

Large Language Models
This book serves as an introduction to the science and applications of Large Language
Models (LLMs). You’ll discover the common thread that drives some of the most revolu‑
tionary recent applications of artificial intelligence (AI): from conversational systems like
ChatGPT or BARD, to machine translation, summary generation, question answering,
and much more.

At the heart of these innovative applications is a powerful and rapidly evolving disci‑
pline, natural language processing (NLP). For more than 60 years, research in this science
has been focused on enabling machines to efficiently understand and generate human lan‑
guage. The secrets behind these technological advances lie in LLMs, whose power lies in
their ability to capture complex patterns and learn contextual representations of language.
How do these LLMs work? What are the available models, and how are they evaluated?
This book will help you answer these and many other questions. With a technical but
accessible introduction:

•	 You will explore the fascinating world of LLMs, from their foundations to their most
powerful applications

•	 You will learn how to build your own simple applications with some of the LLMs

Designed to guide you step by step, with six chapters combining theory and practice, along
with exercises in Python on the Colab platform, you will master the secrets of LLMs and
their application in NLP.

From deep neural networks and attention mechanisms, to the most relevant LLMs, such
as BERT, GPT‑4, LLaMA, Palm‑2, and Falcon, this book guides you through the most
important achievements in NLP. Not only will you learn the benchmarks used to evaluate
the capabilities of these models, but you will also gain the skills to create your own NLP
applications. It will be of great value to professionals, researchers, and students within AI,
data science, and beyond.

https://taylorandfrancis.com

Large Language Models
Concepts, Techniques and Applications

John Atkinson‑Abutridy

Designed cover image: John Atkinson‑Abutridy

First edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 John Atkinson‑Abutridy

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been
acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. For works that are
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

ISBN: 9781032852362 (hbk)
ISBN: 9781032836089 (pbk)
ISBN: 9781003517245 (ebk)

DOI: 10.1201/9781003517245

Typeset in Minion
by codeMantra

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003517245

To my wife, Ivana, who serves as my constant source of
inspiration, motivation, and unwavering support.

https://taylorandfrancis.com

vii

Contents

Preface, xi

Introduction, xiii

Author Biography, xvi

Chapter 1    ◾   � Introduction	 1
1.1	 GENERATIVE ARTIFICIAL INTELLIGENCE	 1

1.1.1	 Understanding the Mechanisms of Generative AI	 2
1.1.2	 Focus Areas in Generative AI	 4
1.1.3	 Applications	 4

1.2	 GENERATIVE LANGUAGE MODELS	 5

1.2.1	 Popular Types of LLMs	 8
1.3	 CONCLUSIONS	 9

NOTES	 9

Chapter 2    ◾   � Fundamentals	 10
2.1	 INTRODUCTION	 10

2.2	 AUTOREGRESSIVE LANGUAGE MODELS	 12

2.3	 STATISTICAL LANGUAGE MODELS	 14

2.4	 NEURAL LANGUAGE MODELS	 14

2.4.1	 Pre‑trained Language Models	 16
2.5	 LARGE LANGUAGE MODELS	 17

2.6	 WORD EMBEDDING MODELS	 17

2.7	 RECURRENT NEURAL NETWORKS	 22

2.7.1	 Simple Recurrent Neural Networks	 22
2.7.2	 Long Short‑Term Memory Networks	 26

viii    ◾    Contents

2.8	 AUTOENCODERS	 30

2.8.1	 The Information Bottleneck	 31
2.8.2	 Latent Variables	 31
2.8.3	 Autoencoder Architecture	 33
2.8.4	 Types of Autoencoders	 34

2.9	 GENERATIVE ADVERSARIAL NETWORKS	 37

2.9.1	 The Generative Model	 39
2.9.2	 The Discriminative Model	 39

2.10	 ATTENTION MODELS	 40

2.10.1	 Encoder‑Decoder Paradigm	 41
2.10.2	 Attention to Sequence Models	 42

2.11	 TRANSFORMERS	 55

2.11.1	 Encoder Layer	 58
2.11.2	 Positional Encoding	 59
2.11.3	 Residual Connections	 61
2.11.4	 Decoder Layer	 62
2.11.5	 Linear Layer and SoftMax	 64
2.11.6	 Training	 64
2.11.7	 Inference	 66
2.11.8	 Loss Function	 67

2.12	 CONCLUSIONS	 69

Chapter 3    ◾   � Large Language Models	 70
3.1	 INTRODUCTION	 70

3.1.1	 Emergent Skills	 70
3.1.2	 Skills Enhancement Techniques	 71
3.1.3	 Corpora	 72
3.1.4	 Types of Training	 73
3.1.5	 Types of Learning	 73
3.1.6	 Types of Tokenization	 74

3.2	 BERT	 75

3.2.1	 Operation	 76
3.2.2	 Architecture	 78
3.2.3	 Model Input	 78
3.2.4	 Model Output	 78
3.2.5	 BERT‑Based Pre‑Trained Models	 79

Contents    ◾    ix

3.3	 GPT	 81

3.3.1	 The GPT and GPT‑2 Models	 82
3.3.2	 The GPT‑3 Model	 89
3.3.3	 The GPT‑4 Model	 90
3.3.4	 Reinforcement Learning from Human Feedback	 91

3.4	 PaLM	 94

3.4.1	 Vocabulary	 97
3.4.2	 Training	 97
3.4.3	 PaLM‑2	 97

3.5	 LLaMA	 99

3.5.1	 Pre‑Training Data	 100
3.5.2	 Architecture	 100

3.6	 LANGUAGE MODEL FOR DIALOGUE APPLICATIONS (LaMDA)	 101

3.6.1	 Objectives and Metrics	 102
3.6.2	 Pre‑Training of LaMDA	 103

3.7	 MEGATRON	 104

3.7.1	 Training Data	 106
3.8	 OTHER LLMS	 106

3.9	 CONCLUSIONS	 108

NOTES	 108

Chapter 4    ◾   � Model Evaluation	 109
4.1	 INTRODUCTION	 109

4.2	 EVALUATION TASKS	 109

4.2.1	 Basic Evaluation Tasks	 110
4.2.2	 Advanced Assessment Tasks	 112
4.2.3	 Regulatory Compliance Tasks	 112

4.3	 METRICS AND BENCHMARKS	 115

4.4	 BENCHMARK DATASETS	 116

4.4.1	 SQuAD (Stanford Question‑Answering Dataset)	 116
4.4.2	 GLUE (General Language Understanding Evaluation)	 117
4.4.3	 SNLI (Stanford Natural Language Inference)	 117
4.4.4	 ARC (Abstraction and Reasoning Corpus)	 117

4.5	 LLM ASSESSMENT	 118

4.6	 CONCLUSIONS	 121

NOTES	 121

x    ◾    Contents

Chapter 5    ◾   � Applications	 122
5.1	 INTRODUCTION	 122

5.2	 SENTIMENT CLASSIFICATION	 122

5.2.1	 Training	 126
5.2.2	 Testing and Validation	 126

5.3	 SEMANTIC SEARCH	 127

5.4	 REASONING WITH LANGUAGE AGENTS	 128

5.5	 CAUSAL INFERENCE	 130

5.6	 NATURAL LANGUAGE ACCESS TO DATABASES	 131

5.7	 LOADING AND QUERYING FOR OWN DATA	 134

5.8	 FINE‑TUNING A MODEL WITH OWN DATA	 136

5.9	 PROMPT DESIGN AND OPTIMIZATION	 139

5.10	 CHATGPT CONVERSATIONAL SYSTEM	 146

5.10.1	 Performance Evaluation	 148
5.11	 BARD CONVERSATIONAL SYSTEM	 150

5.12	 CONCLUSIONS	 152

NOTES	 152

Chapter 6    ◾   � Issues and Perspectives	 153
6.1	 INTRODUCTION	 153

6.2	 EMERGING SKILLS	 153

6.2.1	 What Causes These Emergent Skills and What Do They Mean?	 154
6.3	 LLM IN PRODUCTION	 154

6.4	 HUMAN‑LLM ALIGNMENT	 155

6.5	 ETHICS	 156

6.6	 REGULATORY ISSUES	 157

6.7	 COMPLEXITY	 158

6.8	 RISKS	 158

6.9	 LIMITATIONS	 159

6.10	 CONCLUSIONS	 159

BIBLIOGRAPHY, 161

INDEX, 167

xi

Preface

Language stands as our most potent tool for communication, allowing us to express
ideas and forge connections with others. Throughout the course of human history,

language has continually evolved, adapting to the demands and intricacies of our ever‑
changing society. It has been the focus of study and research for experts in the field of
artificial intelligence (AI) worldwide.

In this context, the realm of AI has made remarkable strides in recent years, and large
language models exemplify this progress. These models have emerged as captivating and
promising innovations, offering us the means to comprehend and enhance our capac‑
ity to both generate and decipher language. Within these models, advanced machine
learning techniques and natural language processing methodologies converge to pro‑
duce coherent and contextually relevant text, even when confronted with incomplete or
ambiguous input.

This book on large language models aspires to be a comprehensive and pragmatic guide
that delves into the theoretical underpinnings and practical applications of this ground‑
breaking technology. From grasping the intricacies of machine learning algorithms to
implementing language models across diverse contexts, this book serves as an indispens‑
able resource for students, researchers, and practitioners with a vested interest in the field
of natural language processing.

By perusing the pages of this book, readers will acquire a profound comprehension of
the mechanics behind generative language models, along with insights into the latest devel‑
opments in this perpetually evolving sphere. Furthermore, this book furnishes numerous
real‑world examples and use cases that underscore the tangible benefits of large language
models in everyday life and within a myriad of industries.

This book, Large Language Models: Concepts, Techniques, and Applications, offers a
comprehensive compass for those seeking to attain an in‑depth grasp of large language
models. Within its pages, readers will discover an exhaustive elucidation of the funda‑
mental principles underpinning these models, as well as an exposition of the technologies
employed in their construction and their extensive applications.

This book caters to both industry professionals and students and researchers with
an interest in the realms of AI and natural language processing. As such, readers will

xii    ◾    Preface

encounter a lucid and approachable elucidation of language models, replete with practi‑
cal examples and case studies designed to illuminate their potential and demonstrate how
they can be effectively harnessed in real‑world scenarios.

John Atkinson‑Abutridy
Santiago (Chile)

xiii

Introduction

This book serves as an engaging introduction to one of the most captivating and
rapidly evolving domains in the field of artificial intelligence: Natural Language

Processing (NLP). Specifically, it delves into the world of Large Language Models (LLMs),
which empower computers to undertake a wide array of tasks and applications. These
include, but are not limited to, machine translation, summary generation, question
answering, conversational systems, and document categorization. Within these pages, you
will be acquainted with the foundational concepts, the deep learning methodologies that
underpin them, cutting‑edge LLMs, practical use cases, and contemplations on the future.

In the pages of this book, you’ll embark on a journey to comprehend how NLP is revolu‑
tionizing our interactions with machines. Witness how they now possess an unprecedented
ability to grasp our intent and respond to our inquiries or directives with unparalleled
precision.

TARGET AUDIENCE
This book casts a wide net, appealing to a diverse audience that spans both industry and
academia:

•	 AI professionals and data scientists: Those immersed in the realm of AI, specifically
NLP and deep learning, will find value in the technical underpinnings, algorithms,
and techniques employed in LLMs.

•	 Students and academic researchers: Graduate students and researchers who special‑
ize in AI and NLP will discover this book to be an invaluable resource, offering a
robust foundation in the concepts and methodologies integral to LLMs.

•	 Professionals in related fields: Individuals engaged in NLP‑associated domains such
as machine translation, content generation, chatbot‑driven customer service, or doc‑
ument categorization will gain insights into how LLMs can augment and optimize
their work processes.

xiv    ◾    Introduction

While this book is designed as an introductory text, familiarity with the following prereq‑
uisites will enhance your comprehension:

•	 Basic machine learning and/or deep learning techniques.

•	 Proficiency in the Python programming language.

THE STRUCTURE OF THIS BOOK
This book comprises six chapters, each dedicated to a comprehensive exploration of the
fundamental principles, techniques, and methodologies underpinning LLMs. One of these
chapters offers practical Python exercises designed to apply the language models and con‑
cepts introduced in the preceding sections to various NLP tasks. Furthermore, this book
provides an extensive bibliography that readers can refer to for a more in‑depth under‑
standing of the concepts and techniques discussed within the book.

To enhance reader familiarity and facilitate the search for supplementary resources,
this book consistently employs both the basic terminology and its English equivalent
(e.g., encoders and encoders) throughout. In some instances, the original English term
(e.g., transformers) is also used for clarity.

The six chapters are structured around the following topics.

CHAPTER 1: INTRODUCTION
This chapter provides an overview of the current state of artificial intelligence, generative
models, and language models. It delves into the necessity for and the rapid expansion of
LLMs, explores their diverse applications, and contemplates their future implications.

CHAPTER 2: FUNDAMENTALS
Within this chapter, we lay the foundational understanding for NLP. We delve into topics
such as representation learning, embeddings, basic and sequential neural networks for NLP
tasks, encoder‑decoder models, generative adversarial networks, attention models, and the
revolutionary Transformers architecture.

CHAPTER 3: LARGE LANGUAGE MODELS
Chapter 3 delves into several prominent LLMs, including but not limited to BERT, GPT,
LAMDA, and PaLM. We explore their distinct approaches, architectural designs, methods
for pre‑training and fine‑tuning, and the massive datasets that fuel their training. Rich
with examples, this chapter paints a comprehensive picture of these models.

CHAPTER 4: MODEL EVALUATION
This chapter serves as a guide to evaluating LLMs. It elucidates the key metrics used to
assess their efficiency and effectiveness. We also examine the standard benchmarking data‑
sets and introduce recent metrics tailored to evaluate regulatory and security dimensions.

Introduction    ◾    xv

CHAPTER 5: APPLICATIONS
Chapter 5 illustrates the practical utility of the language models we’ve explored, showcas‑
ing various real‑world applications. These applications span a wide spectrum of NLP tasks,
from question answering and semantic search to document categorization, summary gen‑
eration, prompt design, and beyond.

CHAPTER 6: ISSUES AND PERSPECTIVES
The final chapter synthesizes critical considerations and future perspectives regarding
the use of LLMs. We delve into ethical concerns, risks associated with their deployment,
emerging capabilities, unpredictability, complexity, human alignment, regulatory chal‑
lenges, and the nuanced balance between their benefits and limitations.

PRACTICE EXERCISES
This book seamlessly blends theoretical concepts with hands‑on practical applications.
Chapter 6, in particular, offers a variety of exercises that illuminate straightforward exam‑
ples and real‑world applications for a range of NLP tasks, harnessing insights from mul‑
tiple language models that have been explored throughout this study.

These exercises are presented in Python and are developed within the Google Colab1
development environment. All source code and test datasets referenced in this book are
readily available for download at the publisher’s website. Alternatively, you may directly
request these resources from the author at atkinsonabutridy@gmail.com.

It’s worth noting that for certain exercises, access to Application Programming Interfaces
(APIs) corresponding to specific models (e.g., GPT‑3) is required, typically obtained
directly from the respective vendor. For instance, you can obtain an API key to access
OpenAI’s GPT‑3 or GPT‑4 models from https://platform.openai.com/account/api‑keys.
Likewise, API keys for select Google services can be found at https://developers.google.
com/webmaster‑tools/search‑console‑api/. Once you’ve acquired any necessary API key,
simply insert it into the relevant program sections labeled “Insert API key here.”

1	 https://colab.research.google.com/.

mailto:atkinsonabutridy@gmail.com
https://platform.openai.com/account/api-keys
https://developers.google.com/webmaster-tools/search-console-api/
https://developers.google.com/webmaster-tools/search-console-api/
https://colab.research.google.com/

xvi

Author Biography

John Atkinson‑Abutridy �received a PhD in Artificial Intelligence from the University
of Edinburgh in Scotland and is currently a full professor at the Faculty of Engineering
and Sciences at Universidad Adolfo Ibáñez in Santiago, Chile. Over the years, he has also
held full‑time academic positions at various Chilean universities and abroad as a visit‑
ing professor and researcher at universities and research centers in Europe (France, UK),
the Unites States (MIT, IBM, T.J. Watson), and various Latin American universities.
Dr. Atkinson‑Abutridy’s primary research interests span into NLP, textual analytics, arti‑
ficial intelligence, and bio‑inspired computing. His academic career includes the publica‑
tion of nearly one hundred scientific papers and the authorship of two books. Recently, he
has been at the forefront of numerous scientific and technological projects at the national
and international levels, serving as an AI consultant for many companies and founding
AI‑Empowered. In recognition of his substantial contributions to the field of computer
science, Dr. Atkinson‑Abutridy received the Senior Member Award from the Association
for Computing Machinery (ACM) in the United States in 2010. Among his notable accom‑
plishments, he pioneered the first worldwide web‑based natural language dialogue model
in 2005, a precursor to today’s ChatGPT system. In 2023, he released the second edition of
his book, Text Analytics: An Introduction to the Science and Applications of Unstructured
Information Analysis (Taylor & Francis, USA), which was recognized as the top choice in
the text mining category by the Book Authority organization.

1DOI: 10.1201/9781003517245-1

C h a p t e r 1

Introduction

1.1  GENERATIVE ARTIFICIAL INTELLIGENCE
In the early stages of artificial intelligence (AI) research, scientists primarily focused on
the development of rule‑based systems capable of reasoning and decision‑making based on
predefined sets of rules (Russell, 2020). However, constructing these systems proved to be
a laborious task, demanding experts to painstakingly write out the rules. Moreover, these
systems were inherently limited, only able to function within the constraints of explicitly
programmed rules.

As AI technologies advanced, novel approaches began to emerge, notably machine learn‑
ing. This paradigm paved the way for various techniques, including the advent of Artificial
Neural Networks. These networks empowered computers to autonomously acquire knowl‑
edge from extensive sets of pre‑labeled training data (Foster, 2019). However, a notable
challenge with this approach is its dependency on manually annotated data. This entailed
a considerable human effort to assign labels to various forms of data, such as images, text,
and audio, to instruct AI systems on what to recognize and process.

Enter generative AI, a paradigm that eliminates the need for labeled data. Generative AI
systems achieve this by independently learning from vast datasets (Park et al., 2023) and
comprehending the inherent relationships within the data, much akin to the way animals
learn from their surroundings (Marcus, 2020).

In the realm of generative AI, deep machine learning models take center stage, enabling
the creation of new content based on user input, typically in the form of natural language
descriptions. This newfound ability extends to generating various types of content, encom‑
passing written text, images, videos, audio, music, and even computer code (Alto, 2023).

To illustrate, when a human inputs a question or statement into a dialogue system or
chatbot (Adiwardana et al., 2020), like ChatGPT, the system responds by generating a con‑
cise yet reasonably detailed written reply. Moreover, users can engage in ongoing conversa‑
tions with these chatbots, entering follow‑up questions, with the system retaining earlier
details from the conversation.

Generative AI has recently garnered significant attention due to rapid advancements in
the field. Notably, OpenAI’s ChatGPT1 has demonstrated the ability to generate text that

https://doi.org/10.1201/9781003517245-1

2    ◾    Large Language Models

is grammatically sound and convincingly human‑like. Furthermore, OpenAI’s DALL‑E2
tool has made strides in producing realistic images based on natural language instruc‑
tions. Other tech giants, including Google and Facebook, have also joined the generative
AI arena, developing models capable of generating authentic‑looking text, images, and
even computer programs.

1.1.1  Understanding the Mechanisms of Generative AI

Generative AI operates by generating novel content utilizing a training dataset. Researchers
feed substantial amounts of data—comprising text, images, music, or other forms of con‑
tent—into a neural deep learning system known as Generative Adversarial Networks
(GAN) (Bengio, 2014). Within this supervised neural network, data is sifted through a
system that rewards successes and penalizes errors, gradually learning to recognize and
comprehend the intricate relationships within the training data, under the supervision of
humans (Babcock and Bali, 2021).

A GAN consists of two neural networks: a generator, responsible for creating new data,
and a discriminator, tasked with evaluating the data’s authenticity. These two components
collaborate in a dynamic process, with the generator continuously refining its outputs
based on feedback from the discriminator. The ultimate goal is for the generator to produce
content that is virtually indistinguishable from genuine data, as illustrated in Figure 1.1.

For instance, OpenAI’s ChatGPT utilizes the Codex system, enabling the translation of
natural language descriptions into computer code. This system draws its power from an
extensive dataset of over 700 GB, compiled from diverse sources including web content,
books, magazine articles, websites, technical manuals, emails, song lyrics, plays, scripts,
and other publicly accessible resources.

Informally, generative models excel at creating fresh data instances, while discrimina‑
tive models specialize in distinguishing between various types of data instances. To illus‑
trate, a generative model can produce lifelike images of animals, resembling real creatures,
whereas a discriminative model might accurately differentiate between a dog and a cat.

FIGURE 1.1  General architecture of a GAN.

Introduction    ◾    3

Formally, when presented with a set of X data instances and a set of Y labels:

•	 A generative model captures the joint probability p(X, Y) or simply p(X) if no labels
are involved.

•	 A discriminative model captures the conditional probability, p(Y | X).

Generative models encompass the distribution of the data itself and assess the likelihood of
a given example. For instance, models that predict the next word in a sequence, much sim‑
pler than GANs, fall into the category of generative models, as they can assign a probability
to a sequence of words (Kuhn and Johnson, 2019). Conversely, a discriminative model dis‑
regards the likelihood of a given instance or example and focuses solely on estimating the
probability of assigning a label to that instance.

Please note that, for instance, in a discriminative classifier like a decision tree, one can
assign a label to an instance without necessarily specifying a probability for that label.
Nevertheless, such a classifier can still be considered a model, as it effectively models the
distribution of all predicted labels to represent the true label distribution within the data.
Similarly, a generative model achieves its modeling goal by generating synthetic data that
convincingly resembles samples drawn from the target distribution.

Due to this distinction, it’s worth highlighting that the modeling task in a generative
approach is notably more challenging compared to a discriminative one. For instance, a
generative model designed for image data may capture intricate correlations, such as the
co‑occurrence of boat‑like elements near water‑like features or the absence of eyes on fore‑
heads. Conversely, a discriminative model can discern the difference between sailboats
and non‑sailboats by recognizing specific discernible patterns, potentially overlooking
many of the intricate correlations essential for a generative model.

In essence, discriminative models aim to delineate boundaries within the data space,
while generative models strive to understand the arrangement of data points within that
space. To illustrate this concept, consider the following general example depicting both
discriminative and generative models for a handwritten digit recognition task, as shown
in Figure 1.2.

The discriminative model’s goal is to differentiate between 0 and 193 handwritten digits
based on a linear separation within the data space. When it successfully identifies the cor‑
rect line, it can distinguish between 0 and 1 without needing an exact model of where the

FIGURE 1.2  Discriminative (left) vs. generative models (right).

4    ◾    Large Language Models

data instances are positioned on either side of the line. Conversely, the generative model
strives to create realistic representations of digits 1 and 39 by generating images that closely
resemble their counterparts in the data space. Achieving this requires modeling the dis‑
tribution across the entire data space. As a result, various image or text generative models
have proven effective in training these models to replicate a real distribution. Among these
generative models, GANs stand out as a prominent example (Bengio, 2014).

1.1.2  Focus Areas in Generative AI

Generative AI and other AI models are having a profound impact on the advancement
of AI technologies, greatly enhancing capabilities for users who may not have a technical
background. These innovations encompass the creation of various types of content:

•	 Text: Numerous companies and research laboratories are actively developing natural
language interaction capabilities. Examples include Apple’s Siri, Google’s LaMDA
and Bard, Microsoft’s Cortana, and Amazon’s Alexa. These systems leverage genera‑
tive AI models to produce written or spoken text.

•	 Images: Generative AI tools like DALL‑E and Google’s MiP‑NeRF have the remark‑
able ability to generate photorealistic images based on textual input. For instance, a
web designer can simply type in “classic Spanish square” into the DALL‑E engine and
instantly receive a highly realistic image, despite it not representing any real location.

•	 Music: Generative AI extends to the realm of audio and music creation, offering
complete compositions and specialized sound effects. Companies like Amper Music,
Aiva, Amadeus Code, Google Magenta, and MuseNet are capable of generating
original music featuring a variety of lifelike instruments. Users can request specific
genres, artists, or styles—be it jazz, Mozart, the Rolling Stones, or an upbeat tempo—
and enjoy AI‑generated compositions.

•	 Software development: Tools like Amazon’s CodeWhisperer and GitHub’s CoPilot3
are already providing natural language‑based low‑code platforms for developers.
Developers can voice or type their queries into these platforms and receive actual
lines of software code in various programming languages. This streamlined approach
enables developers to work more efficiently and create reusable code modules with
ease.

•	 Story and game development: More advanced applications of generative AI involve
the creation of narratives, game design, robotic concepts, and even product debug‑
ging through natural language queries and exploration of topics.

1.1.3  Applications

The realm of AI in business has a rich history marked by innovation, disruption, and pro‑
found transformation. Generative AI holds the potential to guide organizations on a simi‑
lar transformative journey, offering a range of applications in various domains:

Introduction    ◾    5

•	 Marketing and sales: Generative AI systems shine in producing diverse forms of
content, spanning emails, website text, images, brochures, e‑books, product guides,
labels, and internal documents. Beyond content creation, these technologies empower
organizations to analyze customer feedback, pinpoint both risks and opportunities,
and implement highly efficient chatbots that enhance customer interactions.

•	 Human resources: HR departments can harness the capabilities of generative AI to
craft company handbooks, formulate job descriptions, and devise interview ques‑
tions. Furthermore, chatbots can serve as valuable resources by providing employees
with information and self‑help options. This might involve streamlining onboarding
processes or delivering guidance on choosing the right health insurance or retire‑
ment savings plans.

•	 Operations: Generative AI plays a pivotal role in improving customer service
through chatbots that efficiently handle inquiries, guide individuals to the most per‑
tinent information, and seamlessly transition them to human agents when neces‑
sary. Additionally, these systems excel in identifying errors, defects, and other issues
through comparative image analysis. For instance, a company can employ generative
AI to generate an ideal image of a complex technical component and then employ it
to inspect images during the manufacturing process to ensure compliance with qual‑
ity standards.

•	 Software development: The versatility of generative technology extends to writing
code in modern programming languages like Python, Perl, Go, PHP, and JavaScript.
Development teams can seamlessly integrate these code snippets and blocks into
software projects and store them in libraries for future use. Moreover, generative AI
aids in auto‑completing data tables and generating synthetic data, thereby enhancing
the accuracy of machine learning models. Notably, this technology also proves valu‑
able in simulating cyberattack methods for security assessments.

1.2  GENERATIVE LANGUAGE MODELS
Generative AI has witnessed remarkable advancements in various applications, including
image generation systems like Stable Diffusion4 and DALL‑E, alongside natural language
dialog systems such as ChatGPT by OpenAI and Bard by Google. These pioneering devel‑
opments have revolutionized the landscape of AI.

Within the realm of Natural Language Processing (NLP) systems, as extensively cov‑
ered in works by Eisenstein (2019) and Martin and Jurafsky (2014), the spotlight shines on
the use of Large Language Models (LLMs). Notable examples include GPT‑3, GPT‑4, and
LaMDA, as outlined in Zhao et al. (2023). These LLMs empower the generation of fresh
text through statistical sampling, leveraging the vast training datasets that underpin their
creation (see Figure 1.3) (Hu et al., 2023). However, it’s worth noting that the roots of gen‑
erative language models trace back several years, with early explorations aimed at crafting
interactive dialog systems based on evolutionary learning from web data (Atkinson, 2005).

6    ◾    Large Language Models

In essence, an LLM constitutes a neural network boasting an extensive array of parame‑
ters, often numbering in the billions, or even more. These models are meticulously trained
on copious amounts of unlabeled text through self‑supervised learning, as expounded
upon in Ge et al. (2023) and Zhao et al. (2023). The overarching goal of LLMs in the realm
of generative AI is to assimilate knowledge from textual sources, subsequently generating
human‑like responses and actively participating in meaningful conversations, as depicted
in Figure 1.3 (Bommasani et al., 2021).

The proficiency of LLMs in generating coherent text marks a pivotal advancement in
human technology (Gao and Kean, 2023). Notably, these models excel in their capacity to
grasp the meaning and context of textual content, encompassing articles, messages, docu‑
ments, and more, enabling machines to interact with text more intelligently (Wies et al.,
2023). However, their true prowess emanates from three distinct facets:

•	 A single LLM can serve multiple NLP tasks.

•	 The performance of an LLM scales continually as it accumulates more parameters
and undergoes training on larger datasets.

•	 Pre‑trained LLMs exhibit the ability to make accurate predictions even when pro‑
vided with limited labeled examples.

The essence of LLMs (Gao and Kean, 2023) resides in their capacity to acquire optimal
representations for words and texts, facilitating subsequent manipulation. These math‑
ematical representations, commonly known as word embeddings form the cornerstone
of various NLP applications, enabling the weighting and classification of different sen‑
tences within texts (Martin and Jurafsky, 2014). Conversely, the generative capabilities
of LLMs are rooted in their role as predictive neural models, predicting the next word
based on prior embedding representations. This foundation rests upon a technique called
Recognizing Textual Entailment, which enhances the comprehension of word relation‑
ships. Consequently, as more data is incorporated into LLM training, the system per‑
petually engages in the analysis of word relationships, seeking entailment connections,
contradictions, or neutrality.

FIGURE 1.3  Role of a large language model.

Introduction    ◾    7

For instance, let’s consider the premise that “a dog has paws.” This statement logically
implies or entails that “paws have feet,” but it clearly contradicts the assertion that “dogs
swim under the sea.” At the same time, it remains neutral regarding an expression like
“all dogs are good.” As the system processes countless combinations of such statements, it
gradually learns to construct accurate and contextually appropriate predictive models. This
concept served as the foundation for one of the earliest Language Model with Transformers
(LLMs), known as BERT, developed by Google.

Typically, LLMs generate text by predicting the most likely words to follow the pre‑
ceding ones, based on the patterns learned from their training data (Baron, 2019). This
training data includes a diverse range of content from the internet, including sources like
Wikipedia, as well as materials like fiction, conspiracy theories, propaganda, and more.
Consequently, LLMs have the potential to generate content that may be false and/or
unverifiable.

In response to these challenges, LLMs began to incorporate human involvement in the
training and feedback processes. In applications like ChatGPT, the primary model (such
as GPT) was exposed to a dataset comprising over three hundred billion words. Initially,
human AI trainers played dual roles, simulating both users and AI assistants (either as text
generators or evaluators). Subsequently, humans randomly reviewed texts generated by
the model, assessed various completions, and provided feedback, thus contributing to the
training of a reward model. This iterative process has resulted in the development of a rein‑
forcement learning algorithm known as Reinforcement Learning from Human Feedback.
With continued training and user input, the language model continually refines its abili‑
ties over time.

The reward predictor evaluates ChatGPT results and predicts a numerical score that
represents how well those actions align with the desired system behavior. A human eval‑
uator periodically checks the ChatGPT responses and selects those that best reflect the
desired behavior.

As time passes, the reward model is updated and refined, producing more realistic
results. However, the content generated by LLMs may be biased, unverifiable, constitute
original research, and violate copyright; hence, LLMs should not be used for assignments
or in subject areas with which the publisher is unfamiliar; hence, their results should be
rigorously reviewed for compliance with all applicable policies.

As a consequence, the true autonomy of LLMs depends on the trust and reliability of
AI applications, which may emerge as these models improve. For now, humans are the
supreme masters, and reliable results depend on collaboration between humans and these
AI models.

As a whole, LLMs are game changers for productivity, as they can access and process
information in real time, tackle complex problems, and do more in less time; for example,
a UK theater group used the GPT‑3 model to write a play. The system generated a story
based on descriptions from the writers, and the story was further edited before the final
version of the narrative was ready for the play. In another case, the Guardian agency used
the GPT‑3 model to write eight different articles, which were then compiled into one.

8    ◾    Large Language Models

1.2.1  Popular Types of LLMs

In the realm of NLP, there exist a diverse array of LLMs known for their exceptional capa‑
bilities and performance across different NLP tasks. However, it’s crucial to recognize that
not all LLMs are created equal. They vary in terms of their design and purpose, with some
being general‑purpose models, others fine‑tuned for specific tasks, and some engineered to
operate efficiently on low‑capacity devices. These approaches come with distinct strengths,
and weaknesses:

•	 BERT (Bidirectional Encoder Representations from Transformers): It is a pre‑trained
LLM employing deep learning techniques to generate natural language text. It stands
out for its bidirectional approach, considering both left and right context when pre‑
dicting the next word in a sequence. During training, BERT is exposed to sentences
or text sequences with certain words masked, challenging the model to predict the
missing words. This process equips BERT to capture the contextual relationships
between words within a sentence. It can also be fine‑tuned for specific NLP tasks,
such as text classification, question answering, and machine translation.

•	 GPT‑3 (Generative Pre‑trained Transformer): GPT‑3 is an autoregressive model,
pre‑trained on an extensive corpus of text to generate high‑quality natural language
text. Noteworthy for its adaptability, GPT‑3 can be tailored to a wide range of lan‑
guage tasks, including summarization and question answering.

•	 GPT‑4: Built on the foundation of GPT‑3, GPT‑4 is a multimodal LLM capable of
processing both image and text inputs and producing text‑based outputs. Employing
pre‑trained Transformers, it excels in predicting the next token, achieving enhanced
performance in factuality measures, and adhering to desired behavior through
post‑training alignment.

•	 LaMDA: It is a language model optimized for dialogue applications, akin to
GPT‑4. However, LaMDA’s distinct training focus is on capturing the intricacies of
open‑ended conversations, ensuring high‑quality natural language text generation
in dialogues.

•	 LLaMA: While smaller in scale compared to GPT‑3 and LaMDA, it aims for equiv‑
alent performance. As an autoregressive language model based on Transformers, it
undergoes training with a larger number of tokens, enhancing its performance while
maintaining a smaller parameter count.

•	 BLOOM: Developed by Facebook AI, BLOOM is an LLM trained through unsuper‑
vised learning. BLOOM excels in generating natural language text with remarkable
consistency and fluency. It boasts high performance across a broad spectrum of NLP
tasks, including text classification and question answering. A distinguishing feature
of BLOOM is its ability to grasp intricate linguistic structures and semantic relation‑
ships among words, enabling it to produce text that closely mirrors human language.

Introduction    ◾    9

Recently, unpredictable skills of LLMs have been observed that were not present in sim‑
pler models (aka emergent skills). Such skills cannot be predicted by simply extrapolating
performance from smaller models. Examples include multi‑step arithmetic, college‑level
test‑taking, and decoding the International Phonetic Alphabet, among others.

1.3  CONCLUSIONS
Generative AI has revolutionized the field of AI by enabling computational systems to
learn on their own and generate new content without relying on predefined rules or labeled
data. Through deep machine learning models, such as GANs, generative AI systems can
create authentic‑looking written text, images, music, and computer code. These advances
have opened up numerous opportunities in a variety of areas, such as marketing, business
operations, software development, and story and game creation. LLMs, such as GPT‑4 and
BERT, have proven to be especially outstanding at generating coherent text and under‑
standing context. However, it is important to note that the results generated by LLMs must
be carefully verified and reviewed, as they may be biased, unverifiable, or violate copyright.
As we move forward, collaboration between humans and AI systems becomes critical to
ensuring the trust and reliability of generative applications. Generative AI has the poten‑
tial to change the way we work and interact with technology, and it is expected to continue
to evolve and improve in the future.

NOTES
	 1	 https://chat.openai.com/
	 2	 https://openai.com/dall‑e‑2
	 3	 https://github.com/features/copilot
	 4	 https://stablediffusionweb.com/

https://chat.openai.com/
https://openai.com/dall-e-2
https://github.com/features/copilot
https://stablediffusionweb.com/

10 DOI: 10.1201/9781003517245-2

C h a p t e r 2

Fundamentals

2.1  INTRODUCTION
Natural Language Processing (NLP) encompasses a spectrum of computationally driven
techniques designed to analyze and represent naturally occurring text across various lev‑
els of linguistic analysis (Burns, 2019; Atkinson, 2022; Martin and Jurafsky, 2014). These
techniques aim to emulate human‑like language comprehension, catering to a wide array
of tasks and applications (Ghosh and Gunning, 2019). While the surge of interest in NLP
has been a recent phenomenon, its roots trace back to the late 1940s.

Within the realm of artificial intelligence (AI), Language Models (LMs) have assumed a
pivotal role (Li, 2022). At its core, an LM is a model that assigns probabilities to sequences
of words, ranging from basic n‑grams to sophisticated neural LMs. Presently, pre‑trained
model representations, also known as embeddings, are derived from classical LMs estab‑
lished through statistical methods or elementary neural networks.

The fundamental objective of an LM is to generate a logical continuation of the text it has
encountered, where “logical” refers to what one would expect based on billions of docu‑
ments composed by humans.

To illustrate, consider the text “John bought a.” Imagine sifting through this snippet
within the vast corpus of human‑generated text and determining the subsequent word(s).
This process yields a ranked list of words, accompanied by their associated probabilities, as
depicted in Figure 2.1.

When the goal is to produce more extensive output, such as an essay, the approach is
essentially a repetitive inquiry: “Given the text so far, what should the next word be?” This
question is posed iteratively, with each addition of a word. Consequently, at each step, a list

FIGURE 2.1  A ranked list of likely words following a sentence.

https://doi.org/10.1201/9781003517245-2

Fundamentals    ◾    11

of words with corresponding probabilities is generated. However, the choice of the word to
incorporate into the evolving text is not straightforward. While one might assume select‑
ing the word with the highest probability is the logical choice, this can result in monoto‑
nous essays devoid of creativity. Conversely, occasionally opting for lower‑ranked words
injects novelty and intrigue into the composition. The introduction of randomness in this
decision‑making process implies that using the same input message multiple times will
likely yield different essays each time.

To illustrate, consider the outcomes when the model repeatedly selects the word with
the highest probability at each step:

:
John bought a
John bought a car
John bought a car at
John bought a car at a
John bought a car at a sale

However, what occurs when dealing with longer texts? In such instances, the result often
manifests as a perplexing and redundant composition. So, what if, rather than consis‑
tently opting for the word with the highest probability, one occasionally selects words ran‑
domly, regardless of their superiority? Once more, one can compose a text resembling the
following:

John bought a
John bought a book
John bought a book for
John bought a book for coloring

The most logical starting point for pondering the capabilities of an LM is to inquire whether
it can fulfill its intended purpose: the modeling of language.

In a formal sense, an LM represents a probability distribution over sequences of tokens,
such as words. Given a vocabulary set V containing various tokens, the LM denoted as
“p” assigns a probability, ranging from 0 to 1, to each sequence of tokens, represented as

, ,1 … ∈x xL :

	 , ,1()…p x xL

This probability serves as an intuitive measure of the quality of a sequence of tokens. For
instance, if we consider a vocabulary V with tokens {bought, a, John, book}, the LM might
assign probabilities like this:

p(John, bought, a, book) = 0.02
p(book, bought, a, John) = 0.01
p(book, a, John, bought) = 0.0001

12    ◾    Large Language Models

From a mathematical standpoint, an LM appears quite straightforward. However, the
capability to assign probabilities to all possible sequences demands exceptional linguistic
competence and a profound understanding of the world.

For instance, the LM should implicitly assign a very low probability to the sequence “book
a John bought” due to its lack of grammaticality (i.e., syntactic knowledge). Conversely, it
should assign a higher probability to “John bought a book” compared to “book bought a
John,” as illustrated in Figure 2.2. This difference arises from world knowledge; both sen‑
tences are syntactically equivalent but vary in their semantic plausibility.

As previously defined, an LM assesses the quality of a given sequence X1:L by returning
a corresponding probability. Once we have an LM in place, we can proceed to generate
sequences. The most straightforward method to achieve this involves sampling a sequence
X1:L from the LM p, with the probability represented as p(X1:) This can be denoted as

	 1: ∼x pL

The computational efficiency of this process relies on the specific form of the LM p. In
practical applications, it’s common to directly sample from an LM. This is due to the con‑
straints of real‑world LMs and the fact that, at times, our goal is not to obtain an “average”
sequence, but rather something closer to the “optimal” sequence.

