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Preface

Hello and welcome! This book is your companion to exploring the realm
of modeling in data science. It is designed to provide you with something
useful whether you’re a beginner looking to learn some fundamentals, or an
experienced practitioner seeking a fresh perspective. Our goal is to equip you
with a better understanding of how models work and how to use them, including
both basic and more advanced techniques, where we touch on everything from
linear regression to deep learning. We’ll also show how different models relate
to one another to better empower you to successfully apply them in your
own data-driven projects. We aim to provide an overview on how to use both
machine learning and traditional statistical modeling in a practical fashion,
with a balanced emphasis on interpretability and predictive power. Join us on
this exciting journey as we explore the world of models in data science!

xv



xvi Preface

What Will You Get Out of This Book?
We’re hoping for a couple things for you as you read through this book. In
particular, if you’re starting your journey into data science, we hope you’ll
leave with:

• A firm understanding of modeling basics from a practical perspective
• A toolset of models and related ideas that you can instantly apply for

competent modeling
• A balanced treatment of statistical and machine learning approaches

If you’re already familiar with modeling, we hope you’ll leave with:

• Additional context for the models you already know
• Some introduction to models you don’t know
• Additional understanding of how to choose the right model for the job and

what to focus on

For anyone reading this book, we especially hope you get a sense of the
commonalities between different models and a good sense of how they work.
If you happen to be reading this book in print, you can find the book in web
form at https://m-clark.github.io/book-of-models. There you’ll also find all
the code, figures, and other content that you can interact with more easily, as
well as the most up-to-date content, fixes, etc. The web version will be updated
with some regularity and have additional content as well.

Brief Prerequisites
You’ll definitely want to have some familiarity with R or Python (both are
used for examples), and some very basic knowledge of statistics will be helpful.
We’ll try to explain things as we go, but we won’t be able to cover everything.
If you’re looking for a good introduction to R, we recommend R for Data
Science or the Python for Data Analysis book for Python. Beyond that, we’ll
try to provide the context you need so that you can be comfortable trying
things out.

https://m-clark.github.io/book-of-models
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Data and Code
All the data and code used in this book is available on the book’s GitHub
repository. See the data descriptions in the data section for more information
on each of the datasets used. In addition, notebooks with chapter code are also
available there (if applicable). For contributions, please see the contributing
page for more information. Thanks for reading!
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1
Introduction

We are constantly inundated with data, regardless of our background and
whether we’re conscious of it or not. It’s inescapable, from our first attempts
to understand the world around us, to our most recent efforts to explain why
we still don’t get it. Even now, our most complicated and successful models
are almost uninterpretable even to those who created them. But that doesn’t
mean that even in difficult circumstances we can’t understand the essence
of how models work, and make practical decisions from their results. And if
you’re reading this, you are probably the type of person who wants to keep
trying anyway! So for seasoned professionals or perhaps just the data curious,
we want to help you learn more about how to use data to answer the questions
you have.

1.1 What Is This Book?
This book aims to demystify the complex world of data science modeling. It
serves as a practical resource and is something you can refer to for a quick

1



2 1 Introduction

overview of a specific modeling technique, a reminder of some modeling-related
topic you’ve seen before, or perhaps a sneak peak into some modeling details.

The text is focused on a few statistical and machine learning concepts that are
ubiquitous, and modeling approaches that are widely employed, and especially
those which form the basis for most other models in use in a variety of domains.
Believe it or not, whether a lowly t-test or a complex neural network, there is
a tie that binds, and you don’t have to know every detail to get a solid model
that works well enough. We hope to help you understand some of the core
modeling principles, and how the simpler models can be extended and applied
to a wide variety of data scenarios. We also touch on some topics related to
the modeling process, such as common data issues and causal inference.

Our approach is first and foremost a practical one - models are just tools to help
us reach a goal, and if a model doesn’t work in the world, it’s not very useful.
But modeling is often a delicate balance of interpretation and prediction, and
each data situation is unique in some way, almost always requiring a bespoke
approach. What works well in one setting may be poor in another, and what
may be the state of the art may only be marginally better than a simpler
approach that is more easily interpreted. In addition, complexities arise even
in an otherwise deceptively simple application. However, if you have a core
understanding of the techniques that lie at the heart of many models, you’ll
automatically have many more tools at your disposal to tackle the problems
you face, and be more comfortable with choosing the best for your needs.

