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Preface

This book is intended principally for students of mathematics with various spe-
cializations, both theoretical and related to applications in finance, insurance,
or stochastic modeling. It can be used as the basis for a one-semester lecture
course, the participants of which should know mathematical analysis with elements
of the theory of Lebesgue measure and integral. However, we do not require
from the reader any more advanced knowledge of topology, measure Theory, or
functional analysis. The necessary elements of these theories are covered briefly but
sufficiently precisely to keep the lecture course complete.

When writing this book, I relied on many well-known and recognized textbooks
on the theory of probability and measure theory, in particular the classical Intro-
duction to Probability Theory and Its Applications by William Feller [6], and the
much more modern and equally extensive book by Jacek Jakubowski and Rafat
Sztencel entitled Introduction to the Probability Theory [8], which, unfortunately, is
available only in Polish. Due to the necessity of limiting the lectures to one semester,
I selected only the most important or the most interesting topics. I wanted this
textbook not only to provide a good basis for later courses on statistics and stochastic
processes but also to be interesting, maybe even amusing at times. Hence, there
are several less common problems and exercises, e.g., the Black and White Hats
puzzle. I suggest the lecturer should move some extended examples, like Bertrand’s
Paradox, the Monty Hall Problem, or the Black and White Hats Puzzle, to practice
sessions for self-presentation by some students.

Taking into account those students who are not yet familiar with measure theory, I
have included those elements of this theory that are necessary to define a probability
measure and the expected value as an integral with respect to the measure.
Some general, classical results are described in Sects.8.1 and 8.2. Observing
contemporary achievements in the field of stochastic modeling, for example, the
evolution of the stock market situation, we find that any simplifications to discrete
and absolutely continuous measures are not sufficient. Sections 8.3 and 8.4 contain
a systematic definition of conditional expected value based on the Radon-Nikodym
Theorem. This is one of the most important theorems in measure theory. We present
it here with a partial proof limited to the proof of uniqueness.
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Chapter 9 contains hints and answers to some of the exercises. There are no
complete solutions since we always want to motivate the reader to act on their
own. Solutions to problems which require only simple proofs or calculations are
not commented on at all. More interesting exercises interested students can find in
[71, [14], [15], and [17]. Those who are more ambitious should take a look at Paul
Letac’s book [11], where they will find more challenging and demanding exercises.

I would especially like to thank Prof. Czestaw Ryll-Nardzewski and Prof.
Kazimierz Urbanik, from whom I learned not only the calculus of probability but
also the precision and economy of proofs, openness to new problems and that
something special that makes mathematics fun. While writing this book, I used
the notes from lectures on the theory of real functions delivered by Prof. Cz. Ryll-
Nardzewski in the 1970/1971 academic year at the University of Wroctaw. I would
also like to thank Prof. Anzelm Iwanik, a wonderful mathematician and teacher, to
whom I owe my first contact with Probability. I am also grateful to Jacek Bojarski
for his assistance in typesetting the manuscript and, with Gosia Mazurek and Karol
Bojarski, producing the figures, and to Dorota Stgpinska and Oktawia Zegar for
proofreading the initial version of the book.

Warsaw, Poland Jolanta Misiewicz
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Chapter 1 ®
The Beginning Qe

The birth year of probability theory is usually taken to be 1654. It started like this:

Monsieur de Baussay, alias Antoni Gombauld, best known as Chevalier de Mér¢,
led a lavish life in Paris. From time to time, for pleasure or out of simple curiosity,
he visited the gambling salons and instead of falling into a pernicious addiction and
gambling fever, he tried to analyze the games on the basis of random or accidental
events.

At that time, the game of six was especially fashionable. The banker, i.e.,
a professional gambler hired by the owner of the salon, and the player paid equal
stakes to the pool. The winner was the player who failed to roll “6” in four
consecutive dice rolls. Chevalier de Méré took a particular interest in the slightly
more complicated variation of this game, where two dice were used. He was
interested in answering the question: Why is it disadvantageous for the banker to
bet that in 24 rolls of two dice, a player will simultaneously roll two sixes?

The number 24 did not appear here by accident. There is the concept of the
so-called banker’s number, i.e., one where the chances change from favorable for
the player to favorable for the banker. It was then believed that since the banker’s
number when rolling one die was equal to 4, and since rolling two dice gave 6
times more results in one roll, the banker’s number when rolling 2 dice was equal to
6 x 4 =24

On the basis of some theoretical considerations, Chevalier de Méré came to the
conclusion that the banker’s number for this game was not equal to 24. He got the
young French mathematician Blaise Pascal interested in this paradox and it was
Pascal who calculated that 24 was still slightly more beneficial to the player, while
25 throws would be slightly more favorable to the banker.

Pascal also solved a more difficult problem, posed again by Chevalier de Méré:
the problem of an unfinished game or a partial game. The game consisted of batches
and the winner was the player who first won a fixed number of batches. The problem
was to determine the fair share of the pot between players when the game was
interrupted. Pascal was the first to formulate the principle saying that the winnings
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2 1 The Beginning

of individual participants should depend on the probability of each of them winning
the game. Based on a few examples he explained precisely how such probabilities
should be calculated.

Pascal wrote about his achievements to another French mathematician (and
lawyer) Pierre de Fermat. A lively correspondence arose between them on the then-
known gambling games, and soon news that Pascal and Fermat had discovered a new
branch of mathematics spread around Paris. The literature on probability, or more
broadly on probabilistic theory, is vast. A widely known work is W. Feller’s book
[6] from 1966, which offered the most comprehensive discussion of the foundations
of probability at the time. More modern approaches to the subject can be found,
for example, in the following books, listed in order of increasing complexity: [3—
5, 8, 19]; and for more advanced discussion: [10] and [13].

1.1 The Basics of Combinatorics

In probability theory we often encounter the need to find the number of all
possible outcomes of a given experiment, or the number of outcomes that satisfy
some additional conditions. This may involve, for example, selection, divisions, or
orderings of a finite set of elements. In general, such calculations are not difficult,
but to avoid repeating them for each task, we will discuss the most important cases
here. Let us begin with the following rule:

Multiplication Principle 1.1 Suppose there are exactly m; possible selections of
the first element, m, possible selections of the second element, ..., and m; possible
selections of the k-th element. If any choice of any element can occur together with
any choice of any other element, then the number of all possible choices of k ordered
elements is equal to:

mip X mp X -+ X Mg.

Consider, for example, ordering a cake and something to drink in a cafeteria,
where they can serve coffee, tea, orange juice, beer, puffs, eclairs, meringues,
muffins and cheesecakes. There are 4 ways to choose a drink and 5 ways to choose
a cake, thus the number of all possible orders equals 4 x 5 = 20.

1.1.1 Permutations

A permutation of a set of n distinguishable objects is any ordered arrangement of
its elements, numbered with consecutive natural numbers from 1 to n. We can also
say that a permutation of n distinguishable elements is a one-to-one function from
the set {1, ..., n} onto the set of elements. If, for example, we have two elements a
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and b then their only permutations are:
(a,b) (b, a).

All permutations of the elements a, b and ¢ can be obtained by placing the third
element ¢ in one of the three possible places in the already defined permutations of
a and b; thus we obtain:

(c,a,b) (¢c,b,a)
(a,c,b) (b,c,a)
(a,b,c) (b,a,c).

Using the same method it is not difficult to prove by mathematical induction that the
number of permutations of a set of n distinguishable elements is equal to:

def
1-2.--..n=n!

Note that we use parentheses to describe a sequence of elements, i.e., an ordered
finite set of elements. If the order of elements is irrelevant, we will use braces
{, },eg {a,b,c} = {b,c,a}, {1,3,7} = {1,7,3}. We shall use this notation
consistently throughout the book.

1.1.2 Variations With Repetition

A variation with repetition is any ordered sample of size k from n distinguishable
elements where repetition of the same element is allowed. It is therefore any choice
of k consecutive elements where the selected element is returned to the set each
time—sometimes we say that variations with repetition are return selections. We
can also identify a variation with repetition with the corresponding function from
the set {1,2,...,k} taking values in the set {1, 2,...,n}. Words are variations
with repetition selected from a set of letters comprising an alphabet. The result
of rolling a single die twice is a two-element variation with repetition from the
set {1, 2,3,4,5,6}. The set of all possible results of rolling the die twice can be
described as follows:

{(x,y):x,ye{l,2,3,4,5,6}}.

The easiest way to picture a variation with repetition is to imagine drawing k balls
sequentially from a box containing » numbered balls, returning each ball to the box
after recording its number. It is clear that there are exactly n ways to choose the first
ball, n ways to choose the second ball, etc. Note that the result of the first draw does
not affect the result of any other, so by the Multiplication Principle 1.1, we get that
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the number of all k-element variations with repetitions selected from an n-element
set is equal to:

k_ ok
W, =n".

1.1.3 Variations Without Repetition

A variation without repetition is defined as any k-element sequence of distinct
elements selected from a set n of distinguishable elements, where n > k. Two vari-
ations without repetitions differ from each other either by the elements themselves
or by their order in the sequence. Equivalently, we can say that a variation without
repetition can be identified with a one-to-one function on the set {1, 2, .. ., k} taking
values in the set {1,2, ..., n}. We have n ways to choose the first element, n — 1
ways to choose the second, n — 2 ways to choose the third, and so on. Consequently,
the number of all possible k-element variations without repetition taken from an
n-element set is equal to:

n!

k— . — e e j— P —
Vi=n-(n—1) n—k+1) Tk

1.1.4 Combinations

A k-element combination of the elements of an n distinguishable element set S is
any k-element subset of S. The order of the elements in the fixed combination is
irrelevant. For example: the 13 cards which you receive in a bridge deal is a 13-
element combination from a 52-element set, the deck of cards.

Combinations differ from variations without repetition only in the fact that in
a combination the order in which elements are selected is irrelevant. Note that
there are exactly k! k-element variations without repetition containing k fixed
elements. Thus, when considering k-element combinations, we shall identify all
such variations. This shows that the number of all k-element combinations of an

n-element set is equal to:
S
"k k)

1.2 Putting Objects into Bins

In statistical physics, one considers the distribution of k particles (balls, elements)
into n cells (bins, boxes), where k < n. Depending on the type of these particles or
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on the type of chosen mathematical model, one of the following three assumptions is
made: (a) particles are indistinguishable (Bose—Einstein statistics); (b) particles are
distinguishable (Maxwell-Boltzmann statistics), or (c) particles are indistinguish-
able, but there can only be one particle in a bin/cell (Fermi—Dirac statistics). In
each of these cases the cells are distinguishable. In probability theory, we shall also
consider the case of putting indistinguishable particles into indistinguishable cells.

1.2.1 Indistinguishable Balls in Numbered Bins

We want to find the number of ways to distribute £ indistinguishable balls into n
numbered bins. The easiest way to solve this problem is to refer to a somewhat
childish way of drawing numbered bins: it is enough to draw n + 1 vertical lines:

n+1lines

Now, in order to put the balls into the bins, all we have to do is to draw k circles
in the same line in such a way that at the beginning and at the end we have vertical
lines (so that all balls are in bins). This gives us an (n + k + 1)-element sequence
consisting of k circles and (n + 1) vertical lines, where the first and last elements in
the sequence are lines, e.g.:

100] 0] ...1000]|.

It is easy to see now that the number of such sequences is equal to the number of
possible choices of k elements from a set of n 4+ k — 1 elements, which we identify
with the choices of positions where the circle will be placed:

<n+k—1) B <n+k—1>
k "\ n—-1 )
1.2.2 Distinguishable Balls in Numbered Bins

In this case, each ball is assigned the number of the bin in which it will be placed,
so the number of possible ways to arrange k balls in n bins is equal to the number of
functions from the set {1, ..., k} which take values in {1, ..., n}. This means that
it is equal to the number of k-element variations with repetition from an n-element
set, which is equal to nk.
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1.2.3 Indistinguishable Balls in Indistinguishable Bins

To describe the distribution of the balls among the bins we need to write down how
many bins are empty, how many contain one ball, how many contain two balls, etc.
Let’s assume, for example, that we need to put 4 balls in 3 bins. We could put all
the balls into one bin, which we notate as 4 + 0 + 0. If we put 2 balls in one bin and
the remaining two balls in each of the other two bins, then we would describe this
situation using the notation 24- 1+ 1. We can see now that the possible distributions
of 4 indistinguishable balls in 3 indistinguishable bins can be described as follows:

44+404+0=34+14+0=24+2+0=2+1+1.
If there were 4 bins, we would have:
44+0+0+0=34+1404+0=24+2404+0=24+14+14+0=1+1+1+1.

It is evident now that the number of possible distributions of k indistinguishable
balls in n indistinguishable bins (notation N¥) is equal to the number of ways of
writing a natural number k as a sum of n natural numbers (we consider zero to be
a natural number). We can also discuss the number of ways of writing a natural
number k as a sum of at most n natural numbers. We can see that:

k
N{=3, Ni=5 Nf=1, N§=H, N=1Vn>k

General formulas for the number of partitions of a natural number into a sum of
natural numbers are not known; instead, asymptotic formulas can be found in some
combinatorics textbooks.

1.2.4 Exercises

Show that (*) = (" ). (1) = 1, (") = .

Prove it )+ (%) = 12).

Prove that 37}, (;) = 2", 3 i_o(=D*(;) =

Prove that Y;_ k(}) = n2”’1.

In bridge, we deal 13-card hands from a 52-card deck. How many possible

bridge hands are there?

6. Adam is deal a bridge hand. In how many different ways can Adam get exactly
seven spades?

7. How many different results are there when you roll a single die twice?

8. In how many ways can three people be accommodated in two double rooms?

DNk L=
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10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
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How many ways are there to seat n people on n chairs (a) lined up; (b) placed
around a round table?

In how many ways can seven people be divided into two groups?

Ewa cuts a tailor’s tape (150 cm) into three parts so that the length of each part
is a natural number of centimeters. In how many ways can she do this? How
many of these methods will allow her to measure her waist if she needs a length
of at least 63 cm length?

In how many ways can 13 cards be selected from a deck so that all four aces
are among the chosen cards?

There are 7 flavors of ice cream in an ice cream shop. How many combinations
of flavors can an assistant make if a cone holds no more than 5 scoops of ice
cream, assuming that an empty cone does not count as an ice-cream

How many four-letter words are there if by a “word” we mean any finite ordered
sequence of letters? We consider here words written in Polish, using the 31-
letter alphabet, which includes the letters g, ¢, ¢, 1, §, z, Z but does not contain
X, vandq.

Six swallows are sitting on five power lines joining two electricity pylons. How
many different melodies can be played if we treat the swallows on the wires as
sheet music on a stave? Consider two cases: excluding chords (playing several
notes at the same time) and including them.

We have three paint colors available: red, green and blue. How many three-color
flags can we paint in which two adjacent fields are of different colors?

Find the number of different four-digit numbers

(a) divisible by 3,

(b) divisible by 11,

(c) in which one of the digits is the sum of the others,
(d) in which adjacent digits are different.

Hint: A number is divisible by 11 if the sum of the numbers in the even places
minus the sum of the numbers in the odd places is divisible by 11.

An exam test consists of 12 sentences. For each of them a student will write T
if he thinks that the sentence is true or F if he thinks that the sentence is false. In
how many ways may this test be completed by a student who decides to write
the answers randomly?

A cashier at a shop has two 1-euro coins, three 50-cent coins and three 10-cent
coins in the cash register. How many different coin combinations can he give
as change? Suppose that he changes the 50-cent coins into 10-cent coins. How
many combinations are there now?

A group consists of 15 married couples. In how many ways can a four-person
delegation be selected from among them if the delegation may not include any
couple?

For many years, the following task appearing in high school textbooks puzzled
teachers and students: in how many ways can six children be paired? Show that
there are three correct solutions to this problem. Is the order in a pair important?
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23.

24.

25.

26.

1 The Beginning

What about the order of pairs? Can you think of a situation/situations in which
they may be important?

In how many ways can a set comprising k one-cent coins and m five-cent coins
be stored in n numbered boxes?

In how many ways can k indistinguishable balls be arranged in n numbered
drawers if n > k and only one ball can be kept in each drawer?

In how many ways can k indistinguishable balls be arranged in » numbered
drawers if n < k and at least one ball should be put in each drawer?

Let N denote the set of all non-zero natural numbers and let Ny = N U {0}. For
fixed n, k € N find the number of natural solutions of the following equation:

k=xp+ -+ x,_1, X0y - .. Xp—1 € Np.

Let k,n € N and let N* denote the number of possible distributions of k
indistinguishable balls into n indistinguishable bins. Prove that

i n+k—1 <N < n+k—1 .
n! n—1 " n—1



Chapter 2 ®
The General Definition of Probability ST

2.1 Families of Sets

Let 2 be any non-empty set and let A be a non-empty family of subsets of the set
Q. By ) we denote the empty set.
A is a ring of sets if:
(1) AABe A=— AUB e A,
2) AABeEA= A\BecA

Note that if A is a ring of sets then:
3) B e A,
@ Ay, ...,A, e A= |J_ Ax e A

For (3) take any A € A. By Property (2) we have ¥ = A\ A € A. Property (4)
follows from Property (1) by mathematical induction.

The family A is a o-ring of sets if it is a ring of sets and the following condition
is satisfied:

5) If Ay, Ay, ... € A are pairwise disjoint then Uloil A; € A.

Remark 2.1 In Property (5) the assumption that the sets A;, A,, ... are disjoint
can be omitted. If E{, E;, ... € A, then

(o]

U E; = U Ag,
k=1

k=1

where Ay = Ey, Ay = E;\ E|, A3 = E3\ (E;UE)>),... andthe sets A}, A,, ...
are pairwise disjoint.
The family A C 2% is a field (algebra) if it is a ring and Q € A.

The family A C 2% is a o -field (o -algebra) if it is a o-ring and Q € A.
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Note that every algebra A has the following properties:
© AcA— A¥o\aem;
1) Ay, ..., A, Eﬂ:m?:IAi € A.

If A € Aand Q € A, then by Property (2) we have that A’ = Q\ A € A. In order
to prove (7) it suffices to note that

ﬁAi = Q\O(Q\A[)
i=1 i=l1

and apply Properties (2) and (4).
Examples 2.2

(a) Let 2 = N and let A be the family of all finite subsets of the set 2. Then A is
aring, but it is not a o-ring. It is an algebra, but not a o -algebra, since €2 is the
union of a countable number of single point sets, but it does not belong to A.

(b) If  is any non-empty set, and A = {2, @}, then A is the smallest o-field of
subsets of the set Q. Of course, A is also a ring, a field and a o -field because
every o-field is a ring, a field and a o-field.

(c) If A contains all subsets of the set €2, i.e.,

ﬂ:ZQz{E:EgQ},

then A is the biggest o -field of subsets of 2.
(d) Letn(A) be the number of elements in A. If 2 is an infinite set and

ﬂ:{Ecsz:n(E)<ooorn(Q\E)<oo],

then A is a ring and a field, but is not a o-ring or a o -field.

Theorem 2.3 Ifforeveryi € I the family of sets A; is a ring (field, o-ring, o-field)
of subsets of the fixed set Q, then (;.; A; is also a ring (field, o -ring, o-field). The
cardinality of the index set I is arbitrary.

Proof If A, B € (;.; Ai, then for every i € I, A, B € A;. By the definition of
aring, forevery i € I wehave that AUB, A\B € A;, thus AUB, A\B € (;.; A;.
The other conditions can be proved by analogy. O

Theorem 2.4 Let K C 2%. There exists a smallest ring (field, o-ring, o-field) of
subsets of the set 2 containing K.

Proof The proofs of all four statements are very similar, so it is enough to find the
smallest o -field containing K. Let

I = {ﬂ:.‘ﬂisaa-ﬁeld,?(C ﬂ}.
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Note that I # @ because K C 2% and 2% is a o -field, thus 2% € I. Let

o0 = () A

Ael

By Theorem 2.3 we know that the set o (K) is a o-field. If there were a smaller
o-field G containing %K, then, by the definition of the set /, we would have G € I,
o)

GCco=()AcCg,

Ael

which implies that G = o (K). O
Remark 2.5 The o-field o (K) is called the o -field generated by the family K.

2.1.1 Exercises

27. Does the union of two rings (fields, o -rings, o -fields) have to be a ring (field,
o-ring, o-field)?
28. Prove that A is a o-field if and only if the following conditions are satisfied:

(1) QeA,
2) if A € A then A’ = Q\ A € A, item[(3)] if Ay, Ap,--- € A, then
U2, A, €A

30. Prove that the o-field generated by open rectangles (a, b) X (c,d),a < b,c < d
contains all open sets in the plane R,

30. Let 2 = [0, 1]. Determine the rings (fields, o -rings, o -fields) of subsets of €2
generated by the following classes of sets:

(a) {[0,2/3],[1/3, 11}
(b) {[0,1/2], [1/2, 11};
() {4}

(d) the set of all rational numbers in [0, 1].

31. Let 2 be an uncountable set. Describe the ring (field, o -ring, o -field) generated
by:

(a) all one-point subsets;
(b) all countable subsets;
(c) all uncountable subsets.

32. Let A be the family of subsets of the set of natural numbers N containing all
finite subsets and their complements. Is A a o -field?
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33. Let F be a o-field of subsets of 2 and let B C 2. Show that

def

ng{BﬂA:AeT}

is a o -field of subsets of the set B.

2.2 The Sample Space

Let © be a set with elements denoted by w. The set 2 is referred to as the
sample space or the space of elementary events and its elements w are referred
to as elementary events. The sample space is a primitive notion in the theory
of probability. In specific examples, we will identify it as the set of all possible
outcomes of a random experiment.

In the previous sections, we have already seen a few examples of sample spaces,
so we will limit ourselves here to discussing only one example.

Example 2.6 We toss a coin until it falls on the same side twice in a row. This
can happen on the second toss if the sequence of tosses is (O, O) or (R, R). In
this notation O denotes getting a tail and R denotes getting a head. It is possible
that we would have to toss the coin three times, then the possible sequences are:
(O,R,R), (R, O, O); or four times: (O, R, O, O), (R, O, R, R), etc. The space
of elementary events can be identified with the following set:

Q= [(0, 0),(R,R),(O,R,R),(R,0,0),(O,R,0,0),(R,O,R,R), ... }

2.2.1 Exercises

34. Complete the following equivalences:

() ANB=AUB <= A=...;
b) [ANB=0ANAUB=Q] < B=...;
() (A\B)UB\A) =0 A=...;
(d A\B=A<= ANB=...

35. Simplify the description of the set E:
(@ E=(AUB)N(A"UB);,
(b) E=[(AUB)NC]U[(AUC)N B];

(c) E=(AUB)N(BUC)N(CUA);
d E=AUB)N(BUC),when A C BCC.
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36. What conditions must the sets A and B satisfy for the following condition to be
true: (AUB)N(A'UB)N(AUB") =M

37. Are there sets A, B, and C that satisfy the following conditions: A N B # ¢,
ANC #Pand (ANB)\C =07?

38. We toss a coin three times. Describe the space of elementary events.

39. You choose three cards from a standard deck. Describe the sample space.

2.3 The General Definition of Probability

Let Q2 be a space of elementary events and let ¥ be a o-field of its subsets.

Definition 2.7 Let (2, ¥) be a measurable space. A real-valued function P defined
on the sets of the o-field Fis called a probability or probability measure if P satisfies
the following axioms:

(1) P(A) > Oforevery A € 7;

(2 P =1;

(3) (countable additivity or o-additivity) for every sequence of pairwise disjoint
sets Ay, Ay, --- € F, we have:

P< U Ak> = ZP(Ak).
k=1 k=1

The ordered triple (2, 7, P) is called a probability space. Every set A € F
is called a random event, or simply an event. The probability space (2, 7, P) is
complete if for every A C 2 the following implication holds:

(ACBGS’—', P(B):O) — AeF

In a complete probability space the o-field ¥ of random events contains all subsets
of measure zero sets. The empty set @ is called the impossible event, and the set 2
is called the sure event.

The sum (alternative) of two events A and B is the union of these sets A U B =
{x € Q: x € Aorx € B}, while the cross section (conjunction) of events A and B
is the intersection of these sets: AN B = {x € Q: x € Aandx € B}. The event
opposite to the event A is the event A’ = Q \ A.

The simplest probability measure is the one-point measure (Dirac measure) 8,
which assigns the value 1 to a fixed point wy € 2. To be precise:

],C()()EA;

S (A) = {o, wo & A.
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If there exists a finite or at most countable set A € ¥ for which P(A) = 1, then we
say that the measure P is atomic. Usually, we additionally assume that the set A € ¥
does not have any accumulation points, i.e., points x € A such that for every ¢ > 0
the ball {y: ||x — y|| < &} contains some elements of A.

2.3.1 Basic Properties of Probability

Property 1 P(?) = 0.

Proof Note that § = # U @ U --- The empty sets are pairwise disjoint, thus, by
axiom (3) we have

PW)=PW) +PW) +---.

Since P(¥) < o0, we conclude that P(@) = 0. |
Property 2 (Finite Additivity) [fANB =0, A, B € F, then P(AUB) = P(A) +
P(B). By mathematical induction this property can be extended to the following: if
A1, ..., A, € F are pairwise disjoint, then

P(A U---UA,) =P(A) +--- +P(A).

Proof Since AUB=AUBU@U---, we have, by axiom (3) and Property 1,

P(AUBUGUP---)=P(A)+P(B)+PW) +---=P(A) + P(B).
|
Property3 IfA C B, A, B € ¥, then P(B\ A) = P(B) — P(A).
Proof The events A and B \ A are disjoint, thus by Property 2,
P(B) =P(AU(B\ A)) =P(A) +P(B\ A).
O
Property4 IfA C B, A, B € ¥, then P(A) < P(B).
Proof 1t is enough to apply Property 3 and axiom (1). O

Property 5 Forevery A € ¥, P(A) < L.
Proof Just note that A C €2, then apply Property 4 and axiom (2). O



2.3 The General Definition of Probability 15

Property 6 For every A € F, we have P(A") = 1 — P(A).
Proof This easily follows from Property 2 and axiom (2). Since the events A and

A’ are disjoint, we have

1 =P(Q) =P(AU A) = P(A) + P(A)).

Property 7 (Inclusion-Exclusion Formula) For every choice of events Ay, ...,
A, € F, neN, we have

P(OA,-) = iP(Ai) — Z P(A;NAj)
i=1 i=1

@ )i<j
n—1
+ > PANANA) =+ (D"TPAIN N A).

(i.j.k)i<j<k

Proof Note that the event A U B can be written as a sum of two disjoint events: A
and B \ A. By Property 2, we get

P(AUB) =P(AU (B\ A)) = P(A) + P(B\ (AN B)).

Since (A N B) C B, the result for n = 2 follows from Property 3. The inclusion-
exclusion formula for an arbitrary n € N is obtained using mathematical induction.
0

Property 8 (Probability Continuity Theorem) If A, € F, n € N, is an increasing
sequence of random events, i.e., Ay C Ay C -- -, then

oo
P<UAk) = lim P(4,).
k=1

If A, € F, n € N, is a decreasing sequence of random events, i.e., Ay D Ay D ---,
then

o0
P(kﬂ Ak) = nlln;OP(An).
=1

Notation If (A,) is an increasing sequence of random events and A = (7| A,,
then we write AnTA. If (A,) is a decreasing sequence of random events and A =
o2, Ay, then we write A, | A.

n=1
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Proof Let A, € ¥, n € N, be an increasing sequence of random events. Since
the events A,+1 \ A,, n € N, are pairwise disjoint, by o-additivity of probability
measure we have

(UAk> P(A)) +P(A2\ A)) + P(A3\ A)) +

Since the obtained series is convergent, Z,fin +1 P(Ar\ Ay y) tends to zero as n —
oo and we have

(UAk) A1) +P(Ay) = P(A)) +--- +P(A,) —P(A, )

o0
+ Z (A \ Arr) = P(A,) + Z P(Ap\ A1)
k=n-+1 k=n-+1
= Jim P(4.).

Assume now that the sequence of random events A, € 7, n € N, is decreasing.
We see that the sequence (A; \ A,) € F, n € N, is increasing, thus, using the first
statement of this property, we have

_ p(fj Ak> _ P(Al \ é Ak> - P(Q(Al \ Ak)>

= lim P(A] \ Ak) = P(Al) — khm P(Ak)
—00

k— 00

O

Property 9 (Subadditivity of Probability Measure) For every sequence of prob-
ability events Ay, Ay, ... € F, the following inequality holds

P( U An) <D P4y,

Proof Note that B, = A, \ (A;U---UA,_1),n € N, is a sequence of pairwise
disjoint events and

U =Us.

n=1
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Since B, C A, foreachn € N, P(B,) < P(A,) by Property 4. Now it is enough to
apply axiom (3) of probability measure to obtain

P(L;JAO =P(L;JB,1> =L PGB < PG,

n=1

which was to be shown. m]

2.3.2 Exercises

40. A sample space €2 contains exactly n elementary events. What is the smallest
and largest possible number of random events in this space?

41. Can the set of random events of a certain probabilistic space €2 consist of
(a) 128; (b) 129; (¢) 130 elements?

42. Could the number of elementary events in a space €2 be is greater than the
number of random events in 27

43. Prove the inclusion-exclusion formula for an arbitrary n € N, assuming that it
holds for n = 2.

44. Let ¥ be a o-field of subsets of the set 2. Prove that if P;,...,P, are
probability measures on the space (2, ¥) and cy, .. ., ¢, are positive constants

such thatc;+---+c¢, = 1, then ¢|P; +- - -+, P, is also a probability measure.

45. Letx € Q. Show that the Dirac-delta: 8,(A) & 1,(A), i.e., 8, (A) = 1 ifx € A

and §,(A) = 0if x € A, is a probability measure on (2, ¥) for any o-field ¥
of subsets of 2.

46. Prove that for a decreasing sequence of events Aj, A,, --- € ¥, the following
implication holds:

o0
ﬂA,,:QJ — lim P(4,) = 0.

n=1
47. Show that if P(A) = 0.7 and P(B) = 0.8, then P(A N B) > 0.5.
48. Is it true that in any probability space (2, 7, P) and for any A € ¥ the following
equivalence holds:
P(A)=0 < A=0?
49. Let (2, 7, P) be a probability space and
Fo={ECQ: FA,BeF (ENAUA\NE)CB, PB) =0}

where the set EAA = (E\NA)U(A\E) = (AU E)\ (AN B) is called the
symmetric difference of the sets A and E. If E € . and E /\ A is a subset of



18 2 The General Definition of Probability

a P-zero set, then we define P.(E) = P(A). Show that (€2, ., P.) is a complete
probability space.

50. Let (2, 7, P) be a complete probability space and let B ¢ ¥ be a subset of Q2
for which the following implication holds:

<Ae¢,BcA) — P(A) = 1.

We define Fg = {ANB: A€ F}and Pg(E) =P(A) when E = AN B € Fp.
Show that (B, ¥, Pp) is a complete probability space.

2.4 Why the Probability Space (22, P, ¥) Must Consist
of Three Elements

It might seem that we are overly theorizing here. Would it not be enough to
determine the probability P on all subsets of the set 2?7 No extra o-field is needed!
It turns out, however, that such a construction is possible only when the space
€2 contains at most countably many elements. And even then, it does not always
happen.

To put it simply, the o-field ¥ is the class of those subsets of the set 2 whose
probability we are able to measure. Two cases may occur here: either the probability
of the event A cannot be determined because the probability measure P available to
us is too poor, or the class of sets 2 is too rich. We will discuss this with examples.

Example 2.8 Imagine that we have three apples (elementary events) A, B and C
with weights respectively 0.2, 0.3, and 0.5 kg. We also have an ordinary pan balance
and one 0.5 kg weight. In this situation we can conclude that two apples A and B
weigh the same as apple C, but we are not able to give their weights. Hence, the
class of those subsets for which we can measure their weight is equal to:

{(ZJ,AUB,C,AUBUC}.

Our measuring instrument, and thus the measure it generates, is too poor in this case
as it cannot measure all subsets of the set of three apples.

Example 2.9 Let Q = [—1, 2] and let A be the normalized Lebesgue measure on
Q. By QO we denote the set of all rational numbers in the interval [—1, 1] ordered
into a sequence:

Q= [%=0,611,612,...} such that g; # g, fori # j.
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Suppose we can construct E C [0, 1] such that

(E+agn)N(E+qo)=0ifn#k,  [0,1]1C U(E+qn) c[-12].

n=1

If the set E were measurable with respect to the measure A, i.e., if the number A(E)
were well defined, then from the invariance of Lebesgue measure under shifts we
would have A(E +¢g,) = A(E) for every n € N. Since the sets (E + g,) are disjoint,

A (U(E +qn)> =Y ME+gq) <A(-1,2) =1,
n=1

n=1

Hence, we conclude that A(E) = 0. Otherwise, the considered series would diverge
to infinity. On the other hand, however, we have:

1 o0 o0
7 =(0,1) <3 (L:J1<E + qn)> =Y ME+4g) =0,

n=1

which is a contradiction, hence such a set £ cannot belong to the o-field of
A-measurable sets.

Construction of the Set E First, we divide [0, 1] into uncountably many disjoint
sets. For every a € [0, 1], we define

[a]:[xe[O,l]:x—aeQ].

Of course, a € [a], so the sets [a] are not empty. Note that for a, b € [0, 1], we
have:

(1) ifa —b € Q, then [a] = [b];
2) ifa—b & Q, then [a] N [b] = 0.

Indeed,ifa —b € Qand x € [a],thenx —a € Q,so0x —b=(x—a)+(a—D>b) €
QO and x € [b]. Hence, we get that [a] C [b], and, due to the symmetry of the
assumption, also [b] C [a]. Assume now that a — b € Q and [a] N [b] # @. Then
there exists a number ¢ € [0, 1] such that ¢ — a, ¢ — b € Q. This, however, implies
thata — b = (¢ — b) — (c — a) € Q. The obtained contradiction implies (2).

Now let & be the family of all sets [a], a € [0, 1]. It follows from properties (1)
and (2) that any two different sets from the family & are disjoint. Using the axiom of
choice, we now construct the set E by including in it one element from each of the
sets of the family &, i.e., so that for any a € [0, 1] the set [a] N E is a single point.

It remains to check that the sets (E + g,) are disjoint for different n. Suppose
this is not the case, thus for some n # k, there exists c € (E + qx) N (E + g,). But
then ¢ — g, c — g, € E, and since these numbers are different, the construction of
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E shows that [c — gx] N [c — g,] = @. Property (2) implies that (c —gx) — (c —¢q,) =
qn — qx € Q. The obtained contradiction concludes the proof of the correctness of
the construction.

Remarks 2.10

ey

@)

3)

“

If we replace the set E by the Vitali set M = {e*™": r € E} (a paradoxical set
in S) and replace the equivalence classes [a] by (a) = {e"": r € [a]}, then
the same construction can be written as a very impressive Vitali theorem: There
exists a partition of the unit circle S, C R? into countably many pieces, such
that from any infinite subset of pieces we can build the original circle using only
rotations. This partition is called a paradoxical circle partition. For details, see
Vitali [18].

Mazurkiewicz and Sierpifiski gave an example of a paradoxical (due to
isometry) partition of the plane. For details, see Mazurkiewicz and Sierpinski
[12].

The Banach-Tarski theorem concerns the existence of a paradoxical partition
of the ball Sj3. It states that a three-dimensional sphere can be “cut” into a finite
number of parts (five are enough), and then, using only shifts and rotations, two
spheres with the same radii as the radius of the initial sphere can be built from
these parts. It is paradoxical that on the one hand, as a result of cutting, shifting,
rotating and folding operations, the volume of the sphere can be doubled, while
on the other hand, the shifting and rotation operations used are isometries and
preserve the volume of solids. For details, see Banach and Tarski [2].

Banach and Kuratowski showed even more. They proved, under the continuum
hypothesis, that there is no countably additive measure defined on all subsets of
R such that the measure of every single-element set is equal to zero. For details,
see Banach and Kuratowski [1].

2.4.1 Exercises

51.

52.

53.

What is the smallest and greatest o-field # for which (R, 7, 6;) is a probability
space?

Lete > Oandlet f : [—1,2] — (e, 00) be an integrable function satisfying
the condition ffl f(x)dx = 1. We define

P(A) =/f(X)dx,
A

for every Borel set A C [—1, 2]. Prove that the set E constructed in this section
is non-measurable with respect to P.

Show that every countable set A C [—1, 2] is measurable with respect to the
measure P defined in the previous exercise.
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2.5 The Classical Definition of Probability

Let 2 be a sample space, that is, the set of all possible mutually exclusive results of
a random experiment. In this section we assume that €2 is a finite set. Every subset
of the set Q is a random event, so F = 2%,

When considering dice rolling, the set €2 can be identified with the six-element
set {1,2,3,4,5,6}. In the case of tossing a coin, it is a two-element set Q =
{head, tail} or, if we identify head with 1 and tail with 0, Q = {0, 1}. If we are
considering rolling a single die twice, then the elementary event can be described as
a pair (a, b), where a is the number obtained on the first roll and » on the second;
then

Q=1{(ab):abe{l,2345,6}).

If, on the other hand, we consider the simultaneous selection of two balls from an
urn containing six numbered balls, then

Q={a,b}:a,be{l,2,3,4,5,6},a #b}.

We have presented here a few examples of the formal description of a sample
space. This description is very important in probability theory and in calculating
probabilities of random events—it is crucial to consequently describe a random
event as a subset of the given set .

Definition 2.11 Suppose €2 consists of n elements of equal importance (equally
probable). The probability of any event A € 2 is given by the formula:

number of elements in A _ n(A)
n T )’

This is the so-called classical definition of probability. Let us emphasize once
again that it only applies if €2 contains finitely many equally probable elementary
events. As we will see later, this is an exceptional case.

Example 2.12 If, in a two-dice roll, the event A consists of the results whose sum
is divisible by 5, then

Q={(a,b):a,be{l,2,3,4,5,6}}, n(S2) = 36,
A={(1,4),4,1),(2,3),3,2),(5,5), 4,6), (6,4}, n(A) =17.

Since there is no reason to suspect that any of the elementary events will happen
more often than any other, we use the classical definition of probability and obtain
P(A) =7/36.

Similarly, we can define Q2 = {2, 3,4, ..., 12} as the sample space because the
sum of the obtained results must be a number from this set. Note, however, that now
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the elementary events from €2 are not equally probable. For example, the sum 2 can
be obtained only when we get 1 on both dice, while there are three ways to obtain
asumof4: 1 +3 =242 =34 1. This implies that the sum 4 is three times more
probable than the sum 2, so the elementary events are not equally probable in the
sample space defined in this way.

It is easy to see that the classical probability P as a function on the set ¥ = 2% has
the following properties:

(i) YAeF 0<P(A) < 1;

(i) P(@) =0, P(Q) = 1;
(li)YVA,BeF,ANB=0  P(AUB)=P(A) +P(B);
(iv) VA e F P(A) = | — P(A).

2.5.1 Exercises

54. We have eight casino chips in a box: 2,4,6,7,8, 11, 12, 13. What is the
probability that the fraction obtained by dividing the numbers of two randomly
taken chips is irreducible.

55. The Genoese Lottery. A lottery ticket has a table with numbers from 1 to 90.
By paying a fixed stake for each selected number, a player can mark k numbers
from the table, k = 1,2, 3,4, 5. Then, by drawing lots, five numbers are selected
from 1 to 90. If it turns out that all the numbers crossed out by the player are
among the five drawn, his win is as follows:

k=1 15 stakes;
k=2 270 stakes;
k=3 5500 stakes;
k=4 75000 stakes;
k =5 1000000 stakes.

Calculate the probability of winning the lottery in each of these cases.

56. We draw 5 domino-stones out of the set of 28. What is the probability that
among the drawn stones there is at least one such that the sum of its two fields
(i.e. the total number of pips on the stone) is equal to 6?