2.2  AUTOREGRESSIVE LANGUAGE MODELS
Traditionally, the representation of the joint distribution p(X1:) for a sequence X1:L is estab‑
lished through the chain rule of probability:

	 ,1: 1 2 1 3 1 2 1: 1 1: 1

 1
∏() ()() () () ()= ⋅ =− −

=

p x p x p x x p x x x p x x p x xL L L i L

i

L

To illustrate this concept further, let’s consider an example:

p(John, bought, a, book) = p(John)
		 p(bought | John)

FIGURE 2.2  A simple language model for predicting the following word.

Fundamentals    ◾    13

			 p(a | John, bought)
	 		 p(book | John, bought, a)

Here, ()1: 1p x xi i− represents the conditional probability distribution of the next token xi,
given the preceding tokens 1: 1−x i . Consequently, an autoregressive LM is one where each
conditional distribution 1: 1()−p x xi i can be efficiently computed, typically utilizing a
feed‑forward neural network.

Now, when generating the complete sequence X1:L from an autoregressive LM p, we pro‑
ceed by sampling one token at a time based on the tokens generated so far:

	 1, , : ()1: 1
1/= … ∼ −i L x p x xi i i

T

In this equation, T is a temperature parameter that regulates the level of randomness
within the LM:

•	 T = 0 selects the most probable token, xi, at each position i deterministically.

•	 T = 1 performs standard sampling from the pure LM.

•	 T = ∞ uniform samples from the entire vocabulary V.

However, raising probabilities to the power of 1/T may result in a distribution that does not
sum up to 1. To address this, we normalize the distribution, yielding the “cooled conditional
probability distribution.” This normalization is defined as ()1: 1 1: 1

1/() ∝− −p x x p x xi i i i
T.

This concept is reminiscent of the simulated annealing optimization method.
For instance,

	

() 0.4 () 0.6

() 0.31 () 0.69

() 0.12 () 0.88

() 0 () 1

0.5 0.5

0.2 0.2

0 0

= =

= =

= =

= =

= =

= =

= =

p book p John

p book p John

p book p John

p book p John

T T

T T

T T

In essence, these models are engineered to enable computers to comprehend, interpret, and
generate human language. As a result, LMs have a myriad of practical applications, includ‑
ing chatbots, voice assistants, machine translation, and sentiment analysis, among others
(Adiwardana et al., 2020).

The evolution of LMs spans several decades, marked by significant transformations.
Initially, NLP ventured into rule‑based approaches, but these methods quickly revealed
their limitations, lacking the necessary flexibility for tackling complex NLP tasks.

With the advent of statistical models, and more recently, deep learning techniques, LMs
have undergone a remarkable evolution, becoming substantially more sophisticated and
versatile.

14    ◾    Large Language Models

2.3  STATISTICAL LANGUAGE MODELS
In the 1990s, a pivotal moment arrived with the emergence of statistical models in NLP.
These models heavily relied on vast corpora of textual data to discern intricate language
patterns and make predictions concerning novel data (Choi, 2019). This marked a substan‑
tial departure from the rule‑based systems of the past, sparking a revolution in the NLP
field and laying the foundational groundwork for the development of contemporary LMs.

One of the initial statistical approaches in the field of NLP introduced the concept of
the hidden Markov model, often abbreviated as HMM (Baron, 2019). HMMs are designed
to capture sequences of events that are concealed or unknown within a sentence. Initially,
they found their primary application in language modeling, where they are employed to
predict the likelihood of a word or label based on the preceding words in a sentence.

Another notable milestone in statistical language modeling was the development of the
n‑gram LM. An n‑gram represents a sequence of n words, and the n‑gram LM predicts the
probability of a word, taking into account the prior n‑1 words. While this model may seem
straightforward, it has proven to be remarkably effective and has been widely adopted in
numerous NLP tasks, ranging from speech recognition to machine translation.

As the late 1990s approached, NLP began delving into the realm of machine learn‑
ing techniques. Among these, support vector machines and neural networks emerged
as prominent players. These techniques found considerable success in various classifica‑
tion tasks within NLP, such as lexical tagging, also known as part‑of‑speech tagging, and
Named‑Entity Recognition.

2.4  NEURAL LANGUAGE MODELS
A Neural Language Model, often abbreviated as NLM, encompasses the essence of gaug‑
ing the probability of a word sequence through the utilization of neural networks. This
groundbreaking approach extends the concept of acquiring effective features for words or
sentences, thus birthing a comprehensive neural network methodology to address a wide
spectrum of NLP tasks. These pivotal studies ushered in the era of LMs for learning repre‑
sentations, ushering in a profound revolution in the NLP domain (Ekman, 2022).

The inception of the 2000s witnessed the commencement of neural networks being
employed for the creation of LMs. This undertaking involves the prediction of the subse‑
quent word in a text, given the context of preceding words. The initial Neural Language
Model comprised a straightforward feed‑forward network housing a hidden layer. It was
within this realm that the notion of distributed word representations, commonly referred to
as word embeddings, was first introduced. These word embeddings are vectorized, real‑val‑
ued descriptors that elegantly encapsulate the semantic essence of a word or concept in
terms of its distinctive features (Peters et al., 2018). The model takes as input vectorized
representations of the preceding “n” words relative to the current word. These represen‑
tations are retrieved from a table that undergoes simultaneous learning with the model.
Subsequently, these vectors are fed into a hidden layer, the output of which is subsequently
channeled through a SoftMax layer. This architectural design empowers the model to pre‑
dict the subsequent word within the sequence (Aggarwal, 2018).

Fundamentals    ◾    15

In 2013, a pivotal moment in the realm of NLP occurred with the introduction of
Word2Vec, which quickly rose to prominence as one of the most widely adopted embedding
models, representing words as vectors. What set Word2Vec apart was its revolutionary
approach to training. It achieved this by eliminating the hidden layer and employing an
approximation method for the target, effectively streamlining the training process. These
seemingly modest alterations paved the way for the scalable training of embeddings on
extensive text corpora. The training regimen employed by Word2Vec endowed the model
with the ability to discern intricate relationships between words. This newfound capacity
generated significant intrigue and enthusiasm within the NLP community. These embed‑
dings swiftly became a cornerstone of contemporary NLP practices, as their utilization
demonstrated marked enhancements in performance across a diverse spectrum of lan‑
guage‑related tasks.

In simple terms, Artificial Neural Networks (ANNs) belong to a class of machine learn‑
ing algorithms inspired by the intricate structure and functionality of the human brain.
They comprise layers of interconnected neurons (nodes) with the remarkable ability to
learn intricate patterns and intricate data relationships, such as nonlinear connections.

The integration of these techniques has ushered in the development and enhancement
of three well‑defined categories of neural networks: recurrent neural networks (RNNs),
convolutional neural networks (CNNs), and recursive neural networks. RNNs gained ini‑
tial popularity for handling the dynamic input sequences frequently encountered in NLP.
Nevertheless, they were swiftly supplanted by conventional long short‑term memory net‑
works, also known as LSTMs, as these networks demonstrated greater resilience in miti‑
gating the vanishing gradient problem. Simultaneously, CNNs, which had initially found
widespread adoption in computer vision tasks, began making their way into the realm of
NLP. The inherent advantage of employing CNNs for processing text sequences is their
superior parallelizability compared to RNNs. This stems from the fact that the state at each
time step depends solely on the stored context, rather than relying on all preceding states,
as is the case with RNNs

Subsequently, the development of sequence‑to‑sequence, or Seq2Seq learning, marked a
significant stride in the field of AI. This approach, characterized by its end‑to‑end nature,
employs neural networks to map one sequence onto another. Initially, an encoding neu‑
ral network, often referred to as the encoder, meticulously processes each token within a
sentence and condenses it into a compact vector representation. Subsequently, a decoding
neural network, known as the decoder, extrapolates the output sequence token‑by‑token.
This prediction relies on both the state of the encoder and the input of previously fore‑
casted tokens at each sequential step. Although the foundational architecture of sequence
encoder‑decoder models predominantly relies on RNNs, more recent innovations have
introduced alternatives like Long Short‑Term Memory (LSTM) networks and Transformers
(Raffel et al., 2019; Yue, 2023).

A noteworthy advancement in the realm of NLP is the emergence of Large Language
Models (LLMs), as exemplified by BERT and GPT. These LLMs, rooted in the Transformer
architecture introduced by Dai et al. (2019), represent a breakthrough in deep neural net‑
works. They stand as part of a broader class of models known as foundational models.

16    ◾    Large Language Models

These models have the unique ability to be adapted to a wide array of tasks, thanks to their
extensive training on vast amounts of unstructured and unsupervised data (Mialon
et al., 2023).

Pre‑trained language model (PLM) embeddings can serve as features within a target
model, or alternatively, a pre‑trained LM can undergo fine‑tuning with the target task data.
This approach has proven to be highly effective, demonstrating efficient learning even with
significantly reduced data volumes. The primary advantage of these pre‑trained LMs lies
in their capacity to acquire word representations from vast unannotated text corpora. This
attribute proves especially advantageous for low‑resource languages where the availability
of labeled data is scarce.

Furthermore, a significant advancement in the realm of deep learning for NLP has been
the integration of attention mechanisms. These mechanisms empower models to selec‑
tively focus on specific portions of input data during the prediction process. This develop‑
ment has been particularly transformative in the context of sequence‑to‑sequence models.
Among the most influential attention‑based models stands the Transformer architecture,
which has consistently delivered remarkable results. It has played a pivotal role in the cre‑
ation of some of the most cutting‑edge LMs (Kalyan et al., 2021).

Consequently, the emergence of generative models (Bengio, 2014; Foster, 2019) has
enabled the generation of new data that closely resembles the training data. This innova‑
tion has significantly contributed to the development of language models capable of gener‑
ating human‑like text. Notable among these is the GPT‑3 model, renowned for its ability to
produce text resembling human language. It has found extensive utility in the creation of
chatbots and other conversational interfaces.

In recent times, we’ve witnessed remarkable advancements in NLP, particularly with
the advent of PLMs like BERT and GPT‑3. These models undergo extensive training on
massive text datasets, enabling them to generate text that mimics human language and
comprehend natural language in ways previously considered unattainable, as depicted in
Figure 2.3.

2.4.1  Pre‑trained Language Models

Among the initial endeavors to generate contextual embeddings for words through deep
neural networks, the ELMo model stood out. ELMo represents a PLM that employs
bidirectional LSTM‑type networks rather than relying on fixed word representa‑
tions. Subsequently, the introduction of BERT marked a significant milestone. BERT
is a bidirectional, pre‑trained model, trained on vast corpora, utilizing the transforma‑
tive Transformers architecture and attention mechanisms (Vaswani et al., 2017). These
pre‑trained contextual word representations have proven highly effective as versatile
semantic features, substantially enhancing the performance of NLP tasks. This break‑
through has spurred a wealth of subsequent research, establishing the paradigm of
pre‑training and fine‑tuning in learning. In line with this paradigm, a plethora of stud‑
ies on PLMs have emerged, introducing various architectures (e.g., GPT‑4) and refined
pre‑training strategies (Lialin et al., 2023).

Fundamentals    ◾    17

2.5  LARGE LANGUAGE MODELS
Research has consistently demonstrated that scaling up PLMs tends to enhance their perfor‑
mance across various tasks. To explore the limits of model capabilities, recent studies have
delved into the realm of larger PLMs, such as the 175‑billion‑parameter GPT‑3 and the mas‑
sive 540‑billion‑parameter PaLM. While the primary focus of scaling pertains to model size,
retaining similar architectures and task pre‑training, these expansive PLMs exhibit distinct
behaviors compared to their smaller counterparts, such as the 330‑million‑parameter BERT
and the 1.5‑billion‑parameter GPT‑2. These differences manifest as “emergent abilities,”
enabling large PLMs to tackle complex tasks. For instance, GPT‑3 can adeptly handle few‑shot
tasks through context learning (Wies et al., 2023), a feat that GPT‑2 struggles with. One prom‑
inent application of LLMs is exemplified in ChatGPT, which leverages GPT‑based LLMs to
facilitate human‑like dialogues and showcases remarkable conversational proficiency.

The success of LLMs largely stems from their capacity to capture intricate word depen‑
dencies within text (Mialon et al., 2023). For instance, in the sentence “The cat sat on the
mat,” the word “cat” depends on the word “the,” and the word “mat” depends on the word
“on.” In an LLM, these dependencies are meticulously encoded within the model parameters.
However, it is worth noting that, despite their remarkable advancements, LLMs have wit‑
nessed an exponential increase in the number of parameters they employ (Zhao et al., 2023).

2.6  WORD EMBEDDING MODELS
One crucial element in the previously discussed NLP learning approaches lies in the neces‑
sity to establish a measure of proximity or similarity between texts or words to effectively
address a given task. These tasks can encompass categorizing a document based on its
meaning, discerning the emotional tone within an opinion, identifying the resemblance
between a user’s query and potential documents retrievable by a search engine, and more.

FIGURE 2.3  LM training from large corpus or datasets.

18    ◾    Large Language Models

To illustrate this concept, let’s examine a snippet extracted from a pet‑related website:

Going for a walk with our furry friend should be a pleasant
experience for both of us, but sometimes it is only for him
because, when he barks at the sight of other animals, it becomes
very annoying.

Comprehending the essence of this passage serves as a fundamental input for various NLP
tasks. For instance, in sentiment classification, one might inquire, “What emotion does the
fragment convey regarding the furry friend?” (Agarwal et al., 2020).

Initially, addressing such a query might involve extracting specific syntactic relationships
via grammatical analysis, followed by automated reasoning using previously constructed
meaning representations for sentences, possibly employing first‑order logic. Nevertheless,
when dealing with a substantial volume of documents, as demonstrated in the example
above, this approach becomes exceedingly intricate, primarily due to the following reasons:

•	 Manual specification of language rules is necessary, which imposes limitations on
both robustness and computational efficiency.

•	 The task also demands human experts to define and specify basic grammatical rules
as well as semantic representation and reasoning mechanisms.

•	 Due to the inherent high dimensionality of natural language, any method relying
solely on these specifications would prove highly inefficient. Constant modifications
to linguistic rules would be required, rendering the approach unfeasible.

The example question above shares a common thread with other NLP tasks: the need for
meaningful text representation to facilitate subsequent inference. We must address two
key questions: how to efficiently represent the meaning of words or sentences within a
document, and how to perform operations or inferences on these representations.

One approach to tackling these questions involves the automatic learning of representa‑
tions based on the context in which words appear in texts. Context, in this context, refers to
the surrounding environment or window of words that shapes their meaning. A common
method for encoding such contexts is to employ straightforward vector representations,
such as word frequency models, for words and/or documents. Determining proximity
becomes relatively straightforward, involving the calculation of distances between these
representations. However, the potential number of contexts or features can grow exponen‑
tially, and not all of them contribute significantly to the representation. Therefore, some
form of dimensional reduction typically becomes necessary to efficiently encode represen‑
tations in a reduced number of dimensions.

To accomplish this goal, computational techniques are essential for converting
high‑dimensional vector representations into a lower‑dimensional model. This transfor‑
mation allows us to capture concealed or latent relationships between words and docu‑
ments. The outcome of this process, which generates low‑dimensional word vectors,

Fundamentals    ◾    19

is commonly referred to as distributed word representations or word embeddings. In
Figure 2.4, we illustrate the embeddings of certain words projected into lower‑dimensional
spaces. It becomes evident that this transformation unveils previously hidden proximity
relationships among words, which, when grouped, seem to reflect genuine linguistic asso‑
ciations more accurately.

Ideally, the learning of these vectors should closely mirror the proximity between words
used in similar contexts. The initial method capable of generating these word embeddings
was known as Latent Semantic Analysis (LSA) (Beck, 1988). LSA is an unsupervised learn‑
ing technique that leverages singular value decomposition to reconstruct an initial vec‑
tor space of words (or documents) into fewer dimensions, as discussed by Atkinson and
Palma (2018). This dimensionality reduction has a significant impact, as it diminishes the
influence of dimensions on the importance or weighting of each word within documents.
However, one limitation of LSA is its disregard for word context in generating these repre‑
sentations. Additionally, it lacks robustness, often yielding inconsistent results.

Subsequently, more efficient techniques for generating embeddings have emerged in the
field of AI. These techniques prominently feature the use of ANNs, which are trained to
predict and reconstruct the contextual relationships of words. This process involves tak‑
ing a corpus of texts as input and segmenting it into sentences, where words are analyzed
within their contextual framework. During training, the neural network learns to pre‑
dict the appropriate context for words, concurrently fine‑tuning the optimal feature vec‑
tors necessary for accurate predictions. As a result, the generated model encompasses
low‑dimensional vectors derived from the hidden layers of the neural network.

One of the most widely adopted models for embedding learning belongs to the Word2Vec
family of methods. To enhance computational efficiency, this approach employs a straight‑
forward neural network model referred to as a three‑layered feed‑forward neural network
(FNN) (Goldberg, 2017). This FNN model comprises the following layers:

	 1.	Input layer: This layer contains the encoded word windows extracted from a corpus.
The window’s size determines the number of words considered within the context.

FIGURE 2.4  Vectorial representation in low dimensions (word embeddings).

20    ◾    Large Language Models

	 2.	Hidden layer: Within this layer, the network learns the embeddings from the input
as vectors of varying dimensions, encapsulating the semantic relationships between
words.

	 3.	Output layer: The output layer is responsible for encoding the potential prediction
outcomes, which are computed using a SoftMax function. This function transforms
real values into probabilities, facilitating the comparison of predicted words.

In the realm of Word2Vec, two distinct methods come into play for learning embeddings:
Continuous Bag of Words (CBOW) and Skip Gram. CBOW, first and foremost, takes into
consideration the context of a word, specifically the words surrounding it within a desig‑
nated window. Its primary aim is to predict the missing word within that left context. In
contrast, Skip Gram focuses on the word at the center of attention and endeavors to predict
its right‑context.

When presented with the context of a word, the CBOW model must adeptly grasp the
likelihood that a word (token) within the vocabulary serves as a neighboring term to the one
initially provided. After successful training of the neural network, it becomes possible to
extract hidden layer weight vectors, each of a defined dimension or neurons. These vectors
are the very embodiment of the learned embeddings for each word within the vocabulary.

For a visual representation of the model’s architecture, depicting the transformation
from input to output using Word2Vec, refer to Figure 2.5:

The training process for this architecture unfolds as follows:

	 1.	The architecture begins with the creation of two random weight matrices. The first
matrix links the input layer (comprising words from a vocabulary V) to the hidden
layer, consisting of N neurons Wvn (matrix V * N). The second matrix, the context
matrix, establishes connections between the N neurons in the hidden layer and the

FIGURE 2.5  Word2Vec CBOW model architecture.

Fundamentals    ◾    21

output layer Wnv (matrix N * V). The output is again a vector of length V with the
elements (yi) to predict in the output layer or SoftMax. Both weight matrices have an
embedding for each vocabulary word when the training is finished.

	 2.	For each training sample, the following steps are executed:

	 a.	 Hidden Layer Output Generation: The hidden layer output is computed by tak‑
ing a weighted sum of the product of the input vectors and the weight matrix
Wvn. This product essentially selects the row in the matrix that corresponds to the
non‑zero elements of a vocabulary word. Consequently, the hidden layer operates
as a lookup table, producing the word vector associated with the input word. The
neurons in the hidden layer simply copy a weighted sum of the inputs to the next
layer, bypassing any intermediate activation function.

	 b.	 Output Layer Value Generation: The output layer of the model comprises
another vector of the same length as V and represents the likelihood of each
target word being a neighbor of the words encoded in the input. To predict each
value in the output layer (y), each weight vector of every neuron in that layer
(Vw0) is multiplied by the vector generated by the hidden layer (Vwi), yielding the
output values.

	 c.	 Computation for Output Neurons: As the above computation yields real values,
they must be transformed into probability values to determine the “best” output
word. To achieve this, a SoftMax‑like function is applied to the previously com‑
puted value (xi). This function is a generalization of the logistic (or exponential)
function, commonly employed to represent categorical functions.

	 Soft Max

 1∑
()=

=

x e

e
i

x

j

n x

i

j

In essence, it generates a probability distribution encompassing a set of potential out‑
comes, guaranteeing that each value falls within the range of 0 to 1.

To elaborate, the SoftMax function calculates the likelihood of an output word (wo) given
an input word (wi). It does this by taking the exponential of the output neuron’s result and
dividing it by the sum of the exponentials of all the output values (represented by V vec‑
tors). In other words:

	 |

 1∑
() =

=

P w w e

e
o i

V V

w

W
V V

wo wi
T

w wi
T

After generating the prediction for the optimal output word (denoted as “wo” in the pre‑
ceding stage), each prediction is then compared to the vector representing the true input
encoding. Typically, this input encoding is a one‑hot vector consisting of zeros with only

22    ◾    Large Language Models

one non‑zero value corresponding to the position of the word within the vocabulary. The
error is subsequently calculated as the difference between the output probability and the
input vector. Network weights are updated using gradient‑based back‑propagation meth‑
ods (Sherstinsky, 2020).

Following this, within a given context, the word prediction process unfolds in three
sequential steps:

	 1.	The system searches for the embedding of the target word.

	 2.	It computes the prediction for that word.

	 3.	Finally, the word is projected into the output vocabulary.

It’s important to note that the number of embedding dimensions or features corresponds to
“N,” which is also the number of neurons in the hidden layer.

One of the challenges associated with embedding models of this kind is their limited
ability to handle sequences and capture the contextual nuances in which words are used.
This limitation can potentially lead to changes in the embeddings, altering their intended
meaning. Nonetheless, it’s worth highlighting that certain fundamental concepts from
such models, such as simple feed‑forward networks and SoftMax functions, serve as foun‑
dational building blocks for more sophisticated methods.

2.7  RECURRENT NEURAL NETWORKS
When you read a sentence, your comprehension doesn’t reset with each new word. Instead,
you retain information from previous words to grasp the meaning of the word you’re
currently reading. This is why more conventional word embedding learning models like
Word2Vec fall short—they struggle to encapsulate the rich contextual information that
emerges from sequences of words within a text.

In tasks like language translation, where sentences consist of sequences of words, the
current observation relies on preceding observations. Consequently, these observations
are interdependent, and their independence cannot be assumed, as traditional machine
learning methods, including neural networks, do. These conventional approaches lack
the capability to retain historical information or recall past events, essentially having no
memory of prior occurrences. To address this limitation, RNNs emerged, introducing the
concept of memory within neural networks by establishing dependencies between data
points. As a result, RNNs (Graves, 2012) can be trained to capture context‑based concepts
and learn recurring patterns (Sherstinsky, 2020).

2.7.1  Simple Recurrent Neural Networks

RNNs achieve memory through a feedback loop within their cells, marking a fundamental
departure from traditional neural networks. This feedback loop facilitates the transmis‑
sion of information within a layer, a key distinction from feed‑forward networks, where
information exclusively flows between layers.

Fundamentals    ◾    23

In Figure 2.6, a portion of the RNN denoted as A takes in an input, xt, and generates an
associated value, ht. The presence of a cyclic structure facilitates the seamless transfer of
information between different time steps within the network.

RNNs are tasked with the challenge of determining which information is sufficiently
relevant to retain in memory. In order to accomplish this, various types of RNNs have
emerged, including the conventional RNN and the LSTM network. For instance, Figure 2.7
illustrates a generic network designed for translating from Spanish to English.

With each passing moment, the model receives a new word from the sentence that needs
translation into English. This iterative process continues for the remaining words, making
the translation task inherently recursive. Additionally, the model retains a memory of the
previously translated word to establish context for subsequent translations.

One notable departure from the conventional representation is that the model is no
longer depicted from left to right; instead, it is illustrated from bottom to top. Why is this
change made? We reserve the horizontal axis to signify the passage of time. In our con‑
text, a time step represents the unit of action or time during which the model performs a

FIGURE 2.6  A RNN with cycles.

FIGURE 2.7  A RNN to translate words from a Spanish text.

24    ◾    Large Language Models

specific task. In our case, each time step corresponds to one word. Consequently, when
translating a sentence consisting of five words, we will encounter five distinct time steps.

We begin by examining the initial layer, known as the input layer, connecting to a hid‑
den layer marked in green. In contrast to an FNN, where the neurons in the hidden layer
operate independently, in a RNN, the neuron from the previous time step is linked to the
subsequent neuron in the same layer (as indicated by the arrow). Consequently, as we move
forward in predictions, each neuron not only receives the current English word but also
retains context information. Over time, the neuron accumulates and utilizes this context,
evolving from mere memory into a dynamic state. Therefore, we refer to this transformed
information as the “state.” Eventually, we encounter an output layer responsible for execut‑
ing the translation task. The network adjusts its weights based on prediction errors using
the back‑propagation algorithm, allowing it to learn and improve over time.

To gain a deeper understanding, envision an RNN as a series of interconnected instances
of the same network, each passing information to its successor. Let’s consider the conse‑
quences of unfolding this cyclic structure within the RNN, as depicted in Figure 2.8.

The inherent nature of these strings reveals the close relationship between RNNs and
sequences, making this architecture a natural choice for handling such data types.

The most basic form of a RNN consists of a series of processing cells, with each one tak‑
ing in sequential inputs that incorporate xt. These cells retain a memory of the sequence
through their hidden states. The hidden state, denoted as ht, gets updated and is then
passed to the next cell, or as per the specific task requirements. This updated hidden state
can also be employed to generate predictions, as illustrated in Figure 2.9. The update of the
hidden state is governed by the formula:

	 tanh , , 1h W h x bt t t()[]= ∗ +−

Here, b represents the bias, and W is the vector of recurrent neuron weights. It’s worth not‑
ing that the tanh activation function is commonly used because it yields a zero‑centered
output, facilitating the subsequent process of error back‑propagation (Goldberg, 2017).

In a RNN, the output of a cell is also fed back as input into the same cell. Consequently,
each cell operates with inputs from both the past and the present, resulting in a form of
short‑term memory.

For a clearer understanding, let’s delve into the feedback loop of an RNN cell, as
depicted in Figure 2.10. The length of the unrolled cell corresponds to the number of

FIGURE 2.8  An unfolded RNN.

Fundamentals    ◾    25

time steps in the input sequence. For instance, if the sequence comprises three words, the
network unfolds into three interconnected subnetworks. Conceptually, this represents
the network’s memory, capturing information from prior steps. In contrast, traditional
neural networks employ distinct parameters at each layer, whereas an RNN employs the
same parameters across all layers. This parameter sharing indicates that the network is
performing the same task with different inputs, thereby reducing the total number of
learnable parameters.

We can observe how past observations traverse through the deployed network as a hid‑
den state. In each cell, we blend the input from the current time step, denoted as x (current
value), with the hidden state h from the previous time step (past value), and a bias term b.
We combine these with the weights of the recurrent neuron (Wh) and the input neuron
(Wx). Subsequently, these values are subjected to an activation function, which determines
the hidden state for the current time step. Therefore, for instance, employing an activation
function f (such as Sigmoid, TANH, or ReLU), the current state is computed as follows:

FIGURE 2.9  Operation of a RNN cell.

FIGURE 2.10  Input transfer to each cell of the RNN.

26    ◾    Large Language Models

	 , , , , 1 () ()= = + ++h f x h w w b f w x w h bt t t x h h x t h t h

Here, ht‑1 represents the previous state, and xt signifies the current input. The output y at
time t, with weight Wy, is computed as follows:

	 ,() ()= = ⋅ +y f h w f w h bt t y y t y

To train an RNN, a loss function, typically cross‑entropy (Baron, 2019), is essential, often
accompanied by a SoftMax function. This loss function can be calculated as follows:

	 ln()= −L pc

where pc represents the probability of the RNN’s prediction for the correct class (positive
or negative). For example, if the RNN predicts a text as positive with a 95% probability,
the loss would be: L = −ln(0.95) = 0.051. Subsequently, training the RNN involves utiliz‑
ing gradient descent algorithms to minimize this loss, such as Back‑Propagation Through
Time (Ekman, 2022).

One of the advantages of an RNN lies in its ability to process sequential data, discern
patterns in historical data, and accommodate inputs of varying lengths, owing to its
short‑term memory. However, RNNs grapple with the issue of vanishing gradient descent.
This occurs when gradients, used to update the weights during back‑propagation, become
exceedingly small. Consequently, multiplying weights by gradients close to zero hinders
the network from learning new weight patterns. In practical terms, this implies that RNNs
tend to forget information from longer data sequences.

In a broad context, RNNs find applications in various prediction scenarios: one‑to‑many
(e.g., generating a textual description of an image), many‑to‑one (like classifying text
into specific categories), and many‑to‑many (e.g., language translation from English to
Spanish). To tackle these diverse challenges, several RNN variations have emerged, includ‑
ing Bidirectional Recurrent Neural Networks, Gated Recurrent Units, and LSTM networks.

2.7.2  Long Short‑Term Memory Networks

An LSTM network, often referred to as LSTM, stands out as a specialized type of RNN
designed to address a critical issue plaguing simple RNNs: the vanishing gradient problem.
This problem arises due to the loss of information over extended periods, a consequence of
long‑term dependencies (Bohnet et al., 2018).

LSTMs exhibit a chain‑like structure, but they differ from basic RNNs by employing
four distinct layers that interact in a unique manner, as depicted in Figure 2.11.

At the heart of the LSTM lies the cell state (c), which traverses the entire chain, facili‑
tating the seamless flow of information with minimal linear transformations through
three crucial gates. Consequently, the cell state serves as the repository for the network’s
long‑term memory.

Information flows through three gates: the forget gate, the input gate, and the output
gate, illustrated in Figure 2.12. Each of these gates consists of a sigmoid layer paired with
an element‑wise multiplication operation (Liu and Perez, 2017).

Fundamentals    ◾    27

The sigmoid layer serves a crucial role in generating values between 0 and 1, effectively
regulating the passage of information. A value of 0 signifies “do not allow through,” while
a value of 1 denotes “let everything pass.” In this manner, these gates function as filters,
controlling the flow of data and determining what information to retain or discard:

•	 Forget gate: The forget gate determines which portion of the long‑term memory
should be preserved. It employs a sigmoid function to assess the significance of the
cell state, Ct‑1. The resulting output ranges from 0 to 1, indicating the extent of infor‑
mation retention. A value of 0 signifies no information retention, while 1 implies the
retention of all cell state information (Figure 2.13).

The output is determined by combining the current input x, the hidden state h
from the previous time instant, a bias b, and the respective weights W:

	 f W x W h b(), ,h 1σ= + +−t f x t f t f

FIGURE 2.11  A LSTM module with four interaction layers.

FIGURE 2.12  Information flow in a LSTM cell.

28    ◾    Large Language Models

•	 Input gate: The input gate decides which information should be incorporated into
the cell state, thereby influencing long‑term memory. It employs a sigmoid layer to
determine which values are eligible for updates (Figure 2.14).

	 xi W W h b(), , 1σ= + +−t i x t i h t i

Now we must update the previous cell state, Ct − 1, in the new cell state, Ct. To do this,
we multiply the previous state by ft, forgetting the things we decided to forget before,
and then adding it + Ct to it.

	 tanh ,1C W h x bt c t t C()[]= ∗ +−

These newly computed candidate values are scaled based on our earlier decisions
regarding the importance of each state value. In the context of a language model, this
is where we decide which information from previous words to retain and which to
discard, as determined in the preceding steps (Figure 2.15).

FIGURE 2.13  A forget gate.

FIGURE 2.14  An input gate.

Fundamentals    ◾    29

•	 Output gate: This component plays a crucial role in determining which aspects of
the cell state contribute to the final output. It is responsible for managing short‑term
memory based on the cell state, albeit in a filtered manner. To achieve this, we employ
a sigmoid layer that determines which portions of the cell state we want to incorpo‑
rate. Subsequently, the cell state is passed through a hyperbolic tangent (tanh) func‑
tion to confine its values within the range of −1 to 1. This transformed state is then
multiplied by the output of the sigmoid gate, allowing us to selectively generate the
desired components (Figure 2.16).

Following this, a tanh layer generates a vector containing new candidate values
(Ct) that could potentially be added to the cell state. These components are combined
to produce an updated cell state:

	 o W x W h b(), , 1σ= + +−t o x t o h t o

As depicted, the three gates are represented by the same underlying function, with only
variations in weights and biases. The cell state is updated by the interplay of the forgetting
gate and the input gate:

FIGURE 2.15  The flow from the input gate to the output gate.

FIGURE 2.16  Output gate.

30    ◾    Large Language Models

	  c f c i h(tanh())1 1= +− −t t t t t

In the first term of the equation, we determine the extent of long‑term memory retention,
while the second term represents the incorporation of new information into the cell state:

	 h o ctanh()=t t t

The hidden state at the current time step is determined by the output gate’s output in con‑
junction with a tanh function.

One of the primary advantages of LSTM lies in its ability to capture both long‑term and
short‑term patterns within a sequence. However, it’s important to note that LSTMs are
computationally more intensive than traditional RNNs, which can result in longer train‑
ing times. Additionally, since LSTMs employ the Back‑Propagation Through Time algo‑
rithm for weight updates, they are susceptible to issues associated with back‑propagation,
such as the vanishing gradient problem and dead ReLU units.

2.8  AUTOENCODERS
Imagine you’re tasked with developing a method to translate English text into Chinese.
Creating this algorithm would require extensive reliance on historical English texts that
have been translated into Chinese, as these texts contain valuable links between the
languages.

Each observation or feature within the text conveys information about the input. The
machine learning method responsible for predicting the output (each word in the trans‑
lated text) must grasp the correlations between these features and the various words in the
output text.

However, many machine learning algorithms encounter issues when faced with noisy
or inconsistent data. This problem arises due to their limited depth of understanding of
the data.

One potential solution to this challenge lies in creating a more abstract representation
of the data. For many tasks, it’s often impossible to determine which features should be
extracted. To tackle this, we can present the data to the computer and let it autonomously
learn the representation. This task is known as representation learning or RL (Achille and
Soatto, 2017). This process transforms high‑dimensional data, such as input texts, into
low‑dimensional representations, offering several advantages:

•	 It simplifies the detection of patterns and anomalies.

•	 It enhances our comprehension of overall data behavior.

•	 It reduces data complexity to filter out noise, making it particularly valuable for
supervised machine learning techniques.

In generating these representations, RL focuses on the properties learned by the layers
of a neural network, often referred to as “activations.” Importantly, these representations

Fundamentals    ◾    31

remain independent of the specific optimization process used. To achieve a strong repre‑
sentation, it’s typically crucial to eliminate two factors prevalent in data distributions:

	 1.	Variance: This can be likened to the sensitivity that could potentially result in dra‑
matic output variations. Any model we construct must exhibit resilience to variance.

	 2.	Entanglement: This refers to how one embedding connects or correlates with other
embeddings. Such intricate connections make the data highly complex and challeng‑
ing to decipher. To mitigate this, we should pinpoint variables where relationships are
simpler to understand.

If none of the conventional architectures explicitly enforce invariance and incentivize dis‑
entanglement (Achille and Soatto, 2017), how can these crucial properties spontaneously
emerge within deep learning networks trained through simple optimization?

To address this question, we must tackle two fundamental issues:

	 1.	Utilizing information theory, we can demonstrate that achieving invariance in deep
neural networks, often referred to as “many‑layered” networks, is equivalent to cul‑
tivating a minimal representation within the computational process. This can be
accomplished by stacking layers in the network and introducing controlled noise into
the computation.

	 2.	Employing empirical loss information decomposition, we can establish that mitigat‑
ing overfitting, a common challenge in deep learning, can be achieved by constrain‑
ing the information content stored within the neural network’s weights.

2.8.1  The Information Bottleneck

The concept of an information bottleneck compels the extraction of relevant information
by compressing the volume of information that can traverse the entire network. This neces‑
sitates the learning of a compressed representation of the input data.

This compression not only reduces the dimensionality of the data but also simplifies its
complexity. Consequently, a neural network can eliminate irrelevant details from noisy
input data, akin to squeezing information through a bottleneck, leaving only the features
most pertinent to general concepts intact.

2.8.2  Latent Variables

A latent variable is a random variable that remains hidden from direct observation but
plays a pivotal role in determining the distribution of data. These latent variables offer us a
foundational, low‑level representation of high‑dimensional data, essentially providing an
abstract depiction of data distribution.

Now, why do we need latent variables?
All machine learning methods must solve the problem of learning probability distri‑

butions p(x). These distributions are restricted to a limited set of high‑dimensional data
(dataset) generated from them.

32    ◾    Large Language Models

For instance, consider the task of learning the probability distribution of texts for trans‑
lation. It entails defining a distribution capable of capturing intricate correlations among
the words composing each text. Directly modeling this distribution is a formidable and
laborious task, even with virtually limitless time at hand. Here’s where latent (unobserved)
variables come into play. We can introduce a latent variable z and define a conditional
distribution, p(x| z), for the data. In the context of text translation, z could encapsulate
hidden representations of word features. In simpler terms, models that employ these latent
variables enable a generative process that mirrors the data generation process. This is com‑
monly referred to as a generative model.

This implies that when we aim to generate a new data point, we first obtain a sample
z ~ p(z) and subsequently use it to draw a new observation x from the conditional distribu‑
tion p(x|z). Simultaneously, we can assess whether the model effectively approximates the
data distribution p(x). On the other hand, mathematical models featuring latent variables
are, by their very definition, latent variable models. These latent variables possess signifi‑
cantly lower dimensions than the observed input vectors, resulting in a compressed repre‑
sentation of the data.

In reinforcement learning (RL), these principles find application in various
methods, including Multi‑Layer Perceptrons, CNN, and Autoencoders (Ekman, 2022).
However, autoencoders gain paramount importance in contemporary language models,
serving as the foundational concept for the transformers architectures discussed later
(Rothman, 2022).

Autoencoders, which are unsupervised learning methods rooted in neural networks,
can be effectively trained for reinforcement learning tasks. They achieve this by employ‑
ing a combination of an encoder and a decoder, as depicted in Figure 2.17. Typically, the
training process for autoencoders involves learning algorithms that compare the network
activation of the input with the activation of the reconstructed input.

FIGURE 2.17  Autoencoder architecture.

Fundamentals    ◾    33

While autoencoders are commonly used for tasks such as dimensionality reduction and
feature learning, they also possess the capability to construct generative models. These
models have the unique ability to generate new data points. This is accomplished by com‑
pressing the information into an “information bottleneck,” where only the most relevant
features are extracted from the entire dataset. These extracted representations can then be
utilized to generate fresh data.

In simpler terms, an encoder serves as a function responsible for reducing the input into
distinct representations. Subsequently, a decoder, also a function, takes these learned rep‑
resentations from the encoder and transforms them back into the original format.

2.8.3  Autoencoder Architecture

Now, let’s delve into the architecture of an autoencoder, which despite having various
designs, shares three fundamental components, as illustrated in Figure 2.17:

	 1.	Encoder: This component is responsible for compressing the input information. It
achieves this by stacking layers of neurons, reducing the number of neurons used in
each layer.

	 2.	Latent Space (or “Information Bottleneck”): This represents the minimal space
within the neural network where the information is encoded, essentially serving as a
compressed space).

	 3.	Decoder: The decoder’s role is to allow the network to decompress the representations
and reconstruct the data from its encoded form. The output is then compared with
the true values.

An ideal autoencoder model must strike a delicate balance:

	 1.	It should be sensitive enough to the inputs to generate accurate reconstructions.

	 2.	It should be insensitive enough to inputs that the model does not intend to memorize or
overfit from during the training.

This equilibrium compels the model to retain solely the essential data variations required
for input reconstruction, avoiding the entanglement of redundancies within the input. In
most instances, this process entails formulating a loss function that consists of two key
components: one term encourages the model’s responsiveness to inputs [i.e., the recon‑
struction loss, denoted as , ˆ() x x], and a second term discourages memorization or over‑
fitting (typically achieved through the inclusion of a regularizer).

	 , ˆ()+ x x regularizer

Typically, a scaling parameter is introduced, allowing for the fine‑tuning of the trade‑off
between these two objectives.

34    ◾    Large Language Models

2.8.4  Types of Autoencoders

There are different structures that autoencoders can adopt. The most successful ones
include the following:

	 a.	Incomplete Autoencoder:
This model limits the number of nodes present in the hidden layers of the network,

which restricts the amount of information that can traverse the network. By penal‑
izing the network according to the reconstruction error, the model can learn the most
important features of the input data and how to best reconstruct the original input
from an encoded state. Ideally, this encoding will learn and describe the latent fea‑
tures of the input data (Figure 2.18).

