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Preface 

This book is intended principally for students of mathematics with various spe-
cializations, both theoretical and related to applications in finance, insurance, 
or stochastic modeling. It can be used as the basis for a one-semester lecture 
course, the participants of which should know mathematical analysis with elements 
of the theory of Lebesgue measure and integral. However, we do not require 
from the reader any more advanced knowledge of topology, measure Theory, or 
functional analysis. The necessary elements of these theories are covered briefly but 
sufficiently precisely to keep the lecture course complete. 

When writing this book, I relied on many well-known and recognized textbooks 
on the theory of probability and measure theory, in particular the classical Intro-
duction to Probability Theory and Its Applications by William Feller [6], and the 
much more modern and equally extensive book by Jacek Jakubowski and Rafał 
Sztencel entitled Introduction to the Probability Theory [8], which, unfortunately, is 
available only in Polish. Due to the necessity of limiting the lectures to one semester, 
I selected only the most important or the most interesting topics. I wanted this 
textbook not only to provide a good basis for later courses on statistics and stochastic 
processes but also to be interesting, maybe even amusing at times. Hence, there 
are several less common problems and exercises, e.g., the Black and White Hats 
puzzle. I suggest the lecturer should move some extended examples, like Bertrand’s 
Paradox, the Monty Hall Problem, or the Black and White Hats Puzzle, to practice 
sessions for self-presentation by some students. 

Taking into account those students who are not yet familiar with measure theory, I 
have included those elements of this theory that are necessary to define a probability 
measure and the expected value as an integral with respect to the measure. 
Some general, classical results are described in Sects. 8.1 and 8.2. Observing 
contemporary achievements in the field of stochastic modeling, for example, the 
evolution of the stock market situation, we find that any simplifications to discrete 
and absolutely continuous measures are not sufficient. Sections 8.3 and 8.4 contain 
a systematic definition of conditional expected value based on the Radon–Nikodym 
Theorem. This is one of the most important theorems in measure theory. We present 
it here with a partial proof limited to the proof of uniqueness.
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vi Preface

Chapter 9 contains hints and answers to some of the exercises. There are no 
complete solutions since we always want to motivate the reader to act on their 
own. Solutions to problems which require only simple proofs or calculations are 
not commented on at all. More interesting exercises interested students can find in 
[7], [14], [15], and [17]. Those who are more ambitious should take a look at Paul 
Letac’s book [11], where they will find more challenging and demanding exercises. 

I would especially like to thank Prof. Czesław Ryll-Nardzewski and Prof. 
Kazimierz Urbanik, from whom I learned not only the calculus of probability but 
also the precision and economy of proofs, openness to new problems and that 
something special that makes mathematics fun. While writing this book, I used 
the notes from lectures on the theory of real functions delivered by Prof. Cz. Ryll-
Nardzewski in the 1970/1971 academic year at the University of Wrocław. I would 
also like to thank Prof. Anzelm Iwanik, a wonderful mathematician and teacher, to 
whom I owe my first contact with Probability. I am also grateful to Jacek Bojarski 
for his assistance in typesetting the manuscript and, with Gosia Mazurek and Karol 
Bojarski, producing the figures, and to Dorota Stȩpińska and Oktawia Zegar for 
proofreading the initial version of the book. 

Warsaw, Poland Jolanta Misiewicz
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Chapter 1 
The Beginning 

The birth year of probability theory is usually taken to be 1654. It started like this: 
Monsieur de Baussay, alias Antoni Gombauld, best known as Chevalier de Méré, 

led a lavish life in Paris. From time to time, for pleasure or out of simple curiosity, 
he visited the gambling salons and instead of falling into a pernicious addiction and 
gambling fever, he tried to analyze the games on the basis of random or accidental 
events. 

At that time, the game of six was especially fashionable. The banker, i.e., 
a professional gambler hired by the owner of the salon, and the player paid equal 
stakes to the pool. The winner was the player who failed to roll “6” in four 
consecutive dice rolls. Chevalier de Méré took a particular interest in the slightly 
more complicated variation of this game, where two dice were used. He was 
interested in answering the question: Why is it disadvantageous for the banker to 
bet that in 24 rolls of two dice, a player will simultaneously roll two sixes? 

The number 24 did not appear here by accident. There is the concept of the 
so-called banker’s number, i.e., one where the chances change from favorable for 
the player to favorable for the banker. It was then believed that since the banker’s 
number when rolling one die was equal to 4, and since rolling two dice gave 6 
times more results in one roll, the banker’s number when rolling 2 dice was equal to 
6 × 4 = 24.. 

On the basis of some theoretical considerations, Chevalier de Méré came to the 
conclusion that the banker’s number for this game was not equal to 24. He got the 
young French mathematician Blaise Pascal interested in this paradox and it was 
Pascal who calculated that 24 was still slightly more beneficial to the player, while 
25 throws would be slightly more favorable to the banker. 

Pascal also solved a more difficult problem, posed again by Chevalier de Méré: 
the problem of an unfinished game or a partial game. The game consisted of batches 
and the winner was the player who first won a fixed number of batches. The problem 
was to determine the fair share of the pot between players when the game was 
interrupted. Pascal was the first to formulate the principle saying that the winnings 
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2 1 The Beginning

of individual participants should depend on the probability of each of them winning 
the game. Based on a few examples he explained precisely how such probabilities 
should be calculated. 

Pascal wrote about his achievements to another French mathematician (and 
lawyer) Pierre de Fermat. A lively correspondence arose between them on the then-
known gambling games, and soon news that Pascal and Fermat had discovered a new 
branch of mathematics spread around Paris. The literature on probability, or more 
broadly on probabilistic theory, is vast. A widely known work is W. Feller’s book 
[6] from 1966, which offered the most comprehensive discussion of the foundations 
of probability at the time. More modern approaches to the subject can be found, 
for example, in the following books, listed in order of increasing complexity: [3– 
5, 8, 19]; and for more advanced discussion: [10] and [13]. 

1.1 The Basics of Combinatorics 

In probability theory we often encounter the need to find the number of all 
possible outcomes of a given experiment, or the number of outcomes that satisfy 
some additional conditions. This may involve, for example, selection, divisions, or 
orderings of a finite set of elements. In general, such calculations are not difficult, 
but to avoid repeating them for each task, we will discuss the most important cases 
here. Let us begin with the following rule: 

Multiplication Principle 1.1 Suppose there are exactly m1 . possible selections of 
the first element, m2 . possible selections of the second element, . . .., and mk . possible 
selections of the k-th element. If any choice of any element can occur together with 
any choice of any other element, then the number of all possible choices of k ordered 
elements is equal to:

. m1 × m2 × · · · × mk.

Consider, for example, ordering a cake and something to drink in a cafeteria, 
where they can serve coffee, tea, orange juice, beer, puffs, eclairs, meringues, 
muffins and cheesecakes. There are 4 ways to choose a drink and 5 ways to choose 
a cake, thus the number of all possible orders equals 4 × 5 = 20.. 

1.1.1 Permutations 

A permutation of a set of n distinguishable objects is any ordered arrangement of 
its elements, numbered with consecutive natural numbers from 1 to n. We can also 
say that a permutation of n distinguishable elements is a one-to-one function from 
the set {1, . . . , n}. onto the set of elements. If, for example, we have two elements a
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and b then their only permutations are:

. (a, b) (b, a).

All permutations of the elements a, b. and c can be obtained by placing the third 
element c in one of the three possible places in the already defined permutations of 
a and b; t hus we obtain:

. 

(c, a, b) (c, b, a)

(a, c, b) (b, c, a)

(a, b, c) (b, a, c).

Using the same method it is not difficult to prove by mathematical induction that the 
number of permutations of a set of n. distinguishable elements is equal to: 

. 1 · 2 · · · · · n
def= n!

Note that we use parentheses to describe a sequence of elements, i.e., an ordered 
finite set of elements. If the order of elements is irrelevant, we will use braces 
{ , }., e.g. {a, b, c} ≡ {b, c, a}, {1, 3, 7} ≡ {1, 7, 3}.. We shall use this notation 
consistently throughout the book. 

1.1.2 Variations With Repetition 

A variation with repetition is any ordered sample of size k from n distinguishable 
elements where repetition of the same element is allowed. It is therefore any choice
of k . consecutive elements where the selected element is returned to the set each 
time—sometimes we say that variations with repetition are return selections. We 
can also identify a variation with repetition with the corresponding function from 
the set {1, 2, . . . , k}. taking values in the set {1, 2, . . . , n}.. Words are variations 
with repetition selected from a set of letters comprising an alphabet. The result 
of rolling a single die twice is a two-element variation with repetition from the 
set {1, 2, 3, 4, 5, 6}.. The set of all possible results of rolling the die twice can be 
described as follows: 

. {(x, y) : x, y ∈ {1, 2, 3, 4, 5, 6}} .

The easiest way to picture a variation with repetition is to imagine drawing k balls 
sequentially from a box containing n numbered balls, returning each ball to the box 
after recording its number. It is clear that there are exactly n ways to choose the first 
ball, n ways to choose the second ball, etc. Note that the result of the first draw does 
not affect the result of any other, so by the Multiplication Principle 1.1, we get that
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the number of all k .-element variations with repetitions selected from an n-element 
set is equal to: 

. Wk
n = nk.

1.1.3 Variations Without Repetition 

A variation without repetition is defined as any k .-element sequence of distinct 
elements selected from a set n. of distinguishable elements, where n ≥ k .. Two vari-
ations without repetitions differ from each other either by the elements themselves 
or by their order in the sequence. Equivalently, we can say that a variation without 
repetition can be identified with a one-to-one function on the set {1, 2, . . . , k}. taking 
values in the set {1, 2, . . . , n}.. We have  n ways to choose the first element, n − 1. 

ways to choose the second, n−2. ways to choose the third, and so on. Consequently, 
the number of all possible k-element variations without repetition taken from an 
n-element set is equal to: 

. V k
n = n · (n − 1) · · · · · (n − k + 1) = n!

(n − k)! .

1.1.4 Combinations 

A k-element combination of the elements of an n distinguishable element set S is 
any k-element subset of S. The order of the elements in the fixed combination is 
irrelevant. For example: the 13 cards which you receive in a bridge deal is a 13-
element combination from a 52-element set, the deck of cards.

Combinations differ from variations without repetition only in the fact that in 
a combination the order in which elements are selected is irrelevant. Note that 
there are exactly k! k .-element variations without repetition containing k fixed 
elements. Thus, when considering k-element combinations, we shall identify all 
such variations. This shows that the number of all k-element combinations of an 
n-element set is equal to:

. Ck
n = V k

n

k! =
(

n

k

)
.

1.2 Putting Objects into Bins 

In statistical physics, one considers the distribution of k particles (balls, elements) 
into n cells (bins, boxes), where k ≤ n.. Depending on the type of these particles or
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on the type of chosen mathematical model, one of the following three assumptions is 
made: (a) particles are indistinguishable (Bose–Einstein statistics); (b) particles are 
distinguishable (Maxwell–Boltzmann statistics), or (c) particles are indistinguish-
able, but there can only be one particle in a bin/cell (Fermi–Dirac statistics). In 
each of these cases the cells are distinguishable. In probability theory, we shall also 
consider the case of putting indistinguishable particles into indistinguishable cells. 

1.2.1 Indistinguishable Balls in Numbered Bins 

We want to find the number of ways to distribute k indistinguishable balls into n 
numbered bins. The easiest way to solve this problem is to refer to a somewhat 
childish way of drawing numbered bins: it is enough to draw n + 1. vertical lines: 

. | | | . . . | |︸ ︷︷ ︸
n+1 lines

Now, in order to put the balls into the bins, all we have to do is to draw k circles 
in the same line in such a way that at the beginning and at the end we have vertical 
lines (so that all balls are in bins). This gives us an (n + k + 1).-element sequence 
consisting of k circles and (n + 1). vertical lines, where the first and last elements in 
the sequence are lines, e.g.: 

. | 0 0 | | 0 | . . . | 0 0 0 | |.

It is easy to see now that the number of such sequences is equal to the number of 
possible choices of k elements from a set of n + k − 1. elements, which we identify 
with the choices of positions where the circle will be placed: 

. 

(
n + k − 1

k

)
=

(
n + k − 1

n − 1

)
.

1.2.2 Distinguishable Balls in Numbered Bins 

In this case, each ball is assigned the number of the bin in which it will be placed, 
so the number of possible ways to arrange k . balls in n bins is equal to the number of 
functions from the set {1, . . . , k}. which take values in {1, . . . , n}.. This means that 
it is equal to the number of k-element variations with repetition from an n-element 
set, which is equal to nk

..
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1.2.3 Indistinguishable Balls in Indistinguishable Bins 

To describe the distribution of the balls among the bins we need to write down how 
many bins are empty, how many contain one ball, how many contain two balls, etc. 
Let’s assume, for example, that we need to put 4 balls in 3 bins. We could put all 
the balls into one bin, which we notate as 4 + 0 + 0.. If we put 2 balls in one bin and 
the remaining two balls in each of the other two bins, then we would describe this 
situation using the notation 2+1+1.. We can see now that the possible distributions 
of 4 indistinguishable balls in 3 indistinguishable bins can be described as follows: 

. 4 + 0 + 0 = 3 + 1 + 0 = 2 + 2 + 0 = 2 + 1 + 1.

If there were 4 bins, we would have: 

. 4 + 0 + 0 + 0 = 3 + 1 + 0 + 0 = 2 + 2 + 0 + 0 = 2 + 1 + 1 + 0 = 1 + 1 + 1 + 1.

It is evident now that the number of possible distributions of k indistinguishable 
balls in n indistinguishable bins (notation Nk

n .) is equal to the number of ways of 
writing a natural number k as a sum of n natural numbers (we consider zero to be 
a natural number). We can also discuss the number of ways of writing a natural 
number k as a sum of at most n natural numbers. We can see that:

. N4
3 = 3, N4

4 = 5, Nk
1 = 1, Nk

2 =
⌊

k

2

⌋
, Nk

n = 1 ∀ n � k.

General formulas for the number of partitions of a natural number into a sum of 
natural numbers are not known; instead, asymptotic formulas can be found in some 
combinatorics textbooks. 

1.2.4 Exercises 

1. Show that
(
n

k

) = (
n

n−k

)
.,
(
n

0

) = 1.,
(
n

1

) = n.. 

2. Prove that
(
n

k

) + (
n

k+1

) = (
n+1
k+1

)
.. 

3. Prove that
∑n

k=0

(
n

k

) = 2n
.,
∑n

k=0(−1)k
(
n

k

) = 0.. 
4. Prove that

∑n
k=1 k

(
n

k

) = n 2n−1
.. 

5. In bridge, we deal 13-card hands from a 52-card deck. How many possible 
bridge hands are there? 

6. Adam is deal a bridge hand. In how many different ways can Adam get exactly 
seven spades? 

7. How many different results are there when you roll a single die twice? 
8. In how many ways can three people be accommodated in two double rooms?
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9. How many ways are there to seat n. people on n. chairs (a) lined up; (b) placed 
around a round table? 

10. In how many ways can seven people be divided into two groups? 
11. Ewa cuts a tailor’s tape (150 cm) into three parts so that the length of each part 

is a natural number of centimeters. In how many ways can she do this? How 
many of these methods will allow her to measure her waist if she needs a length 
of at least 63 cm length? 

12. In how many ways can 13 cards be selected from a deck so that all four aces 
are among the chosen cards? 

13. There are 7 flavors of ice cream in an ice cream shop. How many combinations 
of flavors can an assistant make if a cone holds no more than 5 scoops of ice 
cream, assuming that an empty cone does not count as an ice-cream 

14. How many four-letter words are there if by a “word” we mean any finite ordered 
sequence of letters? We consider here words written in Polish, using the 31-
letter alphabet, which includes the letters a̧, ȩ, ć, ń, ś, ż, ź but does not contain 
x, v and q. 

15. Six swallows are sitting on five power lines joining two electricity pylons. How 
many different melodies can be played if we treat the swallows on the wires as 
sheet music on a stave? Consider two cases: excluding chords (playing several 
notes at the same time) and including them. 

16. We have three paint colors available: red, green and blue. How many three-color 
flags can we paint in which two adjacent fields are of different colors? 

17. Find the number of different four-digit numbers 

(a) divisible by 3, 
(b) divisible by 11, 
(c) in which one of the digits is the sum of the others, 
(d) in which adjacent digits are different. 

Hint: A number is divisible by 11 if the sum of the numbers in the even places 
minus the sum of the numbers in the odd places is divisible by 11. 

18. An exam test consists of 12 sentences. For each of them a student will write T. 

if he thinks that the sentence is true or F. if he thinks that the sentence is false. In 
how many ways may this test be completed by a student who decides to write 
the answers randomly? 

19. A cashier at a shop has two 1-euro coins, three 50-cent coins and three 10-cent 
coins in the cash register. How many different coin combinations can he give 
as change? Suppose that he changes the 50-cent coins into 10-cent coins. How 
many combinations are there now? 

20. A group consists of 15 married couples. In how many ways can a four-person 
delegation be selected from among them if the delegation may not include any 
couple? 

21. For many years, the following task appearing in high school textbooks puzzled 
teachers and students: in how many ways can six children be paired? Show that 
there are three correct solutions to this problem. Is the order in a pair important?
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What about the order of pairs? Can you think of a situation/situations in which 
they may be important? 

22. In how many ways can a set comprising k . one-cent coins and m. five-cent coins 
be stored in n numbered box es?

23. In how many ways can k . indistinguishable balls be arranged in n numbered 
drawers if n � k . and only one ball can be kept in each drawer? 

24. In how many ways can k . indistinguishable balls be arranged in n. numbered 
drawers if n � k . and at least one ball should be put in each drawer? 

25. Let N. denote the set of all non-zero natural numbers and let N0 = N ∪ {0}.. For  
fixed n, k ∈ N. find the number of natural solutions of the following equation: 

. k = x0 + · · · + xn−1, x0, . . . , xn−1 ∈ N0.

26. Let k, n ∈ N. and let Nk
n . denote the number of possible distributions of k 

indistinguishable balls into n indistinguishable bins. Prov e that

.
1

n!
(

n + k − 1

n − 1

)
� Nk

n �
(

n + k − 1

n − 1

)
.



Chapter 2 
The General Definition of Probability 

2.1 Families of Sets 

Let �. be any non-empty set and let A. be a non-empty family of subsets of the set 
�.. By  ∅. we denote the empty set. 
A. is a ring of sets if: 

(1) A, B ∈ A �⇒ A ∪ B ∈ A.; 
(2) A, B ∈ A �⇒ A K B ∈ A.. 

Note that if A. is a ring of sets then: 

(3) ∅ ∈ A.; 
(4) A1,  .  .  .  ,  An ∈ A �⇒ ⋃n

k=1 Ak ∈ A.. 

For (3) take any A ∈ A.. By Property (2) we have ∅ = A K A ∈ A.. Property (4) 
follows from Property (1) by mathematical induction. 

The family A. is a σ .-ring of sets if it is a ring of sets and the following condition 
is satisfied: 

(5) If A1, A2, . . . ∈ A. are pairwise disjoint then
⋃∞

i=1 Ai ∈ A.. 

Remark 2.1 In Property (5) the assumption that the sets A1, A2, . . . . are disjoint 
can be omitted. If E1, E2, . . . ∈ A., then 

. 

∞⋃

k=1

Ek =
∞⋃

k=1

Ak,

where A1 = E1 ., A2 = E2 K E1 ., A3 = E3 K (E1 ∪ E2), . . . . and the sets A1, A2, . . . . 

are pairwise disjoint. 

The familyA ⊂ 2�
. is a field (algebra) if it is a ring and � ∈ A.. 

The familyA ⊂ 2�
. is a σ .-field ( σ .-algebra) if it is a σ .-ring and � ∈ A.. 
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Note that every algebra A. has the following properties: 

(6) A ∈ A �⇒ A′ def= � K A ∈ A.; 
(7) A1,  .  .  .  ,  An ∈ A �⇒ ⋂n

i=1 Ai ∈ A.. 

If A ∈ A. and � ∈ A., then by Property (2) we have that A′ = � K A ∈ A.. In order 
to prove (7) it suffices to note that 

. 

n⋂

i=1

Ai = � K
n⋃

i=1

(� K Ai)

and apply Properties (2) and (4). 

Examples 2.2 

(a) Let � = N. and let A. be the family of all finite subsets of the set �.. Then A. is 
a ring, but it is not a σ .-ring. It is an algebra, but not a σ .-algebra, since �. is the 
union of a countable number of single point sets, but it does not belong to A.. 

(b) If �. is any non-empty set, and A = {�,∅}., then A. is the smallest σ .-field of 
subsets of the set �.. Of course, A. is also a ring, a field and a σ .-field because 
every σ .-field is a ring, a field and a σ .-field. 

(c) If A. contains all subsets of the set �., i.e., 

. A = 2� =
{
E : E ⊆ �

}
,

then A. is the biggest σ .-field of subsets of �.. 
(d) Let n(A). be the number of elements in A.. If  �. is an infinite set and 

. A =
{
E ⊂ � : n(E) < ∞ or n(� K E) < ∞

}
,

then A. is a ring and a field, but is not a σ .-ring or a σ .-field. 

Theorem 2.3 If for every i ∈ I . the family of sets Ai . is a ring (field, σ .-ring, σ .-field) 
of subsets of the fixed set �., then

⋂
i∈I Ai . is also a ring (field, σ .-ring, σ .-field). The 

cardinality of the index set I . is arbitrary. 

Proof If A,B ∈ ⋂
i∈I Ai ., then for every i ∈ I ., A,B ∈ Ai .. By the definition of 

a ring, for every i ∈ I .we have that A∪B, AKB ∈ Ai ., thus A∪B, AKB ∈ ⋂
i∈I Ai .. 

The other conditions can be proved by analogy. ��
Theorem 2.4 Let K ⊂ 2�

.. There exists a smallest ring (field, σ .-ring, σ .-field) of 
subsets of the set �. containing K.. 

Proof The proofs of all four statements are very similar, so it is enough to find the 
smallest σ .-field containing K.. Let  

.I =
{
A : A is a σ -field, K ⊂ A

}
.
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Note that I 
= ∅. because K ⊂ 2�
. and 2�

. is a σ .-field, thus 2� ∈ I .. Let  

. σ(K)
def=

⋂

A∈I

A.

By Theorem 2.3 we know that the set σ(K). is a σ .-field. If there were a smaller 
σ .-field G. containing K., then, by the definition of the set I , we would have  G ∈ I ., 
so 

. G ⊂ σ(K) =
⋂

A∈I

A ⊂ G,

which implies that G = σ(K).. ��
Remark 2.5 The σ .-field σ(K). is called the σ .-field generated by the family K.. 

2.1.1 Exercises 

27. Does the union of two rings (fields, σ .-rings, σ .-fields) have to be a ring (field, 
σ .-ring, σ .-field)? 

28. Prove that A. is a σ .-field if and only if the following conditions are satisfied: 

(1) � ∈ A.; 
(2) if A ∈ A., then A′ = � K A ∈ A.; item[(3)] if A1, A2, · · · ∈ A., then ⋃∞

n=1 An ∈ A.. 

30. Prove that the σ .-field generated by open rectangles (a, b)×(c, d)., a < b., c < d . 

contains all open sets in the plane R2
.. 

30. Let � = [0, 1].. Determine the rings (fields, σ .-rings, σ .-fields) of subsets of �. 

generated by the following classes of sets: 

(a) {[0, 2/3], [1/3, 1 ]}.; 
(b) {[0, 1/2], [1/2, 1 ]}.; 
(c) {∅.}; 
(d) the set of all rational numbers in [0, 1].. 

31. Let �. be an uncountable set. Describe the ring (field, σ .-ring, σ .-field) generated 
by: 

(a) all one-point subsets; 
(b) all countable subsets; 
(c) all uncountable subsets. 

32. Let A. be the family of subsets of the set of natural numbers N. containing all 
finite subsets and their complements. Is A. a σ .-field?



12 2 The General Definition of Probability

33. Let F. be a σ .-field of subsets of �. and let B ⊂ �.. Show that 

. FB
def=

{
B ∩ A : A ∈ F

}

is a σ .-field of subsets of the set B. 

2.2 The Sample Space 

Let �. be a set with elements denoted by ω .. The set  �. is referred to as the 
sample space or the space of elementary events and its elements ω . are referred 
to as elementary events. The sample space is a primitive notion in the theory 
of probability. In specific examples, we will identify it as the set of all possible 
outcomes of a random experiment. 

In the previous sections, we have already seen a few examples of sample spaces, 
so we will limit ourselves here to discussing only one example. 

Example 2.6 We toss a coin until it falls on the same side twice in a row. This 
can happen on the second toss if the sequence of tosses is (O,O). or (R,R).. In  
this notation O denotes getting a tail and R denotes getting a head. It is possible 
that we would have to toss the coin three times, then the possible s equences are:
(O,R,R), (R,O,O).; or four times: (O,R,O,O), (R,O,R,R)., etc. The space 
of elementary events can be identified with the following set: 

. � =
{
(O,O), (R,R), (O,R,R), (R,O,O), (O,R,O,O), (R,O,R,R), . . .

}
.

2.2.1 Exercises 

34. Complete the following equivalences: 

(a) A ∩ B = A ∪ B ⇐⇒ A = . . . .; 
(b)

[
A ∩ B = ∅ ∧ A ∪ B = �

] ⇐⇒ B = . . . .; 
(c) (A K B) ∪ (B K A) = ∅ ⇐⇒ A = . . . .; 
(d) A K B = A ⇐⇒ A ∩ B = . . . . 

35. Simplify the description of the set E: 

(a) E = (A ∪ B) ∩ (A′ ∪ B).; 
(b) E = [

(A ∪ B) ∩ C
] ∪ [

(A ∪ C) ∩ B
]
.; 

(c) E = (A ∪ B) ∩ (B ∪ C) ∩ (C ∪ A).; 
(d) E = (A ∪ B) ∩ (B ∪ C)., when A ⊂ B ⊂ C ..
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36. What conditions must the sets A. and B . satisfy for the following condition to be 
true: (A ∪ B) ∩ (A′ ∪ B) ∩ (A ∪ B ′) = ∅.? 

37. Are there sets A,B ., and C . that satisfy the following conditions: A ∩ B 
= ∅., 
A ∩ C 
= ∅. and (A ∩ B) K C = ∅.? 

38. We toss a coin three times. Describe the space of elementary events. 
39. You choose three cards from a standard deck. Describe the sample space. 

2.3 The General Definition of Probability 

Let �. be a space of elementary events and let F. be a σ .-field of its subsets. 

Definition 2.7 Let (�,F ). be a measurable space. A real-valued function P. defined 
on the sets of the σ .-field F. is called a probability or probability measure if P. satisfies 
the following axioms: 

(1) P(A) � 0. for every A ∈ F.; 
(2) P(�) = 1.; 
(3) (countable additivity or σ .-additivity) for every sequence of pairwise disjoint 

sets A1, A2, · · · ∈ F., we have:  

. P
( ∞⋃

k=1

Ak

)

=
∞∑

k=1

P(Ak).

The ordered triple (�,F,P). is called a probability space. Every set A ∈ F. 

is called a random event, or simply an  event. The probability space (�,F,P). is 
complete if for every A ⊂ �. the following implication holds: 

. 

(
A ⊂ B ∈ F, P(B) = 0

)
�⇒ A ∈ F.

In a complete probability space the σ .-field F. of random events contains all subsets 
of measure zero sets. The empty set ∅. is called the impossible event, and the set �. 

is called the sure event. 
The sum (alternative) of two events A. and B . is the union of these sets A ∪ B =

{x ∈ � : x ∈ A or x ∈ B}., while the cross section (conjunction) of events A and B 
is the intersection of these sets: A ∩ B = {x ∈ � : x ∈ A and x ∈ B}.. The event 
opposite to the event A. is the event A′ = � K A.. 

The simplest probability measure is the one-point measure (Dirac measure) δω0 ., 
which assigns the value 1 to a fixed point ω0 ∈ �.. To be precise:  

.δω0(A) =
{

1, ω0 ∈ A;
0, ω0 
∈ A.
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If there exists a finite or at most countable set A ∈ F. for which P(A) = 1., then we 
say that the measure P. is atomic. Usually, we additionally assume that the set A ∈ F. 

does not have any accumulation points, i.e., points x ∈ A. such that for every ε > 0. 

the ball {y : ‖x − y‖ < ε}. contains some elements of A. 

2.3.1 Basic Properties of Probability 

Property 1 P(∅) = 0.. 

Proof Note that ∅ = ∅ ∪ ∅ ∪ · · · . The empty sets are pairwise disjoint, thus, by 
axiom (3) we have 

. P(∅) = P(∅) + P(∅) + · · · .

Since P(∅) < ∞., we conclude that P(∅) = 0.. ��
Property 2 (Finite Additivity) If A∩B = ∅., A,B ∈ F., then P(A∪B) = P(A)+
P(B).. By mathematical induction this property can be extended to the following: if 
A1, . . . , An ∈ F. are pairwise disjoint, then 

. P (A1 ∪ · · · ∪ An) = P(A1) + · · · + P(An).

Proof Since A ∪ B = A ∪ B ∪ ∅ ∪ · · · ., we have, by axiom (3) and Property 1, 

. P(A ∪ B ∪ ∅ ∪ ∅ · · · ) = P(A) + P(B) + P(∅) + · · · = P(A) + P(B).

��
Property 3 If A ⊂ B ., A,B ∈ F., then P(B K A) = P(B) − P(A).. 

Proof The events A and B K A. are disjoint, thus by Property 2, 

. P(B) = P(A ∪ (B K A)) = P(A) + P(B K A).

��
Property 4 If A ⊂ B ., A,B ∈ F., then P(A) ≤ P(B).. 

Proof It is enough to apply Property 3 and axiom (1). ��
Property 5 For every A ∈ F., P(A) ≤ 1.. 

Proof Just note that A ⊂ �., then apply Property 4 and axiom (2). ��
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Property 6 For every A ∈ F., we have P(A′) = 1 − P(A).. 

Proof This easily follows from Property 2 and axiom (2). Since the events A and 
A′

. are disjoint, we have 

. 1 = P(�) = P(A ∪ A′) = P(A) + P(A′).

��
Property 7 (Inclusion-Exclusion Formula) For every choice of events A1, . . . ,

An ∈ F., n ∈ N., we have 

. P
( n⋃

i=1

Ai

)

=
n∑

i=1

P(Ai) −
∑

(i,j):i<j

P(Ai ∩ Aj)

+
∑

(i,j,k):i<j<k

P(Ai ∩ Aj ∩ Ak) − · · · + (−1)n−1P(A1 ∩ · · · ∩ An).

Proof Note that the event A ∪ B . can be written as a sum of two disjoint events: A 
and B K A.. By Property 2, we get 

. P(A ∪ B) = P(A ∪ (B K A)) = P(A) + P(B K (A ∩ B)).

Since (A ∩ B) ⊂ B ., the result for n = 2. follows from Property 3. The inclusion-
exclusion formula for an arbitrary n ∈ N. is obtained using mathematical induction. 

��
Property 8 (Probability Continuity Theorem) IfAn ∈ F., n ∈ N., is an increasing 
sequence of random events, i.e., A1 ⊂ A2 ⊂ · · · ., then 

. P
( ∞⋃

k=1

Ak

)

= lim
n→∞P

(
An

)
.

If An ∈ F., n ∈ N., is a decreasing sequence of random events, i.e., A1 ⊃ A2 ⊃ · · · ., 
then 

. P
( ∞⋂

k=1

Ak

)

= lim
n→∞P

(
An

)
.

Notation If (An). is an increasing sequence of random events and A = ⋃∞
n=1 An ., 

then we write An

�
⏐A.. If  (An). is a decreasing sequence of random events and A =⋂∞

n=1 An ., then we write An

⏐
�A..
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Proof Let An ∈ F., n ∈ N., be an increasing sequence of random events. Since 
the events An+1 K An ., n ∈ N., are pairwise disjoint, by σ .-additivity of probability 
measure we have 

. P
( ∞⋃

k=1

Ak

)

= P
(
A1

) + P
(
A2 K A1

) + P
(
A3 K A2

) + · · ·

Since the obtained series is convergent,
∑∞

k=n+1 P(Ak KAk−1). tends to zero as n →
∞. and we have 

. P
( ∞⋃

k=1

Ak

)

= P
(
A1

) + P
(
A2

) − P
(
A1

) + · · · + P
(
An

) − P
(
An−1

)

+
∞∑

k=n+1

P
(
Ak K Ak−1

) = P
(
An

) +
∞∑

k=n+1

P
(
Ak K Ak−1

)

= lim
n→∞P

(
An

)
.

Assume now that the sequence of random events An ∈ F., n ∈ N., is decreasing. 
We see that the sequence (A1 K An) ∈ F., n ∈ N., is increasing, thus, using the first 
statement of this property, we have 

. P
(
A1

) − P
( ∞⋂

k=1

Ak

)

= P
(

A1 K
∞⋂

k=1

Ak

)

= P
( ∞⋃

k=1

(A1 K Ak)

)

= lim
k→∞P

(
A1 K Ak

) = P
(
A1

) − lim
k→∞P

(
Ak

)
.

��
Property 9 (Subadditivity of Probability Measure) For every sequence of prob-
ability events A1, A2, . . . ∈ F., the following inequality holds 

. P
(⋃

n

An

)

�
∑

n

P(An).

Proof Note that Bn = An K (A1 ∪ · · · ∪ An−1)., n ∈ N., is a sequence of pairwise 
disjoint events and 

.

⋃

n=1

An =
⋃

n=1

Bn.
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Since Bn ⊂ An . for each n ∈ N., P(Bn) � P(An). by Property 4. Now it is enough to 
apply axiom (3) of probability measure to obtain 

. P
(⋃

n

An

)

= P
(⋃

n

Bn

)

=
∑

n=1

P (Bn) �
∑

n=1

P (An) ,

which was to be shown. ��

2.3.2 Exercises 

40. A sample space �. contains exactly n elementary events. What is the smallest 
and largest possible number of random events in this s pace?

41. Can the set of random events of a certain probabilistic space �. consist of 
(a) 128; (b) 129; (c) 130 elements? 

42. Could the number of elementary events in a space �. be is greater than the 
number of random events in �.? 

43. Prove the inclusion-exclusion formula for an arbitrary n ∈ N., assuming that it 
holds for n = 2.. 

44. Let F. be a σ .-field of subsets of the set �.. Prove that if P1, . . . ,Pn . are 
probability measures on the space (�,F). and c1, . . . , cn . are positive constants 
such that c1 +· · ·+cn = 1., then c1P1 +· · ·+cnPn . is also a probability measure. 

45. Let x ∈ �.. Show that the Dirac-delta: δx(A)
def= 1x(A)., i.e., δx(A) = 1. if x ∈ A. 

and δx(A) = 0. if x 
∈ A., is a probability measure on (�,F). for any σ .-field F. 

of subsets of �.. 
46. Prove that for a decreasing sequence of events A1, A2, · · · ∈ F., the following 

implication holds: 

. 

∞⋂

n=1

An = ∅ �⇒ lim
n→∞P(An) = 0.

47. Show that if P(A) = 0.7. and P(B) = 0.8., then P(A ∩ B) ≥ 0.5.. 
48. Is it true that in any probability space (�,F,P). and for any A ∈ F. the following 

equivalence holds: 

. P(A) = 0 ⇐⇒ A = ∅ ?

49. Let (�,F,P). be a probability space and 

. Fc = {E ⊂ � : ∃ A,B ∈ F (E K A) ∪ (A K E) ⊂ B, P(B) = 0},

where the set E
�

A = (E K A) ∪ (A K E) = (A ∪ E) K (A ∩ B). is called the 
symmetric difference of the sets A and E. If E ∈ Fc . and E

�
A. is a subset of
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a P.-zero set, then we define Pc(E) = P(A).. Show that (�,Fc,Pc). is a complete 
probability space. 

50. Let (�,F,P). be a complete probability space and let B 
∈ F. be a subset of �. 

for which the following implication holds: 

. 

(

A ∈ F, B ⊂ A

)

�⇒ P(A) = 1.

We define FB = {A ∩ B : A ∈ F}. and PB(E) = P(A). when E = A ∩ B ∈ FB .. 
Show that (B,FB,PB). is a complete probability space. 

2.4 Why the Probability Space (�,P,F ). Must Consist 
of Three Elements 

It might seem that we are overly theorizing here. Would it not be enough to 
determine the probability P. on all subsets of the set �.? No extra  σ .-field is needed! 
It turns out, however, that such a construction is possible only when the space 
�. contains at most countably many elements. And even then, it does not always 
happen. 

To put it simply, the σ .-field F. is the class of those subsets of the set �. whose 
probability we are able to measure. Two cases may occur here: either the probability 
of the event A cannot be determined because the probability measure P. available to 
us is too poor, or the class of sets 2�

. is too rich. We will discuss this with examples. 

Example 2.8 Imagine that we have three apples (elementary events) A,B . and C 
with weights respectively 0.2., 0.3., and 0.5. kg. We also have an ordinary pan balance 
and one 0.5 kg weight. In this situation we can conclude that two apples A and B 
weigh the same as apple C, but we are not able to give their weights. Hence, the 
class of those subsets for which we can measure their weight is equal to: 

. 

{
∅, A ∪ B,C,A ∪ B ∪ C

}
.

Our measuring instrument, and thus the measure it generates, is too poor in this case 
as it cannot measure all subsets of the set of three apples. 

Example 2.9 Let � = [−1, 2]. and let λ. be the normalized Lebesgue measure on 
�.. By  Q we denote the set of all rational numbers in the interval [−1, 1]. ordered 
into a sequence: 

.Q =
{
q0 = 0, q1, q2, . . .

}
such that qi 
= qj for i 
= j.
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Suppose we can construct E ⊂ [0, 1]. such that 

. (E + qn) ∩ (E + qk) = ∅ if n 
= k, [0, 1] ⊂
∞⋃

n=1

(E + qn) ⊂ [−1, 2].

If the set E . were measurable with respect to the measure λ., i.e., if the number λ(E). 

were well defined, then from the invariance of Lebesgue measure under shifts we 
would have λ(E +qn) = λ(E). for every n ∈ N.. Since the sets (E +qn). are disjoint, 

. λ

( ∞⋃

n=1

(E + qn)

)

=
∞∑

n=1

λ(E + qn) � λ([−1, 2]) = 1.

Hence, we conclude that λ(E) = 0.. Otherwise, the considered series would diverge 
to infinity. On the other hand, however, we have: 

. 
1

3
= λ([0, 1]) � λ

( ∞⋃

n=1

(E + qn)

)

=
∞∑

n=1

λ(E + qn) = 0,

which is a contradiction, hence such a set E cannot belong to the σ .-field of 
λ.-measurable sets. 

Construction of the Set E First, we divide [0, 1]. into uncountably many disjoint 
sets. For every a ∈ [0, 1]., we define 

. [a] =
{
x ∈ [0, 1] : x − a ∈ Q

}
.

Of course, a ∈ [a]., so the sets  [a]. are not empty. Note that for a, b ∈ [0, 1]., we  
have: 

(1) if a − b ∈ Q., then [a] = [b].; 
(2) if a − b 
∈ Q., then [a] ∩ [b] = ∅.. 

Indeed, if a − b ∈ Q. and x ∈ [a]., then x − a ∈ Q., so  x − b = (x − a) + (a − b) ∈
Q. and x ∈ [b].. Hence, we get that [a] ⊂ [b]., and, due to the symmetry of the 
assumption, also [b] ⊂ [a].. Assume now that a − b 
∈ Q. and [a] ∩ [b] 
= ∅.. Then 
there exists a number c ∈ [0, 1]. such that c − a, c − b ∈ Q.. This, however, implies 
that a − b = (c − b) − (c − a) ∈ Q.. The obtained contradiction implies (2). 

Now let E. be the family of all sets [a]., a ∈ [0, 1].. It follows from properties (1) 
and (2) that any two different sets from the family E. are disjoint. Using the axiom of 
choice, we now construct the set E by including in it one element from each of the 
sets of the family E., i.e., so that for any a ∈ [0, 1]. the set [a] ∩ E . is a single point. 

It remains to check that the sets (E + qn). are disjoint for different n. Suppose 
this is not the case, thus for some n 
= k ., there exists c ∈ (E + qk) ∩ (E + qn).. But  
then c − qk, c − qn ∈ E ., and since these numbers are different, the construction of
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E . shows that [c−qk]∩ [c−qn] = ∅.. Property (2) implies that (c−qk)− (c−qn) =
qn − qk 
∈ Q.. The obtained contradiction concludes the proof of the correctness of 
the construction. 

Remarks 2.10 

(1) If we replace the set E by the Vitali set M = {e2πri : r ∈ E}. (a paradoxical set 
in S2 .) and replace the equivalence classes [a]. by 〈a〉 = {e2πri : r ∈ [a]}., then 
the same construction can be written as a very impressive Vitali theorem: There 
exists a partition of the unit circle S2 ⊂ R2

. into countably many pieces, such 
that from any infinite subset of pieces we can build the original circle using only 
rotations. This partition is called a paradoxical circle partition. For details, see 
Vitali [18]. 

(2) Mazurkiewicz and Sierpiński gave an example of a paradoxical (due to 
isometry) partition of the plane. For details, see Mazurkiewicz and Sierpiński 
[12]. 

(3) The Banach–Tarski theorem concerns the existence of a paradoxical partition 
of the ball S3 .. It states that a three-dimensional sphere can be “cut” into a finite 
number of parts (five are enough), and then, using only shifts and rotations, two 
spheres with the same radii as the radius of the initial sphere can be built from 
these parts. It is paradoxical that on the one hand, as a result of cutting, shifting, 
rotating and folding operations, the volume of the sphere can be doubled, while 
on the other hand, the shifting and rotation operations used are isometries and 
preserve the volume of solids. For details, see Banach and Tarski [2]. 

(4) Banach and Kuratowski showed even more. They proved, under the continuum 
hypothesis, that there is no countably additive measure defined on all subsets of 
R. such that the measure of every single-element set is equal to zero. For details, 
see Banach and Kuratowski [1]. 

2.4.1 Exercises 

51. What is the smallest and greatest σ .-field F. for which (R,F, δ1). is a probability 
space? 

52. Let ε > 0. and let f : [−1, 2] → (ε,∞). be an integrable function satisfying 
the condition

∫ 2
−1 f (x) dx = 1.. We define 

. P(A) =
∫

A

f (x) dx,

for every Borel set A ⊂ [−1, 2].. Prove that the set E constructed in this section 
is non-measurable with respect to P.. 

53. Show that every countable set A ⊂ [−1, 2]. is measurable with respect to the 
measure P. defined in the previous exercise.
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2.5 The Classical Definition of Probability 

Let �. be a sample space, that is, the set of all possible mutually exclusive results of 
a random experiment. In this section we assume that �. is a finite set. Every subset 
of the set �. is a random event, so F = 2�

.. 
When considering dice rolling, the set �. can be identified with the six-element 

set {1, 2, 3, 4, 5, 6}.. In the case of tossing a coin, it is a two-element set � =
{head, tail}. or, if we identify head with 1 and tail with 0, � = {0, 1}.. If we are  
considering rolling a single die twice, then the elementary event can be described as 
a pair (a, b)., where a . is the number obtained on the first roll and b. on the second; 
then 

. � = {(a, b) : a, b ∈ {1, 2, 3, 4, 5, 6}}.

If, on the other hand, we consider the simultaneous selection of two balls from an 
urn containing six numbered balls, then 

. � = {{a, b} : a, b ∈ {1, 2, 3, 4, 5, 6}, a 
= b}.

We have presented here a few examples of the formal description of a sample 
space. This description is very important in probability theory and in calculating 
probabilities of random events—it is crucial to consequently describe a random 
event as a subset of the given set �.. 

Definition 2.11 Suppose �. consists of n. elements of equal importance (.equally 
probable ).. The probability of any event A ∈ 2�

. is given by the formula: 

. P(A) = number of elements in A

n
= n(A)

n(�)
.

This is the so-called classical definition of probability. Let us emphasize once 
again that it only applies if �. contains finitely many equally probable elementary 
events. As we will see later, this is an exceptional case. 

Example 2.12 If, in a two-dice roll, the event A consists of the results whose sum 
is divisible by 5, then 

. 
� = {(a, b) : a, b ∈ {1, 2, 3, 4, 5, 6}}, n(�) = 36,

A = {(1, 4), (4, 1), (2, 3), (3, 2), (5, 5), (4, 6), (6, 4)}, n(A) = 7.

Since there is no reason to suspect that any of the elementary events will happen 
more often than any other, we use the classical definition of probability and obtain 
P(A) = 7/36.. 

Similarly, we can define � = {2, 3, 4, . . . , 12}. as the sample space because the 
sum of the obtained results must be a number from this set. Note, however, that now
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the elementary events from �. are not equally probable. For example, the sum 2 can 
be obtained only when we get 1 on both dice, while there are three ways to obtain 
a sum of 4: 1 + 3 = 2 + 2 = 3 + 1.. This implies that the sum 4 is three times more 
probable than the sum 2, so the elementary events are not equally probable in the 
sample space defined in this way. 

It is easy to see that the classical probability P. as a function on the set F = 2�
. has 

the following properties: 

. 

(i) ∀A ∈ F 0 � P(A) � 1;
(ii) P(∅) = 0, P(�) = 1;
(iii) ∀A,B ∈ F, A ∩ B = ∅ P(A ∪ B) = P(A) + P(B);
(iv) ∀A ∈ F P(A) = 1 − P(A′).

2.5.1 Exercises 

54. We have eight casino chips in a box: 2, 4, 6, 7, 8, 11, 12, 13.. What is the 
probability that the fraction obtained by dividing the numbers of two randomly 
taken chips is irreducible. 

55. The Genoese Lottery. A lottery ticket has a table with numbers from 1 to 90. 
By paying a fixed stake for each selected number, a player can mark k . numbers 
from the table, k =. 1, 2, 3, 4, 5. Then, by drawing lots, five numbers are selected 
from 1 to 90. If it turns out that all the numbers crossed out by the player are 
among the five drawn, his win is as follows: 

. 

k = 1 15 stakes;
k = 2 270 stakes;
k = 3 5500 stakes;
k = 4 75000 stakes;
k = 5 1000000 stakes.

Calculate the probability of winning the lottery in each of these cases. 
56. We draw 5 domino-stones out of the set of 28. What is the probability that 

among the drawn stones there is at least one such that the sum of its two fields 
(i.e. the total number of pips on the stone) is equal to 6? 

57. We throw n dice. What is the probability of getting the same result on each of 
them?

58. There are n + k . seats in a cinema room and exactly n. viewers have come to the 
screening. If they choose their seat randomly, what is the probability that all m. 

places, m < n., in the fifth row will be occupied? 
59. To limit the number of semi-final matches, 2n. soccer teams are split into two 

equal groups. What is the probability that the two strongest teams will end up 
in the same group?
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60. From an urn containing 2n. white balls and 2n. black balls, we randomly draw 
2n. balls, returning each ball to the urn after it has been drawn. What is the 
probability that the same number of white and black balls are drawn? What 
would this probability be if the draw was done without returning the balls back 
to the urn? 

61. We have five balls in an urn: colored white, black, red, green and white. We 
draw a single ball 25 times, each time returning it into the urn. What is the 
probability that each color appears exactly 5 times? 

62. We draw without replacement a few balls from an urn which contains white 
and black balls. What is more probable: drawing a white ball first or drawing 
a white ball last? 

63. There are n black balls and αn. white balls in an urn. We draw all the balls one 
by one from the urn. What is the probability that the last drawn ball is black? 

64. There are black and white balls in an urn. Prove that the probability of drawing 
(with replacement) two balls of the same color is not less than 0.5.. Is this claim  
true when the draw is done without replacement? 