This book also strives to find the balance between statistical texts that don’t
speak to predictive power or machine learning techniques, and machine learning
treatments that consider the job done after calling the predict method. We
aim to provide a solid treatment of both, and show how both are necessary
perspectives of data modeling. The right modeling tool for your job may come
from anywhere, and we hope you’ll get a good sense of what’s out there, and
how to use it.

1.1.1 What we hope you take away
Here are a few things we hope you’ll take away from this book:

• A sense of the common thread that runs through the modeling landscape,
from simple linear models to complex neural networks

• A small set of modeling tools that will nonetheless be applicable to many
common data problems you’ll encounter

• Enough understanding to be able to confidently apply these tools to your
own data

While we recommend working through the chapters in order if you’re starting
out, we hope that this book can serve as a “choose your own adventure”
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reference. Whether you want a surface-level understanding or a deeper dive,
we think you will find value in this book.

1.1.2 What you can expect
For each topic that we cover in a chapter, you will generally see the same type
of content structure. We start with an overview and provide some key ideas to
keep in mind as we go through the chapter. You’ll also be given a sense of the
context required. This should help you choose any topic you feel comfortable
with, and skip over those you don’t.

Models are implemented with code using standard approaches, though results
are usually shown in a more digestible format with tables and visualizations.
To further demystify the modeling process, at various points we take a DIY
approach to show how a model or some aspect of it comes about by estimating
the results by hand for comparison. We’ll also provide some concluding thoughts,
connections to other techniques and topics, and suggestions on what to explore
next. For some chapters, we’ll also provide suggestions for things to try on
your own.

Some topics may get a bit more into the weeds than you want, and that’s
okay! We hope that you can take away the big ideas and come back to the
details when you’re ready. Just having an awareness of what’s possible is often
the first step to understanding how to apply it to your own data. In general
though, we’ll touch a little bit on a lot of things, but hopefully not in an
overwhelming way.

1.1.3 What you can’t expect
This book will not teach you programming, but you really only need a very
basic understanding of R or Python. We also won’t be teaching you basic
statistics, so we won’t be delving into hypothesis testing or the intricacies of
statistical theory. The text is more focused on applied modeling, prediction, and
performance than a normal stats book, and it is more focused on interpretation
and uncertainty in the modeling process than a typical machine learning book.
It’s not an academic treatment of the topics, so when it comes to references,
you’ll be more likely to find a nice blog post or YouTube video that clearly
demonstrates a concept, rather than a dense academic paper. That said, you
should have a great idea of where to go and what to search to go further for
deeper content.
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1.2 Who Should Use This Book?
This book is intended for every type of data dabbler, no matter what part
of the data world you call home. If you consider yourself a data scientist, a
machine learning engineer, a business analyst, or a deep learning hobbyist,
you already know that the best part of a good dive into data is the modeling.
But whatever your data persuasion, models give us the possibility to answer
questions, make predictions, and understand what we’re interested in a little
bit better. And no matter who you are, it isn’t always easy to understand how
the models work. Even when you do get a good grasp of a modeling approach,
things can still get complicated, and there are a lot of details to keep track
of. In other cases, maybe you just have other things going on in your life and
have forgotten a few things. In that case, we find that it’s always good to
remind yourself of the basics! So if you’re just interested in data and hoping
to understand it a little better, then it’s likely you’ll find something useful.

1.3 Which Language?

You’ve probably noticed most data science books, blogs, and courses choose
R or Python. While many individuals often have a strong opinion toward
teaching and using one over the other, we eschew dogmatic approaches and
language flame wars. R and Python are both great languages for modeling and
both flawed in unique ways. Even if you specialize in one, it’s good to have
awareness of the other, as they are the most popular languages for statistical
modeling and machine learning, and both excel in at least some areas the other
does not. We use both extensively in our own work for teaching, personal use,
and production level code, and either may be useful to whatever task you have
in mind.

Throughout this book, we will be presenting demonstrations in both R and
Python, and you can use both or take your pick, but we want to leave that
choice up to you. Our goal is to use them as a tool to help understand some
big model ideas. We do present the initial code in R for statistical models, and
Python for machine learning approaches and beyond, as we feel their relative
strengths are in those areas, and for a balanced focus. But either language can
be used well for any modeling task in this book.

