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Foreword by Esteve
Fernandez

One of the most beautiful aspects of free and open-source software is how it
connects people from different backgrounds and places. ROS is no different.

ROS can be seen as a framework, a protocol or an ecosystem, but for some peo-
ple—including me—, it’s first and foremost a community. Everyone’s journey with
ROS is unique, and mine started almost 15 years ago.

In 2012, Fluidinfo, the company my good friend Terry Jones and I started, had
run out of money. Though the process of winding down the business was slow, it still
seemed like an abrupt change when we could no longer work on FluidDB. Suddenly,
I no longer had a job, but then I remembered why I got into computers, and that
was robotics. I was very lucky, because I found a master’s program at Universitat
Pompeu Fabra that still accepted applications. If Fluidinfo had shut down a week
later, it would have been a very different story. I enrolled in the program to delay
the decision of what to do in the future, and just enjoy learning about robotics for
a year. Like many other students and researchers at the time, I had the experience
of a robotics department with their own homemade robotics framework, with all the
pros and cons that involved. I knew there had to be a different way of programming
robots, one where certain problems were already solved.

And that’s how I found ROS 1 (or simply ROS, at the time). Of course, it had
its quirks, but its design made a lot more sense in my mind, as someone whose
background was in distributed systems. As a proof of concept to see if I understood
the internals of ROS, I created a ROS library for Twisted (remember, async Python
didn’t exist yet), a framework I was quite familiar with. Happy with the result, I
went to my first ROSCon to present it as a lightning talk. A week beforehand I had
applied for the Google Summer of Code to work on CloudSim at the Open Source
Robotics Foundation, so I was excited to have the chance to meet many of the people
at OSRF in person at ROSCon. The talk went well, and I went back to Spain to
finish my master’s. A few weeks later I was accepted at Google Summer of Code.
After Google Summer of Code ended, Brian Gerkey, the CEO of OSRF, sent me
an email asking if I’d be interested in interviewing for a job. Of course I said yes!
I flew to California for the interview, spent two weeks there working alongside the
ROS team and on the way back I got an email with a job offer. I honestly couldn’t
believe it, it felt like a joke, and I was more than happy to accept! There weren’t that
many people in the core team: William Woodall, Tully Foote, Morgan Quigley, Jackie
Kay, Dirk Thomas and me. We maintained all the essential ROS packages and more,
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until one day, we talked about creating a successor to ROS that would incorporate
all the knowledge the community had acquired over the years. We wanted to create
something that would fit their use cases much better, the spark of an idea that would
eventually become ROS 2.

Unsurprisingly, ROS 2 started with a new build system, ament, the successor to
ROS 1’s catkin. Both names came as a nod to the place where it all started, Willow
Garage.

Early designs for ROS 2 used ZeroMQ, our own custom protocol, and many others,
but DDS seemed to be the one that best fit the specs. DDS was being used in several
mission-critical cases, had multiple implementations and was backed by a consortium
of companies. Moreover, from the technical side, it had everything we needed in one
package: discovery, serialization, pubsub, and services. The early days of ROS 2 were
so much fun, but also we knew how important it was for the community to be able
to continue programming their robots with ROS. We wanted to show that the break
from ROS 1 was necessary in order to implement the vision of a robotics framework
that would work for the next generation of robotics. Because of that, we named early
ROS 2 Alphas after tools and objects that kept things together (e.g., Alpha 1 was
Anchor, Alpha 2 Baling wire, etc.), as we wanted to hold the community together
while ROS 2 broke away from ROS 1. ROS 1 was so disruptive because of how it
was developed in the open, the same way that developing an operating system kernel
in the open was completely unheard of before the Linux kernel. ROS 2, meanwhile,
represents the next stage, where robotics has matured enough to reach mass adoption.

After three years at OSRF, I wanted to move on to my next challenge, but I
wasn’t yet sure what that might be. So I moved to Madrid, where I met Francisco
Mart́ın Rico (known to most of us as “Paco”), and we quickly became friends. He
was using ROS 1 in his research, but he quickly saw that ROS 2 was going to be the
future. We ported ROS 2 to Aldebaran’s Pepper robot, to Microsoft’s Hololens, and
used it in a bunch of other interesting projects. I moved to Paris after Madrid, and
although I’ve worked on many other projects with Paco since, the thing I’m most
proud of is our friendship after so many years.

At the last ROSCon in Odense, someone asked me how familiar I was with ROS 2,
and I replied, “a bit”. It is strangely heartwarming that people are using a software
you co-created without even knowing who you are, and that the software has grown
a life of its own. This book is proof of that.

I hope you enjoy this book as much as I enjoyed writing the foreword for it, and
I hope it helps you in your journey with ROS 2. I can think of no one better to guide
you on your journey through ROS 2 than Paco.

Esteve Fernandez
Robotics Engineer, ROS 2 co-author



Preface to the Second
Edition

xix

I t has been almost four years since I embarked on this project. Initially, this book
was just a chapter for the book “Making Robots Work”, which, back in March

2021, was being promoted by Michele Colledanchise and Steve Macenski. It was an
ambitious project that originated from a call for authors on ROS Discourse and social
media. Each chapter was meant to focus on a different aspect of robotics: Making
Robots See, Making Robots Navigate, and so on, covering all the capabilities and
facets a robot could perform.

Authors were asked to submit a draft chapter, and I chose to write the introduc-
tory chapter, which provided an overview of ROS 2 and set up the simulator to be
used throughout the rest of the book. At the end of April, I submitted my draft, and
a month later, I was informed that my proposal had been accepted, with a deadline
of September to finalize the final chapter. That summer, I worked extremely hard
and delivered a 72-page chapter that condensed everything someone needed to know
about ROS 2 before tackling the more advanced content in the following chapters.
Unfortunately, at the end of October, Michele and Steve informed me that the project
had been canceled. It seemed that I was practically the only one who had delivered
something close to their vision on time. I was devastated, but they suggested I talk to
the editor, Randi Slack, to see if my work could still be put to good use. She proposed
expanding it to 100 pages. By March 2022, I had completed the book, which ended
up being 251 pages—although almost 100 of those pages consisted of the full source
code of the examples. I even created the book’s cover using draw.io, relying on simple
geometric shapes.

I uploaded the source code of the projects, designed for the Foxy distribution, to a
GitHub repository that I have continued to maintain across subsequent distributions
(Galactic, Humble, and Iron). The repository also includes slides for the chapters, all
openly accessible.

The book was published in the fall of 2022, two years ago now. During this time,
its reception within the ROS Community has been spectacular. Many people sent me
photos of the book through social media when it arrived, and I have met numerous
individuals who have told me that my book greatly helped them in their ROS training.
Every time someone asks me to sign their copy, I feel a mix of embarrassment and
pride. I believe I have helped many people, and for that, I feel genuinely happy.
Sometimes, I experience imposter syndrome when I see the impact and expectations
that my work has on others—not just this book, but also all the packages I have
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created and maintain. I understand that this feeling is normal and that, ironically,
only true impostors lack this syndrome.

A few months after the book was published, I invited readers to send me any
typos they found, and many people enthusiastically contributed. Unfortunately, these
corrections never made it to the first edition but have been incorporated into this
second edition. Another milestone for this book came when the publisher informed
me it would also be translated into Chinese. I am not sure what became of that, but
I still hope to one day see the cover written with sinograms. The most significant
milestone, however, was when the publisher proposed that I write this second edition
in February 2024.

In this second edition, I decided—without it being strictly necessary—to remove
all source code and replace it with two outstanding chapters: Delving deeper into
ROS 2 and how to contribute to the ROS ecosystem. In the first chapter, I explored
the intricacies of ROS 2’s execution model and wrote extensively about real-time
systems, drawing heavily from the incredible workshop I attended at ROSCon in
New Orleans. For this, I even developed a simple tool to trace program execution. In
the second chapter, I focus on the ROS Community, discussing how to contribute to
existing projects and how to lead your own, covering critical aspects such as software
licensing and using Git the way it is used for ROS project contributions. Beyond
these two new chapters, I migrated everything to the Jazzy distribution, which was
a significant undertaking, as it required switching from Gazebo Classic to Gazebo
Harmonic. I was determined to keep using the Tiago robot because I needed a robot
with a neck for the visual attention chapter. While the rest of the book has been
thoroughly reviewed, it remains fundamentally the same as the previous edition. I
have changed the cover color to ensure that when you purchase the book, there
will be no doubt that you are acquiring this second edition, which is a significant
improvement over the previous one.

Lastly, I cannot express enough how thrilled I was that my friend Esteve agreed
to write the foreword. It is pure gold, in my opinion.

I did not write this book to get rich, but it is evident that it has brought me many
benefits. It is probably one of the factors that contributed to my accreditation as a
Full Professor in Spain, a requirement to access positions in the prestigious public
universities of this great country. Perhaps it also played a role in making me known to
the ROS Community, giving me the honor of representing it on the ROS 2 Technical
Steering Committee for two years. Who knows what the future holds?

Before concluding these notes on the second edition, I want to leave a word of
caution to readers: knowing ROS does not mean knowing Robotics. ROS is a powerful
tool for developing robotic applications, and you must master it to the point where
your lack of expertise with it never limits your ability to achieve your goals in a
robotic project. However, it is only the first step toward becoming a great professional
in Robotics.

Enjoy reading this book!

Francisco Mart́ın Rico
Full Professor on Robotics
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Introduction

ROBOTS must be programmed to be useful. It is useless for a robot to be
a mechanical prodigy without providing it with software that processes the

information from the sensors to send the correct commands to the actuators to fulfill
the mission for which it was created. This chapter introduces the middlewares for
programming robots and, in particular, ROS 2 [1], which will be the one used in this
book.

First of all, nobody starts programming a robot from scratch. Robot software is
very complex since we have to face the problem that a robot performs tasks in a real,
dynamic, and sometimes unpredictable world. It also must deal with a wide variety
of models and types of sensors and actuators. Implementing the necessary drivers or
adapting to new hardware components is a titanic effort doomed to failure.

Middleware is a layer of software between the operating system and user appli-
cations to carry out the programming of applications in some domains. Middleware
usually contains more than libraries, including development and monitoring tools and
a development methodology. Figure 1.1 shows a schematic of a system that includes
middleware for developing applications for robots.

Robot/Computer Hardware

Operating System

Middleware for Robots

Robotic
Application Tools

Other
Applications

Figure 1.1: Representation of software layers in a Robot.

Robot programming middlewares provide drivers, libraries, and methodologies.
They also usually offer development, integration, execution, and monitoring tools.
Throughout the history of Robotics, a multitude of robot programming middlewares
have emerged. Few of them have survived the robot for which they were designed
or have expanded from the laboratories where they were implemented. There are
notable examples (YARP [2], Carmen [3], Player/Stage [4], etc.), although without
a doubt the most successful in the last decade has been ROS [5], which is currently
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considered a standard in the world of robot programming. Technically, there are simi-
larities between the different middlewares: most are based on open source, many pro-
vide communication mechanisms for distributed components, compilation systems,
monitoring tools, etc. The big difference is the ROS developers community around
the world. There are also leading companies, international organizations, and univer-
sities worldwide in this community, providing a vast collection of software, drivers,
documentation, or questions already resolved to almost any problem that may arise.
Robotics can be defined as “the Art of Integration”, and ROS offers a lot of software
to integrate, as well as the tools to do so.

This book will provide the skills necessary to undertake projects in ROS 2, the
new version of ROS. It is unnecessary to have previous experience in ROS 2 since we
will describe its concepts, tools, and methodologies from the beginning without the
need for previous experience. We will assume average Linux and programming skills.
We will use the two programming languages officially supported in ROS 2 (C++ and
Python), which coincide with the languages most used in general in Robotics.

1.1 ROS 2 OVERVIEW

The meaning of the acronym ROS is Robot Operating System. It is not an operating
system that replaces Linux or Windows but a middleware1 that increases the system’s
capabilities to develop Robotic applications. The number 2 indicates that it is the
second generation of this middleware. The reader who already knows the first version
of ROS (sometimes referred to as ROS 1) will find many similar concepts, and there
are already several teaching resources2 for the ROS 1 programmer who lands on
ROS 2. In this book, we will assume no previous knowledge of ROS. It will be more
and more common for this to happen, as there are now more and more reasons to
learn ROS 2 directly instead of going through ROS 1 first.

Also, there are already some excellent official ROS 2 tutorials, so the approach
in this book is intended to be different. The description will be complete and with
a methodology oriented to developing robotic applications that make the robot do
something “smart”, from robotic engineer to robotic engineer, emphasizing essential
issues that come from experience in the development of software in robots. It will not
hurt for the reader to explore the tutorials available to complete their training and
fill in the gaps that do not fit in this book:

• Official ROS 2 tutorials: https://docs.ros.org/en/jazzy/Tutorials.html

• The Robotics Back-End tutorials: https://roboticsbackend.com/category/
ros2

• ROS 2 for ROS developers: https://github.com/fmrico/ros_to_ros2_
talk_examples

1ROS is not defined as a 100% middleware (https://answers.ros.org/question/12230/what-
is-ros-exactly-middleware-framework-operating-system/), it is a mixture of middleware,
framework, and meta operating system.

2https://github.com/fmrico/ros_to_ros2_talk_examples

https://docs.ros.org/en/jazzy/Tutorials.html
https://roboticsbackend.com/category/ros2
https://github.com/fmrico/ros_to_ros2_talk_examples
https://answers.ros.org/question/12230/whatis-ros-exactly-middleware-framework-operating-system
https://github.com/fmrico/ros_to_ros2_talk_examples
https://roboticsbackend.com/category/ros2
https://answers.ros.org/question/12230/whatis-ros-exactly-middleware-framework-operating-system
https://github.com/fmrico/ros_to_ros2_talk_examples


Introduction ■ 3

The starting point is a Linux Ubuntu 24.04 LTS system installed on a computer
with an AMD64-bit architecture, the most extended one in a personal laptop or
desktop computer. The Linux distribution is relevant since ROS 2 is organized in
distributions. A distribution is a collection of libraries, tools, and applications whose
versions are verified to work together correctly. Each distribution has a name and
is linked to a version of Ubuntu. The software in a distribution is also guaranteed
to work correctly with the software version present on the system. It is possible to
use another Linux distribution (Ubuntu, Fedora, Red Hat ...), but the reference is
Ubuntu. ROS 2 also works on Windows and Mac, but this book focuses on Linux
development. We will use the ROS 2 Jazzy Jalisco version, which corresponds to
Ubuntu 24.04.

In this book, we will approach ROS 2 from three different but complementary
dimensions:

• The Community: The ROS community is a fundamental element when de-
veloping applications for robots with this middleware. In addition to providing
technical documentation, there is a vast community of developers who con-
tribute with their own applications and utilities through public repositories, to
which other developers can contribute. Another member of the community may
have already developed something you need.

• Computation Graph: The Computational Graph is a running ROS 2 ap-
plication. This graph is made up of nodes and arcs. The Node, the primary
computing unit in ROS 2, can collaborate with other nodes using several differ-
ent communication paradigms to compose a ROS 2 application. This dimension
also addresses the monitoring tools, which are also nodes that are inserted in
this graph.

• The Workspace: The Workspace is the set of software installed on the robot
or computer and the programs that the user develops. In contrast to the Com-
putational Graph, which has a dynamic nature, the Workspace is static. This
dimension also addresses the development tools to build the elements of the
Computational Graph.

1.1.1 The ROS Community

The first dimension of ROS 2 to consider is the ROS Community. The Open Source
Robotics Foundation3 greatly enhanced the community of users and developers. ROS
2 is not only a robot programming middleware, but it is also a development method-
ology, established software delivery mechanisms, and a set of resources made available
to members of the ROS community.

ROS 2 is fundamentally open source, which means that it is software released
under a license in which the user has rights of use, study, change, and redistribution.
Many open-source licenses modulate certain freedoms on this software, but essentially
we can assume these rights. The most common licenses for ROS 2 software packages

3https://www.openrobotics.org

https://www.openrobotics.org
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are Apache 2 and BSD, although developers are free to use others. I will discuss
licenses in greater detail in Section 8.2.1 in the final chapter of this book.

ROS 2 organizes the software following a federal model, providing the technical
mechanisms that make it possible. Each developer, company, or institution can de-
velop their software freely, responsible for managing it. It is also widespread that small
projects create a community around it, and this community can organize decision-
making on releasing issues. These entities create software packages for ROS 2 that
they can make available in public repositories or be part of a ROS 2 distribution as
binaries. Nobody can force these entities to migrate their software to new versions
of ROS 2. However, the inertia of many essential and popular packages is enough to
guarantee their continuity.

The importance of this development modeling is that it fosters the growth of the
ROS community. From a practical point of view, this is key to the success of a robot
programming middleware. One of the desirable characteristics of this type of middle-
ware is its support for many sensors and actuators. Nowadays, many manufacturers
of these components officially support their drivers for ROS 2 since they know that
there are many potential customers and that there are many developers who check if
a specific component is supported in ROS 2 before buying them. In addition, these
companies usually develop this software in open repositories where user communi-
ties can be created reporting bugs and even sending their patches. If you want your
library or tool for robots to be widely used, supporting ROS 2 may be the way.

The packages in ROS 2 are organized in distributions. A ROS 2 distribution is
made up of a multitude of packages that can work well together. Usually, this implies
that it is tied to a specific version of a base system. ROS 2 uses Ubuntu Linux versions
as reference. This guarantees stability since otherwise, the dependencies of versions
of different packages and libraries would make ROS 2 a real mess. When an entity
releases specific software, it does so for a given distribution. It is common to maintain
multiple development branches for each distribution.

ROS 2 has released a total of ten distributions to date (November’24), which
we can see in Figure 1.2. Each distribution has a name whose initial increases and a
different logo (and a different T-shirt model!). An eleventh distribution, which is a bit
special, called Rolling Ridley, serves as a staging area for future stable distributions
of ROS 2 and as a collection of the most recent development releases.

If you want to contribute your software to a distribution, you should visit the
rosdistro repository (https://github.com/ros/rosdistro) and a couple of useful
links:

• Contributing: https://github.com/ros/rosdistro/blob/master/
CONTRIBUTING.md

• Releasing your package: https://docs.ros.org/en/rolling/How-To-
Guides/Releasing/Releasing-a-Package.html

The Open Source Robotics Foundation makes many resources available to the
community, among which we highlight:

https://github.com/ros/rosdistro
https://github.com/ros/rosdistro/blob/master/CONTRIBUTING.md
https://docs.ros.org/en/rolling/How-To-Guides/Releasing/Releasing-a-Package.html
https://docs.ros.org/en/rolling/How-To-Guides/Releasing/Releasing-a-Package.html
https://github.com/ros/rosdistro/blob/master/CONTRIBUTING.md
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Figure 1.2: ROS 2 distributions delivered until December 2024.

Distro Name Release Data EOL Date Ubuntu Version
Jazzy Jalisco May 23rd, 2024 May 2029 Ubuntu 24.04
Iron Irwini May 23rd, 2023 November 2022
Humble Hawksbill May 23rd, 2022 May 2027 Ubuntu 22.04

Galactic Geochelone May 23rd, 2021 November 2022
Foxy Fitzroy June 5th, 2020 May 2023 (LTS) Ubuntu 20.04

Eloquent Elusor November 22nd, 2019 November 2020
Dashing Diademata May 31st, 2019 May 2021 (LTS)
Crystal Clemmys December 14th, 2018 December 2019

Ubuntu 18.04

Bouncy Bolson July 2nd, 2018 July 2019
Ardent Apalone December 8th, 2017 December 2018 Ubuntu 16.04

• ROS Official Page. http://ros.org

• ROS 2 Documentation Page: https://docs.ros.org. Each distro has its

http://ros.org
https://docs.ros.org
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documentation. For example, at https://docs.ros.org/en/jazzy you can
find installation guides, tutorials, and guides, among others.

• Robotics Stack Exchange (https://robotics.stackexchange.com). A place
to ask questions and problems with ROS.

• ROS Discourse (https://discourse.ros.org). It is a discussion forum for
the ROS community, where you can keep up to date with the community, view
release announcements, or discuss design issues. They also have ROS 2 user
groups in multiple languages.

1.1.2 The Computation Graph

In this second dimension, we will analyze what a robot’s software looks like during
its execution. This vision will give us an idea of the goal, and we will be able to
understand better the why of many of the contents that will follow. This dimension
is what we call Computation Graph.

A Computation Graph contains ROS 2 nodes that communicate with each other
so that the robot can carry out some tasks. The logic of the application is in the
nodes, as the primary elements of execution in ROS 2.

ROS 2 makes intensive use of Object-Oriented Programming. A node is an object
of class Node, in general, whether it is written in C++ or Python.

A node can access the Computation Graph and provides mechanisms to commu-
nicate with other nodes through three types of paradigms:

• Publication/Subscription: It is an asynchronous communication where N
nodes publish messages to a topic that reaches its M subscribers. A topic is like
a communication channel that accepts messages of a unique type. This type of
communication is the most common in ROS 2. A very representative case is
the node that contains the driver of a camera that publishes images to a topic.
All the nodes in a system needing images from the camera to carry out their
function subscribe to this topic.

• Services: It is an asynchronous communication4 in which a node requests an-
other node and expects an immediate response. This communication usually
requires an immediate response so as not to affect the control cycle of the node
that calls the service. An example could be the request to the mapping service
to reset a map, with a response indicating if the call succeeded.

• Actions: These are asynchronous communications in which a node makes a
request to another node. These requests usually take time to complete, and the
calling node may periodically receive feedback or the notification that it has fin-
ished successfully or with some error. A navigation request is an example of this

4This communication type was synchronous in ROS 1, but in ROS 2 it is not recommended to
implement a synchronous service client (https://docs.ros.org/en/jazzy/How-To-Guides/Sync-
Vs-Async.html).

https://docs.ros.org/en/jazzy
https://robotics.stackexchange.com
https://discourse.ros.org
https://docs.ros.org/en/jazzy/How-To-Guides/Sync-Vs-Async.html
https://docs.ros.org/en/jazzy/How-To-Guides/Sync-Vs-Async.html


Introduction ■ 7

type of communication. This request is possibly time-consuming, whereby the
node requesting the robot to navigate should not be blocked while completing.

The function of a node in a computational graph is to perform processing or
control. Therefore, they are considered active elements with some alternatives in
terms of their execution model:

• Iterative execution: It is popular in the control software for a node to execute
its control cycle at a specific frequency. This approach allows controlling how
many computational resources a node requires, and the output flow remains
constant. For example, a node calculating motion commands to actuators at
20 Hz based on their status.

• Event-oriented execution: The execution of these nodes is determined by
the frequency at which certain events occur, usually the arrival of messages
at this node. For example, a node that, for each image it receives, performs
detection on it and produces an output. The frequency at which an output
occurs depends on the frequency at which images arrive. If no images reach it,
it produces no output.

Next, we will show several examples of computational graphs. The legend in
Figure 1.3 shows the elements used in these examples.

node name ROS2 Node

Process

Topic

Publication

topic name
topic msg type

Subscription

Action

Figure 1.3: Description of symbols used in computer graph diagrams.

The first Computation Graph, shown in Figure 1.4, is a simple example of a
program that interacts with a Kobuki5 robot, a small mobile robot based on Roomba6.

The Kobuki robot driver is a node that communicates with the robot’s hardware
using a native driver. Its functionality is exposed to the user through various topics.
In this case, we have shown only two topics:

• /mobile base/event/bumper: A topic in which the Kobuki driver publishes
a kobuki msgs/msg/BumperEvent message every time one of the bumpers
changes state (whether or not it is pressed). All nodes of the system interested
in detecting a collision with this sensor subscribe to this topic.

5http://kobuki.yujinrobot.com/about2
6https://en.wikipedia.org/wiki/Roomba

http://kobuki.yujinrobot.com/about2
https://en.wikipedia.org/wiki/Roomba
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Robot Hardware

Kobuki Node

Control 
Application

/mobile_base/event/bumper /mobile_base/commands/velocity
kobuki_msgs/msg/BumperEvent geometry_msgs/msg/Twist

10 Hz

Figure 1.4: Computing graph of a simple control for the Kobuki robot. The control
application publishes speeds computed from the information of the bumper to which
it subscribes.

• /mobile base/commands/velocity: The topic to which the Kobuki driver sub-
scribes to adjust its speed. If it does not receive any command in a second, it
stops. This topic is of type geometry msgs/msg/Twist. Virtually all mobile
robots in ROS 2 receive these types of messages to control their speed.

Deep dive: Names in ROS 2

The names of the resources in ROS 2 follow a convention very similar to the filesystem
in Unix. When creating a resource, for example, a publisher, we can specify its name
as relative, absolute (begins with ”/”), or private (begins with ”∼”). Furthermore, we
can define a namespace whose objective is to isolate resources from other namespaces by
adding the workspace’s name as the first component of the name. Namespaces are helpful,
for example, in multirobot applications. Let’s see an example of the resulting name of a
topic based on the node name and the namespace:

name Result: (node: my node / ns: none) Result: (node: my node / ns: my ns)
my topic /my topic /my ns/my topic
/my topic /my topic /my topic
∼my topic /my node/my topic /my ns/my node/my topic

Further readings:
• http://wiki.ros.org/Names
• https://design.ros2.org/articles/topic\_and\_service\_names.html

This node runs inside a separate process. The Computation Graph shows another
process that subscribes to the bumper’s topic, and based on the information it re-
ceives, it publishes the speed at which the robot should move. We have set the node’s
execution frequency to indicate that it makes a control decision at 10 Hz, whether or
not it receives messages about the status of the bumper.

This Computation Graph comprises two nodes and two topics, with their respec-
tive publication/subscription connections.

Let’s evolve the robot and the application. Let’s add a laser and a 3D camera (also
called RGBD camera). For each sensor, a node must access the sensor and present it

http://wiki.ros.org/Names
https://design.ros2.org/articles/topic\_and\_service\_names.html
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with a ROS 2 interface. As we said earlier, publishing the data from a sensor is the
most convenient way to make this data available in a computational graph.

The application now makes the robot move toward people or objects detected
from the 3D image of an RGBD camera. A laser sensor avoids colliding as we move.
The Computation Graph shown in Figure 1.5 summarizes the application:

RGBD Sensor
NodeLaser Node

Robot Hardware

Kobuki Node

Control 
Application

/mobile_base/commands/velocity
geometry_msgs/msg/Twist

/scan
sensor_msgs/msg/LaserScan

/camera/rgb/image_raw
sensor_msgs/msg/Image

/camera/depth/points
sensor_msgs/msg/PointCloud2

20 Hz

People
Perception

Object
Perception

/detected_people

/detected_objects
vision_msgs/msg/Detection3D

vision_msgs/msg/Detection3D

Figure 1.5: Computing graph of a control application that uses the laser data and
preprocessed information (people and objects) obtained from the robot’s RGBD
camera.

• The control node runs at 20 Hz sending control commands to the robot base.
It subscribes to the topic /scan to check the obstacles around it.

• The process contains two nodes that detect people and objects, respectively.
Both need the image and depth information from the camera to determine the
position of detected objects. Each detection is published to two different topics,
using a standard message designed for 3D detection.

• The control node subscribes to these topics to carry out its task.

Using the Tiago7 robot from the previous example, let’s assume that there is
only one node that provides its functionality. We use in this example two subscribers
(speed commands to move its base and trajectory commands to move its neck) and
two publishers (laser information and the 3D image from an RGBD camera).

The application (Figure 1.6) is divided into two subsystems, each one in a different
process that contains the nodes of each subsystem (we have omitted the details of
the topics of each subsystem):

• Behavior subsystem: It comprises two nodes that collaborate to generate
the robot’s behavior. There is behavior coordinator (Coordinator) and a node

7https://pal-robotics.com/es/robots/tiago

https://pal-robotics.com/es/robots/tiago
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that implements an active vision system (HeadController). Coordinator de-
termines where to look and which points the robot should visit on a map.

• Navigation subsystem: This example of a navigation subsystem consists of
several nodes. The navigation manager coordinates the planner (in charge of
creating routes from the robot’s position to the destination) and the controller
(which makes the robot follow the created route). The planner needs the map
provided by a node that loads the environment map and the robot’s position
that calculates a location node.

• Communication between both subsystems is done using ROS 2 actions. The
Navigation Behavior sets a goal and is notified when it is complete. It also
periodically receives progress toward the destination. Actions are also used to
coordinate the planner and controller within the navigation system.

Robot Hardware

Tiago Nodes

/nav_vel

geometry_msgs/msg/Twist
control_msgs/msg/JointTrajectoryControllerState

/scan_raw

sensor_msgs/msg/LaserScan

/head_controller/joint_trajectory
trajectory_msgs/msg/JointTrajectory

/joint_command

/head_controller/state

/joint_state

Navigation System

Map Server Localization

Planner

ControllerNavigation
Manager

HeadController

10 Hz

Coordinator

Behavior System

/camera/depth/points

sensor_msgs/msg/PointCloud2

Figure 1.6: Computing graph of behavior-based application for the Tiago robot that
uses a navigation subsystem.

Throughout this subsection, we have shown a few examples of computational
graphs. Every time we implement an application in ROS 2, we design a computational
graph. We establish which nodes we need and what their interactions are. We must
decide if a node is executed at a specific frequency or if some event causes its execution
(request or message). We can develop all the nodes or include in the Computation
Graph nodes developed by third parties.
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Although we can define new message types in our application, ROS 2 has defined
a set of standard message types that facilitate the interaction of nodes from different
developers. It does not make sense, for example, to define a new type of message
for images, since there are a lot of third-party software, processing, and monitor-
ing tools that consume and produce the type of message considered standard for
images (sensor msgs/msg/Image). Always use existing standard messages whenever
possible.

1.1.3 The Workspace

The Workspace dimension describes the ROS 2 software from a static point of view.
It refers to where the ROS 2 software is installed, organized, and all the tools and
processes that allow us to launch a computing graph. This includes the build system
and node startup tools.

The fundamental element in this dimension is the package. A package contains
executables, libraries, or message definitions with a common purpose. Usually, a pack-
age depends on other packages to run or be built.

Another element of this dimension is the workspace itself. A workspace is a di-
rectory that contains packages. This workspace has to be activated so that what it
contains is available to use.

There can be several workspaces active at the same time. This activation process
is accumulative. We can activate an initial workspace that we call underlay. Later,
we can activate another workspace that we will call overlay because it overlays the
previous underlay workspace. The overlay package dependencies should be satisfied
in the underlay. If a package in the overlay already exists in the underlay, the overlay
package hides the one in the underlay.

Usually, the workspace containing the basic ROS 2 installation is activated ini-
tially. This is the most common underlay in a ROS 2 system. Then, the workspace,
where the user is developing their own packages, is activated.

Packages can be installed from sources or with the system installation system.
On Ubuntu Linux 24.04, which is the reference in this book, it is carried out with deb
packages using tools like apt. Each ROS 2 package is packaged in a deb package. The
names of deb packages in a distribution are easily identifiable because their names
start with ros-<distro>-<ros2 package name>. In order to access these packages,
configure the APT ROS 2 repository:

$ sudo apt update && sudo apt install curl gnupg2 lsb-release

$ sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key
-o /usr/share/keyrings/ros-archive-keyring.gpg

$ echo "deb [arch=$(dpkg --print-architecture)
signed-by=/usr/share/keyrings/ros-archive-keyring.gpg]
http://packages.ros.org/ros2/ubuntu $(source /etc/os-release && echo
$UBUNTU CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

$ sudo apt-get update
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Of course, the installation dependencies of the Deb packages are those of the ROS
2 package. The following command shows the ROS 2 packages available to install:

$ apt-cache search ros-jazzy

ROS 2 Jazzy installation. Instructions are located at https://docs.ros.
org/en/jazzy/Installation/Ubuntu-Install-Debs.html. Basically, ROS 2 Jazzy
is installed just typing:

$ sudo apt update

$ sudo apt install ros-jazzy-desktop

All the ROS 2 software installed by apt is in /opt/ros/jazzy. On an Ubuntu
24.04 system, installing the ROS 2 Rolling version is also possible. If it is installed,
it is in /opt/ros/rolling. We could even install one of these ROS distributions by
compiling its source code in some other location. Because of this, and because it is
not recommended (unless you know what you are doing) to mix ROS distributions,
installing a distribution does not activate it. The activation is done by executing in
a terminal:

$ source /opt/ros/jazzy/setup.bash

This command activates the software in /opt/ros/jazzy. It is common to include
this line in $HOME/.bashrc so that it is activated by default when opening a terminal:

$ echo "source /opt/ros/jazzy/setup.bash" >> ∼/.bashrc

It is also convenient to install and configure the rosdep8 tool. This tool locates de-
pendencies not satisfied in a set of source packages and installs them as deb packages.
We only need to run these commands once after installation:

$ sudo rosdep init

$ rosdep update

Typically, the user creates a directory in his $HOME directory that contains the
sources of the packages he is developing. Let’s create a workspace only by creating
a directory with an src directory within. Then, add the example packages that we
will use throughout this book.

$ cd

$ mkdir -p bookros2 ws/src

$ cd bookros2 ws/src

$ git clone -b jazzy-devel https://github.com/fmrico/book ros2.git

8http://wiki.ros.org/rosdep

https://docs.ros.org/en/jazzy/Installation/Ubuntu-Install-Debs.html
http://wiki.ros.org/rosdep
https://docs.ros.org/en/jazzy/Installation/Ubuntu-Install-Debs.html
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If we explore the content that we have added under src, we will be able to see
a collection of directories. Packages are those that have a package.xml file in their
root directory.

In this workspace, there are many packages with dependencies on other packages
not part of the ROS 2 distribution. To add the sources of these packages to the
workspace, we will use the vcstool9:

$ vcs import . < book ros2/third parties.repos

The command vcs reads a list of repositories from a .repos file and clones them
into the specified directory. Before building, let’s use rosdep to install any package
missing to build the entire workspace:

$ rosdep install --from-paths src --ignore-src -r -y

Once the sources of the example packages with their dependencies are in the
working workspace, build the workspace, always from its root, using the colcon10

command:

$ colcon build --symlink-install

Check that three directories have been created in the workspace root:

• build: Contains the intermediate files of the compilation, as well as the tests,
and temporary files.

• install: Contains the compilation results, along with all the files necessary
to execute them (specific configuration files, node startup scripts, maps ...).
Building the workspace using the --symlink-install option, creates a symlink
to their original locations (in src or build), instead of copying. This way, we
save space and can modify certain configuration files directly in src.

• log: Contains a log of the compilation or testing process.
Deep dive: colcon

colcon (collective construction) is a command line tool for building, testing, and using
multiple software packages. With colcon, you can compile ROS 1, ROS 2, and even plain
CMake packages. It automates the process of building and set up the environment to use
the packages.
Further readings:

• https://design.ros2.org/articles/build\_tool.html
• https://colcon.readthedocs.io
• https://vimeopro.com/osrfoundation/roscon-2019/video/379127725

To clean/reset a workspace, simply delete these three directories. A new compi-
lation will regenerate them.

9https://github.com/dirk-thomas/vcstool
10https://colcon.readthedocs.io/en/released/index.html

https://design.ros2.org/articles/build\_tool.html
https://colcon.readthedocs.io
https://vimeopro.com/osrfoundation/roscon-2019/video/379127725
https://github.com/dirk-thomas/vcstool
https://colcon.readthedocs.io/en/released/index.html
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In order to use the content of the workspace, activate it as an overlay, in a similar
way to how the underlay was activated:

$ source ∼/bookros2 ws/install/setup.bash

It is common to include this line, as well as the underlay, in $HOME/.bashrc so
that it is activated by default when opening a terminal:

$ echo "source ∼/bookros2 ws/install/setup.bash" >> ∼/.bashrc

1.2 THE ROS 2 DESIGN

Figure 1.7 shows the layers that compose the design of ROS 2. The layer immediately
below the nodes developed by the users provides the programmer with an API to
interact with ROS 2. Packages in which nodes and programs are implemented in
C++ use the C++ client libraries, rclcpp. Packages in Python use rclpy.

Figure 1.7: ROS 2 layered design.

Rclcpp and rclpy are not completely independent ROS 2 implementations. If so, a
node in Python could have different behavior than one written in C++. Both rclcpp
and rclpy use rcl, which implements the basic functionality of all ROS 2 elements.
Rclcpp and rclpy adapt this functionality to the particularites of each language, along
with other changes required at that level, such as the threads model.
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Any client library for another language (Rust11, Go12, Java13, .NET14, ...) should
be built on top of rcl.

Rcl is the core of ROS 2. No one uses it directly for their programs. There is a
C client library for ROS 2 called rclc if the user wants to develop nodes written in
C. Although it is written in the same language as rcl, it still has to complete some
functionality and makes ROS 2 programming less arid than programming using rcl
directly.

A crucial component of ROS 2 is communications. ROS 2 is a distributed system
whose computing graph has nodes that can be spread over several machines. Even
with all the software running on a single robot, nodes are running on the operator’s
PC to monitor and control the robot’s operation.

ROS 2 has initially chosen Data Distribution Service (DDS)15 for its communica-
tions layer, a next-generation communications middleware implemented over UDP. It
allows the exchange of information between processes with real-time characteristics,
security capabilities, and custom quality of service of each connection. DDS provides
a publication/subscription communications paradigm, providing a mechanism to dis-
cover publishers and subscribers without needing a centralized service automatically.
This discovery is made using multicast, although subsequent connections are unicast
by default.

There are several DDS vendors, including FastDDS16, CycloneDDS17, or RTI18

Connext. All of them fully or partially implement the DDS standard defined by the
OMG19. ROS 2 can use all of these DDS implementations. Very few ROS 2 developers
would notice using one or the other. However, when we require high performance in
latency, amount of data, or resources used, their differences necessitate choosing one
that satisfies our criteria.

In recent distributions, initially introduced in Iron and stabilized in Jazzy, the
Zenoh protocol has emerged as an alternative to DDS for ROS 2 middleware20.
Zenoh is a high-performance, real-time communication protocol specifically designed
to address the challenges of data exchange in distributed systems, particularly in
scenarios with stringent requirements for bandwidth, latency, and scalability. Com-
bining features such as publish/subscribe, query/reply, and geo-distributed storage,
Zenoh offers a versatile solution for diverse applications. Its integration with ROS 2 is
especially significant, as it enhances ROS 2’s communication layer by enabling more
efficient data dissemination across networks, which is crucial for edge computing sce-
narios. Zenoh supports various transport protocols (e.g., UDP, TCP, etc.) and can
bridge data across geographically distributed locations, effectively addressing some

11https://github.com/ros2-rust/ros2_rust
12https://github.com/tiiuae/rclgo
13https://github.com/ros2-java/ros2_java
14https://github.com/ros2-dotnet/ros2_dotnet
15https://www.omg.org/omg-dds-portal
16https://github.com/eProsima/Fast-DDS
17https://github.com/eclipse-cyclonedds/cyclonedds
18https://www.rti.com/products/dds-standard
19https://www.omg.org
20https://github.com/ros2/rmw\_zenoh

https://github.com/ros2-rust/ros2_rust
https://github.com/tiiuae/rclgo
https://github.com/ros2-java/ros2_java
https://github.com/ros2-dotnet/ros2_dotnet
https://www.omg.org/omg-dds-portal
https://github.com/eclipse-cyclonedds/cyclonedds
https://www.rti.com/products/dds-standard
https://www.omg.org
https://github.com/ros2/rmw\_zenoh
https://github.com/eProsima/Fast-DDS
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of the limitations of ROS 2’s default communication protocol (DDS), particularly in
large-scale or geographically dispersed robotic systems.

The APIs of these DDS implementations do not have to be the same. In fact,
they are not. For this reason, and to simplify the rcl layer, an underlying layer called
rmw has been implemented, which presents the rcl programmer with a unified API
to access the functionality of each supported middleware implementation. Select-
ing which DDS to use is trivial, requiring just modifying an environment variable,
RMW IMPLEMENTATION.

In the Jazzy distribution, the official DDS implementation is FastDDS. There
has been only one exception to this: in the Galactic distribution, CycloneDDS was
the official version. This indicates that the official DDS implementation may change
again in the future. The competing vendors, in what has humorously been termed the
DDS Wars, strive to become the leading implementation. Ideally, this competition
will ultimately benefit the ROS 2 community.

1.3 ABOUT THIS BOOK

This book is intended to be a journey through programming robots in ROS 2, pre-
senting several projects where the main ROS 2 concepts are applied. Prior knowledge
of ROS/ROS 2 is not needed. Many of the concepts presented will sound familiar to
ROS 1 programmers along with interesting changes that ROS 2 introduces over the
previous version.

We will use C++ as the book’s preferred language, although our first examples
also include a Python one. We can develop complex and powerful projects in Python,
but in my experience with robots, I prefer to use a compiled language rather than an
interpreted one. Similarly, the concepts explained with C++ are equally valid with
Python. Another decision is to use Linux (specifically Ubuntu GNU / Linux 24.04
LTS) instead of Windows or Mac since it is the reference platform in ROS 2 and the
one that I consider predominant in Robotics.

I will assume that the reader is a motivated engineering student or an experi-
enced engineer/professional. We will be using many C++ features up to C++17,
including smart pointers (shared ptr and unique ptr), containers (vector, list,
map), generic programming, and more. I will try to explain complex code parts from
a language point of view, but the less advanced reader may need to consult some ref-
erences21,22. I also count on the reader to know CMake, Git, gdb, and other common
tools developers use in Linux environments. It can be a great time to learn it if you
do not know it because everything used in this book is what a robot programmer is
expected to know.

This book is expected to be read sequentially. It would be difficult for a beginner
in ROS 2 to follow the concepts if chapters were skipped. At some points, I will
include a text box like this:

21https://en.cppreference.com/w
22https://www.cplusplus.com

https://en.cppreference.com/w
https://www.cplusplus.com
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Deep dive: Some topic

Some explanation.

This box indicates that in the first reading, it can be skipped and returned to
later to deepen our understanding of some concepts.

Throughout the book, I will type shell commands. ROS 2 is used from the shell
mainly, and it is important that the user masters these commands. I will use these
text boxes for commands in the terminal:

$ ls /usr/lib

This book is not intended to be a new ROS 2 tutorial. The ones on the official
website are great! In fact, there are many concepts (services and actions) that are
best learned in these tutorials. This book wants to teach ROS 2 by applying concepts
to examples in which a simulated robot performs some mission. Also, we want to
teach not only ROS 2 but also some general concepts in Robotics and how they are
applied in ROS 2.

Therefore, we will analyze a significant amount of code in this book. I have pre-
pared a repository with all the code that we will use in:

https://github.com/fmrico/book_ros2

At the end of each chapter, I will provide exercises or improvements to help
strengthen your understanding of the subject. If you manage to solve it, it can be
uploaded to the official repository of the book, in a separate branch with a description
and with your authorship. Do this by making a pull request to the official book
repository. If I have time (I hope so), I would be happy to review it and discuss it
with you.

When it comes to indicating what the structure of a package is, I will use this
box:

To show source code, I will use this other box:
src/hello ros.cpp

1 #include <iostream>
2
3 int main(int argc, char * argv[]) {
4 std::cout << "hello ROS 2" << std::endl;
5
6 return 0;
7 }

Package my package

my_package/
CMakeLists.txt
src

hello_ros.cpp

https://github.com/fmrico/book_ros2
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Moreover, when it’s just a snippet of code, I will use this kind of box, unnumbered:

std::cout << "hello ROS 2" << std::endl;

I hope you enjoy this book. Let’s start our journey programming robots with ROS 2.



C H A P T E R 2

First Steps with ROS 2

THE previous chapter introduced the fundamental theoretical concepts of ROS
2, in addition to installing ROS 2. In this chapter, we begin to practice with

ROS 2 and learn the first ROS 2 concepts.

2.1 FIRST STEPS WITH ROS 2

ROS 2 has been already installed, and both the underlay (/opt/ros/jazzy) and the
overlay (∼/bookros2 ws) have been activated, by adding the source commands to
∼/.bashrc. Check it typing:

$ ros2

usage: ros2 [-h] Call ‘ros2 <command> -h‘ for more detailed usage. ...
ros2 is an extensible command-line tool for ROS 2.
...

If the underlay is activated, this command will be found.
ros2 is the main command in ROS 2. It allows to interact with the ROS 2 system

to obtain information or carry out actions.

ros2 <command> <verb> [<params>|<option>]*

To obtain the list of available packages, type:

$ ros2 pkg list

ackermann msgs
action msgs
action tutorials cpp
...

In this case, pkg manages ROS 2 packages. The list verb obtains the list of packages
in the underlay or any overlay.

DOI: 10.1201/9781003516798-2 19

https://doi.org/10.1201/9781003516798-2
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Deep dive: roscli

ros2cli is the ROS 2 command line interface tool. It is modular and extensible, so that
more functionality can be added by adding new actions. The standard actions currently
are:
action extension points node test
bag extensions param topic
component interface pkg wtf
launch run daemon lifecycle
security doctor multicast service
control

Further readings:
• https://github.com/ros2/ros2cli
• https://github.com/ubuntu-robotics/ros2_cheats_sheet/blob/master/cli/

cli_cheats_sheet.pdf

The ros2 command supports tab-key autocompletion. Type ros2 and then hit
the tab key twice to see the possible verbs. The arguments of a verb can also be
discovered with the tab key.

It is also possible to obtain information on a specific package. For example, to
get the executable programs from the demo nodes cpp package:

$ ros2 pkg executables demo nodes cpp

demo nodes cpp add two ints client
demo nodes cpp add two ints client async
demo nodes cpp add two ints server
demo nodes cpp allocator tutorial
...
demo nodes cpp talker
...

Execute one of them with the command using the run verb, which requires two
arguments: the package where the executable is and the name of the executable
program: The name of this package indicates that all the programs it contains are
written in C++.

$ ros2 run demo nodes cpp talker

[INFO] [1643218362.316869744] [talker]: Publishing: ’Hello World: 1’
[INFO] [1643218363.316915225] [talker]: Publishing: ’Hello World: 2’
[INFO] [1643218364.316907053] [talker]: Publishing: ’Hello World: 3’
...

As can be seen, when specifying the program to be executed with the package
name and executable name, it is not necessary to know exactly where the programs
are, nor to execute them in any specific location.

If everything went well, “Hello world” messages appear in the terminal with a
counter. Keep this command running and open another terminal to see what this
executable is doing. It is common in ROS 2 to have several terminals open simulta-
neously, so it is essential to organize them well on the screen to avoid getting lost.

https://github.com/ros2/ros2cli
https://github.com/ubuntu-robotics/ros2_cheats_sheet/blob/master/cli/cli_cheats_sheet.pdf
https://github.com/ubuntu-robotics/ros2_cheats_sheet/blob/master/cli/cli_cheats_sheet.pdf
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The small Computation Graph created by running the executable is shown in Figure
2.1.

/talker

1 Hz
/chatter

std_msgs/msg/String

Figure 2.1: Computation Graph for the Talker node.