57. We throw n dice. What is the probability of getting the same result on each of
them?

58. There are n + k seats in a cinema room and exactly n viewers have come to the
screening. If they choose their seat randomly, what is the probability that all m
places, m < n, in the fifth row will be occupied?

59. To limit the number of semi-final matches, 2n soccer teams are split into two
equal groups. What is the probability that the two strongest teams will end up
in the same group?
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From an urn containing 2n white balls and 2n black balls, we randomly draw
2n balls, returning each ball to the urn after it has been drawn. What is the
probability that the same number of white and black balls are drawn? What
would this probability be if the draw was done without returning the balls back
to the urn?

We have five balls in an urn: colored white, black, red, green and white. We
draw a single ball 25 times, each time returning it into the urn. What is the
probability that each color appears exactly 5 times?

We draw without replacement a few balls from an urn which contains white
and black balls. What is more probable: drawing a white ball first or drawing
a white ball last?

There are n black balls and «n white balls in an urn. We draw all the balls one
by one from the urn. What is the probability that the last drawn ball is black?
There are black and white balls in an urn. Prove that the probability of drawing
(with replacement) two balls of the same color is not less than 0.5. Is this claim
true when the draw is done without replacement?

There are n balls in N numbered boxes, n < N. What is the probability that
in each box there is at most one ball if the balls are (a) indistinguishable,
(b) distinguishable.

We arrange 30 numbered balls in 8 numbered drawers.

(a) Calculate the probability that 3 drawers will remain empty, 2 drawers
contain 3 balls, 2 drawers contain 6 balls and the remaining 12 balls are
in one drawer.

(b) What would the probability be if the balls were indistinguishable?

A postman is to deliver 30 letters to eight apartments numbered 1 to 8. If all
addresses are equally likely to appear on the envelopes, what is the chance that
in apartment 5 the postman will leave exactly k letters, k = 1, ..., 30?

We randomly throw n coins into n — 1 money boxes. Calculate the probability
that the pink piggy-bank will be empty.

n + 2 items are randomly placed into n boxes. What is the probability that at
most one box is empty?

N+1 items are randomly placed into n numbered boxes. What is the probability
that exactly two boxes are empty?

2n items are put into n boxes. Calculate the probability that none of the boxes
is empty.

We have 2n sheets of paper and 2n envelopes. The sheets and envelopes are
separately numbered from 1 to 2n. We randomly put each sheet of paper into
an envelope, so that each envelope contains one sheet. What is the probability
that the sum of the numbers on the envelope and on the sheet put into it will be
odd?
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We have a well-shuffled deck of 52 cards. Calculate the probability that:

(a) the first four cards in the deck are aces;
(b) the first and last cards in the deck are aces;
(c) aces in the deck are separated by exactly k other cards.

Tom, his partner and another couple are playing bridge. They are each dealt
a 13-card hand. What is the chance that

(a) each player will get one ace?

(b) one of the players will get a full suit?

(c) each player will be dealt all cards from deuce to ace, possibly of different
suits?

(d) Tom will receive exactly n spades, and his partner exactly m spades?

Eight chess rooks are placed on a chessboard on randomly selected fields. What
is the probability that none of them can capture the other and none of them
stands on the main diagonal of white squares?

From a deck of 52 cards 13 have been randomly selected. What is the
probability that exactly k pairs (ace, king) of the same suit are among the chosen
ones?

Adam is dealt five cards in a poker game. What is the chance that Adam will
get a straight flush?

From a batch of N goods, including M which comply with the standard,
we draw n items: (a) with replacement; (b) without replacement. Calculate
the probability that among the randomly selected goods there will be exactly
k which are compliant with the standard.

Seven bridges connect Burghers’ Island in Wroctaw with the town. What is the
probability that two friends will meet if one of them is just entering the island
and the other is leaving it?

In a dark room, we have a basket containing n pairs of shoes. We choose
k shoes and move them to a well-lit corridor. What is the probability that among
the chosen shoes there are exactly r complete pairs, 2r < k < 2n?

A solar system consists of one sun, four planets, and five moons. What is the
probability that no moon revolves around one of these planets?

Each of five electrons orbits one of four atomic nuclei. What is the probability
that no electron revolves around one of these nuclei?

Six tourists stay overnight in a mountain shelter which has three guest rooms:
a double, triple and quadruple room. What is the probability that one of the
rooms has been left vacant? And what answer to this question would be given
by the manager of the shelter who has not seen either the tourists or their
accommodation?
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2.6 Geometric Probability

Recall that the o-field of Borel sets, or Borel o-field B(R¥) in the space R, is the
o-field generated by the family of open balls

K(xo,r)z{xeRk:d(x,xo) < r}, xoeRk, r>0,

where d denotes the Euclidean distance in R¥. For simplicity, we write B(R) = B.
Let A, denote the Lebesgue measure proper for R¥, i.e., A; measures the length of
intervals, A, measures the area of plane figures, and A3 measures the volume of
solids in R?.

Assume that the sample space 2 is a Borel subset of R such that 0 < A;(Q) <
oo. We assume that the o-field of random events is equal to the set of all Borel
subsets in €2, i.e., ¥ = B(2). The probability of any random event A € ¥ is then
defined by:

_ ()
@)’

P(A)

This is called the geometric probability.

Example 2.13 (Buffon’s Needle) The problem of Buffon’s needle is one of the
most interesting applications of geometric probability. Let’s randomly throw a nee-
dle of length 2r, 2r < [, onto a plane lined with parallel lines at distance / apart. In
order to calculate the probability that the needle will touch one of the straight lines,
we must first unambiguously describe the position of the needle in relation to the
nearest straight line (see Fig. 2.1).

By x we denote here the distance from the center of the needle to the nearest
straight line below. Let ¢ be the measure of the angle the needle makes with this
line. It is easy to see that x may take any value in the interval [0, /), and ¢ can take
values in [0, ). The sample space and its measure are therefore given by

Q=10,7) x[0,1), A(R2) = ml.

Fig. 2.1 Buffon’s needle: the A
position of the needle in
relation to the nearest straight
line

; i

/ / 2r
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Fig. 2.2 Buffon’s needle: the 14
event in which the needle
intersects one of the straight y=1—rsin(p)
lines

y = rsin(p)

Let A be the event in which the needle intersects one of these straight lines and
let y = r sin¢. Then we get (see Fig. 2.2)

A={(x,9) €eQ:x <rsing or x > [ —rsing}.

Now it is easy to calculate A, (A) = 2 foﬂ rsingdp = 4r, and P(A) = 4r/nl.

A method of experimentally determining the number 7 is based on this task.
Let’s assume ! = 4r. We throw the needle n times onto a plane lined with parallel
lines at distance / apart and find the number n(A) of those cases in which the needle
touches one of the lines. In Chap. 7 on limit theorems we will prove that

. n(Ah) 1
lim = —,
n—oo n T

thus we have the approximation 7 =~ n/n(A) for large n.

Remark 2.14 Many modifications of this paradox can be found on the Internet,
in particular, studies called Buffon’s Noodle. Please note that some of these studies
contain obvious errors, which can be deduced from the following easily proven fact:
For any small ¢ > 0 and any large £ > 0, a ball of radius ¢ contains a polyline of
length £.

Example 2.15 (Bertrand’s Paradox) We want to answer the following question:
Suppose we have a circle of radius R. We choose a random chord of the circle, i.e.
a line segment joining two points on the circle. What is the probability that this
chord will be longer than the side of an equilateral triangle inscribed in the circle?

Bertrand noted that the question posed in this way does not clearly define what it
means to randomly choose a chord of a circle. Figure 2.3 shows the circle K (0, R),
a triangle inscribed in the circle, and the circle K (0, ) inscribed in the triangle.
Obviously, 2r = R. Let A be the event in which a randomly selected chord is
longer than the side of an inscribed equilateral triangle. Now, let us consider how to
randomly select the chord.

The First Way We can reason in the following way: since we are interested only
in the length of the chord, we can assume that one of the ends of the chord is a fixed
vertex of an inscribed equilateral triangle. The other end of the chord is any point of
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110)

Fig. 2.3 Bertrand’s paradox: choosing a random chord of a circle

the circle of circumference 27t R and the position of this second point describes the
chord uniquely. We can assume now that 2 = [0, 27 R) and it seems to be natural
that all the points from €2 have the same probability of being the other end of the
chord. It is easy to see that the event A contains only those points of the circle that
are between the other two vertices of the triangle. Hence, it follows that P(A) = 1/3.

The Second Way It is known that the position of the center of a chord, except for
a diameter, defines the chord uniquely—it is orthogonal to the line connecting the
midpoint of the chord with the center of the circle. Moreover, each inner point of
the ball, except its center, is the midpoint of some uniquely defined chord, thus we
can assume that Q = K (0, R), then A,(Q2) = mwR>. The event A includes only
those points of Q that are inside the circle K (0, R/2), hence A>(A) = w R?/4 and,
consequently, P(A) = 1/4.

The Third Way The length of the chord is clearly determined by the distance
between its center and the center of the circle. So we can assume that Q = [0, R).
Only the points in the segment [0, R/2) belong to the event A. If we assume that all
points of 2 are equally probable, then P(A) = 1/2.

We have obtained three different solutions: 1/3, 1/4 and 1/2. Each of them is
correct, but each of them solves a slightly different problem. The differences lie in
the different concepts of randomness in the individual cases. In Bertrand’s example,
it turns out that different interpretations of randomness lead to different results. They
may not always lead to different results, however. Thus, Bertrand’s paradox shows
how important it is to strictly define the conditions of a random experiment in the
stochastic modeling of real phenomena.

Remark 2.16 As in the case of putting objects into bins, physicists, when describ-
ing reality, choose from all possible interpretations of randomness those that
describe reality best. Therefore, it is not surprising that some of them can argue that
in the case of Bertrand’s paradox “the third way” is, in some sense, more correct
than the others. For example, see Jaynes [9]. However, mathematicians are obliged
to consider all logically correct interpretations.
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2.6.1 Exercises

84.
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90.
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94.

95.

96.

What is the probability that a number x randomly chosen from the interval
[0, 5] satisfies the condition (x — 1)? > 3?

What is the probability that a number x randomly chosen from the interval
[0, 5] belongs to the domain of the function f(x) = log+/2cosx — 1?

Two friends are to meet between 10 a.m. and 11 a.m. They are coming to the
appointed place independently of each other and each of them has promised to
wait 20 minutes for the other. If the friend does not show up within this time,
the one who is waiting will leave. What is the probability that they will meet?
We divide an interval of length ¢ into three parts at random. What is the
probability that a triangle can be constructed from the obtained intervals?
Randomly throw a coin of radius R onto a plane lined with parallel lines at
distance [ apart, 2R < [. Find the probability that the coin will not touch any of
the lines.

From the interval [—1, 1], we randomly choose two numbers p and g. Calculate
the probability that the quadratic equation x> 4+ px + ¢ = 0 has two real roots.
We consecutively draw three numbers xi, xp, x3 from the interval [a, b].
Calculate the probability that the third number x; will fall into the interval
between the first two.

We randomly choose n points from the interval [0, b]. What is the probability
that exactly k of these points will fall into the interval [0, a], k < n,a < b?
Randomly pick n points from a ball with radius R. What is the probability that
the distance of each of these points from the center of the sphere is not less than
a,0<a<R?

Let’s randomly choose two points A and B from a square K. Calculate the
probability that the square with diagonal A B is entirely contained in K.

We choose one point at random from a sphere with radius R. Calculate the
probability that the distance of this point from a fixed diameter of the sphere is
greater thana, 0 < a < R.

We choose one point at random from a circle with radius R. Calculate the
probability that the distance of this point from a fixed diameter of the circle
is greater thana, 0 < a < R.

We randomly select two points from the circle with radius R. Calculate the
probability that their distance is less than x, where x € (0, 2R).

2.7 Conditional Probability

Definition 2.17 Let (2, ¥, P) be probability space and let B € ¥ be a random
event such that P(B) > 0. For every random event A € ¥, we define

o P(AN B)
P (A|B) def PGB
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The number P(A|B) is interpreted as the probability of the event A, provided that
the event B has occurred, and the function

P(|B):F— [0,1]

is called the conditional probability given B.

For example, consider throwing a die. If the event A means that we have rolled
an even number and B means that we have rolled a number divisible by 3, then
P(B) =1/3,P(AN B) = 1/6,s0 P(A|B) = 1/2. The obtained result agrees with
the intuitive understanding of the concept conditional probability, provided that the
event B happened. If you know that B has happened, you know that a three or a six
has come out, and only one of these results meets the conditions of the event A,
hence P(A|B) = 1/2.

Theorem 2.18 (Law of Total Probability) Ler By, B, ..., B, be random events
satisfying the following conditions:

(1) Bi ﬂBj = (7Jf0ri ;é j,'

@ U B =

3) P(B;) > O0foreveryi =1,2,...,n.

Then, for every random event A € F, we have
P(A) = P(A|B)P(B)) + P(A|By)P(By) + - - - + P(A|B,)P(By).

Proof Since the sets By, ..., B, meet the assumptions (1) and (2), the event A can
be written as a sum of pairwise disjoint sets:

A:AmQ:AmC} B,:CJ (AN B).

i=1 i=1

The probability of the sum of pairwise disjoint events is equal to the sum of the
probabilities of these events, so finally, we get

P(A) =) P(ANB) =) P(A|B)P(B).

i=l1 i=l1
0

Example 2.19 Paul is playing an RPG. The wizard who is his playing figure will
win a showdown if Paul rolls a single die and obtains a number divisible by three.
The die must first be drawn from a box containing three dice: a cube (6 faces), an
octahedron (8 faces), and a dodecahedron (12 faces). Each of these dice has faces
numbered with consecutive natural numbers starting from 1. What is the probability
that the wizard will win?
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The result of throwing a die depends on the kind of die that is thrown. Let B;
mean that Paul has chosen a cube, B, that he has chosen an octahedron and Bj that
he has chosen a dodecahedron. Since he is supposed to draw only one die, the events
Bi, B, and Bj are mutually exclusive and exhaust all possibilities. We assume that
Paul is not previewing during the draw, so P(B) = P(B;) = P(B3) = 1/3 > 0. Let
A be the event of rolling a number that is divisible by three. Then P(A|B;) = 1/3,
P(A|B,) = 2/8, P(A|B3;) = 4/12. From the Law of Total Probability, we obtain

+2 1+4 1 11
4 3 12 3 36

11
P(A) = 33
Example 2.20 (The Monty Hall Problem) In the recently popular TV game Let’s
Make a Deal, a player has three boxes to choose from. In one of them there is an
attractive reward, while in the other two, there are cute but much less attractive black
and white teddy cats, both named Zonk. Assume that the player has chosen box A.
In the second stage of the game, the host informs the player that there is a Zonk in
one of the remaining boxes, for example in C. The player can then either stick to his
original choice and leave the game with the contents of box A, or change his mind
and choose box B. Which decision is better?

At first, it seems that each of these decisions is equally good, but are they really?
Let A mean there is a prize in box A, and A’ mean there is a Zonk in box A.
Similarly, we define B, B’, C, C’. Let

Bi=ANBNC, B,=ANBNC, By=ANBNC.

Of course P(B;) = 1/3 fori = 1,2,3 and = B; U B, U Bj. It would seem
that the probability of the prize being in box B, after receiving the information (the
hint) from the host, is equal to the conditional probability provided by C’, so it is
equal to 1/2. By reasoning in this way, we only use a fraction of the information
we have. Yet, we know more—we know that the host has decided to show us box
C. Depending on the situation, he either has had or has not had a choice! Hence, let
D denote the event where the host has said that there is a Zonk in box C. We then
have:

P(BND) P(By)

PBID) = =50y = Py

It remains to calculate P(D). Note that if B; happened, the host would point to box
C with probability 1/2, and if B, happened, he would have no choice but to point
to C with probability 1. Hence,

P(D) = P(D|B,)P(B) + P(D|B,)P(B,) + P(D|B3)P(B3)
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Consequently, in the end, P(B|D) = 2/3, and it turns out that in this case it is
worthwhile to change one’s mind.

Theorem 2.21 (Bayes’ Formula) Assume that the random events A, By, ..., B,
satisfy the following conditions:

(1) BiNB; =@ fori # j;

@ U B =
3) P(B;)) >0foreachi =1,2,...,n;
@) P(A) > 0.
Then, for everyi = 1,2, ..., n, we have:
P(A|B)P(B;
P(B.|A) (A|B;)P(B;)

~ P(A|B)P(B)) + P(A|B)P(By) + - - + P(A|B,)P(B,)
Proof 1t is enough to note that

P(B,NA) _ P(A|B)P(B)
P(A)  PA)

P(Bi|A) =

and then apply the Law of Total Probability. O

Let’s go back to the example of Paul playing the RPG and suppose he has rolled
a number divisible by 3. From Bayes’ Formula, it is easy to calculate the probability
that Paul had rolled an octagonal die:

P(AIB)P(B)) ;-5 3

P(B,|A) = o =7

2.7.1 Exercises

97. Prove that the conditional probability satisfies the probability axioms.

98. Prove the Law of Total Probability and Bayes’ Formula in the case of a
countable partition of the set 2, i.e.,if Q = UZOZI B,,BiNB; ={fori # j,
P(B,) > 0 foreachn € N and P(A) > 0.

99. Prove thatif P(A{NA,N---NA,_;) > 0, then

P(AiNA N NA)=PA)P(A|A)) - P(AJA1 N AN NA,).

100. Prove thatif By, ..., B, are disjoint, P(B; N C) > O foreveryi =1,2,...,n
and ANC C |J,_, B, then

P(A|C) = Xn:P(A|Bk NC)P(BC).
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Assume that P (A|B) > P(B|A), P(A) > 0 and P(B) > 0. Is it true that
P(A) > P(B)?

Is the following equality true: P (A|B) +P (A|B/) =1, where B’ = Q\ B?
We have three urns containing white and black balls, with the ratio of the
number of white balls to the number of black balls being « in the first, 8 in the
second and y in the third urn. We choose an urn randomly and then we draw
a ball from it. What is the probability that it is white?

There are two shooters at a shooting range. The first one hits a target with
a probability of 0.5, the second one of 0.8. They have tossed a coin to
determine which of them will shoot. An outside observer, who can see the
results but cannot see the shooters, observes that the shot has hit the target.
What is the probability that it was the first shooter who fired?

Three balls were drawn randomly from an urn containing 7 white and 3 black
balls. If it is known that a black ball is among those drawn, what is the
probability that the other two are white?

An urn contains n white balls and m black balls. We draw one ball and then
throw it back into the urn, adding ¢ white balls if it was a white ball or ¢
black balls if it was black. We repeat this operation many times. Prove that
the probability of getting a white ball in the k-th step is equal to .- for:
() k=1,2,3;(b) any k.

There are n balls in an urn, including m white ones. We randomly draw k balls.
Denote by A; the event where the i-th drawn ball is white, and by B; the event
where the white ball is drawn j times. Prove that P(A;|B;) = j/k for both
‘with replacement’ and ‘without replacement’ randomization.

Eugene had N 5-cent and M 10-cent coins in his wallet, but he lost a coin and
doesn’t know what denomination it was. Two coins drawn randomly from the
wallet turned out to be 5-cent coins. What is the probability that the lost coin
was a 10-cent coin?

To make herself save money, Karen puts every ten- and twenty-cent coin she
finds in her wallet into a piggy bank at the end of every day. After emptying
the bank last time, one coin remained in it, and today Karen added a 10-cent
coin. A coin pulled randomly from the bank turned out to be a 10-cent coin.
What is the probability that there is another 10-cent coin in the box?

In a group of 30 students, there are five students who always pass an exam
with an A-grade. There are also ten students who always get an A- or B-grade
in an examination with the same probability. The remaining fifteen receive
a B, C, or F with equal probability. What is the probability that a randomly
selected student from this group will receive: (a) A; (b) B?

We have 3 urns. In the first, there are 3 black and 7 white balls; in the second,
4 black and 6 white balls; in the third 6 black and 4 white balls. We randomly
take one ball from the first urn and put it into the second. Then, we take
a random ball from the second urn and put it into the third. What is now the
probability that a ball randomly taken from the third urn is white?
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112. Nuts from three hazel bushes have been harvested and placed in three baskets
so that each basket has nuts from a different bush, but we don’t know which
bush the contents of a given basket comes from. Two of these shrubs have
not received any horticultural treatment and 1/3 of their nuts are infested with
worms. On the third shrub, only 5% of the nuts are infested. Is it possible to
find a strategy for buying 3 kgs of nuts so that with a probability of more than
1/2 you will buy less than 0.7 kgs of worm-eaten nuts?

2.8 Independent Events

Independence of random events is a very important idea in probability theory. It
can be defined by using conditional probability and claiming that A and B are
independent if the conditional probability P(A | B) does not depend on the condition.
This, however, unjustly excludes the situation when P(B) = 0, thus we shall use the
following definition:

Definition 2.22 We say that random events A, B are independent if
P(AN B) =P(A)P(B).
If for a sequence of random events Ay, A,, ..., A, the following condition holds

Vi,j=1,...,n, i #j, P(A;NA;)=P(A)P(4;),

we say that the events Aj, A,, ..., A, are pairwise independent.
Definition 2.23 We say that random events Aj, A,, ..., A, are independent if for
every k < n and any choice of different indexes ny,...,n; € {1,2,...,n}, the

following condition holds:
P(An1 N---N A,,k) = P(A,,]) ... P(A,,k).
So, to prove that A, B and C are independent, we need to check if they are

pairwise independent, and that P(ANBNC) = P(A)P(B)P(C). If the events A, B
and C are pairwise independent, it does not mean that they are independent!

2.8.1 Exercises

113. Prove that if the events A and B are independent, then the events A" and B’
are independent and the events A and B’ are independent.
114. Can an event A be independent of itself?



34

115.

116.
117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

29

2 The General Definition of Probability

Assume that P(A) > 0 and P(B) > 0. Prove that

(a) if A and B are disjoint then they are not independent;
(b) if A and B are independent then they are not disjoint.

Show that if P(A|B) = P(A|B’), then the events A and B are independent.
The probability of event A is equal to O or 1. Prove that this event is
independent of any event B.

Events A and B are independent and such that P(A U B) = 1. Prove that
P(A)=1orP(B) = 1.

Let A and B be independent events. Prove that if A U B and A N B are
independent, then P(A) = 0or P(A) = 1,or P(B) =0,0or P(B) = 1.

We roll a single die three times. The event A is when we obtain the same result
on the first and second throw; event B - we got the same number on the second
and third throw; C—on the first and third throw. Are the events A, B and C
independent? Are they pairwise independent?

Events A and B are independent, and C is independent of A U B and A N B.
Can the events A, B and C be dependent?

Events A, B and C are pairwise independent and have probabilities that are
not equal to zero or one. Can the events AN B, BN C and A N C be:
(a) pairwise independent; (b) independent?

Show that the equality P(A N B N C) = P(A)P(B)P(C) does not imply that
the events A, B and C are independent.

We roll a single die twice. Event A holds if we got a number divisible by 3
on the first throw; B if the sum of obtained numbers is even; C if we got the
same number on each throw. Are the events A, B and C independent? Are
they pairwise independent?

Three students prepared independently for an exam in probability calculus.
The probabilities of passing the exam for each student are: p; = 0.6; p, = 0.5
and p3; = 0.4. Find the probability that the third student has passed the exam
if we know that only two of them have passed.

At most, how many conditions need to be checked to prove the independence
of the events Ay, ..., A,? How many counterexamples need to be found to
show that all of these conditions are relevant?

Bernoulli Trials

Consider a random experiment that consists of a series of n trials, where

(1) subsequent attempts are independent;
(2) in each trial, two outcomes are possible: one, called success, occurs with

probability p; the other, called failure, has a probability of ¢ = 1 — p.
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Such trials are called Bernoulli trials and a sequence of Bernoulli trials is called a
Bernoulli experiment with parameters n and p. The probability that in n trials we
obtain k successes and n — k failures is equal to:

P{XnZk}=<Z)pk(l—p)"_k, k=0,1,...,n.

Justification of the Formula The result of a Bernoulli experiment can be described
as a sequence of n elements, writing a one in the i-th place if we have had
a “success” in the i-th trial; and writing a zero if we have failed in the i-th trial.
Then, the record

1,...,1,0,...,0
——— ——

k times n—k times

means that we have had successes in the first & attempts, and failures in the
remaining ones. The probability of such a result is equal to p*g"~*. We should
also note that the number of n element sequences of k ones and (n — k) zeros is
equal to (}).

Example 2.24 We toss a coin ten times. The probability of getting exactly 5 heads
is equal to

10\ (1\" 63

Example 2.25 We roll a single die 10 times and we would like to see how many
sixes we get. Thus, getting a six means a success in this experiment, i.e., p = é and,

e.g.,

2.9.1 Most Probable Number of Successes

Figure 2.4 shows that the probability of getting exactly k successes in a sequence
of n Bernoulli trials is a function of k which grows at the beginning, and decreases
towards the end.
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Fig. 2.4 Probability of getting k successes in a sequence of n Bernoulli trials

Intuitively, it is also clear that within 60 dice rolls, you are most likely to get 10
sixes, and within 60 coin flips you are most likely to get 30 heads. To justify this
fact, consider the following expression:

P{X,=k+1}  pn—k)
PX, =k}  (1-pk+1)’

It is easy to check that P{X,, = k + 1} > P{X,, = k} and consequently A(k) > 1
ifk < np+p—1and A(k) < 1if kK > np + p — 1. Hence, we get that the
most probable number of successes in # Bernoulli trials is any integer in the interval
[p(n+1)—1, p(n+ D]. If p(n+1) is an integer, then there are two integers in this
interval. Otherwise, the most likely number of successes is [p(n + 1)], where [x] is
the integer part of the number x.

Approximate Formulas Often, when solving problems involving a Bernoulli
scheme, we will have to raise a number close to one to a very large power. It is
worth remembering two formulas that facilitate approximate calculations here. One
of them is based on Taylor’s theorem, and we apply it when nx is a small number:

(1—-—x)"=1—nx+o(nx).

The other formula is based on the well-known approximation of the constant e:

n—00 n

1 n
lim (1 - —) =e ! ~0.36787944117 . ..
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Example 2.26 Throughout his adult life, Mister Kowalski fills out a lottery coupon
twice a week, selecting 6 out of 49 numbers. What is the probability that he will
never hit all the winning six numbers?

First, let’s calculate the probability of success, i.e., the probability of hitting the
six in one draw:

Q={{ar,....a¢} :a; €{1,...,49},a; #a; fori # j};
49
n(Q)=(6>=11~12-46~47-49.

Event A consists in selecting exactly all six randomly selected numbers

1 1
:PA = = .
p=PA) n(Q)  11-12-46-47-49

Suppose Mr Kowalski’s adult life will last at least 66 years. Buying two coupons

a week for 66 years means that Mr Kowalski will make 2 - 52 - 66 attempts to
succeed. Hence, the probability that he will never hit the six is:

" 1 2:52-66
P{X":O}:<o>p0(l_p)n:(l_11.12.46.47.49> '

Using the first-order approximation from Taylor’s formula, we get that

2-.52-66 ] 26

— =1— ——+—=~0.999509146. ..
11-12-46-47-49 23-47-49

P{X,=0}~1
On the other hand, using the approximation of e, we get
P{X,=0}=

| 11.12.46.47.4970-000490853
[(1— A RSERTRE 49) } ~ 0.999509267 . . .

Stirling’s Approximate Formula Another important formula for approximate
calculations involving the Bernoulli distribution and other distributions where the
symbol n! occurs is Stirling’s formula:

n! ~~2mxn-n"e",

where ~ indicates that the quotient of the expressions on the left and right sides
tends to one as n goes to infinity. The first proof of this formula was presented by
James Stirling in 1730 [16]. Those interested can find this proof, for example, in
the book by Feller [6], Sect. I1.9, or in the book by Jakubowski and Sztencel [8],
Sect. A.3.
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2.9.2 The Black and White Hats Puzzle

There is a whole series of logical problems in which the most important element
is guessing the colors of the hats that appear on some people’s heads without them
knowing which color they are wearing. Sometimes, when the color of the hat is not
important, the tasks concern horns growing on some gentlemen’s heads.

The simplest example of such a problem can be summarized as follows (see
Fig. 2.5): three prisoners stand in a line, one after another, so that each of them can
see only the prisoners standing in front of him, and the first cannot see anyone. They
each have a black or white hat on their heads and it is known that only two hats are
of the same color. The prisoners will be released if at least one of them can guess
the color of his own hat. Will they be released?

We leave it to the reader to solve this puzzle, which only consists in carrying out
precise logical reasoning. To make it easier, let us note that if the third prisoner sees
two black hats in front of him, he knows the color of his hat, but if he sees hats of
different colors, he should not try to answer the question.

In the 1990s, an interesting problem emerged which was of a seemingly
similar type, but it was a probability problem, not a logic problem. Thanks to
the Internet, it quickly reached many mathematicians and enthusiasts all over
the world. It delighted with the simplicity of its formulation, but also the deep
and unexpected relationships it has with many unsolved mathematical problems,
including applications in telecommunications, computer science and coding theory.

In the Black and White Hats puzzle, a team of n players enters a room and a white
or black hat is randomly placed on the head of each player. Each player can see the
hats of all of the other players but not his own. The rules of the game exclude any
form of communication between players. However, they may, before starting the
game and entering the room, establish a common strategy. After seeing the hats
of the other players, each of them can guess the color of their own hat or give up
guessing. The team will win 3 million euros to be shared between them if at least
one of the players guesses correctly and no other gives the wrong answer; otherwise

Fig. 2.5 Three prisoners
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the team loses. The problem is to find a strategy that maximizes the probability of
winning.

One obvious strategy guarantees a winning probability equal to % It is enough to
agree that one of the players, regardless of the situation, will declare that he or she
has a black hat, and the others will be silent. However, is it possible to find a better
strategy and increase this probability?

Note that for three players, the probability that they all have hats of the same color
is %, and the probability that two hats are of one color and the third of the other is %,
so it is worth assuming that we are in the latter situation. Let’s agree that the player
who can see two hats of the same color is to report that his or her hat is of the second
color, and that the other players are silent. If there were two black hats and one white
hat, only the player in the white hat speaks, claiming that he has a white hat and the
group wins. However, if there were three black hats, which is three times less likely,
each player would announce that he has a white hat and all of them would contribute
equally to the loss. As you can see, this strategy has additional advantages! It favors
teamwork: you stay silent if you presume that someone else has better information.
What is more, it equally distributes the responsibility in the case of failure.

If the number of players is greater, the task becomes more complicated. However,
you can always find a strategy that will lead to a win in most cases, and a less
frequent loss. We suggest the reader to find a good strategy for n = 7. It is known
that when the number of players is one less than a power of two, i.e., n = 2k 1,
there is a strategy with a probability of winning equal to 1 — 27,

The optimal strategy you are looking for has a very elegant description in
the language of Hamming codes, named after its author, mathematician Richard
Hamming. These codes are used to remove errors in data transmission by all types
of electronic devices, from telephone exchanges to optical discs. They are also used
for data compression in computer memory.

2.9.3 Exercises

127. A series of lectures consists of 15 independent topics discussed in separate
lectures. At the beginning of the semester, a special committee prepares a list
of 5 examination tasks, each of them on a different topic. In order to pass the
exam, the student has to solve three or more problems. The lecturer comes
to the lecture with a probability of 0.92, and if he does not, the topic for that
lecture is never discussed. What are the chances that Adam can pass the exam
if he can solve the problems related to the topics discussed with a probability
of 0.8, and cannot solve the topics that have not been covered?

128. We throw a coin n times, n > 2. What is the chance that heads will appear an
even number of times?
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We throw a single die n times. Calculate the probability that

(a) the number 6 will appear exactly once;
(b) the number 6 will appear at least once.

Which of the following events is more likely: A—a six will appear at least
once in four dice rolls; B—in 24 rolls of two dice at least one of the rolls will
show a pair of sixes?

We roll a single die several times. Which of the following events is more
probable: A—the sum of the numbers rolled is even; or B—the sum is odd?
Two players each toss a coin n times. What is the probability that they obtain
the same number of heads?

Banach’s Problem. The Polish mathematician Stefan Banach not so much
posed as inspired the following problem: A man had two boxes of matches,
n matches in each, and he put one in his right and the other in his left jacket
pocket. Each time he needed a match, he would reach randomly into one of
his pockets. When he reached into his pocket again, it turned out that the box
he pulled out was empty. What is the probability that the second box at that
moment contained exactly k matches, k < n?

Hint: You need to consider the case where the box in the right pocket is empty,
and the case in which the box in the left pocket is empty, bearing in mind that
both boxes may turn out to be empty at the same time.

The probability of drawing a winning lottery ticket is 0.25. How many tickets
do I need to purchase in order to win with a probability of at least 0.9?

What is the probability that Mr Kowalski will not even hit a four (i.e. match
four numbers) by playing a lottery twice a week for a year (when choosing 6
numbers out of 49)?

The probability of hitting a target with a single shot is p, and the probability
of destroying the target with k hits, k > 0,1is 1 — AX. What is the probability
of destroying the target if n shots are fired?

Hint. Apply the total probability formula for {X,, = k}, k = 0,1,...,n,
where X, is the number of shots on target among n fired.

Find the optimal strategy for n = 4, 5, 6 players in the Black and White Hats
puzzle.

Find the optimal strategy for n = 7 players.

2.10 Upper and Lower Limits of Sequences of Events

Let (2, 7, P) be a probability space and let A, € #,n € N.
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Definition 2.27 The upper limit of a sequence of events A,, n € N, is the set of
o € 2 which belong to infinitely many events A,, i.e.,

o0 o0
limsup A, déf{a): Va=13m>n we Am} =N U 4n-

n—o00
n=1m=n

The lower limit of the sequence of events A,, n € N, is the set of @ € Q which
belong to almost all events A,, i.e., all except a finite number of events A,

o0 o0

o def

llnrggolfA,, = ’a): dn>1Vm >n wEA”‘]ZUHAm'
n=1m=n

It is easy to see that both liminf,_, ., A, and limsup,_, ., A, are random events
because the o-field ¥ is closed under countable set operations. Of course:

liminf A, C limsup A,.

n—00 n—00

The following theorem, which describes the basic properties of the upper and lower
limits of a sequence of sets, is a special case of Fatou’s theorem.

Theorem 2.28 If (A,) is a sequence of random events, then

n—00 n—00 n—00 n—00

P (liminf A, ) < liminfP(4,) < limsupP(4,) < P <lim sup An> :

Proof Let B, = (o, Ax and C, = |-, Ax. The sequences (B,) and (C,) are,
respectively, increasing and decreasing sequences of sets. In addition,

[o.¢] o0
hnrggngn = U B, hrrlrisolip A, = ﬂ C,.

n=1 n=1

By Property 8 of the probability measure P (Continuity Theorem), we get:
P(A,) > P(B,) — P(lim ian,,) and
n—00
P(A,) <P(C,) — P(lim sup A,,),
n— 00

from which the result easily follows. O
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Lemma 2.29 (Borel-Cantelli Lemma) Ler (2, 7, P) be a probability space and
let A, € F for eachn € N.

(1) If Y52 P(A,) < 00, then P (limsup,_, ., A,) = 0.
(2) If the events A, are independent and such that Zzozl P(A,) = oo, then
P (lim SUp,,_, oo An) =1

Proof The proof of (1) is simple:

[e9] [e.9]
P(limsup 4,) < P( U Ak> <D P(A) — 0,
k=n k=n

n—oo

which is due to the convergence of the series 2211 P(A,). Assume now that the

events A, are independent. Then, the A}, are independent too, and

P<Q \ U Ak> - P( ﬁ(sz \ Ak)> - ]_[ (1 —P(Ap)
k=n

k=n k=n

00 00
k=n

k=n

since Y=, P(Ay) = oc. This implies that P(|J;—, Ax) = 1 for each n € N. Since
the events i, Ax form a decreasing sequence, we get

oo
P(hmsup An> = n]l)n;oP(UAk> =1.

n— 00 ken

2.10.1 Exercises

139. Show that for any sequence of random events A,,n € N

<lim sup An> = liminf A/, ( lim inf A,,) = limsup A/,.

n—00 n—00 n—00 n—00

140. Let Ag, k € N, be a sequence of random events in a fixed probability space
(2, 7, P). Prove that the random events liminf A, and limsup A, belong to
the o-field o ({Ax : k € N}).
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Are the following relationships true:

o0 o0
. — 1 . .. — 5 N
P <hm sup A,,) nlggl()P(}(L_J Ak), P <l1nrgg.}fA,,> nlgg(}P( ﬂ Ak> ]

n—00
k=n

Prove that for any A,, B, € ¥,n € N

lim sup (A,, U Bn) = | limsup An) U (hm sup Bn>;

n— 00 n— 00 n—o0

lim inf (A,l N Bn) = (| lim iann> N <lim inf Bn).
n—0oQ n—oQ n—0oQ
What is the probability that in an infinite sequence of tosses of a symmetric
coin, heads will appear finitely many times?
What is the probability that a six will appear infinitely many times in an infinite
series of dice rolls?



Chapter 3 )
Random Variables and Their Chock or
Distributions

3.1 Definition of a Random Variable

As we have already seen, the description of a probability space can be complicated
and troublesome in some cases. Usually, however, we are not interested in the result
of a random experiment itself, but in the value of a certain function ascribed to this
event. This could be, for example, the value of the sum of the results of several dice
rolled at the same time, the value of a win (or loss) in a lottery, or, in a sequence of
consecutive coin tosses, which one of them will be the first to fall heads up.

If Q consists of a finite number of elements, then each function X : Q@ — R
has the property that we can calculate the probability of X~!(B) for any Borel set
B € F. However, if Q is uncountable, or if # does not contain all subsets of the
countable set €2, then we can only consider functions X for which the probability
of X~!(B) is well defined for all Borel sets B C R. We will call the functions that
satisfy this condition random variables.

Definition 3.1 A function X defined on the probability space (€2, F, P) taking
values in R is called a random variable if for every t € R, the following condition
holds:

X~ (=00, 1)) = {a) €Q: X(w) < z} cF

The next two theorems give equivalent definitions of random variables.

Theorem 3.2 Let X : (2,7,P) — R. Then, the following conditions are
equivalent:

(1) X is a random variable;

(2) foreveryt € R, we have {w : X (w) <t} € F;
(3) foreveryt € R, we have {w : X (w) >t} € F;
4) foreveryt € R, we have {w : X(w) >t} € F.
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Proof Note that ¥ is a o-field, hence it is closed under countable set operations.
The equivalence of (1) < (2) can therefore be easily deduced from the following
facts:

{w: X(w) <t} = ﬂ{w X (w) <t+1/n};
neN

(w: X(w) <t} = U{w cX(w) <t —1/n).
neN

Similarly, we show that (3) and (4) are equivalent. To show that (1) implies 4) note
that

{w: X(w) 2t} =2\ {w: X(w) <t} eF.
Similarly, condition (4) implies (1) because
{w: X(w) <t} =Q\{w: X(w) >t} €F,

which was to be shown. m|

Theorem 3.3 The function X : (2, F,P) — (R, B) is a random variable if and
only if for any Borel set B € B, the following condition holds:

{w: X(w) € B} € F. ()

Proof Of course, if the condition (x) is true, then X is a random variable, because
the half-lines (—o0, t), t € R, are Borel sets. Hence, let’s assume that X is a random
variable and denote by K the family of all Borel subsets of the line satisfying the
condition (%), i.e.,

KL (BeB: {w: X(w) e B} eTF).

Since X is a random variable, for every ¢ € R the half-line (—oo, t) belongs to K. It
follows from the previous theorem that for every ¢ € R the set (—oo, t] belongs to
K. Consequently, all open intervals belong to K because for all a < b,

{w:a< X)) <b)={w: X <b}\{w: X(w) <a} eF.