In the end, this book can be a resource for the R user who could use a
little help translating their R knowledge to Python. We’d also like it to be a
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resource for the Python user who sees the value in R’s statistical modeling
abilities and more. You’ll find that our coding style/presentation bends more
toward legibility, clarity and consistency, which is not necessarily the same as
a standard like PEP8 or the tidyverse style guide1. We hope that you can take
the code we provide and make it your own, and that you can use it to help
you understand the models we’re discussing.

1.4 Moving Toward an Excellent Adventure
Remember the point we made about “choosing your own adventure”? Modeling
and programming in data science is an adventure, even if you never leave
your desk! Every situation calls for choices to be made, and every choice you
make will lead you down a different path. You will run into errors, dead-ends,
and you might even find that you’ve spent considerable time to conclude that
nothing interesting is happening in your data. This, no doubt, is actually part
of the fun, and all of those struggles will make your ultimate success that much
sweeter. Like every adventure, things might not be immediately clear, and
you might find yourself in perilous situations! If you find that something isn’t
making sense upon your first read, that’s fine! Your humble authors have spent
considerable time mulling over models and foggy ideas during our assorted
(mis)adventures, and nobody should expect to master complex concepts on a
single read through! In any arena where you strive to develop skills, distributed
practice and repetition are essential. When concepts get tough, step away from
the book, and come back with a fresh mind. We have great faith you will get
where you want to go, and we’re here to help you along the way!

1The commonly used coding styles for both R and Python aren’t actually scientifically
derived or tested, and only recently has research been conducted in this area (see Ivanova
et al. (2020) for an example). The guidelines are generally good but mostly reflect the
preferences of the person(s) who wrote them. Our focus here is not on programming though.
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2
Thinking About Models

Before we get into the details of models and how they work, let’s think
more about what we mean when talking about them. As we’ll see, there are
different ways we can express models and ultimately use them, so let’s start
by understanding what a model is and what it can do for us.

2.1 What Is a Model?
At its core, a model is just an idea. It’s a way of thinking about the world,
about how things work, how things change over time, how they are different
from each other, and how they are similar. The underlying thread is that a
model expresses relationships about various aspects of the world around
us. One can also think of a model as a tool, one that allows us to take in
information, derive some meaning from it, and act on it in some way. Just like
other ideas and tools, models have consequences in the real world, and they
can be used wisely or foolishly.

7
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2.2 What Goes into a Model? What Comes Out?
In the context of a model, how we specify the nature of the relationship between
various entities depends on the context. In the interest of generality, we’ll refer
to the target as what we want to explain, and features as those aspects
of the data we will use to explain it. Because people come at data from a
variety of contexts, they often use different terminology to mean the same
or similar things. The next table shows some of the common terms used to
refer to features and targets. Note that they can be mixed and matched, for
example, someone might refer to covariates and a response, or inputs and a
label.

Table 2.1: Common Terms for Features and Targets

Feature Target
independent variable dependent variable
predictor variable response
explanatory variable outcome
covariate label
x y
input output
right-hand side left-hand side

Some of these terms actually suggest a particular type of relationship (e.g.,
a causal relationship, an experimental setting), but here we’ll typically avoid
those terms if we can, since those connotations may not apply to most situations.
In the end though, you may find us using any of these words to describe the
relationships of interest so that you are comfortable with the terminology, but
typically we’ll stick with features and targets for the most part. In our opinion,
these terms have the least hidden assumptions/implications and just imply
‘features of the data’ and the ‘target’ we’re trying to explain or predict1.

2.3 Expressing Relationships
As noted, a model is a way of expressing a relationship between a set of features
and a target, and one way of thinking about this is in terms of inputs and

1Just a side note, some refer to the observed target as the ‘true’ values. All data is
measured with error, or simply just varies, so you won’t be dealing with ‘true’ values, but
merely observed values.
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outputs. A model takes in inputs and spits out an output that we hope is
similar to the target. But how can we go from input to output?

Well, first off, we assume that the features and target are correlated, that
there is some relationship between the feature x and target y. The output
of a model will correspond to the target if they are correlated, and more
closely match it with stronger correlation. If so, then we can ultimately use the
features to predict the target. In the simplest setting, a correlation implies
a relationship where x and y typically move up and down together (positive
correlation) or they move in opposite directions where x goes up and y goes
down (negative correlation). But it can also get more complicated than that
(Figure 2.1, bottom-right).
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Figure 2.1: Correlation.

