0" is identical to the machine 7' simulates on input
0"t!, Since T has more time to use in simulation, if it finds a counterexample on
input 0", it finds a counterexample on input 0" !, Thus, the possible value pairs for
(t(n), t(n+1)) are (my,, my), (m,, m,, + 1), and (m, + 1, m, + 1). Hence, the claim
holds. Next, suppose m,, # m,y1. By our induction hypothesis, m,, < m,41. Since
tn) <mp+1=<tn+1)andt(n+1) = myu41, we have t(n) < t(n + 1), so the
claim holds.

Since ¢ is non-decreasing without a gap, for alln > 0, t(n) < t(n + 1) < t(n)
(see Exercise 12.11).

12.4.5 t’s Unboundedness

We claim that for each g, there is some n such that #(n) > ¢g. The proof is by
contradiction. Assume, by contradiction, that a value ng exists such that t(n) = ¢
for all n > ng. For all sufficiently large n, T arrives at & such that (k) = ¢ and
Jj = [(g + 1)/2] and finds no counterexamples in the equivalence tests; otherwise,
t(n) would be g + 1. Suppose g is an odd number. Then, M; passes the equivalence
test for all inputs, so M; decides S. Since M;’s running time is j - nl + j, we get
S € P. This is a contradiction.

On the other hand, suppose ¢ is an even number. Then, R; passes the equivalence
test for all inputs, so R; reduces S to A. Since R;’s running time is j - n/ 4 j and
S is NP-complete, we get that A is NP-complete. However, h(n) = ¢ for all n > ng
and ¢ is odd. Since A consists of all w € § such that # (Jw|) is even, every member
of A has a length of < ng. This means that A is finite. Since finite sets are in P, this
implies P = NP. This is a contradiction. Hence, ¢ is unbounded.

12.4.6 The Final Touch

Since the value of 4,, increases by at most 1 and j, is one-half of m,,, the equivalence

tests are conducted for all M s and R;s. The unboundedness of ¢ (n) guarantees that

T finds a counterexample for all of them. Thus, A ¢ P and S is <P _reducible to A.
This completes the proof of the theorem.
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12.5 PSPACE-Complete Problems

In this section, we explore complete problems for PSPACE.

12.5.1 Quantified Boolean Formulas (QBF)

We define a canonical complete problem with quantified Boolean formulas.

Definition 12.14 We define PSPCANONICAL = {(M, x, 1°) | M is a deterministic
offline TM and accepts x using no more than s tape cells}.

The completeness of PSPCANONICAL, stated next, is easy to prove. We leave the
proof to the reader (Exercises 12.18 and12.19).

Proposition 12.6 PSPCANONICAL is PSPACE-complete under <P _reductions.

The canonical complete problem does not help find problems complete for
PSPACE. Therefore, we obtain a logical characterization.

Recall that we defined the polynomial hierarchy, specifically the Z,f classes,
using a stack of nondeterministic oracle TMs. Also recall that we characterized
the ¥ ,f classes using alternating quantifiers (Theorem 12.4). In the characterization,
we guessed a prospective accepting computation path and verified its correctness
with queries to languages in Z,f_l and H,f_l. We apply an idea similar to the
characterization here in this proof. The idea comes from the proof for Savitch’s
theorem (Theorem 10.4). The level in the polynomial hierarchy corresponds to the
exponent in the reachability distance.

Definition 12.15 TQBF is the problem of determining the value of fully quantified
Boolean formulas.

Theorem 12.7 TQBF is <k -complete for PSPACE.

Proof Let L be a language in PSPACE and M be a polynomial space-bounded
deterministic TM M that decides L. We may assume that M is a single-tape
machine. Additionally, we may assume that M has a unique accepting ID g,ccLl*
(see Exercise 12.20) In other words, all the tape cells are blank, and the head is on
the leftmost cell of the tape in the ID. Because M is polynomial space-bounded, a
polynomial p(n) exists such that for all x, we can encode each possible ID during
the execution of M on x as a p(]x|)-bit string, thus as p(|x|) variables.

Let us fix an input x having a length of n. Let ‘W be the variables representing the
ID of M and A be the set of all truth assignments to “W. A unique truth assignment
in A represents the initial ID of M on x. In addition, a unique truth assignment in
A represents the accepting ID of M. Let Ajp; and Ay be the unique initial and
accepting IDs, respectively. We can identify A as {0, 1}’ For each X,Y € A
and d > 0, we define R(X, Y, d) as the tertiary relation Y is reachable from X in at
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most 2¢ steps. As with the proof for Savitch’s theorem (Theorem 10.2), we use the
following recursion on the value of d where d > 1:
R(X,Y,d)
S (X=Y)v
AZDH)VU WU =XAV=Z2)v(U=ZAV =Y))= RU,V,d-1)].

We can express the condition as a formula without the implication:

R(X,Y,d)
S (X=Y)Vv
AZY)NVUWVI(U #AXVVAZOANU#AZVV £Y)VRU,V,d-1)].

For d = 0, instead of the recursion, we have the following property:
R(X,Y,0) < (X =7Y) VY isthe next ID of X.

In proving SAT’s completeness, we introduced a propositional formula representing
the “next ID” relation. We use the same formula here. The “next ID” is expressible
as a propositional formula. We recursively substitute the R predicate with a smaller
d until d = 0. Here we attach the subscriptd to U, V, and Z at level d. The recursive
substitution produces the following:

R(X,Y,d) < QZ,)HU4, Vo) 3Z4-1)VU4-1, Va—1) --- AZ1)(YUy, V1)[9].

Here, ¢ consists of the equality testing for all levels and the “next ID” test. By
quantifying X and Y with 3 and adding the conditions representing X = Aj,; and
Y = Auccept conjunctively, we get the formula for M’s acceptance of x:

v =03X,Y, Z)(VUa, Va)3Za—1)(VUa-1, Va-1) - - - 3Zo) (VUo, Vo)
[X =Amn AY = Aaccept A @] (12.4)

This is a TQBF formula. Since ||A|| = 2P, if M accepts x, then it does so in 27
steps. Thus, we can set d = p(n). This proves the theorem. O

We can turn a TQBF formula into a normalized form. First, since Eq.12.4 is
a propositional formula, we can change it to a 3CNF formula with additional
variables. This change raises the complexity of the equation from P to NP, but the
overall complexity of ¥ is unchanged. Next, we insert irrelevant variables to the
formula so that the quantifiers alternate between 3 and V variable after variable,



316 12 Beyond NP-Completeness

starting and ending with 3. The resulting formula is in the format:

Gx1)(Vx2)(3x3) - - - (Qr—1xk—1) @xp) P (x1, . .., Xp).

Here, k is odd, and ¢ is a 3CNF formula.
Corollary 12.5 The TQBF problem is PSPACE-complete, where the number of

variables is odd, the base formula is 3CNF, the quantifiers alternate variable after
variable, and the starting and ending quantifiers are 3.

12.5.2 Games and Winning Strategies

From the characterization in Corollary 12.5, we obtain game-based complete

problems.
The first complete problem is the following two-player logic game. In this game,
the players receive a Boolean formula ¢ (x1, ..., x2,) and assign values to the

variables in 2n rounds. In an odd-numbered round r, Player 1 selects the value for
Xr; in an even-numbered round r, Player 2 selects the value for x,. After 2n rounds,
they evaluate the formula with the chosen variables. Player 1 wins if the formula is
true; Player 2 wins otherwise.

Definition 12.16 FORMULAGAME = {(¢) | ¢ has some 2n variables, and Player 1
has a winning strategy in the game}.

Theorem 12.8 FORMULAGAME is PSPACE-complete.

Proof To show that FORMULAGAME is in PSPACE, let ¢ (x1, ..., x2,) be a 2n-
variable Boolean formula. For each b, ¢ € {0, 1}, let ¢ be the formula constructed
from ¢ by assigning b to x1 and c¢ to x3. Then:

¢ € FORMULAGAME <= (3b)(Yc)[¢ppc € FORMULAGAME].

We think of a TM that uses recursive calls and evaluates the membership of ¢ in
FORMULAGAME. The machine then determines the membership using four possible
assignments to the variable pair (b, ¢) with four recursive calls. If the results are
positive for (0, 0) and (0, 1) or positive for (1, 0) and (1, 1), the machine accepts
¢; otherwise, the machine rejects ¢. Each of the four calls has two fewer variables.
The depth of the recursive algorithm is thus 7, so the space required for the recursive
evaluation is O (n - |¢|). Thus, FORMULAGAME € PSPACE.

To show the <? -hardness of FORMULAGAME, we use Corollary 12.8, where
the complete problem demands alternating quantifiers. Suppose we are given the
following PNF formula with alternating quantifiers:

Y = (Q1x1)(Q2x2) - - - (Qrxi) [P (x1, ..., xp)].
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Here, Q1, ..., O alternate between 3 and V. We make two possible modifications
to ¥ so the quantification sequence starts with 3 and ends with V. First, if Q1 is V,
we insert a new starting quantification (3xp) with a new variable x( not appearing in
¢. Second, if Qy is 3, we insert a new ending quantification (Vxj41) with a variable
Xk+1 not appearing in ¢. Neither modification alters the value of the formula.
The addition of the two variables does not alter the value of the QBF. Now, the
truth value of the QBF can be obtained from the membership of the formula in
FORMULAGAME. O

Algorithm 12.3 Recursive algorithm for FORMULAGAME
1: procedure FORMULA-GAME(¢p)
2 if ¢ has no free variables then
3 return the value of the formula;
4: end if
5: construct formulas ¢, do1, P10, P11
6.
7
8

make recursive calls and obtain the membership of
the four sub-formulas in FORMULAGAME;
: if oo = P01 = true then
9: return 1;

10: else if ¢10 = ¢ = true then
11: return true;

12: else

13: return false;

14: end if

15: end procedure

12.5.3 The Geography Game

The PSPACE-complete problem is Geography.

Geography is reminiscent of the Japanese word game “Shiritori.” In Shiritori, the
players take turns stating a word. Before playing the game, the players agree on
the word category (e.g., animals, vegetables, and country names). The first player
is free to choose the initial word. After that, the players must state a word whose
first syllable is identical to the previous player’s last syllable. The vocabulary is
imaginary, and other players must endorse each word. If the word is not endorsed,
the player must select another word. Since the Japanese language does not have
words starting with the syllable “N,” a player must not use a word ending with “N.”
The player who cannot make the connection loses the game. For example, if animals
are chosen as the category, the words may connect like:

“ne-ko” (the cat), “ko-ji-ka” (the fawn), “ka-mo-no-ha-shi” (the duck-bill),

“shi-ma-u-ma” (the zebra), “ma-n-gu-u-su” (the mongoose), “su-zu-me” (the
sparrow).
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We generalize the game as Geography, where the players agree on vocabulary.

In Geography, the problem is represented as a directed graph with multiple edges.
The graph’s vertices are the syllables, and the edges are the words connecting
syllables. When a player selects an edge, the vertex of origin moves along the edge,
and the edge is removed from the graph. We bound the number of edges by some
polynomial in the number of vertices. To achieve this, we use an edge list. We may
consider an adjacency matrix with integer entries to encode the problem, but such
a graph may have an exponential number of edges. We also restrict the number of
players to two, and the player having no available edges loses the game. Since there
are two players, the opponent of the losing player is the winner.

Definition 12.17 GEOGRAPHY = {(G, s) | G is a multiple-edge directed graph, s
is a vertex in G, and Player 1 has a winning strategy}.

We again reduce TQBF to prove the following:
Theorem 12.9 GEOGRAPHY is PSPACE-complete.

Proof We use a recursive algorithm to show GEOGRAPHY € PSPACE. In the
recursive algorithm for FORMULAGAME, the recursion keeps Player 1 in the initial
question as the first player in the recursive calls. Here, we reverse the order of the
players in each recursive call. By symmetry, for all i such that 1 <i <k,

Player 1 has a winning strategy in (G, s) <= Player 2 has no winning strategy in
(G, u;) for some i.

The algorithm uses this fact. At each recursive call, the graph loses one edge. Since
the number of edges is no more than the length of the input, the recursion depth is
linear. Thus, the program runs in polynomial space.

We use the variable-wise quantifier-alternating version of TQBF from Corol-
lary 12.5. Suppose the following  is an instance of TQBF:

Fx)(Vx2) - - - (Vxor) @xok+ D@ (X1, - oo, X264 1D)]

Here, ¢ is a 3CNF formula. Let m be the number of clauses in ¢. We construct a
Geography game from v such that ¢ = true <= Player | has a winning strategy.

A key ingredient in the construction is the gadget in Fig. 12.2. Suppose a player
must choose an edge from the top vertex. There are only two ways to go from top to
bottom: to the left and right. Both require three steps, meaning the same player picks
the branch at the bottom and follows the last edge. If there are no other outgoing
edges from the middle vertices, the selection eliminates the use of the child that the
first player chooses.

Fig. 12.2 The variable s
selection gadget in the . .,/C\O
reduction to GEOGRAPHY el

v
O
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We connect 2k 4 1 copies of the five-vertex gadget in a sequence by identifying
the bottom vertex of a gadget with the top vertex of the next gadget. We locate the
game’s starting point to the top vertex of the gadget sequence. Since the top and last
players inside each gadget are identical, and the number of gadgets is odd, the first
and last players in the gadget series are the same.

After constructing the sequence, we connect the bottom edge of the last gadget to
a vertex with m outgoing edges, connecting to m vertices representing the clauses.
Each clause-representing vertex has three children, representing the literals in the
clause. We identify the literal vertices with corresponding assignments in the five-
vertex gadget sequence (see Fig. 12.3).