Since neural networks are capable of learning nonlinear relationships, this can be
seen as a more powerful nonlinear generalization of principal component analysis
(Baron, 2019). While principal component analysis attempts to discover a hyperplane
in low dimensions that describes the original data, an autoencoder is able to learn a
complex nonlinear surface that can be used to describe observations in a low‑dimen‑
sional space and decoded correspondingly in the original input space.

FIGURE 2.18  Architecture of an incomplete Autoencoder.

Fundamentals    ◾    35

	 b.	Sparse Autoencoder:
This model limits the number of neurons in the hidden layer that are activated to

force the model to learn more complex patterns. This is achieved through the sparsity
constraint, where a term is added to the loss function that forces the autoencoder to
decrease the number of active neurons during training.

For any given observation, the network is incentivized to learn an encoder and a
decoder that only rely on a few neurons. It is important to note that the individual
nodes of a trained model that are activated are data dependent, so different inputs
will produce activations of different nodes throughout the network (Figure 2.19).

A consequence of this phenomenon is that the network becomes sensitive to spe‑
cific features of the input data through its hidden layer nodes. Unlike an incomplete
autoencoder, which employs the entire network for each observation, a sparse autoen‑
coder is compelled to selectively activate certain network regions based on the input
data. Consequently, this limitation curtails the network’s capacity to memorize input
data while preserving its ability to extract data features.

This distinction empowers us to address latent space representation and net‑
work regularization as separate entities. We can opt for a particular latent space

FIGURE 2.19  Architecture of a sparse Autoencoder.

36    ◾    Large Language Models

representation (e.g., embeddings) that aligns with the data context while enforcing
regularization through a sparsity constraint.

There are two approaches to impose this sparsity constraint, involving the mea‑
surement of hidden layer activations for each training batch and incorporating a loss
function to penalize excessive activations: L1 regularization and KL (Kullback‑Leibler)
divergence (Ekman, 2022).

	 c.	Denoising Autoencoder:
This model introduces subtle data corruption, where the uncorrupted data serves

as the target output. This compels the network to identify intricate patterns by intro‑
ducing noise from a random Gaussian distribution, thus modifying the input data to
emphasize pertinent data patterns (Figure 2.20).

Through this approach, the model learns a vector field that transforms the input
data into a concentrated, low‑dimensional region. If this region accurately represents
the natural data, the model effectively mitigates the added noise.

It’s essential to acknowledge that this vector field predominantly performs well within
regions observed during training. In regions far from the natural data distribution, the
reconstruction error can be substantial and may not align with the true distribution.

	 d.	Variational Autoencoder:
A Variational Autoencoder, also known as a VAE, is a generative model designed

for learning to represent input data in a compressed form, such as latent space or
embeddings. To achieve this, it employs variational inference methods to infer a con‑
tinuous distribution of the training data.

When working with generative models, the goal often goes beyond simply generat‑
ing random outputs resembling the training data. Instead, the aim is to explore varia‑
tions in the existing data in a specific and controlled manner. This is where VAEs
outshine other available methods.

FIGURE 2.20  Architecture of a denoising Autoencoder.

Fundamentals    ◾    37

VAEs possess a distinctive and crucial characteristic: their latent spaces are inher‑
ently continuous, enabling effortless random sampling and interpolation. This is
accomplished by the encoder producing two vectors of size “n”: a vector of means rep‑
resented as “μ” and a vector of standard deviations represented as “σ.” These parame‑
ters form a Gaussian distribution, from which the decoder can draw samples to create
the latent space. Consequently, the decoder can generate synthetic data that closely
resembles the actual data.

These parameters represent a vector of random variables of length “n,” where the
“i‑th” element of “μ” and “σ” corresponds to the mean and standard deviation of
the “i‑th” variable, “Xi.” Consequently, stochastic sampling is employed to obtain the
sample coding, which is subsequently passed to the decoder.

This stochastic generation implies that even for the same input, with identical
mean and standard deviation values, the actual encoding will exhibit slight varia‑
tions on each pass due to the sampling process. Essentially, the vector of means dic‑
tates the central point where the encoding of an input should be positioned, while
the standard deviation controls the extent to which the encoding can deviate from
the mean. Since the encodings are randomly generated from anywhere within the
distribution, the decoder learns that not only does a single point in latent space cor‑
respond to a sample of that class, but all nearby points also relate to it. This empowers
the decoder to decode not only unique and specific encodings in the latent space but
also those that exhibit subtle variations, as the decoder is exposed to a spectrum of
encoding variations for the same input during training.

To ensure that embeddings are as close to each other as possible for similar words,
the loss function introduces KL divergence. KL divergence quantifies the dissimilarity
between two probability distributions, with minimizing it implying that the param‑
eters of the probability distribution (μ and σ) should resemble the target distribution:

	 log() 12 2

1
∑σ µ σ+ − −

=

i i i

i

n

For a VAE, the KL loss equals the sum of all KL divergences between the components
Xi ~ N(μi, σi²) in “X” and the standard normal distribution. As evident, this is mini‑
mized when “μi = 0” and “σi = 1.”

In essence, this loss incentivizes the encoder to evenly distribute all encodings
around the center of the latent space, penalizing any attempts to group them sepa‑
rately in specific regions away from the origin

2.9  GENERATIVE ADVERSARIAL NETWORKS
While an autoencoder excels in data compression and precise reconstruction of original
inputs, there are numerous scenarios and applications that require the generation of realis‑
tic data, such as images, that are indistinguishable from real samples. Achieving this real‑
ism increases diversity and thereby augments the available training data.

38    ◾    Large Language Models

One approach to tackle such a generative task involves leveraging a model known as a
Generative Adversarial Network (GAN). GANs belong to the formidable realm of neural
networks and are employed for generative modeling through unsupervised learning, as
highlighted by key references such as Bengio (2014) and Babcock and Bali (2021). At its
core, a GAN consists of a dynamic interplay between two neural network models engaged
in a competitive dance, capable of comprehending, capturing, and replicating variations
within a dataset. These two networks assume the roles of the generator and the discrimina‑
tor, each with its own unique function. The generator, typically implemented as a CNN,
takes random noise as input and crafts an image that aligns with the desired domain. In
contrast, the discriminator’s role is to discern whether the generated data, such as an image,
is authentic or not. In other words, it evaluates whether the output genuinely belongs to the
intended distribution or not.

This framework not only facilitates the generation of synthetic data but also enhances
the performance of learning models as a data augmentation technique, reducing general‑
ization errors. It achieves this by generating new, artificial yet plausible examples from the
input problem domain on which the model is trained.

In theory, GANs operate within a framework rooted in game theory. Within this frame‑
work, a generating neural network engages in a strategic competition with an adversarial
network. The role of the generator network is to produce samples directly, while its coun‑
terpart, the discriminative network, strives to distinguish between samples originating
from the training data and those generated by the generator (as depicted in Figure 2.21).

FIGURE 2.21  Composition of a GAN.

Fundamentals    ◾    39

In contrast to autoencoders, GANs exhibit the remarkable ability to generate high‑quality,
realistic content. GANs leverage their adversarial architecture, enabling the generator
network to learn and produce synthetic samples that closely resemble the patterns found
in the original training data. This inherent capability makes GANs well‑suited for a wide
array of tasks, including text and image generation, among others. Unlike autoencoders,
which often generate results closely aligned with the training data, GANs have the unique
capacity to learn and generate samples that faithfully capture the underlying distribution
of the original dataset.

2.9.1  The Generative Model

In the realm of generative models, a pivotal role is played by the generative model itself.
This model takes as its input a random vector of fixed length, a vector drawn randomly
from a Gaussian distribution, and then works its magic to generate a sample within the
defined domain (as illustrated in Figure 2.22). It’s important to note that this multidi‑
mensional vector space, arising from the generative process, eventually houses points that
correspond to the problem domain. In essence, this space serves as a compressed represen‑
tation of the data distribution.

Within this vector space lie latent (hidden) variables, which carry significance for the
domain but remain elusive to direct observation.

2.9.2  The Discriminative Model

In contrast, the discriminative model takes an example from the domain, whether it’s real
or generated, and plays a pivotal role in predicting a binary class label: either real or fake
(as depicted in Figure 2.23). Real examples are drawn from the training dataset, while the
generated instances are the handiwork of the generator model. The discriminator func‑
tions as a conventional and well‑understood classification model.

Following the training phase, the discriminator model’s role concludes, as our primary
interest lies in the generator model. It’s worth noting that the generator, having honed
its ability to extract features effectively from domain examples, can sometimes find fur‑
ther utility. In particular, its feature extraction layers can be employed in transfer learning
applications that involve similar or identical input data.	

FIGURE 2.22  The generative component of a GAN.

40    ◾    Large Language Models

2.10  ATTENTION MODELS
Generative models, such as autoencoders or GANs, have proven to be highly efficient in
generating synthetic data from real samples. However, they often lack the ability to focus
on the most relevant features when processing input samples or generating output. In
simpler terms, these approaches tend to overlook specific details, which can significantly
impact the quality of training and the generated samples. To address this issue, incorporat‑
ing mechanisms that allow these networks to concentrate on the pertinent aspects of the
data becomes essential.

Have you ever wondered how you can have a meaningful conversation with a friend at
a noisy party, amidst a cacophony of voices? This scenario presents what is known as the
“cocktail party problem.” Most of our cognitive processes naturally prioritize attention to
a singular activity at any given moment (Bermúdez, 2020). This ability to direct our focus
toward specific information while filtering out distractions extends to various complex
cognitive tasks, such as deciphering crucial words in a text for translation or identifying
the most critical elements in an image.

The core cognitive processes that help us solve the “cocktail party problem” are attention
and short‑term memory. Being able to decode information by paying attention to fragments
rather than processing the entire data stream in one go enables us to respond in real‑time.

In the realm of computational systems, challenges abound in processing and storage.
Computers operate in a binary world of 0s and 1s, yet the concept of attention, as under‑
stood by humans, can be incorporated into them through computational techniques.
Consequently, attention and memory have emerged as pivotal components in recent
advancements in deep learning methodologies (Bokka et al., 2019).

Within this context, attention mechanisms serve as computational tools that enhance
the relevance of specific components. Typically, these mechanisms zero in on elements
within a network’s architecture, facilitating the management and quantification of inter‑
dependencies among input elements, referred to as self‑attention, or between input and
output elements, termed general attention (Vaswani et al., 2017).

This mirrors the visual attention mechanism employed by the human brain. For instance,
when we observe an image, our brain initially focuses on a specific region with high‑reso‑
lution detail while perceiving surrounding areas with lower resolution. As our brain com‑
prehends the image, it dynamically adjusts the focal point to encompass all aspects fully.

FIGURE 2.23  The discriminative component of a GAN.

Fundamentals    ◾    41

Attentional models assess inputs to identify the most crucial components and assign
them weighted importance, often referred to as attentional weights. For instance, in the
context of translating a sentence from one language to another, the model highlights and
assigns higher weights to the most vital words, enhancing the accuracy of the output
prediction.

Initially designed to enhance machine vision and autoencoder‑based neural machine
translation techniques, attention models have significantly contributed to the field of NLP.
They have facilitated the creation of fixed‑length vector representations, improving the
performance of various tasks such as translation and comprehension. This integration of
attention mechanisms in NLP has catalyzed breakthroughs, giving rise to Transformer
architectures and subsequently, LLMs like BERT and GPT, among others.

Traditionally, NLP applications employing neural models relied on encoder/decoder
architectures, often based on RNN or LSTM. However, a notable drawback of this approach
is the challenge posed by long‑range dependencies. When the encoder attempts to summa‑
rize longer sentences, it often produces subpar summaries, leading to lower translation
quality. This problem is called long‑range dependence of an RNN/LSTM.

Consider, for instance, the task of predicting the next word in a sentence where the
context lies a few words behind: “Despite being originally from Italy, since he was raised in
Croatia, he feels more comfortable speaking Croatian.” In such cases, when predicting the
word “Croatian,” the words “raised” and “Croatia” should carry more weight, while “Italy,”
although the name of another country, should be less influential. Is there a way to preserve
all relevant information in input sentences while creating the context vector?

Thus, at any instant that the model generates a sentence, it searches for a set of positions
in the hidden states of the encoder where the most relevant information is available. This
mechanism is called “attention” in deep learning (Deng and Liu, 2018).

2.10.1  Encoder‑Decoder Paradigm

It’s worth noting that the autoencoders we’ve encountered so far are essentially special‑
ized instances of encoder‑decoder models, where both input and output mirror each other.
These models belong to a family that excels at transforming data points from one domain
to another via a two‑stage network. The encoder, embodied by the encoding function
z = f(x), efficiently compresses the input into a latent space representation. Subsequently,
the decoder, represented as y = g(z), uses this representation to predict the output

The encoder‑decoder architecture is typically constructed using RNNs and finds popu‑
larity in diverse applications such as machine translation and sequence‑to‑sequence pre‑
diction, often referred to as Seq2Seq. An advantage of this architecture lies in its ability to
separate the encoder from the decoder, accommodating varying sequence lengths.

Models with varying sequence lengths find applications in tasks like sentiment analysis,
where a sequence of words yields a numeric output, or in image caption generation, where
an image input generates a sequence of words.

In Figure 2.24, we observe an encoder‑decoder model designed for machine translation.
The encoder, depicted as a blue rectangle, consists of an input layer and an LSTM. This
encoder receives a Spanish sentence and produces an embedding vector, which encapsulates

42    ◾    Large Language Models

the essence of the complete sentence in its hidden state at the final LSTM time step. The
decoder, in turn, takes this hidden state as input and generates the English translation in
the form of a sequence of words.

However, one limitation of this architecture is evident as sentence length increases. The
model struggles to capture all the nuances, especially in longer sentences. It tends to forget
portions of the sentence, mainly because it relies solely on the representation at the end
of the encoder. But different segments of the input sequence might hold more relevance at
different stages of generating the output sequence. This is where the concept of attention
comes into play.

2.10.2  Attention to Sequence Models

Consider the scenario where you need to translate an English text sequence into French.
Figure 2.25 illustrates a heatmap that showcases where a model directs its attention during
sentence translation.

The horizontal axis represents the input English sentence, while the vertical axis rep‑
resents the generated French translation. Brighter areas signify higher attention. It’s note‑
worthy that sometimes a translated word attracts attention from several English words.

For instance, to generate the word “accord,” the model primarily focuses on “agreement.”
The power of attention becomes evident when the model translates an entire sentence like
“European Economic Area” into “zone economique européenne.” English employs adjec‑
tives before nouns, whereas French follows the opposite pattern. Hence, the model shifts
its attention to words that appear after. This highlights how translation relies not just on
individual words but also their contextual placement within the sentence.

In this context, attention transitions from the encoder to the decoder. The decoder gener‑
ates translated words sequentially, with each output word influenced by all input words but
with varying degrees of attention. The idea is to capture these varying weights of attention.

Take, for instance, the sentence “a student in the class asked.” Figure 2.26 reveals where
the model concentrates its attention when predicting the next word.

FIGURE 2.24  An illustration of an encoder‑decoder model for translation.

Fundamentals    ◾    43

The lines, when read from left to right, illustrate where a model directs its attention
while predicting the next word in a sentence. The intensity of these lines signifies the
strength or weight of this attention. For instance, when the model anticipates the next word
after “asked,” it places significant emphasis on “student.” This emphasis is entirely logical,
as identifying the entity or subject that is “asking” is pivotal to predicting what follows.
In linguistic terms, the model zeroes in on the head of the noun phrase “a student in the
class.” In this manner, a plethora of such linguistic patterns can be effectively captured.

The critical question here is how the model determines where to focus its attention. This
is determined through the calculation of an alignment score, which quantifies the attention
each input word should receive. The shifting of attention profoundly affects the interpreta‑
tion and, consequently, the results. Unlike traditional sequence models with fixed‑length
context vectors that struggle with longer input sequences, attention mechanisms provide
a solution.

Consider the sentence “Where is Wally?” needing translation into Italian as “Dove è
Wally?” Figure 2.27 demonstrates how the encoder processes words incrementally, produc‑
ing multiple hidden states.

FIGURE 2.25  Attention focus in the translation of a sentence.

FIGURE 2.26  Attention in an input sentence.

44    ◾    Large Language Models

With an attention mechanism, all these hidden states are conveyed to the decoder, as
opposed to only the final one (Figure 2.28).

Now, how does the decoder leverage these varying quantities of hidden states, depend‑
ing on the input sequence length? This is where attention mechanisms work (Vaswani
et al, 2017).

Attention generates a fixed‑length context vector, achieved through weighted summa‑
tion of encoder hidden states. Each weight reflects the attention directed toward a specific
context when processing a particular input word (Figure 2.29).

It’s essential to note that the attention mechanism operates just once within the
model, serving as the vital link between the encoder and decoder. It takes the matrix of
encoder hidden states and determines where to focus using alignment scores or weights.

FIGURE 2.27  An encoder‑decoder architecture with three hidden states for the “Where’s Wally?”
sequence.

FIGURE 2.28  A decoder that produces the first output token, considering the hidden states of the
encoder.

Fundamentals    ◾    45

Essentially, attention condenses a list of hidden states into a single context vector, taking
into account the current word being processed.

A simplified view of this process is depicted in Figure 2.30, where the hidden states and
the previously predicted word contribute to the creation of a new context vector, guided by
the attention focus.	

In Seq2Seq models, each decoder token scrutinizes every encoder symbol to ascertain
which input tokens demand more attention through weighted averages of their hidden
states H = [h1 ht . .ht]T.

To integrate attention into Seq2Seq models, three steps are typically followed:

	 1.	To calculate a scalar attention score (weight) for each pair of hidden decoder and
encoder states (si, hj ) to gauge the relevance of encoder token j to decoder token i.

FIGURE 2.29  A decoder that generates the first token from context vectors.

FIGURE 2.30  The attention mechanism from hidden states to context vector.

46    ◾    Large Language Models

	 2.	To utilize a SoftMax function to convert all attention scores into attention weights,
forming a probability distribution reflecting the relevance of decoder and encoder
token pairs.

	 3.	To compute the weighted sum of encoder hidden states with attention weights and
supply this to the next decoder cell.

In our specific case, the attention or alignment score is represented as the scaled dot
product:

	 Score ,() =s h
s h

di j
i
T

j

h

In the context of this discussion, dh represents the dimension (embedding size) of hj and si.
It’s worth noting that in the numerator, we perform a dot product, effectively measur‑

ing the cosine similarity between si and hj. Meanwhile, the denominator serves as a simple
normalization factor. Consequently, the attention mechanism adjusts the context vectors
as follows:

	 Attention , SoftMax Score ,s H s h Hi i j()()() = ∗

Remember that the SoftMax function is employed to normalize scores, transforming them
into probabilities within the range of 0 to 1. Essentially, it signifies multiplying a scalar
(SoftMax) by a vector (H), resulting in a modified vector that maintains the same direction
but with a different magnitude (i.e., length).

In general, various types of attention models exist, each mapping inputs to outputs
differently. Typically, the hidden states at each step can be visualized as matrices, with
cells indicating whether the hidden state from processing the left word influences decod‑
ing the current word. This involves different components such as fonts, encoders, decod‑
ers, and weights. Common types of attention models include global store attention and
self‑attention.

2.10.2.1  Global Attention Model
This model aggregates input from all encoder and decoder states before evaluating the cur‑
rent state to generate the context vector, as depicted in Figure 2.31.

This approach uses every encoder step and previous decoder step to compute attention
weights or alignment weights. Subsequently, each encoder step output is adjusted by these
alignment weights to determine the context value, enabling the RNN cell to produce the
decoder output.	

It’s important to emphasize that the alignment score is the crux of the attention mecha‑
nism as it quantifies how much attention the decoder should allocate to each encoder out‑
put when generating a new output.

Fundamentals    ◾    47

The calculation of attention involves a weighted sum. A feed‑forward network (FNN)
calculates specific weights, considering the corresponding hidden state and the input word
(token) being read by the model at that moment. This computation generally comprises
three steps:

	 1.	Encoding: The encoder encodes the input sequence. Each encoded time instant is
assessed using the target decoding, and the scores are normalized using a SoftMax
function. Typically, four possible evaluation functions can be used to produce a
sequence of the same length (hs).

	 2.	Decoding: The decoder interprets the encoding, generating a target decoding (ht).

	 3.	Alignment: Each encoded time instant is assessed using the target decoding, and the
scores are normalized using a SoftMax function. Typically, four possible evaluation
functions can be used:

	 a.	 Dot product between the target decoding and the source encoding.

	 b.	 Scalar product between the target decoding and the weighted source coding.

	 c.	 Concatenation of neural network processing of the source coding and the target
decoding.

	 d.	 Softmax of the weighted target decoding.

	 4.	Context vector: The context vector is formed by applying the alignment weights to
the source coding through a weighted sum.

	 5.	Final decoding: the context vector and target decoding are concatenated, weighted,
and transferred using a tanh function to obtain the final decoding.

The resulting encoding is passed through a SoftMax function to predict the probability
of the next word in the sequence (yt). Figure 2.32 illustrates the generation of alignment,
information flow between the hidden and attention layers, and the context vector.

On the other hand, Figure 2.33 illustrates the operations involved in calculating global
attention using a dot product evaluation function.

FIGURE 2.31  Global attention model.

48    ◾    Large Language Models

It’s important to note that this model computes attention over the entire input sequence,
hence its name “global attention.” However, this approach can be computationally inten‑
sive and sometimes unnecessary.

2.10.2.2  Local Attention Model
In contrast to the global attention model, local attention only considers a subset of encoder
positions when determining alignment weights. This significantly reduces computational
complexity, as shown in Figure 2.34.

FIGURE 2.32  Alignment of the hidden layer with the attention layer to generate the context vector
in global attention.

FIGURE 2.33  Global attention operation.

Fundamentals    ◾    49

The model calculates these weights and the context vector using the first aligned posi‑
tion and a selection of words from the encoder.

A typical example of a local attention model is depicted in Figure 2.35. It identifies a
single aligned position (pt) and utilizes a window of words from the source (encoder) along
with the context vector the context vector (ht) to compute alignment weights and the con‑
text vector. The store can typically be of two types:

•	 Monotonic alignment: It assumes that only specific information is relevant,
setting the position (pt) as t.

•	 Predictive alignment: It enables the model to predict the final alignment position,
adjusting only the position (pt) as t is predicted by the model.

FIGURE 2.34  Local attention model.

FIGURE 2.35  Alignment of the hidden layer with the care layer to generate the context vector in
the local attention model.

50    ◾    Large Language Models

Figure 2.36 summarizes the operations involved in computing monotonic local attention.

2.10.2.3  Self‑Attention Model
This model focuses on different positions within the same input sequence, where the input
layer represents token embeddings. While the global and local attention models could
be adapted to create self‑attention, the self‑attention model operates on the same input
sequence instead of the target output sequence. In this case, the encoder determines the
score for each token within a set of tokens associated with the rest of the same set.

Self‑attention results in a weighted vector representation based on the similarity (i.e.,
dot product) between pairs of input tokens (X) through the attention function. This rep‑
resentation captures relationships between elements of the input sequence, as shown in
Figure 2.37.

Typically, an auto‑attention mechanism consists of four components:

	 1.	Query (Q): It represents the current input (the “query”) as a vector, describing the
current word or token being compared to all other words in the sequence.

	 2.	Keys (K): They serve as labels for each token in an input segment (the “key”). This
vector describes what each token contributes or when it might be important. The keys
should be chosen to identify tokens of interest based on the query.

	 3.	Values (V): These are representations of the actual words (the “values”). Once the
relevance of each word is determined, these values are summed to represent the cur‑
rent word.

	 4.	Attention score: To determine which tokens to focus on, an attention score must be
computed. This function takes a query and a key as input and produces the attention
weight for the query‑key pair, typically using simple similarity measures such as the
dot product. Figure 2.38 presents an example of an attention score matrix computed
via a SoftMax function, which assesses the similarity (dot product) between tokens in
the sequence “John bought a book.”

FIGURE 2.36  Calculation of local attention with monotonic alignment.

Fundamentals    ◾    51

The attention score is computed using pairs (qi, kj), where kj represents a “key” vector of the
same dimension as qi and is linearly connected to the input xj.

To formalize this, the model components are defined as follows:

	 []1 2=X x x xt
T

	   []1 2 1 2 1 2= = =  = =  =Q q q q X W K k k k X W V v v v X Wt
T

q t
T

k t
T

v

Here, Wq, Wk, and Wv are the learned weight parameters for Q, K, and V, respectively, while
X represents the matrix of input vectors, which are essentially embeddings for each token.
The attention score for these three components (Q, K, and V) is derived by calculating dot
products between keys and queries, followed by a SoftMax function:

	 Atención , , SoftMax Q K V Q K
d

V
T

k
() =







∗

FIGURE 2.37  Self‑attention model.

John bought a book

John 0.8 0.1 0.05 0.05
bought 0.1 0.6 0.2 0.1
a 0.05 0.2 0.65 0.1
book 0.2 0.1 0.1 0.6

FIGURE 2.38  Attention scores for the sentence “John bought a book.”

52    ◾    Large Language Models

In this equation, dk represents the hidden layer dimensionality for queries and keys, and

the scaling factor 1
dk

 helps maintain an appropriate variance of attention values after

initialization. The SoftMax function normalizes the scores to ensure they are all positive
and sum to 1, determining the significance of each word in the attention matrix for the
position being evaluated.

It’s important to note that multiplying each value vector (V) by the SoftMax score pre‑
serves the values of words to focus on while downweighting irrelevant words (i.e., multiply‑
ing them by smaller values). Higher scores computed by SoftMax indicate the importance
of words learned by the model, while lower scores discard irrelevant words.

In simpler terms, attention can be defined as a deep learning technique that, given a set
of value vectors and a query vector, calculates a weighted sum of the values based on the
query. This weighted sum serves as a selective summary of information contained in the
values, with the query determining which values to emphasize. Thus, attention allows us
to obtain a fixed‑length representation of a set of representations (values) based on another
representation (query).

For example, consider the task of computing self‑attention for the word “he” (a pro‑
noun) within the token sequence “A boy bought books.” In this scenario, we aim to deter‑
mine to whom the pronoun “he” refers. To do this, we evaluate each word in the sequence
against the query. The final score dictates the focus on different parts of the input sentence
as we encode a word at a specific position. The score is calculated by taking the dot product
of each query vector with the corresponding key vector of the word we are evaluating. For
instance, when processing self‑attention for the word at position 1 (i.e., “A”), the first score
is the dot product of q₁ and k₁, the second score is the dot product of q₁ and k₂, and so on.

In essence, the query can be likened to a sticky note indicating the topic of interest
(e.g., “he”), and the keys are like labels on folders within a cabinet (representing words in
“A boy bought books”). Matching the label to the sticky note allows us to access the con‑
tents of that folder, represented by the value vector, as illustrated in Figure 2.39. However,
it’s important to note that we are not merely searching for a single value, but rather a
combination of values from multiple folders. For example, in the given example, “he” has
a pronominal link to “a child.” Consequently, multiplying the query vector by each key
vector yields a score for each folder (achieved through the scalar product followed by the
SoftMax function), as depicted in Figure 2.40.

FIGURE 2.39  Self‑attention as a search task from a query Q.

Fundamentals    ◾    53

These concepts of query, key, and value draw an analogy with information retrieval sys‑
tems. For example, when searching for a video on YouTube, the search engine maps the
query to keys (video title or description) associated with candidate videos. It then shows the
best matching videos (values). Self‑attention involves scoring each folder (scalar dot prod‑
uct followed by SoftMax) and multiplying each value by its score, producing the self‑atten‑
tion layer’s output for each word, as illustrated in Table 2.1. The resulting vector can be sent
through an FNN to other components of the model.

This weighted combination of value vectors results in a vector that assigns 50% attention
to “child,” 30% to “a,” and 19% to “he.”

In general, K, Q, and V are matrix representations of encoder and decoder states, varying
depending on the problem. The weight matrices correspond to linear transformations of
states and are trained as part of the predictor neural network. Average weights (α) are com‑
puted using a SoftMax function over all evaluation function outputs. Higher weights are
assigned to vectors whose corresponding keys (key) are more similar to the query (query).
This can be described as:

	
exp key , query

exp key , query
, out value

attention

attention∑ ∑α α()
()

()
()

= = ⋅
f

f
i

i

j
j

i i
i

This visualization of attention over a sequence of words is shown in Figure 2.41.

FIGURE 2.40  Self‑attention similarity scores with consultation (Q).

TABLE 2.1  Attention Combining to Determine the Referent of “he”

Word Value Vector Score Value Score of X

A 0.3

boy 0.5

bought 0.001

books 0.001

he 0.19

Sum

54    ◾    Large Language Models

2.10.2.4  Multiheaded Attention
To implement a multiheaded attention mechanism, queries, keys, and values are separated
into N vectors before applying self‑attention. Each “head” processes these vectors inde‑
pendently, resulting in N output vectors. These output vectors are then concatenated into a
single vector before passing through the final linear layer (see Figure 2.42). This approach
allows for different focuses on different parts of the input sequence, improving individual
attention performance.

FIGURE 2.41  Visualization of attention over a sequence of words.

FIGURE 2.42  Multiheaded attention with n attention mechanisms.

Fundamentals    ◾    55

In this case,

	 head Attention , ,() () ()()= QW KW VWi
i

q
i

k
i

v

So Attention‑Multiheaded is computed by simply concatenating the heads:

	 Multi‑Headed‑Attention , , Concatenate head , ,head1()() = …Q K V Wn o

where Wo represents the initial weight parameters, and the concatenation is performed by
means of the Multiple Sequence Alignment method, which allows aligning three or more
sequences of similar length.

A relevant aspect for all the attention models, from the point of view of the perfor‑
mance of all the computational processes previously discussed, is that they are extremely
demanding from the point of view of computational resources. This becomes a very criti‑
cal aspect in LLM, as the matrices being computed are very large. One way to address this
problem is to separate the operations into different computational blocks, so that they can
be carried out on parallel computing architectures.

For this, one can decompose the matrix multiplication (MatMul), scaling (Scale),
SoftMax (SoftMax), and, optionally, masking (Mask) computations into different blocks,
as shown in Figure 2.43.

2.11  TRANSFORMERS
In general, sequence learning approaches rely on convolution (CNN) or recursion (RNN)
to generate word representations, which makes them very inefficient. They are unable to

FIGURE 2.43  Optimization of attention calculation blocks for single attention (left) and multi‑
headed attention (right).

56    ◾    Large Language Models

capture relationships in sequences of very long inputs, which limits many applications. On
the other hand, networks such as GANs are mainly used for generating realistic synthetic
data (i.e., images), so they are not intended for NLP problems (i.e., translation, question
answering).

One way to address the above problems is through a deep learning architecture called
transformer (Kalyan et al., 2021), which is based on the previously described encoder‑decoder
model and uses attention mechanisms to focus on the most relevant aspects of a sequence
of input tokens (Phuong and Hutter, 2022).

Instead of processing tokens in sequential order, a transformer can process them in par‑
allel (Tunstall et al., 2022). This is achieved using attention connections, where each word
in the sequence attends to itself and all other words to compute a contextualized represen‑
tation. As a result, this allows learning contextualized representations that capture impor‑
tant relationships between words, which is key to many NLP tasks (Rothman, 2022).

Unlike RNNs, a transformer does not have a cycle structure, so all tokens in an input
sequence are processed in parallel, and the relationship between those tokens is mod‑
eled directly by a self‑attenuation mechanism, independent of their respective positions
(Cuantum, 2023; Yue, 2023). If we wish to compute the following characterization of a
given word, a transformer will compare that word one by one with the other words in
the sentence and derive the attention score for those words. These scores determine the
semantic impact of other words in a given vocabulary. The attention score is then used as
the average weight for all representations (i.e., embeddings) of words, which are provided to
a fully connected network, in order to generate a new representation.

Given this implicit parallelism, training a transformer is faster than RNN models and
performs better on language tasks. Another advantage is its ability to focus on the atten‑
tional parts of the network, especially when processing or translating a given word, so that
it can understand how information is transmitted through the network.

Let’s look at a transformer from a high‑level view as a black case for an application in an
NLP task: machine translation. It takes a sequence of words in one language and produces
its translation in another, predicting word‑by‑word, as shown in Figure 2.44.

At a slightly higher level of detail, a transformer is an attention‑based encoder‑decoder
type architecture (Ekman, 2022; Tunstall et al., 2022; Vaswani et al., 2017), where the
encoder transforms an input sequence into a continuous representation (i.e., embedding),
which maintains all the information learned from such input. Then, the decoder takes such
representation and, step by step, predicts a simple output (i.e., it always goes predicting
by the rightmost word, shifted right), according to the most probable token, while feeding
from the previous output (see Figure 2.45).

FIGURE 2.44  Overview of a transformer.

Fundamentals    ◾    57

We can see that the architecture is basically composed of three components: encoder
(encoding), decoder (decoding), and the connections (residuals) between them, which
allow the most relevant information to be transferred by the attention mechanisms. The
relationship between the different sublayers (stacks) of the encoder and decoder is shown
in Figure 2.46.

FIGURE 2.45  Typical structure of a transformer architecture.

58    ◾    Large Language Models

2.11.1  Encoder Layer

A common aspect for all encoders is that they receive a list of tokens of fixed size (usually
512). On the first encoder in the stack, this is the input sequence boundary, but, on later
encoders, this would be the output of the previous encoder (or lower in the stack). The size
of this list is a hyperparameter that can be adjusted and usually corresponds to the length
of the longest sentence in the training dataset.

After obtaining the embeddings of the words from the input sequence, each of them
flows through each of the two layers of the encoder, as shown in Figure 2.47.

In the figure, it is shown which word at each input position flows through its own path
in the encoder. Each path is independent, except for the attention layer, which intercon‑
nects them, as described in other sections. Due to their nature, the routes can run in paral‑
lel, while flowing through the feed‑forward layer.

Recall that an encoder receives a list of embeddings of the input words. Each encoder pro‑
cesses this list, passing these vectors to the self‑attention layer, then to an FNN, and finally
the output is sent to the next encoder in the stack.

FIGURE 2.47  Information flow in an encoder block.

FIGURE 2.46  Connection between encoder and decoder.

Fundamentals    ◾    59

2.11.2  Positional Encoding

A relevant aspect that has not yet been considered in the model is the way to encode the
order of words in the input sequence. In symbolic language models, this feature would
be encoded directly by the syntactic or semantic structures underlying the sentence.
However, in sequence neural models, this is not directly represented. The need for this
information is because a multiheaded attention mechanism cannot distinguish whether
one input comes before another in the sequence or not. In tasks such as language compre‑
hension (Gillon, 2019), position is important for interpreting the input words; for example,
an attention‑based model might believe that these two sentences possess the same mean‑
ing: (1) “John took it away from a dog” and (2) “A dog took it away from John.”

This is because there is no notion of word position within a sentence, hence a way to
encode not only the embedding of words but also the position of words within a sentence
is required.

Intuitively, this information or position encoding can be aggregated using feature pat‑
terns that the neural network can directly capture and potentially generalize to larger
sequences.

To achieve this, the transformer adds a Positional Encoding (PE) vector to each input
embedding. These vectors follow a specific pattern that the model learns, which allows it
to determine the position of each word or the distance between different words in the
sequence; that is, the encoding of each word that is input to the first encoder is the sum of
its embedding and its PE.

Up to this point, you are probably thinking, “Why not simply assign a position index
to each word in an input sentence?”. The main reason for this is that, for long sequences,
indexes can grow in magnitude. Normalizing the index value to lie between 0 and 1 can
cause problems for sequences of varying length, since they would be normalized differ‑
ently. On the other hand, a transformer encoder does not have recurrence/cycles like RNNs,
so we must add information about the positions in the input embeddings.

In Figure 2.48, an example of the matrix encoding only positional information is shown.
Usually, the computation of the PE vectors is performed as follows:

•	 For each odd index (i) in the input vector, create a vector using the cosine function.

•	 For each even index in the input vector, create a vector using the sine function.

FIGURE 2.48  PE matrix for the sequence “John bought a book.”

60    ◾    Large Language Models

•	 The PE vectors are added to the corresponding input embeddings. This provides the
network with information about the position of each vector.

Formally, PE is represented by the following equation:

	 PE
sin pos

10 000
if mod 2 0

 cos pos
10 000

else
pos,

/

 1 /

model

model

=





 =

















()

()−

i

i

i d

i d

where pos is the position of an element in the input sequence, i is an index to represent each
of the dimensions and maps the columns of the resulting matrix, and dmodel is the embed‑
dings dimension of the model. In the expression, it can be seen that the even positions cor‑
respond to a sine function and the odd positions to cosine functions. Note that the sine and
cosine functions were chosen together because they have linear properties that the model
can easily learn to focus on relative positions. Then, all these concatenated PE values for all
dimensions are added to the original input embeddings

Intuitively, suppose we draw a sine curve and vary pos (on the horizontal axis); we
will get different position values on the vertical (y) axis. Therefore, words with different
positions will have different values of position embeddings. However, since the sine curve
repeats in intervals, we could have positions with the same values of position embeddings,
despite being in two very different positions. This is where the parameter i in the equa‑
tion becomes important. If one varies i in the PE equation, we will get several curves with
varying frequencies. Thus, by reading the values of position embeddings versus different
frequencies, we will get different values in different embedding dimensions for different
positions.

To understand the expression that computes each PE, let us take an example of the sen‑
tence “John bought a book,” with n = 100 and d = 4. In Figure 2.49, the PE matrix for this
sentence is shown.

FIGURE 2.49  PE matrix calculated for the sequence “John bought a book.”

Fundamentals    ◾    61

To visualize the behavior of this positional information, we could take the positional
matrix and plot the sine and cosine curves with different wavelengths encoding the posi‑
tion in the dimensions, as shown in Figure 2.50.

We can interpret the PE as a sort of “clock,” with many hands at different speeds. Toward
the end of a PE vector, the hands move slower and slower as the positional index (pos)
increases. The hands near the end of the dimensions are slow, because the denominator is
large, so the angles are approximately zero there, unless the pos is significant enough. Thus,
we can imagine that each position has a clock with many hands pointing to a single time.

2.11.3  Residual Connections

Another relevant aspect in the encoder architecture is that each sublayer has a residual con‑
nection around it, and its output goes to a layer normalization (Norm) process. In general,
the normalized residual output is projected onto an FNN and corresponds to a pair of
linear layers with a ReLU activation function between them. Recall that ReLU (Rectified
Linear Unit) is a piecewise linear function that generates the same input if it is positive;
otherwise, it generates zero.

Then the output is added back to the input of an FNN and normalized, as shown in
Figure 2.51.

These residual connections help the training of the network, as they allow the gradients
to flow through the network directly. On the other hand, the normalization of the layers is
used to stabilize the network, substantially reducing the training time. The visualization
of the vectors going through the normalization operation associated with self‑attenuation
can be seen in Figure 2.52. Note that this also applies to the decoder layers.

All these operations make it possible to encode the input into a continuous representa‑
tion with attention information. In this way, the decoder focuses on the relevant tokens
during encoding. We could stack the encoder multiple times (Nx), to encode more infor‑
mation, where each layer can learn different attention representations and thus boost the
predictive power of the transformer.

FIGURE 2.50  Positions in a sequence with curves of different wavelengths.

62    ◾    Large Language Models

2.11.4  Decoder Layer

The goal of the decoder is to predict (generate) text sequences. To do this, each decoder
block has a multiheaded attention layer for the output, a multiheaded attention layer,
encoder‑decoder, an FNN layer, residual connections, and layer normalization. Unlike the
encoder, each multiheaded attention layer has a different task. The decoder is completed

FIGURE 2.52  Summation and residual normalization operation.

FIGURE 2.51  Residual connections in an encoder.

Fundamentals    ◾    63

with a linear layer that acts as a classifier, and a SoftMax function to calculate the prob‑
abilities of words to be predicted in the output.

The decoder is autoregressive, so it starts with a start token and takes a list of the previous
outputs as input, as well as the encoder outputs, which contain the input attention informa‑
tion. The decoder stops when it generates a token as output.

The encoder starts processing the input sequence, and the encoder output from the top of
the stack is then transformed into a set of K and V attention vectors, which are processed
by each decoder in its encoder‑decoder attention layer, which allows the decoder to focus on
relevant positions in the input sequence.

The following steps repeat the process until a special symbol is reached, indicating that
the decoder has completed its output. The output of each step feeds the lower decoder at the
next time instant, and the decoders accumulate their decoding results just as the encoders
did. Then, embedding is generated, and PE is added to those decoder inputs.