65. There are n balls in N numbered boxes, n < N .. What is the probability that 
in each box there is at most one ball if the balls are (a) indistinguishable, 
(b) distinguishable. 

66. We arrange 30 numbered balls in 8 numbered drawers. 

(a) Calculate the probability that 3 drawers will remain empty, 2 drawers 
contain 3 balls, 2 drawers contain 6 balls and the remaining 12 balls are 
in one drawer. 

(b) What would the probability be if the balls were indistinguishable? 

67. A postman is to deliver 30 letters to eight apartments numbered 1 to 8. If all 
addresses are equally likely to appear on the envelopes, what is the chance that 
in apartment 5 the postman will leave exactly k . letters, k = 1, . . . , 30.? 

68. We randomly throw n. coins into n − 1. money boxes. Calculate the probability 
that the pink piggy-bank will be empty. 

69. n + 2. items are randomly placed into n boxes. What is the probability that at 
most one box is empty?

70. N+1. items are randomly placed into n.numbered boxes. What is the probability 
that exactly two boxes are empty? 

71. 2n items are put into n boxes. Calculate the probability that none of the boxes 
is empty.

72. We have 2n sheets of paper and 2n envelopes. The sheets and envelopes are 
separately numbered from 1 to 2n. We randomly put each sheet of paper into 
an envelope, so that each envelope contains one sheet. What is the probability 
that the sum of the numbers on the envelope and on the sheet put into it will be
odd?
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73. We have a well-shuffled deck of 52 cards. Calculate the probability that: 

(a) the first four cards in the deck are aces; 
(b) the first and last cards in the deck are aces; 
(c) aces in the deck are separated by exactly k . other cards. 

74. Tom, his partner and another couple are playing bridge. They are each dealt 
a 13-card hand. What is the chance that 

(a) each player will get one ace? 
(b) one of the players will get a full suit? 
(c) each player will be dealt all cards from deuce to ace, possibly of different 

suits? 
(d) Tom will receive exactly n. spades, and his partner exactly m. spades? 

75. Eight chess rooks are placed on a chessboard on randomly selected fields. What 
is the probability that none of them can capture the other and none of them 
stands on the main diagonal of white squares? 

76. From a deck of 52 cards 13 have been randomly selected. What is the 
probability that exactly k .pairs (ace, king) of the same suit are among the chosen 
ones? 

77. Adam is dealt five cards in a poker game. What is the chance that Adam will 
get a straight flush? 

78. From a batch of N . goods, including M . which comply with the standard, 
we draw n. items: (a) with replacement; (b) without replacement. Calculate 
the probability that among the randomly selected goods there will be exactly 
k which are compliant with the s tandard.

79. Seven bridges connect Burghers’ Island in Wrocław with the town. What is the 
probability that two friends will meet if one of them is just entering the island 
and the other is leaving it? 

80. In a dark room, we have a basket containing n pairs of shoes. We choose 
k shoes and move them to a well-lit corridor. What is the probability that among 
the chosen shoes there are exactly r complete pairs, 2r � k � 2n.? 

81. A solar system consists of one sun, four planets, and five moons. What is the 
probability that no moon revolves around one of these planets? 

82. Each of five electrons orbits one of four atomic nuclei. What is the probability 
that no electron revolves around one of these nuclei? 

83. Six tourists stay overnight in a mountain shelter which has three guest rooms: 
a double, triple and quadruple room. What is the probability that one of the 
rooms has been left vacant? And what answer to this question would be given 
by the manager of the shelter who has not seen either the tourists or their 
accommodation?
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2.6 Geometric Probability 

Recall that the σ .-field of Borel sets, or  Borel σ .-field B(Rk). in the space Rk
., is the  

σ .-field generated by the family of open balls 

. K(x0, r) = {x ∈ Rk : d(x, x0) < r}, x0 ∈ Rk, r > 0,

where d denotes the Euclidean distance in Rk
.. For simplicity, we write B(R) = B.. 

Let λk . denote the Lebesgue measure proper for Rk
., i.e., λ1 . measures the length of 

intervals, λ2 . measures the area of plane figures, and λ3 . measures the volume of 
solids in R3

.. 
Assume that the sample space �. is a Borel subset of Rk

. such that 0 < λk(�) <

∞.. We assume that the σ .-field of random events is equal to the set of all Borel 
subsets in �., i.e., F = B(�).. The probability of any random event A ∈ F. is then 
defined by: 

. P(A) = λk(A)

λk(�)
.

This is called the geometric probability. 

Example 2.13 (Buffon’s Needle) The problem of Buffon’s needle is one of the 
most interesting applications of geometric probability. Let’s randomly throw a nee-
dle of length 2r ., 2r < l ., onto a plane lined with parallel lines at distance l apart. In 
order to calculate the probability that the needle will touch one of the straight lines, 
we must first unambiguously describe the position of the needle in relation to the 
nearest straight line (see F ig. 2.1). 

By x we denote here the distance from the center of the needle to the nearest 
straight line below. Let ϕ . be the measure of the angle the needle makes with this 
line. It is easy to see that x may take any value in the interval [0, l)., and ϕ . can take 
values in [0, π).. The sample space and its measure are therefore given by 

. � = [0, π) × [0, l), λ2(�) = πl.

Fig. 2.1 Buffon’s needle: the 
position of the needle in 
relation to the nearest straight 
line
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Fig. 2.2 Buffon’s needle: the 
event in which the needle 
intersects one of the straight 
lines 

l 

π 

y = r sin(ϕ) 

y = l − r sin(ϕ) 

Let A be the event in which the needle intersects one of these straight lines and 
let y = r sin ϕ .. Then we get (see Fig. 2.2) 

. A = {(x, ϕ) ∈ � : x < r sin ϕ or x > l − r sin ϕ} .

Now it is easy to calculate λ2(A) = 2
∫ π

0 r sin ϕ dϕ = 4r ., and P(A) = 4r/πl .. 
A method of experimentally determining the number π . is based on this task. 

Let’s assume l = 4r .. We throw the needle n times onto a plane lined with parallel 
lines at distance l apart and find the number n(A). of those cases in which the needle 
touches one of the lines. In Chap. 7 on limit theorems we will prove that 

. lim
n→∞

n(A)

n
= 1

π
,

thus we have the approximation π ≈ n/n(A). for large n. 

Remark 2.14 Many modifications of this paradox can be found on the Internet, 
in particular, studies called Buffon’s Noodle. Please note that some of these studies 
contain obvious errors, which can be deduced from the following easily proven fact: 
For any small ε > 0. and any large � > 0., a ball of radius ε . contains a polyline of 
length �.. 

Example 2.15 (Bertrand’s Paradox) We want to answer the following question: 
Suppose we have a circle of radius R. We choose a random chord of the circle, i.e. 
a line segment joining two points on the circle. What is the probability that this 
chord will be longer than the side of an equilateral triangle inscribed in the circle? 

Bertrand noted that the question posed in this way does not clearly define what it 
means to randomly choose a chord of a circle. Figure 2.3 shows the circle K(0, R)., 
a triangle inscribed in the circle, and the circle K(0, r). inscribed in the triangle. 
Obviously, 2r = R .. Let  A. be the event in which a randomly selected chord is 
longer than the side of an inscribed equilateral triangle. Now, let us consider how to 
randomly select the chord. 

The First Way We can reason in the following way: since we are interested only 
in the length of the chord, we can assume that one of the ends of the chord is a fixed 
vertex of an inscribed equilateral triangle. The other end of the chord is any point of
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Fig. 2.3 Bertrand’s paradox: choosing a random chord of a circle 

the circle of circumference 2πR . and the position of this second point describes the 
chord uniquely. We can assume now that � = [0, 2πR). and it seems to be natural 
that all the points from �. have the same probability of being the other end of the 
chord. It is easy to see that the event A. contains only those points of the circle that 
are between the other two vertices of the triangle. Hence, it follows that P(A) = 1/3.. 

The Second Way It is known that the position of the center of a chord, except for 
a diameter, defines the chord uniquely—it is orthogonal to the line connecting the 
midpoint of the chord with the center of the circle. Moreover, each inner point of 
the ball, except its center, is the midpoint of some uniquely defined chord, thus we 
can assume that � = K(0, R)., then λ2(�) = πR2

.. The event A includes only 
those points o f �. that are inside the circle K(0, R/2)., hence λ2(A) = πR2/4. and, 
consequently, P(A) = 1/4.. 

The Third Way The length of the chord is clearly determined by the distance 
between its center and the center of the circle. So we can assume that � = [0, R).. 
Only the points in the segment [0, R/2). belong to the event A.. If we assume that all 
points of �. are equally probable, then P(A) = 1/2.. 

We have obtained three different solutions: 1/3, 1/4. and 1/2.. Each of them is 
correct, but each of them solves a slightly different problem. The differences lie in 
the different concepts of randomness in the individual cases. In Bertrand’s example, 
it turns out that different interpretations of randomness lead to different results. They 
may not always lead to different results, however. Thus, Bertrand’s paradox shows 
how important it is to strictly define the conditions of a random experiment in the 
stochastic modeling of real phenomena. 

Remark 2.16 As in the case of putting objects into bins, physicists, when describ-
ing reality, choose from all possible interpretations of randomness those that 
describe reality best. Therefore, it is not surprising that some of them can argue that 
in the case of Bertrand’s paradox “the third way” is, in some sense, more correct 
than the others. For example, see Jaynes [9]. However, mathematicians are obliged 
to consider all logically correct interpretations.
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2.6.1 Exercises 

84. What is the probability that a number x randomly chosen from the interv al
[0, 5]. satisfies the condition (x − 1)2 > 3.? 

85. What is the probability that a number x randomly chosen from the interv al
[0, 5]. belongs to the domain of the function f (x) = log

√
2 cos x − 1.? 

86. Two friends are to meet between 10 a.m. and 11 a.m. They are coming to the 
appointed place independently of each other and each of them has promised to 
wait 20 minutes for the other. If the friend does not show up within this time, 
the one who is waiting will leave. What is the probability that they will meet? 

87. We divide an interval of length �. into three parts at random. What is the 
probability that a triangle can be constructed from the obtained intervals? 

88. Randomly throw a coin of radius R onto a plane lined with parallel lines at 
distance l . apart, 2R < l .. Find the probability that the coin will not touch any of 
the lines. 

89. From the interval [−1, 1]., we randomly choose two numbers p and q. Calculate 
the probability that the quadratic equation x2 + px + q = 0. has two real roots. 

90. We consecutively draw three numbers x1, x2, x3 . from the interval [a, b].. 
Calculate the probability that the third number x3 . will fall into the interval 
between the first two. 

91. We randomly choose n. points from the interval [0, b].. What is the probability 
that exactly k . of these points will fall into the interval [0, a]., k � n., a < b.? 

92. Randomly pick n. points from a ball with radius R. What is the probability that 
the distance of each of these points from the center of the sphere is not less than 
a ., 0 < a < R .? 

93. Let’s randomly choose two points A. and B . from a square K .. Calculate the 
probability that the square with diagonal AB . is entirely contained in K .. 

94. We choose one point at random from a sphere with radius R. Calculate the 
probability that the distance of this point from a fixed diameter of the sphere is 
greater than a, 0 < a < R .. 

95. We choose one point at random from a circle with radius R .. Calculate the 
probability that the distance of this point from a fixed diameter of the circle 
is greater than a ., 0 < a < R .. 

96. We randomly select two points from the circle with radius R .. Calculate the 
probability that their distance is less than x ., where x ∈ (0, 2R).. 

2.7 Conditional Probability 

Definition 2.17 Let (�,F,P). be probability space and let B ∈ F. be a random 
event such that P(B) > 0.. For every random event A ∈ F., we define 

.P
(
A
∣
∣B

) def= P(A ∩ B)

P(B)
.
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The number P(A|B). is interpreted as the probability of the event A., provided that 
the event B has occurred, and the f unction

. P
(·∣∣B) : F→ [0, 1]

is called the conditional probability given B. 

For example, consider throwing a die. If the event A. means that we have rolled 
an even number and B . means that we have rolled a number divisible by 3., then 
P(B) = 1/3., P(A ∩ B) = 1/6., so P(A|B) = 1/2.. The obtained result agrees with 
the intuitive understanding of the concept conditional probability, provided that the 
event B . happened. If you know that B . has happened, you know that a three or a six 
has come out, and only one of these results meets the conditions of the event A, 
hence P(A|B) = 1/2.. 

Theorem 2.18 (Law of Total Probability) Let B1, B2, . . . , Bn . be random events 
satisfying the following conditions: 

(1) Bi ∩ Bj = ∅. for i 
= j .; 
(2)

⋃n 
i=1 Bi = �.; 

(3) P(Bi)  >  0. for every i = 1, 2, . . . , n.. 

Then, for every random event A ∈ F., we have 

. P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + · · · + P(A|Bn)P(Bn).

Proof Since the sets B1, . . . , Bn . meet the assumptions (1) and (2), the event A. can 
be written as a sum of pairwise disjoint sets: 

. A = A ∩ � = A ∩
n⋃

i=1

· Bi =
n⋃

i=1

· (A ∩ Bi).

The probability of the sum of pairwise disjoint events is equal to the sum of the 
probabilities of these events, so finally, we get 

. P(A) =
n∑

i=1

P(A ∩ Bi) =
n∑

i=1

P(A|Bi)P(Bi).

��
Example 2.19 Paul is playing an RPG. The wizard who is his playing figure will 
win a showdown if Paul rolls a single die and obtains a number divisible by three. 
The die must first be drawn from a box containing three dice: a cube (6 faces), an 
octahedron (8 faces), and a dodecahedron (12 faces). Each of these dice has faces 
numbered with consecutive natural numbers starting from 1. What is the probability 
that the wizard will win?
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The result of throwing a die depends on the kind of die that is thrown. Let B1 . 

mean that Paul has chosen a cube, B2 . that he has chosen an octahedron and B3 . that 
he has chosen a dodecahedron. Since he is supposed to draw only one die, the events 
B1, B2 . and B3 . are mutually exclusive and exhaust all possibilities. We assume that 
Paul is not previewing during the draw, so P(B1) = P(B2) = P(B3) = 1/3 >. 0. Let 
A. be the event of rolling a number that is divisible by three. Then P(A|B1) = 1/3., 
P(A|B2) = 2/8., P(A|B3) = 4/12.. From the Law of Total Probability, we obtain 

. P(A) = 1

3
· 1

3
+ 2

4
· 1

3
+ 4

12
· 1

3
= 11

36
.

Example 2.20 (The Monty Hall Problem) In the recently popular TV game Let’s 
Make a Deal, a player has three boxes to choose from. In one of them there is an 
attractive reward, while in the other two, there are cute but much less attractive black 
and white teddy cats, both named Zonk. Assume that the player has chosen box A. 
In the second stage of the game, the host informs the player that there is a Zonk in 
one of the remaining boxes, for example in C .. The player can then either stick to his 
original choice and leave the game with the contents of box A., or change his mind 
and choose box B .. Which decision is better? 

At first, it seems that each of these decisions is equally good, but are they really? 
Let A. mean there is a prize in box A., and A′

. mean there is a Zonk in box A.. 
Similarly, we define B,B ′, C,C ′

.. Let  

. B1 = A ∩ B ′ ∩ C ′, B2 = A′ ∩ B ∩ C ′, B3 = A′ ∩ B ′ ∩ C.

Of course P(Bi) = 1/3. for i = 1, 2, 3. and � = B1 ∪ B2 ∪ B3 .. It would seem 
that the probability of the prize being in box B, after receiving the information (the 
hint) from the host, is equal to the conditional probability provided by C ′

., so it is  
equal to 1/2.. By reasoning in this way, we only use a fraction of the information 
we have. Yet, we know more—we know that the host has decided to show us box 
C .. Depending on the situation, he either has had or has not had a choice! Hence, let 
D . denote the event where the host has said that there is a Zonk in box C .. We then 
have: 

. P(B
∣
∣D) = P(B ∩ D)

P(D)
= P(B2)

P(D)
.

It remains to calculate P(D).. Note that if B1 . happened, the host would point to box 
C with probability 1/2., and if B2 . happened, he would have no choice but to point 
to C . with probability 1. Hence, 

.P(D) = P(D
∣
∣B1)P(B1) + P(D

∣
∣B2)P(B2) + P(D

∣
∣B3)P(B3)

= 1

2
· 1

3
+ 1 · 1

3
+ 0 · 1

3
= 1

2
.
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Consequently, in the end, P(B
∣
∣D) = 2/3., and it turns out that in this case it is 

worthwhile to change one’s mind. 

Theorem 2.21 (Bayes’ Formula) Assume that the random events A,B1, . . . , Bn . 

satisfy the following conditions: 

(1) Bi ∩ Bj = ∅. for i 
= j .; 
(2)

⋃n 
i=1 Bi = �.; 

(3) P(Bi)  >  0. for each i = 1, 2, . . . , n.; 
(4) P(A) > 0.. 

Then, for every i = 1, 2, . . . , n., we have: 

. P(Bi |A) = P(A|Bi)P(Bi)

P(A|B1)P(B1) + P(A|B2)P(B2) + · · · + P(A|Bn)P(Bn)
.

Proof It is enough to note that 

. P(Bi |A) = P(Bi ∩ A)

P(A)
= P(A|Bi)P(Bi)

P(A)
,

and then apply the Law of Total Probability. ��
Let’s go back to the example of Paul playing the RPG and suppose he has rolled 

a number divisible by 3. From Bayes’ Formula, it is easy to calculate the probability 
that Paul had rolled an octagonal die: 

. P(B2|A) = P(A|B2)P(B2)

P(A)
=

1
4 · 1

3
11
36

= 3

11
.

2.7.1 Exercises 

97. Prove that the conditional probability satisfies the probability axioms. 
98. Prove the Law of Total Probability and Bayes’ Formula in the case of a 

countable partition of the set �., i.e., if � = ⋃∞
n=1 Bn ., Bi ∩ Bj = ∅. for i 
= j ., 

P(Bn) > 0. for each n ∈ N. and P(A) > 0.. 
99. Prove that if P (A1 ∩ A2 ∩ · · · ∩ An−1) > 0., then 

. P (A1 ∩ A2 ∩ · · · ∩ An)=P (A1)P
(
A2

∣
∣A1

) · · ·P (
An

∣
∣A1 ∩ A2 ∩ · · · ∩ An−1

)
.

100. Prove that if B1, . . . , Bn . are disjoint, P(Bi ∩ C) > 0. for every i = 1, 2, . . . , n. 

and A ∩ C ⊂ ⋃n
k=1 Bk ., then 

.P
(
A
∣
∣C

) =
n∑

k=1

P
(
A
∣
∣Bk ∩ C

)
P
(
Bk

∣
∣C

)
.
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101. Assume that P
(
A
∣
∣B

)
> P

(
B
∣
∣A

)
., P(A) > 0. and P(B) > 0.. Is it true that 

P(A) > P(B).? 
102. Is the following equality true: P

(
A
∣
∣B

) + P
(
A
∣
∣B ′) = 1., where B ′ = � K B .? 

103. We have three urns containing white and black balls, with the ratio of the 
number of white balls to the number of black balls being α . in the first, β . in the 
second and γ . in the third urn. We choose an urn randomly and then we draw 
a ball from it. What is the probability that it is white? 

104. There are two shooters at a shooting range. The first one hits a target with 
a probability of 0.5., the second one of 0.8.. They have tossed a coin to 
determine which of them will shoot. An outside observer, who can see the 
results but cannot see the shooters, observes that the shot has hit the target. 
What is the probability that it was the first shooter who fired? 

105. Three balls were drawn randomly from an urn containing 7 white and 3 black 
balls. If it is known that a black ball is among those drawn, what is the 
probability that the other two are white? 

106. An urn contains n. white balls and m. black balls. We draw one ball and then 
throw it back into the urn, adding �. white balls if it was a white ball or �. 

black balls if it was black. We repeat this operation many times. Prove that 
the probability of getting a white ball in the k-th step is equal to n

n+m
. for: 

(a) k = 1, 2, 3.; (b) any k .. 
107. There are n. balls in an urn, including m. white ones. We randomly draw k . balls. 

Denote by Ai . the event where the i-th drawn ball is white, and by Bj . the event 
where the white ball is drawn j times. Prove that P(Ai |Bj) = j/k . for both 
‘with replacement’ and ‘without replacement’ randomization. 

108. Eugene had N 5-cent and M 10-cent coins in his wallet, but he lost a coin and 
doesn’t know what denomination it was. Two coins drawn randomly from the 
wallet turned out to be 5-cent coins. What is the probability that the lost coin 
was a 10-cent coin?

109. To make herself save money, Karen puts every ten- and twenty-cent coin she 
finds in her wallet into a piggy bank at the end of every day. After emptying 
the bank last time, one coin remained in it, and today Karen added a 10-cent 
coin. A coin pulled randomly from the bank turned out to be a 10-cent coin. 
What is the probability that there is another 10-cent coin in the box? 

110. In a group of 30 students, there are five students who always pass an exam 
with an A-grade. There are also ten students who always get an A- or B-grade 
in an examination with the same probability. The remaining fifteen receive 
a B, C, or F with equal probability. What is the probability that a randomly 
selected student from this group will receive: (a) A; (b) B? 

111. We have 3 urns. In the first, there are 3 black and 7 white balls; in the second, 
4 black and 6 white balls; in the third 6 black and 4 white balls. We randomly 
take one ball from the first urn and put it into the second. Then, we take 
a random ball from the second urn and put it into the third. What is now the 
probability that a ball randomly taken from the third urn is white?
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112. Nuts from three hazel bushes have been harvested and placed in three baskets 
so that each basket has nuts from a different bush, but we don’t know which 
bush the contents of a given basket comes from. Two of these shrubs have 
not received any horticultural treatment and 1/3. of their nuts are infested with 
worms. On the third shrub, only 5.% of the nuts are infested. Is it possible to 
find a strategy for buying 3 kgs of nuts so that with a probability of more than 
1/2. you will buy less than 0.7 kgs of worm-eaten nuts? 

2.8 Independent Events 

Independence of random events is a very important idea in probability theory. It 
can be defined by using conditional probability and claiming that A and B are 
independent if the conditional probability P(A

∣
∣B). does not depend on the condition. 

This, however, unjustly excludes the situation when P(B) = 0., thus we shall use the 
following definition: 

Definition 2.22 We say that random events A, B are independent if

. P
(
A ∩ B

) = P
(
A
)
P
(
B
)
.

If for a sequence of random events A1, A2, . . . , An . the following condition holds 

. ∀ i, j = 1, . . . , n, i 
= j, P
(
Ai ∩ Aj

) = P
(
Ai

)
P
(
Aj

)
,

we say that the events A1, A2, . . . , An . are pairwise independent. 

Definition 2.23 We say that random events A1, A2, . . . , An . are independent if for 
every k � n. and any choice of different indexes n1, . . . , nk ∈ {1, 2, . . . , n}., the  
following condition holds: 

. P
(
An1 ∩ · · · ∩ Ank

) = P
(
An1

)
. . .P

(
Ank

)
.

So, to prove that A,B . and C . are independent, we need to check if they are 
pairwise independent, and that P

(
A∩B ∩C

) = P
(
A
)
P
(
B
)
P
(
C
)
.. If the events A,B . 

and C are pairwise independent, it does not mean that they are independent! 

2.8.1 Exe rcises

113. Prove that if the events A and B are independent, then the events A′
. and B ′

. 

are independent and the events A and B ′
. are independent. 

114. Can an event  A. be independent of itself?
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115. Assume that P(A) > 0. and P(B) > 0.. Prove that 

(a) if A and B are disjoint then they are not independent;
(b) if A and B are independent then they are not disjoint.

116. Show that if P(A|B) = P(A|B ′)., then the events A and B are independent.
117. The probability of event A is equal to 0 or 1. Prove that this event is 

independent of any event B .
118. Events A and B are independent and such that P(A ∪ B) = 1.. Prove that 

P(A) = 1. or P(B) = 1.. 
119. Let A and B be independent events. Prove that if A ∪ B . and A ∩ B . are 

independent, then P(A) = 0. or P(A) = 1., or P(B) = 0., or P(B) = 1.. 
120. We roll a single die three times. The event A. is when we obtain the same result 

on the first and second throw; event B . - we got the same number on the second 
and third throw; C .—on the first and third throw. Are the events A, B and C 
independent? Are they pairwise independent?

121. Events A. and B . are independent, and C . is independent of A ∪ B . and A ∩ B .. 
Can the events A, B and C be dependent?

122. Events A,B . and C are pairwise independent and have probabilities that are 
not equal to zero or one. Can the events A ∩ B ., B ∩ C . and A ∩ C . be: 
(a) pairwise independent; (b) independent? 

123. Show that the equality P(A ∩ B ∩ C) = P(A)P(B)P(C). does not imply that 
the events A,B . and C are i ndependent.

124. We roll a single die twice. Event A holds if we got a number divisible by 3 
on the first throw; B if the sum of obtained numbers is even; C if we got the 
same number on each throw. Are the events A,B . and C independent? Are 
they pairwise i ndependent?

125. Three students prepared independently for an exam in probability calculus. 
The probabilities of passing the exam for each student are: p1 = 0.6.; p2 = 0.5. 

and p3 = 0.4.. Find the probability that the third student has passed the exam 
if we know that only two of them have passed. 

126. At most, how many conditions need to be checked to prove the independence 
of the events A1, . . . , An .? How many counterexamples need to be found to 
show that all of these conditions are relevant? 

2.9 Bernoulli Trials 

Consider a random experiment that consists of a series of n. trials, where 

(1) subsequent attempts are independent; 
(2) in each trial, two outcomes are possible: one, called success, occurs with 

probability p .; the other, called failure, has a probability of q = 1 − p ..
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Such trials are called Bernoulli trials and a sequence of Bernoulli trials is called a 
Bernoulli experiment with parameters n and p. The probability that in n trials we 
obtain k successes and n − k . failures is equal to: 

. P {Xn = k} =
(

n

k

)

pk(1 − p)n−k, k = 0, 1, . . . , n.

Justification of the Formula The result of a Bernoulli experiment can be described 
as a sequence of n elements, writing a one in the i-th place if we have had 
a “success” in the i-th trial; and writing a zero if we have failed in the i-th trial. 
Then, the r ecord

. 1, . . . , 1,
︸ ︷︷ ︸
k times

0, . . . , 0
︸ ︷︷ ︸

n−k times

means that we have had successes in the first k . attempts, and failures in the 
remaining ones. The probability of such a result is equal to pkqn−k

.. We should 
also note that the number of n. element sequences of k . ones and (n − k). zeros is 
equal to 

(
n

k

)
.. 

Example 2.24 We toss a coin ten times. The probability of getting exactly 5 heads 
is equal to 

. P {X10 = 5} =
(

10

5

)(
1

2

)10

= 63

256
≈ 0.246094.

Example 2.25 We roll a single die 10 times and we would like to see how many 
sixes we get. Thus, getting a six means a success in this experiment, i.e., p = 1

6 . and, 
e.g., 

. P {X10 = 5} =
(

10

5

)(
1

6

)5 (5

6

)5

= 7 · 55

68
≈ 0.0130238.

2.9.1 Most Probable Number of Successes 

Figure 2.4 shows that the probability of getting exactly k successes in a sequence 
of n Bernoulli trials is a function of k which grows at the beginning, and decreases 
towards the end.
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pk 
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n =  10,  p  = 1 3

Fig. 2.4 Probability of getting k successes in a sequence of n Bernoulli trials

Intuitively, it is also clear that within 60 dice rolls, you are most likely to get 10 
sixes, and within 60 coin flips you are most likely to get 30 heads. To justify this 
fact, consider the following expression: 

. A(k) = P{Xn = k + 1}
P{Xn = k} = p(n − k)

(1 − p)(k + 1)
.

It is easy to check that P{Xn = k + 1} > P{Xn = k}. and consequently A(k) > 1. 

if k < np + p − 1. and A(k) < 1. if k > np + p − 1.. Hence, we get that the 
most probable number of successes in n. Bernoulli trials is any integer in the interval 
[p(n+1)−1, p(n+1)].. If p(n+1). is an integer, then there are two integers in this 
interval. Otherwise, the most likely number of successes is [p(n + 1)]., where [x]. is 
the integer part of the number x .. 

Approximate Formulas Often, when solving problems involving a Bernoulli 
scheme, we will have to raise a number close to one to a very large power. It is 
worth remembering two formulas that facilitate approximate calculations here. One 
of them is based on Taylor’s theorem, and we apply it when nx . is a small number: 

. (1 − x)n = 1 − nx + o(nx).

The other formula is based on the well-known approximation of the constant e.: 

. lim
n→∞

(

1 − 1

n

)n

= e−1 ≈ 0.36787944117 . . .
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Example 2.26 Throughout his adult life, Mister Kowalski fills out a lottery coupon 
twice a week, selecting 6 out of 49 numbers. What is the probability that he will 
never hit all the winning six numbers? 

First, let’s calculate the probability of success, i.e., the probability of hitting the 
six in one draw: 

. � = {{a1, . . . , a6} : ai ∈ {1, . . . , 49}, ai 
= aj for i 
= j
} ;

. n(�) =
(

49

6

)

= 11 · 12 · 46 · 47 · 49.

Event A consists in selecting exactly all six randomly selected numbers 

. p = P(A) = 1

n(�)
= 1

11 · 12 · 46 · 47 · 49
.

Suppose Mr Kowalski’s adult life will last at least 66 years. Buying two coupons 
a week for 66 years means that Mr Kowalski will make 2 · 52 · 66. attempts to 
succeed. Hence, the probability that he will never hit the six is: 

. P {Xn = 0} =
(

n

0

)

p0(1 − p)n =
(

1 − 1

11 · 12 · 46 · 47 · 49

)2·52·66

.

Using the first-order approximation from Taylor’s formula, we get that 

. P {Xn = 0} ≈ 1 − 2 · 52 · 66

11 · 12 · 46 · 47 · 49
= 1 − 26

23 · 47 · 49
≈ 0.999509146 . . .

On the other hand, using the approximation of e., we get 

. P {Xn = 0} =
[(

1 − 1

11 · 12 · 46 · 47 · 49

)11·12·46·47·49
]0.000490853

≈ 0.999509267 . . .

Stirling’s Approximate Formula Another important formula for approximate 
calculations involving the Bernoulli distribution and other distributions where the 
symbol n!. occurs is Stirling’s formula: 

. n! ∼ √
2πn · nne−n,

where ∼. indicates that the quotient of the expressions on the left and right sides 
tends to one as n. goes to infinity. The first proof of this formula was presented by 
James Stirling in 1730 [16]. Those interested can find this proof, for example, in 
the book by Feller [6], Sect. II.9, or in the book by Jakubowski and Sztencel [8], 
Sect. A.3.
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2.9.2 The Black and White Hats Puzzle 

There is a whole series of logical problems in which the most important element 
is guessing the colors of the hats that appear on some people’s heads without them 
knowing which color they are wearing. Sometimes, when the color of the hat is not 
important, the tasks concern horns growing on some gentlemen’s heads. 

The simplest example of such a problem can be summarized as follows (see 
Fig. 2.5): three prisoners stand in a line, one after another, so that each of them can 
see only the prisoners standing in front of him, and the first cannot see anyone. They 
each have a black or white hat on their heads and it is known that only two hats are 
of the same color. The prisoners will be released if at least one of them can guess 
the color of his own hat. Will they be released? 

We leave it to the reader to solve this puzzle, which only consists in carrying out 
precise logical reasoning. To make it easier, let us note that if the third prisoner sees 
two black hats in front of him, he knows the color of his hat, but if he sees hats of 
different colors, he should not try to answer the question. 

In the 1990s, an interesting problem emerged which was of a seemingly 
similar type, but it was a probability problem, not a logic problem. Thanks to 
the Internet, it quickly reached many mathematicians and enthusiasts all over 
the world. It delighted with the simplicity of its formulation, but also the deep 
and unexpected relationships it has with many unsolved mathematical problems, 
including applications in telecommunications, computer science and coding theory. 

In the Black and White Hats puzzle, a team of n players enters a room and a white 
or black hat is randomly placed on the head of each player. Each player can see the 
hats of all of the other players but not his own. The rules of the game exclude any 
form of communication between players. However, they may, before starting the 
game and entering the room, establish a common strategy. After seeing the hats 
of the other players, each of them can guess the color of their own hat or give up 
guessing. The team will win 3 million euros to be shared between them if at least 
one of the players guesses correctly and no other gives the wrong answer; otherwise

Fig. 2.5 Three prisoners
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the team loses. The problem is to find a strategy that maximizes the probability of 
winning. 

One obvious strategy guarantees a winning probability equal to 1
2 .. It is enough to 

agree that one of the players, regardless of the situation, will declare that he or she 
has a black hat, and the others will be silent. However, is it possible to find a better 
strategy and increase this probability? 

Note that for three players, the probability that they all have hats of the same color 
is 1

4 ., and the probability that two hats are of one color and the third of the other is 3
4 ., 

so it is worth assuming that we are in the latter situation. Let’s agree that the player 
who can see two hats of the same color is to report that his or her hat is of the second 
color, and that the other players are silent. If there were two black hats and one white 
hat, only the player in the white hat speaks, claiming that he has a white hat and the 
group wins. However, if there were three black hats, which is three times less likely, 
each player would announce that he has a white hat and all of them would contribute 
equally to the loss. As you can see, this strategy has additional advantages! It favors 
teamwork: you stay silent if you presume that someone else has better information. 
What is more, it equally distributes the responsibility in the case of failure. 

If the number of players is greater, the task becomes more complicated. However, 
you can always find a strategy that will lead to a win in most cases, and a less 
frequent loss. We suggest the reader to find a good strategy for n = 7.. It is known  
that when the number of players is one less than a power of two, i.e., n = 2k − 1., 
there is a strategy with a probability of winning equal to 1 − 2−k

.. 
The optimal strategy you are looking for has a very elegant description in 

the language of Hamming codes, named after its author, mathematician Richard 
Hamming. These codes are used to remove errors in data transmission by all types 
of electronic devices, from telephone exchanges to optical discs. They are also used 
for data compression in computer memory. 

2.9.3 Exercises 

127. A series of lectures consists of 15 independent topics discussed in separate 
lectures. At the beginning of the semester, a special committee prepares a list 
of 5 examination tasks, each of them on a different topic. In order to pass the 
exam, the student has to solve three or more problems. The lecturer comes 
to the lecture with a probability of 0.92., and if he does not, the topic for that 
lecture is never discussed. What are the chances that Adam can pass the exam 
if he can solve the problems related to the topics discussed with a probability 
of 0.8., and cannot solve the topics that have not been covered? 

128. We throw a coin n times, n � 2.. What is the chance that heads will appear an 
even number of times?



40 2 The General Definition of Probability

129. We throw a single die n times. Calculate the probability that

(a) the number 6 will appear exactly once; 
(b) the number 6 will appear at least once. 

130. Which of the following events is more likely: A—a six will appear at least 
once in four dice rolls; B—in 24 rolls of two dice at least one of the rolls will 
show a pair of sixes? 

131. We roll a single die several times. Which of the following events is more 
probable: A—the sum of the numbers rolled is even; or B—the sum is odd? 

132. Two players each toss a coin n. times. What is the probability that they obtain 
the same number of heads? 

133. Banach’s Problem. The Polish mathematician Stefan Banach not so much 
posed as inspired the following problem: A man had two boxes of matches, 
n. matches in each, and he put one in his right and the other in his left jacket 
pocket. Each time he needed a match, he would reach randomly into one of 
his pockets. When he reached into his pocket again, it turned out that the box 
he pulled out was empty. What is the probability that the second box at that 
moment contained exactly k . matches, k � n.? 
Hint: You need to consider the case where the box in the right pocket is empty, 
and the case in which the box in the left pocket is empty, bearing in mind that 
both boxes may turn out to be empty at the same time. 

134. The probability of drawing a winning lottery ticket is 0.25.. How many tickets 
do I need to purchase in order to win with a probability of at least 0.9.? 

135. What is the probability that Mr Kowalski will not even hit a four (i.e. match 
four numbers) by playing a lottery twice a week for a year (when choosing 6 
numbers out of 49)? 

136. The probability of hitting a target with a single shot is p ., and the probability 
of destroying the target with k . hits, k ≥ 0., is  1 − λk

.. What is the probability 
of destroying the target if n. shots are fired? 
Hint. Apply the total probability formula for {Xn = k}., k = 0, 1, . . . , n., 
where Xn . is the number of shots on target among n fired. 

137. Find the optimal strategy for n = 4, 5, 6. players in the Black and White Hats 
puzzle. 

138. Find the optimal strategy for n = 7. players. 

2.10 Upper and Lower Limits of Sequences of Events 

Let (�,F,P). be a probability space and let An ∈ F., n ∈ N..
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Definition 2.27 The upper limit of a sequence of events An ., n ∈ N., is the set of  
ω ∈ �. which belong to infinitely many events An ., i.e., 

. lim sup
n→∞

An
def=

{
ω : ∀ n ≥ 1 ∃ m ≥ n ω ∈ Am

}
=

∞⋂

n=1

∞⋃

m=n

Am.

The lower limit of the sequence of events An ., n ∈ N., is the set of  ω ∈ �. which 
belong to almost all events An ., i.e., all except a finite number of events An .: 

. lim inf
n→∞ An

def=
{
ω : ∃ n ≥ 1 ∀m ≥ n ω ∈ Am

}
=

∞⋃

n=1

∞⋂

m=n

Am.

It is easy to see that both lim infn→∞ An . and lim supn→∞ An . are random events 
because the σ .-field F. is closed under countable set operations. Of course: 

. lim inf
n→∞ An ⊂ lim sup

n→∞
An.

The following theorem, which describes the basic properties of the upper and lower 
limits of a sequence of sets, is a special case of Fatou’s theorem. 

Theorem 2.28 If (An). is a sequence of random events, then 

. P
(

lim inf
n→∞ An

)
� lim inf

n→∞ P
(
An

)
� lim sup

n→∞
P
(
An

)
� P

(

lim sup
n→∞

An

)

.

Proof Let Bn = ⋂∞
k=n Ak . and Cn = ⋃∞

k=n Ak .. The sequences (Bn). and (Cn). are, 
respectively, increasing and decreasing sequences of sets. In addition, 

. lim inf
n→∞ An =

∞⋃

n=1

Bn, lim sup
n→∞

An =
∞⋂

n=1

Cn.

By Property 8 of the probability measure P. (Continuity Theorem), we get: 

. P(An) � P(Bn) −→ P
(

lim inf
n→∞ An

)

and

P(An) � P(Cn) −→ P
(

lim sup
n→∞

An

)

,

from which the result easily follows. ��
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Lemma 2.29 (Borel–Cantelli Lemma) Let (�,F,P). be a probability space and 
let An ∈ F. for each n ∈ N.. 

(1) If
∑∞

n=1 P(An) < ∞., then P
(
lim supn→∞ An

) = 0.. 
(2) If the events An . are independent and such that

∑∞
n=1 P(An) = ∞., then 

P
(
lim supn→∞ An

) = 1.. 

Proof The proof of (1) is simple: 

. P
(

lim sup
n→∞

An

)
� P

( ∞⋃

k=n

Ak

)

�
∞∑

k=n

P
(
Ak

) −→ 0,

which is due to the convergence of the series
∑∞

n=1 P(An).. Assume now that the 
events An . are independent. Then, the A′

n . are independent too, and 

. P
(

� K
∞⋃

k=n

Ak

)

= P
( ∞⋂

k=n

(� K Ak)

)

=
∞∏

k=n

(1 − P(Ak))

�
∞∏

k=n

e−P(Ak) = exp

{

−
∞∑

k=n

P(Ak)

}

= 0,

since
∑∞

k=n P(Ak) = ∞.. This implies that P
(⋃∞

k=n Ak

) = 1. for each n ∈ N.. Since 
the events

⋃∞
k=n Ak . form a decreasing sequence, we get 

. P
(

lim sup
n→∞

An

)

= lim
n→∞P

( ∞⋃

k=n

Ak

)

= 1.

��

2.10.1 Exercises 

139. Show that for any sequence of random events An, n ∈ N. 

. 

(

lim sup
n→∞

An

)′
= lim inf

n→∞ A′
n,

(

lim inf
n→∞ An

)′
= lim sup

n→∞
A′

n.

140. Let Ak, k ∈ N., be a sequence of random events in a fixed probability space 
(�,F,P).. Prove that the random events lim inf An . and lim sup An . belong to 
the σ .-field σ ({Ak : k ∈ N})..
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141. Are the following relationships true: 

. P
(

lim sup
n→∞

An

)

= lim
n→∞P

( ∞⋃

k=n

Ak

)

; P
(

lim inf
n→∞ An

)
= lim

n→∞P
( ∞⋂

k=n

Ak

)

?

142. Prove that for any An,Bn ∈ F, n ∈ N. 

. 

lim sup
n→∞

(
An ∪ Bn

) =
(

lim sup
n→∞

An

)

∪
(

lim sup
n→∞

Bn

)
;

lim inf
n→∞

(
An ∩ Bn

) =
(

lim inf
n→∞ An

)

∩
(

lim inf
n→∞ Bn

)

.

143. What is the probability that in an infinite sequence of tosses of a symmetric 
coin, heads will appear finitely many times? 

144. What is the probability that a six will appear infinitely many times in an infinite 
series of dice rolls?



Chapter 3 
Random Variables and Their 
Distributions 

3.1 Definition of a Random Variable 

As we have already seen, the description of a probability space can be complicated 
and troublesome in some cases. Usually, however, we are not interested in the result 
of a random experiment itself, but in the value of a certain function ascribed to this 
event. This could be, for example, the value of the sum of the results of several dice 
rolled at the same time, the value of a win (or loss) in a lottery, or, in a sequence of 
consecutive coin tosses, which one of them will be the first to fall heads up. 

If �. consists of a finite number of elements, then each function X : � → R. 

has the property that we can calculate the probability of X−1(B). for any Borel set 
B ∈ F.. However, if �. is uncountable, or if F. does not contain all subsets of the 
countable set �., then we can only consider functions X . for which the probability 
of X−1(B). is well defined for all Borel sets B ⊂ R.. We will call the functions that 
satisfy this condition random variables. 

Definition 3.1 A function X defined on the probability space (�,F,P). taking 
values in R. is called a random variable if for every t ∈ R., the following condition 
holds: 

. X−1((−∞, t)) =
{
ω ∈ � : X(ω) < t

}
∈ F.

The next two theorems give equivalent definitions of random variables. 

Theorem 3.2 Let X : (�,F,P) → R.. Then, the following conditions are 
equivalent: 

(1) X is a random variable;
(2) for every t ∈ R., we have {ω : X(ω) � t} ∈ F.; 
(3) for every t ∈ R., we have {ω : X(ω) > t} ∈ F.; 
(4) for every t ∈ R., we have {ω : X(ω) � t} ∈ F.. 
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Proof Note that F. is a σ .-field, hence it is closed under countable set operations. 
The equivalence of (1) ⇔ (2). can therefore be easily deduced from the following 
facts: 

. 

{ω : X(ω) � t} =
⋂
n∈N

{ω : X(ω) < t + 1/n};

{ω : X(ω) < t} =
⋃
n∈N

{ω : X(ω) � t − 1/n}.

Similarly, we show that (3). and (4). are equivalent. To show that (1). implies 4). note 
that 

. {ω : X(ω) � t} = � K {ω : X(ω) < t} ∈ F.

Similarly, condition (4). implies (1). because 

. {ω : X(ω) < t} = � K {ω : X(ω) � t} ∈ F,

which was to be shown. ��
Theorem 3.3 The function X : (�,F,P) → (R,B). is a random variable if and 
only if for any Borel set B ∈ B., the following condition holds: 

. {ω : X(ω) ∈ B} ∈ F. (∗) 

Proof Of course, if the condition (∗). is true, then X . is a random variable, because 
the half-lines (−∞, t)., t ∈ R., are Borel sets. Hence, let’s assume that X . is a random 
variable and denote by K. the family of all Borel subsets of the line satisfying the 
condition (∗)., i.e., 

. K def= {B ∈ B : {ω : X(ω) ∈ B} ∈ F} .

Since X is a random variable, for every t ∈ R. the half-line (−∞, t). belongs to K..  It  
follows from the previous theorem that for every t ∈ R. the set (−∞, t]. belongs to 
K.. Consequently, all open intervals belong to K. because for all a < b., 

. {ω : a < X(ω) < b} = {ω : X(ω) < b} K {ω : X(ω) � a} ∈ F.

Every open set U ⊂ R. is a sum of a countably many open intervals In ., n ∈ N., thus 
U ∈ K. because 

.

{
ω : X(ω) ∈

⋃
n

In

}
=

⋃
n

{ω : X(ω) ∈ In} ∈ F.
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It remains to prove that K. is a σ .-field, i.e., it is closed with respect to all countable 
set operations. Assume that for each n ∈ N.,  we  have An ∈ K.. Then, 

. 

{
ω : X(ω) ∈ A′

1

}
= � K {ω : X(ω) ∈ A1} ∈ F,

{
ω : X(ω) ∈

⋃
n

An

}
=

⋃
n

{ω : X(ω) ∈ An} ∈ F,

{
ω : X(ω) ∈

⋂
n

An

}
=

⋂
n

{ω : X(ω) ∈ An} ∈ F.

We see now that K. is a σ .-field containing all open sets, i.e., containing the whole 
Borel σ .-field B.. However, by our assumption K. is a subset of the Borel σ .-field, thus 
finally, K = B.. ��

Recall that a function f : (�,F) → (R,B). is measurable if {ω : f (ω) ∈
B} ∈ F. for any Borel set B ∈ B.. Hence, we conclude that each random variable 
is a measurable function from (�,F). to (R,B)., but not every measurable function 
is a random variable! For this to be the case, the space (�,F). must be “equipped” 
with a probability measure. 

Theorem 3.4 If X and Y are random variables defined on the same pr obability
space (�,F,P)., then the following functions are also random variables: 

(a) aX(ω)., where a is a real number;
(b) X(ω) + Y (ω  ).; 
(c) X(ω) · Y (ω  ).. 

Proof 

(a) If a = 0., then the set {ω : aX(ω) < t}. is equal to either the empty set or �.. 
Both of these sets belong to F., hence aX(ω). is a random variable. If a �= 0., 
then 

. {ω : aX(ω) < t} =
{ {ω : X(ω) < t/a} if a > 0;

{ω : X(ω) > t/a} if a < 0.

In both cases, the obtained sets belong to F., thus the function aX(ω). is a random 
variable. 

(b) To prove that X(ω) + Y (ω). is a random variable, let us note that 

.{ω : X(ω) + Y (ω) < t} = {ω : X(ω) < t − Y (ω)}
=

⋃
q∈Q

{ω : X(ω) < q, q < t − Y (ω)},
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where Q denotes the set of rational numbers. Hence, it already follows that

. {ω : X(ω) + Y (ω) < t} =
⋃
q∈Q

{ω : X(ω) < q} ∩ {ω : q < t − Y (ω)}

=
⋃
q∈Q

{ω : X(ω) < q} ∩ {ω : Y (ω) < t − q} ∈ F.

To get the final inclusion of sets, we have used the fact that the set of rational 
numbers is countable and dense in R., and the fact that the σ .-field F. is closed 
with respect to countable operations. 

(c) We will first show that if X is a random variable, then X2
. is also a random 

variable. For t � 0., we get {ω : X2(ω) < t} = ∅ ∈ F.; and if t > 0., then we 
conclude that 

. {ω : X2(ω) < t} = {ω : X(ω) <
√

t} K {ω : X(ω) � −√
t} ∈ F.