Even with multiple features, or nonlinear feature-target relationships, where
things are more difficult to interpret, we can stick to this general notion of
correlation, or simply association, to help us understand how the features
account for the target’s variability, or why it behaves the way it does.
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2.3.1 Mathematical expression of an idea
Models are expressed through a particular language, math, but don’t let that
worry you if you’re not so inclined. As a model is still just an idea at its
core, the idea is the most important thing to understand about it. The math
is just a formal way of expressing the idea in a manner that can be
communicated and understood by others in a standard way, and math can
help make the idea precise. Here is a generic model formula expressed in math:

Figure 2.2: Generic model.

In words, this equation says we are trying to explain something 𝑦𝑦, as a function
𝑓𝑓𝑓𝑓 of other things 𝑋𝑋. The output of our model is 𝑓𝑓𝑓𝑓𝑓𝑓, but there is typically
some aspect we can’t explain 𝑢𝑢 that is also at play. This depiction is the basic
form of a model used in data science, and it’s essentially the same for linear
regression, logistic regression, and even random forests and neural networks.

But in simpler terms, we’re just trying to understand everyday things, like
how the amount of sleep relates to cognitive functioning, how the weather
affects the number of people who visit a park, how much money to spend on
advertising to increase sales, how to detect fraud, and so on. Any of these
could form the basis of a model, as they stem from scientifically testable ideas,
and they all express relationships between things we are interested in, possibly
even with an implication of causal relations.

2.3.2 Expressing models visually
Often it is useful to express models visually, as it can help us understand the
relationships more easily. For example, we already showed how to express the
relationship between a single feature and target in Figure 2.1. A more formal
way is with a graphical model, and the following is a generic representation of
a linear model.
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Figure 2.3: Linear model.

This makes clear there is an output from the model that is created from the
inputs (X). The ‘w’ values are weights, which can be different for each input,
and the output is the combination of these weighted inputs. As we’ll see later,
we’ll want to find a way to create the best correspondence between the outputs
of the model and the target, which is the essence of model fitting.

2.3.3 Expressing models in code
Applying models to data can be simple. For example, if you wanted to create
a linear model to understand the relationship between sleep and cognitive
functioning, you might express it in code as follows.

R

lm(cognitive_functioning ~ sleep, data = df)

Python

from statsmodels.formula.api import ols

model = ols('cognitive_functioning ~ sleep', data = df).fit()

The first part with the ~ is the model formula, which is how math comes into
play to help us express relationships. Beyond that we just specify where, for
example, the observed values for cognitive functioning and the amount of sleep
are to be located. In this case, they are found in the same dataframe called df,
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which may have been imported from a spreadsheet somewhere. Very easy isn’t
it? But that’s all it takes to express a straightforward idea. More conceptually,
we’re saying that cognitive functioning is a linear function of sleep. You can
probably already guess why R’s function is lm, and you’ll eventually also learn
why statsmodels function is ols, but for now just know that both are doing
the same thing.

2.3.4 Models as implementations
In practice, models are implemented in a variety of ways, and the previous
code is just one way to express a model. For example, the linear model can be
expressed in a variety of ways depending on the tool used, such as a simple
linear regression, a penalized regression, or a mixed model. When we think of
models as a specific implementation, we are thinking of something like glm or
lmer in R, or LinearRegression or XGBoostClassifier in Python, or the architecture
of a deep neural network. In our examples, we use functions where we will
specify the formula that expresses the feature target relationships, or we will
specify the input features and target in some fashion, e.g., as separate data
objects called X and y. Afterward, or in conjunction with this specification, we
will fit the model to the data, which is the process of finding the best way to
map the feature inputs to the target.

2.4 Components of Modeling
It might help to also think about models, or the process of modeling, as having
different aspects or parts. We can break our thinking about models into the
following components.

Task

The task can be thought of as the goal of our model, which might be defined
as regression, classification, ranking, or next word prediction. It is closely tied
to the objective (loss) function, which is a measure of correspondence between
the model output and the target we’re trying to understand. The objective
function provides the model a goal - minimize target-output discrepancy or
maximize similarity. As an example, if our target is numeric and our task is
‘regression’, we can use mean squared error as an objective function, which
provides a measure of the prediction-target discrepancy.

Model

In data science, a model generally refers to a unique (mathematical) implemen-
tation we’re using to answer our questions. It specifies the architecture of the
model, and as we will see, this might be a simple linear component, a series
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of trees, or a neural network. In addition, the model specifies the functional
form, the 𝑓𝑓𝑓𝑓 in our equation, that translates inputs to outputs, and the
parameters required to make that transformation. In code, the model is
implemented with functions such as lm in R, or in Python, an XGBoostClassifier

or PyTorch nn.Model class.