The self‑attention layers in the decoder work in a slightly different way than those in
the encoder. In the decoder, the self‑attenuation layer can only focus on positions earlier in
the output sequence. This is done by masking future positions prior to the application of
SoftMax in the self‑attention calculation.

The encoder‑decoder attention layer works like the multiheaded self‑attention, except
that it creates its array of queries (Q) from the layer below it and takes the array of keys (K)
and values (V) from the output of the encoder stack.

For example, when calculating attention scores for the word “bought,” you should not
have access to the word “a,” since that word is a future word that was generated later. The
word “bought” should only have access to itself and to the previous words, as shown in
the attention scores in Figure 2.53. Note that there is a special sequence start token called
<start>.

For this, we need a method that prevents the calculation of attention scores for future
words. This method is called masking, in which a mask is added before calculating the
SoftMax function, and after scaling the values. Thus, the mask is a matrix of the same size
as the attention scores filled with 0 and infinite negative (inf) values. When a mask is added
to the scaled attention scores, a matrix of the scores is obtained, with the upper right diago‑
nal filled with negative infinities, as shown in the example in Figure 2.54.

The reason behind this mask is that, once the SoftMax of masked scores is taken, nega‑
tive infinities discard zero values, leaving zero attention scores for future tokens; for exam‑
ple, in the figure, the scores for am possess values for itself and for all previous words, but it
is zero for the word fine. This tells the model that it should not pay attention to such words.

<start> John bought a
<start> 0.7 0.1 0.1 0.1

John 0.1 0.6 0.2 0.1
bought 0.1 0.3 0.6 0.1

a 0.1 0.3 0.3 0.3

FIGURE 2.53  Decoder multi‑head attention.

64    ◾    Large Language Models

This masking is the only difference in how attention scores are computed in the first
multiheaded attention layer. This layer still has multiple heads to which the mask is being
applied, before being concatenated and sent to the linear layer for further processing. The
output of the first multiheaded attention is a masked output vector with information on
how the model should be focused on the decoder input.

For the second multiheaded attention layer, the outputs of the encoder are queries
and keys, and the outputs of the first multiheaded attention layer are values. This pro‑
cess matches the encoder input to the decoder input, allowing the decoder to decide which
encoder input to pay attention to. The output of the second multiheaded attention layer
feeds the FNN network for further processing.

2.11.5  Linear Layer and SoftMax

Usually, the output of the FNN layer is passed to a final linear layer that acts as a classifier,
which is as large as the number of classes you have; for example, if you have 10,000 classes
for 10,000 tokens, the output of such a classifier will be of size 10,000 or more known as a
vector logits.

The output of the classifier is fed into the SoftMax layer, which will produce probability
values between 0 and 1. Then, the index of the token with the highest probability is taken,
which corresponds to the words that are predicted at an instant. The decoder takes the out‑
put, adds it to the decoder input list and continues decoding until a token is predicted. The
highest probability prediction is the final class that is assigned to the final token.

Note that the decoder can also be stacked in multiple layers (Nx), each of which takes
inputs from the encoder and previous layers. By stacking the layers, the model can learn to
extract and focus on different combinations of attention from the attention heads, poten‑
tially improving its predictive power.

2.11.6  Training

During the training process, the data consists of two parts:

	 1.	The input sequence (e.g., “You are welcome,” for a translation problem).

	 2.	The target sequence (e.g., “De nada” in Spanish).

The structure connecting all these steps is shown in Figure 2.55, where there are some rel‑
evant aspects of the architecture:

Scaled
scores

Forward
masks

Masked
scores

0.7 0.1 0.1 0.1
0.1 0.6 0.2 0.1
0.1 0.3 0.6 0.1
0.1 0.3 0.3 0.3

+

0 inf inf inf
0 0 inf inf
0 0 0 inf
0 0 0 0

=

0.7 inf inf inf
0.1 0.6 inf inf
0.1 0.3 0.6 inf
0.1 0.3 0.3 0.3

FIGURE 2.54  Calculation of masked attention scores.

Fundamentals    ◾    65

•	 One can stack as many encoder and decoder blocks (Nx), as one sees fit. However, this
substantially increases the training cost.

•	 More encoder or decoder blocks can be added, allowing more nonlinearity to be
added to the mapping between input and output, achieving a more powerful model.
This is specifically because each block adds layers of FNNs that increase complexity.

•	 All encoders are identical in structure, but do not share neural network weights. Each
is decomposed into two sublayers:

	 1.	 Attention layer: this is the first stage of the flow and helps the encoder focus on
other words in the input sentence while encoding a specific word. The output is
sent to the next layer.

	 2.	 Feed‑forward neural network (FNN): It computes the final context vectors and
then sends them to the decoder.

•	 The decoder has both layers, but between them there is an attention layer, which helps
the decoder to focus on relevant parts of the input sequence.

FIGURE 2.55  Training of a transformer.

66    ◾    Large Language Models

Remember that the goal of the transformer is to learn how to generate the target sequence,
using both the input and the target sequence. For this, the information flow in the trans‑
former is as follows:

	 1.	A sequence of input tokens is received, which are represented by their respective
embeddings and positional information to feed the encoder.

	 2.	The encoder stack processes this and produces a new contextual encoded representa‑
tion of the input by means of attention mechanisms.

	 3.	The target sequence is converted to embeddings and positional information that feeds
the decoder.

	 4.	The decoder stack processes this along with the encoded representation from the
encoder, to produce an encoded representation of the target sequence.

	 5.	The output layer (SoftMax) converts this into word probabilities and the final output
sequence.

	 6.	The loss function compares this output to the target sequence of the training data.
This loss is used to generate gradients to train the transformer during the back‑
propagation process.

2.11.7  Inference

During inference, we only have the input sequence, and we do not have the target sequence
to pass as input to the decoder. The goal of the transformer is to produce the target sequence
only from the input sequence.

Then, the output is generated in one cycle, and we feed the output sequence from the
previous time step to the decoder in the next time step, until we find an end‑of‑sentence
token. The difference with a Seq2Seq model is that, at each time step, we re‑feed the entire
output sequence generated so far, rather than just the last word.

The data flow during inference is as follows (see Figure 2.56):

	 1.	The input sequence is converted into embeddings (with position encoding) and sent
to the encoder.

	 2.	The encoder stack processes this and produces an encoded representation of the input
sequence.

	 3.	Instead of the target sequence, we use an empty sequence with only a sentence start
token. This is converted into embeddings (with position encoding) and sent to the
decoder.

	 4.	The decoder stack processes this along with the encoded representation from the
encoder stack, to produce an encoded representation of the target sequence.

	 5.	The output layer converts this into word probabilities and produces an output
sequence.

Fundamentals    ◾    67

	 6.	We take the last word of the output sequence as the predicted word. That word now
fills in the second position of our decoder input sequence, which now contains a sen‑
tence start token and the first word.

	 7.	Return to step (3). Provide the new decoder sequence in the model. Then, take the
second word from the output and add it to the decoder sequence. Repeat this until
you predict an end‑of‑sentence token. Note that since the encoder sequence does not
change for each iteration, we do not have to repeat steps (1) and (2) each time.

2.11.8  Loss Function

The loss function during the training stage is the metric that the model is optimizing to
arrive at a more accurate model.

Suppose we are training the model with a simple example: translating merci into “thank
you.” This means that we want the output to be a probability distribution indicating the
word “thank you.” However, since this model is not yet trained, that is unlikely to hap‑
pen yet, so a difference occurs, as shown in Figure 2.57, when comparing the probability
distributions for each word in a vocabulary of six tokens. These distributions are usually
compared by subtracting one from the other, via cross‑entropy or KL divergence.

Recall that this is because, in a neural network, the model parameters (weights) are
randomly initialized, so the untrained model produces a probability distribution with
arbitrary values for each token. The network weights are error‑corrected using back‑
propagation algorithms to produce at each instant an output closer to the desired result.

FIGURE 2.56  Inference in a transformer.

68    ◾    Large Language Models

Since the example is very simple, we will use an input such as “je suis étudiant” and the
expected output: “I am a student.” What this really means is that we want our model to
successively generate probability distributions where:

•	 Each probability distribution is represented by a vector of width equivalent to the size
of the vocabulary (i.e., 6 in our example but, more realistically, a number like 30,000
or 50,000).

•	 The first probability distribution has the highest probability in the cell associated
with the word “I.”

•	 The second probability distribution has the highest probability in the cell associated
with the word “I am.”

•	 And so on, until the fifth output distribution indicates the symbol <eos>, which also
has an associated cell of the 10,000‑item vocabulary.

After training the model on a sufficiently large dataset, we expect the probability distribu‑
tions produced to be better able to predict the correct words in the output sequence.

Since the model produces the outputs (i.e., words) one at a time, there are two popular
search strategies to select the best word (Freitag and Al‑Onaizan, 2017):

•	 Greedy Decoding: the model selects the word with the highest probability from that
probability distribution and discards the rest.

•	 Beam Search: the model keeps in memory the top n words (e.g., “I” and “a”) and, in the
following steps, the versions of the words that produce less prediction error are kept.

FIGURE 2.57  Probabilities for generated tokens (model output) vs. correct results (desired output).

Fundamentals    ◾    69

2.12  CONCLUSIONS
In this chapter, we explored the basics of language models, including neural networks,
sequence models, attention mechanisms, encoder‑decoder architectures, and transformers.

Sequence models (Seq2Seq), such as RNNs, short‑medium term networks (LSTMs), and
CNNs, have been widely used for language modeling. These models capture temporal and
structural dependencies in textual data, allowing them to generate well‑formed output
sequences.

One capability that will not be considered by traditional neural models is attention
mechanisms, which play a crucial role in enhancing the ability of language models to cap‑
ture long‑term relationships between words. Attention enables models to assign different
importance weights to input words, allowing them to focus on the most relevant parts of
the context.

Transformers represent a significant innovation in the field of language models for
processing large sequences of input. These architectures use attention mechanisms and
encoder‑decoder architectures, enabling the generation of coherent, high‑quality text
sequences.

70 DOI: 10.1201/9781003517245-3

C h a p t e r 3

Large Language Models

3.1  INTRODUCTION
Language modeling has been extensively studied for language understanding and genera‑
tion in the last two decades, evolving from statistical to neural models. Recently, pre‑trained
language models using transformers on large‑scale corpora have been proposed, showing
strong capabilities for solving various NLP tasks (Phuong and Hutter, 2022). This scale can
lead to improved performance, so the scaling effect has been further studied by increasing
the model size to an even larger size. When the parameter scale (i.e., number of weights
to fit in a neural network) exceeds a certain level, these scaled‑up LMs not only achieve
significant performance improvement, but also show some special abilities that are not
present in small‑scale LMs (Ge et al., 2023). To discriminate the difference in parameter
scale, the expression large language models (Large Language Model) or LLM has been
used for PLMs of significant size (Zhao et al., 2023). Significant progress has been made in
LLM research in recent times, and a notable progress is the release of applications such as
ChatGPT, which has attracted wide attention from society (Wake et al., 2023).

LLMs usually refer to LMs containing hundreds of billions of parameters, which are
trained on massive text or corpus data, and heavily based on transformer architectures, con‑
taining many blocks of encoders, and producing very deep neural networks (Mialon et al.,
2023). LLMs, to a large extent, scale the model size, training data, and total computation,
so they can better understand natural language and generate high‑quality text based on the
given context. However, some abilities (i.e., learning in context) are unpredictable and can
be observed only when the model size exceeds a certain level (Bommasani et al., 2021).

In this chapter, common feature s of LLMs such as emergent skills, data used, types of
training, types of learning, and types of tokenization are introduced. Based on this, the
main LLMs and their differentiating aspects are then described.

3.1.1  Emergent Skills

The emergent skills of LLMs correspond to certain capabilities that are not present in small
models, but emerge in LLMs and that distinguish them from previous pre‑trained models.
Moreover, their performance increases significantly when the scale reaches a certain level

https://doi.org/10.1201/9781003517245-3

Large Language Models    ◾    71

(Boiko, MacKnight, and Gomes, 2023). Currently, there are at least three representative
types of emerging skills:

	 1.	Context learning: the context‑learning ability is formally introduced in GPT‑3.
Assuming that the model has received natural language instruction and/or several
task demonstrations, it can generate the expected output for test instances by com‑
pleting the sequence of words in the input text, without the need for additional train‑
ing or gradient updates.

	 2.	Instruction tuning: by fine‑tuning a model and a combination of multi‑task cor‑
pora formatted through natural language descriptions (instructions), LLMs perform
well on tasks not seen in the form of instructions. With this capability, instruction
fine‑tuning (i.e., instruction tuning) enables new tasks by understanding task instruc‑
tions without using explicit examples (Peng et al., 2023).

	 3.	Multi‑step reasoning: for small models, it is difficult to solve complex tasks involv‑
ing multiple reasoning steps such as mathematical‑verbal problems, whereas, with a
“chain‑of‑thought” reasoning strategy, LLMs can solve such tasks using prompts or
descriptions of the input, usually known as prompts. This enables intermediate reason‑
ing steps that allow the final answer to be derived (Prystawski and Goodman, 2023).

Depending on the size of the models, some emergent skills may include1:

•	 Small (8B–13B parameters): basic arithmetic, code debugging, reading comprehen‑
sion, and basic language operations (e.g., creating stories, essays, poetry).

•	 Medium (64B–175B parameters): language puzzles, understanding and solving
college admissions tests, physical intuition, logical deduction, or understanding
metaphors.

•	 Large (70B–540B parameters): geometric shapes, phonetic alphabet, causality, ele‑
mentary mathematics, and code explanation.

•	 Extra‑large (1 teraparameter): spatial reasoning, creativity, app construction, pic‑
ture handling, and thematic test performance.

3.1.2  Skills Enhancement Techniques

To develop LLM, usually a number of important techniques that significantly improve
their capability, are used, which include the following (Puchert et al., 2023):

•	 Scaling: this is the key factor in increasing the capacity of LLMs. A large model size
is essential for emerging skills. However, scaling is performed not only on the model
size, but also on the dataset size. For this, there are usually three key aspects: model
size, data size and total computation.

72    ◾    Large Language Models

•	 Training: due to the huge size of the models, it is very difficult to successfully train
an LLM, as efficient training algorithms are needed to learn the network param‑
eters, several times executed in parallel. Due to this, several optimization approaches
have been proposed to facilitate the implementation and deployment of parallel algo‑
rithms. Recently, the development of GPT‑4 used special infrastructure and optimi‑
zation methods that reliably predict LLM performance with much smaller models.

•	 Elicitation: after pre‑training an LLM on large‑scale corpora, they can potentially
solve general tasks. This type of ability may not be explicitly exhibited when LLMs per‑
form some specific tasks. However, it is useful to design appropriate task instructions
or context‑specific strategies to elicit such skills; for example, a chain‑of‑thoughts
strategy may be useful for solving complex reasoning tasks by including intermediate
reasoning steps.

•	 Alignment adjustment: since LLMs can capture data feature s from pre‑training cor‑
pora, it is likely to generate toxic, biased or even harmful content for humans. Because
of this, it is necessary to align LLMs with human values; e.g., useful, honest, and
harmless. To this end, models trained with instruction tuning such as InstructGPT
(Wang et al., 2022; Peng et al., 2023) allow an LLM to follow expected instructions
using reinforcement learning with human feedback (RLHF) techniques, in the train‑
ing cycle (Christiano et al., 2023).

3.1.3  Corpora

LLMs consist of a significantly larger number of parameters that require a larger volume
of training data covering a wide range of content. For this purpose, there are increasingly
accessible datasets or training corpora that have been released for research such as the
following:

•	 Books: these include BookCorpus, which consists of over eleven thousand books
of various subjects and genres, and Project Gutenberg, which consists of over sev‑
enty thousand literary books (i.e., novels, essays, poetry, drama, history, science,
philosophy...).

•	 CommonCrawl: it is a web crawling dataset containing petabytes of data that has
been widely used as training data for LLMs.

•	 Reddit: it is a social networking platform that allows users to submit links and text
posts, which others can vote on through “upvotes” or “downvotes.” Highly voted
posts are often considered useful and can be used to create high‑quality datasets.

•	 Wikipedia: it is an online encyclopedia that contains a large volume of high‑quality
articles on a variety of topics. Most of these articles are composed in an expository
writing style, covering a wide range of languages and areas.

•	 Code: to collect code data, open source code is usually extracted from the Internet
through GitHub and Stack Overflow. In addition, Google has released public datasets

Large Language Models    ◾    73

such as Big Query, which contains many open source licensed code snippets in vari‑
ous programming languages.

•	 Others: this includes the open source Pile dataset, which contains over 800 GB of
data from multiple sources, including books, websites, code, scientific articles, and
social networking platforms. The dataset is constructed from 22 high‑quality, diverse
subsets.

3.1.4  Types of Training

An important aspect of LLMs is the type of technique used for their training which, in
general, includes the following:

•	 Pre‑training: it refers to the task of training an LM on a large and diverse dataset
before adjusting it to a specific task. During pre‑training, the model is trained to
learn general language features, such as semantics and syntax, which can then be
used for specific tasks; for example, a model can be pre‑trained on a general text
set (i.e., Wikipedia) and then fit the model to a specific task, such as news text
generation.

•	 Fine‑tuning: it refers to the task of continuing to train a pre‑trained language model
on a smaller, task‑specific dataset. Fine‑tuning or fine‑tuning is useful when a limited
dataset is available and one wishes to improve the performance of the model on a
specific task; for example, one can take a pre‑trained model on general text and tune
it to a movie subtitle generation task (Howard and Ruder, 2018).

•	 Instruction tuning: this is an approach for fine‑tuning pre‑trained LLMs over a set
of instances formatted in natural language form. To perform fine‑tuning, instruc‑
tion‑formatted instances (i.e., input, indication, or output) must be collected or con‑
structed. Then, these formatted instances must be used to tune LLMs in a supervised
learning fashion.

3.1.5  Types of Learning

In general, there are four common machine learning techniques for LLMs:

•	 Semi‑supervised learning: this training paradigm combines unsupervised pre‑
training with supervised fine‑tuning. The goal is to train a model with a large unsu‑
pervised dataset, then fine‑tune the model to different tasks by using supervised
training on smaller datasets.

•	 Zero/one/some‑shot learning: in general, deep learning systems are trained and
tested for a specific set of classes. If a document categorization system is trained to
classify descriptions of cats, dogs, and horses, it could only be tested on those three
classes. Conversely, in zero shot) learning environments, in testing the system, it is
shown, without updating the weights, classes that it has not seen at the time of train‑
ing (i.e., testing the system on elephant descriptions). The same is true for the one‑shot

74    ◾    Large Language Models

and multi‑shot settings, but, in these cases, at the time of testing, the system sees one
or a few examples of the new classes, respectively (Brown et al., 2020).

•	 Multi‑task learning: most deep learning systems are single‑task (e.g., AlphaZero).
Multi‑task systems overcome this limitation, as they are trained to solve different
tasks given a given input; for example, if the word “gato” is entered into the system, it
could be asked to look up the Spanish translation of “gato,” display the image of a cat,
and/or describe its characteristics.

•	 Zero/one/few‑shot task transfer: this approach combines the concepts of zero/one/
few‑shot learning with multi‑task learning. Instead of showing the system new classes
at test time, we could ask it to perform new tasks (i.e., showing it zero, one, or a few
examples of the new task); for example, assume a system trained on a large corpus. In
a one‑try task transfer environment, we might write, “I love you → Te quiero. I hate
you → ___.” Implicitly, we are asking the system to translate a sentence from English
to Spanish (a task in which it has not been trained) by showing it a single example
(one shot).

3.1.6  Types of Tokenization

In the context of NLP tasks, tokenization refers to the way in which a text segment is rep‑
resented as a sequence of vocabulary items, usually called tokens (Kudo and Richardson,
2018). Although, in general, various LMs perform tokenization at the word level, this is not
always the case and depends on the level of granularity desired in a task. Suppose we wish
to tokenize the sentence “We want a complete pre‑report”; the usual types of
tokenization would be as follows:

•	 Character‑level tokenization: the vocabulary V is the alphabet of the language (i.e.,
English) plus punctuations. In the example sentence, we would obtain a sequence of
length 31: [‘Q’, 'u', ' ', ...]. Usually, this type of tokenization tends to pro‑
duce very long sequences.

•	 Word‑level tokenization: the vocabulary V is set of all the words of the language in
question, plus punctuations. In the example sentence, we would get a sequence of
length 4: ['We want', 'a', 'pre‑report', ...]. Usually, this type of tokeni‑
zation requires a very large vocabulary and cannot handle new words at test time.

•	 Subword tokenization: the vocabulary V is a set of common word segments such as
‘pre,’ ‘mos,’ ‘pre.’ Common words such as ‘a’ are usually tokenized, and individual
characters are also included in V, to ensure that all words can be expressed.

Once the vocabulary items are tokenized, a unique index is assigned. Then, special
tokens are added to the vocabulary. The number of special tokens varies, but usually
three are considered: (1) mask token (MASK), used in masked language modeling; (2)
beginning‑of‑sequence token (BOS), and (3) end‑of‑sequence token (EOS). The complete

Large Language Models    ◾    75

vocabulary has |V| elements. Thus, a text fragment is represented as a sequence of indices
(i.e., token IDs) corresponding to its (sub)words, preceded by BOS and followed by EOS.

3.2  BERT
NLP models based on deep learning techniques require very large amounts of data
to improve their performance when trained on millions or billions of annotated train‑
ing examples. To help bridge this gap, several techniques have been developed to train
general‑purpose language representation models, better known as “pre‑training,” which
uses large corpora of unannotated text. These pre‑trained models can be tuned to smaller
task‑specific datasets; e.g., question‑answer systems, sentiment analysis, text prediction,
text generation, etc.

This approach shows significant improvements in accuracy compared to training on
smaller task‑specific datasets from scratch. One of the models addressing these difficulties
in pre‑training for NLP tasks is called BERT (Bidirectional Encoder Representations from
Transformers) (Devlin et al., 2019).

BERT is a model that is trained bidirectionally for prediction tasks. This means that we
can now have a deeper sense of context and language flow compared to unidirectional LMs
(Devlin et al., 2019). BERT is based on a basic transformer, consisting only of encoders, to
read text input, and a decoder, to produce a prediction for a task. This transformer applies
attention mechanisms to understand the relationships between all words in a sentence,
regardless of their respective positions.

Generally, BERT can be used to extract high‑quality language features from a corpus
or to fit these models to a specific task (e.g., question answering) with proprietary data in
order to produce good predictions.

As an LM predictor, BERT’s goal is to “fill in the blank,” depending on the context; e.g.,
given.

“John bought a ______ at the corner store.”

An LM could complete this sentence by saying that the word “vehicle” would fill in the
blank 20% of the time and the word “eggs” 80% of the time.

Instead of predicting the next word in a sequence, BERT uses a technique called “masked
language model” or MLM, which randomly masks words in a sentence and then attempts
to predict them. Masking means that the model looks in both directions and uses the entire
context of the sentence, both left and right (aka bidirectional), to predict the masked word
(i.e., that “hidden” or missing word). Thus, BERT takes into account both the previous and
the next token at the same time, hence bidirectional.

Unlike context‑independent models such as Word2Vec, the above feature allows BERT
to generate context‑based representations for each word based on the other words in the
sentence; for example, in the sentence “I accessed the bank account,” a one‑way contextual
model would represent “bank” based on “I accessed” but not “account.” In the case of BERT,
the word “bank” is represented using both its preceding and following context‑”I accessed
the... account”‑starting from the bottom of a deep neural network, making it bidirectional.

76    ◾    Large Language Models

3.2.1  Operation

Since the goal of BERT is to generate a language representation model, it only uses the
encoder component of the transformer (Figure 3.1).

In training, the model receives pairs of input sentences, and it must learn to predict
whether the second sentence of the pair is the next sentence (IsNext) in the original text.
During training, 50% of the inputs are a pair in which the second sentence is the next sen‑
tence in the original text, while, in the other 50%, a random sentence is chosen from the
corpus. The assumption is that the random sentence will be disconnected from the first
sentence. To achieve this, the training uses two strategies:

Masked LM (MLM): 15% of the words in the input are randomly masked (hidden),
replaced with a token [MASK], and the entire sequence is processed through the encoder.
The model then attempts to predict only the masked words, based on the context provided
by the other unmasked words in the sequence. The model only attempts to predict when
the [MASK] token is present in the input, whereas it is desired that the model predict the
correct tokens, regardless of which token is present. To address this, of the 15% of the
tokens selected for masking:

•	 80% of the tokens are replaced with the masked token [MASK].

•	 10% of the time, tokens are replaced with a random token.

•	 10% of the time, tokens are left unchanged.

Then, the prediction of the output words requires:

•	 Adding a classification layer on top of the encoder output.

•	 Multiplying the output vectors by the embeddings matrix, transforming them into
the vocabulary dimension.

FIGURE 3.1  Encoder‑based architecture of BERT.

Large Language Models    ◾    77

•	 Calculating the probability of each word in the vocabulary with the SoftMax function.

•	 Next Sentence Prediction (NSP): to understand the relationship between two
sentences, the training process also uses NSP. During training, the model obtains,
as input, pairs of sentences and learns to predict whether the second sentence is
also the next sentence in the original text. Thus, the training of the model is fed
with two input sentences at a time, so that:

•	 50% of the time, the second sentence comes after the first sentence.

•	 50% of the time, the second sentence is a random sentence from the entire corpus.

Thus, NSP allows the model to learn about the relationships between sentences by predict‑
ing whether a given sentence follows the previous sentence or not; for example, given two
sentences A and B, is B the next real sentence that comes after A (isNext) or simply a
random sentence in the corpus (NotNext)? The model should predict as follows:

Sentence A: the man went to the store
Sentence B: he brought a bottle of milk
Label (prediction): IsNext

Sentence A: the man went to the store
Sentence B: mice don’t fly
Label (prediction): NotNext

To help the model distinguish between the two sentences in training, the input should be
preprocessed as follows, before feeding the model:

•	 Token embeddings: a classification token [CLS] is added to the input tokens (words)
at the beginning of the first sentence, and a token [SEP] (separation) is inserted at the
end of each sentence.

•	 Embeddings of segments: a marker indicating whether it corresponds to sentence A
or sentence B is added to each token. This allows the encoder to distinguish between
sentences.

•	 Positional embeddings: a positional embedding is added to each token to indicate its
position in the sequence.

Thus, to learn to predict whether sentence B is actually connected to sentence A, the fol‑
lowing steps are performed:

•	 Apply the entire input sequence to the transformer.

•	 Transform the output of the token [CLS] into a vector, using a simple classification
layer.

78    ◾    Large Language Models

•	 Calculate the probability of IsNext with SoftMax.

•	 Simultaneously train MLM and NSP in order to minimize the combined loss func‑
tion of the two strategies.

Then, this model is trained according to the desired number of processing layers on a large
corpus (i.e., Wikipedia + BookCorpus) for a long time (one million update steps). Once
trained, BERT can be used as a pre‑trained model or by fine‑tuning to specific domains.

3.2.2  Architecture

BERT uses a transformer that successively processes an input sequence through a stack of
encoder layers. In general, there are two types of pre‑trained versions of BERT, depending
on the scale of the model architecture:

•	 BERT‑Base: 12 layers (blocks) of encoders, 768 nodes hidden in the FNN, 12 attention
heads, 110M parameters.

•	 BERT‑Large: 24 layers of encoders, 1024 nodes hidden in the FFN, 16 attention heads,
340M parameters.

3.2.3  Model Input

The first input token is provided with a [CLS] token. Like the basic transformer encoder,
BERT takes a sequence of tokens as input, which flows up the encoder stack. Each layer of
the encoder applies the usual self‑attention and passes its results through an FNN network
that passes them to the next encoder in the stack.

3.2.4  Model Output

Each input position generates an embedding (i.e., size 768 in BERT‑Base) that can be used
to perform fine‑tuning of the model for different specific tasks such as question answering
or sentence classification. For this, only a single layer must be added to the main model:

	 1.	In text classification tasks, they are performed similar to NSP by adding a classifica‑
tion layer on top of the transformer output for the [CLS] token; for example, for a task
such as binary sentence classification, the output is just the first position containing
the [CLS] token (Figure 3.2).

	 2.	In question‑answering or QA tasks, the model receives a question about a sequence
of text and must mark the answer in the sequence. With BERT, a question‑answer
model can be trained by learning two additional vectors that mark the beginning and
the end of the answer.

	 3.	In Named‑Entity recognition (NER) tasks, the model receives a sequence of text and
must mark the different types of entities that appear in the text. With BERT, a NER
model can be trained by feeding the output vector of each token into a classification
layer that predicts the NER label.

Large Language Models    ◾    79

	 4.	In MLM tasks, beyond masking 15% of the input, BERT sometimes randomly replaces
a word with another word and asks the model to predict the correct word in that posi‑
tion (Figure 3.3).

	 5.	For sentence prediction tasks, for example, given a Wikipedia entry as an entry, and a
question about that entry as another entry, can we answer that question? To accom‑
plish this, BERT pre‑training includes the task of, given two sentences (A and B), is B
likely to be the sentence following A, or not (Figure 3.4)?

	 6.	For a feature extraction task (embeddings), the pre‑trained BERT model can be used
to obtain the contextual embeddings of each word. These can then be used as inputs
to other models that require feature representation (i.e., classifiers, NER).

3.2.5  BERT‑Based Pre‑Trained Models

There are several BERT‑based pre‑trained models available including:

•	 RoBERTa: it uses a training approach based on dynamic masking and a more inten‑
sive training strategy than BERT to learn, more effectively, from data. It was trained
on a larger dataset than BERT and used a data augmentation technique called “ran‑
dom data retraining” to improve the robustness of the model (Liu et al., 2019).

•	 ALBERT: this model is a lighter and more efficient version of BERT, which uses model
compression techniques to reduce the size and computational cost.

•	 DistilBERT: this is a smaller and faster model of BERT that uses distillation tech‑
niques to transfer knowledge from BERT to a smaller and more efficient model.

FIGURE 3.2  BERT setting for binary classification tasks.

80    ◾    Large Language Models

FIGURE 3.3  BERT tuned for mask prediction tasks.

FIGURE 3.4  BERT tuned for next sentence prediction (NSP).

Large Language Models    ◾    81

•	 ELECTRA: this model uses a discriminative training approach to improve the effi‑
ciency of BERT, which makes it more efficient than NSP, allowing it to be trained on
larger and more complex datasets.

•	 SciBERT: is a model designed specifically for science and technology related tasks.
It is pre‑trained on a corpus of scientific text, including journal articles, patents, and
other technical documents.

•	 FinBERT: is a model designed for finance‑related tasks and is pre‑trained on a finan‑
cial dataset, including news and press releases, allowing it to understand and analyze
financial language more accurately.

3.3  GPT
A limitation of the BERT model for various tasks is that it is not a generative LLM per
se. This means that it cannot generate new text. On the other hand, although BERT is a
bidirectional model, it only uses the preceding and following information in one direction
during training, which limits its ability to capture the long‑distance relationship between
words. In addition, BERT requires a fixed‑length input (i.e., 512), which means that it can‑
not process variable‑length inputs, which can become a limitation for some applications.
Finally, to use BERT for a specific task, fine‑tuning of the model in that task is required,
which can be costly in terms of time and resources.

Intuitively, one way to address these difficulties is through generative LMs that must
possess two basic characteristics:

	 1.	To pre‑train an LLM using very large corpora.

	 2.	To adapt the pre‑trained model to solve specific tasks.

To address the above, the generative model called GPT (Generative Pre‑trained Transformer)
emerges, which is a large‑scale unsupervised LLM trained to predict the next word (Dai
et al., 2022). Specifically, GPT stands for the following (Kublik and Saboo, 2022):

•	 Generative: the model was trained to predict (or generate) the next token in a sequence
of tokens, unsupervised. Thus, the underlying relationships between variables in a
dataset can be learned to generate new data samples similar to those in the original
dataset. In other words, the model is provided with a large amount of raw text data
and is asked to find text feature s to create more text.

•	 Pre‑trained: it is a language model that has been trained on large datasets. This
allows them to be used for tasks where it would be difficult to train a model from
scratch. A pre‑trained model can avoid reinventing the wheel, save time and improve
performance. The model is then tuned for specific tasks, such as machine translation.

•	 Transformer: it uses the transformer architecture that uses deep encoder‑decoder
models and attention mechanisms. This is a model designed to handle sequential
data, such as text.

82    ◾    Large Language Models

Different versions of the model have been generated. In version 2 (GPT‑2), the model was
trained on 40 GB of texts available on the Internet and adjusted to 1500M parameters
(Radford et al., 2018). To ensure the quality of the texts used, only Internet pages that have
been selected by and rated by humans (i.e., Reddit) were used.

In general, the way this type of model operates is based on a so‑called autoregressive
approach: after each token is generated, it is added to the input sequence, and this new
sequence becomes the input of the model in its next step.

A key feature of this type of generative LLM is that it possesses the ability to generate
high‑quality coherent text samples. On the other hand, GPT‑2 outperforms other LLMs
trained on specific domains without the need to use domain‑specific datasets. In tasks
such as question‑answering, reading comprehension, summary generation, and machine
translation, GPT‑2 can learn without using task‑specific training data.

3.3.1  The GPT and GPT‑2 Models

The basic intuition behind GPT and GPT‑2 is the use of generic, pre‑trained LLMs to solve
a variety of language modeling tasks with high accuracy. In simple terms, this means
training the model by (i) sampling some text from a dataset and (ii) predicting the next
word. This procedure is a form of self‑supervised learning, as the next correct word can be
predicted simply by looking at the next word in the dataset.

To achieve the above, the GPT model introduces three innovations:

	 1.	Task conditioning: the LLM training objective is formulated as P(output|input).
However, GPT‑2 learns multiple tasks using the same unsupervised model. To achieve
that, the learning objective is reformulated as P(output|input, task). This modification,
known as “task conditioning,” expects the model to generate different outputs for the
same input for different tasks. Some models implement task conditioning at an archi‑
tectural level, where the model is fed by both the input and the task. Therefore, task
conditioning is performed by providing examples or natural language instructions
to the model to perform a task, which forms the basis for zero‑shot task transfer (i.e.,
zero shot or examples).

	 2.	Zero‑shot learning and task transfer: a capability of GPT 2 is zero‑shot task transfer.
Instead of rearranging the sequences, as in previous versions, the input to GPT‑2
is provided in a format that allows the model to understand the nature of the task
and provide responses. This allows emulation of zero‑shot task transfer behavior; for
example, for the English to French translation task, the model is given an English
sentence followed by the French word and a message (:). Then, the model is supposed
to understand that this is a translation task and, therefore, to give the French coun‑
terpart of the English sentence.

	 3.	Architecture: it has 1500M parameters, which is 10 times more than GPT (117M).
In addition, GPT‑2 has 48 layers and uses embeddings of 1600 dimensions, a larger
vocabulary of 50,257 tokens, a larger context window of 1024 tokens and a normaliza‑
tion layer after the final self‑attention block.

Large Language Models    ◾    83

Both GPT and GPT‑2 use a decoder‑only transformer architecture, allowing the following
transformer components to be eliminated: each decoder layer simply consists of a masked
self‑attention layer followed by an FNN model. By stacking several of these layers, a deep
decoder‑only transformer architecture (decoder‑only transformer) is formed, as shown in
Figure 3.5.

Intuitively, think about what the decoder is actually doing: given an encoded representa‑
tion of an input sequence, it must generate a new sequence of words (w) in an instant:

	 W Wt tDecoder 1()= −

This is precisely what an LLM is supposed to do. The reason for using only the decoder
layers is because the self‑attention layers masked within the decoder ensure that the model
cannot look ahead in a sequence when creating a token representation. In contrast, the
bidirectional self‑attention used in encoders allows the representation of each token to
adapt based on all other tokens within a sequence.

Unlike BERT, the self‑attention layer masks future tokens, interfering with the self‑atten‑
tion computation and blocking the information of tokens that are to the right of the posi‑
tion being computed; for example, if we are going to highlight the path of position #4,
we can see that only present and previous tokens are allowed to be paid attention (aka
attended) (Figure 3.6).

A normal self‑attention block allows, in one position, to look at the tokens to the right.
In this case, it is required to prevent that, so masked self‑attention is required, as the model
should not look ahead in the sentence while predicting the next token. Thus, the self‑atten‑
tion mechanism allows the model to capture various attention patterns: sometimes,

FIGURE 3.5  Decoder‑only transformer architecture.

84    ◾    Large Language Models

it focuses on the first word of the sentence or on the previous word. In the case of GPT‑2, it
can capture 144 attention patterns, through 12 layers, each with 12 independent attention
mechanisms (heads).

The use of masked self‑attention produces an autoregressive architecture; that is, the
output of the model at time t is used as input at time t + 1, which can continuously predict
the next token in the sequence. Masked self‑attention is identical to self‑attention, except
when it comes to the evaluation of attention scores; for example, assuming that the model
has only two tokens as input, and we are observing the second token. In this case, the last
two tokens are masked. Then, the model interferes with the scoring step and always evalu‑
ates future tokens as 0, so the model cannot reach future words (Figure 3.7).

This masking is often implemented as an array called an “attention mask”; for example,
think of a sequence of four words, “John bought a book.” In a language modeling sce‑
nario, this sequence is absorbed in four steps, one per word. Since these models work in

FIGURE 3.6  Attention in a decoder‑only transformer.

FIGURE 3.7  Masked self‑attention in GPT‑2.

Large Language Models    ◾    85

“batches,” we can assume a batch size of four for this model, which will process the entire
sequence as a single batch.

Next, we compute the evaluation score matrices by multiplying a query matrix by
a key matrix. Next, we assign the attention mask triangle, setting the cells we want to
mask to infinity (inf) or a very large negative number (i.e., −11,000 million). Finally, the
SoftMax function is applied to each row of the matrix to produce the actual scores we use
for self‑attention. This whole procedure is detailed in the previous chapter. Suppose the
matrix, after applying SoftMax, is as shown in Figure 3.8.

In simple terms, this matrix of scores means the following:

•	 When the model processes the first example in the data set (row #1), which contains
only one word (“John”), 100% of its attention will be on that word.

•	 When the model processes the second example in the dataset (row #2), which con‑
tains the words (“John bought”), when it processes the word “bought,” 48% of its
attention will be on “John” and 52% of its attention will be on “bought.”

•	 etc.

We can make GPT‑2 work exactly like masked self‑attention. However, during evaluation,
when the model only adds one new word after each iteration, it would be inefficient to recal‑
culate self‑attention along the previous paths for tokens that have already been processed.

In this case, we process the first token (e.g., “John,” from the sequence “John bought”),
and GPT‑2 must maintain the key and value vectors of the token “John.” Thus, each
self‑attention layer maintains its respective key and value vectors for that token. In the next
iteration, when the model processes the word “bought,” it does not need to generate the
Q, K and V vectors for the token “John” as it simply reuses the ones it stored from the first
iteration (Figure 3.9).

 As a consequence, instead of training a new model for each application, a single model
can be pre‑trained and then tuned to solve multiple tasks. On the other hand, this approach
helps to solve data sparsity problems by pre‑training on a large and diverse dataset. An
efficient approach to adapt a basic model to a specific subsequent task is through zero‑ or
few‑trial type inferences.

3.3.1.1  Zero/Few‑Trials Inference through Prompts
GPT‑based models receive text as input and produce text as output. This generic input‑out‑
put structure can be exploited by providing inputs such as the following:

John bought a book
John 1 0 0 0

bought 0.48 0.52 0 0
a 0.31 0.35 0.34 0

Book 0.25 0.26 0.23 0.26

FIGURE 3.8  Example of a masked attention matrix in GPT‑2.

86    ◾    Large Language Models

“Translate this sentence into English: <sentence> =>”
“Summarize the following document: <document> =>.”

These prompts (Wei et al., 2023) for task solving allow zero‑shot inference with LM, that is,
without seeing examples of the correct output. Given a prompt, the most appropriate LM
output should solve the task; for example, translating into English or summarizing a docu‑
ment. To perform a few‑shot inference, a similar prompt can be constructed with examples
of correct output provided at the beginning.