Now, we can show that X(ω)Y (ω). is a random variable if X(ω). and Y (ω). are 
random variables. The previous considerations show that X(ω) + Y (ω). and 
X(ω)−Y (ω). are random variables. We conclude from this that (X(ω)+Y (ω))2 . 

and (X(ω) − Y (ω))2 . are random variables, thus also 

. X(ω)Y (ω) = 1

4

(
(X(ω) + Y (ω))2 − (X(ω) − Y (ω))2

)

is a random variable. 
��

Theorem 3.5 Assume that (Xn). is a sequence of random variables such that for 
every fixed ω ∈ �. 

. sup
n

Xn(ω) < ∞
(
inf
n

Xn(ω) > −∞
)

.

Then, the function X(ω) = supn Xn(ω) (.and Y (ω) = infn Xn(ω). respectively ). is 
also a random variable. 

Proof Let t ∈ R.. Both conclusions are easily derived from Theorem 3.2 and the 
following facts: 

.

{
ω : sup

n

Xn(ω) > t
}

=
⋃
n

{ω : Xn(ω) > t} ∈ F;
{
ω : inf

n
Xn(ω) < t

}
=

⋃
n

{ω : Xn(ω) < t} ∈ F.

��



3.1 Definition of a Random Variable 49

Corollary 3.6 Let Xn(ω). be a sequence of random variables. If for each ω ∈ �., 
the condition supn Xn(ω) < ∞. holds, then the function Y (ω) = lim supn Xn(ω). is 
a random variable. If for every ω ∈ �., the condition infn Xn(ω) > −∞. holds, then 
the function Z(ω) = lim infn Xn(ω). is a random variable. 

Proof First, remember that 

. lim sup
n

an = inf
k
sup
n�k

an, and

lim inf
n

an = sup
k

inf
n�k

an.

Thus, if Xn(ω). satisfies the assumptions, then 

. 

Y (ω) = lim sup
n

Xn(ω) = inf
k
sup
n�k

Xn(ω);
Z(ω) = lim inf

n
Xn(ω) = sup

k

inf
n�k

Xn(ω).

Hence, by Theorem 3.5 we get: Y (ω). and Z(ω). are random variables. ��
Corollary 3.7 Let Xn, n ∈ N., be a sequence of random variables on (�,F,P)..  If,  
for every ω ∈ �., there exists a finite limit W(ω) = limn Xn(ω)., then the function 
W(ω). is a random variable. 

Proof It suffices to recall that an . converges if and only if 

. lim sup
n→∞

an = lim inf
n→∞ an.

Then, 

. lim
n→∞ an = lim sup

n→∞
an.

Thus, the result follows easily from Corollary 3.6. ��

3.1.1 Exercises 

145. Show that the constant function X(ω) ≡ c. is a random variable on any 
probability space (�,F,P).. 

146. Let A,B ∈ F. be random events (�,F,P).,  let 1A(ω) = 1. if ω ∈ A., and 
1A(ω) = 0. if ω �∈ A.. Show that 

.∀ω ∈ � 1A�B(ω) = (
1A(ω) − 1B(ω)

)2
.
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147. Let (�,F,P). be a probability space and let A ∈ F.. Prove that the function 
X(ω) = 1A(ω). is a random variable. 

148. Let � = [0, 1]., F = {∅,�, [0, 1/2), [1/2, 1]}., P. any probability measure and 
let [a]. denote the integer part of a number a. Which of the following functions 
are random variables? 

. 

(a) X(ω) = [ω + 3/4]; (b) Y (ω) = [ω + 1/2] + 2;

(c) Z(ω) =
{
0 if ω < 1/2;
1 if ω � 1/2; (d) T (ω) =

⎧⎨
⎩
0 if ω < 1/2;
1 if ω = 1/2;
2 if ω > 1/2.

149. Show that ifX(ω). and Y (ω). are random variables on (�,F,P)., and Y (ω) �= 0. 
for each ω ∈ �., then the function X(ω)/Y (ω). is a random variable. 

150. Assume that A. is an atomic σ .-field on �., i.e., there exists a countable or finite 
sequence A1, A2, A3, . . . . of subsets of �. such that

⋃
i Ai = �., Ai ∩ Aj = ∅. 

for i �= j . and 

. A = σ {A1, A2, A3, . . . } .

Prove that every random variable X on the probability space (�,A,P). is 
constant on the sets Ai . and that each function X(ω) = ∑∞

i=1 ci1Ai
(ω). is 

a random variable on (�,A,P).. 
151. Does the fact that |X|. is a random variable on (�,F,P). imply that X . is also 

a random variable? 
152. Show that if X and Y are random variables on (�,F,P)., then 

. {ω : X(ω) = Y (ω)} ∈ F.

153. Assume that the function f : R→ R. is measurable with respect to the Borel 
σ .-field B., i.e., f −1(B) ∈ B. for every B ∈ B.. Prove that if X(ω). is a random 
variable on (�,F,P)., then also Y (ω) = f (X(ω)). is a random variable. 
Hint. Use Theorem 3.3 

3.2 Distributions and Cumulative Distribution Functions 

Definition 3.8 The probability distribution of a random variable X . defined on 
a space (�,F,P). is called the probability measure PX . on (R,B). and is defined 
by the formula 

. PX(B)
def= P

(
X−1(B)

) = P{ω : X(ω) ∈ B}, B ∈ B.

Sometimes, instead of PX ., we will use the notation L(X)..



3.2 Distributions and Cumulative Distribution Functions 51

Remark 3.9 It is easy to verify that any probability measure Q.defined on the space 
(R,B). is the distribution of some random variable. Indeed, just take � = R., F = B., 
P = Q. and define X(ω) = ω.. Then, for every B ∈ B., we get: 

. PX(B) = P{ω ∈ � : X(ω) ∈ B} = Q{ω ∈ R : ω ∈ B} = Q(B).

Remark 3.10 If for random variables X . and Y . defined on the same probability 
space (�,F,P). the following condition holds: 

. P
{
ω : X(ω) = Y (ω)

} = 1,

then we say that X = Y . almost everywhere with respect to the probability measure 
P. (notation X = Y . a.e.). Two variables equal almost everywhere have identical 
probability distributions. 

Remark 3.11 Note that a distribution does not uniquely determine a random 
variable, even in the sense of equality almost everywhere. This means that different 
random variables can have the same distributions. To see this, consider the roll of 
a single die and two random variables: X . takes the value of one if there is an even 
number of pips, or zero if there is an odd number of pips; the variable Y . is defined 
by the formula Y (ω) = 1 − X(ω).. For any Borel set B ., we then have: 

. PX(B) = PY (B) = 1

2
1B(1) + 1

2
1B(0),

which means that the variables X and Y have the same distribution. On the o ther
hand, P{ω : X(ω) �= Y (ω)} = 1.. 

Example 3.12 Suppose we bought A. shares on the stock exchange for 1000 EUR. 
Following the previous price quotations of these stocks, we established that with 
a probability of p = 0.6. within a month, the value of these stocks will increase by 
ten percentage points, and with probability 1−p = 0.4., their value will decrease by 
ten percentage points. We want to describe the distribution of the random variable 
X . determining the value of our shares three months from the date of purchase. 

Let r = 1.1., s = 0.9. and n = 1000.. If every month there is an increase, then, 
of course, X = nr3 ., and the probability of this event is p3

.. If there is a decline 
every month, then X = ns3 ., and the probability of this event is (1 − p)3 ..  It  may  
also happen that over the three months, the value of shares increases twice, and falls 
once. Then, x = nr2s . with probability 3p2(1 − p).. For a double decrease, we get 
X = nrs2 .with a probability of 3p(1− p)2 .. The distribution of the random variable 
X . can be written in the form of a table: 

.
k 1331 1089 891 729

P(X = k) 0.216 0.432 0.288 0.064
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Instead of the above notation, we can use a convex combination of δx .measures that 
assign the measure 1. to the one-point set {x}., x ∈ R., 

. PX = 0.216 · δnr3 + 0.432 · δnr2s + 0.288 · δnrs2 + 0.064 · δns3 .

We can also use the obvious relationships of the obtained distribution with the 
already known Bernoulli distribution and write 

. P
{
X = nrks3−k

}
=

(
3

k

)
pk(1 − p)k, k = 0, 1, 2, 3.

We will describe the distribution of discrete random variables in a similar way. 

Definition 3.13 A random variable X is simple if the set of its values is finite. 
A random variable X is discrete if the set of its values is countable.

The number of heads thrown in n coin tosses, or the number of spades received 
in a bridge hand are random, simple and discrete variables. On the other hand, the 
number of times you toss a coin to get heads for the first time is a discrete random 
variable, but not a simple one because the set of values for this variable is countable 
and infinite. 

One of the most convenient methods of describing the distribution of a random 
variable is to use its (cumulative) distribution f unction.

Definition 3.14 The (cumulative) distribution function of a random variable X 
living on the space (�,F,P). is the function F : R→ [0, 1]. defined by 

. F(t) = P
{
ω : X(ω) < t

}
.

In many textbooks, a weak inequality appears in the definition of the cumulative 
distribution function F . Both approaches are acceptable, but for the purposes of this 
book, we chose the sharp inequality. Sometimes it is more convenient to say that 
F . is the distribution of the probabilistic measure PX . if PX . is the distribution of the 
random variable X .. Then, we write 

. F(t) = PX ((−∞, t)) .

Example 3.15 Consider the number of heads thrown in a toss of two symmetric 
coins. The space of elementary events �. can be identified with the set {0, 1, 2}., and 
the probability P. is given by the formula: P(A) = 1

4δ0(A) + 1
4δ2(A) + 1

2δ1(A). for 
any A ⊂ �.. Note that � ⊂ R., so we can also consider P. as a probability measure 
on R.. If we define X : R �→ R. by X(ω) = ω., then we can see that PX = P..  The
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F (t) 

X 

0.5 

1 

0 1 2 

Fig. 3.1 The graph of F(t). 

cumulative distribution of the measure P. is equal to the distribution function of the 
random variable X . and is given by: 

. F(t) = 1

4
1(0,∞)(t) + 1

2
1(1,∞)(t) + 1

4
1(2,∞)(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0, t � 0;
0.25, 0 < t � 1;
0.75, 1 < t � 2;
1, t > 2.

Figure 3.1 shows the graph of the function F(t).. 

Theorem 3.16 Let F be the cumulative distribution function of a random variable 
X on (�,F,P).. Then, 

(1) F is nondecr easing;
(2) limt→−∞ F(t)  = 0., limt→∞ F(t) = 1.; 
(3) F is left-continuous, i.e., F(t) = lims↗t F (s). for every t ∈ R.. 

Proof Let s < t .. Then, (−∞, t) = (−∞, s) ∪ [s, t).. Thus, since the probability 
measure PX . is additive and non-negative, we get 

. F(t) = PX((−∞, s)) + PX([s, t)) � PX((−∞, s)) = F(s),

which proves property (1). In order to prove (2), consider a decreasing sequence 
of real numbers x1 > x2 > · · · . such that limn→∞ xn = −∞.. Then, {(−∞, xn)}. 
is a decreasing sequence of sets and

⋂∞
n=1(−∞, xn) = ∅.. Now, by the Continuity 

Theorem for probability measures we conclude that 

.0 = PX(∅) = PX

( ∞⋂
n=1

(−∞, xn)

)
= lim

n→∞PX((−∞, xn)) = lim
n→∞ F(xn).
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In a similar way, we prove the second equality from condition (2). For any increasing 
sequence of real numbers x1 < x2 < · · · . such that xn → ∞., the sequence of sets 
{(−∞, xn)}. is increasing and ⋃∞

n=1(−∞, xn) = R., hence 

. 1 = PX(R) = PX

( ∞⋃
n=1

(−∞, xn)

)
= lim

n→∞PX((−∞, xn)) = lim
n→∞ F(xn).

To prove (3), take t ∈ R. and any increasing sequence of real numbers xn ↗ t .. 
The sequence of sets {(−∞, xn)}. is increasing and such that ⋃∞

n=1(−∞, xn) =
(−∞, t)., hence, using the Continuity Theorem again, we get 

. F(t) = PX

( ∞⋃
n=1

(−∞, xn)

)
= lim

n→∞PX((−∞, xn)) = lim
n→∞ F(xn),

from which the left-continuity of the function F follo ws. ��
Theorem 3.17 If a function F : R → R. satisfies conditions (1)., (2). and (3). of 
Theorem 3.16, then it is a cumulative distribution function of some random variable. 

Proof We present here a non-constructive proof of this theorem. However, since 
every mathematician should be able to construct a measure directly from its 
cumulative distribution function, we also present the full constructive proof in 
Chap. 8. 

Let F . be a function satisfying conditions (1), (2), and (3). For the space �., 
we will take the interval (0, 1)., and let the probability measure P. be the Lebesgue 
measure on �.. We define: 

. X(ω) = sup{t : F(t) � ω}.

It is easy to see that X . is a random variable on the space (�,F,P)., where F. is 
the σ .-field of Borel subsets of the set (0, 1).. Furthermore, X . is a non-decreasing 
function and X(ω) < r . if and only if F(r) > ω.. Hence, 

. P{ω :X(ω) < r}=P{ω :sup{t : F(t)� ω}< r}=P{ω :F(r)> ω}=F(r),

which completes the proof of the theorem. ��
Let us also consider the discontinuity of the distribution function (see Fig. 3.2). 

We know that each distribution function F . of any random variable X . is a left-
continuous and non-decreasing function. Therefore, if t0 ∈ R. is a discontinuity 
point, then 

.F(t0) = lim
t↗t0

F(t) < lim
t↘t0

F(t).
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F (t) 

X 

1 

t 

P (X = t) 

Fig. 3.2 Graph indicating the discontinuity of the distribution function F(t). 

The right-hand limit exists due to the monotonicity of the function F .. For any 
sequence tn ↘ t0 ., the sequence of sets [t0, tn). is decreasing, hence 

. P{X = t0} = P

{
X ∈

∞⋂
n=1

[t0, tn)
}

= lim
n→∞P{X ∈ [t0, tn)}

= lim
n→∞

[
F(tn) − F(t0)

]
= lim

n→∞ F(tn) − F(t0).

In this way, we have proved that if t0 . is a discontinuity point of the cumulative 
distribution function F , then the size of this jump is equal to P{X = t0}..  This  also  
means that the probability measure PX . has at the point t0 . an atom with weight equal 
to the cumulative distribution function’s jump. If the cumulative function of X . is 
continuous, then PX . has no atoms. 

3.2.1 Exercises 

154. Let � = {0, 1, 2, 3}., and P{k} = 1
4 . for k = 0, 1, 2, 3.. We define random 

variables: X(ω) = sin πω
2 . and Y (ω) = cos πω

2 .. Find the distributions and 
the cumulative distribution functions for X and Y . C alculate P{ω : X(ω) =
Y (ω)}.. 

155. Determine the set of all triples (a, b, c) ∈ R3 . for which the following function 
is a distribution function of some random variable: 

.(a)F1(t) =
⎧⎨
⎩

at2, t � 0;
bt + c, 0 < t � 2;
1, t > 2;

(b)F2(t) =
⎧⎨
⎩
0, t < 0;
a sin t + b, 0 � t � π/2;
1, t > π/2.
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156. Let � = [0, 3]. and let P. be the normalized Lebesgue measure on �..  Find  the  
distribution functions of the following random v ariables:

. (a) X(ω) =
⎧⎨
⎩
2ω + 1, 0 � ω � 1;
−ω2 + 2, 1 < ω < 2;
3, 2 � ω � 3;

(b) Y (ω) =
⎧⎨
⎩

−ω + 1, 0 � ω < 1;
ω2 − 1, 1 � ω � 2;
3ω, 2 < ω � 3.

157. Let � = [0, 1]. and let P. be the Lebesgue measure on �.. Find the cumulative 
distribution functions of the following random variables: (a) X(ω) = |2ω−1|.; 
(b) Y (ω) = sin2 ω + cos2 ω .;  (c) Z(ω) = 1. if ω ∈ Q.; Z(ω) = 0.,  if ω ∈ Q′

.. 
158. A random variable X has distribution function F . Find the distribution 

functions of the following random variables: (a) Y (ω) = aX(ω) + b.;  (b  )
Z(ω) = aX2(ω).. 

159. Prove that the distribution function F . of the probability measure P. can have 
at most countably many points of discontinuity. 

160. Does there exist a distribution function whose set of discontinuity points is 
dense in R.? 

161. Let X . be a random variable with continuous distribution function F . Show 
that for any countable set A ⊂ R.,  we  have P{ω : X(ω) ∈ A} = 0.. 

162. A random variable X has distribution function F . Find the cumulative 
distribution function of the random variable Y = 1

2 (X + |X|).. 
163. Functions F . and G. are distribution functions of some random variables. Give 

the necessary and sufficient conditions for the function H(x) := F(G(x)). to 
be a distribution function as well. 

3.3 Review of Discrete Distributions 

In this section, we will discuss the more important discrete distributions. We have 
already seen some of them. The ones that appear for the first time will be described 
in more detail. Recall that 1A(x). stands for the function that takes the value 1 if 
x ∈ A. and zero otherwise. 

3.3.1 Single Point Distributions 

A random variable X has a single point distribution (or one-point distribution)  if  
there is an a ∈ R. such that 

.P{X = a} = 1.
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Of course, such a random variable is constant almost everywhere with respect to the 
probability measure P.. This does not mean, however, that it has to be a constant 
function. For example, if � = [0, 1]., P. is Lebesgue measure and X(ω) = a . 

for irrational numbers ω . and X(ω) = a − 1. for ω . rational, then we can see that 
P{X = a} = 1.,  but X(ω) �= a . on a quite large set. 

A one-point distribution can be written in the following way: PX = δa ., and its 
distribution function has the form: 

. F(t) = 1(a,∞)(t).

3.3.2 Two-Point Distributions 

A random variable X has a two-point distribution if it can only take two va lues,
a . and b., where 

. P{X = a} = p = 1 − P{X = b}.

We can also describe it in the following way: 

. PX = pδa + (1 − p)δb, FX(t) = p1(a,∞)(t) + (1 − p)1(b,∞)(t).

If the random variable X describes a Bernoulli trial, success is usually assigned the 
value of a = 1., and failure the value of b = 0.. 

3.3.3 Binomial Distributions or Bernoulli Distributions 

A variable X has a binomial distribution with parameters n ∈ N. and p ∈ (0, 1). if 

. P{X = k} =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n

or 

. PX =
n∑

k=0

(
n

k

)
pk(1 − p)n−k δk.

This random variable (which was described in detail in Sect. 2.9) counts the number 
of successes in n.Bernoulli trials.
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3.3.4 Multinomial Distributions 

The multinomial distribution is a generalization of the binomial distribution. In a 
Bernoulli trial, the outcome can be either success or failure. Here, we assume that 
the result of a trial can be one of k possible results, where the i-th result appears 
with probability pi ., i = 1, . . . , k ., and this probability cannot change from trial to 
trial. If we make n independent trials and denote the number of results of the i-th 
type by Xi ., then we can write 

. P
{
X1 = n1, . . . , Xk = nk

} = n!
n1! . . . nk! p

n1
1 . . . p

nk

k ,

where pi ∈ (0, 1)., p1 + · · · + pk = 1., n1 + · · · + nk = n.. For example, if we know 
that there are 20% eels, 25% roaches and 55% breams in a pond, and Jan caught 10 
fish, the vector (number of eels, number of roaches, number of breams) will have 
a multinomial distribution with parameters n = 10.; k = 3.; p1 = 0.2.; p2 = 0.25. 
and p3 = 0.55.. 

3.3.5 Poisson Distributions 

A random variable X has a Poisson distribution with parameter λ > 0. if 

. P{X = k} = λk

k! · e−λ, k = 0, 1, 2, . . . or PX =
∞∑

k=0

λk

k! · e−λ δk.

It turns out that the Poisson distribution with parameter λ = λ0t . describes well 
the number of calls received at a telephone exchange over time t, or the number 
of radioactive particles registered during time t .. With such an interpretation of the 
variable X, the parameter λ0 . is called the intensity of the distribution. 

3.3.6 Geometric Distributions 

A random variable X has a geometric distribution with parameter p ∈ (0, 1). if 

. P{X = k} = pqk−1, k = 1, 2, . . . or PX =
∞∑

k=1

pqk−1 δk.

This is the distribution of the waiting time for the first success in an infinite sequence 
of Bernoulli trials. Note that regardless of the value of p ∈ (0, 1)., the most likely 
value for X . is k = 1.. There is another version of the geometric distribution in which
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a random variable counts the number of failures before the first success, i.e., 

. P{Y = k} = pqk, k = 0, 1, 2, . . . or PX =
∞∑

k=0

pqk δk.

3.3.7 Pascal (Negative Binomial) Distributions 

A random variable X has a Pascal distribution with parameters r ∈ N. and p ∈ (0, 1). 
if 

. P{X = k} =
(

k − 1

r − 1

)
pr(1 − p)k−r , k = r, r + 1, r + 2, . . .

or 

. PX =
∞∑

k=r

(
k − 1

r − 1

)
pr(1 − p)k−r δk.

The Pascal distribution describes the waiting time for the r-th success in a sequence 
of Bernoulli trials. The geometric distribution is a special case of the Pascal 
distribution when r =. 1. 

The generalized Pascal distribution does not require the assumption that r . is a 
natural number; however, we then replace the factorial in the above formula by using 
the function � ., which will be discussed in Sect. 3.4.3. We then say that the variable 
X . has a generalized Pascal distribution with parameters r > 0. and p ∈ (0, 1). if 

. P{X = k} = �(k)

�(r)�(k − r)
· pr(1 − p)k−r , k = r, r + 1, r + 2, . . .

3.3.8 Hypergeometric Distributions 

A random variable X has a hypergeometric distribution with parameters M,N, n ∈
N., n � N ., n � M . if 

. P{X = k} =
(
N

k

)(
M

n−k

)
(
N+M

n

) , k = 0, 1, 2, . . . , n.

We have seen such a distribution before, for example, when calculating the 
probability of getting four spades in a bridge hand. We then have: N = 13.; M = 39.; 
k = 4. and n = 13..
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3.3.9 Exercises 

164. Find the cumulative distribution functions for the following discrete distribu-
tions: (a) two-point; (b) geometric; (c) Bernoulli. 

165. Find the most probable value for the Pascal distribution with parameters 
r . and p .. 

166. The random variable X describes the number of aces we can get in a bridge 
hand (13 cards). Find the distribution o f X .. 

167. A random variable X takes values inN0 = {0, 1, . . . }.. Show that the following 
conditions are equivalent: 

(1) X has a geometric distribution: P{X = k} = pqk
., k = 0, 1, . . . .; 

(2) P{X = n + k
∣∣X � k} =  P{X = n}.. 

168. Tim wants to buy a computer game, but he is 3 euros short. Every evening he 
persuades his mother to give him one euro, and with probability 0.5. he gets 
it. What is the probability that he will buy the game later this week if it is 
Tuesday and the store is only closed on Sunday? 

169. Paul has 10 coins and two money boxes. He scatters the coins on a table and 
puts all those that have fallen tails up into the first piggy bank and the others 
into the second. Find the distribution of X, the number of coins in the first 
money box. 

170. Jane believes that a success in a dice roll is when she gets a number divisible 
by 3, and in a coin toss, when she gets heads. She chooses randomly whether 
she will roll a die or toss a coin, and the probability that she chooses a coin is 
0.5.. What is the distribution of the random variable X describing the number 
of experiments until she has been successful three times?

3.4 Continuous Type Distributions 

Definition 3.18 A random variable X : � → R. is of continuous type or has 
a continuous type distribution if there exists a measurable and integrable function 
f : R→ [0,∞). such that for every Borel set B ⊂ R. 

. PX(B) = P{X(ω) ∈ B} =
∫

B

f (x) dx.

The function f is called the density of the random variable X . or the density of the 
probability distribution PX . on the real line.
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It is easy to see that
∫ ∞
−∞ f (x) dx = 1.. Moreover, any non-negative integrable 

function f . on the line R. satisfying the condition
∫ ∞
−∞ f (x) dx = 1. is the density 

of some random variable X . (it is the density of some probability distribution PX .). It 
suffices to define for any Borel set B .: 

. PX(B) =
∫

B

f (x) dx.

Often, instead of saying that a random variable is of continuous type, we say that it is 
absolutely continuous. This is related to the absolute continuity of the distribution of 
this variable with respect to Lebesgue measure. This concept will not be discussed 
in more detail until Chap. 8. Here, we will limit ourselves only to the following 
statement: 

Theorem 3.19 If a continuous function F . is a distribution function of some random 
variable such that the function f (x) = F ′(x). exists on the entire line R. except for 
a Lebesgue measure zero set, and 

. 

∫ ∞

−∞
f (x) dx = 1,

then f is the density function for the distribution function F .

Proof It suffices to note that for any a, b., a < b., by virtue of Fatou’s Lemma, the 
following inequality holds: 

. 

∫ b

a

f (x) dx =
∫ b

a

lim inf
h↗0

F(x + h) − F(x)

h
dx

� lim inf
h↗0

∫ b

a

F (x + h) − F(x)

h
dx

= lim inf
h↗0

G(b + h) − G(b) − G(a + h) + G(a)

h

� lim inf
h↗0

[F(b + θ1h) − F(a + θ2h)] = F(b) − F(a),

where G is a primitive function for the continuous function F ., and the existence 
of θ1, θ2 ∈ (0, 1). is due to the mean value theorem. From the assumptions of our 
theorem and the obtained inequality, we get: 

.

∫ t

−∞
f (x) dx � F(t) − F(−∞) = F(t)
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and 

. 

∫ t

−∞
f (x) dx = 1 −

∫ ∞

t

f (x) dx � 1 − (F (∞) − F(t)) = F(t).

��
We now discuss the most important distributions of continuous type. 

3.4.1 Uniform Distributions on an Interval 

A uniform distribution is a distribution with parameters a, b., a < b., described by 
the density: 

. f (x) =
{ 1

b−a
if a � x � b;

0 if x < a or x > b.

This distribution is identical with the measure we call the geometric probability on 
the interval [a, b]., or more generally, with the probability equal to the normalized 
Lebesgue measure on the interval [a, b]., because 

. PX([c, d]) =
∫ d

c

f (x) dx = d − c

b − a
for every [c, d] ⊂ [a, b].

3.4.2 Exponential Distributions 

A random variable X has an exponential distribution with parameter λ > 0. if it has 
a density function given by 

. f (x) =
{

λe−λx if x > 0;
0 if x � 0.

This variable takes only positive values (with probability one). Equivalently, we can 
say that the positive half-line is the support of this distribution.
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Fig. 3.3 The gamma distribution for various parameters 

3.4.3 Gamma Distributions 

The gamma distribution with parameters p, b > 0. has the density function: 

. f (x) =
{

bp

�(p)
xp−1e−bx if x > 0;

0 if x � 0.

We use the notation �(p, b). in this case. Note that the �(1, b). distribution is the 
exponential distribution with parameter b. Figure 3.3 shows some examples of 
gamma densities for various parameters. 
The function � . appearing in the gamma density function is defined by 

. �(p)
def=

∫ ∞

0
xp−1e−x dx, p > 0.

It is easy to see that �(1) = �(2) = 1.. Moreover, 

. �(p + 1) = p �(p).

This formula describes the properties of the � . function sufficiently for our purposes. 
Its proof lies in the simple application of integration by parts. By mathematical 
induction, we get �(n + 1) = n!. for every n ∈ N.. 

Since for p �∈ N. integration of the function f (x). is not easy, it is worth 
remembering that 

.

∫ ∞

0
xp−1e−bx dx = �(p)

bp
,
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as f (x). is a probability density function, and
∫
R

f (x) dx = 1.. We will make 
use of this fact many times when calculating the parameters of these probability 
distributions. 

3.4.4 Beta Distributions 

The beta distributionwith parameters p, q > 0. lives on the interval [0, 1]., is denoted 
by Be(p, q). and has a density of the form: 

. f (x) =
{

�(p+q)

�(p)�(q)
xp−1(1 − x)q−1 if 0 < x < 1;

0 if x � 0 or x � 1.

Figure 3.4 shows some examples of the densities of such distributions. 
The name of the distribution comes from the binary beta function B(p, q)., which 

generalizes the symbol 
(
n

k

)
. and is defined by the formula: 

. B(p, q) = �(p)�(q)

�(p + q)
, p, q > 0.
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Fig. 3.4 The beta distribution for various parameters
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3.4.5 Cauchy Distributions 

A random variable X has a Cauchy distribution with parameters a > 0. and m ∈ R. 

if its density has the form: 

. f (x) = a

π(a2 + (x − m)2)
.

Some examples are given in Fig. 3.5. 
The constant a in this density function is called the scale parameter, and the 

parameter m. specifies the point with respect to which the distribution is symmetric. 
It is easy to see that P{X > m} = P{X < m} = 1

2 .. 

f(x) 

X 

0.6

-4 -2 0 2 4 

C 0, 1 2
)

C (0, 1) 

C −3, 1 2
)

Fig. 3.5 The Cauchy distribution for various parameters 

3.4.6 Gaussian Distributions 

A random variable X has a normal, or  Gaussian distribution, with parametersm ∈ R. 

and σ > 0. if the function 

. f (x) = 1√
2πσ

exp

{
− (x − m)2

2σ 2

}

is the density function of this distribution. We denote such a distribution symboli-
cally by N(m, σ).. 

Figure 3.6 shows a few example graphs of the function f (x). for various 
parameters σ .. The parameter m. is always the midpoint of the graph. 

Note that it is not easy to show that
∫
R

f (x) dx = 1. because the primitive 
function 
. of the function f . is not elementary. There is, however, a particularly
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Fig. 3.6 The Gaussian distribution for various parameters 

nice and simple way to compute this integral, namely: 

. 

(∫ ∞

−∞
e−x2/2 dx

)2

= 4
∫ ∞

0
e−x2/2 dx

∫ ∞

0
e−y2/2 dy

= 4
∫

. . .

∫

R
2+

e−(x2+y2)/2 dx dy = 4
∫ ∞

0

∫ π/2

0
e−r2/2r dϕ dr

= 4
π

2

[
−e−r2/2

]∞
0

= 2π.

Of course, when integrating over the region R2+ ., we switched to polar coordinates 
using the substitution x = r cosϕ ., y = sinϕ .. Finally, we have 

. 

∫ ∞

−∞
e−x2/2 dx = √

2π.

Now, to show that
∫
R

f (x) dx = 1., we simply substitute y = x−m
σ

. and use the 
resulting formula. 

The cumulative distribution function for the distribution N(0, 1). is given by: 

.
(t) =
∫ t

−∞
1√
2π

e−x2/2 dx.
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Since the density of the distribution N(0, 1). is a symmetric function, the following 
equality holds: 

. 
(−t) = 1 − 
(t).


. is a special function and cannot be written in the language of elementary 
functions. Tables of values of 
. can be found in Chap. 9. 

The normal distribution plays a very important role in probability theory and 
mathematical statistics. It is sometimes said, somewhat informally, that if a random 
variable is the sum of a very large number of very small independent terms, then it 
has a normal distribution (see Sect. 7.2). 

3.4.7 Exercises 

171. A random variable X has an exponential distribution with parameter λ > 0.. 
What is the distribution of Y = λ−1X .? 

172. A random variable X has a gamma distribution �(b, p).. What is the distribu-
tion of Y = b−1X .? 

173. A random variable X has a Cauchy distribution with parameters a > 0. and 
m ∈ R.. What is the distribution of Y = a−1(X − m).? 

174. Find the cumulative distribution functions of the following distributions: 
(a) the uniform distribution on the interval [a, b]., a < b.; (b) the exponential 
distribution; (c) the symmetric Cauchy distribution. 

175. A continuous type random variable X has a distribution function F and 
positive everywhere density function f . Find the densities of the following 
variables: (a) Y (ω) = aX(ω)+b.;  (b)Z(ω) = aX2(ω).;  (c)W(ω) = F(X(ω)).. 

176. A random variable X has a gamma distribution with parameters p = 17., 
b = 77.. What is the distribution of Y = cos2 X + sin2 X .? 

177. A random variable X has a uniform distribution on the interval [0, 1]..  Find  the  
distribution of Y = λ−1 ln(X).. 

178. Prove that if a random variable X has a uniform distribution on the interv al
[−π

2 , π
2 ]., then the variable Y = tgX . has a symmetric Cauchy distribution. 

179. A random variable X has a Gaussian distribution N(m, σ).. Show that the 
variable Y = aX + b., a �= 0., also has a normal distribution and determine the 
parameters of this distribution. 

180. A random variable X is exponentially distributed with parameter λ = 4..  Find  
the distribution function for the random variable Y = √

X .. Is the variable 
Y absolutely continuous? If so, find its density .

181. An isosceles triangle with a vertex at the origin of the coordinate system has a 
side of length 1. contained in the non-negative part of the OX . axis. The other 
side of length 1. starts at the origin and lies at a random angle α . to the OX . 

axis. Find the density of the random variable which determines the length of
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the third side if the random variable α .has a uniform distribution on the interval 
[0, 2π ]. 

182. We choose at random a point ω = (x, y). from the square K = [0, 1] × [0, 1].. 
If x2 + y2 � 1., then we define X(ω) = √

x2 + y2 ..  If x2 + y2 > 1., then X(ω). 

is equal to the distance of the point (x, y). from the nearest side of the square 
K .. Find the distribution of the random variable X.  I  s X . of continuous type? 

183. A random variable X has a normal distributionN(m, σ).. Find the distribution 
of the variable Y = h(X)., where 

. (a) h(x) = x

|x| , (b) h(x) =
⎧⎨
⎩

ca, a < x;
cx, −a � x � a;

−ca, x < −a.

3.5 A Complete Description of the Types of Random 
Variables 

Discrete random variables, continuous type variables and their mixtures do not 
cover all types of random variables. In the past, more often than not, the third 
type of distribution, i.e. the singular distributions, were omitted in textbooks on 
probability calculus because they were considered rather absent in the modeling 
of real phenomena. Today, we know that such distributions appear in stock 
exchange quotes, atmospheric phenomena, environmental pollution processes and 
in modeling the widening of the ozone hole. Therefore, in this book, we also 
consider singular distributions. 

Definition 3.20 A random variable X has a singular distribution if X takes values 
in an uncountable set A such that λ1(A) = 0. (.e.g. A can be the Cantor set)., where 
λ1 . is the Lebesgue measure on R., and 

. P {X ∈ A} = 1, P {X = x} = 0 for each x ∈ A.

Example 3.21 In mathematics, the Cantor function is an example of a function that 
is continuous, but not absolutely continuous. It is continuous everywhere and has 
zero derivative almost everywhere, and yet it grows on the interval [0,1] from zero 
to one. It is also referred to as the Cantor ternary function,  the  Lebesgue function, 
Lebesgue’s singular function,  the  Cantor–Vitali function,  the  Devil’s staircase,  the  
Cantor staircase function, and the Cantor–Lebesgue function. We interpret the 
Cantor function as the cumulative distribution function of a singular measure.
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First, we construct the Cantor function c : [0, 1] �→ [0, 1]..  For x ∈ [0, 1].,  we  
obtain c(x). by the following steps: 

(1) Express x in base 3 .
(2) If the base 3 representation of x contains a 1, replace every digit strictly after 

the first 1 with 0.
(3) Replace any remaining 2s with 1s .
(4) Interpret the result as a binary number. The result is c(x).. 

For example: the number 14 . has ternary representation 0.02020202 . . .. There are 
no ones in this representation, so the second step still gives us 0.02020202 . . .. 

This is rewritten as 0.01010101 . . .., which is the binary representation of 13 ., thus 
c(1/4) = 1

3 .. 
The number 15 . has ternary representation 0.01210121 . . ..The digits after the first 

1 are replaced with zeros to produce 0.01000000 . . .. This is not rewritten since it 
has no 2s. It is the binary representation of 14 ., thus c(1/5) = 1

4 .. 
Equivalently, if C. is the Cantor set on [0, 1]., then the Cantor function (see Fig. 3.7) 
c : [0, 1] �→ [0, 1]. can be defined as: 

. c(x) =
{∑∞

n=1
an

2n if x = ∑∞
n=1

an

3n for an ∈ {0, 1};
sup

{
c(y) : y � x, y ∈ C} if x ∈ [0, 1] K C.

This formula is well-defined, since every member of the Cantor set has a unique base 
3 representation that only contains the digits 0 or 2. Since c(0) = 0. and c(1) = 1. 
and c is monotonic o n C., it is also clear that 0 � c(x) � 1. for all x ∈ [0, 1] K C.. 
Now, we can define the corresponding cumulative distribution function: 

. Fc(t) = c(t)1[0,1](t) + 1(1,∞)(t).

x 

c(x) 

Fig. 3.7 The Cantor function
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Most important for us is the following decomposition theorem: 

Theorem 3.22 (Lebesgue Decomposition Theorem) For every probability mea-
sure P. there exists an atomic probability measure Pat ., a probability measure of 
continuous type Pct . and a singular measure Psi . such that 

. P = c1Pat + c2Pct + c3Psi,

where c1, c2, c3 ∈ [0, 1]. are such that c1 + c2 + c3 = 1.. 

Proof We already know that the atomic part of a measure is easy to distinguish 
on the basis of jumps (break points) of the distribution function. Let F . be the 
distribution function of the variable X .with L(X) = P.. There are at most countable 
many such points x ∈ R. for which px = F(x+

i )−F(xi) > 0..  If
∑

x∈R px = c1 > 0., 
then 

. Pat =
∑
x∈R

px

c1
δx.

Let Fat . be the distribution function of the measure Pat .. Then, G(x) := F(x) −
c1Fat(x). is a continuous non-decreasing function on R., thus it is differentiable 
almost everywhere and 

. 

∫ z

−∞
G′(x) dx � F(z), for all z ∈ R.

If
∫
R

G′(x) dx = c2 > 0., then the measure Pct . defined for Borel sets B ∈ B. by the 
formula 

. Pct(B) = c−1
2

∫

B

G′(x) dx

is a continuous type measure with density function c−1
2 G′

.. The singular part Psi . of 
the distribution P. is found by solving the following equation: 

.P = c1Pat + c2Pct + (1 − c1 − c2)Psi.

��
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3.6 Independent Random Variables 

Definition 3.23 We say that random variables X1, . . . , Xn . are independent if 
for every choice of Borel sets B1, . . . , Bn ∈ B., the random events {X1 ∈
B1}, . . . , {Xn ∈ Bn}. are independent, i.e., the following equality holds: 

. P {X1 ∈ B1, . . . , Xn ∈ Bn} = P {X1 ∈ B1} · · · · · P {Xn ∈ Bn} .

It is easy to see that if random variables X1, . . . , Xn . are independent and 
s1, . . . , sk ∈ {1, . . . , n}., k < n., si �= sj . for i �= j ., then the variables Xs1 , . . . , Xsk

. 

are also independent. The next theorem states that functions defined on independent 
variables define independent variables. 

Theorem 3.24 Let us assume that random variables X1, . . . , Xn . are independent 
and the functions ϕj : R → R., j = 1, . . . , n., are Borel-measurable. Then, the 
random variables Yj = ϕj (Xj ). are independent. 

Proof If ϕj ., j = 1, . . . , n., are Borel measurable functions, then for any Borel sets 
B1, . . . , Bn . the sets ϕ−1

1 (B1), . . . , ϕ
−1
n (Bn). belong to the Borel σ .-field as well, and 

. P {Y1 ∈ B1, . . . , Yn ∈ Bn} = P
{
X1 ∈ ϕ−1

1 (B1), . . . , Xn ∈ ϕ−1
n (Bn)

}

= P
{
X1 ∈ ϕ−1

1 (B1)
}
. . .P

{
Xn ∈ ϕ−1

n (Bn)
}

= P {Y1 ∈ B1} . . .P {Yn ∈ Bn} ,

which was to be shown. ��
Theorem 3.25 Assume that random variables X1, . . . , Xn ., Xn+1 ., . . . , Xn+m . are 
independent. If the functions ϕ : Rn → R. and ψ : Rm → R. are Borel-measurable, 
then the random variables Y1 = ϕ(X1, . . . , Xn). and Y2 = ψ(Xn+1, . . . , Xn+m). are 
also independent. 

Proof We need to check that for any choice of Borel sets A,B . in R. the following 
equality holds: 

. P {Y1 ∈ A, Y2 ∈ B} = P {Y1 ∈ A}P {Y2 ∈ B} .

The set C = ϕ−1(A). is a Borel subset of Rn
. and D = ψ−1(B). is a Borel subset of 

R
m
., hence we need to show that for any Borel sets C ⊂ Rn

., D ⊂ Rm
.,  we  ha  ve

.P {(X1, . . . , Xn) ∈ C, (Xn+1, . . . , Xn+m) ∈ D}
= P {(X1, . . . , Xn) ∈ C}P {(Xn+1, . . . , Xn+m) ∈ D} .
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It follows from the independence of the random variables X1, . . . , Xn+m . that this 
equality holds if the sets C . and D . are measurable rectangles, i.e., C = C1×· · ·×Cn . 

and D = D1 × · · · × Dm ., where Ci . and Dj . are Borel subsets of the line. 
Let (K,L). denote the set of all pairs (C,D)., C ⊂ Rn

., D ⊂ Rm
., for which the 

desired equality holds. We already know that this set includes pairs of measurable 
rectangles. Since the σ .-field in Rn

. is containing all measurable rectangles, hence it 
contains σ .-field of Borel sets, and it is enough to prove that K. and L. are closed 
under countable set operations. 

It is enough to prove that K. is a σ .-field. If (C,D) ∈ (K,L)., then also (C ′,D) ∈
(K,L). because 

. P {(X1, . . . , Xn) ∈ � K C, (Xn+1, . . . , Xn+m) ∈ D}
= P {(X1, . . . , Xn) ∈ �, (Xn+1, . . . , Xn+m) ∈ D}

− P {(X1, . . . , Xn) ∈ C, (Xn+1, . . . , Xn+m) ∈ D}
=

(
1 − P {(X1, . . . , Xn) ∈ C}

)
P {(Xn+1, . . . , Xn+m) ∈ D}

= P
{
(X1, . . . , Xn) ∈ C ′}P {(Xn+1, . . . , Xn+m) ∈ D} .

In a similar way, we show that if (Ck,D) ∈ (K,L). for every k ∈ N. and the events 
Ck . are pairwise disjoint, then (

⋃
Ck,D) ∈ (K,L).: 

. P
{
(X1, . . . , Xn) ∈

⋃
Cn, (Xn+1, . . . , Xn+m) ∈ D

}

= P
(⋃{

(X1, . . . , Xn) ∈ Cn, (Xn+1, . . . , Xn+m) ∈ D
})

=
∑

n

P
{
(X1, . . . , Xn) ∈ Cn

}
P
{
(Xn+1, . . . , Xn+m) ∈ D

}

= P
{
(X1, . . . , Xn) ∈

⋃
Cn

}
P
{
(Xn+1, . . . , Xn+m) ∈ D

}
.

Now, let C and D be measurable rectangles. We already know that (C,D)., 
(C ′,D) ∈ (K,L)., hence (C ∪ C ′,D) = (Rn,D) ∈ (K,L).. ��

3.6.1 Exercises 

184. Prove that if a random variable X . is independent of any other random variable 
specified on the same probability space, then X = c. with probability one for 
some constant c.. 

185. Let � ⊂ R.. Under what assumptions are the variables X . and sin(X). 

independent?
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186. Random variables X, Y . are independent with the same distribution given by 
the density f (x).. Find the densities of Z = max{X, Y }. and U = min{X, Y }.. 

187. Random variables X, Y,Z . are independent with the same distribution given 
by the density f (x).. Find the distributions of the ordered statistics U1, U2, U2 ., 
where 

. U1(ω) = min{X(ω), Y (ω), Z(ω)}, U3(ω) = max{X(ω), Y (ω), Z(ω)};
U2(ω) = {X(ω), Y (ω), Z(ω)} K {U1(ω), U3(ω)} .

188. Let X ., Y . be independent random variables with distribution functions F 
and G, respectively. Find the distribution functions of the following random 
va riables:

. 
(a) Z(ω) = max{X(ω), Y (ω)}; (b) W(ω) = min{X(ω), Y (ω)};
(c) T (ω) = max{2X(ω), Y (ω)}; (d) U(ω) = min{X3(ω), Y (ω)}.

189. Random variables X1, X2, . . . . are independent with the same distribution 
P{Xi = 0} = P{Xi = 1} = 1

2 .. Find the distribution of the random variable 
Y = ∑∞

i=1
Xi

2i .. 
190. Variables X, Y . are independent with the same uniform distribution on [−1, 1].. 

Find the distribution of the variable Z = X + Y .. 
191. Random variables X1, X2, . . . . are independent with the same uniform distri-

bution on the interval [0, 1]..  For λ > 0., find the distribution of the variable 

. X = inf

{
n :

n∏
k=1

Xk < e−λ

}
.

192. The variable Xn . is the sum of n. independent random variables with uniform 
distributions on [0, 1]. and Fn . is the cumulative distribution function of Xn .. 
Prove that 

. Fn+1(x) =
∫ x

x−1
Fn(y) dy.

193. Let X and Y be independent with the same exponential distribution w ith
parameter λ > 0.. Find the distribution of the random variable Z = X + Y .. 

194. Let X and Y be independent with the same exponential distribution w ith
parameter λ > 0.. Find the distribution of the random variable Z = X/Y .. 

195. Let N,X1, X2, . . . .be independent random variables with N .having a geomet-
ric distribution P{N = n} = pqn−1

., n � 1. and let each of the variables Xk . 

have an exponential distribution �(1, a).. Show that the variable Y = ∑N
k=1 Xk . 

has exponential distribution.
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196. The variable X . has a standard normal distribution, and a random variable 
Y, independent of X, is uniformly distributed on the interval [a, b]..  Find  the  
density of the variable Z = X + Y .. 

197. The variables X, Y . are independent with the same distribution given by the 
density f (x) = (π cosh(x))−1

.. Find the density of the variable Z = X + Y .. 

3.7 Multidimensional Random Variables and Distributions 

Definition 3.26 A function X : (�,F,P) �→ R
n
. is called an n-dimensional 

random vector,  or  n-dimensional random variable if, for every Borel set B ⊂ Rn
., 

the following condition holds: 

. 
{
ω : (X1(ω), . . . , Xn(ω)

) ∈ B
} ∈ F.

The probability distribution of the random vector X = (X1, . . . , Xn). is the 
probability measure PX . over the space (Rn,B(Rn)). defined by the formula 

. PX(B) = P {ω : (X1(ω), . . . , Xn(ω)) ∈ B} , B ∈ B(Rn).

It is easy to see that if X = (X1, . . . , Xn). is a random vector, then each of the 
functions Xi, i � n., is a random variable. 

As in the case of random variables, a simple random vector is a vector with 
a discrete distribution, while a continuous random vector is one with a density 
function. We will also consider convex linear combinations of the distributions of 
the previous two types. For the sake of simplicity, we will limit ourselves here to 
two-dimensional random vectors. 

We say that a random vector (X, Y ). has a discrete distribution if there exist sets 
x1, . . . , xn ∈ R. and y1, . . . , ym ∈ R. such that 

. P
{
X ∈ {x1, . . . , xn}, Y ∈ {y1, . . . , ym}} = 1.

Let pij = P{X = xi, Y = yj }.. The joint distribution of the random variables X . and 
Y ., i.e., the distribution of the random vector (X, Y )., can be described by the table: 

.

X\Y y1 y2 . . . ym

x1 p1,1 p1,2 . . . p1,m p1·
x2 p2,1 p2,2 . . . p2,m p2·
. . . . . . . . . . . . . . . . . .

xn pn,1 pn,2 . . . pn,m pn·
p·1 p·2 . . . p·m
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If the joint distribution of X . and Y . is known, then the distributions of X . and Y . 

are called marginal distributions. Let’s find the marginal distribution of the random 
variable X .: 

. pi·
def= P{X = xi} =

m∑
j=1

P{X = xi, Y = yj } =
m∑

j=1

pi,j .