Multiple choices are available at the start of each gadget, at the clause selection,
and at the literal selection. The multiple choices Player 1 receives are at the odd-
numbered five-vertex gadgets and the literal choice. The multiple choices Player 2
receives are at the even-numbered five-vertex gadgets and the clause choice. For
the multiple choices available at the five-vertex gadgets, Player 1 receives all the
assignment selections for the existentially quantified variables. In contrast, Player
2 receives all the assignment selections for the universally quantified variables. At
literal selection, if the selection matches the truth assignment, there is no edge to
traverse from there. If the literal selection disagrees with the truth assignment, there
is an arrow that Player 2 can follow; following this arrow, the players arrive at a
vertex with no more outgoing edges. Thus, after arriving at the clause selection,
Player 1 wins the game if, and only if, the clause Player 2 chooses is satisfiable.
Thus, Player 1 has a winning strategy if, and only if, ¥ = true.

The construction of the graph can be carried out in time polynomial in |F|, so

the reduction is a <% reduction. This proves the theorem. m]
Fig. 12.3 The construction Truth Assignment
for reducing TQBF to ITR“;/O\;LSE

1 elect a Literal
GEOGRAPHY S ot a Glause
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Algorithm 12.4 Recursive algorithm for GEOGRAPHY
1: procedure GEOGRAPHY(G, s)
2 if s has no outgoing edges then
3 return false;
4: end if
5: obtain the list of all out-going edges of s as e] = (s, uy), ..., ex = (5, ux);
6
7
8

fori < 1,...,kdo
construct G; by removing ¢; from G;
make a recursive call about (G, u;) and obtain the result r;;

if r; is false then
10: return frue;
11: end if
12: end for
13: return false;

14: end procedure

Exercises
12.1 Suppose C is a complexity class. Prove that P = P<°~C NP¢ = NP, and
cONPC = coNP®°—C,

12.2 Suppose C is a complexity class with a <}-complete set A. Prove that P¢ =
P4, NP® = NP*, and coNPC = coNP4.

12.3 Prove that NP4 for every language A, NP4 is closed under <.

12.4 Prove that for every language A, coNP# is closed under fgn.

12.5 Prove that the polynomial-time Turing reducibility is reflexive and transitive.

12.6 Prove that the search reduces in polynomial time to the decision for
VERTEXCOVER.

Hint: Using a greedy algorithm, we can eliminate vertices that do not contribute
to a vertex cover of the required size.

12.7 Prove that the search reduces in polynomial time to the decision for CLIQUE.
Hint: Using a greedy algorithm, we can eliminate edges that do not contribute
to a clique of the required size.

12.8 Prove that the search reduces in polynomial time to the decision for
PARTITION.

Hint: We can increase the value of a pair of elements with the same amount to
check if they are in different parts.

12.9 Prove that the search reduces in polynomial time to the decision for 3DM.
12.10 The proof of Theorem 12.4 converts a 3DNF to a 3CNF with the variables
existentially quantified. Suppose the DNF ¢ has m clauses in the form:

d=U1aNANLia ALV NV U Al Ay 3).
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We refer to the i-th clause as D;. Construct a full CNF formula for (3i : 1 <i <
m)[D;] by introducing two sets of variables. The first set is a; such that 1 <i < m,
indicating which D; is true. The second set is b; such that 2 < i < m, representing
arVv---Va.

12.11 In the proof of Theorem 12.6, we used the property (n+1) € {t(n), t(n)+1}
for all n > 0. Prove this property by combining the two properties of ¢; ¢’s range is
contiguous, and 7 is non-decreasing.

12.12 Recall that INDEPENDENTSET is the set of (G, k) such that G has an inde-
pendent set of size k. Give an algorithm for computing one maximum independent
set of a graph G using INDEPENDENTSET as the oracle.

12.13 Recall that HAMPATH is the set of (G, s, t) such that G has a Hamiltonian
path from s to #. Show that the search reduces in polynomial time to the decision for
HAMPATH.

12.14 Recall that HAMCYCLE is the set of graphs (G) such that G has a
Hamiltonian cycle3. Show that the search reduces in polynomial time to the decision
for HAMCYCLE.

12.15 Let A be an arbitrary language in NP N coNP. Show that NP4 = NP.

12.16 Let A be an arbitrary language in NP N coNP. Show that P4 € NP N coNP,
and so NP N coNP = PNPMcoNP

12.17 Let M be a polynomial time-bounding NTM such that for all inputs x, M
on x makes at most ¢ log |x| nondeterministic choices on every computation path.
Show that the language M accepts is in P.

12.18 Prove that the canonical complete problem in Proposition 12.6 is in PSPACE.

12.19 Prove that the canonical complete problem in Proposition 12.6 is PSPACE-
hard under the polynomial-time many-one reductions.

12.20 Prove that single-tape TMs can be normalized so that the format of their
accepting IDs is gaccU™.

Bibliographic Notes and Further Reading
The definition of oracle TMs is by Turing [6]. The completeness of ODDMAXSAT
for PNP (Theorem 12.3) is by Krentel [1]. The polynomial hierarchy was first studied
by Meyer and Stockmeyer [3, 5]. The logical characterization of PH (Theorem 12.4)
is from the work of Stockmeyer [5]. Theorem 12.6 is by Ladner [2].

The completeness of FORMULAGAME and GG is by Schaefer [4].
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Part V
Advanced Topics in Computational
Complexity Theory



Chapter 13 )
The Probabilistic Polynomial-Time Qe
Classes

13.1 The Probabilistic Turing Machine Model

This section introduces the probabilistic TM model and the classes defined with this
model.

13.1.1 The Definition

Let us begin with the definition of the probabilistic TM model.

A probabilistic TM has access to a random bit generated with a probability of
1/2 at each step. The random bits are mutually independent, so their values have no
correlations with their previous values. Put differently, the transition function of a
probabilistic TM has one or two values for each state-symbol combination. At each
step, if the transition function has only one value, the machine chooses the action;
if the function has two values, the machine picks one of the two possibilities with a
probability of 1/2.

There are two ways to measure the computation time of a probabilistic TM.
One way is to use the maximum computation time among all possible computation
paths, and the other is to use the expected computation. When we use the expected
computation time measurement, a probabilistic TM may run for a very long time
The time bounds in this chapter use the maximum computation time.

Definition 13.1 Let #(n) be a function from N to N. A probabilistic TM M is
t(n) time-bounded if, for all inputs x, M on input x terminates within 7 (|x|) steps
regardless of M’s probabilistic choices.
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Given a time-bounded probabilistic TM M, an input x, two IDs I and I’, and
an integer s > 0, we can assess the probability that M transitions from [ to I’ in s
steps. The assessment can be inductive in the following manner:

e Ifs =0, the probability is 1 if I = I’, and 0 otherwise.

e Ifs > 0,let I1 and I be the two possible next IDs of I, where I; may be identical
to I,. Let p; and p, be the probability of reaching I’ in s — 1 steps from I; and
I, respectively. The probability in question is:

Ll )
2Pl 2pz— 5

Using the transition probability between IDs, we define our first probabilistic
complexity class, BPP, as the class having bounded-error polynomial-time
randomized algorithms.

Definition 13.2 BPP is a class of languages L for which there exists a polynomial
time-bounded TM M such that for all x,

1. If x € L, the probability that M on x acceptsis > 1/2+ €
2. If x & L, the probability that M on x rejects > 1/2 4+ €

Here, € is a positive constant.

We say that M’s computation is successful if its definition is consistent with
the input’s membership (i.e., accepting for a member and non-accepting for a
nonmember). Using this notion, we can state that a language L is in BPP if there is
a polynomial time-bounded probabilistic TM whose success probability is 1/2 + €.
We also define M’s error probability as 1 minus the success probability. Thus, BPP
is the class of languages with a probabilistic polynomial-time decider whose error
probability is < 1/2 —e.

The following result can be easily derived from the definition.

Proposition 13.1 BPP = co—BPP.

Proof Let M be a probabilistic TM witnessing L € BPP. Let M’ be the TM
that runs the program of M and accepts/rejects its input if, and only if, M
rejects/accepts. The bound on the error probability is the same between the members
and nonmembers. Since M is polynomial time-bounded, M’ is polynomial time-
bounded. Thus, M’ witnesses that L € BPP. O

Three subclasses of BPP exist:

* RP is the subclass of BPP where the error probability for nonmembers is 0.
* coRP is the subclass of BPP where the error probability for members is 0.
e ZPP = RPN coRP.
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We often refer to BPP as “bounded-error probabilistic polynomial time,” RP as
“one-side bounded-error probabilistic polynomial time,” and ZPP as “zero-error
probabilistic polynomial time.”

Proposition 13.2 RP C NP, coRP C coNP, and ZPP C NP N coNP.

The constant error bound of BPP seems too large. We can reduce the error
probability of BPP languages to 27" for an arbitrary polynomial r(n). The
reduction is achieved using the following Chernoff-Hoeffding bound.

Lemma 13.1 (The Chernoff-Hoeffding Bound) Ler X, ..., X, be independent
random variables whose values are from {0, 1}. Let S = X1+ --- 4+ X,, and E be
S’s expectation. Then, for all t > 0,

212
Pr[S>E+t]<exp|——].
n

An intuitive description of the Chernoff-Hoeffding bound is that the sum of
independent Boolean variables is unlikely to be away from its expectation. With
multiple executions of a bounded-error decision algorithm, we can widen the gap
between the expected number of accepts when the input is a member and the
expected number of accepts when the input is a nonmember.

Lemma 13.2 Let M be a probabilistic TM that accepts a language L with a success
probability of 1/2 + € for some positive €. Let p(n) be an arbitrary polynomial and
c> ?12 be an integer. Let M’ be a probabilistic TM that, given an input x, simulates
M on x cp(|x|) times independently and accepts if, and only if, at least one-half of
the simulations accept. Then, for all x, the following properties hold:

1. Ifx € L, the probability that M’ on x accepts is > 1 —27P(xD,
2. Ifx & L, the probability that M on x rejects > 1 —27P(xD,

Proof Let L, M, M’, p, and c be as in the hypothesis of the lemma. Let x be an input
to M’ and n = |x|. Let X; be the variable indicating the success/failure of the i-th
simulation, where 1 < i < ¢p(n);i.e., X; = 1 if the i-th simulation is successful,
and O otherwise. We know Pr[X; = 1] > 1/2 + € independently for each i. We
define S and E as with Lemma 13.2. Then, E > (1/2 + €)(cp(n)). Since M’ takes
the majority vote, it makes an error when S < cp(n)/2. Since E > (1/24¢€)(cp(n)),
an error occurs when:

E — S >ecpn).

Lett = ecp(n). According to Lemma 13.1, the probability that the deviation, E — S,
is > t is at most:

< 2(ecp(n))?
Xpl ————

) = exp(—2€2cp(n)).
cp(n)
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Sincec > 1/ (262), the right-hand side is at most:
exp(—p(n)) < 2P

Thus, M’ has an error probability of < 2-p(n), O

13.2 Primality Testing Algorithms

The most famous problem in BPP is primality testing: a problem of testing if an
integer given in binary is a prime number.

13.2.1 Number Theory Basics

We begin with a review of relevant concepts and results in number theory.

An integer m divides n (or m is a divisor of ») if the remainder of »n divided by
m, n mod n, is 0. In other words, m divides n if n = dm for some integer d. We
write m | n to mean that m divides n. A trivial divisor of n is 1 and n. A nontrivial
divisor of n is a divisor between 2 and n — 1. A natural number n > 2 is a prime
number if, for all b, 2 < b < n — 1, the remainder of n divided by b is not O (i.e., no
integer between 2 and n — 1 is n’s divisor). A natural number n > 2 is a composite
number if it is not a prime number.

The list of the prime numbers <100 are:

2,3,5,7,11,13,17, 19,23, 29, 31, 37,
43,47, 53,59,61,67,71,73,79, 83, 89,93, 97.
The following proposition states that each positive integer is uniquely expressed

as the product of prime numbers. The proof is left to the reader (see Exercise 13.9).

Proposition 13.3 Each integer n > 1 is uniquely decomposed as the product of
distinct prime powers. In other words, for each integer n > 1, there exists exactly
one combination of positive integers k, p1, ..., Pk, €1, . . . ek such that

n=(pD" - (p*.

Here, p1 < - -+ < py are prime numbers.

We call this decomposition the prime factorization of n.

Given integers m and n such that m or n is nonzero, the greatest common divisor
(GCD) of m and n, denoted by gcd(m, n), is the largest positive integer d such that
d is a divisor of m and n. Also, integers m and n are relatively prime to each other
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if ged(m,n) = 1. A concept related to the greatest common divisor is the least
common multiple of nonzero integers m and n, lem(m, n), which is the smallest
positive integer d such that m and n divide d. For two strictly positive integers m
and n, lem(m, n) is given as

m-n

lem(m,n) = — .
ged(m, n)

Both these two quantities extend to more than two numbers.

There is an efficient method for computing the GCD of two integers. The results
in this chapter do not depend on the algorithm, but we present this method in
Algorithm 13.1 for completeness. In the algorithm, m mod n is the remainder of
m divided by n. The algorithm computes gcd(m, n) and integers a and b such that
am + bn = ged(m, n). In the algorithm, am + bn = g is an invariant condition
of the loop; i.e., it is a condition that is maintained before and after executing the
loop’s body. Another invariant is e, which is the number of exchanges that occurred
between m and n.