Check the nodes that are currently running using the node verb and its list
argument, executing in another terminal:

$ ros2 node list

/talker

This command confirms that there is only one node called /talker. The names
of the resources in ROS 2, as is the case of the nodes, have a similar format to the
files in a Linux system. The slash separates parts of the name, starting with the /
root.

The node /talker does not just print an information message through the ter-
minal. It is also publishes messages to a topic.

Check, while the node /talker is running, what topics are in the system. For
this, use the topic verb with its list argument.

$ ros2 topic list

/chatter
/parameter events
/rosout

There are several topics, including /chatter, which is the one that publishes
/talker. Use the info parameter of the node verb to get more information:

$ ros2 node info /talker

/talker
Subscribers:

/parameter events: rcl interfaces/msg/ParameterEvent
Publishers:

/chatter: std msgs/msg/String
/parameter events: rcl interfaces/msg/ParameterEvent
/rosout: rcl interfaces/msg/Log

Service Servers:
...

The output shows several publishers, which coincide with the topics shown by the
previous command since there are no other nodes in the system.
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As we have said, each topic supports messages of only one type. The previous
commands already showed the type, although it can be verified by asking the topic
verb directly for the information of a specific topic:

$ ros2 topic info /chatter

Type: std msgs/msg/String
Publisher count: 1
Subscription count: 0

Messages are defined in packages that, by convention, have names ending in msgs.
However, there is a growing trend toward naming new message packages with the
interfaces suffix, as these packages often include definitions for services and ac-

tions as well. std msgs/msg/String is the String message defined in the std msgs
package. To check what messages are valid in the system, use the interfaces action
and its list argument.

$ ros2 interface list

Messages:
ackermann msgs/msg/AckermannDrive
ackermann msgs/msg/AckermannDriveStamped
...
visualization msgs/msg/MenuEntry

Services:
action msgs/srv/CancelGoal
...
visualization msgs/srv/GetInteractiveMarkers

Actions:
action tutorials interfaces/action/Fibonacci
...

The output shows all the types of interfaces through which the nodes can com-
municate in ROS 2. Adding the -m option, you can filter only the messages. Note
that there are more interfaces than just messages. Services and actions also have a
format that we can also inspect with ros2 interface.

Check the message format to get the fields contained in the message and their
type:

$ ros2 interface show std msgs/msg/String

... comments
string data

This message format has only one field called data, of type string.
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Deep dive: interfaces

A message is made up of fields. Each field has a different type, which can be a basic type
(bool, string, float64) or a message type. In this way, it is usual to create more complex
messages from simpler messages.

Stamped messages are an example. A series of messages, whose name ends in Stamped, add
a header to an existing message. Check the difference between these two messages:

geometry msgs/msg/Point
geometry msgs/msg/PointStamped

Further readings:
• https://docs.ros.org/en/jazzy/Concepts/About-ROS-Interfaces.html

Check the messages currently being published (/talker should be still running
in the other terminal) to the topic by typing:

$ ros2 topic echo /chatter

data: ’Hello World: 1578’
---
data: ’Hello World: 1579’
...

Next, execute a program that contains a node that subscribes to the topic
/chatter and displays the messages it receives on the screen. To execute it with-
out stopping the program that contains the /talker node, we run the /listener
node, which is in the homonymous program. Although there is a listener node in
the demo nodes cpp package, for variety, run the listener from a package where the
nodes are implemented in Python:

$ ros2 run demo nodes py listener

[INFO] [1643220136.232617223] [listener]: I heard: [Hello World: 1670]
[INFO] [1643220137.197551366] [listener]: I heard: [Hello World: 1671]
[INFO] [1643220138.198640098] [listener]: I heard: [Hello World: 1672]
...

Now the Computation Graph is made up of two nodes that communicate through
the topic /chatter. The Computation Graph would look like as shown in Figure 2.2.

/talker

1 Hz
/chatter

std_msgs/msg/String

/listener

Figure 2.2: Computation Graph for the Listener node.

It is also possible to visualize the Computation Graph by running the rqt graph
tool (Figure 2.3), which is in the rqt graph package:

$ ros2 run rqt graph rqt graph

https://docs.ros.org/en/jazzy/Concepts/About-ROS-Interfaces.html
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Figure 2.3: Program rqt graph.

Now, stop all the programs by pressing Ctrl-C in the terminals where they are
running.

2.2 DEVELOPING THE FIRST NODE

Up to this point, we have only used software from the packages that are part of the
ROS 2 base installation. In this section, we will create a package to develop the first
node.

The new package will be created in the overlay (cd ∼/bookros2 ws) to practice
creating packages from scratch.

All packages must be in the src directory. This time, we use the ros2 command
and the pkg verb with the create option. In ROS 2 packages, it is necessary to
declare what other packages they depend on, either on this workspace or another,
so that the compilation tool knows the order they have to be built. Go to the src
directory and run:

$ cd ∼/bookros2 ws/src

$ ros2 pkg create my package --dependencies rclcpp std msgs

This command creates the skeleton of the basics package, with some empty di-
rectories to host the source files of our programs and libraries. ROS 2 recognizes that
a directory contains a package because it has an XML file called package.xml. The
--dependencies option allows you to add the dependencies of this package. For now,
we will use rclcpp, which are the C++ client libraries.
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package.xml

1 <?xml version="1.0"?>
2 <?xml-model href="http://download.ros.org/schema/package_format3.xsd"
3 schematypens="http://www.w3.org/2001/XMLSchema"?>
4 <package format="3">
5 <name>my_package</name>
6 <version>0.0.0</version>
7 <description>TODO: Package description</description>
8 <maintainer email="john.doe@evilrobot.com">johndoe</maintainer>
9 <license>TODO: License declaration</license>

10
11 <buildtool_depend>ament_cmake</buildtool_depend>
12
13 <depend>rclcpp</depend>
14 <depend>std_msgs</depend>
15
16 <test_depend>ament_lint_auto</test_depend>
17 <test_depend>ament_lint_common</test_depend>
18
19 <export>
20 <build_type>ament_cmake</build_type>
21 </export>
22 </package>

Although ros2 pkg create is a good starting point for creating a new package, in
practice, it is usually made by duplicating an existing package, immediately changing
the name of the package, and later adapting it to its purpose.

As the example is a C++ package, since we have indicated that it depends on
rclcpp, in its root, a CMakeLists.txt file has also been created that establishes the
rules to compile it. We will analyze its content as soon as we add something to
compile.

First, create the program in ROS 2, as simple as possible, and call it
src/simple.cpp. The next text boxes contain the package structure and the source
code of src/simple.cpp:

src/simple.cpp

1 #include "rclcpp/rclcpp.hpp"
2
3 int main(int argc, char * argv[]) {
4 rclcpp::init(argc, argv);
5
6 auto node = rclcpp::Node::make_shared("simple_node");
7
8 rclcpp::spin(node);
9

10 rclcpp::shutdown();
11
12 return 0;
13 }

Package my package

my_package/
CMakeLists.txt
include

my_package
package.xml
src

simple.cpp
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• #include "rclcpp/rclcpp.hpp" allows access to most of the ROS 2 types and
functions in C++.

• rclcpp::init(argc, argv) extracts from the arguments with which this pro-
cess was launched any option that should be taken into account by ROS 2.

• Line 6 creates a ROS 2 node. node is a std::shared ptr to a ROS 2 node
whose name is simple node.
The rclcpp::Node class is equipped with many aliases and static functions to
simplify the code. SharedPtr is an alias for std::shared ptr<rclcpp::Node>,
and make shared is a static method for std::make shared<rclcpp::Node>.
The following lines are equivalent, going from a pure C++ statement to one
that takes advantage of ROS 2 facilities:

1. std::shared_ptr<rclcpp::Node> node = std::shared_ptr<rclcpp::Node>(
new rclcpp::Node("simple_node"));

2. std::shared_ptr<rclcpp::Node> node = std::make_shared<rclcpp::Node>(
"simple_node");

3. rclcpp::Node::SharedPtr node = std::make_shared<rclcpp::Node>(
"simple_node");

4. auto node = std::make_shared<rclcpp::Node>("simple_node");

5. auto node = rclcpp::Node::make_shared("simple_node");

• In this code, spin blocks the execution of the program so that it does not
terminate immediately. This important functionality will be explained in the
following examples.

• shutdown manages the shutdown of a node prior to the end of the program in
the next line.

Examine the CMakeLists.txt file, already prepared to compile the program.
Some parts that are not relevant have been removed for clarity:
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CMakeLists.txt

1 cmake_minimum_required(VERSION 3.5)
2 project(basics)
3
4 find_package(ament_cmake REQUIRED)
5 find_package(rclcpp REQUIRED)
6
7 set(dependencies
8 rclcpp
9 )

10
11 add_executable(simple src/simple.cpp)
12 ament_target_dependencies(simple ${dependencies})
13
14 install(TARGETS
15 simple
16 ARCHIVE DESTINATION lib
17 LIBRARY DESTINATION lib
18 RUNTIME DESTINATION lib/${PROJECT_NAME}
19 )
20
21 if(BUILD_TESTING)
22 find_package(ament_lint_auto REQUIRED)
23 ament_lint_auto_find_test_dependencies()
24 endif()
25
26 ament_export_dependencies(${dependencies})
27 ament_package()

Identify several parts in this file:

• In the first part, the packages needed are specified with find package. Apart
from ament cmake, which is always needed by colcon, just rclcpp is especified.
It is a good habit to create a dependencies variable with the packages that
this package depends on since we will have to use this list several times.

• For each executable:

Compile it: Do it with add executable, indicating the name of the re-
sult and its sources. Also, use ament target dependencies to make
headers and libraries from other packages accessible for the current
target. There are no dependencies with extra libraries, so just using
ament target dependencies is fine.

Install it: Indicate where to install the program produced, which generally
does not vary. A single install instruction will be valid for programs and
libraries of the package. In general, install everything needed to deploy
and run the program. If it is not installed, it does not exist.

Compile the workspace:

$ cd ∼/bookros2 ws

$ colcon build --symlink-install

While most ROS commands can be executed from anywhere within the file system,
I cannot stress enough that this particular command must always be run from the
root of the workspace ∼/bookros2 ws. Failing to do so—such as executing it from the
∼/bookros2 ws/src directory—will result in the creation of build, install, and
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log directories in the wrong location, cluttering your workspace with unnecessary
files. Moreover, such a compilation will have no practical effect, as these directories
will not be part of the workspace activation. Consequently, the latest changes from
this misplaced compilation will not be available for execution.

Since we have created a new program, we need a reloaded workspace. Open a new
terminal and execute:

$ ros2 run my package simple

And let’s see what happens: absolutely nothing (Figure 2.4).

/simple_node

Figure 2.4: Computation Graph for the Simple node.

Internally, our program is in the spin statement, blocked, waiting for us to finish
our program by pressing Ctrl+C. Before doing so, check that the node has been
created executing in another terminal:

$ ros2 node list
/simple node

We have described how to create a package from scratch. From now on, we will
use the packages downloaded from the repository of this book as seen in the previous
chapter. This will facilitate more efficient progress without becoming impeded by mi-
nor errors during the build of the package, as these can become significant challenges
at this stage.

2.3 ANALYZING THE BR2 BASICS PACKAGE

Once this process has been seen in detail, continue analyzing the content of the
br2 basics package, which contains more interesting nodes. The structure of this
package is shown in the following box, and the complete source code can be found in
the annexes and in the book repository:
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2.3.1 Controlling the Iterative Execution

The previous section described a program containing a node that literally did not do
much beyond existing. The program src/logger.cpp is more interesting, as it shows
more activity:

src/logger.cpp

auto node = rclcpp::Node::make_shared("logger_node");

rclcpp::Rate loop_rate_period(500ms);
int counter = 0;

while (rclcpp::ok()) {
RCLCPP_INFO(node->get_logger(), "Hello %d", counter++);

rclcpp::spin_some(node);
loop_rate_period.sleep();

}

This code shows a common approach to perform a task at a fixed frequency, which
is usual in any program that performs some control. The control loop is made in a
while loop, controlling the rate with an rclcpp::Rate object that makes the control
loop stop long enough to adapt to the selected rate.

This code uses spin some instead of spin, as used so far. Both are used to manage
the messages that arrive at the node, calling the functions that should handle them.
While spin blocks waiting for new messages, spin some returns once there are no
messages left to handle.

As for the rest of the code, RCLCPP INFO is used, which is a macro that prints
information. It’s very similar to printf, passing as first parameter the node’s logger
(an object inside nodes to log, got with get logger method). These messages are
displayed on the screen and are also published to the topic /rosout.

Run this program by typing:

Package br2 basics

br2_basics
CMakeLists.txt
config

params.yaml
launch

includer_launch.py
param_node_v1_launch.py
param_node_v2_launch.py
pub_sub_v1_launch.py
pub_sub_v2_launch.py

package.xml
src

executors.cpp
logger_class.cpp
logger.cpp
param_reader.cpp
publisher_class.cpp
publisher.cpp
subscriber_class.cpp
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$ ros2 run br2 basics logger

[INFO] [1643264508.056814169] [logger node]: Hello 0
[INFO] [1643264508.556910295] [logger node]: Hello 1
...

The program begins to show messages containing the criticality level of the mes-
sage, timestamp, the node that produced it, and the message.

As we said before, RCLCPP INFO also publishes a message of type rcl interfaces/
msg/Log to the topic /rosout, as shown in Figure 2.5. All nodes have a publisher to
send the output we generate to this node. It is quite useful when we do not have a
console to see these messages.

/logger_node

2 Hz
/rosout

rcl_interfaces/msg/Log

Figure 2.5: Computation Graph for the Logger node.

Take this opportunity to see how to see the messages that are published to a
topic:

$ ros2 topic echo /rosout

stamp:
sec: 1643264511
nanosec: 556908791

level: 20
name: logger node
msg: Hello 7
file: /home/fmrico/ros/ros2/bookros2 ws/src/book ros2/br2 basics/src/logger.cpp
function: main
line: 27
---
stamp:

sec: 1643264512
nanosec: 57037520

level: 20
...

Check the definition of the rcl interfaces/msg/Log message to verify that the
fields shown are the fields of this type of message. In the line field, we have our
message:

$ ros2 interface show rcl interfaces/msg/Log

Finally, use the rqt console tool to see the messages that are published in
/rosout, as shown in Figure 2.6. This tool, shown in Figure 2.7, is useful when
many nodes are generating messages to /rosout, and is useful to filter it by node,
by the level of criticality, etc.
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$ ros2 run rqt console rqt console

/logger_node

2 Hz
/rosout

rcl_interfaces/msg/Log

rqt_console

Figure 2.6: rqt console subscribes to /rosout, receiving the messages produced by
the Logger node.

Figure 2.7: rqt console program.

Test different frequencies by changing the time that object loop rate is created,
changing to 100 ms or 1 s, so that the control loop runs at 10 Hz or 1 Hz, respectively.

Do not forget to compile after every change. Use the option --packages-select
to compile only the package that we have changed, thus saving some time:

$ cd ∼/bookros2 ws

$ colcon build --symlink-install --packages-select br2 basics

From here on, the cd command will be omitted. It is essential to perform all the
compilations of a workspace from its root directory.
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Deep dive: logging

ROS 2 has a logging system that allows generating log messages with increasing severity
levels: DEBUG, INFO, WARN, ERROR or FATAL. For this, use the macro RCLCPP [LEVEL] or
RCLCPP [LEVEL] STREAM to use text streams.
By default, in addition to being sent to /rosout, severity levels INFO or higher will be dis-
played on the standard output. You can configure the logger to establish another minimum
level of severity to be displayed on the standard output:

$ ros2 run br2 basics logger --ros-args --log-level debug

When there are many nodes in an application, it is recommended to use tools such as
rqt console that allows selecting nodes and severities.
Further readings:

• https://docs.ros.org/en/jazzy/Tutorials/Logging-and-logger-
configuration.html

• https://docs.ros.org/en/jazzy/Concepts/About-Logging.html

The second strategy to iteratively execute a task can be seen in the
src/logger class.cpp program. In addition, we show something widespread in ROS
2, which is to implement the nodes inheriting from rclcpp::Node. This approach al-
lows for cleaner code and opens the door to many possibilities that will be shown
later:

src/logger class.cpp

class LoggerNode : public rclcpp::Node
{
public:

LoggerNode() : Node("logger_node")
{

counter_ = 0;
timer_ = create_wall_timer(

500ms, std::bind(&LoggerNode::timer_callback, this));
}

void timer_callback()
{

RCLCPP_INFO(get_logger(), "Hello %d", counter_++);
}

private:
rclcpp::TimerBase::SharedPtr timer_;
int counter_;

};

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node = std::make_shared<LoggerNode>();

rclcpp::spin(node);

rclcpp::shutdown();
return 0;

}

A timer controls the control loop. This timer produces an event at the desired
frequency. When this event happens, it calls the callback that handles it. The advan-
tage is that the node internally adjusts the frequency at which it should be executed

https://docs.ros.org/en/jazzy/Tutorials/Logging-and-logger-configuration.html
https://docs.ros.org/en/jazzy/Concepts/About-Logging.html
https://docs.ros.org/en/jazzy/Tutorials/Logging-and-logger-configuration.html
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without delegating this decision to external code. Schedule the nodes to know how
often they should run.

To compile these programs, the relevant lines in CMakeLists.txt are:

• For each executable, an add executable and its corresponding ament target
dependencies.

• An install instruction with all the executables.
CMakeLists.txt

1
2 add_executable(logger src/logger.cpp)
3 ament_target_dependencies(logger ${dependencies})
4
5 add_executable(logger_class src/logger_class.cpp)
6 ament_target_dependencies(logger_class ${dependencies})
7
8 install(TARGETS
9 logger

10 logger_class
11 ...
12 ARCHIVE DESTINATION lib
13 LIBRARY DESTINATION lib
14 RUNTIME DESTINATION lib/${PROJECT_NAME}
15 )

$ ros2 run br2 basics logger class

Build the package and run this program to see that the effect is the same as the
previous program. Try to modify the frequencies by setting a different time when
creating the timer, in create wall timer.

2.3.2 Publishing and Subscribing

Now extend the node so that, instead of writing a message on the screen, it publishes
a message to a topic (Figure 2.8), publishing consecutive numbers to a topic called
/counter. An exploration using the ros2 interface command with the list and
show options lets you find the message that best suits this duty: std msgs/msg/Int32.

It is necessary to include the headers where it is defined to use a message. Since
the type of the message to use is std msgs/msg/Int32, notice how from the name of
the message we can easily extract which header to include. Type it while inserting
one space before any existing uppercase, and converting all to lowercase. The name
of the type is also straightforwards:

// For std_msgs/msg/Int32
#include "std_msgs/msg/int32.hpp"

std_msgs::msg::Int32 msg_int32;

// For sensor_msgs/msg/LaserScan
#include "sensor_msgs/msg/laser_scan.hpp"

sensor_msgs::msg::LaserScan msg_laserscan;
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Now, let’s focus on the source code of PublisherNode:
src/publisher class.cpp

class PublisherNode : public rclcpp::Node
{
public:

PublisherNode() : Node("publisher_node")
{

publisher_ = create_publisher<std_msgs::msg::Int32>("int_topic", 10);
timer_ = create_wall_timer(

500ms, std::bind(&PublisherNode::timer_callback, this));
}

void timer_callback()
{

message_.data += 1;
publisher_->publish(message_);

}

private:
rclcpp::Publisher<std_msgs::msg::Int32>::SharedPtr publisher_;
rclcpp::TimerBase::SharedPtr timer_;
std_msgs::msg::Int32 message_;

};

/publisher_node

2 Hz
/int_topic

std_msgs/msg/Int32

Figure 2.8: Computation Graph for the Publisher node.

Let’s discuss the important aspects:

• We will use the std msgs/msg/Int32 message. From this name, we can deduce
that:

– Its header is std msgs/msg/int32.hpp.
– The data type is std msgs::msg::Int32.

• Create a publisher, the object in charge of creating the topic (if it does not
exist) and publishing the messages. It is possible to obtain more information
through this object, such as how many subscribers are listening on a topic.
We use create publisher, which is a public method of rclcpp::Node, and
it returns a shared ptr to an rclcpp::Publisher object. The arguments are
the name of the topic and an rclcpp::QoS object. This class has a constructor
that receives an integer that is the size of the output message queue for that
topic so that we can put this size directly, and the C++ compiler will do its
magic. We will see later that here we can select different QoS.

• We create a std msgs::msg::Int32 message, which we can verify that it only
has one data field. Every 500 ms, in the timer callback, we increment the
message field and call the publisher’s publish method to publish the message.
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Deep dive: QoS in ROS 2

The QoS in ROS 2 is an essential and valuable feature in ROS 2 and a point of failure, so
it must be well understood. In the references at the bottom of this table, you can see what
QoS policies can be established and their meaning. The following is an example of how to
set QoS policies in C++:

publisher = node->create_publisher<std_msgs::msg::String>(
"chatter", rclcpp::QoS(100).transient_local().best_effort());

Default Reliable Volatile Keep Last
Services Reliable Volatile Normal Queue
Sensor Best Effort Volatile Small Queue
Parameters Reliable Volatile Large Queue

Each publisher specifies its QoS, and each subscriber can specify its QoS as well. The
problem comes because there are QoS that are not compatible, and this will make the
subscriber not receive messages:

SubscriberCompatibility of QoS Durability Profiles Volatile Transient Local
Volatile Volatile No ConnectionPublisher Transient Local Volatile Transient Local

SubscriberCompatibility of QoS Reliability Profiles Best Effort Reliable
Best Effort Best Effort No ConnectionPublisher Reliable Best Effort Reliable

The criteria really should be that the publisher should have a less-restrictive QoS policy
than the subscriber. For example, the driver of a sensor should publish its readings with a
reliable QoS policy. The subscribers decide if they want the communication to be effectively
reliable or prefer Best Effort. In this case, these publishers could be:

publisher_ = create_publisher<sensor_msgs::msg::LaserScan>(
"scan", rclcpp::SensorDataQoS().reliable());

and the subscribers could use the same QoS, or remove the reliable part.
Further readings:

• https://docs.ros.org/en/jazzy/Concepts/About-Quality-of-Service-
Settings.html

• https://design.ros2.org/articles/qos.html
• https://discourse.ros.org/t/about-qos-of-images/18744/16

Run the program:

$ ros2 run br2 basics publisher class

https://docs.ros.org/en/jazzy/Concepts/About-Quality-of-Service-Settings.html
https://design.ros2.org/articles/qos.html
https://discourse.ros.org/t/about-qos-of-images/18744/16
https://docs.ros.org/en/jazzy/Concepts/About-Quality-of-Service-Settings.html
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And see what we are publishing to the topic:

$ ros2 topic echo /int topic

data: 16
---
data: 17
---
data: 18
...

We should see messages with std msgs/msg/Int32 messages whose data field is
increasing.

Now implement the Node that subscribes to this message:
src/subscriber class.cpp

class SubscriberNode : public rclcpp::Node
{
public:

SubscriberNode() : Node("subscriber_node")
{

subscriber_ = create_subscription<std_msgs::msg::Int32>("int_topic", 10,
std::bind(&SubscriberNode::callback, this, _1));

}

void callback(const std_msgs::msg::Int32::SharedPtr msg)
{

RCLCPP_INFO(get_logger(), "Hello %d", msg->data);
}

private:
rclcpp::Subscription<std_msgs::msg::Int32>::SharedPtr subscriber_;

};

In this code, we have created an rclcpp::Subscription to the same topic, with
the same type of messages. When creating it, we have indicated that for each message
published to this topic, the callback function is called, which receives the message in
its msg parameter as a shared ptr.

Add this program to CMakeLists.txt, build, and run publisher class in one
terminal and this program in another, composing the Computation Graph shown in
Figure 2.9. We will see how the messages received to the topic are displayed on the
screen.

$ ros2 run br2 basics subscriber class

/publisher_node

2 Hz
/int_topic

std_msgs/msg/Int32

/subscriber_node

Figure 2.9: Computation Graph for the Publisher and Subscriber nodes.
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2.3.3 Launchers

Up to this point, we have seen that to run a program, we used ros2 run. In ROS
2, there is also another way to run programs, which is through the command ros2
launch and using a file called launcher, that specifies which programs should be run.

The launcher files are written in Python1, and their function is declaring which
programs to execute with which options or arguments. A launcher can, in turn,
include another launcher, allowing you to reuse existing ones.

The need for launchers comes from the fact that a robotic application has many
nodes, and they should all be launched simultaneously. Launching one by one and
adjusting specific parameters to each one so that the nodes cooperate can be tedious.

Launchers for a package are located in the launch directory of a package, and their
name usually ends in launch.py or .launch.py. Just as ros2 run completed with
the programs available in a package, ros2 launch does the same with the available
launchers.

From an implementation point of view, a launcher is a python pro-
gram that contains a generate launch description() function that returns a
LaunchDescription object. A LaunchDescription object contains actions, among
which we highlight:

• Node action: to run a program.

• IncludeLaunchDescription action: to include another launcher.

• DeclareLaunchArgument action: to declare launcher parameters.

• SetEnvironmentVariable action: to set an environment variable.

See how we can launch the publisher and subscriber at the same time. Analyze
the first launcher in the basics package:

launch/pub sub v1 launch.py

1 from launch import LaunchDescription
2 from launch_ros.actions import Node
3
4 def generate_launch_description():
5 pub_cmd = Node(
6 package='br2_basics',
7 executable='publisher',
8 output='screen'
9 )

10
11 sub_cmd = Node(
12 package='br2_basics',
13 executable='subscriber_class',
14 output='screen'
15 )
16
17 ld = LaunchDescription()
18 ld.add_action(pub_cmd)
19 ld.add_action(sub_cmd)
20
21 return ld

1Last ROS 2 distros let us to create launchers written in YAML and XML
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There is another implementation alternative of this file in
launch/pub sub v2 launch.py with the same behavior. Check it to see the
differences. To use launchers, we must install the launchers directory:

CMakeLists.txt

install(DIRECTORY launch DESTINATION share/${PROJECT_NAME})

Build the workspace and launch this file:

$ ros2 launch br2 basics pub sub v2 launch.py

In this section, we have seen very simple launchers with very few options. As we
progress, we will see more options increasing in complexity.

2.3.4 Parameters

A node uses the parameters to configure its operation. When your program needs
configuration files, use parameters. These parameters can be boolean, integer, float,
string, or arrays of any of these types. Parameters are read at run time, usually when
a node starts, and their operation depends on these values.

Imagine that a node is in charge of locating a robot using a Particle Filter [6]
and requires several parameters, such as a maximum number of particles or the topics
from which to receive sensory information. This should not be written in the source
code since, if we change the robot or environment, these values may be required to
be different.

Look at a node that reads these parameters on startup. Create a
param reader.cpp file in the basics package:
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src/param reader.cpp

class LocalizationNode : public rclcpp::Node
{
public:

LocalizationNode() : Node("localization_node")
{

declare_parameter("number_particles", 200);
declare_parameter("topics", std::vector<std::string>());
declare_parameter("topic_types", std::vector<std::string>());

get_parameter("number_particles", num_particles_);
RCLCPP_INFO_STREAM(get_logger(), "Number of particles: " << num_particles_);

get_parameter("topics", topics_);
get_parameter("topic_types", topic_types_);

if (topics_.size() != topic_types_.size()) {
RCLCPP_ERROR(get_logger(), "Number of topics (%zu) != number of types (%zu)",

topics_.size(), topic_types_.size());
} else {

RCLCPP_INFO_STREAM(get_logger(), "Number of topics: " << topics_.size());
for (size_t i = 0; i < topics_.size(); i++) {

RCLCPP_INFO_STREAM(
get_logger(),
"\t" << topics_[i] << "\t - " << topic_types_[i]);

}
}

}

private:
int num_particles_;
std::vector<std::string> topics_;
std::vector<std::string> topic_types_;

};

• All parameters of a node must be declared using methods like
declare parameter. In the declaration, we specify the parameter name and
the default value.

• We obtain its value with functions like get parameter, specifying the name of
the parameter and where to store its value.

• There are methods to do this in blocks.

• The parameters can be read at any time. You can also subscribe to modifications
to these parameters. However, reading them to the startup makes your code
more predictable.

If we run our program without assigning a value to the parameters, we will see
how the default values take value:

$ ros2 run br2 basics param reader

Stop executing the program, and execute our program assigning value to one of
the parameters. We can do this in setting arguments, starting with --ros-args, and
-p for setting a parameter:

$ ros2 run br2 basics param reader --ros-args -p number particles:=300

Now pass in values for the remaining parameters. In this case, the two string
arrays:
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$ ros2 run br2 basics param reader --ros-args -p number particles:=300
-p topics:= ’[scan, image]’ -p topic types:=’[sensor msgs/msg/LaserScan,
sensor msgs/msg/Image]’

If we want to set the parameter values in a launch, we can do it as follows:
launch/param node v1 launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():
param_reader_cmd = Node(

package='br2_basics',
executable='param_reader',
parameters=[{

'particles': 300,
'topics': ['scan', 'image'],
'topic_types': ['sensor_msgs/msg/LaserScan', 'sensor_msgs/msg/Image']

}],
output='screen'

)

ld = LaunchDescription()
ld.add_action(param_reader_cmd)

return ld

Although this method may be suitable for assigning values to a few parameters,
it is usually convenient to use a file containing the parameters’ values with which
we want to execute a node. This is the way to have configuration files in ROS 2.
The chosen format is YAML. Usually, these configuration files are stored in the con-
fig directory of our packages, and it is mandatory to mark them to install in the
CMakeLists.txt, as it was done with the launch directory:

CMakeLists.txt

install(DIRECTORY launch config DESTINATION share/${PROJECT_NAME})

Let’s discuss an important point: what would prevent someone from using a dif-
ferent organization in their packages? Why name the configuration directory config
instead of setup, or startup instead of launch? And why put the source file in
another structure? Why use YAML/parameters and not text files or XML and a cus-
tom configuration reader? Why use launchers and not a bash script? And why not
an application that launches all the necessary nodes?

Of course, a ROS 2 developer could make other decisions, but there are recognized
best practices2. These best practices have the advantage that when another developer
tries to use your code, it is much easier to find and identify the critical elements. My
recommendation is to follow these conventions. This way, your code can be used by
more people, it will be more maintainable in the long term, and may receive more
collaborations. This is critical in a business environment as it will ease knowledge
transfer and software maintainability as developers come and go.

2https://docs.ros.org/en/rolling/The-ROS2-Project/Contributing/Developer-
Guide.html

https://docs.ros.org/en/rolling/The-ROS2-Project/Contributing/Developer-Guide.html
https://docs.ros.org/en/rolling/The-ROS2-Project/Contributing/Developer-Guide.html
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Continue with our example. A file with the parameters with our node could look
like this:

config/params.yaml

localization_node:
ros__parameters:

number_particles: 300
topics: [scan, image]
topic_types: [sensor_msgs/msg/LaserScan, sensor_msgs/msg/Image]

And execute indicating specifying the location of our file. If we have installed the
config directory and compiled it, we can execute:

$ ros2 run br2 basics param reader --ros-args --params-file
install/br2 basics/share/br2 basics/config/params.yaml

If we want it to be read in a launcher, we will use:
launch/param node v1 launch.py

1
2 def generate_launch_description():
3 ...
4 param_reader_cmd = Node(
5 package='br2_basics',
6 executable='param_reader',
7 parameters=[param_file],
8 output='screen'
9 )

2.3.5 Executors

As the nodes in ROS 2 are C++ objects, a process can have more than one node.
In fact, in many cases, it can be very beneficial to do so since communications can
be accelerated by using shared memory strategies when communication is within the
same process. Another benefit is that it can simplify the deployment of nodes if they
are all in the same program. The drawback is that a failure in one node could cause
all nodes of the same process to terminate.

ROS 2 offers you several ways to run multiple nodes in the same process. The
most recommended is to make use of the Executors. An Executor is an object to
which nodes are added to execute them together. See an example:
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Single thread executor

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node_pub = std::make_shared<PublisherNode>();
auto node_sub = std::make_shared<SubscriberNode>();

rclcpp::executors::SingleThreadedExecutor executor;

executor.add_node(node_pub);
executor.add_node(node_sub);

executor.spin();

rclcpp::shutdown();
return 0;

}

Multi thread executor

auto node_pub = std::make_shared<PublisherNode>();
auto node_sub = std::make_shared<SubscriberNode>();

rclcpp::executors::MultiThreadedExecutor executor(rclcpp::ExecutorOptions(), 8);

executor.add_node(node_pub);
executor.add_node(node_sub);

executor.spin();
}

In both codes, we create an executor to which we add the two nodes (Figure 2.10)
so that the spin call handles both nodes. The difference between the two is using a
single thread for this management, or using eight threads to optimize the processor
capabilities.

/publisher_node

2 Hz
/int_topic

std_msgs/msg/Int32

/subscriber_node

Figure 2.10: Computation Graph for the Publisher and Subscriber nodes, running
in the same process.

2.4 SIMULATED ROBOT SETUP

So far we have seen the basics package, which shows us basic elements of ROS 2,
how to create nodes, publications, and subscriptions. ROS 2 is not a communications
middleware, but a robot programming middleware, and this book tries to create
behaviors for robots. Therefore, we need a robot. Robots are relatively expensive. It
is possible to have a real robot, such as the Kobuki (turtlebot 2) equipped with a
laser and an RGBD camera for around 1000€. A robot considered professional can
go to several tens of thousands of euros. As not all readers have plans to acquire a
robot to run ROS 2, we are going to use the Tiago robot in a simulator.
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The Tiago robot (“iron” model) from PAL Robotics consist of a differential base
with distance sensors and a torso with an arm, an RGBD camera located on its head.

Among the packages that we have already added to the worskspace, there were
already those necessary to simulate the Tiago robot in Gazebo (one of the reference
simulator in ROS 2). So we will only have to use a launcher that we have created in
the br2 tiago package:

$ ros2 launch br2 tiago sim.launch.py

Figure 2.11: Simulating Tiago robot in Gazebo.

There are several worlds available (you can examine
ThirdParty/br2 gazebo worlds). By default, the world that is loaded is
home.world. If you want to use a different one, you can use the launcher
world parameter, as shown in the following examples:

$ ros2 launch br2 tiago sim.launch.py world:=empty
$ ros2 launch br2 tiago sim.launch.py world:=follow line

One of the first things you can do when you use a robot for the first time and
have just launched its driver or simulation is to see what topics it provides, either as a
publisher or a subscriber. That will be the interface we will use to receive information
from the robot and send it commands. Open a new terminal and execute:

$ ros2 topic list

This will be the main interface with the robot’s sensors and actuators. Figure
2.14 shows a non-exhaustive way the nodes and topics that are available to the
programmer to interact with the simulated robot:
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• Virtually all nodes are within the Gazebo simulator process. Outside there are
only two of them:

/twist mux Create several subscribers to topics that receive robot speeds, but
from different sources (mobile, tablet, keys, navigation, among others),
publishing in /cmd vel muxed the result of mixing them. The message
type of all these topics is textttgeometry msgs/msg/Twist.

/twist stamper Takes the messages of type geometry msgs/msg/Twist from
/cmd vel muxed and publish them to /mobile base controller/cmd vel
as a geometry msgs/msg/TwistStamped.

/robot state publisher It is a standard node in ROS 2 that reads the de-
scription of a robot from a URDF file and subscribes to the status of each
of the robot’s joints. In addition to publishing this description in URDF,
it creates and updates the robot frames in the TFs system (we will explain
the TF system in the next chapters), a system to represent and link the
different geometric axes of reference in the robot.

• The nodes on the left take care of the sensors. They publish information from
the robot’s camera, imu, laser, and sonar. The most complex node is the camera
node, an RGBD sensor, since it publishes the depth and RGB images separately.
Each type of image has associated a topic camera info that contains the intrin-
sic values of the robot’s camera. For each sensor, the standard message types
are used for the information provided.

• The nodes at the bottom use the same interface to move the head, the torso, and
the gripper. At the top roght it is also the node which controls the arm. They
all use the joint trajectory controller from the ros2 control package.

• The nodes on the right are responsible for the following:

/joint state broadcaster Publish the status of each of the joints of the
robot.

/mobile base controller Makes the robot base move with the speed com-
mands it receives. In addition, it publishes the estimated displacement of
the base.

First, teleoperate the robot to move it. For this, ROS 2 has several packages that
take commands from the keyboard, from a PS or XBox controller, or a mobile phone,
and publish geometry msgs/msg/Twist messages to the topic /cmd vel. In this case
we will use teleop twist keyboard. This program receives keystrokes by stdin in
publishes /cmd vel movement commands.

As the topic /cmd vel of teleop twist keyboard does not match any input topic
of our robot, we must do a remap. A remap (Figure 2.12) allows you to change the
name of one of its topics when executing (at deployment time). In this case, we are
going to execute teleop twist keyboard indicating that instead of publishing in
/cmd vel, publish to the topic /key vel of the robot:
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$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args -r
cmd vel:=key vel

Now we can use the keys indicated by teleop twist keyboard to move the robot.
Remapping a topic is an important feature of ROS 2 that allows different ROS 2

programs from other developers to work together.

/twist_mux/key_vel
geometry_msgs/msg/Twist

/teleop_twist_keyboard /cmd_vel
geometry_msgs/msg/Twist

remap

Figure 2.12: Connection between the Tiago and the teleoperator velocity topics, using
a remap.

Now is the time to see the robot’s sensory information. Until now, we could use
ros2 topic to see the topics of the camera or the laser with one of these commands:

$ ros2 topic echo /scan raw

$ ros2 topic echo /head front camera/image

But it is hard to show sensory information, especially if it is so complex. Use the
--no-arr option so that it does not display the content of the data arrays.

$ ros2 topic echo --no-arr /scan raw

$ ros2 topic echo --no-arr /head front camera/image

Analyze the information it shows. There is a common field in both messages,
which is common in messages with perceptual information and is repeated in many
types of messages, especially those that end in the adjective “*Stamped”. It has a
header of type std msgs/msg/Header. As we have just seen, Messages can be defined
by composing basic types (Int32, Float64, String) or already existing messages,
like this one.

The header is tremendously helpful for handling sensory information in ROS 2.
When a sensor driver publishes messages with its data, it uses the header to tag this
reading with:

• The data capture timestamp. Even if a message is received or processed late,
the reading can be placed at its corresponding capture moment, supporting
some latencies.

• The frame in which it was taken. A frame is an axis of references in which
the spatial information (coordinates, distances, etc.) contained in the message
makes sense. Usually, each sensor has its frame (even several).

A robot is geometrically modeled using a tree whose tree nodes are the frames of
a robot. By convention, a frame should have a single parent frame and all required
child frames. The parent–child relationship is through a geometric transformation
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that includes a translation and a rotation. The frames usually appear at points on
the robot subject to variation, as in the case of the motors joining the robot’s parts.

ROS 2 has a system called TF, which we will explain in the next chapters, which
maintains these relationships through two topics /tf, for geometric transformations
that vary, and /tf static if they are fixed.

ROS 2 has several tools that help us display sensory and geometric information,
and perhaps the most popular is RViz2. Start by running it by typing in a terminal:

$ ros2 run rviz2 rviz2

RViz2 is a viewer that allows to display information contained in the topics. If
this is your first time opening RViz2, it will probably appear quite empty; only a grid
through which we can navigate using the keys and the mouse. We will discover the
information about our robot step by step, as shown in Figure 2.13:

1. On the left, in the Displays panel, RViz2 has some global options in which we
have to specify what our Fixed Frame is, that is, the coordinate axis of the 3D vi-
sualization shown on the right. For now, we are going to select base footprint.
By convention in ROS 2, this frame is a frame that is in the center of the robot,
on the ground, and is a good starting point for our exploration.

2. In the Displays Panel, we are going to add different visualizations. The first will
be to see the frames of the robot. Press the Add button, and look in the “By
display type” tab, the TF element. All the robot frames will appear instantly.
If they seem like a lot to you, display the TF component in the Displays Panel,
uncheck the “All Enabled” box and start adding or removing the frames you
want.

Figure 2.13: RViz2 visualizing the TF tree and the sensor information of the Tiago
robot.
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3. Add several elements to Gazebo, as seen in Figure 2.13. If not, we will not
perceive much either.

4. Add the laser information of the robot. Press Add again and in the “By Topic”
tab, select the topic /scan raw, which already indicates that it is a LaserScan.
In the LaserScan element that has been added in the Display Panel, we can
see information and change the display options. Display the options for this
element:

• The Status should show ok and have a counter that goes up as it receives
messages. If it displays an error, it usually contains information that can
help us figure out how to fix it.

• The Topic has to do with the topic to show and the QoS with which RViz2
subscribes to that topic. If we do not see anything, it may be that we have
not selected a compatible QoS.

• From here on, the rest of the options are specific to this type of message.
We can change the size of the dots that represent laser readings, their
color, or even the visual element used.

5. As done with the laser, add a visualization of the topic that contains the Point-
Cloud2 (/head front camera/points).

Use the teleoperator to move the robot. In RViz2, the movement of the robot
is not perceived, only the frame odom moving. This is because the center of this
visualization is always the Fixed Frame, which we now have as base footprint.
Change the Fixed Frame to odom, which is a Frame that represents the position
of the robot when it started. Now we can appreciate the robot’s movement around
its environment. The odom → base footprint transform, by convention in ROS 2,
collects the translation and rotation calculated by the robot driver from its starting
point.

With this, we have explored the capabilities of the simulator robot and various
tools for managing our robot.



48 ■ A Concise Introduction to Robot Programming with ROS 2

Si
m

ul
at

ed
 ro

bo
t a

t G
az

eb
o

/ro
bo
t_
st
at
e_
pu
bl
is
he
r

/tw
is
t_
st
am

pe
r

/jo
in
t_
st
at
e_
br
oa
dc
as
te
r

/jo
in
t_
st
at
es

se
ns
or
_m

sg
s/
m
sg
/J
oi
nt
St
at
e

/d
yn
am

ic
_j
oi
nt
_s
ta
te
s

se
ns
or
_m

sg
s/
m
sg
/J
oi
nt
St
at
e

/m
ob
ile
_b
as
e_
co
nt
ro
lle
r

/m
ob
ile
_b
as
e_
co
nt
ro
lle
r/c
m
d_
ve
l

ge
om

et
ry
_m

sg
s/
m
sg
/T
w
is
tS
ta
m
pe
d

/o
do
m

na
v_
m
sg
s/
m
sg
/O
do
m
et
ry

/tf
tf2
_m

sg
s/
m
sg
/T
FM

es
sa
ge

/tf
_s
ta
tic

tf2
_m

sg
s/
m
sg
/T
FM

es
sa
ge

/h
ea
d_
co
nt
ro
lle
r

/h
ea

d_
co

nt
ro
lle

r/
jo
in
t_
tr
aj
ec

to
ry

tra
je
ct
or
y_
m
sg
s/
m
sg
/J
oi
nt
Tr
aj
ec
to
ry

/h
ea

d_
co

nt
ro
lle

r/
co

nt
ro
lle

r_
st
at
e

co
nt
ro
l_
m
sg
s/
m
sg
/J
oi
nt
Tr
aj
ec
to
ry
C
on
tro
lle
rS
ta
te

/to
rs
o_
co
nt
ro
lle
r

/t
or
so

_c
on

tr
ol
le
r/
jo
in
t_
tr
aj
ec

to
ry

tra
je
ct
or
y_
m
sg
s/
m
sg
/J
oi
nt
Tr
aj
ec
to
ry

/to
rs
o_
co
nt
ro
lle
r/c
on
tro
lle
r_
st
at
e

co
nt
ro
l_
m
sg
s/
m
sg
/J
oi
nt
Tr
aj
ec
to
ry
C
on
tro
lle
rS
ta
te

/b
rid
ge
_g
z_
ro
s_

ca
m
er
a_
im
ag
e

/h
ea

d_
fr
on

t_
ca

m
er
a/
de

pt
h_

re
gi
st
er
ed

/c
am

er
a_

in
fo

se
ns
or
_m

sg
s/
m
sg
/C
am

er
aI
nf
o

/h
ea
d_
fro
nt
_c
am

er
a/
de
pt
h_
im
ag
e

se
ns
or
_m

sg
s/
m
sg
/Im

ag
e

/h
ea

d_
fr
on

t_
ca

m
er
a/
po

in
ts

se
ns
or
_m

sg
s/
m
sg
/P
oi
nt
C
lo
ud
2

/h
ea

d_
fr
on

t_
ca

m
er
a/
ca

m
er
a_

in
fo

se
ns
or
_m

sg
s/
m
sg
/C
am

er
aI
nf
o

/h
ea

d_
fr
on

t_
ca

m
er
a/
im

ag
e

se
ns
or
_m

sg
s/
m
sg
/Im

ag
e

/ro
bo
t_
de
sc
rip
tio
n

st
d_
m
sg
s/
m
sg
/S
tri
ng

ge
om

et
ry
_m

sg
s/
m
sg
/T
w
is
t

/c
m
d_
ve
l_
m
ux
ed

ge
om

et
ry
_m

sg
s/
m
sg
/T
w
is
t

ar
m
_c
on
tro
lle
r

/a
rm
_c
on
tro
lle
r/
jo
in
t_
tr
aj
ec

to
ry

tra
je
ct
or
y_
m
sg
s/
m
sg
/J
oi
nt
Tr
aj
ec
to
ry

/a
rm
_c
on
tro
lle
r/c
on
tro
lle
r_
st
at
e

co
nt
ro
l_
m
sg
s/
m
sg
/J
oi
nt
Tr
aj
ec
to
ry
C
on
tro
lle
rS
ta
te

/im
u_
se
ns
or
_b
ro
ad
ca
st
er

/im
u_
se
ns
or
_b
ro
ad
ca
st
er
/im

u
se
ns
or
_m

sg
s/
m
sg
/Im

u

/g
rip
pe
r_
co
nt
ro
lle
r

/g
rip
pe
r_
co
nt
ro
lle
r/
jo
in
t_
tr
aj
ec

to
ry

tra
je
ct
or
y_
m
sg
s/
m
sg
/J
oi
nt
Tr
aj
ec
to
ry

/g
rip
pe
r_
co
nt
ro
lle
r/
co

nt
ro
lle

r_
st
at
e

co
nt
ro
l_
m
sg
s/
m
sg
/J
oi
nt
Tr
aj
ec
to
ry
C
on
tro
lle
rS
ta
te

/b
rid
ge
_r
os
_g
z

/s
on
ar
_b
as
e

se
ns
or
_m

sg
s/
m
sg
/L
as
er
Sc
an

/s
ca
n_
ra
w

se
ns
or
_m

sg
s/
m
sg
/L
as
er
Sc
an

/tw
is
t_
m
ux

/n
av
_v
el

/k
ey
_v
el

/p
ho
ne
_v
el

/jo
y_
ve
l

ge
om

et
ry
_m

sg
s/
m
sg
/T
w
is
t

Figure 2.14: Computation Graph for the Tiago robot, displaying the relevant topics.