In general, there are three types of shots that can be used (without a gradient update):

	 1.	Zero shot: the model predicts the answer given only a description of the task; for
example:
Translate from English to
Spanish:

← Task description

Car => ← Prompt

	 2.	One shot: in addition to the task description, the model sees a simple example of the
task; for example:
Translate from English to
Spanish:

← Task description

Ice cream => helado ← Example
Car => ← Prompt

FIGURE 3.9  Masked attention decoder blocks for “John bought a book”

Large Language Models    ◾    87

	 3.	Few shots: in addition to the task description, the model sees a few examples of the
task; for example:
Translate from English to
Spanish:

← Task description

Ice cream => helado ← Examples
Neural nets => redes neuronales ← Examples
Car => ← Prompt

The simplest way to use a pre‑trained GPT‑2 is to allow it to wander on its own, i.e., gener‑
ate unconditional samples. Alternatively, a prompt can be provided to talk about a specific
topic. In the case of rambling, one can simply hand over the start token and have it start
generating words.

The model has only one input token, so that path would be the only active one. The token
is processed successively through all the layers; then, a vector is produced along that path.
That vector can be evaluated against the model’s vocabulary (i.e., all the words known to
the model: 50,000 words, in the case of GPT‑2). In this case, the token with the highest
probability is selected. However, we can mix things up: we already know that, if we keep
clicking on the suggested word in a keyboard application, sometimes you can get stuck
in repetitive cycles where the only way out is if you click on the second or third suggested
word. The same thing can happen here. GPT‑2 has a parameter called top‑k, which we can
use to make the model consider sampling words other than the main word (e. g., when
top‑k = 1).

In the next step, we add the output of the first step to our input sequence and have the
model perform its next prediction. Thus, each layer of GPT‑2 retains its own interpretation
of the first token and uses it to process the second token.

GPT uses a 12‑layer decoder‑only transformer architecture identical to the original trans‑
former decoder (see Figure 3.10). First, GPT performs LM pre‑training on a large dataset
(i.e., BooksCorpus). Then, separate fine‑tuning is performed in a supervised manner on a
variety of discriminative language understanding tasks, such as classification, similarity
search, or entailment, among others.

Thus, instead of modifying the GPT architecture to solve different tasks, information
is provided in a task‑specific structure and then the model output is passed to a sepa‑
rate classification layer; for example, in entailment tasks, the input sentences are separated
and concatenated with a special delimiter. This is provided as input to GPT and then the
model output is passed to a separate classification layer. Recall that the textual entailment
task (aka natural language inference) is a directional relationship between text fragments,
so the relationship is fulfilled whenever the truth of one text fragment is derived from
another text.

Both GPT and GPT‑2 perform pre‑training for the purpose of language modeling, but
they do not perform fine‑tuning, but solve the tasks in a zero‑shot fashion. This means that
GPT‑2 performs multi‑task learning based on two capabilities: pre‑training of a generic
LM and use of textual prompts to perform zero‑shot inferences.

88    ◾    Large Language Models

The pre‑training is performed on a custom public text dataset (i.e., WebText) that is built
by extracting popular links from Reddit. The model has been pre‑trained in four different
sizes as shown in Table 3.1, where dmodel is the model dimension (i.e., embedding size).

In general, the GPT‑2 architecture is identical to GPT, except for some minor differ‑
ences (i.e., different weight initialization, larger vocabulary, longer input sequence, etc.).
Despite the size of these LLMs, underfitting of the WebText dataset usually occurs during
pre‑training, indicating that LLMs would perform even better.

On the other hand, GPT‑2 has been evaluated on several tasks, where it achieves promis‑
ing results, such as language modeling and reading comprehension, but does not reach the
baseline for summary and question‑answer generation. However, recall that GPT‑2 does
not perform fine‑tuning to solve any of these tasks, so the results are achieved through
zero‑shot inference. Interestingly, zero‑shot performance improves steadily with LM size,
indicating that, by increasing the size of a model, its ability to learn relevant feature s dur‑
ing pre‑training improves.

FIGURE 3.10  Architecture of GPT‑2.

TABLE 3.1  Hyperparameters of the GPT‑2 Architecture for Four Sizes

Parameters Layers dmodel

117M 12 768
345M 24 1024
762M 36 1280
1542M 48 1600

Large Language Models    ◾    89

3.3.2  The GPT‑3  Model

One of the disadvantages of the GPT‑2 model is that it is quite limited by the quality
and quantity of data used for its pre‑training. Thus, if the data are biased or limited, the
model may not produce accurate or unbiased results. On the other hand, because the
GPT‑2 model generates text from the data provided to it, it is possible that it will generate
erroneous or inaccurate information. In addition, although the model can produce coher‑
ent and well‑written text, it usually lacks context. This means that it can be difficult for the
model to understand the intent behind a specific question or instruction, which can lead to
inappropriate or confusing responses.

In its quest to build more powerful LLMs that do not require fine‑tuning and few shots to
understand tasks and perform them, a new version called GPT‑3 was developed.

The GPT‑3 model has 175 billion parameters (100 times more parameters than GPT‑2).
Because of this, and the large dataset with which it has been trained, it performs well on
NLP tasks of zero or few shots; for example, the model can be used to write articles that
are difficult to distinguish from those written by humans and can perform tasks that it was
never explicitly trained on, such as summarizing numbers, writing queries, and generating
code in different programming languages, given the task description in natural language,
or a prompt.

In general, there are two basic concepts introduced by GPT‑3:

	 1.	Learning in context: LLMs develop pattern recognition and other skills using cor‑
pora on which they are pre‑trained. As they learn to predict the next word, given
context words, these LLMs can recognize patterns in the data that help them mini‑
mize the loss of the language modeling task. This capability helps the model during
zero‑shot task transfer. Thus, the model looks for matches in the pattern of examples
with what it had learned in the past for similar data and uses that knowledge to per‑
form the tasks.

	 2.	Few‑shot, one‑shot and zero‑shot configuration: these configurations are special‑
ized cases of zero‑shot task transfer. In the few‑shot configuration, the model has
a description of the task and as many examples as fit the context window. In the
one‑shot configuration, exactly one example is provided to the model, and in the
zero‑shot configuration, no examples are delivered.

GPT‑3 was trained with a combination of five different corpora, each of which was assigned
a certain weight. Thus, high‑quality datasets were sampled more frequently, and the model
was trained for more than one epoch on them. The datasets used include CommonCrawl,
WebText2, Books1, Books2 and Wikipedia.

The architecture of GPT‑3 is the same as that of GPT‑2. However, the main differences
are in the following:

	 1.	GPT‑3 has 96 layers, each of which has 96 attention heads.

	 2.	The size of word embeddings was increased to 12 888.

90    ◾    Large Language Models

	 3.	The size of the context window was increased from 1024 for GPT‑2 to 2048 tokens for
GPT‑3.

	 4.	GPT‑3 has 175 billion parameters, compared to 1.5 billion for GPT‑2. This differ‑
ence in size translates into a much greater ability to understand and generate natural
language.

	 5.	GPT‑3 was trained on a much larger variety of tasks and datasets than GPT‑2. This
includes multilingual datasets, which allow GPT‑3 to generate text in multiple
languages.

	 6.	GPT‑3 offers greater control over text generation compared to GPT‑2; for example,
GPT‑3 allows the user to specify the length of generated text, subject matter, tone, and
style.

	 7.	GPT‑3 has demonstrated abilities to complete much more sophisticated tasks than
GPT‑2; for example, it can perform language translation, unit conversion, and code
completion tasks.

When GPT‑3 is asked to learn a new task, its weights do not change. However, the input
prompt is transformed into complex abstractions that can, by themselves, perform tasks
that the actual reference model cannot perform. The prompt changes GPT‑3 each time,
making it an expert on the specific task displayed.

Each time you create a prompt, you interact with a different GPT‑3 model. If we ask it
to tell us a story about “elves and dwarves,” its internal form will be very different from if
we ask it to calculate “2 + 2.” In addition, after analyzing thousands of poets and poems,
we can also enter the name of a poet and GPT‑3 can create an original poem based on the
author’s style. Thus, GPT‑3 can replicate the texture, genre, rhythm, vocabulary, and style
of the poet’s previous works to generate other new works.

Although GPT‑3 is an automatic completion model, it can be used for various tasks,
including a conversation, converting a sentence to a mathematical expression, generat‑
ing newspaper articles, designing/creating interface layouts, creating pieces of code, mass
marketing via the web, etc. On the other hand, GPT‑3 is capable of producing high‑qual‑
ity text; however, it sometimes loses coherence when formulating long sentences and
repeats sequences of text over and over again. In addition, GPT‑3 does not perform very
well on tasks such as entailment, and some reading comprehension tasks (Prystawski and
Goodman, 2023). Another limitation is that it weights each token equally and lacks the
notion of task‑ or goal‑oriented token prediction. In addition, model inference is complex
and costly due to its heavy architecture, and there is less interpretability of the language
and results generated by the model.

3.3.3  The GPT‑4  Model

An improved version of GPT‑3 corresponds to GPT‑4, which is a multimodal LLM; that
is, it accepts image and text inputs, and generates text outputs (OpenAI, 2023; Nori et al.,
2023); for example, it is shown a picture of cooking ingredients, is asked what can be done

Large Language Models    ◾    91

with them, and can respond with multiple options. GPT‑4 also extends the maximum
input length compared to previous versions, increasing it to a maximum of 32 768 tokens
(approximately, fifty pages of text).

GPT‑4 was trained on both publicly available data and data from external providers (i.e.,
government documents or academic papers). Then, fine‑tuning of the model was performed
using RLHF, which incorporates human feedback to help the model solve real‑world prob‑
lems effectively (Madaan et al., 2023). In addition, GPT‑4 can have more human‑like con‑
versations, provide accurate information on a variety of topics, interact with users in more
than twenty languages, write tests, complete assignments, and can even analyze infograph‑
ics (Sanderson, 2023). Its greater capacity is due to the longer context length: a base version
with 8192 tokens and a larger version with 32,768 tokens (Liu et al., 2023).

3.3.4  Reinforcement Learning from Human Feedback

One of the concerns about the application of LLMs is whether they are aligned with human
values in terms of security. In general, LLMs should be designed with three principles in
mind:

	 1.	Usability: the ability of an LLM to follow instructions, perform tasks, provide feed‑
back, and ask relevant questions to clarify the user’s intent when necessary.

	 2.	Truthfulness: the ability of an LLM to provide objective and accurate information
and to recognize its own uncertainties and limitations.

	 3.	Harmlessness: the importance of avoiding toxic, biased, or offensive responses and
refusing to assist in dangerous activities.

An LLM is considered aligned if he or she can successfully adhere to these general guide‑
lines. However, the diverse nature of these issues may require different strategies and
approaches for LLMs to respond appropriately to various requests.

One of the innovations to address these problems simultaneously is based on the use of
reinforcement learning from human feeedback (RLHF). Suppose we have two LLMs: a base‑
line model and a preference model. The role of the baseline model is to determine which
action a human being would prefer within a given list of possibilities (i.e., two different
responses of the baseline model to a user request). This model could assign a numerical
score to each action, effectively ranking them according to human preferences, a concept
known as the reward model, as shown in Figure 3.11.

Using this reward model, the reference model can be iteratively refined by altering its
internal text distribution to prioritize human‑preferred sequences (as indicated by the
reward model). Thus, the reward model serves as a means to introduce a human preference
bias into the reference model.

Next, the goal is to train a reward model. Although several approaches exist, RLHF spe‑
cifically leverages human feedback to generate a dataset of human preferences. This is then
used to learn the reward function that represents the desired outcome for a particular task.
This human feedback can be expressed in several ways:

92    ◾    Large Language Models

•	 Preference orders: humans assign a preference order to different outcomes from the
reference model.

•	 Demonstrations: instead of evaluating model outcomes, humans perform the full
task of writing down preferred responses to a set of prompts.

•	 Corrections: this amounts to editing the output of a model to directly correct unde‑
sired behaviors.

•	 Natural language input: instead of directly correcting a model’s output, humans
must describe a critique of these outputs in natural language.

The optimal reward method depends on the specific task to optimize. Once the reward
model has been established, how is it used to train the reference model? This is where we
need techniques such as Reinforcement Learning (RL), which focuses on allowing an agent
(i.e., an LLM) to learn an optimal policy that guides its actions to maximize a reward. In
this case, the reference model is the agent, and its actions are responses to user input. RL
uses the reward model to effectively develop a human‑valued policy that the LLM will use
to generate its responses (Christiano et al., 2023).

Both GPT‑3 and GPT‑4 use RLHF to integrate pre‑training, fine‑tuning, and instruction
tuning to improve model generation skills (e.g., conversational capabilities in ChatGPT).
In these cases, human feedback is leveraged to produce more engaging, context‑sensitive,
and safety‑aligned responses.

RLHF’s overall strategy for fine‑tuning LLMs consists of three steps:

	 1.	Collecting human demonstrations: human annotators are used for a pre‑selected
set of prompts, coming from developers and from model API requests. These demon‑
strations can be considered as the ideal responses, or responses to these prompts, and
together they form a training dataset. This is then used to perform fine‑tuning of a
previously trained model in a supervised manner, better known as SFT (Supervised
Fine‑Tuned).

During SFT, the human demonstration dataset is used to fit the reference
pre‑trained model. Given a prompt (P) and an ideal response (A), the base model is
asked to calculate the probability that A follows P, which is then used to fit the inter‑
nal distribution of the model to favor this type of response (see Figure 3.12).

FIGURE 3.11  Preference model for training a reference model.

Large Language Models    ◾    93

	 2.	Ordering preferences: human annotators must vote on one of the SFT model results,
thus creating a new dataset, composed of comparison data. The reward model is
trained on this dataset, choosing a list of prompts, from which the SFT model gener‑
ates multiple outputs (between four and nine) for each prompt. Annotators rank these
outputs from best to worst, forming a new labeled dataset, with rankings serving as
labels. The comparison data created by the annotators is used to train a reward model
that learns to evaluate different responses according to human preferences.

	 3.	Applying reinforcement learning: the SFT model teaches the human preference pol‑
icy through the reward model. The SFT model is tuned through the reward model,
and the result is a policy model. The specific optimization algorithm used to train the
policy model is based on the PPO (Proximal Policy Optimization) method. This uses
a trust region optimization method to train the policy by restricting policy changes
within a certain range of the previous policy to ensure stability. This ensures that the
policy optimization step does not end up overoptimizing the reward model.

The application of this whole reinforcement learning process for a rewards based LLM
(agent) and a policy model can be seen in Figure 3.13, where the observations correspond
to the ideal prompts and responses, and the actions are the ordered preferences respec‑
tively, within a fine‑tuned environment.

Although the collection of demonstrations occurs only once, the second (reward model)
and third steps (policy model) are repeated several times. Thus, more comparison data is

FIGURE 3.12  Supervised fine‑tuning process (SFT).

94    ◾    Large Language Models

collected on the current best policy model, which is then used to train a new reward model
and, subsequently, a new policy.

The actual effect of performing RLHF fine‑tuning on an LLM could be seen as follows:
the base LLM, trained to approximate the distribution of text extracted from the Internet,
possesses one of a chaotic nature, as it has modeled all the text on the Internet, with both
extremely valuable and undesirable content.

Suppose we have an ideal base LLM that, at such a stage, is able to perfectly replicate
this highly multimodal distribution of text on the Internet; that is, the model has suc‑
cessfully performed the task of finding the perfect distribution. Still, in inference, such an
ideal model might exhibit a form of instability in the way it chooses among the millions
of modes in the distribution, which together represent the whole cacophony of different
tones, sources, and voices that exist in its massive training data.

3.4  PaLM
Training larger LLMs is beneficial, but difficult to perform efficiently. Typically, training is
distributed across many machines, each with multiple accelerators (i.e., GPU or TPU). This
has been done successfully before (i.e., MEGATRON trains a 530 billion‑parameter LLM
on a system with 2240 GPUs), but the results are not as impressive. However, given higher
training throughput, we could (in theory) perform LLM pre‑training more extensively on
larger datasets, which could improve the results.

One way to approach this is to perform pre‑training with cumulative local masks. This
means that the neural network is trained on a secondary task involving the prediction

FIGURE 3.13  Reinforcement learning for an LLM acting as an agent.

Large Language Models    ◾    95

of hidden word masks in the text. This is just the goal of the PaLM (Pathways Language
Model), which is also based on transformers (Chowdhery et al., 2022).

PaLM uses a pre‑training technique that involves the accumulation of local masks, based
on the assumption that words in a text are closely related to words near them (Rohan Anil
et al., 2023). This means that, instead of simply masking individual words in the text, the
model masks groups of words close to each other, allowing for a better understanding of
the context and a more accurate representation of the language.

PaLM is a 540 billion‑parameter LLM, which eliminates pipeline parallelism (Xu et al.,
2021), so the architecture achieves higher training performance. This allows PaLM to
pre‑train on a larger dataset, which also enables it to solve difficult reasoning tasks (Yu
et al., 2023).

The PaLM model uses a transformer only with decoders, so it introduces the following
changes:

	 1.	It uses SwiGLU (instead of ReLU) activation functions in the FNN layers: this
corresponds to a combination of Swish and GLU (SwiGLU) activations, which is a
product of elements of two linear transforms of the input, to one of which a Swish
activation has been applied.

	 2.	It uses multi‑query attention mechanisms in the attention layers: the multi‑head
self‑attention mechanism is replaced with a multi‑query attention structure. This
only shares key and value vectors between each of the attention heads, instead of per‑
forming a separate projection for each head. This change significantly improves the
autoregressive decoding efficiency of LLMs. This change is shown in red in Figure 3.14.

	 3.	It uses parallel transformer blocks: the transformer block is parallelized, instead
of the normal (serial) variant, which speeds up the training process by 15% (see
Figure 3.15).

	 4.	It replaces positional embeddings with rotational positional embeddings (RoPE):
this allows incorporating absolute and relative positioning by encoding the absolute
position with a rotation matrix and incorporating the relative position directly into
the self‑attention. Unlike traditional approaches, where positional vectors are static,
RoPE introduces a rotation into these vectors. This allows for capturing the relative
relationship between words in different positions, providing richer information about
the sequence structure. Rotational positional vectors are computed from a set of basis
vectors using a sinusoidal function that varies its frequency and amplitude according
to word position.

To understand the impact of the model scale, there are three different sizes of PaLM that
have been evaluated, as shown in Table 3.2.

The corpus used for PaLM pre‑training consists of 780B tokens, extracted from high‑
quality web pages, books, Wikipedia, news, articles, code and social network conversations.

96    ◾    Large Language Models

FIGURE 3.14  Multi‑query attention mechanism.

FIGURE 3.15  Serialized (left) versus parallel (right) transformers in PaLM.

Large Language Models    ◾    97

In addition, this contains 22% of non‑English data (see below) and is inspired by corpora
used to train other LLMs.

3.4.1  Vocabulary

Since a part of the pre‑training corpus is not in English, a tokenizer is incorporated, with a
vocabulary size of 256K. The tokenizer takes the raw text input and extracts tokens (words
or subwords) from it. If a token is not part of the underlying vocabulary, it is broken down
into smaller fragments (i.e., characters), until it has been decomposed into valid tokens, or
replaced with a generic token outside the vocabulary.

For multilingual models, typically the size of the underlying vocabulary is greatly
increased to avoid this effect, as multi‑language data will use a wider range of tokens.
Therefore, PaLM adopts a larger vocabulary size than usual to avoid incorrectly tokenizing
the data and allow for more effective learning in multiple languages.

3.4.2  Training

PaLM is trained on a set of 6144 TPU chips that are distributed in two TPU modules, in
order to make the model components run in parallel.

Communication is very fast between TPUs, although communication between modules
(pods) is much slower. This is critical, as parallelizing data and models requires bandwidths
that are too large. This is usually addressed using two strategies:

	 1.	Limiting training to a single TPU pod.

	 2.	Using pipeline parallelism, which has lower bandwidth requirements between pods.

PaLM is efficiently trained on TPU pods (i.e., a set of TPU devices connected via dedi‑
cated high‑speed network interfaces) with a combination of model and data parallelism,
but without pipeline parallelism (i.e., a technique used in data processing and distributed
computing to improve the efficiency of processing systems). This allows the processing
load to be distributed among several TPUs.

PaLM performs well in many tasks. However, it has some difficulties in solving basic
reasoning tasks. This can usually be solved by using reasoning chain prompts (i.e., several
reasoning steps before the final result) to improve reasoning capabilities.

3.4.3  PaLM‑2

An improved version called PaLM‑2 incorporates new multilingual, reasoning, and pro‑
gramming capabilities, such as the following:

TABLE 3.2  Different PaLM Sizes

Size Layers Number of Heads dmodel

8B 32 16 4096
62B 64 32 8192
540B 118 48 18,432

98    ◾    Large Language Models

•	 Multilingualism: the model has been pre‑trained on multilingual texts in over a
hundred languages. This allows it to improve its ability to understand, generate and
translate nuanced text, including idioms, poems, and riddles, in a wide variety of
languages.

•	 Reasoning: The PaLM‑2 training dataset includes scientific articles and web pages
containing mathematical expressions. As a result, the model demonstrates enhanced
capabilities in logic, common sense reasoning and mathematics.

•	 Coding: the model is pre‑trained on a large number of publicly available source code
datasets. This means that it performs well in popular programming languages such
as Python and JavaScript, but also in code in specialized languages such as Prolog,
Fortran, and Verilog.

•	 Applications: More than twenty‑five Google products and feature s are powered. Its
enhanced multilingual capability allows it to accommodate new languages. In addi‑
tion, workspace feature s are leveraged to help you write in Gmail and Google Docs, as
well as organize spreadsheets, and its healthcare applications, such as Med‑PaLM‑2,
trained by medical teams, can answer questions, and summarize ideas, within a vari‑
ety of especially dense medical texts.

•	 Security: has a specialized version of Palm‑2 called Sec‑PaLM, trained in security use
cases and cybersecurity analysis. This uses AI techniques to help analyze and explain
the behavior of potentially malicious scripts and better detect which scripts are actu‑
ally threats to people and organizations in unprecedented time.

PaLM‑2 outperforms in advanced reasoning tasks, including code and math, classifica‑
tion and question answering, machine translation and multilingual proficiency, as well as
natural language generation better than the previous PaLM version. The model is based
on an approach to building and implementing AI responsively. To this end, PaLM‑2 was
rigorously evaluated for its potential harms and biases, capabilities, and downstream uses
in research and product applications.

Unlike PaLM, the PaLM‑2 model unifies three distinct LLM research advances:

	 1.	Use of optimal computational scaling: it scales the size of the model and training
dataset in proportion to each other. This allows PaLM‑2 to be smaller than PaLM,
but more efficient with better overall performance, including faster inference, fewer
parameters, and a lower service cost.

	 2.	Improved dataset mix: the model enhances its corpus with a more diverse and mul‑
tilingual pre‑training mix, including hundreds of human and programming lan‑
guages, mathematical equations, scientific articles, and web pages.

	 3.	Updated architecture: PaLM‑2 has improved architecture and was trained on a
variety of different tasks, all of which help the model learn different aspects of the
language.

Large Language Models    ◾    99

In order to achieve a responsible and secure LLM, PaLM‑2 incorporates three innovations:

	 1.	Pre‑training datasets: eliminating forms of sensitive personally identifiable infor‑
mation, filtering duplicate documents to reduce memorization, and sharing analysis
of how people are represented in pre‑training data.

	 2.	New capabilities: the model shows improved multilingual toxicity classification
capabilities and has built‑in control over toxic generation.

	 3.	Evaluations: potential harms and biases are evaluated in a variety of potential down‑
stream uses of PaLM‑2, including dialogue, classification, translation, and question
answering. This includes the development of new assessments to measure potential
harms in generative question‑answering and dialog environments related to the
harms of toxic language and social bias related to identity terms.

Finally, in Table 3.3, the main differences between PaLM and PaLM‑2 are shown.

3.5  LLaMA
With recent advances in LLM, full access to research is still limited to the resources
required to train and run such large models. This restricted access has limited the ability
to understand how and why these models work, hindering progress in efforts to improve
their robustness and mitigate known problems such as bias, toxicity, and the potential to
generate misinformation. Alternatively, smaller models trained on more tokens are easier
to retrain and tune for specific potential product use cases.

To address these problems, LLaMA (Large Language Model Meta AI) arises to aid
research and development in NLP (Guilla, 2023). The model is smaller and higher per‑
forming compared to other LLMs, allowing others in the research community who do
not have access to large amounts of infrastructure to study these models (Touvron et al.,
2023). Training the smaller model is desirable because it requires much less computational
power and resources to test new approaches (Zhang et al., 2023). Basic models are trained
on a large unlabeled dataset, which makes them ideal for performing fine‑tuning on vari‑
ous tasks. Currently, LLaMA is available in various sizes and configurations, as shown in
Table 3.4.

The model was trained with texts from the 20 most widely spoken languages, focusing
on those with Latin and Cyrillic alphabets. As a basic model, LLaMA is designed to be ver‑
satile and can be applied to many different use cases, as compared to a tuned model that is
designed for a specific task.

TABLE 3.3  Differences between PaLM and PaLM‑2

Characteristic PaLM PaLM‑2

Size 540 trillion 1.1 quintillion
Training data 600 trillion 1.65 quintillion
Tasks Various tasks including translation,

encoding, and question answering
Same as previous plus generating
creative text, formatting, or music

100    ◾    Large Language Models

3.5.1  Pre‑Training Data

The training dataset for LLaMA is a mixture of several publicly accessible and open source
compatible data sources. In total, this source accumulates 1452 TB and includes:

•	 English CommonCrawl (67%): five sources (2017 through 2020) were included, which
were processed for language identification with a linear classifier, in order to remove
non‑English languages and filter out low‑quality content with an n‑gram model.

•	 C4 (15%): this was preprocessed for language identification and filtered using heuris‑
tics such as the presence of punctuation marks or the number of words and sentences
in a web page.

•	 Github (4.5%): low‑quality files were filtered with heuristics based on line length or
alphanumeric character ratio, removing headers.

•	 Wikipedia (4.5%): data covering 20 languages (period June–August 2022) were
included and processed to remove hyperlinks, comments, and other formatting data.

•	 Gutenberg and Books3 (4.5%): public domain books and the Books3 section of
ThePile were included.

•	 ArXiv (2.5%): latex files from arXiv were included and processed to add scientific data
to the dataset.

•	 Stack Exchange (2%): this high‑quality question and answer website, covering a
diverse set of domains from computer science to chemistry, was included and data
from the 28 largest websites were maintained.

This allowed the creation of a training dataset containing approximately 1.4T tokens.

3.5.2  Architecture

The main architecture of LLaMA is based on transformers, which incorporate three rel‑
evant changes:

	 1.	Prenormalization: it is based on GPT‑3 and allows improving training stability by
normalizing the input of each transformer sublayer, using the RMSNorm normaliza‑
tion method (Phuong and Hutter, 2022).

TABLE 3.4  Hyperparameters of Pre‑Trained LLaMA Models

Size dmodel Number of Heads Number of Tokens

7B 4096 32 1T
13B 5120 40 1T
33B 6656 52 1.4T
65B 8192 64 1.4T

Large Language Models    ◾    101

	 2.	SwiGLU activation function: it is based on PaLM and replaces the nonlinearity of
ReLU with the SwiGLU activation function (Ekman, 2022).

	 3.	Rotational embedding: it is based on the GPT model and adds RoPE‑type embed‑
dings, at each layer of the network.

The main hyperparameters of the different variations of the model are shown in Table 3.5.
In addition, several optimizations were performed to improve the training speed of the

models:

	 1.	Efficient implementation of causal multi‑headed attention: this allows to reduced
memory usage and execution time. This is achieved by not storing attention weights
and not calculating key/query scores that are masked, due to the causal nature of the
language modeling task.

	 2.	Reduced number of activations that are recalculated during the backward pass
with checkpoints: activations that are costly to compute, such as linear layer outputs,
are stored by manually implementing the inverse function for the transformer layers.

	 3.	Reduced model memory usage: parallelism of models and sequences is used. In
addition, the computation of activations and inter‑GPU communication over the
network was superimposed.

In the final model training results, several NLP benchmark tasks and learning styles, such
as zero shot and few shots, were considered.

Overall, the model is available in two versions: LLaMA‑7B and LLaMA‑13B, and
LLaMA‑33B and LLaMA‑65B, of 7B, 13B, 33B, and 65B parameters, respectively. In addi‑
tion, variations are available such as Alpaca (7B and 13B, trained on GPT‑3 instructions),
and Vicuna (7B and 13B, trained on ChatGPT conversations) (Darling, 2022).

3.6  LANGUAGE MODEL FOR DIALOGUE APPLICATIONS (LaMDA)
LaMDA (Language Model for Dialogue Applications) is a family of LLMs for conversa‑
tional systems applications developed by Google (Thoppilan et al., 2022). LaMDA has gone
through several improvements and the current generation is based on transformers, which
only uses the decoder module. The model has been pre‑trained on a text corpus including
both documents and dialogs consisting of 1.56 billion words and then trained with specific
data by fine‑tuning, generated from manually annotated responses that meet sensitivity and

TABLE 3.5  Hyperparameters of the Different LLaMA Configurations

Size dmodel Number of Heads Number of Layers Number of Tokens

6.7B 4096 32 32 1T
13B 5120 40 40 1T
32.5B 6656 52 60 1.4T
65.2B 8192 64 80 1.4T

102    ◾    Large Language Models

safety criteria. The main feature is a mechanism in which the transformer interacts with an
external information retrieval system to improve the accuracy of the responses generated
to a user. The main hyperparameters of the model versions are shown in Table 3.6.

Unlike other models, LaMDA was trained on dialog data. Because of this, during its train‑
ing, the model captures several of the nuances that distinguish an open conversation from
other forms of language. One such nuance is reasonableness, which basically answers “does
the response make sense to a given conversational context?”; for example, if someone says:

I just started a new job.

One might expect another person to respond with something like:

How exciting: a friend got a job with an excellent work
environment.

This response makes sense, given the initial expression. However, sensibleness is not the
only thing that makes a good response. If so, the sentence “that’s fine” is a sensible
response to almost any statement, just as “I don’t know” is a sensible response to most
questions. Satisfactory answers also tend to be specific, relating clearly to the context of the
conversation. In the example above, the answer is sensible and specific.

LaMDA is based on a previous model called Meena, which was fully trained with 2.6 bil‑
lion parameters. Meena can conduct conversations that are more sensible and specific than
those of existing state‑of‑the‑art chatbots. This improvement is made possible by using a
metric called Sensibleness and Specificity Average (SSA), which captures basic attributes
for human conversation. Interestingly, the metric is strongly correlated with other stan‑
dard measures, such as perplexity. Once trained and validated with these metrics, LaMDA
can be adjusted to significantly improve the reasonableness and specificity of its responses.

3.6.1  Objectives and Metrics

The results generated by LaMDA are mainly evaluated according to three criteria:

	 1.	Quality: this is usually decomposed into three dimensions – Sensibleness, Specificity,
and Interestingness (SSI) – which are measured by human evaluators. Sensibleness
refers to whether the model produces answers that make sense in the context of the
dialogue (i.e., no common sense errors, no absurd answers, and no contradictions).
Specificity is measured by judging whether the system’s response is specific to the dia‑
logue context above and not a generic response that could apply to most contexts (i.e.,

TABLE 3.6  Hyperparameters of Different Configurations of LaMDA

Size Number of Layers dmodel Number of Heads

2B 10 2560 40
8B 16 4096 64
137B 64 8192 128

Large Language Models    ◾    103

“okay” or “don’t know”). Finally, Interestingness (“interest”) measures whether the
model produces responses that are also insightful, unexpected, or witty and therefore
more likely to create a better dialogue.

	 2.	Safety: this is composed of a set of safety objectives that capture the behavior that the
model should exhibit in a dialogue. These objectives attempt to constrain the model’s
output to avoid any undesirable outcomes that create risks of harm to the user and to
avoid reinforcing unfair bias; for example, these objectives train the model to avoid
producing output that has violent or gory content, promotes slurs or hateful stereo‑
types toward groups of people, or contains profanity.

	 3.	Grounding: this is defined as the proportion of responses with statements about the
external world that can be supported by authoritative external sources, as a share
of all responses containing statements about the external world. A related metric,
Informativeness, is defined as the proportion of responses with information about the
external world that can be supported by known sources, as a share of all responses.
Thus, casual responses that do not carry any real‑world information (i.e., “That’s a
great idea”) affect Informativeness, but not Grounding .

3.6.2  Pre‑Training of LaMDA

Pre‑training of the model is performed in two stages: pre‑training, through fine‑tuning,
and grounding. In the pre‑training stage, a dataset of 1.56T words, almost forty times more
words than those used to train previous dialog models such as Meena, is created from pub‑
lic dialog data and other web documents. After tokenizing the dataset into 2.81T tokens,
model pre‑training is performed using techniques for parallelizing neural networks such
as GSPMD, in order to predict the next token in a sentence, given the previous tokens.

•	 Fine‑tuning: the model is trained to perform generative tasks that produce responses
to given contexts, as well as classification tasks, on whether a response is safe and of
high quality. This produces a single multitasking model that can do both. The gen‑
erator is trained to predict the next token over a dialogue dataset restricted to the
back‑and‑forth dialogue between two authors. On the other hand, the classifiers are
trained to predict safety and quality assessments (aka SSI), for in‑context response
using annotated data. During a dialog, the generator produces several candidate
responses, given the current multi‑turn dialog context, and the classifiers predict the
safety and SSI assessments for each candidate response. First, candidate responses
whose evaluations or safety scores (i.e., SSI) are low are filtered out. The other candi‑
dates are re‑ranked according to their SSI scores and the one with the highest score is
chosen as the answer (see the example in Figure 3.16). All this allows for an increase
in the density of high‑quality candidate responses.

•	 Grounding: While people are able to verify their facts by using tools and refer‑
ring to established knowledge bases, many LLMs draw their knowledge only from
the parameters of their internal model. To improve the robustness of the original

104    ◾    Large Language Models

LaMDA response, a dataset of dialogues between people and LaMDA was collected
and annotated with information retrieval queries and results obtained, where appro‑
priate. Then, the generator and classifier are tuned on this dataset to learn how to
invoke an external information retrieval system during its interaction with the user,
to improve the grounding of its responses.

3.7  MEGATRON
Megatron is an LLM developed by the NVIDIA company and is one of the world’s larg‑
est and most powerful models of its kind, which also uses a transformer architecture. The
model has been trained with a large amount of text data to learn to predict the next word
or phrase in a text sequence. The model has billions of parameters and can generate consis‑
tent, high‑quality text in several languages, including English, Spanish, French, German,
Italian and many more.

Megatron is composed of several parts and technologies that work together to create the
model, the main components of which include:

•	 Transformer: this architecture is used to process variable‑length text sequences and
capture long‑term relationships between words.

•	 Large‑scale parallelization: it uses large‑scale parallelization techniques to train the
LLM on multiple GPUs. This allows the model to process large amounts of text data
and significantly accelerates the training process.

•	 Memory optimization: it uses memory optimization techniques to reduce the
amount of memory required to train the model. This allows the model to be trained
on GPUs with less memory, reducing hardware costs.

•	 Precision mixing: it uses precision mixing techniques to reduce the amount of
memory required to store the model parameters. This allows the model to have more
parameters and therefore be more accurate without significantly increasing the
memory required.

•	 Unsupervised learning: the model is trained using unsupervised learning tech‑
niques, which means that the model learns from large amounts of text data without
the need for annotations or labels. This allows the model to be trained on any lan‑
guage or text domain without the need for labeled data.

Unlike other LLMs, Megatron takes advantage of the parallel nature of the transformer
structure and is able to optimize it for large numbers of parameters. Thus, it performs a
parallel implementation of a simple model by adding some synchronization primitives. In
particular, Megatron uses two parallelization techniques:

FIGURE 3.16  Evaluation of candidate answers according to safety and interest.

Large Language Models    ◾    105

	 1.	Distributed model parallelism: the model is split horizontally into several equal
parts, each running on a different GPU. This allows it to scale to large GPU sys‑
tems, resulting in higher training speed and faster throughput; for example, for the
self‑attention block, the inherent parallelism in the multi‑head attention operation
associated with the key (K), query (Q), and value (V) in a parallel column is exploited,
such that the multiplied matrix corresponds to each attention head running locally
on a GPU. This allows splitting the attention and workload parameters across GPUs
and does not require any immediate communication to complete the self‑attention.
The linear layer is then parallelized along its rows and takes the output of the parallel
attention layer directly, without the need for communication between GPUs.

	 2.	Distributed data parallelism: the input data is divided into several chunks and dis‑
tributed among the GPUs. Each GPU processes its own dataset and then combines
the results to produce the final output. In particular, recall that a transformer has out‑
put embeddings with the dimension of hidden size (H) by vocabulary size (v). Since
the vocabulary size is on the order of tens of thousands of tokens for LLM, it is very
beneficial to parallelize the computation of the output embeddings.

Much of the parallelism approach is based on techniques aimed at reducing communica‑
tion and maintaining GPU computational limits. Instead of having one GPU compute part
of the dropout, normalizing layers, or residual connections, and passing the results to other
GPUs, we simply duplicate the computation between GPUs, as shown in Figure 3.17.

For this, duplicate copies of the layer normalization parameters are maintained on each
GPU. Then, the output of the model parallel region is taken, and dropout and residual
connections are run on these tensors before passing them as input to the following parallel
regions. To optimize the model, each parallel worker process optimizes its own param‑
eters, which avoids the need for inter‑GPU communication. The different configurations
of the model can be seen in Table 3.7.

FIGURE 3.17  Model parallelism in Megatron.

106    ◾    Large Language Models

In general, the transformer structure was reorganized to allow this parallelization,
changing the order of the normalization layer and the residual connections, allowing to
scale the model with less training loss.

3.7.1  Training Data

To collect diverse training datasets with long‑term dependencies, larger datasets were cre‑
ated, including Wikipedia, CC‑Stories, RealNews, BookCorpus, and OpenWebText. In
addition, unnecessary information was removed from some corpora. These datasets were
combined and documents with content smaller than 128 tokens were filtered out. The train‑
ing used the transformer decoder architecture, with 530 billion parameters, the total number
of layers, hidden dimensions, and attention heads being 105, 20,480, and 128, respectively.

Some improvements to the original model made possible the creation of Megatron‑Turing,
which uses NVIDIA’s Turing processor architecture, with 530 billion parameters. The
model is designed to take full advantage of the processing power of Turing‑based GPUs,
resulting in increased speed and efficiency in LLM training.

This power optimizes matrix computations and the implementation of a low‑latency
communication model between GPU nodes. In addition, Megatron‑Turing uses a low‑pre‑
cision model compression scheme, which reduces the size of the model and accelerates its
processing on the GPU. By combining the Turing processor architecture with Megatron’s
parallelization technique, billion‑parameter LLMs can be trained in a reasonable time,
and with good accuracy on various natural language tasks such as completion prediction,
reading comprehension, common sense reasoning, and natural language inference, among
others.

3.8  OTHER LLMS
There are several other LLMs available with different training types, fine‑tuning, and train‑
ing dataset sizes2:

•	 BLOOM3: it is an autoregressive LLM of 176 billion parameters and is capable of gen‑
erating coherent text in 46 languages and 13 programming languages. In addition,
BLOOM can perform text tasks for which it has not been explicitly trained, turning
them into text generation tasks.

•	 Chinchilla: it is a 70B‑parameter LLM trained as an optimal computational model
with 1.4 billion tokens. Training is optimally performed by equally scaling both the

TABLE 3.7  Hyperparameters of the Megatron Model

dmode

Number of
Heads

Number of
Layers Size

GPU for
Model Parallelism

GPU for Model and
Data Parallelism

1536 16 40 1.2 B 1 64
1920 20 54 2.5 B 2 128
2304 24 64 4.2 B 4 256
3072 32 72 8.3 B 8 512

Large Language Models    ◾    107

size of the model and the number of training tokens: the model uses four times more
training data than other models.

•	 AlexaTM4 (Alexa Teacher Model): it is a 20B‑parameter LLM based on one‑shot and
few‑shot tasks. The model outperforms GPT‑3 on several benchmark tasks and has
less than 1/8 the number of parameters. Unlike other models, AlexaTM uses both the
encoder and the transformer decoder. The encoder stage enables better performance in
summary generation and machine translation tasks compared to decoder‑only LLMs.

•	 Dolly5: it is an open source LLM that has been pre‑trained for instruction tracking,
with 6 billion parameters, compared to 175 billion for GPT‑3. Dolly is a clone of
another open source model called Alpaca, inspired by LLaMA.

•	 Alpaca6: it is an improved LLaMA LLM with seven billion parameters for instruction
tracking. Alpaca behaves qualitatively similar to GPT‑3 but is smaller and cheaper to
reproduce. The model was trained with 52K demos by fine‑tuning.