Every open set U C R is a sum of a countably many open intervals I,, n € N, thus
U € K because

{w:X(w)eUIn} =U{w:X(w)eIn}€7".
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It remains to prove that K'is a o-field, i.e., it is closed with respect to all countable
set operations. Assume that for each n € N, we have A,, € K. Then,

[w:X(w)eA’l]=sz\{w:X(w)eA1}e¢,

{a):X(w)eUAn}:U{a):X(w)eA,,}eT,

n

{a):X(w)eﬂAn}:ﬂ{a):X(w)eA,,}e‘F

n

We see now that K is a o-field containing all open sets, i.e., containing the whole
Borel o-field 8. However, by our assumption Kis a subset of the Borel o-field, thus
finally, K = B. m]

Recall that a function f : (2,F) — (R, B) is measurable if {w : f(w) €
B} € F for any Borel set B € 8. Hence, we conclude that each random variable
is a measurable function from (€2, F) to (R, B), but not every measurable function
is a random variable! For this to be the case, the space (2, ) must be “equipped”
with a probability measure.

Theorem 3.4 If X and Y are random variables defined on the same probability
space (2, F, P), then the following functions are also random variables:

(a) aX(w), where a is a real number;
(®) X (o) +Y(w);
©) X(w) - Y(w).

Proof

(a) If a = 0, then the set {w : aX (w) < t} is equal to either the empty set or 2.
Both of these sets belong to 7, hence a X (w) is a random variable. If a # 0,
then

{w: X(w) <t/a} if a > 0;

{a):aX(w)<f}={{w:x(w)>t/a} if a <.

In both cases, the obtained sets belong to ¥, thus the function a X (w) is arandom
variable.
(b) To prove that X (w) + Y (w) is a random variable, let us note that

{w: X()+Yw) <t}={w: X(w) <t —-Y(w)}

= U{a) X (w) <q, g <t—Yw)},
qeQ
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where Q denotes the set of rational numbers. Hence, it already follows that

{a):X(a))~|—Y(a))<t}=U{w:X(w)<q}ﬂ{a):q<t—Y(a))}
q€Q

:U{a):X(a))<q}ﬂ{w:Y(a))<t—q}€T.
q€0

To get the final inclusion of sets, we have used the fact that the set of rational
numbers is countable and dense in R, and the fact that the o-field F is closed
with respect to countable operations.

We will first show that if X is a random variable, then X2 is also a random
variable. For t < 0, we get {w : X?(w) <t} =0 € Frand if t > 0, then we
conclude that

(w: X (w) <t)={w: X)) <Vi}\{o: X() < -t} F.

Now, we can show that X (w)Y (w) is a random variable if X (w) and Y (w) are
random variables. The previous considerations show that X (w) + Y (w) and
X (w) — Y (w) are random variables. We conclude from this that (X (w) + Y (w))?
and (X (w) — Y (w))? are random variables, thus also

X (@)Y (@) = - (X(@) + Y (@)* — (X (@) — Y (0))?)

FN

is a random variable.
O

Theorem 3.5 Assume that (X,) is a sequence of random variables such that for
every fixed w € Q2

sup X, () < 00 (iann(a)) > —oo) .

Then, the function X (w) = sup, X,(w) (and Y (w) = inf, X, (w) respectively) is
also a random variable.

Proof Lett € R. Both conclusions are easily derived from Theorem 3.2 and the
following facts:

[a) ssup X, (w) > t} = U{a) X, (w) >t} eF;

{a) inf X, (@) < t} —Jto: X, <) e

n
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Corollary 3.6 Let X, (w) be a sequence of random variables. If for each w € Q,
the condition sup, X,(w) < oo holds, then the function Y (w) = limsup, X, (w) is
a random variable. If for every w € Q, the condition inf, X,(w) > —oo holds, then
the function Z(w) = liminf, X, (w) is a random variable.

Proof First, remember that

limsupa, = infsupa,, and
n k >k

liminfa, = sup inf a,.
n Kk n=

Thus, if X, (w) satisfies the assumptions, then

Y(w) = limsup X,,(w) = il]‘(lf sup X, (w);
n n=k

Z(w) = liminf X,,(w) = sup 1r>1£ X, (w).
n k nz

Hence, by Theorem 3.5 we get: Y (w) and Z(w) are random variables. |

Corollary 3.7 Let X,,,n € N, be a sequence of random variables on (2, F, P). If,
for every w € R, there exists a finite limit W(w) = lim, X, (w), then the function
W (w) is a random variable.

Proof 1t suffices to recall that a,, converges if and only if

limsupa, = liminfa,.
n—00 n—oQ

Then,
lim a, = limsupa,.
n—00 n—00
Thus, the result follows easily from Corollary 3.6. O
3.1.1 Exercises
145. Show that the constant function X (w) = c is a random variable on any

probability space (2, 7, P).
146. Let A, B € ¥ be random events (2, 7, P), let 1,(w) = 1 if w € A, and
14,(w) =0if w ¢ A. Show that

VoeQ L) = (14 — 1)
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147.

148.

149.

150.

151.

152.

153.

3.2
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Let (2, 7, P) be a probability space and let A € 7. Prove that the function
X (w) = 14(w) is a random variable.

Let @ = [0, 1], F = {0, 2, [0, 1/2), [1/2, 1]}, P any probability measure and
let [a] denote the integer part of a number a. Which of the following functions
are random variables?

(@) X(0) =[w+3/4]; (®) Y(o) =[w+1/2]+2;
. ) 0if w<1/2;
©) Z(w) = {(1) i ‘“;/ij ) T =1{1if o=1/2
ifo>1/2 2 if w > 1/2.

Show that if X (w) and Y (w) are random variables on (2, 7, P), and Y (w) # 0
for each w € 2, then the function X (w)/Y (w) is a random variable.

Assume that A is an atomic o -field on 2, i.e., there exists a countable or finite
sequence A, Ay, Az, ... of subsets of Q2 suchthat |, A; =Q, A, NA; =0
fori # j and

ﬂZO'{Al,AQ,A3,...}.

Prove that every random variable X on the probability space (2, A, P) is
constant on the sets A; and that each function X(w) = > ;2| cila (@) is
a random variable on (22, A, P).

Does the fact that | X| is a random variable on (€2, F, P) imply that X is also
a random variable?

Show that if X and Y are random variables on (2, 7, P), then

{w: X(w) =Y(w)} € F.
Assume that the function f : R — R is measurable with respect to the Borel
o-field B, ie., f~1(B) € B for every B € B. Prove that if X () is a random

variable on (2, 7, P), then also Y (w) = f(X(w)) is a random variable.
Hint. Use Theorem 3.3

Distributions and Cumulative Distribution Functions

Definition 3.8 The probability distribution of a random variable X defined on
a space (€2, F, P) is called the probability measure Py on (R, 8) and is defined
by the formula

Pyx(B) £ P(X '(B)) =Plw: X(w) € B}, BeB

Sometimes, instead of Py, we will use the notation £(X).
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Remark 3.9 Itis easy to verify that any probability measure Q defined on the space
(R, B) is the distribution of some random variable. Indeed, just take 2 = R, ¥ = B,
P = Q and define X (w) = w. Then, for every B € B, we get:

Py(B)=Plo e Q: X(w) € B} =Q{weR:we B} = Q(B).

Remark 3.10 If for random variables X and Y defined on the same probability
space (€2, 7, P) the following condition holds:

P{a) X (w) = Y(a))} =1,

then we say that X = Y almost everywhere with respect to the probability measure
P (notation X = Y a.e.). Two variables equal almost everywhere have identical
probability distributions.

Remark 3.11 Note that a distribution does not uniquely determine a random
variable, even in the sense of equality almost everywhere. This means that different
random variables can have the same distributions. To see this, consider the roll of
a single die and two random variables: X takes the value of one if there is an even
number of pips, or zero if there is an odd number of pips; the variable Y is defined
by the formula Y (w) = 1 — X (w). For any Borel set B, we then have:

1 1
Px(B) =Py(B) = 513(1) + 513(0),

which means that the variables X and Y have the same distribution. On the other
hand, P{w : X (w) # Y(w)} = 1.

Example 3.12 Suppose we bought A shares on the stock exchange for 1000 EUR.
Following the previous price quotations of these stocks, we established that with
a probability of p = 0.6 within a month, the value of these stocks will increase by
ten percentage points, and with probability 1 — p = 0.4, their value will decrease by
ten percentage points. We want to describe the distribution of the random variable
X determining the value of our shares three months from the date of purchase.

Letr = 1.1, s = 0.9 and n = 1000. If every month there is an increase, then,
of course, X = nr3, and the probability of this event is p3. If there is a decline
every month, then X = ns?, and the probability of this event is (1 — p)>. It may
also happen that over the three months, the value of shares increases twice, and falls
once. Then, x = nr’s with probability 3p>(1 — p). For a double decrease, we get
X = nrs? with a probability of 3p(1 — p)?. The distribution of the random variable
X can be written in the form of a table:

k 1331|1089 | 891 | 729
P(X = k)|0.216]0.432]0.288|0.064
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Instead of the above notation, we can use a convex combination of §, measures that
assign the measure 1 to the one-point set {x}, x € R,

Py = 0.216 - 8,5 +0.432 8,2 + 0.288 - 8,52 & 0.064 - 8,5

We can also use the obvious relationships of the obtained distribution with the
already known Bernoulli distribution and write

3
P{x - nrks3_k] - <k>pk(1 ), k=0,1,2,3.

We will describe the distribution of discrete random variables in a similar way.

Definition 3.13 A random variable X is simple if the set of its values is finite.
A random variable X is discrete if the set of its values is countable.

The number of heads thrown in n coin tosses, or the number of spades received
in a bridge hand are random, simple and discrete variables. On the other hand, the
number of times you toss a coin to get heads for the first time is a discrete random
variable, but not a simple one because the set of values for this variable is countable
and infinite.

One of the most convenient methods of describing the distribution of a random
variable is to use its (cumulative) distribution function.

Definition 3.14 The (cumulative) distribution function of a random variable X
living on the space (€2, 7, P) is the function F : R — [0, 1] defined by

F(@) = P{a) X (w) < t}.

In many textbooks, a weak inequality appears in the definition of the cumulative
distribution function F. Both approaches are acceptable, but for the purposes of this
book, we chose the sharp inequality. Sometimes it is more convenient to say that
F is the distribution of the probabilistic measure Py if Py is the distribution of the
random variable X. Then, we write

F(1) =Py ((—=00,1)).

Example 3.15 Consider the number of heads thrown in a toss of two symmetric
coins. The space of elementary events €2 can be identified with the set {0, 1, 2}, and
the probability P is given by the formula: P(A) = }180(A) + %82(A) + %81(A) for
any A C . Note that Q2 C R, so we can also consider P as a probability measure
on R. If we define X: R — R by X(w) = w, then we can see that Py = P. The
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F(t)
1 —
O
0.5
0 1 2 X

Fig. 3.1 The graph of F(¢)

cumulative distribution of the measure P is equal to the distribution function of the
random variable X and is given by:

0, t <0
025, 0<r<1;
0.75, 1 <t <2;
1, t > 2.

1 1 1
F(t) = =100 (t 11 0o 10 0o =
®) 1l )()+2 a, )(f)+4 2,00) (1)

Figure 3.1 shows the graph of the function F'(¢).

Theorem 3.16 Let F be the cumulative distribution function of a random variable
X on (2, F,P). Then,

(1) F is nondecreasing;
) lim;_,_oo F(2) =0, lim;, o F(t) = 1;
(3) F is left-continuous, i.e., F(t) = limy », F(s) for everyt € R.

Proof Lets < t. Then, (—oo,t) = (—00,s) U [s, ). Thus, since the probability
measure Py is additive and non-negative, we get

F(1) = Px((—00, 5)) + Px([s, 1) = Px((—00,5)) = F(s),

which proves property (1). In order to prove (2), consider a decreasing sequence
of real numbers x; > x, > --- such that lim,_,, x, = —o0. Then, {(—o0, x,,)}
is a decreasing sequence of sets and [),—,(—00, x,) = ¥. Now, by the Continuity
Theorem for probability measures we conclude that

0=Px(?) =Py (ﬂ(—oo,x,,)> = lim Px((—00, x,)) = lim F(x,).

n=1
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In a similar way, we prove the second equality from condition (2). For any increasing
sequence of real numbers x; < x; < --- such that x, — oo, the sequence of sets
{(—o0, x,,)} is increasing and U,fil (=00, x,) = R, hence

1 =Px(R) = Py (U(—oo, xn)) = lim Px((—0o0, x,)) = lim F(x,).

n=1

To prove (3), take ¢ € R and any increasing sequence of real numbers x,  ¢.
The sequence of sets {(—oo, x,,)} is increasing and such that U;’;l(—oo, X,) =
(—o00, t), hence, using the Continuity Theorem again, we get

F(1) =Py (U(—oo,xn>> = lim Py((~00,x,)) = lim F(x,).

n=1
from which the left-continuity of the function F follows. O

Theorem 3.17 If a function F : R — R satisfies conditions (1), (2) and (3) of
Theorem 3.16, then it is a cumulative distribution function of some random variable.

Proof We present here a non-constructive proof of this theorem. However, since
every mathematician should be able to construct a measure directly from its
cumulative distribution function, we also present the full constructive proof in
Chap. 8.

Let F be a function satisfying conditions (1), (2), and (3). For the space €2,
we will take the interval (0, 1), and let the probability measure P be the Lebesgue
measure on 2. We define:

X(w) =sup{t : F(t) < w}.

It is easy to see that X is a random variable on the space (2, ¥, P), where ¥ is
the o-field of Borel subsets of the set (0, 1). Furthermore, X is a non-decreasing
function and X (w) < r if and only if F(r) > w. Hence,

Plw : X(w) <r}=P{o:sup{t: FO) < w}<r}=Plow :F@r)> o}=F(r),

which completes the proof of the theorem. O

Let us also consider the discontinuity of the distribution function (see Fig. 3.2).
We know that each distribution function F of any random variable X is a left-
continuous and non-decreasing function. Therefore, if fp € R is a discontinuity
point, then

F(ty) = lim F(¢) < lim F(z).
t 'ty t\ilo
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Fig. 3.2 Graph indicating the discontinuity of the distribution function F (¢)

The right-hand limit exists due to the monotonicity of the function F. For any
sequence t, \ f, the sequence of sets [fy, #,,) is decreasing, hence

P{(X=1)=P {X € ﬂ[to, tn)} = lim P{X € [to, ,)}
n=1

= lim [F(tn) — F(to)] = lim F(t,) = F(to).

In this way, we have proved that if #, is a discontinuity point of the cumulative
distribution function F, then the size of this jump is equal to P{X = #,}. This also
means that the probability measure Py has at the point #, an atom with weight equal
to the cumulative distribution function’s jump. If the cumulative function of X is
continuous, then Py has no atoms.

3.2.1 Exercises

154. Let Q = {0,1, 2,3}, and P{k} = J—l for k = 0,1, 2, 3. We define random

155.

variables: X (w) = sin5* and Y(w) = cos 7. Find the distributions and

the cumulative distribution functions for X and Y. Calculate P{w : X (w) =
Y(w)}.

Determine the set of all triples (a, b, ¢) € R? for which the following function
is a distribution function of some random variable:

ar?, t <0 0, t <0
@Fit)=1bt+c,0<t<2; (b) Fo(t) = y asint + b, 0 <t < 7/2;
1, t>2; 1, t>m/2.
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156.

157.

158.

159.

160.

161.

162.

163.
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Let Q = [0, 3] and let P be the normalized Lebesgue measure on 2. Find the
distribution functions of the following random variables:

2w+1, 0<w<1; —w+1,0<w<1;
@ Xw=1-?4+21l<w<?2; b Yw=1w*—1, 1<w<2;
3, 2<w<3; 3w, 2 <w<3.

Let Q@ = [0, 1] and let P be the Lebesgue measure on 2. Find the cumulative
distribution functions of the following random variables: (a) X (w) = [2w—1|;
(b) Y (w) = sin’ w + cos? w; (¢) Z(w) = lifw € Q; Z(w) =0, ifw € Q.

A random variable X has distribution function F. Find the distribution
functions of the following random variables: (a) Y(w) = aX(w) + b; (b)
Z(0) = aX?*().

Prove that the distribution function F of the probability measure P can have
at most countably many points of discontinuity.

Does there exist a distribution function whose set of discontinuity points is
dense in R?

Let X be a random variable with continuous distribution function F. Show
that for any countable set A C R, we have P{w: X(w) € A} =0.

A random variable X has distribution function F. Find the cumulative
distribution function of the random variable ¥ = %(X + |1 X1).

Functions F and G are distribution functions of some random variables. Give
the necessary and sufficient conditions for the function H(x) := F(G(x)) to
be a distribution function as well.

Review of Discrete Distributions

In this section, we will discuss the more important discrete distributions. We have
already seen some of them. The ones that appear for the first time will be described
in more detail. Recall that 1,(x) stands for the function that takes the value 1 if
x € A and zero otherwise.

3.3.1 Single Point Distributions

A random variable X has a single point distribution (or one-point distribution) if
there is an a € R such that

P(X =a) = 1.
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Of course, such a random variable is constant almost everywhere with respect to the
probability measure P. This does not mean, however, that it has to be a constant
function. For example, if & = [0, 1], P is Lebesgue measure and X(w) = a
for irrational numbers w and X (w) = a — 1 for w rational, then we can see that
P{X = a} =1, but X(w) # a on a quite large set.

A one-point distribution can be written in the following way: Py = §,, and its
distribution function has the form:

F(t) = 14,00 (1).

3.3.2 Two-Point Distributions

A random variable X has a two-point distribution if it can only take two values,
a and b, where

P X=a}=p=1-P{X =b}.
We can also describe it in the following way:

Px = péa+ (1 = p)dy,  Fx (1) = plia,co)(t) + (1 = P)L(p,00) (1).

If the random variable X describes a Bernoulli trial, success is usually assigned the
value of a = 1, and failure the value of b = 0.

3.3.3 Binomial Distributions or Bernoulli Distributions

A variable X has a binomial distribution with parameters n € N and p € (0, 1) if

n

P(X =k} = (k

)pka —p" 7k k=0,1,....n

or

n

Py=Y" (Z)Pk(l —p)" o

k=0

This random variable (which was described in detail in Sect. 2.9) counts the number
of successes in n Bernoulli trials.
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3.3.4 Multinomial Distributions

The multinomial distribution is a generalization of the binomial distribution. In a
Bernoulli trial, the outcome can be either success or failure. Here, we assume that
the result of a trial can be one of k possible results, where the i-th result appears
with probability p;, i = 1, ..., k, and this probability cannot change from trial to
trial. If we make n independent trials and denote the number of results of the i-th
type by X;, then we can write

n! " e
P{X] an,...,Xk =l’lk} = mpl e Pros
where p; € (0, 1), p1 +---+ px = 1, n; + - - - + ny = n. For example, if we know
that there are 20% eels, 25% roaches and 55% breams in a pond, and Jan caught 10
fish, the vector (number of eels, number of roaches, number of breams) will have
a multinomial distribution with parameters n = 10; k = 3; p; = 0.2; p, = 0.25
and p3; = 0.55.

3.3.5 Poisson Distributions

A random variable X has a Poisson distribution with parameter A > 0 if

k

A >k
P{X:k}:F-e_’\, k=0,1,2,... or szzﬁ-e_’\&(.

It turns out that the Poisson distribution with parameter A = Aot describes well
the number of calls received at a telephone exchange over time t, or the number
of radioactive particles registered during time ¢. With such an interpretation of the
variable X, the parameter A is called the intensity of the distribution.

3.3.6 Geometric Distributions

A random variable X has a geometric distribution with parameter p € (0, 1) if

o0

PX=kl=pg"', k=12... or Px=)Y pg"'s.
k=1

This is the distribution of the waiting time for the first success in an infinite sequence
of Bernoulli trials. Note that regardless of the value of p € (0, 1), the most likely
value for X is k = 1. There is another version of the geometric distribution in which
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a random variable counts the number of failures before the first success, i.e.,

o0
P{Y =k}=pq", k=0,1.2,... or Px=)Y pg*é.
k=0

3.3.7 Pascal (Negative Binomial) Distributions

A random variable X has a Pascal distribution with parameters r € Nand p € (0, 1)
if

k—1
P{X:k}:(r_1>pr(l—p)k_r, k:r,r—l—l,r—i—Z,...

or

= k_l r k—r
PX=Z(F_1>p (1= p)~" .

k=r

The Pascal distribution describes the waiting time for the r-th success in a sequence
of Bernoulli trials. The geometric distribution is a special case of the Pascal
distribution when r = 1.

The generalized Pascal distribution does not require the assumption that r is a
natural number; however, we then replace the factorial in the above formula by using
the function I', which will be discussed in Sect. 3.4.3. We then say that the variable
X has a generalized Pascal distribution with parameters r > 0 and p € (0, 1) if

(k)

”XZHZFFEETB'

PraA=-pr k=rr+lr+2,...

3.3.8 Hpypergeometric Distributions

A random variable X has a hypergeometric distribution with parameters M, N, n €
Non<N,n<Mif

()6
SN

P{X =k} = k=0,1,2,...,n.

We have seen such a distribution before, for example, when calculating the
probability of getting four spades in a bridge hand. We then have: N = 13; M = 39;
k=4andn = 13.
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3.3.9 Exercises

164.

165.

166.

167.

168.

169.

170.

34

Find the cumulative distribution functions for the following discrete distribu-
tions: (a) two-point; (b) geometric; (c) Bernoulli.

Find the most probable value for the Pascal distribution with parameters
r and p.

The random variable X describes the number of aces we can get in a bridge
hand (13 cards). Find the distribution of X.

A random variable X takes values in Ny = {0, 1, ... }. Show that the following
conditions are equivalent:

(1) X has a geometric distribution: P{X =k} = pg*, k =0,1,...;
(2) P{X =n+k|X >k} =P{X =n}.

Tim wants to buy a computer game, but he is 3 euros short. Every evening he
persuades his mother to give him one euro, and with probability 0.5 he gets
it. What is the probability that he will buy the game later this week if it is
Tuesday and the store is only closed on Sunday?

Paul has 10 coins and two money boxes. He scatters the coins on a table and
puts all those that have fallen tails up into the first piggy bank and the others
into the second. Find the distribution of X, the number of coins in the first
money box.

Jane believes that a success in a dice roll is when she gets a number divisible
by 3, and in a coin toss, when she gets heads. She chooses randomly whether
she will roll a die or toss a coin, and the probability that she chooses a coin is
0.5. What is the distribution of the random variable X describing the number
of experiments until she has been successful three times?

Continuous Type Distributions

Definition 3.18 A random variable X : Q — R is of continuous type or has
a continuous type distribution if there exists a measurable and integrable function
f : R — [0, 0o) such that for every Borel set B C R

PX(B):P{X(w)eB}:/f(x)dx.
B

The function f is called the density of the random variable X or the density of the
probability distribution Px on the real line.
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It is easy to see that ffooo f(x)dx = 1. Moreover, any non-negative integrable
function f on the line R satisfying the condition ffooo f(x)dx = 1 is the density
of some random variable X (it is the density of some probability distribution Py). It
suffices to define for any Borel set B:

PX(B)=/f(x)dx.
B

Often, instead of saying that a random variable is of continuous type, we say that it is
absolutely continuous. This is related to the absolute continuity of the distribution of
this variable with respect to Lebesgue measure. This concept will not be discussed
in more detail until Chap. 8. Here, we will limit ourselves only to the following
statement:

Theorem 3.19 If a continuous function F is a distribution function of some random
variable such that the function f(x) = F’(x) exists on the entire line R except for
a Lebesgue measure zero set, and

/oof(x)dx=1,

then f is the density function for the distribution function F.

Proof 1t suffices to note that for any a, b, a < b, by virtue of Fatou’s Lemma, the
following inequality holds:

b o Fx+h) - F()
/af(x)dx—'/a 111hn/151f—dx

h
bF h) — F
gliminf/ de
0 J, h
. ..Gb+h)—Gb)—Ga+h)+G(a)
= liminf
h0 h

< 1iIhn/iglf[F(b +61h) — F(a+6:h)] = F(b) — F(a),

where G is a primitive function for the continuous function F, and the existence
of 6;,0, € (0, 1) is due to the mean value theorem. From the assumptions of our
theorem and the obtained inequality, we get:

/I f@)dx < F(t) — F(—00) = F(1)
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and

t o]
| rwa=1- [ rwdz1- e - Fo) = Fo.
—00 t
We now discuss the most important distributions of continuous type.

3.4.1 Uniform Distributions on an Interval

A uniform distribution is a distribution with parameters a, b, a < b, described by
the density:

A if a <x < b;
f(x):{”—” if a<<x<b;

0 if x<aorx>bhb.

This distribution is identical with the measure we call the geometric probability on
the interval [a, b], or more generally, with the probability equal to the normalized
Lebesgue measure on the interval [a, b], because

d—c

d
Px([c,d]) =f fx)dx = 5

for every [c, d] C [a, b].
—a

3.4.2 Exponential Distributions

A random variable X has an exponential distribution with parameter A > 0 if it has
a density function given by

A~ if x > 0;
foo = {o if x < 0.
This variable takes only positive values (with probability one). Equivalently, we can
say that the positive half-line is the support of this distribution.
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f(x)
0.5

0.3

0.1

Fig. 3.3 The gamma distribution for various parameters

3.4.3 Gamma Distributions

The gamma distribution with parameters p, b > 0 has the density function:

b?  p—1.—bx .
F) = pr le=bx if x > 0;
0 if x <0.

We use the notation I'(p, b) in this case. Note that the I'(1, b) distribution is the
exponential distribution with parameter b. Figure 3.3 shows some examples of
gamma densities for various parameters.

The function I'" appearing in the gamma density function is defined by

def

[e.¢]
C(p) = / xPle™dx, p>0.
0

It is easy to see that I'(1) = I'(2) = 1. Moreover,

F(p+1)=pL(p.

This formula describes the properties of the I" function sufficiently for our purposes.
Its proof lies in the simple application of integration by parts. By mathematical
induction, we get I'(n + 1) = n! for every n € N.

Since for p ¢ N integration of the function f(x) is not easy, it is worth
remembering that

/oox”_le"’xdx _ I
0 by’
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as f(x) is a probability density function, and fR f(x)dx = 1. We will make
use of this fact many times when calculating the parameters of these probability
distributions.

3.4.4 Beta Distributions

The beta distribution with parameters p, g > 0 lives on the interval [0, 1], is denoted
by Be(p, q) and has a density of the form:

L'(p+q) -1 -1 .
f&x) = F(p’;rfq)xp 1=-x)"if 0<x<1;
0 if x<<Oorx >1.

Figure 3.4 shows some examples of the densities of such distributions.
The name of the distribution comes from the binary beta function B(p, ¢), which
generalizes the symbol (Z) and is defined by the formula:

_T(»r(g)

B(p,q) = . p.q>0.
C'(p+q)
f(z)
20N 0 Be(1,2)
~
RS Be (2,2)
1.5 B
N “. Be(1,1)
1.0 —
~
-
~
~
0.5 ~ o :
~ .
~
0.0 0.2 0.4 0.6 0.8 1.0 X

Fig. 3.4 The beta distribution for various parameters
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3.4.5 Cauchy Distributions

A random variable X has a Cauchy distribution with parameters a > 0 and m € R
if its density has the form:

a
7(a?+ (x —m)?)’

fx) =

Some examples are given in Fig. 3.5.

The constant a in this density function is called the scale parameter, and the
parameter m specifies the point with respect to which the distribution is symmetric.
It is easy to see that P{X > m} = P{X < m} = %

Fig. 3.5 The Cauchy distribution for various parameters

3.4.6 Gaussian Distributions

A random variable X has a normal, or Gaussian distribution, with parameters m € R
and o > 0 if the function

_ 1 (x —m)?
fx)= Ner? CXP{—T}

is the density function of this distribution. We denote such a distribution symboli-
cally by N(m, o).

Figure 3.6 shows a few example graphs of the function f(x) for various
parameters o. The parameter m is always the midpoint of the graph.

Note that it is not easy to show that fR f(x)dx = 1 because the primitive
function & of the function f is not elementary. There is, however, a particularly




66 3 Random Variables and Their Distributions

Fig. 3.6 The Gaussian distribution for various parameters

nice and simple way to compute this integral, namely:

e 2 2 e 2 o0 2
(/ ex/zdx> =4/ e’x/zdx/ e /2 dy
—00 0 0
00 /2
= 4/. . ./e_(x2+y2)/2dxdy = 4/ / e 2y de dr
o Jo
R

—47 [—e—fz/z]oo — 27
2 0

Of course, when integrating over the region R2, we switched to polar coordinates
using the substitution x = r cos ¢, y = sin ¢. Finally, we have

o0
/ e 2dx =/ 27.
—00

Now, to show that fR f(x)dx = 1, we simply substitute y = and use the
resulting formula.

The cumulative distribution function for the distribution N(0, 1) is given by:

X—m
o

r
1
D) = / Feﬂcz/z dx.
—00 T
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Since the density of the distribution N(0, 1) is a symmetric function, the following
equality holds:

O(—1) = 1 — ().

® is a special function and cannot be written in the language of elementary
functions. Tables of values of ® can be found in Chap. 9.

The normal distribution plays a very important role in probability theory and
mathematical statistics. It is sometimes said, somewhat informally, that if a random
variable is the sum of a very large number of very small independent terms, then it
has a normal distribution (see Sect.7.2).

3.4.7 Exercises

171. A random variable X has an exponential distribution with parameter A > O.
What is the distribution of ¥ = A~ X?

172. A random variable X has a gamma distribution I' (b, p). What is the distribu-
tionof ¥ = b~'X?

173. A random variable X has a Cauchy distribution with parameters ¢ > 0 and
m € R. What is the distribution of Y = a= /(X — m)?

174. Find the cumulative distribution functions of the following distributions:

(a) the uniform distribution on the interval [a, b], a < b; (b) the exponential
distribution; (c) the symmetric Cauchy distribution.

175. A continuous type random variable X has a distribution function F and
positive everywhere density function f. Find the densities of the following
variables: (a) Y () = aX (w)+b; (b) Z(w) = aX*(w); () W(w) = F(X(w)).

176. A random variable X has a gamma distribution with parameters p = 17,
b = 77. What is the distribution of ¥ = cos? X + sin®> X?

177. A random variable X has a uniform distribution on the interval [0, 1]. Find the
distribution of ¥ = A~! In(X).

178. Prove that if a random variable X has a uniform distribution on the interval
[—%. 5], then the variable Y = tgX has a symmetric Cauchy distribution.

179. A random variable X has a Gaussian distribution N(m, o). Show that the
variable Y = aX + b, a # 0, also has a normal distribution and determine the
parameters of this distribution.

180. A random variable X is exponentially distributed with parameter A = 4. Find
the distribution function for the random variable ¥ = +/X. Is the variable
Y absolutely continuous? If so, find its density.

181. Anisosceles triangle with a vertex at the origin of the coordinate system has a
side of length 1 contained in the non-negative part of the O X axis. The other
side of length 1 starts at the origin and lies at a random angle « to the O X
axis. Find the density of the random variable which determines the length of
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the third side if the random variable « has a uniform distribution on the interval
[0, 2m]

182. We choose at random a point w = (x, y) from the square K = [0, 1] x [0, 1].
If x2 + y2 < 1, then we define X (w) = /x2 + y2. If x> + y? > 1, then X (w)
is equal to the distance of the point (x, y) from the nearest side of the square
K . Find the distribution of the random variable X. Is X of continuous type?

183. A random variable X has a normal distribution N(m, o). Find the distribution
of the variable Y = h(X), where

X ca, a<x;
(@ h(x)=—, (b) h(x) = cx, —a<x <a;

x|
—ca, Xx < —a.

3.5 A Complete Description of the Types of Random
Variables

Discrete random variables, continuous type variables and their mixtures do not
cover all types of random variables. In the past, more often than not, the third
type of distribution, i.e. the singular distributions, were omitted in textbooks on
probability calculus because they were considered rather absent in the modeling
of real phenomena. Today, we know that such distributions appear in stock
exchange quotes, atmospheric phenomena, environmental pollution processes and
in modeling the widening of the ozone hole. Therefore, in this book, we also
consider singular distributions.

Definition 3.20 A random variable X has a singular distribution if X takes values
in an uncountable set A such that A;(A) = 0 (e.g. A can be the Cantor set), where
A is the Lebesgue measure on R, and

P{X e A} =1, P{X =x} =0foreachx € A.

Example 3.21 In mathematics, the Cantor function is an example of a function that
is continuous, but not absolutely continuous. It is continuous everywhere and has
zero derivative almost everywhere, and yet it grows on the interval [0,1] from zero
to one. It is also referred to as the Cantor ternary function, the Lebesgue function,
Lebesgue’s singular function, the Cantor-Vitali function, the Devil’s staircase, the
Cantor staircase function, and the Cantor-Lebesgue function. We interpret the
Cantor function as the cumulative distribution function of a singular measure.
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First, we construct the Cantor function c: [0, 1] — [0, 1]. For x € [0, 1], we
obtain c(x) by the following steps:

(1) Express x in base 3.

(2) If the base 3 representation of x contains a 1, replace every digit strictly after
the first 1 with 0.

(3) Replace any remaining 2s with 1s.

(4) Interpret the result as a binary number. The result is c(x).

For example: the number ﬁ has ternary representation 0.02020202 . .. There are
no ones in this representation, so the second step still gives us 0.02020202...
This is rewritten as 0.01010101 . .., which is the binary representation of i, thus
c(1/4) = 1.

The number % has ternary representation 0.01210121 . .. The digits after the first
1 are replaced with zeros to produce 0.01000000. .. This is not rewritten since it
has no 2s. It is the binary representation of 1, thus ¢(1/5) = le'

Equivalently, if C is the Cantor set on [0, 1], then the Cantor function (see Fig.3.7)
c: [0, 1] — [0, 1] can be defined as:

) Yoo B if x=73 "% fora, €{0,1};

o sup{c(y): y <x, yeC} if x €[0,1]\C.

This formula is well-defined, since every member of the Cantor set has a unique base
3 representation that only contains the digits 0 or 2. Since ¢(0) = 0 and ¢(1) = 1
and ¢ is monotonic on C, it is also clear that 0 < ¢(x) < 1forall x € [0, 1]\ C.
Now, we can define the corresponding cumulative distribution function:

Fo(t) = c(®)1po,11(1) + 11,000 (2).

c(x) =

Fig. 3.7 The Cantor function
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Most important for us is the following decomposition theorem:

Theorem 3.22 (Lebesgue Decomposition Theorem) For every probability mea-
sure P there exists an atomic probability measure P, a probability measure of
continuous type P and a singular measure Py; such that

P =Py + 2P + 3Py,

where ¢, ¢, c3 € [0, 1] are such that ¢y + ¢2 + ¢z = 1.

Proof We already know that the atomic part of a measure is easy to distinguish
on the basis of jumps (break points) of the distribution function. Let F be the
distribution function of the variable X with £(X) = P. There are at most countable
many such points x € R for which p, = F(x;r)—F(xi) > 0.If erR px=c; >0,
then

p, =5 25

c
xeR !

Let F, be the distribution function of the measure P,. Then, G(x) := F(x) —
c1F,(x) is a continuous non-decreasing function on R, thus it is differentiable
almost everywhere and

z
/ G'(x)dx < F(2), forall z € R.

—00

If fR G'(x)dx = ¢; > 0, then the measure P, defined for Borel sets B € B by the
formula

P.(B) = c{l f G'(x)dx
B

is a continuous type measure with density function ¢; 'G’. The singular part Py; of
the distribution P is found by solving the following equation:

P=cPy+cPy+ (1 —ci—c2)Py.
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3.6 Independent Random Variables

Definition 3.23 We say that random variables Xy, ..., X,, are independent if
for every choice of Borel sets By,..., B, € B, the random events {X; €
Bi}, ..., {X, € B,} are independent, i.e., the following equality holds:

P{X]EB],...,XnGBn}ZP{XlEB]}”"'P{XnGBn}.
It is easy to see that if random variables X, ..., X,, are independent and
S1,...,8 € {1,...,n}, k <n,s; #s;fori # j, then the variables X, ..., X,

are also independent. The next theorem states that functions defined on independent
variables define independent variables.

Theorem 3.24 Let us assume that random variables X, ..., X, are independent
and the functions ¢; : R — R, j = 1,...,n, are Borel-measurable. Then, the
random variables Y; = ¢;(X ;) are independent.

Proof 1If ;, j =1, ..., n, are Borel measurable functions, then for any Borel sets
By, ..., B, the sets <p1_](Bl), e, (p;l(Bn) belong to the Borel o-field as well, and
P(YieBi,....Y, € B} =P{X, €' (B),...., Xs € ¢, (B)}
=P{Xi €9 (B)}...P{X, ¢, (B)]
:P{Y] € B]}P{Yn € Bn},

which was to be shown. O

Theorem 3.25 Assume that random variables X1, ..., X, Xpv1, ..., Xpim are
independent. If the functions ¢ : R" — R and ¢ : R" — R are Borel-measurable,
then the random variables Y| = (X1, ..., X)) and Yo = Y (Xpt1, ..., Xpim) are
also independent.

Proof We need to check that for any choice of Borel sets A, B in R the following
equality holds:

P{Yl EA,YZ (S} B}:P{Yl (S A}P{Y2 € B}

The set C = ¢~ !(A) is a Borel subset of R” and D = y~!(B) is a Borel subset of
R™, hence we need to show that for any Borel sets C C R", D C R™, we have

P{(X,...,Xn) €C, Xps1,---, Xntm) € D}
:P{(Xla-”vXn) € C}P{(th+lv~-~axn+m) € D}
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It follows from the independence of the random variables Xy, ..., X,,, that this
equality holds if the sets C and D are measurable rectangles, i.e., C = C; x---xC,
and D = D x --- x D,,, where C; and D; are Borel subsets of the line.

Let (%, £) denote the set of all pairs (C, D), C C R*, D C R™, for which the
desired equality holds. We already know that this set includes pairs of measurable
rectangles. Since the o-field in R" is containing all measurable rectangles, hence it
contains o -field of Borel sets, and it is enough to prove that K and £ are closed
under countable set operations.

It is enough to prove that K'is a o-field. If (C, D) € (K, £), then also (C’, D) €
(K, L) because

P{(Xl,...,Xn) € Q\C, (Xn+l’~-'vxn+m) € D}
=P{(le"'9Xn) € Qv(XVH-lv""XVH-m) € D}
_P{(X17-~'5XI1) ECa (Xn-‘r]’"‘vXn-‘rm) € D}

- (1 —P{(X),...,X,) € C})P{(Xn+1,...,X,,+m) € D)
=P{(X1,....X,) € C'"} P{(Xu41. .. Xuim) € D}.

In a similar way, we show that if (Cy, D) € (%K, L) for every k € N and the events
C;, are pairwise disjoint, then (| J Cx, D) € (K, £):

P{X1 o X0) €[ JCon Kt Xasm) € D)
=P(U{(X1,...,Xn) €Cpy (Xnits s Xoam) € D})

- ZP{(XI,...,Xn) e cn}P{(an,...,X,Hm) c D}

=P{(X1,...,X,,) c UCH]P{(XnH,...,XHm) c D}.

Now, let C and D be measurable rectangles. We already know that (C, D),
(C', D) € (K, £),hence (CUC’, D) = (R", D) € (K, L). O

3.6.1 Exercises

184. Prove that if a random variable X is independent of any other random variable
specified on the same probability space, then X = ¢ with probability one for
some constant c.