The probability pi· . is, therefore, equal to the sum of all the elements of the i-th row 
of the matrix (pi,j ).. Similarly, 

. p·j
def= P{Y = yi} =

n∑
i=1

P{X = xi, Y = yj } =
n∑

i=1

pi,j ,

so the probability p·j . is equal to the sum of all the elements of j .-th column of the 
matrix (pi,j ).. 

If (X, Y ). is a discrete random vector with distribution given by the matrix (pi,j )., 
then the conditional distribution of the variable X, assuming Y = yk ., is expressed 
by the formula: 

. P
{
X = xi

∣∣Y = yk

} = pi,k

p·k
.

Similarly, the conditional distribution of Y ., assuming X = xi ., is given by the 
formula: 

. P
{
Y = yk

∣∣X = xi

} = pi,k

pi·
.

Let (X, Y ). be a discrete random vector with probability matrix (pi,j ).. Variables X 
and Y are independent if and only if

. pi,j = pi·p·j for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m}.

Definition 3.27 The cumulative distribution function of a random vector X =
(X1, . . . , Xn). is the function F : Rn �→ [0, 1]. defined by the formula: 

. F(t1, . . . , tn) = P {ω : X1(ω) < t1, . . . , Xn(ω) < tn} , t1, . . . , tn ∈ R.

We say that a random vector (X, Y ). is of continuous type if there exists an 
integrable non-negative function f (x, y). on R2 . such that for any Borel set B ⊂ R2 . 

.P
{
(X, Y ) ∈ B

}
=

∫
. . .

∫

B

f (x, y) dx dy.
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It can be shown that, as in the one-dimensional case, if at almost every point 
(x, y). the second partial derivative ∂2

∂x∂y
F (x, y). of the two-dimensional distribution 

function F(x, y). exists and the following condition holds 

. 

∫
. . .

∫

R
2

∂2

∂x∂y
F (x, y) dx dy = 1,

then the distribution of (X, Y ). is absolutely continuous with density 

. f (x, y) = ∂2

∂x∂y
F (x, y).

Suppose f (x, y). is the density function for the vector (X, Y ).. To find the marginal 
distribution of the variable X ., let’s first determine its distribution: 

. P
{
X < t

}
= P

{
(X, Y ) ∈ (−∞, t) × R

}
=

∫ t

−∞

∫

R

f (x, y) dy dx.

It follows that the cumulative distribution function FX(t). of the variable X . is equal 
to the integral over the set (−∞, t). of some integrable function. From this, we 
conclude that the variable X . is of continuous type and its density is expressed by 
the formula 

. f1(x) =
∫

R

f (x, y) dy.

Similarly, we show that the marginal distribution of Y is also of continuous type 
with density

. f2(y) =
∫

R

f (x, y) dx.

In this way, we have shown that if the random vector (X, Y ). is of continuous type, 
then the distributions of X . and Y . are also of continuous type. Note that the converse 
implication does not apply. If X . is a continuous type random variable with density 
f . and we consider the random vector (X,X)., then P{(X,X) ∈ D} = 1., where 
D = {(x, y) : x = y}. is the diagonal of the coordinate system. Thus, (X,X). does 
not have a continuous type distribution, and both marginal distributions share this 
property. 

The next theorem follows from the definition of a two-dimensional distribution 
function and the definition of independent random variables.
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Theorem 3.28 Let FX,Y . be a cumulative distribution function of a random vector 
(X, Y )., and FX . and FY . be the marginal distribution function of X and Y., 
respectively. The random variables X and Y are independent if and only if

. FX,Y (t, s) = FX(t)FY (s).

Note that if (X, Y ). has a density f (x, y)., then the variables X . and Y . with 
densities f1, f2 ., respectively, are independent if and only if outside a set of Lebesgue 
measure zero, we have the equality: 

. f (x, y) = f1(x)f2(y).

Definition 3.29 If random variables X and Y are independent, X has distribution
μ., and Y has distribution ν ., then the distribution of the sum X + Y . is called the 
convolution of the distributions μ. and ν ., and we write: 

. L(X + Y ) = μ ∗ ν.

If independent random variables X . and Y . are of continuous type with densities 
f . and g ., respectively, then the distribution function of the variable X + Y . has the 
form: 

. P{X + Y < t} =
∫

. . .

∫

x+y<t

f (x)g(y) dx dy

=
∫ t

−∞

∫

R

f (x − y)g(y) dy dx.

We conclude from this that the convolution of these two distributions is a continuous 
distribution and has a density h(x). given by the formula: 

. h(x) =
∫

R

f (x − y)g(y) dy.

By analogy with the convolution of distributions, we then say that h. is the 
convolution of the densities f . and g ., which we denote by: 

. h(x) = f ∗ g(x)
def=

∫

R

f (x − y)g(y) dy.

Suppose (X, Y ). has a continuous type distribution with a uniformly continuous 
density function f (·, ·).. Let us informally define a random variable (X

∣∣Y = y). 

which takes the value of X(ω). provided that Y (ω) = y ..
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The density of the variable (X
∣∣Y = y). under the very strong assumption of 

uniform integrability of the density f . is expressed by the formula: 

. fX|Y (x|y) =
{

f (x,y)∫
R

f (x,y) dx if
∫
R

f (x, y) dx �= 0;
0 otherwise.

To see this, it suffices to note that 

. P
{
X ∈ B

∣∣y − ε < Y < y + ε
} =

∫
B

∫ y+ε

y−ε
f (x, y) dy dx

∫
R

∫ y+ε

y−ε
f (x, y) dy dx

and then take the limit as ε → 0.. 

3.7.1 Exercises 

198. A two-dimensional random variable (X, Y ). has a discrete distribution given 
by the following conditions: 

. P{X = 1, Y = 1} = P{X = 1, Y = 2} = P{X = 2, Y = 2} = 1

3
.

Find the matrix of the two-dimensional distribution, two-dimensional cumula-
tive distribution function and marginal distribution functions. Are the variables 
X and Y independent?

199. Consider independent random variables with the following distributions: 

. 
P{X = 1} = 0.5; P{X = 2} = P{X = 3} = 0.25;
P{Y = 0} = 0.5; P{Y = 1} = P{Y = 2} = 0.25.

Find the joint distribution of the random vector (X, Y ).. 
200. The two-dimensional density function is given by: 

. f (x, y) =
{
e−x−y if x > 0, y > 0;
0 otherwise.

Calculate: P{1 < X < 2, 1 < Y < 2}., P{X + Y > 2}., P{X > 3
∣∣Y < 1}.. 

Find the two-dimensional cumulative distribution function and the marginal 
distribution functions. Are the variables X . and Y . independent? 

201. Is it possible to choose the constant C . such that the function: 

.f (x, y) =
{

Cy2 cos x if π
2 < x < π, 0 < y < 2;

0 otherwise



3.7 Multidimensional Random Variables and Distributions 79

is the density of a two-dimensional random variable? If so, find the marginal 
density functions. 

202. Let α, β .be random variables such that both real roots of the quadratic equation 
x2 + αx + β =. 0 can independently take any value from the interval [−1, 1].. 
Find the distributions of the variables α . and β .. 

203. Let X . and Y . be independent random variables with the same exponential 
distribution with parameter α > 0.. Find the distribution functions and the 
densities for the following random variables: 

(a) S(ω) = max{X(ω), Y 3(ω)}.; (b) T (ω) = X(ω) + Y (ω).; 

(c) U(ω) = 3 + 2X(ω).; (d) V (ω) = |X(ω) − Y (ω)|.; 
(e) W(ω) = X2(ω).; (f) Z(ω) = X/Y .. 

204. Let X be a random variable with a) a Cauchy distribution; b) an exponential 
distribution. Let �. be independent of the random variable X such that
P{� = 1} = 1 − P{� = −1} = p . for some p ∈ (0, 1).. Find the distribution 
function and the density for the random variable Y = X · �.. 

205. A random vector (X, Y ). has density f (x, y).. Find the distribution functions 
and densities for the following variables: 

. (a) Z = X+Y ; (b) U = X−Y ; (c) W = X·Y ; d) U = X/Y if P{Y �= 0} = 1.

Find the densities of these variables if X and Y are independent.
206. A two-dimensional random vector (X, Y ). has density function f (x, y)..  Find  

the distribution function and the density of the variable Z = X/(X + Y ).. 
Find the density of the variable Z under the assumption that X and Y are
independent.

207. Random variables X and Y are independent with the same exponential 
distribution with parameter λ = 2.. Calculate P{X < Y < t}., where t > 0.. 

208. Random variables X . and Y . are independent and have the same distribution 
given by the density f .. Calculate P{X > Y }.. 

209. Independent random variables X . and Y . have the same discrete geometric 
distribution with parameter p ∈ (0, 1).. Find the distribution of the variable 
Z = X + Y .. 

210. Let X ., Y . be independent Poisson random variables with parameters λ1, λ2 ., 
respectively. Find the distribution of the variable Z = X + Y .. 

211. The probability that k job-seekers will report to an employment agency within 
an hour is equal to λk

k! e
−λ

., where λ > 0. is a parameter. For each of these 
people, the probability of finding a job is p. Find the probability that exactly n. 

of the people who applied between 10.00 a.m. and 11.00 a.m. will find a job. 
212. Random variables X and Y are independent, X . has an exponential distribution 

with parameter λ., and Y . is uniformly distributed on the interval [0, h]..  Find  the  
distribution density of the following variables: a) Z = X +Y .;  b) W = X −Y ..
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213. A random variable X . has a two-point distribution. Prove that X . cannot be 
represented as the sum of any two independent random variables. 

214. A random variable X . takes the values − 1, 0, 1. with probabilities p1, p2, p3 ., 
respectively, where p1p2p3 > 0. and p1 +p2 +p3 = 1.. What conditions must 
be met by the numbers p1, p2, p3 . for X . to be represented as the sum of two 
independent random variables with the same distributions? 

215. Prove that the convolution of two discrete distributions is also discrete. 
216. Prove that X + Y . has a continuous type distribution if at least one of the 

independent variables X . or Y . has a continuous type distribution. 
217. X . and Y . are independent random variables with distributions �(p, a). and 

�(q, a)., respectively. Find the distribution of the variable Z = X + Y .. 
218. X . and Y . are independent random variables with uniform distributions on the 

intervals [a, b]. and [c, d]., respectively, where 0 < a < b < c < d ..  Find  the  
distribution of the variable Z = X + Y .. 

219. A random vector (X, Y,Z). has density function 

. f (x, y, z) =
{
6(1 + x + y + z)−4 if x, y, z > 0;
0 otherwise.

Find the distribution of the random variable W = X + Y + Z .. 
220. Prove that if random variablesX, Y .are independent with the same exponential 

distribution with parameter 1., then the variables Z = X + Y . and W = X/Y . 

are also independent. 
221. Prove that if random variables X, Y . are independent with the same normal 

distribution N(0, σ )., then the variables Z = X2 + Y 2
. and W = X/Y . are also 

independent. 
222. Prove that if random variables X, Y . are independent, X has the distrib ution

�(p, a)., and Y has the distribution �(q, a)., then the variables Z = X+Y . and 
W = X/Y . are also independent.



Chapter 4 
Expected Value for Random Variables 

4.1 Expected Value for Simple Random Variables 

Let us consider one of the simplest games of chance: a player rolls a single cubical 
die. If the result is a 6 he wins a euros but for any of the other possible outcomes he 
loses b. euros. On average, what kind of winnings can he expect? 

The classic lottery game—Totolotek—involves choosing six out of 49 numbers 
that you hope will be randomly selected in the draw. The probability of losing is 
very high, but you can also win, and the more numbers you match, the higher your 
winnings. What kind of winnings can we expect on average? 

Such problems have been studied since the very beginning of probability theory. 
The first records date back to the beginning of the eighteenth century. It was then 
that the concept of mathematical hope was introduced. Mathematical hope has also 
been called average value, expected value, mean value or esperance. 

We begin here by defining the expected value for simple random variables. Let 
(�,F,P). be a probability space and let X : � → R. be a simple variable (simple 
function). That is, there are the numbers x1, . . . , xn ∈ R. and sets A1, . . . , An ∈ F. 

such that 

. ∀ i �= j Ai ∩ Aj = ∅,

n⋃

k=1

Ak = � and X(ω) =
n∑

k=1

xk1Ak
(ω).

Then, the expected value EX . of the variable X . is defined by the formula: 

. EX
def=

n∑

k=1

xkP(Ak).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
J. Misiewicz, A One-Semester Course on Probability, Springer Undergraduate 
Mathematics Series, https://doi.org/10.1007/978-3-031-86681-4_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-86681-4protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4
https://doi.org/10.1007/978-3-031-86681-4_4


82 4 Expected Value for Random Variables

Instead of the expected value symbol EX ., sometimes we will use the notation ∫
�

X(ω)P(dω). or
∫
�

X dP. to emphasize that the expected value is the integral of 
X(ω). with respect to the probability measure P.. 

Lemma 4.1 The expected value of a simple random variable is uniquely defined. 

Proof Suppose that a simple random variable X . can be written in two ways: 
X(ω) = ∑n

k=1 xk1Ak
(ω) = ∑m

j=1 yj1Bj
(ω)., where Ai ∩ Aj = ∅. and Bi ∩ Bj = ∅. 

if and only if i �= j . and at the same time
⋃n

k=1 Ak = ⋃m
j=1 Bj = �.. Note that 

. Ak = Ak ∩ � = Ak ∩
m⋃

j=1

Bj =
m⋃

j=1

(Ak ∩ Bj).

So, if ω ∈ Ak ∩ Bj �= ∅., then X(ω) = xk = yj .. This implies that 

. 

n∑

k=1

xkP(Ak) =
n∑

k=1

xkP

⎛

⎝
m⋃

j=1

(Ak ∩ Bj)

⎞

⎠ =
n∑

k=1

xk

m∑

j=1

P(Ak ∩ Bj)

=
m∑

j=1

n∑

k=1

xkP(Ak ∩ Bj) =
m∑

j=1

n∑

k=1

yjP(Ak ∩ Bj)

=
m∑

j=1

yjP

(
n⋃

k=1

(Ak ∩ Bj)

)
=

m∑

j=1

yjP(Bj ).

�	
Remark 4.2 The previous lemma shows that for any simple random variable 
X . taking values x1, . . . , xn . with probabilities p1, . . . , pn ., it can be assumed that 
Ak = {ω : X(ω) = xk}.. Hence: 

. EX =
n∑

k=1

xkP(Ak) =
n∑

k=1

xk pk.

In a similar way, we get for r ∈ N.: 

. EXr =
n∑

k=1

xr
k P{Xr = xr

k } =
n∑

k=1

xr
k P{X = xk} =

n∑

k=1

xr
k pk.

Hence, if, when rolling a single die, receiving a six-pip result wins a ., and 
any other result loses b., the mathematical hope in this game is (a − 5b)/6.. If, 
on the other hand, X . stands for the number of pips obtained, we have that 
EX = 1

6 (1 + 2 + 3 + 4 + 5 + 6) = 3.5..



4.1 Expected Value for Simple Random Variables 83

Examples 4.3 

1. Let the random variable X have a hypergeometric distribution with parameters
N,M, n., n � N ., n � M ., i.e., 

. pk = P{X = k} =
(
N

k

)(
M

n−k

)
(
M+N

n

) , k = 0, 1, . . . , n.

Since for every discrete probability distribution
∑n

k=0 pk = 1., we get the 
following combinatorial identity: 

. 

n∑

k=0

(
N

k

)(
M

n − k

)
=
(

N + M

n

)
.

Now, we can calculate the expected value for X: 

. EX =
n∑

k=0

k

(
N

k

)(
M

n−k

)
(
N+M

n

)

= N
(
N+M

n

)
n∑

k=1

(
N − 1

k − 1

)(
M

n − k

)

= N
(
N+M

n

)
(

N + M − 1

n − 1

)

= nN

N + M
.

2. Let � = [0, 1]. and let P. be the Lebesgue measure on �.. The random variable 
X(ω). takes the value 1 if ω . is a rational number and it takes 0 otherwise. It 
is therefore a simple random variable that takes only two values. To find its 
expected value, note that the Lebesgue measure of any point is equal to zero 
and we only have countably many rational numbers. Hence, 

. P{ω : X(ω) = 1} = P(Q) = P
(⋃

r∈Q

{r}
)

=
∑

r∈Q

P({r}) = 0.

We get 

.EX =
∫ 1

0

(
1 · 1Q(ω) + 0 · 1Q′(ω)

)
P(dω)

= 1 · P(Q) + 0 · P(Q′) = 0.
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It can be seen that the considered integral with respect to the probability measure 
(in this case the Lebesgue measure), called the expected value, is significantly 
different from the Riemann integral, defined by the common limit of the lower 
sums sn . and the upper sums sn ., where 

. sn =
n∑

k=1

mkP(�k), sn =
n∑

k=1

MkP(�k),

and �1, . . . ,�n . is a partition of the interval [0, 1]. into disjoint intervals with 
lengths going down to zero, mk . being the smallest, and Mk . being the largest 
value of the function X(ω). on the interval �k .. In our case, mk = 0. and Mk = 1. 

for each k ., hence sn = 0. and sn = 1. for each n., which means that the Riemann 
integral of the variable X(ω). as the joint limit of sn . and sn . does not exist. 

Lemma 4.4 If X and Y are simple random variables, then

(1) X = 1A(ω) �⇒ EX = P(A).; 
(2) X � 0 �⇒ EX � 0.; 
(3) ∀ a, b ∈ R E(aX + bY ) = aEX + bEY .; 
(4) X � Y �⇒ EX � E Y .; 
(5) |EX| � E|X|.; 
(6) if X and Y are independent, then E(X · Y ) = EX · EY .. 

Proof The first two properties are obvious and property 4 is a simple consequence 
of properties 2 and 3, so we only prove the other properties. 

(3) Let X = ∑n
k=1 xk1Ak

. and Y = ∑m
j=1 yj1Bj

.. Then 

. aX + bY = a
∑

j,k

xk1Ak∩Bj
+ b

∑

j,k

yj1Ak∩Bj
=
∑

j,k

(
axk + byj

)
1Ak∩Bj

.

Hence, we have 

.E (aX + bY ) =
∑

j,k

(
axk + byj

)
P
(
Ak ∩ Bj

)

= a
∑

j,k

xkP
(
Ak ∩ Bj

)+ b
∑

j,k

yjP
(
Ak ∩ Bj

)

= a
∑

k

xk

∑

j

P
(
Ak ∩ Bj

)+ b
∑

j

yj

∑

k

P
(
Ak ∩ Bj

)

= a
∑

k

xkP (Ak) + b
∑

j

yjP
(
Bj

) = aEX + bEY.
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(5) It suffices to note that 

. |EX| =
∣∣∣∣∣

n∑

k=1

xkP (Ak)

∣∣∣∣∣ �
n∑

k=1

|xk|P (Ak) = E|X|.

(6) From Lemma 4.1, it follows that from all possible representations of X . and Y ., 
without losing generality, we can consider those for which Ak = {ω : X(ω) = xk}., 
Bj = {

ω : Y (ω) = yj

}
.. Then, 

. P
(
Ak ∩ Bj

) = P
{
ω : X(ω) = xk, Y (ω) = yj

}

= P {ω : X(ω) = xk}P
{
ω : Y (ω) = yj

} = P (Ak)P
(
Bj

)
.

Hence, we get: 

. E(XY ) = E

⎛

⎝
∑

j,k

xkyj1Ak∩Bj

⎞

⎠ =
n∑

k=1

m∑

j=1

xkyjP
(
Ak ∩ Bj

)

=
n∑

k=1

m∑

j=1

xkyjP (Ak)P
(
Bj

) =
n∑

k=1

xkP (Ak) ·
m∑

j=1

yjP
(
Bj

) = EX · EY.

�	

4.1.1 Exercises 

223. Calculate EX . and EX2
. for a random variable X . with the following distribu-

tions: (a) one-point; (b) two-point; and (c) binomial with parameters n. and p .. 
224. The random variable X . is the number of pips thrown in a roll of a die. 

Calculate EX . and EX2
.. 

225. Will and Paul decided to play the following game: if the single roll of a die 
results in 1. or 2., Paul receives a euros from Will; for any other result, Paul 
pays Will b. euros. What should be the relationship between a . and b. for a fair 
game? 

226. Assume that a non-negative random variable X takes values in {a1, . . . , ak}. 
and P{X = aj } > 0. for each j � n.. Prove that 

. lim
n→∞

EXn+1

EXn
= lim

n→∞
n
√
EXn = max{a1, . . . , ak}.

227. What is the expected value of the number of aces in your hand (13 cards) at 
the beginning of a bridge game?
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228. The number of winning tickets in a lottery is N and the number of losing 
tickets is M . I have bought k of them. Let X be the number of winning tickets 
among those I have bought. Calculate EX .. 

4.2 General Definition of Expected Value 

We will need the following two lemmas to define the expected value for non-
negative random variables. 

Lemma 4.5 If X is a non-negative random variable, then there exists a nondecreas-
ing sequence of simple non-negative random variables (Xn). such that 

. ∀ω ∈ � Xn(ω) ↗ X(ω).

Proof All we need is to define the sequence {Xn}.. We can do this, for example, in 
the following way: 

. Xn(ω) =
⎧
⎨

⎩

k

2n
if

k

2n
� X(ω) <

k + 1

2n
, k = 0, 1, . . . , n2n − 1;

n if X(ω) � n.

With the notation 

. Ak,n =
{
ω : k

2n
� X(ω) <

k + 1

2n

}
,

An = {ω : X(ω) � n} ,

the random variable Xn . can be written as: 

. Xn =
n2n−1∑

k=0

k

2n
1Ak,n

+ n1An
.

Of course, for each ω ∈ �. and every n ∈ N., we have the following inequalities: 
Xn(ω) � Xn+1(ω) � X(ω).. If for a fixed  ω ∈ �. there exists an n0 . such that 
X(ω) < n0 ., then for every n � n0 ., we have  

. 0 � X(ω) − Xn(ω) <
1

2n

n→∞−→ 0.

If such an n0 . did not exist, then we would have X(ω) = +∞., which is impossible 
because, by definition, every random variable takes values in the open line R.. �	
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Lemma 4.6 If Y and Xn ., n = 1, 2, . . . ., are non-negative simple random variables 
and for each ω ∈ �.we have Xn(ω) ↗ X(ω) � Y (ω)., then 

. lim
n→∞EXn � EY.

Proof Let ε > 0. and An = {ω : Xn(ω) � Y (ω) − ε}.. Since Xn+1(ω) � Xn(ω)., 
the sequence of sets An . is increasing (An ⊂ An+1 .). As at the same time Xn(ω) ↗
X(ω) � Y (ω)., for every ω ∈ �. there exists an n0 ∈ N. such that ω ∈ An . for every 
n � n0 .. Hence, we get: 

. � =
∞⋃

n=1

An and P(An)
n→∞−→ 1.

Note that Xn1An
. is a simple function since Xn . is a simple function and 

. Xn = Xn1An
+ Xn1A′

n
� Xn1An

� (Y − ε)1An
.

A simple function takes only finite many values, thus, if we denote by a . the 
maximum value of the function Y1A′

n
., we get: 

. EXn � E
[
(Y − ε)1An

] = E
[
Y1An

]− ε P(An)

= EY − E
[
Y1A′

n

]− ε P(An)

� EY − max
{
Y (ω) : ω ∈ A′

n

}
P(A′

n) − ε P(An)

= EY − a P(A′
n) − ε P(An).

Since P(A′
n) → 0. and P(An) → 1. for n → ∞., we have  

. lim
n→∞EXn � EY − ε.

The result follows by passing to the limit as ε → 0.. �	
Definition 4.7 If X � 0. and (Xn)., n = 1, 2, . . . ., is a sequence of non-negative 
simple functions such that for every ω ∈ �. we have Xn(ω) ↗ X(ω)., then the 
expected value for the variable X is defined by

. EX ≡
∫

�

X(ω)P(dω)
def= lim

n→∞

∫

�

Xn(ω)P(dω) ≡ lim
n→∞EXn.

The sequence (Xn). is called the supporting or approximating sequence of simple 
functions for the non-negative X.
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Remark 4.8 It is easy to see that for a random variable X . which takes values in 
{0, 1, 2, . . . }. an approximating sequence of simple variables can be: 

. Xn =
n−1∑

k=0

k1{X=k} + n1{X�n}.

Consequently, 

. EX = lim
n→∞EXn =

∞∑

k=0

kP{X = k}.

Examples 4.9 

1. If X . has a discrete geometric distribution with p ∈ (0, 1). (which is the waiting 
time for the first success in a sequence of Bernoulli trials), then 

. EX =
∞∑

k=1

kpqk−1 = p

( ∞∑

k=1

qk

)′

dq

= p

(
q

1 − q

)′

dq

= 1

p
.

2. If a random variable X . has a Pascal distribution (which is the waiting time for 
the r-th success) with parameters p ∈ (0, 1)., r ∈ N., then its expected value can 
be obtained as the sum: 

. EX =
∞∑

k=r

k

(
k − 1

r − 1

)
prqk−r ,

which may seem rather difficult. It is easier to see that the waiting time for the 
r-th success is the sum of the waiting times for subsequent successes, hence 
X = ∑r

j=1 Xj ., where X1, . . . , Xr . are independent random variables of the same 
geometric distribution with parameter p .. Hence, we get: 

. EX =
r∑

j=1

EXj = r

p
.

3. Assume that X . has a Poisson distribution with parameter λ > 0.. Then: 

.EX =
∞∑

k=0

ke−λ λk

k! = λe−λ

∞∑

k=1

λk−1

(k − 1)! = λ.
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4. Consider a random variable X(ω) = ω . on the probability space � = [0, 1]. with 
the geometric probability, i.e., P. is the Lebesgue measure. An approximating 
sequence of simple variables can be defined similarly to the proof of Lemma 4.5: 

. Xn(ω) =
n−1∑

k=0

k

n
· 1[ k

n
, k+1

n ).

Thus, we have 

. EX = lim
n→∞EXn = lim

n→∞

n−1∑

k=0

k

n
· P

([
k

n
,
k + 1

n

))
= lim

n→∞

n−1∑

k=0

k

n

1

n
= 1

2
.

Lemma 4.10 The expected value for non-negative random variables is well 
defined, i.e., it does not depend on the choice of the approximating sequence of 
simple variables. 

Proof Consider two strings (Xn)., (Yn). of simple, non-negative variables such that 
Xn(ω) ↗ X(ω)., Yn(ω) ↗ X(ω). for every ω ∈ �.. Since Xn ↗ X � Yk ., from 
Lemma 4.6, we get 

. ∀ k ∈ N lim
n→∞EXn � EYk

and, consequently, 

. lim
n→∞EXn � lim

k→∞EYk.

By changing roles of the variables Xn . and Yk . from the same lemma, we get the 
converse inequality. �	

Now, we can define the expected value for any random variable X . on (�,F,P).. 
We introduce the following notation: 

. X+(ω) =
{
X(ω) if X(ω) > 0;

0 if X(ω) � 0; X−(ω) =
{−X(ω) if X(ω) < 0;
0 if X(ω) � 0.

Definition 4.11 The expected value of a random variable X . is defined by the 
formula: 

. EX
def= EX+ − EX−

if at least one of the two values on the right is finite. Otherwise, we say that the 
expected value for such variable X . does not exist.
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Theorem 4.12 If the expected value EX . exists and c ∈ R., then E(cX). also exists 
and E(cX) = cEX .. 

Proof If X � 0., c � 0. and (Xn). is a sequence of non-negative simple random 
variables such that Xn ↗ X ., then 

. E(cX) = lim
n→∞E(cXn) = c lim

n→∞EXn = cEX.

Now, it is easy to prove that the result holds for any integrable random variable X .. 
We need to apply the general definition of the expected value bearing in mind that for 
c > 0., we have (cX)+ = c X+

., (cX)− = c X−
., and if c < 0. then (cX)+ = −c X−

., 
(cX)− = −c X+

.. �	
Theorem 4.13 If E|X| < ∞. and E|Y | < ∞., then the expected value E(X + Y ). 

exists and E(X + Y ) = EX + EY .. 

Proof 

(1) Note first that if X � 0. and Y � 0., and the sequences of simple functions 
(Xn). and (Yn). support X and Y , respectively, then (Xn + Yn). are also simple  
variables, and (Xn + Yn) ↗ (X + Y ).. Hence, we obtain 

. EX + EY = lim
n→∞EXn + lim

n→∞EYn = lim
n→∞E(Xn + Yn) = E(X + Y ).

(2) Assume now that X and Y are non-negative random variables, E|X| < ∞. and 
E|Y | < ∞.. Then, 

. (X + Y )+ = 1

2
(|X + Y | + X + Y ) � 1

2
(|X| + |Y | + X + Y ) = X+ + Y+.

It follows that 

. E(X + Y )+ � E(X+ + Y+) = EX+ + EY+ < ∞,

which guarantees the existence of the expected value for the variable (X + Y ).. 
In the same way it can be shown that E(X + Y )− < ∞., hence E|X + Y | < ∞.. 
Now let us note that 

.(X + Y )+ + X− + Y− = 1

2
(|X + Y | + X + Y ) + X− + Y−

= 1

2
(|X + Y | + |X| + |Y |)
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and 

. (X + Y )− + X+ + Y+ = −
[
X + Y − 1

2
(|X + Y | + X + Y )

]
+ X+ + Y+

= 1

2

(−X − Y + |X + Y | + 2X+ + 2Y+) = 1

2
(|X + Y | + |X| + |Y |) .

Hence, we obtain 

. E(X + Y )+ + EX− + EY− = E(X + Y )− + EX+ + EY+,

and, after rearranging, 

. E(X + Y )+ − E(X + Y )−

= [
EX+ − EX−]+ [

EY+ − EY−] = EX + EY.

�	
Theorem 4.14 If there exist expected values EX . and EY . and X(ω) � Y (ω). for 
each ω ∈ �., then EX � EY .. 

Proof Since X − Y � 0., we have E(X − Y ) � 0. as the limit of expected values 
of non-negative approximating simple variables. Thus, if both expected values are 
finite, we get EX − EY � 0.. In the other cases, we obtain the result just as easily 
by noting that X+ � Y+

. and X− � Y−
.. �	

Theorem 4.15 

(a) The expected value EX . is finite if and only if E|X| < ∞.. 
(b) If E|X| < ∞., then |EX| � E|X|.. 
(c) E|X| < ∞. if and only if D(X) � E|X| � 1 + D(X)., where 

. D(X) =
∞∑

j=0

j P{j < |X(ω)| � j + 1} =
∞∑

j=1

P{|X(ω)| > j} < ∞

(.in particular, if E|X| < ∞., then nP{|X(ω)| > n} n→∞−→ 0).. 

Proof 

(a) If the expected value EX = EX+ −EX−
. is finite, then EX+ < ∞. and EX− <

∞.. Consequently, 

.E|X| = E(X+ + X−) = EX+ + EX− < ∞.



92 4 Expected Value for Random Variables

Conversely, if E|X| < ∞. then EX+ < ∞. and EX− < ∞., then we conclude 
that EX = EX+ − EX−

. is also finite. 
(b) It is easy to see that 

. |EX| = ∣∣EX+ − EX−∣∣ �
∣∣EX+∣∣+ ∣∣EX−∣∣ = EX+ + EX− = E|X|.

(c) We define 

. X1(ω) =
∞∑

j=0

j 1{j<|X(ω)|�j+1}, X2(ω) =
∞∑

j=0

(j + 1) 1{j<|X(ω)|�j+1}.

Evidently, for each ω ∈ �., we have X1(ω) � |X(ω)| � X2(ω).. Note that 

. D(X) =
∞∑

j=0

j P{j < |X(ω)| � j + 1} = EX1 � E|X|.

On the other hand, we have 

. EX2(ω) =
∞∑

j=0

(j + 1)P{j < |X(ω)| � j + 1}

=
∞∑

j=0

j P{j < |X(ω)| � j + 1} +
∞∑

j=0

P{j < |X(ω)| � j + 1}

= D(X) + P{|X(ω)| > 0} = D(X) + 1 − P{X(ω) = 0}.

This implies that D(X) < ∞. if and only if E|X| < ∞.. Let us suppose that 
D(X) < ∞.. Then we have 

. ∞ > D(X) =
∞∑

j=0

j P {j < |X(ω)| � j + 1} =
∞∑

j=1

P {j < |X(ω)|} .

Since the latter series is convergent, its partial sums satisfy Cauchy’s condition: 

.

2n∑

j=1

P{j < |X(ω)|} −
n∑

j=1

P{j < |X(ω)|} =
2n∑

j=n+1

P{j < |X(ω)|} n→∞−→ 0.
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We also have 

. 

2n∑

j=n+1

P {j < |X(ω)|} �
2n∑

j=n+1

P {2n < |X(ω)|} = nP {2n < |X(ω)|} ,

which ends the proof of the statement in parentheses. 
�	

Theorem 4.16 (Lebesgue’s Monotone Convergence Theorem) If a sequence of 
simple non-negative random variables (Xn)., n = 1, 2, . . . ., is nondecreasing, then 

. E
(

lim
n→∞ Xn(ω)

)
= lim

n→∞E (Xn(ω)) .

Proof For every n ∈ N., we have chosen a nondecreasing sequence of simple 
random variables (Xn,i). such that 

. ∀ω ∈ � lim
i→∞ Xn,i = Xn.

We will use the following notation: 

. X(ω) = lim
n→∞ Xn(ω), Yn(ω) = max

{
X1,n(ω),X2,n(ω), . . . , Xn,n(ω)

}
.

Since for every i ∈ N. and every ω ∈ �., the following inequalities hold: 

. Xn,i(ω) � Xn(ω) and X1(ω) � X2(ω) � · · · � Xn(ω) � X,

we have Yn(ω) � Xn(ω) � X(ω).. Hence, we get that 

. EYn � EXn � EX.

Taking the limit of the second of these two inequalities, we get 

. lim
n→∞E (Xn(ω)) � E

(
lim

n→∞ Xn(ω)
)

.

To prove the equality, let us note that (Yn). is a nondecreasing sequence of simple 
variables that converges to X ., which can be easily seen from the following 
relationship: 

.0 � X(ω) − Yn(ω) = (X(ω) − Xn(ω)) + (Xn(ω) − Yn(ω)) ,
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because both components on the right converge to zero. Now, it is enough to 
calculate EX . from the definition using (Yn).as the approximating sequence of simple 
functions. Hence, EX = limn→∞ EYn .. �	
Theorem 4.17 (Fatou’s Lemma) If (Xn). is a sequence of non-negative random 
variables, then 

. E
(

lim inf
n→∞ Xn

)
� lim inf

n→∞ E (Xn) .

Proof Let Yn = inf{Xn,Xn+1, . . . }.. Naturally, Yn � Xn ., thus EYn � EXn . and 

. lim
n→∞ Yn = lim inf

n→∞ Xn.

(Yn). is a nondecreasing sequence of non-negative variables, hence, by Lebesgue’s 
Monotone Convergence Theorem, we get 

. E
(

lim inf
n→∞ Xn

)
= E

(
lim

n→∞ Yn

)
= lim

n→∞E (Yn) � lim inf
n→∞ E (Xn) ,

which was to be shown. �	
Theorem 4.18 (Lebesgue’s Dominated Convergence Theorem) If X, Y,X1,

X2, . . . . are random variables such that EY < ∞., |Xn| � Y . for each n ∈ N. 

and P{ω : Xn(ω) → X(ω)} = 1., then E|X| < ∞., EXn → EX . and 

. lim
n→∞E |Xn − X| = 0.

Proof From our assumptions, we get Y � 0.. The random variables Xn ., n ∈ N., are  
integrable because |Xn| � Y ., thus E|Xn| � EY < ∞.. Since the variables Y + Xn . 

and Y − Xn . are non-negative, by Fatou’s Lemma we obtain 

. E
(

lim inf
n→∞ (Y + Xn)

)
� lim inf

n→∞ E(Y + Xn)

and 

. E
(

lim inf
n→∞ (Y − Xn)

)
� lim inf

n→∞ E(Y − Xn).

From the properties of the expected value, the properties of the lower limit and the 
integrability of the variables, we get 

.E
(

lim inf
n→∞ Xn

)
� lim inf

n→∞ EXn � lim sup
n→∞

EXn � E
(

lim sup
n→∞

Xn

)
.
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By assumption lim infn→∞ Xn = lim supn→∞ Xn = X . a.e., hence, by virtue of 
the above inequality there exists a limit of the sequence (EXn)n∈N . and EX =
limn→∞ EXn .. Obviously, |X| � Y ., thus also E|X| � EY < ∞.. 

The proof of the fact that E|Xn − X| → 0. as n → ∞. is carried out analogously 
using the obvious inequality |Xn − X| � 2Y .. �	

4.2.1 Exercises 

229. We say that a random variable X is symmetric if for every t ∈ R. we have 
P{X < t} = P{X > −t}. (the distributions of X and − X . are identical). 
Suppose that a symmetric variable X . has an expected value. Find EX .. 

230. Let X . and Y . be random variables. Show that if EX . and EY . exist then 
Emax{X, Y }. also exists. Does the converse implication hold? 

231. Give an example of two random variables X . and Y . such that EX . and EY . exist, 
but E(XY ). does not. 

232. Let X be a random variable on (�,A,P). such that E|X| < ∞.. Show that 
|X(ω)| < ∞. with probability 1. 

233. Let X, Y . be random variables on (�,A,P).. Prove that if 

. 

∫

A

X(ω)P(dω) �
∫

A

Y (ω)P(dω)

for any set A ∈ A., then X(ω) � Y (ω). with probability 1. 
234. Let X . and Y . be identically distributed random variables. Prove that the 

following equality does not always hold: 

. E
X

X + Y
= E

Y

X + Y
.

235. Let X1, . . . , Xn . be independent positive random variables with the same 
distributions. Prove that for every k � n. 

. E
X1 + · · · + Xk

X1 + · · · + Xn

= k

n
.

236. Let EX = 0. and E|X| = 1.. Find Emax{0, X}. and Emin{0, X}.. 
237. What conditions must the numbers a . and b. meet so that a random variable 

X having the properties EX = a . and E|X| = b. exists? 
238. Let X . be a natural-valued random variable with a finite expectation. Prove that 

.EX =
∞∑

k=1

P
{
X � k

}
.
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239. Let X . and Y . be independent random variables with values in the set of natural 
numbers and let EX < ∞.. Prove that 

. Emin
{
X, Y

} =
∞∑

k=1

P
{
X � k

}
P
{
Y � k

}
.

4.3 Functions of Random Variables 

Theorem 4.19 Let ϕ : Rn → R. be a Borel function, and X = (X1, . . . , Xn). 

a random vector with distribution PX .. Then: 

. Eϕ(X) =
∫

. . .

∫

R
n

ϕ(x)PX(dx)

if we know that at least one of the integrals in this formula exists. 

Proof If ϕ . is a Borel-measurable function, then, by definition, for every Borel set 
B ⊂ R., ϕ−1(B). is also a Borel set, thus 

. {ϕ(X) ∈ B} = {
X ∈ ϕ−1(B)

} ∈ F

because X is a random vector. Hence, it follows that ϕ(X). is a random variable. We 
will show the equality of the integrals mentioned in the theorem in a few steps: 

1. If ϕ = 1B . for some Borel set B, then 

. Eϕ(X) = P{X ∈ B} = PX(B) =
∫

. . .

∫

B

1PX(dx) =
∫

. . .

∫

R
n

ϕ(x)PX(dx).

2. If ϕ . is a simple function, i.e., ϕ = ∑
i xi1Bi

. for some Borel sets Bi . and xi ∈ R., 
then the desired equality is a result of the linearity of the integral and the equality 
shown in step 1.  

3. If ϕ . is a non-negative Borel function, then it is the limit of a non-decreasing 
approximating sequence of simple functions. Therefore, it is enough to apply 
Lebesgue’s Monotone Convergence Theorem and the equality obtained in step 2. 

4. Let ϕ = ϕ+ − ϕ−
. and assume that Eϕ(X). exists. Note that (ϕ(X))+ = ϕ+(X). 

and (ϕ(X))− = ϕ−(X).. Hence, it follows that at least one of the integrals 

.Eϕ+(X) or Eϕ−(X)
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is finite. From step 3, we have 

. Eϕ+(X) =
∫

. . .

∫

R
n

ϕ+(x)PX(dx), Eϕ−(X) =
∫

. . .

∫

R
n

ϕ−(x)PX(dx),

which implies the existence of the right-hand integrals and the desired equality. If 
we assume the existence of the integral

∫
ϕ(x)PX(dx)., the reasoning is similar. 

�	
Thanks to this theorem, we can calculate the values of Eϕ(X). without having to 

first determine the distribution of ϕ(X). if the distribution of X . is already known. 

Example 4.20 Assume that � = [0, 2]., P. is the normalized Lebesgue measure, 
i.e., P(dω) = 1

21[0,2](ω) dω ., and F. is the σ .-field of Borel sets in �.. We want to 
calculate EXn

. for the random variable X defined as follo ws:

. X(ω) =
{

ω if ω ∈ [0, 1];
2 − ω if ω ∈ (1, 2].

Instead of looking for the distribution of the variable X . or Xn
., let’s define a new 

variable Y (ω) = ω.. It is easy to see that PY = P., so by Theorem 4.19, we get: 

. EXn = E
(
ω1[0,1](Y ) + (2 − ω)1(1,2](Y )

)n

=
∫ ∞

−∞

(
x1[0,1](x) + (2 − x)1(1,2](x)

)n 1

2
1[0,2](x) dx

= 1

2

∫ 1

0
xn dx + 1

2

∫ 2

1
(2 − x)n dx = 1

n + 1
.

4.3.1 Exercises 

240. Prove that if EX2 < ∞., then E|X| < ∞.. 
241. Prove that if EX2 = 0., then P{X = 0} = 1.. 
242. Let � = [0, 1]. and let P. be the Lebesgue measure on �.. Using Definition 4.7, 

find the expected values of X(ω) = ω2
. and Y (ω) = ω3

.. 
Hint:

∑n
k=1 k2 = n(n + 1)(2n + 1)/6.,

∑n
k=1 k3 = n2(n + 1)2/4.. 

243. Let � = [0, 3]. and let P. be normalized Lebesgue measure on �.. Find the  
expected value of the following random variables: 

.X(ω) =
⎧
⎨

⎩

ω if ω ∈ [0; 1];
1 if ω ∈ (1, 2];
3 − ω if ω ∈ (2, 3];

Y (ω) =
⎧
⎨

⎩

2ω − 1 if ω ∈ [0; 1];
2 − ω if ω ∈ (1, 2];
0 if ω ∈ (2, 3].
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244. Prove that if E|X|α < ∞. for some α > 0., then also E|X|β < ∞. for every 
β ∈ (0, α).. 

245. Suppose that the expected values of random variables X1, . . . , Xn . exist and 
are finite. Show that 

. Emax{X1, . . . , Xn} � max{EX1, . . . ,EXn};
Emin{X1, . . . , Xn} � min{EX1, . . . ,EXn}.

4.4 Expected Value for Continuous Type Random Variables 

Theorem 4.21 If the continuous type random variable X : � → R. has density 
function f : R→ [0,∞). and EX . exists, then 

. EX =
∫ ∞

−∞
xf (x) dx.

Proof It is enough to prove that the result holds for a non-negative random variable. 
Let X � 0., which implies the condition f (x) = 0. for x < 0.. By  (Xn). we denote the 
approximating sequence of non-negative simple variables defined as in the proof of 
Lemma 4.5: 

. Xn =
n2n−1∑

k=0

k

2n
1Ik,n

(X(ω)) + n1In
(X(ω)) ,

where Ik,n = [
k
2n ,

k+1
2n

)
. and In = [n,∞).. By definition of the expected value for 

simple random variables, we have 

. EXn =
n2n−1∑

k=0

k

2n
P{X ∈ Ik,n} + nP{X ∈ In}

=
n2n−1∑

k=0

k

2n

∫

Ik,n

f (x) dx + n

∫

In

f (x) dx

=
∫ ∞

0

[
n2n−1∑

k=0

k

2n
1Ik,n

(x) + n1In
(x)

]

︸ ︷︷ ︸
gn(x)

f (x) dx.

The function gn(x). approximates the function g(x) = x . with a precision of 2−n
. 

on the interval [0, n)., and outside of this interval, it takes the value of n.. Also,
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gn(x) ↗ g(x). as n → ∞., for every x ∈ R.. The existence of the limit of the 
integrals

∫
gn(x)f (x) dx . as n → ∞. is due to the existence of EX .. Hence, when 

we go to the limit, we get 

. EX = lim
n→∞EXn = lim

n→∞

∫ ∞

0
gn(x)f (x) dx

=
∫ ∞

0

(
lim

n→∞ gn(x)
)

f (x) dx =
∫ ∞

0
xf (x) dx,

which was to be shown. �	
Example 4.22 To calculate the expected value of a variable X . with distribution 
�(b, p). (density bp

�(p)
xp−1e−bx1(0,∞)(x).), let us recall first that for any b > 0., p > 0. 

. 

∫ ∞

0
xp−1e−bx dx = �(p)

bp
.

Hence, we have 

. EX =
∫ ∞

0
x

bp

�(p)
xp−1e−bx dx = bp

�(p)

∫ ∞

0
xpe−bx dx = bp

�(p)

�(p + 1)

bp+1
.

Since �(p + 1) = p �(p)., we finally get EX = p/b .. 

Theorem 4.23 If a random variable X . has a continuous type distribution with 
density f (x)., and ϕ . is a Borel function, then 

. Eϕ(X) =
∫ ∞

−∞
ϕ(x)f (x) dx

if at least one of the integrals in this formula exists. 

Proof If ϕ(x) = 1B(x)., then 

. Eϕ(X) = P{X ∈ B} =
∫

B

f (x) dx =
∫ ∞

−∞
ϕ(x)f (x) dx.

Now, it suffices to repeat the standard reasoning already used: show that equality 
holds for simple functions ϕ ., by Lebesgue’s Monotone Convergence Theorem 
extend the equality to non-negative Borel functions, then consider positive and 
negative parts separately for any Borel function ϕ .. �	
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4.4.1 Exercises 

246. Calculate the expected value for the following distributions: a) uniform on 
the interval [a, b].; b) exponential with parameter λ.; c) beta distribution with 
parameters p, q > 0.. 

247. Calculate EX . and EX2
. for a random variable X . with the normal distribution 

N(m, σ).. 
248. Does there exist an expected value for a Cauchy distributed random variable 

with parameters a > 0. and m ∈ R.? 
249. Calculate EXn

. for a variable X . having the following distributions: a) gamma 
with parameters b, p > 0.; b) beta with parameters p, q >. 0. 

250. Margaret has a standard A4 (210mm ×. 297mm) sheet of paper and she folds 
it perpendicularly to the longer side at a randomly chosen place. What is the 
expected value of the area of the larger rectangle obtained after folding the 
sheet? 

4.5 Expected Value as a Lebesgue–Stieltjes Integral 

One more approach to calculating the expected value is to use the distribution of the 
variable in question, specifically, its distribution function. 

Definition 4.24 Assume that F . is the distribution function of the probability 
measure P. on �. and let g : R→ R. be a Borel measurable function. The Lebesgue– 
Stieltjes integral of the function g . with respect to increments of the distribution 
function F . is defined by the formula: 

. 

∫ ∞

−∞
g(x) dF(x)

def=
∫ ∞

−∞
g(x)P(dx) = Eg(X(ω)),

where X(ω). is a random variable with distribution P.. 