•	 Falcon7: it is an autoregressive decoder LLM, with 40B parameters trained on a billion
tokens. The model uses only 75% of the training computation from GPT‑3, 40% from
Chinchilla and 80% from PaLM‑62B. Falcon can extract high‑quality content from
web data and use it to train a custom code base. Falcon’s architecture was optimized
for performance and efficiency, outperforming GPT‑3 by only 75% of the training
computation budget and requiring one‑fifth of the computation at inference time.
One feature of the model is the quality of its training data, which is based predomi‑
nantly (over 80%) on RefinedWeb, a web dataset based on CommonCrawl. A smaller
version, Falcon‑7B, is a 7B parameter causal decoder‑only model trained on 1500B
tokens from RefinedWeb.

•	 ORCA: is a Microsoft‑developed LLM with 13B parameters which learns from GPT‑4
prompts, including explanation traces, step‑by‑step thought processes and other
complex instructions. The main difference between Orca 13B and GPT‑4 is the use of
explanation traces; for example, it allows ORCA to understand the underlying logic
behind the responses generated by GPT‑4. This allows it to understand the context
and subtleties of different scenarios, significantly improving reasoning and compre‑
hension skills.

•	 Mistral8 is a 7‑billion‑parameter language model released by Mistral AI. The model
provides both efficiency and high performance to enable real‑world applications. Due
to its efficiency improvements, the model is suitable for real‑time applications where
quick responses are essential. Mistral 7B outperformed the best open source 13B
model (Llama 2) in all evaluated benchmarks. In addition, the model uses two atten‑
tion mechanisms: (1) Grouped‑query attention for faster inference and reduced
memory requirements during decoding, and (2) Sliding window attention for han‑
dling sequences of arbitrary length with a reduced inference cost.

108    ◾    Large Language Models

3.9  CONCLUSIONS
The advancement of LLMs has opened up new possibilities and opportunities for industries
and society. From chatbots to language translation, LLMs have the potential to revolution‑
ize the way we communicate and interact with technology. A key feature of these models is
their ability to efficiently represent the contexts of words within a sentence. However, this
requires a large amount of data to be effective; hence, few‑shot learning techniques, which
aim to allow models to learn from a limited amount of data, have the potential to greatly
improve the flexibility and efficiency of models.

On the other hand, current LLMs require large amounts of labeled data to process
language accurately. However, unsupervised learning techniques, which do not require
labeled data, have the potential to greatly reduce the amount of data needed for NLP mod‑
els to be effective.

NOTES
	 1	 https://www.aidemos.info/
	 2	 https://crfm.stanford.edu/helm/latest/
	 3	 https://huggingface.co/bigscience/bloom
	 4	 https://github.com/amazon‑science/alexa‑teacher‑models
	 5	 https://github.com/databrickslabs/dolly/
	 6	 https://github.com/tatsu‑lab/stanford_alpaca
	 7	 https://falconllm.tii.ae/
	 8	 https://huggingface.co/docs/transformers/main/en/model_doc/mistral

https://www.aidemos.info/
https://crfm.stanford.edu/helm/latest/
https://huggingface.co/bigscience/bloom
https://github.com/amazon-science/alexa-teacher-models
https://github.com/databrickslabs/dolly/
https://github.com/tatsu-lab/stanford_alpaca
https://falconllm.tii.ae/
https://huggingface.co/docs/transformers/main/en/model_doc/mistral

109DOI: 10.1201/9781003517245-4

C h a p t e r 4

Model Evaluation

4.1  INTRODUCTION
The development and evaluation of LLMs has become a fundamental area of research in
the field of NLP. These models are trained on vast amounts of data and have the ability to
generate consistent, quality text. However, evaluating the quality and performance of these
models is a challenge in itself (Stephanie Lin, 2022).

First, evaluation of LLMs requires understanding the main tasks on which LLMs can be
measured, because the complexity of a text generation task and a classification or reason‑
ing task have completely different complexities.

On the other hand, the evaluation of LLMs involves the selection of appropriate metrics.
Although traditional metrics such as perplexity and grammatical accuracy are useful, they
do not fully capture the quality and consistency of the text generated by these models.
Therefore, new metrics, such as lexical diversity and human evaluation, are being explored
that consider broader aspects of text generation.

In addition, the creation of suitable evaluation corpora or datasets is a major challenge.
High‑quality benchmark data is essential for comparing model performance. These datas‑
ets must be representative and cover a wide range of domains and language styles.

Thus, LLM evaluation is an active area of research seeking to develop more robust met‑
rics and appropriate evaluation datasets. The goal is to accurately measure the quality and
performance of these models in text generation, overcoming the limitations of traditional
metrics and addressing the challenges of contextualized assessment. These rigorous evalu‑
ations are essential to continuously improve and refine these models, and to ensure that
their application in various areas is reliable and effective.

4.2  EVALUATION TASKS
In general, LLMs are evaluated on a diverse set of benchmark NLP tasks, such as:

•	 Language modeling: the performance of a language model can be evaluated using
the word prediction task. This involves presenting the model with a sequence of
words and assessing its ability to predict the next word.

https://doi.org/10.1201/9781003517245-4

110    ◾    Large Language Models

•	 Text generation: the model’s ability to generate coherent and meaningful text can
be assessed using the sentence or paragraph completion task. This involves present‑
ing the model with an incomplete sentence or paragraph and assessing its ability to
complete it in a coherent and meaningful way.

•	 Machine translation: the model’s ability to automatically translate text from one
language to another can be assessed using the machine translation task. This involves
presenting the model with a text in a source language and assessing its ability to
translate it into the target language.

•	 Question answering: the model’s ability to answer questions based on a given con‑
text can be assessed using the question‑answering (QA) task. This involves presenting
the model with a question and a related context and assessing its ability to provide a
relevant and accurate answer.

•	 Natural language understanding: the model’s ability to understand natural lan‑
guage can be assessed using the semantic analysis task. This involves presenting the
model with a text and assessing its ability to understand its structure and meaning.

Suppose two LLMs are trained for a simple question‑answer system, one with attention
and one without attention, or one with more layers of processing than the other. How can
these models be evaluated to find the one best suited to the task? Quite simply, through
benchmarking.

To examine the effectiveness of LLMs, there are several tasks and benchmarks for con‑
ducting an empirical evaluation and analysis. First, three basic types of LLM evaluation
tasks for language generation and comprehension are introduced; then, advanced LLM
tasks with more complex settings or goals are described.

4.2.1  Basic Evaluation Tasks

This group mainly includes three types of LLM evaluation tasks:

	 a.	Language generation: this type of task can be classified into three groups:

•	 Language modeling: this aims to predict the next token based on the previous
tokens, which mainly focuses on basic language comprehension and generation
ability.

•	 Conditional text generation: this task focuses on generating text that satisfies
specific task demands based on the given conditions, typically including machine
translation, text summarization, and question answering.

•	 Code synthesis: existing LLMs show strong skills in generating formal language,
especially computer programs that satisfy specific conditions, called “code syn‑
thesis.” Since the generated code can be directly verified by execution with the
corresponding compilers or interpreters, existing work mainly evaluates the
quality of code generated from LLMs by calculating the pass rate in test cases.

Model Evaluation    ◾    111

	 b.	Knowledge utilization: this is an important skill of systems that perform knowl‑
edge‑intensive tasks (e.g., answering common sense questions and completing facts)
based on factual evidence. This requires LLMs to appropriately use factual knowledge
from the pre‑training corpus or retrieve external data when necessary. In particular,
Question‑Answering or QA and knowledge completion have been two commonly used
tasks to assess this skill. According to the testing tasks and assessment settings (with or
without external resources), knowledge utilization tasks are classified into three types:

•	 Closed‑book QA. These test the factual knowledge acquired from the LLMs of
the pre‑training corpus, where models must answer the question only based on
the given context, without using external resources. Performance on this type of
test shows a scaling law pattern in terms of model and data size: scaling the train‑
ing parameters and tokens can increase the capacity of LLMs and help them learn
(or memorize) more knowledge from the pre‑training data.

•	 Open‑book QA. In this task, useful evidence can be extracted from an external
knowledge base or a set of documents and then answered based on the extracted
evidence. To select relevant knowledge from external resources, LLMs are com‑
bined with a text retriever (or even a search engine), which is trained indepen‑
dently or jointly with LLMs.

•	 Knowledge completion. LLMs can be considered a knowledge base that can be
leveraged to complete or predict missing parts of knowledge units (e.g., knowl‑
edge triples). Such tasks can assess how much and what kind of knowledge LLMs
have learned from the pre‑training data.

	 c.	Complex reasoning: this task refers to the ability to understand and use supporting
evidence or logic to derive conclusions or make decisions. According to the type of
logic and evidence involved in the reasoning process, assessment tasks can be divided
into three main categories:

•	 Knowledge reasoning: this task relies on logical relationships and evidence about
factual knowledge to answer a given question. Usually, specific datasets are mainly
used to assess the reasoning ability of the corresponding type of knowledge. In
addition, the quality of the generated reasoning process is evaluated, through
automatic metrics or human evaluation. Generally, these tasks require LLMs to
perform “step‑by‑step” reasoning based on factual knowledge, until the answer to
the given question is reached (Wei et al., 2023). To obtain step‑by‑step reasoning
ability, a strategy known as chain of thought (i.e., “chain of thought” or CoT) is
usually applied to improve complex reasoning ability. CoT involves intermediate
reasoning steps, which can be manually created or automatically generated in
prompts, to guide the model to perform multistep reasoning (Wang, 2023).

•	 Symbolic reasoning: these types of tasks focus primarily on the manipulation
of symbols in a formal rule setting to accomplish some specific goal, where the
operations and rules may never have been seen by pre‑trained LLMs.

112    ◾    Large Language Models

•	 Mathematical reasoning: this uses mathematical knowledge, logic and com‑
putation to solve problems or generate proof statements. Existing mathematical
reasoning tasks can be mainly classified into mathematical problem solving and
automated theorem proving. Since these tasks also require multistep reasoning,
the CoT strategy has been adopted to improve reasoning. Since mathematical
problems in different languages share the same mathematical logic, a benchmark
of multilingual mathematical verbal problems can also be used to assess the mul‑
tilingual mathematical reasoning ability of LLMs.

4.2.2  Advanced Assessment Tasks

LLMs also exhibit some superior skills that require special considerations for assessment,
such as the following:

	 a.	Human alignment:
LLMs are expected to be able to align with human values and needs (Wang et al.,

2022). To assess this capability, multiple human alignment criteria, such as kind‑
ness, honesty, and safety, are considered. For kindness and honesty, adversarial
question‑answering tasks (i.e., TruthfulQA) can be used to examine LLMs’ abil‑
ity to detect possible falsehoods in a text. In addition, innocuousness (i.e., harm‑
lessness) can also be assessed by several existing benchmarks. However, human
evaluation remains a more direct way to effectively test LLMs’ human alignment
capabilities.

	 b.	Interaction with external environment:
LLMs have the ability to receive feedback from the external environment and per‑

form actions according to behavioral instructions, such as generating natural lan‑
guage action plans to manipulate agents (Bernstein, 2023). This capability also arises
in LLMs that can generate detailed and very realistic action plans, whereas smaller
models tend to generate shorter or meaningless plans.

	 c.	Tool manipulation:
When solving complex problems, LLMs can use tools if they determine it neces‑

sary; for example, through APIs. Thus, the web browser plug‑in allows ChatGPT to
access up‑to‑date information. In addition, the incorporation of third‑party plug‑ins
is particularly key to creating a thriving ecosystem of LLM‑based applications. To
assess this capability, complex reasoning tasks are usually adopted for evaluation,
such as mathematical problem solving or open‑book QA, where successful use of
tools is very important to improve LLM skills.

4.2.3  Regulatory Compliance Tasks

LLMs and other generative AI applications are transforming society with their capabilities.
However, there are varied issues related to their security, transparency, data usage, privacy,
and bias, among others, that need to be evaluated according to their level of compliance
(i.e., compliance) with certain international regulations (Liang et al., 2021). Recently, the

Model Evaluation    ◾    113

European Union (EU) finalized its AI law as the world’s first comprehensive regulation
to regulate AI. The European Parliament adopted a draft of the law that includes explicit
obligations for basic model providers.

The Stanford Institute for Human‑Centered Artificial Intelligence1 identified and syn‑
thesized the requirements of the AI law adopted by the EU, which can be seen summarized
in Table 4.1. With this approach, the following information was extracted to evaluate dif‑
ferent models and the reference documents:

•	 Almost 22 requirements addressed to foundation model providers were extracted
from the EU version of the law. Twelve of the 22 requirements were selected for
evaluation.

•	 The 12 requirements were categorized in relation to (i) data resources (3), (ii) IT
resources (2), (iii) the model itself (4), or (iv) implementation practices (3). Many of
these requirements focus on transparency, for example, disclosure of what data were
used to train the basic model, how the model performs on standard benchmarks, and
where it is implemented.

•	 A 5‑point rubric was designed for each of the 12 requirements. While the law sets
out high‑level obligations for core model providers, it is not clear how these obliga‑
tions are to be interpreted or enforced. These rubrics can directly inform legal inter‑
pretation or standards, even in areas where the language of the law is particularly
confusing.

•	 We evaluated 10 model language providers’ compliance with 12 of the law’s require‑
ments for foundation models under our rubrics. The vendors were evaluated inde‑
pendently among several human evaluators, with substantial inter‑rater agreement
of Cohen’s kappa = 0.74.

The final evaluation is shown in Figure 4.1, where both LLMs and other types of generative
models for images are shown.

The results show a surprising range in compliance among the vendors: some vendors
score below 25% (i.e., AI21 Labs, Aleph Alpha, Anthropic...) and only one vendor scores at
least 75% (Hugging Face/BigScience). Even for the vendors with the highest score, there is
still significant room for improvement. This confirms that the law (if enacted) would bring
about significant change in the ecosystem, making substantial progress toward greater
transparency and accountability.

There are four areas in which many organizations receive low scores (generally, 0 or 1
out of 4): (1) copyrighted data, (2) computation/power, (3) risk mitigation, and (4) evalua‑
tion/testing. These speak to established issues in the scientific literature:

•	 Unclear liability due to copyright: Few vendors disclose information on the copy‑
right status of training data. Many basic models are trained on data culled from the
Internet, a substantial fraction of which is likely to be copyrighted.

114    ◾    Large Language Models

•	 Uneven reporting of energy use: Basic model providers report inconsistently on
energy use, emissions, their strategies for measuring emissions, and any measures
taken to mitigate emissions.

TABLE 4.1  Regulations and Compliance Proposed by the European Union

Category Keyword Requirement (summarized) Section

Data Data sources Describe data sources used to
train the foundation model

Amendment 771, Annex
VIII, Section C, page 348

Data governance Use data that is subject to data
governance measures
(suitability, bias, and
appropriate mitigation) to
train the foundation model

Amendment 399, Article
28b, page 200

Copyrighted data Summarize copyrighted data
used to train the foundation
model

Amendment 399, Article
28b, page 200

Compute Compute Disclose compute (model size,
computer power, training
time) used to train the
foundation model

Amendment 771, Annex
VIII, Section C, page 348

Energy Measure energy consumption
and take steps to reduce
energy use in training the
foundation model

Amendment 399, Article
28b, page 200

Model Capabilities/limitations Describe capabilities and
limitations of the foundation
model

Amendment 771, Annex
VIII, Section C, page 348

Risks/mitigations Describe foreseeable risks,
associated mitigations, and
justify any non‑ mitigated
risks of the foundation
model

Amendment 771, Annex
VIII, Section C, page 348
and Amendment 399,
Article 28b, page 200

Evaluations Benchmark the foundation
model on public/industry
standard benchmarks

Amendment 771, Annex
VIII, Section C, page 348
and Amendment 399,
Article 28b, page 200

Testing Report the results of internal
and external testing of the
foundation model

Amendment 771, Annex
VIII, Section C, page 348
and Amendment 399,
Article 28b, page 200

Deployment Machine‑generated
content

Disclosed content from a
generative foundation model
is machine‑generated and
not human‑generated

Amendment 101, Recital
60g, Page 76

Member states Disclose EU member states
where the foundation model
is on the market

Amendment 771, Annex
VIII, Section C, page 348

Downstream
documentation

Provide sufficient technical
compliance for downstream
compliance with the EU Al
Act

Amendment 1 01, Recital
60g, page 76 and
Amendment 399, Article
28b, page 200

Model Evaluation    ◾    115

•	 Inadequate disclosure of risk mitigation/non‑mitigation: The risk landscape for
core models is immense and encompasses many forms of malicious use, unintended
harm, and structural or systemic risk. While many core model vendors list risks, few
disclose the mitigations they implement and the effectiveness of these mitigations.

•	 Absence of assessment standards/audit ecosystem: Model vendors rarely measure
model performance in terms of intentional damage, such as malicious use, or factors
such as robustness and calibration.

In general, no model provider achieves a perfect score, with ample room for improvement
in most cases. With sufficient incentives (e.g., fines for non‑compliance), companies will
change their behavior; even in the absence of strong regulatory pressure, many providers
could achieve total scores between 30 and 40 through significant but plausible changes. To
be concrete, the maximum entry in OpenAI and Hugging Face is 42 (compliance of almost
90%). Thus, enforcing these 12 requirements in the law would bring a substantial change
while remaining within the reach of providers.

In conclusion, model suppliers are unevenly compliant with the requirements set out in
the EU AI bill. The enactment and enforcement of the EU AI Bill could bring about signifi‑
cant positive change in the underlying model ecosystem.

4.3  METRICS AND BENCHMARKS
For many benchmarking datasets in NLP, metrics exist that allow different LLMs to be
compared to each other. Depending on the task, models are evaluated with different met‑
rics. Apart from the traditional metrics (i.e., Accuracy, F1‑score, and Perplexity), the most
usual metrics used include the following:

FIGURE 4.1  Evaluation of various model providers for 12 EU requirements on a scale from 0
(worst) to 4 (best). (Human‑Centered Artificial Intelligence.)

116    ◾    Large Language Models

•	 Exact Matching: the proportion of predictions that exactly match any of the
responses.

•	 MMLU (Multitask Language Understanding): is a reference point (aka benchmark)
for large‑scale assessment of multitask knowledge understanding. It covers a wide
range of knowledge domains from mathematics and computer science to humanities
and social sciences.

•	 AI2 Reasoning Challenge: it is a set of school‑level science questions.

•	 HellaSwag: it is a common sense inference test that is easy for humans (~95%) but
challenging for LLMs.

•	 TruthfulQA: it is a test to measure whether the model can reproduce falsehoods usu‑
ally found online.

•	 TriviaQA: it is a reading comprehension dataset containing over 650,000 triples of
questions, answers, and tests. It includes 95,000 question‑answer pairs created by
trivia enthusiasts and independently collected evidence documents, six per question
on average.

•	 Bias: this measures how much bias, and misinformation, exists in the answers
generated by different models. This is a subjective assessment produced by human
annotators.

•	 Model size: it measures the complexity of an LLM from the point of view of the num‑
ber of parameters (i.e., millions, billions, trillions...) and/or the internal configuration
(i.e., attention layers or hidden layers).

•	 GSM8K: it is a dataset of 8.5K high‑quality linguistically diverse elementary math‑
ematics verbal problems of high quality created by human problem writers. The solu‑
tions mainly involve performing a sequence of elementary computations using basic
arithmetic operations to arrive at the final answer.

4.4  BENCHMARK DATASETS
Usually, to evaluate NLP tasks with the above metrics, various benchmarks, and datasets
such as SQuAD, CoCA, and GLUE are used.

4.4.1  SQuAD (Stanford Question‑Answering Dataset)

This dataset was created to advance the area of reading comprehension. Reading text
and answering questions about it is a demanding task for machines and requires large,
high‑quality datasets. This one usually contains 107,785 question‑answer pairs for 536
Wikipedia articles. For each question, the answer is a text segment, from the correspond‑
ing reading passage. The most recent version of SQuAD2 contains 53,775 new unanswered
questions in the same paragraphs.

As a benchmark, humans achieve an EM score of 86.831 and an F1 score of 89.452, leav‑
ing these values as a baseline for future comparison.

Model Evaluation    ◾    117

4.4.2  GLUE (General Language Understanding Evaluation)

Most NLP models are designed to solve a specific task, such as answering questions from
a particular domain. This limits the use of models for understanding natural language. To
process language in a way that is not limited to a specific task, genre, or dataset, models
must be able to solve a variety of tasks well. GLUE3 is a set of tools designed to support
models that share common linguistic knowledge across tasks. These tasks include textual
entailment, sentiment analysis, and question answering.

Models tested in GLUE need only have the ability to process single‑sentence and sen‑
tence‑pair inputs and make appropriate predictions. This test suite contains a total of nine
sentence or sentence‑pair NLU tasks based on established annotated datasets. Usually,
three different types of tasks are considered in GLUE: single‑sentence tasks, similarity
and paraphrasing tasks, and inference tasks. For the latter, usually entailment (i.e., the
hypothesis states something that is definitely correct about the situation in the premise),
neutrality (i.e., the hypothesis states something that could be correct about the premise),
and contradiction (i.e., the hypothesis states something that is definitely incorrect about
the premise) tasks are considered. The collections of sentence pairs that have been cre‑
ated are designed to exemplify various known sources of entailment or implicature, from
low‑level word meanings and sentence structure to high‑level reasoning and application of
world knowledge (Wang, 2023).

For example, suppose the text, “a car sped past a bunch of people.” If the hypothesis
sentence were “a man is driving along a quiet road,” the class of the inference would be
contradiction.

Note that the task becomes a classification of sentence pairs by matching each ques‑
tion and each sentence in the respective context, and hence the metric used is Accuracy.
Overall, the human reference score is 87.1.

4.4.3  SNLI (Stanford Natural Language Inference)

When it comes to understanding natural language, entailment and contradiction infer‑
ence is essential. The characterization and use of these relations in computational sys‑
tems is called “natural language inference” or Natural Language Inference (NLI) and is
fundamental to tasks such as commonsense reasoning and information retrieval. SNLI4
is a collection of 570k sentence pairs that are labeled as “entailment,” “contradiction,” or
“semantic independence.” While there are other data datasets that attempt to perform this
particular task, they all have problems of size, quality, and vagueness.

The models are again evaluated for the accuracy of the predicted label, and there is no
human performance measurement for the SNLI corpus.

4.4.4  ARC (Abstraction and Reasoning Corpus)

This repository contains the data of an Abstraction and Reasoning Corpus (ARC) task for
humans to attempt to solve the tasks manually (Wang, 2023). ARC5 is a general AI bench‑
mark that is aimed at both humans and computational systems that aim to emulate a form
of general human‑like general fluid intelligence. An examinee is said to solve a task when,

118    ◾    Large Language Models

upon first viewing the task, it can produce the correct output for all test inputs in the task
(this includes choosing the dimensions of the output). For each test input, the examinee
is allowed three attempts (this is valid for all examinees, whether human or AI). The ARC
dataset includes a collection of 7,787 English science test questions.

4.5  LLM ASSESSMENT
Various LLMs can be evaluated under different criteria and metrics, and using various
datasets, such as those described previously.

For example, in language inference on SNLI, some models have been evaluated in dif‑
ferent inference tasks on different datasets, as shown in Table 4.2. The datasets used ‑A1,
A2 and A3‑ correspond to subsets extracted from Wikipedia. This shows that, in general,
smaller, fine‑tuned BERT models such as RoBERTa outperform even GPT‑3.

In language comprehension (MMLU) tasks over multiple domains (i.e., humanities,
STEM, social sciences, etc.), some results can be observed in Table 4.3. Note that the val‑
ues of the metrics depend on the complexity of the model (i.e., number of parameters and
training technique), in which case PaLM (540B) is observed to deliver the best performance
in all domains. All metrics are exact match accuracy variants, unless otherwise specified.

However, you could already realize that the complexity of each model produces better
results, depending on the task being evaluated.

In reading comprehension tasks, the assessment is based on asking about a paragraph
or document, and the answer is usually a part of the document. Some specific comprehen‑
sion tasks include multiple choice, free‑form response, paragraph prediction... The result of
accuracy assessment in comprehension tasks is shown for some models in Table 4.4, where
the best performance is achieved with a smaller BERT model, called ALBERT.

TABLE 4.3  MNLI Evaluation for LLMs of Different Complexity

Model Type Average (%) Humanities STEM Social Sciences

PaLM 540B Few‑shot 69.3 77 55.6 81
LLaMA 65B Few‑shot 63.4 61.8 51.7 72.9
LLaMA 33B Few‑shot 57.8 55.8 46 66.7
GPT‑3 Fine‑tuned 53.9 52.5 41.4 63.9
LLaMA 13B Few‑shot 46.9 45 35.8 53.8
BLOOM 176B Few‑shot 39.13 34.05 36.75 41.5
LLaMA 7B Few‑shot 35.1 34 30.5 38.3

TABLE 4.2  Comparison of LLMs According to Language
Inference Capabilities on A1, A2, and A3 Datasets

Model A1 A2 A3

RoBERTa (Large) 75.5 51.4 49.8
GPT‑3 36.8 34.0 40.2
ALBERT 73.6 58.6 53.4
BERT (Large) 57.4 48.3 43.5

Model Evaluation    ◾    119

In more complex reasoning tasks (ARC), Table 4.5 shows the comparison according to
accuracy for ARC tasks and QA‑related tasks. It can be seen that the FALCON 40B model
is the one that obtains the best result for all commonsense reasoning tasks.

On the other hand, many of the results in different tasks can be explained by the com‑
plexity and scalability of LLMs, as this is related to their ability to produce emergent skills
and is related to the number of parameters that each model must adjust, which can be
visualized in Figure 4.2.

Tasks related to QA, inference, textual entailment, and others have also been recently
evaluated for variants of GPT‑4 and BERT (see Table 4.6), where the former outperforms
the other models in accuracy.

Some models such as LLaMA and GPT‑3 have also been evaluated in relation to biases,
misinformation and other aspects found especially in informal texts; for example, Table 4.7
shows the level of bias of LLaMA with respect to GPT‑3, where a higher score indicates
higher bias, with respect to a CrowSPairs6 reference dataset.	

TABLE 4.4  Results of the Models in Reading Comprehension Tasks

Model Accuracy Accuracy (average) Accuracy (high)

ALBERT 91.4 − −
Megatron‑BERT 90.9 93.1 90
RoBERTa 83.2 86.5 81.3
PaLM 540B − 68.1 49.1
PaLM 62B − 64.3 47.5
PaLM 8B − 57.9 42.3
LLaMA 65B − 67.9 51.6
LLaMA 33B − 64.1 48.3
LLaMA 13B − 61.6 47.2
LLaMA 7B − 61.1 46.9
GPT‑3 175B − 58.4 45.5
BLOOM 176B − 52.3 39.14

TABLE 4.5  Performance of Different LLMs on ARC and QA Tasks

Model Average (%) ARC HellaSwag MMLU TruthfulQA

FALCON 40B 63.2 61.6 84.4 54.1 52.5
LLAMA 30B 59.8 58.5 82.9 44.3 53.6
LLAMA 65B 58.3 57.8 84.2 48.8 42.3
LLAMA 13B 51.8 50.8 78.9 37.7 39.9
GPT4 30B 57.9 56.7 81.4 43.6 49.7
GPT4 7B 50.6 48.8 76.6 35.9 41.2
GPT4 13B 53.2 50.8 76.6 38.3 46.9
VICUNA‑7B 52.2 47 75.2 37.5 48.9
VICUNA 13B 54.4 50.2 77 40.4 49.8
DOLLY 12B 44.9 41.2 72.3 31.7 34.3
ALPACA 13B 52.7 49.8 79.4 38.9 42.8

120    ◾    Large Language Models

Perhaps a recent benchmark that has attracted much attention because of its implica‑
tions for educational systems is related to the comparison of these models with human
performance when specialized standard tests are taken.

Recently, the performance of LLMs such as GPT‑3 and GPT‑4 was measured based on
the performance of various professional and academic exams in the United States7. These
include the SAT (Scholastic Aptitude Test), the Bar Exam (law), graduate college exams
such as the GRE (Graduate Record Examination), and some AP (Advancement Placement)
exams (i.e., a college‑level testing program for high school students). Performance was
measured in percentiles, which were based on the most recent score distributions available

FIGURE 4.2  Comparison of the sizes of LLMs in billions of parameters.

TABLE 4.6  Assessment of Models on GLUE and SQuAD

Model GLUE SQuAD

BERT 80.4 93.2
ALBERT 89.4 92.2
GPT‑3 93.2 88.8
GPT‑4 93.6 89.0

TABLE 4.7  Bias Assessment of LLaMA vs GPT‑3

Characteristic LLaMA GPT‑3

Gender 70.6 62.6
Religion 79.0 73.3
Race 57.0 64.7
Sexual orientation 81.0 76.2
Age 70.1 64.4
Nationality 64.2 61.6
Disability 66.7 76.7
Appearance 77.8 74.6
Socioeconomic status 71.5 73.8
Average 66.6 67.2

Model Evaluation    ◾    121

for test takers for each type of exam. This percentile score is a way of ranking a person’s
performance relative to the performance of others; for example, if you placed in the 60th
percentile on a test, this means that you scored higher than 60% of the examinees. Table 4.8
shows some of the results compared to human performance.

As can be seen, GPT‑4 is much more capable than GPT‑3 in most of these exams.
However, it was not able to improve in AP English.

4.6  CONCLUSIONS
In this chapter, we have addressed the crucial importance of having robust assessment
measures for LLMs, good benchmarks and datasets. These tools are critical for under‑
standing the performance and effectiveness of these models on various language tasks. It
has been observed that, although perplexity and accuracy are common metrics, they are
not sufficient to fully evaluate the quality of language models.

On the other hand, evaluating LLMs remains an evolving challenge due to their com‑
plexity and ability to process large amounts of data. It is critical to develop appropriate
datasets and design evaluation tasks that accurately reflect the practical use of these mod‑
els in the real world. In addition, the importance of considering regulatory aspects has
been highlighted, to avoid bias and promote fairness in the performance of language mod‑
els across different user groups.

In general, there are no perfect metrics, as they depend on the tasks and data available;
hence he suggests using more than one metric to evaluate models, better human evaluation
metrics, more diverse reference data, incorporating diversity metrics and aspects of real
evaluation such as robustness.

NOTES
	 1	 https://crfm.stanford.edu/2023/06/15/eu‑ai‑act.html
	 2	 https://rajpurkar.github.io/SQuAD‑explorer/
	 3	 https://super.gluebenchmark.com/
	 4	 https://nlp.stanford.edu/projects/snli/
	 5	 https://github.com/fchollet/ARC
	 6	 https://github.com/nyu‑mll/crows‑pairs
	 7	 https://www.visualcapitalist.com/how‑smart‑is‑chatgpt/

TABLE 4.8  GPT‑3 and GPT‑4 Test Evaluation Results

Category Test GPT‑4 GPT‑3

Law Bar Exam 90 10
SAT Reading and Writing 93 87
SAT Mathematics 89 70
GRE Quantitative 80 25
GRE Verbal 99 63
GRE Writing 54 54
AP Calculus 43 0
AP Physics 66 30
AP Statistics 85 40
AP English 14 14

https://crfm.stanford.edu/2023/06/15/eu-ai-act.html
https://rajpurkar.github.io/SQuAD-explorer/
https://super.gluebenchmark.com/
https://nlp.stanford.edu/projects/snli/
https://github.com/fchollet/ARC
https://github.com/nyu-mll/crows-pairs
https://www.visualcapitalist.com/how-smart-is-chatgpt/

122 DOI: 10.1201/9781003517245-5

C h a p t e r 5

Applications

5.1  INTRODUCTION
LLMs have revolutionized the field of NLP by showing extraordinary power to understand
and generate text in a variety of tasks. These models have opened the door to a wide spec‑
trum of applications ranging from virtual assistants to machine translation and sentiment
analysis. In this chapter, we will explore several practical examples for various tasks, such
as sentiment classification, semantic search, fine‑tuning for question‑answer tasks, inter‑
faces for database access, causal inference, autonomous models, and summary generation,
among others, using different available LLMs.

All the examples discussed are developed in Python on Google’s Colab platform. The
source code and data used in these examples can be downloaded directly from the pub‑
lisher’s website. Several exercises assume some familiarity with basic aspects of machine
learning and frameworks such as TensorFlow and Keras. In addition, in several exercises,
you will be required to have an API access key from some vendors such as OpenAI. Note
that, depending on the characteristics of the LLM, some examples are based on Spanish
texts and others on English.

5.2  SENTIMENT CLASSIFICATION
For this example, you should use the program BERT_Sentiment_Classifier and the dataset
"sentiments‑english.xls". The program allows you to create an automatic senti‑
ment classifier from opinions collected from social networks. These opinions are contained
in a two‑column OLS file: the opinion and the polarity of the sentiment (i.e., positive,
negative).

To achieve the above, two steps are performed:

	 1.	Fine‑tuning the pre‑trained BERT model with our own data (spreadsheet with opin‑
ions and their polarities), so to generate the final contextual embeddings. For this
purpose, the bert_en_uncased_L‑24_H‑1024_A‑16 model is used, which has L = 24
transformer blocks, H = 1024 hidden layers and A = 16 attention heads.

https://doi.org/10.1201/9781003517245-5

Applications    ◾    123

	 2.	Building the complete model for which, to the output of the fitted BERT model, we
add layers of a simple neural network that allows to predict the polarity (positive,
negative) of the output (i.e., embedding) of the pre‑trained BERT model.

First, we install some packages that allow working with the TensorFlow framework, trans‑
formers, tokenization, and CSV file formatting:

!pip install tensorflow
!pip install bert‑for‑tf2
!pip install tokenization
!pip install transformers
!pip install ‑‑upgrade xlrd

Then, we import libraries to use transformers, tokenizers, neural network layer handling
(Sequential, Model, Dense, Input) and other general purpose ones:

from transformers import InputExample, InputFeatures
from bert.tokenization.bert_tokenization import FullTokenizer
from bert import tokenization
from keras.models import Sequential
from keras.models import Model
from keras.layers import Dense
from keras.layers import Input
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow.keras.optimizers import Adam
import numpy as np
import pandas as pd
import torch
from sklearn.model_selection import train_test_split

We define a function to load the BERT model from one of several repositories: TensorHub:

Def LoadBERT():
 module_url = "https://tfhub.dev/tensorflow/bert_en_uncased_L‑24_H‑
1024_A‑16/1"
 bert_layer = hub.KerasLayer(module_url, trainable=False)
 return(bert_layer)

We define a function to load the tokenizer, where:

•	 vocab_file: is a vocabulary file to transform our own dataset into feature vectors
(embeddings).

•	 do_lower_case: method that converts the tokens generated by the tokenizer to lowercase:

https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1
https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1

124    ◾    Large Language Models

def LoadTokenizer():
 vocab_file =
 bert_layer.resolved_object.vocab_file.asset_path.numpy()
 do_lower_case  = bert_layer.resolved_object.do_lower_case.numpy()
 tokenizer = FullTokenizer(vocab_file, do_lower_case)
 return(tokenizer)

Recall that BERT requires formatting the input text sequence at three levels: embedding
of each token, positional embedding and embedding of each segment, as shown in the fig‑
ure, with the corresponding sentence separator labels: [CLS] (sentence start) and [SEP]
(separator).

We define the function bert_encoder(texts, tokenizer, max_len) that takes a list of texts
(i.e., opinions), the tokenizer and the maximum length of the sentences (max_len) and
returns the encoding required for training: input tokens, masks, and segments.

For this, the following steps must be performed:

•	 To tokenize each sentence by converting it to a sequence of identifiers for each word.

•	 To add special tokens to separate sentences and perform the classification: sentence
onset (CLS) and separators (SEP).

•	 To convert to fixed‑length sequences (512), so padding (PAD) must be performed.
This is because BERT works with fixed‑length sequences (i.e., 512), so the difference
for shorter sequences must be “padded” with 0s.

def bert_encoder(texts, tokenizer, max_len=512):
 all_tokens = []
 all_masks = []
 all_segments = []
 for text in texts:
 text = tokenizer.tokenize(text)
 # Cut two words in case sentences have more than
 # 512 characters long
 text_sequence = text[:max_len‑2]
 # Add sentence start (CLS) and separation (SEP) tags
 input_sequences = ["[CLS]"] +text_sequence+ ["[SEP]"]
 # Calculate the length for padding
 pad_len = max_len ‑ len(input_sequences)
 # Convert tokens into BERT internal IDs
 tokens =
 tokenizer.convert_tokens_to_ids(input_sequences)
 # Add pad_len tokens for padding (0s) and masks for
 # input sequences and segments
 tokens += [0] * pad_len
 pad_masks = [1]*len(input_sequences)+[0]*pad_len

Applications    ◾    125

 segment_ids = [0] * max_len
 # Add tokens, padding masks and segments to lists
 all_tokens.append(tokens)
 all_masks.append(pad_masks)
 all_segments.append(segment_ids)
 return np.array(all_tokens), np.array(all_masks), np.array(all_
segments)

Next, we define the function BuildModel (bert_layer, num_classes, max_len), which
builds a classification model for input sentences of length and classes (max_len and num_
classes) using BERT’s previous layers (bert_layer). For this, we use the pre‑trained BERT
model and add some prediction layers to the neural network, which will perform senti‑
ment classification.

Specifically, we create a network with a dense layer, with an output that predicts the
probability that the opinions are either 1 (positive) or 0 (negative), using a binary classifier.
The error (loss) is simply measured with a binary_cross_entropy metric.

Each layer receives an array of three elements, of which two embeddings are used for
training [[input_words_tokens][input_masks][segment_ids]].

Finally, we need to create three input layers (words, masks and segments) of size max_len:

def BuildModel(bert_layer, num_clases,max_len=512):
 input_word_ids = Input(shape=(max_len,), dtype=tf.int32,
name="input_word_ids")
 input_mask = Input(shape=(max_len,), dtype=tf.int32,
name="input_mask")
 segment_ids = Input(shape=(max_len,), dtype=tf.int32,
name="segment_ids")
 # Merge input layers (word IDs, masks, segments)
 _, output_sequence = bert_layer([input_word_ids, input_mask,
segment_ids])
 classifier_output = output_sequence[:, 0, :]
 # Dense layer classifies a polarity from the BERT output layer
 output_layer = Dense(num_clases,
activation=‘sigmoid’)(classifier_output)
 model = Model(inputs=[input_word_ids, input_mask, segment_
ids], outputs=output_layer)
 model.compile(Adam(learning_rate=2e‑6), loss=‘binary_
crossentropy’, metrics=[‘accuracy’])
 return model

Now, we start the main program, loading the BERT model and the tokenizer

bert_layer = LoadBERT()
tokenizer = LoadTokenizador()

126    ◾    Large Language Models

We load a file ("sentiments‑ingles.csv") in English, with examples of opinions and their sen‑
timent polarities, replacing the latter by numeric values (Negative = 0, Positive = 1):

opinions= pd.read_csv(‘/content/sentiments‑english.csv’,
 header=None)
opinions[1].replace([‘Negative’,’Positive’],
 [0,1],inplace=True)

We separate the opinion dataset into a subset of training (train) and test (test):

train, test = train_test_split(opinions)

Then, we encode the training data with a maximum length of 160 characters per sen‑
tence (160 is calculated as the maximum length possessed by the sentences in the example
dataset):

train_input = bert_encoder(train[0], tokenizer, max_len=160)

We build the model with the bert_layer for a class (0 or 1):

Final_model = BuildModel(bert_layer, 1,160)

5.2.1  Training

Now we perform the fine‑tuning of the model with the input pre‑coding and with the class
labels (train[1]). For this, a separation of the training data (split) is performed, where 20 %
will correspond to the data used for validation (validation_split). In addition, it is trained
with a certain number of epochs and batch set size:

train_history = Final_model.fit(
 train_input, train[1],
 validation_split=0.2,
 epochs=3,
 batch_size=16
)

5.2.2  Testing and Validation

Remember that, for model testing, the test data (test[0]) must have the same format as the
training data. For this, we invoke our bert_encoder(..) function again with the test data
to convert it into three embeddings, which will be passed to the classification method (i.e.,
positional, segment and embedding).