Algorithm 13.1 A recursive method for computing gcd(m, n)

1: procedure GCD(m, n)

2: m>1landn > 1;

3 a<«0;b<«1;g «<n; >am+bn =g
4: e <« 0;

5: while m > 0 do

6: if m < n then

7 exchange values between m and n;

8 exchange values between a and b;

o %

e<—e—+1;
10: else
11: r < m mod n;
12: d <~ (m—r)/n;
13: a<~1—d-a;
14: b« —d-b;
15: g <« r;
16: end if
17: end while
18: if ¢ is even then
19: return (a, b, g);
20: else
21: return (b, a, g);
22: end if

23: end procedure

In primality testing, congruence classes play a crucial role.

Let n > 2 be an integer. We say an integer a is congruent to another integer
b modulo n if n divides the difference a — b and write a = b (mod n). With Z,,,
we denote the set of numbers reduced using the congruence modulo #. There are n
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congruence classes in Z,,. We denote the class equivalent to a with [a],,. The typical
representatives are 0, ..., n — 1, but — 1 also serves as a representative for [n — 1].
If the modulus » is evident from the context, we write [a], or simply a, to mean the
modulo-n congruence class, including a.

The set Z, is an n-element commutative ring since it has the following
properties:

e Z, is an additive group.

— Z, is closed under addition with [0] as the identity element.
Each element [a] has the negative element [—a].
The addition admits the associative law; i.e., for all a, b, and c:

([al + [b]) + [c] = [a] + ([b] + [cD).

The addition admits the commutative law; i.e., for all a and b:

[a] + [b] = [b] + [a].

e Z, is a multiplicative monoid.

— Z, is closed under multiplication with the identity element [1].
— The multiplication admits the associative law; i.e., for all a, b, and c:

([a] - [B]) - [c] = [a] - ([D] - [cD).
— The multiplication admits the commutative law; i.e., for all a and b:

la] - [b] = [b] - [a].

* The combination of multiplication and addition admits the distributive laws; i.e.,
for all a, b, and c:

(lal +[b]) - [c] = [a] - [c] + [b] - [c] and
[c]- ([al + [b]) = [c] - [a] + [c] - [D].

In addition to Z,,, we consider Z*. Z is the set of congruence classes of n that
are relatively prime to n (i.e., each member [a] satisfies ged(a,n) = 1). Z} is
a commutative multiplicative group with [1] as the identity element. When 7 is a
prime number, Z consists of all the n — 1 congruence classes other than 0. When
n is a composite number, the size of Z} is less than n — 1. For example, Zg‘ consists
of four classes, [1]s, [2]5, [3]s, and [4]s5, while Zg‘ consists of just two congruence
classes, [1]g and [5]s.
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13.2.1.1 Fermat’s Little Theorem
The main idea of the primality testing algorithm is the following Fermat’s little
theorem.

Theorem 13.1 (Fermat’s Little Theorem) For all odd prime numbers p and all
nonzero a € Z, aP~!' =1 (mod p).

Proof Let p be an odd prime number. Let a be an integer, | < a < p — 1. Think of
p — 1 multiples of a as follows:

l1-a,2-a,...,(p—1)-a.

Since p is a prime number, none of the products are multiples of p. Also, none of
the two different multiples of p — 1 are equal. Thus, as congruence classes, we have:

(I-al-[2-a]---[(p—1D-al=[1]---[p—1].
The left-hand side is equal to:

1---[p— 1) - [al’~".

The product [1] - --- - [p — 1] is not O, so can simply the equation by dividing both
sides by its inverse. This produces:

[a]?~! = [1].

By removing the [-] notation, we get a”~! =1 (mod p). O

The theorem raises hopes that we can test the primality of an odd integer n > 3 by
checking if for some a such that 1 < a <n — 1, n fails to satisfy a" ! =1 modn.
Unfortunately, satisfying "~! = 1 (mod n) for all a such that gcd(a,n) = 1
does not guarantee the primality. There are composite numbers n such that for all
a relatively prime to n, @' = 1 (mod n). We call such numbers the Carmichael
numbers. There are infinitely many Carmichael numbers, and their existence makes
it impossible to use Fermat’s little theorem to detect compositeness. As we will see
later in this chapter, we can test the primality of n by examining how the series
a,a,...,a"! approaches 1 for a random a.

13.2.1.2 The Chinese Remainder Theorem

We build the test using the following theorem, called the Chinese Remainder
Theorem.
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Theorem 13.2 (The Chinese Remainder Theorem) Let k > 2. Let ny, ..., ng
be positive integers that are relatively prime to each other. Let N = ny - - - ny. Let
rl, ..., "y be integers such that for all i, 0 < r; < n;. There exists exactly one
R,0< R < N — 1, such that R = r; (mod n;) foralli.

Proof We can prove the theorem by induction on k. The base case is k = 2. We
claim that integers m and m, exist such that

min| +mony = 1.

We prove the existence by contradiction. Assume that the smallest positive integer
you can construct as mny + many is d > 1. Since n1 and n; are relatively prime to
each other, d is relatively prime to ny or ny. Suppose d is relatively prime to ny. Let
n1 = sd + t, where s is the quotient of n divided by d and ¢ the remainder. Then:

s(miny +mony) =sd =n; — t,
So:
t=n1 —s(mny +mony) = (1 —smy)n| — smany.

The same can be done for n, if n; is relatively prime to d. In both cases, | <t < d.
This contradicts the minimality of d. Thus, the desired m| and m exist.
Now we define R = manyry + mnyry + €niny. Here, we choose £ so that R
falls between 0 and njny — 1. We have:
R = mniry + manary + €nny
={niny +mniry —mniry + mniry + manary
=ALniny +mni(ry —r1) + (mny + mana)r
=dniny +mni(ra —r1) +ri
= {ny+mi(ry —ri)ny +ry.
Thus, R = r; (mod n1). Additionally:
R = monyry + mnyry + €nny
= {nny + manory — manary + monary + mingr
= dniny + mana(ry — r2) + (myny + mana)ry
=dniny +mana(ry —rp) +r2

= (lny +ma(r1 — r2))ny +ro.

Thus, R = r, (mod ny), and the claim holds for k = 2.
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For the induction step, suppose k > 3, and the claim holds for all smaller values
of k. Let N = ny---n;_1 and Ry, 0 < Ry < Ny — 1, be such that for all i such
that 1 <i <k — 1, Rop = r; (mod n;). We apply the base case to the pair Ny and
ny to find m; and m, such that

m'No + mhni = 1.
We then define:
R = m/znkRo + m’lNork + ¢ Nong.
Here, ¢’ puts R between 0 and Non;, — 1. We have:

R = ¢'Non; + (mhn, Ry — mhn,r;) + (mhn,re + m'y Nory)
= ¢'Non; + mhn;(Ro — ry) + (mhn, + m'{ No)ry

=r; (mod ny),
and similarly:
R = Ry (mod Np).

Because of the definition of Ry, the last congruence gives R = r; (mod n;) for all i
such that 1 <i < k — 1. Thus, the claim holds for k.

Hence, the claim holds for all &, so the induction is complete. The proof of R’s
uniqueness is left to the reader (see Exercise 13.13). O

The following result immediately follows from the Chinese Remainder Theorem.
We leave the proof to the reader (see Exercise 13.14).

Corollary 13.1 Let k > 2. Let ny, ..., nr be positive integers that are relatively
prime to each other. Let N = ny - - -ny. Then, for all integers v, r = 1 (mod N)
if, and only if, r = 1 (mod n;) for all i. Additionally, for all integers r, r = —1
(mod N) if, and only if, r = —1 (mod n;) for all i.

13.2.1.3 Generators

Since Z;' is a multiplicative group, for each a € Z}, a positive integer k exists such
that a* = 1 (mod n) (see Exercise 13.11). The smallest positive integer d is the
order of a in Z;}. We denote it with ord, (). By convention, if a ¢ Z, the order of
ais oo.

Fermat’s little theorem states that for all prime numbers p and integers a not
divisible by p, the order of a is a divisor of p — 1. Is there an integer a whose order
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is p—1?If an element @ has order p—1, then a, a2, ..., aP! are different elements

and thus cover the entire Z;‘;. We call an element with an order p — 1 a generator
for Z.

For each power of a prime number p° such that p is a prime number and e is a
positive integer, ¢(p¢) = p*~!(p —1). p(p°) is the cardinality of the multiplicative
group Z;e. The proof of the following theorem is complex. We give only the
statement of the theorem.

Theorem 13.3 For every odd prime number p and a positive integer e, (Zpe)* has
a generator. The order of the generators is (p¢) = p*~1(p — 1).

We can say more about the existence of generators. We leave the proof of the
following proposition to the reader (see Exercise 13.15).

Proposition 13.4 If Z) has a generator, Z;: has ¢(¢(n)) generators.

We also have the following result. Again, we leave the proof to the reader (see
Exercise 13.16).

Proposition 13.5 If g is a generator in Z); and e is a positive integer, ord, (g¢) =
p(n)/(ged(p(n), €)).

13.2.2 The Miller-Rabin Test

Now, we state our probabilistic primality testing algorithm. Primality testing is
vital in modern cryptography, specifically in the celebrated Rivest-Shamir-Adleman
security (hereby RSA). The RSA cryptography uses the following simple property:

If an integer triple (n, e, d) satisfies ed = 1 (mod ¢(n)), then for all m € Z,,,
(m")d =m.

RSA’s participants independently select their own triple (n, e, d) and publish (n, e).
To send a secret message to a recipient whose published key is (n, e), the sender
converts the message as a series of numbers in Z,,, raises each number to the power
of e in modulo 7, and sends the sequence of powers to the recipient. The recipient
raises the received numbers to the power of d modulo n and recovers the message.

Traditional cryptosystems required M (M — 1)/2 sets of keys to serve M people
for their pairwise secret communications. The public-key system was revolutionary
in that the system with M people needs only M sets of keys because communica-
tions to a receiver use the same set of keys.

The security of the system comes from the difficulty of computing ¢ (n) without
knowing n’s prime factors. A typical choice for 7 is the product of two large primes,
say p and g, where ¢(n) = (p — 1)(¢ — 1)/ ged(p — 1, g — 1). For each selection
of e that is relatively prime to ¢(n), d can be easily computed using the process
of computing gcd(e, ¢(n)). Assuming that factoring large integers is a practically
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impossible problem, an eavesdropper cannot compute d from n and e without
knowing the prime factors p and q.

If we take the difficulty of factoring integers for granted, a crucial question is
finding large prime numbers. The prime number theorem states that the proportion
of prime numbers below X is 2(1/log(X)). Thus, you can expect to encounter
a prime number by selecting log X candidates below X. But how do you test
if a number is a prime number? This question leads us to whether or not we
can effectively test the primality of any given number. Formally, we consider the
following two decision problems in Definition 13.3.

Definition 13.3 PRIMES = {n | n is a prime number} and COMPOSITES = {n |
n > 2 is a composite number}.

In this section, we prove the following:

Theorem 13.4 PRIMES is in coRP, and so it is in BPP.

Proof We use the so-called Miller-Rabin test to show PRIMES € coRP. Here is a
brief description of the algorithm. After eliminating nontrivial cases, we decompose
n — 1 as an integer product b2¢ where b is an odd integer. Then, we select a € Z,
uniformly at random and compute, in modulo 7, the following series:

. . nd
ab,ahz,aM,...,abZ.

If n is a prime number, the final quantity is 1, and if the series does not start with 1,
the last value before 1is — 1. So, if the final value is not 1 or the last value before 1
isnot — 1, n is a composite number. We will show that if # is a composite number,
the probability of selecting an a witnessing the compositeness is > 1/2.

The algorithm relies on the ability to select a uniformly at random from
{0, ..., n—1}. Itis tempting to assume a universal random number generator for the
purpose. However, our TM model permits at most two possible moves for each state-
symbol combination, and the selection between the two occurs with a probability
of 1/2. So, assuming the ability to produce a random a for an arbitrary n may
be unrealistic. This leads to the question of whether or not selecting a for a fixed
number of branches is possible. Indeed, we can do that with an exponentially small
probability of failure.

The selection of a goes as follows:

We choose an integer ¢ greater than the bit length of n and a positive integer k.
We let N = 2K, r = N mod n, and s = N — r. We then pick £ independent bits
and compute x as the ¢-bit integer these independent bits collectively represent. The
range of x is [0, N — 1] and each x appears with a probability 1/N. We then check if
x < s.If x < x, weseta = x mod n. Otherwise, we assert that the random number
generation was unsuccessful. Assume that £ = k[logn]. Then, the probability of
failure is:
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We call the algorithm the “primitive random number generator” (see Algo-
rithm 13.2).

Algorithm 13.2 An algorithm for primitive random number generation
1: procedure RANDOM-NUMBER(n, k)

2: { < k[lognT;

3: N < 2¢,

4: r < N mod n;

5: s < N—r;

6: generate £ independent random bits 8y, ..., B¢ and form x,0 < x < N — 1;
7. if a > s then

8: return — 1, indicating a failure;

9: else

10: return x mod #»;

11: end if

12: end procedure

We also recall the binary exponentiation algorithm (Algorithm 13.4) for comput-
ing a” mod n for any positive a, b, and n.