Note that this is not a new kind of integral for us. We already know that any 
left-continuous nondecreasing function F . such that 

. lim
t→−∞ F(t) = 0, lim

t→∞ F(t) = 1

is the distribution function of some probability distribution P., which uniquely 
defines the right side of the formula. If the function g . is uniformly continuous on 
R., then the Lebesgue–Stieltjes integral is sometimes referred to as the Riemann– 
Stieltjes integral or simply the Stieltjes integral. These distinctions are not important 
in the context of the general theory of measure, and the integral

∫
g(x) dF(x). is best 

treated only as another way of writing the integrals
∫

g(x)P(dx). or Eg(X)..
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However, this notation turns out to be very helpful in calculating the expected 
values for distributions that are convex combinations of a discrete distribution and 
an absolutely continuous distribution. Therefore, let us assume that the distribution 
function F(x). of the variable X . has at most a countable number of jumps at points 
xi . of heights pi ., while away from the jump points it is differentiable and 

. 

∫ ∞

−∞
F ′(x) dx +

∑

i

pi = 1.

Then, writing the expected value as an integral with respect to increments of the 
distribution function seems only natural: 

. EX =
∫ ∞

−∞
x dF(x) =

∑

i

xipi +
∫ ∞

−∞
xF ′(x) dx.

Such a distribution is a convex combination of a discrete and an absolutely 
continuous distribution. To see this, let f (x) = F ′(x). and define 

. α =
∑

i

pi, P1(dx) = α−1
∑

i

piδxi
(dx), P2(dx) = (1 − α)−1f (x) dx.

If P. is a distribution with distribution function F , then 

. P = αP1 + (1 − α)P2.

It is not difficult to verify that P1 . and P2 . are probability distributions, P1 . is a discrete 
distribution and P2 . is absolutely continuous. 

In the last exercise of this chapter, we will see that not all probability distributions 
are convex combinations of an absolutely continuous distribution and a discrete 
distribution. 

4.5.1 Exercises 

251. Let X be a positive random variable with distribution function F such that
EXα < ∞. for some α > 0.. Show that for any c > 0., we have  

.EXα = α

∫ ∞

0
xα−1 (1 − F(x)) dx,

E (min{Xα, c}) = α

∫ c

0
xα−1 (1 − F(x)) dx.
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252. Let X and Y be positive random variables with distribution functions F(x). 

and G(x).. Prove that if F(x) � G(x). for every x ∈ R., then EX � EY .. 
253. Let 0 < 2a <. 1. Find the expected value of a random variable with the 

following distribution functions: 

. (a) F(x) =
⎧
⎨

⎩

ex if x � −1;
0.5 if −1 < x � 1;
1 − 1

3x3 if x > 1;
(b) F(x) =

⎧
⎨

⎩

0 if x � 0;
x + a if 0 < x � 1

2 ;
1 if x > 1

2 .

254. Let us build the Cantor set on the interval [0, 1].. In the first step (n = 1.), we 
divide it into three equal intervals and denote the middle (open) interval by 
I1,1 .. In the second step (n = 2.), the remaining segments [0, 1

3 ]. and [ 2
3 , 1]. are 

divided into three equal parts and the middle ones are denoted by I1,2, I2.2 .. 
Continuing this procedure, we get a sequence of open intervals Ik,n ., n ∈ N., 
k = 1, 2, . . . , 2n−1

.. Prove that the Cantor set defined by the following formula 
is non-empty: 

. C = [0, 1] K
⋃

n∈N

2n−1⋃

k=1

Ik,n.

255. (continued) Now, we are able to build Cantor’s function, also called the Devil’s 
Staircase, F : R → [0, 1]. as follows: F(x) =. 0 for  x � 0., F(x) = 1. for 
x > 1., and 

. F(x) =
{

2−n(2k − 1) if x ∈ Ik,n;
supt<x,t �∈C F (t) if x ∈ C.

(a) Sketch the graph of F . on the set I1,1 ∪ I1,2 ∪ I2,2 ∪ I1,3 ∪ I2,3 ∪ I3,3 ∪ I4,3 .. 
(b) Prove that F . is a distribution function. 
(c) Prove that F . is a continuous function, hence, the random variable with 

distribution function F . is not discrete and has no atoms. 
(d) Prove that for every x �∈ C . the derivative F ′(x). exists and F ′(x) =

0., hence the random variable with distribution function F . is not of 
continuous type.



Chapter 5 
Random Variable Parameters 

5.1 Quantiles, Median, Moments, Variance, Skewness 
and Kurtosis 

Often, especially in mathematical statistics, numerical parameters are crucial in 
describing a random variable X. In this chapter, we describe the most important 
of them. 

• A quantile of order p ∈ (0, 1). of a random variable X, or its distribution, is 
a number αp . for which the following inequalities hold: 

. P{X � αp} � p, P{X � αp} � 1 − p.

The quantile of p = 1
2 . is called the median. Of course, for symmetric 

distributions, α1/2 = 0.. Sometimes, in statistics, quantiles are referred to as 
percentiles if the parameter p . is a probability expressed as a percentage. 

Note that the quantile αp . is not necessarily uniquely determined. If the 
distribution of X . is given by density: 

. f (x) = 2

3
x−31(−∞,−1)(x) + 2

3
x−21(1,∞)(x),

then the α1/3 . quantile can be any number from the interval [−1, 1].. 
The second class of numerical parameters of the variable X . are its moments: 

ordinary, central, and absolute. When defining moments, we will assume that the 
relevant integrals exist and are finite.

• The raw or crude moment, or simply the moment of order k ∈ N. of the variable 
X ., is the expected value of the variable Xk

.: 

. mk = EXk.
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• The absolute moment of order r > 0. is the expected value of the variable |X|r .: 

.βr = E|X|r .

• The central moment of order k ∈ N. is the expected value of the random variable 
(X − EX)k .: 

.μk = E(X − EX)k.

• The variance of the variable X . is the second central moment of this variable: 

. VarX = μ2 = E(X − EX)2.

Note that from Newton’s binomial formula, one can easily obtain the connection 
between the raw and central moments: 

. μk = E(X − EX)k =
k∑

j=0

(
k

j

)
(−1)k−j EXj (EX)k−j

=
k∑

j=0

(
k

j

)
(−1)k−jmjm

k−j

1 .

In particular, for k = 2., we have  

. VarX = m2 − m2
1 = EX2 − (EX)2 .

The variance increases as the variable deviates more from its expected value. The 
variance is zero if and only if the random variable is constant almost everywhere, 
because E(X − EX)2 = 0. if and only if X = EX . with probability one. Moreover, 
it is easy to see that: 

– Var(cX) = c2Var(X ).; 
– Var(X + c) = Var(X).; 
– if X and Y are independent then Var(X + Y ) = Var(X) + Var(X)..

• The square root of the variance is called the standard deviation and is denoted by 
the symbol σX .: 

. σX = √
Var(X).

We say that the random variable X is standardized if VarX = 1. or if we consider 
the random variable X/σX . instead of X.



5.1 Quantiles, Median, Moments, Variance, Skewness and Kurtosis 105

• The third standardized moment ν3 . of a random variable X is often called its 
skewness and is defined as:

. ν3 = E(X − EX)3

σ 3
X

.

Skewness is a measure of the asymmetry of the probability distribution of a real-
valued random variable about its mean. The skewness value can be positive, zero, 
negative, or undefined.

• The fourth standardized moment ν4 . of a random variable X is called its kurtosis 
(from Greek: kurtos, meaning “curv ed”):

. ν4 = E(X − EX)4

σ 4
X

.

Kurtosis is a measure of the thickness of the distribution’s tail for the real-valued 
random variable X. 

Example 5.1 A random variable X . with distribution �(p, b). has all moments of 
positive order and some of negative order because for p + r > 0., we have  

. EXr =
∫ ∞

0
xr bp

�(p)
xp−1e−bx dx = bp

�(p)

∫ ∞

0
xp+r−1e−bx dx

= bp

�(p)
· �(p + r)

bp+r
= �(p + r)

br�(p)
< ∞.

Example 5.2 We say that a random variable X . has a Pareto distribution with 
parameter α > 0. if its density is given by the formula: 

. f (x) =
{

αx−α−1 if x > 1;
0 if x � 1.

This variable has all moments of order r . (including negative) as long as r < α ., 
because then 

. EXr =
∫ ∞

1
xrαx−α−1 dx = α

r − α
< ∞.

The next three theorems describe other connections between the moments of 
random variables. 

Theorem 5.3 (Schwarz’s Inequality) If EX2 < ∞. and EY 2 < ∞., then 

. |E(XY )| �
√

EX2EY 2.
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Proof For any real number t , the following inequality is true: 

. E(tX + Y )2 = t2EX2 + 2tE(XY ) + EY 2 � 0.

If we treat the left-hand side of the above inequality as a quadratic function of t , it  
becomes obvious that � � 0.. Hence, 

. � = 4 (E(XY ))2 − 4EX2EY 2 � 0,

which ends the proof. ��
Theorem 5.4 (Jensen’s Inequality) Let us assume that E|X| < ∞..  If  g is 
a convex function on R., then 

. g(EX) � Eg(X).

Proof If g is a convex function, then for every point x0 ., there exists a constant m(x0). 

such that 

. g(x) � g(x0) + m(x0)(x − x0).

The constant m(x0). is the slope of the line supporting the graph of the function g 
at the point x0 .. When substituting X → x . and EX → x0 . and taking the expected 
value of both sides of this inequality, we get the result. ��
Theorem 5.5 (Hölder’s Inequality) Assume that p, q > 1. satisfy the condition 
1
p

+ 1
q

= 1..  If E|X|p < ∞. and E|Y |q < ∞., then E|XY | < ∞. and 

. E|XY | �
(

E|X|p
)1/p(

E|Y |q
)1/q

.

Proof Note that the function log x . is concave on the half-line (0,∞).. It follows 
that for any α, β > 0., α + β = 1. and any x, y > 0., the following inequality holds: 

. log(αx + βy) � α log x + β log y = log(xαyβ).

Hence, 

. αx + βy � xαyβ.

Now, it is enough to substitute 

. α = 1

p
, β = 1

q
, x1/p = |X|

(E|X|p)1/p
, y1/p = |Y |

(E|Y |q)1/q

and calculate the expected value of both sides of this inequality. ��
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5.1.1 Exercises 

256. Find the quantiles of orders 0.25.; 0.5. and 0.75. for the uniform distribution on 
the interval [a, b].. 

257. Calculate the median and the quantile of order 0.25. for the following 
distributions: (a) exponential; (b) Cauchy. 

258. Calculate all moments, skewness and kurtosis of a random variable X . with the 
beta distribution with parameters p, q > 0.. 

259. Calculate the four first moments, skewness and kurtosis for the random 
variable X . describing the result of rolling one die. 

260. Calculate the expected values and variances for the following discrete distri-
butions: (a) Bernoulli; (b) geometric; (c) Poisson; (d) Pascal. 

261. Calculate the variance for the following absolutely continuous distributions: 
(a) uniform on the interval [a, b].; (b) exponential; (c) gamma; (d) beta. 

262. Calculate the expectation, variance, skewness and kurtosis for the variable 
Z = XY . if these parameters are known for the independent variables X and Y .

263. Let � = [0, 1]. and let P. be the Lebesgue measure on �.. Find the expected 
value and the variance of the following random variables: 

. X(ω) = ω−1/2; Y (ω) = (ω−1/2)2; Z(ω) = sin πω; W(ω) = sin 2πω.

264. Prove that if P{0 < X < 1} = 1. for a random variable X, then VarX < EX .. 
265. Random variables X . and Y . are independent and such that EX = 1., EY = 2., 

VarX = 1. and VarY = 4.. Find the expected values of the following random 
variables: (a) Z = X2 + 2Y 2 − XY − 4X + Y + 4.; (b) W = (X + Y + 1)2

.. 
266. Prove that if VarX = 0., then there exists an a ∈ R. such that P{X = a} = 1.. 
267. Prove that 

. VarX = inf
a∈RE (X − a)2 .

268. Show that for every random variable with a finite first moment and median 
me ., we have  

. inf
a∈RE|X − a| = E|X − me|.

269. Let X . and Y . be independent random variables. Prove that 

. Var(XY ) � Var(X)Var(Y ).

What conditions must X and Y satisfy for equality to occur in this inequality?
270. Suppose a random variable X . has a symmetric distribution. Prove that for any 

real number a . the following inequality holds: 

.E|X + a| � EX.
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271. A random variable X satisfies the condition E|X|α < ∞. for some α > 0.. 
Show that for every c ∈ R. 

. E|X − c|α < ∞.

Hint. (a + b)α � aα + bα
. for α ∈ (0, 1]. and a, b > 0., while for α > 1. and 

a, b > 0., we have (a + b)α � 2α−1(aα + bα).. 
272. Let us assume that all the moments of a random variable X . are finite. Show 

that ψ(u) = log(E|X|u). is a convex function for u � 0.. What conditions must 
the variable satisfy for ψ . to be a linear function? 

273. Minkowski’s inequality. Prove that for any a � 1.: 

. 

(
E|X + Y |a

)1/a

�
(

E|X|a
)1/a +

(
E|Y |a

)1/a

.

Hint. For a = 1., the inequality is obvious. For a > 1., we have  

. E|X + Y |a � E
(|X| |X + Y |a−1

) + E
(|Y | |X + Y |a−1

)
.

Now, it is enough to apply Hölder’s inequality twice. 

5.2 Chebyshev’s Inequality 

The significance of the moments of a random variable is well described by the 
following theorem and its generalizations: 

Theorem 5.6 (Chebyshev’s Inequality) If X . is a random variable and VarX <

∞., then for any ε > 0., the following inequality holds: 

. P
{
ω : ∣∣X − EX

∣∣ > ε
}
� VarX

ε2
.

If X . is a non-negative random variable and EX < ∞., then for any ε > 0. 

. P {ω : X > ε} � EX

ε
.

Proof Of course, the finite variance assumption in the first condition and the finite 
expected value assumption in the second are not relevant. However, the estimates 
obtained without these assumptions do not seem particularly interesting. 

Let us assume that VarX < ∞. and let ε > 0.. If  

.A = {ω : |X(ω) − EX| > ε} and A′ = � K A,
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then 

. VarX =
∫

A

|X − EX|2 dP +
∫

A′
|X − EX|2 dP

�
∫

A

|X − EX|2 dP � ε2
∫

A

dP

= ε2P(A) = ε2P
{
ω : ∣∣X − EX

∣∣ > ε
}
,

which ends the proof of the first part of the theorem. The proof of the second part is 
analogous. ��

Chebyshev’s inequality and a whole series of similar results can be obtained as 
corollaries of the following, slightly more general, theorem. 

Theorem 5.7 Suppose X . is a random variable and g . is a non-negative even 
function defined on R. that is nondecreasing on [0,∞).. Then, for every ε > 0., 

. P {ω : |X(ω)| � ε} � E[g(X)]/g(ε).

Proof If g � 0., then the integral Eg(X). exists although it may be equal to + ∞.. 
Let 

. A = {ω : |X(ω)| � ε} .

On the set A., we have g(X) � g(ε).. Therefore, following the proof of Chebyshev’s 
inequality, we get 

. Eg(X) =
∫

A

g(X) dP +
∫

A′
g(X) dP

�
∫

A

g(X) dP � g(ε)

∫

A

dP

= g(ε)P(A) = g(ε)P
{
ω : ∣∣X

∣∣ > ε
}
,

which was to be shown. ��
Inequalities of the Chebyshev type turn out to be very useful when we want to 

estimate the probability value of certain events, especially when exact calculations 
are particularly laborious. 

Example 5.8 A game involves tossing a symmetrical coin 160 times. We want to 
determine the interval I into which the number of heads obtained will fall with 
a probability of at least 0.9.. 

Let X . be the number of heads obtained. We already know that p = 1
2 ., EX = 80., 

VarX = 40.. This means that the most probable events occur around 80. and it can 
be assumed that the optimal interval will be symmetric around this number. From
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Chebyshev’s inequality, we get 

. P{|X − 80| < ε} = 1 − P{|X − 80| � ε} � 1 − 40

ε2
.

The conditions will be met if we select ε . such that 1 − 40ε−2 � 0.9., which leads 
to the condition ε � 20.. We want to choose the interval to be as narrow as possible, 
therefore we take ε = 20., and we get: 

. 0.9 � P{|X − 80| < ε} = P{X ∈ (60, 100)}.

The random variable X . is discrete and can only take natural values. We can use this 
information to improve the estimate and write: 

. 0.9 � P
{
X ∈ [61, 99]}.

5.2.1 Exercises 

274. We roll a single die 180 times. Estimate with a probability of 0.9. the number 
of 6’s obtained. 

275. Using Chebyshev’s inequality, it was calculated that the probability that the 
number of heads in a series of symmetric coin tosses will differ from its 
expected value by more than 25% of that expected value is not greater than 
1/160.. At least how many tosses did this series consist of? 

276. Prove the three-sigma rule: if VarX = σ 2 < ∞., then 

. P
{
ω : ∣∣X − EX

∣∣ < 3σ
}
� 8

9
= 0.888888 . . .

277. A random variable X . has the distribution N(m, σ).. Compare the estimate of 
P{|X − m| < 3σ }. obtained in the previous exercise with its real value. 

278. Let f : R → R. be an even function that is measurable and is non-decreasing 
on the positive half-line. Show that for any random variable X . satisfying the 
condition |X(ω)| < c. for each ω ∈ �., the following property holds: 

. ∀ ε > 0
Ef (X) − f (ε)

f (c)
� P {|X − EX| � ε} � Ef (X − EX)

f (ε)
.

279. Markov’s inequality. Prove that for any random variable X ., any  p > 0. and 
t > 0., the following inequality holds: 

.P{|X| > t} � t−pE|X|p.
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280. Prove that for any random variable X ., any  p > 0. and t > 0., the following 
inequality holds: 

. P{|X| > t} � e−ptEepX.

5.3 Parameters of Random Vectors 

Definition 5.9 The covariance of random variables X . and Y . has the following 
value: 

. Cov(X, Y ) = E
((

X − EX
)(

Y − EY
))

.

It is easy to see that Cov(X, Y ).can also be calculated from the following formula: 

. Cov(X, Y ) = E
(
XY) − EX · EY.

The covariance is a parameter that to some extent describes the degree of depen-
dence of random variables, although the correlation factor is more commonly used 
as a measure of dependence. It is defined as the covariance of standardized variables: 

Definition 5.10 If the random variables X .and Y .have finite and non-zero variances, 
then their correlation factor is given by 

. 
(X, Y ) = Cov(X, Y )√
VarXVarY

.

If 
(X, Y ) =. 0, we say that the variables X . and Y . are uncorrelated. If  
(X, Y ) >

0., then we say that the variables are positively correlated, and if 
(X, Y ) < 0., they  
are negatively correlated. 

Remark 5.11 It is easy to check that independent random variables are uncor-
related. It is not true, however, that if the variables are uncorrelated, they are 
independent! 

Theorem 5.12 For any random variables X, Y . with finite second moments, the 
following property holds: 

. − 1 � 
(X, Y ) � 1.

Moreover, |
(X, Y )| = 1. if and only if there exist constants a, b, c ∈ R., ab 
= 0., 
such that 

.P
{
ω : aX(ω) + bY (ω) + c = 0

}
= 1.
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Proof The first part of the theorem follows from the Schwarz inequality applied to 
the variables (X − EX). and (Y − EY ).: 

. |E(X − EX)(Y − EY )| �
√

E(X − EX)2E(Y − EY )2 = √
VarXVarY .

It is easy to see that if Y = aX + b. with probability 1, then 
(X, Y ) = 0.. Let us 
assume that 
(X, Y ) = 1. and let 

. U = X − EX√
VarX

− Y − EY√
VarY

.

Note that VarU = 2 − 2
(X, Y ) = 0.. Now, it is enough to apply the already known 
fact that only the variance of a constant can be equal to zero. If 
(X, Y ) = −1., as  
an auxiliary variable we should take 

. U = X − EX√
VarX

+ Y − EY√
VarY

.

��
Definition 5.13 The expected value of a random vector X = (X1, . . . , Xn). is 
the vector of the expected values of its components EX = (EX1, . . . , EXn).. The  
covariance matrix of a random vector X . is the matrix � = (σij )

n
i,j=1 ., where 

. σij = Cov(Xi,Xj ).

Recall that a square matrix � = (
σij

)
.of dimension n×n. is positive definite (non-

negative definite) if
∑n

i,j=1 σij ti tj > 0. (
∑n

i,j=1 σij ti tj � 0.) for any t1, . . . , tn ∈ R.. 

Lemma 5.14 The covariance matrix of any random vector X = (X1, . . . , Xn). is 
a non-negative definite matrix. If the random variables (Xi − EXi). are linearly 
independent, then the covariance matrix of the vector X . is positive definite. 

Proof The covariance matrix for the vector X . is equal to
(
Cov(Xi,Xj )

)
i,j

.. Hence, 

. 

n∑

i,j=1

ti tj Cov(Xi,Xj ) =
n∑

i,j=1

ti tj E
(
(Xi − EXi)(Xj − EXj)

)

= E

(
n∑

i=1

ti(Xi − EXi)

)2

� 0.

In the above inequality, equality holds only if there exist constants t1, . . . , tn . such 
that

∑n
i=1 ti(Xi − EXi) = 0. with probability 1, in other words, when the variables 

Xi − EXi ., i = 1, . . . , n. are linearly dependent. ��
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5.3.1 Copulas 

In stochastic modeling of real phenomena, it is often necessary to construct 
a random vector (X1, X2). with given parameters m1 = EX1 ., m2 = EX2 ., σ 2

1 =
VarX1 ., σ 2

2 = VarX2 . and 
 = 
(X1, X2).. We already know (see Theorem 3.17) 
that on the basis of a random variable X . with a uniform distribution on the interval 
[0, 1]., it is possible to construct a variable X1 . with arbitrarily chosen distribution 
function F . by substituting X1 = F(X).. Thus, the crux of the problem is the 
construction of a random vector (X, Y ). whose marginal distributions are uniform 
on the intervals [0, 1]., and the correlation coefficient takes a predetermined value of 

 .. Two-dimensional distributions with such properties are called copulas. Here, we 
present one of the simplest examples of a copula. 

Consider a random vector (X, Y ). uniformly distributed on the frame shown in 
Fig. 5.1. The length of the entire frame is 2

√
2.. It is not difficult to see that the 

part of the frame on the left side of the line x = t ., t ∈ [0, 1]., has length 2
√

2 t .. This  
means that the FX . marginal distribution function of the variable X . has the following 
form 

. FX(t) =
⎧
⎨

⎩

0 if t � 0;
t if 0 < t � 1;
1 if t � 1.

We see that FX . is the distribution function of the uniform distribution on the interval 
[0, 1].. Due to the symmetry, the same can be said about the distribution of the 
random variable Y . It follows that  

. EX = EY = 1

2
, VarX = VarY = 1

12
.

To calculate E(XY )., we need to integrate the product of xy . over the curve we 
call a frame. We will do this separately for each interval included in the frame, 
remembering that the density along this curve is constant and equal to 2−3/2

., hence, 

Fig. 5.1 A frame on which a 
random vector (X, Y ). is 
uniformly distributed 

1 

α 1
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the frame length increment dl . is equal to
√

2 dx .. We obtain 

. E(XY ) = 1

2
√

2

{∫ α

0
x(α − x)

√
2 dx +

∫ 1

α

x(x − α)
√

2 dx

+
∫ 1−α

0
x(x + α)

√
2 dx +

∫ 1

1−α

x(2 − x − α)
√

2 dx

}

= 1

6

(
2α3 − 3α2 + 2

)
.

Hence, Cov(X, Y ) = (4α3 − 6α2 + 1)/12. and 

. 
(X, Y ) = 
(α) = 4α3 − 6α2 + 1.

The function 
(α). is a continuous function of the argument α .. Moreover, 
(0) = 1., 

(1) = −1.. It follows that for any predetermined value of 
 ∈ [−1, 1]., we can find 
α ∈ [0, 1]. such that 
(α) = 
 ., which was to be shown. 

5.3.2 H. Markowitz’s Investing Theory 

In 1990, H. Markowitz was awarded the Nobel Prize in Economics for his work 
on investing methods in the stock exchange. One of the methods developed by 
him was based on the observation that if the shares of two different companies are 
stochastically negatively correlated, then a possible decrease in the value of one of 
them should coincide with an increase in the value of the other. If we choose both 
stocks from among those that tend to increase, we can only earn! 

Unfortunately, like everything that concerns processes that cannot be described 
in a deterministic way, there is a risk that we will suffer a loss. Therefore, a portfolio 
of shares should be constructed in such a way that this risk is minimal. 

We start by observing the quotations of several or a dozen companies on the stock 
exchange for a long period of time. On this basis, using statistical methods, we can 
select two types of shares A and B with an upward trend and a negative correlation. 
Let X1, X2 . be random variables which describe the prices of the stocks A and B, 
respectively. We statistically determine the following parameters: m1 = EX1 ., m2 =
EX2 ., σ 2

1 = VarX1 ., σ 2
2 = VarX2 . and 
 = 
(X1, X2).. By assumption, we choose 

X1, X2 . with 
 < 0., preferably with |
|. close to 1. The value of the portfolio is 
described by the following random variable: 

. Wp = pX1 + (1 − p)X2,

which means that among the n. shares we are going to buy, there will be n · p . shares 
of type A and (1 −p)n. shares of type B. The risk measure is the variance of the Wp .
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random variable, so let us calculate 

. R(p) = VarWp = p2σ 2
1 + 2p(1 − p)
σ1σ2 + (1 − p)2σ 2

2 .

To minimize the risk, it is now sufficient to set p0 ∈ (0, 1). for which the function 
R(p). takes the smallest possible value. Simple calculus using the derivative leads to 
the solution: 

. p0 = σ 2
2 − 
σ1σ2

σ 2
1 − 2
σ1σ2 + σ 2

2

.

Only now can we buy the stocks. For example, if σ1 = 1., σ2 = 2., and 
 = −0.5., we  
get p0 = 5/7., so that for every seven shares purchased there should be five shares 
of type A. 

5.3.3 Exercises 

281. The correlation factor of X . and Y . is equal to α .. Find the correlation factor of 
Z = aX+b. and W = cY +d ., where a, b, c, d ∈ R.. What values can 
(Z,W). 

take? 
282. The random variables X . and Y . are independent, identically distributed with 

expected value M . and variance σ 2
.. Find the correlation factor of the variables 

Z = aX + b. and W = cY + d ., where a, b, c, d ∈ R.. 
283. A random variable X satisfies the conditions: P{X > 0} = p > 0., 

P{X < 0} = r > 0., EX = a . and E|X| = b.. Calculate Cov(X, sign(X)).. 
284. A two-dimensional random variable has the following distribution: 

. 

X/Y −1 0 1
−1 0.125 0.5 0.125
1 0.125 0 0.125

Find the correlation factor of the variables X . and Y .. Are these variables 
independent? 

285. A two-dimensional random variable is uniformly distributed over the square 
{(x, y) : |x| + |y| � 1}.. Find the correlation factor 
(X, Y ).. Are the variables 
X . and Y . independent? 

286. A random vector (X, Y,Z). has a uniform distribution on the unit sphere S2 =
{(x, y, z) : x2+y2+z2 = 1}.. Prove that both variables X and Y have a uniform 
distribution on the interval [−1, 1]. (therefore, the joint distribution of X and 
Y is a copula on the square [−1, 1]2

.). Calculate 
(X, Y )..
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287. Show that if variables X . and Y . with zero-one distributions P{X = 1} = p1 =
1 − P{X = 0}., P{Y = 1} = p2 = 1 − P{Y = 0}. are uncorrelated, then they 
are independent. Does any two-point distribution have the same property? 
Hint. Let a = E(XY ) = P{X = 1, Y = 1}.. It follows from the uncorrelation 
that a = p1p2 ., and the two-dimensional distribution of the vector (X, Y ). is 
uniquely determined. 

288. A random vector (X, Y ). has a uniform distribution on the unit sphere S1 =
{(x, y) : x2+y2 = 1}. in R2

.. Find the marginal distributions and the correlation 
matrix for this vector. 

289. A random vector (X, Y ). has a uniform distribution on the set S1 =
{(x, y) : |x| + |y| = 1}. in R2

.. Find the marginal distributions and the 
correlation matrix for this vector. 

290. A random vector (X, Y ). has a uniform distribution on the set S1 = {(x, y) ∈
[−1, 1]2 : max{|x|, |y|} = 1}.. Find the marginal distributions and the correla-
tion matrix for this vector. 

291. A random vector (X, Y ).has a uniform distribution on the interior of the ellipse 
with center at the origin and semi-axes a, b.. Find the marginal distributions 
and the correlation matrix for this vector. 

292. A random vector (X, Y ). has a uniform distribution on a square with side a . 

whose diagonals are contained in the axes of the coordinate system. Find the 
marginal distributions and the correlation matrix for this vector. 

293. A random vector (X, Y ). has a uniform distribution on [−1, 1]2
.. Find the  

marginal distributions and the correlation matrix for this vector. 

5.4 Multivariate Normal Distribution 

We say that the random vector X = (X1, . . . , Xn). has a multivariate normal or 
Gaussian distribution if there exist a vector m = (m1, . . . , mn). and a positive 
definite matrix � = (σij ). of dimension n × n. such that the density function of 
the vector X. at the point x = (x1, . . . , xn). is equal to: 

. fN(m,�)(x) = 1

(2π)n/2
|�|−1/2 exp

{
−1

2
(x − m)�−1(x − m)T

}
,

where |�|. is the determinant of the matrix � ., �−1
. is the inverse of the matrix � ., 

and xT
. is the transposed vector x.. 

Since the matrix � . is positive definite, there exists a matrix A of dimension n×n. 

such that � = AT A., |A| = |�|−1/2
.. Note that �−1 = (AT A)−1 = A−1(AT )−1

.. 
Now, we can find the vector of expected values and the covariance matrix for the
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random vector Y = (X−m)A−1
.. Of course, Yi = ∑n

j=1(Xj −mj)cij . if (cij ).denotes 
the matrix A−1

.. Hence, we obtain 

. EYi =
∫

. . .

∫

R
n

n∑

j=1

(xj − mj)cij · fN(m,�)(x) dx1 . . . dxn

=
∫

. . .

∫

R
n

yi

|�|−1/2

(2π)n/2
exp

{
−1

2
yA�−1AT yT

}
|A| dy1 . . . dyn

=
∫

. . .

∫

R
n

yi

1

(2π)n/2
exp

{
−1

2
yyT

}
dy1 . . . dyn

=
∫

R

yi

1√
2π

e−y2
i /2 dyi

∏

j 
=i

∫

R

1√
2π

e−y2
j /2 dyj = 0

because the first factor in the final product of the integrals is zero. Hence, the vector 
of expectations of the vector Y. is also zero. Therefore, EX = A(EY) + m = m.. 
In a similar way, we calculate the covariance for the vector X. First, we calculate 
Cov(Yi, Yj ).: 

. Cov(Yi, Yj )

=
∫

. . .

∫

R
n

(
n∑

k=1

(xk − mk)cik

)(
n∑

l=1

(xl − ml)cjl

)
fN(m,�)(x) dx1 . . . dxn

=
∫

. . .

∫

R
n

yiyj

1

(2π)n/2
exp

{
−1

2

n∑

k=1

y2
k

}
dy1 . . . dyn.

We can now see that Cov(Yi, Yi) = VarYi = 1. and Cov(Yi, Yj ) = 0. if i 
= j .. Let  In . 

denote the n-dimensional identity matrix. Since X − m = AY., Cov(Xi,Xj ). is the 
expected value of the (i, j).-th element of the matrix AY(AY)T = AYYT At

.. Since, 
as we have seen in the case of random vectors, the expected value of the matrix of 
random variables is equal to the matrix of expected values, we finally arrive at 

. E(X − m)(X − m)T = E
(
AYYT AT

) = A(EYYT )AT = AInA
T = �.

It follows from the above considerations that the vector X. with multidimensional 
normal distribution and density fN(m,�) . has expected value vector EX = m. and 
covariance matrix � .. We will use the notation X ∼ N(m,�).. 

Consider the two-dimensional Gaussian random vector X = (X1, X2). with 
expectation m = (m1,m2). and such that VarX1 = σ 2

1 ., VarX2 = σ 2
2 ., and 

Cov(X1, X2) = ρσ1σ2 ., where ρ . is the correlation factor of variables X1, X2 .. Then,
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using the explicit form of the matrix �−1
., we have  

. f (x) = 1

2πσ1σ2

√
1 − ρ2

exp

{
−1

2
(x − m)�−1(x − m)T

}
= 1

2πσ1σ2

√
1 − ρ2

exp

{ −1

2(1 − ρ2)

[
(x1 − m1)

2

σ 2
1

− 2ρ
(x1 − m1)(x2 − m2)

σ1σ2
+ (x2 − m2)

2

σ 2
2

]}
.

5.4.1 Exercises 

294. Prove that for a Gaussian random vector (X, Y )., un-correlation is equivalent 
to independence. 

295. A random vector (X1, . . . , Xn). has a Gaussian distribution with expectation 
zero and the covariance matrix � = (σi,j ).. Find the distribution of the random 
variable Y = ∑n

k=1 akXk ., where a1, . . . , ak ∈ R.. 
296. The covariance matrix of a symmetric Gaussian random vector (X, Y ). equals 

. � =
(

2 1
1 1

)
.

Calculate P
{
ω : X(ω) > Y(ω)

}
.. 

297. Let (X, Y ). be a symmetric Gaussian vector with the independent identically 
distributed components of distribution N(0, 1).. 

(a) Find the distribution of R = √
X2 + Y 2 .. 

(b) Prove that the vector U =
(

X√
X2+Y 2 ,

Y√
X2+Y 2

)
. has a uniform distribution 

on the unit sphere S = {(x, y) : x2 + y2 = 1}.. 
(c) Show that R and U are independent.

298. Let g(x). be an odd function disappearing outside the interval [−1, 1]. and such 
that |g(x)| < (2πe)−1/2

.. Show that the function 

. f (x, y) = 1

2π
e− x2+y2

2 + g(x)g(y)

is the density of a two-dimensional distribution, which is not a two-
dimensional Gaussian distribution, but its marginal distributions are Gaussian. 

299. A random vector (X, Y ). has a two-dimensional Gaussian distribution with 
mean zero and covariance matrix I2 .. Calculate the probability that (X, Y ). falls 
into the area A of Lebesgue measure π . in R. if: 

(a) A is a circle centered at the origin of the coordinate s ystem;
(b) A is a square with its center at the origin and sides parallel to the axis;
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(c) A is a rectangle with ratio of sides 10 : 1., center at the origin and sides 
parallel to the axis. 

300. For the random vector (X, Y ). with density function 

. f (x, y) = C exp
{−4x2 − 6xy − 9y2

}
,

find the constant C ., the vector of expected values and the covariance matrix. 
301. A random vector (X1, . . . , Xn). has a multivariate Gaussian distribution with 

a mean of zero and covariance matrix In .. Find the distribution of the variable 

.Y =
√

X2
1 + · · · + X2

n.



Chapter 6 
Characteristic Functions 

6.1 Definition and Basic Properties 

Definition 6.1 The characteristic function of a random variable X is defined by the 
formula:

. ϕ(t) = EeitX(ω).

If the variable X has distribution PX . and distribution function F , it can also be 
written as 

. ϕ(t) =
∫
R

eitx PX(dx) =
∫
R

eitx dF(x).

If the variable X . has a discrete distribution and takes values xi ., i = 1, 2, . . . ., with 
probabilities pi = P(X = xi)., then its characteristic function is equal to 

. ϕ(t) =
∑
i=1

eitxi pi .

If the variable X . is of continuous type and has density f (x)., then its characteristic 
function can be written as 

. ϕ(t) =
∫ ∞

−∞
eitxf (x) dx.

The latter formula means that in the case when the measure PX . is defined by 
the density f ., the characteristic function is the Fourier transform of the function 
f . Similarly, we will sometimes say that the characteristic function is the Fourier 
transform of the distribution (measure) PX .. At times, to emphasize that a function 
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is a characteristic function of the variable X . or Y ., we will use the notation ϕX(t). or 
ϕY (t).. 

Example 6.2 Assume that P{X = 1} = p ., P{X = 0} = q = 1 − p .. Then, 

. ϕ(t) = EeitX = peit + q.

Example 6.3 If X . is of continuous type with density f (x) = 1
2 exp{−|x|}., then its 

characteristic function has the following form: 

. ϕ(t) = EeitX =
∫ ∞

−∞
eitxf (x) dx =

∫ ∞

0
cos (tx)e−x dx = 1

1 + t2
.

Theorem 6.4 The characteristic function ϕ(t). of the random variable X . has the 
following properties: 

(1) |ϕ(t)| � ϕ(0) = 1.; 
(2) ϕ(−t)  = ϕ(t) = ϕ−X(t).; 
(3) ϕaX+b(t) = eitb ϕX(at).; 
(4) if X, Y . are independent then ϕaX+bY (t) = ϕX(at)ϕY (bt).. 

Proof 

(1) It should be easily seen that ϕ(0) = Ee0 = E1 = 1.. Hence, 

. |ϕ(t)| = |EeitX| � E|eitx | = E1 = ϕ(0).

(2) Now, all that needs to be done is to apply the formula eiu = cos u + i sinu.: 

. ϕ(−t) = E cos(−tX) + iE sin(−tX) = E cos(tX) + iE sin(tX) = ϕ(t).

On the other hand, ϕ(−t) = Eeit (−X) = ϕ−X(t).. 
(3) ϕaX+b(t) = EeitaX+itb = eitbEeitaX = eitbϕX(at).. 
(4) If the variables X, Y . are independent, then also eitX

. and eitY
. are independent. 

Thus, 

. E exp{it (aX + bY )} = EeitaX · EeitbY = ϕX(at)ϕY (bt).

��
Example 6.5 Consider the random variable X of the Bernoulli distribution with 
parameters n and p. Its characteristic function can be calculated directly from the
definition:

.ϕ(t) =
n∑

k=0

eitkP{X = k} =
n∑

k=0

eitk

(
n

k

)
pkqn−k.
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However, it is easier to note that the random variable X . has the same distribution 
as

∑n
k=1 Yk ., for independent random variables Y1, . . . , Yn ., with the same zero-one 

distribution P{Yk = 1} = p,P{Yk = 0} = q .. By property 4) and mathematical 
induction, we obtain 

. ϕ(t) =
n∏

k=1

ϕYk
(t) = (

peit + q
)n

.

Theorem 6.6 Each characteristic function is uniformly continuous on the real line. 

Proof First, note that 

. |ϕ(t + h) − ϕ(t)| = |EeitX(eihX − 1)| � E|eihX − 1|.

The function gh(x) = |eihx − 1|. is bounded by 2 along the real line. Furthermore, 
for any m > 0., the values of gh(x). converge to zero uniformly on [−m,m]. if 
h. converges to zero. For ε > 0., we choose m. large enough that P{|X(ω)| > m} <

ε/4.. Next, let h0 . be small enough so that for each h ∈ (0, h0). and each x ∈ [−m,m]. 
the condition gh(x) < ε/2. is satisfied. Then, for h ∈ (0, h0)., we get 

. |ϕ(t + h) − ϕ(t)| �
∫ m

−m

|eihx − 1| dF(x) +
∫

|x|>m

|eihX − 1| dF(x)

� ε/2P(|X(ω)| � m) + 2P(|X(ω)| > m) < ε.

��

6.1.1 Exercises 

302. Prove that if the characteristic function ϕ(t). of the distribution function F . is 
even, then 

. ϕ(t) =
∫ ∞

−∞
cos tx dF(x).

303. Prove that the following cannot be characteristic functions of any probability 
distribution: 

(a) ϕ(t) = ei| t |
.; 

(b) ϕ(t) = a cos t + b sin t . for a, b ∈ R K {0}.. 
304. Let � = [0, 1]. with the σ .-field of Borel sets and the Lebesgue probability 

measure. Find the characteristic functions of the following random variables: 

.X(ω) = 2ω − 1( 1
2 ,1]; Y (ω) = 1 − 1( 1

3 , 23 ]; Z(ω) = lnω1(0,1].



124 6 Characteristic Functions

305. Calculate the characteristic functions of the absolutely continuous random 
variables with the following densities: 

. (a) f (x) = 2x1[0,1]; (b) f (x) = 4x1[0, 12 ] + (4 − 4x)1[ 12 ,1];

(c) f (x) = 3

2
x21[−1,1].

306. X and Y are independent, asymmetric random variables. Could the v ariable
Z = X + Y . be symmetric? 

307. Find the characteristic function of the distribution N(m, σ).. Prove that if 
X . and Y . are independent random variables with normal distributions (not 
necessarily identical), then for any a, b ∈ R., the variable Z = aX + bY . 

has a normal distribution as well. 
308. Calculate the characteristic functions of the following distributions: (a) uni-

form on the interval [a, b].; (b) Bernoulli with parameters n, p .; (c) Poisson 
with parameter λ.; (d) exponential with parameter a; (e) discrete geometric; 
(f) waiting time for the k-th success in n Bernoulli trials.

309. Independent random variables X1, . . . , Xn . have the same Cauchy distribution 
with parameters a > 0. and m ∈ R.. Show that the variable Y = ∑n

k=1 Xk . has 
a Cauchy distribution, too. 

310. Independent random variables X1, . . . , Xn . have gamma distributions: 
�(p1, a),. . . . , �(pn, a).. Find the distribution of Y = ∑n

k=1 Xk .. 
311. Let ϕ1(t), . . . , ϕn(t). be the characteristic functions of independent random 

variables X1, . . . , Xn . and let the numbers α1, . . . , αn . be positive and such that 
α1+· · ·+αn = 1.. Prove that ϕ(t) = α1ϕ1(t)+· · ·+αnϕn(t). is a characteristic 
function as well. 

312. Let ϕ(t). be the characteristic function of a distribution function F .. Prove that 
the following functions are characteristic functions as well: 

. ϕ1(t) = 2

2 − ϕ(t)
− 1; ϕ2(t) = Re (ϕ(t)) ; ϕ3(t) = |ϕ(t)|2.

313. Prove that if ϕ . is a characteristic function, then the function φ . defined by the 
formula 

. φ(t) = 1

t

∫ t

0
ϕ(x) dx

is also a characteristic function. 
314. The variable X . has a standard normal distribution. Find the characteristic 

function of the variable Y = X2
.. 

315. Let the one-to-one function F : R → [0, 1]. be the distribution function of 
a random variable X .. Find the characteristic function of Y = lnF(X)..
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6.2 Relations Between Distribution, Characteristic Function 
and Moments of Random Variables 

Theorem 6.7 Let ϕ . be the characteristic function of a random variable with 
distribution function F . Then: 

(a) for every a < b. 

. G = lim
R→∞

1

2π

∫ R

−R

e−ita − e−itb

it
ϕ(t) dt = P((a, b)) + 1

2
P ({a}) + 1

2
P ({b}) ;

(b) if a and b are continuity points for the distribution function F , then

. lim
R→∞

1

2π

∫ R

−R

e−ita − e−itb

it
ϕ(t) dt = F(b) − F(a);

(c) if
∫ ∞
−∞ |ϕ(t)| dt < ∞., then F is of continuous type with density f (·)., where 

. f (x) = 1

2π

∫ ∞

−∞
e−itxϕ(t) dt.

Proof Consider the integral 

. G(R) = 1

2π

∫ R

−R

e−ita − e−itb

it
ϕ(t) dt

= 1

2π

∫ R

−R

e−ita − e−itb

it

∫ ∞

−∞
eitx dF(x) dt.

The function under the integral is bounded here because 

. 

∣∣∣∣e
−ita − e−itb

it
eitx

∣∣∣∣ =
∣∣∣∣e

−ita − e−itb

it

∣∣∣∣ =
∣∣∣∣
∫ b

a

eitx dx

∣∣∣∣ �
∫ b

a

dx = b − a.

By Fubini’s Theorem, we can change the order of integration and get 

.G(R) = 1

2π

∫ ∞

−∞

∫ R

−R

eit (x−a) − eit (x−b)

it
dt dF(x).
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We have e−itc = cos(tc) + i sin(tc).. Noting that the integral of the function 
cos(tc)/it . on the set [−R,R]. disappears (as does any integral of an odd function 
over a symmetric set), we obtain: 

. G(R) = 1

2π

∫ ∞

−∞

{
2

∫ R

0

sin t (x − a)

t
dt − 2

∫ R

0

sin t (x − b)

t
dt

}
dF(x)

= 1

π

∫ ∞

−∞

{∫ R(x−a)

0

sin y

y
dy −

∫ R(x−b)

0

sin y

y
dy

}
dF(x)

= 1

π

∫ ∞

−∞

∫ R(x−a)

R(x−b)

sin y

y
dy dF(x).

We will now prove that the function
∫ z

0
sin y

y
dy . is bounded. Due to the fact that the 

integrand function is even, we only need to consider z > 0..  If 0 < z < π
2 ., then 

. 

∣∣∣∣
∫ z

0

sin y

y
dy

∣∣∣∣ �
∫ z

0

∣∣∣∣ sin y

y

∣∣∣∣ dy �
∫ z

0
dy = z <

π

2
.

For z > π
2 ., integrating by parts, we obtain 

. 

∣∣∣∣
∫ z

0

sin y

y
dy

∣∣∣∣ �
∣∣∣∣
∫ π/2

0

sin y

y
dy

∣∣∣∣ +
∣∣∣∣∣
cos y

y

∣∣∣∣
z

π/2

+
∫ z

π/2

cos y

y2
dy

∣∣∣∣∣
� π

2
+ 1

z
+ 2

π
+

∫ ∞

π/2

1

y2
dy

� π

2
+ 6

π
= const.

From the Lebesgue Dominated Convergence Theorem, we get: 

. lim
R→∞ G(R) = lim

R→∞
1

π

∫ ∞

−∞

∫ R(x−a)

R(x−b)

sin y

y
dy dF(x)

= 1

π

∫ ∞

−∞

{
lim

R→∞

∫ R(x−a)

R(x−b)

sin y

y
dy

}
dF(x).

Now, we need to consider the following cases: 

– if a < x < b., then 

. lim
R→∞

1

π

∫ R(x−a)

R(x−b)

sin y

y
dy = 1

π

∫ ∞

−∞
sin y

y
dy = 1;
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– if x > b., then limR→∞ R(x − b) = ∞., which due to the integrability of sin y

y
., 

leads to 

. lim
R→∞

1

π

∫ R(x−a)

R(x−b)

sin y

y
dy = 0;

– if x < a ., as before limR→∞ R(x − a) = −∞., and 

. lim
R→∞

1

π

∫ R(x−a)

R(x−b)

sin y

y
dy = 0;

– for x = a ., we get: 

. lim
R→∞

1

π

∫ 0

−R(b−a)

sin y

y
dy = 1

π

∫ 0

−∞
sin y

y
dy = 1

2
;

– if x = b., then 

. lim
R→∞

1

π

∫ R(b−a)

0

sin y

y
dy = 1

π

∫ ∞

0

sin y

y
dy = 1

2
.

Hence, it is easy to deduce that 

. lim
R→∞ G(R) =

∫ ∞

−∞

{
1(a,b)(x) + 1

2
1{a}(x) + 1

2
1{b}(x)

}
dF(x)

= P((a, b)) + 1

2
P ({a}) + 1

2
P ({b}) .

The property (b) is an obvious consequence of (a) because, by the continuity of the 
distribution function at a and b,  we  have P ({a}) = P ({b}) = 0.. To prove (c), let us 
assume that

∫ ∞
−∞ |ϕ(t)| dt < ∞.. Then, the following function 

. f (x) = 1

2π

∫ ∞

−∞
e−itxϕ(t) dt

is continuous and integrable on every interval [a, b].. Hence, 

.