185. Let 2 C R. Under what assumptions are the variables X and sin(X)
independent?
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186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

Random variables X, Y are independent with the same distribution given by
the density f(x). Find the densities of Z = max{X, Y} and U = min{X, Y}.
Random variables X, Y, Z are independent with the same distribution given
by the density f (x). Find the distributions of the ordered statistics U, U,, U,
where

Ui(w) = min{X (), Y (0), Z(®)}, Us(w) = max{X(0), Y (®), Z(®)};
Uzx(w) = {X(w), Y (0), Z(@)} \{U (), Us(w)} .
Let X, Y be independent random variables with distribution functions F

and G, respectively. Find the distribution functions of the following random
variables:

(@) Z(w) = max{X (w), Y(w)}; (b) W(w) = min{X (w), Y (w)};
©) T(®) = max{2X (w), Y (w)}; (d) U(w) = min{X>(w), Y (®)}.

Random variables X, X, ... are independent with the same distribution
PX; =0} =P{X;, =1} = % Find the distribution of the random variable
Y =325

Variables X, Y are independent with the same uniform distribution on [—1, 1].
Find the distribution of the variable Z = X + Y.

Random variables X, X», ... are independent with the same uniform distri-
bution on the interval [0, 1]. For A > 0, find the distribution of the variable

n
X = inf {n: HXk < e_k}.

The variable X, is the sum of n independent random variables with uniform
distributions on [0, 1] and F,, is the cumulative distribution function of X,,.
Prove that

Fn-H(x):/ Fn(y)dy
x—1

Let X and Y be independent with the same exponential distribution with
parameter A > 0. Find the distribution of the random variable Z = X + Y.
Let X and Y be independent with the same exponential distribution with
parameter A > 0. Find the distribution of the random variable Z = X /Y.

Let N, X1, X5, ... be independent random variables with N having a geomet-
ric distribution P{N = n} = pg"~', n > 1 and let each of the variables X
have an exponential distribution I'(1, @). Show that the variable Y = Z,ivzl Xk
has exponential distribution.
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196. The variable X has a standard normal distribution, and a random variable
Y, independent of X, is uniformly distributed on the interval [a, b]. Find the
density of the variable Z = X + Y.

197. The variables X, Y are independent with the same distribution given by the
density f(x) = ( cosh(x))~!. Find the density of the variable Z = X + Y.

3.7 Multidimensional Random Variables and Distributions

Definition 3.26 A function X : (2,%,P) — R" is called an n-dimensional
random vector, or n-dimensional random variable if, for every Borel set B C R",
the following condition holds:

lo: (X1(@),...,X,(®) € B} € F.

The probability distribution of the random vector X = (Xi,...,X,) is the
probability measure Py over the space (R”, B(R")) defined by the formula

Px(B) =Pl{o: (Xi(w),..., X,(w)) € B}, BeBR").

It is easy to see that if X = (X}, ..., X,,) is a random vector, then each of the
functions X;, i < n, is a random variable.

As in the case of random variables, a simple random vector is a vector with
a discrete distribution, while a continuous random vector is one with a density
function. We will also consider convex linear combinations of the distributions of
the previous two types. For the sake of simplicity, we will limit ourselves here to
two-dimensional random vectors.

We say that a random vector (X, Y) has a discrete distribution if there exist sets
Xi,...,X, € Rand yy, ..., y, € Rsuch that

P{X ef{x,....,x,}, Y € {yl,...,ym}} =1

Let p;j = P{X = x;, Y = y;}. The joint distribution of the random variables X and
Y, i.e., the distribution of the random vector (X, Y, can be described by the table:

X\Y [ y1 ||| Im
X1 |P1,1|P12]---|Plm|P1-
X2 |P2,1|P22|---|P2.m | P2

Xn |Pn,1|Pn2|--+|Pn,m|Pn-
Pir|P2|---| Pm
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If the joint distribution of X and Y is known, then the distributions of X and Y
are called marginal distributions. Let’s find the marginal distribution of the random
variable X:

m

def

P EPX =x}=) PIX=x.Y=y}=) pij
j=1 j=1

The probability p;. is, therefore, equal to the sum of all the elements of the i-th row
of the matrix (p; ;). Similarly,

n n
def
pj éP{Y:yl}:ZP{X:-XI,Y:}}]}:ZP’»J’
i=1 i=l

so the probability p.; is equal to the sum of all the elements of j-th column of the
matrix (p; ;).

If (X, Y) is a discrete random vector with distribution given by the matrix (p; ;),
then the conditional distribution of the variable X, assuming ¥ = y;, is expressed
by the formula:

P{X =ux|¥ =y) =%

Pk

Similarly, the conditional distribution of Y, assuming X = x;, is given by the
formula:

P{Y =yk|X=x,~} = %
i

Let (X, Y) be a discrete random vector with probability matrix (p; ;). Variables X
and Y are independent if and only if

pi.j =pi.p.; forallie{l,... ,n}, jel{l,...,m}.

Definition 3.27 The cumulative distribution function of a random vector X =
(X1, ..., X,) is the function F : R" [0, 1] defined by the formula:

F(t,....t)) =Plo: Xi(w) <t,..., X,(w) <t,}, t,...,t, €R.

We say that a random vector (X, Y) is of continuous type if there exists an
integrable non-negative function f(x, y) on R? such that for any Borel set B C R?

P{(X, Y) € B} =/.../f(x,y)dxdy.
B
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It can be shown that, as in the one-dimensional case, if at almost every point
(x, y) the second partial derivative %F (x, y) of the two-dimensional distribution
function F (x, y) exists and the following condition holds

82
F(x,y)dxdy =1,
/ /Bxay (x,y)dxdy
R?

then the distribution of (X, Y) is absolutely continuous with density

2

flx,y) = F(x,y).

dxady

Suppose f(x, y) is the density function for the vector (X, Y). To find the marginal
distribution of the variable X, let’s first determine its distribution:

P{X<t}:P{(X,y)e(—oo,t)xR}:/r /f(x,y)dydx.
—o00 JR

It follows that the cumulative distribution function Fy (¢) of the variable X is equal
to the integral over the set (—oo, t) of some integrable function. From this, we
conclude that the variable X is of continuous type and its density is expressed by
the formula

filx) = /Rf(x,y)dy-

Similarly, we show that the marginal distribution of Y is also of continuous type
with density

fly) = /1; Fx, y)dx.

In this way, we have shown that if the random vector (X, Y) is of continuous type,
then the distributions of X and Y are also of continuous type. Note that the converse
implication does not apply. If X is a continuous type random variable with density
f and we consider the random vector (X, X), then P{(X, X) € D} = 1, where
D = {(x,y) : x = y} is the diagonal of the coordinate system. Thus, (X, X) does
not have a continuous type distribution, and both marginal distributions share this
property.

The next theorem follows from the definition of a two-dimensional distribution
function and the definition of independent random variables.
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Theorem 3.28 Let Fx y be a cumulative distribution function of a random vector
(X,Y), and Fx and Fy be the marginal distribution function of X and Y,
respectively. The random variables X and Y are independent if and only if

Fxy(t,s) = Fx()Fy(s).

Note that if (X, Y) has a density f(x, y), then the variables X and Y with
densities f, f, respectively, are independent if and only if outside a set of Lebesgue
measure zero, we have the equality:

fx, ) = filx) ().

Definition 3.29 If random variables X and Y are independent, X has distribution
i, and Y has distribution v, then the distribution of the sum X + Y is called the
convolution of the distributions i and v, and we write:

LIX+Y)=pux*xv.
If independent random variables X and Y are of continuous type with densities

f and g, respectively, then the distribution function of the variable X + Y has the
form:

P{X+Y<t}=/.../f(x)g(y)dxdy

x+y<t

=/ /Rf(x—y)g(y)dydx-

We conclude from this that the convolution of these two distributions is a continuous
distribution and has a density & (x) given by the formula:

hx) = /R Fx— Vg dy.

By analogy with the convolution of distributions, we then say that # is the
convolution of the densities f and g, which we denote by:

heo) = f ¥ g(x) & fR Flx = g dy.

Suppose (X, Y) has a continuous type distribution with a uniformly continuous
density function f(-,-). Let us informally define a random variable (X |Y =)
which takes the value of X (w) provided that Y (w) = y.



78 3 Random Variables and Their Distributions

The density of the variable (X\Y = y) under the very strong assumption of
uniform integrability of the density f is expressed by the formula:

Fey) )
Fxr (xly) = { ffGna if [ £, y)dx #0;
0

otherwise.

To see this, it suffices to note that

e S f Gy dyda

PX el e <y <ol = e e
R Jy—e ’

and then take the limit as ¢ — 0.

3.7.1 Exercises

198. A two-dimensional random variable (X, Y) has a discrete distribution given
by the following conditions:

PIX=1,Y=1}=P(X=1,Y =2} =P{X =2,V =2} = —.

Find the matrix of the two-dimensional distribution, two-dimensional cumula-
tive distribution function and marginal distribution functions. Are the variables
X and Y independent?

199. Consider independent random variables with the following distributions:

P{X = 1} = 0.5; P{X = 2} = P{X = 3} = 0.25;
P{Y =0} = 0.5; P{Y = 1} = P{Y =2} = 0.25.

Find the joint distribution of the random vector (X, Y).
200. The two-dimensional density function is given by:

e Y ifx >0,y > 0;

f(x,y)={

0 otherwise.

Calculate: P{1 < X < 2,1 <Y <2}, P{X+7Y > 2}, P{X > 3‘Y < 1}
Find the two-dimensional cumulative distribution function and the marginal
distribution functions. Are the variables X and Y independent?

201. Is it possible to choose the constant C such that the function:

2 . )
Cy“cosx if 7 <x <m,0<y<2;
0 otherwise

f(x,y)={
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202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

is the density of a two-dimensional random variable? If so, find the marginal
density functions.

Let o, 8 be random variables such that both real roots of the quadratic equation
x? 4+ ax + B = 0 can independently take any value from the interval [—1, 1].
Find the distributions of the variables « and .

Let X and Y be independent random variables with the same exponential
distribution with parameter « > 0. Find the distribution functions and the
densities for the following random variables:

(@) S(w) = max{X (@), Y (@)}; (b) T(w) = X (@) + Y (0);
© U(w) =3+2X(o); @) V(o) = |X(@) - Y@
() W(w) = X*(»); () Z(w) = X/ Y.

Let X be a random variable with a) a Cauchy distribution; b) an exponential
distribution. Let ® be independent of the random variable X such that
P®O=1}=1-P{® = —1} = p for some p € (0, 1). Find the distribution
function and the density for the random variable Y = X - ©.

A random vector (X, Y) has density f(x, y). Find the distribution functions
and densities for the following variables:

@Z=X+Y; ®)U=X-Y; ©W=XY; dU=X/YifP{Y £0}=1.

Find the densities of these variables if X and Y are independent.

A two-dimensional random vector (X, Y) has density function f(x, y). Find
the distribution function and the density of the variable Z = X/(X +Y).
Find the density of the variable Z under the assumption that X and Y are
independent.

Random variables X and Y are independent with the same exponential
distribution with parameter A = 2. Calculate P{X < Y < ¢}, where t > 0.
Random variables X and Y are independent and have the same distribution
given by the density f. Calculate P{X > Y}.

Independent random variables X and Y have the same discrete geometric
distribution with parameter p € (0, 1). Find the distribution of the variable
Z=X+Y.

Let X, Y be independent Poisson random variables with parameters A, Ap,
respectively. Find the distribution of the variable Z = X 4 Y.

The probability that k job-seekers will report to an employment agency within
an hour is equal to ’}(—k,e_*, where A > 0 is a parameter. For each of these
people, the probability of finding a job is p. Find the probability that exactly n
of the people who applied between 10.00 a.m. and 11.00 a.m. will find a job.
Random variables X and Y are independent, X has an exponential distribution
with parameter A, and Y is uniformly distributed on the interval [0, &]. Find the
distribution density of the following variables: a) Z = X +Y;b) W = X - Y.
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213.

214.

215.
216.

217.

218.

219.

220.

221.

222.

3 Random Variables and Their Distributions

A random variable X has a two-point distribution. Prove that X cannot be
represented as the sum of any two independent random variables.

A random variable X takes the values — 1, 0, 1 with probabilities p;, p», ps3,
respectively, where p;p,p3 > 0 and p; + p» + p3 = 1. What conditions must
be met by the numbers p;, p», ps for X to be represented as the sum of two
independent random variables with the same distributions?

Prove that the convolution of two discrete distributions is also discrete.

Prove that X + Y has a continuous type distribution if at least one of the
independent variables X or Y has a continuous type distribution.

X and Y are independent random variables with distributions I'(p, a) and
I'(g, a), respectively. Find the distribution of the variable Z = X 4+ Y.

X and Y are independent random variables with uniform distributions on the
intervals [a, b] and [c, d], respectively, where 0 < a < b < ¢ < d. Find the
distribution of the variable Z = X 4+ Y.

A random vector (X, Y, Z) has density function

Flry.o) = {(6)(1 +txty ity y 2> 0;

otherwise.
Find the distribution of the random variable W = X + Y + Z.
Prove that if random variables X, Y are independent with the same exponential
distribution with parameter 1, then the variables Z = X + Y and W = X/Y
are also independent.
Prove that if random variables X, Y are independent with the same normal
distribution N(0, o), then the variables Z = X> + Y?and W = X /Y are also
independent.
Prove that if random variables X, Y are independent, X has the distribution
I'(p, a), and Y has the distribution I' (g, a), then the variables Z = X + Y and
W = X/Y are also independent.



Chapter 4
Expected Value for Random Variables Qe

4.1 Expected Value for Simple Random Variables

Let us consider one of the simplest games of chance: a player rolls a single cubical
die. If the result is a 6 he wins a euros but for any of the other possible outcomes he
loses b euros. On average, what kind of winnings can he expect?

The classic lottery game—Totolotek—involves choosing six out of 49 numbers
that you hope will be randomly selected in the draw. The probability of losing is
very high, but you can also win, and the more numbers you match, the higher your
winnings. What kind of winnings can we expect on average?

Such problems have been studied since the very beginning of probability theory.
The first records date back to the beginning of the eighteenth century. It was then
that the concept of mathematical hope was introduced. Mathematical hope has also
been called average value, expected value, mean value or esperance.

We begin here by defining the expected value for simple random variables. Let
(2, 7, P) be a probability space and let X : 2 — R be a simple variable (simple

function). That is, there are the numbers x;,...,x, € R and sets Ay,..., A, € ¥
such that
Vi#jANA; =0, UA= and X©) =) xly ().
k=1 k=1

Then, the expected value EX of the variable X is defined by the formula:

EX £ xP(Ap).
k=1
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Instead of the expected value symbol EX, sometimes we will use the notation
fQ X (w)P(dw) or fQ X dP to emphasize that the expected value is the integral of
X (w) with respect to the probability measure P.

Lemma 4.1 The expected value of a simple random variable is uniquely defined.

Proof Suppose that a simple random variable X can be written in two ways:
X(w) =3 xla (@) = 37, yjlp (@), where A; N A; =@ and B, N B; =0
if and only if i # j and at the same time (J;_, Ax = U)_, B; = Q. Note that

AszkﬂﬁzAkﬂUBj=U(AkﬂB‘,~).
j=1 j=1

So,if w € Ax N B # @, then X (w) = x; = y;. This implies that
Zka(Ak) = Zka U(Ak NB) | = Zxk ZP(Ak N B))
k=1 k=1 j=1 k=1 j=1

ZZka(Ak NB)) = ZZy]P(Ak N B))

j=1 k=1

||Ms

(U(Ak N Bp) =Y yiP(B)).

k=1
0

Remark 4.2 The previous lemma shows that for any simple random variable
X taking values xi, ..., x, with probabilities p, ..., p,, it can be assumed that
A = {w : X(w) = x¢}. Hence:

EX = Z ka(Ak) = Zxk Pk-
k=1 k=1

In a similar way, we get for r € N:

n n n
= Zx,: P{X" =x;} = Zx,t P{X =x} = Zx,: Dk-
k=1 k=1 k=1

Hence, if, when rolling a single die, receiving a six-pip result wins a, and
any other result loses b, the mathematical hope in this game is (a — 5b)/6. If,
on the other hand, X stands for the number of pips obtained, we have that
EX=1(1+243+4+5+6)=35.
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Examples 4.3

1. Let the random variable X have a hypergeometric distribution with parameters
N,M,n,n < N,n< M,ie,

() (5
(7

=P{X =k} = k=0,1,...,n.

Since for every discrete probability distribution ) ;_,px = 1, we get the
following combinatorial identity:

()G =)
P k)\n—k n
Now, we can calculate the expected value for X:

e
BX = 2k

B %Z (11:’—_11><n{[’<>

n k=1

N (N+M-—1
GRS

nN
N+M

2. Let Q = [0, 1] and let P be the Lebesgue measure on 2. The random variable
X (w) takes the value 1 if w is a rational number and it takes 0 otherwise. It
is therefore a simple random variable that takes only two values. To find its
expected value, note that the Lebesgue measure of any point is equal to zero
and we only have countably many rational numbers. Hence,

Plo: X(w) =1} =P(Q) = P< U{r}> = ZP({r}) =0.
reQ reQ

We get

1
EX:/ (1-1p(@) +0 - 1o (@) P(dw)
0

=1-P(Q)+0-P(Q")=0.
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It can be seen that the considered integral with respect to the probability measure
(in this case the Lebesgue measure), called the expected value, is significantly
different from the Riemann integral, defined by the common limit of the lower
sums s, and the upper sums s, where

n n
Sp = kaP(Ak), Sn= ZMkP(Ak)a
k=1 k=1
and Ay, ..., A, is a partition of the interval [0, 1] into disjoint intervals with

lengths going down to zero, my; being the smallest, and M being the largest
value of the function X (w) on the interval A. In our case, m; = 0 and M; = 1
for each k, hence s,, = 0 and 5,, = 1 for each n, which means that the Riemann
integral of the variable X (w) as the joint limit of s, and 5, does not exist.

Lemma 4.4 If X and Y are simple random variables, then

(1) X =14(w) = EX =P(A),

2) X>20=—=EX>0;

(3) Ya,b eR E(aX +bY) =aEX +DbEY;

4 X>Y—EX >EY;

(5) |[EX| < E[X];

(6) if X and Y are independent, then E(X - Y) = EX - EY.

Proof The first two properties are obvious and property 4 is a simple consequence
of properties 2 and 3, so we only prove the other properties.

B)LetX =3 ;_; xely and Y = Z'}’:l yj1p,. Then

aX +bY =a ZxklAkmBj +b ZyleknBi = Z (axk + byj) lAkﬂBj-
Jj-k Jk -k

Hence, we have

E(aX +bY) = (ax; + by;) P (A, N B;)
J.k

=a) xP(ANB;)+bY yP(ANB)
: m

J.k
:azkaP(AkmBj) +b2y,ZP(AkﬂB,)
k J Jj k

=a) xP(A)+bY yP(B;)=aEX +bEY.
k J
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(5) It suffices to note that

Zka (A0 <

(6) From Lemma 4.1, it follows that from all possible representations of X and Y,
without losing generality, we can consider those for which A; = {® : X (w) = x4},
B ={w:Y(®) =y;}. Then,

=

[EX| = Ixi|P (Ar) = E[X].

=1

P(AcNB;)=Pfw: X(w) =x. Y () =y}
=P{w: X =x}P{o:Y() =y;} =PA)P(B)).

Hence, we get:

EXY)=E [ xylyns | = Z ;P (A 0 B;)
- ZZxkny(Ak)P(Bj) =) xP(A)- Zy, =EX -EY.
k=1 j=1 k=1 j=1

4.1.1 Exercises

223. Calculate EX and EX? for a random variable X with the following distribu-
tions: (a) one-point; (b) two-point; and (c) binomial with parameters n and p.

224. The random variable X is the number of pips thrown in a roll of a die.
Calculate EX and EX2.

225. Will and Paul decided to play the following game: if the single roll of a die
results in 1 or 2, Paul receives a euros from Will; for any other result, Paul
pays Will b euros. What should be the relationship between a and b for a fair
game?

226. Assume that a non-negative random variable X takes values in {ay, ..., a}
and P{X = a;} > 0 for each j < n. Prove that

EXl’l+l
lim = lim vEX" = max{ay, ..., a).

n—oo EX" n—00

227. What is the expected value of the number of aces in your hand (13 cards) at
the beginning of a bridge game?
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228. The number of winning tickets in a lottery is N and the number of losing
tickets is M. I have bought k of them. Let X be the number of winning tickets
among those I have bought. Calculate EX.

4.2 General Definition of Expected Value

We will need the following two lemmas to define the expected value for non-
negative random variables.

Lemma 4.5 If X is a non-negative random variable, then there exists a nondecreas-
ing sequence of simple non-negative random variables (X,) such that

VoeQ Xuo) / X().

Proof All we need is to define the sequence {X,}. We can do this, for example, in
the following way:

k k+1
2 fex k=01, .2 —1:
X, @) =12 T SX@<— "

n if X(w)>n.

With the notation

A k<X() k+1
n — T X < ’
k, w n w _2"

A, ={o: X(w) = n},

the random variable X,, can be written as:

n2"—1

Xy= Y 27 Lo, +nla,.
k=0

Of course, for each w € @ and every n € N, we have the following inequalities:
Xp(w) € Xyp1(w) < X(w). If for a fixed w € Q there exists an ny such that
X (w) < ny, then for every n > ng, we have

1 -0

0< X(w) — X (w) <2—n — 0.

If such an n did not exist, then we would have X (w) = 400, which is impossible
because, by definition, every random variable takes values in the open line R. O
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Lemma 4.6 IfY and X,, n = 1,2, ..., are non-negative simple random variables
and for each w € Q we have X, (w) /' X (w) = Y (w), then

lim EX, > EY.

n—00

Proof Lete > 0and A, = {w : X,,(w) > Y(w) — &}. Since X, 1(w) > X,(w),
the sequence of sets A, is increasing (A, C A,+1)- As at the same time X, (w)
X(w) > Y(w), for every w € Q2 there exists an ny € N such that w € A, for every
n 2> no. Hence, we get:

Q:UA,, and  P(4,) =3 1.

Note that X, 1,4, is a simple function since X, is a simple function and
Xn = anA” + XvnlAjx P anA” P (Y - 8)1A,,~

A simple function takes only finite many values, thus, if we denote by a the
maximum value of the function Y1, , we get:

EX, ZE[(Y —o)1,,] =E[Y14,] — eP(4,)
=EY —E[Y1y]—¢P(4,)
> EY —max {Y(0) : @ € A} P(A)) — e P(A,)
=EY —aP(A) —eP(A,).
Since P(A)) — 0 and P(A,) — 1 forn — oo, we have

lim EX, > EY —e¢.

The result follows by passing to the limit as ¢ — 0. O
Definition 4.7 If X > 0 and (X,),n = 1,2,..., is a sequence of non-negative

simple functions such that for every w € Q we have X, (w) /' X(w), then the
expected value for the variable X is defined by

EX = / X (0)P(dw) & Jim / X, (w)P(dw) = lim EX,,.
Q n—oo Jo n—oo

The sequence (X)) is called the supporting or approximating sequence of simple
functions for the non-negative X.
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Remark 4.8 It is easy to see that for a random variable X which takes values in
{0, 1, 2, ...} an approximating sequence of simple variables can be:

n—1
X, = Zkl{X:k} + nl{x>n).
k=0
Consequently,
[o.¢]
EX = lim EX, = kZ;kP{X = k.
Examples 4.9

1. If X has a discrete geometric distribution with p € (0, 1) (which is the waiting
time for the first success in a sequence of Bernoulli trials), then

o0 o0 q / 1
EX =) kpq*™! =p<2qk> =p<—> =-.
k=1 k=1 dq

’
1 —
g q p

2. If a random variable X has a Pascal distribution (which is the waiting time for
the r-th success) with parameters p € (0, 1), r € N, then its expected value can
be obtained as the sum:

= k_l r k—r
EX=) k( _ )rd".
k=r

which may seem rather difficult. It is easier to see that the waiting time for the
r-th success is the sum of the waiting times for subsequent successes, hence
X = Z;:l X, where X, ..., X, are independent random variables of the same
geometric distribution with parameter p. Hence, we get:

r

EX:ZEXJ»=%

j=1
3. Assume that X has a Poisson distribution with parameter A > 0. Then:
0 k o )\‘k—l

EX = Zke_’\% =)Le_'\z i A

k=0 ’ k=1
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4. Consider a random variable X (w) = w on the probability space 2 = [0, 1] with
the geometric probability, i.e., P is the Lebesgue measure. An approximating
sequence of simple variables can be defined similarly to the proof of Lemma 4.5:

n—1
k
(@) =, 01t .

k=0

Thus, we have

n—1 n—1
. . k k k+1 . k1 1
EX—)L”;EX"—JL“SO;0;"’([;’ o))=im =g

Lemma 4.10 The expected value for non-negative random variables is well
defined, i.e., it does not depend on the choice of the approximating sequence of
simple variables.

Proof Consider two strings (X,), (¥,) of simple, non-negative variables such that
Xp(w) / X(w), Yy(w) /" X(w) for every w € Q. Since X, / X > Y, from
Lemma 4.6, we get

VkeN lim EX, > EY;
n— 00

and, consequently,

lim EX, > lim EY,.
n— 00 k—o00

By changing roles of the variables X, and Y; from the same lemma, we get the
converse inequality. O

Now, we can define the expected value for any random variable X on (2, 7, P).
We introduce the following notation:

X(w) if X(w) > 0;

X+(w)={ 0 if X(w) <O0; X‘(w)={_x(“’) if X(w) < 0;

0 if X(w) > 0.

Definition 4.11 The expected value of a random variable X is defined by the
formula:

EX ¥ EXT —EX~

if at least one of the two values on the right is finite. Otherwise, we say that the
expected value for such variable X does not exist.
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Theorem 4.12 [f the expected value EX exists and ¢ € R, then E(cX) also exists
and E(cX) = cEX.

Proof If X > 0, ¢ > 0 and (X,,) is a sequence of non-negative simple random
variables such that X,, ' X, then
E(cX) = lim E(cX,) =c¢ lim EX, = cEX.

Now, it is easy to prove that the result holds for any integrable random variable X.
We need to apply the general definition of the expected value bearing in mind that for
c>0,wehave (cX)T =cX",(cX)" =cX ,andifc < Othen (cX)™ = —c X",
(cX)" =—cX. |

Theorem 4.13 IfE|X| < oo and E|Y| < oo, then the expected value E(X + Y)
existsand E(X +Y) = EX + EY.

Proof

(1) Note first that if X > 0 and Y > 0, and the sequences of simple functions
(X,) and (Y,) support X and Y, respectively, then (X, + Y,) are also simple
variables, and (X,, + Y;) ' (X 4+ Y). Hence, we obtain

EX +EY = lim EX, + lim EY, = lim E(X, + Y,) = E(X + V).
n—o0

n— oo n—0o0

(2) Assume now that X and Y are non-negative random variables, E| X| < oo and
E|Y| < oo. Then,

(X+Y)+=%(|X+Y|+X+Y) < %(|X|+|Y|+X+Y)=X++Y+.
It follows that
EX+Y)" <EX"+Y")=EX"+EY' < oo,
which guarantees the existence of the expected value for the variable (X 4 Y).

In the same way it can be shown that E(X + Y)™ < oo, hence E|X + Y| < o0.
Now let us note that

1
(X+Y)++X*+Y*=§(|X+Y|+X+Y)+X*+Y*

1
=§(|X+Y|+|X|+|Y|)
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and
_ 1
(X+7) +x++y+=_[x+y—§(|X+Y|+X+Y)]+x++y+

1
(—X—Y+|X+Y|+2X++2Y+):5(|X+Y|+|X|+|Y|).

N =

Hence, we obtain
EX+Y)"+EX +EY =EX+Y) +EX" +EY",
and, after rearranging,

EX+Y)"—EX+71)~
=[EX" —EX |+ [EY" —EY | =EX +EY.

O

Theorem 4.14 [f there exist expected values EX and EY and X (w) > Y (w) for
each w € Q, then EX > EY.

Proof Since X — Y > 0, we have E(X — Y) > 0 as the limit of expected values
of non-negative approximating simple variables. Thus, if both expected values are
finite, we get EX — EY > 0. In the other cases, we obtain the result just as easily
by noting that X* > YT and X~ < Y. O

Theorem 4.15

(a) The expected value EX is finite if and only if E| X| < oo.
(b) IfE|X| < oo, then |[EX| < E|X]|.
(c) E|X| < o0 ifandonly if D(X) < E|X| < 1 + D(X), where

D(X) =) jPj <IX@]|<j+1}=) PlX(@] > j}<oo

j=0 j=1
(in particular, if E| X| < oo, then n P{| X (w)| > n} = 0).

Proof

(a) If the expected value EX = EX* — EX ™ is finite, then EXT < coand EX ™~ <
oo. Consequently,

E|IX|=EXT+ X ) =EX"+EX™ < oo.
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Conversely, if E|X| < oo then EXT < oo and EX~ < o0, then we conclude
that EX = EXT — EX™ is also finite.
(b) Itis easy to see that

|[EX| = [EX" —EX | < |EXT| + [EX | =EX* + EX~ =E[X|.
(c) We define
o o0
X (w) = Zj Ljcxi<jty.  Xo(ow) = Z(j + D Ljj<x@i<i+)-
— oy
Evidently, for each w € 2, we have X (w) < | X (w)| < X2(w). Note that
D(X) = Z]P{] < |X(@)| <j+1)=EX; <E[X|.
j=0
On the other hand, we have

EX)(w) = Z(1+1)P{1<|X(w>| j+1
j=0

—ZJP{J < X)) < J+1}+ZPJ <IX@|<j+1)
j=0

= D(X) + P{|X(w)| > 0} = D(X) + 1 — P{X(w) = O}.

This implies that D(X) < oo if and only if E|X| < oo. Let us suppose that
D(X) < oo. Then we have

00 > D(X) = Z]P{J <1X(@)] < ]+1}—ZP{J <1X(@)]}.
Jj=0 j=1
Since the latter series is convergent, its partial sums satisfy Cauchy’s condition:

2n

2n n
Y P <IX@ =Y Pl <IX@ll= Y P{<IX@)]}=>0.

j=1 j=1 j=n+1
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We also have

2n

2n
Y P <IX@} = Y P{2n<|X(@[}=nP{2n<|XW)I},
j=n+1 j=n+l

which ends the proof of the statement in parentheses.
O

Theorem 4.16 (Lebesgue’s Monotone Convergence Theorem) If a sequence of
simple non-negative random variables (X,), n = 1,2, ..., is nondecreasing, then

E ( lim X,,(a))) = lim E (X, ().

n—oo

Proof For every n € N, we have chosen a nondecreasing sequence of simple
random variables (X, ;) such that

YVoeQ limX,; =X,.
i—00
We will use the following notation:
X(@) = lim X,(0). Y,(0)= max { X (@), X2, (@), ..., Xpn(@)}.
Since for every i € N and every w € €2, the following inequalities hold:
Xpi(w) < Xp(w) and X (o) < Xo(0) < -+ < Xp(0) < X,
we have 7, (w) < X, (w) < X(w). Hence, we get that
EY, < EX, < EX.
Taking the limit of the second of these two inequalities, we get
lim E (X, (@) <E  lim X,()).
n—>0 n—>00
To prove the equality, let us note that (Y,) is a nondecreasing sequence of simple
variables that converges to X, which can be easily seen from the following

relationship:

0< X(@) = Yi(0) = (X(0) = Xy (0) + (Xp(@) = Yi(@)),
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because both components on the right converge to zero. Now, it is enough to
calculate EX from the definition using (Y;) as the approximating sequence of simple
functions. Hence, EX = lim,_, o, EY,,. O

Theorem 4.17 (Fatou’s Lemma) If (X,) is a sequence of non-negative random
variables, then

E <1im ian,,) < liminfE (X,,).
n—oo

n—oo

Proof LetY, = inf{X,, X,+1, ...}. Naturally, ¥,, < X,,, thus EY,, < EX,, and

lim Y, = liminf X,,.
n—0oQ n—oQ

(Y,,) is a nondecreasing sequence of non-negative variables, hence, by Lebesgue’s
Monotone Convergence Theorem, we get

E (limian,,) —E ( lim Yn> = lim E(Y,) < liminfE (X,) ,
n—oo n—o0

n—oo n—00

which was to be shown. m]

Theorem 4.18 (Lebesgue’s Dominated Convergence Theorem) If X,7Y, X,
X5, ... are random variables such that EY < oo, |X,| < Y for eachn € N
and Plw: X, (w) > X(w)} = 1, then E|X| < 00, EX,, — EX and

lim E|X, — X| = 0.

n—oo

Proof From our assumptions, we get Y > 0. The random variables X,,, n € N, are
integrable because | X, | < Y, thus E|X,,| < EY < oo. Since the variables Y + X,
and Y — X, are non-negative, by Fatou’s Lemma we obtain

E <lim inf(Y + X,1)> < liminfE(Y + X,)
n—oo

n—00

and

E (1im inf(Y — Xn)) < liminfE(Y — X,,).
n—oo

n—oo

From the properties of the expected value, the properties of the lower limit and the
integrability of the variables, we get

E(limiann) < liminfEX, < limsup EX, < E(lim sup x)

n—oo n—o00o n—00 n—00
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By assumption liminf,_, X, = limsup, . X, = X a.., hence, by virtue of
the above inequality there exists a limit of the sequence (EX,),cy and EX =
lim,,_, o, EX,,. Obviously, | X| < Y, thus also E|X| < EY < oo.

The proof of the fact that E|X,, — X| — 0 as n — oo is carried out analogously
using the obvious inequality | X, — X| < 2Y. O

4.2.1 Exercises

229. We say that a random variable X is symmetric if for every + € R we have
P{X < t} = P{X > —t} (the distributions of X and — X are identical).
Suppose that a symmetric variable X has an expected value. Find EX.

230. Let X and Y be random variables. Show that if EX and EY exist then
E max{X, Y} also exists. Does the converse implication hold?

231. Give an example of two random variables X and Y such that EX and EY exist,
but E(XY) does not.

232. Let X be a random variable on (2, A, P) such that E|X| < oco. Show that
| X (w)| < oo with probability 1.

233. Let X, Y be random variables on (2, A, P). Prove that if

/X(w)P(dw) </Y(a))P(da))
A A

for any set A € A, then X (w) < Y (w) with probability 1.
234. Let X and Y be identically distributed random variables. Prove that the
following equality does not always hold:

X_EY
X+Y X+Y

E

235. Let Xi,..., X, be independent positive random variables with the same
distributions. Prove that for every k < n

Xi+-+Xe k

Xi+-+X, n

236. Let EX = 0 and E|X| = 1. Find E max{0, X} and E min{0, X}.

237. What conditions must the numbers a and b meet so that a random variable
X having the properties EX = a and E|X| = b exists?

238. Let X be a natural-valued random variable with a finite expectation. Prove that
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239. Let X and Y be independent random variables with values in the set of natural
numbers and let EX < oo. Prove that

Emin{X,Y} = ip{x > k|P{Y > k}.

4.3 Functions of Random Variables

Theorem 4.19 Letr ¢ : R* — R be a Borel function, and X = (X1,...,X,)
a random vector with distribution Px. Then:

E¢(X) = / : ./w(X)Px(dX)
-

if we know that at least one of the integrals in this formula exists.

Proof 1f ¢ is a Borel-measurable function, then, by definition, for every Borel set
B C R, ¢~ !(B) is also a Borel set, thus

lpX)eBl={Xecop'B}eF

because X is a random vector. Hence, it follows that ¢ (X) is a random variable. We
will show the equality of the integrals mentioned in the theorem in a few steps:

1. If ¢ = 1 for some Borel set B, then

Ep(X) =P{X € B} =Px(B) = /.../lPx(dx) = /.../(p(x)Px(dx).
B R"

2. If ¢ is a simple function, i.e., ¢ = ), x;15, for some Borel sets B; and x; € R,
then the desired equality is a result of the linearity of the integral and the equality
shown in step 1.

3. If ¢ is a non-negative Borel function, then it is the limit of a non-decreasing
approximating sequence of simple functions. Therefore, it is enough to apply
Lebesgue’s Monotone Convergence Theorem and the equality obtained in step 2.

4. Let ¢ = ¢+ — ¢~ and assume that E¢(X) exists. Note that (¢(X))" = ¢+ (X)
and (¢(X))” = ¢~ (X). Hence, it follows that at least one of the integrals

Ep™(X) or Eg (X)
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is finite. From step 3, we have

Ep™(X) = /-~-/¢+(X)Px(dx), Ep~(X) = / : ~/§07(X)Px(dx),
R R”

which implies the existence of the right-hand integrals and the desired equality. If
we assume the existence of the integral f ¢(x)Px (dx), the reasoning is similar.
O

Thanks to this theorem, we can calculate the values of E¢(X) without having to
first determine the distribution of ¢(X) if the distribution of X is already known.

Example 4.20 Assume that 2 = [0, 2], P is the normalized Lebesgue measure,
i.e., P(dw) = %1[0,2] (w) dw, and ¥ is the o-field of Borel sets in 2. We want to
calculate EX" for the random variable X defined as follows:

w if wel0,1];

X(“’)z{z—w if we,2].

Instead of looking for the distribution of the variable X or X", let’s define a new
variable Y (w) = w. It is easy to see that Py = P, so by Theorem 4.19, we get:

EX" = E (a)l[o’]](Y) —+ (2 —_ a))l(l,z](Y))n

o n 1
=f (xLo,1(x) + 2 — )12 (x)) 51[0,2](X)dx

[ee]

1/' ”dx+1/2(2 ' dx 1
= — —_ — X = —_—
2 )y 2/, nt 1

4.3.1 Exercises

240. Prove that if EX? < oo, then E|X| < oo.

241. Prove thatif EX? = 0, then P{X =0} = 1.

242. Let 2 = [0, 1] and let P be the Lebesgue measure on 2. Using Definition 4.7,
find the expected values of X (w) = w? and Y (0) = o°.
Hint: > /_ k> =n(n+ 1)Q2n+1)/6, > i_ k> =n*(n + 1)?*/4.

243. Let 2 = [0, 3] and let P be normalized Lebesgue measure on 2. Find the
expected value of the following random variables:

w if we[0;1]; 2w —1 if w € [0;1];
X(w)=131 if we (1,2]; Yw={2—-w if we (1,2];
3—w if we (2,3]; 0 if we (2,3].
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244. Prove that if E|X|% < oo for some a > 0, then also E|X|# < oo for every
B €0, a).

245. Suppose that the expected values of random variables X1, ..., X, exist and
are finite. Show that

Emax{X,,..., X,} > max{EX,,...,EX,};
Emin{X4, ..., X,} < min{EX,,...,EX,}.

n

4.4 Expected Value for Continuous Type Random Variables

Theorem 4.21 [f the continuous type random variable X : Q — R has density
function f : R — [0, 00) and EX exists, then

EX:/OOxf(x)dx.

[ee]

Proof 1t is enough to prove that the result holds for a non-negative random variable.
Let X > 0, which implies the condition f(x) = 0 for x < 0. By (X,) we denote the
approximating sequence of non-negative simple variables defined as in the proof of
Lemma 4.5:

n2—1
Xo= ) 5ol (X@) +nl;, (X (@),
=0
where I, = [%,4t!) and I, = [n, 00). By definition of the expected value for

simple random variables, we have

n2'—1
EX, = Z Z_HP{X € I} +nP{X € 1,}
=0
-l
=Y f(x)dx+n/ F(x)dx
k=0 2" Iy, I,
oo [12=1
Z/ [Z gllkﬂ(x)%-nlzn(x)] f(x)dx.
0 k=0

gn(x)

The function g, (x) approximates the function g(x) = x with a precision of 27"
on the interval [0, n), and outside of this interval, it takes the value of n. Also,
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gn(x) / g(x)asn — oo, for every x € R. The existence of the limit of the
integrals f gn(x) f(x)dx as n — oo is due to the existence of EX. Hence, when
we go to the limit, we get

oo

EX = lim EX, = lim gn(x) f(x)dx
n—oo O

= [ (jim ew) rar= [ xrwa
(U 0

which was to be shown. m]

Example 4.22 To calculate the expected value of a variable X with distribution

I'(b, p) (density ﬂx”‘le"”‘l(o,w) (x)), let us recall first that forany b > 0, p > 0

T'(p)
0 br

Hence, we have

°©  pP b? 0 bP T 1
EX = / X xPle ™ dx = xPe P dx = L—i)
o I'(p I'(p) Jo I'(p) br+

Since '(p + 1) = p T'(p), we finally get EX = p/b.