Algorithm 13.3 A binary exponentiation algorithm

1: procedure BINARY-EXPONENTIATION(a, b, n)
2 denom < a;
3 prod < 1;

4 fori < 1,...,qdo
5 if b; = 1 then
6: prod < prod x denom mod n;
7 end if

8 end for

9 return prod,
10: end procedure

Now, we present the Miller-Rabin test in Algorithm 13.4.
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Algorithm 13.4 A probabilistic primality testing

1: procedure PROBABILISTIC-PRIMALITY-TESTING(n)
2 if n = 2, 3 then
3 assert that n is a prime number and stop;
4 else if n is even then
5: assert that n is a composite number and stop;
6: end if
7: decompose n — 1 into b2¢ where b is an odd integer;
8: £ < 2[lognT;
9: for ¢ + 1 times do
10: call Random-Number(n, 2) to obtain a random integera, 0 <a <n — 1;
11: if the generation fails or a = 0 then
12: advance to the next round;
13: end if
14: using Binary-Exponentiation to compute co = a® mod n;
15: for j < 1,...,ddo
16: compute ¢; = Ci2—1 mod n using repeated squaring;
17: end for
18: if c; # 1 then
19: assert that n is a composite number and stop;
20: else if for some j suchthat0 <d —1,cj1; =landc; # 1,n — 1 then
21: assert that n is a composite number and stop;
22: end if
23: end for
24: assert that n is a prime number and stop;

25: end procedure

Algorithm 13.4 works correctly for n = 3 and all even n. Suppose n > 5 is an
odd integer. Let p = 22 mod n and 0 = [2¢], i.e., the remainder and quotient of
22t divided by n. The algorithm fails if the random number generation fails ora = 0
is generated. Let p be the probability that the random number generation fails. Then,
the probability of a round not making an assertion is:

1 1 1 2
ptd—-—p—=—-—+-=—-.
n n n n
Thus, the algorithm advances further with a probability of > %

If the algorithm advances further and n is a prime number, by Fermat’s little
theorem, a"~! = 1 (mod n). Since n is a prime number n, 1 and — 1 are the only
solutions for x2 = 1 (mod n).So,cqg = landifc; =landcj—y # 1,¢ci—1 =n—1.
Thus, n passes the test.

If the algorithm advances further and n is a composite number, we analyze the
probability that the algorithm asserts that n is prime as follows:

Suppose gcd(a, n) = 2. Then, cy, ..., cg are all multiples of gcd(a, n), which
is > 2, and so the test fails. Suppose gcd(a, n) = 1. Let the following be the prime
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factorization of n:

el ek
n:pl pk

Here, p1,..., px are odd prime numbers in the increasing order, ey, ..., e; are
strictly positive, and if k = 1, e1 > 2.

For each i, letn; = pf" and g; be an arbitrary generator of Z;f‘,. Since ny, ..., ng
are relatively prime to each other, the Chinese Remainder Theorem states that a’s
congruence class in Z;‘li. Letry, ..., r; be a’s congruence classes in Z,’;l, e, Z;fk,

respectively. If rl." -1 # 1 (mod n;) for some n;, the Chinese Remainder Theorem
gives that a""!' # 1 (mod n). Since we are assuming that a" ' =1 (mod n),
rlf“_l = 1 (mod n;) for all i. Because we are assuming a is relatively prime to n,
the selection of r; is equivalent to selecting u; uniformly from [0, ¢(n;) — 1] and
then setting r; = g;".

Since b and d are fixed throughout the execution of the algorithm, and the
calculation starts with powering a to a”, we can view that the generator g; is already
raised to the power of b. More specifically, let #; = gf’ mod n; and w; = ord,, (h;).
We can view the selection process as follows:

* Weselect t; from O, ..., u; — 1 uniformly, with each having the probability of
Wi to be selected.
e We then compute r; = (#;)" mod n; and integrate the r;s into a.

Since b is an odd number and the generator’s order is a multiple of 2, we see that
Wi is an even number. The test we are conducting is the occurrence of — 1 as the
value immediately before the first occurrence of 1, so the value we choose for #; has
a property that u; / gcd(u;, t;) is a power of 2.

We consider two cases: k = 1 and k > 2. First, suppose k = 1. Then,n — 1 =
(p1)¢! — 1. The quantity is not a multiple of pi, so b is not a multiple of p;. Since
¢(n1) is a multiple of p1, p1 is a multiple of p;. This means the probability that the
r1’s order is a power of 2 is at most 1/p; < 1/2.

Next, suppose k > 2. For each i, u;/ gcd(u;, t;) is a power of 2, and at least two
possibilities exist for the power. The possibilities are as follows:

e f; is odd.

e ¢; is divisible by 2 but not 4.
* ¢; is divisible by 4 but not 8.
e eftc.

Since we make a uniform choice for #;, none of these cases occur with a probability
> 1/2. We translate these possibilities into the value of c¢;s. We see that the
translated events are as follows:

e ¢o=1 (mod n;).

e ¢o=—1 (mod n;).
e ¢y =—1 (mod n;).
e etc.
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In addition, these events occur with a probability < 1/2. For n to pass the test, the
event must be equal for all i. Since k > 2, and at least two choices exist for the
event, the probability that 1 passes the test is at most 2(1/2)F = 1/2.

Summarizing the analysis above, if we make the algorithm assert n as a prime
number if the random number generation fails, a composite number n passes one
round of test with a probability of:

2+1 2 1_1+1_11+1

n n) 2 2 n 2 2n)"
Since we execute the test for £ + 1 times independently, the probability that a
composite number 1 passes all the tests is at most:

1 1 e+ 1\ logn 1 2n- 4L 11
—(1+ — < —.[-= 14+ — < —e2 < —,
(2( +2n)> =2 (2) < +2n> =2 =h

This means the following:

* If n is a prime number, the algorithm asserts that with probability 1.
* If n is a composite number, the algorithm asserts that » is a prime number with
probability at most 1/n.

What is the algorithm’s running time? The addition and subtraction in Z, are
executable in O(logn). The multiplication in Z, is executable in O((log n)?).
Computing b and d requires O (logn). Using the binary exponentiation, computing
the powers cy, ..., cq for each a requires O(logn) multiplication, so it requires
O((log n)3) steps. The number of repetitions is O (logn), so the total computation
time is O ((log n)*).

We have thus proven the theorem. O

13.2.2.1 Miller’s Algorithm

Algorithm 13.4 relies on the high probability of selecting a favorable witness a
whenever n is a composite number. There is a formal term for the favorable a; for
a composite number n and an integer a such that 1 < a < n — 1, we say that n
is pseudoprime to the base n if the test passes when the algorithm picks a as the
base. If we use a deterministic method for generating the values for a, how many as
do we need to get to one for which 7 is not a pseudoprime? Specifically, if we select
a from the increasing sequence 2, 3,4, 5, ---, when do we get to a favorable a?
A mathematical conjecture finds the smallest favorable a is O(logn). One round
of algorithm execution requires O((logn)?) steps. Based on the conjecture, the
deterministic version runs in time O ((log n)*%). The correctness of the conjecture is
yet to be verified, but experimentally, most odd composite numbers have a witness



340 13 The Probabilistic Polynomial-Time Classes

<5. The Miller test is a special case of the Miller-Rabin test where the deterministic
selection is used to pick a from the increasing sequence 2, 3,4, - - -.

While the Miller-Rabin test puts PRIMES in coRP, and thus, also in coNP, we
wonder if PRIMES € RP. Although we do not present the proof, it is known that
PRIMES € RP, so the problem is in ZPP.

Theorem 13.5 PRIMES, COMPOSITES € ZPP.

Recall that the algorithm’s action is deterministic after choosing the value for a.
If we use an increasing sequence of values 2, 3,4, ... for a, at which value of a
do we find a is a composite number? Research has found that n up to 1, 373, 653,
either 2 or 3 for a works.

It is now known that PRIMES is P.

Theorem 13.6 PRIMES € P.

13.2.3 The Polynomial Zero-Testing Problem

Another example of a polynomial-time randomized algorithm is the zero-testing of
multivariate polynomials over a finite field.

Let S be a finite field whose additive identity is 0. Let p(x1,...,x,) be a
polynomial over the variables xp, ..., x,. Each term of the polynomial takes the
form ax' -+ x;" witho € S — {0} and ey, ..., e, > 0. The total degree of a term
ozx]e‘ . xp"is e +- - -+e,. The total degree of p is the maximum total degree of its
terms. The polynomial p(xy, ..., x,) is a 0-polynomial if for all (ay, ..., a,) € S",
pai,...,ay) =0.

Definition 13.4 The zero-polynomial testing problem over a finite field S is the
problem of deciding, given a polynomial p(xi, ..., x,) having a total degree of d,
whether or not p is a O-polynomial.

Proposition 13.6 Let p be an n-variate polynomial over a finite field S with a total
degree d. If p is not a 0-polynomial, p has no more than d||S||"*~" roots.

Proof We prove the proposition by induction on n. Let S be a finite field. Letd > 1.
Suppose p(xi, ..., x,) is a non-0, n-variate polynomial over a finite field S with a
total degree d.

The base case is n = 1. Since S is a field, no pair of elements in § — {0} produces
0 as the product. Thus, the number of roots is at most d.

For the induction step, suppose n > 2, and the claim holds for all smaller values
of n. Since the total degree is at most d, we can express p as:

d .
fopj(xz, cees Xp).
Jj=0
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Here, pj(x2, ..., x,)is apolynomial over xp, ..., x,. Let e be the largest j such that
pj(x2, ..., xp) is not a O-polynomial. The total degree of p; is at most d — e. Due
to the inductive hypothesis, the number of choices for x3, ..., x, to make p, = 0
is (d — e)||S||" 2. If the choices for x», . .. x,, do not reduce p, to 0, they reduce p
to a polynomial over the variable x; with a degree at most e. The polynomial has
at most e roots. Thus, the number of choices for x1, ..., x, that turn p into O is at
most:

ISI-d—elSI"™ +e-ISI" ' =als|"".

Thus, the property holds for n. O

Theorem 13.7 Assuming the total degree is at most ||S|/2, the zero-polynomial
testing problem is in BPP.

Proof Suppose we select x1, ..., x, uniformly at random. Like with the algorithm
for primality testing, we may assert that the test is inclusive with a small probability.
Otherwise, we evaluate the polynomial at the chosen xi, ..., x, and assert the
polynomial to be a non-0 polynomial if, and only if, the value is not 0. O

The BPP-membership of the zero-polynomial testing problem has many applica-
tions, which this book does not cover.

13.3 Relations Between BPP and PH

What is the relationship between BPP and NP? From the definition, we know that
RP € NP and coRP C coNP. Whether NP C BPP or BPP C NP is unknown, but
we can show that BPP € £7.

Theorem 13.8 BPP C ©7.

Proof Overview

Let L € BPP. Lemma 13.2 gives a probabilistic TM M whose running time
is g(n), and success probability (accepting when the input is a member and
rejecting when the input is a nonmember) is 1 — 27". We define an easy-to-
compute bijection from the set of all computation paths to itself. The bijection
uses each computation path as its seed, so the number of bijections is 2.
For x € L, there is a small set of seeds such that every computation path of
M on x is an accepting path after applying the bijection to the path with one
of the seeds; there is no such set if x & L. The existence of such a set of seeds
is testable in X5
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Proof Let L be a language in BPP. Because of Lemma 13.2, a machine M exists
with an error probability less than 27". Let g(n) be a polynomial bounding the
running time of M.

Let x be an arbitrary input of M and n = |x|. Letm = g(n) and § = £™. S'is
the set of all computation paths of M on x. Forall u and y € S, we defineu @ y
as the bit-wise exclusive-or of u# and y. The operation @ is symmetric. For all y and
z € S, there exists exactly one u € S such that u @ y = z. We define Q(u, y) as a
condition stating that # @ y is an accepting computation path of M on x.

For each u, let W(u) be the set of all y such that Q(u, y) holds. We have the
following properties:

L Ifx e LIS = W)l < 27"IS]I.
2. Ifx ¢ L, W@l < 27"|ISII.

We claim:
xel < AWy, ...,uy) € SHWu)U---UWu,) =S].

In other words,

x € L if, and only if, we can pick uy, ..., u,, from S so that for all
yeS,ye W(u;) for some i.

Let’s prove the claim. First, suppose x € L. For each y € §, the proportionof u € S
such that y &€ W(u) is < 27", so the proportion of uy, ..., u, suchthat y & W(u;)
for every i, is (27")" = 27""". We consider the proportion of (uy,...,u,) € S™
such that for some y € S, y &€ W(u;) for all i. There are 2™ possible choices
of y, so the proportion is at most 2 - 27" < 1. This implies that there exists
Wy, . i) €S, S=Wuup)U---UW(uy).

On the other hand, suppose x ¢ L. Since [[W(@)||/|S]] < 27", for all
Uy ooy U, W)U -UW @) |I/IISI| < n27" < 1. Thus, forall (uy, ..., u,) €
S, there exists some y such that y &€ W(up) U ---U W(uy,).

The claim holds.

Forallu,y,z € S,ifz=u & y, then y = z @ u. The condition W(u;) U---U
W (u,,) = S is equivalent to the condition:

forallz € S, one of Q(u; & 2z),..., Q(uy @ z) holds.
The condition is in 1'[5 because Q evaluates the computation of M on one path.

Thus, L’s membership condition above is in 25 .
The membership L € T4 holds because BPP = co—BPP. O
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13.4 The Class PP

Each language in BPP has a polynomial time-bounded probabilistic TM that
correctly decides the membership with a 1/2 + € probability. The constant € is
the probabilistic machine’s advantage over a random membership guess. We now
introduce the probabilistic polynomial-time class PP, whose advantage is negligible.

Definition 13.5 A language L € PP if a probabilistic polynomial-time TM M
exists such that for all inputs x, x € L if, and only if, M on x accepts with probability
at least 1/2.

We can easily see that BPP and NP are subclasses of PP.
Proposition 13.7 BPP C PP.
Proposition 13.8 NP C PP.

Additionally, we have:
Proposition 13.9 PP = co—PP.

‘We know that BPP C Eé’ . Does a similar containment hold for PP, i.e., PP C ¥ ,‘:’
for some k? The answer is no, unless the polynomial hierarchy is finite, due to the
following Toda’s theorem, which we state without a proof.

Theorem 13.9 (Toda’s Theorem) PH C PFP.