∫ b

a

f (x) dx =
∫ b

a

1

2π

∫ ∞

−∞
e−itxϕ(t) dt dx

= 1

2π

∫ ∞

−∞
ϕ(t)

∫ b

a

e−itx dx dt
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= 
1 

2π

∫ ∞ 

−∞ 
ϕ(t) 

e−ita − e−itb 

it 
dt 

= lim 
R→∞ 

1 

2π

∫ R 

−R 
ϕ(t) 

e−ita − e−itb 

it 
dt 

= P((a, b)) + 
1

2
P ({a}) + 1

2
P ({b}) .

Since f . was a continuous function, the obtained integral has to be a continuous 
function of a . and b., and 

. ∀ a < b

∫ b

a

f (x) dx = F(b) − F(a),

which is equivalent to f . being the density of a random variable with distribution 
function F . ��

As a simple consequence of the above theorem, we get a very important 
uniqueness theorem: 

Theorem 6.8 The characteristic function uniquely determines the distribution of 
the random variable. 

Example 6.9 The function ϕ(t) = e−|t |
. is an integrable characteristic function. 

According to Theorem 6.7, the corresponding probability distribution has the 
following density function: 

. f (x) = 1

2π

∫
R

e−itxe−|t | dt = 1

2π

∫
R

cos (tx)e−|t | dt = 1

π(1 + x2)
.

The uniqueness of the characteristic function shows that ϕ(t). is a characteristic 
function of the Cauchy distribution with parameters a = 1. and m = 0.. 

Theorem 6.10 The characteristic function ϕX(t). is real if and only if the corre-
sponding random variable X is symmetric, that is, if X and − X . have the same 
distribution. 

Proof If both X . and − X . have the same distribution, then, of course, ϕX(t) =
ϕ−X(t).. Equivalently, ϕ−X(t) = ϕX(−t) = ϕ(t).. Hence, it is easy to get that 
Im(ϕX(t)) ≡ 0.. 

Suppose that ϕX(t). is a real function. Then, we have ϕ−X(t) = ϕX(−t) =
ϕX(t) = ϕX(t).. Since the characteristic function determines the distribution 
uniquely, we conclude that the random variables X and − X . have identical 
distributions. ��



6.2 Relations Between Distribution, Characteristic Function and Moments 129

Theorem 6.11 If for some n � 1., E|X|n < ∞., then for every r � n., the derivative 
ϕ(r)(t). exists, and 

. ϕ(r)(t) =
∫ ∞

−∞
(ix)reitx dF(x);

EXr = ϕ(r)(0)

ir
.

Proof If E|X|n < ∞., then, of course, E|X|r < ∞. for every 0 < r � n.. Consider 
the difference quotient 

. 
ϕ(t + h) − ϕ(t)

h
= E

[
eitX eihX − 1

h

]
.

Since |eihX − 1| � |hX|. and E|X| < ∞., there exists the limit of the difference 
quotient when h tends to zero, and

. ϕ′(t) = lim
h→0

E
[
eitX eihX − 1

h

]
= E

[
eitX lim

h→0

eihX − 1

h

]
= E

[
iXeitX

]
.

By mathematical induction, we get 

. ϕ(r)(t) =
∫ ∞

−∞
(ix)reitx dF(x),

and applying this formula to the value of t = 0. completes the proof. ��
Remark 6.12 The converse implication in the above theorem does not hold. It is 
possible for the characteristic function f of the random variable X to have a k-th 
derivative, but the variable X . not to have a k-th moment. However, it can be proved 
that if ϕ(2k)

. exists, then EX2k < ∞.. We use the notation ϕ(k)
. for the k-th derivative 

of the function ϕ .. Here, we will only prove the following theorem: 

Theorem 6.13 Let ϕ . be the characteristic function of the random variable X.  I  f ϕ . 

is twice differentiable at zero, then EX2 < ∞.. 

Proof Since |ϕ(t)| � ϕ(0) = 1. for each t ∈ R., then it is not possible for ϕ . to be 
convex around zero. Consequently, it cannot happen that ϕ′′(0) > 0.. Applying de 
l’Hospital’s rule, we obtain: 

.ϕ′′(0) = lim
h→0

1

2

[
ϕ′(2h) − ϕ′(0)

2h
+ ϕ′(0) − ϕ(−2h)

2h

]

= lim
h→0

ϕ′(2h) − ϕ′(−2h)

4h
= lim

h→0

ϕ(2h) − 2ϕ(0) + ϕ(−2h)

4h2
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= lim 
h→0

∫
R

(
eitx − e−itx 

2h

)2 

dF(x)  = −  lim 
h→0

∫
R

(
sin hx 

hx

)2 

x2 dF(x).

We conclude from this that ϕ′′(0). is negative real. By virtue of Fatou’s Lemma, we 
finally get 

. − ϕ′′(0) = lim
h→0

∫
R

(
sinhx

hx

)2

x2 dF(x)

�
∫
R

lim
h→0

(
sinhx

hx
x2

)2

dF(x) =
∫
R

x2 dF(x),

which was to be shown. ��

6.2.1 Exercises 

316. It is known that the random variable X . has an atom at some point a ∈ R. and 
P{X = a} > 1

2 .. Prove that the characteristic function of this variable cannot 
take negative values. 

317. Prove that there exist normally distributed random variables X . and Y . whose 
joint distribution is not a two-dimensional normal distribution. 
Hint: Construct a random vector (X, Y ). living on diagonals of the plane such 
that: P{X = Y } = P{X = −Y } = 1

2 .. 
318. Let ϕ .be the characteristic function of a variable X .. Describe the consequences 

of the condition ϕ′′(0) = 0.. 
319. Is the function ϕ(t) = cos(t2). a characteristic function of some probability 

distribution? 
320. Let X1, X2, . . . . be a sequence of independent random variables with the same 

uniform distribution on the interval [−1, 1]., and let Sn = X1 + · · · + Xn .. 

(a) Find the joint density function of the vector (S2, S3).. 
(b) Find the limit of the sequence of characteristic functions for random 

variables n−1/2Sn .when n → ∞.. 

321. Let X1,X2, . . . . be independent, identically distributed, two-dimensional ran-
dom vectors which take values in the integer lattice Z2 = {(m, n) : m, n ∈ Z}.. 
The variable Sn = X1+· · ·+Xn . specifies the position of a particle after n. steps, 
assuming that initially it was at the origin (0, 0). of the coordinate system. Let 
us treat Xj . as the j -th step of the particle here. Find the limit of the two-
dimensional characteristic function of the variable n−1/2Sn . at the point (r, s). 

as n → ∞. if ϕ(X,Y )(r, s) = E exp{i(rX + sY )}., and 
(a) Xi . takes four values (0, 1), (1, 0), (−1, 0), (0,−1)., with probability 14 . 

each;
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(b) P{Xi = (m, n)} =  19 . for m, n ∈ {−1, 0, 1}.; 
(c) P{Xi = (−1, 0)} =  P{Xi = (1, 0)} = 1

3 ., 
P{Xi = (−1, 1)} = P{Xi = (1,−1)} = 1

6 .. 

6.3 Weak Convergence of Distributions 

Definition 6.14 Let μ,μ1, μ2, . . . . be a sequence of probability distributions on 
(R,B).. We say that the sequence (μn). is weakly convergent to the distribution μ. 

(notation μn
ω→ μ. or μn ⇒ μ.) if for every continuous and bounded function f on 

R.,  we  ha  ve

. lim
n→∞

∫
R

f (x)μn(dx) =
∫
R

f (x)μ(dx).

Here, the term weak convergence refers to the general concept from functional 
analysis. Each bounded and continuous function f on the line defines a linear 
functional over the space of measures on R. via the formula μ → ∫

f dμ.. We expect 
that for any such functional, its values on the sequence μn ., n ∈ N., converge to the 
value on μ. if and only if μn ⇒ μ.. 

In the language of the corresponding random variables, weak convergence of the 
distributions is called convergence in distribution. 

Definition 6.15 Let X,X1, X2, . . . . be a sequence of random variables with distri-
butions μ,μ1, μ2, . . . . We say that the sequence (Xn). converges in distribution to 

the random variable X (notation Xn
d→ X .)  if μn ⇒ μ.. 

Convergence in distribution translates into a very interesting property of the 
distribution functions of the considered random variables. 

Theorem 6.16 Let X,X1, X2, . . . . be a sequence of random variables, and let 
F,F1, F2, . . . . be the sequence of the corresponding cumulative distribution func-

tions. Then, Xn
d→ X . if and only if 

. lim
n→∞ Fn(x) = F(x)

at each continuity point x of the limit distribution function F .
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Proof Assume that Xn
d→ X ., and let x be a continuity point of the distribution 

function F . For every ε > 0., there exists a δ > 0. for which
∣∣F(x ± δ)−F(x)

∣∣ < ε
2 .. 

Consider the following functions: 

. f+(y) =
⎧⎨
⎩
1, y � x;
1 − y−x

δ
, x < y � x + δ;

0, y > x + δ;
f−(y) =

⎧⎨
⎩
1, y � x − δ;
− y−x

δ
, x − δ < y � x;

0, y > x.

Both functions are continuous and bounded on R.. Therefore, the condition Xn
d→ X . 

implies the existence of an n0 ∈ N. such that for every n � n0 . 

. 

∫
f+(y) dFn(y) �

∫
f+(y) dF(y)+ ε

2
and

∫
f−(y) dFn(y) �

∫
f−(y) dF(y)− ε

2
.

Hence, for n � n0 ., we get: 

. Fn(x) =
∫

1(−∞,x) dFn(y) �
∫

f+(y) dFn(y) �
∫

f+(y) dF(y) + ε

2

�
∫

1(−∞,x+δ) dF(y) + ε

2
= F(x + δ) + ε

2
.

On the other hand, we have 

. Fn(x) =
∫

1(−∞,x) dFn(y) �
∫

f−(y) dFn(y) �
∫

f−(y) dF(y) − ε

2

�
∫

1(−∞,x−δ) dF(y) − ε

2
= F(x − δ) − ε

2
.

This leads us to: 

. F(x − δ) − F(x) − ε

2
� Fn(x) − F(x) � F(x + δ) − F(x) + ε

2
,

and hence, it is easy to see that for n � n0 .,  we  have
∣∣Fn(x) − F(x)

∣∣ < ε .. 
To prove the converse implication, suppose that limFn(x) = F(x). at each 

continuity point of the distribution function F ., and let f . be a continuous function 
such that sup{|f (x)| : x ∈ R} = M < ∞.. It is known that the set of discontinuity 
points of the cumulative distribution function is at most countable, hence in every 
neighborhood of each discontinuity point, some continuity points can be found. 

For a fixed ε > 0., let us first select two numbers a ., b., a < b., which are continuity 
points of the cumulative distribution function F . and such that F(a) < ε

16M . and 1−
F(b) < ε

16M .. From the assumption of the convergence of the distribution functions 
(Fn). at points a . and b., it follows that there is an n0 ∈ N. such that for each n � n0 .,
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the following conditions hold: Fn(a) < ε
8M . and 1− Fn(b) < ε

8M .. Then, for n � n0 ., 
we get: 

. In
def=

∣∣∣∣
∫

f dFn −
∫

f dF

∣∣∣∣ �
∣∣∣∣
∫

[a,b]
f dFn −

∫
[a,b]

f dF

∣∣∣∣
+

∫
(−∞,a)

∣∣f ∣∣ dFn +
∫

(−∞,a)

∣∣f ∣∣ dF +
∫

(b,∞)

∣∣f ∣∣ dFn +
∫

(b,∞)

∣∣f ∣∣ dF

�
∣∣∣∣
∫

[a,b]
f dFn −

∫
[a,b]

f dF

∣∣∣∣ + 3ε

8
.

Since the continuous function f . on the compact interval [a, b]. is uniformly 
continuous, there exists a δ > 0. such that if x, y ∈ [a, b]. and |x − y| < δ ., then 
|f (x) − f (y)| < ε

4 .. We can divide the interval [a, b]. into k subintervals of length
δ . with division points x0 = a < x1 < · · · < xk = b.. Points x1, . . . , xk . are chosen 
from among the continuity points of the distribution function F .. 

Now, let us define the function fδ . on the interval [a, b].: 

. fδ(x) =
k−1∑
i=0

f (xi)1[xi ,xi+1)(x).

Of course, |f (x) − fδ(x)| < ε
4 . for every x ∈ [a, b).. Moreover, 

. In � 3ε

8
+

∣∣∣∣
∫

[a,b]
f dFn −

∫
[a,b]

fδ dFn

∣∣∣∣ +
∣∣∣∣
∫

[a,b]
f dF −

∫
[a,b]

fδ dF

∣∣∣∣

+
∣∣∣∣
∫

[a,b]
fδ dFn −

∫
[a,b]

fδ dF

∣∣∣∣

� 3ε

8
+

∫
[a,b]

|f − fδ| dFn +
∫

[a,b]
|f − fδ| dF +

∣∣∣∣
∫

[a,b]
fδ dFn −

∫
[a,b]

fδ dF

∣∣∣∣

� 3ε

8
+ 2ε

4
+

∣∣∣∣
∫

[a,b]
fδ dFn −

∫
[a,b]

fδ dF

∣∣∣∣ = 7ε

8
+

∣∣∣∣
∫

[a,b]
fδ dFn −

∫
[a,b]

fδ dF

∣∣∣∣ .

We still need to estimate the last difference. Note that fδ . is a simple function, 
thus, by the definition of the integral with respect to increments of the distribution 
function, we get 

.In � 7ε

8
+

∣∣∣∣∣
k−1∑
i=0

f (xi)
[
Fn(xi+1) − Fn(xi)

] −
k−1∑
i=0

f (xi)
[
F(xi+1) − F(xi)

]∣∣∣∣∣

� 7ε

8
+

k−1∑
i=0

∣∣f (xi)
∣∣[∣∣Fn(xi+1) − F(xi+1)

∣∣ + ∣∣Fn(xi) − F(xi)
∣∣].
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From the fact that x0, x1, . . . , xk . are the continuity points of the cumulative 
distribution function F . and the assumptions on the convergence of the sequence 
(Fn)., it follows that there exists an n1 ∈ N. such that for every n � n1 . 

. |Fn(xi) − F(xi)| <
ε

16kM
, i = 0, 1, . . . , k.

Hence, it follows that for every n � max{n0, x1}., 

. In � 7ε

8
+ k · M · ε

16kM
= ε,

which was to be shown. ��
The Lévy–Cramér Continuity Theorem plays a key role in problems of conver-

gence with respect to distribution. In order to prove it, we will use the following 
lemma: 

Lemma 6.17 Let F . be a distribution function on R. with corresponding character-
istic function ϕ .. Then, for every u > 0., 

. F(2/u) − F(−2/u) � 1 − 1

u

∫ u

−u

(1 − ϕ(s)) ds.

Proof Note that 

. 
1

u

∫ u

−u

(1 − ϕ(s)) ds = 1

u

∫ ∞

−∞

∫ u

−u

(
1 − eisx

)
ds dF(x)

= 2
∫ ∞

−∞

(
1 − sinux

ux

)
dF(x)

� 2
∫

(−∞,−2/u)

1

2
dF(x) + 2

∫
[2/u,∞)

1

2
dF(x)

= F(−2/u) + 1 − F(2/u).

The result of the lemma follows easily from these calculations. ��
Theorem 6.18 (Lévy–Cramér Continuity Theorem) Let (Xn). be a sequence of 
random variables and (ϕn). the corresponding sequence of their characteristic 
functions. If ϕn(t) → ϕ(t). for every t ∈ R. and the function ϕ . is continuous at 

zero, then ϕ . is a characteristic function of some random variable X, and Xn
d→ X .. 

Remark 6.19 Of course, the converse implication is also true. 

If ϕ, ϕ1, . . . . are characteristic functions of random variables X,X1, X2, . . . . and 

Xn
d→ X ., then ϕn(t) → ϕ(t). for every t ∈ R..



6.3 Weak Convergence of Distributions 135

To see this, note that 

. ϕn(t) =
∫

�

eitXn dP =
∫
R

cos (tx) dFn(x) + i

∫
R

sin (tx) dFn(x),

where Fn . is the distribution function of the variable Xn .. Both functions cos (tx). 

and sin (tx). are bounded and continuous on R., so the convergence of ϕn(t). to ϕ(t). 

follows directly from the definition of convergence in distribution. 

Proof of the Lévy–Cramér Theorem Let F1, F2 . . . . be distribution functions of the 
variables X1, X2, . . . .. The proof will be carried out in a few steps. 
Step 1 Let us set ε > 0.. Since the function ϕ . is continuous at zero and ϕ(0) = 1.,  the  
values of ϕ(t). in a sufficiently small neighborhood of zero are only slightly different 
from 1, and we can choose u > 0. such that 

. 
1

u

∫ u

−u

(1 − ϕ(s)) ds � ε

2
.

From the assumption of the convergence of the sequence ϕn(t). for each t ∈ R. 

and the Lebesgue Dominated Convergence Theorem, it follows that there exists an 
n0 ∈ N. such that for each n � n0 . 

. 
1

u

∫ u

−u

(1 − ϕn(s)) ds � ε.

By Lemma 6.17, we get that for n � n0 . 

. Fn(2/u) − Fn(−2/u) � 1 − ε.

Step 2 Now let Su = {sn : n ∈ N}. be a sequence comprising all rational numbers 
contained in the interval Iu = [−2/u, 2/u].. Using the diagonal method, from 
the sequence (Fn)n∈N . we can choose a subsequence (Fn,n)n∈N . which converges 
to a certain value denoted by Fu(si). at every point si ∈ Su .. For this, let us first 
consider the sequence of numbers Fn(s1)., n ∈ N.. This sequence is bounded on both 
sides, so it contains a subsequence converging to the point which we will denote 
by Fu(s1) ∈ [0, 1].. Hence, there exists a subsequence (F1,n)n∈N . of the sequence 
(Fn)n∈N . such that 

. lim
n→∞ F1,n(s1) = Fu(s1).

Considering now the sequence F1,n(s2)., n ∈ N., we can find a subsequence (F2,n)n∈N . 

of the sequence (F1,n)n∈N . and a number Fu(s2) ∈ [0, 1]. such that 

. lim
n→∞ F2,n(s2) = Fu(s2).
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Continuing this construction until the set Su . is empty, we get the table of distribution 
functions (Fk,n)., n, k ∈ N. and a sequence of numbers (Fu(sk))k∈N . such that 
(Fk,n)n∈N . is a subsequence of the sequence (Fm,n)n∈N . if only m � k . and 

. lim
n→∞ Fk,n(sm) = Fu(sm) for m � k, m, k ∈ N.

Hence, it follows that the sequence (Fn,n)n∈N . built of elements lying on the diagonal 
of this table satisfies the condition 

. lim
n→∞ Fn,n(sk) = Fu(sk) for every sk ∈ Su.

Step 3 We can now define a new distribution function Fu ., where 

. Fu(t) =
⎧⎨
⎩
0, t � −2/u;
sup{F(sk) : sk < t, sk ∈ Su}, −2/u < t � 2/u;
1, t > 2/u.

Obviously, Fu . is left-continuous and nondecreasing. Moreover, for each point t ∈
(−2/u, 2/u) = Iu .which is a continuity point of Fu .,  we  ha  ve

. lim
n→∞ Fn,n(t) = F(t).

Indeed, if t ∈ Iu . is a continuity point of Fu . and r1, r2 ∈ Su . are such that r1 < t < r2 ., 
then Fn,n(r1) � Fn,n(t) � Fn,n(r2).. Hence, 

. lim inf
n→∞ Fn,n(r1) � lim inf

n→∞ Fn,n(t) � lim sup
n→∞

Fn,n(t) � lim sup
n→∞

Fn,n(r2),

thus, 

. Fu(r1) � lim inf
n→∞ Fn,n(t) � lim sup

n→∞
Fn,n(t) � Fu(r2).

Therefore, if r1, r2 → t ., then limn Fn,n(t) = Fu(t).. 

Step 4 Now from (Fn,n)n∈N .we will choose a subsequence (Fn,n,n)n∈N . convergent to 
some distribution function F at every continuity point of F . To do this, let us choose 
two decreasing sequences ε1 = ε > ε2 > . . . ., limn εn = 0., and u = u1 > u2 > . . . ., 
limn→∞ un = 0.which satisfy the following condition: for every fixed k ., there exists 
a number nk ∈ N. such that for n � nk .,  we  ha  ve

. Fn(2/uk) − Fn(−2/uk) � 1 − εk.

The existence of such sequences follows from step 1. Let Suk
. denote the set of all 

rational numbers in the set Iuk
= (−2/uk, 2/uk).. Of course, Su1 ⊂ Su2 ⊂ . . . . Now,
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using the method described in step 2, from the sequence (Fn,n)n∈N = (Fn,n,1)n∈N .we 
choose a subsequence (Fn,n,2)n∈N . convergent at every point s ∈ Su2 K Su1 .. Thus, 

. lim
n→∞ Fn,n,2(s) = Fu2(s) for every s ∈ Su2 .

As in step 3, we define the function Fu2 .. The sequence Fn,n,2(t). converges to Fu2(t). 

at each continuity point t ∈ Iu2 . of the distribution function Fu2 .. It is easy to see that 
Fu2(t) = Fu1(t). for every t ∈ Iu1 .. 

Now, from the sequence Fn,n,2 ., we choose a subsequence Fn,n,3 . convergent 
at each point s ∈ Su3 K Su2 . and define the distribution function Fu3 . such that 
limn Fn,n,3(t) = Fu3(t). at each continuity point t ∈ Iu3 . of the distribution function 
Fu3 .. It follows from the construction that for every t ∈ Iu2 ., Fu3(t) = Fu2(t).. 

Continuing, we obtain the infinite table of distribution functions (Fn,n,k)., 
n, k ∈ N. in which each row is a subsequence of the sequence in the previous 
row. We also get a sequence of distribution functions Fuk

, k ∈ N., such that 
limn Fn,n,k(t) = Fuk

(t). at each continuity point t ∈ Iuk
. of the distribution function 

Fuk
.. Moreover, for j < k ., 

. Fuk
(t) = Fuj

(t) for every t ∈ Iuj
.

Let now 

. F(t) = lim
k→∞ Fuk

(t).

The function F is well defined because the sequences Fuk
(t)., t ∈ R., are constant 

beyond a finite number of elements. This construction shows that F . is nondecreas-
ing, left-continuous, and takes values in the interval [0, 1].. Since for n � nk . we 
have Fn(2/uk) − Fn(−2/uk) � 1 − εk .,  it  follows  that F(∞) − F(−∞) � 1. and, 
therefore, we conclude that F . is a distribution function. 

If t ∈ R. is a continuity point for the distribution function F , then there exists 
a number k ∈ N. such that t ∈ Iuk

..  Now,  we  h  ave

. F(t) = Fuk
(t) = lim

n→∞ Fn,n,k(t) = lim
n→∞ Fn,n,n(t),

where the last equality follows from the fact that the sequence (Fn,n,n)n∈N . is 
a subsequence of (Fn,n,k)n∈N .. 

Step 5 Let (Xn,n,n). be the subsequence of (Xn). that corresponds to the sequence 
of distribution functions (Fn,n,n).. The carried out construction shows that (Xn,n,n). 

weakly converges to a random variable with distribution function F .. By virtue of 
Remark 6.19, we get that 

.

∫ ∞

−∞
eitx dF(x) = lim

n→∞

∫ ∞

−∞
eitx dFn,n,n(x) = lim

n→∞

∫ ∞

−∞
eitx dFn(x) = ϕ(t).
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It remains to prove that Xn ⇒ X ., i.e., that the whole sequence converges weakly 
to the variable X .. Assume that this is not the case. Then, for some continuous 
and bounded function f . and some subsequence (nk)., we would have |

∫
f dFnk

−∫
f dF | > δ > 0.. Thus, Xnk

. would not contain a subsequence weakly convergent 
to X. However, since limϕnk

= ϕ ., by virtue of the construction presented in steps 
1. to 4., there must exist a subsequence (nkl

). of (nk). for which Xnkl
⇒ X ., which 

contradicts our assumption. ��

6.3.1 Exercises 

322. Assume that Xn
d→ X .. Is it true that Xn − X

d→ 0.? 

323. Prove that if Xn
d→ X . and a, b ∈ R., then aXn + b

d→ aX + b.. 
324. Poisson’s Law of Small Numbers. Assume that (Xn). is a sequence of 

random variables with Bernoulli distributions B(n, pn)., respectively, and 
limn→∞ npn = λ > 0.. Prove that 

. lim
n→∞P

{
Xn = k

} = lim
n→∞

(
n

k

)
pk

n(1 − pn)
n−k = λk

k! e
−λ, k = 0, 1, . . .

325. Let (Xn). be a sequence of symmetric random variables with identical Cauchy 
distributions, and let (an). be a sequence of positive real numbers such that ∑∞

k=1 ak = A < ∞.. Does the sequence Yn = ∑n
k=1 akXk . converge in 

distribution? 
326. Prove that if Xn . have Poisson distributions with parameters λn ., respectively, 

and λn → λ > 0., then Xn
d→ X ., for some random variable having the Poisson 

distribution with parameter λ.. 
327. Let � = [0, 1]. and let P. be the Lebesgue measure on �.. For each n ∈ N., 

we divide [0, 1]. into n equal parts and define the variable Xn . by the following 
formula: 

. Xn(ω) =
n∑

k=1

xk,n1( k−1
n

, k
n

](ω),

where xk,n . is any point selected from the interval
(

k−1
n

, k
n

]
.. Show that the 

sequence (Xn). converges in distribution to a variable with uniform distribution 
on the interval [0, 1].. 

328. We say that the family of distributions {μn : n ∈ N}. is tight if for every ε > 0. 
there exists a compact set K . such that μn(K) > 1 − ε . for every n ∈ N.. 
Let ϕ, ϕ1, ϕ2, . . . . be characteristic functions of distributions μ,μ1, . . . . Prove 
that if limϕn(t) = ϕ(t). for every t ∈ R., then the family of distributions 
{μn : n ∈ N}. is tight.
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329. Prove that (μn)n∈N . is weakly convergent if and only if each of its subsequences 
contains a weakly convergent subsequence. 

6.4 Characteristic Functions of Random Vectors 

Definition 6.20 The function ϕ = ϕX : Rn → C. is a characteristic function of the 
random vector X = (X1, . . . , Xn). if 

. ∀ ξ = (ξ1, . . . , ξn) ∈ Rn ϕX(ξ) = Eei〈X,ξ 〉 = E exp

{
i

n∑
k=1

ξkXk

}
.

The notation 〈ξ, x〉 = ∑n
k=1 ξkxk . is understood as the inner product of two (row) 

vectors. However, here, it is more convenient to treat it as a product of two matrices: 
ξ . of dimension 1 × n. and xT

. of dimension n × 1., i.e., 〈ξ, x〉 = ξxT
.. 

The properties of multidimensional characteristic functions are analogous to 
those of characteristic functions of random variables, and they can be proved in 
a similar way. In particular, for any ξ,m ∈ Rn

., we have that 

. ϕX−m(ξ) = ϕX(ξ)ei〈ξ,m〉.

Note that 

. ϕ(X1,...,Xn)(ξ, 0, . . . , 0) = EeiξX1 = ϕX1(ξ),

so it is a characteristic function of the variable X1 .. Moreover, 

. ϕ(X1,...,Xn)(ξ t, . . . , ξnt) = eit
∑n

ξkXk = ϕ∑n
ξkXk

(t).

Note also that for any matrix A. of dimension n × n. (corresponding to the linear 
operator TA : x → xA.), we have 

. 〈ξ, xA〉 = ξ
(
xA

)T = (
ξAT

)
xT .

Hence, 

. ϕXA(ξ) = ϕX(ξAT ).

If the random vector Y = (Y1, . . . , Yn). is such that the random variables Y1, . . . , Yn . 

are independent with the standard normal distribution, then 

.ϕY(ξ) = exp

{
−1

2

n∑
k=1

ξ 2
k

}
= exp

{
−1

2
ξ ξ

T

}
.
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Therefore for any matrix A. of the dimension n × n.,  we  ha  ve

. ϕYA(ξ) = exp

{
−1

2

(
ξAT

)(
ξAT

)T

}
= exp

{
−1

2
ξ

(
AT A

)
ξ

T

}
.

We did not assume here that the matrix A. is non-degenerate, which means that the 
above formula is valid even when TA(Rn) � Rn

.. 

The uniqueness theorem for a multidimensional characteristic function takes the 
following form: 

Theorem 6.21 If ϕ : Rn → C. is a characteristic function of the random vector 
X ∈ Rn

.with distribution μ., and if B = [a1, b1] × · · · × [an, bn]. is a rectangle in Rn
. 

such that μ(∂B) = 0., where ∂B . is the boundary of the set B ., then 

. μ(B) = lim
T →∞

1

(2π)n

∫
. . .

∫

[−T ,T ]n

n∏
k=1

e−iak tk − e−ibk tk

itk
ϕ(t1, . . . , tn) dt1 . . . dtn.

If ϕ . is a function on Rn
. which is integrable in absolute value, then μ. has a density 

function given by 

. f (x) = 1

(2π)n

∫
. . .

∫

R
n

e−i
∑n

xk tk ϕ(t1 . . . tn) dt1 . . . dtn.

From the uniqueness theorem, it is easy to derive the following independence 
criterion for random variables: 

Theorem 6.22 Random variables X1, . . . , Xn . are independent if and only if 

. ϕ(X1,...,Xn)(t1, . . . , tn) = ϕX1(t1) . . . ϕXn
(tn).

The next theorem reduces the study of convergence in distribution for a sequence 
of random vectors to the study of convergence in distribution of the corresponding 
random variables. 

Theorem 6.23 (Cramér–Wold Theorem) If X1,X2, . . . . are random vectors tak-

ing values in Rn
., then Xk

d−→ X.,  for k → ∞. if and only if for every ξ ∈ Rn
. 

. 〈ξ,Xk〉 d−→ 〈ξ,X〉.

Thus, convergence in distribution is equivalent to convergence of the character-
istic functions also in the case of random vectors.
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6.4.1 Exercises 

330. Assume that the function ϕ(ξ1, . . . , ξn). is the characteristic function of 
a random vector X = (X1, . . . , Xn).. Find the characteristic function of the 
random variable Y = ∑n

k=1 akXk ., where a1, . . . , an ∈ R.. 
331. The random vector X = (X1, . . . , Xn). has a Gaussian distribution with 

covariance matrix � . and vector of expected values m = (m1, . . . , mn).. 
Calculate the characteristic function of X.. 

332. The function ϕ(t, s) = exp{−|at + bs|}. is the characteristic function of 
a random vector (X, Y ).. Are the variables X, Y . independent? Does the vector 
(X, Y ). have an absolutely continuous distribution with respect to Lebesgue 
measure? 

333. Let X1,X2, · · · ∈ Rn
. be independent random vectors with the same multivari-

ate normal distribution, expectation zero and covariance matrix � ..  Find  the  
limit distribution for the series of random vectors

. Zn = X1 + · · · + Xn√
n

.

334. Find the characteristic function of the random vector (U, V ). which is uni-
formly distributed on the unit sphere S1 ⊂ R2 .. 
Hint. This vector has the same distribution as (cos θ, sin θ)., where θ . is 
uniformly distributed over [0, 2π ].. 

335. By calculating the corresponding characteristic functions show that the ran-
dom variable R := √

X2 + Y 2 . and the random vector (U, V ) := (
X
R
, Y

R
). 

are independent if (X, Y ). has a standard normal distribution on R2 . with 
expectation zero and covariance matrix I2 ..



Chapter 7 
Limit Theorems 

The Central Limit Theorem, the Law of Large Numbers and their numerous 
variants play a special role in Probability Theory. What they have in common is 
the consideration of various methods of describing the limit behavior of random 
variables 

. 
X1 + · · · + Xn − an

bn

,

for some constants an, bn ∈ R., bn �= 0.. To study such normalized sums, criteria for 
convergence of series of independent random variables are useful. As we will see in 
the next section, these sums are convergent exclusively only almost everywhere or 
almost nowhere. 

7.1 Kolmogorov’s Zero-One Law 

Consider a sequence of σ .-fields (Fn)n .which are independent, i.e., for every choice 
of different n, k ∈ N. and any A ∈ Fn ., B ∈ Fk .,  we  have P(A ∩ B) = P(A)P(B).. 
For every n ∈ N., we define 

. Gn = σ
(
F1, . . . ,Fn

)
, Fn,∞ = σ

(
Fn,Fn+1, . . .

)
.

By the tail σ .-field, we understand the following: 

. F∞ =
∞⋂

n=1

Fn,∞.
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The elements of the tail σ .-field are called tail events or rare events. More plainly, 
we say that tail events are precisely those events whose occurrence can still be 
determined if an arbitrarily large but finite initial segment of the σ .-fields Fk . is 
removed. Now, we can formulate the following: 

Theorem 7.1 (Kolmogorov’s Zero-One Law) Any tail event A ∈ F∞ . has proba-
bility either zero or one. We can also express it differently: a tail event will either 
almost surely happen or almost surely not happen. 

Proof Note that for every n,  th  e σ .-fields Gn . and Fn+1,∞ . are independent. Since 
A ∈ F∞ ., for every n ∈ N.,  we  have A ∈ Fn+1,∞ .. Therefore, A is independent of 
each σ .-field Gn .. Consequently, A is independent of σ

(
F1,F2, . . .

) = F1,∞ ⊃ F∞ .. 
In particular, we can conclude that A is independent of itself, which ends the p roof.

��
Sometimes, it can be easy to apply Kolmogorov’s zero-one law to show that 

some event has probability 0 or 1, but it is much harder to determine which value is 
correct. In such cases, we can use an elegant method and prove that the probability 
of the given tail event exceeds ε . for some ε > 0.. This guarantees that the probability 
of this event is one. 

Example of Application 7.2 If (Xn). is a sequence of independent random vari-
ables, then the series

∑∞
n−1 Xn . converges with probability zero or one. 

Proof Let Fn = σ(Xn).. Then, the σ .-fields Fn . are totally independent. Moreover, 
for each n ∈ N.,  we  ha  ve

. 

{
ω :

∞∑

k=1

Xk(ω) converges

}
=

{
ω :

∞∑

k=n

Xk(ω) converges

}
∈ Fn,∞.

Now, all we need to do is to apply Kolmogorov’s zero-one law. ��

7.1.1 Exercises 

336. Let (Xn). be a sequence of independent random variables, Fn = σ(Xn).. Prove 
that the following events belong to F∞ ., 

. 

{
there exists a finite limit lim

n→∞ Xn

}
,

. 

{
Xn = ∞

}
,

{
lim

n→∞
X1 + · · · + Xn

n
� a

}
.

337. Let (Xn). be a sequence of independent random variables, Fn = σ(Xn).. Prove 
that if the random variable X is F∞ .-measurable, then it is constant.
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338. Let (Xn). be a sequence of independent random variables, Fn = σ(Xn).. Prove 
that the radius of convergence of the power series

∑∞
n=1 Xn xn

. (for x real or 
complex) is constant almost ev erywhere.

7.2 Laws of Large Numbers 

To start with, we will discuss a series of theorems known as the weak laws of large 
numbers. Why weak? This name is related to the type of convergence of sequences 
of random variables appearing in these theorems, the type called convergence in 
probability. 

Definition 7.3 We say that a sequence of random variables (Xn). defined on the 
same probabilistic space (�,F, P). converges in probability to the random variable 

X (.notation: Xn
P→ X). if for every ε > 0. 

. lim
n→∞ P

{
ω : ∣∣Xn(ω) − X(ω)

∣∣ < ε
} = 1.

Example 7.4 To understand why the convergence just defined is not very strong, 
consider the following example: � = [0, 1]., P. is the normalized Lebesgue measure 
on �., and the sequence of random variables Xn . is defined as follows: 

. Xn(ω) = 1(0, 1
n
)({nπ + ω}),

where {a}. denotes the fractional part of a number a. It is easy to see that Xn . is equal 
to 1 on a set of length 1

n
., and on the remaining part of the interval [0, 1]., it equals 

zero. Therefore, we get: 

. P
{
ω : ∣

∣Xn − 0
∣
∣ < ε

}
≥ 1 − 1

n

n→∞−→ 1.

It follows that Xn
P→ 0.. However, if we set ω ∈ �., we know that for any n ∈ N., 

there exist k, � > n. for which 

. 
{kπ + ω} ∈

(
0, 1

k

)
, thus Xk(ω) = 1;

{kπ + ω} �∈
(
0, 1

k

)
, thus Xk(ω) = 0.

This means that (Xn(ω))n∈N . is a sequence containing infinitely many ones and 
infinitely many zeros, which implies that it is a non-convergent sequence. It is 
known, however, that for sufficiently large values of n, the probability of the event 
that Xn(ω) = 0. is close to one.
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Although probability convergence is “weak”, the limit of a sequence of random 
variables convergent in probability is uniquely determined, as can be seen from the 
following lemma. 

Lemma 7.5 If Xn
P→ X . and Xn

P→ Y ., then P {X = Y } = 1.. 

Proof From the assumptions of this lemma, it follows that: 

. P
{∣∣X − Y

∣∣ � ε
}
� P

{∣∣X − Xn

∣∣ � ε/2 or
∣∣Xn − Y

∣∣ � ε/2
}

� P
{∣∣X − Xn

∣∣ � ε/2
}

+ P
{∣∣Xn − Y

∣∣ � ε/2
}

n→∞−→ 0.

Hence, we have 

. P {X �= Y } = P
( ∞⋃

k=1

{∣∣X − Y
∣∣ � 1/k

})
= lim

k→∞ P
{∣∣X − Y

∣∣ � 1/k
} = 0,

which was to be shown. ��
Theorem 7.6 (Markov’s Weak Law of Large Numbers) If (Xn). is a sequence of 
random variables such that 

. lim
n→∞

1

n2
Var

( n∑

k=1

Xk

)
= 0,

then for every ε > 0., we have 

. lim
n→∞ P

{

ω :
∣∣∣∣∣
1

n

n∑

k=1

(
Xk − EXk

)
∣∣∣∣∣
< ε

}

= 1.

Proof Let Yn = 1
n

∑n
k=1 Xk .. It follows from our assumptions that 

. lim
n→∞Var(Yn) = 0.

By virtue of Chebyshev’s inequality, we get: 

. P

{

ω :
∣∣∣∣
1

n

n∑

k=1

(
Xk − EXk

)∣∣∣∣ < ε

}

= P {ω : |Yn − EYn| < ε}

= 1 − P {ω : |Yn − EYn| � ε} � 1 − 1

ε2
Var(Yn)

n→∞−→ 1,

which ends the proof. ��
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The proven theorem, as well as the Bernoulli and Chebyshev Theorems described 
in the exercises, requires the existence of finite variances of the variables under 
consideration. Here, we present another form of the Weak Law of Large Numbers 
in which we abandon this assumption at the expense of the assumption of identical 
distributions of random variables. We make this assertion without proof. The next 
theorem, Chinczyn’s Law of Large Numbers, is presented without proof since it 
follows trivially from Lemma 7.9 and Kolmogorov’s Second Strong Law of Large 
Numbers (to be described in Theorem 7.13 further in this section). 

Theorem 7.7 (Chinczyn’s Law of Large Numbers) If X1, X2, . . . . is a sequence 
of independent random variables with identical distributions and finite expectation 
m = EXi ., then for every ε > 0. 

. lim
n→∞ P

{

ω :
∣∣
∣∣∣
1

n

n∑

k=1

Xk − m

∣∣
∣∣∣
< ε

}

= 1.

Another type of convergence of random variables is convergence with probability 
1, which we also call convergence almost everywhere or almost sure convergence. 

Definition 7.8 We say that the sequence of random variables (Xn). defined on the 
same probability space (�,F, P). almost surely converges to the random variable X . 

(.notation Xn → X a.e.). if 

. P
{
ω : lim

n→∞ Xn(ω) = X(ω)
}

= 1.

Note that convergence in probability does not imply almost sure convergence. 
For the random variables described in Example 7.4, which converge in probability 
to X ≡ 0., we get: 

. P
{
ω : the limit lim

n→∞ Xn(ω) exists
}

= P{∅} = 0.

This means that the sequence of random variables (Xn). is almost surely divergent. 
The next lemma shows that the opposite implication holds, so convergence with 
probability 1 is actually “stronger” than convergence in probability. 

Lemma 7.9 Let (Xn). be a sequence of random variables defined in the same 
probability space (�,F, P).. Then, 

. Xn → X a.e. 
⇒ Xn
P−→ X.

Proof Assume that Xn → X a.e.. This means that 

.P
{
ω : Xn(ω) → X(ω)

}
= 1.
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Equivalently, we can write it as 

. 1 = P
{
ω : ∀ ε > 0, ∃ n(ω, ε)∀k > n(ω, ε)

∣∣Xk(ω) − X(ω)
∣∣ < ε

}

= P
( ⋂

ε>0

⋃

n∈N

⋂

k�n

{
ω : ∣∣Xk(ω) − X(ω)

∣∣ < ε
} )

.

This means that for any ε > 0., 

. 1 = P
( ⋃

n∈N

⋂

k�n

{
ω : ∣∣Xk(ω) − X(ω)

∣∣ < ε
} )

,

or, equivalently, 

. 0 = P
( ⋂

n∈N

⋃

k�n

{
ω : ∣∣Xk(ω) − X(ω)

∣∣ � ε
} )

.

Since the sequence of sets
⋃

k�n {ω : |Xk(ω) − X(ω)| � ε}. is decreasing, we have 

. 0 = lim
n→∞ P

( ⋃

k�n

{
ω : ∣∣Xk(ω) − X(ω)

∣∣ � ε
} )

.

To conclude the proof, it is enough to note now that 

. 
{∣∣Xn − X

∣∣ > ε
} ⊂

∞⋃

k=n

{∣∣Xk − X
∣∣ > ε

}
.

��
Now, we will give two Kolmogorov theorems, in other words, two versions of 

the Strong Law of Large Numbers. We will begin by recalling two lemmas from 
analysis that we will need to ensure completeness of the proofs. The first one 
generalizes the well-known fact that if a sequence converges, then the sequence 
of arithmetic means converges to the same limit. 

Lemma 7.10 (Toeplitz’s Lemma) Let (an). be a sequence of non-negative num-
bers, bn = ∑n

k=1 ak ., bn > 0. for all n ∈ N., bn ↗ ∞..  If (xn). is a sequence such that 
limn→∞ xn = x ∈ R., then 

. lim
n→∞

1

bn

n∑

k=1

akxk = x.
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Proof Let ε > 0.. We can choose n0 ∈ N. such that for n � n0 .,  we  have  t  he
inequality: |xn − x| < ε/2.. Since bn ↗ ∞., there also exists an n1 > n0 . such that 

. 
1

bn1

n0∑

k=1

ak

∣∣xk − x
∣∣ <

ε

2
.

Finally, for n > n1 .,  we  ha  ve

. 

∣∣∣
∣
1

bn

n∑

k=1

akxk − x

∣∣∣
∣ �

1

bn

n0∑

k=1

ak

∣∣xk − x
∣∣ + 1

bn

n0∑

k=n0+1

ak

∣∣xk − x
∣∣

<
b1

bn

ε

2
+ ε

2

1

bn

n0∑

k=n0+1

ak < ε.

��
Lemma 7.11 (Kronecker’s Lemma) Let (bn). be an increasing sequence of posi-
tive numbers, limn bn = ∞., and let (xn). be a sequence of real numbers such that ∑∞

n=1 xn . is convergent. Then, 

. lim
n→∞

1

bn

n∑

k=1

bkxk = 0.

Proof Let b0 = 0., s0 = 0., sn = ∑n
k=1 xn .. Then, 

. 

n∑

k=1

bkxk =
n∑

k=1

bk(sk − sk−1) = bnsn − b0s0 −
n∑

k=1

sk−1(bk − bk−1).

Since the limit limn→∞ sn . exists, by Toeplitz’s Lemma we obtain that 

. 
1

bn

n∑

k=1

bkxk = sn − 1

bn

n∑

k=1

sk−1(bk − bk−1) −→ 0 for n → ∞.

��
In particular, for bn = n., xn = n−1yn ., we have the following implication: 

.

∞∑

n=1

yn

n
is convergent 
⇒ lim

n→∞
y1 + · · · + yn

n
= 0.
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Theorem 7.12 (Kolmogorov’s First Strong Law of Large Numbers) If 
X1, X2, . . . . is a sequence of random variables with finite variances and 

. 

∞∑

n=1

1

n2
VarXn < ∞,

then 

. P

{

ω : lim
n→∞

1

n

n∑

k=1

(
Xk − EXk

) = 0

}

= 1.

Proof Let Sn = ∑n
k=1

(
Xk − EXk

)
.. Since 

. 
Sn − ESn

n
= 1

n

n∑

k=1

k · Xk − EXk

k
,

then, by Kronecker’s Lemma, it is enough to prove that
∑∞

k=1
1
k
(Xk − EXk). 

converges almost everywhere. To see this, we shall check that the Cauchy condition 
holds. From Chebyshev’s inequality and the independence of Xk ., k ∈ N.,  we  have  
that for every ε > 0.: 

. P
{

sup
k,l�n

∣
∣Sk − Sl

∣
∣ > ε

}
� P

{
2 sup

k�n

∣
∣Sk − Sl

∣
∣ > ε

}

= lim
m→∞ P

{
sup

n�k�m

∣∣Sk − Sn

∣∣ > ε/2

}

� lim
m→∞ 3 sup

n�k�m

P
{∣∣Sk − Sn

∣∣ > ε/6
}

� lim
m→∞

108

ε2

m∑

j=n

E(Xj − EXj)
2.

The second inequality here follows from the Lévy–Ottaviani inequality: 

. P
{
max
i�n

|Si | > ε
}
� 3max

i�n
P
{
|Si | > ε/3

}
,

which holds for sums of independent random variables. The right side of this 
inequality tends to zero when n → ∞. as the remainder of a convergent series. 
Thus, Sn . converges almost everywhere. ��
Theorem 7.13 (Kolmogorov’s Second Strong Law of Large Numbers) If 
X1, X2, . . . . is a sequence of independent random variables with identical
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distributions and finite expectation m = EXk ., then 

. P

{

ω : lim
n→∞

1

n

n∑

k=1

Xk = m

}

= 1.

Proof Since the convergence of 1
n

∑n
Xk → EX1 . is equivalent to the convergence 

of 1
n

∑n
(Xk − EX1) → 0., we can assume without loss of generality that EX1 = 0.. 

It follows from Theorem 4.15 that 

. 

∞∑

n=1

P
{|X1| � n

}
� E|X1| � 1 +

∞∑

n=1

P
{|X1| � n

}
,

hence
∑∞

n=1 P
{|X1| � n

}
< ∞..  Let Yn = Xn1{|Xn|�n} ., i.e., Yn . is the truncation of 

Xn . at the level n. Since the variables Xn . have identical distributions, we have 

. 

∞∑

n=1

P
{
Xn �= Xn

} =
∞∑

n=1

P
{|Xn| > n

} =
∞∑

n=1

P
{|X1| > n

}
� E|X1| < ∞.

From the Borel–Cantelli Lemma, it follows that 

. lim
n→∞

X1 + · · · + Xn

n
→ 0 a.e. if and only if lim

n→∞
Y1 + · · · + Yn

n
→ 0 a.e.

Since EYn = E
(
X11{|Xn|�n}

) → EX1 = 0. (the simplifying assumption), it is 
enough to show that 

. lim
n→∞

(Y1 − EY1) + · · · + (Yn − EYn)

n
= 0 a.e.

To do this, we shall use Kolmogorov’s First Strong Law of Large Numbers, which 
shows that

∑∞
n=1

1
n2 VarYn < ∞.. First, note that 

. |Yn − EYn| = |Xn − EYn|1{|Xn|�n} + |EYn|1{|Xn|�n}

� |Xn|1{|Xn|�n} + |EYn|.