Theorem 4.23 If a random variable X has a continuous type distribution with
density f(x), and ¢ is a Borel function, then

Eg(X) = / () £ (x) d

o]

if at least one of the integrals in this formula exists.
Proof 1If p(x) = 15(x), then

o0

E@(X)=P{X€B}=/Bf(X)dX=/ @(x) f(x)dx.

Now, it suffices to repeat the standard reasoning already used: show that equality
holds for simple functions ¢, by Lebesgue’s Monotone Convergence Theorem
extend the equality to non-negative Borel functions, then consider positive and
negative parts separately for any Borel function ¢. O
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4.4.1 Exercises

246. Calculate the expected value for the following distributions: a) uniform on
the interval [a, b]; b) exponential with parameter A; c) beta distribution with
parameters p, g > O.

247. Calculate EX and EX? for a random variable X with the normal distribution
N(m, o).

248. Does there exist an expected value for a Cauchy distributed random variable
with parameters a > 0 and m € R?

249. Calculate EX" for a variable X having the following distributions: a) gamma
with parameters b, p > 0; b) beta with parameters p, g > 0.

250. Margaret has a standard A4 (210mm x 297mm) sheet of paper and she folds
it perpendicularly to the longer side at a randomly chosen place. What is the
expected value of the area of the larger rectangle obtained after folding the
sheet?

4.5 Expected Value as a Lebesgue-Stieltjes Integral

One more approach to calculating the expected value is to use the distribution of the
variable in question, specifically, its distribution function.

Definition 4.24 Assume that F is the distribution function of the probability
measure P on © and let g : R — R be a Borel measurable function. The Lebesgue—
Stieltjes integral of the function g with respect to increments of the distribution
function F is defined by the formula:

f g(x)dF(x) d=et/ g)P(dx) = Eg(X (w)),

(o] —0Q
where X (w) is a random variable with distribution P.

Note that this is not a new kind of integral for us. We already know that any
left-continuous nondecreasing function F such that

lim F()=0, lim F(t)=1
t——00 t—00

is the distribution function of some probability distribution P, which uniquely
defines the right side of the formula. If the function g is uniformly continuous on
R, then the Lebesgue—Stieltjes integral is sometimes referred to as the Riemann—
Stieltjes integral or simply the Stieltjes integral. These distinctions are not important
in the context of the general theory of measure, and the integral f g(x)dF(x) is best
treated only as another way of writing the integrals f g(x)P(dx) or Eg(X).
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However, this notation turns out to be very helpful in calculating the expected
values for distributions that are convex combinations of a discrete distribution and
an absolutely continuous distribution. Therefore, let us assume that the distribution
function F(x) of the variable X has at most a countable number of jumps at points
x; of heights p;, while away from the jump points it is differentiable and

/ F’(x)dx—i—Zpi =1.

Then, writing the expected value as an integral with respect to increments of the
distribution function seems only natural:

EX = /ooxdF(x) = Zx,-pi +foo xF/(x) dx.

00 —

Such a distribution is a convex combination of a discrete and an absolutely
continuous distribution. To see this, let f(x) = F’(x) and define

e=Yp Pid0) =o' Y pid, v, Padv) =1 —a) f)dr,

If P is a distribution with distribution function F', then
P=oP + (1 —-a)P,.
It is not difficult to verify that P, and P, are probability distributions, Py is a discrete
distribution and P, is absolutely continuous.
In the last exercise of this chapter, we will see that not all probability distributions

are convex combinations of an absolutely continuous distribution and a discrete
distribution.

4.5.1 Exercises

251. Let X be a positive random variable with distribution function F such that
EX* < oo for some « > 0. Show that for any ¢ > 0, we have

EX® = a/oox“_l (1 — F(x)) dx,
0

E (min{X%, ¢c}) = « /Cx”_' (1 — F(x)) dx.
0
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252.

253.

254.

255.

4 Expected Value for Random Variables

Let X and Y be positive random variables with distribution functions F (x)
and G(x). Prove that if F(x) < G(x) forevery x € R, then EX > EY.

Let 0 < 2a < 1. Find the expected value of a random variable with the
following distribution functions:

e* ifx < —1; 0 if x <0;
(@ F(x) =105 if =1 <x<1; (b)F(x) ={x+aif0<x<3;
1—sifx > 1; 1 ifx> 5.

Let us build the Cantor set on the interval [0, 1]. In the first step (n = 1), we
divide it into three equal intervals and denote the middle (open) interval by
I, 1. In the second step (n = 2), the remaining segments [0, %] and [%, 1] are
divided into three equal parts and the middle ones are denoted by I 5, I75.
Continuing this procedure, we get a sequence of open intervals Iy ,, n € N,
k=1,2,...,2" 1 Prove that the Cantor set defined by the following formula

is non-empty:

on—1

Cc=10. 1\ J U I

neN k=1

(continued) Now, we are able to build Cantor’s function, also called the Devil’s
Staircase, FF: R — [0, 1] as follows: F(x) =0 forx < 0, F(x) = 1 for
x > 1,and

27"k —1) if x € li,;

F =
x) {suptqﬂc F@) if x e C.

(a) Sketch the graph of Fontheset I} Ul UL, Ul 3UL3Ul3Uls.

(b) Prove that F is a distribution function.

(c) Prove that F is a continuous function, hence, the random variable with
distribution function F is not discrete and has no atoms.

(d) Prove that for every x ¢ C the derivative F’(x) exists and F'(x) =
0, hence the random variable with distribution function F is not of
continuous type.



Chapter 5 ®
Random Variable Parameters Check for

5.1 Quantiles, Median, Moments, Variance, Skewness
and Kurtosis

Often, especially in mathematical statistics, numerical parameters are crucial in
describing a random variable X. In this chapter, we describe the most important
of them.

* A quantile of order p € (0, 1) of a random variable X, or its distribution, is
a number o, for which the following inequalities hold:

P{Xgap}>p9 P{X>ap}>1_p
The quantile of p = % is called the median. Of course, for symmetric
distributions, oj, = 0. Sometimes, in statistics, quantiles are referred to as
percentiles if the parameter p is a probability expressed as a percentage.
Note that the quantile o, is not necessarily uniquely determined. If the
distribution of X is given by density:

2 5 2,
fx) = 3 1o, —H(x) + 3 1(1,00) (%),

then the oy /3 quantile can be any number from the interval [—1, 1].

The second class of numerical parameters of the variable X are its moments:
ordinary, central, and absolute. When defining moments, we will assume that the
relevant integrals exist and are finite.

» The raw or crude moment, or simply the moment of order k € N of the variable
X, is the expected value of the variable X*:

my = EXk.
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* The absolute moment of order r > 0 is the expected value of the variable | X|":
B =EIX|".

* The central moment of order k € N is the expected value of the random variable
(X —EX)*:

we = E(X — EX)F.
¢ The variance of the variable X is the second central moment of this variable:
VarX = pu, = E(X — EX)>.
Note that from Newton’s binomial formula, one can easily obtain the connection

between the raw and central moments:

k
e = E(X —EX)f = Z <k_>(—1)"‘fEX-f (EX)*/
J

Jj=0
k
k . w
=> ( ,)(—1)’<—1m,m’1‘ .
im0
In particular, for k = 2, we have

VarX = my —m? = EX* — (EX)?.

The variance increases as the variable deviates more from its expected value. The
variance is zero if and only if the random variable is constant almost everywhere,
because E(X — EX)? = 0 if and only if X = EX with probability one. Moreover,
it is easy to see that:

— Var(cX) = ¢*Var(X);
— Var(X + ¢) = Var(X);
— if X and Y are independent then Var(X + Y) = Var(X) + Var(X).

» The square root of the variance is called the standard deviation and is denoted by
the symbol oy:

Ox = +/ Var(X)

We say that the random variable X is standardized if VarX = 1 or if we consider
the random variable X /o instead of X.
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e The third standardized moment v3 of a random variable X is often called its
skewness and is defined as:

_ E(X —EX)

3
Ox

V3

Skewness is a measure of the asymmetry of the probability distribution of a real-
valued random variable about its mean. The skewness value can be positive, zero,
negative, or undefined.

¢ The fourth standardized moment v, of a random variable X is called its kurtosis
(from Greek: kurtos, meaning “curved”):

E(X — EX)*

V= —.
Ox

Kurtosis is a measure of the thickness of the distribution’s tail for the real-valued

random variable X.

Example 5.1 A random variable X with distribution I'(p, b) has all moments of
positive order and some of negative order because for p + r > 0, we have

[e9) bP bP o)
EX = / x" xp—le—bx dx = xp-‘rr—le—bx dx
0 I'(p) I'(p) Jo
b»  T(p+r) T(p+r)

T(p) brt  — bT(p)

Example 5.2 We say that a random variable X has a Pareto distribution with
parameter « > 0 if its density is given by the formula:
ax™ it x> 1;
f(x)_{o if x <1,
This variable has all moments of order r (including negative) as long as r < «,
because then

o

o0
EX" = f xax ™ ldx = < 00.
1

r—o

The next three theorems describe other connections between the moments of
random variables.

Theorem 5.3 (Schwarz’s Inequality) IfEX? < oo and EY? < oo, then

[E(XY)| < VEX2EY2.
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Proof For any real number ¢, the following inequality is true:
E¢X +Y)? =1’EX?> 4+ 2tE(XY) + EY? > 0.

If we treat the left-hand side of the above inequality as a quadratic function of ¢, it
becomes obvious that A < 0. Hence,

A =4 (E(XY))* —4EX’EY? <0,

which ends the proof. O

Theorem 5.4 (Jensen’s Inequality) Ler us assume that E|X| < oo. If g is
a convex function on R, then

g(EX) < Eg(X).

Proof 1f g is a convex function, then for every point x, there exists a constant m (xg)
such that

g(x) = g(xo) +m(xo)(x — xo).

The constant m(xp) is the slope of the line supporting the graph of the function g
at the point xo. When substituting X — x and EX — x( and taking the expected
value of both sides of this inequality, we get the result. O

Theorem 5.5 (Holder’s Inequality) Assume that p,q > 1 satisfy the condition

é + é = 1. IfE|X|? < oo and E|Y|? < oo, then E|XY| < 00 and

E|XY| < (E|X|P)l/”(E|Y|‘1)l/q.

Proof Note that the function logx is concave on the half-line (0, 0o). It follows
that for any o, 8 > 0, o« + 8 = 1 and any x, y > 0, the following inequality holds:

log(ax + By) > alogx + Blogy = log(x“yﬂ).
Hence,
ax + By = x%yP.

Now, it is enough to substitute

1321 xl/p:$ yl/I’:L
’ q’ (E|X|P)V/p’ (E|Y|a)!/a

and calculate the expected value of both sides of this inequality. O
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5.1.1 Exercises

256.

257.

258.

259.

260.

261.

262.

263.

264.
265.

266.
267.

268.

269.

2170.

Find the quantiles of orders 0.25; 0.5 and 0.75 for the uniform distribution on
the interval [a, b].

Calculate the median and the quantile of order 0.25 for the following
distributions: (a) exponential; (b) Cauchy.

Calculate all moments, skewness and kurtosis of a random variable X with the
beta distribution with parameters p, g > 0.

Calculate the four first moments, skewness and kurtosis for the random
variable X describing the result of rolling one die.

Calculate the expected values and variances for the following discrete distri-
butions: (a) Bernoulli; (b) geometric; (c) Poisson; (d) Pascal.

Calculate the variance for the following absolutely continuous distributions:
(a) uniform on the interval [a, b]; (b) exponential; (c) gamma; (d) beta.
Calculate the expectation, variance, skewness and kurtosis for the variable
Z = XY if these parameters are known for the independent variables X and Y.
Let Q@ = [0, 1] and let P be the Lebesgue measure on 2. Find the expected
value and the variance of the following random variables:

X(w)=w—-1/2; Y(w) = (w—1/2)2; Z(w) =sintw; W(w) =sin2nw.

Prove that if P{O < X < 1} = 1 for a random variable X, then VarX < EX.
Random variables X and Y are independent and such that EX = 1, EY = 2,
VarX = 1 and VarY = 4. Find the expected values of the following random
variables: (a) Z = X2 4+2Y2 — XY —4X +Y +4:0)W=(X+Y + D2
Prove that if VarX = 0, then there exists an a € R such that P{X = a} = 1.
Prove that

VarX = infE (X — a)>.
aeR

Show that for every random variable with a finite first moment and median
m,, we have

infE|X —a| =E|X —m,|.

acR
Let X and Y be independent random variables. Prove that

Var(XY) > Var(X)Var(Y).
What conditions must X and Y satisfy for equality to occur in this inequality?
Suppose a random variable X has a symmetric distribution. Prove that for any

real number a the following inequality holds:

E|X +a| > EX.
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271. A random variable X satisfies the condition E|X|* < oo for some o > 0.
Show that for every ¢ € R

E|X — ¢|* < oo.

Hint. (a + b)* < a® + b* fora € (0, 1] and a, b > 0, while for « > 1 and
a,b > 0, we have (a + b)* < 2% '(a*% + b%).

272. Let us assume that all the moments of a random variable X are finite. Show
that ¥ (1) = log(E|X|") is a convex function for u > 0. What conditions must
the variable satisfy for ¥ to be a linear function?

273. Minkowski’s inequality. Prove that for any a > 1:

1/a 1/a 1/a
(BIxX + ) < (E1xe) "+ ()

Hint. For a = 1, the inequality is obvious. For a > 1, we have
E[X +Y|* SE(X|IX+Y|"") +E()Y] X +Y]*7").

Now, it is enough to apply Holder’s inequality twice.

5.2 Chebyshev’s Inequality

The significance of the moments of a random variable is well described by the
following theorem and its generalizations:

Theorem 5.6 (Chebyshev’s Inequality) If X is a random variable and VarX <
o0, then for any € > 0, the following inequality holds:

VarX

P{w: ‘X—EX’ >5}< 2

If X is a non-negative random variable and EX < oo, then for any ¢ > 0

EX
Plw: X >e} < —.
&

Proof Of course, the finite variance assumption in the first condition and the finite
expected value assumption in the second are not relevant. However, the estimates
obtained without these assumptions do not seem particularly interesting.

Let us assume that VarX < oo and let ¢ > 0. If

A={w:|X(w) —EX|>¢e}and A’ =Q\ A,
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then
VarX = / X —EX[*dP + | |X —EX|*dP
A A
> / |X —EX|*dP > 82/ dp
A A
=&’P(A) = &’Plow: |[X —EX| > ¢},
which ends the proof of the first part of the theorem. The proof of the second part is

analogous. O

Chebyshev’s inequality and a whole series of similar results can be obtained as
corollaries of the following, slightly more general, theorem.

Theorem 5.7 Suppose X is a random variable and g is a non-negative even
function defined on R that is nondecreasing on [0, 00). Then, for every ¢ > 0,

Plo: [X(w)| > ¢} <E[g(X)]/g(e).

Proof 1If g > 0, then the integral Eg(X) exists although it may be equal to + co.
Let

A={o: X)) >¢}.

On the set A, we have g(X) > g(¢). Therefore, following the proof of Chebyshev’s
inequality, we get

Eg(X) = / ¢(X) dP + / ¢(X) dP
A Al

> [ s> g [ ap
A A
=g(eP(A) = g(eP{w: |X| > ¢},

which was to be shown. O

Inequalities of the Chebyshev type turn out to be very useful when we want to
estimate the probability value of certain events, especially when exact calculations
are particularly laborious.

Example 5.8 A game involves tossing a symmetrical coin 160 times. We want to
determine the interval / into which the number of heads obtained will fall with
a probability of at least 0.9.

Let X be the number of heads obtained. We already know that p = %, EX = 80,
VarX = 40. This means that the most probable events occur around 80 and it can
be assumed that the optimal interval will be symmetric around this number. From
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Chebyshev’s inequality, we get

40

P{X 80| <e}=1-P(X 80/ >¢}>1— —.
&

The conditions will be met if we select ¢ such that 1 — 4062 > 0.9, which leads
to the condition ¢ > 20. We want to choose the interval to be as narrow as possible,
therefore we take ¢ = 20, and we get:

0.9 < P{|X — 80| < &} = P{X € (60, 100)}.

The random variable X is discrete and can only take natural values. We can use this
information to improve the estimate and write:

0.9 < P{X € [61,99]].

5.2.1 Exercises

274. We roll a single die 180 times. Estimate with a probability of 0.9 the number
of 6’s obtained.

275. Using Chebyshev’s inequality, it was calculated that the probability that the
number of heads in a series of symmetric coin tosses will differ from its
expected value by more than 25% of that expected value is not greater than
1/160. At least how many tosses did this series consist of?

276. Prove the three-sigma rule: if VarX = o2 < 00, then

P{ow:|X —EX| <30} 22:0.888888...

277. A random variable X has the distribution N (m, o). Compare the estimate of
P{|X — m| < 30} obtained in the previous exercise with its real value.

278. Let f: R — R be an even function that is measurable and is non-decreasing
on the positive half-line. Show that for any random variable X satisfying the
condition | X (w)| < ¢ for each w € €2, the following property holds:

Ve>0 Mgp{p{_p})ﬂ}g}gw
f ) f(e)

279. Markov’s inequality. Prove that for any random variable X, any p > 0 and
t > 0, the following inequality holds:

P{|X| > 1} <t PE|X|".
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280. Prove that for any random variable X, any p > 0 and ¢ > 0, the following
inequality holds:

P{|X| > 1} < e ""EePX.

5.3 Parameters of Random Vectors

Definition 5.9 The covariance of random variables X and Y has the following
value:

Cov(X,Y) = E((X — EX)(Y —EY)).
Itis easy to see that Cov(X, Y) can also be calculated from the following formula:
Cov(X,Y) =E(XY) —EX -EY.

The covariance is a parameter that to some extent describes the degree of depen-
dence of random variables, although the correlation factor is more commonly used
as a measure of dependence. It is defined as the covariance of standardized variables:

Definition 5.10 If the random variables X and Y have finite and non-zero variances,
then their correlation factor is given by
Cov(X,Y)
+/VarX VarY '
If o(X, Y) =0, we say that the variables X and Y are uncorrelated. If o(X,Y) >

0, then we say that the variables are positively correlated, and if o(X, Y) < 0, they
are negatively correlated.

Remark 5.11 It is easy to check that independent random variables are uncor-
related. It is not true, however, that if the variables are uncorrelated, they are
independent!

Theorem 5.12 For any random variables X,Y with finite second moments, the
following property holds:

—I<oX, V)< 1

Moreover, |0(X, Y)| = 1 if and only if there exist constants a,b,c € R, ab # 0,
such that

P{w CaX (@) +bY (@) 4 ¢ = 0] —1.
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Proof The first part of the theorem follows from the Schwarz inequality applied to
the variables (X — EX) and (Y — EY):

IE(X —EX)(Y —EY)| < VE(X — EX)2E(Y — EY)? = +/VarX VarY.

It is easy to see that if Y = aX + b with probability 1, then o(X, Y) = 0. Let us
assume that o(X, Y) = 1 and let

_X-EX Y-EY

+/ VarX «/ VarY
Note that VarU = 2 — 2p(X, Y) = 0. Now, it is enough to apply the already known
fact that only the variance of a constant can be equal to zero. If o(X,Y) = —1, as

an auxiliary variable we should take

U X —EX n Y —EY
B / VarX +/ VarY .

O

Definition 5.13 The expected value of a random vector X = (Xy,...,X,) is
the vector of the expected values of its components EX = (EX,, ..., EX,). The
covariance matrix of a random vector X is the matrix ¥ = (0j;); ;_;, where

Oij = COV(X,', X])
Recall that a square matrix ¥ = (o;;) of dimension n xn is positive definite (non-
negative definite) if 37 ;_, oi;t;t; > 0 (3}, oy;tit; > 0)forany 71, ..., 1, € R.

Lemma 5.14 The covariance matrix of any random vector X = (X1, ..., X,) is
a non-negative definite matrix. If the random variables (X; — EX;) are linearly
independent, then the covariance matrix of the vector X is positive definite.

Proof The covariance matrix for the vector X is equal to (COV(X i X j)) 2 Hence,

i,

Xn: tileOV(Xi, X]) = Xn: titjE<(Xi - EXl)(Xj - EX]))

ij=1 ij=1
n 2
=E (Z (X — EX,-)) > 0.
i=1
In the above inequality, equality holds only if there exist constants ¢4, ..., #, such

that Z;’zl t;(X; — EX;) = 0 with probability 1, in other words, when the variables
X; —EX;,i =1,...,n are linearly dependent. |
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5.3.1 Copulas

In stochastic modeling of real phenomena, it is often necessary to construct
a random vector (X, X,) with given parameters m; = EX;, m, = EX», 012 =
VarX,, 022 = VarX, and o = o(Xy, X;). We already know (see Theorem 3.17)
that on the basis of a random variable X with a uniform distribution on the interval
[0, 1], it is possible to construct a variable X; with arbitrarily chosen distribution
function F by substituting X; = F(X). Thus, the crux of the problem is the
construction of a random vector (X, Y) whose marginal distributions are uniform
on the intervals [0, 1], and the correlation coefficient takes a predetermined value of
0. Two-dimensional distributions with such properties are called copulas. Here, we
present one of the simplest examples of a copula.

Consider a random vector (X, Y) uniformly distributed on the frame shown in
Fig.5.1. The length of the entire frame is 2+4/2. It is not difficult to see that the
part of the frame on the left side of the line x = ¢, ¢ € [0, 1], has length 24/2t. This
means that the Fx marginal distribution function of the variable X has the following
form

0 if r <O0;
Fx(t)=3r if 0<t<1;
1if r>1.

We see that F is the distribution function of the uniform distribution on the interval
[0, 1]. Due to the symmetry, the same can be said about the distribution of the
random variable Y. It follows that

1 1
EX =EY = -, VarX = VarY = —.
2 12

To calculate E(XY), we need to integrate the product of xy over the curve we
call a frame. We will do this separately for each interval included in the frame,
remembering that the density along this curve is constant and equal to 27%/2, hence,

Fig. 5.1 A frame on which a
random vector (X, Y) is
uniformly distributed
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the frame length increment d! is equal to /2 dx. We obtain

o 1
E(XY)=${/ x(oz—x)«/idx—i—/ x(x—oz)\/idx
0 o

l—a 1
+/ x(x+oc)«/§dx+/ x(2—x—ot)\/§dx}
0 1

—

1
= — (22’ = 3a® +2).
6
Hence, Cov(X,Y) = (4a® — 6a* + 1)/12 and
0(X,Y) = o(a) = 40> — 60 + 1.

The function o («) is a continuous function of the argument «. Moreover, o(0) = 1,
o(1) = —1. It follows that for any predetermined value of ¢ € [—1, 1], we can find
a € [0, 1] such that o(«) = o, which was to be shown.

5.3.2 H. Markowitz’s Investing Theory

In 1990, H. Markowitz was awarded the Nobel Prize in Economics for his work
on investing methods in the stock exchange. One of the methods developed by
him was based on the observation that if the shares of two different companies are
stochastically negatively correlated, then a possible decrease in the value of one of
them should coincide with an increase in the value of the other. If we choose both
stocks from among those that tend to increase, we can only earn!

Unfortunately, like everything that concerns processes that cannot be described
in a deterministic way, there is a risk that we will suffer a loss. Therefore, a portfolio
of shares should be constructed in such a way that this risk is minimal.

We start by observing the quotations of several or a dozen companies on the stock
exchange for a long period of time. On this basis, using statistical methods, we can
select two types of shares A and B with an upward trend and a negative correlation.
Let X, X, be random variables which describe the prices of the stocks A and B,
respectively. We statistically determine the following parameters: m; = EX, m, =
EX,, 0} = VarX,, 0} = VarX, and ¢ = o(X1, X»). By assumption, we choose
X1, X» with o < 0, preferably with |g| close to 1. The value of the portfolio is
described by the following random variable:

W, =pXi+ 1 —p)X,,

which means that among the n shares we are going to buy, there will be n - p shares
of type A and (1 — p)n shares of type B. The risk measure is the variance of the W,
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random variable, so let us calculate

R(p) = VarW, = p*oi +2p(1 — p)ooios + (1 — p)’ay.
To minimize the risk, it is now sufficient to set py € (0, 1) for which the function
R(p) takes the smallest possible value. Simple calculus using the derivative leads to

the solution:

2
0y, — 00102

Po = .
012 — 200107 + 022

Only now can we buy the stocks. For example, if oy = 1, 0, = 2,and o = —0.5, we
get po = 5/7, so that for every seven shares purchased there should be five shares
of type A.

5.3.3 Exercises

281. The correlation factor of X and Y is equal to . Find the correlation factor of
Z =aX+band W = cY +d, wherea, b, c,d € R. What values can o(Z, W)
take?

282. The random variables X and Y are independent, identically distributed with
expected value M and variance . Find the correlation factor of the variables
Z=aX+band W =cY +d, wherea, b,c,d € R.

283. A random variable X satisfies the conditions: P{X > 0} = p > 0,
P{X <0} =r > 0,EX = a and E|X| = b. Calculate Cov(X, sign(X)).

284. A two-dimensional random variable has the following distribution:

x/Y[ -1 ]o] 1
—1 [0.125]0.5/0.125
1 [0.125] 0 [0.125

Find the correlation factor of the variables X and Y. Are these variables
independent?

285. A two-dimensional random variable is uniformly distributed over the square
{(x,y) : |x| + |y|] < 1}. Find the correlation factor o(X, Y). Are the variables
X and Y independent?

286. A random vector (X, Y, Z) has a uniform distribution on the unit sphere S, =
{(x,y,z2) : x>4y?4+7% = 1}. Prove that both variables X and Y have a uniform
distribution on the interval [—1, 1] (therefore, the joint distribution of X and
Y is a copula on the square [—1, 11%). Calculate o(X,Y).
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287. Show that if variables X and Y with zero-one distributions P{X = 1} = p; =
1 —-P{X =0}, P{Y = 1} = p, = 1 — P{Y = 0} are uncorrelated, then they
are independent. Does any two-point distribution have the same property?
Hint. Let a = E(XY) = P{X = 1, Y = 1}. It follows from the uncorrelation
that a = p;p», and the two-dimensional distribution of the vector (X, Y) is
uniquely determined.

288. A random vector (X, Y) has a uniform distribution on the unit sphere S; =
{(x,¥): x24y? = 1} in R?. Find the marginal distributions and the correlation
matrix for this vector.

289. A random vector (X,Y) has a uniform distribution on the set §; =
{(x,y): |x] + |y| = 1} in R% Find the marginal distributions and the
correlation matrix for this vector.

290. A random vector (X, Y) has a uniform distribution on the set S; = {(x, y) €
[—1,11%: max{|x|, |y|} = 1}. Find the marginal distributions and the correla-
tion matrix for this vector.

291. Arandom vector (X, Y) has a uniform distribution on the interior of the ellipse
with center at the origin and semi-axes a, b. Find the marginal distributions
and the correlation matrix for this vector.

292. A random vector (X, Y) has a uniform distribution on a square with side a
whose diagonals are contained in the axes of the coordinate system. Find the
marginal distributions and the correlation matrix for this vector.

293. A random vector (X,Y) has a uniform distribution on [—1, 1]>. Find the
marginal distributions and the correlation matrix for this vector.

5.4 Multivariate Normal Distribution

We say that the random vector X = (Xy, ..., X,) has a multivariate normal or
Gaussian distribution if there exist a vector m = (my,...,m,) and a positive
definite matrix ¥ = (oy;) of dimension n x n such that the density function of
the vector X at the point X = (xy, ..., Xx,) is equal to:

1
o) (X) = |z|‘/2exp{—5(x—m)2‘<x—m>T},

(27-[)11/2

where | 2| is the determinant of the matrix ¥, X! is the inverse of the matrix %,
and x” is the transposed vector X.

Since the matrix X is positive definite, there exists a matrix A of dimensionn xn
such that ¥ = AT A, |A| = |Z|7/2. Note that ! = (ATA)~! = A~1(AT)~L.
Now, we can find the vector of expected values and the covariance matrix for the
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random vector Y = (X—m)A~!. Of course, ¥; = Z'}zl(Xj —m )c;j if (¢;;) denotes
the matrix A~!. Hence, we obtain

EY[ = / / Z()Cj — mj)c,-j . fN(m,E)(X) d)C] .. .dxn
re J=1
|E| 2 1 14T, T
, ——yAT 'ATYT LAl dy, ... d
/ fy a2 5y |Aldy; ...dy,

/ / ! L oy? d d

= /... i———=€eXp | —= LL.adyy,

y(zn)n/2 P15y v Y
Rn

ei2dy; =0

[
= Yi € Vi
R 21 i R

because the first factor in the final product of the integrals is zero. Hence, the vector
of expectations of the vector Y is also zero. Therefore, EX = A(EY) + m = m.
In a similar way, we calculate the covariance for the vector X. First, we calculate
COV(Y is Y j)Z

COV(YI', Y])

= / . / (Z(xk - mk)Cik) <Z(x1 - m1)0j1> SN,z (X)dxy .. .dx,
B =1 =1

1 1 &,
=//y,ijexp!—§;yk} dyl...dyn.
R -

We can now see that Cov(Y;, ¥;) = VarY; =1 and Cov(Y;, Y;) = 0if i # j. Let I,
denote the n-dimensional identity matrix. Since X — m = AY, Cov(X;, X ) is the
expected value of the (i, j)-th element of the matrix AY(AY)” = AYYT A’. Since,
as we have seen in the case of random vectors, the expected value of the matrix of
random variables is equal to the matrix of expected values, we finally arrive at

EX-mX-m) =E(AYY'A") = AEYY)A" = ALLA" =

It follows from the above considerations that the vector X with multidimensional
normal distribution and density fy x) has expected value vector EX = m and
covariance matrix . We will use the notation X ~ N(m, X).

Consider the two-dimensional Gaussian random vector X = (X, X,) with
expectation m = (m;,m;) and such that VarX;, = 012, VarX, = 022, and
Cov(X1, X,) = po10,, where p is the correlation factor of variables X, X;. Then,
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using the explicit form of the matrix £~!, we have

fx) =

1

201004/ 1 — p?

1 —1 T| _
exp{—g(x—m)Z (x—m) }_

1
201024/ 1 — p?

exp{ -1 [(xl —m)? —2,o(x1 —my)(xy —my) n (xz—mz)z:H.

2 2

2(1 — p?) o; 0102 0

5.4.1 Exercises

294.

295.

296.

297.

298.

299.

Prove that for a Gaussian random vector (X, Y), un-correlation is equivalent
to independence.

A random vector (X1, ..., X,) has a Gaussian distribution with expectation
zero and the covariance matrix ¥ = (o; ;). Find the distribution of the random
variable Y = Y /_, a; Xy, where aj, ..., ax € R.

The covariance matrix of a symmetric Gaussian random vector (X, Y) equals

21
5= (1 1).
Calculate P{a) X (w) > Y(a))}.

Let (X, Y) be a symmetric Gaussian vector with the independent identically
distributed components of distribution N (0, 1).

(a) Find the distribution of R = v/ X2 + Y2.

(b) Prove that the vector U = (ﬁ, ﬁ
on the unit sphere S = {(x, y) : x> + y?> = 1}.
(c) Show that R and U are independent.

) has a uniform distribution

Let g(x) be an odd function disappearing outside the interval [—1, 1] and such
that [g(x)| < (2me)~!/2. Show that the function

1 242
f(x,y)=—2 ez +g(x)gy)
T

is the density of a two-dimensional distribution, which is not a two-
dimensional Gaussian distribution, but its marginal distributions are Gaussian.
A random vector (X, Y) has a two-dimensional Gaussian distribution with
mean zero and covariance matrix /,. Calculate the probability that (X, Y) falls
into the area A of Lebesgue measure 7 in R if:

(a) A is acircle centered at the origin of the coordinate system;
(b) A is a square with its center at the origin and sides parallel to the axis;
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(c) A is a rectangle with ratio of sides 10: 1, center at the origin and sides
parallel to the axis.

300. For the random vector (X, Y) with density function
f(x,y) = Cexp{—4x* — 6xy — 9y*},
find the constant C, the vector of expected values and the covariance matrix.

301. A random vector (X1, ..., X,) has a multivariate Gaussian distribution with
a mean of zero and covariance matrix I,,. Find the distribution of the variable

Y=/X2+ - + X2



Chapter 6 ®
Characteristic Functions Check for

6.1 Definition and Basic Properties

Definition 6.1 The characteristic function of a random variable X is defined by the
formula:

(P(f) — EeitX(w)'

If the variable X has distribution Py and distribution function F, it can also be
written as

o(t) =fe”x Py (dx) =/ei’x dF (x).
R R

If the variable X has a discrete distribution and takes values x;,i = 1, 2, ..., with
probabilities p; = P(X = x;), then its characteristic function is equal to

p(t) = "ip.
i=1

If the variable X is of continuous type and has density f(x), then its characteristic
function can be written as

(1) = / & £ (x) dx.

o0

The latter formula means that in the case when the measure Py is defined by
the density f, the characteristic function is the Fourier transform of the function
f. Similarly, we will sometimes say that the characteristic function is the Fourier
transform of the distribution (measure) Py. At times, to emphasize that a function
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is a characteristic function of the variable X or Y, we will use the notation ¢y (t) or
ey (2).

Example 6.2 Assume that P{X =1} = p, P{X =0} = ¢ = 1 — p. Then,
@(t) = Ee"* = pe'' 4+ ¢.

Example 6.3 If X is of continuous type with density f(x) = % exp{—|x|}, then its
characteristic function has the following form:

@(t) = Ee"* = [00 e f(x)dx = /Oocos (tx)e ™ dx =
0

—00

1412
Theorem 6.4 The characteristic function ¢(t) of the random variable X has the

following properties:

(M) o] < 9(0) = 1;
@) o(=1) = (1) = p_x(1);

(3) Pax1p(t) = e"px(at);

(4) if X, Y are independent then @,x1+py (t) = @x(at)py (bt).

Proof
(1) It should be easily seen that ¢(0) = Ee” = E1 = 1. Hence,

lo(t)| = [Ee"*| < Ele"*| = E1 = ¢(0).

(2) Now, all that needs to be done is to apply the formula e’* = cosu + i sinu:

@(—t) = Ecos(—1X) + iEsin(—1X) = Ecos(tX) + iEsin(tX) = ¢(1).

On the other hand, p(—t) = Ee?/% = ¢_x(1).
(3) (an+b(t) — EeitaXJritb — eitheitaX — e”bgox(at).
(4) If the variables X, Y are independent, then also e/
Thus,

and e’V are independent.

Eexp{it(aX + bY)} = Ee'Y . Ee"™*Y = gy (at)py (bt).

O

Example 6.5 Consider the random variable X of the Bernoulli distribution with
parameters n and p. Its characteristic function can be calculated directly from the
definition:

n . n ) n
o) =Y e P(X = k) = Y et <k>pkan_
k=0

k=0
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Howeyver, it is easier to note that the random variable X has the same distribution
as ZZ:I Yy, for independent random variables Y1, ..., Y,, with the same zero-one
distribution P{Y; = 1} = p,P{Yy = 0} = g. By property 4) and mathematical
induction, we obtain

o) =[[ern@® = (pe" +q)".

k=1

Theorem 6.6 Each characteristic function is uniformly continuous on the real line.

Proof First, note that
lp(t +h) — ()] = |Ee"* (""" — 1)| < Ele"™* —1].

The function g, (x) = |e/** — 1| is bounded by 2 along the real line. Furthermore,
for any m > 0, the values of g,(x) converge to zero uniformly on [—m, m] if
h converges to zero. For ¢ > 0, we choose m large enough that P{| X (w)| > m} <
€/4. Next, let ho be small enough so that for each i € (0, k) and each x € [—m, m]
the condition g, (x) < &/2 is satisfied. Then, for & € (0, k), we get

m

ot + 1) — (1) <f

—m

le!"* — 1| dF (x) +f le" — 1|dF(x)

|x|>m

< e/2P(1X ()| < m) + 2P(|X (w)| > m) < e.

6.1.1 Exercises

302. Prove that if the characteristic function ¢(t) of the distribution function F is
even, then

o(t) = /oo costx dF (x).

oo

303. Prove that the following cannot be characteristic functions of any probability
distribution:

(@) (1) =ell;
(b) ¢(t) =acost+ bsint fora,b € R\ {0}.

304. Let Q = [0, 1] with the o-field of Borel sets and the Lebesgue probability
measure. Find the characteristic functions of the following random variables:

X(co):Zw—l(%’“; Y(cu):l—l(%%]; Z(w) =Inwlg-



124

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

6 Characteristic Functions

Calculate the characteristic functions of the absolutely continuous random
variables with the following densities:

@ f(x) =2xLo1p; (b) f(x) =4xly 1)+ (4 — 4011 3
3
(©) fO) = 5311,

X and Y are independent, asymmetric random variables. Could the variable
Z = X + Y be symmetric?

Find the characteristic function of the distribution N(m, o). Prove that if
X and Y are independent random variables with normal distributions (not
necessarily identical), then for any a,b € R, the variable Z = aX + bY
has a normal distribution as well.

Calculate the characteristic functions of the following distributions: (a) uni-
form on the interval [a, b]; (b) Bernoulli with parameters n, p; (c) Poisson
with parameter A; (d) exponential with parameter a; (e) discrete geometric;
(f) waiting time for the k-th success in n Bernoulli trials.

Independent random variables X1, ..., X, have the same Cauchy distribution
with parameters a > 0 and m € R. Show that the variable Y = };_, X, has
a Cauchy distribution, too.

Independent random variables X,,..., X, have gamma distributions:
['(pi,a), ..., ['(py, a). Find the distribution of ¥ = Y/ _, X.

Let ¢(¢), ..., ¢, (t) be the characteristic functions of independent random
variables X1, ..., X, and let the numbers «1, .. ., o, be positive and such that

o1+ 4o, = 1. Prove that () = o101 (t) +- - -+, 9, (7) is a characteristic
function as well.

Let ¢(¢) be the characteristic function of a distribution function F'. Prove that
the following functions are characteristic functions as well:

p1(1) = I; ©2(1) = Re (p(1)) 5 @3 () = o).

2—9t)
Prove that if ¢ is a characteristic function, then the function ¢ defined by the
formula

1 t
(1) = —/ @(x)dx
tJo

is also a characteristic function.

The variable X has a standard normal distribution. Find the characteristic
function of the variable ¥ = X2.

Let the one-to-one function F: R — [0, 1] be the distribution function of
a random variable X. Find the characteristic function of ¥ = In F(X).



6.2 Relations Between Distribution, Characteristic Function and Moments 125

6.2 Relations Between Distribution, Characteristic Function
and Moments of Random Variables

Theorem 6.7 Let ¢ be the characteristic function of a random variable with
distribution function F. Then:

(a) foreverya <b

1 R efita _ efitb

. 1 1 .
G = lim —— T ¢(0)dt =P((a. b)) + P ({a}) + JP({bY):

(b) ifa and b are continuity points for the distribution function F, then
1 R e—il‘a _ e—irb

m — ,—t(p(t)dtzF(b)—F(a);
i

1
R—o00 27T —R

(©) if ffooo lo(t)| dt < oo, then F is of continuous type with density f(-), where

1 [ _.
f(x)=—/ e "o(r)dr.

21 J_ o

Proof Consider the integral

1 R efira _ efitb

GR =— | =% L@yar
(R) ) o @(t)
| [Re-ita _ g—ith oo
- ;/ e dF (x) dt.
27T _R it —o0

The function under the integral is bounded here because

b b
/e”xdx g/ dx =b —a.