Exercises

13.1 An alternate definition of a probabilistic TM uses a read-only one-way infinite
random-bit tape on which an infinitely long binary string appears at the start. The
bit at each position is chosen independently with probability 1/2. Prove this model
is equivalent to the one given in this chapter.

13.2 An alternate definition of BPP uses 1/3 as the threshold instead of 1/2 + €.
Prove that the two definitions are equal.

13.3 Let p(n) be a polynomial. Let M be a probabilistic TM with a property that if
M on input x accepts, then M accepts in < p(|x]|) steps. Show that a probabilistic
TM N and a polynomial g (n) exist such that for all inputs x, N on x halts in <
q(]x|) steps and the probability of M on x accepts equals the likelihood of N on x
accepts.

13.4 We use the majority vote on the outcomes derived from multiple executions
of a probabilistic TM to amplify the success probability. Prove that, for languages
in RP, we can replace the majority vote with the condition “the machine accepts
on at least one execution” for amplifying the success probability. Assuming that the
success probability is 1/2 + €, analyze how many executions will be necessary to
increase the likelihood to 1 — (1/2)" for inputs with a length of n.
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13.5 Prove that PBFP = BPP.

Hint: Think of a polynomial time-bounded deterministic oracle TM M that
accepts a language in PBPP with A € BPP as the oracle. Let N be a probabilistic TM
with which A € BPP. We can assume that N’s probability of failure is exponentially
small. We can simulate M by handling each query with a simulation of N.

13.6 Prove Proposition 13.2.

13.7 Prove if NP € BPP, NP = RP.
Hint: Assuming a BPP-algorithm for SAT, you can find the maximum satisfying
assignment and verify the correctness of the assignment.

13.8 Combine known results to prove NP € BPP = £7 = I15.

13.9 Prove Proposition 13.3; i.e., each integer n > 1 is uniquely expressible as the
product of distinct prime powers.

13.10 With the GCD algorithm presented in Algorithm 13.1, if m > 0, the value
of n will become < n/2 in one or two executions of the loop-body. Prove this
property. Then, prove that the running time of the algorithm is O ((log(m + n))3).

13.11 Prove that for all integers n > 2 and a € Z;, a positive integer k exists such
that a* =1 (mod n).

13.12 Prove if p is an odd prime number, and e > 1 is an integer, then the equation
x2 =1 (mod p°) has only = 1 as its solution.
Hint: Examine the coefficients of ap =1 (mod p°).

13.13 Prove that the R in the Chinese Remainder Theorem (Theorem 13.2) is
unique.

13.14 Prove Corollary 13.1.
13.15 Prove Proposition 13.4.
13.16 Prove Proposition 13.5.
13.17 Prove that BPP C PP.
13.18 Prove that NP C PP.
13.19 Prove that PP = co—PP.

13.20 Based on Toda’s theorem, show that if PP € X7, then PH = A7 -

Bibliographic Notes and Further Reading

Probabilistic TM models and the classes BPP, RP, coRP, ZPP, and PP were
introduced by Gill [6]. The results about BPP appearing in Exercises 13.5 and 13.7
are by Ko [8]. Simon’s independent work introduced and studied the class PP
(under a different name of CP, meaning the “counting polynomial time”). Simon
also considered the class C_P, a superclass of coNP, and a subclass of PP. Toda’s
theorem [18] is by Toda. Related to this, Toda and the author of this textbook showed
that an analog of Toda’s theorem, NPC=P , holds for C_P [19].
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The inclusion of BPP in the polynomial hierarchy theorem 13.8 is due to the
independent work of Lautemann [9] and Sipser [16].

The Chernoff-Hoeffding bound integrates independent but related results by
Chernoff [4] and Hoeffding [7].

Many accessible elementary number theory books exist. The reader may consult
with [3]. Miller’s test is by Miller [10]. Miller’s conjecture about the minimum
base serving as a witness for compositeness is based on the generalized Riemann
hypothesis. Rabin’s primality testing algorithm is fully probabilistic and appears
in [13]. While the Miller-Rabin test puts PRIMES in coRP, and thus, in coNP, it
was unknown if PRIMES € RP. The result about the smallest bases with which
pseudoprimes can be detect is by Pomerance, Selfridge, and Wagstaff [11].

Theorem 13.5 is by Adleman and Huang [1]. Its proof is more than 100 pages in
length. Before the resolution, the only known result was PRIMES € NP by Pratt [12].
Theorem 13.6 is by Agrawal, Kayal, and Saxena [2]. The RSA cryptography is by
Rivest, Shamir, and Adleman [14]. Although not covered in this chapter, Solovay
and Strassen [17] proposed a primality testing algorithm that uses Euler’s primality
criterion based on the Jacobi symbol. Compared with PRIMES € coRP, showing
PRIMES € RP was more challenging.

The zero-polynomial testing algorithm was discovered independently by Demillo
and Lipton [5], Zippel [20], and Schwartz [15].

References

1. LM. Adleman, M.-D.A. Huang, Primality Testing and Abelian Varieties Over Finite Fields
(Springer, Berlin, 2006)
2. M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P. Ann. Math. 160(2), 781-793 (2004)
3. J.A. Anderson, J.M. Bell, Number Theory with Applications, 1st edn. (Prentice-Hall, Upper
Saddle River, 1997).
4. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Ann. Math. Stat. 23(4), 493-507 (1952)
5. R.A. Demillo, R.J. Lipton, A probabilistic remark on algebraic program testing. Inform.
Process. Lett. 7(4), 193195 (1978)
6. J. Gill, Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6(4),
675-695 (1977)
7. W. Hoeftding, Probability inequalities for sums of bounded random variables. J. Am. Stat.
Assoc. 58(301), 13-30 (1963)
8. K.-I. Ko, Some observations on the probabilistic algorithms and NP-hard problems. Inform.
Process. Lett. 14(1), 39-43 (1982)
9. C. Lautemann, BPP and the polynomial hierarchy. Inform. Process. Lett. 17(4), 215-217
(1983)
10. G.L. Miller, Riemann’s hypothesis and tests for primality. J. Comp. Syst. Sci. 13(3), 300-317
(1976)
11. C. Pomerance, J.L. Selfridge, S.S. Wagstaff, The pseudoprimes to 24 - 10°. Math. Comp. 35,
1003-1026 (1980)
12. V.R. Pratt, Every prime has a succinct certificate. SIAM J. Comput. 4(3), 214-220 (1975)
13. M.O. Rabin, Probabilistic algorithm for testing primality. J. Number Theory 12(1), 128-138
(1980)



346 13 The Probabilistic Polynomial-Time Classes

14.

15.

16.

17.

18.

19.

20.

R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM 21(2), 120-126 (1978)

J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities. J. ACM
27(4), 701-717 (1980)

M.J. Sipser, A complexity theoretic approach to randomness, in Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, STOC "83 (1983), pp. 330-335

R. Solovay, V. Strassen, A fast Monte-Carlo test for primality. SIAM J. Comput. 6(1), 84-85
(1977)

S. Toda, PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865-877
(1991)

S. Toda, M. Ogiwara, Counting classes are at least as hard as the polynomial-time hierarchy.
SIAM J. Comput. 21(2), 316-328 (1992)

R. Zippel, Probabilistic algorithms for sparse polynomials, in Symbolic and Algebraic Compu-
tation, ed. by E.-W. Ng (Springer, Berlin, Heidelberg, 1979), pp. 216-226



Chapter 14 ®
Circuit Complexity and Unambiguity ST

14.1 The Circuit Computation Models

In this section, we study the circuit model and the class of languages recognized by
a series of polynomial-size circuits.

14.1.1 The Boolean Circuit Model

The primary circuit model is the Boolean circuit model, which operates on Boolean
values. A Boolean circuit is a vertex-labeled acyclic directed graph, whose vertices
are called the gates and are expected to compute Boolean functions. The vertex
labels are the Boolean functions they compute. We call the edges connecting
between gates the wires. The source vertices of the circuit are for receiving the
circuit’s input and are called the input gates. The value at each input gate is fixed
before the computation according to the input received. The value a gate computes
is transmitted along its outgoing edges to each destination vertex. Each non-input
vertex computes its function according to the input values it receives. The circuit’s
sink vertices serve as the output gates. We can envision Boolean signals traveling
from the input and output gates. We sometimes call Boolean circuits feed-forward
Boolean circuits to reflect upon this idea. The number of source vertices is the
input size, and the number of sink vertices is the output size. Each non-input
vertex has a Boolean function as its label, and it computes the Boolean function
of the values calculated at its source gates. The in-degree of the gate matches the
argument number of the Boolean function.

Two quantities exist for measuring a circuit’s resource requirements: the size
and depth. The size of a circuit is the number of vertices in the network, and the
depth is the length of the longest source-to-sink path in the network. For a circuit C,
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size(C) and depth(C) represent the size and the depth of C, respectively. Note that
depth(C) < size(C).

Given a circuit C and its input x, we denote its output with C(x). Since a circuit
is acyclic, we determine C(x) by stratifying the gates into levels according to the
distance from the input gates, where the input gates are at level 0, and the output
gates are at level depth(C). The level of a non-input gate is 1 plus the maximum
level of the gates from which the gate receives the input signals.

We classify circuits according to the basis, the set of functions that can appear at
the gates. Any complete Boolean basis can be used to compute any Boolean function
using a circuit. The most typical basis is {V, A, =}; {V, A} can be used instead. A
circuit with {\V, A} as the basis is a monotone circuit. For a monotone circuit, we
augment its input by adding the negation of each input value, which doubles the
number of source vertices in the graph.

We classify circuits by the maximum number of inputs we can feed to the basis
functions. When the in-degree is 2 for both types, a circuit is a bounded fan-in
circuit. When the in-degree has no upper bounds, a circuit is an unbounded fan-in
circuit. When the in-degree is at most two for only one type, a circuit is a semi-
unbounded fan-in circuit.

When drawing a circuit, we often place the input gates at the bottom and the
output gates at the top. Figure 14.1 shows an example.

Since a Boolean circuit has a fixed input size, we require a circuit for each input
size n. Unlike the computation models we previously studied, circuit models thus
require a family of circuits indexed by the input size, where the indices start from 1.
The lack of input values for size-0 inputs justifies the exclusion of input size 0.

Definition 14.1 Let C = {C,},>1 be a circuit family. We say that C decides a
language L C {0, 1}*if for all n and x, |x| = n, x € L if, and only if, C,,(x) = 1.

Since the circuit-based decision of languages requires an infinite sequence of
circuits for all input sizes, we consider how to obtain the circuit for each length. We
say that a circuit family C is uniform if there is a TM that, for every n, produces C,
from n. An input to the machine is the single-letter encoding, 17, of n. The encoding
of a Boolean circuit can be the adjacency matrix of a vertex-labeled directed graph.
We can assume that the first # vertices in the matrix are the input gates, and the

Fig. 14.1 A four-input
Boolean circuit that tests
whether or not bits 1 and 2
are equal, and bits 3 and 4 are
equal. The size of the circuit
is 13, and the depth is 4
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last vertex is the output gate. In the case of a model in which the negation of the
input is readily available, the n vertices after the input are the negation of the input.
Along with the connectivity, a bit sequence representing the gate types is part of the
encoding. For example, we can use two bits each with 00 for the input, 01 for Vv,
10 for A, and 11 for —. A family without the specification of the uniform circuit
production is a nonuniform circuit family.

There are multiple uniformity types in use. Among them, the most typical
are logspace uniformity and P uniformity. The former requires the circuit that
produces the TM to use space O (logn), and the latter requires that the machine
runs in polynomial time. In this section, we use P-uniformity, but the results also
hold for logspace uniformity.

We now define some circuit complexity classes.

Definition 14.2 For each k > 0, ACF is the class of languages decidable by a P-
uniform family of polynomial-size, O ((log n)¥)-depth unbounded-fan-in circuits.
We define AC = Uy=0ACk.

Definition 14.3 For each k > 0, NCF is the class of languages decidable by a P-
uniform family of polynomial-size, O ((log n)k)-depth bounded-fan-in circuits.
We define NC = UkZoNCk.

Definition 14.4 For each k > 0, SACK is the class of languages decidable by
a P-uniform family of polynomial-size, O((logn)¥)-depth semi-bounded-fan-in
circuits.

We define SAC = U;SACK.

Definition 14.5 PSIZE is the class of languages decidable by a P-uniform family
of polynomial-size circuits.

Among NC, SAC, and AC, the fan-in is the most restrictive in NC and the most
flexible in AC. So, we immediately have the following proposition.

Proposition 14.1 For all k > 0, NCK € SACF € ACK,

For each m, the v of m inputs can be computed by a bounded fan-in circuit
of 2-fan-in Vv gates having a size of m — 1 and a depth of [logm]. The same
holds for A. Suppose we substitute each gate with its bounded-fan-in version, given
an unbounded-fan-in circuit having a size of s and a depth of d. Since each gate
in the original circuit has at most s inputs, the substitution increases the size to
0(s?). Also, since the longest path in the original is d, the substitution increases
the depth to O(dlogs). Suppose we apply the substitution to all members in an
AC circuit family whose size is O(p(n)) and depth is O((log n)%). The resulting
circuit family still accepts the same language and has size O((p(n))?) and depth
((log n)k log(p(n))). Since p(n) is polynomial, the size of the resulting circuit is
still bounded by some polynomial, and the depth is O ((log n)**!). This observation
gives the following proposition:
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Proposition 14.2 ACF € NCK+!,

Thus, we have a hierarchy of circuit classes.
NC? € SAC? € AC? c NC! € SAC! € AC! € - C PSIZE.

It is unknown which containments in the sequence are proper, except for the
following two.