Since |EYn| → 0.,  we  have
∑∞

n=1 |EYn|2n−2 =: A < ∞., and so 

.

∞∑

n=1

VarYn

n2
�

∞∑

n=1

1

n2
E

(
X2

n1{|Xn|�n}
)

+
∞∑

n=1

|EYn|2
n2

=
∞∑

n=1

1

n2

n∑

k=1

E
(
X2

11{k−1<|X1|�k}
)

+ A
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= 
∞∑

k=1 

E
(
X2 

11{k−1<|X1|�k}
) ∞∑

n=k 

1 

n2 
+ A

� 2 
∞∑

k=1 

1 

k 
E

(
X2 

11{k−1<|X1|�k}
)

+ A

� 2 
∞∑

k=1 

E
(
|X1|1{k−1<|X1|�k}

)
+ A = 2E |X1| + A < ∞,

which was to be shown. ��

7.2.1 Exercises 

339. Bernoulli’s Weak Law of Large Numbers. Prove that for the sequence of 
random variables Sn . counting the number of successes in n Bernoulli trials 
with success probability p and for every ε > 0.,  we  ha  ve

. lim
n→∞ P

{
ω :

∣∣
∣∣
1

n
Sn − p

∣∣
∣∣ < ε

}
= 1.

340. Chebyshev’s Weak Law of Large Numbers. Prove that that if random 
variables X1, X2, . . . . are independent and their variances are jointly bounded, 
then for every ε > 0., 

. lim
n→∞ P

{

ω :
∣∣∣
∣∣
1

n

n∑

k=1

(
Xk − EXk

)
∣∣∣
∣∣
< ε

}

= 1.

341. Check whether the Strong or Weak Law of Large Numbers holds for 
sequences of independent random variables (Xn). with the following 
distributions: 

(a) P{Xn = 2n} =  P{Xn = −2n} =  0.5.; 
(b) P{Xn = 2n} =  P{Xn = −2n} =  2− 2n−1

., P{Xn = 0} = 1 − 2−2n
.; 

(c) P{Xn = n} =  P{Xn = −n} =  0.5.; 
(d) P{Xn = n} =  P{Xn = −n} =  0.5n−1/2

., P{Xn = 0} = 1 − n−1/2
.; 

(e) Xn . has normal distribution N(0,
√

n).; 
(f) Xn . has Poisson distribution with parameter λ = 2−n

.. 

342. Random variables X1, X2, . . . . are independent and P{Xn = ±√
ln n} = 1

2 .. 
Does the Law of Large Numbers hold for the sequence (Xn).? 

343. Random variables X1, X2, . . . . are independent and P{Xn = ±nαn} = 1
2 ., 

where αn > α . for every n ∈ N. and some α > 0.. Does the Law of Large 
Numbers hold for this sequence?
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344. Let X1, X2, . . . . be a sequence of 1-dependent random variables, i.e., the 
random variable Xn . may depend on Xn−1 . and Xn+1 ., but it is independent 
of the other variables. Prove that if 

. lim
n→∞ n−1VarXn = 0,

then for the sequence (Xn)., the Weak Law of Large Numbers holds. 

7.3 The Central Limit Theorem 

Theorem 7.14 (Lindeberg–Lévy Central Limit Theorem) Let X1, X2, . . . . be 
a sequence of independent identically distributed random variables with parameters 
EXi = m., VarXi = σ 2 < ∞.. Then for any real number t , 

. lim
n→∞ P

{∑n
k=1 Xk − nm

σ
√

n
< t

}
= 
(t),

where 
. is the distribution function for the normal distribution N(0, 1).. 

Proof Without losing generality, we can assume that for every i ∈ N., Xi . has 
expected value equal to zero. It is enough to consider X′

i = Xi − m..  Le  t ϕ(t) =
EeitX1 .. By Theorem 6.11,  we  have ϕ′(0) = 0. and ϕ′′(0) = −σ 2

.. Using the second 
order Taylor expansion for the function ϕ ., we get that 

. ϕ(t) = 1 − σ 2t2

2
+ o(t2),

where o(x)/x → 0. as x → 0.. Using the independence and equality of distributions 
of variables Xi .we conclude that, at each fixed point, 

. E exp

{
it

∑n
k=1 Xi

σ
√

n

}
= (

ϕ(t/σ
√

n)
)n =

(
1 − t2

2n
+ o(t2/σ 2n)

)n

.

Now, it is not hard to see that the last expression tends to exp{−t2/2}. as n → ∞.. 
We have shown that the characteristic functions of the sequence of random variables 
Sn/σ

√
n. converge to the characteristic function of the standard normal distribution 

N(0, 1).. From the Lévy–Cramér Theorem 6.18, the convergence of the distributions 
(and thus the distribution functions of these distributions) to the limit distribution 
(limit distribution function) follows. ��

The next theorem, proven by J.W. Lindeberg in 1922 as a generalization of many 
partial results, is presented here without proof.
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Theorem 7.15 (Lindeberg–Feller Theorem) Assume that the random variables {
Xn,k : n ∈ N k ∈ {1, . . . n}}. with mn,k = EXn,k ., σ 2

n,k = Var(Xn,k). satisfy the 
following properties: 

(a) for every n ∈ N., the random variables Xn,1, . . . , Xn,n . are independent and ∑n
k=1 σ 2

n,k → 1.; 
(b)

∑n 
k=1 E

(
(Xn,k − mn,k)

21|Xn,k−mn,k |>ε

) → 0. for all ε > 0.. 

Then, 

. 

∑n
k=1(Xn,k − mn,k)√

n

d−→ N(0, 1).

Condition (b) is known as the Lindeberg condition. 

7.3.1 Exercises 

345. De Moivre–Laplace Theorem. Using the Lindeberg–Lévy Theorem, prove 
that if (Sn). is a sequence of random variables with the Bernoulli distribution 
Sn ∼ B(n, p)., then for any real number 

. lim
n→∞ P

{
ω : Sn(ω) − np√

npq
< a

}
= 
(a).

346. Random variables X1, . . . , X100 . are independent with the same Poisson distri-
bution with parameter λ = 2.. Find the approximate value of the expression 

. P

{

ω :
100∑

k=1

Xk > 190

}

.

347. There is a newspaper vendor in the street. Suppose that every passer-by buys 
a newspaper with probability 13 ..  Le  t X . be the number of passers-by until the 
100th paper is sold. Find the exact and asymptotic distribution of the random 
variable X .. 

348. A computer adds 1200 real numbers, each approximated to the nearest integer. 
We assume that the approximation errors are independent and uniformly 
distributed on the interval [− 1

2 ,
1
2 ].. Find the probability that the error in 

calculating this sum will exceed 10. 
349. Let (Xn). be a sequence of independent random variables with equal distri-

butions and finite variance, and let Yn = ∑n
k=1 Xk .. Prove that for any real 

numbers a, b., a < b. 

. lim
n→∞ P

{
ω : a < Yn(ω) < b

} = 0.
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350. Let (Xn). be a sequence of independent random variables with equal distri-
butions and finite, non-zero variance. Prove that for any real number x .,  the  
limit

. lim
n→∞ P

{
ω : X1(ω) + · · · + Xn(ω) < x

}

exists and is equal to one of the three numbers: 0, 1, 1
2 .. Identify the conditions 

under which each of these numbers appears. 
351. Let (Xn). be a sequence of independent random variables with identical 

distributions, expected value zero, and finite variance. Prove that for any real 
number x ., the limit 

. lim
n→∞ P

{
ω :

∣∣
∣∣
X1(ω) + · · · + Xn(ω)

nα

∣∣
∣∣ � x

}

equals 0 if α ∈ (0, 1
2 ). and equals 1 if α > 1

2 .. 
352. Let (Xn). be a sequence of independent random variables with the same 

uniform distributions on the interval [0, 1]. and let Yn = ∑n
k=1 Xk ..  Find  the  

sequence of real numbers (an).which satisfy the condition: 

. lim
n→∞ P

{
ω : Yn(ω) � an

√
n
} = p, 0 � p � 1.

353. Let (Xn). be a sequence of independent random variables with equal distribu-
tions, variance equal to 1, and E[Xn] = 0. (where [x]. represents the integer 
part of x .). Assuming that 

. lim
n→∞ P

{
ω : X1(ω) + · · · + Xn(ω)√

n
> 0

}
= 1

2
,

calculate E{Xn} := E(Xn − [Xn]).. 
354. Prove that 

. lim
n→∞ e−n

n∑

k=0

nk

k! = 1

2
.

Hint: Use the Central Limit Theorem for a sequence of independent random 
variables with Poisson distribution with parameter λ = 1..



Chapter 8 
Extension of Measure 

8.1 The Carathéodory Extension Theorem 

In this section we describe the Carathéodory Extension Theorem, which states that 
any pre-measure defined on a given ring A. of subsets of a given set �. can be 
extended to a measure on the σ .-algebra generated by A., and this extension is 
unique if the pre-measure is σ .-finite. In this statement a “pre-measure” is any finitely 
additive function Q : A→ [0,∞]. which satisfies the condition 

. ∀ (An)n∈N ⊂ A
∞⋃

n=1

An ∈ A �⇒ Q
( ∞⋃

n=1

An

)
=

∞∑

n=1

Q(An).

Consequently, any pre-measure on a ring containing all intervals of real numbers can 
be extended to the Borel algebra of the set of real numbers. This is a very powerful 
result, and leads, for example, to the proof of the existence of the Lebesgue measure. 

This theorem is also known as the Carathéodory–Fréchet Extension Theorem, 
the Carathéodory–Hopf Extension Theorem, the  Hopf Extension Theorem and the 
Hahn–Kolmogorov Extension Theorem. 

Let �. be a space of elementary events. By 2�
., we will denote the set of all 

subsets of the set �.. We have discussed measures many times without introducing 
their formal definition. Let us now state clearly that a finite measure is a set function 
μ : F → [0,∞). such that μ(�) < ∞. and 1

μ(�)
μ. is a probability measure. The 

Lebesgue measure on a compact set � ⊂ Rk
. is therefore a measure in this sense. 

Below, we introduce the concept of an even broader class of set functions called 
outer measures. 
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Definition 8.1 An outer measure (.Carathéodory Measure ). on the space �. is any 
function μ∗ : 2� → [0,∞]. that satisfies the conditions: 

(1) μ∗(∅) = 0.; 
(2) A ⊂ B �⇒ μ∗(A) � μ∗(B).; 
(3) A1,  A2, · · · ∈ � �⇒ μ∗

(⋃∞ 
k=1 Ak

)
�

∑∞ 
k=1 μ∗(Ak).. 

Of course, the last two conditions can be replaced by one: 

. A ⊂
∞⋃

k=1

Ak ⊂ � �⇒ μ∗ (A) �
∞∑

k=1

μ∗(Ak).

Note that the definition of an outer measure differs from the definition of a measure 
(e.g. probabilistic) only in condition (3). Thus, it can be said that an outer measure 
is a measure if it is countably additive, i.e., its value on the union of disjoint sets is 
equal to the sum of its values on these sets. 

Examples 8.2 In the following examples, �. is an arbitrary nonempty set. However, 
the last example only becomes interesting when �. contains infinitely many 
elements. 

(a) 

. μ∗(A) =
{

0 if A = ∅;
1 if A �= ∅.

(b) 

. μ∗(A) =
{

0 if A = ∅;
∞ if A �= ∅.

(c) 

. μ∗(A) =
{

number of elements of the setA if A is finite;
∞ if A is infinite.

Definition 8.3 We say that A ⊂ �. is μ∗ .-measurable (.satisfies the Carathéodory 
condition ). if for every M ⊂ �., the following equality holds: 

. μ∗(M) = μ∗(M ∩ A) + μ∗(M ∩ A′).

We will denote the class of μ∗ .-measurable sets by the symbol M..
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Of course, in the definition of a μ∗ .-measurable set, it is sufficient to require that 
for each set M ⊂ �., the following inequality holds: 

. μ∗(M) � μ∗(M ∩ A) + μ∗(M ∩ A′).

The opposite inequality follows from the definition of an outer measure μ∗ .. 

Theorem 8.4 (Carathéodory’s Theorem) Let μ∗ . be an outer measure on the set 
�. and let M. be the class of μ∗ .-measurable sets. Then, M. is a σ .-field of subsets of 
the set �., and the outer measure μ∗ . restricted to the space (�,M). is a measure, 
i.e., is a countably additive set function. 

Proof First, we will prove that M. is a σ .-field. 
Fact 1 If A ∈M., it follows from the definition that A′ ∈M. as well. 
Fact 2 M. is a field. 
It suffices to show that if A,B ∈M., then also A ∩ B ∈ M.. Let  M be an arbitrary 
subset of �.. Then: 

. μ∗(M) = μ∗(M ∩ A) + μ∗(M ∩ A′).

Since both sets M ∩ A. and M ∩ A′
. are subsets of �. and B ∈M., 

. μ∗(M) = μ∗(M ∩ A ∩ B) + μ∗(M ∩ A ∩ B ′)

+ μ∗(M ∩ A′ ∩ B) + μ∗(M ∩ A′ ∩ B ′).

Note that (A ∩ B)′ = A ∩ B ′ ∪ A′ ∩ B ∪ A′ ∩ B ′
.. From Axiom (3) of the outer 

measure μ∗ ., we conclude that 

. μ∗
(
M ∩ (A ∩ B)′

)
� μ∗(M ∩ A ∩ B ′) + μ∗(M ∩ A′ ∩ B) + μ∗(M ∩ A′ ∩ B ′).

Now, it can be seen that A ∩ B ∈M. because 

. μ∗(M) � μ∗(M ∩ (A ∩ B)) + μ∗(M ∩ (A ∩ B)′).

Fact 3 If the sets A1, . . . , An ∈M. are disjoint, then for every M ⊂ �., the following 
equality holds: 

. μ∗
(

M ∩
n⋃

k=1

Ak

)
= μ∗ (M ∩ A1) + · · · + μ∗ (M ∩ An) .

The proof of this fact is based on the principle of mathematical induction on n.. For  
n = 2., we get: 

.μ∗(M ∩ (A1 ∪ A2)) = μ∗(M ∩ (A1 ∪ A2) ∩ A1) + μ∗(M ∩ (A1 ∪ A2) ∩ A′
1)

= μ∗(M ∩ A1) + μ∗(M ∩ A2)
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because (A1 ∪ A2) ∩ A1 = A1 . and (A1 ∪ A2) ∩ A′
1 = A2 .. Now, assume that the 

equality holds true for some n ∈ N.. Then: 

. μ∗
(

M ∩
n+1⋃

k=1

Ak

)

= μ∗
((

M ∩
n+1⋃

k=1

Ak

)
∩ An+1

)
+ μ∗

((
M ∩

n+1⋃

k=1

Ak

)
∩ A′

n+1

)

= μ∗
(
M ∩ An+1

)
+ μ∗

(
M ∩

n⋃

k=1

Ak

)
=

n+1∑

k=1

μ∗ (M ∩ Ak) ,

which follows from the disjointness of the sets A1, . . . , An+1 . and the inductive 
assumption. 
Fact 4 If A1, A2, · · · ∈ M. are pairwise disjoint and the set M ⊂ �., then 
μ∗

(
M ∩ ⋃∞

k=1 Ak

) = ∑∞
k=1 μ∗(M ∩ Ak).. 

From Axiom (2) of the outer measure and Fact 3, it follows that for every natural 
number n, 

. μ∗

(
M ∩

∞⋃

k=1

Ak

)
� μ∗

(
M ∩

n⋃

k=1

Ak

)
=

n∑

k=1

μ∗(M ∩ Ak).

Letting n tend to infinity, we get:

. μ∗

(
M ∩

∞⋃

k=1

Ak

)
�

∞∑

k=1

μ∗(M ∩ Ak).

The opposite inequality follows from Axiom (3). 
Fact 5 M. is a σ .-field of sets. 

We already know that M. is a field (Fact 2) so it suffices to show that M. is closed 
under sums of countable families of disjoint sets. Let A1, A2, · · · ∈M. be pairwise 
disjoint. Since M. is a field,

⋃n
k=1 Ak ∈M. for every n ∈ N.. Note also that for any 

set M ⊂ �., we have:  

. M ∩
( ∞⋃

k=1

Ak

)′
⊂ M ∩

(
n⋃

k=1

Ak

)′
.

Hence, 

.μ∗(M) = μ∗

(
M ∩

n⋃

k=1

Ak

)
+ μ∗

(
M ∩

(
n⋃

k=1

Ak

)′ )
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� μ∗

(
M ∩ 

n⋃

k=1 

Ak

)
+ μ∗

(
M ∩

( ∞⋃

k=1 

Ak

)′ )

= 
n∑

k=1 

μ∗(M ∩ Ak) + μ∗

(
M ∩

( ∞⋃

k =1

Ak

)′ )
.

Letting n tend to infinity, we get:

. μ∗(M) �
∞∑

k=1

μ∗(M ∩ Ak) + μ∗

(
M ∩

( ∞⋃

k=1

Ak

)′ )

= μ∗

(
M ∩

∞⋃

k=1

Ak

)
+ μ∗

(
M ∩

( ∞⋃

k=1

Ak

)′ )
,

which implies that
⋃∞

k=1 Ak ∈M.. 
Fact 6 The outer measure μ∗ . as a function on (�,M). is a measure. 

Assume that the sets A1, A2, · · · ∈ M. are pairwise disjoint. From Fact 4, it  
follows that for any M ⊂ �., 

. μ∗

(
M ∩

∞⋃

k=1

Ak

)
=

∞∑

k=1

μ∗ (M ∩ Ak) .

To show the countable additivity of an external measure μ∗ . on M., it suffices to take 
M = �.. This ends the proof of Carathéodory’s Theorem. ��

It is worth noting here that the outer measure μ∗ . restricted to (�,M). is 
a complete measure, i.e., such that every subset of any null set is a measurable 
null set. In particular, the σ .-field M. contains all subsets of null sets. Indeed, if 
A ⊂ B ∈M. and μ∗(B) = 0., then by Axiom (2) 0 � μ∗(A) � μ∗(B) = 0.. At the  
same time, if μ∗(A) = 0., then for any M ⊂ �,. μ∗(M ∩ A) � μ∗(A) = 0.. Hence, 
A ∈M. because 

. μ∗(M) � μ∗(M ∩ A′) = μ∗(M ∩ A) + μ∗(M ∩ A′).

Carathéodory’s Theorem is a very useful tool for probability calculus and stochastic 
processes. It is usually difficult to define a measure by giving its value on every set 
of a fixed σ .-field, while it is relatively easier to define its values on the sets of a class 
which generates the given σ .-field. 

The following theorem, based on Carathéodory’s Theorem, concludes that 
a countably additive set function on a field A. extends uniquely to a measure on 
the σ .-field generated by A.. It is easy to see that the assumptions of this theorem 
can be further weakened; for example, we can assume that the countably additive
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set function is specified on a ring A. of subsets of �. if �. is the countable union of 
the elements of A.. 

Theorem 8.5 (Measure Extension Theorem) Assume that α . is a pre-measure, 
i.e., it is a finite, countably additive, non-negative set function defined on a field A. of 
subsets of the set �., i.e., if A1, A2, · · · ∈ A.are disjoint and such that

⋃∞
n=1 An ∈ A., 

then 

. α

( ∞⋃

n=1

An

)
=

∞∑

n=1

α
(
An

)
.

Then, there exists exactly one measure μ. on σ(A). such that α(A) = μ(A). for every 
set A ∈ A.. 

Proof The main difficulty of the proof is to construct an appropriate outer measure 
and use Carathéodory’s Theorem. We define this outer measure as follows: 

. μ∗(A)
def= inf

{ ∞∑

k=1

α(Ak) : A ⊂
∞⋃

k=1

Ak, A1, A2, · · · ∈ A
}

for every A ⊂ �.. Let us prove that μ∗ . is an outer measure on �.. Since α(Ak) � 0. 

for k = 1, 2, . . . ., we have μ∗(A) � 0., and since ∅ ⊂ ∅ ∪ ∅ ∪ . . . ., 

. 0 � μ∗(∅) � α(∅) + α(∅) + · · · = 0,

which means that μ∗(∅) = 0.. It remains to show that the following implication 
holds: 

. E ⊂
∞⋃

k=1

Ek �⇒ μ∗(E) �
∞∑

k=1

μ∗(Ek).

Note that if A ⊂ �., then A ⊂ � ∪ ∅ ∪ . . . ., thus μ∗(A) � α(�) < ∞.. By definition 
of μ∗ ., for every k ∈ N., there exists a sequence of sets Ak,1, Ak,2, · · · ∈ A. such that 

. Ek ⊂
∞⋃

i=1

Ak,i, μ∗(Ek) + ε

2k
�

∞∑

i=1

α(Ak,i).

As E ⊂ ⋃∞
k=1 Ek ⊂ ⋃∞

k=1

⋃∞
i=1 Ak,i ., 

. μ∗(E) �
∞∑

k=1

∞∑

i=1

α(Ak,i) �
∞∑

k=1

μ∗(Ek) + ε,

which, given that ε . is arbitrary, implies that μ∗(E) �
∑∞

k=1 μ∗(Ek)..
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Now, we can use Carathéodory’s Theorem for the external measure μ∗ . and 
conclude that μ∗ . restricted to the σ .-field M. of μ∗ .-measurable sets is a countably 
additive measure. Let us prove that A ⊂ M. and that μ∗ . coincides with α . on the 
field A.: 

Let A ∈ A., M ⊂ �. and A1, A2, · · · ∈ A. be a sequence of sets such that 
M ⊂ ⋃∞

k=1 Ak .. Of course, Ak ∩A ∈ A., Ak ∩A′ ∈ A. and M ∩A ⊂ ⋃∞
k=1(Ak ∩A)., 

M ∩ A′ ⊂ ⋃∞
k=1(Ak ∩ A′).. From the definition of the function μ∗ ., we get 

. μ∗(M ∩ A) + μ∗(M ∩ A′) �
∞∑

k=1

α(Ak ∩ A) +
∞∑

k=1

α(Ak ∩ A′)

=
∞∑

k=1

[
α(Ak ∩ A) + α(Ak ∩ A′)

] =
∞∑

k=1

α(Ak).

Since the sequence A1, A2, . . . . is arbitrarily chosen, we conclude that 

. μ∗(M ∩ A) + μ∗(M ∩ A′) � inf

{ ∞∑

k=1

α(Ak) : M ⊂
∞⋃

k=1

Ak

}
= μ∗(M),

thus A ∈M., consequently σ(A) ⊂M., which was to be shown. 
Let us take any set A ∈ A.. Since A ⊂ A ∪ ∅ ∪ ∅ ∪ . . . ., from the definition of the 

measure μ∗ ., we get 

. μ∗(A) � α(A) + α(∅) + α(∅) + · · · = α(A).

To prove the opposite inequality, let us consider any sequence of sets Ak ∈ A., 
k = 1, 2, . . . . such that A ⊂ ⋃∞

k=1 Ak .. The sets B1 = A ∩ A1 ., Bn+1 = A ∩ [
An+1 K⋃n

k=1 Ak

]
., n ∈ N. form a sequence of pairwise disjoint sets such that A = ⋃∞

k=1 Bk . 

and Bk ∈ A. for k ∈ N.. Thus: 

. α(A) =
∞∑

k=1

α(Bk) �
∞∑

k=1

α(Ak),

which, given that the sequence A1, A2, . . . . is freely chosen, implies the opposite 
inequality: α(A) � μ∗(A).. 

Let μ. denote the restriction of the outer measure μ∗ . to the σ .-field σ(A).. To  
complete the proof, it is still necessary to prove that μ. is the only measure that 
satisfies the conditions of the theorem. Suppose this is not the case. Then there 
exists another measure λ. on (�, σ (A)). such that α(A) = λ(A). for each set A ∈ A.. 
Let 

.G =
{
E ∈ σ(A) : λ(E) = α(E)

}
.
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By assumption, A ⊂ G.. If  E ∈ G., then λ(E′) = λ(�) − λ(E) = α(�) − α(E) =
α(E′)., therefore E′ ∈ G.. If the sets E1, E2, · · · ∈ G. are pairwise disjoint, then 

. λ

( ∞⋃

k=1

Ek

)
=

∞∑

k=1

λ(Ek) =
∞∑

k=1

α(Ek) = α

( ∞⋃

k=1

Ek

)
,

which shows that
⋃∞

k=1 Ek ∈ G.. Hence, it follows that G. is a σ .-field containing A. 

and contained in σ(A).. Consequently, G = σ(A). and λ = μ., which contradicts our 
assumptions. ��

8.1.1 Exercises 

355. Prove that the sum of countably many outer measures is also an outer measure. 
356. Let μ. be a probability measure on (�,F). and Ak,Bk . for k ∈ N. be subsets of 

�.. Prove that if the outer measure μ∗ . has the property μ∗(Ak�Bk) = 0. for 
every k ∈ N., then 

. μ∗
( ∞⋃

k=1

Ak

)
= μ∗

( ∞⋃

k=1

Bk

)
.

357. Let μ. be a probability measure on the space (�,F). and let E ⊂ �., 

. μ∗(E)
def= inf {μ(A) : E ⊂ A,A ∈ F} .

Prove that μ∗
. is an outer measure on 2�

. and that μ∗∣∣
F = μ.. 

358. Let μ. be a probability measure on the space (�,F). and let μ∗
. be the outer 

measure defined in the previous exercise. Let F. denote the σ .-field of sets 
which are μ∗

.-measurable, and let μ. denote the restriction of μ∗
. to the σ .-field 

F.. Prove that μ. is a complete measure which coincides with μ. on F.. 
359. Let α . be a finite non-negative additive set function on the field A ⊂ �.. For  

E ⊂ �., we define: 

. α∗(E) := inf

{
n∑

k=1

α(Ak) : A1, . . . , An ∈ A, E ⊂
n⋃

k=1

Ak

}
.

Prove that α∗
. is an outer measure.
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360. Let � = N.. For any set A ⊂ �., we define #(A, n). as the number of elements 
of A. that are less than n.. Let  C. be the class of sets A ⊂ �. for which the 
following limit exists 

. d(A)
def= lim

n→∞
#(A, n)

n
.

The function d(A). is called the density of the set A. 

(a) Show that d : C → [0, 1]. is an additive but not countably additive set 
function. 

(b) Prove that C. is not a field of sets. 

Hint. Let A. be the set of even numbers. Let B . be the set of even numbers 
between 22n

. and 22n+1
. and odd numbers between 22n−1

. and 22n
. for every 

n ∈ N.. Which of the sets A,B . and A ∩ B . belong to C.? 

8.2 Cumulative Distribution Functions 

Let us return to Theorem 3.17, which states that a function F . that satisfies the three 
given conditions is the distribution function of some random variable X .. It also  
means that the function F is the distribution function of the probability measure
PX ., which is the distribution of the variable X .. The proof of Theorem 3.17 presented 
earlier was based on the construction of a suitable random variable. The proof of the 
theorem presented below is based on the construction of an appropriate probability 
measure on the space (R,B).. 

Theorem 8.6 Suppose the function F : R → [0, 1]. satisfies the following 
conditions: 

(1) F is a nondecreasing f unction;
(2) limt→−∞ F(t)  = 0., limt→∞ F(t) = 1.; 
(3) F is left-continuous, i.e., F(t) = lims↗t F (s). for every t ∈ R.. 

Then, there exists exactly one probability measure P. on (R,B(R)). such that for 
t ∈ R. 

. F(t) = P((−∞, t)).

Proof If such a probability measure P. existed, then for any s < t . we would have 
F(t) = P((−∞, s))+P([s, t)) = F(s)+P([s, t)).. Following this remark, we define 
the P. measure on the class of sets 

.F := {[s, t) : s, t ∈ R, s < t
}



166 8 Extension of Measure

by the formula 

. P([s, t)) := F(t) − F(s).

��
Lemma 8.7 If the sets A1, A2, . . . , An ∈ F. are disjoint and

⋃n
i=1 Ai ⊂ A0 . for 

some A0 = [a0, b0) ∈ F., then 

. P(A0) �
n∑

i=1

P(Ai).

Proof of Lemma 8.7 Since the intervals Ai = [ai, bi). are disjoint and A0 . contains 
their union, we can renumber them in such a way that 

. a0 � a1 � b1 � a2 � · · · � an � bn � b0.

By property (1), the function F is nondecreasing; thus

. P(A0) = [
F(b0) − F(bn)

] + [
F(bn) − F(an)

] + [
F(an) − F(bn−1)

]

+ · · · + [
F(a2) − F(b1)

] + [
F(b1) − F(a1)

] + [
F(a1) − F(a0)

]

= [
F(b0) − F(bn)

] +
n∑

i=1

[
F(bi) − F(ai)

] +
n−1∑

i=2

[
F(ai) − F(bi−1)

]

+ [
F(a1) − F(a0)

]
�

n∑

i=1

[
F(bi) − F(ai)

] =
n∑

i=1

P(Ai).

��
Lemma 8.8 P. is a countably additive set function on F.. 

Proof of Lemma 8.8 Assume that A0 = [a0, b0) = ⋃∞
i=1 Ai . for pairwise disjoint 

sets Ai = [ai, bi) ∈ F.. Since for every n ∈ N⋃n
i=1 Ai ⊂ A0 ., by Lemma 8.7, we  

have: 

. P(A0) �
n∑

i=1

P(Ai).

Hence, it already follows that 

.P(A0) � lim
n→∞

n∑

i=1

P(Ai) =
∞∑

i=1

P(Ai). (∗)
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To prove that the opposite inequality is also true, let ε ∈ (0, b0 − a0).. The left-
continuity of the function F . shows that for every i ∈ N., one can find a real number 
a′

i < ai . for which F(ai) − F(a′
i ) < ε/2i

.. The compact interval [a0, b0 − ε]. is 
a subset of A0 ., thus 

. [a0, b0 − ε] ⊂
∞⋃

i=1

[ai, bi) ⊂
∞⋃

i=1

(a′
i , bi).

The Heine–Borel Theorem applied to a subset S of Rn
. asserts that the following two 

statements are equivalent:

• S is closed and bounded,
• S is compact, that is, any covering of S by a collection of open sets contains a 

finite subcov ering.

By this theorem, there exists an n ∈ N. such that 

. [a0, b0 − ε] ⊂
n⋃

i=1

(a′
i , bi).

We renumber the set {(a′
i , bi) : i = 1, 2, . . . , n}. in such a way that a0 ∈ (a′

1, b1)., 
b1 ∈ (a′

2, b2)., b2 ∈ (a′
3, b3)., etc. We will finally find a number k � n. such that 

b0 − ε ∈ (a′
k, bk).. If not all the elements {(a′

i , bi) : i = 1, 2, . . . , n}. are used in this  
construction, the remaining elements are numbered k + 1, . . . , n.. Hence, we get: 

. F(b0) − F(a0) = F(b0) − F(b0 − ε) + F(b0 − ε) − F(a0)

� F(b0) − F(b0 − ε) + F(bk) − F(a′
1)

� F(b0) − F(b0 − ε) +
n∑

i=1

(
F(bi) − F(a′

i )
)

� F(b0) − F(b0 − ε) +
n∑

i=1

(
F(bi) − F(ai)

) +
n∑

i=1

ε

2i

� F(b0) − F(b0 − ε) +
∞∑

i=1

(
F(bi) − F(ai)

) + ε.

All we need to do now is to apply left-continuity of the function F , i.e., the condition 
limε→0 F(b0 − ε) = F(b0)., to obtain that the inequality opposite to (∗). holds. 
Consequently, 

.P(A0) =
∞∑

i=1

P(Ai).

��
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Now, let F0 . be the class of sets defined as follows: 

. F0 := {
A1 ∪ · · · ∪ An : n ∈ N, A1, . . . , An ∈ F, Ai ∩ Aj = ∅ for i �= j

}
.

Lemma 8.9 F0 . is a ring of sets. 

Proof of Lemma 8.9 We need to show that if A,B ∈ F0 ., then the union A ∪ B . 

and difference A K B . also belong to F0 .. Let then A = E1 ∪ · · · ∪ En ∈ F0 . and 
B = G1 ∪ · · · ∪ Gm ∈ F0,. where Ei,Gj ∈ F. and Ei ∩ Ej = Gi ∩ Gj = ∅. for 
i �= j .. 

If A∩B = ∅., then also Ei ∩Gj = ∅. for i �= j .. This implies that A∪B . is a finite 
union of disjoint sets from the class F., thus it belongs to F0 .. 

Now consider the difference A K B . without assuming that the sets are disjoint. 
We obtain 

. A K B =
n⋃

i=1

Ei K
m⋃

j=1

Gj =
n⋃

i=1

(
Ei K

m⋃

j=1

Gj

)
.

To complete the proof, it must be shown by mathematical induction that for every 
E = [a, b). and G1, . . . ,Gm ∈ F., the difference E K

⋃n
j=1 Gj . belongs to F0 .. For  

n = 1. and G1 = [c, d)., we only need to consider all possible cases of the relative 
positions of the numbers a, b, c. and d to state that E K G1 . can be represented as 
the union of at most two (possibly empty) sets from F.. Hence, it is easy to get that 
E K

⋃n
j=1 Gj . is the union of at most 2n

. of the sets from F.. ��
We now extend the definition of the set function P. to the class F0 .: 

. 

(
A = A1 ∪ · · · ∪ An,Ai ∈ F, Ai ∩ Aj = ∅ if i �= j

)
�⇒ P(A)

def=
n∑

i=1

P(Ai).

Lemma 8.10 The extension of P. to F0 . is well defined. 

Proof of Lemma 8.10 Let us consider two different representations of the set A ∈
F0 . as the union of disjoint sets from F.: 

. A =
n⋃

i=1

Ai =
m⋃

j=1

Bj , Ai, Bj ∈ F, Ai ∩ Ak = Bi ∩ Bk = ∅ for i �= k.

It is easy to verify that the class F. contains all the intersections of its elements, so 
for any i = 1, . . . , n., j = 1, . . . , m., we have Ai ∩ Aj ∈ F.. Since the set function P. 

is countably additive on F., we have  

.

n∑

i=1

P(Ai) =
n∑

i=1

P
(

Ai ∩
m⋃

j=1

Bj

)
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= 
n∑

i=1 

P
( m⋃

j=1 

(Ai ∩ Bj)

)

= 
n∑

i=1 

m∑

j=1 

P(Ai ∩ Bj).

We also have: 

. 

m∑

j=1

P(Bj ) =
m∑

j=1

P
(

Bj ∩
n⋃

i=1

Ai

)

=
m∑

j=1

P
( n⋃

i=1

(Ai ∩ Bj)

)

=
m∑

j=1

n∑

i=1

P(Ai ∩ Bj).

The two sums differ only in the order of the components, so we have the equality ∑n
i=1 P(Ai) = ∑m

j=1 P(Bj ). and the extension of the set function P. to F0 . is well 
defined. ��
Lemma 8.11 P. is a σ .-additive set function on F0.. 

Proof of Lemma 8.11 Let A1, A2, . . . . be disjoint sets belonging to the ring F0 . such 
that their union A0 = ⋃∞

i=1 Ai . also belongs to F0 .. Each of these sets can be written 
as a finite union of disjoint sets belonging to the class F., i.e., 

. ∀i = 0, 1, . . . Ai =
mi⋃

j=1

Ei,j , Ei,j ∈ F.

Since the class F. is closed under intersections and the set function P. is σ .-additive 
on F., we have  

.P(A0) =
m0∑

j=1

P(E0,j ) =
m0∑

j=1

P

(
E0,j ∩

∞⋃

i=1

Ai

)

=
m0∑

j=1

P

( ∞⋃

i=1

(E0,j ∩ Ai)

)
=

m0∑

j=1

P

( ∞⋃

i=1

mi⋃

k=1

(E0,j ∩ Ei,k)

)
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= 
m0∑

j=1 

∞∑

i=1 

mi∑

k=1 

P(E0,j ∩ Ei,k) = 
∞∑

i=1 

mi∑

k=1 

m0∑

j=1 

P(E0,j ∩ Ei,k) 

= 
∞∑

i=1 

mi∑

k=1 

P(Ei,k) = 
∞∑

i=1

P(Ai).

��
Going back to the proof of Theorem 8.6, we use the measure extension 

Theorem 8.5 formulated for a ring of sets. Since F0 . is a ring of sets and R. can 
be represented as the countable union of sets from F0 ., every countably additive 
function P. on F0 . can be uniquely extended to a countably additive set function P′

. 

on the σ .-field σ(F0). generated by F0 .. 
We have yet to show that σ(F0). is a σ .-field containing Borel sets on the straight 

line. It is enough to check that the family σ(F0). contains open intervals and is closed 
under complements. Note that for any a, b ∈ R., a < b., 

. (a, b) =
∞⋃

n=1

[
a − b − a

2n
, b

)
�⇒ (a, b) ∈ σ(F0).

In a similar way, we obtain 

. R =
∞⋃

k=−∞
[k, k + 1) �⇒ R ∈ σ(F0).

Since the σ .-ring σ(F0). is closed under taking the difference of two sets, and 
R ∈ σ(F0)., σ(F0). is also closed under taking the complement operation. Therefore, 
σ(F0). is a σ .-field. �. 

8.3 The Radon–Nikodym Theorem 

In this section, we will discuss a theorem which is important for the theory 
of measure, probability theory and stochastic processes, the Radon–Nikodym 
Theorem. Due to the later applications of this theorem, it is necessary to formulate 
it in a rather general form, i.e., for measures that do not have to be finite. 

Consider a probability space (�,F, μ).. The measure μ. is a σ .-finite measure on 
F. if the following conditions are satisfied: 

(1) μ(A) � 0. for every A ∈ F.; 
(2) if Ai ∈ F. for i ∈ N. are pairwise disjoint, then μ

(⋃∞
i=1 Ai

) = ∑∞
i=1 μ (Ai).; 

(3) there exists a sequence of sets Ai ∈ F., i ∈ N., such that � = ⋃∞
i=1 Ai . and 

μ(Ai) < ∞. for every i ∈ N..



8.3 The Radon–Nikodym Theorem 171

An example of a σ .-finite measure is the well-known Lebesgue measure on (R,B).. 
For the sets An ., we can take intervals [−n, n].. 

Assume that f : � → R. is a measurable function, μ. is a σ .-finite measure on 
(�,F). and the sequence of sets (An). is such that � = ⋃∞

i=1 Ai ., μ(An) < ∞. for all 
n ∈ N.. We know the definition of the integral

∫
�

f dμ. for a probability measure μ.. 
For a σ .-finite measure, we shall define it as follows: 

. 

∫

�

f (ω)μ(dω)
def= lim

n→∞

∫

Bn

f (ω)μ(dω) = lim
n→∞ μ(Bn) ·

∫

Bn

f (ω)
μ(dω)

μ(Bn)
,

where Bn = ⋃n
i=1 Ai .. This definition applies only if the right side of this formula 

exists. The integrals over the sets Bn . are well defined, because μ(Bn) < ∞., 
thus we are integrating with respect to a probability measure μ(dω)

μ(Bn)
.. If the integral ∫

�
|f (ω)|μ(dω). exists, i.e., the limit of the integrals

∫
Bn

f (ω)μ(dω). exists, we say 
that the function f is integrable with respect to the σ .-finite measure μ.. 

Lemma 8.12 Let f : � → R. be a function which is integrable with respect to 
a σ .-finite measure μ. on the space (�,F).. If for every A ∈ F. 

. 

∫

A

f (ω)μ(dω) � 0,

then f � 0μ.-almost everywhere. 

Proof Let A = {ω : f (ω) < 0}. and, let An = {ω : f (ω) < − 1
n
}., n ∈ N.. The  

sequence (An). is increasing and A = ⋃∞
n=1 An .. By our assumptions, we have 

. 0 ≤
∫

An

f (ω)μ(dω) ≤ −1

n
μ(An),

which implies that μ(An) = 0. for every n ∈ N.. Hence, the result follows because 

. μ(A) = lim
n→∞ μ(An) = 0.

��
Sometimes we will need to consider a signed measure, i.e., the difference of 

two measures with separate supports. The following definition describes this more 
precisely: 

Definition 8.13 We say that μ. is a σ .-finite signed measure on (�,F). if there exist 
a set  B ∈ F. and two σ .-finite measures μ+, μ−

. on (�,F). such that one of them is 
a finite measure, and 

. μ+ (
B ′) = 0, μ−(B) = 0, ∀A ∈ B μ(A) = μ+(A) − μ−(A).

If both measures μ+ . and μ−. are finite, we will say that μ. is a signed measure.
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The requirement that at least one of the measures μ+
. or μ−

. should be finite 
guarantees that the value of the measure μ. on every set from the σ .-field F. is well 
defined because any indeterminate term of the type ∞ − ∞. cannot appear. Hence, 
the set function 

. κ(A) =
∫

A

x

1 + x2
dx, A ∈ B

is not a signed measure, even though its restriction to any bounded subset A ∈ B. is 
a finite signed measure. 

If the integrals
∫ |f (ω)|μ+(dω). and

∫ |f (ω)|μ−(dω). exist and at least one of 
them is finite, we say that the function f is integrable with respect to the σ .-finite 
signed measure μ.. 

Definition 8.14 Let ν . be a signed measure and let μ. be a non-negative σ .-finite 
measure on (�,F).. The measure ν . is absolutely continuous with respect to the 
measure μ. (notation: ν � μ.) if for any set A ∈ F., the following implication holds: 

. μ(A) = 0 �⇒ ν(A) = 0.

Example 8.15 Let X be a continuous type random variable on (�,F, P). and let f 
be the density function for X. T hen,

. PX(A) =
∫

A

f (x) dx A ∈ B.

If λ1(A) = 0., where λ1 . is the Lebesgue measure on R., then PX(A) = 0., hence PX . 

is absolutely continuous with respect to λ1 .. This is where the term continuous type 
variable comes from. 

The next, important theorem is presented here without proof. 

Theorem 8.16 (Radon–Nikodym Theorem) Let ν . be a signed measure and let 
μ. be a non-negative σ .-finite measure on (�,F).. If  ν � μ., then there exists an 
F.-measurable, μ.-integrable function f : � → R. such that for any A ∈ F., we have 

. ν(A) =
∫

A

f (ω)μ(dω).

The function f is uniquely determined up to a set of μ.-measure zero. We call the 
function f the Radon–Nikodym derivative of the measur e ν . with respect to the 
measure μ., and we denote it by f = dν

dμ
..
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Remark 8.17 Note that the uniqueness of the function f follows from 
Lemma 8.12. Indeed, if there were two such functions f1 �= f2 ., then for any 
A ∈ F. we would have 

. 

∫

A

f1(ω)μ(dω) =
∫

A

f2(ω)μ(dω).

Now all we need to do is to apply Lemma 8.12 to the function f = ±(f1 − f2). to 
get μ{ω : f1(ω) �= f2(ω)} = 0.. 

8.3.1 Exercises 

361. Let X be a random variable on (�,F, P). and let λ1 . be the Lebesgue measure 
on R.. Prove that the distribution PX . is of continuous type iff PX � λ.. 

362. Find the Radon–Nikodym derivative of the distribution 
(p, b). with respect 
to: (a) the normal distribution N(0, 1).; (b) the exponential distribution 
(1, λ).. 

363. Find the Radon–Nikodym derivative of the Poisson distribution with parame-
ter λ. with respect to: (a) the geometric distribution with parameter p ∈ (0, 1).; 
(b) the Poisson distribution with parameter α > λ.. 

364. Assume that probability measures μ. and ν . are absolutely continuous with 
respect to the Lebesgue measure. Does this mean that either μ � ν . or ν � μ. 

holds? 
365. Assume that a discrete measure μ. has atoms {x1, x2, . . . }., and a measure ν . is 

absolutely continuous with respect to μ.. What can be said about the support 
of the measure ν .? 

366. Is the normal distribution absolutely continuous with respect to some expo-
nential distribution? 

8.4 Conditional Expectation 

Definition 8.18 Let X be an integrable random variable on a probability space
(�,F, P). and let A. be a sub-σ .-field of the σ .-field F.. A random variable E(X

∣∣A). 

is a conditional expectation of the variable X given the σ .-field A. if the following 
conditions are satisfied: 

(i) E(X
∣∣A). is an A.-measurable function; 

(ii) for every A ∈ A. 

.

∫

A

X dP =
∫

A

E(X
∣∣A)dP.
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Theorem 8.19 For every integrable random variable X on (�,F, P). and any sub-
σ .-field A.of the σ .-field F,. there exists a conditional expectation E(X

∣∣A).. Moreover, 
the variable E(X

∣∣A). is uniquely determined up to a set of measure zero. 

Proof Since the random variable X is integrable, the following function

. ν(A) =
∫

A

X dP, A ∈ A

is a finite signed measure on the space (�,A).. If P(A) = 0., then also ν(A) = 0., 
hence, ν � P.. By the Radon–Nikodym Theorem, there exists an A.-measurable 
function f = dν

dP ., such that 

. ν(A) =
∫

A

f dP A ∈ A.

Hence, it is enough to define E(X
∣∣A) := f .. ��

8.4.1 Conditional Expectation Properties 

Below we will discuss the basic properties of conditional expectation. We assume 
that the random variables discussed here have a finite expected value. The first six 
properties are simple corollaries of the definition and the properties of integral, 
therefore their proofs are omitted. 

Property 1 IfA = {∅,�}., then E(X
∣∣A) = EX . a.e. 

Property 2 If X is anA.-measurable variable, then E(X
∣∣A) = X . a.e. 

Property 3 If X � 0., then E(X
∣∣A) � 0. a.e. 

Property 4
∣∣E(X

∣∣A)
∣∣ ≤ E(|X|∣∣A). a.e. 

Property 5 E(aX + bY
∣∣A) = aE(X

∣∣A) + bE(Y
∣∣A). a.e. for any a, b ∈ R.. 

Property 6 If Xn ↗ X ., then E(Xn

∣∣A) ↗ E(X
∣∣A). a.e. 

Property 7 IfA1 ⊂ A2 ⊂ F., then 

. E(X
∣∣A1) = E

(
E(X

∣∣A2)
∣∣A1

) = E
(
E(X

∣∣A1)
∣∣A2

)
a.e.

Proof Note that the variable E(X
∣∣A1). is A1 .and A2 .-measurable becauseA1 ⊂ A2 .. 

By Property 2, we have  

.E(E(X
∣∣A1)

∣∣A2) = E(X
∣∣A1).
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Now, let A ∈ A1 ⊂ A2 .. By the definition of conditional expectation, we have 

. 

∫

A

E(X
∣∣A2) dP =

∫

A

X dP =
∫

A

E(X
∣∣A1) dP.

Hence, E(E(X
∣∣A2)

∣∣A1) = E(X
∣∣A1)., which ends the proof. ��

Property 8 EX = E
(
E(X

∣∣A) 
)
. a.e. 

Proof LetA1 = {∅,�}. andA2 = A.. Applying Properties 1 and 6, we obtain 

. EX = E(X
∣∣A1) = E(E(X

∣∣A)
∣∣A1) = EE(X

∣∣A).

This formula is a generalization of the Total Probability Formula. ��
Property 9 If the variable X is independent of the σ .-field A., i.e., 

. P
(
X−1(B) ∩ A

) = P
(
X−1(B)

)
P(A) for all A ∈ A, B ∈ B(R),

then E(X
∣∣A) = EX . a.e. 

Proof EX . is A.-measurable, as is any constant function. Since X is independent of 
the σ .-field A., the variables X and 1A . for A ∈ A. are independent. Hence, 

. 

∫

A

X dP =
∫

X1A dP =
∫

X dP
∫

1A dP =
∫

A

EX dP.

��
Property 10 If Y is a boundedA.-measurable random variable, then 

. E(XY
∣∣A) = YE(X

∣∣A) a.e.