C H A P T E R 3

First Behavior: Avoiding
Obstacles with Finite States
Machines

This section aims to apply everything shown until now to create seemingly
“smart” behavior. This exercise will put together many things we have pre-

sented and show how effective it is to program a robot using ROS 2. In addition, we
will address some issues in robot programming.

The Bump and Go behavior uses the robot’s sensor to detect nearby obstacles
in front of the robot. The robot moves forward, and when it detects an obstacle, it
goes back and turns for a fixed time to move forward again. Although it is a simple
behavior, some decision-making approach is recommended since our code, even if it
is simple, can start to fail as we solve subsequent problems that may arise. In this
case, we will use a Finite State Machine (FSM) .

An FSM is a mathematical computational model that we can use to define the
behavior of a robot. It is made up of states and transitions. A robot keeps producing
an output in one state until the condition of an outgoing transition is fulfilled and it
transits to the target state of this transition.

Applying an FSM can significantly reduce the complexity of solving a problem
when we implement simple behaviors. For a moment, try to think about how to
approach the Bump and Go problem using loops, ifs, temporary variables, counters,
timers. It would be a complex program to understand and follow its logic. Once
finished, adding some additional conditions will probably make you throw away what
we have done and start over.

Applying an FSM-based solution to the Bump and Go problem is straightforward.
Think about the different outputs that the robot must produce (stop, move forward,
go back, and turn). Each of these actions will have its own state. Now think about the
transitions between states (connection and condition), and we will obtain an FSM
like the one shown in Figure 3.1.

DOI: 10.1201/9781003516798-3 49
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Forward Back

TurnStop

obstacle
detected

2 secs
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laser 
active

laser 
inactive

Figure 3.1: States and Transitions for solving the Bump and Go problem using an
FSM.

3.1 PERCEPTION AND ACTUATION MODELS

This section analyzes what perceptions we use to solve the Bump and Go problem
and what actions we can produce.

In both models, first of all, we must define the used geometric conventions:

• ROS 2 uses the metric International System of Measurements (SI). For different
dimensions, we will consider the units of meters, seconds, and radians. Linear
speeds should be m/s, rotational speeds rad/s, linear accelerations m/s2, and
so on.

• In ROS 2, we are right-handed1 (left part of Figure 3.2): x grows forward, y
to the left, and z grows up. If we establish the reference origin on our chest, a
coordinate whose x is negative would be behind us, and a positive z would be
above us.

• Angles are defined as rotations around the axes. Rotation around x is sometimes
called the roll, y pitch, and z yaw.

• Angles grow by rotating counter-clockwise (right part of Figure 3.2). Angle 0
is forward, π is back, and π/2 is left.

For this problem, we will use the information of the laser sensor, which we
saw in the previous chapter that was in the topic /scan raw, and whose type was
sensor msgs/msg/LaserScan. Check this message format by typing:

1https://www.ros.org/reps/rep-0103.html

https://www.ros.org/reps/rep-0103.html
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X

Y

0

-

Figure 3.2: Axis and angles conventions in ROS.

$ ros2 interface show sensor msgs/msg/LaserScan

# Single scan from a planar laser range-finder
#
# If you have another ranging device with different behavior (e.g. a sonar
# array), please find or create a different message, since applications
# will make fairly laser-specific assumptions about this data

std msgs/Header header # timestamp in the header is the acquisition time of
# the first ray in the scan.
#
# in frame frame id, angles are measured around
# the positive Z axis (counterclockwise, if Z is up)
# with zero angle being forward along the x axis

float32 angle min # start angle of the scan [rad]
float32 angle max # end angle of the scan [rad]
float32 angle increment # angular distance between measurements [rad]

float32 time increment # time between measurements [seconds] - if your scanner
# is moving, this will be used in interpolating pos
# of 3d points

float32 scan time # time between scans [seconds]

float32 range min # minimum range value [m]
float32 range max # maximum range value [m]

float32[] ranges # range data [m]
# (Note: values < range min or > range max should be
# discarded)

float32[] intensities # intensity data [device-specific units]. If your
# device does not provide intensities, please leave
# the array empty.

To see one of these laser messages (without showing the content of the readings),
launch the simulator and type:
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$ ros2 topic echo /scan raw --no-arr

---
header:

stamp:
sec: 11071
nanosec: 445000000

frame id: base laser link
angle min: -1.9198600053787231
angle max: 1.9198600053787231
angle increment: 0.005774015095084906
time increment: 0.0
scan time: 0.0
range min: 0.05000000074505806
range max: 25.0
ranges: ’<sequence type: float, length: 666>’
intensities: ’<sequence type: float, length: 666>’
---

In Figure 3.3, we can see the interpretation of this message. The key is that in the
ranges field are the distances to obstacles. Position 0 of this std::vector (arrays
in messages are represented as std::vector in C++) corresponds to angle −1.9198,
position 1 is this angle plus the increment, until this vector is completed. It is easy
to check that if we divide the range (maximum angle minus minimum angle) by the
increment, we get these 666 readings, which is the size of the ranges vector.

Most messages, especially if they contain spatially interpretable information, have
a header containing the timestamp and the sensor frame. Note that a sensor can be
mounted in any position or orientation on the robot, even in some moving parts. The
sensor frame must have a geometric connection (a rotation and translation) to the
rest. On many occasions, we will need to transform the coordinates of the sensory
information to the same frame to fuse it, which is usually base footprint (the center
of the robot, at ground level, pointing forward). These geometric manipulations are
explained in the next chapter.

Figure 3.3: Laser scan interpretation in the simulated Tiago (left). Laser frame with
respect to other main frames (right).

In our problem, we are only interested in whether there is an obstacle in front of
the robot, which is angle 0, and this corresponds exactly to the content of the middle
position of the vector of ranges. We can use the original frame of the sensor since it
is aligned, a little forward and up, with base footprint.



First Behavior: Avoiding Obstacles with Finite States Machines ■ 53

An essential feature of ROS is standardization. Once a consensus has been reached
in the community on the format in which the information produced by a laser sensor
is encoded, all laser driver developers should use this format. This consensus means
that the message format must be general enough to support any laser sensor. In the
same way, an application developer must exploit the information in this message for
his program to function correctly regardless of the characteristics of the sensor that
produced the sensory reading. The great advantage of this approach is that we can
make any ROS program work with any ROS-supported laser, allowing the software
to be truly portable between robots. Also, an experienced ROS developer does not
have to learn new, manufacturer-defined formats. Finally, using this format puts at
your disposal a wide variety of utilities to filter or monitor laser information. This
approach applies to all types of sensors and actuators in ROS, which may be one
reason for the success of this framework.

Regarding the action model in this example, we will send the robot translation
and rotation speeds to topic /nav vel, which is of type geometry msgs/msg/Twist.
Let’s see this message format:

$ ros2 interface show geometry msgs/msg/Twist

Vector3 linear
Vector3 angular

$ ros2 interface show geometry msgs/msg/Vector3

float64 x
float64 y
float64 z

All robots use this message format to receive speeds, allowing generic teleopera-
tion programs (with keyboards, joysticks, mobiles, etc.) and navigation in ROS. Once
again, we are talking about standardization.

The geometry msgs/msg/Twist message is much more generic than what our
robot supports. We cannot make it move in Z (it cannot fly) or move laterally with
just two wheels since it is a differential robot. We could probably do more translations
and rotations if we had a quadcopter. We can only make it go forward or backward,
rotate, or combine both. For this reason, we can only use the fields linear.x and
angular.z (rotation to the Z-axis, positive velocities to the left, as indicated in Figure
3.2).

3.2 COMPUTATION GRAPH

The Computation Graph of this application will be pretty simple: A single node that
subscribes to the laser topic and publishes speed commands to the robot.

The control logic interprets the input sensory information and produces the con-
trol commands. This logic is what we are going to implement with an FSM. The logic
control will run iteratively at 20 Hz. The execution frequencies depend on publishing
the control commands. If it is not published above 20 Hz, some robots stop, which
is very convenient so that there are no robots without control in the laboratory.
Commonly, the frequency at which we receive information is not the same as the
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/nav_vel
geometry_msgs/msg/Twist

/bump_go

/output_vel
geometry_msgs/msg/Twist

/tiago_nodes

/scan_raw

sensor_msgs/msg/LaserScan

/input_scan
sensor_msgs/msg/LaserScan

20 Hz

Figure 3.4: Computation Graph for Bump and Go project.

frequency we must publish it. You have to deal with this. Engineers do not complain
about problem conditions—they fix them.

If we want our software to run on different robots, we must not specify specific
topics for a robot. In our case, the topic that it subscribes to is /input scan, and
it publishes in /output vel. These topics do not exist or correspond to those of
our simulated robot. When executing it (at deployment), we will remap the ports to
connect them to the real topics of the specific robot.

Let’s expand upon this point here. Why are we using remaps instead of passing
the name of the topics as parameters? Well, it is an alternative that many ROS 2
developers advocate. Perhaps this alternative is more convenient when a node does
not always have the same subscribers/publishers, and this can only be specified in a
YAML file of configuration parameters.

A good approach is that if the number of publishers and subscribers in a node is
known, use generic topic names, like the ones used in this example, and perform a
remap. It may even be better to use common topic names (/cmd vel is a common
topic for many robots). A seasoned ROS 2 programmer will read in the documentation
what topics it uses, find out with a ros2 node info, and quickly make it work with
remaps instead of looking for the correct parameters to be set up in the configuration
files.

Although this book primarily uses C++, in this chapter we will provide two sim-
ilar implementations, one in C++ and other in Python, each in different packages:
br2 fsm bumpgo cpp and br2 fsm bumpgo py. Both are already in the workspace cre-
ated in previous chapters and the annex to this book. Let’s start with the C++
implementation.

3.3 BUMP AND GO IN C++

The br2 fsm bumpgo cpp package has the following structure:
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The usual way for nodes to be implemented as classes that inherit from
rclcpp::Node, separating declaration and definition, within a namespace that
matches the package name. In our case, the definition (BumpGoNode.cpp) will
be in src/br2 fsm bumpgo cpp, and the header (BumpGoNode.hpp) will be in
include/br2 fsm bumpgo cpp. In this way, we separate the implementation
of the programs from the implementation of the nodes. This strategy al-
lows having several programs with different strategies for creating nodes. The
main program, whose function is to instantiate the node and call to the
spin() function, is in src/bumpgo main.cpp. We have also included a launcher
(launch/bump and go.launch.py) to facilitate its execution.

In this book, we will analyze partial pieces of the code of a package, focusing
on different concrete aspects to teach interesting concepts. We will not exhaustively
show all the code since the reader has it available in his workspace, the repository,
and the annexes.

3.3.1 Execution Control

The node execution model consists of calling the control cycle method at a fre-
quency of 20 Hz. For this, we declare a timer and start it in the constructor to call the
control cycle method every 50 ms. The control logic, implemented with an FSM,
will publish the commands in speeds.
include/bump go cpp/BumpGoNode.hpp

class BumpGoNode : public rclcpp::Node
{
...

private:
void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);
void control_cycle();

rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;
rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
rclcpp::TimerBase::SharedPtr timer_;

sensor_msgs::msg::LaserScan::UniquePtr last_scan_;
};

Look at the detail of the laser callback header. We have used UniquePtr (an alias
for std::unique ptr) instead of SharedPtr, as we have seen so far. The Callbacks

Package br2 fsm bumpgo cpp

br2_fsm_bumpgo_cpp
CMakeLists.txt
include

br2_fsm_bumpgo_cpp
BumpGoNode.hpp

launch
bump_and_go.launch.py

package.xml
src

br2_fsm_bumpgo_cpp
BumpGoNode.cpp

bumpgo_main.cpp
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in ROS 2 can have different signatures, depending on the needs. These are different
alternatives for the callbacks:

1. void scan_callback(const sensor_msgs::msg::LaserScan & msg);
2. void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);
3. void scan_callback(sensor_msgs::msg::LaserScan::SharedConstPtr msg);
4. void scan_callback(const sensor_msgs::msg::LaserScan::SharedConstPtr & msg);
5. void scan_callback(sensor_msgs::msg::LaserScan::SharedPtr msg);

Some other signatures allow us to obtain information about the message
(timestamp in origin and destination, and identifier of the sender) and even the
serialized message, but that is only used in very specialized cases.

Up to this point, we had used signature 1, but now we use signature 2. Check
out the implementation of the laser callback at scan callback. Instead of making a
copy of the message (which could be computationally expensive for large messages)
or sharing the pointer, we will acquire this message in property, and we will store the
reference to the data in last scan . This way, rclcpp queues will no longer need to
manage their lifecycle, saving time. We recommend using UniquePtr when possible
to improve the performance of your nodes.
src/bump go cpp/BumpGoNode.cpp

BumpGoNode::BumpGoNode()
: Node("bump_go")
{

scan_sub_ = create_subscription<sensor_msgs::msg::LaserScan>(
"input_scan", rclcpp::SensorDataQoS(),
std::bind(&BumpGoNode::scan_callback, this, _1));

vel_pub_ = create_publisher<geometry_msgs::msg::Twist>("output_vel", 10);
timer_ = create_wall_timer(50ms, std::bind(&BumpGoNode::control_cycle, this));

}

void
BumpGoNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

last_scan_ = std::move(msg);
}

void
BumpGoNode::control_cycle()
{

// Do nothing until the first sensor read
if (last_scan_ == nullptr)

return;

vel_pub_->publish(...);
}

Another noteworthy detail about this constructor is that the publication use
the default QoS, which is reliable + volatile. In case of subscriptions, we will use
rclcpp::SensorDataQoS() (a packed QoS definition using best effort, volatile, and
appropiate queue size for sensors).

As a general rule, for a communication to be compatible, the quality of service
of the publisher should be reliable, and it is the subscriber who can choose to relax
it to be the best effort. When creating sensor drivers, publishing their readings using
rclcpp::SensorDataQoS() is not a good idea because if a subscriber requires reliable
QoS and publisher is best effort, communication will fail.
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Finally, the first thing to do in control cycle is to check if last scan is valid.
This method may be executed before the first message arrives with a laser scan. In
this case, this iteration is skipped.

3.3.2 Implementing an FSM

Implementing an FSM in a C++ class is not complicated. It is enough to have a
member variable state that stores the current state, which we can encode as a
constant or an enum. In addition, it is helpful to have a variable state ts that
indicates when transit to the current state, allowing to transit from states using
timeouts.
include/bump go cpp/BumpGoNode.hpp

class BumpGoNode : public rclcpp::Node
{
...

private:
void control_cycle();

static const int FORWARD = 0;
static const int BACK = 1;
static const int TURN = 2;
static const int STOP = 3;
int state_;
rclcpp::Time state_ts_;

};

Remember that the control logic is in method control cycle, which runs at 20
Hz. This method must not contain any infinite loops or porlonged pauses.

Control logic is typically implemented with a switch statement, with a state in
each case. In the following code, we have only shown the case of the FORWARD state.
There is also a structure in this case: first, the output computation in the current
state (setting speeds to publish) and then check every transition condition. If any
returns true (the condition is met), the state is set to the new state and state ts
is updated.

When declaring a message type variable, all its fields are set by default to their
default value, or 0 or empty depending on their type. That is why in the complete
code, we only assign the field that is not 0.
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src/bump go cpp/BumpGoNode.cpp

BumpGoNode::BumpGoNode()
: Node("bump_go"),

state_(FORWARD)
{

...
state_ts_ = now();

}

void
BumpGoNode::control_cycle()
{

switch (state_) {
case FORWARD:

// Do whatever you should do in this state.
// In this case, set the output speed.

// Checking the condition to go to another state in the next iteration
if (check_forward_2_stop())

go_state(STOP);
if (check_forward_2_back())

go_state(BACK);

break;
...

}
}

void
BumpGoNode::go_state(int new_state)
{

state_ = new_state;
state_ts_ = now();

}

Look at three methods with interesting code from the implementation point of
view. The first is the code of the forward → back transition that checks if there is
an obstacle in front of the robot. As we said before, this is done by accessing the
central element of the vector that contains the distances in the laser reading:
src/bump go cpp/BumpGoNode.cpp

bool
BumpGoNode::check_forward_2_back()
{

// going forward when detecting an obstacle
// at 0.5 meters with the front laser read
size_t pos = last_scan_->ranges.size() / 2;
return last_scan_->ranges[pos] < OBSTACLE_DISTANCE;

}

The second interesting snippet is the transition from forward → stop when the
last laser read is considered too old. The now method of rclcpp::Node returns the
current time as an rclcpp::Time. From the time that is in the header of the last
reading, we can create another rclcpp::Time. Its difference is a rclcpp::Duration.
To make comparisons, we can use its seconds method, which returns the time in
seconds as a double, or we can, as we have done, directly compare it with another
rclcpp::Duration.
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src/bump go cpp/BumpGoNode.cpp

bool
BumpGoNode::check_forward_2_stop()
{

// Stop if no sensor readings for 1 second
auto elapsed = now() - rclcpp::Time(last_scan_->header.stamp);
return elapsed > SCAN_TIMEOUT; // SCAN_TIMEOUT is set to 1.0

}

The last snippet is similar to the previous one, but now we take advantage of
having the state ts variable updated, and we can transition from back → turn
after 2 s.
src/bump go cpp/BumpGoNode.cpp

bool
BumpGoNode::check_back_2_turn()
{

// Going back for 2 seconds
return (now() - state_ts_) > BACKING_TIME;

}

3.3.3 Running the Code

So far, we have limited ourselves to the class that implements the BumpGoNode node.
Now, we have to see where we create an object of this class to execute it. We do this in
the main program that creates a node and passes it to a blocking call to rclcpp::spin
that will manage the messages and timer events calling to their callbacks.
src/bumpgo main.cpp

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto bumpgo_node = std::make_shared<br2_fsm_bumpgo_cpp::BumpGoNode>();
rclcpp::spin(bumpgo_node);

rclcpp::shutdown();

return 0;
}

Now, run the program. Open a terminal to run the simulator:

$ ros2 launch br2 tiago sim.launch.py

Put some obstacles, a box, for example. Next, open another terminal and run the
program, taking into account that there are arguments to specify in the command
line:

• Remap input scan to /scan raw, and ouput vel to /nav vel (-r option).

• When using a simulator, set the use sim time parameter to true. This causes
the time to be taken from the topic /clock, published by the simulator, instead
of using the system clock.
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$ ros2 run br2 fsm bumpgo cpp bumpgo --ros-args -r output vel:=/nav vel -r
input scan:=/scan raw -p use sim time:=true

See how the robot moves forward until it detects an obstacle then does an avoid-
ance maneuver.

Because it is tedious to put so many remapping arguments in the command line,
we have created a launcher that specifies the necessary arguments and remaps to the
node.
launch/bump and go.launch.py

bumpgo_cmd = Node(package='br2_fsm_bumpgo_cpp',
executable='bumpgo',
output='screen',
parameters=[{

'use_sim_time': True
}],
remappings=[

('input_scan', '/scan_raw'),
('output_vel', '/nav_vel')

])

Use this launcher instead of the last ros2 run, only by typing:

$ ros2 launch br2 fsm bumpgo cpp bump and go.launch.py

3.4 BUMP AND GO BEHAVIOR IN PYTHON

In addition to C++, Python is one of the languages officially supported in ROS
2 through the rclpy client library. This section will reproduce what we have done
in the previous section, but with Python. Verify by comparison the differences and
similarities in the development of both languages. Also, once the principles of ROS 2
have been explained throughout the previous chapters, the reader will recognize the
elements of ROS 2 in Python code, as the principles are the same.

Although we provided the complete package, if we had wanted to create a package
from scratch, we could have used the ros2 pkg command to create a skeleton.

$ ros2 pkg create --build-type ament python br2 fsm bumpgo py --dependencies
sensor msgs geometry msgs

As it is a ROS 2 package, there is still a package.xml similar to the C++ version,
but there is no longer a CMakeLists.txt, but a setup.cfg and setup.py, typical of
Python packages that use distutils2.

At the root of this package, there is a homonymous directory that only has a file
init .py which indicates that there will be files with Python code. Let’s create the

file bump go main.py there. While in C++, it is common and convenient to separate
the source code into several files. In this case, everything is in the same file.

2https://docs.python.org/3/library/distutils.html

https://docs.python.org/3/library/distutils.html
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3.4.1 Execution Control

As in the previous example, we will first show the code ignoring the details of the
behavior, only those related to the ROS 2 concepts to handle:

bump go py/bump go main.py

import rclpy

from rclpy.duration import Duration
from rclpy.node import Node
from rclpy.qos import qos_profile_sensor_data
from rclpy.time import Time

from geometry_msgs.msg import Twist
from sensor_msgs.msg import LaserScan

class BumpGoNode(Node):
def __init__(self):

super().__init__('bump_go')

...

self.last_scan = None
self.scan_sub = self.create_subscription(

LaserScan,
'input_scan',
self.scan_callback,
qos_profile_sensor_data)

self.vel_pub = self.create_publisher(Twist, 'output_vel', 10)
self.timer = self.create_timer(0.05, self.control_cycle)

def scan_callback(self, msg):
self.last_scan = msg

def control_cycle(self):
if self.last_scan is None:

return

out_vel = Twist()

# FSM

self.vel_pub.publish(out_vel)

def main(args=None):
rclpy.init(args=args)

bump_go_node = BumpGoNode()

rclpy.spin(bump_go_node)

bump_go_node.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':
main()

Recall that the goal is to create a node that subscribes to the laser readings and
issues speed commands. The control cycle executes at 20 Hz to calculate the robot
control based on the last reading received. Therefore, our code will have a subscriber,
a publisher, and a timer.

This code is similar to the one developed in C++: define a class that inherits
from Node, and in the main, it is instantiated and called spin with it. Let’s see some
details:
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• Inheriting from Node, we call the base class constructor to assign the node
name. The Node class and all associated data types (Time, Duration, QoS,...)
are in rclpy, imported at startup, and these items separately.

• The types of messages are also imported, as seen in the initial part.

• We create the publisher, the subscriber, and the timer in the constructor. Note
that the API is similar to C++. Also, in Python, we can access predefined
qualities of service (qos profile sensor data).

• In the callback of the laser messages, we store the last message received in the
variable self.last scan, which was initialized to None in the constructor. In
this way, verify in the control cycle (control cycle) that no laser reading has
reached us.

3.4.2 Implementing the FSM

The direct translation of the FSM in C++ from the previous section to Python has
nothing interesting. The only difference is that to obtain the current time, we have
to ask for the clock first through the get clock method:

bump go py/bump go main.py

class BumpGoNode(Node):
def __init__(self):

super().__init__('bump_go')

self.FORWARD = 0
self.BACK = 1
self.TURN = 2
self.STOP = 3
self.state = self.FORWARD
self.state_ts = self.get_clock().now()

def control_cycle(self):

if self.state == self.FORWARD:
out_vel.linear.x = self.SPEED_LINEAR

if self.check_forward_2_stop():
self.go_state(self.STOP)

if self.check_forward_2_back():
self.go_state(self.BACK)

self.vel_pub.publish(out_vel)

def go_state(self, new_state):
self.state = new_state
self.state_ts = self.get_clock().now()

Perhaps the most remarkable aspect in this code, similar to its version in C++,
is the treatment of time and durations:
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bump go py/bump go main.py

def check_forward_2_back(self):
pos = round(len(self.last_scan.ranges) / 2)
return self.last_scan.ranges[pos] < self.OBSTACLE_DISTANCE

def check_forward_2_stop(self):
elapsed = self.get_clock().now() - Time.from_msg(self.last_scan.header.stamp)
return elapsed > Duration(seconds=self.SCAN_TIMEOUT)

def check_back_2_turn(self):
elapsed = self.get_clock().now() - self.state_ts
return elapsed > Duration(seconds=self.BACKING_TIME)

• The Time.from msg function allows to create a Time object from the timestamp
of a message.

• The current time is obtained with Node’s get clock().now() method.

• The operation between time has as a result an object of type Duration,
which can be compared with another object of type Duration, such as
Duration(seconds = self.BACKING TIME) that represents the duration of
2 seconds.

3.4.3 Running the Code

Let’s see how to build and install the code in the workspace. First, Modify setup.py
for our new program:

setup.py

import os
from glob import glob

from setuptools import setup

package_name = 'br2_fsm_bumpgo_py'

setup(
name=package_name,
version='0.0.0',
packages=[package_name],
data_files=[

('share/ament_index/resource_index/packages',
['resource/' + package_name]),

('share/' + package_name, ['package.xml']),
(os.path.join('share', package_name, 'launch'), glob('launch/*.launch.py'))

],
install_requires=['setuptools'],
zip_safe=True,
maintainer='fmrico',
maintainer_email='fmrico@gmail.com',
description='BumpGo in Python package',
license='Apache 2.0',
tests_require=['pytest'],
entry_points={

'console_scripts': [
'bump_go_main = br2_fsm_bumpgo_py.bump_go_main:main'

],
},

)
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The important part right now is the entry points argument. As shown in the
code above, add the new program shown previously. With this, we can already build
our package.

$ colcon build --symlink-install

In order to run the program, first launch the simulator by typing in the terminal:

$ ros2 launch br2 tiago sim.launch.py

Open another terminal, and run the program:

$ ros2 run br2 fsm bumpgo py bump go main --ros-args -r output vel:=/nav vel -r
input scan:=/scan raw -p use sim time:=true

We can also use a launcher similar to the one in the C++ version by just typing:

$ ros2 launch br2 fsm bumpgo py bump and go.launch.py

PROPOSED EXERCISES:

1. Modify the Bump and Go project so that the robot perceives an obstacle in
front, on its left and right diagonal. Instead of always turning to the same side,
it turns to the side with no obstacle.

2. Modify the Bump and Go project so that the robot turns exactly to the angle
with no obstacles or the more far perceived obstacle. Try two approaches:

• Open-loop: Calculate before turning time and speed to turn.
• Closed-loop: Turns until a clear space in front is detected.



C H A P T E R 4

The TF Subsystem

ONE of the greatest hidden treasures in ROS is its geometric transformation sub-
system TF (or TFs in short). This subsystem allows defining different reference

axes (also called frames) and the geometric relationship between them, even when this
relationship is constantly changing. Any coordinate in a frame can be recalculated to
another frame without the need for tedious manual calculations.

In my experience teaching ROS courses, students who had to deal with similar
calculations without TFs were always happy upon learning them.

Its importance in ROS is due to the need to model the parts and components of
a robot geometrically. It has many applications in navigation and location, as well
as manipulation. They have been used to position several cameras in a building or
motion capture systems1.

A robot perceives the environment through sensors placed somewhere on the
robot and performs actions for which it needs to specify some spatial position. For
instance:

• A distance sensor (laser or RGBD) generates a set of points (x, y, z) that indi-
cate the detected obstacles.

• A robot moves its end effector by specifying a target position
(x, y, z, roll, pitch, yaw).

• A robot moves to a point (x, y, yaw) on a map.

All these coordinates are references to a frame. In a robot, there are multiple
frames (for sensors, actuators, etc.). The relationship between these frames must be
known to reason. For example, the coordinate of an obstacle detected by the laser
on the arm reference axis to avoid it. Frames relationships are the displacement and
rotation of a frame to another frame. Algebraically, this is done using homogeneous
coordinates for the coordinates and RT transformation matrices for relations. Having
the coordinates of a point P in frame A, this is PA, we can calculate PB in frame B
using the transformation matrix RTA→B as follows:

1https://github.com/MOCAP4ROS2-Project

DOI: 10.1201/9781003516798-4 65

https://github.com/MOCAP4ROS2-Project
https://doi.org/10.1201/9781003516798-4


66 ■ A Concise Introduction to Robot Programming with ROS 2

PB = RTA→B ∗ PA (4.1)
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In addition to the complexity of these operations, it is remarkable that these
relationships are highly dynamic in an articulated robot. It would be an error to
transform the points perceived by a sensor at time t using the transformation at t +
0.01 s if it varies dynamically at high speed.

ROS 2 implements the TF transform system (now called TF2, the second
version) using two topics that receives transformations, as messages of type
tf2 msgs/msg/TFMessage:

$ ros2 interface show tf2 msgs/msg/TFMessage

geometry msgs/TransformStamped[] transforms
std msgs/Header header
string child frame id
Transform transform

Vector3 translation
float64 x
float64 y
float64 z

Quaternion rotation
float64 x 0
float64 y 0
float64 z 0
float64 w 1

• /tf for transforms that vary dynamically, like the joints of a robot are specified
here. By default, they are valid for a short time (10 s). For example, frames
relation linked by motorized joints are published here.

• /tf static for transforms that do not vary over time. This topic has a QoS
transient local, so any node that subscribes to this topic receives all the trans-
forms published so far. Typically, the transforms published to this topic do not
change over time, like the robot geometry.

The frames of a robot are organized as a tree of TFs, in which each TF should have
at most one parent and can have several children. If this is not true, or several trees
are not connected, the robot is not well modeled. By convention, there are several
important axes:

• base footprint is usually the root of a robot’s TFs, and corresponds to the
center of the robot on the ground. It is helpful to transform the information
from the robot’s sensors to this axis to relate them to each other.



The TF Subsystem ■ 67

• base link is usually the child of /base footprint, and is typically the center
of the robot, already above ground level.

• odom is the parent frame of /base footprint, and the transformation that
relates them indicates the robot’s displacement since the robot’s motion started.

Figure 4.1 shows partially the TF tree of the simulated Tiago. If you would like
to see the whole TF tree, launch the simulation and then type2:

$ ros2 run rqt tf tree rqt tf tree

Figure 4.1: Portion of the TF tree of the simulated Tiago and the TF display in
RViz2.

When a node wants to use this system, it does not subscribe directly to these
topics but uses TFListeners, which are objects that update a buffer that stores all
the latest published TFs, and that has an API that lets, for example:

• To know if there is a TF from one frame to another at time t.

• To know what is the rotation from frame A to frame B at time t.

• To ask to transform a coordinate that is in frame A and to frame B in an
arbitrary time t.

The buffer may not contain just the TF at time t, but if it has an earlier and
a later one, it performs the interpolation. Likewise, frames A and B may not be

2It is needed to have installed the package ros-jazzy-rqt-tf-tree
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directly connected, but more frames are in between, performing the necessary matrix
operations automatically.

Without going into much detail, for now, publishing a transform to a ROS 2 node
is very straightforward. Just have a transform broadcaster and send transforms to
the TF system:

geometry_msgs::msg::TransformStamped detection_tf;

detection_tf.header.frame_id = "base_footprint";
detection_tf.header.stamp = now();
detection_tf.child_frame_id = "detected_obstacle";
detection_tf.transform.translation.x = 1.0;

tf_broadcaster_->sendTransform(detection_tf);

Getting a transform is easy too. By having a TF buffer that a transform listener
updates, we can ask for the geometric transformation from one frame to another. Not
even these frames need to be directly connected. Any calculation is done transparently
for the developer:

tf2_ros::Buffer tfBuffer;
tf2_ros::TransformListener tfListener(tfBuffer);

...

geometry_msgs::msg::TransformStamped odom2obstacle;
odom2obstacle = tfBuffer_.lookupTransform("odom", "detected_obstacle", tf2::TimePointZero);

The above code calculates odom → base footprint → detected obstacle au-
tomatically. The third argument of lookupTransform indicates the instant of time
from which we want to obtain the transform. tf2::TimePointZero indicates the lat-
est available. If we are transforming points of a laser, for example, we should use the
timestamp that appears in the header of the laser message, because if a robot or the
laser has moved since then, the transformation in another instant will not be exact
(much can change in few milliseconds in a robot). Finally, be careful about asking for
the transforms with now(), because it will not have information yet at this moment in
time, and it cannot be extrapolated into the future, and an exception can be raised.

We can operate with transforms, multiplying them or calculating their inverse.
From here, we will establish a nomenclature convention for our code. This will help
us to operate with TFs:

• If an object represent a transformation from frame origin to frame target,
we call it origin2target.

• If needed to multiply two TFs, as shown in Figure 4.2.

1. We only can operate it if the frame names near operator * are equal. In
this case, the frame names are equals (robot).

2. The result frame id must be the outer part of the operators (odom from
first operator and object from second).



The TF Subsystem ■ 69

odom2object = odom2robot * robot2object

compatibility

result

result

Figure 4.2: The mnemonic rule for naming and operating TFs. Based on their name,
we can know if two TFs can be multiplied and the name of the resulting TF.

3. If we invert a TF (they are invertibles), we invert the frame ids in this
name.

4.1 AN OBSTACLE DETECTOR THAT USES TF2

This section will analyze a project to see in practice the application of the concepts
on TFs introduced in the previous sections.

This project makes the robot detect obstacles right in front of it using the laser
sensor, as shown in Figure 4.3.

Figure 4.3: Robot Tiago detecting obstacles with the laser sensor. The red arrow
highlights the obstacle detected with the center reading.

We will apply TFs concepts following a common practice in many ROS 2 packages
to publish the perceptions as TFs. The advantage of doing this is that we can easily
reason its position geometrically for any frame, even if it is not currently perceived.

We will not introduce a new perception model, but we will use the same one
from the previous chapter: we will detect obstacles in front of the robot using the
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Figure 4.4: Visual markers available for visual debugging.

laser. We will use the same speed-based actuation model, although we will teleoperate
the robot manually in this case.

In this project, apart from using the concepts about TFs, we will show a powerful
debugging tool called Visual Markers3, which allows us to publish 3D visual elements
that can be viewed in RViz2 from a node. This mechanism allows us to show at
a glance part of the internal state of the robot without limiting ourselves to the
debugging messages that are generated with the macros RCLCPP *. Markers include
arrows, lines, cylinders, spheres, lines, shapes, text, and others in any size or color.
Figure 4.4 shows an example of available markers.

4.2 COMPUTATION GRAPH

The Computation Graph of our application is shown in the Figure 4.5.
The node uses a laser sensor of the simulated robot at the scan raw topic. The

detection node subscribes to the laser topic and publishes the transform in the ROS
2 TF subsystem. Our node subscribes to /input scan, so we will have to remap from
/scan raw.

We will create a node /obstacle monitor that reads the transform corresponding
to the detection and shows in console its position with respect to the general frame
of the robot, base footprint.

The node /obstacle monitor publishes also a visual marker. In our case, we will
publish a red arrow that connects the robot’s base with the frame’s position of the
obstacle that we are publishing.

In this project, we will make two versions: a basic one and an improved one. The
reason is to see a small detail about the use of TFs that significantly impacts the
final result, as we will explain later.

3http://wiki.ros.org/rviz/DisplayTypes/Marker

http://wiki.ros.org/rviz/DisplayTypes/Marker
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/obstacle_detector

/tf
geometry_msgs/msg/TransformStamped

/input_scan
sensor_msgs/msg/LaserScan TransformBroadcaster

TF

/tf_static

/obstacle_monitor
TransformListener

Buffer

/bytes_laserscan

/scan_raw

sensor_msgs/msg/LaserScan

/obstacle_marker
visualization_msgs/msg/Marker

RViz2 /rosout
rcl_interfaces/msg/Log

2 Hz

Figure 4.5: Computation Graph of the exercise. The /obstacle detector node col-
laborates with the /obstacle monitor node using the TF subsystem.

4.3 BASIC DETECTOR

We use the same package for both versions. The structure of the package can be seen
in the following box:

We will ignore in this section the files that contain the word "Improved" in the
name. We will see them in the next section.

The reader can see how the package structure is similar to the previous chapter.
The nodes are separated in their declaration and definition, in directories whose name

Package br2 tf2 detector

br2_tf2_detector
CMakeLists.txt
include

br2_tf2_detector
ObstacleDetectorImprovedNode.hpp
ObstacleDetectorNode.hpp
ObstacleMonitorNode.hpp

launch
detector_basic.launch.py
detector_improved.launch.py

package.xml
src

br2_tf2_detector
ObstacleDetectorImprovedNode.cpp
ObstacleDetectorNode.cpp
ObstacleMonitorNode.cpp

detector_improved_main.cpp
detector_main.cpp
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matches the package. In addition, everything will be defined within a namespace that
matches the package’s name. This package will take a small step forward in this struc-
ture: now, we will compile the nodes as a dynamic library linked by the executables.
Perhaps in this project we will not notice the difference, but we save space, it is more
convenient, and it could allow (it is not the case) to export it to other packages. The
name of the library will be the name of the package (${PROJECT NAME}), as usual
when creating a support library in a package. Let’s see what this looks like in the
CMakeLists.txt file:

include/br2 tf2 detector/ObstacleDetectorNode.hpp

project(br2_tf2_detector)

find_package(...)
...

set(dependencies
...
)

include_directories(include)

add_library(${PROJECT_NAME} SHARED
src/br2_tf2_detector/ObstacleDetectorNode.cpp
src/br2_tf2_detector/ObstacleMonitorNode.cpp
src/br2_tf2_detector/ObstacleDetectorImprovedNode.cpp

)
ament_target_dependencies(${PROJECT_NAME} ${dependencies})

add_executable(detector src/detector_main.cpp)
ament_target_dependencies(detector ${dependencies})
target_link_libraries(detector ${PROJECT_NAME})

add_executable(detector_improved src/detector_improved_main.cpp)
ament_target_dependencies(detector_improved ${dependencies})
target_link_libraries(detector_improved ${PROJECT_NAME})

install(TARGETS
${PROJECT_NAME}
detector
detector_improved
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

Note that now it is needed to add a target link libraries statement and install
the library in the same place as the executables. When specifying the files of each
executable, it is no longer necessary to specify more than the main cpp program file.

4.3.1 Obstacle Detector Node

Analyze the obstacle detector node. Its execution follows an event-oriented model
rather than an iterative one. Every message the node receives will produce an output,
so it makes sense that the node’s logic resides in the laser callback.
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include/br2 tf2 detector/ObstacleDetectorNode.hpp

class ObstacleDetectorNode : public rclcpp::Node
{
public:

ObstacleDetectorNode();

private:
void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);

rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
std::shared_ptr<tf2_ros::StaticTransformBroadcaster> tf_broadcaster_;

};

Since the node must publish transforms to the TF subsystem, we declare a
StaticTransformBroadcaster, that publish in /tf static. We could also declare a
TransformBroadcaster that publish in /tf. Apart from the durability QoS, the dif-
ference is that we want transforms to persist beyond the 10 s by default of non-static
transforms.

We use a shared ptr for tf broadcaster , since its constructor requires an
rclcpp::Node*, and we will not have it until we are already inside the constructor4:

src/br2 tf2 detector/ObstacleDetectorNode.hpp

ObstacleDetectorNode::ObstacleDetectorNode()
: Node("obstacle_detector")
{

scan_sub_ = create_subscription<sensor_msgs::msg::LaserScan>(
"input_scan", rclcpp::SensorDataQoS(),
std::bind(&ObstacleDetectorNode::scan_callback, this, _1));

tf_broadcaster_ = std::make_shared<tf2_ros::TransformBroadcaster>(*this);
}

The tf broadcaster object manages the publication of static TFs. The message
type of a TF is geometry msgs/msg/TransformStamped. Let’s see how it is used:

src/br2 tf2 detector/ObstacleDetectorNode.hpp

void
ObstacleDetectorNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

double dist = msg->ranges[msg->ranges.size() / 2];

if (!std::isinf(dist)) {
geometry_msgs::msg::TransformStamped detection_tf;

detection_tf.header = msg->header;
detection_tf.child_frame_id = "detected_obstacle";
detection_tf.transform.translation.x = msg->ranges[msg->ranges.size() / 2];

tf_broadcaster_->sendTransform(detection_tf);
}

}

• The header of the output message will be the header of the input laser message.
We will do this because the timestamp must be when the sensory reading was
taken. If we used now(), depending on the latency in the messages and the

4In fact, some C++ developers recommend avoiding using this in constructors, as the object
has not completely initialized until the constructor finishes.
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load of the computer, the transform would not be precise, and synchronization
errors could occur.
The frame id is the source frame (or parent frame) of the transformation,
already in this header. In this case, it is the sensor frame since the perceived
coordinates of the object are in this frame.

• The child frame id field is the id of the new frame that we are going to create,
and that represents the perceived obstacle.

• The transform field contains a translation and a rotation applied in this order,
from the parent frame to the child frame that we want to create. Since the
X-axis of the laser frame is aligned with the laser beam that we are measuring,
the translation in X is the distance read.
Rotation refers to the rotation of the frame after translation is applied. As this
value is not relevant here (detection is a point) we use the default quaternion
values (0, 0, 0, 1) set by the message constructor.

• Finally, use the sendTransform() method of tf broadcaster to send the
transform to the TF subsystem.

4.3.2 Obstacle Monitor Node

The /obstacle monitor node extracts the transform to the detected object from the
TFs system and shows it to the user in two ways:

• The standard output on the console indicates where the obstacle is with respect
to the robot at all times, even if it is no longer being detected.

• Using a visual marker, specifically an arrow, which starts from the robot toward
the obstacle that was detected.

Analyze the header to see what elements this node has:
include/br2 tf2 detector/ObstacleMonitorNode.hpp

class ObstacleMonitorNode : public rclcpp::Node
{
public:

ObstacleMonitorNode();

private:
void control_cycle();
rclcpp::TimerBase::SharedPtr timer_;

tf2::BufferCore tf_buffer_;
tf2_ros::TransformListener tf_listener_;

rclcpp::Publisher<visualization_msgs::msg::Marker>::SharedPtr marker_pub_;
};

• The execution model of this node is iterative, so we declare timer and its
callback control cycle.
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• To access the TF system, use a tf2 ros::TransformListener that update the
buffer tf buffer to which we can make the queries we need.

• We only need one publisher for visual markers.

In the case of the class definition, we ignore the part dedicated to visual markers,
for now, showing only the part related to TFs.

src/br2 tf2 detector/ObstacleMonitorNode.cpp

1 ObstacleMonitorNode::ObstacleMonitorNode()
2 : Node("obstacle_monitor"),
3 tf_buffer_(),
4 tf_listener_(tf_buffer_)
5 {
6 marker_pub_ = create_publisher<visualization_msgs::msg::Marker>(
7 "obstacle_marker", 1);
8
9 timer_ = create_wall_timer(

10 500ms, std::bind(&ObstacleMonitorNode::control_cycle, this));
11 }
12
13 void
14 ObstacleMonitorNode::control_cycle()
15 {
16 geometry_msgs::msg::TransformStamped robot2obstacle;
17
18 try {
19 robot2obstacle = tf_buffer_.lookupTransform(
20 "base_footprint", "detected_obstacle", tf2::TimePointZero);
21 } catch (tf2::TransformException & ex) {
22 RCLCPP_WARN(get_logger(), "Obstacle transform not found: %s", ex.what());
23 return;
24 }
25
26 double x = robot2obstacle.transform.translation.x;
27 double y = robot2obstacle.transform.translation.y;
28 double z = robot2obstacle.transform.translation.z;
29 double theta = atan2(y, x);
30
31 RCLCPP_INFO(get_logger(), "Obstacle detected at (%lf m, %lf m, , %lf m) = %lf rads",
32 x, y, z, theta);
33 }

• Notice how tf listener is initialized by simply specifying the buffer to up-
date. Later, the queries will be made directly to the buffer.

• We observe that the control loop runs at 2 Hz, showing us information with
RCLCPP INFO (to /ros out and stdout).

• The most relevant function is lookupTransform, which calculates the geometric
transformation from one frame to another, even if there is no direct relationship.
We can specify a specific timestamp or, on the contrary, we want the last one
available by indicating tf2::TimePointZero. This call can throw an exception
if it does not exist, or we require a transform on a timestamp in the future, so
a try/catch should be used to handle possible errors.

• Note that the TF we published in ObstacleDetectorNode was
base laser link → detected obstacle, and now we are requiring
base footprint → detected obstacle. As the robot is well modeled and
the geometric relationship between base laser link and base footprint can
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be calculated, there will be no problem for lookupTransform to return the
correct information.

Let’s see the part related to the generation of the visual marker. The goal is
to show the coordinates of the obstacle to the robot on the screen and show a ge-
ometric shape in RViz2 that allows us to debug the application visually. In this
case, it will be a red arrow from the robot to the obstacle. To do this, create an
visualization msgs/msg/Marker message and fill in its fields to obtain this arrow:

src/br2 tf2 detector/ObstacleMonitorNode.cpp

visualization_msgs::msg::Marker obstacle_arrow;
obstacle_arrow.header.frame_id = "base_footprint";
obstacle_arrow.header.stamp = now();
obstacle_arrow.type = visualization_msgs::msg::Marker::ARROW;
obstacle_arrow.action = visualization_msgs::msg::Marker::ADD;
obstacle_arrow.lifetime = rclcpp::Duration(1s);

geometry_msgs::msg::Point start;
start.x = 0.0;
start.y = 0.0;
start.z = 0.0;
geometry_msgs::msg::Point end;
end.x = x;
end.y = y;
end.z = z;
obstacle_arrow.points = {start, end};

obstacle_arrow.color.r = 1.0;
obstacle_arrow.color.g = 0.0;
obstacle_arrow.color.b = 0.0;
obstacle_arrow.color.a = 1.0;

obstacle_arrow.scale.x = 0.02;
obstacle_arrow.scale.y = 0.1;
obstacle_arrow.scale.z = 0.1;

In the reference document5 for visual markers is documented the meaning of every
field for every type of marker. In the case of an arrow, the points field will be filled
with the starting point (0, 0, 0) and the ending point corresponding to the detection,
both in base footprint. Do not forget to assign a color, especially the alpha, since
we will not see anything if we let it be 0, the default value.

4.3.3 Running the Basic Detector

We instantiate both in the same process to test our nodes, and we use a
SingleThreadedExecutor. That would be enough to spin both:

5://wiki.ros.org/rviz/DisplayTypes/Marker

https://wiki.ros.org/rviz/DisplayTypes/Marker
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src/br2 tf2 detector/ObstacleMonitorNode.cpp

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto obstacle_detector = std::make_shared<br2_tf2_detector::ObstacleDetectorNode>();
auto obstacle_monitor = std::make_shared<br2_tf2_detector::ObstacleMonitorNode>();

rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(obstacle_detector->get_node_base_interface());
executor.add_node(obstacle_monitor->get_node_base_interface());

executor.spin();

rclcpp::shutdown();
return 0;

}

Follow the next commands to test our nodes:

# Terminal 1: The Tiago simulation
$ ros2 launch br2 tiago sim.launch.py world:=empty

# Terminal 2: Launch our nodes
$ ros2 launch br2 tf2 detector detector basic.launch.py

# Terminal 3: Keyboard teleoperation
$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args -r
cmd vel:=/key vel

# Terminal 4: RViz2
$ ros2 run rviz2 rviz2 --ros-args -p use sim time:=true

In Gazebo, add an obstacle in front of the robot. Start watching in the terminal
the information about the detection. In Rviz2, change the fixed frame to odom. Add
a Markers display to RViz2 specifying the topic that we have created to publish the
visual marker. Also, add the TF Display if it is not added yet. Figure 4.6 shows the
TF to the obstacle and also the red arrow.