Proposition 14.3 NC° ¢ SACY; i.e., NC is properly contained in SACP.
Theorem 14.1 ACY c NC'; i.e., AC? is properly contained in NC'.

The first one is easy to prove since constant-depth bounded-fan-in circuits can
examine only a constant number of input bits. We leave the task of proving the
proposition to the reader.

Proving the second proper containment is elaborate. The proof uses the so-called
random restriction technique, which selects some input bits and selects their values
according to a probability distribution.

Both containment results hold regardless of the uniformity condition.

14.1.2 Relations Between Boolean Circuit-Based Classes and
TM-Based Classes

Comparing TM-based and circuit-based complexity classes requires the conversion
of an arbitrary alphabet to a binary alphabet. Given an alphabet size of m, we encode
the alphabet’s symbols using unique m-bit strings with exactly one bit set to 1. The
position at which the sole bit 1 appears gives the symbol’s index, which can be
quickly recovered from the s-bit string. The binary encoding increases the input
length from n to nm. From this point on, we consider only languages of binary
strings.

The following result, whose proof is left to the reader, connects polynomial-time
Turing-machine computation and polynomial-size circuit computation.

Proposition 14.4 P = PSIZE.

This proposition raises the question of whether or not subclasses of P have
relations with subclasses of PSIZE. The following proposition makes such a
connection.

Theorem 14.2 NL C SAC!.

Proof Let L be alanguage in NL. Let M = (Q, {0, 1}, I, 8, g0, @acc, Grej) be a one
work tape offline nondeterminic TM that accepts L. In the proof of Theorem 10.7,
we analyzed the reachability of a directed graph connecting between IDs of a
machine. In that graph, for each pair of IDs I and J, we drew an edge from [ to J
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if M could transition from / to J in one step. Any ID of a TM consists of its state,
head positions, and tape contents. Because M is O (logn) space-bounded, for each
input having a length of n, the encoding of ID has a length of ¢ log n) in binary, and
a polynomial p(n) = 2¢ logn Tetpy, ..., 1 p(n) be an enumeration of all (c log n)-bit
strings. All the possible IDs of M on inputs having a length of n are among them.
We build a reachability graph with these IDs as the vertices as follows:

* A unique ID corresponds to the initial ID.

* A unique ID corresponds to a unique accepting ID.

* The indices of the initial and accepting IDs are the same for all inputs having a
length of n.

o Ifs =1¢, the self-loop (I;, I;) exists.

e For other prospective edges e = ([I;, I;) such that s # t, there are four
possibilities:

— e is absent regardless of the input.

— e is present regardless of the input.

— e is present if a bit x; of the input is O for some k.
— e is present if a bit x; is 1 for some k.

We can use (p(n))? bits to encode the reachability graph’s adjacency matrix, G,
on input x. The matrix is computable from the input by examining at most one
input bit for entry. Let H = G”®™ with {Vv, A} as the basis. We can compute H
using 2[log(p(n))] matrix multiplications. Each entry in the matrix product is the
inner product of a row vector and a column vector having a dimension of p(n)
with a p(n)-fan-in Vv and p(n)i two-fan-in As. In other words, given two matrices
A = (a;;) and B = (b;j), the a;; of the product AB is:

ai1 -b1j+app-b2j+ -+ ai piny - bpw,j-

Here, (a1, ..., ai p@)) is the i-th row vector of A, and (b1}, ..., bp),;) is the j-th
column vector of B. Thus, the computation of single matrix multiplication can be
carried out with a depth-2 semi-unbounded-fan-in circuit. Since the computation
of H requires a sequence of O(log(p(n))) = O(logn) matrix multiplications,
an O (logn)-depth semi-unbounded circuit is sufficient for computing H. After
computing H, we can check if M accepts x by examining H’s entry corresponding
to the edge from the initial ID to the accepting ID.

As we observed, the bit of the matrix is 0, 1, x; for some k, or —x; for some k.
Assuming that the input is augmented by its negation, 0 is producible with an A of
x1 and —x1, and 1 is producible with an Vv of x| and —x;. Thus, the depth of the
circuit is O (logn). The size of the circuit is:

2+ (p(m)*(p(n) + D(2log(p(n))) = O(p(n)* logn).

Thus, the circuit is a polynomial-size circuit. This proves the theorem. O
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14.1.3 The Arithmetic Circuit Model

An extension of the Boolean circuit model is the arithmetic circuit model that
operates in a finite field F (such as Z, for some prime number p). In this model, a
circuit receives a series of elements from a field F and processes the input through
field operations (+, —, and *). Since the operations are binary and unary, we only
consider bounded fan-in circuits as viable models.

Definition 14.6 Let F be a finite field. For each k, NC'} is the class of problems
computable using polynomial-size, O ((logn)*)-depth bounded-fan-in arithmetic
circuits over F.

A wide variety of problems in linear algebra over F are known to be in NC,,
including the following result, which we state without proof:

Theorem 14.3 For every finite field F, the determinant of a matrix over F is in the
logspace-uniform NC%.

Given the logspace-uniform NC? computability of the determinant in the field F,
several circuit complexity results follow.

14.2 The Class P/poly

P/poly is the nonuniform version of the polynomial-size circuit complexity class.

Definition 14.7 P/poly is the class of languages decidable by a nonuniform family
of polynomial-size circuits.

Proposition 14.4 states the equality between P and PSIZE. We have the following
result since P/poly is the nonuniform version.

Proposition 14.5 P C P/poly.

P/poly has an alternate definition that employs languages in P.
A sequence {wp},>1 is polynomial length-bounded if there is a polynomial
p(n) such that foralln > 1, |lw,| < p(n).

Definition 14.8 A language L is in P/poly if a polynomial length-bounded
sequence W = {w;};>1 and a language A € P exists such that for all x:

x €L & (x,wy)) € A.

We call the string sequence W the advice, and call A the witness language. The
equality of the two definitions is easy to prove (see Exercise 14.6).
How large is the class P/poly? We know BPP C P/poly.

Theorem 14.4 BPP C P/poly.
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Proof Suppose L € BPP. As with the proof for Proposition 14.4, we consider
the binary input alphabet. By Lemma 13.2, a polynomial-time probabilistic TM M
exists such that M’s error probability is less than 272", Let p(n) be a polynomial
bounding the running time of M. Let n be an integer. We consider all computation
paths, in {0, 1}7?", for all inputs having a length of n. Since there are 2" inputs
having a length of n and the error probability is less than 272", the aggregate total
of the error probability values is < 1. This means that there is a computation path
producing an error for no inputs. We select such a path and appoint it as the advice
for length n. The witness language is the set of pairs (x, y) such that M accepts x
using y as the computation path. This circuit has its size bounded by O (p(n)?) and
correctly decides the membership of all inputs having a length of n. O

Does the containment in P/poly hold for other classes? A natural candidate for
this containment is NP. We do not have a definitive answer, but we know NP C BPP
implies the collapse of the polynomial hierarchy.

Theorem 14.5 [fNP C P/poly, then I1; € £7.

Proof Overview

Let L be an arbitrary language in Hé’ . Due to Theorem 12.4, L has a
“universal” witness scheme in NP; a string x € L if, and only if, for
all y, |[y| < q(|x]), f(x,y) is satisfiable, where f is a polynomial-time
computable function that maps an arbitrary pair of strings to a 3CNF formula.
There is a polynomial r(n) bounding the length of the formula f produced
from x with any y, |y| < g(|x|), as the input. Every nontrivial 3CNF formula
has the disjunctive self-reducibility as we observed in Sect. 12.1; a 3CNF
formula ¢ is satisfiable if, and only if, ¢y or ¢; is satisfiable, where ¢y and
@1 are constructed from ¢ by assigning false and true to the first variable ¢,
respectively.

Assume NP € P/poly. A pair of polynomial p(n) bounding the length
of advice and a polynomial-time witness language A puts 3SAT in P/poly.
Let x be a string we want to test if x € L. Suppose we nondeterministically
guess 7 (|x]) advice strings wy, ..., w(x|) and conduct the following test for
all nontrivial formulas ¢ having a length < r(|x|):

(1) We generate ¢g and ¢ from ¢ by assigning the value of false and true
to the first variable of ¢, respectively.
(i) We use A and the guessed advice strings to compute the satisfiability of
the three formulas, ¢, ¢g, and ¢;.
(iii) We check if the three values we computed in (ii) are consistent with the
self-reducibility of 3SAT; i.e., ¢ is satisfiable if, and only if, o or ¢; is
satisfiable.

(continued)
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By the assumption that 3SAT is in P/poly, a sequence of advice strings passes
the test. Once we have such a sequence, we can determine the membership
of x in L by checking if, for all y, f(x, y) produces a 3CNF formula that
satisfies the advice sequence and A. The correctness verification of the advice
sequence is in coNP. The membership test for x is in coNP for each fixed
advice sequence. Thus, we have 1 € 7.

Proof Assume NP C P/poly. Then a polynomial advice scheme exists for the NP-
complete 3SAT; there exists a language A € P and a polynomial length-bounded
advice sequence {w,},>1 such that for all 3CNF formulas ¢, ¢ € 3SAT if, and only
if, (¢, wyy|) € A. Let p(n) be a polynomial such that for all n, |w,| < p(n).

Let L be an arbitrary language in 1'15 . There exists a polynomial ¢g(n) and a
language B € NP such that for all x, x € L if, and only if, for all z such that
lz| = g(|x]), (x,z) € B.Let f be a <B-reduction from B to 3SAT. Then, we
have a characterization of L; for all x, x € L if, and only if, for all z such that
lz] = q(]x]), f(x,z) € 3SAT. Because f is polynomial-time computable, there
exists a polynomial r (), such that for all x such that |x| = n, and for all z such that
Izl = q(n), | f(x,2)| < r(n).

Let s(n) = p(r(n)). By combining the two characterizations, for all x, x € L if,
and only if, there exists a sequence of advice W = [wy, ..., wg(x)] satisfying the
following conditions:

(i) W’s elements serve as correct advice strings for all formulas whose length is at
most r(|x|) with A as the witness language.
(i) For all z such that |z| = g (]x]), f(x, z) is satisfiable according to W and A.

We use the following disjunctive self-reducibility of SAT, which 3SAT also
possesses, to test (i):

A nontrivial formula ¢ is satisfiable if, and only if, ¢y or ¢ is satisfiable, where
@p 1s the formula obtained from ¢ by assigning the value b to its first variable.

Test for (i) is this for all formulas ¢:

 If ¢ has only one variable, ¢ € 3SAT <= (@, W|y|) € A.
* If ¢ has more than one variable, ¢ € 3SAT <= (o, Wiy) € AV (@1, Wiy,|) €
A.

Using induction on the number of variables, we can show that if W satisfies the two
conditions, W serves as a correct advice sequence for all formulas ¢ whose length
is at most s(n) (see Exercise 14.7).
Since A € P, the tests for (i) and (ii) are in coNP. Thus, L is the set of all x for
which a sequence W passes the coNP tests for (i) and (ii). This implies that L € Eé’ .
This proves the theorem. O

The concept of P/poly with polynomial length-bounded advice and a witness
language in P naturally extends to other witness language classes.
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Definition 14.9 Let C be a language class. A language L is in C/poly if there exists
a polynomial p(n), a language A € C, and a sequence of strings {W,},>1 such
that:

1. Foreachn > 1, |W,| < p(n)
2. Forallx,x e L <= (x, W)€ A

14.3 Unambiguous Accepting Computation Paths of NTMs

We now look into the question of ambiguity in NTM computation.

Previously, we referred to the multiple possibilities in leftmost production trees
as ambiguity. Suppose we have a CNF grammar G. Think of an NTM M for testing
the membership in L(G). Suppose M’s algorithm is to start from the start variable,
apply 2|w| — 1 times any applicable production rule to the leftmost variable, and
check if w emerges. The TM places L(G) € NTIME[n]. Also, if G is unambiguous,
then M has only one accepting computation path for each member of L(G). We call
such a TM unambiguous. We define a subclass UP of NP as follows:

Definition 14.10 UP is the class of languages a polynomial-time ambiguous NTM
accepts.

The class UP resides in is between P and NP; i.e., P € UP € NP. It is still being
determined whether or not either inclusion is proper. Also unknown is if UP = NP
implies the collapse of the polynomial hierarchy.

A problem similar to UP is the problem of testing if a 3CNF formula has exactly
one satisfying assignment. We refer to this problem as USAT. The uniqueness in
USAT differs from that in UP. USAT asks if the number of satisfying assignments
is exactly 1, where each candidate formula may have any number of satisfying
assignments. In contrast, if we encode the computation of a TM witnessing a
language in UP, the formula is guaranteed to have 0 or 1 satisfying assignment(s).
In addition, coNP is a subclass of USAT.

The following result, which we can prove using the isolation lemma, connects
NP and USAT.

Theorem 14.6 A randomized polynomial-time algorithm for SAT exists such that
for each input formula @, the algorithm generates a polynomial number of formulas
Wi, ..., Um, with the following properties:

e If ¢ is not satisfiable, none of Y11, . .., ¥, is satisfiable.
* If ¢ is satisfiable, the probability that one of V1, ..., V¥, has exactly one
satisfying assignment is > 1/.

Put differently, SAT is randomized polynomial-time disjunctively truth-table
reducible to USAT.

We postpone the proof of Theorem 14.6 to the Exercises section.
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A logarithmic-space analog of UP is the unambiguous NL, denoted as UL.

Definition 14.11 UL is the class of languages a logarithmic space-bounded
ambiguous NTM accepts.

Interestingly, as stated next, we know the equality UL = NL if polynomial
length-bounded advice is available.

Theorem 14.7 NL/poly = UL/poly.