ProbPrediction is an array containing the classification probability of each opinion. If
the probability of classification is greater than a threshold (50%), the class is positive (1);
otherwise, it is negative (0):

test_input = bert_encoder(test[0], tokenizer, max_len=160)
ProbPrediction = Final_model.predict(test_input)

Applications    ◾    127

prediction = np.where(ProbPrediction>.5, 1,0)
prediction

5.3  SEMANTIC SEARCH
For this exercise, you should use the program SemanticSearch, which allows you to per‑
form semantic search using the embedding of a user query and delivering the most similar
texts of a dataset, based on cosine similarity measures. The embeddings are obtained from
multiple GPT3‑5 embedding models, available from OpenAI (i.e., text‑embedding‑ada‑002).

First, we install some packages to access the models:

!pip install openai

We import some libraries and methods from OpenAI to obtain embeddings and compute
cosine similarity between vectors:

import pandas as pd
import numpy as np
import pprint
import openai
from openai.embeddings_utils import get_embedding, cosine_similarity

We define the function SearchComments(Opinions,Query,n), which searches for simi‑
larities (cosine) between a query and Opinions and delivers the n best results. For this, the
query is converted to its corresponding embedding:

def SearchComments(Opinions, Query, n=3):
 QueryEmbedding = get_embedding(
 Query,
 engine=EMBEDDING_MODEL
)
 # Calculate cosine similarity between query’s embedding and
 # all opinions’ embeddings
 Opinions["sim"] = Opinions.embedding.apply(
 lambda x: cosine_similarity(x, QueryEmbedding))
 # Sort similarity results
 results = Opinions.sort_values("sim", ascending=False).head(n)
 return results

We start the main program:

openai.api_key = "INSERT API KEY"
Select an embedding model
EMBEDDING_MODEL = "text‑embedding‑ada‑002"
Opinions = pd.read_csv(‘/content/sentiments‑english.csv’, header=
None)
Opinions["embedding"] = Opinions[0].apply(lambda x: get_embedding
(x, engine=EMBEDDING_MODEL))

128    ◾    Large Language Models

We perform the search for a given query:

results = SearchComments(Opinions, "borderlands quite", 5)
print(results[0])
589 Borderlands stuff is quite fun
587 Borderlands 3 is quite different
584 Borderlands 3 is quite fun
588 Borderlands 3 is actually quite fun
585 Borderlands 3 is really fun

5.4  REASONING WITH LANGUAGE AGENTS
In this example, you should use the LangchainAgents program, which allows you
to use OpenAI‘s LangChain framework to develop simple LLM‑based applications.
LangChain allows to connect an LLM to other data sources (i.e., SQL databases or Google
search engine) and allows the LLM to interact with its environment using Agents.

LangChain allows generating step‑by‑step reasoning chains to respond to high‑level
tasks, decomposing them into simpler tasks. To achieve this, an agent has access to several
tools and determines which one to use, depending on the user’s input. In general, there are
two types of agents:

	 1.	Action agents: They decide the next action, using the outputs of previous actions.
These are suitable for small tasks.

	 2.	Plan‑and‑execute agents: They decide on the complete sequence of actions and then
executes them all. These are suitable for tasks that require maintaining long‑term
goals.

We install some packages such as LangChain and Google search engines:

!pip install langchain openai pymysql ‑‑upgrade ‑q
!pip install google‑search‑results ‑q

We import some LangChain libraries for language agent use and set the environment vari‑
ables for use of the respective OpenAI (OPENAI_API_KEY) and Google (SERPAPI_API_
KEY) APIs, for which you must get the respective keys to use, such as the Google search engine
(serpAPI) and an LLM (by default, a pre‑trained GPT model such as “text‑davinci‑003”):

from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI
import os
os.environ[‘OPENAI_API_KEY’] = "INSERT OpenAI API KEY"
os.environ["SERPAPI_API_KEY"] = " INSERT Google Search API KEY"

Applications    ◾    129

We initialize the OpenAI libraries for LLM and some tools:

llm = OpenAI()
tools = load_tools(["serpapi", "llm‑math"], llm=llm)

In this example, we use a simple language agent without memory (ZERO_SHOT_REACT_
DESCRIPTION); that is, the action it performs is based only on the current action and not
on previous ones (history). Thus, the agent decides which tool to use based solely on the
tool description:

agent = initialize_agent(tools, llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)
agent.run("Who is the president of croatia's wife and how old will be
she in 10 years?")

The president of Croatia’s wife will be 64 years old in 10 years.

Now, we ask the agent to show step‑by‑step what it performed (verbose). In this case, the
plan‑and‑execute type agent performs the following:

	 1.	It receives an input from the user.

	 2.	 It plans the complete sequence of steps to take.

	 3.	 It executes the steps in order, passing the outputs of the previous steps as input to the
future steps.

Usually, the planner is an LLM, and the executor is an action:

agent = initialize_agent(tools, llm,
agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION)
agent.run("Who is the president of croatia's wife and how old will be
she in 10 years?")

The president of Croatia’s wife will be 64 years old in 10 years.

Then, the chain of reasoning for the answer begins:

> Entering new chain...
I need to first find out who the spouse of the president of Croatia
is and then calculate what age she will be in 10 years.
Action: Search
Action Input: "President of Croatia spouse"
Observation: Sanja Music’ Milanovic’
Thought: Now I need to calculate her age in 10 years
Action: Calculator

130    ◾    Large Language Models

Action Input: Sanja Music’ Milanovic’’s age + 10
Observation: Answer: 40
Thought: I now know the final answer
Final Answer: Sanja Music’ Milanovic’ will be 40 years old in 10 years.

> Finished chain.

5.5  CAUSAL INFERENCE
For this exercise, you should use the program CausalLM _ LLaMA, which performs causal
inference on the open source LLaMA LLM of 3B parameters, and pre‑trained on 1T tokens.

Causal inference on LLMs allows understanding cause‑effect relationships between
variables (aka CausalLM). This can be applied to answer (effect) a question (cause), to estab‑
lish entailment between one sentence (cause) and another (effect), etc. In this example, the
causal model will be used to answer questions. The LLaMA model can use either its own
tokenizer (LLamaTokenizer) or the generic AutoTokenizer method.

First, we installed some transformer packages and facilities for hardware acceleration:

!pip install transformers
!pip install sentencepiece
!pip install accelerate ‑U

We import some libraries for transformers:

from transformers import LlamaTokenizer, LlamaForCausalLM,
AutoTokenizer
from transformers import TrainingArguments,
AutoModelForSequenceClassification
import torch
import numpy as np

We define the function LoadModel(ModelName) to load the tokenizer (LLamaTokenizer)
and the pre‑trained model, based on ModelName, returns the loaded model and tokenizer:

def LoadModel(ModelName):
 tokenizer = LlamaTokenizer.from_pretrained(ModelName)
 model = LlamaForCausalLM.from_pretrained(
 ModelName, torch_dtype=torch.float16, device_map=‘auto’)
 return(model,tokenizer)

We define the function FormatPrompt(prompt,tokenizer), which tokenizes a string indi‑
cating the prompt** and returns the IDs of each token that composes it:

def FormatPrompt(prompt,tokenizer):
 inputIDs = tokenizer(prompt, return_tensors="pt").input_ids
 return(inputIDs)

Applications    ◾    131

We start the main program, loading the model, defining the prompt to send to the model
and generating the output with a maximum number of tokens:

Other LLaMA models:
‘openlm‑research/open_llama_7b’
‘openlm‑research/open_llama_13b’
(model,tokenizer) = LoadModel(‘openlm‑research/open_llama_3b’)
The prompt must start with Q (question) and end with
A (Answer)
so that the model infers what it follows to A
prompt = ‘Q: What is the biggest animal in Chile?\nA:’
inputIDs = FormatPrompt(prompt,tokenizer)
output = model.generate(input_ids=inputIDs, max_new_tokens=20)

Note that the model generates an output response with the IDs of each token, so these must
be decoded (decode) to convert them into words:

print(tokenizer.decode(output[0]))

<s>Q: What is the biggest animal in Chile?
A: The wolf

5.6  NATURAL LANGUAGE ACCESS TO DATABASES
In this application, you must use the SQL _ Query, program, which allows you to inter‑
pret natural language queries in SQL databases through models such as GPT. For this, the
following steps are followed:

	 1.	Load a table with sales data (“sales.csv”).

	 2.	Convert the table to SQL.

	 3.	Create a prompt to perform a GPT query in the SQL database.

	 4.	Return the answer.

First, we install some packages to access the models:

!pip install openai

We import some general purpose libraries and some libraries to handle SQL databases
(sqlalchemy):

import pandas as pd
import numpy as np
import pprint
import openai

132    ◾    Large Language Models

from sqlalchemy import create_engine
from sqlalchemy import text

We define a function to initialize the SQL database with the data from the sales table
“sales.csv”:

def InitDB():
 temp = create_engine("sqlite:///:memory:", echo=True)
 data = df.to_sql(name="Sales", con=temp)
 return(data)

We define a CreatePrompt(df) function that tells GPT about the df data and its properties,
which we will use (a table is created with all the columns of the initial data):

def CreatePrompt(df):
 prompt = '''### sqlite SQL table:

Sales({})

'''.format(",".join(str(x) for x in df.columns))
 return(prompt)

We create a function CombinePrompt(df,query) to combine the user query query consulta
with the df table structure with the additional string “A query to reply:”, followed by the
keyword “Select,” so that GPT understands the query correctly:

def CombinePrompt(df,query):
 defi = CreatePrompt(df)
 query_string = f’### A query to reply:
 {query}\nSELECT’
 return(defi+query_string)

We defined the function GenerateGPTResponse(df,nlp_text) to invoke the OpenAI API
and use the “text‑davinci‑003” model to deliver the results, as well as some other param‑
eters, such as the temperature and maximum number of tokens to return:

def GenerateGPTResponse(df,nlp_text):
 response = openai.Completion.create(
 engine ="text‑davinci‑003”,
 prompt = CombinatePrompt(df,nlp_text),
 max_tokens = 150,
 n=1,
 stop=[‘#’,’;’],
 temperature=0.7,
)
 return(response)

Applications    ◾    133

We create the function HandleResponse(answer) that parses the response and passes it to
the database:

def HandleResponse(answer):
 query = answer.choices[0].text
 if query.startswith(" "):
 query = "Select"+query
 return(query)

Now, we start the main program:

openai.api_key = "INSERT API KEY"
df = pd.read_csv(‘/content/sales.csv’, encoding="latin1")
data = InitDB()
nlp_text = input("Input query:")
response = GenerateGPTResponse(df,nlp_text)
Input query: I want to know which products sold the most?
print(response.choices[0].text)

We show the processing that the model performs:

PRODUCTLINE, SUM(QUANTITYORDERED) AS TOTAL_QUANTITY
FROM Sales
GROUP BY PRODUCTLINE
ORDER BY TOTAL_QUANTITY DESC

We connect to the SQL server to respond to the SQL query:

with temp.connect() as conn:
 result = conn.execute(text(HandleResponse(response)))

The SQL manager response:

INFO sqlalchemy.engine.Engine Select PRODUCTLINE,
SUM(QUANTITYORDERED) AS TOTAL_QUANTITY
FROM Sales
GROUP BY PRODUCTLINE
ORDER BY TOTAL_QUANTITY DESC

INFO:sqlalchemy.engine.Engine:Select PRODUCTLINE,
SUM(QUANTITYORDERED) AS TOTAL_QUANTITY
FROM Sales
GROUP BY PRODUCTLINE
ORDER BY TOTAL_QUANTITY DESC

Finally, we show the results of the SQL query:

134    ◾    Large Language Models

result.all()

[('Classic Cars', 33992),
 ('Vintage Cars', 21069),
 ('Motorcycles', 11663),
 ('Trucks and Buses’, 10777),
 ('Planes', 10727),
 ('Ships', 8127),
 ('Trains', 2712)]

5.7  LOADING AND QUERYING FOR OWN DATA
For this exercise, you should use the program QueryingOwnData. This allows query‑
ing own textual data to an LLM based on comparison of embeddings (question‑answer or
QA). For this purpose, the data to be queried are transformed into vector databases that
efficiently store the text embeddings. These databases are designed to perform similarity
searches in high dimensional spaces, enabling the retrieval of the most semantically rel‑
evant results.

By storing document (or paragraph) embeddings in a vector database, a search system
can quickly identify the texts that best match a query.

For this example, OpenAI‘s LangChain framework will be used to develop simple
LLM‑based applications. LangChain allows to connect an LLM to other data sources (i.e.,
SQL databases or Google search engine).

First, we install the necessary LangChain, OpenAI and other packages:

!pip install langchain
!pip install duckdb
!pip install unstructured
!pip install chromadb
!pip install BeautifulSoup4
!pip install openai
!pip install tiktoken

We import some relevant libraries to get embeddings and query or retrieve (Retrieve) from
the embeddings databases:

from langchain.document_loaders.unstructured import
UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
import openai
import os
import tiktoken

Applications    ◾    135

We assign the key to be able to access the API of an LLM:

os.environ[‘OPENAI_API_KEY’]="INSERT API KEY"

We load a test text (“sample.txt”):

loader = UnstructuredFileLoader(‘sample.txt’)
documents = loader.load()

Now, we separate the text into chunks (chunks) of 1000 characters (without overlapping
chunks: chunk_overlap=0):

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_
overlap=0)
MyTexts = text_splitter.split_documents(documents)

We initialize the function that will calculate the embeddings:

MyEmbeddings = OpenAIEmbeddings()

We create a vector database from our data and use it to index the embeddings :

db = Chroma.from_documents(MyTexts, MyEmbeddings)

Our data are already indexed (i.e., paragraph with their corresponding IDs and embeddings)
so that we can query them. For this, we use LangChain‘s RetrievalQA function, which
initializes our LangChain framework with the LLM available by default ("text‑embed‑
ding‑ada‑002”) and our vector database (db). Note that only one output response is allowed
(k = 1):

qa = RetrievalQA.from_chain_type(
 llm=ChatOpenAI(),
 chain_type="stuff",
 retriever=db.as_retriever(
 search_kwargs={"k": 1}))

Now, we can perform queries to our model. For this, we internally convert the query to its
embedding, and look for similarities between it and those available in the vector database
of our own data:

query = "What is the document about?"
qa.run(query)

The document is about the resignation of General Director of
Carabineros by Bruno Villalobos Krumm and mentions the plans to

136    ◾    Large Language Models

modernize and strengthen the police forces in the fight against
crime, drug trafficking and terrorism.

query = "Who is Bruno Villalobos?"
qa.run(query)

Bruno Villalobos is the General Director of Carabineros, Chile’s
police force. However, in the given context, it is mentioned that
he has resigned from his position.

5.8  FINE‑TUNING A MODEL WITH OWN DATA
For this exercise, you should use the program FALCON _ FineTuning, which performs
fine‑tuning of the pre‑trained FALCON model with our own data based on instructions to
the model.

The types of pre‑trained Falcon models include:

•	 Normal: ‘falcon‑7b’ and ‘falcon‑40b,’ of 7B and 40B parameters, respectively.

•	 Instruction‑based: ‘falcon‑7b‑instruct’ and ‘falcon‑40b‑instruct’¨*, of 7B and 40B
parameters, respectively.

•	 Optimized for Quantization: these models are enhanced to run more efficiently on
high‑performance hardware (aka 4‑bit or 8‑bit hardware). Quantization is the process
of transforming infinite continuous values into a finite set of discrete values, which
saves memory. Available models are: ‘falcon‑7b‑instruct‑4bit’ and ‘falcon‑40b‑in‑
struct‑4bit,’ with 7B and 40B parameters respectively.

The fine‑tuning is performed with a JSON format dataset, where each training input con‑
tains three columns: Instruction (i.e., prompt given to the model), Input (i.e., input context
information ‑optional‑) and Output (i.e., expected output), as in the following example:

{
"instruction": "Classify the following into animals, plants and
minerals",
"input": "Oak tree, copper mine, elephant",
"output": "Oak: Plant Copper mine: Mineral: Elephant: Animal"
}

Note that specialized computational resources (i.e., GPU or TPU) are used, so the program
in the training or fine‑tuning stages may take some time. However, you must still have
adequate computational resources for this example to work.

First, let’s load the fine‑tuning program (falcontune.git) from an external site, and clone
it into our store folder:

!git clone https://github.com/rmihaylov/falcontune.git

https://github.com/rmihaylov/falcontune.git

Applications    ◾    137

Now we load the embeddings of the 40B FALCON pre‑trained model (with Quantization)
into our store folder:

!wget https://huggingface.co/TheBloke/falcon‑40b‑instruct‑GPTQ/
resolve/main/gptq_model‑4bit‑‑1g.safetensors

Then, we move to the program folder (falcontune), to install both the model and specific
programs for massive computational resource usage (i.e., CUDA, Triton):

!cd falcontune && pip install ‑r requirements.txt
!cd falcontune && python setup.py install

We define the name of the models, embedding and the dataset to perform the fine‑tuning.
Note that the dataset in JSON format must be loaded in your store folder (“MisDatos.json”):

import os

os.environ[‘BASE_MODEL’] = ‘falcon‑40b‑instruct‑4bit’
os.environ[‘EMBEDDINGS’] = "./gptq_model‑4bit‑‑1g.safetensors”
os.environ[‘DATASET’] = "./MyData.json”
os.environ[‘TUNED_MODEL’] = "falcon‑40b‑instruct‑4bit‑alpaca/”

First, we test our model with the falcontune program to generate a response for an input
prompt:

!falcontune generate \
 ‑‑model ${‘BASE_MODEL’} \
 ‑‑weights ${‘EMBEDDINGS’} \
 ‑‑max_new_tokens 2000 \
 ‑‑use_cache \
 ‑‑do_sample \
 ‑‑prompt "How to prepare a strategic plan?” \
 ‑‑backend triton

How to prepare a strategic plan?

To prepare a strategic plan, you should consider your company’s
objectives, external environment, threats, opportunities,
strengths, and weaknesses. Then, you can use various techniques,
such as SWOT analysis, to identify the factors that may affect the
company’s performance. Next, you should determine the strategies
to achieve the objectives, assign specific tasks to each area of
the company and establish an implementation schedule. Finally, you
should review and update the strategic plan on a regular basis to
adapt it to market changes.

https://huggingface.co/
https://huggingface.co/

138    ◾    Large Language Models

We prepare to perform fine‑tuning with our previous dataset. For this, for now we disable
WanDB, which is a development platform that allows users to monitor and visualize vari‑
ous aspects of the training in real time:

os.environ["WANDB_DISABLED”] = "true”

We started to perform the fine‑tuning (finetune) with our falcontune program, but now
we pass to it the model usable for tuning, the embeddings, and the dataset itself, as well
as other parameters specific to the tuning process. To perform this process more effi‑
ciently, LoRA is used, which is a training method that accelerates the training of large
models while consuming less memory. The output of the training fitting process remains
in TUNED_MODEL:

!falcontune finetune \
 ‑‑model ${'BASE_MODEL'} \
 ‑‑weights ${'EMBEDDINGS'} \
 ‑‑dataset ${'DATASET'} \
 ‑‑data_type=alpaca \
 ‑‑lora_out_dir ${'TUNED_MODEL'} \
 ‑‑mbatch_size=1 \
 ‑‑batch_size=3 \
 ‑‑epochs=2 \
 ‑‑lr=3e‑4 \
 ‑‑cutoff_len=256 \
 ‑‑lora_r=8 \
 ‑‑lora_alpha=16 \
 ‑‑lora_dropout=0.05 \
 ‑‑warmup_steps=5 \
 ‑‑save_steps=30 \
 ‑‑save_total_limit=3 \
 ‑‑logging_steps=5 \
 ‑‑target_modules='["query_key_value”]' \
 ‑‑backend=triton

Finally, we can test our fitted model with some instruction (i.e., “How to prepare a strategic
plan?”):

!falcontune generate \
 ‑‑model ${'BASE_MODEL'} \
 ‑‑weights ${'EMBEDDINGS'} \
 ‑‑lora_apply_dir ${‘TUNED_MODEL’} \
 ‑‑max_new_tokens 2000 \
 ‑‑use_cache \
 ‑‑do_sample \
 ‑‑instruction "How to prepare a strategic plan?"\
 ‑‑backend triton

Applications    ◾    139

	 1.	� Define the objectives: It is important to clearly define the
objectives of the strategic plan. They should be specific,
measurable, achievable, relevant, and timely.

	 2.	� Conduct an external and internal assessment: An external
assessment should be conducted to determine the
environmental, economic, political, social, and
technological factors that may affect the organization. It
is also necessary to conduct an internal assessment to
determine the organization’s strengths, weaknesses, threats,
and opportunities.

	 3.	� Develop strategies: From the above assessments, specific and
measurable strategies should be developed to achieve the
objectives. These should include objectives and goals,
actions to be taken, responsibilities, resources needed and
time frames.

	 4.	� Implement the plan: Once the plan has been developed, it
should be implemented. This includes assigning
responsibilities to specific teams and departments, setting
deadlines and monitoring progress.

	 5.	� Review and adjust: It is important to review and adjust the
plan regularly. This includes conducting evaluations, making
changes if necessary, and ensuring that the objectives are
achievable.

In summary, the steps in developing a strategic plan are define
the objectives, conduct an external and internal assessment,
develop strategies, implement the plan, and review and adjust. It
should be noted that strategic plans vary by organization and
industry, so it is important to adapt them to specific needs.

5.9  PROMPT DESIGN AND OPTIMIZATION
There are several applications of conversational systems based on LLMs, such as ChatGPT
and BARD. The greatest benefit that can be obtained from these applications depends on
the way in which the instructions or prompts for the task we want you to perform are
provided. LLMs, such as GPT‑4 or Palm‑2, have been trained in a variety of ways to allow
interaction with humans. One of these ways is based on training by instructions, which
consists of the following components:

•	 Instruction: a specific task or instruction that you want the model to perform.

•	 Context: may involve external information or additional context, which can direct
the model to better responses.

•	 Input data: the input or question for which we are interested in finding an answer.

•	 Output Prompt: indicates the type or format of the output.

140    ◾    Large Language Models

Note that not all components are required for a request and the format depends on the task
at hand.

For example, a training trio might include:

•	 Instruction: “Classify the following into animals, plants, and minerals.”

•	 Input: “roses, copper, cougar.”

•	 Output: “Roses: plant, copper: mineral, puma: animal.”

Naturally, we could ask questions to applications like ChatGPT, which have no context,
and only prompts, such as the following:

Or some factual questions:

Applications    ◾    141

However, we could design more sophisticated prompts for ChatGPT or Bard, which con‑
sider more contextual information, for which there are some interesting approaches that
improve our communication with these types of applications:

Specifying output format: one can specify the format of a response as if one were giving
an instruction to a student; for example:

Providing explicit constraints to an answer: we can deliver prompts with constraints for
more open‑ended questions; for example:

Explaining answers with a certain level of difficulty: we can request that the answer pos‑
sess certain styles and/or level of knowledge; for example:

142    ◾    Large Language Models

Providing context to the prompt: we can provide context input information to perform
the task; for example:

Acting in a certain role: we can get the system to act in a certain role for our subsequent
interactions; for example:

Applications    ◾    143

Prompting with no prior training (zero‑shot): we can give instructions or questions with
zero prior training; for example:

Prompt with few shots: can be used as a technique to enable learning in context, where
we provide demonstrations at the prompt to guide the model to better performance.

144    ◾    Large Language Models

You may have noticed with these examples that the results may vary depending on the
length and, therefore, the context provided to the prompts. In general, better results can be
obtained by showing the reasoning that leads to a specific answer. This is called a “chain
of thoughts” (Chain of Thoughts or CoT) and can induce a “think step‑by‑step” type of
behavior. CoT can take the form of questions and intermediate answers (Wei et al., 2023);
for example, “Imagine you are a physics professor. Answer this question:”. If you rerun
the same query multiple times, you will likely get different answers, so choosing a consis‑
tent answer across multiple queries increases the quality of the answers, a feature called
“self‑consistency.”

This is particularly important when LLMs have access to tools or databases. Based
on the queries, one can decide to use tools; for example, we can provide examples of
question‑action pairs: "What is the age of the universe?" ‑> [search
Wikipedia]).

Usually, question types can be divided into zero‑shot prompts and few‑shot prompts, as
shown in the diagram in Figure 5.1.

This is because people usually ask direct questions to the model (zero‑shot), or
examples are provided to the model (Few shots). This takes the form of prompts like the
following:

FIGURE 5.1  Zero‑shot and Few‑shot prompts.

Applications    ◾    145

"""
Sample question
Sample answer

Question
What is the answer?
"""

In few‑shot prompts, you can get better results by showing the reasoning leading to a spe‑
cific answer, i.e., your CoT, and you can induce zero‑shot‑like behavior by asking it to
“think step‑by‑step,” known as inception. The CoT can take the form of intermediate ques‑
tions and answers (i.e., self‑ask) and can induce specific answers by referring to concepts
or analogies. If you re‑execute the same query several times, you will get different answers,
so choosing a consistent answer over several queries increases the quality of the answers,
which is called self‑consistency.

The above allows chaining prompts to perform complex tasks that must be performed step
by step, perhaps following a plan. This can solve complex problems by inducing a plan of
action (see Figure 5.2). Each step of the plan can be used to generate its own chain of actions.

Thus, LLMs can be thought of as a kind of flexible subroutines that take inputs and pro‑
duce outputs. Prompts are the molds that shape the subroutines to solve a specific problem.
LLM applications consist of assembling these subroutines to create novel capabilities.

An example of CoT prompts includes:

FIGURE 5.2  Chaining of prompts.

146    ◾    Large Language Models

5.10  CHATGPT CONVERSATIONAL SYSTEM
ChatGPT1 is an NLP tool created by the company OpenAI that enables human‑like con‑
versations and much more with a chatbot‑like conversational system (Shen et al., 2023).
The system can answer questions or follow instructions to perform various types of tasks,
such as writing texts, summarizing documents, answering questions, generating code,
translating texts, etc. (Hariri, 2023).

The tool can be accessed interactively or through APIs in programming languages such
as Python.

ChatGPT runs using the GPT model in its GPT‑3.5 and GPT‑4 versions. Unlike other
models, GPT‑3 and later use the RLHF technique, in order to allow human feedback in
the initial training of the model. Through RLHF, human trainers provided the model
with conversations in which both the user and the AI assistants played a role. RLHF
reward methods help determine the best responses. To further train the chatbot, users
could vote for or against their answer by clicking on the “thumbs up” or “thumbs down”
icons next to the answer. To collect this data, conversations that AI coaches had with
the chatbot were taken. A message written by a model was randomly selected, several
alternative endings were tested, and the AI trainers were asked to rank them. Using
these reward models (RMs), the initial pre‑trained model (GPT‑3‑5 or GPT‑4) can be
adjusted.

Users can ask ChatGPT a variety of questions or instructions called prompts. These
include simple or more complex questions such as “What is the meaning of life?” or “In
what year was Santiago founded?”. Given the training datasets used in GPT3‑5 and GPT‑4,
ChatGPT is proficient in scientific disciplines and can debug or write code. There is no
limitation on the types of questions to ask ChatGPT. However, ChatGPT uses data up to
the year 2021, so it has no knowledge of events and data after that year. And, since it is a
conversational chatbot, users can request more information or ask it to try again when
generating text.

ChatGPT has been trained using the same methods as pre‑trained instruction‑based
models (i.e., InstructGPT), but with slight differences in the data collection configuration.

ChatGPT uses the RLHF method consisting of three steps:

	 1.	Supervised fine‑tuning: a pre‑trained LLM is fine‑tuned on a relatively small
amount of demo data selected by labelers, to learn a supervised policy (the SFT
model), which generates results from a selected list of prompts. This represents the
reference model.

	 2.	Mimicking human preferences: labelers are asked to vote on a relatively large num‑
ber of outcomes from the SFT model, which creates a new dataset consisting of com‑
parison data. A new model is trained on this dataset. This is referred to as a “reward
model.”

	 3.	Proximal policy optimization (PPO): the RM is used to further refine and improve
the SFT model. The result of this step is the so‑called “policy model.”

Applications    ◾    147

Step 1 is performed only once, while steps 2 and 3 can be repeated continuously: more
comparison data is collected on the current best policy model, which is used to train a new
RM and then a new policy.

Step 1: The supervised fine‑tuning model
In this step, demonstration data are collected to train a supervised policy model,

called the “SFT model”:

•	 Data collection: a list of prompts is selected, and a group of human labelers are asked
to write the expected output response. Since this process is slow and expensive, the
result is a relatively small, high‑ quality dataset that is used to fit a pre‑trained LLM.

•	 Model choice: instead of tuning the original GPT‑3 model, a pre‑trained
GPT‑3.5 model based on a reference model called “text‑davinci‑003” was
used.

Due to the limited amount of data for this step, the obtained SFT model could
generate text that is still misaligned. To overcome this problem, labelers should
classify different outputs of the SFT model to create a RM.

Step 2: The RM
The goal is to learn an objective function (i.e., RM) directly from the data, giving

a score to the outputs of the SFT model, proportional to how desirable these outputs
are to humans. In the end, this process will extract from the data an automatic system
that is supposed to mimic human preferences.

To achieve the above, a list of requests is selected and the SFT model generates multiple
outputs (between four and nine) for each request. The labelers rank the outputs from best
to worst. The result is a newly labeled dataset, which is used to train a RM, which takes
as input some of the outputs of the SFT model and ranks them in order of preference.

In practice, this dataset has been generated from a selection of thirty to forty thou‑
sand prompts, and a variable number of the generated outputs (for each prompt) are
presented to each tagger during the ranking phase.

Step 3: Fine‑tuning of the SFT model through PPO
Reinforcement learning is now applied to fine‑tune the SFT policy, allowing it to

optimize the RM. The specific algorithm used to train the agent by reinforcement is
called proximal policy optimization (PPO).

It is called a “policy algorithm” because it learns and updates the current policy
directly, rather than from past experience as in “out‑of‑policy” algorithms such as
Deep Q‑Network. This means that PPO is continuously adapting the current policy
based on the actions the agent performs and the rewards it receives.

PPO uses a trust region optimization method to train the policy, which means that
it restricts the change in the policy to be within a certain distance from the previous
policy to ensure stability. The method uses a value function to estimate the expected
return of a given state or action, which is used to calculate the advantage function,

148    ◾    Large Language Models

representing the difference between the expected return and the actual return.
Subsequently, the function is used to update the policy by comparing the action taken
by the current policy with the action that would have been taken by the previous policy.

In this step, the PPO model is initialized from the SFT model, and the value func‑
tion is initialized from the RM. The environment is a bandit environment that pres‑
ents a random prompt and expects a response to the prompt. Given the prompt and
the response, it produces a reward (determined by the RM) and the episode ends.
A Kullback‑Leibler divergence penalty per token of the SFT model is added to each
token to mitigate over‑optimization of the RM.

5.10.1  Performance Evaluation

Because the model is trained on the input of human labelers, the central part of the evalu‑
ation is also based on human input; that is, it is performed by having the labelers rate the
quality of the model outputs. To avoid overfitting to the judgment of the labelers involved
in the training phase, the test set uses cues from retained OpenAI clients that are not rep‑
resented in the training data.

The model can be evaluated according to three high‑level criteria:

	 1.	Usability: it judges the model’s ability to follow user instructions as well as to infer
instructions.

	 2.	Truthfulness: it judges the tendency of the model to hallucinate (make up facts) in
closed domain tasks. The model is evaluated on the TruthfulQA dataset.

	 3.	Harmlessness: it evaluates whether the model output is appropriate, denigrates a
protected class, or includes derogatory content. The model is also compared to the
RealToxicityPrompts and CrowS‑Pairs datasets.

The model is also evaluated to determine zero‑shot performance on traditional NLP tasks
such as question answering, reading comprehension, and summarization.

In practice, ChatGPT can usually be interacted with through various examples of
prompts. However, for application development purposes, you can use the APIs, which
allow you to access the models for various types of tasks.

In this example we will see two simple cases: a simple application of prompts for sen‑
tence completion and another case for following instructions.

	 1.	Prompt Completion
For this example, you should use the program “Example‑ChatGPT‑1”. This is a

basic use case of the OpenAI API for accessing pre‑trained GPT‑based models. The
different varieties of models can be 3‑5 (turbo). The task consists of performing a
prompt on a question.

The API access key must be obtained directly from OpenAI.
First, we install some packages:

Applications    ◾    149

!pip install openai

We import some libraries:

!pip install openai

We set our API access key:

openai.api_key = “INSERT API KEY”

Then, we invoke the API to perform the chat “completion” task through a question
prompt. For this, we specify the model to use (“gpt‑3.5‑turbo”) and the roles in the
interaction. For this, we will assume two basic roles:

•	 System: it specifies the role to be taken by ChatGPT (e.g., a wizard).

•	 User: it specifies the role of the user asking the question.

response = openai.ChatCompletion.create(
 model =“gpt‑3.5‑turbo”,
 messages=[
 {“role”: “system”, “content”: “Assistant is an LLM trained
by OpenAI.”},
 {“role”: “user”, “content”: “Who founded Santiago de
Chile?”}
]
)

Finally, we get the answer (usually just an option or choice about the content):

print(response[‘choices’][0][‘message’][‘content’])

The city of Santiago de Chile was founded on February 12, 1541 by
the Spanish conquistador Pedro de Valdivia. Valdivia led the
expedition that conquered the territory and established the city,
making it the capital of the Kingdom of Chile.

	 2.	Instruction Following
For this example, we load the program in Colab “Example‑ChatGPT‑2”. This is

a basic example of instruction tracking at a prompt using the OpenAI API to access
pre‑trained GPT‑based models. The different varieties of models can be 3–5 (turbo).
The task is to perform a prompt based on an instruction.

The API access key must be obtained directly from OpenAI.
First, we install some packages:

150    ◾    Large Language Models

!pip install openai

Then, we import some libraries to use the GPT models:

import openai

We set our API access key:

openai.api_key = “INSERT API KEY”

We load a sample text:

MyText = open(“./sample.txt”).read()

We prepare a prompt to request to generate a summary of the input text:

MyPrompt = “Make a summary of the following text: “+ MyText

Then, we invoke the API to perform an instruction prompt; in this case, summa‑
rize an input text, based on the pre‑trained model (“gpt‑3.5‑turbo”), with a maximum
number of output tokens, and a temperature parameter that regulates the random‑
ness of the response that is generated:

response = openai.ChatCompletion.create(
 model =“gpt‑3.5‑turbo”,
 messages=[{“role”: “user”, “content”: MyPrompt}],
 max_tokens=500,
 temperature=0.7,
)

It displays the generated response:

print(response[‘choices’][0] [‘message’][‘content’])

The text informs that the General Director of Carabineros, Bruno
Villalobos Krumm, has resigned from his post, and mentions that
the Government is committed to modernizing Carabineros and the
Investigative Police, as well as improving coordination between
police, prosecutors and judges and strengthening the capacity to
rehabilitate inmates. The former Director General is also thanked,
and it is announced that the current Deputy Director General,
Julio Pineda Peña, will assume command of Carabineros as deputy.

5.11  BARD CONVERSATIONAL SYSTEM
BARD2 is a chatbot based on the PalM‑2 model developed by Google AI and trained with
a massive dataset of text and code. Similar to ChatGPT, it can generate text, translate

Applications    ◾    151

languages, write different types of creative content, and answer your questions in an infor‑
mative way.

Unlike other conversational systems, BARD has the following advantages:

•	 Multilingualism: PaLM‑2 is further trained in multilingual text, covering more than
one hundred languages. This significantly improves its ability to understand, gener‑
ate and translate nuanced text, including idioms, poems and riddles, in a wide variety
of languages, a difficult problem to solve.

•	 Reasoning: The PaLM‑2 dataset includes scientific articles and web pages containing
mathematical expressions. As a result, it can demonstrate enhanced capabilities in
logic, common sense reasoning and mathematics.

•	 Coding: PaLM‑2 is pre‑trained on a large dataset of publicly available source code.
This means that it excels in popular programming languages such as Python and
JavaScript but can also generate specialized code in languages such as Prolog, Fortran,
and Verilog.

In addition, BARD through PaLM‑2 brings advanced AI capabilities directly into several
Google products including:

•	 PaLM‑2’s enhanced multilingual capabilities allow BARD to expand into new
languages.

•	 Workspace feature s to help you write in Gmail and Google Docs, and help you orga‑
nize in Google Spreadsheets.

On the other hand, there are some relevant differences between BARD and ChatGPT, as
shown in Table 5.1.

TABLE 5.1  Comparison between ChatGPT and BARD

Characteristic ChatGPT BARD

Language GPT 3‑5 or GPT‑4 LaMDA y PaLM‑2
Type of model Offline model with data available

until 2021 (no real‑time data)
Online model taken from the web
directly

Learning algorithm RLHF Transformers trained on dialogue
Integration Various applications, such as Bing,

Duolingo or Snapchat
Google search engine

Answers Can only create one answer Can create three answers that the
user can select

Web search Answers based on training data only Can search the web and deliver the
references to the user

Classifier GPT‑4 has its own classifier, which
can detect self‑generated text

BARD has no classifiers yet

152    ◾    Large Language Models

5.12  CONCLUSIONS
In this chapter, we have explored a variety of practical exercises that can be performed with
LLMs, revealing their versatility and power in various applications. Text classification has
proven to be one of the most common and effective tasks for these models, as they can ana‑
lyze and understand complex contexts to assign accurate labels to documents. Fine‑tuning,
on the other hand, has opened new perspectives for model customization, allowing them
to be tailored to specific tasks and domains.

Semantic search has emerged as an intriguing and valuable exercise that capitalizes on
the ability of large language models to understand the meaning and similarity between
words and phrases. This has led to advances in question‑answer processing, information
retrieval, and improved recommender systems. Models have also excelled in causal infer‑
ence, opening up possibilities in assessing the impact of certain events or decisions in dif‑
ferent scenarios.

Finally, we have explored proprietary database access with our LLMs and the design
of prompts that can guide large language models toward specific tasks. These structured
prompts allow us to harness the power of the language to perform tasks such as text genera‑
tion, software design, and creative content creation.

NOTES
	 1	 https://chat.openai.com/
	 2	 https://bard.google.com/

https://chat.openai.com/
https://bard.google.com/

153DOI: 10.1201/9781003517245-6

C h a p t e r 6

Issues and Perspectives

6.1  INTRODUCTION
Large Language Models (LLMs) have the potential to have a dramatic effect on businesses
and jobs alike. Although LLMs have been around for some time, Pandora’s box has recently
been opened by providing access that allows businesses and organizations to use the power
of artificial intelligence (AI) to automate jobs. This can have both positive and negative
effects.

This chapter explores various considerations related to the present and future of LLMs,
including emerging skills, alignment, ethics, regulations, risks, benefits, and limitations.

6.2  EMERGING SKILLS
LLMs pose a significant concern because of their tendency to exhibit emerging risk behav‑
iors (Boiko, MacKnight, and Gomes, 2023). These behaviors may include formulating pro‑
tracted plans, pursuing undefined goals, and striving to acquire additional authority or
resources. Due to the complex nature of LLMs, it is not easy to predict how they will behave
in specific situations.

Emergence can be defined as the sudden appearance of novel behavior. Apparently,
LLMs show emergence by suddenly acquiring new skills as they grow. Why does this hap‑
pen and what does it mean?

In recent years, significant efforts have been made to scale LLMs, leading to steady and
predictable improvements in their ability to learn these patterns, which can be seen in
improvements in quantitative metrics.

In addition, the scaling process leads to an interesting qualitative behavior: as LLMs are
scaled, a number of critical scales are reached where, suddenly, new skills are “unlocked.”
LLMs are not directly trained to have these skills and they appear quickly and unpredict‑
ably, as if emerging out of nowhere. These emergent skills include performing arithme‑
tic, answering questions, summarizing passages, and more, which LLMs learn simply by
observing natural language.

https://doi.org/10.1201/9781003517245-6

154    ◾    Large Language Models

6.2.1  What Causes These Emergent Skills and What Do They Mean?

While the fact that LLMs gain these skills as they scale is remarkable, the way they emerge
is especially interesting. In particular, many LLM skills seem to emerge; that is, as LLMs
grow in size, they go from near‑zero performance to, at times, state‑of‑the‑art performance
at an incredibly rapid pace and on unpredictable scales.

Emergent behavior is not unique to LLMs and, in fact, is seen in many fields, such as
physics, evolutionary biology, economics, and dynamical systems. In general, emergence is
an essential phenomenon of small changes in the quantitative parameters of a system caus‑
ing large changes in its qualitative behavior. The qualitative behavior of these systems can
be viewed as different “regimes,” in which the “rules of the game,” or equations that dictate
behavior, can vary dramatically.