Proof We can see that YE(X
∣∣A). is A.-measurable. Assume that Y = 1B . for some 

B ∈ A.. Then, for any A ∈ A., 

. 

∫

A

E(X1B

∣∣A) dP =
∫

A

X1B dP =
∫

A∩B

X dP

=
∫

A∩B

E(X
∣∣A) dP =

∫

A

1BE(X
∣∣A) dP.

If Y is a simple function, i.e., Y = ∑n
k=1 yk1Bk

., B1, . . . , Bn ∈ A., then 

.E(XY
∣∣A) =

n∑

k=1

ykE(X1Ak

∣∣A) =
n∑

k=1

yk1Ak
E(X

∣∣A).
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Now, we need to use the approximating sequence lemma and Property 6 to obtain 
the desired equality for any bounded, A.-measurable variable Y . ��
Example 8.20 Assume that the σ .-field A. is atomic, i.e., A = σ {A1, A2, . . . }., for  
a sequence of pairwise disjoint sets A1, A2, · · · ∈ A. such that � = ⋃∞

k=1 Ak .. If  
E|X| < ∞., then E(X

∣∣A)., being an A.-measurable function, is of the following 
form: 

. E(X
∣∣A) =

∞∑

k=1

xk1Ak

for some constants x1, x2, · · · ∈ R.. To determine these constants, note that 

. 

∫

An

E(X
∣∣A) dP =

∫

An

xn1An
dP = xnP(An).

At the same time, from the definition of conditional expectation, it follows that: 

. 

∫

An

E(X
∣∣A) dP =

∫

An

X dP = E
(
X1An

)
.

Finally, 

. E(X
∣∣A) =

∞∑

k=1

E(X1Ak
)

P(Ak)
1Ak

.

Definition 8.21 Let X and Y be random variables on (�,F, P). and let E|X| < ∞.. 
The conditional expectation of X given Y is the random variable E(X

∣∣Y ). defined 
by the formula 

. E(X
∣∣Y ) = E(X

∣∣σ(Y )),

where σ(Y ) = {Y−1(B) : B ∈ B)}. is the σ .-field generated by Y . 

Theorem 8.22 If X and Y are random variables on (�,F, P). and E|X| < ∞., then 
there exists a Borel function h : R→ R. such that 

. E
(
X

∣∣Y
) = h(Y ).

Proof We will prove that for any σ(Y ).-measurable random variable Z, the function 
h exists. Assume first that Z = 1A . for some A ∈ σ(Y )., i.e., A = {ω : Y (ω) ∈ B}. 
for some Borel set A ∈ B.. Then, 

.Z(ω) = 1A(ω) = 1B(Y (ω)).
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Now, we can define h = 1B .. If  Z is a simple variable, i.e., Z = ∑n
k=1 zk1Ak

., then, 
in a similar way, we get Z(ω) = h(Y (ω)). for h(x) = ∑n

k=1 xk1Bk
(x).. 

If Z is a non-negative σ(Y ).-measurable variable, then there exists a sequence of 
simple σ(Y ).-measurable variables Zn . such that Zn(ω) ↗ Z(ω).. We know that for 
every simple variable Zn ., there is a Borel function hn . such that Zn(ω) = hn(Y (ω)).. 
Therefore, hn(Y (ω)) → Z(ω). for each ω ∈ �.. Hence, the sequence of functions hn . 

has a limit at least on the set of values of the variable Y , and we can assume that 

. h(x) =
{

limn→∞ hn(x) if this limit exists;
0, otherwise.

Now, we just need to apply the obtained results to the variables Z+
. and Z−

. which 
have separated supports and such that Z = Z+ − Z−

.. ��

8.4.2 Exercises 

367. We consider the probability space ([0, 1],B([0, 1]), λ1)., where λ1 . is the 
Lebesgue measure on [0, 1].. Let A = σ {[0, 1/3), {1/3}, (1/3, 2/3)}.. Find  
the conditional expectation E(X

∣∣A). for the following random variables: 

. 

(a) X(ω)=ω; (b) X(ω)= sin (πω); (c) X(ω)=ω2;
(d) X(ω)= 1 − ω; (e) X(ω)=

{
1 for ω ∈ [0, 1/3];
2 for ω ∈ [1/3, 1].

Determine the distributions of the obtained random variables. 
368. A random variable X(ω) = ω. is defined on the probability space (R,B, γ )., 

where γ . is the exponential distribution 
(1, 1).. Determine E(X
∣∣A). if A =

σ {[k, k + 1) : k ∈ N0}.. 
369. A simple random variable X takes exactly n different values. Is it true that

E(X
∣∣A). also takes at most n va lues?

370. Prove that if the σ .-field A. consists of events of probability 0 or 1, then 
P
{
E(X

∣∣A) = EX
} = 1.. 

371. Assume that σ .-fieldsA1 . andA2 . are independent, i.e., for any A1 ∈ A1 ., A2 ∈
A2 . we have P(A1 ∩ A2) = P(A1)P(A2).. Prove that if E|X| < ∞. and E|Y | <

∞., then the random variables E(X
∣∣A1). and E(Y

∣∣A2). are independent. 
372. Let X and Y be independent random variables with the same distribution and 

finite expectation. Prov e that

. E(X
∣∣X + Y ) = E(Y

∣∣X + Y ) = X + Y

2
a.e.

373. Does the random variable E(X
∣∣Y ). have to be σ(X).-measurable?



178 8 Extension of Measure

374. Let X1, X2, . . . . be independent random variables with the same distribution, 
E|X1| < ∞., Sn = X1 + · · · + Xn ., Fn = σ(X1, . . . , Xn).. Calculate E(Sk

∣∣Fn).. 
375. Let f (x, y). be the density function of a random vector (X, Y ).. Prove that the 

conditional expectation of Y given X is equal to g(X)., where 

. g(x) =
∫
R

yf (x, y) dy∫
R

f (x, y) dy
=

∫

R

y
f (x, y)∫

R
f (x, y) dy

dy.

Hence, in a not very precise but useful way, we can say that the conditional 
expectation is equal to the expected value with respect to the conditional 
distribution.



Chapter 9 
Hints and Solutions to the Exercises 

Exercises 1.2.4 

3. It is enough to use Newton’s formula, also called the binomial formula: 
(a + b)n = ∑n

k=0

(
n

k

)
akbn−k

.. 
4. You can simply expand Newton’s symbols and make use of Exercise 3. You can 

also differentiate the equality (1 + x)n = ∑n
k=0

(
n

k

)
xk

. at the point x = 1.. 
5. When answering the second question, remember that the players are numbered. 
6. Note that the answer

(13
7

)(39
6

)
. is wrong. It only guarantees that Adam gets 

exactly seven spades, the other players have not been dealt any cards! 
8. It all depends on whether we number the rooms or beds, or maybe both rooms 

and beds. If we number the beds, then there are 4! = 24. possibilities. 
9. Since this problem can be found in any high school probability textbook, we 

omit the answer. However, we should remember that people are distinguishable. 
10. 27 − 2.. 
11. The tailor’s tape measure is 150 cm long, and Ewa could cut it in any of 149 

places, hence
(149

2

)
.. 

12. Why not hide these aces right away in your pocket and choose only the 
remaining cards? 

13. Unfortunately, we have to deal with a large number of cases. Of course, there 
are 7 single-scoop desserts. There is already a problem with the two-scoops 
desserts, because there are 21 of them where the scoops are of different flavors, 
and there are 7 of those where both scoops are the same. 

14. The first letter of a word can be any of the 31 letters of the alphabet, so 
can the second and the subsequent letters. Can you apply the principle of 
multiplication? 

15. Perhaps it is better not to get too inquisitive and look only at the cases without 
chords, that is, we look at the cases where the swallows are not sitting one 
under the other. Then, of course we have 56

. possibilities if the swallows are 
indistinguishable. 
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16. Unfortunately, the task has been awkwardly worded. Since the flags are to 
be three-colored, then we cannot paint the green-red-green flag and the task 
becomes trivial. 

17. We can write four-digit numbers as x = 1000a + 100b + 10c + d ., a � 1., 
a, b, c, d ∈ N.. a) answer: 333; b) x . is divisible by 11 if and only if a+c−b−d . 

is divisible by 11. However, it is easier to use the periodicity of the remainder 
from dividing successive natural numbers by a fixed number; answer 819; 
c) note that the events the first number is the sum of the remaining numbers 
and the fourth number is the sum of the others are not disjoint, e.g. the event 
a00a is counted twice; d) answer: 94

.. 
19. In the first case, the answer is 15 (we assume that the remainder must be non-

zero) and, after the replacement, it is 18. 
20.

(15 
4

) · 24
.. 

21. We can distinguish the order of pairs, the order of children in a pair, or both the 
order of pairs and the order in a pair. 

22. We believe that the coins only differ in denomination. Why not place the one-
cent and the five-cent coins into separate sets of boxes, and then combine the 
coins from the boxes with the same number. 

23. All you need to do is to select the drawers into which we want to put a ball. 
24. Let’s put one ball in each drawer. Only the remaining balls should be put in 

randomly. 
25. Note that this is equivalent to arranging k indistinguishable balls in n numbered 

drawers. Zero components correspond to empty d rawers.
26. The upper bound is easily derived from the previous exercise. 

Exercises 2.1.1 

27. No, but to see it you need to present a counterexample. 
29. We need to show that any open set is equal to the countable union of open 

rectangles such that their defining numbers a, b, c, d . are rational. There are 
countably many such rectangles. Now, for each point (x, y). of the open set U ., 
we find a rectangle P(x, y). with rational ends such that (x, y) ∈ P(x, y) ⊂ U .. 
Then, 

. U ⊂
⋃

(x,y)∈U

P (x, y) ⊂ U,

hence we get the equality, and the sum is countable because there are countable 
many such rectangles. 

30. (a) and (b) Note that we also get a one-point set here. 
(d) Attention! Here the generator of the σ .-field is the set of rational numbers, 
as in (a), where the generators were sets [0, 2/3]. and [2/3, 1]..
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31. All σ .-fields generated in cases (a), (b) and (c) are identical. Can the same be 
said about fields, rings, and σ .-rings? 

32. No! To see this, one must construct a countable sequence of finite sets, the sum 
of which is an infinite set and its complement is also an infinite set. 

Exercises 2.2.1 

34. (a) A = B .; (b) B = � K A.; (c) A = B .; (d) A ∩ B = ∅.; but this still has to be 
proved. 

35. (a) B; (b) (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C).; (c) (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C).; 
d) B; but the proof is necessary. 

36. A ∩ B = ∅.. 
37. They exist; you just need to choose A ∩ B ⊂ C .. 
38. Let 0 denote the head and 1 denote the tail. The space �. can be described in at 

least two ways: 

. � = {(0, 0, 0), (0, 0, 1), (0, 1, 0), . . . , (1, 1, 1)},

. � = {(a1, a2, a3) : ai ∈ {0, 1}, i = 1, 2, 3}.

39. First, we need to number the cards e.g., the order of the suits is as follows: one 
is an ace, two through ten are their numbers, eleven is a jack, twelve is a queen, 
thirteen is a king. The order of the suits: clubs, diamonds, hearts, spades. Thus 
card number 49 is the ten of spades. 

Exercises 2.3.2 

40. 2 and 2n
.. 

41. For 129 and 130 the answer is no. However, a justification is needed. 
42. Just take the trivial σ .-field in a space containing more than three elements. 
46. It is enough to use the probability continuity theorem. 
48. No! You need to give an example of a set A �= ∅. for which P(A) = 0.. 
49. You need to show that the subsets of the sets of measure zero from Fc . also 

belong to Fc .. 

Exercises 2.4.1 

51. Of course {∅,�}. and 2�
.. Which of them is complete?
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52. Note that P(A) � ελ(A). for every Borel set A. Consequently, if E were 
P.-measurable, then we would have 

. P([−1, 2]) = P

( ∞⋃

n=1

(E + qn)

)

=
∞∑

n=1

P(E + qn) � ε

∞∑

n=1

λ(E + qn) = ∞.

53. We need to show that the Lebesgue measure of this set is equal to zero, and since 
it is a countable sum of one-point sets, it suffices to show that the Lebesgue 
measure of a point is equal to zero. 

Exercises 2.5.1 

54. The number of all irreducible fractions is equal to 2(5 · 3 + 3 · 7).. 
55. For example, for k = 3., we have n(�) = (90

5

)
., n(Ak) = (87

2

)
., where Ak . means 

that among the numbers drawn are all k numbers that the player has bet on.
56. There are only four such stones. 
57. 61−n

.. 
58. It is worth noting that the two possible approaches to this task lead to the same 

result. If we can’t distinguish between the people, then p = (
n+k−m

n−m

)
/
(
n+k

n

)
.. If  

we distinguish between them, then n(A) = (
n

m

)
m!(n + k − m) . . . (k + 1)., but  

the number of events in �. must also be counted differently. 
59. The cardinality of the set of favorable events is:

(2n−2
n−2

) + (2n−2
n

)
.. 

60. In the first case, the probability of drawing a white ball is equal to 0.5. in each 
draw. We are not interested in the order in which the balls are selected, so we 
identify all sequences with exactly n. white balls—there are

(2n

n

)
. of them. Now, 

it suffices to note that each such sequence occurs with a probability of 2−2n
.. 

The second case, when we draw without returning the balls, is easier. 
61.

(25 
5

)(20 
5

)(15 
5

)(10 
5

)(5 
5

) · 5− 25
.. 

62. Let k . be the number of drawn balls. Consider all k-element sequences of zeros 
(white balls) and ones (black balls) that have a zero in the first position. If we 
write this sequence from the end, we get a sequence with a zero in the last 
position. Hence, the number of elementary events favoring both events is the 
same. 

63. (1 + α)− 1
.. 

64. Suppose there are n white balls and k black balls. Without loss of generality, it 
can be assumed that k � n.. Then, the sought probability is: 

.p = n2 + k2

(n + k)2
= 1 + x2

(1 + x)2
=: f (x),
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where x = k/n ∈ (0, 1].. It is easy to show that f is a decreasing function and
f (1) = 0.5.. How will the function f change when the draws are done without 
return?

65. 

. (a) (N

n)
(N+n−1

n )
, (b)

(N

n)n!
Nn .

67. 

. p(k) =
(30

k

)
730−k

830
.

68. When counting the cardinality of the event A, we can ignore the piggy-bank. 
Of course, we treat coins as indistinguishable. 

69. n(A) = n(n + 1)(n2 − n + 3)/6.. 
70. n(A) = n(n − 1)(n − 2)/6.. 
71.

(2n−1 
n

)
/
(3n−1 

2n

)
.. 

72. Let us divide both letters and envelopes into even and odd numbered ones. The 
sum will be even if the sheet and envelope have even numbers or both have 
odd numbers. Hence, the cardinality of the event we are interested in is equal 
to (n!)2

.. 
73. Only item (c) may cause some difficulties. First, note that the sequence from 

the first ace to the last one consists of 3k + 4. cards, so 3k + 4 ≤ 52.. Now,  
choose the position of the first ace in the deck (52 − 3k − 4+. 1 ways), place the 
aces in the already established positions ( 4!. ways), then shuffle the rest of the 
cards and place them in the empty places. 

75. First, let’s set up the 6 rooks according to the set rules. We will have four empty 
spaces left, two of which belong to the forbidden diagonal, so there is only one 
way to arrange the last two rooks (two ways if we are considering numbered 
rooks, but then the calculations are more difficult!). 

76. It is easier to calculate the probability of having at least k such pairs, and then 
calculate P{X = k} = P{X � k} − P{X � k + 1}.. 

79. A correct description of the set �. is only a half of the solution. Let x . be the 
bridge chosen by the person leaving Burghers’ Island and y . the bridge chosen 
by the other. Then, we have � = {(x, y) : x, y ∈ {1, . . . , 7}}.. 

80. First, choose k . pairs of shoes, and then choose one shoe from each of the 
selected pairs (the shoes in a pair are different: left and right!). 

81. Planets and moons are distinguishable. You should first number the planets 
(e.g., in order of distance from the sun), then number the moons and add the 
moons to the planets. We agree that if a planet has received the moons numbered 
k . and �., k < �., then the k-th moon is closer to the planet than the �.-th moon. 
Hence, n(�) = 4! · 5! · 45

., n(A) = 4! · 4 · 5! · 35
..



184 9 Hints and Solutions to the Exercises

82. Electrons and atomic nuclei should be treated as indistinguishable elements. Let 
us arrange five indistinguishable balls (electrons) into four unnumbered boxes 
(atomic nuclei). Then, we get: 

. 5 = 5 + 0 + 0 + 0 = 4 + 1 + 0 + 0 . . .

Exercises 2.6.1 

84. � = [0, 5 ]., A = (1 + √
3, 5].. 

86. 5/9.. 
87. � = [0, �] × [0, �]., P(A) = 1/4.. 
88. Only the distance from the center of the coin to the nearest line below this center 

is important, so � = [0, �).. 
89. � = [−1, 1]2

., A = {(p, q) ∈ � : p2 − 4q > 0}.. 
90. � = [a, b] 3 ., A = {(x, y, z) ∈ � : x � z � y or y � z � x}.. 
91. If we define success properly, then it is enough to calculate the probability of 

getting k . successes in n. trials. 
92. This is also the problem of getting n. successes. 
93. Difficult! � = K2

., and in the space R4
. it is hard to see anything! However, 

determining the position of the point A = (x, y)., we will get the cut DA . of 
the sought set D ⊂ K2

. by the plane (x, y, z, t) : (z, t) ∈ K .. The answer for 
K = [0, 1]2

. is: 

. 

∫ 1

0

∫ 1

0

(
1 − (x − y)2 − (1 − x − y)21(x + y < 1)

)
dx dy.

94. For those who do not remember the formula for the area of a circular segment, 
let us recall that the definite integral over an interval is equal to the area under 
the integrated curve. 

95. The length of the curve described by the function f (x). on the segment [a, b]. is 
given by the formula 

. 

∫ b

a

√
1 + (f ′(x))2 dx.

Exercises 2.7.1 

101. Yes. 
102. No.
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103. 1 
3

(
α 

α+1 + β 
β+1 + γ 

γ+1

)
.. 

108. N−2 
N+M−2 .. 

109. 2/3.. 
110. P(5) = P(4) = 1 /3.. 
111. 507 

1210 .. 
112. Let us choose two of the three baskets. With a probability of 2/3., we get the 

baskets of various kinds. If we now buy 1.5 kgs of nuts from each of them, 
how many wormy nuts will we buy? 

Exercises 2.8.1 

120. The events are pairwise independent but not independent. 
121. The events A∩B,A∩C,B ∩C . are pairwise independent but not independent. 
124. These events are not even pairwise independent. 
125. 9 

19 .. 
126. 2n − 1 − n.. 

Exercises 2.9.3 

127. We have five problems, so five experiments. The probability of success is the 
probability that the topic has been discussed and that Adam is able to solve 
the problem. Hence, p = 0.736.. The task contains redundant and therefore 
confusing information that there were supposed to be 15 lectures. 

128. The problem becomes easy if we consider n. even and n. odd separately. 

129. (a) n · 1
6

(
5
6

)n−1
.,  (b  ) 1 − (

5
6

)n
.. 

130. The event A. 
131. The events are equally probable. 
132. Recall that

∑n
k=0

((
n

k

))2 = (2n

n

)
.. 

134. n � 9.. 
135. Approximately 0.9033.. 
136. 1 − (λp + 1 − p)n .. 
137. The solution of this problem for n = 7. with a full justification of the strategy 

used can be easily found in the literature on Hamming codes, as well as in 
the popular science literature. However, you are advised to try and find this 
solution yourself—maybe you can find a simpler and therefore nicer solution?
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Exercises 2.10.1 

143. P(A) = 0.. 
144. P(A) = 1.. 

Exercises 3.1.1 

148. Only Y and Z are random v ariables.

Exercises 3.2.1 

154. These variables have identical distributions. However, P{ω : X(ω) �= Y (ω)} =
1., which means that they are different everywhere. 

155. (a)
{
(a, b, c) : a = 0, 0 � b � 1 − c, 0 � c � 1

}
., (b)  

{
(a, b) : b = 0, 0 �

a � 1
}
. (left-continuity property). 

156. Just to verify: the cumulative distribution function of X . has a jump of height 
1/3. at the point t =. 3, and the cumulative distribution function of Y . is 
continuous but not a piecewise linear function. 

157. (c) F(t) = 1(0,∞)(t).. 
158. Hint: Calculations must be performed separately for a > 0., a < 0. and a = 0.. 
159. Suppose that it does not have to be the case, and let F . be a cumulative 

distribution function with uncountably many discontinuity points. Let An . 

denote the set of those points where the distribution function jumps exceed 
1/n.. If all sets An . are finite, then the cumulative distribution function has 
countably many of these points, so at least one of these sets, for example An0 ., 
is infinite. It should not be difficult to derive from this that the considered 
distribution function is unbounded. 

Exercises 3.3.9 

165. [(r − 1)/p] + 1.. 

166. P(X = k) = (52 
13

)−1(4 
k

)(52−k 
13−k

)
., k = 0, 1, 2, 3, 4.. 

168. 5/16.. 
169. The Bernoulli distribution with parameters n = 10., p = 0.5.. 
170. Careful here! This is not the distribution of the waiting time for the third 

success, but the arithmetic mean of two such distributions. The result would 
be different if he randomly determined whether he should roll a die or toss 
a coin before each move.
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Exercises 3.4.7 

171. The exponential distribution with parameter λ2
.. 

172. The gamma distribution with parameters b2, p .. 
173. The Cauchy distribution with parameters 1, 0.. 
179. N(am + b, |a|σ).. 
180. f  (x)  = 2λxe−λx2 

1(x > 0).. 
181. Determine the length of the third side X = h(cos ϕ). from the Law of Cosines, 

where the variable ϕ . has the uniform distribution on [0, 2π).. 
182. � = {(x, y) : x, y ∈ [  0, 1]}.. 

X(x, y) = √
x2 + y21(x2 +y2 � 1)+min{x, y, 1−x, 1−y}1(x2 +y2 > 1).. 

Exercises 3.6.1 

184. You can take X3
. as “any other” variable. 

186. Let F . be the cumulative distribution function with density f .. Now, just  
calculate the appropriate distribution functions of the variables Z and U , and 
then differentiate them. For e xample, P{Z < u} = P{X < u, Y < u} =
F 2(u).. Hence, fZ(u) = 2F(u)f (u).. 

187. To calculate the distribution of U2 ., note that 

. P{U2 < u} = 3P{X < u, Y < u,Z � u}.

188. FZ(t) = F(t)G  (t)., FW(t) = F(t) + G(t) − F(t)G(t)., FT (t) = F(t/2)G(t)., 
FU(t) = 1 − (1 − F( 3

√
t))(1 − G(t)).. 

188. Find the cumulative distribution functions of the variables Yn = ∑n
i=1

Xi

2i . first. 
195. Note that

∑n
k=1 Xk . has distribution 
(n, a).. To calculate the distribution 

function of Y , we use the total probability formula: for u > 0., 

. P{Y < u} =
∞∑

k=1

pqn−1
∫ u

0

an

(n − 1)!x
n−1e−ax dx.

196. 

. f (z) = 1

b − a

[
�(z − a) − �(z − b)

]
.

197. fZ(x) = 2π−2x(sinh(x))− 1
..
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Exercises 3.7.1 

198. X and Y are not independent.
200. Recall that variables of continuous type are independent if their joint density 

is the product of the density functions of separated variables. 
201. Yes, it is possible. Just remember that the integral of the density function is 

equal to one. 
203. (b) FT (t) = 1 − e−αt − αte−αt

., t > 0.; (d) FV (t) = 1 − e−αt + e−3αt
.; 

(f) FZ(t) = t
t+1 ., t > 0.. 

204. (a) p

π
a

a2+(t−m)2 + 1−p

π
a

a2+(t+m)2 .; (b) λpe−λt I (t > 0) = λ(1 − p)eλt I (t < 0).. 
205. Try to express the density as an integral, e.g., fZ(z) = ∫

R
f (x, z − x) dx ., by  

calculating the corresponding distribution function first. 
206. A lot of cases. If u ∈ (0, 1)., then 

. P{Z < u} = P{X > u(X + Y ),X + Y > 0}
+ P{X < u(X + Y ),X + Y < 0}

=
∫ ∞

0

∫ uy/(1−u)

−y

f (x, y) dx dy +
∫ 0

−∞

∫ −y

uy/(1−u)

f (x, y) dx dy.

207. 1 
2

(
1 + e−4t − 2e− 2t

)
.. 

208. P{X  >  Y } =  0.5.. 
209. Recall that there are two discrete geometrical distributions; one starts from 

zero, the other starts from one. Hence, 

. P{Z0 = k} = (k + 1)p2qk, k = 0, 1, . . . ,

P{Z1 = k} = (k − 1)p2qk−2, k = 2, 3, . . .

The variable Z1 . has the Pascal distribution with parameter r = 2.. 
210. The variable Z has the Poisson distribution with parameter λ1 + λ2 .. 
211. e−λp (λp)n /n !.. 
212. 

√
p1 + √

p3 = 1., p2 = 2
√

p1p3 .. 
217. 
(p + q, a).. 
220. It is sufficient to show that the joint distribution function and/or the density 

of the vector (Z,W). is a function of separated variables. Nevertheless, it is 
worth finding the densities of the variables Z . and W .. For u, v > 0., we have  

.FZ,W (u, v) = P{Z < u,W < v} =
∫

. . .

∫

x+y<u,x/y<v

fX(x)fY (y) dx dy

= v

1 + v

(
1 − e−u(1 + u)

)
;
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fZ,W (u, v) = 1 

(1 + v)2 
· u e−u.

221. Though slightly laborious, it is possible to calculate the following: 

. FZ,W (u, v) = P{Z < u,W < v} =
∫

. . .

∫

x2+y2<u,x/y<v

1

2π
e−(x2+y2)/2 dx dy

= 1

π

(
π − arctan

1

v

)1

2

(
1 − e−u/2

)
;

fZ,W (u, v) = 1

π(1 + v2)
· 1

2
e−u/2.

222. For u, v > 0., we have  

. FZ,W (u, v) = ap+q


(p)
(q)

∫ uv
1+v

0
xp−1e−ax

∫ u−v

x/v

yq−1e−ay dy dx

fZ,W (u, v) = ap+q


(p + q)
up+q−1e−au · vq(1 + v)−(p+q)

B(p, q)
.

Exercises 4.1.1 

225. The game is fair if it has a win expectation equal to zero, so a = 2b.. 
226. Without losing generality, we can assume that a1 . is the largest number. Then, 

. 
n
√
EXn = a1

n
√

p1 + p2(a2/a1)n + · · · + pn(an/a1)n

� a1
n
√

p1 + · · · + pn = a1.

On the other hand, n
√
EXn � a1

n
√

p1 → 1.. The second limit is even easier to 
find. 

228. Note that the variable X has a hypergeometric distribution with parameters
N,M, k ., k � N ., k � M .: 

.P
{
X = �

} =
(
N

�

)(
M

k−�

)

(
N+M

k

) , � = 0, 1, . . . k.
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In particular, this means that 

. 

k∑

�=0

(
N

�

)(
M

k − �

)

=
(

N + M

k

)

.

This identity shall be used in calculating EX .. 

Exercises 4.2.1 

231. Of course, these variables cannot be independent! 
235. Consider the random variables Yi = Xi/(X1 + · · · + Xn).. Of course, they 

have the same distributions, as well as the same expected values. Now, just 
note that E(Y1 + . . . Yn) = E1 = 1.. 

236. Emax{0,  X} =  0 .5.. 
237. Let x = EX+ � 0., y = EX− � 0.. Then, a = x − y ., b = x + y . and it is 

enough to draw conclusions. 
238. P{X � k}  = ∑∞ 

n=k P{X = n}., k ∈ N.. Now, it is enough to change the order 
of summation in the expectation formula. 

239. This is a simple conclusion from Exercise 238. 

Exercises 4.3.1 

240. The appropriate integral should be written as the sum of the integrals over the 
sets {ω : |X(ω)| � 1}. and {ω : |X(ω)| > 1}.. On the first set, |X(ω)| � 1., and 
on the second, |X(ω)| � X2(ω).. Thus, E|X| � EX2 + P{ω : |X(ω)| � 1}.. 

Exercises 4.4.1 

248. It does not exist. 
249. We do not need to integrate anything. Just remember that the parameter p 

in both distributions can have any positive value, and that the integral of the 
distribution density is equal to 1.

250. � = [0, 297]., P(dω) = dω/297.. Answer: 3
4 · 210 · 297..
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Exercises 4.5.1 

251. Just apply integration by parts. 
252. This is a straightforward conclusion from Exercise 216. 
253. Attention! These cumulative distribution functions can be discontinuous. 
254. It is enough to note that C is the set of real numbers which contain no 1’s in 

their ternary (base three) representation.

Exercises 5.1.1 

260. (b) This is a simple application of the fact that the derivative of an absolutely 
convergent power series is equal to the series of derivatives of its components. 

266. This exercise, when it appears in the next chapter, will be even easier. 
267. Note that the function f (a) = E(X − a)2

. is quadratic, so its minimum is easy 
to determine. 

268. Note that Var(XY ) = VarX · VarY + VarX(EY )2 + VarY (EX)2
.. 

270. We already know the value of EX .. 

Exercises 5.2.1 

274. P{15 � X � 45} � 0.9.. 
275. n � 2560.. 

Exercises 5.3.3 

281. |ρ(Z, W)| = |α |.. 
282. ρ(X, Y ) = 0., but the variables are not independent. 
284. P{X  >  1 

2 ,  Y  >  1 
2 } �= P{X  >  12 }P{Y > 1

2 }.. 
286. To determine the distribution function of the variable X ., let us recall that 

the area of the side surface of the solid formed by the rotation of the curve 
y = f (x)., x ∈ [a, b]. around the axis OX . is equal to 2π

∫ b

a
f

√
1 + (f ′)2 dx .. 

Answer: X . has a uniform distribution, the density of the vector (X, Y ). at the 
point (x, y). is a function that depends on x2 + y2

..
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Exercises 5.4.1 

294. It is worth noticing that for Cov(X, Y ) = 0., the joint density for the vector 
(X, Y ). is a function with separated variables. 

295. EY = 0., VarX = a�aT
., where a = (a1, . . . , an).. 

296. The final calculations are as follows 

. 
1

2π

∫

R

e−y2/2
∫ ∞

y

e−(x−y)2/2dx dy = 1√
2π

∫

R

e−y2/2
∫ ∞

0
e−r2/2 dr dy = 1

2
.

297. (b) Let Aϕ . be the arc of the unit circle between the positive semi-axis OX . and 
the line y = tg(ϕ)x .. Then, P{U ∈ Aϕ} = P{X � 0, tg(ϕ)X � Y � 0}.. c) It is  
enough to calculate P{R ∈ [0, r], U ∈ Aϕ}. for any r > 0., ϕ ∈ [0, 2π).. 

298. First of all, you need to make sure that this function is a density function. 

Exercises 6.1.1 

310. ϕY (t) = (1 + it/b)−(p1+···+p n) .. 
311. This can be demonstrated by considering a convex combination of the 

distributions of these variables. But it can be done a bit differently: we define 
a random variable �., independent of X1, . . . , Xn ., which takes the values 
1, . . . , n. with probabilities p1, . . . , pn ., respectively. Now, simply note that ϕ . 

is the characteristic function of the variable 

. Y =
n∑

1

Xk1{�=k}.

312. Let X1, X2, . . . .be independent random variables with distribution function F ., 
and let �. be a random variable with a geometric distribution with parameter 
1
2 . independent of all Xi .. Now, you only need to calculate the characteristic 

functions of the following variables:
∑�

1 Xi ., X11{�=1} − X21{�>1} ., X1 − X2 .. 
313. Suppose that ϕ . is the characteristic function of X . and let θ . be a variable 

independent of X . with the uniform distribution on [0, 1].. Now, you only need 
to calculate the characteristic function of the variable Y = Xθ .. 

Exercises 6.2.1 

316. Assume that a = 0.. Since P{X = 0} = p ., there exists a probability measure μ. 

such that PX = pδ0+(1−p)μ.. Hence, |ϕ(t)−p| = (1−p)|μ̂(t)| � (1−p)., so  
the smallest possible distance ϕ . from the OY . axis is p−(1−p) = 2p−1 > 0..
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If a �= 0. we get |ϕ(t) − peita| = |ϕ(t)e−ita − p| � 1 − p ., which does not 
change the distance of ϕ . from the OY . axis. 

317. Yes, it may, but it is not a very random variable. 
318. Just use Theorem 6.13. 
319. This is another application of Theorem 6.13. 
321. (a) ϕX1(a, b) = Ee〈(a,b),X1〉 = (eia + e−ia + eib + e−ib)/4 = 1 − a2+b2

2 +
o(a2 + b2).. (b) ϕX1(a, b) = 1 − a2+b2

3 + o(a2 + b2).. (c)  ϕX1(a, b) = 1 −
2a2+(b−a)2

6 + o(a2 + b2).. 
We can now find the limit of ϕSn/n(a, b).. 

Exercises 6.3.1 

324. Note that 

. 

(
n

k

)

pk
n(1−pn)

n−k = (npn)
k

k!
n(n − 1) . . . (n − k + 1)

nk

(
1−pn

)−k(
1−npn

n

)n

.

325. Yes, the limit distribution is a Cauchy distribution with parameters mA, aA. if 
Xi . have the Cauchy distribution with parameters m, a .. 

326. You need to use Lemma 6.17. We are looking for a compact interval of the 
form [−2/u, 2/u]., where u. should be selected similarly to Step 1 of the proof 
of the Lévy–Cramér theorem, but uniformly for all ϕn .. 

328. Note that 

. 

(
n

k

)

pk
n(1−pn)

n−k = (npn)
k

k!
n(n − 1) . . . (n − k + 1)

nk

(
1−pn

)−k(
1−npn

n

)n

.

Exercises 6.4.1 

334. Too difficult for you? That’s good! The function f (t) = ∫ π/2
0 cos (t cos x) dx . 

is a special function—a Bessel function of the first kind. However, it is 
possible to show elementarily that ϕ(X,Y )(a, b) = ϕ(X,Y )(

√
a2 + b2, 0).. 

Exercises 7.2.1 

341. (a) Note that P{∑n
Xk � 2n} � P{Xn = 2n,Xn−1 = 2n−1} = 1

4 . because 

2k − 2 � | ∑k−1
1 (±2j )|.. Hence, it already follows that neither the Weak
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nor the Strong Law of Large Numbers does not hold. (b) Yes. (c) Let us first 
show that random variables

∑n
1 Xk . are symmetric, e.g. by showing that their 

characteristic functions are real. Now simply note that P{∑n
1 Xk � n} �

P{Xn = n,
∑n−1

1 Xk � 0} � 1
2

1
2 . and draw conclusions. (f) The Strong Law 

of Large Numbers holds. What about the Weak? 
342. We have EXn = 0. and VarXn = ln n., thus 

. n−2
n∑

k=1

VarXn = n−2
n∑

k=1

ln n � n−1 ln n → 0 if n → ∞.

343. Note that 

. P

{
1

n

∣
∣
∣
∣

n∑

k=1

Xk

∣
∣
∣
∣ < ε

}

= 1

2
P

{∣
∣
∣
∣
1

n

n−1∑

k=1

Xk + αn

∣
∣
∣
∣ < ε

}

+ 1

2
P

{∣
∣
∣
∣
1

n

n−1∑

k=1

Xk − αn

∣
∣
∣
∣ < ε

}

.

Let ε ∈ (0, α).. If  ω ∈ �. such that
∣
∣
∣ 1
n

∑n−1
k=1 Xk + αn

∣
∣
∣ < ε ., then 

. 

∣
∣
∣
∣
1

n

n−1∑

k=1

Xk − αn

∣
∣
∣
∣ =

∣
∣
∣
∣
1

n

n−1∑

k=1

Xk + αn − 2αn

∣
∣
∣
∣ > 2αn − ε > α.

By changing αn . to − αn . in the above reasoning, we get that the sets under 
consideration are disjoint. Hence, P

{
1
n

∣
∣∑n

k=1 Xk

∣
∣ < ε

}
� 1

2 . for every n ∈ N. 

and it cannot converge to one. 
344. Note first that 

. Cov(Xi,Xj ) �
√

VarXiVarXj � VarXi + VarXj .

Hence, 

. Var

( n∑

k=1

Xk

)

=
n∑

k=1

VarXk + 2
(

Cov(X1, X2) + · · · + Cov(Xn−1, Xn)
)

=
n∑

k=1

VarXk + 2

( n∑

k=2

VarXk−1 +
n∑

k=1

VarXk+1

)

� 5
n+1∑

k=1

VarXk.

Now we should use the assumption and prove the result.
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Exercises 7.3.1 

346. Approximately 0.0793.. 
347. Obviously, X . is the waiting time for the hundredth success, so we know the 

exact distribution. Let Xi = 1. if i-th passer-by buys a newspaper, otherwise 
Xi =. 0. The variables Xi . are independent, EXi = 1/3., VarXi = 2/9.. We are  
looking for an estimate of the cumulative distribution function: 

. P {X < 100 + n} = P
{ 100+n∑

1

Xi > 100

}

∼ 1 − �

(
200 − n√
2(100 + n)

)

.

348. Let Xi . denote the error of the i-th approximation, n = 1200.. 

. P
{∣
∣
∣

n∑
Xi

∣
∣
∣ > 10

}

∼ 2(1 − �(1)) ∼ 0.3174.

349. Let m = EXk ., σ 2 = VarXk .. Then 

. P

{

a <

n∑

k=1

Xk < b

}

∼ �

(
b − nm

σ
√

n

)

− �

(
b − nm

σ
√

n

)

.

350. This limit is equal to 1
2 . if EXk = 0.. 

351. If x � 0. the result is trivial. For x > 0., the probability is approximately equal 
to 2�(xnα− 1

2 /σ) − 1.. 
352. After applying the Central Limit Theorem, the condition can be written as 

�(
√

3(2an − √
n)) → p .. 

353. Note that 

. 
1√
n

n∑

k=1

Xk = 1√
n

n∑

k=1

(Xk − EXk) + 1√
n

n∑

k=1

E (Xk − [Xk])

= 1√
n

n∑

k=1

(Xk − EXk) + 1√
n

n∑

k=1

E{Xk}

= 1√
n

n∑

k=1

(Xk − EXk) + √
nE{X1}.

Now all you need to do is apply the Central Limit Theorem.
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354. If X1, X2, . . . . are independent and identically distributed with the Poisson 
distribution with parameter 1., then

∑n
k=1 Xk . has the Poisson distribution with 

parameter n.. Hence, 

. e−n

n∑

k=0

nk

k! =
n∑

k=0

P
{ n∑

j=1

Xj = k

}

= P
{

0 �
n∑

j=1

Xj � n

}

= P
{

− √
n �

∑n
j=1 Xj − n√

n
� 0

}
CT G≈ �(0) − �(−√

n) → 1

2
.

Exercises 8.3.1 

362. (a) We are looking for a non-negative function h, such that for any Borel set 
A ⊂ [0,∞)., the following equality holds: 

. 

∫

A

h(x)
1√
2π

e−x2/2 dx =
∫

A

bp


(p)
xp−1e−bx dx.

364. It is not true that if a distribution μ. is absolutely continuous with respect to 
the measure λ., then the implication (λ(A) > 0) ⇒ (μ(A) > 0). holds. Hence, 
the support of μ. does not have to be the entire real line, and supports of the 
measures μ. and ν . can be disjoint. 

366. No, it isn’t, but it should be proven. 

Exercises 8.4.2 

367. We see that A. is an atomic σ .-field, so we proceed as in Example 8.20. 
368. Note that P(dω) = e−ωdω. on the positive part and P(dω) = 0. on the negative 

part of the real axis. 
369. No, the number of values can increase. As a counterexample, it is sufficient to 

consider a two-valued random variable and a σ .-field generated by three atoms. 
370. Of course, the constant EX . is an A.-measurable function. We still need to 

verify that the integration condition holds.
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371. Let us go further, namely, if X is A1 . measurable and Y is A2 . measurable, then 
X, Y are independent. We start with the case when the variables are simple, 
i.e., X = ∑

xi1Ai
., Y = ∑

yj1Bj
.. Then, for any Borel sets C,D ⊂ R., we  

have: 

. P{X ∈ C, Y ∈ D} = P
( ⋃

xi∈C

⋃

yj ∈D

(Ai ∩ Bj)
)

=
∑

xi∈C

∑

yj ∈D

P(Ai ∩ Bj)

=
∑

xi∈C

P(Ai) ·
∑

yj ∈D

(Bj ) = P{X ∈ C}P{Y ∈ D}.

373. It is not necessary. Still, the answer itself is not enough. It is easy to construct 
a counterexample for two discrete random variables. 

374. E(Sk

∣
∣Fn) = Sk∧n . a.e., where k ∧ n = min {k, n}..



Appendix 
Table of Normal Distribution Function �. 

of N(0, 1). 

t 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 051.8 0.8078 0.8106 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9685 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 

t 1.282 1.654 1.960 2.326 2.576 3.090 3.291 3.891 4.417 

�(t). 0.90 0.95 0.975 0.99 0.995 0.999 0.9995 0.99995 0.999995 
2(1 − �(t)). 0.20 0.10 0.05 0.02 0.01 0.002 0.001 0.0001 0.00001 
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14. Plucińska, A., Pluciński, E.: Elements of Probabilistics (in Polish). PWN, Seria Matematyka 

dla Politechnik. Warszawa (1981) 
15. Prokchorow, A.W., Uszakow, W.G., Uszakow, N.G.: Exercise Manual in Probability Theory: 

Basic Concepts, Limit Theorems, Stochastic Processes (in Russian). Nauka, Moskwa (1986) 
16. Stirling, J.: Methodus Differentialis. Balliol College, Oxford, Typis Gul. Bowyer. (1730) 
17. Stojanow, J., Mirazczijski, I., Ignatow, C., Tanuszew, M.: Exercise Manual in Probability The-

ory. Mathematics and its Applications, vol. 32. Springer, Berlin (1988). ISBN:9789027726872 
18. Vitali, G.: Sul problema della misura dei gruppi di punti di una retta. Gamberini e Parmeggiani, 

Bologna (1905) 
19. Weaver, W.: Lady Luck: The Theory of Probability. Dover, Garden City (1982). 

ISBN:0486243427 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
J. Misiewicz, A One-Semester Course on Probability, Springer Undergraduate 
Mathematics Series, https://doi.org/10.1007/978-3-031-86681-4

201

https://doi.org/10.1007/978-3-031-86681-4
https://doi.org/10.1007/978-3-031-86681-4
https://doi.org/10.1007/978-3-031-86681-4
https://doi.org/10.1007/978-3-031-86681-4
https://doi.org/10.1007/978-3-031-86681-4
https://doi.org/10.1007/978-3-031-86681-4
https://doi.org/10.1007/978-3-031-86681-4
https://doi.org/10.1007/978-3-031-86681-4
https://doi.org/10.1007/978-3-031-86681-4
https://doi.org/10.1007/978-3-031-86681-4


Index 

A 
Absolute moment, 104 
Algebra of sets, 9 
Almost sure convergence, 147 
Average value, 81 

B 
Bayes’ Formula, 31 
Bernoulli distribution, 57 
Bernoulli’s Weak Law of Large Numbers, 152 
Bernoulli trials, 34 
Bertrand’s paradox, 26 
Beta distribution, 64 
Binomial distribution, 57 
Borel–Cantelli Lemma, 42 
Buffon’s needle, 25 

C 
Cantor function, 68 
Cantor set, 102 
Carathéodory’s Theorem, 159 
Cauchy distribution, 65 
Central Limit Theorem, 153 
Central moment, 104 
Characteristic function, 121 
Chebyshev’s inequality, 108 
Chebyshev’s Weak Law of Large Numbers, 

152 
Chinczyn’s Law of Large Numbers, 147 
Classical definition of probability, 21 
Combination, 4 
Complete measure, 13 
Complete probability space, 13 

Conditional expectation, 173 
Conditional probability, 28 
Convergence almost everywhere, 147 
Convergence in distribution, 131 
Convergence in probability, 145 
Convergence with probability 1, 147 
Convolution of densities, 77 
Convolution of distributions, 77 
Copula, 113 
Correlation factor, 111 
Covariance, 111 
Covariance matrix, 112 
Crude moment, 103 
Cumulative distribution function, 52 

D 
De Moivre–Laplace Theorem, 154 
Density of distribution, 60 
Density of random variable, 60 
Devil’s staircase, 68 
Dirac delta measure, 13 
Discrete joint distribution, 74 
Discrete random variable, 52 
Distribution function, 52 

of random vector, 75 
Distribution of random variable, 50 

E 
Equality almost everywhere, 51 
Esperance, 81 
Events 

independent, 33 
pairwise independent, 33 
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204 Index

Expected value, 81, 82 
of continuous variable, 98 
of simple variable, 82 

Exponential distribution, 62 

F 
Fatou’s Lemma, 94 
Field of sets, 9 
Finite measure, 157 
Fourier transform, 121 
Function 

measurable, 47 

G 
Gamma distribution, 63 
Gaussian distribution, 65 
Geometric distribution, 58 
Geometric probability, 25 

H 
Hölder’s inequality, 106 
Hypergeometric distribution, 59, 83 

I 
Impossible event, 13 
Independent random variables, 71 

J 
Jensen’s inequality, 106 

K 
Kolmogorov’s First Strong Law of Large 

Numbers, 150 
Kolmogorov’s Second Strong Law of Large 

Numbers, 150 
Kolmogorov’s Zero-One Law, 143 
Kurtosis, 105 

L 
Law of Total Probability, 29 
Lebesgue Decomposition Theorem, 70 
Lebesgue’s Dominated Convergence Theorem, 

94 
Lebesgue’s Monotone Convergence Theorem, 

93 
Lebesgue–Stieltjes Integral, 100 
lim infn→∞ An ., 41 

lim supn→∞ An ., 41 
Lindeberg–Lévy Central Limit Theorem, 153 

M 
Markov’s inequality, 110 
Markov’s Weak Law of Large Numbers, 146 
Mathematical hope, 81 
Mean value, 81 
Measurable 

function, 47 
Measure 

absolutely continuous, 172 
signed, 171 

Measure extension theorem, 162 
Median, 103 
Moment, 103 
Multidimensional random variable, 74 
Multinomial distribution, 58 
Multivariate Gaussian distribution, 116 
Multivariate normal distribution, 116 

N 
Negative binomial distribution, 59 
Non-measurable sets, 18 
Normal distribution, 65 

O 
One-point distribution, 56 
One-point measure, 13 
Outer measure, 158 

P 
Pareto distribution, 105 
Pascal distribution, 59 
Percentiles, 103 
Poisson distribution, 58 
Probability, 13 

distribution, 50 
Probability measure, 13 

Q 
Quantile, 103 

R 
Radon–Nikodym Theorem, 172 
Random event, 13 
Random variable, 45, 47 
Random vector, 74
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Rare events, 144 
Raw moment, 103 
Ring of sets, 9 

S 
Sample space, 12 
Schwarz’s inequality, 105 
σ .-algebra of sets, 9 
σ .-field of sets, 9 
σ .-finite measure, 170 
σ .-ring of sets, 9 
Simple random variable, 52 
Single point distribution, 56 
Singular distribution, 68 
Space of elementary events, 12 
Standard deviation, 104 
Stirling’s formula, 37 
Sure event, 13 

T 
Tail event, 144 
Two-point distribution, 57 
Types of random variables, 68 

U 
Uniform distribution, 62 
Upper limit, 40 

V 
Variance, 104 
Variation with repetition, 3 
Variation without repetition, 4 

W 
Weak convergence, 131
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