Proof Overview

The proof of NL = coNL (Theorem 10.7) employed an inductive counting
method for the reachability problem in a directed graph representing the
computation of a nondeterministic logarithmic space-bounded machine. We
augment the proof in four ways.

1. We consider assigning random weights to each edge. We show that with
probability > 1/2, the weight assignment induces a unique minimum-
weight path between any vertex pair (s, #) such that ¢ is reachable from
s.

2. We show that when there are some polynomial number of independent
weight assignments, one of the weight assignments induces a unique
minimum-weight path.

3. Using an argument similar to BPP € P/poly (Theorem 14.4), we show
that a sequence of weight functions works for all n-vertex graphs.

4. We show that the inductive counting method is extensible to the case where
minimum-weight paths are unique.

Proof Let M be a logarithmic space-bounded nondeterministic single-tape offline
TM. Let L = L(M). The ID of an offline TM comprises the tape content, the head
positions, and the state. As with the proof from earlier in this chapter, let p(n) be
a polynomial that bounds the number of IDs of M. We can assume that each graph
we consider has exactly p(n) vertices for some 7, and Vertices 1 and p(n) are the
initial ID and the accepting ID, respectively. Since our interest is in reachability, we
can safely remove all the self-loops.

We will show that there is a reachability algorithm in UL/poly. Then, we can
construct an algorithm for L in UL /poly. The algorithm dynamically generates the
instance of the reachability problem from its input and runs the UL /poly algorithm
on the graph.

Let G = (V, E) be an m-vertex graph and ¢ be a vertex pair. Let vq, ..., v, be
an enumeration of G’s vertices. We want to test whether or not vy, is reachable from
v1. Let W be a random edge-weight function, where each prospective edge receives
an integer weight chosen independently and uniformly at random from the interval
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[1, 4m3]. Let u and e be such that u is a vertex, e is an edge, u is reachable from
v1, and e appears on some path from vy to u. We say that e’s weight is singular for
u if there are two minimum-weight paths from v; to u, where one passes through
e, and the other avoids e. If e is singular for u, increasing e’s weight turns all the
paths containing e into non-minimal ones, and decreasing e’s weight turns all the
paths avoiding e into non-minimal ones. We extend the definition of singularity
to the weight assignment W. We say that W is singular if, for some u and e, e’s
edge in W is singular for u. Each e has at most one singular weight for each u.
There are m possibilities for u, so the proportion of e’s singular weight choices for
some u is at most m out of 4m>. The proportion equals 1 out of 4m?. There are
2m? possibilities for e. The proportion of singular Ws is maximized where each
singular W gives the singularity of one edge e. Thus, the proportion of singular W
is < (1/4m*)(2m?*) = 1/2.

Suppose ¥ = (Wi, ..., W,2) is a sequence of weight assignments. We say that
Y is singular if all its weight assignments are singular. If the weight assignments
are independently chosen, the probability that Y is singular is at most 1/ 2" There
are m(m — 1) possible directed edges in an m-vertex directed graph without self-
loops, so there are 2" ~1) possible m-vertex directed graphs. This means that the
proportion of singular Y is < (1 /2’"2)(2’"(’"—1)) = 1/2", so some Y is singular for
no graphs. Let us choose one such Y as the advice for all m-vertex graphs.

We will now show that for each graph G and a weight assignment W, there is
a UL-type algorithm for testing W’s singularity; the algorithm runs nondetermin-
istically in logarithmic space and asserts W is singular/non-singular in exactly one
computation path. The algorithm aborts the computation without a conclusion in the
other computation paths.

From G and W, we construct a graph G by replacing an edge e = (u, v) having
a weight w to a path [uo, . . ., uy] by introducing new vertices uy, ..., uy—1, where
uo = u and u,, = v. The new vertices are not shared with other such paths. The
graph Gy has < m(4m?) vertices. Since Gy represents each weighted edge as a
path, W is non-singular if, and only if, every vertex reachable from v; has a unique
shortest path from v;. Also, the shortest path from v; to v, in Gw, if any, has a path
length of at most m - (4m3) = 4m*.

For each d such that 0 < d < 4m?, let pq be the number of vertices in Gy
reachable from v in at most d steps, and o, be the sum of the shortest path length
from 1 to the vertices in py. For all d, pg < 4m* and og < (4m4)2 = 16m®. Also,
pd = 1 (i.e., only vy is reachable from v; with a distance of 0), and o9 = 0.

We show that p; and o, are computable from p;—1 and o4—; in UL in the
following manner:

We initialize two counts R and S to 0. Then, for each vertex v in G, we
nondeterministically follow a path from v having a length of 1,...,d — 1 in this
order to see if the path leads to v. If we find such a path, we add 1 to R and the
path length to S. When the examination is complete for all vertices, the following
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properties hold:

* R > py_1 never occurs.

e If R < p4—1, the search missed a vertex reachable in < d — 1 steps, so we abort
the computation.

e If R =p4-1and S > o041, the search found a non-minimal path, so we abort
the computation.

e If R=p4_1,S < o4_1 never occurs.

e If R=py_1and S = o4_1, assuming that Gy is non-singular for all the vertices
reachable in < d — 1 steps, there is only one computation path that finds R =
pd—1and S =o4_1.

Now, using the verification procedure of R and S, we compute § = pg — pg—1. We
initialize § with 0. We then repeatedly run the verification procedure to check, for
each vertex u, if it satisfies the following sequence of conditions:

e If the distance of u from v{ is < d — 1, no further action for u.

 If the distance of u from v; is > d, count the vertices u” whose distance from v,
is exactly d — 1, and there is an edge (1, u).

e If this countis > 2, W is singular, so abort the computation.

e Ifthe countis 1,add 1to§.

After the checks are complete for all u, we add§to pand §-d to o.

We rerun the verification after computing py4,,,4. We accept if the target vertex is
among the vertices at a distance < 4m* and reject otherwise.

The proof is complete. O

Exercises
14.1 Prove NCY c SACY.

14.2 Prove P = PSIZE.

14.3 We can prove something more substantial than the equality from the previous
question; for each language in P, there is a logspace-uniform family of polynomial-
size circuits accepting it. Prove this inclusion.

14.4 Theorem 14.3 states that the determinant of a matrix over a field F' can be
computed in NCzF. Based on this theorem, show that NCZF circuits can solve the
system of linear equations over F', Ax = b, where A is a square matrix of dimension
n, b is an n-dimensional vector, and x is a vector of n indeterminates.

14.5 Prove that P/poly contains a non-recursive language.

Hint: Construct a language in {0}*. A polynomial size-circuit family can
recognize the language (the size can be linear in the length of the input). The
construction can be based on HALTT)\ or any non-recursive language.

14.6 Prove that the circuit-based and the advice-based definitions of P/poly are
equivalent.
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14.7 In the proof of Theorem 14.5, we stated that the candidate advice sequence
W serves as a correct advice sequence if it satisfies the disjunctive self-reducibility
condition. Prove this property using induction on the number of variables.

14.8 Show that SUBSETSUM is disjunctive self-reducible.
14.9 Show that 3DM is disjunctive self-reducible.

14.10 A sequence {w;},>1 is logarithmic length-bounded if there is a constant
c such that for all » > 1, |w,| < clogn. Let P/log be a version of P/poly where
the advice sequence is logarithmic length-bounded. Show that if NP C P/log, then
NP = coNP.

Hint: Think of the version of SAT, SAT = {w01’ | w € SAT}. Assuming
NP C P/log, we can try all possible advice strings to find the correct advice and
then use it to determine the satisfiability.

14.11 Show that NL/poly = coNL/poly = UL/poly.

14.12 We define CIRCUITSAT as the problem of deciding if a Boolean circuit
outputs 1 for some input. Show that CIRCUITSAT is NP-complete.

14.13 Show that PP/PlY = P/poly.

14.14 Show that the reachability circuit in the proof of Theorem 14.2 is producible
in O(logn) space, and so NL is in the logspace-uniform SAC'.

14.15 Show that TAUTOLOGY is <Z-reducible to USAT.

14.16 We can prove Theorem 14.6 using a weight assignment scheme similar to
the one we used in the proof of Theorem 14.7. Let ¢ be a 3CNF formula with n
variables. Suppose we assign independent integer weights from [1, 2n] uniformly
at random to the n variables. We define each truth assignment’s weight as the
total weights of the variables that receive frue as the assignment. Show that the
probability that the minimum-weight satisfying assignment is unique is > 1/2.

14.17 Let ¢ be a formula with n variables, x1, ..., x,, and W = [wy, ..., w,] be
a weight assignment to ¢’s variables where each weight is from {1, ..., 2n}. Show
that for each integer # between 1 and 212, a formula ¢; with additional variables such
that in every satisfying assignment ¢, if any, the total weight of x; that receives true
is exactly ¢.

14.18 Complete the proof of Theorem 14.6 based on the answers to the previous
two questions.

14.19 Show that the parity function is computable in NC!.

14.20 Sorting is the problem of, given a sequence of bits a, . . ., a,, reordering the
bits so that any 0 appears before any 1. For example, sorting [0, 1, 0, 0, 1, 0] results
in [0, 0, 0, 0, 1, 1]. Show that a depth-1 bounded-fan-in circuit can sort two bits.

14.21 Continuing the previous question, MERGESORT sorts numbers by recur-
sively splitting the input numbers into halves, sorting each half, and then merging
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the sorted halves to generate a global sorted sequence. Show that merging two
sorted halves of 2" elements can be accomplished by a depth- O (m) bounded-fan-in
circuit.

Hint: Connecting the result from the second half in the reverse order gives a
pattern 07 170F. Sorting is complete by shifting the 1s to the right.

14.22 Continuing the previous questions, show that sorting is in NC? by a circuit
that employs MERGESORT.

14.23 An important Boolean function is the threshold function, which receives
some 7 input bits and a parameter ¢ in the form 0"~ 71’ and answers whether or
not the number of 1s in the input is greater than or equal to ¢. Show that an NC°
circuit placed on top of a sorting network can compute the threshold function.
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Appendix A
A List of Major Results

A.1 Characterizations of Language Classes

R P P
I, 2, k>1

- H,f = the languages in P with k preceding quantifiers that start with V and
alternate (Theorem 12.4); 3CNF formulas in place of the languages in P if k
is odd; 3DNF formulas if k is even (Corollary 12.4).

- E,f = the languages in P with k preceding quantifiers that start with 3 and
alternate (Theorem 12.4); 3CNF formulas in place of the languages in P if k
is even; 3DNF formulas if k is odd (Corollary 12.4).

» CFL

— CFL = the languages with a CNF grammar (Theorem 4.2).
CFL = the languages with a GNF grammar (Theorem 4.3).

P = the languages accepted by polynomial time-bounded nondeterministic
TM making O (log(n)) nondeterministic choices (Exercise 12.17).

« NP

— NP = the languages having a polynomial-time witness scheme (Theo-
rem 11.4).

e R

R = the languages decidable by a multi-tape TM (Theorem 6.1).
R = the languages decidable by an NTM (Theorem 6.6).

e RE

— RE = the languages accepted by a multi-tape TM (Theorem 6.2).
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— RE = the languages accepted by an NTM (Theorem 6.5).
— RE = the languages having an enumerator (Theorem 6.7).
— RE = the languages having a witness language in R (Theorem 6.8).

* REG

— REG = the languages NFAs accept (Theorem 2.1).

— REG = the languages with regular expressions (Theorem 2.3).

— REG = the languages with a finite number of equivalence classes (the Myhill-
Nerode theorem) (Theorem 3.1).

A.2 Relations Between Language Classes

o A, T, Ag

— A = X NI for all k > 1 (Theorem 8.10).
— Xp UIlg C Agyq forall £ > 1 (Theorem 8.11).
— X and I are incomparable for all k > 1 (Theorem 8.11).

* AC,NC, SAC

— ACY ¢ NC! (Theorem 14.1).

— NC° c SAC? (Proposition 14.3).

— NC* c SACK € AC for all k > 0 (Proposition 14.1); ACK € NCK*! for all
k > 0 (Proposition 14.2).

e BPP,RP, zpp

— BPP C PP (Theorem 13.7); BPP C P/poly (Theorem 14.4); BPP C Eé’
(Theorem 13.8).

— NP < RPYSAT (Theorem 14.6).

— PBPP — BPP (Exercise 13.5).

— RP C NP, coRP C coNP, ZPP € NP N coNP (Proposition 13.2).

« CFL
— CFL C P (Theorem 9.9).
« L

— L € NL C P C NP C PSPACE C EXPTIME C NEXPTIME C EXPSPACE
(Theorem 10.6).

« NL
— NL = coNL (Theorem 10.7).
* NP
— NP C P/poly = 1'[5 - Zé’ (Theorem 14.5).
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— NP C BPP = NP = RP (Exercise 13.7).
— NPNPNeoNP — NP (Exercise 12.15); PNPNONP — NP N coNP (Exercise 12.16).

* NSPACE

NSPACE][ f (n)] = co-NSPACE] f (n)] for all space-constructible functions
f(n) = Q(og(n)) (Corollary 10.3).

— P € NPNcoNP € NP U coNP <€ EXPTIME < NEXPTIME N
coNEXPTIME <€ NEXPTIME U coNEXPTIME (Proposition 9.2).

P € P/poly (Proposition 14.5).

— P = PSIZE (Proposition 14.4).

« PH

- PH=3%] < PH=1II] < 3/ =1II] & X/ CIl] < II] C
%/ (Theorem 12.5).
— PH C PPP (Theorem 13.9).

P/poly € R (Exercise 14.5).
— R = RE N coRE (Theorem 6.3).

* REG

— REG c CFL (Exercise 4.1).
— REG ¢ DCFL c CFL (Corollary 5.1).