By Fubini’s Theorem, we can change the order of integration and get

1 o) R eit(xfa) _ eit(xfb)
G(R) = - / f s @tdF (k).
T J_00J-R it

e—ila _ e—irb

it

e—itu —e
it

—ith
eitx
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We have e /' = cos(tc) + isin(tc). Noting that the integral of the function
cos(tc)/it on the set [—R, R] disappears (as does any integral of an odd function
over a symmetric set), we obtain:

1 (> R sint(x — R sint(x — b
G(R) = 2 mdt_z Mdt dF (x)
2
0 t 0 t
R(x—a) R(x—b) 3
:_/ {/ smydy_/ Smydy}dF(x)
y 0 y

Rx=a) giny
= — dydF(x).
/ /I;(x b)

We will now prove that the function f; % dy is bounded. Due to the fact that the
integrand function is even, we only need to consider z > 0. If 0 < z < % then

% sin <
I
o Yy 0

integrating by parts, we obtain
cosy

Z sin 7/2 sin : % cos
[ el [l 1 e
o Y 0 y Y lzp x2 Y

T 1 2 |
<Ko+-+—+ —dy

sin y
y

Z
‘dygf dy:z<z.
0 2

For z > %,

2 Z T /2 y2
T 6

< — + — = const.
2 7

From the Lebesgue Dominated Convergence Theorem, we get:

] R(x—a) smy
lim G(R) = hm — dydF(x)
R—o0 R(x—b)

1 [e'e] ) R(x—a) sin y
= — lim dyt dF(x).
T Jooo R0 JRx—b) Y

Now, we need to consider the following cases:

— ifa < x < b, then

1 [R&=Dginy 1 [*siny
lim — —dy = — —dy=1;
Rx—b) Y T Jooo Y
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— if x > b, then limg_ o R(x — b) = oo, which due to the integrability of %,
leads to '

1 R(x—a) o;
lim — / Ty dy =0;
R

R>00 7T JRx—b) Y
— if x < a, as before limg_, o, R(x — a) = —o0, and
1 R(x—a) sin y
lim — / dy =0;
R=o0 T JR(x—b) Y

— forx = a, we get:

o1 [0 sin y 1 [0 siny 1
lim — ——dy=— —dy = =;
R—oo T J_Rp—a) Y T Jooo Y 2
— if x = b, then
1 [RE=Diny 1 [®siny 1
lim — = — T Tdy==
R—oo 1 Jo y T Jo oy 2

Hence, it is easy to deduce that

oo

. 1 1
Rll_)moo G(R) = / {l(a,b)(x) + El{a}(x) + El{b}(x)} dF(x)

—00

1 1
=P((a, b)) + EP({a}) + EP({b}) .

The property (b) is an obvious consequence of (a) because, by the continuity of the
distribution function at a and b, we have P ({a}) = P ({b}) = 0. To prove (c), let us
assume that ffooo |@(t)| dt < oo. Then, the following function

1 o«
= o f e g(r) dr
T J_

o0

is continuous and integrable on every interval [a, b]. Hence,

b b 1 o) )
f fx)dx =/ —/ e () dt dx
a a 2]-[ —0Q

1 o0 b )
= —/ (p(t)/ e '™ dxdt
27 ) a
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1 0 efita _ efifb
= — t)——dr
2 /_OO v () it
1 R e—ita _ gith
= lim — t)——dt
1 1
=P(a. b)) + P ({ah) + P (D}

Since f was a continuous function, the obtained integral has to be a continuous
function of a and b, and

b
Ya<b / f(x)dx = F(b) — F(a),

which is equivalent to f being the density of a random variable with distribution
function F. o

As a simple consequence of the above theorem, we get a very important
uniqueness theorem:

Theorem 6.8 The characteristic function uniquely determines the distribution of
the random variable.

Example 6.9 The function ¢(t) = el is an integrable characteristic function.
According to Theorem 6.7, the corresponding probability distribution has the
following density function:

1 —itx —|1| 1 —|t] 1
fx)y=— [ e e "'dt=— [ cos(tx)e"'dt = ———-.
27 Jr 27 Jgr (1l + x2)

The uniqueness of the characteristic function shows that () is a characteristic
function of the Cauchy distribution with parameters a = 1 and m = 0.

Theorem 6.10 The characteristic function @x(t) is real if and only if the corre-
sponding random variable X is symmetric, that is, if X and — X have the same
distribution.

Proof 1If both X and — X have the same distribution, then, of course, ¢x(t) =
¢_x(t). Equivalently, ¢_x () = ¢x(—t) = W Hence, it is easy to get that
Sm(px (1)) = 0.

Suppose that ¢y (f) is a real function. Then, we have ¢_x(t) = @x(—t) =
¢x(t) = @x(t). Since the characteristic function determines the distribution
uniquely, we conclude that the random variables X and — X have identical
distributions. |
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Theorem 6.11 [f for some n > 1, E|X|" < oo, then for every r < n, the derivative
0 (t) exists, and

o0
o (1) = / (i)™ dF (x);
—00
(r) 0
Ex = ? .( ).
lr

Proof If E|X|" < oo, then, of course, E|X|" < oo for every 0 < r < n. Consider
the difference quotient
Ut m =) _ e =17
h h
Since [e"* — 1| < |hX| and E|X| < oo, there exists the limit of the difference
quotient when A tends to zero, and

eihX -1

. eihX -1 )
o' (t) = %in})E |:e”X—:| =E |:e”x lim

_ . itX
. lim & }_E[zXe 1.

By mathematical induction, we get
R .
(1) = / (ix)"e"™ dF (x),
—00

and applying this formula to the value of + = 0 completes the proof. O

Remark 6.12 The converse implication in the above theorem does not hold. It is
possible for the characteristic function f of the random variable X to have a k-th
derivative, but the variable X not to have a k-th moment. However, it can be proved
that if 9% exists, then EX? < oco. We use the notation ¢® for the k-th derivative
of the function ¢. Here, we will only prove the following theorem:

Theorem 6.13 Let ¢ be the characteristic function of the random variable X. If ¢
is twice differentiable at zero, then EX? < oo.

Proof Since |p(t)] < ¢(0) = 1 for each t € R, then it is not possible for ¢ to be
convex around zero. Consequently, it cannot happen that ¢”(0) > 0. Applying de
I’Hospital’s rule, we obtain:

2h 2h

. 9'2h) —¢'(=2h)  @2h) —2¢(0) + ¢(—2h)
= lim = lim
h—0 4h h—0 4p2

(p”(O) _ i]llr%% |:(ﬂ (2h) — ¢'(0) n @' (0) — 90(—2]’1):|
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itx _ a—itx\ 2 inh 2
—tlim [ (=) d4F@) = —1im | (222) 22dF)
h—0 Jr 2h h—0 Jr hx

We conclude from this that ¢”(0) is negative real. By virtue of Fatou’s Lemma, we
finally get

sin 7ix \ 2 2
0 x“dF(x)
X

—¢"(0) = %%L(

. sinhx , 2 )
> | lim X dF(x) = | x*dF(x),
rh—0\  hx R

which was to be shown. O

6.2.1 Exercises

316.

317.

318.

319.

320.

321.

It is known that the random variable X has an atom at some point @ € R and
P{X =a} > % Prove that the characteristic function of this variable cannot
take negative values.

Prove that there exist normally distributed random variables X and Y whose
joint distribution is not a two-dimensional normal distribution.

Hint: Construct a random vector (X, Y) living on diagonals of the plane such
that: P{X = Y} =P{X = —Y} = 1.

Let ¢ be the characteristic function of a variable X. Describe the consequences
of the condition ¢”(0) = 0.

Is the function ¢(t) = cos(¢?) a characteristic function of some probability
distribution?

Let X1, X», ... be a sequence of independent random variables with the same
uniform distribution on the interval [—1, 1], and let S, = X; +--- + X,,.

(a) Find the joint density function of the vector (S,, S3).
(b) Find the limit of the sequence of characteristic functions for random
variables n=1/2S, when n — oo.

Let X, X5, ... be independent, identically distributed, two-dimensional ran-
dom vectors which take values in the integer lattice Z> = {(m, n) : m,n € Z}.
The variable S, = X;+- - -4-X,, specifies the position of a particle after n steps,
assuming that initially it was at the origin (0, 0) of the coordinate system. Let
us treat X; as the j-th step of the particle here. Find the limit of the two-
dimensional characteristic function of the variable n~!/2S, at the point (r, 5)
asn — oo if gx,y)(r,s) = Eexp{i(r X + sY)}, and

(a) X; takes four values (0, 1), (1, 0), (—1,0), (0, —1), with probability %
each;
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(b) P(X; = (m,n)} = L form,n € (1,0, 1};
(© PX; = (-1,0)) = P(X; = (1,0)} = 1,
P(X; = (-1, D} =P{X; = (I, -} = L.

6.3 Weak Convergence of Distributions

Definition 6.14 Let u, i1, 1o, ... be a sequence of probability distributions on
(R, B). We say that the sequence (u,) is weakly convergent to the distribution p
(notation w, = uor w, = w) if for every continuous and bounded function f on
R, we have

lim /f(xmn(dx)=/f(x)u(dX)~
n—oo R R

Here, the term weak convergence refers to the general concept from functional
analysis. Each bounded and continuous function f on the line defines a linear
functional over the space of measures on R via the formula u — [ fdu. We expect
that for any such functional, its values on the sequence pu,, n € N, converge to the
value on p if and only if w, = u«.

In the language of the corresponding random variables, weak convergence of the
distributions is called convergence in distribution.

Definition 6.15 Let X, X, X5, ... be a sequence of random variables with distri-
butions u, @y, (o, ... We say that the sequence (X,,) converges in distribution to

the random variable X (notation X, 4 X)if w, = u.

Convergence in distribution translates into a very interesting property of the
distribution functions of the considered random variables.

Theorem 6.16 Ler X, X1, X5, ... be a sequence of random variables, and let
F, Fi, F,, ... be the sequence of the corresponding cumulative distribution func-

tions. Then, X, 4 x if and only if
lim F,(x) = F(x)
n—oo

at each continuity point x of the limit distribution function F.
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Proof Assume that X, 4 x , and let x be a continuity point of the distribution
function F. For every ¢ > 0, there exists a § > 0 for which |F xx86)—F (x)| < 5.
Consider the following functions:

I, y<x; I, y<x—6;
) =J1-5x<y<x+8 [f=1-F,x-8<y<x;
0, y>x-4+96; 0, y > X.

. . .. d
Both functions are continuous and bounded on R. Therefore, the condition X,, — X
implies the existence of an ny € N such that for every n > ng

/f+(y)an(y) < ff+(y)dF(y)+§ and fﬁ(y)an(y) > /ﬂ(y)dF(y)—g.

Hence, for n > ny, we get:
e
Fyx) = / 1o dF(y) < / Fr ) dE(3) < / F0) A0 +
£ €
< /1(—oo,x+6) dF(y) + 5 = F()C +(S) + z
On the other hand, we have

Fox) = f 1 oo dE, () > / f- ) dF () > f FAFG) -3
2 /1<—oo,x—8) dF(y) — % =F(x—-96)— g
This leads us to:

F(x —8) — F(x) — g < Fy(x) — F(x) < F(x +8) — F(x) + g

and hence, it is easy to see that for n > ng, we have |Fn (x) — F(x)| < e.

To prove the converse implication, suppose that lim F,(x) = F(x) at each
continuity point of the distribution function F, and let f be a continuous function
such that sup{| f(x)| : x € R} = M < oo. It is known that the set of discontinuity
points of the cumulative distribution function is at most countable, hence in every
neighborhood of each discontinuity point, some continuity points can be found.

For a fixed ¢ > 0, let us first select two numbers a, b, a < b, which are continuity

&

points of the cumulative distribution function F" and such that F'(a) < 357 and 1 —

F(b) < 1&;- From the assumption of the convergence of the distribution functions

(F,) at points a and b, it follows that there is an ny € N such that for each n > no,
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the following conditions hold: F, (a) < g3; and 1 — F,(b) < g3;- Then, for n > ny,

M
we get:
5, /den—/de‘ < / den—/ de‘
[a,b] [a,b]
s gplans [ rlars [ ggjans [ |ler
(—00,a) (—00,a) (b,00) (b,00)
3e
[a,b] [a,b] 8

Since the continuous function f on the compact interval [a, b] is uniformly
continuous, there exists a § > 0 such that if x, y € [a, b] and |x — y| < &, then
[f(x) = f(»)] < 5. We can divide the interval [a, b] into k subintervals of length
8 with division points xo = a < x| < --- < x; = b. Points x, ..., x; are chosen
from among the continuity points of the distribution function F.

Now, let us define the function fs on the interval [a, b]:

k—1

£5G0) = O ().

i=0

Of course, |f(x) — fs(x)| < % for every x € [a, b). Moreover,

3
L<Z4l| frdr,—| paE|+|| fdF- f(;dF‘
8 [a,b] [a,b] [a,b] la,b]
+ fsdF, — Js dF‘
la,b] [a,b]
3e
<—+/ If—faIan+f F—pldr+| [ faE, - fde‘
8 la,b] [a,b] [a,b] la,b]
3¢ 2e Te
< —4+—+ fsdF, — fsdF| = — + fsdF, — fsdF|.
8 4 la,b] la,b] 8 la,b] la,b]

We still need to estimate the last difference. Note that f; is a simple function,
thus, by the definition of the integral with respect to increments of the distribution
function, we get

; k-1 k-1
I, < ?8 + Zf(xi)[Fn(xH—l) - F(x)] - Z D[ F (xig1) — F(Xi)]‘
i=0 i=0

7 k—1
< g + D[ [|Fatein) = Fxen)] + [Fate) = F| ]
i=0
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From the fact that xo, x;,...,x; are the continuity points of the cumulative
distribution function F and the assumptions on the convergence of the sequence
(F,), it follows that there exists an n; € N such that for every n > n;

|F(xi) — F(x)| < i=0,1,..., k.

&
16kM’
Hence, it follows that for every n > max{ng, x},

L<Z ik °
nxx 45 . . =g,
8 16kM

which was to be shown. m|

The Lévy—Cramér Continuity Theorem plays a key role in problems of conver-
gence with respect to distribution. In order to prove it, we will use the following
lemma:

Lemma 6.17 Let F be a distribution function on R with corresponding character-
istic function ¢. Then, for every u > 0,

u

FQ/u) = F(=2/u) 21— % (I —¢(s)) ds.

Proof Note that

u

1 1 [e’e] u )
~ -y ds =~ / / (1— ) ds dF (x)
u u J_

—u o0 J—u
o sin ux
oo ux
1 1
>2 —dF(x)+2 —dF(x)
(—00,—2/u) 2 [2/u,00) 2

= F(=2/u) + 1 — FQ2/u).

The result of the lemma follows easily from these calculations. O

Theorem 6.18 (Lévy—Cramér Continuity Theorem) Let (X,) be a sequence of
random variables and (¢,) the corresponding sequence of their characteristic
Sfunctions. If ¢,(t) — @(t) for every t € R and the function ¢ is continuous at

. .. . . d
zero, then ¢ is a characteristic function of some random variable X, and X, — X.
Remark 6.19 Of course, the converse implication is also true.

If ¢, @1, ... are characteristic functions of random variables X, X, X, ... and

Xn 4 X, then @, (t) — @(t) for every t € R.
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To see this, note that

on(t) = f e dP = f cos (tx)dF,(x) + i / sin (tx) dF, (x),
Q R

R

where F,, is the distribution function of the variable X,,. Both functions cos (7x)
and sin (fx) are bounded and continuous on R, so the convergence of ¢, () to ¢(t)
follows directly from the definition of convergence in distribution.

Proof of the Lévy—Cramér Theorem Let F, F, ... be distribution functions of the
variables X, X, .... The proof will be carried out in a few steps.

Step 1 Let us set ¢ > 0. Since the function ¢ is continuous at zero and ¢(0) = 1, the
values of ¢(¢) in a sufficiently small neighborhood of zero are only slightly different
from 1, and we can choose # > 0 such that

u

L (I —9(s) ds <
u

—u

N ™

From the assumption of the convergence of the sequence ¢,(¢) for each t € R
and the Lebesgue Dominated Convergence Theorem, it follows that there exists an
no € N such that for each n > ng

u

! (I —@,(s)) ds < &.
u

—u

By Lemma 6.17, we get that for n > ng
Fo2/u) — Fu(=2/u) 2 1 —&.

Step 2 Now let S, = {s, : n € N} be a sequence comprising all rational numbers
contained in the interval I, = [—2/u,2/u]. Using the diagonal method, from
the sequence (F,) e We can choose a subsequence (Fj, ,),en Which converges
to a certain value denoted by F,(s;) at every point 5; € S,,. For this, let us first
consider the sequence of numbers F, (s;), n € N. This sequence is bounded on both
sides, so it contains a subsequence converging to the point which we will denote
by F,(s;) € [0, 1]. Hence, there exists a subsequence (F} ,),en of the sequence
(F,)nen such that

lim Fl,n(sl) = Fu(sl)~

n—o00

Considering now the sequence Fj ,(s2), n € N, we can find a subsequence (F2 ,)nen
of the sequence (F} ,)nen and a number F, (sp) € [0, 1] such that

lim F,,(s2) = F,(s2).
n—oo
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Continuing this construction until the set S, is empty, we get the table of distribution
functions (F,), n,k € N and a sequence of numbers (F,(s¢))ken such that
(Fin)nen 18 a subsequence of the sequence (F), ,)nen if only m < k and

lim Fy,(sm) = F,(sym) form <k, m,k e N.

Hence, it follows that the sequence (F}, ,),cn built of elements lying on the diagonal
of this table satisfies the condition

lim F, ,(sx) = F,(sx) forevery s; € S,.

n—o0o

Step 3 We can now define a new distribution function F,, where

0, t < =2/u;
Fu(t) = § sup{F(sy) : sp <t,s € Sy}, —2/u <t <2/u;
1, t>2/u.

Obviously, F, is left-continuous and nondecreasing. Moreover, for each point ¢ €
(=2/u,2/u) = I, which is a continuity point of F,, we have

lim F,,(t) = F(t).

Indeed, if t € I, is a continuity point of F,, and r{, r, € S, are such thatr| <t < 1y,
then Fn,n(rl) < Fn,n(t) < Fn,n(rZ)- HCHCG,

liminf F, ,,(r1) < liminf F,, , () < limsup F, ,(¢) < limsup F, ,,(r2),

n—oo n—o0 n— 00 n—oo
thus,

Fy(r)) < liminf £, (1) < limsup Fy (1) < Fy(r2).
n—o0o

n—oo

Therefore, if 1, r, — ¢, then lim, F, ,(t) = F,(¢).

Step 4 Now from (F,, ), we will choose a subsequence (F, , ,)nen convergent to
some distribution function F at every continuity point of F. To do this, let us choose
two decreasing sequences ey =& > &, > ..., lim, ¢, =0,andu = u; > upy > ...,
lim,,_, o u,, = 0 which satisfy the following condition: for every fixed k, there exists
a number n; € N such that for n > n;, we have

FyQ/up) — Fo(=2/up) = 1 — &.

The existence of such sequences follows from step 1. Let S,, denote the set of all
rational numbers in the set I,, = (=2/ux, 2/uy). Of course, S,, C S,, C ... Now,
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using the method described in step 2, from the sequence (F;, »)nen = (Fiun.1)nen We
choose a subsequence (F;, ,2)neny convergent at every point s € S, \ S,,,. Thus,

lim F, ,2(s) = F,,(s) foreverys € S,,.
n—oo

As in step 3, we define the function F,,. The sequence F,, ,(¢) converges to F,(t)
at each continuity point ¢ € /,, of the distribution function F,,. It is easy to see that
F,,(t) = F, () forevery t € I,.

Now, from the sequence F, ,,, we choose a subsequence F,, 3 convergent
at each point s € S,, \ S,, and define the distribution function F,, such that
lim, F, ,3(t) = F,,(¢) at each continuity point ¢t € I,, of the distribution function
F,,. It follows from the construction that for every t € I,,,, F,,(t) = F,,(t).

Continuing, we obtain the infinite table of distribution functions (F} ),
n,k € N in which each row is a subsequence of the sequence in the previous
row. We also get a sequence of distribution functions F,,,k € N, such that
lim, F, ,(t) = F, (¢t) at each continuity point ¢ € I, of the distribution function
F,,. Moreover, for j < k,

Fu(t) = F,,(t) forevery t € I,.
Let now

F(1) = lim F, (1).
k— 00

The function F is well defined because the sequences F,, (¢), ¢ € R, are constant
beyond a finite number of elements. This construction shows that F is nondecreas-
ing, left-continuous, and takes values in the interval [0, 1]. Since for n > n; we
have F,(2/uy) — F,(=2/u;) > 1 — &, it follows that F(c0) — F(—o0) > 1 and,
therefore, we conclude that F is a distribution function.

If + € R is a continuity point for the distribution function F, then there exists
anumber k € N such that ¢ € I,,. Now, we have

F(t) = Fuk(t) = n]Ln;o Fn,n,k(t) = nllngo Fn,n,n(t)7

where the last equality follows from the fact that the sequence (Fj ,.)nen 1S
a subsequence of (F, » k)nen-

Step 5 Let (X, ..») be the subsequence of (X,) that corresponds to the sequence
of distribution functions (F}, , ). The carried out construction shows that (X, )
weakly converges to a random variable with distribution function F. By virtue of
Remark 6.19, we get that

/ e dF(x) = lim e dF, ,.(x) = lim e dF,(x) = o).

— —
0 n—oo J_ o n—oo | _ o
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It remains to prove that X, = X, i.e., that the whole sequence converges weakly
to the variable X. Assume that this is not the case. Then, for some continuous
and bounded function f and some subsequence (1), we would have | f fdF,, —
[ fdF| > § > 0. Thus, X,, would not contain a subsequence weakly convergent
to X. However, since lim ¢,, = ¢, by virtue of the construction presented in steps
1 to 4, there must exist a subsequence (ny,) of (nx) for which X,,kl = X, which
contradicts our assumption. O

6.3.1 Exercises

322. Assume that X, —d> X. Isit true that X,, — X —d> 0?

323. Prove thatif X, — X and a, b € R, then aX, + b > aX + b.

324. Poisson’s Law of Small Numbers. Assume that (X,) is a sequence of
random variables with Bernoulli distributions B(n, p,), respectively, and
lim, oo np, = X > 0. Prove that

. . Y\ M
lim P{X, =k} = lim . Pl —p)F="e?* k=01,...

n—00 n—o00 k!

325. Let (X,) be a sequence of symmetric random variables with identical Cauchy
distributions, and let (a,) be a sequence of positive real numbers such that
Yeiax = A < oo. Does the sequence Y, = Y ;_; axXy converge in
distribution?

326. Prove that if X, have Poisson distributions with parameters 1, respectively,

and A, —> A > 0, then X, —d> X, for some random variable having the Poisson
distribution with parameter A.

327. Let Q = [0, 1] and let P be the Lebesgue measure on 2. For each n € N,
we divide [0, 1] into n equal parts and define the variable X,, by the following
formula:

Xo(@) = ) _xenl (1 4]@),
k=1 !

n

where x;, is any point selected from the interval (=1, £]. Show that the
sequence (X,) converges in distribution to a variable with uniform distribution
on the interval [0, 1].

328. We say that the family of distributions {u, : n € N} is tight if for every ¢ > 0
there exists a compact set K such that u,,(K) > 1 — ¢ forevery n € N.
Let ¢, ¢1, @2, ... be characteristic functions of distributions u, i1, ... Prove
that if limg,(r) = @(t) for every t € R, then the family of distributions
{, : n € N} is tight.
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329. Prove that (1,,),en is weakly convergent if and only if each of its subsequences
contains a weakly convergent subsequence.

6.4 Characteristic Functions of Random Vectors

Definition 6.20 The function ¢ = ¢x: R" — C is a characteristic function of the
random vector X = (X1, ..., X,) if

VE=(1.....6) €R"  ¢x(E) =Ee/™ = Eexp {i Zskxk}.
k=1

The notation (&, x) = Y i1 &kxx is understood as the inner product of two (row)
vectors. However, here, it is more convenient to treat it as a product of two matrices:
& of dimension 1 x n and x” of dimension n x 1, i.e., (£, x) = £x’.

The properties of multidimensional characteristic functions are analogous to
those of characteristic functions of random variables, and they can be proved in
a similar way. In particular, for any £, m € R”, we have that

ox-m(E) = px @)™,
Note that
P, x) (€. 0, ..., 0) = BN = gy, (),
so it is a characteristic function of the variable X ;. Moreover,
Qo xp L Ea) = R = g ().

Note also that for any matrix A of dimension n x n (corresponding to the linear
operator T4 : X — XA), we have

(E,xA) = E(xA)" = EAT)X.
Hence,
pxaE) = px(EAD).

If the random vector Y = (Y7, ..., Y,) is such that the random variables Y7, ..., Y,
are independent with the standard normal distribution, then

_ 1 < 1 __
oy (E) = exp :—5 Zsﬁ} =exp{—issT}.
k=1
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Therefore for any matrix A of the dimension n x n, we have
— 1 - ™ (= +T\T 1 T =T
@ya(§) = exp -3 (EAT)(EAT) | =exp —55 (ATA) & ¢.
We did not assume here that the matrix A is non-degenerate, which means that the

above formula is valid even when T4 (R") & R".

The uniqueness theorem for a multidimensional characteristic function takes the
following form:

Theorem 6.21 If ¢: R" — C is a characteristic function of the random vector
X € R" with distribution u, and if B = [ay, bi] X - - - X [a,, b,] is a rectangle in R"
such that ;1(0 B) = 0, where 0 B is the boundary of the set B, then

—lakfk _ e_lbktk
w(B) = hm (271)” —(t1, ..., ty)dty ... dt,

[=T.T]" k 1

If ¢ is a function on R™ which is integrable in absolute value, then | has a density
function given by

1 —i anktk
f(X): Q) ... ] ¢ oty ...t,)dt...dt,
Rﬂ

From the uniqueness theorem, it is easy to derive the following independence
criterion for random variables:

Theorem 6.22 Random variables X1, ..., X, are independent if and only if

Oy Xt oo ) = ox, (1) - @x, (8).

The next theorem reduces the study of convergence in distribution for a sequence
of random vectors to the study of convergence in distribution of the corresponding
random variables.

Theorem 6.23 (Cramér-Wold Theorem) If X;, X», ... are random vectors tak-
ing values in R", then X; 4, X, for k — oo if and only if for every € € R"

E X0 -5 (E.X).

Thus, convergence in distribution is equivalent to convergence of the character-
istic functions also in the case of random vectors.
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6.4.1 Exercises

330.

331.

332.

333.

334.

335.

Assume that the function ¢(&,...,&,) is the characteristic function of
a random vector X = (X4, ..., X,). Find the characteristic function of the
random variable Y = ) _, ax Xy, where aj, ..., a, € R.

The random vector X = (Xy,..., X,) has a Gaussian distribution with
covariance matrix X and vector of expected values m = (my,...,m,).
Calculate the characteristic function of X.

The function ¢(¢,s) = exp{—|at + bs|} is the characteristic function of
arandom vector (X, Y). Are the variables X, Y independent? Does the vector
(X, Y) have an absolutely continuous distribution with respect to Lebesgue
measure?

Let X, X5, - - - € R” be independent random vectors with the same multivari-
ate normal distribution, expectation zero and covariance matrix X. Find the
limit distribution for the series of random vectors

5 X+ +X,
n — ﬁ — .

Find the characteristic function of the random vector (U, V) which is uni-
formly distributed on the unit sphere §; C R

Hint. This vector has the same distribution as (cos, sinf), where 6 is
uniformly distributed over [0, 27 ].

By calculating the corresponding characteristic functions show that the ran-
dom variable R := +/X2+ Y2 and the random vector (U, V) := (X, %
are independent if (X, Y) has a standard normal distribution on R? with
expectation zero and covariance matrix /.



Chapter 7 ®
Limit Theorems Check for

The Central Limit Theorem, the Law of Large Numbers and their numerous
variants play a special role in Probability Theory. What they have in common is
the consideration of various methods of describing the limit behavior of random
variables

X1+"'+Xn_an
b, ’

for some constants a,, b, € R, b, # 0. To study such normalized sums, criteria for
convergence of series of independent random variables are useful. As we will see in
the next section, these sums are convergent exclusively only almost everywhere or
almost nowhere.

7.1 Kolmogorov’s Zero-One Law

Consider a sequence of o-fields (¥,), which are independent, i.e., for every choice
of different n,k € N and any A € 7,, B € ¥, we have P(A N B) = P(A)P(B).
For every n € N, we define

gnza(ﬁa”'ﬂ?’n)ﬂ 7_71,0020'(7_—1177_71+17~--)'

By the tail o-field, we understand the following:

?oo = ﬂﬁ,o@

n=1
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The elements of the tail o-field are called tail events or rare events. More plainly,
we say that tail events are precisely those events whose occurrence can still be
determined if an arbitrarily large but finite initial segment of the o-fields F; is
removed. Now, we can formulate the following:

Theorem 7.1 (Kolmogorov’s Zero-One Law) Any tail event A € ¥, has proba-
bility either zero or one. We can also express it differently: a tail event will either
almost surely happen or almost surely not happen.

Proof Note that for every n, the o-fields G, and ¥, . are independent. Since
A € F, forevery n € N, we have A € ¥, . Therefore, A is independent of
each o-field G,. Consequently, A is independent of 0(7—'1, Fa, .. ) =Floo D Foo-
In particular, we can conclude that A is independent of itself, which ends the proof.

O

Sometimes, it can be easy to apply Kolmogorov’s zero-one law to show that
some event has probability 0 or 1, but it is much harder to determine which value is
correct. In such cases, we can use an elegant method and prove that the probability
of the given tail event exceeds ¢ for some ¢ > 0. This guarantees that the probability
of this event is one.

Example of Application 7.2 If (X,,) is a sequence of independent random vari-
ables, then the series Y .~ | X, converges with probability zero or one.

Proof Let F,, = o(X,). Then, the o-fields ¥, are totally independent. Moreover,
for each n € N, we have

{a): ZXk(a)) converges } = {a): ZXk(a)) converges } € Fuco-
k=1 k=n

Now, all we need to do is to apply Kolmogorov’s zero-one law. O

7.1.1 Exercises

336. Let (X,) be a sequence of independent random variables, 7, = o (X,,). Prove
that the following events belong to ¥,

{ there exists a finite limit lim X, }

n—0o0

X e+ X,
{X,, =oo},{ lim L <a}.

n—o00 n

337. Let (X,) be a sequence of independent random variables, ¥, = o (X,,). Prove
that if the random variable X is #,,-measurable, then it is constant.
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338. Let (X,) be a sequence of independent random variables, 7, = o (X,,). Prove
that the radius of convergence of the power series Y .- X, x" (for x real or
complex) is constant almost everywhere.

7.2 Laws of Large Numbers

To start with, we will discuss a series of theorems known as the weak laws of large
numbers. Why weak? This name is related to the type of convergence of sequences
of random variables appearing in these theorems, the type called convergence in
probability.

Definition 7.3 We say that a sequence of random variables (X,) defined on the
same probabilistic space (2, 7, P) converges in probability to the random variable
X (notation: X, £ X) if for every ¢ > 0

lim Plw : [ X, (@) — X(w)| <&} =1.

n—oo

Example 7.4 To understand why the convergence just defined is not very strong,
consider the following example: Q2 = [0, 1], P is the normalized Lebesgue measure
on €2, and the sequence of random variables X, is defined as follows:

X, (w) = 1(0,%)({”” + w}),

where {a} denotes the fractional part of a number a. It is easy to see that X, is equal
to 1 on a set of length %, and on the remaining part of the interval [0, 1], it equals
zero. Therefore, we get:

1 n—o00

Plo:[X, -0 <e} =1-- =3 1.
n

It follows that X, —P> 0. However, if we set w € Q, we know that for any n € N,
there exist k, £ > n for which

{km + w} € (0, §), thus X;(w) = 1;
{kmr + @} & (0, 1), thus Xi(w) =0.

This means that (X, (w)),en 1S @ sequence containing infinitely many ones and
infinitely many zeros, which implies that it is a non-convergent sequence. It is
known, however, that for sufficiently large values of n, the probability of the event
that X,,(w) = 0 is close to one.
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Although probability convergence is “weak”, the limit of a sequence of random
variables convergent in probability is uniquely determined, as can be seen from the
following lemma.

Lemma7.5 IfX, > X and X, > Y, then P{X = Y} = 1.

Proof From the assumptions of this lemma, it follows that:

P{IX = ¥|>e) <P{IX =X, > e/20r|X, - ¥| > 22

n—oo

P{IX = X,| > e/2) + P{|x, — ¥| > 2} =S 0.

Hence, we have

[e¢]

P{X¢Y}=P<U{|X—Y| > 1/k}> = lim P{|X — Y| >1/k} =

k=1

which was to be shown. m]

Theorem 7.6 (Markov’s Weak Law of Large Numbers) If (X,) is a sequence of
random variables such that

nl;rr;o ;Var(ZX;) 0,

then for every ¢ > 0, we have

n

1
I (Xk—EXk) <
n k=1

8}:1_

Proof LetY, = ’]7 Y i1 Xi. It follows from our assumptions that

lim P {a)
n—o0

lim Var(Y,) = 0.

n—o0

By virtue of Chebyshev’s inequality, we get:

P [a) :
n—o0

=1—-Plw:|Y,—EY,| >¢c} > 1——Var(Y)—> 1,

n

%Z (Xk —EXk> <

k=1

e} =Plw:|Y, — EY,| <¢}

which ends the proof. O
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The proven theorem, as well as the Bernoulli and Chebyshev Theorems described
in the exercises, requires the existence of finite variances of the variables under
consideration. Here, we present another form of the Weak Law of Large Numbers
in which we abandon this assumption at the expense of the assumption of identical
distributions of random variables. We make this assertion without proof. The next
theorem, Chinczyn’s Law of Large Numbers, is presented without proof since it
follows trivially from Lemma 7.9 and Kolmogorov’s Second Strong Law of Large
Numbers (to be described in Theorem 7.13 further in this section).

Theorem 7.7 (Chinczyn’s Law of Large Numbers) If X, X,, ... is a sequence
of independent random variables with identical distributions and finite expectation

m = EX;, then for every ¢ > 0
] n
—ZXk—m <egp=1.
n
k=1

Another type of convergence of random variables is convergence with probability
1, which we also call convergence almost everywhere or almost sure convergence.

lim P{a):

n—00

Definition 7.8 We say that the sequence of random variables (X,) defined on the
same probability space (2, 7, P) almost surely converges to the random variable X
(notation X,, — X a.e.) if

P{w:nli)rgoXn(w) =X(w)} =1,

Note that convergence in probability does not imply almost sure convergence.
For the random variables described in Example 7.4, which converge in probability
to X =0, we get:

P {a): the limit lim X, () exists } — P{#) = 0.

n—0o0

This means that the sequence of random variables (X,,) is almost surely divergent.
The next lemma shows that the opposite implication holds, so convergence with
probability 1 is actually “stronger” than convergence in probability.

Lemma 7.9 Let (X,) be a sequence of random variables defined in the same
probability space (2, 7, P). Then,

X, —> Xae. — X, —P> X.

Proof Assume that X,, — X a.e. This means that

P{a):X,,(a)) N X(a))} —1.
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Equivalently, we can write it as

1=Plo:¥e > 0,30, o)V > n(@, )| Xu(@) - X(@)] <]

=p(NUNo: @ - x@) <o} )

e>0neNk>n

This means that for any ¢ > 0,

1=p(U N oo - x@) <¢) )

neNk>n

or, equivalently,

0=P(ﬂ U [ |Xi(@) — X ()] > s}>.

neN k>n

Since the sequence of sets | k>n {w: | Xr(w) — X(w)| > €} is decreasing, we have

0= lim P(U o | Xe(@) — X ()| = s}>.

n—00
k>n

To conclude the proof, it is enough to note now that

{|Xn—X|>8}C[oJ{|Xk—X|>8}.

k=n
O

Now, we will give two Kolmogorov theorems, in other words, two versions of
the Strong Law of Large Numbers. We will begin by recalling two lemmas from
analysis that we will need to ensure completeness of the proofs. The first one
generalizes the well-known fact that if a sequence converges, then the sequence
of arithmetic means converges to the same limit.

Lemma 7.10 (Toeplitz’s Lemma) Let (a,) be a sequence of non-negative num-
bers, b, = ZZ=1 ai, b, > 0foralln e N, b, / oo. If (x,) is a sequence such that
lim,_ o x, = x € R, then

1 n
lim — E arXp = X.
n—oo b, P
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Proof Let ¢ > 0. We can choose ny € N such that for n > ng, we have the
inequality: |x, — x| < &/2. Since b, /' 00, there also exists an n| > ng such that

1 & &
b—Zak’xk—x’ < 5

=1
Finally, for n > n;, we have
1 1 & 1 &
—Zakxk—x Q—Zakixk—xi+— Z ak|xk—x|
bl’[ k_l bl’l k_l bn k_
= = =np+1

bie &1 &
<E§+§b— Z ay < €.

™ k=no+1

O

Lemma 7.11 (Kronecker’s Lemma) Let (b,) be an increasing sequence of posi-
tive numbers, lim, b, = oo, and let (x,) be a sequence of real numbers such that
Z:O:1 Xy is convergent. Then,

1 n
lim — b =0.
Jim - Z

Proof Letby =0,s0 =0,s, =Y ;_; X,. Then,

n n n
D bixi=) bi(si — Si1) = busn — boso — Y se-1(b — bi_1).
k=1

k=1 k=1
Since the limit lim,_, s, exists, by Toeplitz’s Lemma we obtain that

n

1 1
™ Zbkxk =5, — ™ Zsk,l(bk —by_1) — 0 forn — oo.
" k=1 " k=1

In particular, for b, = n, x,, = n-! ¥, we have the following implication:

n—»00 n

)

LR oyt
& 1S convergent — lim u
n

n=1
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Theorem 7.12 (Kolmogorov’s First Strong Law of Large Numbers) [f

X1, Xo, ... is a sequence of random variables with finite variances and
=1
E — VarX, < oo,
n2
n=I
then

IR
P{w:nll)rgo;Z(Xk—EXk)zo}zl.

k=1

Proof Let S, = >"}_, (Xx — EXy). Since

S, Z‘Xn: EXk’

then, by Kronecker’s Lemma, it is enough to prove that Z,fozl %(X + — EXp)
converges almost everywhere. To see this, we shall check that the Cauchy condition
holds. From Chebyshev’s inequality and the independence of X, k € N, we have
that for every ¢ > O:

P{ sup ]Sk—Sl| > 8} QP{Zsup|Sk—Sl‘ > 8}
k,>n k>n

= lim P{ sup |Sk — Sul >e/2}

m—00 n<k<m

< lim 3 sup P{|S; =S| > e/6}

m—=00 < k<m

108 )

< _ _

S ZE(X EX)
j=n

The second inequality here follows from the Lévy—Ottaviani inequality:

P{m<ax|S,~| > a} 3maxP||S| > 8/3}

i<n i<n

which holds for sums of independent random variables. The right side of this
inequality tends to zero when n — o0 as the remainder of a convergent series.
Thus, S, converges almost everywhere. O

Theorem 7.13 (Kolmogorov’s Second Strong Law of Large Numbers) If
X1, Xs,... is a sequence of independent random variables with identical
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distributions and finite expectation m = EXy, then

nll)ngonzxk—m}—l

Proof Since the convergence of % > " X, — EX| is equivalent to the convergence

of % > (X —EX;) — 0, we can assume without loss of generality that EX; = 0.
It follows from Theorem 4.15 that

o0

Y P{IXi>n} <EIXi| <1+ ) P{iXi|>n},
n=1

n=I

hence Y o7 P{IX;| > n} < co.Let ¥, = X, 1{x,>n), i.€., Y, is the truncation of
X, at the level n. Since the variables X, have identical distributions, we have

o0 o0 o0
> P{X, # X} =) P{IX,| > n} => P{|Xi| > n} <E[X;| < co.
n=1 n=1

n=1
From the Borel-Cantelli Lemma, it follows that

X 4+ X, ) ) Y+ 47,
lim el — 0Oa.e. ifandonlyif lim nteeth — QOa.e.
n—oo n n—00 n
Since EY, = E(Xi1jx,<,) — EX; = 0 (the simplifying assumption), it is
enough to show that

. (" —EY)+---+ (Y, —EY))
lim

n—o00 n

=0a.e.