Algorithm

Various algorithms allow us to estimate the parameters of the model, typically
in an iterative fashion, moving from one guess to a hopefully better one. We
can think of general approaches, like maximum likelihood, Bayesian estimation,
or stochastic gradient descent. Or we can focus on a specific implementation of
these, such as penalized likelihood, Hamilton Monte Carlo, or backpropagation.

So when we think about models, we start with an idea, but in the end it needs
to be expressed in a form that suggests an architecture. That architecture
specifies how we take in data and make outputs in the form of predictions, or
something that can be transformed to them. With that in place, we need an
algorithm to search the parameter space of the model, and a way to evaluate
how well the model is doing. While this is enough to produce results, it only
gets us the bare minimum.

We will see demonstrations of all of these components throughout the book,
and how they work together to produce results. Beyond these components,
there are many more things we have to do to prepare the data for modeling,
help us interpret those results, understand the model’s performance, and get a
sense of its limitations.

2.5 Some Clarifications
You will sometimes see models referred to as a specific statistic, a particular
aspect of the model, or an algorithm. This is often a source of confusion for
those who are early on in their data science journey, because the terms don’t
really refer to what the model represents. For example, a t-test is a statistical
result, not a model in and of itself. Similarly, some refer to ‘logit model’ or
‘probit model’, but these are link functions used in fitting what is in fact the
same model, which we’ll cover in detail later. A ‘classifier’ tells you the task of
the model, but not what the model is. Ordinary Least Squares (OLS) is an
estimation technique used for many types of models, not just another name for
linear regression. Machine learning can potentially be used to fit any model
and is not a specific collection of models.

All this is to say that it’s good to be clear about the model, and to try to keep
it distinguished from specific aspects or implementations of it. Sometimes the
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nomenclature can’t help getting a little fuzzy, and that’s okay. Again though,
at the core of a model is the idea that specifies the relationship between the
features and target.

2.6 Key Steps in Modeling
When it comes to modeling, there are a few key steps that you should always
keep in mind. These are not necessarily exhaustive, but we feel they’re a good
way to think about how to approach modeling in data science.

Define the problem

Start by clearly defining the problem you want to solve. It is often easy to
express in very general terms, but it is more challenging to precisely pin down
the problem statement in a way that can actually help you solve it. What are
you trying to predict? What data do you have to work with? What are the
constraints on your data and model? What are the consequences of the results,
whatever they may be? Why do you even care about any of this? These are all
questions you should try to answer before diving into modeling.

Know your data well

During our time consulting in industry and academia, we’ve seen many cases
where the available data is simply not suited to answer the question at hand2.
This leads to wasted time, money, and other resources. You can’t possibly
answer your question if the data doesn’t have the appropriate content to do so.

In addition, if your data is fraught with issues due to inadequate exploration,
cleaning, or transformation, then you’re going to have a hard time getting
valuable results. It is very common to be dealing with data that has issues
that even those who collected it are unaware of, so always look out for ways to
improve it.

Have multiple models at your disposal

Go into a modeling project with a couple models in mind that you think might
be useful. This could even be as simple as increasing complexity within a single
model approach – you don’t have to get too fancy! You should have a few
models that you’re comfortable with and that you know how to use, and for

2This is a common problem where data is often collected for one purpose and then used
for another, as with general purpose surveys or administrative data. Sometimes it can be
that the available data is simply not enough to say anything without a lot of uncertainty,
as in the case of demographic data regarding minority groups, for which there may be few
instances of a particular sample. Deep learning approaches like zero/Few-shot learning isn’t
applicable here, because there isn’t a model pretrained on millions or billions of similar
examples to transfer knowledge from.
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which you know the strengths and weaknesses. Whenever possible, make time
to explore more complex or less familiar approaches that you also think may
be suitable to the problem. As we’ll demonstrate, model comparison can help
you have more confidence in the results of the model that’s finally chosen. Just
like in a lot of other situations, you don’t want to ‘put all your eggs in one
basket’, and you’ll always have more to talk about and consider if you have
multiple models to work with.

Communicate your results

If you don’t know the model and underlying data well enough to explain the
results to others, you’re not going to be able to use them effectively in the
first place. Conversely, you also may know the technical side very well, but
if you’re unable to communicate the results in simpler terms that others can
understand, you’re going to have a hard time convincing others of the value of
your work. Communication is an essential component of the modeling process,
and it’s something that you should be thinking about from the very beginning.