Do a quick exercise: with the teleoperator, move the robot forward and to the
side, so it no longer perceives the obstacle. Keep moving the robot and realize that
the information returned by lookupTransform is no longer correct. It continues to
indicate that the obstacle is ahead, although this is no longer true. What has hap-
pened? We probably wanted the arrow to point to the obstacle position, but now the
arrow travels fixed with the robot.

Let’s explain it with a diagram in Figure 4.7. As long as the robot perceives the
obstacle, the transform requested (pink arrow) is correct. It is a transform from the
robot’s laser to the obstacle. When we stop updating the transform (thick blue arrow)
because the obstacle is gone, the transform continues to exist. If we move the robot,
lookupTransform keeps returning the last valid transform: in front fo the robot. This
makes the visual marker wrong as well. The following section presents a strategy to
fix this undesirable situation.
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Figure 4.6: Visualization in RViz2 of the TF corresponding to the detection, and the
red arrow marker published to visualize the detection.
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Extternally managed TF

Requested TF
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Figure 4.7: Diagram showing the problem when publishing TFs in the local frame.
When the robot moves, the TF no longer represents the right obstacle position.

4.4 IMPROVED DETECTOR

The solution is to publish the detection TF in a fixed frame that is not affected by
the robot’s movement, for example, odom (or map if your robot is navigating). If we do
it like this, when we require the transform base footprint → detected obstacle
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(pink arrow), this transform will be calculated taking into account the movement of
the robot, collected in the transformation odom → base footprint. This calculation
is visualized in the diagram in Figure 4.8.

odom

base_footprint 
base_laser_link

odom

detected_obstacle

base_footprint 
base_laser_link

detected_obstacle

Published TF

Extternally managed TF

Requested TF

Robot movement

Figure 4.8: Diagram showing how to correctly maintain the obstacle position, by
publishing the TF in a fixed frame. The calculated TF (thick blue arrow) takes into
account the robot displacement.

ObstacleDetectorImprovedNode is the modification of ObstacleDetectorNode
to implement this improvement. This new node operates with TFs, so at some point,
it consult the value of an existing TF. For this reason, in addition to having a
StaticTransformPublisher, it instantiates a TransformListener with its related
Buffer.

include/br2 tf2 detector/ObstacleMonitorNode.hpp

class ObstacleDetectorImprovedNode : public rclcpp::Node
{
...
private:

...
tf2::BufferCore tf_buffer_;
tf2_ros::TransformListener tf_listener_;

};

Let the implementation of this node. In this program, check the two data struc-
tures that are related but are not the same:

• geometry msgs::msg::TransformStamped is a message type, and is used to
post TFs, and is the returned result of lookupTransform.

• tf2::Transform is a data type of the TF2 library that allows performing
operations.

• tf2::Stamped<tf2::Transform> is similar to the previous one, but with a
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header that indicates a timestamp. It will be necessary to comply with the
types in the transformation functions.

• tf2::fromMsg/tf2::toMsg are transformation functions that allow transform-
ing from a message type to a TF2 type, and vice versa.

As a general tip, do not use message types inside the node to operate on them.
Apply this advice for TFs, images, point clouds, and more data type. Messages are
good for communicating nodes but very limited in functionality. If there is a li-
brary that offers a native type, use it, as it will be much more useful. Commonly,
there are functions to pass from message type to native type. In this case, we use
geometry msgs::msg::TransformStamped to send and receive TFs, but we use the
TF2 library to operate on them.

Considering the convention established previously, let’s see how we can carry
out the improvement. Our goal, as we saw before, is to create the TF odom2object
(object is the detected obstacle). The observation is represented as the transform
laser2object, so we have to find X in the following equation:

odom2object = X ∗ laser2object

By deduction from the rules that we stated above, X must be odom2laser, which is
a TF that can be requested from lookupTransform.

include/br2 tf2 detector/ObstacleMonitorNode.hpp

double dist = msg->ranges[msg->ranges.size() / 2];

if (!std::isinf(dist)) {
tf2::Transform laser2object;
laser2object.setOrigin(tf2::Vector3(dist, 0.0, 0.0));
laser2object.setRotation(tf2::Quaternion(0.0, 0.0, 0.0, 1.0));

geometry_msgs::msg::TransformStamped odom2laser_msg;
tf2::Stamped<tf2::Transform> odom2laser;
try {

odom2laser_msg = tf_buffer_.lookupTransform(
"odom", "base_laser_link", msg->header.stamp, rclcpp::Duration(200ms));

tf2::fromMsg(odom2laser_msg, odom2laser);
} catch (tf2::TransformException & ex) {

RCLCPP_WARN(get_logger(), "Obstacle transform not found: %s", ex.what());
return;

}

tf2::Transform odom2object = odom2laser * laser2object;

geometry_msgs::msg::TransformStamped odom2object_msg;
odom2object_msg.transform = tf2::toMsg(odom2object);

odom2object_msg.header.stamp = msg->header.stamp;
odom2object_msg.header.frame_id = "odom";
odom2object_msg.child_frame_id = "detected_obstacle";

tf_broadcaster_->sendTransform(odom2object_msg);
}

• laser2object stores the perception to the detected object. It is just a trans-
lation in the X-axis corresponding to the distance to the obstacle.

• To get odom2laser, we need to query the TF subsystem with
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lookupTransform, transforming the resulting transform message to the needed
type to operate with transforms.

• At this point, we have everything to calculate odom2object, this is, the obstacle
position with respect to the fixed frame odom.

• Finally, we compound the output message and publish to the TF subsystem.

It is not necessary to make any changes to the ObstacleMonitorNode as
lookupTransform will calculate the TF base footprint → obstacle since the TF
system knows the TFs odom → base footprint and odom → obstacle.

4.4.1 Running the Improved Detector

The process of executing the new, improved node is similar to the basic case, with the
only difference being our improved node specified in the main program and launcher.
Since it is a simple change, we will skip showing it here. Let’s follow similar commands
to execute it:

# Terminal 1: The Tiago simulation
$ ros2 launch br2 tiago sim.launch.py world:=empty

# Terminal 2: Launch our nodes
$ ros2 launch br2 tf2 detector detector improved.launch.py

# Terminal 3: Keyboard teleoperation
$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args -r
cmd vel:=/key vel

# Terminal 4: RViz2
$ ros2 run rviz2 rviz2 --ros-args -p use sim time:=true

Add the obstacle in Gazebo so the robot can detect it. Watch the console output
and the visual marker in RViz2. Move the robot so the obstacle is not detected, and
see how the marker and the output are correct now. The displacement, coded as the
transform odom → base footprint is used to update the information correctly.

PROPOSED EXERCISES:

1. Make a node that shows every second how much the robot has moved. You can
do this by saving (odom → base footprint)t, and subtracting it from (odom →
base footprint)t+1

2. In ObstacleDetectorNode, change the arrow’s color depending on the distance
to the obstacle: green is far, and red is near.

3. In ObstacleDetectorNode, show in the terminal the obstacle’s position in the
odom frame, in the base footprint, and in the head 2 link.
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Reactive Behaviors

REACTIVE behaviors tightly couples perception to action without the use of in-
tervening abstract representation. As Brooks demonstrated in his Subsumption

Architectures [7], relatively complex behaviors can be created with simple reactive
behaviors that are activated or inhibited by higher layers.

We will not discuss the development of sumbsumption architectures in this
chapter. By the way, the reader can refer to the Cascade Lifecycle1 package and
rqt cascade hfsm2, which provide some building blocks to build subsumption archi-
tectures. The objective of this chapter is to show a couple of reactive behaviors that
use different resources to advance the knowledge of ROS 2.

This chapter will first look at a simple local navigation algorithm, Virtual Force
Field (VFF), that uses the laser to avoid obstacles. This example will establish some
knowledge about visual markers and introduce some test-driven development method-
ology.

Second, we will see reactive tracking behavior based on information from the
camera. We will see how images are processed and how the joints of a robot are
controlled. In addition, we will see an advantageous type of node called Lifecycle
Node.

5.1 AVOIDING OBSTACLES WITH VFF

This section will show how to implement a simple reactive behavior that makes the
Tiago robot move forward, avoiding obstacles using a simple VFF algorithm. This
simple algorithm is based on using three 2D vectors to calculate the control speed:

• Attractive vector: This vector always points forward since the robot wants
to move in a straight line in the absence of obstacles.

• Repulsive vector: This vector is calculated from the laser sensor readings. In
our basic version, the obstacle closest to the robot produces a repulsion vector,
inversely proportional to its distance.

1https://github.com/fmrico/cascade_lifecycle
2https://github.com/fmrico/rqt_cascade_hfsm
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• Result vector: This vector is the sum of the two previous vectors and will cal-
culate the control speed. Linear speed depends on the resulting vector module,
and the angle to turn depends on the resulting vector angle.

Figure 5.1 shows examples of these vectors depending on the position of the
obstacles.

Figure 5.1: Examples of VFF vectors produced by the same obstacle. Blue vector is
attractive, red vector is repulsive, and green vector is the resulting vector.

5.1.1 The Computation Graph

First, see what the computational graph of this problem looks like. As shown in
Figure 5.2, we have a single node within a process, with the following elements and
characteristics:

• The node subscribes to a message topic with the perception information and
publishes it to a speed message topic. These will be the main input and outputs.
As discussed in the previous chapter, we will use generic names for these topics,
which will be remapped at deployment.

• It is crucial to have enough information to determine why a robot behaves in
a certain way. ROS 2 offers many debugging tools. Using /rosout is a good
alternative. It is also handy to use the LEDs equipped by a robot. With an
LED that could change color, we could already color-code the robot’s state or
perception. At a glance, we could have much information about why the robot
makes its decisions.
In this case, in addition to the input and output topics above, we have added
the debugging topic /vff debug, that publish Visual Markers to visualize the
different vectors of VFF. The color vectors in Figure 5.1 are visual markers
published by the node and visualized in RViz2.

Reactive Behaviors ■ 83



/nav_vel
geometry_msgs/msg/Twist

/avoidance_vff

/output_vel
geometry_msgs/msg/Twist

tiago_nodes

/scan_raw

sensor_msgs/msg/LaserScan

/input_scan
sensor_msgs/msg/LaserScan

20 Hz

/vff_debug
visualization_msgs/msg/MarkerArray

Figure 5.2: Computation Graph for obstacle avoidance.

• In this case, we will choose an iterative execution controlled internally by the
node using a timer, to run the control logic at 20 Hz.

5.1.2 Package Structure

See that the organization of the package, in the next box, is already standard in our
packages: Each node with its declaration and its different definition in its .hpp and
its .cpp, and the main program that will instantiate it. We have a launch directory
with a launcher to easily execute our project. Notice that we have now added a tests
directory in which we will have our files with the tests, as we will explain later.

5.1.3 Control Logic

The AvoidanceNode implements the VFF algorithm to generate the control com-
mands based on the laser readings. The main elements are similar to the previous
examples:
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Package br2 vff avoidance

br2_vff_avoidance
CMakeLists.txt
include

br2_vff_avoidance
AvoidanceNode.hpp

launch
avoidance_vff.launch.py

package.xml
src

avoidance_vff_main.cpp
br2_vff_avoidance

AvoidanceNode.cpp
tests

CMakeLists.txt
vff_test.cpp



• A subscriber for the laser readings, whose function will be to update the last
reading in last scan .

• A publisher for speeds.

• A get vff function for calculating the three vectors on which the VFF al-
gorithm is based, given a reading from the laser. We declare a new type
VFFVectors to pack them.

• As this node executes iteratively, we use a timer and use the method
control cycle as a callback.

include/br2 vff avoidance/AvoidanceNode.hpp

struct VFFVectors
{

std::vector<float> attractive;
std::vector<float> repulsive;
std::vector<float> result;

};

class AvoidanceNode : public rclcpp::Node
{
public:

AvoidanceNode();

void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);
void control_cycle();

protected:
VFFVectors get_vff(const sensor_msgs::msg::LaserScan & scan);

private:
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;
rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
rclcpp::TimerBase::SharedPtr timer_;

sensor_msgs::msg::LaserScan::UniquePtr last_scan_;
};

In the control cycle, initially check if the laser has new data. If not, or if this data
is old (if we have not received information from the laser in the last second), do not
generate control commands. The robot should stop if the robot driver is correctly
implemented and does not move when it stops receiving commands. On the contrary
(not our case), you should send speeds with all fields to 0 to stop the robot.

Once the resulting vector has been calculated, its transformation at speeds is
direct by calculating modulus and angle. It is convenient to control that the speed
ranges are in safe ranges with std::clamp, as can be seen in the following code:
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src/br2 vff avoidance/AvoidanceNode.cpp

void
AvoidanceNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

last_scan_ = std::move(msg);
}

void
AvoidanceNode::control_cycle()
{

// Skip cycle if no valid recent scan available
if (last_scan_ == nullptr || (now() - last_scan_->header.stamp) > 1s) {

return;
}

// Get VFF vectors
const VFFVectors & vff = get_vff(*last_scan_);

// Use result vector to calculate output speed
const auto & v = vff.result;
double angle = atan2(v[1], v[0]);
double module = sqrt(v[0] * v[0] + v[1] * v[1]);

// Create ouput message, controlling speed limits
geometry_msgs::msg::Twist vel;
vel.linear.x = std::clamp(module, 0.0, 0.3); // linear vel to [0.0, 0.3] m/s
vel.angular.z = std::clamp(angle, -0.5, 0.5); // rotation vel to [-0.5, 0.5] rad/s

vel_pub_->publish(vel);
}

5.1.4 Calculation of the VFF Vectors

The objective of the function get vff is to obtain the three vectors: attractive, re-
pulsive, and resulting:
src/br2 vff avoidance/AvoidanceNode.cpp

VFFVectors
AvoidanceNode::get_vff(const sensor_msgs::msg::LaserScan & scan)
{

// This is the obstacle radius in which an obstacle affects the robot
const float OBSTACLE_DISTANCE = 1.0;

// Init vectors
VFFVectors vff_vector;
vff_vector.attractive = {OBSTACLE_DISTANCE, 0.0}; // Robot wants to go forward
vff_vector.repulsive = {0.0, 0.0};
vff_vector.result = {1.0, 0.0};

// Get the index of nearest obstacle
int min_idx = std::min_element(scan.ranges.begin(), scan.ranges.end())

- scan.ranges.begin();

// Get the distance to nearest obstacle
float distance_min = scan.ranges[min_idx];

// If the obstacle is in the area that affects the robot, calculate repulsive vector
if (distance_min < OBSTACLE_DISTANCE) {

float angle = scan.angle_min + scan.angle_increment * min_idx;

float oposite_angle = angle + M_PI;
// The module of the vector is inverse to the distance to the obstacle
float complementary_dist = OBSTACLE_DISTANCE - distance_min;

// Get cartesian (x, y) components from polar (angle, distance)
vff_vector.repulsive[0] = cos(oposite_angle) * complementary_dist;
vff_vector.repulsive[1] = sin(oposite_angle) * complementary_dist;

}
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src/br2 vff avoidance/AvoidanceNode.cpp

// Calculate resulting vector adding attractive and repulsive vectors
vff_vector.result[0] = (vff_vector.repulsive[0] + vff_vector.attractive[0]);
vff_vector.result[1] = (vff_vector.repulsive[1] + vff_vector.attractive[1]);

return vff_vector;
}

• The attractive vector will always be (1, 0), since the robot will always try to
move forward. Initialize the rest of the vectors assuming there are no nearby
obstacles.

• The repulsive vector is calculated from the lower laser reading. By calculating
min idx as the index of the vector with a smaller value, we are able to get the
distance (the value in the ranges vector) and the angle (from angle min, the
angle increment and the min idx).

• The margnitude of the repulsive vector has to be inversely proportional to the
distance to the obstacle. Closer obstacles have to generate more repulse than
those further.

• The angle of the repulsive vector must be in the opposite direction to the angle
of the detected obstacle, so add π to it.

• After calculating the repulsive vector’s cartesian coordinates, we add it with
the attractive vector to obtain its resultant.

5.1.5 Debugging with Visual Markers

In the previous chapter we used visual markers to visually debug the robot’s behav-
ior. The arrows in Figure 5.1 are visual markers generated by AvoidanceNode for de-
bugging. The difference is using visualization msgs::msg::MarkerArray instead
of visualization msgs::msg::Marker. Basically, a visualization msgs::msg::
MarkerArray contains a std::vector of visualization msgs::msg::Marker in its
field markers. Let’s see how the message that will be published as debugging infor-
mation is composed. For details of these messages, check the message definitions, and
the reference page3:

$ ros2 interface show visualization msgs/msg/MarkerArray

Marker[] markers

$ ros2 interface show visualization msgs/msg/Marker

The AvoidanceNode header contains what you need to compose and publish the
visual markers. We have a publisher of visualization msgs::msg::MarkerArray
and two functions that will help us to compose the vectors. get debug vff returns
the complete message formed by the three arrows that represent the three vectors.

3http://wiki.ros.org/rviz/DisplayTypes/Marker
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To avoid repeating code in this function, make marker creates a marker with the
specified color as the input parameter.
include/br2 vff avoidance/AvoidanceNode.hpp

typedef enum {RED, GREEN, BLUE, NUM_COLORS} VFFColor;

class AvoidanceNode : public rclcpp::Node
{
public:

AvoidanceNode();

protected:
visualization_msgs::msg::MarkerArray get_debug_vff(const VFFVectors & vff_vectors);
visualization_msgs::msg::Marker make_marker(

const std::vector<float> & vector, VFFColor vff_color);

private:
rclcpp::Publisher<visualization_msgs::msg::MarkerArray>::SharedPtr vff_debug_pub_;

};

The markers are published to control cycle, as long as there is a subscriber
interested in this information, which, in this case, will be RViz2.

void
AvoidanceNode::control_cycle()
{

// Get VFF vectors
const VFFVectors & vff = get_vff(*last_scan_);

// Produce debug information, if any interested
if (vff_debug_pub_->get_subscription_count() > 0) {

vff_debug_pub_->publish(get_debug_vff(vff));
}

}

For each of the vectors, create a visualization msgs::msg::Marker with a dif-
ferent color. base fooprint is the frame that is on the ground, in the center of the
robot, facing forward. So, the arrow’s origin is (0, 0) in this frame, and the arrow’s
end is what each vector indicates. Each vector must have a different id since a marker
will replace another with the same id in RViz2.
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visualization_msgs::msg::MarkerArray
AvoidanceNode::get_debug_vff(const VFFVectors & vff_vectors)
{
visualization_msgs::msg::MarkerArray marker_array;

marker_array.markers.push_back(make_marker(vff_vectors.attractive, BLUE));
marker_array.markers.push_back(make_marker(vff_vectors.repulsive, RED));
marker_array.markers.push_back(make_marker(vff_vectors.result, GREEN));

return marker_array;
}

visualization_msgs::msg::Marker
AvoidanceNode::make_marker(const std::vector<float> & vector, VFFColor vff_color)
{

visualization_msgs::msg::Marker marker;

marker.header.frame_id = "base_footprint";
marker.header.stamp = now();
marker.type = visualization_msgs::msg::Marker::ARROW;
marker.id = visualization_msgs::msg::Marker::ADD;

geometry_msgs::msg::Point start;
start.x = 0.0;

start.y = 0.0;
geometry_msgs::msg::Point end;
start.x = vector[0];
start.y = vector[1];
marker.points = {end, start};

marker.scale.x = 0.05;
marker.scale.y = 0.1;

switch (vff_color) {
case RED:

marker.id = 0;
marker.color.r = 1.0;
break;

case GREEN:
marker.id = 1;
marker.color.g = 1.0;
break;

case BLUE:
marker.id = 2;
marker.color.b = 1.0;
break;

}
marker.color.a = 1.0;

return marker;
}

5.1.6 Running the AvoidanceNode

The main program that runs this node should now be pretty trivial to the reader.
Just instantiate the node and call with it to spin:
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src/avoidance vff main.cpp

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto avoidance_node = std::make_shared<br2_reactive_behaviors::AvoidanceNode>();
rclcpp::spin(avoidance_node);
rclcpp::shutdown();

return 0;
}

To run this node, we must first run the simulator:

$ ros2 launch mr2 tiago sim.launch.py

Optionally, put again some extra obstacles. Next, execute the node setting remaps
and parameters:

$ ros2 run br2 vff avoidance avoidance vff --ros-args -r input scan:=/scan raw -r
output vel:=/key vel -p use sim time:=true

Or using the launcher:

$ ros2 launch br2 vff avoidance avoidance vff.launch.py

If everything goes well, the robot starts to move forward. Use the buttons to
move objects in the simulator to put obstacles to the robot. Open RViz2 and add the
visualization of topic /vff debug of type visualization msgs::msg::MarkerArray,
as shown in Figure 5.3. See how the visual information of the node’s markers helps
us better understand what the robot is doing.

Figure 5.3: Execution of avoidance behavior.
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5.1.7 Testing During Development

The code shown in the previous sections may contain calculation errors that can be
detected before running it on a real robot and even before running it on a simulator.
A very convenient strategy is, taking some (not all) concepts of test-driven develop-
ment, doing tests simultaneously as the code is developed. This strategy has several
advantages:

• Ensure that once a part of the software has been tested, other parts’ changes
do not negatively affect what has already been developed. The tests are incre-
mental. All tests are always passed, assessing the new functionality and the
validity of previously existing code, making development faster.

• The revision task is greatly simplified if the package receives contributions
from other developers. Activating a CI (Continous Integration) system in your
repository allows that each contribution has to compile correctly and pass all
the tests, both functional and stylish. In this way, the reviewer focuses on
verifying that the code does its job correctly.

• Many quality assurance procedures require the software to be tested. Saying “I
will do the tests when I finish” is a fallacy: You will not do them, or it will be a
tedious process that will not help you, so they are likely to be incomplete and
ineffective.

ROS 2 provides many testing tools that we can use easily. Let’s start with the
unit tests. ROS 2 uses GoogleTest4 to test C++ code. In order to use tests in the
package, include some packages in the package.xml:
package.xml

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>
<test_depend>ament_cmake_gtest</test_depend>

The <test depend> tag contains those dependencies only needed to test the pack-
age. It is possible to compile a workspace, in this case only the package, excluding
the tests, so these packages will not be taken into account in the dependencies:

$ colcon build --symlink-install --packages-select br2 vff avoidance
--cmake-args -DBUILD TESTING=off

As shown in the package structure, there is a tests directory with a C++
file (vff test.cpp) that contains tests. To compile it, these sentences should be
in CMakeLists.txt:

4https://github.com/google/googletest
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CMakeLists.txt

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

find_package(ament_cmake_gtest REQUIRED)
add_subdirectory(tests)

endif()

tests/CMakeLists.txt

ament_add_gtest(vff_test vff_test.cpp)
ament_target_dependencies(vff_test ${dependencies})
target_link_libraries(vff_test ${PROJECT_NAME})

Once introduced the testing infrastructure in a package, see how to do unit tests.
While developing the method AvoidanceNode::get vff it is possible to check that
it works correctly. Just create several synthetic sensor msgs::msg::LaserScan mes-
sages and then check that this function returns correct values in all cases. In this file,
it has been developed eight different cases. Let’s see some of them:
tests/vff test.cpp

sensor_msgs::msg::LaserScan get_scan_test_1(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, std::numeric_limits<float>::infinity());

return ret;
}

sensor_msgs::msg::LaserScan get_scan_test_5(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, 5.0);
ret.ranges[10] = 0.3;

return ret;
}

Each function returns a sensor msgs::msg::LaserScan message as if it had been
generated by a laser with 16 different values, regularly distributed in the range [−π, π].
In get scan test 1 it simulates the case that no obstacles are detected in any case.
At get scan test 5 it simulates that there is an obstacle at position 10, which cor-
responds to angle −π + 10 ∗ 2π

16 = 0.785.
In order to access the method to be tested, since it is not public, it is convenient

to make it protected and implement a class to access these functions:
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tests/vff test.cpp

class AvoidanceNodeTest : public br2_vff_avoidance::AvoidanceNode
{
public:

br2_vff_avoidance::VFFVectors
get_vff_test(const sensor_msgs::msg::LaserScan & scan)
{

return get_vff(scan);
}

visualization_msgs::msg::MarkerArray
get_debug_vff_test(const br2_vff_avoidance::VFFVectors & vff_vectors)
{

return get_debug_vff(vff_vectors);
}

};

It is possible to have all the needed tests in the same file. Each of them is defined
using the macro TEST(id, sub id), and inside, as if it were a function, write a pro-
gram whose objective is to test the functionality of the code. In the case of get vff,
these are the unitary tests:
tests/vff test.cpp

TEST(vff_tests, get_vff)
{

auto node_avoidance = AvoidanceNodeTest();
rclcpp::Time ts = node_avoidance.now();

auto res1 = node_avoidance.get_vff_test(get_scan_test_1(ts));
ASSERT_EQ(res1.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_EQ(res1.repulsive, std::vector<float>({0.0f, 0.0f}));
ASSERT_EQ(res1.result, std::vector<float>({1.0f, 0.0f}));

auto res2 = node_avoidance.get_vff_test(get_scan_test_2(ts));
ASSERT_EQ(res2.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_NEAR(res2.repulsive[0], 1.0f, 0.00001f);
ASSERT_NEAR(res2.repulsive[1], 0.0f, 0.00001f);
ASSERT_NEAR(res2.result[0], 2.0f, 0.00001f);
ASSERT_NEAR(res2.result[1], 0.0f, 0.00001f);

auto res5 = node_avoidance.get_vff_test(get_scan_test_5(ts));
ASSERT_EQ(res5.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_LT(res5.repulsive[0], 0.0f);
ASSERT_LT(res5.repulsive[1], 0.0f);
ASSERT_GT(atan2(res5.repulsive[1], res5.repulsive[0]), -M_PI);
ASSERT_LT(atan2(res5.repulsive[1], res5.repulsive[0]), -M_PI_2);
ASSERT_LT(atan2(res5.result[1], res5.result[0]), 0.0);
ASSERT_GT(atan2(res5.result[1], res5.result[0]), -M_PI_2);

}

int main(int argc, char ** argv)
{

rclcpp::init(argc, argv);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

The ASSERT * macros check the expected values based on the input. ASSERT EQ
verifies that the two values are equal. When comparing floats, it is preferable to use
ASSERT NEAR, which checks that two values are equal with a specified margin in its
third parameter. ASSERT LT verifies that the first value is “Less Than” the second.
ASSERT GT verifies that the first value is “Greater Than” the second, and so on.

For example, case 5 (obstacle at angle 0.785) verifies that the coordinates of the
repulsive vector are negative, both its angle is in the range [−π, −π

2 ] (it is a vector
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opposite to angle 0.785) and that the resulting vector is in the range [0, −π
2 ]. If this

is true, the algorithm is correct. Do these checks for each reading, with its expected
values, and pay attention to extreme and unexpected cases, such as test 1.

It is also possible to do integration tests. Since nodes are objects, instanti-
ate them and simulate their operation. For example, test the speeds published by
AvoidanceNode when receiving the test messages. Let’s see how to do it:
tests/vff test.cpp

TEST(vff_tests, ouput_vels)
{

auto node_avoidance = std::make_shared<AvoidanceNodeTest>();

// Create a testing node with a scan publisher and a speed subscriber
auto test_node = rclcpp::Node::make_shared("test_node");
auto scan_pub = test_node->create_publisher<sensor_msgs::msg::LaserScan>(

"input_scan", 100);

geometry_msgs::msg::Twist last_vel;
auto vel_sub = test_node->create_subscription<geometry_msgs::msg::Twist>(

"output_vel", 1, [&last_vel] (geometry_msgs::msg::Twist::SharedPtr msg) {
last_vel = *msg;

});

ASSERT_EQ(vel_sub->get_publisher_count(), 1);
ASSERT_EQ(scan_pub->get_subscription_count(), 1);

rclcpp::Rate rate(30);
rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node_avoidance);
executor.add_node(test_node);

// Test for scan test #1
auto start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 1s) {

scan_pub->publish(get_scan_test_1(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_NEAR(last_vel.linear.x, 0.3f, 0.0001f);
ASSERT_NEAR(last_vel.angular.z, 0.0f, 0.0001f);

// Test for scan test #2
}

1. Create an AvoidanceNodeTest (AvoidanceNode is also possible) node to test
it.

2. Make a generic node called test node to create a laser scan publisher and a
speed subscriber.

3. When creating the speed subscriber, a lambda function has especified as a
callback. This lambda function accesses the last vel variable to update it
with the last message received at the topic output vel.

4. Create an executor and add both nodes to it to execute them.

5. During a second post at 30 Hz on input scan a sensor reading corresponding
to the synthetic readings.

6. In the end, verify that the published speeds are correct.
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To run just these gtest tests, do it by running the binary that is in the tests
directory of the package, in the build directory:

$ cd ∼/bookros2 ws

$ build/br2 vff avoidance/tests/vff test

[==========] Running 2 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 2 tests from vff tests
[ RUN ] vff tests.get vff
[ OK ] vff tests.get vff (18 ms)
[ RUN ] vff tests.ouput vels
[ OK ] vff tests.ouput vels (10152 ms)
[----------] 2 tests from vff tests (10170 ms total)

[----------] Global test environment tear-down
[==========] 2 tests from 1 test case ran. (10170 ms total)
[ PASSED ] 2 tests.

To run all the tests for this package, even the style ones, use colcon:

$ colcon test --packages-select br2 vff avoidance

If the test has finished with failures, go to check what has failed to the directory
log/latest test/br2 vff avoidance/stdout stderr.log. At the end of the file,
there is a summary of the failed tests. For example, this message at the end indicates
that tests 3, 4, 5, and 7 failed (errors were intentionally added for this explanation):
log/latest test/br2 vff avoidance/stdout stderr.log

56% tests passed, tests failed out of 9

Label Time Summary:
copyright = 0.37 sec*proc (1 test)
cppcheck = 0.44 sec*proc (1 test)
cpplint = 0.45 sec*proc (1 test)
flake8 = 0.53 sec*proc (1 test)
gtest = 10.22 sec*proc (1 test)
lint_cmake = 0.34 sec*proc (1 test)
linter = 3.88 sec*proc (8 tests)
pep257 = 0.38 sec*proc (1 test)
uncrustify = 0.38 sec*proc (1 test)
xmllint = 0.99 sec*proc (1 test)

Total Test time (real) = 14.11 sec

The following tests FAILED:
[ 3 - cpplint (Failed)]
[ 4 - flake8 (Failed)]
[ 5 - lint_cmake (Failed)]
[ 7 - uncrustify (Failed)]

Errors while running CTest

Each line in this file begins with the section number corresponding to a test. Go,
for example, to sections 3, 4, and 7 to see some of these errors:
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log/latest test/br2 vff avoidance/stdout stderr.log

3: br2_vff_avoidance/tests/vff_test.cpp:215: Add #include <memory> for
make_shared<> [build/include_what_you_use] [4]

3: br2_vff_avoidance/include/br2_vff_avoidance/AvoidanceNode.hpp:15: #ifndef header
guard has wrong style, please use: BR2_VFF_AVOIDANCE__AVOIDANCENODE_HPP_
[build/header_guard] [5]

4: ./launch/avoidance_vff.launch.py:34:3: E111 indentation is not a multiple of four
4: ld.add_action(vff_avoidance_cmd)
4: ˆ

7: --- src/br2_vff_avoidance/AvoidanceNode.cpp
7: +++ src/br2_vff_avoidance/AvoidanceNode.cpp.uncrustify
7: @@ -100,2 +100 @@
7: - if (distance_min < OBSTACLE_DISTANCE)
7: - {
7: + if (distance_min < OBSTACLE_DISTANCE) {
7: @@ -109 +108 @@
7: - vff_vector.repulsive[0] = cos(oposite_angle)*complementary_dist;
7: + vff_vector.repulsive[0] = cos(oposite_angle) * complementary_dist;
7:
7: Code style divergence in file 'tests/vff_test.cpp':

• The errors in Section 3 correspond to cpplint, a C++ linter. The first error
indicates that a header must be added since there are functions that are de-
clared in it. In the second, it indicates that the style of the header guard in
AvoidanceNode.hpp is incorrect, indicating which one should be used.

• The errors in section 4 correspond to flake8, a Python linter. This error indicates
that the launcher file uses an incorrect indentation since it should be space,
multiples of 4.

• The errors labeled with 7 correspond to uncrustify, another C++ linter. In
a format similar to the output of the diff command, it tells the difference
between the code that is written and the one that should be in good style. In this
case, it indicates that the start of an if block on line 100 of AvoidanceNode.cpp
should be on the same line as if. The second error indicates that there should
be spaces on both sides of an operator.

The first time facing solving style problems, it can seem like a daunting task
without much meaning. You would wonder why the style that it indicates is better
than yours. Indeed you have been using this style for years, and you are very proud
of how your source code looks like. You will not understand why you have to use two
spaces in C++ to indent, and not the tab, for example, or why open the blocks in
the same line of a while if you always opened in the next line.

The first reason is that it indicates a good style. Cpplint, for example, uses the
Google C++ Style Guide5, which is a widely accepted style guide adopted by most
software development companies.

The second is because you have to follow this style if you want to contribute to a
ROS 2 project or repository. Rarely a repository that accepts contributions does not
have a continuous integration system that passes these tests. Imagine that you are
the one who maintains a project. You’ll want all of your code to have a consistent

5https://google.github.io/styleguide/cppguide.html
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style. It would be a nightmare to make your own style guide or discuss with each
contributor at every pull request style issues rather to focus on their contribution.
The worst discussion I can recall with a colleague was using tabs against spaces. It
is a discussion that will have no solution because it is like talking about religions.
Using a standard solves these problems.

Furthermore, the last reason is that it will make you a better programmer. Most
of the style rules have a practical reason. Over time, you will automatically apply the
style you have corrected so many times when passing the tests, and your code will
have a good style as you write it.

5.2 TRACKING OBJECTS

This section analyzes a project that contains other reactive behavior. In this case,
the behavior tracks the objects that match a specific color with the robot’s head.

There are several new concepts that are introduced in this project:

• Image analysis: So far, we have used a relatively simple sensor. Images provide
more complex perceptual information from which a lot of information can be
extracted. Remember that there is an essential part of Artificial Intelligence
that deals with Artificial Vision, and it is one of the primary sensors in robots.
We will show how to process these images with OpenCV, the reference library
in this area.

• Control at joint level: In the previous projects, the commands were speeds
sent to the robot. In this case, we will see how to command positions directly
to the joints of the robot’s neck.

• Lifecycle Nodes: ROS 2 provides a particular type of Node called Lifecycle
Node. This node is very useful to control the life cycle, including its startup,
activation, and deactivation.

5.2.1 Perception and Actuation Models

This project uses the images from the robot’s camera as a source of information.
Whenever a node transmits an (non-compressed) image in ROS 2, it uses the same
type of message: sensor msgs/msg/Image. All the drivers of all cameras supported
in ROS 2 use it. See what the message format is:
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$ ros2 interface show sensor msgs/msg/image

# This message contains an uncompressed image
# This message contains an uncompressed

std msgs/Header header # Header timestamp should be acquisition time of image
# Header frame id should be optical frame of camera
# origin of frame should be optical center of camera
# +x should point to the right in the image
# +y should point down in the image
# +z should point into to plane of the image
# If the frame id and the frame id of the CameraInfo
# message associated with the image conflict
# the behavior is undefined

uint32 height # image height, that is, number of rows
uint32 width # image width, that is, number of columns

# The legal values for encoding are in file src/image encodings.cpp
# If you want to standardize a new string format, join
# ros-users@lists.ros.org and send an email proposing a new encoding.

string encoding # Encoding of pixels -- channel meaning, ordering, size
# from the list in include/sensor msgs/image encodings.hpp

uint8 is bigendian # is this data bigendian?
uint32 step # Full row length in bytes
uint8[] data # actual matrix data, size is (step * rows)

Camera drivers often publish (only once, in transient local QoS) information
about camera parameters as a sensor msgs/msg/CameraInfo message, which in-
cludes intrinsic and distortion parameters, projection matrix, and more. With this
information, we can work with stereo images, for example, or we can combine this in-
formation with a depth image to reconstruct the 3D scene. The process of calibrating
a camera6 has to do with calculating the values that are published in this message. A
good exercise is reading this message format, although it is not used in this chapter.

Although it is possible to use a simple sensor msgs/msg/Image publisher or
subscriber, it is usual when working with images using different transport strate-
gies (compression, streaming codecs ...) using specific publishers/subscribers. The
developer uses them and ignores how the images are transported—he just sees an
sensor msgs/msg/Image. Check available transport plugins typing:

6http://wiki.ros.org/image_pipeline
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$ ros2 run image transport list transports

Declared transports:
image transport/compressed
image transport/compressedDepth
image transport/raw
image transport/theora

Details:
----------
...

Run the simulated Tiago and check the topics to see that there is more than one
topic for 2D images:

$ ros2 topic list

/head front camera/image raw/compressed
/head front camera/image raw/compressedDepth
/head front camera/image raw/theora
/head front camera/rgb/camera info
/head front camera/rgb/image raw

The developer has not created all these topics one by one but has used an
image transport::Publisher that has generated all these topics taking into ac-
count the available transport plugins. In the same way, to obtain the images, it is
convenient to use an image transport::Subscriber, as we will see below. Using
compressed images may be good if the image is big or the network reliability is not
the best. The trade-off is a bit more CPU load on the source and destination.

The image message format is for transporting images, not for processing them.
It is not common to work directly with images as raw byte sequences. The usual
way is to use some image processing library, and the most widely used is OpenCV7.
OpenCV provides several hundreds of computer vision algorithms.

The main data type that OpenCV uses to work with images is cv::Mat. ROS 2
provides tools to transform sensor msgs/msg/Image into cv::Mat, and vice versa:

void image_callback(const sensor_msgs::msg::Image::ConstSharedPtr & msg)
{

cv_bridge::CvImagePtr cv_ptr;
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
cv::Mat & image_src = cv_ptr->image;

sensor_msgs::msg::Image image_out = *cv_ptr->toImageMsg();
}

In the perception model of our project, the segmentation of an image will be done
by color. It is convenient to work in HSV8, instead of RGB, which is the encoding in
which we receive the messages. HSV encoding represents a pixel in color with three
components: Hue, Saturation, and Value. Working in HSV allows us to establish color
ranges more robustly to lighting changes since this is what the V component is mainly

7https://docs.opencv.org/5.x/d1/dfb/intro.html
8https://en.wikipedia.org/wiki/HSL_and_HSV
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responsible for, and if the range is wider, we can continue to detect the same color
even if the illumination changes.

The following code transforms a cv::mat to HSV and calculates an image mask
with the pixels that match the color of the furniture in the default simulated world
of Tiago in Gazebo, as shown in Figure 5.4:

cv::Mat img_hsv;
cv::cvtColor(cv_ptr->image, img_hsv, cv::COLOR_BGR2HSV);

cv::Mat1b filtered;
cv::inRange(img_hsv, cv::Scalar(15, 50, 20), cv::Scalar(20, 200, 200), filtered);

Figure 5.4: Object detection by color using an HSV range filter.

Finally, the output of the processing of an image in this project is a message of
type vision msgs/msg/Detection2D (examine the fields in this message for yourself),
from which we use its header, bbox, and source img field. It is not required to use
all the fields. The original image is included to have the image’s dimensions where
the detection is made, whose importance will be shown in the following.

The action model is a position control of the robot head. The robot has two
joints that control the position the camera is pointing at: head 1 joint for horizontal
control (pan) and head 2 joint for vertical control (tilt).
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In ROS 2, the control of the joints is done by the framework ros2 control9.
The developers of the simulated Tiago robot have used a trajectory controller
(joint trajectory controller) for the two joints of the robot’s neck. Through two topics
(as shown in Figure 5.5), it allows reading the state of the joints and sending com-
mands in the form of a set of waypoints (Figure 5.6) to be reached at specific time
instants. Waypoints consist of positions and optionally velocities, accelerations, and
effort, as well as a time from start to be applied.

/head_controller

/head_controller/joint_trajectory

trajectory_msgs/msg/JointTrajectory

/head_controller/state

control_msgs/msg/JointTrajectoryControllerState

Figure 5.5: Head controller topics.
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trajectory_msgs/msg/JointTrajectory

Figure 5.6: trajectory msgs/msg/JointTrajectory message format.

Obtaining the 3D position of the object to the robot and calculating the position
of the neck joints to center it in the image would probably be an adequate solution
in a real active vision system, but quite complex at the moment. We will simply
implement a control in the image domain.

The node that controls the robot’s neck receives two values (called error) that
indicate the difference between the current position and the desired position for pan
and tilt, respectively. If a value is 0, it indicates that it is in the desired position. If
it is less than 0, the joint has to move in one direction, and greater than zero has to
move in the other direction. The range of values is [−1, +1] for each joint, as shown
in Figure 5.7. As this node performs iterative control and neck movements can be
very fast, a PID controller will control the position to which each joint is commanded
to correct its speed.

9http://control.ros.org/index.html

Reactive Behaviors ■ 101

http://control.ros.org/index.html


(0, 0)(-1, 0) (1, 0)

(0, -1)

(0, 1)

error_pan

error_tilt
pan

tilt

E

Figure 5.7: Diagram for pan/tilt control. E indicates the desired position. error *
indicates the difference between the current position and the desired pan/tilt position.

5.2.2 Computation Graph

The Computation Graph of this project (Figure 5.8) shows how this problem is
divided into three nodes within the same process. The reason is that each node
(ObjectDetector and HeadController) can be executed separately, and be reused
in other problems (we will do it in next chapters). Each one has been designed in
this way to be reusable, with inputs and outputs that try to be generic, not strongly
coupled to this problem.

In this Computation Graph, the HeadController has been represented differently
from the rest of the nodes. This node will be implemented as LifeCycle Node, which
we will explain in the Section 5.2.3. For now, we will say that it is like a standard
node but that it can be activated and deactivated during its operation.

The HeadController receives a pan/tilt speed, each in the range [−1, 1]. Note
that since there is no standard ROS 2 message that fits our problem (we could
have used geometry msgs/msg/Pose2D, ignoring the field theta), we have created
a custom br2 tracking msgs/msg/PanTiltCommand message containing the needed
information. We will see below how we have done to create our custom message.

The ObjectDetector publishes, for each image, the result of the detection of the
furniture in the image. It will return the coordinate, in pixels, of the detection, as
well as the bounding box of the object.

The output of the ObjectDetector does not completely match the input of the
HeadController. ObjectDetector publishes its output in pixels. In this case, the
image resolution is 640 × 480 so its range is [0, 640] for the horizontal X component
and [0, 480] for the vertical Y component. Therefore, we create a node, tracker, with
a straightforward task, which is to adapt the output of the ObjectDetector to the
input of the HeadController, to make a control in the image, moving the head so
that the detected object is always in the center of the image.
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/head_controller/joint_trajectory /head_controller/state /head_front_camera/rgb/image_raw 

joint_command

trajectory_msgs/msg/JointTrajectory

joint_state

control_msgs/msg/JointTrajectoryControllerState

input_image 
sensor_msgs/msg/Image

tracker ObjectDetectorcommand detec�on

br2_tracking_msgs/msg/PanTiltCommand vision_msgs/msg/Detection2D

10 Hz

HeadController

Figure 5.8: Computation Graph for Object Tracking project.

5.2.3 Lifecycle Nodes

So far, we have seen that the nodes in ROS 2 are objects of class Node that inherit
methods that allow us to communicate with other nodes or obtain information. In
ROS 2, there is a type of node, the LifeCycleNode, whose lifetime is defined using
states and the transitions between them:

• When a LifeCycleNode is created, it is in Unconfigured state, and it must
trigger the configure transition to enter the Inactive state.

• A LifeCycleNode is working when it is in the Active state, from which it can
transition from the Inactive state through the activate transition. It is also
possible to transition from the Active to Inactive state through the deactivate
transition.

• The necessary tasks and checks can be performed at each transition. Even a
transition can fail and not transit if the conditions specified in the code of its
transition are not met.

• In case of error, the node can go to Finalized state.

• When a node has completed its task, it can transition to Finalized.

See a diagram of these states and transitions in Figure 5.9.
Lifecycle nodes provide a node execution model that allows:

• Make them predictable. For example, in ROS 2, the parameters should be read
only in the configuring transition.

• When there are multiple Nodes, we can coordinate their startup. We can define
that specific nodes are not activated until they are configured. We also can
specify some orders in the startup.

• Programmatically, it allows having another option beyond the constructor to
start its components. Remember that in C++, a Node is not completely built
until its constructor has finished. This usually brings problems if we require a
shared ptr to this.

Reactive Behaviors ■ 103



Unconfigured

Inactive

Active

on_configure()on_cleanup()

on_activate()on_deactivate()

Finalized

on_error() on_shutdown()

configure

cleanup

activate

shutdown

shutdown

shutdown

deactivate

State

Requested
transition

on success
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Callback

on failure

Figure 5.9: Diagram of states and transitions in Lifecycle Nodes.

An example could be a sensor driver. If the physical device cannot be accessed,
it cannot transit to the Inactive state. In addition, all the initial setup time of the
device would be set to this state so that its activation would be immediate. Another
example is the startup of a robot driver. It would not boot until all its sensor/actuator
nodes are in the Active state.

5.2.4 Creating Custom Messages

We have previously specified that the input of node HeadController is of type
br2 tracking msgs/msg/PanTiltCommand because there was no type of message that
conformed to what we needed. One golden rule in ROS 2 is not to create a message
if there is already a standard available, as we can benefit from available tools for
this message. In this case, no standard will serve our purposes. In addition, it is the
perfect excuse to show how to create custom messages.

First of all, when creating new messages (new interfaces, in general), even in
the context of a specific package, it is highly recommended that you make a separate
package, ending in msgs. Tools may exist in the future that needs to receive messages
of this new type, but we do not necessarily have to depend on the packages for which
they were created.

Next we show the structure of package br2 tracking msgs that contains only
the definition of message br2 tracking msgs/msg/PanTiltCommand:
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Packages that contain interfaces have, besides a package.xml and a
CMakeLists.txt, a directory for each type of interface (message, service, or action)
that is being defined. In our case, it is a message, so we will have a msg directory
that contains a .msg file for each new message to define. Let’s see the definition of
the PanTiltCommand message:
msg/PanTiltCommand.msg

float64 pan
float64 tilt

The important part in the CMakeLists.txt is the rosidl generate interfaces
statement, in which we specify where the interface definitions are:
CMakeLists.txt

find_package(ament_cmake REQUIRED)
find_package(builtin_interfaces REQUIRED)
find_package(rosidl_default_generators REQUIRED)

rosidl_generate_interfaces(${PROJECT_NAME}
"msg/PanTiltCommand.msg"
DEPENDENCIES builtin_interfaces

)

ament_export_dependencies(rosidl_default_runtime)
ament_package()

5.2.5 Tracking Implementation

The structure of the br2 tracking package, shown in the following, follows the guide-
lines already recommended above.