To do this, we shall use Kolmogorov’s First Strong Law of Large Numbers, which
shows that fo:, nizVarYn < 00. First, note that

|Yn - EYn| = |Xn - EYnﬂ{\X,,lén} + |EYn|1{|X,,|§n}
< Xullyx,i<n) + 1EY,.
Since [EY,| — 0, we have Y o2 | |EY,|*’n™? =: A < 00, and so
o0

VarY 1
Z ;E(X Lx,i<n) )

n=1 n=1

IEY ’

n

— 1
Z; E( L 1<|x1|<k})+A
=1 k=1

S
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o0

E(X2 {k— 1<\X,|<k}>2 +A

n=k

pnqg

~
Il
-

N
\]
[
| —

E<X T—1<1x,1<k) )

»
Il

K

<2 E<|X1|1{k—1<\xl|<k>+A—2E|X1|+A<O°

»
Il
=

which was to be shown. O

7.2.1 Exercises

339.

340.

341.

342.

343.

Bernoulli’s Weak Law of Large Numbers. Prove that for the sequence of
random variables S, counting the number of successes in n Bernoulli trials
with success probability p and for every & > 0, we have

<8}=1.

Chebyshev’s Weak Law of Large Numbers. Prove that that if random
variables X, X5, ... are independent and their variances are jointly bounded,

then for every ¢ > 0,
lim P {a) < 8} =1.
n—oo

Check whether the Strong or Weak Law of Large Numbers holds for
sequences of independent random variables (X,) with the following
distributions:

(a) P{X, =2"} =P{X, =-2"} =0.5;

(b) P{X,=2"=P{X,=-2"1=2""1PX,=0=1-2"2",
(©) P{X, =n} =P{X, =—n} =0.5;

(d P{X,=n=P{X,=—-n}=05n"12,P{(X,=0}=1—n"12%
(e) X, has normal distribution N (0, /n);

(f) X, has Poisson distribution with parameter > = 27",

1
lim P{a): ’—Sn—p
n

n—o00

n

1
I (Xk —EXk>
n

k=1

Random variables X, X5, ... are independent and P{X, = :I:\/M} =
Does the Law of Large Numbers hold for the sequence (X,,)?

Random variables X, X», ... are independent and P{X, = *nea,} = %,
where o, > o for every n € N and some o > 0. Does the Law of Large
Numbers hold for this sequence?

=
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344. Let X|, X»,... be a sequence of 1-dependent random variables, i.e., the
random variable X, may depend on X,_; and X, but it is independent
of the other variables. Prove that if

lim n~'VarX, =0,

n—oo

then for the sequence (X, ), the Weak Law of Large Numbers holds.

7.3 The Central Limit Theorem

Theorem 7.14 (Lindeberg-Lévy Central Limit Theorem) Let X, X,,... be

a sequence of independent identically distributed random variables with parameters

EX; = m, VarX; = 0> < oc. Then for any real number t,

=1 X —nm
Gﬁ

where @ is the distribution function for the normal distribution N (0, 1).

lim P{

n—0o0

< t} = d(1),

Proof Without losing generality, we can assume that for every i € N, X; has
expected value equal to zero. It is enough to consider X; = X; — m. Let ¢(t) =
Ee"*1. By Theorem 6.11, we have ¢’'(0) = 0 and ¢”(0) = —o2. Using the second
order Taylor expansion for the function ¢, we get that

a’t?
pt)=1- - +o(1%),
where o(x)/x — 0 as x — 0. Using the independence and equality of distributions
of variables X; we conclude that, at each fixed point,

n_ Xi n 2 !
Eexp {it XZ{;«/IE} = (p(t/ov/n))" = <l - ;—n +o(t2/02n)> )

Now, it is not hard to see that the last expression tends to exp{—t>/2} as n — o0.
We have shown that the characteristic functions of the sequence of random variables
S, /o +/n converge to the characteristic function of the standard normal distribution
N (0, 1). From the Lévy—Cramér Theorem 6.18, the convergence of the distributions
(and thus the distribution functions of these distributions) to the limit distribution
(limit distribution function) follows. |

The next theorem, proven by J.W. Lindeberg in 1922 as a generalization of many
partial results, is presented here without proof.
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Theorem 7.15 (Lindeberg—Feller Theorem) Assume that the random variables
{Xox:n € Nk e (1,...n}} withmyx = EXy, 07, = Var(X,) satisfy the
following properties:

(a) for every n € N, the random variables X, |, ..., X, , are independent and
> k=i Grzz,k -1
®) > E((Xuk — mu)*1ix, —m,j>c) = O forall e > 0.

Then,

Zkﬁ(x\”/”‘__ Mak) Ao, 1.
n

Condition (b) is known as the Lindeberg condition.

7.3.1 Exercises

345. De Moivre-Laplace Theorem. Using the Lindeberg-Lévy Theorem, prove
that if (S,) is a sequence of random variables with the Bernoulli distribution
S, ~ B(n, p), then for any real number

im w:———— <ay =d(a).
n—oQ /npq
346. Random variables X1, ..., Xqo are independent with the same Poisson distri-

bution with parameter & = 2. Find the approximate value of the expression

100
P{a) : Zxk > 190}.
k=1

347. There is a newspaper vendor in the street. Suppose that every passer-by buys
a newspaper with probability % Let X be the number of passers-by until the
100th paper is sold. Find the exact and asymptotic distribution of the random
variable X.

348. A computer adds 1200 real numbers, each approximated to the nearest integer.
We assume that the approximation errors are independent and uniformly
distributed on the interval [—%, %]. Find the probability that the error in
calculating this sum will exceed 10.

349. Let (X,) be a sequence of independent random variables with equal distri-
butions and finite variance, and let Y, = Z:l Xy. Prove that for any real
numbers a, b,a < b

lim P{a) ra <Y, (w) < b} =0.

n—00
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350. Let (X,) be a sequence of independent random variables with equal distri-

351.

352.

353.

354.

butions and finite, non-zero variance. Prove that for any real number x, the
limit

lim Plo: Xi(®) + -+ + X, (0) < x}

exists and is equal to one of the three numbers: 0, 1,
under which each of these numbers appears.

Let (X,) be a sequence of independent random variables with identical
distributions, expected value zero, and finite variance. Prove that for any real
number x, the limit

1. Identify the conditions

lim P

n—o0o

{ ‘Xl(w)+--~+X,,(a))' }

w: <x
n()l

equals O if & € (0, %) and equals | if @ > %

Let (X,) be a sequence of independent random variables with the same

uniform distributions on the interval [0, 1] and let Y¥,, = 22:1 Xy. Find the

sequence of real numbers (a,) which satisfy the condition:

lim P{a) 1Y, (w) gan\/ﬁ} =p, 0<p<l.

n—00
Let (X,,) be a sequence of independent random variables with equal distribu-
tions, variance equal to 1, and E[X,] = 0 (where [x] represents the integer
part of x). Assuming that

.X1<w)+-~-+xn(w>>o}_1
-

nlin;o P {a) : NG
calculate E{X,,} := E(X,, — [X,]).
Prove that
nook
n 1

lim e™" F = E

n—00 =0 !
Hint: Use the Central Limit Theorem for a sequence of independent random
variables with Poisson distribution with parameter A = 1.



Chapter 8 ®
Extension of Measure Check or

8.1 The Carathéodory Extension Theorem

In this section we describe the Carathéodory Extension Theorem, which states that
any pre-measure defined on a given ring A of subsets of a given set Q2 can be
extended to a measure on the o-algebra generated by A, and this extension is
unique if the pre-measure is o -finite. In this statement a “pre-measure” is any finitely
additive function Q: A — [0, oo] which satisfies the condition

Ve cA | Jaea = o(Ja) =3 oun.
n=1 n=1 n=1

Consequently, any pre-measure on a ring containing all intervals of real numbers can
be extended to the Borel algebra of the set of real numbers. This is a very powerful
result, and leads, for example, to the proof of the existence of the Lebesgue measure.

This theorem is also known as the Carathéodory—Fréchet Extension Theorem,
the Carathéodory—Hopf Extension Theorem, the Hopf Extension Theorem and the
Hahn—Kolmogorov Extension Theorem.

Let Q be a space of elementary events. By 2%, we will denote the set of all
subsets of the set 2. We have discussed measures many times without introducing
their formal definition. Let us now state clearly that a finite measure is a set function
w: F — [0, 00) such that u(2) < oo and ﬁu is a probability measure. The
Lebesgue measure on a compact set  C R* is therefore a measure in this sense.
Below, we introduce the concept of an even broader class of set functions called
outer measures.
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Definition 8.1 An outer measure (Carathéodory Measure) on the space 2 is any
function p, : 2% — [0, oo] that satisfies the conditions:

(1) (@) =0;
(2) AC B = u«(A) < us(B);
(3) A, Ay, - €Q = U, (U;fil Ar) < D000 s (Ap).

Of course, the last two conditions can be replaced by one:

K

o0
AcUAch2=>,u*(A)<
k=1

/’L*(Ak)-

~
Il

1

Note that the definition of an outer measure differs from the definition of a measure
(e.g. probabilistic) only in condition (3). Thus, it can be said that an outer measure
is a measure if it is countably additive, i.e., its value on the union of disjoint sets is
equal to the sum of its values on these sets.

Examples 8.2 In the following examples, €2 is an arbitrary nonempty set. However,
the last example only becomes interesting when €2 contains infinitely many
elements.

(a)
0 if A=
“*(A)z{l if A # .

(b)
0 ifA=46;
pald) = {oo if A # 0.

(©)

number of elements of the setA if A is finite;
nx(A) = e
00 if A is infinite.

Definition 8.3 We say that A C Q2 is u.-measurable (satisfies the Carathéodory
condition) if for every M C €2, the following equality holds:

ps(M) = (M 0 A) + p (M N A,

We will denote the class of j.-measurable sets by the symbol M.
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Of course, in the definition of a u,-measurable set, it is sufficient to require that
for each set M C €2, the following inequality holds:

Ws(M) = (M 0 A) + (M N AY).

The opposite inequality follows from the definition of an outer measure (..

Theorem 8.4 (Carathéodory’s Theorem) Let (1, be an outer measure on the set
Q and let M be the class of .-measurable sets. Then, M is a o -field of subsets of
the set 2, and the outer measure [, restricted to the space (2, M) is a measure,
i.e., is a countably additive set function.

Proof First, we will prove that M is a o-field.

Fact 1If A € M, it follows from the definition that A" € M as well.

Fact 2 M is a field.

It suffices to show that if A, B € M, then also A N B € M. Let M be an arbitrary
subset of 2. Then:

(M) = po(M N A) 4+ (M N A').
Since both sets M N A and M N A’ are subsets of Q2 and B € M,

(M) = (M N ANB) + . (MNANB)
+u(MNANB)+ pu(MNANB).

Note that (AN B)Y = ANB' " UA'NBUA N B'. From Axiom (3) of the outer
measure (L, wWe conclude that

s (MN(ANBY) < u(MNANB) + u (MNA'NB)+ pu (MNANB.
Now, it can be seen that A N B € M because
pe(M) = (M N (AN B)) + (M N (AN BY).
Fact3Ifthesets Ay, ..., A, € Mare disjoint, then for every M C 2, the following
equality holds:
M*<MO0Ak> =pMNAD+---+pu.(MNA,).
k=1

The proof of this fact is based on the principle of mathematical induction on n. For
n =2, we get:

s (M 0 (A1 U A2)) = 1 (M 0 (A1 U Ag) 0 Ay) + (M N0 (A1 U Ay) N AY)
= us(MNA)+ pu.(MN Ay
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because (A} U A;) N A; = A; and (A4 U Ay) N A} = A,. Now, assume that the
equality holds true for some n € N. Then:

()

k=1

n+1 n+1
= M*((M N U Ak) N An+l> + M*<<M N U Ak) n A;1+1>

k=1 k=1

n+1

:M*(MmAn+l>+ﬂ*<MmUAk) :ZM*(MmAk)a

k=1 k=1

which follows from the disjointness of the sets Ay, ..., A, and the inductive
assumption.

Fact 4 If A}, Ay,--- € M are pairwise disjoint and the set M C €, then
po (MO UZ, Ax) = D021 (M 0V AY).

From Axiom (2) of the outer measure and Fact 3, it follows that for every natural
number n,

oo n n
M(M“UAO>W«M“UAO=§)MM”M>
k=1 k=1 k=1

Letting n tend to infinity, we get:

o0 o0
L (MmUAk> > (M N Ap).
k=1 k=1

The opposite inequality follows from Axiom (3).
Fact 5 M is a o-field of sets.

We already know that M is a field (Fact 2) so it suffices to show that M is closed
under sums of countable families of disjoint sets. Let Ay, Ay, - -- € M be pairwise
disjoint. Since M is a field, | J;_, Ax € M for every n € N. Note also that for any
set M C 2, we have:

o0 4 n !
M N (UAk> cMN (UAk> )
k=1 k=1
Hence,

(M) = i (M U Ak) s (M i (U Ak)/>

k=1 k=1
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e fone) oo (01

=D (M N A + (Mm (UAk) )

k=1 k=1

Letting n tend to infinity, we get:

1 (M 0 A + 11 (M N (U Ak) )

k=1

s (M) =

0
k=1

o0 oo /
:M*<MDUAk)+M*(Mﬂ( Ak>>,
k=1 k=1

which implies that | ;- Ax € M.
Fact 6 The outer measure ., as a function on (£2, M) is a measure.

Assume that the sets Ay, A;, -+ € M are pairwise disjoint. From Fact 4, it
follows that for any M C €2,

s (MmUAk> = 1 (MNAY.
k=1

k=1

To show the countable additivity of an external measure ., on M, it suffices to take
M = Q. This ends the proof of Carathéodory’s Theorem. O

It is worth noting here that the outer measure u, restricted to (2, M) is
a complete measure, i.e., such that every subset of any null set is a measurable
null set. In particular, the o-field M contains all subsets of null sets. Indeed, if
A C B € Mand u,(B) = 0, then by Axiom (2) 0 < 4(A) < p«(B) = 0. At the
same time, if p.(A) = 0, then forany M C Q, u.(M N A) < pn4(A) = 0. Hence,
A € M because

(M) Z (M N A = (M N A) + pa(M N A).

Carathéodory’s Theorem is a very useful tool for probability calculus and stochastic
processes. It is usually difficult to define a measure by giving its value on every set
of a fixed o-field, while it is relatively easier to define its values on the sets of a class
which generates the given o -field.

The following theorem, based on Carathéodory’s Theorem, concludes that
a countably additive set function on a field A extends uniquely to a measure on
the o-field generated by (A. It is easy to see that the assumptions of this theorem
can be further weakened; for example, we can assume that the countably additive
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set function is specified on a ring A of subsets of € if €2 is the countable union of
the elements of A.

Theorem 8.5 (Measure Extension Theorem) Assume that « is a pre-measure,
i.e., it is a finite, countably additive, non-negative set function defined on a field A of
subsets of the set Q, i.e., if A1, Az, - - - € Aare disjoint and such that Uff:] A, €A,
then

a(QA,,) = ni;oz(An).

Then, there exists exactly one measure . on o (A) such that «(A) = w(A) for every
set A € A.

Proof The main difficulty of the proof is to construct an appropriate outer measure
and use Carathéodory’s Theorem. We define this outer measure as follows:

o0 o0
e (A) définf{za(Ak) tAc| A AL Ay e A
k=1 k=1

for every A C Q. Let us prove that p, is an outer measure on 2. Since a(A;) = 0
fork=1,2,..., wehave u,(A) > 0,and sinced C JUGU ...,

0< @ <a@ +a@)+---=0,

which means that u,(¥) = 0. It remains to show that the following implication
holds:

EC|JE = m(B) <) ma(Ep).

00
k=1 k=1

Note thatif A C Q2,then A C QUPU. .., thus u,(A) < a(R) < co. By definition
of u., for every k € N, there exists a sequence of sets Ay 1, Ak, - - - € A such that

o0 e o0

EvcJAw,  mdB+ 5 > ) (A,
i=1 i=1

AsE C ULy Ex c UZ U Aris

D (A <

1i=1

o0 00
pi(E) < wx(Ex) + €,
k= k=

—

which, given that ¢ is arbitrary, implies that @, (E) < Z,fil Wi (Ep).
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Now, we can use Carathéodory’s Theorem for the external measure pu, and
conclude that u, restricted to the o-field M of pu.-measurable sets is a countably
additive measure. Let us prove that A C M and that p, coincides with o on the
field A:

Let A € A, M C Q and A, Ay,--- € A be a sequence of sets such that
M C ;2 Ax. Of course, AyNA € A, AyNA € Aand MNA C |2, (AN A),
MNA C U,fil (Ax N A’). From the definition of the function ., we get

o0
a(ArNA) + Za(Ak NA")
1 k=1

wx(M N A) +,u*(MﬁA’) <

k=
= [a(AnA) +aAnA)] =) a(Ap.
k=1 k=1

Since the sequence A, A,, ... is arbitrarily chosen, we conclude that

(M N A) + pu(M N A < inf{ D alAy:Mc UAk} = (M),
k=1 k=1

thus A € M, consequently o (A) C M, which was to be shown.
Let us take any set A € A. Since A C AUPUPU. .., from the definition of the
measure i, we get

Usx(A) < a(A)+a@) +a@) +--- =a(A).

To prove the opposite inequality, let us consider any sequence of sets Ay € A,
k=1,2,... suchthat A C |U;Z, Ax. The sets By = AN Ay, Byyy = AN [Ayq1 \
Uiz Ak], n € N form a sequence of pairwise disjoint sets such that A = | ;- B
and B € A for k € N. Thus:

o0 [e.¢]
w(A) =) a(B) < Y a(Ap),
k=1 k=1
which, given that the sequence A, A,, ... is freely chosen, implies the opposite

inequality: o(A) < u.(A).

Let 1 denote the restriction of the outer measure u, to the o-field o (A). To
complete the proof, it is still necessary to prove that w is the only measure that
satisfies the conditions of the theorem. Suppose this is not the case. Then there
exists another measure A on (€2, o (A)) such that (A) = A(A) for each set A € A.
Let

G = {E € o(A) : M(E) :a(E)}.
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By assumption, A C G. If E € G, then A(E’) = A(RQ) — A(E) = a(Q) — a(E) =
a(E’), therefore E’ € G. If the sets Ey, E,, - - - € G are pairwise disjoint, then

x (U Ek> =) ME)=) a(E)=q (U Ek> :
k=1 k=1 k=1 k=1

which shows that U,fil E; € G. Hence, it follows that G is a o-field containing A
and contained in o (A). Consequently, G = o (A) and A = u, which contradicts our
assumptions. O

8.1.1 Exercises

355. Prove that the sum of countably many outer measures is also an outer measure.

356. Let u be a probability measure on (2, ¥) and Ay, By for k € N be subsets of
Q2. Prove that if the outer measure ., has the property w.(AAB;) = 0 for
every k € N, then

oo oo
M*(UAk) = M*(U3k>-
k=1 k=1
357. Let u be a probability measure on the space (€2, ) and let E C €2,

W (E) Linf{u(A): EC A, AeF).

Prove that ;* is an outer measure on 2% and that p* | F= U

358. Let u be a probability measure on the space (€2, ¥) and let u* be the outer
measure defined in the previous exercise. Let F denote the o-field of sets
which are p*-measurable, and let iz denote the restriction of ©* to the o-field
F. Prove that It is a complete measure which coincides with ¢ on 7.

359. Let « be a finite non-negative additive set function on the field A C 2. For
E C @, we define:

ax(E) :=inf!2a(Ak): AL, ..., A, €A EC UAk )
k=1 k=1

Prove that o™ is an outer measure.
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360. Let 2 = N. For any set A C 2, we define #(A, n) as the number of elements
of A that are less than n. Let C be the class of sets A C 2 for which the
following limit exists

ef #Aa
d(A) & fim A

n—o0 n

The function d(A) is called the density of the set A.

(a) Show thatd : C — [0, 1] is an additive but not countably additive set
function.
(b) Prove that C is not a field of sets.

Hint. Let A be the set of even numbers. Let B be the set of even numbers
between 22" and 2?**! and odd numbers between 22*~! and 22" for every
n € N. Which of the sets A, B and A N B belong to C?

8.2 Cumulative Distribution Functions

Let us return to Theorem 3.17, which states that a function F that satisfies the three
given conditions is the distribution function of some random variable X. It also
means that the function F is the distribution function of the probability measure
Py, which is the distribution of the variable X. The proof of Theorem 3.17 presented
earlier was based on the construction of a suitable random variable. The proof of the
theorem presented below is based on the construction of an appropriate probability
measure on the space (R, B).

Theorem 8.6 Suppose the function F : R — [0, 1] satisfies the following
conditions:

(1) F is a nondecreasing function;
(2) lim_ F(1) =0, limc F(1) = 1;
(3) F is left-continuous, i.e., F(t) = lim, », F(s) for everyt € R.

Then, there exists exactly one probability measure P on (R, B(R)) such that for
teR

F(1) = P((—00,1)).
Proof If such a probability measure P existed, then for any s < ¢ we would have
F(t) =P((—o00, 5))+P([s, 1)) = F(s)+P([s, t)). Following this remark, we define

the P measure on the class of sets

F = {[s,t):s,teR,s<t}
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by the formula
P([s,t)) := F(t) — F(s).

O

Lemma 8.7 If the sets Ay, Ay, ..., A, € F are disjoint and U?zl A; C Ay for
some Ay = [ag, by) € F, then

P(Ag) > ) P(A)).
i=I

Proof of Lemma 8.7 Since the intervals A; = [a;, b;) are disjoint and A contains
their union, we can renumber them in such a way that

By property (1), the function F is nondecreasing; thus
P(Ag) = [F(bo) — F(by)] + [F(by) — F(ay)] + [F(ay) — F(by-1)]

+ -+ [F(a) = F(b)] + [F(b1) — F(a)] + [F(a1) — F(ao)]

n n—1
= [F(bo) = F(b)] + Y _[Fbi) — Fa)]+ Y _ [F(a) — F(b;—1)]
i=1 i=2

n

+[Fla) — Flao)] = Y [Fb) — Flan] =Y P(A)).
i=1

i=1

Lemma 8.8 P is a countably additive set function on F.

Proof of Lemma 8.8 Assume that Ay = [ag, by) = U?i , A; for pairwise disjoint
sets A; = [a;, b;) € F. Since for every n € NU:':1 A; C Ay, by Lemma 8.7, we
have:

P(Ag) > > P(A)).
i=l
Hence, it already follows that

P(Ag) > lim Y "P(A) = ) P(A)). ()
i=1 i=1
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To prove that the opposite inequality is also true, let ¢ € (0, by — ap). The left-
continuity of the function F shows that for every i € N, one can find a real number
a, < a; for which F(a;) — F(a)) < g/2'. The compact interval [ag, by — €] is
a subset of A, thus

[ao, bo — €] C U[ai, b)) C U(a,{, by).

i=1 i=1

The Heine—Borel Theorem applied to a subset S of R asserts that the following two
statements are equivalent:

* Sis closed and bounded,
* S is compact, that is, any covering of S by a collection of open sets contains a
finite subcovering.

By this theorem, there exists an n € N such that
lao, bo — &1 € (@], by).
i=1

We renumber the set {(a;, b;) : i = 1,2,...,n}in such a way that ay € (aj, by),
by € (aj, by), by € (a5, b3), etc. We will finally find a number k < 7 such that
by — € € (ay, by). If not all the elements {(a;, b;) : i = 1,2, ..., n} are used in this
construction, the remaining elements are numbered k + 1, ..., n. Hence, we get:

F(bo) — F(ao) = F(bo) — F(by — &) + F(bo — &) — F(ao)

< F(bo) — F(bo — &) + F(by) — F(ay)

< F(bo) — F(by — &) + Y _ (F(b;) — F(a))

i=1

< F(bo) — Fbo— &)+ Y (F(bi) — F(a)) + ) 23
i=1

i=1

o0
< F(bo) — F(bo— &)+ Y _ (F(by) — F(an) +&.
i=I
All we need to do now is to apply left-continuity of the function F, i.e., the condition

lim,_o F(byg — €) = F(by), to obtain that the inequality opposite to (x) holds.
Consequently,

P(4p) = ) P(4).

i=1
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Now, let Fq be the class of sets defined as follows:
For={A1U---UA, :neN A,...,A, €F. A NA; =0fori # j}.

Lemma 8.9 7 is a ring of sets.

Proof of Lemma 8.9 We need to show that if A, B € ¥, then the union A U B
and difference A \ B also belong to ¥y. Letthen A = E;U--- U E, € ¥, and
B ZZCh U'~-LJ(}m (S 75,\Nh@% E},Cb-e F and Eierj ==(h N Gﬁ = () for
i#j.

If ANB =0, thenalso E; NG; = @ fori # j. This implies that AU B is a finite
union of disjoint sets from the class ¥, thus it belongs to 7.

Now consider the difference A \ B without assuming that the sets are disjoint.
We obtain

wa=0en o, =U(enUs)
i=1 j=1 j=1

i=1

To complete the proof, it must be shown by mathematical induction that for every
E = a,b) and G4, ..., G, € F, the difference E \ U;le G ; belongs to Fy. For
n = 1and G| = [c, d), we only need to consider all possible cases of the relative
positions of the numbers a, b, ¢ and d to state that E \ G| can be represented as
the union of at most two (possibly empty) sets from ¥. Hence, it is easy to get that
EN\ szl G is the union of at most 2" of the sets from 7. |

We now extend the definition of the set function P to the class Fy:

(A =AU--UA,LA €eF.ANA; =0ifi #j) = P(A) £ ) P(A).
i=1
Lemma 8.10 The extension of P to F is well defined.

Proof of Lemma 8.10 Let us consider two different representations of the set A €
Fo as the union of disjoint sets from ¥:

A=|JAi=Bj. Ai.BjeF AiNA =BiNB = fori#k.
i=1 j=1

It is easy to verify that the class ¥ contains all the intersections of its elements, so
foranyi =1,...,n,j=1,...,m,wehave A; N A; € ¥. Since the set function P
is countably additive on ¥, we have

m

Xn:P(Ai) - Xn:P<A,- nJ Bj)
i=1 i=1 j=I
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We also have:

The two sums differ only in the order of the components, so we have the equality
Y P(A) = Z;":l P(B;) and the extension of the set function P to 7 is well
defined. O

Lemma 8.11 P is a o-additive set function on F.

Proof of Lemma 8.11 Let Ay, A,, ... be disjoint sets belonging to the ring F such
that their union Ay = U;’il A; also belongs to Fy. Each of these sets can be written
as a finite union of disjoint sets belonging to the class 7, i.e.,

mi
YVi=0,1,... A,‘:UEi,j, Ei;je¥.

Since the class ¥ is closed under intersections and the set function P is o -additive
on ¥, we have

P(Ag) = ZP(EOJ) - ZP <Eo,,v N U A,-)
j=1 j=1 i=1
=>'P (U(Eo,j N A >) = Z (U U(Eo jNE; k>)
1

i=1 k=l
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Going back to the proof of Theorem 8.6, we use the measure extension
Theorem 8.5 formulated for a ring of sets. Since ¥y is a ring of sets and R can
be represented as the countable union of sets from ¥, every countably additive
function P on ¥y can be uniquely extended to a countably additive set function P’
on the o-field o (F() generated by .

We have yet to show that o (¥y) is a o-field containing Borel sets on the straight
line. It is enough to check that the family o () contains open intervals and is closed
under complements. Note that for any a, b € R, a < b,

(a,b):U[a—u, b) = (a,b) € 0 (Fp).

2n
n=1

In a similar way, we obtain

U kk+1) = Reo).

k=—o00

Since the o-ring o (%) is closed under taking the difference of two sets, and
R € o (Fp), 0 (Fo) is also closed under taking the complement operation. Therefore,
o (Fp) is a o -field. [l

8.3 The Radon-Nikodym Theorem

In this section, we will discuss a theorem which is important for the theory
of measure, probability theory and stochastic processes, the Radon—Nikodym
Theorem. Due to the later applications of this theorem, it is necessary to formulate
it in a rather general form, i.e., for measures that do not have to be finite.

Consider a probability space (2, 7, ). The measure p is a o -finite measure on
¥ if the following conditions are satisfied:

(1) u(A) = 0forevery A € F;

(2) if A; € Ffori € N are pairwise disjoint, then 1 (72, A;) = Y02, i (A);

(3) there exists a sequence of sets A; € ¥, i € N, such that Q = Uf’il A; and
W(A;) < oo foreveryi € N.
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An example of a o-finite measure is the well-known Lebesgue measure on (R, B).
For the sets A,,, we can take intervals [—n, n].

Assume that f : Q — R is a measurable function, p is a o-finite measure on
(€2, ¥) and the sequence of sets (A,) is such that 2 = Uf’; A;, w(A,) < oo for all
n € N. We know the definition of the integral fQ fdu for a probability measure ft.
For a o -finite measure, we shall define it as follows:

u(dw)
n(B,)’

/Qf(w)u(dw)défnlggo/B f(w)u(dw)=n£r&M(Bl1)-Lf(w)

where B, = (J/_, A;. This definition applies only if the right side of this formula
exists. The integrals over the sets B, are well defined, because u(B,) < oo,

thus we are integrating with respect to a probability measure l‘jg‘;‘”;. If the integral

Jo If (@) | (dw) exists, i.e., the limit of the integrals [, f(w)u(dw) exists, we say
that the function f is integrable with respect to the o -finite measure (L.

Lemma 8.12 Ler f : Q — R be a function which is integrable with respect to
a o-finite measure (. on the space (2, F). If for every A € F

/A f@)p(dw) = 0,

then f > Owp-almost everywhere.

Proof Let A = {w : f(w) < O}and, let A, = {w : f(w) < —%}, n € N. The
sequence (A,) is increasing and A = | ;- A,. By our assumptions, we have

1
0< / flo)p(dw) < —=u(Ay),
Ap n

which implies that ©(A,) = 0 for every n € N. Hence, the result follows because
u(A) = lim p(A,) =0.

O

Sometimes we will need to consider a signed measure, i.e., the difference of
two measures with separate supports. The following definition describes this more
precisely:

Definition 8.13 We say that u is a o -finite signed measure on (2, F) if there exist
aset B € ¥ and two o-finite measures u+, = on (2, ) such that one of them is
a finite measure, and

n (B)=0, u (B)=0, YAeB (A =pu"(A)—u (A).

If both measures . and p— are finite, we will say that p is a signed measure.
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The requirement that at least one of the measures ut or u~ should be finite
guarantees that the value of the measure  on every set from the o-field ¥ is well
defined because any indeterminate term of the type co — oo cannot appear. Hence,
the set function

X
A) = — dx, AeB
“(4) /Al+x2 c

is not a signed measure, even though its restriction to any bounded subset A € B is
a finite signed measure.

If the integrals f | f(w)|+(dw) and f | f(w)|—(dw) exist and at least one of
them is finite, we say that the function f is integrable with respect to the o -finite
signed measure (L.

Definition 8.14 Let v be a signed measure and let & be a non-negative o -finite
measure on (€2, ). The measure v is absolutely continuous with respect to the
measure (4 (notation: v < ) if for any set A € 7, the following implication holds:

w(A)=0 = v(A)=0.

Example 8.15 Let X be a continuous type random variable on (€2, 7, P) and let f
be the density function for X. Then,

PX(A)=/f(x)dx Ae 8.
A

If X1 (A) = 0, where 1 is the Lebesgue measure on R, then Px(A) = 0, hence Py
is absolutely continuous with respect to A;. This is where the term continuous type
variable comes from.

The next, important theorem is presented here without proof.

Theorem 8.16 (Radon-Nikodym Theorem) Let v be a signed measure and let
W be a non-negative o -finite measure on (2, F). If v < u, then there exists an
F-measurable, |i-integrable function f : Q — R such that for any A € F, we have

v(A) =/;f(w)u(dw)-

The function f is uniquely determined up to a set of p-measure zero. We call the
function f the Radon—Nikodym derivative of the measure v with respect to the

measure |1, and we denote it by f = g_;i'
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Remark 8.17 Note that the uniqueness of the function f follows from
Lemma 8.12. Indeed, if there were two such functions f; # f>, then for any
A € ¥ we would have

ff1(w)M(dw)=/fz(w)M(dw)-
A A

Now all we need to do is to apply Lemma 8.12 to the function f = £(f; — f>) to
get pulo: fi(w) # fr(@)) = 0.

8.3.1 Exercises

361. Let X be a random variable on (€2, 7, P) and let A| be the Lebesgue measure
on R. Prove that the distribution Py is of continuous type iff Py < A.

362. Find the Radon—Nikodym derivative of the distribution I'(p, b) with respect
to: (a) the normal distribution N (0, 1); (b) the exponential distribution I" (1, A).

363. Find the Radon—Nikodym derivative of the Poisson distribution with parame-
ter A with respect to: (a) the geometric distribution with parameter p € (0, 1);
(b) the Poisson distribution with parameter o > A.

364. Assume that probability measures p and v are absolutely continuous with
respect to the Lebesgue measure. Does this mean that either u < vorv <« u
holds?

365. Assume that a discrete measure p has atoms {x;, x5, ...}, and a measure v is
absolutely continuous with respect to w. What can be said about the support
of the measure v?

366. Is the normal distribution absolutely continuous with respect to some expo-
nential distribution?

8.4 Conditional Expectation

Definition 8.18 Let X be an integrable random variable on a probability space
(2, F, P) and let A be a sub-o-field of the o-field . A random variable E(X |ﬂ)
is a conditional expectation of the variable X given the o-field A if the following
conditions are satisfied:

1) E(X |ﬂ) is an A-measurable function;
(ii) forevery A € A

/Xdpsz(x|ﬂ)dP.
A A
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Theorem 8.19 For every integrable random variable X on (2, ¥, P) and any sub-
o-field A of the o -field T, there exists a conditional expectation E(X |ﬂ). Moreover,
the variable E(X |.?I) is uniquely determined up to a set of measure zero.

Proof Since the random variable X is integrable, the following function
v(A):/XdP, AeA
A

is a finite signed measure on the space (€2, A). If P(A) = 0, then also v(A) = 0,

hence, v <« P. By the Radon—-Nikodym Theorem, there exists an A-measurable

function f = g—l‘;, such that

u(A):/fdP AeA.
A

Hence, it is enough to define E(X|ﬂ) = f. m|

8.4.1 Conditional Expectation Properties

Below we will discuss the basic properties of conditional expectation. We assume
that the random variables discussed here have a finite expected value. The first six
properties are simple corollaries of the definition and the properties of integral,
therefore their proofs are omitted.

Property 1 If A = {0, Q}, then E(X|A) = EX a.e.

Property 2 If X is an A-measurable variable, then E(X |&Zl) =X a.e.
Property 3 If X > 0, then E(X|A) > 0 a.e.

Property 4 |[E(X|A)| < E(|X||A) a.e.

Property 5 E(aX + bY |A) = aE(X|A) + bE(Y|A) a.e. foranya, b € R.
Property 6 If X, /' X, then E(X,|A) /' E(X|A) a.e.

Property 7 If A} C A, C F, then

E(X|A)) = E(E(X|A) | A1) = E(E(X|A)|[A,) ae.

Proof Note that the variable E(X |:711 ) is A; and A,-measurable because A; C A,.
By Property 2, we have

EEX|A)|A) = E(X|A)).
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Now, let A € A; C A,. By the definition of conditional expectation, we have
f E(X|A) dP = f XdP = / E(X|A;) dP.
A A A

Hence, E(E(X |#)|A;) = E(X|A;), which ends the proof. O
Property 8 EX = E(E(X|ﬂ)) a.e.
Proof Let A; = {0, 2} and A, = A. Applying Properties 1 and 6, we obtain

EX = E(X|A)) = EEX|A)|A) = EE(X |A).

This formula is a generalization of the Total Probability Formula. O

Property 9 If the variable X is independent of the o -field A, i.e.,
P(X"'(B)yNn A) = P(X ' (B))P(A) forall A € A, B € BR),

then E(X|ﬂ) =EX a.e

Proof EX is A-measurable, as is any constant function. Since X is independent of
the o-field A, the variables X and 14 for A € A are independent. Hence,

/XdP:leAdP:/XdP/IAdP:/EXdP.
A A

Property 10 IfY is a bounded A-measurable random variable, then
E(XY|A) = YE(X|A) a.e.

Proof We can see that YE(X }ﬂ) is A-measurable. Assume that Y = 15 for some
B € A. Then, forany A € A,

/E(X13|ﬂ)dP=/X13dP=/ X dp
A A ANB
:/ E(X|A) dP:[lBE(X|3I) dP.
ANB A

If Y is a simple function, i.e., ¥ = ZZZI vilp,, Bi,..., B, € A, then

EXY[A) = Y wEX14|A) = Y yla E(X|A).
k=1 k=1



176 8 Extension of Measure

Now, we need to use the approximating sequence lemma and Property 6 to obtain
the desired equality for any bounded, ‘A-measurable variable Y. O

Example 8.20 Assume that the o-field A is atomic, i.e., A = o{A, A, ...}, for
a sequence of pairwise disjoint sets Ay, Ay, --- € A such that Q = Ul‘:il Ag. If
E|X| < oo, then E(X|3{), being an A-measurable function, is of the following
form:

o0
EX[A) = xda,
k=1
for some constants xq, x», - - - € R. To determine these constants, note that
f E(X|A)dP = / xp1a, dP = x,P(A,).
A, Ap
At the same time, from the definition of conditional expectation, it follows that:

/ E(X|A) dP:/ X dP = E(X1,,).
Ay

Ay
Finally,

o0

EX[A) =)

k=1

E(X1,4,)

——1y4..
P(A)

Definition 8.21 Let X and Y be random variables on (2, ¥, P) and let E| X | < o0.
The conditional expectation of X given Y is the random variable E(X |Y ) defined
by the formula

E(X|Y) =EX|o(Y)),

where o(Y) = {Y~!(B) : B € B)} is the o-field generated by Y.

Theorem 8.22 If X and Y are random variables on (2, ¥, P) and E|X| < 0o, then
there exists a Borel function h : R — R such that

E (X|Y) = h(Y).
Proof We will prove that for any o (¥)-measurable random variable Z, the function
h exists. Assume first that Z = 1,4 for some A € o(Y),i.e., A = {w: Y(w) € B}

for some Borel set A € 8. Then,

Z(@) = 14(w) =15(Y ().
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Now, we can define h = 1. If Z is a simple variable, i.e., Z = ZZ:, Zi14,, then,
in a similar way, we get Z(w) = h(Y (w)) for h(x) = Y ";_; x¢1p,(x).

If Z is a non-negative o (¥)-measurable variable, then there exists a sequence of
simple o (Y)-measurable variables Z, such that Z,(w) /' Z(w). We know that for
every simple variable Z,,, there is a Borel function %,, such that Z,(w) = h, (Y (w)).
Therefore, h, (Y (w)) - Z(w) for each w € Q2. Hence, the sequence of functions 4,
has a limit at least on the set of values of the variable Y, and we can assume that

h(x) = lim,_,  h, (x) if this l}mlt exists;

0, otherwise.
Now, we just need to apply the obtained results to the variables Z* and Z~ which
have separated supports and such that Z = Z+ — Z~. O

8.4.2 Exercises

367. We consider the probability space ([0, 1], B([0, 1]), A1), where X; is the
Lebesgue measure on [0, 1]. Let A = o{[0, 1/3), {1/3}, (1/3,2/3)}. Find
the conditional expectation E(X |ﬂ) for the following random variables:

(@) X () =w; (b) X (w) =sin (rw); © X (w) =%
) _J 1 for w€[0,1/3];
DX@=1-w  (©X@= { 2 for we[1/3,1].
Determine the distributions of the obtained random variables.