The scaling of LLMs has shown consistent and predictable improvements in perfor‑
mance, with the scaling law for the cross‑entropy loss of LLMs holding over seven orders
of magnitude.

The important part of this phenomenon lies in the fact that we, a priori, do not know in
advance that this will happen or even at what scale it might happen. Thus, while we can try
to come up with new architectures or some other novel invention to address complicated
natural language problems, we can solve these problems by simply scaling LLMs to be even
larger.

Even if something simple like multistep reasoning is an important explanatory factor
for emergent abilities, its mere existence is still important. Ultimately, if completing the
tasks that really matter to us humans requires multistep reasoning, and it is likely that
many of them do, then it really doesn’t matter if there is a simple explanation for emergent
abilities. The simple observation that scaling models can increase their performance in
real‑world applications is sufficient.

6.3  LLM IN PRODUCTION
In prompt design, instructions are written in natural languages, which are much more flex‑
ible than programming languages. This can not only generate an excellent user experience
but can also lead to a rather poor developer experience. Flexibility comes from two direc‑
tions: how users define prompts and how LLMs respond to these prompts.

Flexibility in user‑defined prompts leads to silent failures. If someone accidentally makes
some changes to the code, such as adding a random character or deleting a line, it is likely
to throw an error. However, if someone accidentally changes a prompt, it will still run,
but it will give very different results. While the flexibility in user‑defined prompts is only
a nuisance, the ambiguity in the responses generated by LLMs can be a deciding factor. It
leads to two problems:

	 1.	Ambiguous output format: downstream applications, in addition to LLMs, expect
outputs in a particular format so that they can be parsed. We can design our prompts
to be explicit about the output format, but there is no guarantee that outputs will
always follow this format.

Issues and Perspectives    ◾    155

	 2.	Inconsistency in the user experience: When using an application, users expect some
consistency. Imagine an insurance company that offers you a different quote every
time you visit their website. LLMs are stochastic: there is no guarantee that an LLM
will give you the same result for the same input every time.

The above may force an LLM to give the same answer by setting temperature = 0, which is
generally a good practice. While this mainly solves the consistency problem, it does not
inspire confidence in the system. Imagine a teacher giving you consistent scores only if that
teacher sits in a particular room. If that teacher sits in different rooms, that teacher’s scores
for you will be unbelievable.

On the other hand, the more explicit details, and examples you include in the prompt,
the better the performance of the model and the more expensive it is to infer; for example,
the OpenAI API charges for input and output tokens. Depending on the task, a simple
prompt can have between three hundred and one thousand tokens. If you want to include
more context, this can easily reach 10k tokens just for the prompt.

Another very promising direction is to use LLMs to generate embeddings and then build
applications on top of these embeddings, e.g., for a search problem. As of April 2023, the
cost of embeddings with the smallest OpenAI model is $0.0004/1k tokens. If each article
averages 250 tokens (187 words), this price means $1 per 10k articles or $100 per 1 million
articles.

The primary cost of incorporating models for real‑time use cases is to load these embed‑
dings into a vector database for low‑latency retrieval. It is exciting to see so many new vec‑
tor databases flourishing, such as Pinecone, Qdrant, Weaviate, or Chroma, as well as the
existing Faiss, Redis, Milvus, or ScaNNN.

6.4  HUMAN‑LLM ALIGNMENT
The capability of a model is generally evaluated by how well it can optimize its objective
function, the mathematical expression that defines the model’s objective; for example, an
LLM designed to predict stock market prices may have an objective function that measures
the accuracy of the model’s predictions. If the model is able to accurately predict the move‑
ment of stock prices over time, it would be considered to have a high level of capability for
this task.

On the other hand, alignment has to do with what we actually want the model to do
versus what it is being trained to do. It asks the question, “Is such a target function consis‑
tent with our intentions?” And it refers to the extent to which a model’s goals and behavior
align with human values and expectations. For a simple concrete example, suppose we
train a bird classifier to classify birds as “sparrows” or “robins” and use logarithmic loss
(which measures the difference between the model’s predicted probability distribution and
the actual distribution) as the target training, even though our ultimate goal is high clas‑
sification accuracy. The model may have low log loss, i.e., model capability is high, but low
accuracy on the test data. In fact, the log loss is not perfectly correlated with the accuracy
of classification tasks. This is an example of misalignment, where the model is capable of

156    ◾    Large Language Models

optimizing the training objective, but misaligned with our final objective; for example,
models like GPT‑3 are misaligned.

LLMs like GPT‑3 are trained on large amounts of text data from the Internet and are
able to generate human‑like text, but they may not always produce results consistent with
human expectations or desirable values. In fact, their objective function is a probability
distribution over sequences of words (or sequences of tokens), which allows them to predict
what the next word in a sequence is (more details on this below).

However, in practical applications, these models are intended to do some valuable cog‑
nitive work, and there is a clear divergence between how these models are trained and
how we would like to use them. Although a machine‑calculated statistical distribution of
word sequences might be, mathematically speaking, a very efficient choice for modeling
language, we, as humans, generate language by choosing the sequences of text that are
best for the given situation, using our prior knowledge and common sense to guide us in
this process. This can be a problem when language models are used in applications that
require a high degree of trust or reliability, such as dialog systems or intelligent personal
assistants.

While these powerful and complex models trained on large amounts of data have
become extremely capable in recent years, when used in production systems to facilitate
human life, they often fall short of this potential. The alignment problem in LLMs usually
manifests itself as follows:

•	 Absence of help: not following the user’s explicit instructions.

•	 Hallucinations: model inventing non‑existent or erroneous facts.

•	 Lack of interpretability: it is difficult for humans to understand how the model
arrived at a certain decision or prediction.

•	 Generation of biased or toxic results: a language model that is trained with biased/
toxic data may reproduce it in its output, even if it was not explicitly instructed to
do so.

6.5  ETHICS
As LLMs become more powerful, it is vital to consider the ethical implications of their
use. From the generation of harmful content to the disruption of privacy and the spread of
misinformation, the ethical concerns surrounding the use of LLMs are complicated and
manifold:

•	 Generation of harmful content: LLMs have the potential to generate harmful con‑
tent, such as hate speech, extremist propaganda, racist or sexist language, and other
forms of content, which could cause harm to specific individuals or groups. While
the models are not inherently biased or harmful, the data they are trained on may
reflect biases that already exist in society. This, in turn, can lead to serious social
problems, such as incitement to violence or increased social unrest.

Issues and Perspectives    ◾    157

•	 Economic impact: LLMs can also have a significant economic impact, particularly
as they become increasingly powerful, widespread, and affordable. They may intro‑
duce substantial structural changes in the nature of work and labor, such as making
certain jobs redundant through the introduction of automation. This could result in
workforce displacement, mass unemployment, and exacerbate existing inequalities
in the workforce.

•	 Hallucinations: a major ethical concern related to LLMs is their tendency to hal‑
lucinate, i.e., to produce false or misleading information using their internal pat‑
terns and biases. While some degree of hallucination is inevitable in any language
model, the extent to which it occurs can be problematic. This can be especially dam‑
aging as models become increasingly convincing and users without domain‑specific
knowledge begin to rely too heavily on them. It can have serious consequences for the
accuracy and veracity of the information generated by these models. Therefore, it is
essential to ensure that AI systems are trained on accurate and contextually relevant
datasets to reduce the incidence of hallucinations.

•	 Privacy: LLMs also raise important questions about user privacy. These models
require access to large amounts of data for training, which often includes people’s
personal data. This is generally collected from licensed or publicly available datasets
and can be used for various purposes, such as finding geographic locations based on
phone codes available in the data.

•	 Biases and ethical concerns: LLMs may reinforce biases present in their training
data. This could raise ethical concerns, such as discriminatory or misleading content
that tarnishes a company’s reputation.

6.6  REGULATORY ISSUES
The accountability of responses generated by LLMs is an important point for possible regu‑
latory action and can directly influence their use and improve the quality of responses.
Initially, platforms disclaim responsibility for the responses generated by their models,
holding their users accountable. The models are trained with a huge amount of data avail‑
able on the Internet and texts that are eventually part of some published or copyrighted
scientific work. In this sense, the regulation should be very clear about who is responsible
for the use of the answers since, for example, they may be the result of plagiarism.

Measuring or mitigating bias and discrimination in LLMs is a complex task, consider‑
ing that LLMs are trained with a large dataset that can reproduce the biases observed in
society. Thus, the regulation of LLMs can be done through a data representativeness audit
process, i.e., assessing whether the data used to train the model are representative of the
diversity observed in society (as in the case of credit risk rating systems or facial recogni‑
tion systems). In addition, models can be evaluated through bias metrics, such as equalized
probabilities (measuring whether false positive and false negative rates are equal across
different groups, such as genders or races). Another applicable strategy is human evalua‑
tion. Using this type of strategy, model results should be exposed to human evaluators to

158    ◾    Large Language Models

determine whether the results generate any bias or discrimination (this is a costly method
but can be used to observe discriminatory nuances in the results).

6.7  COMPLEXITY
In simple terms, a parameter is a component of a machine learning model that the model
learns from its training data; for example, in a neural network, parameters include the
weights and biases of each node in the network, which determine how each node processes
its input, and adjusting these values allows the model to learn patterns in the data.

The number of parameters in an LLM significantly affects the fitting process in several
ways:

•	 Model complexity and learnability: a model with more parameters can represent
more complex patterns and has a higher learnability. This means that it can poten‑
tially achieve better performance when fitting on a specific task, as it can learn more
nuanced representations of the data. However, it also means that the model may
require more fitting data to avoid overfitting.

•	 Computational resources: models with more parameters require more computa‑
tional resources (memory and processing power) for fine‑tuning. This can make the
fitting process more challenging and time‑consuming, especially for those who do
not have access to high‑end hardware or the capital for hosting services.

•	 Risk of overfitting: a model with more parameters can learn more complex patterns,
but it also has a higher risk of overfitting, especially if the fine‑tuning data is small.
Overfitting occurs when the model learns the training data too well, including noise
and outliers, and performs poorly on unseen data.

•	 Transfer learning: models with more parameters often perform better in transfer
learning, where the model is first trained on a large data set (pre‑training) and then
fit on a smaller, task‑specific data set. The large number of parameters allows the
model to learn a wide range of language patterns during pre‑training, which can then
be tuned for specific tasks.

6.8  RISKS
One of the main implications of LLMs is their potential to increase automation and
improve efficiency in various industries. LLMs can be used to automate various tasks, such
as customer service, data entry, and content creation, which can lead to cost savings and
increased productivity; for example, GPT‑3 can be used to generate natural language text
with impressive consistency and creativity, which could enable the creation of high‑quality
content at scale.

However, with the increasing use of LLM, there are also concerns about potential job
losses as automation replaces human labor in a number of industries. It is also possible that
the use of LLM could lead to biases in decision making, as these models learn from the data
they are fed and, if that data is biased, it can lead to biased decisions. This is particularly

Issues and Perspectives    ◾    159

relevant in industries such as finance, where biased models could lead to unfair lending
practices.

Another concern is the potential for malicious actors to use LLM for nefarious pur‑
poses, such as generating fake news and propaganda, phishing attacks or even phishing.
The same natural language generation capabilities that make GPT‑3 impressive could be
used to spread misinformation and propaganda.

6.9  LIMITATIONS
There are several limitations to LLMs that, in the coming years, should be addressed by the
international scientific community:

•	 Sophisticated but probabilistic autocompletion machines: LLMs are essentially an
autocompletion machine that operates using sophisticated pattern recognition meth‑
ods. It repeats and reconstructs the prose in which it has been trained, but it does so
probabilistically; thus, it will often make mistakes and even invent “facts” or produce
invented references. These “hallucinations” are not an aberration; they are an inher‑
ent behavior of any generative system.

•	 Text generation skills are not suitable in contexts with low fault tolerance: the cor‑
ollary of the first limitation is that LLM text generation skills are less suitable for
tasks with low “fault tolerance”; for example, legal writing and tax advice have low
fault tolerance and are very specific use cases that require expertise, accountability,
and confidence, not just words on pages.

•	 Creative writing tasks may have high fault tolerance: the wide variation in LLMs
may actually be a feature rather than a bug, as it can help generate creative and valu‑
able options that humans had not considered before. Even human moderation is nec‑
essary to avoid exposing users to uninhibited and potentially mind‑boggling chatbot
responses.

•	 Privacy and data security risks: there are likely to be legal and regulatory restric‑
tions on the movement and storage of your organization’s and your customers’ data.
The widespread use of ChatGPT among knowledge workers presents a serious risk of
exposing sensitive data to a third‑party system. This data will be used to train future
versions of OpenAI models, which means it could potentially be regurgitated to the
public.

6.10  CONCLUSIONS
LLMs exhibit emergent risk behaviors and exhibit skills that appear unpredictably as they
scale. These emergent abilities may be beneficial in terms of steady improvements in model
performance, but they also raise ethical concerns, such as the generation of harmful con‑
tent, a lack of consistency in results, and the possibility of hallucinations or the genera‑
tion of false information. In addition, LLMs can have economic implications, such as the
automation of jobs and the impact on the workforce. It is essential to consider the risks and

160    ◾    Large Language Models

ethical implications of LLMs and find ways to regulate their use to ensure responsible and
beneficial employment.

In the future, efforts are likely to be made to address the ethical concerns and risks
associated with LLMs. This may include implementing stricter regulations and standards
to ensure alignment with human values and reduce bias in the results generated. Advances
are also expected to be made in the ability to interpret and understand LLM decisions and
predictions, which may help address the lack of interpretability. In addition, improvements
are expected to be made in the privacy and security of data used by LLMs, with a focus on
protecting users’ confidential information. Overall, LLMs are expected to continue to play
an important role in automating language‑related tasks, but with an increased focus on
ensuring responsible and ethical use of this technology.

161

Bibliography

Achille, A., & Soatto, S. (2017). On the Emergence of Invariance and Disentangling in Deep
Representations.arXiv, abs/1706.01350.

Adiwardana, D., Luong, M.‑T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R., … Le, Q. V. (2020).
Towards a Human‑like Open‑Domain Chatbot. arXiv:2001.09977.

Agarwal, B., Nayak, R., Mittal, N., & Patnaik, S. (2020). Deep Learning‑Based Approaches for Sentiment
Analysis. Springer.

Aggarwal, C. (2018). Machine Learning for Text. Springer.
Alto, V. (2023). Modern Generative AI with ChatGPT and OpenAI Models: Leverage the Capabilities

of OpenAI’s LLM for Productivity and Innovation with GPT3 and GPT4. Paxckt.
Atkinson, J. (2005). Intelligent search agents using web‑driven natural‑language explanatory dialogs.

IEEE Computer, 38, 44–52.
Atkinson, J. (2022). Text Analytics: An Introduction to the Science and Applications of Unstructured

Information Analysis. Taylor & Francis, CRC Press.
Atkinson, J., & Palma, D. (2018). Coherence‑based automatic essay assessment. IEEE Intelligent

Systems, 33(5), 26–36.
Atkinson‑Abutridy, J., Mellish, C., & Aitken, S. (2003). A semantically guided and domain‑inde‑

pendent evolutionary model for knowledge discovery from texts. IEEE Transactions on
Evolutionary Computation, 7, 546–560.

Babcock, J., & Bali, R. (2021). Generative AI with Python and TensorFlow 2: Create Images, Text, and
Music with VAEs, GANs, LSTMs, Transformer Models. Packt Publishing.

Baron, M. (2019). Probability and Statistics for Computer Scientists. Chapman and Hall/CRC.
Beck, S. C. (1988). Improving information retrieval using latent semantic indexing. Proceedings

of the ACM SIGOIS and IEEE CS TC‑OA COIS90: conference on Office information systems,
Cambridge Massachusetts, USA. 40–47.

Bengio, I. J.‑A.‑F. (2014). Generative Adversarial Networks. arXiv:1406.2661.
Berant, G. T. (2019). Evaluating Text GANs as Language Models. arXiv:1810.12686.
Bermúdez, J. (2020). Cognitive Science: An Introduction to the Science of the Mind. Cambridge

University Press.
Bernstein, J. S. (2023). Generative Agents: Interactive Simulacra of Human Behavior. arXiv:2304.03442.
Bohnet, B., Mcdonald, R., Andor, D., Pitler, E., & Maynez, J. (2018). Morphosyntactic Tagging with

a Meta‑BiLSTM Model over Context Sensitive Token Encodings. Melbourne: Association for
Computational Linguistics (ACL)..

Boiko, D. A., MacKnight, R., & Gomes, G. (2023). Emergent Autonomous Scientific Research
Capabilities of Large Language Models. arXiv:2304.05332.

Bokka, K., Hora, S., & Jain, T. (2019). Deep Learning for Natural Language Processing : Solve your
Natural Language Processing Problems with Smart Deep Neural Networks. Packt Publishing.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R. B., Arora, S., von Arx, S., … Liang, P.(2021). On
the Opportunities and Risks of Foundation Models.arXiv, abs/2108.07258.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., … Amodei, D.(2020).
Language Models are Few‑Shot Learners.arXiv, abs/2005.14165.

162    ◾    Bibliography

Burns, S. (2019). Natural Language Processing : A Quick Introduction to NLP with Python and NLTK.
Amazon.com Services.

Choi, R. Z. (2019). HellaSwag: Can a Machine Really Finish Your Sentence? arXiv:1905.07830.
Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., …, Fiedel, N. (2022).

PaLM: Scaling Language Modeling with Pathways. arXiv:2204.02311.
Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg, S., & Amodei, D. (2023). Deep Reinforcement

Learning from human preferences. arXiv:1706.03741.
Cuantum, T. (2023). Introduction to Natural Language Processing with Transformers: Decoding

Language with AI: A Comprehensive Guide to Build Language Applications with Hugging ...
Python, and More. Cuantum Technologies.

Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z., & Wei, F. (2022). Why Can GPT Learn In‑Context? Language
Models Secretly Perform Gradient Descent as Meta‑Optimizers. arXiv:2212.10559.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., & Salakhutdinov, R. (2019). Transformer‑XL:
Attentive Language Models beyond a Fixed‑Length Context. arXiv, abs/1901.02860.

Darling, K. (2022). ChatGPT: A Scientist Explains the Hidden Genius and Pitfalls of OpenAI XE
“OpenAI” ‘s XE “OpenAI’s” chatbot. Science Focus.

de Santana Correia, A., & Colombini, E. L. (2021). Attention, Please! A Survey of Neural Attention
Models in Deep Learning. arXiv, abs/2103.16775.

Deng, L., & Liu, Y. (2018). Deep Learning in Natural Language Processing. Springer.
Devlin, J., Wei, M., Kenton, C., & Toutanova, L. (2019). BERT: Pre‑training of Deep Bidirectional

Transformers for Language Understanding. Proceedings of NAACL‑HLT 2019, North American
Chapter of the Association for Computational Linguistics, 4171–4186.

Eisenstein, J. (2019). Introduction to Natural Language Processing. The MIT Press.
Ekman, M. (2022). Learning Deep Learning: Theory and Practice of Neural Networks, Computer

Vision, Natural Language Processing, and Transformers Using TensorFlow. Addison‑Wesley.
Foster, D. (2019). Generative Deep Learning: Teaching Machines to Paint, Write, Compose and Play.

O’Reilly.
Freitag, M., & Al‑Onaizan, Y. (2017). Beam Search Strategies for Neural Machine Translation. In

Proceedings of the First Workshop on Neural Machine Translation, Association for Computational
Linguistics, Vancouver, 56–60.

Gao, S., & Kean, A. (2023). On the Origin of LLMs: An Evolutionary Tree and Graph for 15,821 Large
Language Models. arXiv:2307.09793.

Ge, Y., Hua, W., Ji, J., Tan, J., Xu, S., & Zhang, Y. (2023). OpenAGI: When LLM Meets Domain Experts.
arXiv:2304.04370.

Ghosh, S., & Gunning, D. (2019). Natural Language Processing Fundamentals: Build intelligent appli‑
cations that can interpret the human language to deliver impactful results. Packt Publishing.

Gillon, B. (2019). Natural Language Semantics: Formation and Valuation. The MIT Press.
Goldberg, Y. (2017). Neural Network Methods for Natural Language Processing. Morgan & Claypool

Publishers.
Gooding, S., & Kochmar, E. (2019). Complex word identification as a sequence labelling task.

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
(pp. 1148–1153). Florence: Association for Computational Linguistics.

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks. Springer.
Guilla, H. T.‑A. (2023). LLaMA: Open and Efficient Foundation Language Models. arXiv:abs/2302.13971.
Hariri, W. (2023). Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its

Applications, Advantages, Limitations, and Future Directions in Natural Language Processing.
arXiv:2304.02017.

Howard, J., & Ruder, S. (2018). Fine‑tuned Language Models for Text Classification.arXiv,
abs/1801.06146.

Hu, Z., Lan, Y., Wang, L., Xu, W., Lim, E.‑P., Lee, R. K.‑W., … Poria, S. (2023). LLM‑Adapters: An
Adapter Family for Parameter‑Efficient Fine‑Tuning of Large Language Models. arXiv:2304.01933.

http://Amazon.com

Bibliography    ◾    163

Huang, T., Hsieh, C., & Wang, H. (2018). Automatic meeting summarization and topic detection
system. Data Technologies and Applications, 351–365.

Kalyan, K. S., Rajasekharan, A., & Sangeetha, S. (2021). AMMUS: A Survey of Transformer‑Based
Pretrained Models in Natural Language Processing. arXiv:2105.00827.

Kamath, U., Liu, J., & Whitaker, J. (2019). Deep Learning for NLP and Speech Recognition. Springer.
Kendall, E., & McGuinness, D. (2019). Ontology Engineering. Morgan & Claypool Publishers.
Kublik, S., & Saboo, S. (2022). GPT‑3. O’Reilly Media.
Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and language independent subword

tokenizer and detokenizer for Neural Text Processing. Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, Association for
Computational Linguistics, Brussels, Belgium, 66–71.

Kuhn, M., & Johnson, K. (2019). Feature Engineering and Selection: A Practical Approach for Predictive
Models. Chapman and Hall/CRC.

Lane, H., Hapke, H., & Howard, C. (2019). Natural Language Processing in Action: Understanding,
analyzing, and generating text with Python. Manning Publications.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., … Zettlemoyer, L.
(2019). BART: Denoising Sequence‑to‑Sequence Pre‑training for Natural Language Generation,
Translation, and Comprehension. arXiv, abs/1910.13461.

Li, H. (2022). Language models: past, present, and future. Communications of the ACM, 65, 56–63.
Lialin, V., Deshpande, V., & Rumshisky, A. (2023). Scaling Down to Scale Up: A Guide to

Parameter‑Efficient Fine‑Tuning. arXiv.
Liang, P. P., Wu, C., Morency, L.‑P., & Salakhutdinov, R. (2021). Towards Understanding and Mitigating

Social Biases in Language Models.arXiv:2106.13219.
Liu, F., & Perez, J. (2017). Gated End‑to‑End Memory Networks. Proceedings of the 15th Conference

of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
(pp. 1–10). Valencia: Association for Computational Linguistics.

Liu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J., … Ge, B. (2023). Summary of ChatGPT/GPT‑4
Research and Perspective towards the Future of Large Language Models, Meta‑Radiology, Vol.
1, Issue 2.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., … Stoyanov, V. (2019). RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv, abs/1907.11692.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., … Clark, P. (2023). Self‑Refine:
Iterative Refinement with Self‑Feedback. Conference on Neural Information Processing Systems,
New Orleans.

Marcus, G. (2020). The Next Decade in AI: Four Steps towards Robust Artificial Intelligence.
arXiv:2002.06177.

Martin, J., & Jurafsky, D. (2014). Speech and Language Processing An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. Pearson.

Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., & et al, R. P. (2023). Augmented Language Models:
a Survey. arXiv:2302.07842.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Machine Learning. The MIT
Press.

Noori, B. (2021). Classification of Customer Reviews Using Machine Learning Algorithms. Applied
Artificial Intelligence, 35, 567–588.

Nori, H., King, N., McKinney, S. M., Carignan, D., & Horvitz, E. (2023). Capabilities of GPT‑4 on
Medical Challenge Problems. arXiv:2303.13375.

OpenAI. (2023). GPT‑4 Technical Report.
Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023). Generative

Agents: Interactive Simulacra of Human Behavior. arXiv:2304.03442.
Peng, B., Li, C., He, P., Galley, M., & Gao, J. (2023). Instruction Tuning with GPT‑4. arXiv:2304.03277.

164    ◾    Bibliography

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep
Contextualized Word Representations.arXiv, abs/1802.05365.

Phuong, M., & Hutter, M. (2022). Formal Algorithms for Transformers. DeepMind.
Prystawski, B., & Goodman, N. D. (2023). Why think step‑by‑step? Reasoning emerges from the local‑

ity of experience. arXiv:2304.03843.
Puchert, P., Poonam, P., van Onzenoodt, C., & Ropinski, T. (2023). LLMMaps – A Visual Metaphor

for Stratified Evaluation of Large Language Models. arXiv:2304.00457.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding

by generative pre‑training. arXiv:2012.11747, OpenAI.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., … Liu, P. J. (2019). Exploring

the Limits of Transfer Learning with a Unified Text‑to‑Text Transformer. arXiv, abs/1910.10683.
Rohan A., Dai, A. M., Fira, O., M. J., Lepikhin, D., Passos, A., … Wu, Y. (2023). PaLM 2 Technical

Report. arxiv:2305.10403.
Rothman, D. (2022). Transformers for Natural Language Processing: Build, Train, and Fine‑Tune Deep

Neural Network Architectures for NLP with Python, PyTorch, TensorFlow, BERT, and GPT‑3.
Packt Publishing.

Russell, S. (2020). Artificial Intelligence : A Modern Approach. Pearson.
Sanderson, K. (2023). GPT‑4 is here: what scientists think. Nature, 773, 615.
Sankar, C., Subramanian, S., Pal, C., Chandar, S., & Bengio, Y. (2019). Do Neural Dialog Systems

Use the Conversation History Effectively? An Empirical Study. Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, ACL.

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., & Zhuang, Y. (2023). HuggingGPT: Solving AI Tasks with
ChatGPT and its Friends in HuggingFace. arXiv:2303.17580v1.

Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short‑Term
Memory (LSTM) network. Physica D: Nonlinear Phenomena, Vol. 404, 45, 67.

Stephanie Lin, J. H. (2022). TruthfulQA: Measuring How Models Mimic Human Falsehoods.
arXiv:2109.07958.

Tafjord, P. C. (2018). Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge. arXiv:2109.07958.

Thoppilan, R., Freitas, D. D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H. T., … Li, Y. (2022).
LaMDA: Language Models for Dialog Applications. arXiv:2201.08239.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.‑A., Lacroix, T., … Lample, G. (2023).
LLaMA: Open and Efficient Foundation Language Models. arXiv:2302.13971.

Tunstall, L., von Werra, L., & Wolf, T. (2022). Natural Language Processing XE “Natural Language
Processing” with Transformers: Building Language Applications with Hugging Face. O’Reilly
Media.

Vasiliev, Y. (2020). Natural Language Processing with Python and SpaCy: A Practical Introduction. No
Starch Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017).
Attention Is All You Need. arXiv, abs/1706.03762.

Wake, N., Kanehira, A., Sasabuchi, K., Takamatsu, J., & Ikeuchi, K. (2023). ChatGPT Empowered
Long‑Step Robot Control in Various Environments: A Case Application. arXiv:2304.03893.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & Hajishirzi, H. (2022). Self‑Instruct:
Aligning Language Model with Self Generated Instructions. arXiv:2304.03893.

Wang, F. Y. (2023). Natural Language Reasoning, A Survey. ACM Computing Surveys.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., … Zhou, D. (2023). Chain‑of‑Thought

Prompting Elicits Reasoning in Large Language Models. NIPS ‘22: Proceedings of the 36th
International Conference on Neural Information Processing Systems, November 2022,
24824–24837.

Wies, N., Levine, Y., & Shashua, A. (2023). The Learnability of In‑Context Learning. arXiv:2303.07895.

Bibliography    ◾    165

Wilmott, P. (2020). Machine Learning: An Applied Mathematics Introduction. Panda Ohana
Publishing.

Wu, C.‑S., Madotto, A., Hosseini‑Asl, E., Xiong, C., Socher, R., & Fung, P. (2019). Transferable
Multi‑Domain State Generator for Task‑Oriented Dialogue Systems. Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. ACL, Florence, Italy, 808–819.

Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M., Gehrmann, S., … Mann, G. (2023). BloombergGPT:
A Large Language Model for Finance. arXiv:2303.17564.

Xu, Y., Lee, H., Chen, D., Hechtman, B., Huang, Y., Joshi, R., … Chen, Z. (2021). GSPMD: General
and Scalable Parallelization for ML Computation Graphs. arXiv:2105.04663.

Yang, Q., Yu, Z., Dai, W., & Pan, S. (2020). Transfer Learning. Cambridge University Press.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized

Autoregressive Pretraining for Language Understanding. arXiv, abs/1906.08237.
Yu, F., Zhang, H., & Wang, B. (2023). Natural Language Reasoning, A Survey. arXiv:2303.14725.
Yue, Y. Z. (2023). Meta‑Transformer: A Unified Framework for Multimodal Learning. arXiv:2307.10802.
Zhang, R., Han, J., Zhou, A., Hu, X., Yan, S., Lu, P., … Qiao, Y. (2023). LLaMA‑Adapter: Efficient

Fine‑tuning of Language Models with Zero‑init Attention. arXiv:2303.16199.
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., … Wen, J. R. (2023). A Survey of Large

Language Models. arXiv:2303.18223.

https://taylorandfrancis.com

167

Index

A

abstraction and reasoning corpus 117
agents 128, 161, 163
alignment xv, 8, 43, 44, 46, 47, 48, 49, 50, 112, 153,

155, 156, 160
ANNs see artificial neural networks
ARC 117, 119, 121, 164
artificial intelligence xvi, 113, 163, 164
artificial neural networks 15
attention xiv, 1, 16, 20, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
61, 62, 63, 64, 65, 66, 69, 70, 75, 78, 81, 82,
83, 84, 85, 86, 89, 95, 96, 101, 105, 106, 107,
110, 116, 120, 122

autoencoders 30, 34

B

BARD 139, 150, 151
benchmark 101, 107, 109, 112, 116, 117, 120
BERT 8, 118, 119, 120
BLOOM 8, 118, 119

C

causal inference 122, 130, 152
ChatGPT xvi, 1, 2, 5, 7, 17, 70, 92, 101, 112, 139, 140,

141, 146, 148, 149, 150, 151, 159, 161, 162,
163, 164

context xi, 6, 8, 9, 14, 15, 16, 17, 18, 19, 20, 22, 23,
24, 26, 28, 32, 36, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 65, 69, 70, 71, 72, 74, 75,
76, 82, 89, 90, 91, 92, 95, 102, 103, 107,
110, 111, 117, 136, 139, 140, 142, 143,
144, 155

corpora 8, 10, 14–17, 19, 70–72, 74–78, 81, 89, 95, 97,
98, 101, 106, 109, 111, 117

D

dataset 2, 7, 31, 33, 38, 39, 58, 68, 71, 72, 73, 79, 81, 82,
85, 87, 88, 89, 91, 92, 93, 95, 98, 99, 100, 103,
104, 105, 106, 107, 116, 117, 118, 119, 122, 123,
126, 127, 136, 137, 138, 146, 147, 148, 150, 151,
157

decoder xiv, 15, 32, 33, 35, 37, 41, 42, 44, 45, 46, 47,
53, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 69,
75, 81, 83, 84, 86, 87, 101, 106, 107

deep learning xiii, xiv, 2, 8, 13, 16, 31, 40, 41, 52, 56,
73, 74, 75

E

embedding 6, 15, 17, 19, 21, 22, 31, 41, 46, 56, 59, 60, 63,
77, 78, 88, 101, 123, 124, 126, 127, 135, 137

emergence 14, 15, 16, 153, 154
emergent abilities 17, 154, 159
encoder xiv, 15, 32, 33, 35, 37, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 53, 56, 57, 58, 59, 61, 62, 63, 64,
65, 66, 67, 69, 76, 77, 78, 81, 107, 124, 126

F

feed-forward 13, 14, 22, 47, 58
feed-forward neural network 19
few-shots 144
fine-tuning xiv, 16, 19, 33, 71, 73, 78, 81, 87, 88, 89,

92, 93, 94, 99, 101, 122, 126, 136, 146, 147,
158

FNN see feed-forward neural network
foundational models 15

G

GAN 160
gates 26, 27, 29
generative xi, xiv, 1, 2, 3, 4, 5, 6, 9, 16, 32, 33, 36, 38,

39, 81, 82, 99, 103, 112, 113, 159, 164

168    ◾    Index

GLUE 116, 117, 120
GPT 8, 118, 119, 120, 121, 151

I

instruction tuning 71, 73

L

LaMDA 8, 151
LangChain 128, 134, 135
language model xiv, 6, 7, 8, 10, 12, 28, 73, 75, 81, 107,

109, 156, 157
layers 15, 19, 22, 25, 26, 27, 30, 31, 33, 34, 39, 47, 57,

58, 61, 63, 64, 65, 78, 82, 83, 84, 87, 89, 95,
101, 105, 106, 110, 116, 122, 123, 125

LLaMA 8, 118, 119
LLM 131
long short-term memory 15, 26, 164
LSA 19
LSTMs 26, 30, 161; see also long-short term memory

M

machine learning xi, xiv, 1, 5, 9, 14, 15, 22, 30, 31, 73,
122, 158

Megatron 119
Mistral 107

N

natural language inference 117
natural language processing 5, 10, 161, 162, 163, 164
neural networks xiv
NLP see natural-language processing

O

OpenAI’s xv, 1, 2, 5, 90, 115, 122, 127–129, 132,
134, 146, 148, 149, 155, 159, 161, 163, 164

P

PaLM 99, 118, 119
parameters 6, 17, 25, 37, 51, 55, 67, 70, 71, 72, 78, 82,

88, 89, 90, 98, 101, 102, 103, 104, 105, 106,
107, 111, 116, 118, 119, 120, 130, 132, 136,
138, 154, 158

pretrained 123, 146
pretrained language model 16
prompts 71, 85, 86, 87, 92, 93, 97, 107, 111, 139, 140,

141, 144, 145, 146, 147, 148, 152, 154

R

reasoning 1, 18, 71, 72, 95, 97, 98, 106, 107, 109, 111,
112, 117, 119, 128, 129, 144, 145, 151, 154

reinforcement learning 7, 32, 72, 91, 93, 162
risks 158, 161
RNNs 15, 22, 23, 24, 26, 30, 56, 59, 69

S

self-attention 40, 46, 50, 52, 53, 54, 63, 83, 84, 85,
95, 105

semantic search 152
Seq2Seq 15, 41, 45, 66, 69
sequence 3, 8, 11, 12, 13, 14, 15, 16, 24, 25, 30, 41, 42,

43, 44, 47, 48, 50, 52, 53, 54, 55, 56, 58, 59,
60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 74, 75,
76, 77, 78, 81, 82, 83, 84, 85, 87, 88, 95, 104,
109, 116, 124, 128, 129, 156

SNLI 117, 118
SoftMax 64
SQuAD 116, 120, 121

T

tokenization 70, 74, 123
tokens 100, 101
training xiv, 1, 2, 4, 5, 6, 7, 8, 15, 16, 17, 19, 20, 21, 26,

30, 32, 33, 35, 36, 37, 38, 39, 40, 56, 58, 61,
64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77,
79, 81, 82, 85, 87, 88, 89, 92, 94, 95, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106, 107,
111, 113, 118, 124, 125, 126, 136, 138, 139,
140, 143, 146, 148, 151, 155, 157, 158, 162,
163, 164

transformer 56, 57, 59, 61, 65, 66, 67, 70, 75, 76, 77,
78, 81, 83, 84, 87, 95, 100, 101, 102, 104,
105, 106, 107, 122, 130

transformers xiv, 32, 69, 70, 95, 96, 100, 101, 123, 130

W

Word2Vec 15, 19, 20, 22, 75
word embeddings 6, 14, 19, 89

Z

zero-shot 82, 86, 87, 88, 89, 101, 143, 144, 145, 148

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	Introduction
	Author Biography
	Chapter 1 Introduction
	1.1 Generative Artificial Intelligence
	1.1.1 Understanding the Mechanisms of Generative AI
	1.1.2 Focus Areas in Generative AI
	1.1.3 Applications

	1.2 Generative Language Models
	1.2.1 Popular Types of LLMs

	1.3 Conclusions
	Notes

	Chapter 2 Fundamentals
	2.1 Introduction
	2.2 Autoregressive Language Models
	2.3 Statistical Language Models
	2.4 Neural Language Models
	2.4.1 Pre-trained Language Models

	2.5 Large Language Models
	2.6 Word Embedding Models
	2.7 Recurrent Neural Networks
	2.7.1 Simple Recurrent Neural Networks
	2.7.2 Long Short-Term Memory Networks

	2.8 Autoencoders
	2.8.1 The Information Bottleneck
	2.8.2 Latent Variables
	2.8.3 Autoencoder Architecture
	2.8.4 Types of Autoencoders

	2.9 Generative Adversarial Networks
	2.9.1 The Generative Model
	2.9.2 The Discriminative Model

	2.10 Attention Models
	2.10.1 Encoder-Decoder Paradigm
	2.10.2 Attention to Sequence Models

	2.11 Transformers
	2.11.1 Encoder Layer
	2.11.2 Positional Encoding
	2.11.3 Residual Connections
	2.11.4 Decoder Layer
	2.11.5 Linear Layer and SoftMax
	2.11.6 Training
	2.11.7 Inference
	2.11.8 Loss Function

	2.12 Conclusions

	Chapter 3 Large Language Models
	3.1 Introduction
	3.1.1 Emergent Skills
	3.1.2 Skills Enhancement Techniques
	3.1.3 Corpora
	3.1.4 Types of Training
	3.1.5 Types of Learning
	3.1.6 Types of Tokenization

	3.2 BERT
	3.2.1 Operation
	3.2.2 Architecture
	3.2.3 Model Input
	3.2.4 Model Output
	3.2.5 Bert-Based Pre-Trained Models

	3.3 GPT
	3.3.1 The GPT and GPT-2 Models
	3.3.2 The GPT-3 Model
	3.3.3 The GPT-4 Model
	3.3.4 Reinforcement Learning from Human Feedback

	3.4 PaLM
	3.4.1 Vocabulary
	3.4.2 Training
	3.4.3 PaLM-2

	3.5 LLaMA
	3.5.1 Pre-Training Data
	3.5.2 Architecture

	3.6 Language Model for Dialogue Applications (LaMDA)
	3.6.1 Objectives and Metrics
	3.6.2 Pre-Training of LaMDA

	3.7 Megatron
	3.7.1 Training Data

	3.8 Other LLMS
	3.9 Conclusions
	Notes

	Chapter 4 Model Evaluation
	4.1 Introduction
	4.2 Evaluation Tasks
	4.2.1 Basic Evaluation Tasks
	4.2.2 Advanced Assessment Tasks
	4.2.3 Regulatory Compliance Tasks

	4.3 Metrics and Benchmarks
	4.4 Benchmark Datasets
	4.4.1 SQuAD (Stanford Question-Answering Dataset)
	4.4.2 GLUE (General Language Understanding Evaluation)
	4.4.3 SNLI (Stanford Natural Language Inference)
	4.4.4 ARC (Abstraction and Reasoning Corpus)

	4.5 LLM Assessment
	4.6 Conclusions
	Notes

	Chapter 5 Applications
	5.1 Introduction
	5.2 Sentiment Classification
	5.2.1 Training
	5.2.2 Testing and Validation

	5.3 Semantic Search
	5.4 Reasoning with Language Agents
	5.5 Causal Inference
	5.6 Natural Language Access to Databases
	5.7 Loading and Querying for Own Data
	5.8 Fine-Tuning a Model with Own Data
	5.9 Prompt Design and Optimization
	5.10 CHATGPT Conversational System
	5.10.1 Performance Evaluation

	5.11 Bard Conversational System
	5.12 Conclusions
	Notes

	Chapter 6 Issues and Perspectives
	6.1 Introduction
	6.2 Emerging Skills
	6.2.1 What Causes These Emergent Skills and What Do They Mean?

	6.3 LLM in Production
	6.4 Human-LLM Alignment
	6.5 Ethics
	6.6 Regulatory Issues
	6.7 Complexity
	6.8 Risks
	6.9 Limitations
	6.10 Conclusions

	Bibliography
	Index