• The HeadController and ObjectDetector nodes will be compiled as libraries
independently of the main program object tracker main.cpp. The latter will
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be in src, while the nodes will have their headers in include/br2 tracking
and their definitions in src/br2 tracking.

• The library also includes a class to use PID controllers, used in
HeadController.

• A launcher will launch the executable with the necessary parameters and
remaps.

• There is a config directory that contains a YAML file with the HSV range
that ObjectDetector will use to detect in the image the furniture of Tiago’s
default stage in Gazebo.

• The tests directory includes tests for the PID controller.

The reader will have noticed that there is no file for a tracker node in this struc-
ture. This node, being so simple, has been implemented in object tracker main.cpp
as follows:
src/object tracker main.cpp

auto node_detector = std::make_shared<br2_tracking::ObjectDetector>();
auto node_head_controller = std::make_shared<br2_tracking::HeadController>();
auto node_tracker = rclcpp::Node::make_shared("tracker");

auto command_pub = node_tracker->create_publisher<br2_tracking_msgs::msg::PanTiltCommand>(
"/command", 100);

auto detection_sub = node_tracker->create_subscription<vision_msgs::msg::Detection2D>(
"/detection", rclcpp::SensorDataQoS(),
[command_pub](vision_msgs::msg::Detection2D::SharedPtr msg) {

br2_tracking_msgs::msg::PanTiltCommand command;
command.pan = (msg->bbox.center.x / msg->source_img.width) * 2.0 - 1.0;
command.tilt = (msg->bbox.center.y / msg->source_img.height) * 2.0 - 1.0;
command_pub->publish(command);

});

rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node_detector);
executor.add_node(node_head_controller->get_node_base_interface());
executor.add_node(node_tracker);

node tracker is a generic ROS 2 node, from which we construct a publisher to the
/command topic, and a subscriber to the /detection. We have specified the subscriber
callback as a lambda function that takes from the input message the position in pixels
of the detected object, together with the size of the image, and generates the inputs
for node HeadController, following the scheme already shown in Figure 5.7.

Notice that when adding the node node head controller to executor, we have
used the get node base interface method. This is because it is a LifeCycleNode,
as we introduced earlier, and add node does not yet support adding this type of node
directly. Fortunately, we can do it through a basic interface supported by LifeCy-
cleNode and regular nodes using this method.

The ObjectDetector will be a rclcpp::Node, with an image subscriber (using
image transport) and a 2D detection message publisher. There are two member
variables that will be used in the detection process.
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include/br2 tracking/ObjectDetector.hpp

class ObjectDetector : public rclcpp::Node
{
public:

ObjectDetector();

void image_callback(const sensor_msgs::msg::Image::ConstSharedPtr & msg);

private:
image_transport::Subscriber image_sub_;
rclcpp::Publisher<vision_msgs::msg::Detection2D>::SharedPtr detection_pub_;

// HSV ranges for detection [h - H] [s - S] [v - V]
std::vector<double> hsv_filter_ranges_ {0, 180, 0, 255, 0, 255};
bool debug_ {true};

};

These variables, with a default value, will be initialized using parameters. They
are the HSV color ranges and a variable that, by default, causes a window to be
displayed with the detection result for debugging purposes.
src/br2 tracking/ObjectDetector.cpp

ObjectDetector::ObjectDetector()
: Node("object_detector")
{

declare_parameter("hsv_ranges", hsv_filter_ranges_);
declare_parameter("debug", debug_);

get_parameter("hsv_ranges", hsv_filter_ranges_);
get_parameter("debug", debug_);

}

When executing the program with all the nodes, a parameter file in the config
directory will be specified to set the color filter.
config/detector.yaml

/object_detector:
ros__parameters:

debug: true
hsv_ranges:

- 15.0
- 20.0
- 50.0
- 200.0
- 20.0
- 200.0

This node is designed to obtain a result for each image that arrives, so the pro-
cessing is done directly in the callback, as long as there is a subscriber to this result.

Creating an image transport::Subscriber is very similar to a
rclcpp::Subscription. The first parameter is a rclcpp::Node*, so we use
this. The fourth parameter indicates the transport method, in this case raw. We
adjust the quality of service in the last parameters to the usual in sensors.
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src/br2 tracking/ObjectDetector.cpp

ObjectDetector::ObjectDetector()
: Node("object_detector")
{

image_sub_ = image_transport::create_subscription(
this, "input_image", std::bind(&ObjectDetector::image_callback, this, _1),
"raw", rclcpp::SensorDataQoS().get_rmw_qos_profile());

detection_pub_ = create_publisher<vision_msgs::msg::Detection2D>("detection", 100);
}

void
ObjectDetector::image_callback(const sensor_msgs::msg::Image::ConstSharedPtr & msg)
{

if (detection_pub_->get_subscription_count() == 0) {return;}
...

vision_msgs::msg::Detection2D detection_msg;
...
detection_pub_->publish(detection_msg);

}

Image processing was already introduced in the previous sections. Once the image
message has been transformed to a cv::Mat, we proceed to transform it from RGB to
HSV, and we do a color filter. The cv::boundingRect function calculates a bounding
box from the mask resulting from the color filtering. The cv::moments function
calculates the center of mass of these pixels.
src/br2 tracking/ObjectDetector.cpp

const float & h = hsv_filter_ranges_[0];
const float & H = hsv_filter_ranges_[1];
const float & s = hsv_filter_ranges_[2];
const float & S = hsv_filter_ranges_[3];
const float & v = hsv_filter_ranges_[4];
const float & V = hsv_filter_ranges_[5];

cv_bridge::CvImagePtr cv_ptr;
try {

cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
} catch (cv_bridge::Exception & e) {

RCLCPP_ERROR(get_logger(), "cv_bridge exception: %s", e.what());
return;

}

cv::Mat img_hsv;
cv::cvtColor(cv_ptr->image, img_hsv, cv::COLOR_BGR2HSV);

cv::Mat1b filtered;
cv::inRange(img_hsv, cv::Scalar(h, s, v), cv::Scalar(H, S, V), filtered);

auto moment = cv::moments(filtered, true);
cv::Rect bbx = cv::boundingRect(filtered);

auto m = cv::moments(filtered, true);

if (m.m00 < 0.000001) {return;}

int cx = m.m10 / m.m00;
int cy = m.m01 / m.m00;

vision_msgs::msg::Detection2D detection_msg;
detection_msg.header = msg->header;
detection_msg.bbox.size_x = bbx.width;
detection_msg.bbox.size_y = bbx.height;
detection_msg.bbox.center.x = cx;
detection_msg.bbox.center.y = cy;
detection_msg.source_img = *cv_ptr->toImageMsg();
detection_pub_->publish(detection_msg);
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In the previous code, the image is processed, the bounding box bbx of the filtered
pixels in filtered is obtained, and it is published, together with the center of mass
(cx, cy). In addition, the optional source img field is filled in, since we require the
size of the image in object tracker main.cpp.

The HeadController implementation is a bit more complex. Let’s focus first on
the fact that it is a Lifecycle node, and that its control loop is only called when
it is active. Let’s look at the declaration of the node, just the part of its control
infrastructure:
include/br2 tracking/HeadController.hpp

class HeadController : public rclcpp_lifecycle::LifecycleNode
{
public:

HeadController();

CallbackReturn on_configure(const rclcpp_lifecycle::State & previous_state);
CallbackReturn on_activate(const rclcpp_lifecycle::State & previous_state);
CallbackReturn on_deactivate(const rclcpp_lifecycle::State & previous_state);

void control_sycle();

private:
rclcpp_lifecycle::LifecyclePublisher<trajectory_msgs::msg::JointTrajectory>::SharedPtr

joint_pub_;
rclcpp::TimerBase::SharedPtr timer_;

};

The LifecycleNode::create subscription method returns an
rclcpp lifecycle:: LifecyclePublisher instead of an rclcpp::Publisher.
Although its functionality is similar, it is necessary to activate it so that it can be
used.

A LifeCycleNode can redefine the functions that are called when a transition be-
tween states is triggered in the derived class. These functions can return SUCCESS or
FAILURE. If it returns SUCCESS, the transition is allowed. If FAILURE is returned,
it is not transitioned to the new state. All of these methods return SUCCESS in the
base class, but the developer can redefine them to establish the rejection conditions.

In this case, the transitions leading to the inactive state (on configure) and
those that transition between active and inactive (on activate and on deactivate)
are redefined:
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src/br2 tracking/HeadController.cpp

HeadController::HeadController()
: LifecycleNode("head_tracker")
{

joint_pub_ = create_publisher<trajectory_msgs::msg::JointTrajectory>(
"joint_command", 100);

}

CallbackReturn
HeadController::on_configure(const rclcpp_lifecycle::State & previous_state)
{

return CallbackReturn::SUCCESS;
}

CallbackReturn
HeadController::on_activate(const rclcpp_lifecycle::State & previous_state)
{

joint_pub_->on_activate();
timer_ = create_wall_timer(100ms, std::bind(&HeadController::control_sycle, this));

src/br2 tracking/HeadController.cpp

return CallbackReturn::SUCCESS;
}

CallbackReturn
HeadController::on_deactivate(const rclcpp_lifecycle::State & previous_state)
{

joint_pub_->on_deactivate();
timer_ = nullptr;

return CallbackReturn::SUCCESS;
}

void
HeadController::control_sycle()
{
}

All previous transitions return SUCCESS, so all transitions are carried out. In the
case of developing a laser driver, for example, some transition (configure or activate)
would fail if the device is not found or cannot be accessed.

The above code has two aspects that are interesting to explain:

• The control cycle method contains our control logic and is set to run at 10
Hz. Note that the timer is created at on activate, which is when the active
state is transitioned. Likewise, disabling this timer is simply destroying it by
going inactive. This way control cycle will not be called and the control logic
will only be executed when the node is active.

• The publisher must be activated in on activate and deactivated in
on deactivate.

The HeadController node will execute iteratively, receiving the current state of
the neck joints through the topic /joint state, and of the move commands through
the /command topic. As usual in this schematic, both values in last state and
last command are stored to be used when we execute the next cycle of the control
logic. Also, the timestamp of the last received command is saved. When stopping
receiving commands, the robot should return to the initial position.
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include/br2 tracking/HeadController.hpp

class HeadController : public rclcpp_lifecycle::LifecycleNode
{
public:

void joint_state_callback(
control_msgs::msg::JointTrajectoryControllerState::UniquePtr msg);

void command_callback(br2_tracking_msgs::msg::PanTiltCommand::UniquePtr msg);

private:
rclcpp::Subscription<br2_tracking_msgs::msg::PanTiltCommand>::SharedPtr command_sub_;
rclcpp::Subscription<control_msgs::msg::JointTrajectoryControllerState>::SharedPtr

joint_sub_;
rclcpp_lifecycle::LifecyclePublisher<trajectory_msgs::msg::JointTrajectory>::SharedPtr

joint_pub_;

control_msgs::msg::JointTrajectoryControllerState::UniquePtr last_state_;
br2_tracking_msgs::msg::PanTiltCommand::UniquePtr last_command_;
rclcpp::Time last_command_ts_;

};

src/br2 tracking/HeadController.cpp

void
HeadController::joint_state_callback(

control_msgs::msg::JointTrajectoryControllerState::UniquePtr msg)
{

last_state_ = std::move(msg);
}

void
HeadController::command_callback(br2_tracking_msgs::msg::PanTiltCommand::UniquePtr msg)
{

last_command_ = std::move(msg);
last_command_ts_ = now();

}

The format of control msgs::msg::JointTrajectoryControllerState is de-
signed to report the name of the controlled joints, as well as the desired, current, and
error trajectories:

$ ros2 interface show control msgs/msg/JointTrajectoryControllerState

std msgs/Header header
string[] joint names
trajectory msgs/JointTrajectoryPoint desired
trajectory msgs/JointTrajectoryPoint actual
trajectory msgs/JointTrajectoryPoint error # Redundant, but useful

Using a trajectory msgs::msg::JointTrajectory may seem complicated at
first, but it is not if we analyze the following code, which is a command to put the
robot’s neck in the initial state while looking at Figure 5.6:
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src/br2 tracking/HeadController.cpp

CallbackReturn
HeadController::on_deactivate(const rclcpp_lifecycle::State & previous_state)
{

trajectory_msgs::msg::JointTrajectory command_msg;
command_msg.header.stamp = now();
command_msg.joint_names = last_state_->joint_names;
command_msg.points.resize(1);
command_msg.points[0].positions.resize(2);
command_msg.points[0].velocities.resize(2);
command_msg.points[0].accelerations.resize(2);
command_msg.points[0].positions[0] = 0.0;
command_msg.points[0].positions[1] = 0.0;
command_msg.points[0].velocities[0] = 0.1;
command_msg.points[0].velocities[1] = 0.1;
command_msg.points[0].accelerations[0] = 0.1;
command_msg.points[0].accelerations[1] = 0.1;
command_msg.points[0].time_from_start = rclcpp::Duration(1s);

joint_pub_->publish(command_msg);

return CallbackReturn::SUCCESS;
}

• The joint names field is a std::vector<std::string> containing the name
of the joints being controlled. In this case, there are two, and they are the same
ones that are already in the state message.

• A single waypoint will be sent (for this reason, the points field is resized to 1),
in which a position, speed, and acceleration must be specified for each joint
(since there are two joints, each of these fields is resized to two). Position 0
corresponds to the joint that in joint names is at 0, and so on.

• time from start indicates the time required to reach the commanded position.
As it is the last command sent before deactivating (that is why its desired
positions are 0), one second will be enough not to force the neck motors.

The controller of the neck joints is controlled by sending commands containing
positions, but what is received from the ObjectDetector is the speed control that
should be done to center the detected object in the image.

The first implementation could be to send as position, the current position com-
bined with the received control:
src/br2 tracking/HeadController.cpp

command_msg.points[0].positions[0] = last_state_->actual.positions[0] - last_command_->pan;
command_msg.points[0].positions[1] = last_state_->actual.positions[1] -last_command_->tilt;

If the reader uses this implementation, he would see that if we want to be reac-
tive enough, even if the difference between the ObjectDetector and HeadDetector
frequencies were small, the robot’s head might start to oscillate, trying to center the
image on the detected object. It is difficult for the robot to maintain a stable focus
on the detected object. This problem is solved in engineering using a PID controller,
one per joint that limits the speed while also absorbing small unwanted oscillations
of the neck.
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include/br2 tracking/HeadController.hpp

class HeadController : public rclcpp_lifecycle::LifecycleNode
{
private:

PIDController pan_pid_, tilt_pid_;
};

For each PID, define a value for the proportional component Kp, the integrating
component Ki, and the derivative component Kd. Without going into details, since
it is not the objective of this book to describe in-depth the underlying control the-
ory, intuitively, the proportional component brings us closer to the objective. The
integrator component compensates for persistent deviations that move us away from
the objective. The derivative component tries to damp minor variations when close
to the control objective. Figure 5.10 shows a diagram of this PID controller.

P

I

D

/command pos = u(t) + state
e(t)

tracker

Joint

/joint_command/joint_state

u(t)

Figure 5.10: Diagram for PID for one joint.

The control command coming from the tracker is the value that the PID should
try to keep at 0, so it is the error in t, e(t). Each component of the PID is computed
separately and then added to obtain the control to apply u(t). The position sent to
the joints will be the current position of the joint plus u(t). The system feeds back
since at t + 1 the effect of the control is reflected in a change in the object’s position
in the image toward its center.

Our PID starts by specifying four values: the minimum and maximum input
reference expected in the PID and the minimum and maximum output produced.
Negative input produces negative outputs:
src/br2 tracking/PIDController.hpp

class PIDController
{
public:

PIDController(double min_ref, double max_ref, double min_output, double max_output);

void set_pid(double n_KP, double n_KI, double n_KD);
double get_output(double new_reference);

};
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src/br2 tracking/HeadController.cpp

HeadController::HeadController()
: LifecycleNode("head_tracker"),

pan_pid_(0.0, 1.0, 0.0, 0.3),
tilt_pid_(0.0, 1.0, 0.0, 0.3)

{
}
CallbackReturn
HeadController::on_configure(const rclcpp_lifecycle::State & previous_state)
{

pan_pid_.set_pid(0.4, 0.05, 0.55);
tilt_pid_.set_pid(0.4, 0.05, 0.55);

}
void
HeadController::control_sycle()
{

double control_pan = pan_pid_.get_output(last_command_->pan);
double control_tilt = tilt_pid_.get_output(last_command_->tilt);

command_msg.points[0].positions[0] = last_state_->actual.positions[0] - control_pan;
command_msg.points[0].positions[1] = last_state_->actual.positions[1] - control_tilt;

}

5.2.6 Executing the Tracker

In the main program object tracker main.cpp all the nodes are created and added
to an executor. Just before starting spinning the nodes, we trigger the configure
transition for node node head controller. The node will be ready to be activated
when requested.
src/object tracker main.cpp

rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node_detector);
executor.add_node(node_head_controller->get_node_base_interface());
executor.add_node(node_tracker);

node_head_controller->trigger_transition(
lifecycle_msgs::msg::Transition::TRANSITION_CONFIGURE);

A launcher remaps the topics and loads the file with the HSV filter parameters:
launch/tracking.launch.py

params_file = os.path.join(
get_package_share_directory('br2_tracking'),
'config',
'detector.yaml'
)

object_tracker_cmd = Node(
package='br2_tracking',
executable='object_tracker',
parameters=[{

'use_sim_time': True
}, params_file],
remappings=[

('input_image', '/head_front_camera/rgb/image_raw'),
('joint_state', '/head_controller/state'),
('joint_command', '/head_controller/joint_trajectory')

],
output='screen'

)
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Start the Tiago simulated (the home world, by default) gazebo:

$ ros2 launch br2 tiago sim.launch.py

In another terminal, launch the project:

$ ros2 launch br2 tracking tracking.launch.py

The detection windows are not shown until the first object is detected, but
HeadController is in Inactive state, and no tracking will be done.

See how we can manage the LifeCycleNode at runtime, such as head tracker
(the name of the HeadController node). Keep our project running, with the robot
tracking an object.

Using the following command, check what LifeCycle nodes are currently running:

$ ros2 lifecycle nodes

/head tracker

Now verify the state it is currently in:

$ ros2 lifecycle get /head tracker

inactive [3]

Good. The LifeCycleNode is in the Inactive state, just as expected. Obtain what
transitions can be triggered from the current state:

$ ros2 lifecycle list /head tracker

- cleanup [2]
Start: inactive
Goal: cleaningup

- activate [3]
Start: inactive
Goal: activating

- shutdown [6]
Start: inactive
Goal: shuttingdown

Activate the node to start tracking the detected object:

$ ros2 lifecycle set /head tracker activate

Transitioning successful

Run a teleoperator in a third terminal to teleoperate the robot toward the furni-
ture. Then, the robot will move (when HeadController is Active) the head to center
the furniture in the image. As soon as the robot does not perceive the objects, it will
move the head to the initial position:

$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args -r
cmd vel:=key vel
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Figure 5.11: Project tracking running.

Deactivate the node and check how the neck of the robot returns to its ini-
tial position. Remember that it was what was commanded in this transition, in the
on deactivate method.

$ ros2 lifecycle set /head tracker deactivate

Transitioning successful

To activate it again, type:

$ ros2 lifecycle set /head tracker activate

Transitioning successful

PROPOSED EXERCISES:

1. In AvoidanceNodeNode, instead of using the nearest obstacle, uses all nearby
detected obstacles to compute the repulsion vector.

2. In ObjectDetector, instead of calculating a building block that encloses all
the pixels that pass the filter, calculate a bounding box for each independent
object. Publish the bounding boxes corresponding to the object most recently
detected.

3. Try to make HeadController more reactive.
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C H A P T E R 6

Programming Robot
Behaviors with Behavior
Trees

BEHAVIOR Trees for robot control [8] have become very popular in recent
years. They have been used in various applications, mainly in video games and

robots. They are usually compared to finite state machines, but the reality is that
they are different approximations. When developing robotic behaviors with FSMs
(Finite State Machines), we think about states and transitions. When we use Behavior
Trees, we think of sequences, fallbacks, and many flow resources that give them great
expressiveness. In this chapter, as an illustrative example, we will implement the
Bump and Go that we did with FSMs in the Chapter 3, and we will see how much
the two approaches differ.

6.1 BEHAVIOR TREES

A Behavior Tree (BT) is a mathematical model to encode the control of a system.
A BT is a way to structure the switching between different tasks in an autonomous
agent, such as a robot or a virtual entity in a computer game. It is a hierarchical data
structure defined recursively from a root node with several child nodes. Each child
node, in turn, can have more children, and so on. Nodes that do not have children
are usually called leaves of the tree.

The basic operation of a node is the tick. When a node is ticked, it can return
three different values:

• SUCCESS: The node has completed its mission successfully.

• FAILURE: The node has failed in its mission.

• RUNNING: The node has not yet completed its mission.

A BT has four different types of nodes:
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• Control: These types of nodes have 1-N children. Its function is to spread the
tick to their children.

• Decorators: They are control nodes with only one child.

• Action: They are the leaves of the tree. The user must implement action nodes
since they must generate the control required by the application.

• Condition: They are action nodes that cannot return RUNNING. In this case,
the value SUCCESS is understood as the condition it encodes is met, and
FAILURE if it is not.

Figure 6.1 shows a simple BT. When a BT is executed, the root node is ticked
until it finishes executing, that is, until it returns SUCCESS or FAILURE.

Sequence

Go Forward 
1 meter

EnoughBattery? Turn 
2 radians

RateController 
5Hz

Control Node

Action Node

Decorator Node

Condition Node

Figure 6.1: Simple Behavior Tree with various types of Nodes.

• The root node is a control node of type Sequence. This node ticks its children
in order, starting from left. When a child returns SUCCESS, the sequence node
ticks the next one. If the child node returns something else, the sequence node
returns this value.

• The first child, EnoughtBattery?, is a Condition node. If it returns SUCCESS,
it indicates that there is enough battery for the robot to carry out its mission so
that the sequence node can advance to the next child. If it returned FAILURE,
the mission would be aborted, as the result of executing the BT would be
FAILURE.

• The Go Forward action node commands the robot to advance. As long as it
has not traveled 1 m, the node returns RUNNING with each tick. When it has
traveled the specified distance, it will return SUCCESS.

• The Go Forward action node has as its parent a Decorator node that controls
that the frequency at which its child ticks is not greater than 5 Hz. Meanwhile,
each tick returns the value returned by the child in the last tick.

• The Turn action node is similar to Go Forward, but spinning the robot 2 radi-
ans.
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The library of available nodes can be extended with nodes created by the user. As
we have said before, the user must implement the action nodes, but if we need any
other type of node that is not available, we can implement it. In the above example,
the RateController decorator node is not part of the Behavior Tree core library but
can be implemented by the user.

A Behavior Tree controls the action decision flow. Leaves are not intended to
implement complex algorithms or subsystems. The BT leaves should coordinate other
subsystems in the robot. In ROS 2, this is done by publishing or subscribing to topics
or using ROS 2 services/actions. Figure 6.2 shows a BT in which the nodes are used
to coordinate the actions of a robot. Observe how the complexity is in the subsystem
that coordinates, not in the BT leaves.

Sequence

EnoughBattery? Approach 
Cup

Grasp 
Cup

NavigateTo 
Kitchen

Navigation 
Subsystem

Manipulation 
Subsystem

Robot Driver

Figure 6.2: BT where the leaves control a robot by publish/subscribe (one-way dotted
arrow) or ROS 2 actions (two-way dotted arrow).

The second control node that we will present is the Fallback. This node can
express fallback strategies, that is, what to do if a node returns FAILURE. Figure
6.3 shows an example of the use of this node.

1. The Fallback node ticks the first child. If it returns FAILURE, it ticks the
next child.

2. If the second child returns SUCCESS, the Fallback node returns SUCCESS.
Otherwise, it ticks the next child.

3. If all children have returned FAILURE, the Fallback node returns FAILURE.

In the development cycle with Behavior Trees, we can identify two phases:

• Node Development: Action nodes and any other node that the user requires
for their application are designed, developed, and compiled in this phase. These
nodes become part of the library of available nodes at the same category as the
core nodes of Behavior Trees.
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Fallback

Sequence

EnoughBattery?

NavigateTo 
Kitchen

Sequence

Charging
Point near?

NavigateTo 
Charging Point Charge

Ask Human to
manually charge

Figure 6.3: BT with a fallback strategy for charging battery.

• Deployment: In this phase, the Behavior Tree is composed using the available
nodes. It is important to note that multiple different Behavior Trees can be
created with the same nodes. If the nodes have been designed sufficiently gen-
erally, in this phase, very different behaviors of the robot can be defined using
the same nodes.

A Behavior Tree has a blackboard, a key/value storage that all nodes in a tree
can access. Nodes can have input ports and output ports to exchange information
between them. The output ports of one node are connected to the input ports of
another node using a key from the blackboard. While the ports of the nodes (their
type and port class) have to be known at compile-time, the connections are established
at deployment-time.

Figure 6.4 shows an example of connecting nodes through ports. A DetectObject
action node is in charge of detecting some object so that the InformHuman node com-
municates it to the robot operator. DetectObject uses its output port detected id
to send the identifier of the detected object to InformHuman through its port
object id. For this, they use the input of the blackboard whose key objID currently
has the value cup. Using keys from the blackboard is not mandatory. At deployment
time, the value could be a constant value.

Behavior Trees are specified in XML. Although editing tools such as Groot1 are
used, they generate a BT in XML format. If this BT is saved to disk and this file is
loaded from an application, any change to the BT does not require recompiling. The
format is easy to understand, and it is common for BTs to be designed directly in
XML. The following code shows two equally valid options for the BT in Figure 6.1.

1https://github.com/BehaviorTree/Groot
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Sequence

InformHuman 
grasp_id = {objID}

DetectObject 
detected_id = {objID}

objID cup

Figure 6.4: Ports connection using a blackboard key.

Compact XML syntax

<BehaviorTree ID="BehaviorTree">
<Sequence>

<EnoughBattery/>
<RateController Rate="5Hz">

<GoForward distance="1.0"/>
</RateController>
<Turn angle="2.0"/>

</Sequence>
</BehaviorTree>

Extended XML syntax

<?xml version="1.0"?>
<root main_tree_to_execute="BehaviorTree">

<BehaviorTree ID="BehaviorTree">
<Sequence>

<Condition ID="EnoughBattery"/>
<Decorator ID="RateController" Rate="5Hz">

<Action ID="GoForward" distance="1.0"/>
</Decorator>
<Action ID="Turn" angle="2.o"/>

</Sequence>
</BehaviorTree>

<TreeNodesModel>
<Condition ID="EnoughBattery"/>
<Action ID="GoForward">

<input_port name="distance"/>
</Action>
<Decorator ID="RateController">

<input_port name="Rate"/>
</Decorator>
<Action ID="Turn">

<input_port name="angle"/>
</Action>

</TreeNodesModel>
</root>

Table 6.1 shows a summary of the commonly available control nodes. This table
shows what a control node returns when ticked, based on what the ticked child
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Table 6.1: Summary of the behavior of the control nodes. Cell color groups into
sequence, fallback, and decorator nodes.

returns. In the case of sequences and fallbacks, it also shows what it does if this
control node is ticked again: tick the next, restart the first child, or insist on the
same child.

Let’s analyze in detail some of these control nodes:

• Sequence nodes: In the previous section, we have used the basic sequence
node. Behavior Trees allow sequence nodes with different behavior, which is
helpful in some applications.

– Sequence: As explained in the previous section, this node ticks its first
child. When it returns SUCCESS, the ticks are made to the next child,
and so on. If any child returns FAILURE, this node returns FAILURE
and, if ticked again, starts over from the first child.
Figure 6.5 shows an example of a sequence in which to take an image, it
must check that the object is close and that the camera is ready. Once
the camera is pointed at the subject, a picture can be taken. If any of the
above children fail, the sequence fails. No child repeats its execution if it
has already indicated that it has finished successfully.

Value returned by child
Control Node Type FAILURE SUCCESS RUNNING

Sequence
Return FAILURE
and restart sequence

Tick next child.
Return SUCCESS
if no more child

Return RUNNING
and tick again

ReactiveSequence
Return FAILURE
and restart sequence

Tick next child.
Return SUCCESS
if no more child

Return RUNNING
and restart sequence

SequenceStar
Return FAILURE
and tick again

Tick next child.
Return SUCCESS
if no more child

Return RUNNING
and tick again

Fallback
Tick next child.
Return FAILURE
if no more child

Return SUCCESS Return RUNNING
and tick again

ReactiveFallback
Tick next child.
Return FAILURE
if no more child

Return SUCCESS Return RUNNING
and restart sequence

InverterNode Return SUCCESS Return FAILURE Return RUNNING
ForceSuccessNode Return SUCCESS Return SUCCESS Return RUNNING
ForceFailureNode Return FAILURE Return FAILURE Return RUNNING

RepeatNode (N) Return FAILURE
Return RUNNING
N times before
returning SUCCESS

Return RUNNING

RetryNode (N)
Return RUNNING
N times before
returning FAILURE

Return SUCCESS Return RUNNING



Sequence

isObjectNear? PointToObjectisCameraready? TakeImage

Figure 6.5: Example of Sequence node.

– ReactiveSequence: this sequence is commonly used when it is necessary
to check conditions continuously. If any child returns RUNNING, the se-
quence restarts from the beginning. In this way, all nodes are always ticked
up to the one returned by RUNNING on the previous tick.

ReactiveSequence

ObjectNear? GraspObject

Figure 6.6: Example of ReactiveSequence node.

– SequenceStar: This sequence is used to avoid restarting a sequence if, at
some point, it has returned a FAILURE child. If this sequence is ticked
again after a failure, the failed node is ticked directly.

ReactiveSequence

enoughBattery? SequenceStar

Patrol 
waypoint=wp1

Patrol 
waypoint=wp2

Patrol 
waypoint=wp3

Figure 6.7: Example of ReactiveStar node.

• Fallback nodes: As we presented previously, fallback nodes allow us to execute
different strategies to satisfy a condition until we find a successful one.

– Fallback: It is the basic version of this control node. The children tick
in sequence. When one returns FAILURE, it moves on to the next. The
moment one returns SUCCESS, the fallback node returns SUCCESS.

– ReactiveFallback: This alternative version of fallback has the difference
that if a node returns RUNNING, the sequence is restarted from the be-
ginning. The next tick will be made again to the first child. It is useful
when the first node is a condition, and it must be checked while executing
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the action that tries to satisfy it. For example, in Figure 6.8, the action of
charging the robot is running while the battery is not charged.

ReactiveFallback

isBatteryFul? ChargeBattery

Figure 6.8: Example of ReactiveFallback node.

• Decorator nodes: They modify the return value of their only child. In the
case of RepeatNode and RetryNode, they receive the N repetitions or retries
through their input port.

6.2 BUMP AND GO WITH BEHAVIOR TREES

In this section we will show how to implement action nodes within our ROS 2 pack-
ages, and how these nodes can access the Computation Graph to communicate with
other nodes. To do this, we will reimplement the Bump and Go example that we did
with state machines in Chapter 3, and thus we will see the differences that exist.

Let’s start with the design of the Behavior Tree (Figure 6.10). It seems clear that
we will need the following BT nodes (Figure 6.9):

• A condition node that indicates whether there is an obstacle (SUCCESS) or
not (FAILURE) depending on the information received from the laser.

• Three action nodes that make the robot turn, move or go forward publishing
speed messages. Back and Turn will return RUNNING for 3 s before returning
SUCCESS. Forward will return RUNNING in all ticks.

Obstacle? Back Turn Forward

sensor_msgs/msg/LaserScan

geometry_msgs/msg/Twist

Figure 6.9: Action nodes for Bump and Go.

The Computation Graph is similar to the one in Figure 3.4, so we will skip its
explanation. Let’s focus on the workspace:
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Forward

ReactiveSequence

Fallback

Inverter

Obstacle?

Sequence

Back Turn

Figure 6.10: Complete Behavior Tree for Bump and Go.

• Each of the BT nodes is a C++ class. Just like when we implement ROS 2
nodes, we create a directory with the package name in src for sources and a
directory with the same name in include for headers.

• A tests directory where there will be tests with gtest and a program to man-
ually test a BT node, as we will explain later.

• A cmake directory contains a cmake file to find the ZMQ2 library needed to
debug Behavior Trees at runtime.

• A behavior tree xml directory with XML files containing the structure of the
behavior trees that we will use in this package.

2https://zeromq.org

Programming Robot Behaviors with Behavior Trees ■ 125

Package br2 bt bumpgo

br2_bt_bumpgo
behavior_tree_xml

bumpgo.xml
cmake

FindZMQ.cmake
CMakeLists.txt
include

br2_bt_bumpgo
Back.hpp
Forward.hpp
IsObstacle.hpp
Turn.hpp

package.xml
src

br2_bt_bumpgo
Back.cpp
Forward.cpp
IsObstacle.cpp
Turn.cpp

bt_bumpgo_main.cpp
tests

bt_action_test.cpp
CMakeLists.txt

https://zeromq.org


Figure 6.11: Specification of IsObstacle BT node.

6.2.1 Using Groot to Create the Behavior Tree

This section introduces a tool for developing and monitoring Behavior Trees, which is
Groot. The behavior trees in this package are already created, but we find it helpful
to explain how this tool works. It is useful for monitoring runtime performance, or
perhaps the reader wants to make modifications.

Groot is included in the repository dependencies, so to execute it, simply type:

$ ros2 run groot Groot

After selecting the editor, follow next steps:

• Add the nodes Turn, Forward, Back, and IsObstacle to the palette. All are
Action Nodes except IsObstacle, for which add an input port, as shown in
Figure 6.11.

• Save the palette.

• Create the Behavior Tree as shown in Figure 6.12.

• Save the Behavior Tree in mr2 bt bumpgo/behavior tree xml/bumpgo.xml.
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Figure 6.12: Action nodes for Bump and Go.

behavior tree xml/bumpgo.xml

<?xml version="1.0"?>
<root main_tree_to_execute="BehaviorTree">

<BehaviorTree ID="BehaviorTree">
<ReactiveSequence>

<Fallback>
<Inverter>

<Condition ID="IsObstacle" distance="1.0"/>
</Inverter>
<Sequence>

<Action ID="Back"/>
<Action ID="Turn"/>

</Sequence>
</Fallback>
<Action ID="Forward"/>

</ReactiveSequence>
</BehaviorTree>
<TreeNodesModel>

<Action ID="Back"/>
<Action ID="Forward"/>
<Condition ID="IsObstacle">

<input_port default="1.0" name="distance">Dist to consider obst</input_port>
</Condition>
<Action ID="Turn"/>

</TreeNodesModel>
</root>

The Behavior Tree specification in XML is straightforward. There are two parts:

• BehaviorTree: It is the specification of the tree structure. The XML tags
match the type of BT node specified, and the child nodes are within their
parents.

• TreeNodesModel: Define the custom nodes we have created, indicating their
input and output ports.
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There is a valid alternative to this structure, which is ignoring the TreeNodes-
Model and directly using the name of the custom BT nodes:

<?xml version="1.0"?>
<root main_tree_to_execute="BehaviorTree">

<BehaviorTree ID="BehaviorTree">
<ReactiveSequence>

<Fallback>
<Inverter>

<IsObstacle distance="1.0"/>
</Inverter>
<Sequence>

<Back/>
<Turn/>

</Sequence>
</Fallback>
<Forward/>

</ReactiveSequence>
</BehaviorTree>

</root>

6.2.2 BT Nodes Implementation

We will use the Behavior Trees library behaviortree.CPP3, which is pretty standard
in ROS/ROS 2. Let’s look at the Forward implementation to get an idea of how
simple it is to implement a BT node:

include/mr2 bt bumpgo/Forward.hpp

class Forward : public BT::ActionNodeBase
{
public:

explicit Forward(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

BT::NodeStatus tick();

static BT::PortsList providedPorts()
{

return BT::PortsList({});
}

private:
rclcpp::Node::SharedPtr node_;
rclcpp::Time start_time_;
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;

};

As shown in the previous code, when a Behavior Tree is created, an instance of
each class of a BT node is constructed for each one that appears in the Behavior
Tree. An action node inherits from BT::ActionNodeBase, having to implement three
methods and setting the constructor arguments:

• The constructor receives the content of the name field (which is optional) in the
XML, as well as a BT::NodeConfiguration that contains, among other things,
a pointer to the blackboard shared by all the nodes of a tree.

• The halt method is called when the tree finishes its execution, and it is used
3https://www.behaviortree.dev

128 ■ A Concise Introduction to Robot Programming with ROS 2

https://www.behaviortree.dev


to carry out any cleanup that the node requires. We will define void, as it is a
pure virtual method.

• The tick method implements the tick operation that we have already described
in this chapter.

• A static method that returns the ports of the node. In this case, Forward has
no ports, so we return an empty list of ports.

The class definition is also straightforward:
src/mr2 bt bumpgo/Forward.cpp

Forward::Forward(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf)
{

config().blackboard->get("node", node_);

vel_pub_ = node_->create_publisher<geometry_msgs::msg::Twist>("/output_vel", 100);
}

BT::NodeStatus
Forward::tick()
{

geometry_msgs::msg::Twist vel_msgs;

vel_msgs.linear.x = 0.3;
vel_pub_->publish(vel_msgs);

return BT::NodeStatus::RUNNING;
}

} // namespace br2_bt_bumpgo

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

factory.registerNodeType<br2_bt_bumpgo::Forward>("Forward");
}

• In the constructor, after calling the constructor of the base class, we will get the
pointer to the ROS 2 node of the blackboard. We will see soon that when the
tree is created, the pointer to the ROS 2 node is inserted into the blackboard
with the key “node” so that it is available to any BT node that requires it to
create publishers, subscribers, get the time, or any related task to ROS 2.

• The tick method is quite obvious: each time the node is ticked, it publishes a
speed message to go forward, and return RUNNING.

• In the last part of the previous code, we register this class as implementing the
Forward BT node. This part will be used when creating the tree.

Once the BT node Forward has been analyzed, the rest of the nodes are imple-
mented similarly. Let’s see some peculiarities:

• The BT node Turn performs its task for 3 s, so it saves the timestamp of its
first tick, which is identifiable because its state is still IDLE:
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src/mr2 bt bumpgo/Turn.cpp

BT::NodeStatus
Turn::tick()
{

if (status() == BT::NodeStatus::IDLE) {
start_time_ = node_->now();

}

geometry_msgs::msg::Twist vel_msgs;
vel_msgs.angular.z = 0.5;
vel_pub_->publish(vel_msgs);

auto elapsed = node_->now() - start_time_;

if (elapsed < 3s) {
return BT::NodeStatus::RUNNING;

} else {
return BT::NodeStatus::SUCCESS;

}
}

• The BT node isObstacle saves the laser readings and compares them to the
distance set on its input port:

src/mr2 bt bumpgo/isObstacle.cpp

void
IsObstacle::laser_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

last_scan_ = std::move(msg);
}

BT::NodeStatus
IsObstacle::tick()
{

double distance = 1.0;
getInput("distance", distance);

if (last_scan_->ranges[last_scan_->ranges.size() / 2] < distance) {
return BT::NodeStatus::SUCCESS;

} else {
return BT::NodeStatus::FAILURE;

}
}

Each of the BT nodes will be compiled as a separate library. Later we will see
that, when creating the Behavior Tree that contains them, we can load these libraries
as plugins, quickly locating the implementation of the custom BT nodes.
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CMakeLists.txt

add_library(br2_forward_bt_node SHARED src/br2_bt_bumpgo/Forward.cpp)
add_library(br2_back_bt_node SHARED src/br2_bt_bumpgo/Back.cpp)
add_library(br2_turn_bt_node SHARED src/br2_bt_bumpgo/Turn.cpp)
add_library(br2_is_obstacle_bt_node SHARED src/br2_bt_bumpgo/IsObstacle.cpp)

list(APPEND plugin_libs
br2_forward_bt_node
br2_back_bt_node
br2_turn_bt_node
br2_is_obstacle_bt_node

)

foreach(bt_plugin ${plugin_libs})
ament_target_dependencies(${bt_plugin} ${dependencies})
target_compile_definitions(${bt_plugin} PRIVATE BT_PLUGIN_EXPORT)

endforeach()

install(TARGETS
${plugin_libs}
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

6.2.3 Running the Behavior Tree

Running a Behavior Tree is easy. A program should build a tree and start
ticking its root until it returns SUCCESS. Behavior trees are created using a
BehaviorTreeFactory, specifying an XML file or directly a string that contains
the XML. BehaviorTreeFactory needs to load the libraries of the custom nodes as
plugins and needs the blackboard to be shared among the BT nodes.

To integrate behavior trees with ROS 2, create a ROS 2 node and put it on the
blackboard. As shown before, BT nodes can extract it from the blackboard to create
publishers/subscribers or clients/servers of services or actions. Along with the tick
at the root of the tree, a spin some manages the arrival of messages to the ROS 2
node.

See how it looks like the program that carries out the tree creation and execution:
src/mr2 bt bumpgo/isObstacle.cpp

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto node = rclcpp::Node::make_shared("patrolling_node");

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_forward_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_back_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_turn_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_is_obstacle_bt_node"));

std::string pkgpath = ament_index_cpp::get_package_share_directory("br2_bt_bumpgo");
std::string xml_file = pkgpath + "/behavior_tree_xml/bumpgo.xml";
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src/mr2 bt bumpgo/isObstacle.cpp

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromFile(xml_file, blackboard);

auto publisher_zmq = std::make_shared<BT::PublisherZMQ>(tree, 10, 1666, 1667);

rclcpp::Rate rate(10);

bool finish = false;
while (!finish && rclcpp::ok()) {

finish = tree.rootNode()->executeTick() != BT::NodeStatus::RUNNING;

rclcpp::spin_some(node);
rate.sleep();

}

rclcpp::shutdown();
return 0;

}

1. At the beginning of the main function, we create a generic ROS 2 node which
we then insert into the blackboard. This is the node that we have seen that is
pulled from the blackboard in Forward to create the speed message publisher.

2. The tree is created by a BT::BehaviorTreeFactory from an XML, BT action
nodes that we will be implemented, and a blackboard.

(a) As we will see below, each BT node will be compiled as an independent
library. The loader object helps to find the library in the system to load
the BT Node as a plugin. The BT REGISTER NODES macro that we saw
earlier in the BT nodes definition allows the BT node name to be connected
with its implementation within the library.

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_forward_bt_node"));

(b) Function get package share directory from package ament index cpp
lets to obtain the full path of installed package, in order to read any file
within. Remember that this is a package included in the package depen-
dencies.

std::string pkgpath = ament_index_cpp::get_package_share_directory(
"br2_bt_bumpgo");

std::string xml_file = pkgpath + "/behavior_tree_xml/forward.xml";

(c) Finally, after creating the blackboard and inserting the shared pointer to
the ROS 2 node there, the factory builds the tree to execute.

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromFile(xml_file, blackboard);
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(d) To debug the Behavior Tree at runtime, create PublisherZMQ object that
publishes all the necessary information. To create it, indicate the tree, the
maximum messages per second, and the network ports to use.

auto publisher_zmq = std::make_shared<BT::PublisherZMQ>(
tree, 10, 1666, 1667);

3. In this last part, the tree’s root is ticked at 10 Hz while the tree returns RUN-
NING while handling any pending work in the node, such as the delivery of
messages that arrive at subscribers.

Once compiled, execute the simulator and the node and run the program. The
robot should move forward.

$ ros2 launch br2 tiago sim.launch.py

$ ros2 run br2 bt bumpgo bt bumpgo --ros-args -r input scan:=/scan raw -r
output vel:=/key vel -p use sim time:=true

During program execution, it is possible to use Groot to monitor the state of
the Behavior Tree to know which nodes are being ticked and the values they return.
Simply boot up Groot and select Monitor instead of Editor. Once pressed connect,
monitor the execution, as shown in Figure 6.13.

Figure 6.13: Monitoring the execution of a Behavior Tree with Groot.
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6.2.4 Testing the BT Nodes

Two types of tests have been included in this package that has been useful during
this project’s development. They are all in the tests directory of the package.

The first type of test has been to manually test each node separately, running
behavior trees that only contain one type of node to see if they work correctly in
isolation. We have included only the verification of the BT node Forward:

tests/bt forward main.cpp

factory.registerFromPlugin(loader.getOSName("br2_forward_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >

<BehaviorTree ID="MainTree">
<Forward />

</BehaviorTree>
</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);
bool finish = false;
while (!finish && rclcpp::ok()) {

finish = tree.rootNode()->executeTick() != BT::NodeStatus::RUNNING;

rclcpp::spin_some(node);
rate.sleep();

}

Start the simulator and run:

$ build/br2 bt bumpgo/tests/bt forward --ros-args -r input scan:=/scan raw -r
output vel:=/key vel -p use sim time:=true

Check that the robot will go forward forever. Do the same with the rest of the
BT nodes.

The second type of test is the one recommended in the previous chapter, which
is using GoogleTest. It is easy to define a ROS 2 node that records what speeds have
been sent to the speed topic.
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tests/bt action test.cpp

class VelocitySinkNode : public rclcpp::Node
{
public:

VelocitySinkNode()
: Node("VelocitySink")
{

vel_sub_ = create_subscription<geometry_msgs::msg::Twist>(
"/output_vel", 100, std::bind(&VelocitySinkNode::vel_callback, this, _1));

}

void vel_callback(geometry_msgs::msg::Twist::SharedPtr msg)
{

vel_msgs_.push_back(*msg);
}

std::list<geometry_msgs::msg::Twist> vel_msgs_;

private:
rclcpp::Subscription<geometry_msgs::msg::Twist>::SharedPtr vel_sub_;

};

It is possible to execute a tree for a few cycles, checking that the speeds that were
sent were correct:

tests/bt action test.cpp

TEST(bt_action, forward_btn)
{

auto node = rclcpp::Node::make_shared("forward_btn_node");
auto node_sink = std::make_shared<VelocitySinkNode>();

// Creation the Behavior Tree only with the Forward BT node

rclcpp::Rate rate(10);
auto current_status = BT::NodeStatus::FAILURE;
int counter = 0;
while (counter++ < 30 && rclcpp::ok()) {

current_status = tree.rootNode()->executeTick();
rclcpp::spin_some(node_sink);
rate.sleep();

}

ASSERT_EQ(current_status, BT::NodeStatus::RUNNING);
ASSERT_FALSE(node_sink->vel_msgs_.empty());
ASSERT_NEAR(node_sink->vel_msgs_.size(), 30, 1);

geometry_msgs::msg::Twist & one_twist = node_sink->vel_msgs_.front();

ASSERT_GT(one_twist.linear.x, 0.1);
ASSERT_NEAR(one_twist.angular.z, 0.0, 0.0000001);

}

In this case, after ticking the root of the tree 30 times, see how the node is still
returning RUNNING, 30 speed messages have been advertised, and the speeds are
correct (they move the robot forward). We could have examined all of them, but we
have only done this case for the first one.