368. A random variable X (w) = w is defined on the probability space (R, B, y),
where y is the exponential distribution I'(1, 1). Determine E(X ’5‘() if A=
oflk,k+1): k € Ny}.

369. A simple random variable X takes exactly n different values. Is it true that
E(X |ﬂ) also takes at most n values?

370. Prove that if the o-field A consists of events of probability O or 1, then
P{E(X|A) =EX} = 1.

371. Assume that o-fields A; and A, are independent, i.e., for any A; € A, Ay €
Ay we have P(A; N Ay) = P(A)P(A,). Prove thatif E| X| < coand E|Y| <
00, then the random variables E(X |&7l|) and E(Y |ﬂ2) are independent.

372. Let X and Y be independent random variables with the same distribution and
finite expectation. Prove that

X+Y
2

EX|X+Y)=EY|X+Y)= a.e.

373. Does the random variable E(X | Y) have to be o (X)-measurable?



178

8 Extension of Measure

374. Let X, X», ... be independent random variables with the same distribution,

EIXi| < 00,8, = X + -+ X,, 7 = 0(X1, ..., X,). Calculate E(S;|7,).

375. Let f(x, y) be the density function of a random vector (X, Y). Prove that the

conditional expectation of ¥ given X is equal to g(X), where

o) = Jeyf(x. y)dy / fx,y)
fR

Jo fGyydy fx, y)dy
Hence, in a not very precise but useful way, we can say that the conditional

expectation is equal to the expected value with respect to the conditional
distribution.
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Hints and Solutions to the Exercises Chock or

Exercises 1.2.4

10.
11.

12.

13.

14.

15.

. It is enough to use Newton’s formula, also called the binomial formula:

(@b = X (Jab .

. You can simply expand Newton’s symbols and make use of Exercise 3. You can

also differentiate the equality (1 + x)" = >"}_ ()x* at the point x = 1.
‘When answering the second question, remember that the players are numbered.
Note that the answer (5')(%) is wrong. It only guarantees that Adam gets
exactly seven spades, the other players have not been dealt any cards!

It all depends on whether we number the rooms or beds, or maybe both rooms
and beds. If we number the beds, then there are 4! = 24 possibilities.

Since this problem can be found in any high school probability textbook, we
omit the answer. However, we should remember that people are distinguishable.
27 -2,

The tailor’s tape measure is 150 cm long, and Ewa could cut it in any of 149
places, hence (1‘2‘9).

Why not hide these aces right away in your pocket and choose only the
remaining cards?

Unfortunately, we have to deal with a large number of cases. Of course, there
are 7 single-scoop desserts. There is already a problem with the two-scoops
desserts, because there are 21 of them where the scoops are of different flavors,
and there are 7 of those where both scoops are the same.

The first letter of a word can be any of the 31 letters of the alphabet, so
can the second and the subsequent letters. Can you apply the principle of
multiplication?

Perhaps it is better not to get too inquisitive and look only at the cases without
chords, that is, we look at the cases where the swallows are not sitting one
under the other. Then, of course we have 5° possibilities if the swallows are
indistinguishable.
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16.

17.

19.

20.
21.

22.

23.

24.

25.

26.

9 Hints and Solutions to the Exercises

Unfortunately, the task has been awkwardly worded. Since the flags are to
be three-colored, then we cannot paint the green-red-green flag and the task
becomes trivial.

We can write four-digit numbers as x = 1000a + 100b + 10c + d, a > 1,
a, b, c,d € N.a)answer: 333; b) x is divisible by 11 ifand only if a +c—b —d
is divisible by 11. However, it is easier to use the periodicity of the remainder
from dividing successive natural numbers by a fixed number; answer 819;
¢) note that the events the first number is the sum of the remaining numbers
and the fourth number is the sum of the others are not disjoint, e.g. the event
a00a is counted twice; d) answer: 9°.

In the first case, the answer is 15 (we assume that the remainder must be non-
zero) and, after the replacement, it is 18.

(5) 2"

We can distinguish the order of pairs, the order of children in a pair, or both the
order of pairs and the order in a pair.

We believe that the coins only differ in denomination. Why not place the one-
cent and the five-cent coins into separate sets of boxes, and then combine the
coins from the boxes with the same number.

All you need to do is to select the drawers into which we want to put a ball.
Let’s put one ball in each drawer. Only the remaining balls should be put in
randomly.

Note that this is equivalent to arranging k indistinguishable balls in # numbered
drawers. Zero components correspond to empty drawers.

The upper bound is easily derived from the previous exercise.

Exercises 2.1.1

27.
29.

30.

No, but to see it you need to present a counterexample.

We need to show that any open set is equal to the countable union of open
rectangles such that their defining numbers a, b, ¢, d are rational. There are
countably many such rectangles. Now, for each point (x, y) of the open set U,
we find a rectangle P (x, y) with rational ends such that (x, y) € P(x,y) C U.
Then,

ve |J Py cu,

(x,y)eU

hence we get the equality, and the sum is countable because there are countable
many such rectangles.

(a) and (b) Note that we also get a one-point set here.

(d) Attention! Here the generator of the o-field is the set of rational numbers,
as in (a), where the generators were sets [0, 2/3] and [2/3, 1].
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31.

32.

All o-fields generated in cases (a), (b) and (c) are identical. Can the same be
said about fields, rings, and o -rings?

No! To see this, one must construct a countable sequence of finite sets, the sum
of which is an infinite set and its complement is also an infinite set.

Exercises 2.2.1

34.
35.
36.

37.
38.

39.

(@A=B;(b)B=Q\A;(c) A= B;(d) AN B = {; but this still has to be
proved.

@B;b)(ANBYUANCIUMBNC); (c)(ANBYUANC)U(BNC);
d) B; but the proof is necessary.

ANB=4.

They exist; you just need to choose AN B C C.

Let 0 denote the head and 1 denote the tail. The space €2 can be described in at
least two ways:

Q =1{(0,0,0),(0,0,1),(0,1,0), ..., (1,1, D},
Q={(a;,ar,a3) :a; € {0,1},i = 1,2, 3}.
First, we need to number the cards e.g., the order of the suits is as follows: one
is an ace, two through ten are their numbers, eleven is a jack, twelve is a queen,

thirteen is a king. The order of the suits: clubs, diamonds, hearts, spades. Thus
card number 49 is the ten of spades.

Exercises 2.3.2

40.
41.
42.
46.
48.
49.

2 and 2".

For 129 and 130 the answer is no. However, a justification is needed.

Just take the trivial o -field in a space containing more than three elements.

It is enough to use the probability continuity theorem.

No! You need to give an example of a set A # ¥ for which P(A) = 0.

You need to show that the subsets of the sets of measure zero from ¥. also
belong to 7.

Exercises 2.4.1

51.

Of course {, Q} and 2. Which of them is complete?
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52. Note that P(A) > eA(A) for every Borel set A. Consequently, if E were
P-measurable, then we would have

P(-1,2]) =P (U(E+qn)) =Y P(E+q,) 2¢) ME+g,) =o0.
n=1

n=1 n=1

53. We need to show that the Lebesgue measure of this set is equal to zero, and since
it is a countable sum of one-point sets, it suffices to show that the Lebesgue
measure of a point is equal to zero.

Exercises 2.5.1

54. The number of all irreducible fractions is equal to 2(5 -3 4+ 3 - 7).

55. For example, for k = 3, we have n(Q) = (950), n(Ay) = (827), where A, means
that among the numbers drawn are all k numbers that the player has bet on.

56. There are only four such stones.

57. 6!,

58. It is worth noting that the two possible approaches to this task lead to the same
result. If we can’t distinguish between the people, then p = ("::1’") /(”j;k). If
we distinguish between them, then n(A) = (l)m!(n +k—m)...(k+1),but
the number of events in €2 must also be counted differently.

59. The cardinality of the set of favorable events is: (2}1":22) + (2";2).

60. In the first case, the probability of drawing a white ball is equal to 0.5 in each
draw. We are not interested in the order in which the balls are selected, so we
identify all sequences with exactly n white balls—there are (2:) of them. Now,
it suffices to note that each such sequence occurs with a probability of 272",
The second case, when we draw without returning the balls, is easier.

o1 () -5

62. Let k be the number of drawn balls. Consider all k-element sequences of zeros
(white balls) and ones (black balls) that have a zero in the first position. If we
write this sequence from the end, we get a sequence with a zero in the last
position. Hence, the number of elementary events favoring both events is the
same.

63. (1+a)~ L.

64. Suppose there are n white balls and k black balls. Without loss of generality, it
can be assumed that k < n. Then, the sought probability is:

n? 4+ k? 1+ x?
p= E T f),
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65.

67.

68.
69.
70.

71.
72.

73.

75.

76.

79.

80.

81.

where x = k/n € (0, 1]. It is easy to show that f is a decreasing function and
f(1) = 0.5. How will the function f change when the draws are done without
return?

@ ks ) Q.

n

30 730—k
pk) = —(")830

When counting the cardinality of the event A, we can ignore the piggy-bank.
Of course, we treat coins as indistinguishable.

n(A) = n(n + 1)(n* —n + 3)/6.

n(A) =nn — 1)(n —2)/6.

(", )/ (5)-

Let us divide both letters and envelopes into even and odd numbered ones. The
sum will be even if the sheet and envelope have even numbers or both have
odd numbers. Hence, the cardinality of the event we are interested in is equal
to (n!)>.

Only item (c) may cause some difficulties. First, note that the sequence from
the first ace to the last one consists of 3k + 4 cards, so 3k + 4 < 52. Now,
choose the position of the first ace in the deck (52 — 3k — 44- 1 ways), place the
aces in the already established positions (4! ways), then shuffle the rest of the
cards and place them in the empty places.

First, let’s set up the 6 rooks according to the set rules. We will have four empty
spaces left, two of which belong to the forbidden diagonal, so there is only one
way to arrange the last two rooks (two ways if we are considering numbered
rooks, but then the calculations are more difficult!).

It is easier to calculate the probability of having at least k such pairs, and then
calculate P{X =k} =P{X 2 k} - P{X > k + 1}.

A correct description of the set €2 is only a half of the solution. Let x be the
bridge chosen by the person leaving Burghers’ Island and y the bridge chosen
by the other. Then, we have Q = {(x, y): x,y € {1, ..., 7}}.

First, choose k pairs of shoes, and then choose one shoe from each of the
selected pairs (the shoes in a pair are different: left and right!).

Planets and moons are distinguishable. You should first number the planets
(e.g., in order of distance from the sun), then number the moons and add the
moons to the planets. We agree that if a planet has received the moons numbered
k and £, k < £, then the k-th moon is closer to the planet than the £-th moon.
Hence, n(Q2) = 4!-5!- 4% n(A) =4!-4.5!.3.
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82. Electrons and atomic nuclei should be treated as indistinguishable elements. Let
us arrange five indistinguishable balls (electrons) into four unnumbered boxes
(atomic nuclei). Then, we get:

5=54+40+04+0=4+1+040...

Exercises 2.6.1

84. Q@ =10,5],A=(1++3,5].

86. 5/9.

87. @ =1[0,¢] x[0,£], P(A) = 1/4.

88. Only the distance from the center of the coin to the nearest line below this center
is important, so Q = [0, £).

89. Q=[-1,11%A={(p,q) € Q: p*> —4q > 0}.

9. Q=1[a,b]’ ,A={(x,y,2)eQ:x<z<yory <z<x}

91. If we define success properly, then it is enough to calculate the probability of
getting k successes in 7 trials.

92. This is also the problem of getting n successes.

93. Difficult! Q = K?2, and in the space R* it is hard to see anything! However,
determining the position of the point A = (x, y), we will get the cut D4 of
the sought set D C K2 by the plane (x, y,z,%): (z,¢) € K. The answer for
K =10, 17? is:

1 1
/ / (1—(x—y)2—(l—x—y)21(x+y<l))dxdy.
0 0

94. For those who do not remember the formula for the area of a circular segment,
let us recall that the definite integral over an interval is equal to the area under
the integrated curve.

95. The length of the curve described by the function f(x) on the segment [a, b] is
given by the formula

b
/ 1+ (f/(x))2dx.

Exercises 2.7.1

101. Yes.
102. No.
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103.

108.
109.
110.
111.
112.

1 o B 4

3 (aJrl + B+1 + y+1)'
N-2

N+M-2"

2/3.

P(5) =P#@) =1/3.

507

1210

Let us choose two of the three baskets. With a probability of 2/3, we get the
baskets of various kinds. If we now buy 1.5 kgs of nuts from each of them,
how many wormy nuts will we buy?

Exercises 2.8.1

120.
121.
124.
125.
126.

The events are pairwise independent but not independent.
The events AN B, ANC, BNC are pairwise independent but not independent.

These events are not even pairwise independent.
9

19
2" —1—n.

Exercises 2.9.3

127.

128.

129.
130.
131.
132.
134.
135.
136.
137.

We have five problems, so five experiments. The probability of success is the
probability that the topic has been discussed and that Adam is able to solve
the problem. Hence, p = 0.736. The task contains redundant and therefore
confusing information that there were supposed to be 15 lectures.

The problem becomes easy if we consider n even and n odd separately.

@n - (3)' 1= ()"

The event A.

The events are equally probable.

Recall that Y°7_ ((1))* = ().

n=>09.

Approximately 0.9033.

l—@(p+1-p).

The solution of this problem for n = 7 with a full justification of the strategy
used can be easily found in the literature on Hamming codes, as well as in
the popular science literature. However, you are advised to try and find this
solution yourself—maybe you can find a simpler and therefore nicer solution?
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Exercises 2.10.1

143.
144.

P(A) = 0.
P(A) = 1.

Exercises 3.1.1

148.

Only Y and Z are random variables.

Exercises 3.2.1

154.

155.

156.

157.

158.
159.

These variables have identical distributions. However, P{w: X (w) # Y (w)} =
1, which means that they are different everywhere.

(a) {(a,b,c): a=00<bhb<1-c,0<c< 1}, (b) {(a,b): b=0,0<
a < 1} (left-continuity property).

Just to verify: the cumulative distribution function of X has a jump of height
1/3 at the point + = 3, and the cumulative distribution function of Y is
continuous but not a piecewise linear function.

(©) F(1) = Lig.00) (0).

Hint: Calculations must be performed separately fora > 0,a < 0 and a = 0.
Suppose that it does not have to be the case, and let F' be a cumulative
distribution function with uncountably many discontinuity points. Let A,
denote the set of those points where the distribution function jumps exceed
1/n. If all sets A, are finite, then the cumulative distribution function has
countably many of these points, so at least one of these sets, for example A,,,
is infinite. It should not be difficult to derive from this that the considered
distribution function is unbounded.

Exercises 3.3.9

165.

166.
168.
169.
170.

[(r—=D/pl+ L

POy =1 = ()7 (). k=0.1.2.3.4

5/16.

The Bernoulli distribution with parameters n = 10, p = 0.5.

Careful here! This is not the distribution of the waiting time for the third
success, but the arithmetic mean of two such distributions. The result would
be different if he randomly determined whether he should roll a die or toss
a coin before each move.
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Exercises 3.4.7

171.
172.
173.
179.
180.
181.

182.

The exponential distribution with parameter A2.

The gamma distribution with parameters b2, p.

The Cauchy distribution with parameters 1, 0.

N(am + b, |a|o).

fx) = 2)Lxe_“21(x > 0).

Determine the length of the third side X = h(cos ¢) from the Law of Cosines,
where the variable ¢ has the uniform distribution on [0, 27).
Q={x,y):x,y€[0,1]}.

X(x,y) =/x2+y21(x>+y2 < D +minf{x, y, 1 —x, 1 =y} 1 (x> +y2 > 1).

Exercises 3.6.1

184.
186.

187.

188.

188.
195.

196.

197.

You can take X as “any other” variable.

Let F be the cumulative distribution function with density f. Now, just
calculate the appropriate distribution functions of the variables Z and U, and
then differentiate them. For example, P{Z < u} = P{X < u,Y < u} =
F?(u). Hence, fz(u) = 2F (u) f (u).

To calculate the distribution of U,, note that

PU, <u}=3P{X <u,Y <u,Z > u}.

Fz(1) = F(DG @), Fw() = F() + G@t) — F()G(1), Fr(1) = F(t/2)G (1),
Fy@t)=1— (1= Fn)(1-G®).

Find the cumulative distribution functions of the variables ¥, = > |, )2(7 first.
Note that ZZ=1 X has distribution I'(n, a). To calculate the distribution
function of Y, we use the total probability formula: for u > 0,

oo u n
a
P{Y <u} = E pq"”/ X" le % dx.
— N
— o (m—1)

f@) = %[Cb(z —a)—d(z— b)].

—a

fz(x) = 27 2x(sinh(x))~".
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Exercises 3.7.1

198.
200.

201.

203.

204.
205.

206.

207.
208.
209.

210.
211.
212.
217.
220.

X and Y are not independent.

Recall that variables of continuous type are independent if their joint density
is the product of the density functions of separated variables.

Yes, it is possible. Just remember that the integral of the density function is
equal to one.

) Fr(t) = 1 —e™ —qte ™, t > 0;(d) Fy() = 1 —e ™ 4 e3¢,
f) Fz(t) = H+1’t > 0.

@ £ oy + 2w ) Ape I > 0) = A(1 = p)et (1 < 0).
Try to express the density as an integral, e.g., fz(z) = fR f(x,z—x)dx, by
calculating the corresponding distribution function first.

A lot of cases. If u € (0, 1), then

PlZ<u}=PX>uX+Y),X+Y >0}
+P{X <u(X+Y),X+Y <0}

oo puy/(1—u) 0 -y
=/ / f(x,y)dxdy+/ / f(x, y)dxdy.
0 -y —oo Juy/(1—u)

L(1 e —2e%).

P{X > Y} =0.5.

Recall that there are two discrete geometrical distributions; one starts from
zero, the other starts from one. Hence,

P{Zy=k} = (k+D)p*¢*, k=0,1,...,
P{Z =k} = (k—1D)p*¢* 2 k=2,3,...

The variable Z; has the Pascal distribution with parameter r = 2.

The variable Z has the Poisson distribution with parameter | + A;.

e (Ap)"/n!.

JPitp3=1,p2=2./pip;.

I'(p+4q,a).

It is sufficient to show that the joint distribution function and/or the density
of the vector (Z, W) is a function of separated variables. Nevertheless, it is
worth finding the densities of the variables Z and W. For u, v > 0, we have

Fzwu,v)=P{Z <u, W <v}= // fx(x) fr(y)dxdy

x+y<u,x/y<v

= lj_v(l—e’”(l+u)>;
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fzw,v) = m - ue

221. Though slightly laborious, it is possible to calculate the following:

1
Frzwu,v)=P{Z <u, W <v} = // 2—e_(x2+>’2)/2dxdy
T

x24+yr<u,x/y<v

1 1y 1 un
= —(n—arctan—)—(l —e );
T v/ 2

fowluvy = —— . Leun
U,v)= — - —¢ .
oW (1 +v2) 2
222. Foru,v > 0, we have
Fowl, ) =~ g fuiv a~Te=a 4y d
zw,v) = ————— xt e yie ydx
F(P)F(C]) 0 x/v
Fowtu) = 2 et VL)
zZW ) - A, . - T 5, <
L'(p+q) B(p,q)

Exercises 4.1.1

225. The game is fair if it has a win expectation equal to zero, so a = 2b.
226. Without losing generality, we can assume that a; is the largest number. Then,

VEX" = aiy/p1 + pa(azfa)) + - - -+ pu(a,/ay)"

<aw/pir+--+ pa=ar.

On the other hand, ~EX” > a;y/p; — 1. The second limit is even easier to
find.

228. Note that the variable X has a hypergeometric distribution with parameters
N, M,k,k <N,k < M:
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In particular, this means that

Z}(]Z) (kA—Z) N (NXM)

This identity shall be used in calculating EX.

Exercises 4.2.1

231.
235.

236.

237.

238.

239.

Of course, these variables cannot be independent!

Consider the random variables ¥; = X;/(X; 4+ ---+ X,,). Of course, they
have the same distributions, as well as the same expected values. Now, just
note that E(Y; +...Y,) = El = 1.

E max{0, X} = 0.5.

Letx = EXT >0,y =EX~ > 0.Then,a = x —y,b = x + y and it is
enough to draw conclusions.

P{X >k} = Z;’;k P{X = n}, k € N. Now, it is enough to change the order
of summation in the expectation formula.

This is a simple conclusion from Exercise 238.

Exercises 4.3.1

240.

The appropriate integral should be written as the sum of the integrals over the
sets {w: |X(w)| < 1} and {w: | X (w)| > 1}. On the first set, | X (w)| < 1, and
on the second, | X ()| < X%(w). Thus, E|X| < EX? 4+ P{w: |X(0)| < 1.

Exercises 4.4.1

248.
249.

250.

It does not exist.

We do not need to integrate anything. Just remember that the parameter p
in both distributions can have any positive value, and that the integral of the
distribution density is equal to 1.

Q =[0,297], P(dw) = dw/297. Answer: % -210-297.
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Exercises 4.5.1

251.
252.
253.
254.

Just apply integration by parts.

This is a straightforward conclusion from Exercise 216.

Attention! These cumulative distribution functions can be discontinuous.

It is enough to note that C is the set of real numbers which contain no 1’s in
their ternary (base three) representation.

Exercises 5.1.1

260.

266.
267.

268.
270.

(b) This is a simple application of the fact that the derivative of an absolutely
convergent power series is equal to the series of derivatives of its components.
This exercise, when it appears in the next chapter, will be even easier.

Note that the function f(a) = E(X — a)? is quadratic, so its minimum is easy
to determine.

Note that Var(XY) = VarX - VarY + VarX (EY)? + VarY (EX)2.

We already know the value of EX.

Exercises 5.2.1

274.
275.

P{15 < X <45} > 0.9.
n > 2560.

Exercises 5.3.3

281.
282.
284.
286.

lo(Z, W)| = |a|.

p(X,Y) = 0, but the variables are not independent.

P{X > 1Y > 1} #P{X > JP{Y > 1}.

To determine the distribution function of the variable X, let us recall that
the area of the side surface of the solid formed by the rotation of the curve
y = f(x), x € [a, b] around the axis OX is equal to 27 fab V1 + (f)%dx.
Answer: X has a uniform distribution, the density of the vector (X, Y) at the
point (x, y) is a function that depends on x> + y2.
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Exercises 5.4.1

294.

295.
296.

297.

298.

It is worth noticing that for Cov(X, Y) = 0, the joint density for the vector
(X, Y) is a function with separated variables.

EY =0, VarX = aXa’, wherea = (ay, ..., a,).

The final calculations are as follows

L e V2 /iooe’()"y)z/zdx dy = L /e""z/2 /ooe”z/z drdy = 1
2 Jr y N2m Jr 0 2

(b) Let A, be the arc of the unit circle between the positive semi-axis O X and
the line y = tg(¢)x. Then, P{U € A,} =P{X > 0, tg(p)X > Y > 0}.¢) Itis
enough to calculate P{R € [0, 7], U € A,} forany r > 0, ¢ € [0, 27).

First of all, you need to make sure that this function is a density function.

Exercises 6.1.1

310.
311.

312.

313.

gy (1) = (1 + it /b)~Prt=tr0,

This can be demonstrated by considering a convex combination of the
distributions of these variables. But it can be done a bit differently: we define
a random variable ®, independent of X1, ..., X,, which takes the values
1,..., n with probabilities py, ..., p,, respectively. Now, simply note that ¢
is the characteristic function of the variable

n
Y= Xiljomy.
1

Let X1, X, ... be independent random variables with distribution function F,
and let ® be a random variable with a geometric distribution with parameter
% independent of all X;. Now, you only need to calculate the characteristic
functions of the following variables: Z? Xi, X]l{@:” — le{@>1}, Xl — Xz.
Suppose that ¢ is the characteristic function of X and let 6 be a variable
independent of X with the uniform distribution on [0, 1]. Now, you only need
to calculate the characteristic function of the variable Y = X6.

Exercises 6.2.1

316.

Assume that a = 0. Since P{X = 0} = p, there exists a probability measure p
such that Py = p&o+-(1—p)u. Hence, |p(1)—p| = (1—p)|1i(t)| < (1—p),so
the smallest possible distance ¢ from the OY axisis p—(1—p) =2p—1 > 0.
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If a # 0 we get |p(t) — pe'™®| = |p(t)e™""* — p| < 1 — p, which does not
change the distance of ¢ from the OY axis.

317. Yes, it may, but it is not a very random variable.

318. Just use Theorem 6.13.

319. This is another application of Theorem 6.13.

321. (a) </)X1(a,b) — Eell@b). X)) — (eia +e—ia +eib +e—ib)/4 =1 a242rb2 +
o(@® + b%). (o) gx,(@,b) = 1 — T 4 o@@® + b?). (¢) ¢x,(@,b) = 1 —
2(12+(6b—u)2 +0(Cl2 +b2)

We can now find the limit of ¢g, /, (a, b).

Exercises 6.3.1

324. Note that

(n)ps(l_pn)nk _ (np”)k nmn—1...n—k+1) <l—pn)_k<1—npn>n.

k k! nk n

325. Yes, the limit distribution is a Cauchy distribution with parameters mA, a A if
X; have the Cauchy distribution with parameters m, a.

326. You need to use Lemma 6.17. We are looking for a compact interval of the
form [—2/u, 2/u], where u should be selected similarly to Step 1 of the proof
of the Lévy—Cramér theorem, but uniformly for all ¢,,.

328. Note that

(n>p,];(1—p,,)"_k _ mp)nm—1)...(n—k+1) <]_pn)*k<]_npn )".

k k! nk n

Exercises 6.4.1

334. Too difficult for you? That’s good! The function f(¢) = fO”/ % cos (tcosx) dx
is a special function—a Bessel function of the first kind. However, it is
possible to show elementarily that (x.v)(a, b) = ¢x.v)(vVa* + b2, 0).

Exercises 7.2.1

341. (a) Note that P{>" X; > 2"} > P{X, = 2", X, = 2"} = %because
2k -2 > |ZI{_1(:I:2J' )|. Hence, it already follows that neither the Weak
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342.

343.

344.
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nor the Strong Law of Large Numbers does not hold. (b) Yes. (c) Let us first
show that random variables )| X, are symmetric, e.g. by showing that their
characteristic functions are real Now simply note that P{} ] X > n} >
P{X, = n, Z Xk >0} > 2 2 and draw conclusions. (f) The Strong Law
of Large Numbers holds. What about the Weak?

We have EX,, = 0 and VarX,, = Inn, thus

n n
n’szaan = n’zzlnn <n'lnn—>0 if n— oo

< } % “ Zxk+an < }
% H ZXk—an <e }

< g, then

Note that

Lete € (0, ). If @ € L such that 711 Z;} X + oy,

n—1
=' ZXk—i-a,,—Zan > 20, — & > a.

1 n—1
‘_ Z Xk —
= k=1
By changing o, to — «, in the above reasoning, we get that the sets under
consideration are disjoint. Hence, P {% ’ZZ=1 Xi| < 5} < % foreveryn € N
and it cannot converge to one.
Note first that

Cov(X;, X;) < y/VarX;VarX; < VarX; + VarX;.

Hence,

Var( Xk) = VarX; + 2<C0V(X1, X5) + -+ Cov(X,_1, X,,))
k=1

k=1
n n n n+1
VarXy + 2( > VarXei + ) Varxkﬂ) <5 VarX,.
k=1 k=2 k=1 k=1

Now we should use the assumption and prove the result.



9 Hints and Solutions to the Exercises 195
Exercises 7.3.1

346. Approximately 0.0793.

347. Obviously, X is the waiting time for the hundredth success, so we know the
exact distribution. Let X; = 1 if i-th passer-by buys a newspaper, otherwise
X; = 0. The variables X; are independent, EX; = 1/3, VarX; = 2/9. We are
looking for an estimate of the cumulative distribution function:

100+n
P{X < 100+ n} :P{ 3 x> 100} ~1 —q><200—_”)
— V2100 +n) )

348. Let X; denote the error of the i-th approximation, n = 1200.

p“ ,

349. Letm = EXy, 02 = VarX;. Then

. b—nm b—nm
Pia< Xp<bp ~® - o .
I Z ¢ } (m) (m)
350. This limit is equal to % if EX; = 0.
351. If x < O the result is trivial. For x > 0, the probability is approximately equal
1
to2®(xn*"2 /o) — 1.
352. After applying the Central Limit Theorem, the condition can be written as

®(+v/3Qa, — /n)) = p.
353. Note that

i > 10} ~2(1 — ®(1)) ~ 0.3174.

%Z fz(xk EX)) + — ZE(Xk [Xc])
k=1

1 & 1 &
= Y (X« —EXp+—= Y E(X
ﬁk:l( k 3] ﬁk:l { Xk}

1 n
= Z Xy —EXp) + VnE{X,}.
k=1

Now all you need to do is apply the Central Limit Theorem.
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354. If Xy, X», ... are independent and identically distributed with the Poisson
distribution with parameter 1, then ZZZI X has the Poisson distribution with
parameter n. Hence,

» n nk n n n

e ;Hng{;ijk}zP{Ognggn}

Z?‘:lxj_"
NG

CTG

=P{—\/ﬁ< <0} ~ <I>(0)—<D(—x/ﬁ)—>%-

Exercises 8.3.1

362. (a) We are looking for a non-negative function /4, such that for any Borel set
A C [0, 00), the following equality holds:

1 2 b?
h(x)——e /2 dx =/ —xPle P dx.
/A NGT aT(p)

364. It is not true that if a distribution u is absolutely continuous with respect to
the measure A, then the implication (A(A) > 0) = (u(A) > 0) holds. Hence,
the support of p does not have to be the entire real line, and supports of the
measures (4 and v can be disjoint.

366. No, it isn’t, but it should be proven.

Exercises 8.4.2

367. We see that A is an atomic o -field, so we proceed as in Example 8.20.

368. Note that P(dw) = e~“dw on the positive part and P(dw) = 0 on the negative
part of the real axis.

369. No, the number of values can increase. As a counterexample, it is sufficient to
consider a two-valued random variable and a o -field generated by three atoms.

370. Of course, the constant EX is an A-measurable function. We still need to
verify that the integration condition holds.
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371. Letus go further, namely, if X is A, measurable and Y is A, measurable, then
X, Y are independent. We start with the case when the variables are simple,
ie, X =) xla,Y = ) y;lp,. Then, for any Borel sets C, D C R, we

have:
P{Xec,YeD}:P(U U(A,-mB,-)):Z 3P4, N B))
x;€C y;eD x;€C y;eD
=Y P(A)- Y _(B)) =P{X € C)P(Y € D}.
x;eC y;eD

373. It is not necessary. Still, the answer itself is not enough. It is easy to construct
a counterexample for two discrete random variables.
374. E(Sk|7"n) = Sian a.€., where k A n = min {k, n}.



Appendix
Table of Normal Distribution Function ®
of N0, 1)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29
3.0
3.1
32
33
3.4

t
D(t)

0.00

0.5000
0.5398
0.5793
0.6179
0.6554
0.6915
0.7257
0.7580
0.7881
0.8159
0.8413
0.8643
0.8849
0.9032
0.9192
0.9332
0.9452
0.9554
0.9641
0.9713
0.9772
0.9821
0.9861
0.9893
0.9918
0.9938
0.9953
0.9965
0.9974
0.9981
0.9987
0.9990
0.9993
0.9995
0.9997

2(1 - 2()

0.01

0.5040
0.5438
0.5832
0.6217
0.6591
0.6950
0.7291
0.7611
0.7910
0.8186
0.8438
0.8665
0.8869
0.9049
0.9207
0.9345
0.9463
0.9564
0.9649
0.9719
0.9778
0.9826
0.9864
0.9896
0.9920
0.9940
0.9955
0.9966
0.9975
0.9982
0.9987
0.9991
0.9993
0.9995
0.9997

1.282
0.90
0.20

0.02

0.5080
0.5478
0.5871
0.6255
0.6628
0.6985
0.7324
0.7642
0.7939
0.8212
0.8461
0.8686
0.8888
0.9066
0.9222
0.9357
0.9474
0.9573
0.9656
0.9726
0.9783
0.9830
0.9868
0.9898
0.9922
0.9941
0.9956
0.9967
0.9976
0.9982
0.9987
0.9991
0.9994
0.9995
0.9997

1.654
0.95
0.10

0.03

0.5120
0.5517
0.5910
0.6293
0.6664
0.7019
0.7357
0.7673
0.7967
0.8238
0.8485
0.8708
0.8907
0.9082
0.9236
0.9370
0.9484
0.9582
0.9664
0.9732
0.9788
0.9834
0.9871
0.9901
0.9925
0.9943
0.9957
0.9968
0.9977
0.9983
0.9988
0.9991
0.9994
0.9996
0.9997

1.960 |2.326 |2.576 |3.090 |3.291

0.975
0.05

0.04

0.5160
0.5557
0.5948
0.6331
0.6700
0.7054
0.7389
0.7704
0.7995
0.8264
0.8508
0.8729
0.8925
0.9099
0.9251
0.9382
0.9495
0.9591
0.9671
0.9738
0.9793
0.9838
0.9875
0.9904
0.9927
0.9945
0.9959
0.9969
0.9977
0.9984
0.9988
0.9992
0.9994
0.9996
0.9997

0.05

0.5199
0.5596
0.5987
0.6368
0.6736
0.7088
0.7422
0.7734
0.8023
0.8289
0.8531
0.8749
0.8944
0.9115
0.9265
0.9394
0.9505
0.9599
0.9678
0.9744
0.9798
0.9842
0.9878
0.9906
0.9929
0.9946
0.9960
0.9970
0.9978
0.9984
0.9989
0.9992
0.9994
0.9996
0.9997

0.06
0.5239
0.5636
0.6026
0.6406
0.6772
0.7123
0.7454
0.7764
051.8
0.8315
0.8554
0.8770
0.8962
0.9131
0.9279
0.9406
0.9515
0.9608
0.9685
0.9750
0.9803
0.9846
0.9881
0.9909
0.9931
0.9948
0.9961
0.9971
0.9979
0.9985
0.9989
0.9992
0.9994
0.9996
0.9997

0.07

0.5279
0.5675
0.6064
0.6443
0.6808
0.7157
0.7486
0.7794
0.8078
0.8340
0.8577
0.8790
0.8980
0.9147
0.9292
0.9418
0.9525
0.9616
0.9693
0.9756
0.9808
0.9850
0.9884
0.9911
0.9932
0.9949
0.9962
0.9972
0.9979
0.9985
0.9989
0.9992
0.9995
0.9996
0.9997

3.891

0.08

0.5319
0.5714
0.6103
0.6480
0.6844
0.7190
0.7517
0.7823
0.8106
0.8365
0.8599
0.8810
0.8997
0.9162
0.9306
0.9429
0.9535
0.9625
0.9699
0.9761
0.9812
0.9854
0.9887
0.9913
0.9934
0.9951
0.9963
0.9973
0.9980
0.9986
0.9990
0.9993
0.9995
0.9996
0.9997

0.09

0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.7549
0.7852
0.8133
0.8389
0.8621
0.8830
0.9015
0.9177
0.9319
0.9441
0.9545
0.9633
0.9706
0.9767
0.9817
0.9857
0.9890
0.9916
0.9936
0.9952
0.9964
0.9974
0.9981
0.9986
0.9990
0.9993
0.9995
0.9997
0.9998

4.417
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Almost sure convergence, 147
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Bayes’ Formula, 31

Bernoulli distribution, 57

Bernoulli’s Weak Law of Large Numbers, 152
Bernoulli trials, 34

Bertrand’s paradox, 26

Beta distribution, 64

Binomial distribution, 57

Borel-Cantelli Lemma, 42

Buffon’s needle, 25

C

Cantor function, 68

Cantor set, 102

Carathéodory’s Theorem, 159

Cauchy distribution, 65

Central Limit Theorem, 153

Central moment, 104

Characteristic function, 121

Chebyshev’s inequality, 108

Chebyshev’s Weak Law of Large Numbers,
152

Chinczyn’s Law of Large Numbers, 147

Classical definition of probability, 21

Combination, 4

Complete measure, 13

Complete probability space, 13

Conditional expectation, 173
Conditional probability, 28
Convergence almost everywhere, 147
Convergence in distribution, 131
Convergence in probability, 145
Convergence with probability 1, 147
Convolution of densities, 77
Convolution of distributions, 77
Copula, 113

Correlation factor, 111

Covariance, 111

Covariance matrix, 112

Crude moment, 103

Cumulative distribution function, 52

D
De Moivre-Laplace Theorem, 154
Density of distribution, 60
Density of random variable, 60
Devil’s staircase, 68
Dirac delta measure, 13
Discrete joint distribution, 74
Discrete random variable, 52
Distribution function, 52

of random vector, 75
Distribution of random variable, 50

E
Equality almost everywhere, 51
Esperance, 81
Events
independent, 33
pairwise independent, 33
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Expected value, 81, 82
of continuous variable, 98
of simple variable, 82
Exponential distribution, 62

F
Fatou’s Lemma, 94
Field of sets, 9
Finite measure, 157
Fourier transform, 121
Function

measurable, 47

G

Gamma distribution, 63
Gaussian distribution, 65
Geometric distribution, 58
Geometric probability, 25

H
Holder’s inequality, 106
Hypergeometric distribution, 59, 83

I
Impossible event, 13
Independent random variables, 71

J

Jensen’s inequality, 106

K

Kolmogorov’s First Strong Law of Large
Numbers, 150

Kolmogorov’s Second Strong Law of Large
Numbers, 150

Kolmogorov’s Zero-One Law, 143

Kurtosis, 105

L

Law of Total Probability, 29

Lebesgue Decomposition Theorem, 70

Lebesgue’s Dominated Convergence Theorem,
94

Lebesgue’s Monotone Convergence Theorem,
93

Lebesgue—Stieltjes Integral, 100

liminf, o0 Ay, 41
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limsup,_, ., A, 41
Lindeberg-Lévy Central Limit Theorem, 153

M
Markov’s inequality, 110
Markov’s Weak Law of Large Numbers, 146
Mathematical hope, 81
Mean value, 81
Measurable

function, 47
Measure

absolutely continuous, 172

signed, 171
Measure extension theorem, 162
Median, 103
Moment, 103
Multidimensional random variable, 74
Multinomial distribution, 58
Multivariate Gaussian distribution, 116
Multivariate normal distribution, 116

N

Negative binomial distribution, 59
Non-measurable sets, 18

Normal distribution, 65

0o

One-point distribution, 56
One-point measure, 13
Outer measure, 158

P
Pareto distribution, 105
Pascal distribution, 59
Percentiles, 103
Poisson distribution, 58
Probability, 13
distribution, 50
Probability measure, 13

Q
Quantile, 103

R

Radon-Nikodym Theorem, 172
Random event, 13

Random variable, 45, 47
Random vector, 74
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Rare events, 144
Raw moment, 103
Ring of sets, 9

S

Sample space, 12
Schwarz’s inequality, 105

o -algebra of sets, 9

o-field of sets, 9

o -finite measure, 170
o-ring of sets, 9

Simple random variable, 52
Single point distribution, 56
Singular distribution, 68

Space of elementary events, 12

Standard deviation, 104
Stirling’s formula, 37
Sure event, 13

T
Tail event, 144
Two-point distribution, 57

Types of random variables, 68

U
Uniform distribution, 62
Upper limit, 40

\4
Variance, 104
Variation with repetition, 3

Variation without repetition, 4

W
Weak convergence, 131
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