A.3 Closure Properties of Language Classes

e TIli, X, for all k > 0, are closed under:
— U, N, the marked union (Theorem 8.10).
e CFL is closed under:

— R (Exercise 4.23); U, -, * (Proposition 4.2); N with REG (Theorem 5.3).
— PREFIX(-) (Exercise 4.25); the proper prefix (Exercise 5.19).

¢ DCFL is closed under:

— ¢ (Theorem 5.4).

— The “marked” concatenation (Exercise 5.23).

— The prefix-free homomorphisms (Exercise 5.11); the prefix-free inverse
homomorphisms (Exercise 5.12).
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e NL is closed under:

— ¢ (Theorem 10.7);

— * (Exercise 10.20);
— U (Exercise 10.21);
— N (Exercise 10.22).

¢ NP is closed under:

— * (Exercise 9.20);
— U (Exercise 9.21);
— N (Exercise 9.22).
- <liand <[ evenif NP has an oracle (Exercise 12.5).

* NP-complete is closed under:
— A with a finite set (Proposition 11.2).
* Ris closed under:
— U, N, ¢ (Exercise 6.21); the marked union (Exercise 6.25); * (Exercise 6.22).
¢ RE is closed under:
— U, N (Exercise 6.23); the marked union (Exercise 6.26); * (Exercise 6.24).
* REG is closed under:

- .uU,N,-, * (Theorem 2.2).

— CYCLE(-) (Exercise 3.15).

— HALF(-) (Exercise 3.13).

— Homomorphisms and inverse homomorphisms (Exercise 3.9).

— PREFIXq /¢ () (Exercise 3.14).

— MID3(-) (Exercise 3.19).

— NOMID3(+) if the alphabet size is 1 (Exercise 3.21).

— The right quotient (Exercise 3.22); the left quotient (Exercise 3.23).

A.4 Non-closure Properties of Language Classes

¢ CFL is not closed under ¢, N (Theorem 4.1); NOMID3(-) (Exercise 5.21).
¢ DCFL is not closed under union (Exercise 5.24); intersection (Exercise 5.25).
¢ REG is not closed under the “no middle third” operation (Exercise 3.20).

A.5 Classifications of Specific Languages

« CFL
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— The Dyck language (Exercise 4.10); The k-th Dyck language (Exercise 4.11).
e coNP-complete

— TAUTOLOGY (Corollary 11.2); DNFTAUT, 3DNFTAUT (Corollary 11.3).
L

— Deterministic TMs encoded in binary (Proposition 10.2).
— Deterministic TMs with an input, encoded in binary (Proposition 10.3).

e NP-complete

— 3DM (Theorem 11.16).

— CLIQUE (Theorem 11.9).

— HAMCYCLE (Corollary 11.4); HAMPATH (Corollary 11.5).

— INDEPENDENTSET (Theorem 11.18).

— NTMCANONICAL (Theorem 11.3).

— SAT (Theorem 11.5); CNFSAT (Theorem 11.6); 3SAT (Theorem 11.7); UNSAT
(Corollary 11.1); NAESAT (Theorem 11.8); 1-IN-3-SAT (Exercise 11.20).

— SUBSETSUM (Theorem 11.12); KNAPSACK (Theorem 11.14); PARTITION
(Exercise 11.11); SCHEDULING (Theorem 11.15).

— VERTEXCOVER (Theorem 11.10); 3COLOR (Theorem 11.11); DOMINATINGSET
(Exercise 11.17).

— X3C (Exercise 11.7).

— TMs encoded in binary (Proposition 9.3).
— TMs with an input, encoded in binary (Proposition 9.4).
— FAs whose state-set size is reducible to a given number (Proposition 9.5).

« PNP_complete
— ODDMAXSAT (Theorem 12.3); the 3CNF-version (Corollary 12.1).
— ODDMAXSUM (Corollary 12.3).

* PSPACE-complete

— FORMULAGAME (Theorem 12.8).

— GEOGRAPHY (Theorem 12.9).

— PSPCANONICAL (Proposition 12.6).

— TQBF (Theorem 12.7); with a 3CNF as the base, alternating quantiers starting
with 3 (Corollary 12.5).

— ACCEPTga (Theorem 7.1); EMPTYRs (Theorem 7.2); INFINITEgs (Theo-
rem 7.3); TOTALps (Theorem 7.4); SUBSETga (Theorem 7.5); EQUALRa
(Theorem 7.6).

— ACCEPTNFA, EMPTYNEA, EQUALNpa, TOTALNEA, SUBSETNpa (Corol-
lary 7.1).
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— ACCEPTRgx, EMPTYRgx, EQUALRgx, TOTALRgx, SUBSETrgx (Corol-

lary 7.2).

— ACCEPTcEgg (Theorem 7.7); EMPTYcpg (Exercise 7.9); INFINITEcgg (Exer-

cise 7.11).

— ACCEPTpppA, EMPTYppps, TOTALpppa, INFINITEppps (Corollary 7.3);

EQUALpppa (Theorem 7.8).

— FAs whose state-set size is reducible to a given number (Exercise 7.8).
— PCP over a single-letter alphabet (Exercise 8.19).

e RE

— NONTOTALcFEG (Theorem 8.6).
— One-tape TMs not making left moves (Exercise 7.5).

¢ Undecidable

— ACCEPTTM (Theorem 8.2); HALTTM (Theorem 8.3); EMPTY M, INFINITETM,

ToTALTM (Corollary 8.2); SUBSETTM and EQUALTy (Corollary 8.3).

— ToTALcpg (Theorem 8.5); EQUALcgg (Corollary 8.4); SUBSETcrg (Corol-

lary 8.5). REGULARTM (Exercise 8.12); FINITETy (Exercise 8.13); EMPTYTMm
(Exercise 8.14).

— TMs encoded in unary not accepting themselves (Theorem 8.1).

— TMs accepting themselves (Corollary 8.1).

— SUBSETpppa (Theorem 8.7).

— PCP (Theorem 8.9); MPCP (Theorem 8.8); PCP over a binary alphabet

(Exercise 8.20).

— Rice’s Theorem: every nontrivial property about TMs (Theorem 8.4).

e Other classification results

— PRIMES € coRP (Theorem 13.4); COMPOSITES € RP (Theorem 13.4).

— PRIMES € RP (Theorem 13.5); COMPOSITES € coRP (Theorem 13.5).

— PRIMES € P (Theorem 13.6).

— Zero-Polynomial Testing is in BPP if the total degree is < ||S||/2 (Theo-

rem 13.7).

A.6 Polynomial-Time Many-One and Witness Reductions

< is reflexive and transitive (Proposition 8.3); not symmetric (Proposition 8.4).
<P is transitive (Proposition 11.1); reflexive (Proposition 11.2).

e 3Sar <P. SUBSETSUM (Corollary 12.2).

* A<, BABeR= BeR,forall A, B (Proposition 8.2).

* CNFSAT <”. 3SAT (Proposition 12.3).

o HAMPATH <2 HAMCYCLE (Theorem 11.1); HAMCYCLE </ HAMPATH
(Theorem 11.2).



A A List of Major Results 369

* P=NP <= all NP-complete languages are in P (Proposition 11.1).

e P=#NP = (3A € NP — P)[A is not NP-complete] (Theorem 12.6).

* Search reduces in polynomial time to decision for CNFSAT (Proposition 12.1).

e Search reduces in polynomial time to decision for SUBSETSUM (Proposi-
tion 12.2).

A.7 Pumping Lemmas

* REG:

— For all L € REQG, there exists p > 1 such that Vw € L E lw| >
p)Qu, v, x)[w = wvx,|uv] < p,lul > 1l,and (Vi > O)[uv'x € L]]

(Lemma 3.3).
— For all L e REG, there exists p > 1 such that Vw = aj---apb €
L : Jal,...,]lap] = D@Es,t : 1 <= s < t = p)¥i =

O)lay---as—1(as - - ~a,)ia,+1 ---apb € L] (anextended version) (Lemma 3.5).
e CFL:

— For all L € CFL, there exists p > 1 such that Yw € L : |w| >
p)Qu, v, x,y, 2)[w = uvxyz, lvxy| < p, vyl > 1,and (Vi > 0)[uvixyiz €
L1]] (the pumping lemma) (Lemma 5.1).

— For all L € CFL, there exists p > 1 such that Yw € L : |w| > p)(VS C
{1, ..., lwlhL IS = p)@u, v, x,y, 2)[w = uvxyz, x covers > 1 index in S,
vxy covers < p indices in S, either both u and v cover > 1in § or both y
and z cover > 1 index in S, and (Vi > 0)[uv'xy’z € L] (Ogden’s lemma)

(Lemma 5.2).
— For all L € CFL, there exists p > 1 such that Yw € L, |w| > p)(VS C
{1,...,|wl}, IS = p)@u, v, x, y, z2)[w = uvxyz, vy covers > 1 index in

S, vxy covers < p indices in S, and (Yi > O)[uv'xy'z € L] (a simpler
Ogden’s lemma) (Lemma 5.3).

A.8 Normalization and Behavior of Computing Objects

¢ BPP’s error probability can be exponentially decreased (Lemma 13.2).

¢ CNF grammars need 2n — 1 rule applications for producing strings having a
length of n (Proposition 4.3).

e DPDAs can be normalized so they increase or decrease the stack height by 1 at
each step (Exercise 5.7).

* Inherently ambiguous CFL languages exist (Theorem 5.5).

* NFAs with k states can accept x in < k|x| + 1 steps (Proposition 2.1).
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¢ Single-tape TMs can be normalized so that their accepting ID is gaccU™ (Exer-
cise 12.20).

* PDAs can be normalized so that they increase or decrease the stack height by 1
at each step (Exercise 5.6).

¢ Two-stack PDAs can simulate TMs (Exercise 6.17).

A.9 Time and Space Constructibility

e Let f(n) be a time-bounding function. Then:

DTIME[ f (n)] € DTIME[n + cf (n)] for all ¢ such that 0 < ¢ < 1 (the linear
speedup theorem (Theorem 9.1).

DTIME[ f (n)] € DTIME[ f (n)z] by one-tape simulators (Theorem 9.2).
DTIME[ f(n)] € DTIME[ f(n)log(f(n))] by two-tape simulators (Theo-
rem 9.3).

DTIME[f(n)] < DTIME[g(n)] for all time-constructible g(n) =
w(f(n)log(f(n))) (the Time Hierarchy Theorem) (Theorem 9.5).
DTIME[ f (n)] = DTIME[cf (n)] for all ¢ > 0 and f(n) such that Qo >
0)(Y*°n > 1)[f(n) = (1 + a)n] (Corollary 9.1).

DTIME[ f (n)] € NTIME[ f (n)] (Proposition 9.1).

NTIME[ f (n)] € NTIME[n + cf(n) for all ¢ such that 0 < ¢ < 1 (the
nondeterministic speedup theorem) (Theorem 9.7).

NTIME[ f (n)] = NTIME[cf (n)] for all ¢ > 0 and f(n) such that Qo >
0)(Y*°n > 1)[f(n) = (1 + a)n] (Corollary 9.3).

NTIME[ f (n)] € Uc>1DTIME[2¢/ ] (Proposition 9.8).

e Let f(n) be a space-bounding function. Then:

DSPACE] f (n)] € DSPACE|cf (n)] for all ¢ such that 0 < ¢ < 1 (the space
compression theorem) (Theorem 10.1).

DSPACE[ f(n)] c DSPACE[cf(n)] for all ¢ > 1 (the space hierarchy
theorem) (Theorem 10.2).

DSPACE[rn?] ¢ DSPACE[n¢] for all ¢,d such that ¢ > d > 1 (Corol-
lary 10.1).

DSPACE[(log(n))?] ¢ DSPACE[(log(n))¢] for all ¢,d € Q such that ¢ >
d > 1 (Corollary 10.2).

NSPACE[ f(n)] € NSPACE[cf(n)] for all ¢ such that 0 < ¢ < 1 (the
nondeterministic space compression theorem) (Theorem 10.3).

NSPACE] f (n)] € DSPACE[ f (n)?] (Savitch’s theorem) (Theorem 10.4).
NSPACE[ f(n)] < NSPACE[g(n)] for all space-constructible g(n) =
o (f (n)?) (the nondeterministic space hierarchy theorem) (Theorem 10.4).

e f(n) is time-constructible <= a TM exists that for all inputs 1", produces
1™ in O(t(n)) steps (Theorem 9.4).
* (log(n))‘ is space-constructible for all ¢ > 1 (Exercise 10.4).
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[n¢] is space-constructible for all rational numbers ¢ > 1 (Exercise 10.5).

2" is space-constructible (Exercise 10.6).

The space-constructible functions are closed under addition and multiplication
(Exercise 10.7).

The time-constructible functions are closed under addition, multiplication, and
composition (Exercise 9.7).

If f(n) and g(n) are space-constructible and f(n) = Q(n), f(g(n)) is space-
constructible (Exercise 10.8).

A.10 Number and Probability Theories

Let S = X1 +--- + X, where X1, ..., x, are independent random variables in
{0,1}. Let E be S’ expectation. Then, (V > 0) [Pr[s > E +1] <exp (—Z,Zﬁ)]
(the Chernoff-Hoeffding bound) (Lemma 13.1).

Forallny, ..., n; € Z that are pairwise relatively prime and a € Zy,, ..., ax €
Zy,, there is exactly one integer b, 0 < b < ny ---ny such that b = ¢; (mod n;)
for all i (the Chinese Remainder Theorem) (Theorem 13.2).

For all odd prime numbers p and for all a € Z*, a’~!' =1 (mod p) (Fermat’s
Little Theorem) (Theorem 13.1).
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