Examine the tests of the other nodes. In the case of Turn and Back, it is checked
that they do so for the appropriate time before returning success. In the case of
isObstacle, we create synthetic laser readings to see if the output is correct in all
cases.
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6.3 PATROLLING WITH BEHAVIOR TREES

In this section, we will address a more complex and ambitious project. We have
previously said that Behavior Tree action nodes help control other subsystems. In
the project of the previous section, we have done it in a pretty basic way, processing
sensory information and sending speeds. In this section, we will carry out a project
in which a Behavior Tree will control more complex subsystems, such as the Nav2
Navigation subsystem and the active vision subsystem that we developed in the
previous chapter.

The goal of the project in this section is that of a robot patrolling the simulated
house in Gazebo:

• The robot patrols three waypoints in the house (Figure 6.14). Upon reach-
ing each waypoint, the robot turns on itself for a few seconds to perceive its
surroundings.

• While the robot goes from one waypoint to another, the robot perceives and
tracks the detected objects.

• The robot keeps track (simulated) of the battery level it has. When low, it goes
to a recharge point to recharge for a few seconds.

wp_1

wp_2

wp_3

wp_ 
recharge 

Figure 6.14: Waypoints at the simulated home, with the path followed during pa-
trolling.

Since we are using such a complex and important subsystem as Nav2, the navi-
gation system in ROS 2, we will first describe it in Section 6.3.1. The Section 6.3.2
describes the steps to set up Nav2 for a particular robot and environment. It is
possible to skip this section since the br2 navigation package already contains the
environment map and configuration files for the simulated Tiago scenario in the
house. The following sections already focus on implementing the Behavior Tree and
the patrolling nodes.
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6.3.1 Nav2 Description

Nav24 [9] is the ROS 2 navigation system designed to be modular, configurable, and
scalable. Like its predecessor in ROS, it aspires to be the most widely used naviga-
tion software, so it supports major robot types: holonomic, differential-drive, legged,
and Ackermann (car-like) while allowing information from lasers and 3D cameras to
be merged, among others. Nav2 incorporates multiple plugins for local and global
navigation and allows custom plugins to be easily used.

The inputs to Nav2 are TF transformations (conforming to REP-105), a map5,
any relevant sensor data sources. It also requires the navigation logic, coded as a BT
XML file coded, adapting it to specific problems if needed. Nav2 outputs are the
speed sent to the robot base.

BT Navigator 
Server

Planner 
Server

Controller 
Server

Recovery 
Server

Local 
Costmap

Global 
Costmap

Map 
Server

AMCLTF

Sensor 1 Sensor 2 Sensor N

sensor_msgs/LaserScan
sensor_msgs/LaserScan

map

navigate_to_pose

geometry_msgs/Twist

nav2_msgs/action/NavigateToPose

BT XML

Map.pgm

Map.yaml

Figure 6.15: Waypoints at the simulated home, with the path followed during pa-
trolling.

Nav2 has the modular architecture shown in Figure 6.15. Let’s describe what each
of the components that appear in the figure are:

• Map Server: This component reads a map from two files and publishes it as a
nav msgs/msg/OccupancyGrid, which nodes internally handle as a costmap2D.
The maps in Nav2 are grids whose cells encode whether the space is free (0),
unknown (255), or occupied (254). Values between 1 and 253 encode different
occupation degrees or cost to cross this area. Figure 6.16b shown the map coded
as a costmap2D.

• AMCL: This component implements a localization algorithm based on Adap-
tive Monte-Carlo (AMCL) [6]. It uses sensory information, primarily dis-

4https://navigation.ros.org
5if using the Static Costmap Layer
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(a) Global costmap used by the Planner
Server.

(b) Original map and the local costmap used
by the Controller Server.

Figure 6.16: 2D costmaps used by the Nav2 components.

tance readings from a laser and the map, to calculate the robot’s position.
The output is a geometric transformation indicating the position of the robot.
Since every frames should not have two parents, instead of posting a map →
base footprint transform, this component computes and publishes the map
→ odom transform.

• Planner Server: The function of this component is to calculate a route from
the origin to the destination. It takes as input the destination, the current
position of the robot, and the map of the environment. The Planner Server
builds a costmap from the original map, whose walls are fattened with the
radius of the robot and a certain safety margin. The idea is that the robot uses
the free space (or with low cost) to calculate the routes, as shown in Figure
6.16a. Route planning and costmap updating algorithms are loaded as plugins.
Like the following two components, this component receives requests through
ROS 2 actions.

• Controller Server: This component receives the route calculated by the Plan-
ner Server and publishes the speeds sent to the robot base. It uses a costmap of
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the robot’s surroundings (see Figure 6.16b), where nearby obstacles are encoded
and used by algorithms (loaded as plugins) to calculate speeds.

• Recovery Server: This component has several helpful recovery strategies if
the robot gets lost, gets stuck, or cannot calculate routes to the destination.
These strategies are turning, clearing costmaps, slow-moving, among others.

• BT Navigator Server: This is the component that orchestrates the rest
of the navigation components. It receives navigation requests in the form
of ROS 2 actions. The action name is navigate to pose and the type is
nav2 msgs/action/NavigateToPose. Therefore, if we want to make a robot
go from one point to another, we must use this ROS 2 action. Check out what
this action looks like:

ros2 interface show nav2 msgs/action/NavigateToPose

#goal definition
geometry msgs/PoseStamped pose
string behavior tree
---
#result definition
std msgs/Empty result
---
geometry msgs/PoseStamped current pose
builtin interfaces/Duration navigation time
int16 number of recoveries
float32 distance remaining

– The request section comprises a target position and, optionally, a custom
Behavior Tree to be used in this action instead of the default one. This last
feature allows special requests to be made that are not normal navigation
behavior, such as following a moving object or approaching an obstacle in
a particular way.

– The result of the action, when finished.
– The robot continuously returns the current position and the distance to

the target and statistical data such as the navigation time or the times it
has recovered from undesirable situations.

BT Navigator uses Behavior Trees to orchestrate robot navigation. The Behav-
ior Tree nodes make requests to the other components of Nav2 so that they
carry out their task.
When this component accepts a navigation action, it starts executing a Be-
havior Tree like the one shown in Figure 6.17. Nav2’s default Behavior Tree is
quite a bit more complex, including calls to recoveries, but the one in the figure
is quite illustrative of BT Navigator Server’s use of them. First, the goal that
arrives in the ROS 2 action is put on the blackboard. ComputePathToPose uses
this goal to call the Planner Server action, which returns a route to it. This
path is the output of this BT node which is input to the BT node FollowPath,
which sends it to the Controller Server.

Programming Robot Behaviors with Behavior Trees ■ 139



PipelineSequence

RateController 
hz=1.0

ComputePathToPose 
 

 

FollowPath 
 

 

goal={goal}
 path={path}
planner_id=Gridbased

path={path}
 controller_id=FollowPath

Planner 
Server

Controller 
Server

BT Navigator Server

Figure 6.17: Behavior Tree simple example inside BT Navigator Server, with BT
nodes calling ROS 2 actions to coordinate other Nav2 components.

To use Nav2, it is enough to install the packages that contain it:

$ sudo apt install ros-jazzy-navigation2 ros-jazzy-nav2-bringup
ros-jazzy-turtlebot3*

In the br2 navigation package, we have prepared the necessary launchers, maps,
and configuration files for the simulated Tiago robot to navigate in the home scenario.
Let’s test navigation:

1. Launch the simulator:

$ ros2 launch br2 tiago sim.launch.py

2. Launch navigation:

$ ros2 launch br2 navigation tiago navigation.launch.py

3. Open RViz2 and display (see Figure 6.18):

• TF: To display the robot. Observe the transformation map → odom.
• Map: Display the topic /map, which QoS is reliable and transient local.
• Global Costmap: Display the topic /global costmap/costmap with de-

fault QoS (Reliable and Volatile).
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• Local Costmap: Display the topic /local costmap/costmap with default
QoS.

• LaserScan: To see how it matches with obstacles.
• It is interesting to display the AMCL particles. Each one is a hypothesis

about the robot’s position. The final robot position is the mean of all
these particles. As much concentrated is this population of arrows, better
localized is the robot. It is in the /particlecloud with which QoS is best
effort + volatile.

Figure 6.18: Nav2 in action

4. Use the “2D Goal Pose” button to command a goal position to the robot.

5. In obtaining a map position, use the “Publish Point” button. Then click
in any position on the map. This position will be published to the topic
/clicked point.

6.3.2 Setup Nav2

This section describes the Nav2 setup process for a new environment and a specific
robot. It is possible to can skip it, as the br2 navigation package already contains
everything you need to make the simulated Tiago navigate in the house scenario.
Keep reading for using another scenario or another robot.

If Nav2 is installed from packages, it is in /opt/ros/jazzy/. In particular, in
/opt/ros/jazzy/share/nav2 bringup is the Nav2 bringup package with launchers,
maps, and parameters for a simulated Turtlebot36 that comes by default and that
you can launch by typing:

6https://emanual.robotis.com/docs/en/platform/turtlebot3/overview

Programming Robot Behaviors with Behavior Trees ■ 141

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview


$ ros2 launch nav2 bringup tb3 simulation launch.py

It starts a simulation with a Turtlebot3 in a small world. Use the “2D Pose
Estimate” button to put where the robot is (see Figure 6.19), as the navigation will
not be activated until then.

Figure 6.19: Simulated turtlebot 3.

The package for the Tiago simulation has been created copying some elements
from nav2 bringup, since some extra remap in the launchers is needed, and thus
having the configuration files and the maps together. This package has the following
structure:

Start by looking at how to map the environment. We will use the slam toolbox
package. We will use a custom param file to specify the particular topics and frames:
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params/mapper params online async.yaml

# ROS Parameters
odom_frame: odom
map_frame: map
base_frame: base_footprint
scan_topic: /scan_raw
mode: mapping #localization

Run these commands, each in a different terminal:

1. Tiago simulated with the home scenario.

$ ros2 launch br2 tiago sim.launch.py

2. RViz2 to visualize the mapping progress (see Figure 6.20).

$ rviz2 --ros-args -p use sim time:=true

3. Launch the SLAM node. It will publish in /map the map as far as it is being
built.

$ ros2 launch slam toolbox online async launch.py params file:=[Full path
to bookros2 ws/src/book ros2/br2 navigation/params/mapper params online async
.yaml] use sim time:=true

4. Launch the map saver server. This node will subscribe to /map, and it will save
it to disk when requested.

$ ros2 launch nav2 map server map saver server.launch.py

5. Run the teleoperator to move the robot along the scenario.

6.
$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args --remap
/cmd vel:=/key vel -p use sim time:=true

Run these commands, each in a different terminal:
As soon as the robot starts moving around the stage using the teleoperator, run

RViz2 and check how the map is built. When the map is completed, ask the map
server saver to save the map to disk:

$ ros2 run nav2 map server map saver cli --ros-args -p use sim time:=true

Note that when mapping/navigating with a real robot, the use sim time param-
eters, both in launchers and nodes, must be false.

At this point, two files will have been created. A PGM image file (which you can
modify if you need to do any fix) and a YAML file containing enough information to
interpret the image as a map. Remember that if modifying the name of the files, this
YAML should be modified too:
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Figure 6.20: SLAM with Tiago simulated.

image: home.pgm
mode: trinary
resolution: 0.05
origin: [-2.46, -13.9, 0]
negate: 0
occupied_thresh: 0.65
free_thresh: 0.25

Move this file to the br2 navigation package and continue to the next setup
step. In this step, the launchers copied from nav2 bringup needs to be modified.
tiago navigation.launch launch navigation and localization by including their
launchers. We don’t use directly the launchers in nav2 bringup because some ex-
tra remaps in navigation.launch has to be done.
br2 navigation/launch/navigation launch.py

remappings = [('/tf', 'tf'),
('/tf_static', 'tf_static'),
('/cmd_vel', '/nav_vel')
]

Regarding the parameter files, start from the ones in the package nav2 bringup.
Let’s see some details on the configuration:

• First, and most important, set all the parameters that contain a sensor topic
to the correct ones, and ensure that all the frames exist in our robot and are
correct.

• If the initial position is known, set it in the AMCL configuration. If you start
the robot in the same pose as you started when mapping, this is the (0, 0, 0)
position.
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br2 navigation/params/tiago nav params

amcl:
ros__parameters:

scan_topic: scan_raw
set_initial_pose: true
initial_pose:
x: 0.0
y: 0.0
z: 0.0
yaw: 0.0

• Set the speeds and acceleration depending on the robot’s capabilities:

br2 navigation/params/tiago nav params

controller_server:
ros__parameters:

use_sim_time: False
FollowPath:

plugin: "dwb_core::DWBLocalPlanner"
min_vel_x: 0.0
min_vel_y: 0.0
max_vel_x: 0.3
max_vel_y: 0.0
max_vel_theta: 0.5
min_speed_xy: 0.0
max_speed_xy: 0.5
min_speed_theta: 0.0
acc_lim_x: 1.5
acc_lim_y: 0.0
acc_lim_theta: 2.2
decel_lim_x: -2.5
decel_lim_y: 0.0
decel_lim_theta: -3.2

• Set the robot radius to inflate walls and obstacles and a scaling factor in setting
how far navigate from them. These settings are held by the inflation layer
costmap plugin, applicable to local and global costmap:

br2 navigation/params/tiago nav params

local_costmap:
local_costmap:

ros__parameters:
robot_radius: 0.3
plugins: ["voxel_layer", "inflation_layer"]
inflation_layer:

plugin: "nav2_costmap_2d::InflationLayer"
cost_scaling_factor: 3.0
inflation_radius: 0.55

6.3.3 Computation Graph and Behavior Tree

The Computation Graph (Figure 6.21) of this project is made up of the node
patrolling node and the nodes that belong to the two subsystems that are being
controlled: Nav2 and the active vision system developed in the last chapter.

• Nav2 is controlled using ROS 2 actions, sending the goal poses that make up
the patrol route.
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• Regarding the active vision system during navigation, the HeadController node,
a LifeCycleNode, will be activated (using ROS 2 services).

• Also, upon arrival at a waypoint, to make the robot rotate on its own,
patrolling node will post velocities directly to the robot’s base.

/head_controller/joint_trajectory /head_controller/state /head_front_camera/rgb/image_raw 

joint_command joint_state input_image 

tracker ObjectDetector
10 Hz

HeadController

patrolling_node

/nav_vel 

cmd_vel 

/scan_raw

bt_navigator

controller_server planner_server amcl

recovery_server map_server

output_vel 

Figure 6.21: Computation Graph for the Patrolling Project. Subsystems have been
simplified for clarity.

The patrolling node node in the Computation Graph is shown to be quite sim-
ple. Perhaps it is more interesting to analyze the Behavior Tree that it contains, which
is the one that controls its control logic. Figure 6.22 shows its complete structure.
Analyze each one of its action and condition nodes:

• Move: This node is in charge of sending a navigation request to Nav2 through
a ROS 2 action. The navigation goal is received through an input port, in
its goal port, which is a coordinate that contains an (x, y) position and a
theta orientation. This node returns RUNNING until it is informed that the
navigation action is complete, in which case it returns SUCCESS. The case in
which it returns FAILURE has not been contemplated, although it would have
been convenient.
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Figure 6.22: Behavior Tree for Patrolling project.

• GetWaypoint: This node is used to obtain the geometric coordinates used by
Move. It has a waypoint output port with the geometric coordinates, which are
then used by the BT node as input. The GetWayPoint input is an id indicating
which waypoint is desired. If this input is “recharge”, its output is the coor-
dinates of the recharge point. If the input is “next”, it returns the geometric
coordinates of the next waypoint to navigate.
This node exists because it simplifies the Behavior Tree since otherwise, the
right branch of the tree would have to be repeated three times, once for each
waypoint. The second is to delegate to another BT node the choice of the target
point and thus simplify Move, not needing to maintain the coordinates of all the
waypoints internally. There are many more alternatives, but this one is pretty
clean and scalable.

• BatteryChecker: This node simulates the battery level of the robot. It keeps
the battery level on the blackboard, decreasing over time and with the robot’s
movement (that is why it subscribes to the topic of commanded speeds). If the
battery level drops below a certain level, it returns FAILURE. If not, return
SUCCESS.

• Patrol: This node simply spins the robot around for a few seconds to control
the environment. When it has finished, it returns SUCCESS.

• TrackObjects: This node always returns RUNNING. When it is first ticked,
it activates, if it was not already, the HeadController node. This node runs in
parallel with Move. The Parallel control node is configured so that when one of
the two (and it can only be Move) returns SUCCESS, it considers that the task
of all its children has finished, halting the nodes whose status is still RUNNING.
When TrackObjects receives a halt, it disables the HeadController.
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6.3.4 Patrolling Implementation

The structure of the br2 bt patrolling package is similar to the one in the previous
section: it implements each BT node separately, in the usual places for class definitions
and declarations. It has a main program that creates the tree and executes it, and it
has some tests for each of the implemented BT nodes.

From an implementation point of view, the most interesting are two classes that
simplify the BT nodes that use ROS 2 actions and those that activate a LifeCy-
cleNode. They are in include/br2 bt patrolling/ctrl support, and have been
implemented in a general way so that they can be reused for other projects.

The BTActionNode class has been borrowed from Nav2, where the BT Navigator
Server used it to control the rest of its servers. It is quite a complex class since
it considers many more cases than we use in this project, such as cancellation and
resends of actions. We do not want to go into details about its implementation. I
recommend the ROS 2 actions tutorial on the official ROS 2 page to learn more
about ROS 2 actions. When completed, come back to this class to explore this class.

BT nodes that wish to control a subsystem with ROS 2 actions inherit this class.
Let’s analyze its interface to its derived class. Original comments will help us to
understand their utility:
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include/br2 bt patrolling/ctrl support/BTActionNode.hpp

template<class ActionT, class NodeT = rclcpp::Node>
class BtActionNode : public BT::ActionNodeBase
{
public:

BtActionNode(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf), action_name_(action_name)
{

node_ = config().blackboard->get<typename NodeT::SharedPtr>("node");
...

}

// Could do dynamic checks, such as getting updates to values on the blackboard
virtual void on_tick()
{
}

// Called upon successful completion of the action. A derived class can override this
// method to put a value on the blackboard, for example.
virtual BT::NodeStatus on_success()
{

return BT::NodeStatus::SUCCESS;
}

// Called when a the action is aborted. By default, the node will return FAILURE.
// The user may override it to return another value, instead.
virtual BT::NodeStatus on_aborted()
{

return BT::NodeStatus::FAILURE;
}

// The main override required by a BT action
BT::NodeStatus tick() override
{

...
}

// The other (optional) override required by a BT action. In this case, we
// make sure to cancel the ROS 2 action if it is still running.
void halt() override
{

...
}

protected:
typename ActionT::Goal goal_;

};

It is a template class because each action has a different type. In the case of
Move, the action type is nav2 msgs/action/NavigateToPose. The class is also pa-
rameterized with the ROS 2 node type because it may also be instantiated with
LifeCycleNodes.

The tick and halt methods are handled by class BtActionNode, so they should
not be defined in the derived class. The other methods can be overridden in the
derived class to do something, like notifying when the action completes or fails. The
derived class overrides on tick, which is called once at startup, to set the goal. Let’s
see the implementation of Move inheriting from BtActionNode:
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include/br2 bt patrolling/Move.hpp

class Move : public br2_bt_patrolling::BtActionNode<nav2_msgs::action::NavigateToPose>
{
public:

explicit Move(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf);

void on_tick() override;
BT::NodeStatus on_success() override;

static BT::PortsList providedPorts()
{

return {
BT::InputPort<geometry_msgs::msg::PoseStamped>("goal")

};
}

};

src/br2 bt patrolling/Move.cpp

Move::Move(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf)

: br2_bt_patrolling::BtActionNode<nav2_msgs::action::NavigateToPose>(xml_tag_name,
action_name, conf)

{
}

void
Move::on_tick()
{

geometry_msgs::msg::PoseStamped goal;
getInput("goal", goal);

goal_.pose = goal;
}

BT::NodeStatus
Move::on_success()
{

RCLCPP_INFO(node_->get_logger(), "navigation Suceeded");

return BT::NodeStatus::SUCCESS;
}

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

BT::NodeBuilder builder =
[](const std::string & name, const BT::NodeConfiguration & config)
{

return std::make_unique<br2_bt_patrolling::Move>(
name, "navigate_to_pose", config);

};

factory.registerBuilder<br2_bt_patrolling::Move>(
"Move", builder);

}

• The BT Node Move implements on success to report that the navigation has
finished.

• The on tick method gets the goal from the input port and assigns it to goal .
This variable will be the one that will be sent directly to Nav2.
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• When building this BT node, the second argument is the name of the ROS 2
action. In the case of Nav2, it is navigate to pose.

BTLifecycleCtrlNode is a class from which a BT Node is derived to acti-
vate/deactivate LifeCycle nodes. It is created specifying the name of the node to
control. In the case of the HeadTracker, it will be with /head tracker. All Life-
CycleNodes have various services to be managed. In this, we will be interested in
two:

• [node name]/get state: Returns the status of a LifeCycleNode.

• [node name]/set state: Sets the state of a LifeCycleNode.

Let’s see code snippets of the BTLifecycleCtrlNode implementation:
include/br2 bt patrolling/ctrl support/BTLifecycleCtrlNode.hpp

class BtLifecycleCtrlNode : public BT::ActionNodeBase
{
public:

BtLifecycleCtrlNode(...)
: BT::ActionNodeBase(xml_tag_name, conf), ctrl_node_name_(node_name)
{
}

template<typename serviceT>
typename rclcpp::Client<serviceT>::SharedPtr createServiceClient(

const std::string & service_name)
{

auto srv = node_->create_client<serviceT>(service_name);
while (!srv->wait_for_service(1s)) {

...
}
return srv;

}

BT::NodeStatus tick() override
{

if (status() == BT::NodeStatus::IDLE) {
change_state_client_ = createServiceClient<lifecycle_msgs::srv::ChangeState>(

ctrl_node_name_ + "/change_state");
get_state_client_ = createServiceClient<lifecycle_msgs::srv::GetState>(

ctrl_node_name_ + "/get_state");
}

if (ctrl_node_state_ != lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE) {
ctrl_node_state_ = get_state();
set_state(lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE);

}

return BT::NodeStatus::RUNNING;
}

void halt() override
{

if (ctrl_node_state_ == lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE) {
set_state(lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE);

}
}

// Get the state of the controlled node
uint8_t get_state(){...}

// Set the state of the controlled node. It can fail, if no transition is possible
bool set_state(uint8_t state) {...}

std::string ctrl_node_name_;
uint8_t ctrl_node_state_;

};
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Two clients are instantiated: one to query the state and one to set the state.
They will be used in get state and set state, respectively. When the node is first
ticked, the controlled node is requested to go to the active state. When halted, its
deactivation is requested.

The BT node TrackObjects only needs to inherit from this class by specifying the
name of the node:

include/br2 bt patrolling/TrackObjects.hpp

class TrackObjects : public br2_bt_patrolling::BtLifecycleCtrlNode
{
public:

explicit TrackObjects(
const std::string & xml_tag_name,
const std::string & node_name,
const BT::NodeConfiguration & conf);

static BT::PortsList providedPorts()
{

return BT::PortsList({});
}

};

src/br2 bt patrolling/TrackObjects.cpp

TrackObjects::TrackObjects(...)
: br2_bt_patrolling::BtLifecycleCtrlNode(xml_tag_name, action_name, conf)
{
}

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

BT::NodeBuilder builder =
[](const std::string & name, const BT::NodeConfiguration & config)
{

return std::make_unique<br2_bt_patrolling::TrackObjects>(
name, "/head_tracker", config);

};

factory.registerBuilder<br2_bt_patrolling::TrackObjects>(
"TrackObjects", builder);

}

Take into account that TrackObjects always returns RUNNING. That is why we
have used it as a child of a parallel control node.

Check out how the rest of the BT nodes functionality has been implemented:

• BatteryChecker: The first difference between this BT node and the others is
that it is a condition node. It does not have a halt method and cannot return
RUNNING.
This node checks the battery level stored on the blackboard at each tick. If it
is less than a certain level, it returns FAILURE.
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src/br2 bt patrolling/BatteryChecker.cpp

const float MIN_LEVEL = 10.0;

BT::NodeStatus
BatteryChecker::tick()
{

update_battery();

float battery_level;
config().blackboard->get("battery_level", battery_level);
if (battery_level < MIN_LEVEL) {

return BT::NodeStatus::FAILURE;
} else {

return BT::NodeStatus::SUCCESS;
}

}

The update battery method takes the battery level from the blackboard and
decreases it in the function of time and the total amount of speed (last twist )
currently requested. It is just a simulation of battery consumption.

src/br2 bt patrolling/BatteryChecker.cpp

const float DECAY_LEVEL = 0.5; // 0.5 * |vel| * dt
const float EPSILON = 0.01; // 0.01 * dt

void
BatteryChecker::update_battery()
{

float battery_level;
if (!config().blackboard->get("battery_level", battery_level)) {

battery_level = 100.0f;
}
float dt = (node_->now() - last_reading_time_).seconds();
last_reading_time_ = node_->now();

float vel = sqrt(last_twist_.linear.x * last_twist_.linear.x +
last_twist_.angular.z * last_twist_.angular.z);

battery_level = std::max(
0.0f, battery_level - (vel * dt * DECAY_LEVEL) - EPSILON * dt);

config().blackboard->set("battery_level", battery_level);
}

It is always useful to control de range of some calculus using std::max and
std::min. In this case, we control that battery level is never negative.

• Recharge: This BT node is related to the previous one. It takes some time to
recharge the battery. Note that using blackboard lets some nodes collaborate
to update and test some values.

src/br2 bt patrolling/BatteryChecker.cpp

BT::NodeStatus
Recharge::tick()
{

if (counter_++ < 50) {
return BT::NodeStatus::RUNNING;

} else {
counter_ = 0;
config().blackboard->set<float>("battery_level", 100.0f);
return BT::NodeStatus::SUCCESS;

}
}
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Each BT node in the tree is a different instance of the same class, but be
ready to be ticked even if the BT node returned once SUCCESS. In this case,
restarting counter to 0.

• Patrol: This node just makes the robot spin for 15 s. The only interesting
aspect of this node is how it controls how long executing since the first tick
until the it return SUCCESS. Take into account that a node status is IDLE
the first tick, so it’s possible to store this timestamp.

src/br2 bt patrolling/Patrol.cpp

BT::NodeStatus
Patrol::tick()
{

if (status() == BT::NodeStatus::IDLE) {
start_time_ = node_->now();

}

geometry_msgs::msg::Twist vel_msgs;
vel_msgs.angular.z = 0.5;
vel_pub_->publish(vel_msgs);

auto elapsed = node_->now() - start_time_;

if (elapsed < 15s) {
return BT::NodeStatus::RUNNING;

} else {
return BT::NodeStatus::SUCCESS;

}
}

• GetWaypoint: This node stores the waypoint coordinates. If the input port
wp id is the string “recharge”, its output is a coordinate, in frame map, cor-
responding to the position where it is supposed to be the robot charger. In
another case, each time it is ticked, it returns the coordinates of a different
waypoint.

src/br2 bt patrolling/GetWaypoint.cpp

GetWaypoint::GetWaypoint(...)
{

geometry_msgs::msg::PoseStamped wp;
wp.header.frame_id = "map";
wp.pose.orientation.w = 1.0;

// recharge wp
wp.pose.position.x = 3.67;
wp.pose.position.y = -0.24;
recharge_point_ = wp;

// wp1
wp.pose.position.x = 1.07;
wp.pose.position.y = -12.38;
waypoints_.push_back(wp);

// wp2
wp.pose.position.x = -5.32;
wp.pose.position.y = -8.85;
waypoints_.push_back(wp);

}
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src/br2 bt patrolling/GetWaypoint.cpp

BT::NodeStatus
GetWaypoint::tick()
{

std::string id;
getInput("wp_id", id);

if (id == "recharge") {
setOutput("waypoint", recharge_point_);

} else {
setOutput("waypoint", waypoints_[current_++]);
current_ = current_ % waypoints_.size();

}

return BT::NodeStatus::SUCCESS;
}

6.3.5 Running Patrolling

From an implementation point of view, the only relevant thing is that we will use
a launcher for the active vision system and the patrolling node. Navigation and the
simulator could have been included in the launcher, but they generate so much output
on the screen that we run them manually in other terminals. The launcher looks like
this:
br2 navigation/launch/patrolling launch.py

def generate_launch_description():
tracking_dir = get_package_share_directory('br2_tracking')

tracking_cmd = IncludeLaunchDescription(
PythonLaunchDescriptionSource(os.path.join(tracking_dir, 'launch',

'tracking.launch.py')))

patrolling_cmd = Node(
package='br2_bt_patrolling',
executable='patrolling_main',
parameters=[{

'use_sim_time': True
}],
remappings=[

('input_scan', '/scan_raw'),
('output_vel', '/nav_vel')

],
output='screen'

)

ld = LaunchDescription()
ld.add_action(tracking_cmd)
ld.add_action(patrolling_cmd)

return ld

So type these commands, each one in a separate terminal:

$ ros2 launch br2 tiago sim.launch.py

$ ros2 launch br2 navigation tiago navigation.launch.py

Nav2 also uses Behavior Trees and activates a server to debug its operation with
Groot. It does this on Groot’s default ports (1666 and 1667). For this reason, we have
started it in 2666 and 2667. If we put them on the same, the program would fail.
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Before connecting to the patrolling Behavior Tree, correctly set the ports to 2666 and
2667.

src/patrolling main.cpp

BT::Tree tree = factory.createTreeFromFile(xml_file, blackboard);
auto publisher_zmq = std::make_shared<BT::PublisherZMQ>(tree, 10, 2666, 2667);

At this point, optionally open RViz2 to monitor navigation or Groot to monitor
Behavior Tree execution. For the latter, wait to launch the patrol program to connect
to the Behavior Tree:

$ rviz2 --ros-args -p use sim time:=true

Try sending a navigation position to make sure the navigation starts correctly.

$ ros2 run groot Groot

Finally, launch the patrol program together with the active vision system:

$ ros2 launch br2 bt patrolling patrolling.launch.py

If everything has gone well, the robot, after recharging its battery, patrols the
three waypoints established in the environment. While patrolling, observe how the
robot tracks the objects it detects. When it reaches a waypoint and turns around,
notice how tracking is no longer active. After a while of operation, the robot will run
out of battery again, going to the recharging point again before continuing patrolling.

PROPOSED EXERCISES:

1. Make a program using Behavior Trees that makes the robot move continuously
to the space without obstacles.

2. Explore the Nav2 functionality:

• Mark forbidden areas in the center of each room in which the robot should
not enter.

• Modify the Behavior tree inside BT Navigator to finish navigation always
one meter before the goal.

• Try different Controller/Planner algorithms.

3. Publish the detected objects while patrolling as a 3D bounding box. You could
do it by:

• Using the pointcloud.
• Using the depth image and the CameraInfo information. Like is done in:

https://github.com/gentlebots/gb_perception/blob/main/gb_
perception\_utils/src/gb_perception_utils/Perceptor3D.cpp
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C H A P T E R 7

Deep ROS 2

So far, we have covered the basic concepts that a beginner in ROS 2 should
understand to develop robot applications using ROS 2. This chapter aims to

go beyond that, explaining the internal workings of nodes and some of ROS’s core
mechanisms. This deeper dive will reveal what is happening “below the surface”,
allowing us to better understand certain effects that may occur during node execution
or apply real-time programming principles, which will be discussed toward the end
of the chapter.

7.1 ROS 2 EXECUTION MANAGEMENT

The basic unit of execution in ROS 2 is the Node. A ROS 2 application is a computa-
tional graph where nodes collaborate to accomplish the task they were programmed
for. Nodes run within system processes, and multiple nodes can operate within the
same process. A node is programmed following a model where the logic resides in the
callbacks triggered by events: timer callbacks for code that needs to run periodically,
and subscriber/service callbacks for handling incoming data or requests directed to
the node.

The entities responsible for managing these events and invoking the callbacks are
the executors, and they play a crucial role in execution management within ROS 2.
Executors are always present, even when we might not explicitly think about them.
For example, in the following code, there appears to be no executor at all:

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node = rclcpp::Node::make_shared("listener");
auto sub = node->create_subscription<std_msgs::msg::String>(

"/chatter", callback);

rclcpp::spin(node);
rclcpp::shutdown();

}

In reality, it uses a SingleThreadedExecutor, as the implementation of
rclcpp::spin is as follows:
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ros2/rclcpp/rclcpp/src/rclcpp/executors.cpp

void
rclcpp::spin(rclcpp::node_interfaces::NodeBaseInterface::SharedPtr node_ptr)
{

rclcpp::ExecutorOptions options;
options.context = node_ptr->get_context();
rclcpp::executors::SingleThreadedExecutor exec(options);
exec.add_node(node_ptr);
exec.spin();
exec.remove_node(node_ptr);

}

It is important to understand at which layer each of the elements involved in the
execution management of a node operates. To illustrate the following explanation, I
have created Figure 7.1, which on the right contains a simplified version of Figure
1.7, and on the left shows the relevant elements discussed in the explanation, which
are:

• At the bottom, within the middleware layer, are the topics, where we have
represented incoming messages to each topic with circles, along with the order
in which they arrived at the node. These messages are stored in queues within
each middleware.

• The user node layer contains the callback code that must be executed to process
the messages located in the middleware layer.

• In the client libraries layer (rclcpp, rclpy,...), we find the executors. Executors
are responsible for transferring messages from the middleware layer to the call-
backs (cb 1, cb 2, and cb 3) in the user layer. How this is done has a significant
impact on the execution model in ROS 2.

rmw adapter

rcl

rmw

rclcpp rclpy others

User Nodes

Executor

cb_1 cb_2 cb_3

/topic_1 /topic_2 /topic_3
4 5 1 2 3

Figure 7.1: Execution management in ROS 2 layers.

To process the messages arriving at the node, an executor performs several steps,
as shown in Figure 7.2:
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1. An executor uses a wait-set mechanism to wait for a message to arrive in the
queue of one of the subscribers from the nodes registered with it. A wait-set is
a mechanism that allows a thread (or a set of threads) to wait for one or more
specific events to occur, such as the presence of messages in the queue.
The wait-set acts as a “waiting set” where the conditions or events that a
thread is waiting for are registered, and the thread is suspended until one of
these events occurs. When any of the registered events is triggered, the thread
is notified to resume execution. A wait-set optimizes system resource usage by
allowing threads to wake up only when there is actual work to be done, instead
of continuously checking for new events (a technique known as busy waiting,
which is less efficient).
As soon as the wait-set is activated, the subscribers with messages waiting in
their queues are marked in the wait-set conditions.

2. Once an executor knows which queues have messages to process, for each of the
queues with messages, it retrieves one message and,

3. executes the callback associated with the subscriber of that queue, providing
the retrieved message.

rmw adapter

rcl

rmw

rclcpp rclpy others

User Nodes

Executor

cb_1 cb_2 cb_3

/topic_1 /topic_2 /topic_3
4 5 1 2 3

1) wait 1 1 2) take

3) execute

Figure 7.2: Steps involved in processing a message by an executor.

Executors perform this task using one or more threads, depending on whether it
is a SingleThreadedExecutor or a MultiThreadedExecutor. How the executor is
implemented defines its semantics—that is, how it waits for events, processes pending
events, and adapts to changes in the nodes.

The executors mentioned earlier follow a semantic flow, illustrated in Figure 7.3,
and described as follows:

1. The executor retrieves information from the wait-set, provided by the middle-
ware, indicating if there are incoming messages or other events ready to be
processed.
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2. If there is a timer event in the wait-set, the associated callback is executed, the
event is removed from the wait-set, and the process returns to step 1.

3. If a topic in the wait-set needs to be processed, the callback associated with
this message is invoked, the topic is removed from the wait-set, and the process
returns to step 1.

4. For a service server, if there is a service request in the wait-set, the associated
callback is executed, the service is removed from the wait-set, and the process
returns to step 1.

5. For a service client, if there is a response to a request from the service server,
the associated callback is executed, the service is removed from the wait-set,
and the process returns to step 1.

timer ready?

topic in wait-set?

No

service in wait-set?

No

service-reply in wait-set?

collect_entities()

No

No

ptopic1 ptopic2 ptopic3

wait in middlewareptopic1 0 ptopic3

1 0 1

take message
Execute callback
Clear in wait-set

Yes

Yes

Yes

Yes

Polling Point
Processing Window

Figure 7.3: Executor Semantic.

6. Once the wait-set has been processed, the collect entities() function gath-
ers all timers, subscriptions, and services from the nodes1 within the executor
and creates a new wait-set vector, which is sent to the middleware. This pro-
cess informs the middleware which elements we are interested in being notified
about when they have new messages or events.

1as we will soon see, actually from something called a callback group
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7. The middleware waits for new messages or events in the provided wait-set, fills
the wait-set with those that have messages or events, and the process returns
to step 1.

Figure 7.4 shows the situation from Figure 7.2 where three messages arrived at
the topic /topic 1 and then two more at /topic 2. The wait-set after the Polling
Point indicates that there is data in both topics, so during this processing window,
the messages in both topics are processed in FIFO order. This results in message 1
and message 4 being processed. Note that although messages 2 and 3 arrived before
message 4, they will be processed after the next Polling Point, when messages 2 and
5 will be handled, and in a subsequent Polling Point, message 3 will be processed.

By default, callbacks and events within the same node are executed sequen-
tially, even if we are using a MultiThreadedExecutor. This ensures that there
will be no race conditions between them. We can only take advantage of a
MultiThreadedExecutor, unless explicitly configured otherwise (which we will cover
shortly), by processing messages or events from different nodes.

Executor

cb_1 cb_2 cb_3

/topic_1 /topic_2 /topic_3

4

5

1

wait
1 1

take

execute

take

execute

Processing WindowPolling Point

2

3

Figure 7.4: Execution of callbacks from a wait-set.

Another important detail to keep in mind is that the order in which messages are
processed depends on the order in which they were created within the node. If the
subscriber to /topic 1 was created before the one for /topic 2, the polling point will
first call the callback for /topic 2 and then for /topic 1. If we want the messages
from one topic to be prioritized over others when both have messages, we should
create the preferred topic last. In many applications, this does not make a significant
difference, but in critical applications, this processing order can have an impact.

In section 2.3.5, we introduced the executors that are already familiar to us: the
SingleThreadedExecutor and the MultiThreadedExecutor. At this point, I would
like to introduce two new executors:

• StaticSingleThreadedExecutor: This executor does not rescan nodes to
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identify new subscribers or timers, but only does so at the start of execution,
as shown in Figure 7.5, saving the computation time that would otherwise
be spent scanning at each polling point. The downside is that all subscribers,
timers, and services must be created at the start, because if they appear later,
their messages or events will not be considered.

timer ready?

topic in wait-set?

No

service in wait-set?

No

service-reply in wait-set?

No

No

ptopic1 ptopic2 ptopic3

wait in middlewareptopic1 0 ptopic3

1 0 1

take message
Execute callback
Clear in wait-set

Yes

Yes

Yes

Yes

Polling Point
Processing Window

collect_entities()

Figure 7.5: Executor Semantic for StaticSingleThreadedExecutor.

• EventsExecutor: This recently added executor in rclcpp does not use a wait-
set, but instead leverages the RMW listener API to queue all events as they
occur and process them in that order. Unlike other executors, timer manage-
ment no longer goes through the middleware. This executor, still experimental
at the time this book was written, has shown experimental time savings as
it eliminates the overhead caused by the wait-set-based strategy. The main
limitation is that this executor operates with only a single thread.

The decision of which executor to use must be made carefully. It is not necessarily
true that your application will perform better with a MultiThreadedExecutor than
with a SingleThreadedExecutor just because it can better utilize parallel execution
on a multi-core CPU. In the current implementation, a SingleThreadedExecutor is
more efficient in terms of CPU usage than a MultiThreadedExecutor. Additionally, it
is considered an antipattern to use a MultiThreadedExecutor to run callbacks from
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a node that should be executed exclusively (we will explore later why this might
not always be desired). Lastly, in a MultiThreadedExecutor, we may encounter
starvation issues for one of the callbacks if the execution time and frequency of the
timer and subscriber callbacks are high and their queues are always full. When this
happens, a MultiThreadedExecutor may only have time to handle one callback for
a topic, leaving the other unprocessed.

Let’s look at an example that illustrates this issue. To trace its execution, we
will use a library called YAETS2, which employs an asynchronous tracing system to
ensure that data collection does not interfere with execution. It also provides with
tools to create execution graphs. The TRACE EVENT macro allows us to incrementally
log the start and end times of the function in which it is used.

We will run two nodes, Consumer and Producer, within the same Executor:

• Producer: This node will publish a message every millisecond to two topics:
topic 1 and topic 2.

br2 deep ros/src/executors.cpp

class ProducerNode : public rclcpp::Node
{
public:

ProducerNode() : Node("producer_node")
{

pub_1_ = create_publisher<std_msgs::msg::Int32>("topic_1", 100);
pub_2_ = create_publisher<std_msgs::msg::Int32>("topic_2", 100);
timer_ = create_wall_timer(

1ms, std::bind(&ProducerNode::timer_callback, this));
}

void timer_callback()
{

message_.data += 1;
pub_1_->publish(message_);
message_.data += 1;
pub_2_->publish(message_);

}

private:
rclcpp::Publisher<std_msgs::msg::Int32>::SharedPtr pub_1_, pub_2_;
rclcpp::TimerBase::SharedPtr timer_;
std_msgs::msg::Int32 message_;

};

• Consumer: This node is the one we are truly interested in observing. It has two
subscribers, one for topic 1 and one for topic 2, and each of them simulates
taking half a millisecond to process using the WasteTime method. Additionally,
it has a timer that triggers a callback every 10 milliseconds, with the callback
taking 5 milliseconds to complete.

2https://github.com/fmrico/yaets
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br2 deep ros/src/executors.cpp

class ConsumerNode : public rclcpp::Node
{
public:

ConsumerNode() : Node("consumer_node")
{

sub_2_ = create_subscription<std_msgs::msg::Int32>(
"topic_2", 100, std::bind(&ConsumerNode::cb_2, this, _1));

sub_1_ = create_subscription<std_msgs::msg::Int32>(
"topic_1", 100, std::bind(&ConsumerNode::cb_1, this, _1));

timer_ = create_wall_timer(
10ms, std::bind(&ConsumerNode::timer_cb, this));

}

void cb_1(const std_msgs::msg::Int32::SharedPtr msg)
{

TRACE_EVENT(session);

waste_time(500us);
}

void cb_2(const std_msgs::msg::Int32::SharedPtr msg)
{

TRACE_EVENT(session);

waste_time(500us);
}

void timer_cb()
{

TRACE_EVENT(session);

waste_time(5ms);
}

void waste_time(const rclcpp::Duration & duration)
{

auto start = now();
while (now() - start < duration);

}

private:
rclcpp::Subscription<std_msgs::msg::Int32>::SharedPtr sub_1_;
rclcpp::Subscription<std_msgs::msg::Int32>::SharedPtr sub_2_;
rclcpp::TimerBase::SharedPtr timer_;

};

The main() function simply creates an executor, adds the nodes to it, and calls
spin:

br2 deep ros/src/executors.cpp

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto node_pub = std::make_shared<ProducerNode>();
auto node_sub1 = std::make_shared<ConsumerNode>();

rclcpp::executors::SingleThreadedExecutor executor;

executor.add_node(node_pub);
executor.add_node(node_sub1);

executor.spin();

rclcpp::shutdown();
return 0;

}
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Considering the publication frequencies of the producer and the execution times
of each callback in the Consumer, we can observe that the Consumer always has work
to do, as its message queues are constantly full. Figure 7.6 shows the execution of
the callbacks in the Consumer node the first millisconds of its execution. The system
where this program was executed is not overloaded, so there are no delays in their
execution. Using a SingleThreadedExecutor, we can confirm everything we have
explained in this section:

30 40 50 60 70

Time (ms)

ConsumerNode

cb_1

ConsumerNode

cb_2

ConsumerNode

timer_cb

Gantt Chart of Traced Executions

Figure 7.6: Trace of the program execution with a SingleThreadedExecutor. It can
be observed that no concurrency occurs in the execution of any callback

• The execution of the timer callback takes priority over the subscribers. Even if
there are more messages queued, if there is a timer event at the beginning of a
processing window, it is the first thing to be executed.

• The first callback to be executed is the one that was created last, which is cb2,
the callback for topic 2.

• No callback is executed concurrently.

Now, let’s switch to a MultiThreadedExecutor by simply changing the type of
executor and configuring it to use 8 threads:
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Figure 7.7: Execution trace of the program with a MultiThreadedExecutor. It can
be observed that no concurrency occurs in the execution of any callback, but the
callback for /topic 2 experiences starvation.

br2 deep ros/src/executors.cpp

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto node_pub = std::make_shared<ProducerNode>();
auto node_sub1 = std::make_shared<ConsumerNode>();

// rclcpp::executors::SingleThreadedExecutor executor;
rclcpp::executors::MultiThreadedExecutor executor(rclcpp::ExecutorOptions(), 8);

executor.add_node(node_pub);
executor.add_node(node_sub1);

executor.spin();

rclcpp::shutdown();
return 0;

}

Figure 7.7 shows the execution with MultiThreadedExecutor.
And we see a discouraging result: once messages begin to accumulate in the

queues due to the first execution of the timer callback, the callback for topic 2 is
no longer called. Additionally, it can be observed that, even with multiple threads,
within a node, by default, only one callback is executed at a time, meaning there is
no concurrency.

It is left as an exercise for the reader to test with the EventsExecutor. The
result should be similar to the one with the SingleThreadedExecutor. To try, simply
change the type of executor and reproduce these graphs by running:

$ colcon build --symlink-install --packages-up-to br2 deep ros
$ ros2 run br2 deep ros executors
$ ros2 run yaets gantt.py ./session1.log --max traces 60
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7.1.1 Callback Groups

Up to this point, we have intentionally hidden the concept of Callback Group from the
reader to avoid confusion while explaining the ROS 2 execution model. However, it is
now time to lay all the cards on the table. Executors do not operate at the node level,
but at the callback group level. This distinction is usually imperceptible because each
node has a default callback group, and all subscribers, timers, and services created
within a node are, by default, added to this default callback group. Additionally, this
default callback group is configured as mutually exclusive, which ensures what we
have previously mentioned: that messages and events are processed sequentially, so
that no two callbacks from any element within the same callback group are executed
simultaneously.

ConsumerNode

/topic_2

/topic_1

cb_2
std_msgs/msg/Int32

cb_1
std_msgs/msg/Int32

timer_cb

ConsumerNode

/topic_2

/topic_1

cb_2
std_msgs/msg/Int32

cb_1
std_msgs/msg/Int32

timer_cb

Figure 7.8: Diagram of the ConsumerNode with its callbacks, indicating the callback
group to which they belong by color. On the top figure, all callbacks are in the
default callback group (green). On the bottom figure, the timer callback is in a
custom callback group (blue).
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In ROS 2, we are allowed to create additional callback groups within a node,
selecting which timers, subscribers, or services belong to each callback group, whether
it is the default one or any explicitly created ones. We will illustrate this explanation
by continuing with the example from the previous section. The ConsumerNode in the
previous section followed the diagram on the left in Figure 7.8. All callbacks were
in the same callback group, which was the default callback group of the node. Now,
we will explicitly create an additional callback group within the node, assigning the
timer callback to this newly created callback group instead of the default one. To do
this, we will use an additional parameter in create subscription, which comes after
the ones we typically use. This parameter allows us to configure various subscription
options, such as specifying the callback group, enabling intra-process memory, or
ignoring local publications, among others. This parameter has a default value, and
up until now, we haven’t used it.

br2 deep ros/src/executors cbg.cpp

ConsumerNode() : Node("consumer_node")
{

custom_cb_ = create_callback_group(rclcpp::CallbackGroupType::MutuallyExclusive);

rclcpp::SubscriptionOptions options;
options.callback_group = custom_cb_;

sub_2_ = create_subscription<std_msgs::msg::Int32>(
"topic_2", 100, std::bind(&ConsumerNode::cb_2, this, _1), options);

sub_1_ = create_subscription<std_msgs::msg::Int32>(
"topic_1", 100, std::bind(&ConsumerNode::cb_1, this, _1), options);

timer_ = create_wall_timer(10ms, std::bind(&ConsumerNode::timer_cb, this));
}

...

private:
rclcpp::CallbackGroup::SharedPtr custom_cb_;

In the main() function, we don’t need to do anything differently. When adding a
node to an executor, all the callback groups from that node are added to the executor,
which in this case will be a MultiThreadedExecutor. If we run this program and
visualize the execution traces (Figure 7.9), we will see that the callbacks for the topics
are still not executed concurrently (with some starvation in cb 2), but the timer
callback is executed concurrently with these two because it belongs to a different
callback group.

Furthermore, we can configure some of these additional callback groups as
reentrant, as opposed to mutually exclusive, meaning that nothing prevents a
MultiThreadedExecutor from calling the same callback with different data simulta-
neously. This must be done with great care and often requires the use of concurrency
control mechanisms such as mutexes and locks.

In the following code, we make use of this type of reentrant callback groups. We
will add all the callbacks to this callback group. If we do nothing else, all callbacks
could execute concurrently, but we will use a mutex to prevent the timer callback
and the /topic 1 callback from running at the same time.
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Figure 7.9: Execution flow of the ConsumerNode, using two callback groups: the de-
fault group for the subscriptions and an additional group for the timer callback. It
can be observed that the timer callback runs concurrently with the other two call-
backs, which execute without concurrency between them.

br2 deep ros/src/executors cbg reentrant.cpp

ConsumerNode() : Node("consumer_node")
{

custom_cb_ = create_callback_group(rclcpp::CallbackGroupType::Reentrant);

rclcpp::SubscriptionOptions options;
options.callback_group = custom_cb_;

sub_2_ = create_subscription<std_msgs::msg::Int32>(
"topic_2", 100, std::bind(&ConsumerNode::cb_2, this, _1), options);

sub_1_ = create_subscription<std_msgs::msg::Int32>(
"topic_1", 100, std::bind(&ConsumerNode::cb_1, this, _1), options);

timer_ = create_wall_timer(
10ms, std::bind(&ConsumerNode::timer_cb, this), custom_cb_);

}

void cb_1(const std_msgs::msg::Int32::SharedPtr msg)
{

std::unique_lock<std::mutex> lock(mutex_);
TRACE_EVENT(session);

waste_time(500us);
}

void cb_2(const std_msgs::msg::Int32::SharedPtr msg)
{

TRACE_EVENT(session);

waste_time(500us);
}

void timer_cb()
{

std::unique_lock<std::mutex> lock(mutex_);
TRACE_EVENT(session);

waste_time(5ms);
}
...

private:
...
rclcpp::CallbackGroup::SharedPtr custom_cb_;
std::mutex mutex_;
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• When creating the callback group, we set it to be Reentrant instead of
MutuallyExclusive.

• Just as we introduced the additional parameter for create subscription,
create wall timer also has an extra parameter beyond those we typically
use, which allows us to directly specify the callback group for the timer.

• We will use a mutex to prevent the timer callback and the /topic 1 callback
from running simultaneously, so we declare a mutex and acquire the lock using
std::unique lock<std::mutex>. When this object is created, it acquires the
lock if it hasn’t been taken by another thread, otherwise it waits.

The execution diagram of this example is shown in Figure 7.10.
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Figure 7.10: Trace of the execution of the ConsumerNode with a callback group con-
figured as reentrant, and using a mutex.

7.2 REAL-TIME IN ROS 2

In this section, we will dive into the fascinating world of Real-Time, something that a
robotics software engineer often does not think about at first. It is usually the specific
needs of your application or your experience with undesirable effects that make you
realize its importance and that you need to, at the very least, understand the basic
techniques of real-time computing to ensure your applications run correctly. In this
chapter, we have learned about executors and callback groups, which we will soon
see are essential ingredients for making your application run in real-time.

Join me on this journey, starting with the definitions of what we mean by real-time
and ending with how we make our ROS applications run in real-time.

7.2.1 About Real-Time

The term Real-Time is an ambiguous one in computing, as it has been used in many
domains and in various ways. A web application developer for food delivery might
tell you that their app allows tracking of orders in real-time. A security application
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developer might claim that their amazing mobile app lets you watch your cats in real-
time while you’re on vacation in southern Spain. A simulation programmer might
tell you that a particular clock runs in real-time. Expert hackers might say that
certain operating systems are real-time, while other programmers will assert that
their applications run in real-time. Which of these statements is correct? In fact, all
of them are correct within the context of each application, so we must clarify which
type of real-time we are going to discuss in this book.The definition of real-time that
we will use in this book is:

Real-time programming refers to the practice of designing and implementing soft-
ware systems that can respond and produce output within strict time constraints.

When classifying real-time systems, two criteria are considered:

1. A system must respond within a specified time frame, where the maximum
latency is limited.

2. The consequences of failing to meet the established deadlines. These conse-
quences can range from something as mild as a brief interruption in playing
your favorite song to something as serious as hitting your neighbor with a ve-
hicle, or as catastrophic as a plane with 200 people crashing.

In Figure 7.11, we see a graph where different applications or use cases are plotted
on severity/latency coordinates. The control loop of actuators, such as those in vehi-
cles or planes, typically requires very high frequencies, close to 1000 Hz. If this control
loop becomes unstable or fails to meet the required frequency, it can create unsafe
conditions, potentially leading to catastrophic consequences, including endangering
the lives of the passengers. The braking system of a car also carries very severe conse-
quences if more than 10 milliseconds pass between pressing the brake pedal and the
brake being applied to the wheels. Robots must react to sensor information within
short time deadlines if they are to avoid obstacles when moving at a certain speed.
Music production systems also require low-latency components, although no one will
die if these deadlines are not met, even though the financial costs of such an error
could be significant. On the other hand, in a video conference, if latency exceeds half
a second, communication becomes difficult, but no lives are at risk, and there are no
major financial costs involved.

In this same figure, a boundary encloses the applications or use cases that can be
executed on general-purpose operating systems, such as Linux, for example. Anything
outside this boundary requires the use of real-time operating systems, such as QNX,
NuttX, VXWorks, or systems with hypervisors like Xenomai. The humanoid robot
Nao, for instance, had a general-purpose computer in its head, but the functions that
required real-time execution are handled by a microcontroller located in the robot’s
chest, which ran in real-time.

The reason that general-purpose operating systems are not well-suited for real-
time applications lies in their process schedulers, which allow processes controlling
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Figure 7.11: Example of Real-Time use cases in a Severity/Latency graph. The dashed
green line delineates the use cases that can be handled by general-purpose operating
systems.

real-time applications to be preempted from the CPU for an indefinite amount of
time while attending to other processes that may be of relative importance, such as
handling keyboard input, refreshing a screen widget, or receiving an email notifica-
tion. Even if we explicitly increase the priority of these processes, kernel interrupts
can still unjustifiably delay a real-time process. One solution to this issue is to use
the PREEMPT RT patch for the Linux kernel, which is included in kernels released after
September 2024. Many companies (such as SpaceX for flight software, robotic arms,
and autonomous vehicle companies), although some do not publicly admit it, find
this patched Linux kernel sufficient for their real-time needs.

7.2.2 System Latencies

Latency is the primary metric when evaluating a real-time system. It is defined as
the time that passes between the occurrence of an event and the system’s reaction to
it. For example, if we consider driving a car as a system that includes both the driver
and the vehicle, the time that elapses from the moment we see an obstacle on the
road to when the car’s brakes begin to engage would be the latency in response to the
event of perceiving the obstacle. In the case of a robot navigating to avoid obstacles,
latency refers to the time between perceiving an obstacle and sending the velocity
commands generated to avoid it. In both cases, latency indicates how quickly the
system reacts, and avoiding a collision depends on keeping that latency from being
excessive.

Modern software stacks are very deep, and each layer independently adds its
own latency to the total response time. In real-time applications, it is necessary to
guarantee a maximum latency, which is challenging because most existing software
is designed to minimize average latency, not maximum latency. In any case, it is
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Figure 7.12: Response latency is composed of the different latencies in the various
layers of the system.

essential to understand where the latencies come from and to measure the maximum
latency that we are handling in the system we are using.

As shown in Figure 7.12, response latency is composed of multiple sources of
latency:

• Application latency is the sum of the application’s own latency and the
latency added by the libraries it uses. The quality of the implementation of the
libraries we use and how we program our applications define this latency.

• Operating system latency primarily stems from how the operating system
schedules processes.

• Hardware latency depends on both physical variables and the programming
of the system components’ firmware.

Modern hardware is very complex, and the operating system does not fully control
it. System Management Interrupts (SMI) and simultaneous multithreading make it
difficult to manage hardware behavior. Additionally, factors such as power, which
dynamically scales hardware frequency, or temperature, can affect performance.

Let us perform a small exercise to measure the latency induced by SMIs by
running the hwlatdetect command. Ideally, to validate a system with a high level of
confidence and determine these maximum latencies, this test should run for several
days, and it should always be done with the system under stress, for which we will
use the stress-ng command. You can monitor the system usage by running the htop
command in another terminal.

$ htop # (optional) in terminal 0
$ stress-ng -c $(nproc) -t 300 # In terminal 1
$ sudo hwlatdetect # In terminal 2

In my case, I am writing this book on a Lenovo ThinkPad P14s Gen 3 with
a 12th Gen Intel Core i7-1280P processor with 20 cores and 48 GiB of RAM, and

Deep ROS 2 ■ 173



the maximum latency detected is 27 microseconds (µs). If we had found maximum
latencies close to a millisecond due to periodic hiccups in our computer, it would have
been time to consider purchasing a more suitable machine for real-time applications.

Cyclictest is another interesting command. Cyclictest measures the real-time
latency of the operating system by evaluating how long it takes for a thread to wake
up after a scheduled timer. It works by generating periodic timer events and recording
the difference between the expected and actual time, allowing for the identification
of delays in process scheduling.

These are system tools, but next we will present an example that does something
similar to Cyclictest, which will help us better understand the concepts in this
chapter. Let us look at this simple program:

br2 deep ros/src/wakeup.cpp

#include "yaets/tracing.hpp"

int main(int argc, char * argv[])
{

yaets::TraceSession session("wakeup.log");

while(true) {
{

TRACE_EVENT(session);
}
std::this_thread::sleep_for(std::chrono::milliseconds(20));

}

return 0;
}

In this program, we are not as concerned with showing the sequence of executions
but rather the time between executions of each loop cycle. If this program had no
underlying latency, it would always run every 20 milliseconds. YAETS will help us
measure whether this is the case. Remember that TRACE EVENT stores the timestamp
asynchronously (to avoid affecting the program’s behavior) when a block starts and
ends (simplifying). Let’s execute:

$ stress-ng -c $(nproc) -t 300 # In terminal 0
$ ros2 run br2 deep ros wakeup # In terminal 1

To see the time between TRACE EVENT calls, we will use the following command:

$ ros2 run yaets elapsed time histogram.py wakeup.log --function main --bins 40

After running for about 1 minute, stop al commands via Ctrl-C. Figure 7.13 shows
the histogram of the loop durations. We can see that the vast majority of iterations
last the expected 20 milliseconds. However, there are some iterations that, due to
scheduler-induced latency, last up to 27 milliseconds, which is significant.

Any of these iterations that occur later than expected could be the one that
prevents us from reacting in time, potentially causing a controller to become unstable,
a robot to collide with an obstacle, or a plane to crash. And in this case, where there
are no additional libraries or code involved, all of these delays occur because the
operating system preferred to allocate CPU time to a different process instead of the
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Figure 7.13: The histogram shows the time between executions of each loop cycle.
The Y-axis, in logarithmic scale, represents the number of times a cycle lasted the
duration shown on the X-axis.

one that really needed to react in time. There is a very straightforward way to fix this
problem in this example, but first we need to discuss how the Linux kernel scheduler
works and what mechanisms it offers to indicate that your process is more important
than most others and should be given priority.

7.2.3 Dealing with the Operating System Scheduler

Process scheduling is a very complex problem, classified as NP-complete. The Linux
kernel includes several schedulers, with the default one being the Completely Fair
Scheduler (CFS), whose policy name is SCHED OTHER. The CFS algorithm optimizes
the average response time, which is suitable in the vast majority of cases for general-
purpose computer usage. This scheduler is the one that managed the execution of the
wakeup program shown earlier. However, this scheduler is not suitable for real-time
applications. There are two alternatives that are suitable for real-time systems:

• A FIFO Scheduler (SCHED FIFO) assigns the CPU to processes in the order
they arrive (First In, First Out), without preemption. Once a process obtains
the CPU, it continues to run until it finishes or blocks, and only then is the CPU
assigned to the next process in the queue. It is ideal for critical applications
where predictable execution is required.

• A EDF Scheduler (SCHED DEADLINE) assigns the CPU to processes based on
their deadlines (Earliest Deadline First). Each task has an execution time, a
period, and a deadline, and the scheduler ensures that tasks are executed before
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their deadline, prioritizing those with the nearest deadline. It is ideal for critical
applications where meeting timing requirements is essential.

Using an EDF scheduler is somewhat complex because you have to specify the
deadline, but using a FIFO scheduler is quite simple. You only need to specify a
priority. But how are these priorities set?

+19       Nice Values        -20 0                                                            RT priority                                                            99

Increasing Priority

SCHED_OTHER SCHED_FIFO

nice = 0
Most non-RT

processes

rtprio = 99
kernel tasksrtprio = 70 - 90

RT apps

rtprio = 50
IRQ handlers

Figure 7.14: How to interpret the nice and rtprio values for the SCHED OTHER and
SCHED FIFO schedulers, from left (lowest priority) to right (highest priority).

When using the SCHED OTHER scheduler, it is possible to give a process a slight
advantage over another by setting a nice value, which is a number between +19
(lower priority) and −20 (higher priority), as shown in Figure 7.14. All processes
scheduled with SCHED FIFO are prioritized over those scheduled with SCHED OTHER
(even if their nice value is −20). When using SCHED FIFO, we set the rtprio value,
ranging from 0 (lower priority) to 99 (higher priority). A value of 80 is typically
suitable for a real-time application like the ones we will use in this chapter.

Let’s see how we can designate our wakeup program as a real-time application.
You need to give permissions to your user to increase a thread’s priority. In my
case, since my user is fmrico, I will create a file in /etc/security/limits.d called
20-fmrico-rtprio.conf (the file name is not very important, and the number before
the name is simply to prioritize certain files in the directory over others in case of
conflict) with the following content. This allows the user fmrico to raise the priority
of a process up to the value 98.

/etc/security/limits.d/20-fmrico-rtprio.conf

fmrico - rtprio 98

If you have never done this setup before, do this change in
20-fmrico-rtprio.conf. While you have not done any action to check or set this,
read again previous sentence.

I trust that the previous paragraph has not caused an infinite loop for the reader,
and that we can continue. Now, let us see how to modify wakeup.cpp to increase
its priority. The function sched setscheduler allows us to set the scheduler and
parameters (such as the rtprio priority) for the thread in which it is called.
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br2 deep ros/src/wakeup.cpp

#include <stdexcept>
#include <cstring>

int main(int argc, char * argv[])
{

yaets::TraceSession session("wakeup.log");

sched_param sch;
sch.sched_priority = 80;
if (sched_setscheduler(0, SCHED_FIFO, &sch) == -1) {

throw std::runtime_error{
std::string("failed to set scheduler: ") +
std::strerror(errno)};

}

while(true) {
{

TRACE_EVENT(session);
}
std::this_thread::sleep_for(std::chrono::milliseconds(20));

}

return 0;
}

Let us check if our program has improved by generating a new histogram of the
execution latencies:

$ stress-ng -c $(nproc) -t 300 # In terminal 0
$ ros2 run br2 deep ros wakeup # In terminal 1 for 1 minute

$ ros2 run yaets elapsed time histogram.py wakeup.log --function main --bins 40
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Figure 7.15: The histogram shows the time between executions of each loop cycle
using a SCHED FIFO scheduler and a rtprio = 80.
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Honestly, I would love to be beside the reader at this moment to see their WTF!
expression upon realizing that our program is now much more deterministic, by a
large margin. What used to have a range of up to 27 milliseconds in Figure 7.15 now
never exceeds 20.06 milliseconds. What happened? Now, the only things separating
you from the desired 20 milliseconds are hardware interrupts and kernel processes,
no poor, middle-class processes.

7.2.4 Considerations for Generic Real-Time Programming without ROS

In these sections, we are indicating that in order to have a real-time application, it is
necessary to increase the priority of the tasks we have identified as real-time tasks.
These may be all the tasks in our application or perhaps just a subset of them. These
techniques, along with those we will explore in later sections—directly using ROS 2
mechanisms—will ensure that our code is predictable and meets its tasks within strict
time constraints. However, we must pause for a moment to present other factors that
can cause delays in the execution of our code due to various issues. These are general
programming considerations, and although we will not address them beyond this
section, it is important to present them as they are critical when developing real-
time applications in any domain. We will not present complex examples, as they
would require lengthy and detailed explanations, and, after all, this is a book on
ROS 2 programming, not one specifically about real-time application development.

7.2.4.1 Page Faults

In real-time applications, page faults can generate unwanted latencies because they
involve loading data from secondary memory (disk) to primary memory (RAM). This
can result in the transfer of large amounts of data between memory and disk, and
although solid-state drives have made significant advances in recent years, they can
still bring our application to apply the handbrake.

For example, a simple return statement in a function could cause a page fault.
Every time a function is called, space is reserved on the stack to store local variables
and the return address. When the function ends and a return is executed, the CPU
accesses the stack to obtain the return address (where the program execution should
continue). If the memory page containing the stack was swapped to disk due to a lack
of recent use, accessing that address triggers a page fault. Additionally, if the function
has local variables that have not been accessed for some time, and those variables are
stored on a page that was evicted from RAM, an implicit access to these variables
during the return (such as clearing or updating the stack) can also cause a page fault.

In a real-time system, these faults are critical because the system must guarantee
predictable response times. To prevent a return from causing page faults, techniques
such as locking pages in memory (page locking) can be used, through system calls like
mlock() or mlockall(), which prevent relevant pages from being swapped to disk.
By calling mlockall(MCL CURRENT | MCL FUTURE) at the start of your application,
demand paging and swapping are turned off for that application.
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7.2.4.2 Dynamic Memory

The next consideration is the use of dynamic memory. Any engineer who has
worked with real-time systems will tell you that using dynamic memory is strictly
prohibited in these applications. We are very used to creating temporary images or
adding elements to a list without considering that memory allocation is usually not
O(1), and can trigger page faults even if mlockall(MCL CURRENT | MCL FUTURE) is
called.

A simple my vector.push back(data) executed frequently in a real-time task can
be unacceptable in terms of predictability and latency. One strategy to avoid this is
to use a memory allocator with O(1) complexity, such as the TLSF allocator, which
has an example of its usage in one of the tutorials in the ROS 2 documentation3.
Another strategy is to pre-allocate all the memory you anticipate needing at the
start of the application, and use no memory beyond that. For example, in the case
of std::vector, you can use its my vector.reserve(N) method, which allocates
memory for future push back operations. For large data objects, having a memory
pool pre-allocated from the beginning of the application, and not using any other
memory, can be an effective approach.

7.2.4.3 Priority Inversion in Mutexes

Low Priority

Medium Priority

High Priority

Lock Status

Time

Lock Wait for lock LockUnlock

Figure 7.16: The problem of priority inversion. Execution of three processes with
different priorities. The lock state is shown at the top, with the color of the process
holding it at each moment.

Real-time engineers will also tell you to avoid using std::mutex because it can
lead to priority inversion. Let us consider the following scenario to illustrate this
explanation, shown in Figure 7.16: We have a system with three processes—one high-
priority, one low-priority, and another medium-priority. At a given moment, the low-

3https://docs.ros.org/en/rolling/Tutorials/Advanced/Allocator-Template-Tutorial.html#the-
tlsf-allocator
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priority process is running and acquires a lock it shares with the high-priority process
for synchronization. Shortly after, the high-priority process needs to run and preempts
the low-priority process. After a brief period, it requires the lock that the low-priority
process had acquired, so it suspends its execution until the lock is released. When we
return to the low-priority process, it is preempted by the medium-priority process,
which is now due to run, delaying the low-priority process from releasing the lock
as quickly as possible, preventing the high-priority process from progressing. Priority
inversion occurs because a process that does not hold any lock is now executing freely,
delaying the execution of higher-priority processes.

One possible solution is to use priority inheritance mutexes, which is a mutex that
causes the low-priority process to execute at the priority level of the highest-priority
process waiting for the mutex held by the low-priority process. This prevents the
medium-priority process from delaying the release of the lock, as shown in Figure
7.17.

Low Priority

Medium Priority

High Priority

Lock Status

Time

Lock Wait for lock LockUnlock

Figure 7.17: Possible solution of priority Inversion using a priority inheritance mutex.

The C++ standard library does not support priority inheritance mutexes, but im-
plementing them is quite straightforward. Here there is a simple one, taken simplified
from an implementation in cactus-rt4:

class mutex {
pthread_mutex_t m_;

public:
using native_handle_type = pthread_mutex_t*;

mutex() {
pthread_mutexattr_t attr;

int res = pthread_mutexattr_init(&attr);
res = pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);
res = pthread_mutex_init(&m_, &attr);

}

4https://github.com/cactusdynamics/cactus-rt/blob/master/include/cactus rt/mutex.h
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˜mutex() {
pthread_mutex_destroy(&m_);

}

mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;

void lock() {
auto res = pthread_mutex_lock(&m_);

}

void unlock() noexcept {
pthread_mutex_unlock(&m_);

}

bool try_lock() noexcept {
return pthread_mutex_trylock(&m_) == 0;

}

native_handle_type native_handle() noexcept {
return &m_;

}
};

Another solution is to avoid using mutexes altogether and apply lockless program-
ming techniques, which is an advanced technique to safely share data between cores
without the use of locks. This approach requires a redesign of the application and
the use of atomic variables when the data to be shared is small, or structures like a
ring buffer when the data is larger.

7.2.4.4 Use of I/O

Using input/output, whether to the screen or to files, in a real-time thread is a bad
idea, no matter how you look at it. If it involves file input/output, you have to account
for the latencies of slower memory and the uncertainties of a file system that you do
not control. Screen input/output also introduces latencies and uncertainties that are
not acceptable. Despite this, logging is necessary in applications due to its utility or
legal requirements. There are asynchronous logging techniques (as used by YAETS)
that allow decoupling the real-time thread that generates log data from the thread
that actually performs the input/output to the screen or disk.

7.2.5 Real-Time Strategies in ROS 2

Incredibly, as of today, ROS 2 does not have explicit real-time mechanisms, leaving
this entirely in the hands of the application programmer and the operating system.
Although there are efforts to provide executors with more powerful APIs that can
support priority specification, the truth is that these are not yet available in the
standard executors. Typically, all callbacks are placed in one executor, which means
one or more threads with the same priority, under the same conditions as the other
threads/processes in the system. Figure 7.18 shows several callbacks in the same
callback group, executing without considering whether any processing needs to be
done in real-time.

The strategies we will present below are essentially based on ensuring that call-
backs we consider real-time are executed on higher-priority threads, while less im-
portant callbacks run on threads with standard priority. Figure 7.19 shows that a
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Figure 7.18: All the callbacks execute in a thread with the same priority.

callback, which we consider to have real-time requirements, should be executed in a
callback group with a thread with higher priority than the other callbacks without
such requirements. This ensures that when the event it needs to process occurs, the
lower-priority callback can even be preempted to meet the real-time requirements.
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Figure 7.19: Real-time callbacks execute at higher priority, preempting low-priority
callbacks.

7.2.5.1 Strategy 1: Nodes with Different Priority

The first strategy is the simplest, where we identify which nodes in our application
have higher priority than others, as their callback and timer calls cannot be delayed
or interrupted by other system processes. In this case, the strategy involves using two
executors: one for the critical nodes that run on a high-priority thread, and another
for the other nodes that run on normal-priority threads.

Let us look at an example, illustrated in Figure 7.20, where there are three nodes:
a data-producing node and two consumer nodes. One of the consumer nodes must
perform critical work with the received data. The other node simply logs the in-
formation and has no real-time requirements. We consider both the producer node
and the logger node as non-critical and place them in an executor that runs on a
standard-priority thread. For the consumer node, we will use an executor that runs
on a real-time thread.
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Figure 7.20: Application graph with the Real Time node and executor in red, and
the standard nodes and executor in green.

• The ProducerNode is a node with a timer that publishes messages at 100 Hz
with an incremental counter.

br2 deep ros/src/strategy 1.cpp

class ProducerNode : public rclcpp::Node
{
public:

ProducerNode() : Node("producer_node")
{

pub_ = create_publisher<std_msgs::msg::Int32>("int_topic", 100);
timer_ = create_wall_timer(10ms, std::bind(

&ProducerNode::timer_callback, this));
}

void timer_callback()
{

TRACE_EVENT(session);
waste_time(shared_from_this(), 200us);

message_.data += 1;
pub_->publish(message_);

}

private:
rclcpp::Publisher<std_msgs::msg::Int32>::SharedPtr pub_;
rclcpp::TimerBase::SharedPtr timer_;
std_msgs::msg::Int32 message_;

};

• The ConsumerNode subscribes to the topic where the ProducerNode publishes,
spending some time in the callback that processes it. It also has a timer for a
task specific to this node.
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br2 deep ros/src/strategy 1.cpp

class ConsumerNode : public rclcpp::Node
{
public:

ConsumerNode() : Node("consumer_node")
{

sub_ = create_subscription<std_msgs::msg::Int32>(
"int_topic", 100, std::bind(&ConsumerNode::cb, this, _1));

timer_ = create_wall_timer(10ms, std::bind(
&ConsumerNode::timer_cb, this));

}

void cb(const std_msgs::msg::Int32::SharedPtr msg)
{

TRACE_EVENT(session);
waste_time(shared_from_this(), 500us);

}

void timer_cb()
{

TRACE_EVENT(session);
waste_time(shared_from_this(), 2ms);

}

private:
rclcpp::Subscription<std_msgs::msg::Int32>::SharedPtr sub_;
rclcpp::TimerBase::SharedPtr timer_;

};

• The LoggerNode has exactly the same implementation as the ConsumerNode,
so we will omit its listing. The reader can check it in the book’s repository if
desired.

• The key and interesting part of this example is in the main() function, where
the nodes and executors are created, paired, and execution begins:

1. Each node is created in the usual way. Two executors are created: one
real-time and one non-real-time, and each node is assigned to one of the
executors. Only the ConsumerNode is placed in the real-time executor.

br2 deep ros/src/strategy 1.cpp

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto node_producer = std::make_shared<ProducerNode>();
auto node_consumer = std::make_shared<ConsumerNode>();
auto node_logger = std::make_shared<LoggerNode>();

rclcpp::executors::SingleThreadedExecutor no_rt_executor;
rclcpp::executors::SingleThreadedExecutor rt_executor;

no_rt_executor.add_node(node_producer);
no_rt_executor.add_node(node_logger);
rt_executor.add_node(node_consumer);

2. Next, a thread is created where spin() is called on the real-time executor
immediately after setting the thread to SCHED FIFO with a priority of 90.
This thread is real-time. The main thread continues in main(), and we
call spin() in the usual way.
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When the execution of the executors completes, we need to be careful to
wait for all threads to finish. Therefore, we join the real-time thread.

br2 deep ros/src/strategy 1.cpp

auto rt_thread = std::thread(
[&]() {

sched_param sch;
sch.sched_priority = 90;

if (sched_setscheduler(0, SCHED_FIFO, &sch) == -1) {
throw std::runtime_error{

std::string("failed to set scheduler:") + std::strerror(errno)};
}

rt_executor.spin();
});

no_rt_executor.spin();

rt_thread.join();

rclcpp::shutdown();
return 0;

}

The goal of this strategy (Figure 7.21) is:

• To improve the bounded update rate. The aim is for the execution of timer
callbacks to adhere to the set frequency, avoiding delays or early executions,
thus making execution more predictable.

• To reduce the response time.It is required that the time between the start
and end of a callback’s execution does not occasionally increase due to system
scheduling issues.

time

time events

timeresponse time

event

execute callback

response

Figure 7.21: Benefits of strategy 1: Improves bounded update rate and reduces re-
sponse time.

To run and measure the program, the first step is to stress the system. I want to
emphasize that this is important in these examples, as in a lightly loaded system, the
benefits of real-time techniques may not seem as apparent. The same happens dur-
ing software development: when we test everything in isolation, everything seems to
work fine. The problem arises when we integrate everything, and suddenly the entire
structure collapses. We realize that some parts of our application can degrade, such
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as debug information or certain services, but those parts with strict time constraints
cannot degrade. If they do not meet these constraints, the robot’s functionality fails
completely. It is something we often overlook until we reach deployment on the real
robot.
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Figure 7.22: Time between executions of the timer callbacks for the LoggerNode
and the ConsumerNode. It is important to observe the scale of the X-axis to see the
differences.

To stress the system and run the program, we use the following commands in
different terminals:

$ stress-ng -c $(nproc) -t 300 # In terminal 1

$ ros2 run br2 deep ros strategy 1 # In terminal 2

After about 15 seconds, stop both processes with Ctrl-C, and let us analyze
the execution. We could analyze each of the functions, but to observe the differences
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between the real-time node’s callbacks and the non-real-time node, it will be sufficient
to examine the time between executions and the execution time of the timer callbacks
for both nodes. To view the histograms for the intervals between executions, use the
following commands:

$ ros2 run yaets elapsed time histogram.py strategy 1.log --function
ConsumerNode::timer cb --bins 40
$ ros2 run yaets elapsed time histogram.py strategy 1.log --function
LoggerNode::timer cb --bins 40
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Figure 7.23: Execution time of the timer callbacks for the LoggerNode and the
ConsumerNode. Again, it is important to observe the X-axis to see the differences.

Figure 7.22 shows the results of these commands. In the case of the LoggerNode,
which is the timer callback of the node we did not consider critical, we can observe
that, while ideally, there should be 10 milliseconds between executions to maintain a
constant rate of 100 Hz, the variability is quite large, ranging from 4 milliseconds to
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16 milliseconds. I want to emphasize that it may indeed reach 100 Hz, but the lack of
consistency is what degrades execution from a real-time perspective. Note that some
executions are delayed, while others occur earlier, because the events are triggered
at the correct times but take longer to execute. This results in delayed executions
overlapping with the following correct execution. This is why the histogram is nearly
symmetrical. In contrast, if we observe the results of the ConsumerNode, the high-
priority node, the variability is less than a few tenths of a millisecond, much smaller
than in the other case, allowing for a practically constant rate, even with a heavily
loaded system.

The execution time of the callbacks is also affected, degrading the response time.
This is because, during the execution of these callbacks, the duration is extended as
other processes are scheduled, delaying the completion of their execution. This effect
can be observed by displaying the histogram of execution times with the following
commands.

$ ros2 run yaets execution time histogram.py strategy 1.log --function
ConsumerNode::timer cb --bins 40
$ ros2 run yaets execution time histogram.py strategy 1.log --function
LoggerNode::timer cb --bins 40

The results shown in Figure 7.23 indicate that an execution that should ideally
take 2 milliseconds can reach nearly 6 milliseconds in the case of the LoggerNode
callback, with many readings falling outside the desired timeframe. In contrast, for
the ConsumerNode, nearly all executions are around 2 milliseconds, with only one
instance showing a delay close to 0.8 milliseconds. In this second case, it is possible
to guarantee bounded response times very close to the ideal.

7.2.5.2 Strategy 2: Callback Groups in the Same Node with Different Priority

Putting an entire node in an executor that runs in real-time may be too coarse-
grained, and we may want more selective control over the execution of nodes. A
node may have events that require strict time constraints, but it may also have other
events that are not as important to prioritize over those of other nodes. In this case,
we can gain more control over a node’s callbacks by assigning the callback groups
for priority tasks directly to an executor that runs in real-time, while the remaining
callback groups are placed in executors that run with normal priority, as shown in
Figure 7.24.

The key changes from Strategy 1 to this approach can be summarized in the
following steps:

• In the ConsumerNode, a member attribute is added to the class to store the
callback group whose execution will be prioritized. Since this callback group
must be accessed from main(), as we will see shortly, a public method is needed
to retrieve it.
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Figure 7.24: Evolution of the problem, in which different callbacks in the same node
are executed in different executors.

br2 deep ros/src/strategy 2.cpp

class ConsumerNode : public rclcpp::Node
{

...
public:

...
rclcpp::CallbackGroup::SharedPtr get_rt_callback_group()
{

return rt_callback_group_;
}

private:
...
rclcpp::CallbackGroup::SharedPtr rt_callback_group_;

• In the constructor, the prioritized callback group is created and used to create
the subscriber that we want to execute in real-time. The other callbacks are
added to the node’s default callback group, as no other option is specified.
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br2 deep ros/src/strategy 2.cpp

ConsumerNode() : Node("consumer_node")
{

rt_callback_group_ = this->create_callback_group(
rclcpp::CallbackGroupType::MutuallyExclusive, false);

rclcpp::SubscriptionOptions sub_options;
sub_options.callback_group = rt_callback_group_;
sub_ = create_subscription<std_msgs::msg::Int32>(

"int_topic", 100, std::bind(&ConsumerNode::cb, this, _1), sub_options);

timer_ = create_wall_timer(10ms, std::bind(&ConsumerNode::timer_cb, this));
}

The second parameter of create callback group(), set to false, indicates
whether we want this callback group to be automatically added to an executor
along with the rest of the node when the node is added to the executor.

• Finally, in main, we add all the nodes to the non-real-time executor. In the
case of the ConsumerNode, by adding the entire node, we are actually placing
the default callback group into the executor. To add the prioritized callback
group to the real-time executor, we use the add callback group method, which
requires the callback group and a pointer to the node that contains it.

br2 deep ros/src/strategy 2.cpp

no_rt_executor.add_node(node_producer);
no_rt_executor.add_node(node_logger);
no_rt_executor.add_node(node_consumer);

rt_executor.add_callback_group(
node_consumer->get_rt_callback_group(),
node_consumer->get_node_base_interface());

Note that now the timer callback in ConsumerNode no longer runs in real-time, so
it experiences delays in both completion and execution periodicity. In contrast, the
subscription callback executes within a very tight time frame. Figure 7.25 illustrates
the difference between having this callback execute in real-time versus executing like
the other callbacks. In the real-time case, its execution time closely aligns with the
design, with minimal variation.

As in Strategy 1, the aim of this approach is to improve the bounded update rate
and reduce response time (Figure 7.26).

7.2.5.3 Strategy 3: High-Priority Callback Groups in Different Nodes

In many applications that control a robot, there are data and processing flows across
different nodes that can be identified as critical. For example, if we need to react
to an obstacle detected in an image, from the moment the image is captured to
the generation of control commands, all callbacks in the different nodes that process
the image, detection, and control—which may be part of this critical path—should
execute in real-time. Placing all these nodes in a real-time executor is not suitable, as
critical events would have the same priority as non-critical events. It is necessary for
these callbacks to be in a prioritized callback group that runs in a real-time executor.
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Figure 7.25: Execution time of the subscription callback for the ConsumerNode. Upper
graph corresponds to non-real-time execution, and the bottom graph corresponds to
real-time execution.
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Figure 7.26: Benefits of strategy 2: Improves bounded update rate and reduces re-
sponse time.

Figure 7.27 illustrates this example of a car braking system. Each node has a
print state() function that is called periodically at 10 Hz to monitor its status.
Additionally, there is a logger node that records information about the execution.
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Figure 7.27: Car brake system example. The critical computation flow is marked with
a big red arrow. Times of computation of critical functions are shown.

All of this is not critical and should not run in real-time, so it is placed in an ex-
ecutor that runs on a thread with normal priority. In the same figure, a wide, faded
red arrow highlights what it is considered the application’s critical processing flow,
which involves image generation (produce data), obstacle detection in the image
(detect object), and the reaction to an obstacle by sending commands to the brakes
(react obstacle). The goal is to ensure that the time from when the image is cap-
tured to when the brakes are activated in response to an obstacle is executed in
real-time, without unbounded delays. Therefore, these three functions are placed in
an executor that runs in real-time. The figure shows the time taken by each critical
function, indicating that, in total, the system should apply the brakes in a little over
7 milliseconds.

• What is important to measure in this example is the reaction time from when
the image is captured to when the response occurs.
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br2 deep ros/src/strategy 3.cpp

class SensorDriverNode : public rclcpp::Node
{

...
void produce_data()
{

SHARED_TRACE_START("brake_process");
waste_time(shared_from_this(), 200us);

sensor_msgs::msg::Image image_msg;
pub_->publish(image_msg);

}
...
class BrakeActuatorNode : public rclcpp::Node
{

...
void react_obstacle(vision_msgs::msg::Detection3D::SharedPtr msg)
{

waste_time(shared_from_this(), 2ms);
SHARED_TRACE_END("brake_process");

}
...
int main(int argc, char * argv[])
{

...
SHARED_TRACE_INIT(session, "brake_process");

• Each of the nodes with functions in the critical path has a callback group
called rt callback group where the critical callback is added. For example,
in ObstacleDetectorNode, there is:

br2 deep ros/src/strategy 3.cpp

ObstacleDetectorNode() : Node("obstacle_detector")
{

rt_callback_group_ = create_callback_group(
rclcpp::CallbackGroupType::MutuallyExclusive, false);

rclcpp::SubscriptionOptions sub_options;
sub_options.callback_group = rt_callback_group_;

sub_ = create_subscription<sensor_msgs::msg::Image>(
"image", 100,
std::bind(&ObstacleDetectorNode::detect_obstacle, this, _1),
sub_options);

pub_ = create_publisher<vision_msgs::msg::Detection3D>("obstacles", 100);
timer_state_ = create_wall_timer(100ms,

std::bind(&ObstacleDetectorNode::print_state, this));
}

rclcpp::CallbackGroup::SharedPtr get_rt_callback_group()
{

return rt_callback_group_;
}

private:
...
rclcpp::CallbackGroup::SharedPtr rt_callback_group_;

• Finally, in main(), we assign each node or callback group to the appropriate
executor based on whether it should run on a real-time thread or not:
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br2 deep ros/src/strategy 3.cpp

rclcpp::executors::SingleThreadedExecutor no_rt_executor;
rclcpp::executors::MultiThreadedExecutor rt_executor(

rclcpp::ExecutorOptions(), 3);

no_rt_executor.add_node(node_sensor_driver);
no_rt_executor.add_node(node_obstacle_detector);
no_rt_executor.add_node(node_logger);
no_rt_executor.add_node(node_brake_actuator);

rt_executor.add_callback_group(
node_sensor_driver->get_rt_callback_group(),
node_sensor_driver->get_node_base_interface());

rt_executor.add_callback_group(
node_obstacle_detector->get_rt_callback_group(),
node_obstacle_detector->get_node_base_interface());

rt_executor.add_callback_group(
node_brake_actuator->get_rt_callback_group(),
node_brake_actuator->get_node_base_interface());

auto rt_thread = std::thread(
[&]() {

sched_param sch;
sch.sched_priority = 90;

if (sched_setscheduler(0, SCHED_FIFO, &sch) == -1) {
throw std::runtime_error{

std::string("failed to set scheduler: ") + std::strerror(errno)};
}

rt_executor.spin();
});

no_rt_executor.spin();

rt_thread.join();

It is important to understand the effects of applying these techniques in a critical
system like the automatic brake control software in this example, even if it is synthetic
and the execution times are artificial. This is something that can be generalized
to any control program for a robot. Imagine that we do not use these real-time
techniques—in other words, we do not set the scheduling algorithm to SCHED FIFO
or increase the priority to 90 in the code just above. It is easy to test this simply by
commenting out the lines that set these parameters within the lambda function of
rt thread. The upper graph in Figure 7.28 shows the end-to-end times in a heavily
loaded system, from obstacle perception to reaction. We observe that we often react
within 20 milliseconds, but it is also common to take up to 60 milliseconds, which is
unacceptable for a vehicle at certain speeds. By applying these techniques, as shown
in the lower graph of the same figure, we see that the reaction time is consistently
below 7.5 milliseconds, which is quite optimal, considering that the minimum reaction
time, due to the duration of the callbacks in the critical path, is 7.2 milliseconds.

In this case, the beniefit is reduce End-to-end latency (Figure 7.29).
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Figure 7.28: Execution time of the end-to-end processing of the critical path. Upper
graph corresponds to non-real-time execution, and the bottom graph corresponds to
real-time execution.

End-To-End latency

event response

Figure 7.29: Benefits of strategy 3: End-to-end latency.

To summarize this part on Real-Time in ROS 2, the key takeaway for the reader
is the importance of considering these aspects. If you have a control system that is
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not performing as expected, it is time to start designing your application with these
real-time techniques in mind.

PROPOSED EXERCISES:

1. Design an API that allows you to explicitly set the priority for each element
managed by the executor.

2. Improve the projects from previous chapters by identifying which parts should
operate in real-time and applying the techniques discussed in this chapter.
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C H A P T E R 8

Contributing to ROS 2
Software

I want to dedicate this final chapter to one of the aspects of ROS that has been
barely covered in the previous chapters, but is what makes ROS truly great: the

ROS community of users and developers. There may have been better middleware
for robot programming in the past; there may be better options now, or there may
be in the near future. What makes the difference is the amount of software—tools,
applications, and device drivers—that you have at your disposal, and that depends
solely on the size of the community. It is this that determines whether it is considered a
standard, taught in universities, used in companies, and adopted by robot and device
manufacturers.

On the official ROS documentation page, there is a large section dedicated to
the ROS 2 Project, and within it, a part called “Contributing”. The purpose of this
book is not to reproduce its content, but if someone wants to actively participate in
the ROS 2 Community, it is worth taking some time to read it carefully. It outlines
certain procedures and conventions, as well as numerous resources, to help you get
started on this exciting journey, which can lead to becoming a relevant person in
the community, contributing to or even leading important projects, and having your
opinion valued in technical discussions. However, I would like to reproduce here two
of these principles listed in this section:

1. Respect what came before. ROS has been used for nearly two decades and has be-
come a global standard in robot programming. Thousands of developers have
used and contributed to ROS. Many decisions have been made through dis-
cussions involving people with substantial experience in robotics and strong
technical backgrounds. If you are new to ROS, you should have the humility
to consider this before jumping in to say that everything is wrong and that,
luckily, you have arrived to enlighten everyone with your knowledge. It is good
practice don’t demand a public apology when someone points out that perhaps
your comments were not accurate.
For example, there are many people who criticize the structure of ROS, espe-
cially its build system. It is common for beginners in ROS to approach ROS
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Discourse from time to time and ask, ’Why is this so complicated? Can’t we
just throw away colcon and ament and use basic CMake?’ This is a mix of en-
dearing ignorance and naivety. The truth is that this infrastructure is necessary
to manage community contributions in the form of packages in different lan-
guages, which need to be compiled in a specific order within a workspace and
be able to link at both build and runtime with all the underlays and overlays
on a computer or robot. Believe me, without these tools, any attempt to create
packages for others to use would require much more effort.

2. Think about the community as a whole. The ROS Community is very diverse,
and when making decisions or implementing improvements, it is essential to
consider that these need to be adaptable for people in various roles, working on
very different projects, and with all kinds of robots. ROS needs to accommodate
the requirements of the entire community.

This chapter covers topics that a ROS developer needs to know, or may not fully
understand, when they consider contributing to existing ROS software or perhaps
sharing their own software. It is a great idea and may be the only way to step out
of your bubble and start actively participating in the ROS community. The journey
can be challenging at first, but you will learn a lot along the way, and it will be very
rewarding. I have colleagues at the university who are excellent professors but lack
the real-world experience of testing their programs, maintaining good programming
style, and empathizing with future users of their software by making it easy to use
and able to justify any design decisions if questioned. Perhaps it is the fear of being
questioned that keeps them in their bubble. Open source is a good cure for this.

This chapter is divided into two parts. In the first part, we will describe how
to contribute to existing projects and cover some basic concepts of contributing to
open-source projects. This section will cover aspects such as working with git, and
the steps involved in submitting a contribution. In the second part, we will look at
how to start your own project, including some decisions you need to make, such as
organizing your repository into branches, choosing a license that suits your needs,
setting up a continuous integration system, managing issues and pull requests, and
creating binary packages for distribution from your project. I hope you enjoy it.

8.1 CONTRIBUTING TO A ROS 2 PROJECT

It is great to find your place and contribute to projects where you feel comfortable
based on your experience, training, and interests. It is natural to want to contribute
code, and you can find many issues labeled “help wanted” or “good first issue” in
project repositories1. Another way to contribute is through documentation2, which is
crucial for the community. You can also assist others on Robotics Stack Exchange3, as
the legendary Gijs van der Hoorn did for years, answering hundreds, if not thousands,

1https://docs.ros.org/en/rolling/The-ROS2-Project/Contributing.html#what-to-work-on
2https://docs.ros.org/en/rolling/The-ROS2-Project/Contributing/Contributing-To-ROS-2-

Documentation.html#
3https://robotics.stackexchange.com/

198 ■ A Concise Introduction to Robot Programming with ROS 2

https://docs.ros.org/en/rolling/The-ROS2-Project/Contributing.html#what-to-work-on
https://docs.ros.org/en/rolling/The-ROS2-Project/Contributing/Contributing-To-ROS-2-Documentation.html#
https://robotics.stackexchange.com/
https://docs.ros.org/en/rolling/The-ROS2-Project/Contributing/Contributing-To-ROS-2-Documentation.html#


of questions on the old ROS Answers, helping many ROS developers in need, earning
my respect forever.

However, we are going to focus on the first form of contribution, which is the most
relevant for this book’s approach: contributing code. It is probably most natural to
start by contributing to the projects you actually use in your daily work, perhaps
because you have found a bug and submitted an issue (this is already a contribution!).
Personally, whenever I can, I like to include a potential solution for each issue, which I
then materialize in a contribution to the repo. Or maybe you think of an improvement,
possibly one that benefits you directly because you need it for the tasks you are
working on. If this is not the case, I recommend some core projects that, due to their
respected members, can teach you good practices and strategies for how to do things
within ROS:

• Nav2 (https://github.com/ros2/rviz). This is the project from which I
have learned the most by contributing to it. Even when I have a question about
how to do something, I go to this repo to see how Steve Macenski, one of the
most respected ROS programmers, has done it. There is a Navigation Working
Group that meets periodically. If you are interested in robot navigation, drop
by someday.

• MoveIt2 (https://github.com/moveit/moveit2). If, on the other hand, you
are interested in or work with robotic arm manipulation, this is your project.
It is also related to the Manipulation Working Group.

• ros2 control (https://github.com/ros-controls/ros2_control). This is
a framework for real-time control of robots. It aims to standardize the way
commands are sent to the robot’s actuators and allows you to use a wide range
of algorithms or test your own. Bence Magyar is the main maintainer of this
repository and also coordinates the ros control Working Group.

• rclcpp (https://github.com/ros2/rclcpp). If you enjoy programming in
C++ and found the content in chapter 7 interesting, this is a great place to
contribute. Few things are as core as the C++ client libraries.

• rcl rs (https://github.com/ros2-rust/ros2_rust). If you enjoy program-
ming in Rust and therefore have plans for everyone to transition their projects
to this language, this is the place for you. There is a growing interest in Rust
playing a significant role in ROS 2 in the near future. It will not be easy, but
they are looking for brave contributors here.

• Gazebo (https://github.com/gazebosim). Gazebo is another major open-
source project within ROS. There are other highly respected simulators like
Unity, Open 3D Engine (O3DE), or Webots—whose journey from proprietary
to open-source software I want to highlight—but Gazebo has always been a
part of ROS, and it has something special.

• RViz (https://github.com/ros2/rviz). This tool, which we have been using
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since the beginning of the book, is one of the treasures of ROS. Visualization
tools are extremely important in robotics, and this one has fulfilled its mission.
Recently, alternatives like Foxglove have appeared, which are very attractive
and which I also recommend using, but I believe a free alternative should always
exist for this type of tool.

• PlanSys2 (https://github.com/PlanSys2/ros2\_planning\_system).
Okay, I know this project is mine, and that is why I am including it, and for
that, I apologize. But it is a great framework for symbolic AI planning, and I
also believe it serves as a reference for good programming practices.

As you can see, with a few exceptions—which, by the way, I find very healthy in
terms of having more alternatives—GitHub is the main platform where ROS devel-
opers host their projects. For these reasons, this book focuses on using git and on
GitHub’s interface and features. In the first chapter, I mentioned that I assume the
reader is an experienced programmer, but I was too when I started with ROS, and I
had to learn that using git involved more than the sequence of git add, git commit,
and git push to my repository. So let us start there, by discussing how to use git
with repositories that are not your own. I have encountered this with users wanting
to contribute to my projects who, when they had something ready, would ask me for
permissions on my repository. This is not typical in an open-source project, and ROS
is no exception. You need to learn how to make Pull Requests. I have created a git
cheatsheet (Figure 8.21) at the end of this chapter with the commands I commonly
use when working with my repositories, and a diagram that is often missing in those
I have found online, which usually do not include how to work with different reposi-
tories: the original one you want to contribute to and the one you created by forking
the original. You can find this cheatsheet at the end of this chapter.

A contribution can primarily be an improvement to the documentation, fixing
a bug, or adding a new feature. You can also bitterly complain about something,
but this rarely leads to anything productive. To illustrate the concepts and steps for
contributing, I will use some of my repositories, included the one of this book, which
contains several packages with GitHub Actions for continuous integration that run
unit tests and style checks for each package.

I recommend discussing your plans in an issue before starting to work on some-
thing, just in case you end up working in vain. Through an issue, you can get feedback
directly from the maintainers about whether something is truly a bug, or if the new
feature you are proposing is not of interest, or if someone else is already working on
it.

Typically, many maintainers have created templates for reporting issues. If one
exists, use it. Otherwise, your issue may never be addressed. At the time of writing
this book (Autum, 2024), there is a very interesting and illustrative issue at https:
//github.com/fmrico/book_ros2/issues/30 open by one of my students in the
Bachelor’s Degree in Software Robotics Engineering at Universidad Rey Juan Carlos
in Madrid. It seems he has found this the perfect moment to exact his revenge after
years of classes, exercises, and exams on my part. He has correctly used the template
for requesting a change on this book.
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A slightly more technical issue, reporting a bug, can be found in the
PlanSys2 repository on https://github.com/PlanSys2/ros2_planning_system/
issues/329. It is a minor bug, but it is interesting because I, as the principal author
of PlanSys2, raised a question about a bug related to an error message that does not
seem to be an actual error and appears persistently on the screen when this software
is executed. After a couple of messages, including input from the author of this part
of the code (identified using git blame), we concluded that it is indeed a bug and
that the most appropriate solution is to remove this error message.

Figure 8.1: Technical issue to fix a bug.

Even though I am the principal maintainer of this software, I will proceed as if I
were a regular user wanting to contribute a solution to this bug without permissions
in this repo. It is likely that before creating this issue, I would have cloned this
repository into my workspace, installed the dependencies, and compiled it from these
sources:

$ mkdir -p planning ws/src
$ cd planning ws/src
$ git clone https://github.com/PlanSys2/ros2 planning system.git
$ vcs-import . < ros2 planning system/dependency repos.repos
$ cd ..
$ rosdep install --from-paths src --ignore-src -r
$ colcon build --symlink-install
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Figure 8.2: Diagrams after clonning the reposotory into the local computer.

The third command has created the situation shown in Figure 8.2. As you should
know if you have worked with Git before, a local repository is the complete copy of a
project stored on your machine, including both the project files and the repository’s
change history and metadata. The staging area, on the other hand, is an intermediate
zone where changes are prepared before committing them, allowing you to select
which modifications will be included in the repository’s history. Finally, the working
directory is the space where you edit the project’s files and reflects the most recent
version of the repository, unless there are uncommitted local changes.

You can verify that your local repository points to the remote repository, which
has been identified as origin:

$ cd planning ws/src/ros2 planning system
(rolling)a$ git remote show
origin
(rolling)$ git remote show origin
* remote origin
Fetch URL: https://github.com/PlanSys2/ros2 planning system.git
Push URL: https://github.com/PlanSys2/ros2 planning system.git
HEAD branch: rolling
Remote branches:
[...]

aFrom this point forward, whenever we are in a Git repository’s working directory, the
current branch will be displayed in parentheses before the $ character.

The first step is to fork the PlanSys2 repository into the user’s account, in my
case at https://github.com/fmrico/ros2_planning_system, pushing the botton
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Figure 8.3: Press this button to fork this repository in your user account.

shown in Figure 8.3. Next, I will add a new remote on my local machine to work with
this repository. By default, the identifier for the remote of a normal clone is origin.
When adding a new remote, we can assign it an identifier to refer to it. Many people
call this second remote upstream, but I prefer to name it in a way that helps me
remember where it originates from, as I might be working with multiple remotes.
I will name this new remote fmrico. With the following command, I will have the
situation shown in Figure 8.4:

(rolling)$ git remote add fmrico https://github.com/fmrico/ros2 planning system

We can use the commands git remote show and git remote show fmrico to
verify that a new remote exists and that it points to the correct location.

Working
Directory

Staging
(index)

Local
Repository

PlanSys2 repo
[origin]

Your Computer

GitHub
forked 

PlanSys2 repo
[fmrico]

Figure 8.4: Diagrams after forking the original repository.

Every contribution should be made in an independent branch that starts from
the branch to which you want to contribute. We were already in the ‘rolling‘’ branch,
and now we will create a branch that we will call, for example, fix issue 329:
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(rolling)$ git checkout -b fix issue 329
(fix issue 329)$

With this last command, we create the branch and switch to it. Now we can start
working on fixing this bug. Once we have finished, which includes compiling, testing,
and passing all tests, we stage the files we have changed and commit them:

(fix issue 329)$ git add plansys2 pddl parser/src/plansys2 pddl parser/Utils.cpp
(fix issue 329)$ git commit -s -m "Fixing bug #329"

The -s option in the commit is because all commits must be signed.
Finally, we push the branch to the fmrico remote, which is assumed to be the

only remote where we have permission to upload changes, as it is our own repository:

(fix issue 329)$ git push --set-upstream fmrico fix issue 329

The last command provides you with a URL to directly create the pull request, or
you can go to the repository https://github.com/fmrico/ros2_planning_system
and do it from there. In any case, it is important to verify that the target branch is
correct and to provide a good description. At the very least, reference the issue being
addressed, as shown in Figure 8.5.

Figure 8.5: Writing the pull request to fix the issue.

Recapping, with the last few commands, once we have fixed the bug on our local
machine, verified that everything works, and passed the tests, we have followed the
workflow shown in Figure 8.6. Now we just need to wait for the repository main-
tainer to provide feedback. During this process, any commits we make to address
this feedback will automatically be added to the pull request when we push.
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During this process, new changes might be incorporated into the original repos-
itory, which could include resolving conflicts with new commits or performing a
merge/rebase to account for them in your pull request.

Once everything is ready and the maintainer deems it appropriate, they will
perform a merge, closing the pull request and incorporating our contribution into
the repository. If we were not already contributors to PlanSys2, we now are. At this
point, we can delete the branch fix issue 329, switch back to the rolling branch,
and perform a pull to receive the newly incorporated changes.

Working
Directory

Staging
(index)

Local
Repository

PlanSys2 repo
[origin]

Your Computer

GitHub
forked 

PlanSys2 repo
[fmrico]

add

commit

push

pull request

Figure 8.6: Itinerary of the contribution from our local machine to the origin repos-
itory.

8.2 CREATING AND MANAGING YOUR OWN ROS 2 PROJECT

ROS 2 has been an opportunity for those who did not join the ROS 1 ecosystem
from the beginning and arrived to find that there were already packages, libraries,
and frameworks for almost everything. Of course, this situation is also desirable, and
contributing to existing packages is of great value and can lead to having significant
influence over the repository you contribute to. For instance, I am considering passing
the maintenance of PlanSys2 to a reliable contributor eager to revitalize its develop-
ment. However, it is natural to want to lead projects—though one should never fall
into the trap of reinventing the wheel.

When ROS 2 started, for example, there was a need for a navigation framework
to inherit the success of the ROS 1 navigation stack. Steve Macenski seized the
opportunity to create an improved reimplementation of this navigation framework,
Nav2, becoming one of the most prominent programmers in the ROS Community.
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He later founded Open Navigation, a company that will surely help him buy his next
Ferrari to drive to his luxurious yacht. It was then that I realized that ROSPlan,
the leading PDDL-based symbolic planning framework in ROS 1, had no plans (nor
does it yet) to migrate to ROS 2—a task I would have gladly contributed to. For
this reason, I started developing PlanSys2 for ROS 2, significantly improving on its
predecessor. This has not brought me infinite wealth, but it has bring me many
benefits. It is also deeply satisfying to see it being used in companies, in universities
as the foundation for doctoral theses, or that PlanSys2 is now on the Astrobee robots
that NASA has on the International Space Station.

This pattern can be seen across many reference packages, libraries, and frame-
works in ROS 1. ROS 2 reshuffled the deck, giving newcomers to the ROS Community
the chance to take the lead on reference packages. This window of opportunity still
exists. While some gaps have been filled, advancements in robotics—such as the rise
of LLMs (Large Language Models) and their applications in robots—continue to open
new opportunities to be seized, furthering the glory of ROS.

Creating and maintaining a software package, especially if it achieves some success
and is used by others, with users and contributors depending on it, is not easy. It
requires a level of responsibility to keep maintaining it, even years after you created
it, and perhaps when it is no longer your active area of focus. People need your
attention to review issues and pull requests, and you feel a certain commitment
to keep generating binary packages for each ROS 2 distribution. In this section,
we will address some of the essential aspects of this process, keeping in mind that
every project has its own idiosyncrasies, requirements, and objectives. What I will
share here is what I consider relevant after several years of maintaining close to a
dozen repositories that have achieved a certain level of adoption within the ROS
Community. Specifically, I want to address the following topics:

1. Licenses and open-source business models.

2. The ROS development model based on distributions.

3. Coontinuous Integration (CI).

4. Repository Structure and Documentation.

5. Binary packages creation.

6. Tips and best practices for managing contributions.

Let’s get started!

8.2.1 Licenses and Open-Source Business Models

A software license is a legal document that defines how users can use, modify, and
redistribute a computer program. The license defines which rights copyright holders
reserve for themselves, and which ones are granted to those receiving the software.
Licenses can be open source, promoting collaboration and access to the source code,
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or proprietary, restricting usage and modification. Licenses are important because
they provide legal clarity, prevent misuse of the software, and allow developers to
control how their work is used.

Licenses

MIT / BSD Apache GPL LGPL

Custom
License

Closed
Corporative

License

Propietary Licenses

Open Source

CopyleftPermissive Licenses

...

... ...

Figure 8.7: Software licenses classification.

The term open source does not merely refer to making source code available. The
open-source Initiative (OSI) Definition4 encompasses aspects such as free redistribu-
tion, allowing derivative works, ensuring the integrity of the author’s source code,
and prohibiting discrimination against certain uses or users, among other principles.
This definition is grounded in early definitions of free software, notably the Debian
Free Software Guidelines5, which themselves draw inspiration from foundational doc-
uments by the Free Software Foundation, such as “What is free software”6.

Let me describe the main differences between software licenses using the clas-
sification shown in the diagram in Figure 8.7. The first major division is between
proprietary and open-source licenses. The fundamental difference is that open-source
licenses guarantee the four freedoms of open-source software: the autonomy of users
to use, study, share, and modify the software7.

These freedoms include the ability to run the software for any purpose without
restrictions on its use, whether personal, educational, commercial, or social. They
also grant the right to study how the software works by analyzing and modifying
its source code to adapt it to specific needs. Additionally, users have the freedom to
redistribute copies of the software, whether in its original or modified form, fostering
collaboration and sharing. Finally, these licenses allow users to improve the software
and share those improvements with the community, promoting the evolution and
collective progress of the software.

If you are thinking of including clauses in your license, such as prohibiting your
arch-nemesis from using your library, preventing Buddhists from using it, or banning

4https://opensource.org/osd
5https://wiki.debian.org/DebianFreeSoftwareGuidelines
6https://www.gnu.org/philosophy/free-sw.en.html
7Those four freedoms were operationalized by the Debian Free Software Guidelines (by setting a

checklist that free software should fulfill), and that they in turn were the basis for the open-source
definition.
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its use in killer robots, go ahead, but it will not be open source according to the defi-
nition outlined in the paragraphs above. This would fall under the category of custom
proprietary licenses8. If you choose open source, with certain nuances, restrictions,
and obligations that we will discuss shortly, it is akin to leaving your software on the
doorstep for anyone to use. You have made it free, with all the consequences that
entails.

If you choose an open-source license, you can opt for either copyleft or permissive
licenses. The main difference is that copyleft licenses require any derivative work to
maintain the same rights if the software is distributed to other parties. For example,
if you license your software with the GPL, you are requiring that, if any derivative
work is distributed, it must also be distributed under the GPL. For this reason,
these licenses are often referred to as “viral”, as they mandate that any software
incorporating them must also be distributed under the GPL.

Two examples are the Qt libraries and the MySQL database: any software that
includes either of these components is required to be GPL. At that point, you can
either comply and make everything GPL—like some Samsung appliances that include
a sticker with a URL to request the source code for your dishwasher—or you can
refuse. In the latter case, you can negotiate with the Qt developers to allow you to
use their library under a different license that permits closed-source software, usually
for a considerable fee. This is a business model around open-source software that
many people choose. For it to happen, authors must retain the copyright.

The difference between GPL (General Public License) and LGPL (Lesser General
Public License) is that while GPL requires all software it interacts with, including
dynamically linked software, to comply with the conditions of the license—such as
making the source code open—the LGPL does not require the dynamically linked
software to adhere to the same license. For this reason, the ’L’ in LGPL originally
stood for ’Library’.

Merely integrating multiple components within the same system does not neces-
sarily imply that everything constitutes a “derivative work” of any individual com-
ponent. For instance, it is entirely permissible to distribute Linux, which is GPL,
alongside proprietary software (e.g., within a Docker container image or on a tradi-
tional CD), and this does not obligate the proprietary software to comply with the
GPL.

Permissive licenses have minimal restrictions and do not aim to ensure that mod-
ified versions of the software remain free and publicly available. Generally, they only
require that the original copyright notice is retained. As a result, derivative works or
future versions of software under a permissive license can be released as proprietary
software. Many people choose this type of license because it removes objections that
individuals or companies might have about using your software, encouraging its adop-
tion by a larger number of users. It also happens that the original copyright holder,
or in general anyone receiving the software, don’t have access to the modifications

8There has been an ongoing debate since the 1990s, if not earlier, about whether some of these
would fall under what are considered ethical licenses or licenses aimed at preventing large companies
from benefiting from free software without contributing back. These licenses are not (clearly) free
software or open-source software, but in some cases, they attempt to present themselves as such.
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and improvements performed on the software, nor permission to work on them or
redistribute them.

The MIT and BSD licenses, originating from the academic world, operate under
the principle that the software has already been paid for by taxpayers. Therefore,
their motivation is to contribute knowledge to society as freely as possible. The MIT
license, for example, is very simple and can literally be included here:

Copyright YEAR COPYRIGHT HOLDER
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN AC-
TION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

The Apache license is somewhat more complex, detailing aspects such as soft-
ware patents. It provides, for example, stronger protections for developers and users,
preventing potential patent lawsuits from contributors or licensees.

If you hold the full copyright over a piece of software, you can change its license
without any issues. Normally, when someone contributes to a software project, they
become copyright holders, in combination with other previous copyright holders, of
the software, often explicitly noted in the licenses included at the beginning of the
source files they have contributed to. This means that the original author of the
software cannot change the license after receiving contributions unless they follow a
practice like that of the Free Software Foundation, which explicitly requires a signed
copyright waiver for each contribution.

Figure 8.8 shows a graph illustrating the number of packages in the Noetic (ROS
1) and Jazzy (ROS 2) distributions that chose one license or another. It is evident that
permissive licenses are the clear winners, encouraging ROS to be used with minimal
restrictions by users and companies, thereby promoting its widespread adoption.

Regarding the business models offered by open source, let me introduce some of
them:

1. Consulting and Technical Support. Developers or companies provide tech-
nical support, consulting, or specialized training on the software. For instance,
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Figure 8.8: Main licenses used in packages for Noetic (ROS 1) and Jazzy (ROS 2)
distributions.

companies assist with configuring and customizing ROS for industrial or re-
search robots. This model monetizes expert knowledge without closing the code.

2. Dual Licensing. Software is offered under an open-source license but also
with a proprietary license option for clients requiring specific features, addi-
tional support, or alternative rights (e.g., avoiding copyleft). We have already
introduced the case of Qt and MySQL. In the ROS ecosystem, while most
components use permissive licenses like Apache 2.0 or BSD, some libraries or
extensions might be distributed under dual licensing. This provides revenue for
companies developing critical or specialized tools.

3. Commercial Distributions. Companies package and distribute optimized,
certified, or customized versions of the software, often with additional features
or exclusive integrations. In ROS, companies like Canonical or Open Robotics
offer certified ROS distributions, such as ROS 2 tailored for industrial applica-
tions. This adds value by providing stability and compatibility guarantees.

4. Hybrid Products (Hardware + Software). Open-source software is bun-
dled with hardware products, such as robots, drones, or research platforms. For
example, robots like TurtleBot rely on ROS as the foundation for their soft-
ware, while the primary business involves selling hardware. ROS drives hard-
ware adoption by being familiar and extensible.

5. Proprietary Extensions and Plugins. Companies develop proprietary add-
ons that enhance the capabilities of open-source software. In the ROS ecosys-
tem, this includes advanced control plugins, exclusive simulation tools for
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Gazebo, or proprietary solutions for navigation or SLAM. Users pay for specific
features not available in the free version.

6. Cloud Infrastructure. This business model is based on companies offering
cloud-based services to run or integrate open-source software, often through
subscriptions. For example, AWS RoboMaker provides cloud simulation and de-
ployment services designed for ROS, combining the ROS environment with scal-
able computing infrastructure. This ensures a steady revenue stream through
subscriptions.

7. Certification and Training. Some companies and organizations offer official
training and certification programs for the software, ensuring a base of skilled
users. For example, ROS certifications (such as those offered by The Construct)
are popular within the community. This approach monetizes training without
restricting the adoption of the software.

8. Community-Based Funding. Developers or organizations receive support
through donations, sponsorships, or crowdfunding. Foundations like Open
Robotics have relied for many years on support from companies and government
agencies. This allows development to proceed without being tied to commercial
interests.

8.2.2 The ROS Development Model Based on Distributions

In ROS 2, you develop software for a specific ROS distribution, which, let us
not forget, is tied to a particular version of Ubuntu for those developing on
Linux—something we agreed is the reference operating system for this book (at least
until Microsoft or someone at Apple funds the third edition of this book to broaden
its horizons). This has a certain impact on the versions of libraries and programming
languages you can use. Just ask anyone who lived through the traumatic transition
from Galactic (Ubuntu 20.04) to Humble (22.04), which forced the use of Python
3—or myself, having to migrate the simulated robot to Gazebo Harmonic because
Gazebo Classic is no longer supported in Jazzy.

Here, you cannot force your users to use an older or newer version of a library: you
must use the version that comes with your distribution. Period. When we participated
in one RoboCup some time ago, a developer from another university who was part
of our team used the latest versions of the library PCL to program their perception
module. When the time came to integrate it, the fact that the rest of the team had
to manually compile a specific version of PCL that was not available as a binary
package led to their work being thrown in the trash. Genius.

My recommendation, which aligns with what is being done in the core ROS 2
packages, is to always develop new features using the Rolling distribution. In fact,
your default branch on GitHub should be rolling instead of main or master. I
understand that this exposes you—albeit increasingly less often—to occasional breaks
due to changes in the API of a package you are using or requiring you to develop
against the source code of another package that does not provide binary packages for
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Rolling, as is the case with Nav2. However, the advantages outweigh the drawbacks:
First, as a developer, you will always be up to date with the latest developments, at
least in the core ROS 2 packages. Secondly, another advantage is the ease of creating
versions for upcoming distributions. When a new distro is released—every year on
World Turtle Day—that distro is generated from Rolling (upper part of Figure 8.9),
which was frozen a few months prior. If you follow the same approach by creating
a branch in your repository for the new distribution from the rolling branch, it is a
nearly seamless process. This puts you in a position to generate binary packages for
the new distribution (which we will cover in an upcoming section) immediately.

Once you have created a branch for a specific distribution, you no longer add new
functionality or change any APIs in that branch; you only fix bugs. Companies and
organizations require stable versions when using your software for their products, and
this provides the stability they need by relying on a stable branch.

On the bottom part of Figure 8.9, you can see a repository that follows this prin-
ciple. Its main branch is rolling, and it has branches like iron-devel, jazzy-devel,
etc., which correspond to the branches used to produce versions for each distribution.
These branches are also the source for generating binary packages.

8.2.3 Continuous Integration for Your Repository

I do not intend to oversimplify a field as broad and complex as Continuous Integration
(CI) into just a few lines, risking Ruffin White—the most knowledgeable person I
know in this field in the ROS Community—showing up at the next ROSCon to
demand an explanation. My aim is simply to provide a straightforward solution to
introduce the reader to this field and quickly equip their repository with a useful
mechanism to verify that its state and the contributions it receives at least compile
on a freshly installed machine with ROS 2 and the necessary dependencies, and that
it passes all tests, both style checks and those programmed for each package. If the
reader delves deeper into this field, they will discover that they can automatically
generate Docker images with their software, create binary packages, test their software
automatically in a simulator, and much more.

The simplest way to implement CI in your repository is by using GitHub Actions.
All you need is to add a file for each CI action you want to configure. Let us look
at how this has been done in the repository for this book, which is available at
https://github.com/fmrico/book_ros2. The relevant structure of the repository
for this explanation is shown in the following diagram:
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Each of these files represents a new CI action that triggers workflows, which are
the executions of the CI action. The file can have any name, as the content is what
matters, but in a basic configuration, it is recommended to have one file per branch,
as we are following the distribution-based development model outlined in the previous
section. Let me analyze the contents of the rolling.yaml file, piece by piece:

• name: The name of the workflow.
.github/workflows/rolling.yaml

name: rolling

• on: Specify the cases in which this workflow will be triggered. In this case, it
is set to trigger when there are pull requests or direct pushes to the rolling
branch.

.github/workflows/rolling.yaml

on:
pull_request:

branches:
- rolling

push:
branches:

- rolling

If you are like me and enjoy waking up early on Saturdays to a fresh email
in case the CI fails, you can schedule it cron-style. Ah, I love the smell of CI
failures early in the morning.

schedule:
- cron: '0 0 * * 6'

• jobs: Starting from here begins the specification of the jobs that will be exe-
cuted, each one with a job id.
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Repository at https://github.com/fmrico/book_ros2

.github
| ISSUE_TEMPLATE

workflows
| rolling.yaml
| foxy-devel.yaml
| humble-devel.yaml
| jazzy-devel.yaml

br_basics
br_bt_bump_go
[...]
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.github/workflows/rolling.yaml

jobs:
build-and-test:

runs-on: ${{ matrix.os }}
strategy:

matrix:
os: [ubuntu-24.04]

fail-fast: false

For historical reasons that I will not detail, I use a jobs.<job id>.strategy
label, which would allow multiple jobs to run in parallel for each
combination of the different values listed under this label. In re-
ality, there is only one label (jobs.<job id>.strategy.matrix.os)
under jobs.<job id>.strategy.matrix, and it is a single-item list:
ubuntu-24.04. This means there will only be one execution, and the
jobs.<job id>.strategy. fail-fast label—indicating whether all jobs
should be immediately canceled as soon as one fails—will not have any effect.
The label jobs.<job id>.runs-on defines the type of machine to run the job
on. ubuntu-24.049 is a valid id for a machine running an standard Ubuntu
24.04 LTS system.

• jobs.<job id>.steps: For each job, the list of steps to be performed in this
workflow is specified next. Each step can have a name. To define what is done
in each step, you can directly specify a command using the run label, or you
can use an action available on GitHub.

.github/workflows/rolling.yaml

- name: Install popf deps
run: sudo apt-get install libfl-dev

- uses: actions/checkout@v2
- name: Setup ROS 2

uses: ros-tooling/setup-ros@0.7.9
with:

required-ros-distributions: rolling

The first action (Install popf deps) installs a dependency that is needed10

by calling apt-get install. Keep in mind that this is like installing a fresh,
standard Ubuntu 24.04 LTS, which only includes basic packages—no ROS or
anything else. This is precisely what we want.
Often, we do not specify dependencies correctly in our package.xml files, which
would otherwise be installed with a rosdep call. Our project compiles because
we likely installed those dependencies earlier. However, a new user downloading
your project for the first time, running rosdep, will encounter compilation
errors because you forgot some dependencies. And no, ‘it works on my machine’
is not a valid response to that user. This is the real utility of CI: starting with

9https://docs.github.com/en/actions/writing-workflows/workflow-syntax-for-
github-actions#standard-github-hosted-runners-for-public-repositories

10In fact, I believe this is unnecessary and probably slipped in from another file in a different
repository, but it helps me explain the different options.
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clean machines every time to compile and test your project„ detecting errors
that others might encounter.
The second action, with no name, directly uses the action
actions/checkout@v2, whose URL you can easily deduce (<repo>@<release>)
and is available at https://github.com/actions/checkout. This action
downloads your repository into the $GITHUB WORKSPACE directory for building
and testing. While this action might not be strictly necessary—since the
repository will be downloaded somewhere on the machine where the workflow
runs regardless—it gives you more control over its location. This is partic-
ularly useful because, a bit later, we will need to specify the path to the
third parties.repos file within the repository.
Actions have parameters, described in their repository, that you can spec-
ify using the label uses to override their default values. This label is
used in the third action (Setup ROS 2), which requires specifying the
required-ros-distributions parameter to indicate the ROS distribution to
use, as described at https://github.com/ros-tooling/setup-ros. The ac-
tion ros-tooling/setup-ros install in the Ubuntu 24.04 LTS a basic ROS 2
Rolling distribution.

• The last action appears significantly more complex. It is the action that
compiles the workspace where your repository has been downloaded. The
ros-tooling/action-ros-ci action runs rosdep to install missing dependen-
cies, colcon build, and then colcon test on the packages specified in the
package-name parameter.

.github/workflows/rolling.yaml

- name: build and test
uses: ros-tooling/action-ros-ci@0.3.15
with:

package-name: br2_basics br2_bt_bumpgo br2_bt_patrolling
br2_fsm_bumpgo_cpp br2_fsm_bumpgo_py br2_navigation
br2_tf2_detector br2_tiago br2_tracking br2_tracking_msgs
br2_vff_avoidance

target-ros2-distro: rolling
vcs-repo-file-url: ${GITHUB_WORKSPACE}/third_parties.repos
colcon-defaults: |

{
"test": {

"parallel-workers" : 1
}

}

The vcs-repo-file-url parameter, if specified, performs a vcs-import of the
dependencies file—a process that should already be familiar to the reader, as
we covered it in the first chapters of this book.
Finally, for colcon test, the number of threads to be launched for testing is
set by assigning 1 to parallel-workers. Keep in mind that if you run tests in
more than one package that use the same topics, the tests may interfere with
each other, so you should apply this precautionary measure.

With this workflow configuration file, every time a push is made or a pull request
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Figure 8.10: Historial of the execution of the action workflows.

is created, this job will run, which can either succeed or fail. If you click on the
‘Actions’ tab, you can see a history of how each workflow has performed (Figure
8.10). From there, or from wherever the workflow result is displayed, it is easy to
access the output of each step in the executed jobs (Figure 8.11). On this screen—or
better yet, by accessing the raw logs—you can see why it failed in order to fix the
issue. In the build and test step, you will see outputs similar to those from running
colcon build and colcon test, along with the log contents.

8.2.4 Repository Structure and Documentation

It is time to focus on the content of your project and how to document it. A repository
is not just a place to upload your code; it is the primary site where someone inter-
ested in using it will go. It must be well-organized, clear, and provide the necessary
information to use it effectively.

Typically, your project will be in a single repository, with all your packages visible
from the root directory as separate folders. One recommendation I will make is to
separate code packages from interface definitions. This allows you to release binary
packages without forcing users who only need the definition of a message—for exam-
ple, to publish to your nodes’ topics—to compile or install your programs they will
never execute, along with all the cascading dependencies this might entail. Anyone
who has had to cross-compile for another platform knows this well: Why do I need to
compile this library if I only want my robot to understand the messages produced by
this software?.

Regarding naming conventions, these packages were previously named * msgs, but
there is now a trend to name them * interfaces, as they may contain definitions
for services and actions, not just messages.
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Figure 8.11: Output of the execution of a workflow.

If there are packages you consider optional or do not want to compile and/or
release together, you can separate them into multiple repositories and organize every-
thing under a dedicated organization for your project. Let me provide two examples:

• In PlanSys2, there is a GitHub organization(https://github.com/PlanSys2)
because I want to keep the planning framework packages separate from the
examples. Additionally, some plugins (in this case, planners) are not part of
the core framework and will not be as well-maintained as the others.

• In MOCAP4ROS2 (https://github.com/MOCAP4ROS2-Project), there is a
repository for each driver of a motion capture system. These drivers often de-
pend on manufacturer libraries, and maintaining all the drivers in a single
repository would force a user interested only in Optitrack, for example, to in-
stall Vicon drivers just to compile the repository.

Focusing on your repository, it is a good idea to review the Community Standards
page in the Insights tab (Figure 8.12 shows the one for PlanSys2). There are several
items listed, and if they are not marked as complete, it will guide you on how to
address them. Often, it is as simple as adding a markdown file for the code of conduct
or templates for issues and pull requests, or including a file with the license.

What is non-negotiable, however, is having a good README.md file, at least at the
root of your repository. You can also have a README.md for each package if you feel
it is clearer to document the nodes and programs individually. However, a general
introduction to your project in a root README.md is essential.

The first thing that should appear is the repository name and badges that provide

218 ■ A Concise Introduction to Robot Programming with ROS 2

https://github.com/MOCAP4ROS2-Project
https://github.com/PlanSys2


Figure 8.12: Community Standards interface in one GitHub repository.

Figure 8.13: Badges in the README.md at this book’s repository.

information about at least the status of the most recent workflows, as shown in Figure
8.13. To get the text you need to include in the README.md, simply go to the
workflow and click on Create Status Badge, as shown in Figure 8.14.

You can go a step further and create a meticulously crafted README.md like the
one for the YASMIN (Yet Another State MachINe) project at https://github.com/
uleroboticsgroup/yasmin. You can draw many ideas from it, as its structure is very
relevant:

• Title.

• Logo (optional, but cool).

• Brief description. One or two lines in enough at the moment.

• CI Badges.
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Figure 8.14: Steps to create the badges in markdown.

Figure 8.15: Badges in the README.md at YASMIN repository.

• Table of contents.

• General description of the project and its features.
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• Installation instructions, both from source and using Docker.

• Demo and screenshots.

• Usage Instructions.

• Citations.This is particularly relevant for those of us working in academia. It
is highly recommended to publish scientific papers about your project, if it is
possible. A scientific paper allows for a more extensive and formal explanation
and analysis than user documentation. You should approach it from a scientific
perspective, providing experimental and comparative evidence. The benefit is
that those using your software and publishing their results can easily find a way
to cite you.

I would recommend adding a description in each package of the nodes it con-
tains, along with a complete description of their parameters, publishers, subscribers,
services, and actions. I understand that this can be tedious, but you do not have to
forgot tools like ChatGPT, which can automatically generate this documentation for
you. Of course, you must carefully review it afterward.

It is increasingly common for complex frameworks to supplement their documen-
tation with a dedicated webpage, often using GitHub Pages and Sphinx. These pages
can expand on topics such as getting started, design, tutorials, APIs, or demos, em-
bedding images and videos like those shown in Figure 8.16.

An advantage of this approach is that the language in which the pages are writ-
ten, reStructuredText (reST), is relatively simple and standard. It is reasonable to
ask a contributor to your project to open a pull request on the Sphinx documenta-
tion page when proposing a contribution that affects or could expand the existing
documentation.

I recommend that anyone wanting to add this type of documentation take a
repository like https://github.com/PlanSys2/PlanSys2.github.io, duplicate it,
and carefully configure the repository—especially the GitHub Pages settings—and
then adapt it by changing the text, logo, and whatever else is needed. Whenever you
want to regenerate the page, you simply need to run make html and make publish
in the terminal.

8.2.5 Binary Packages Creation

If your project is mature, useful, and you believe it adds value to the ROS ecosystem,
it is time to contribute it to a ROS distribution with binary packages. The process
is not complicated but does require some work the first time and careful attention.

Much of the complexity is abstracted away by the bloom11 tool, which han-
dles many tasks for you. The ultimate goal of this process is to generate a release
for each supported operating system in a release repository and ensure that the
distribution.yaml12 file in the rosdistro repository13 includes an entry with your
project’s information, like the next entry:

11https://bloom.readthedocs.io/en/0.5.10/
12https://github.com/ros/rosdistro/blob/master/jazzy/distribution.yaml
13https://github.com/ros/rosdistro
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Figure 8.16: Four ROS 2 projects that use GitHub pages + Sphinx approach to
complete their documentation.

https://github.com/ros/rosdistro/blob/master/jazzy/distribution.yaml

cascade_lifecycle:
doc:

type: git
url: https://github.com/fmrico/cascade_lifecycle.git
version: jazzy-devel

release:
packages:
- cascade_lifecycle_msgs
- rclcpp_cascade_lifecycle
tags:

release: release/jazzy/{package}/{version}
url: https://github.com/ros2-gbp/cascade_lifecycle-release.git
version: 2.0.0-3

source:
type: git
url: https://github.com/fmrico/cascade_lifecycle.git
version: jazzy-devel

status: maintained

This file contains all the packages that are part of a distribution so that, during
the next synchronization of the distribution, the ROS build farm14 picks up this file
and generates all the binary packages, including yours. The process described here
will conclude with a pull request to the rosdistro repository to include this entry,
which must be approved by one of the ROS bosses of the distribution.

14https://build.ros.org/
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In this section, we will describe step by step the process of creating binary
packages for a project that has not been previously released15 .For this purpose,
I will use the project created in the previous chapter, YAETS, which is available at
https://github.com/fmrico/yaets and has not been released at the time of writ-
ing these lines. This is quite fortunate, as I will be able to release it while writing,
ensuring that the instructions are complete. It is a win-win!

We start with a repository containing a single package, yaets, with two branches:
rolling and jazzy-devel. It includes tests and well-written documentation in the
README.md, complete with CI status badges. The project has a OSI Approved
license16, Apache 2.0, in this case, and the name compliants with REP 14417. So, we
are ready to realease.

We are going to create the packages for the Jazzy distribution, starting from
the jazzy-devel branch. Currently, this branch is synchronized with the rolling
branch, as I just created the jazzy-devel branch from the rolling branch. Since
Jazzy is the latest version, it recently branched off from Rolling, so it sounds reason-
able. Let’s look at the following steps:

1. First, we need to create a separate repository where the various releases will
be generated. The bloom tool will manage this for you. Under normal circum-
stances, you will not need to make any manual commits to this repository.
There are two options for release repositories:

(a) This has been the usual option until very recently. It will be the one
we use in this section, as it is the most straightforward for completing
the process directly. Only allowed for stable distributions. You could not
release packages for Rolling using this approach.
Typically, if the project’s repository is https://github.com/fmrico/
yaets, the releases repository would be https://github.com/fmrico/
yaets-release, as shown in Figure 8.17.

(b) The documentation18 recommends that release repositories be hosted un-
der the GitHub organization https://github.com/ros2-gbp. The pro-
cess is not straightforward, as you must request the creation of the repos-
itory via a pull request. Additionally, you need to request the creation
of a release team that includes your GitHub user to manage this release
repository. This is the recommended option and may soon become the
only option.

The advantage of this process is that you can currently choose the first option
(1a), which we will use in this section, and simultaneously request the creation of

15You can also find information of this process at https://docs.ros.org/en/rolling/How-To-
Guides/Releasing/Releasing-a-Package.html

16https://opensource.org/licenses
17https://www.ros.org/reps/rep-0144.html
18https://docs.ros.org/en/rolling/How-To-Guides/Releasing/Release-Team-

Repository.html#create-a-new-release-repository
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Figure 8.17: Creation of the release repository.

your release repository, specifying that an external one already exists. Through
this process, the release repository will eventually migrate to the ros2-gbp
organization.

2. On my local machine, I open a terminal, navigate to the directory where I have
YAETS cloned, and ensure I am on the jazzy-devel branch. The first step is
to generate the changelog for the new version to be released:

$ cd src/yaets
(jazzy-devel)$ catkin generate changelog --all
Found packages: yaets
Querying all tags and commit information...
Generating changelog files with all versions...
- creating ’./CHANGELOG.rst’
Done.
Please review the extracted commit messages and
consolidate the changelog entries before committing the files!

3. As indicated by the output of the previous command, the next step is to clean
the changelog to remove commit messages related to minor changes, duplicates,
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management tasks, etc. In other words, remove the entries that do not reflect
the actual progress made in your project for this release. For example, Figure
8.18 shows the original state of the file on the left and the cleaned version on
the right.

Figure 8.18: Cleanning the Changelog.

This step also includes committing the modified file. This is important because,
otherwise, the process will fail.

(jazzy-devel)$ git add CHANGELOG.rst
(jazzy-devel)$ git commit -s -m "Update Changelog"

4. In the next step, the version will be incremented, as it is required that the new
version is higher than the one already in the repository. The following command
will update the version in the package.xml, replace the Forthcoming string in
the changelog with the new version and its date, and finalize this release in the
project’s repository:

(jazzy-devel)$ catkin prepare release

When it asked me if I wanted to upload the changes, I responded ’yes.’ Typically,
the default option for these questions is quite safe if you are unsure of the correct
answer.

5. In this final step, the releases will be created and added to the release repository,
concluding with a pull request to the rosdistro repository. There is a difference
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between releasing a package for the first time and releasing a new version of
the same package. The first time, you will be asked several questions, while
subsequent releases will be simpler. The process involves a single command:

(jazzy-devel)$ bloom-release --new-track --rosdistro jazzy --track jazzy
yaets

During this process, several questions will be asked, and it is important to
answer them correctly:

• Release repository is: https://github.com/fmrico/yaets-release.
git.

• Repository Name: yaets.
• Upstream Repository URI: https://github.com/fmrico/yaets.git
• For Upstream VCS Type, Version and Release Tag I accepted the default

values.
• Upstream Devel Branch: jazzy-devel
• For ROS Distro, Patches Directory, and Release Repository Push URL I

accepted the default values.
• When asked if I want to add documentation information for this repository,

I said yes, and accepted the default options which, basically, are pointing
to the documentation existing in the repository.

• Finally, it asks if it should create the pull request to rosdistro for us. I
respond ‘yes,’ and the result is this pull request (Figure 8.19). Once it is
accepted, it will mean that the package will officially be part of the Jazzy
distribution of ROS. Yay!

To release new versions, the entire process will need to be repeated exactly as
described. Naturally, the release repository will already exist, and the command
will now be:

(jazzy-devel)$ bloom-release --rosdistro jazzy yaets

It is common, especially the first few times, for everything not to go smoothly
in the build farm. Even if your repository has passed its CI checks, the build farm
might detect errors that did not appear earlier. A common issue is forgetting to
include a dependency in the package.xml. You will receive an email from the ROS
2 Buildfarm indicating that the ’Build failed in Jenkins.’ Go to the link provided in
the email, check the error, and work on resolving it. The ROS bosses may be able to
assist you. Once resolved, you will have no choice but to make a new release with the
fix. I have personally had occasions where fixing an error required making releases
over several days until the ROS 2 Buildfarm finally stopped reporting issues.
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Figure 8.19: Pull request to the rosdistro repository.

8.2.6 Tips and Best Practices for Managing Contributions

When your project starts receiving more and more contributions, you find yourself
spending less time coding and testing new ideas and more time interacting with
contributors, responding to issues, and reviewing pull requests. This is, on one hand,
very rewarding, but on the other, it can become a workload that risks burning you out.
This section offers some advice to help you as you begin to take on the responsibilities
of maintaining your own project.

• Documenting your project is essential. The gaps you leave will be filled
by contributors based on their own expectations, desires, or requirements. Do
not leave ambiguities when describing the purpose of your project and defining
the scope of contributions you are willing to accept. This does not mean you
cannot encourage discussions with contributors about the next steps for your
project, but it helps you avoid having to say ‘no’ too often when someone makes
a contribution that does not align with your vision.
It is useful to write a brief list of bullet points outlining the types of contri-
butions you are open to and the conditions for accepting them. While it may
not be necessary to state that ‘pull requests must pass style tests,’ it can be
helpful to mention that contributions should not reduce test coverage or that
new functionalities must be documented in specific ways. Setting these expec-
tations in advance will help prevent misunderstandings. You can also manage
expectations regarding your availability by clearly stating how much time you
can realistically dedicate to a project.

• One of the wonderful aspects of open source is that you contribute to your
project freely, with no obligations other than those you choose to impose
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on yourself out of responsibility to your users. No one can demand that you
work more, review their contributions faster, or similar requests. If they want
to make demands, it is because they are prepared to pay for it; otherwise, they
must adapt to your pace and your vision
“You don’t get it. I built this place. Down here I make the rules. Down here I
make the threats. Down here, I’m God”. Trainman, Matrix Revolutions, 2003.

• Discussions about a project should be public, documented, and accessible
to both current and future contributors. If a contributor contacts you privately
via email to discuss potential contributions or technical decisions, you should
immediately encourage them to open an issue where the topic can be discussed
publicly. It is essential to ensure that no contributor has access to more infor-
mation than others.

• Be friendly but firm. Sometimes, you need to know how to say no. It is not
fun, but it is necessary. There will always be people who, despite your best
efforts to document your project and clearly outline the types of contributions
that fit, have not taken the time to read the documentation. Some contribu-
tions simply will not align with your vision for the project, and this must be
respected. However, it is important to communicate this in a friendly and con-
structive manner. After all, the person contributing is using your software and
has dedicated their time and effort to create something they believe is helpful.
They deserve your gratitude, feedback, and suggestions for alternatives, but
you are not obligated to accept their proposal. Be friendly and constructive,
as I was with the contribution shown in Figure 8.20, where I tried to offer an
alternative while declining the original contribution.

Figure 8.20: Gentle conversation at the YAETS repository.

• If you notice a user is enthusiastic about the project but could use some refine-
ment in their approach or skills, take the time to help them level up. No one
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is born knowing everything, and investing a bit of time in mentoring them can
be more productive for you in the long run and help avoid frustration for both
sides.

• Do not feel frustrated or upset if someone forks your project and begins
developing new features independently. It is likely that their needs differ sig-
nificantly from the goals of your project. In such cases, this approach is often
better than having a contributor reluctantly steer your project in a direction
that aligns only with their specific use case.

• Make full use of all the automated tools at your disposal: GitHub Actions,
templates, test coverage reports, and more. These resources can streamline your
workflow, ensure consistency, and reduce the manual effort required to maintain
your project effectively.

• Finally, there is nothing wrong with taking a break from your project if you
start noticing signs of burnout. You must be happy with your project. Let
others know you will be stepping away for a while, and return to it when you
feel ready. Alternatively, consider reaching out to one of the main contributors
to see if they are willing to take over maintaining the project in your absence,
or maybe forever.

Well, we have reached the end of this book. I hope you enjoyed reading it as much
as I enjoyed writing it. I look forward to crossing paths with you again—whether on
ROS Discourse, in an issue, or in person at a ROSCon. If we meet in person, it would
make me very happy if you came to say hello, shared what you liked or did not like
about this book, and we could discuss it over a drink.

As we used to say, GO ROS!!!
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Figure 8.21: Git cheatsheet.
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