2.7 The Hard Part
Modeling is just one aspect of the data science process, and the hard part of
that process is often not so much the model itself, but everything else that
goes into it and what you do with it after. It can be difficult to come up with
the original idea for a model, and even harder to get it to work in practice.

The Data

Model performance is largely going to come from the quality of the data and
how you’ve prepared it, from ensuring its integrity to feature engineering.
Some models will usually work better than others in certain situations, but
there are no guarantees, and often the practical difference in performance
is minimal. But you can potentially improve performance by understanding
your data better, and by understanding the limitations of your model. Having
more domain knowledge can help reduce noise and irrelevant information that
you might have otherwise retained, and it can provide insights for feature
engineering. Thorough data exploration can reveal bugs and issues to be fixed
and will help you understand the relationships between your features and your
target.

The Interpretation

Once you have a model, you need to understand what it’s telling you. This can
be as simple as looking at the coefficients of a linear regression, or as complex
as trying to understand the output of a hidden layer in a neural network. Once
you get past a linear regression though, you need to expect model interpretation
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to get hard. But whatever model you use, you need to be able to explain what
the model is doing, and how you’re ultimately coming to your conclusions.
This can be difficult and often requires a lot of work. Even if you’ve used a
model often, it may still be difficult to understand in a new data environment.
Model interpretation can take a lot of effort, but it’s important to do what’s
necessary to trust your model results, and help others trust them as well.

What You Do With It

Once you have the model and you (think you) understand it, you need to
be able to use it effectively. If you’ve gone to this sort of trouble, you must
have had a good reason for undertaking what can be a very difficult task. We
use models to make business decisions, inform policy, understand the world
around us, and make our lives better. However, using a model effectively means
understanding its limitations, as well as the practical, ethical, scientific, and
other consequences of the decisions you make based on it. It’s at this point
that the true value of your model is realized.

In the end, models are a tool to help you solve a problem. They do not solve
the problem for you, and they do not absolve you of the responsibility of
understanding the problem and the consequences of your decisions.

2.8 Getting Ready for More
The goal of this book is to help you understand models in a practical way
that makes clear the relationships we’re trying to understand with them, and
also how models produce those results we’re so interested in. We’ll be using a
variety of models to help you understand the relationships between features
and targets, and how to use models to make predictions, and how to interpret
the results. We’ll also show you how the models are estimated, how to evaluate
them, and how to choose the right one for the job. We hope you’ll come away
with a better understanding of how models work, and how to use them in your
own projects. So let’s get started!
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3
The Foundation

Now it’s time to dive into some modeling! We’ll start things off by covering
the building block of all modeling, and a solid understanding here will provide
you the basis for just about anything that comes after, no matter how complex
it gets. The linear model is our starting point. At first glance, it may seem
like a very simple model, and it is, relatively speaking. But it’s also quite
powerful and flexible, able to take in different types of inputs, handle nonlinear
relationships, temporal and spatial relations, clustering, and more. Linear
models have a long history, with even the formal and scientific idea behind
correlation and linear regression being well over a century old1! And in that
time, the linear model is far and away the most used model out there. But
before we start talking about the linear model, we need to talk about what a
model is in general.

1Regression in general is typically attributed to Galton, and correlation to Pearson, whose
coefficient bearing his name is still the most widely used measure of association. Peirce &
Bowditch were actually ahead of both (Rovine and Anderson 2004), but Bravais beat all of
them.
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3.1 Key Ideas
To get us started, we can provide a few concepts key to understanding linear
models. We’ll cover each of these as we go along.

• The linear model is a foundation on which one can build an understanding
for practically any other model.

• It combines the strength of its inputs - features - to predict a target.
• Prediction is fundamental to assessing and using a model.
• There are many ways to interpret a model, at the feature level and as a

whole.
• It is rather easy to start building upon and adding complexity to a linear

model.
• All models come with assumptions, and it’s good to be aware of these.
• The things you learn here will be useful in many other contexts - such as

other types of models, for classification tasks, and more!

As we go along, be sure that you feel you have the ‘gist’ of what we’re talking
about. Almost everything that goes beyond linear models builds on what’s
introduced here, so it’s important to have a firm grasp before climbing to new
heights.

3.1.1 Why this matters
The basic linear model and how it comes about underpins so many other models,
from the simplest t-test to the most complex neural network. It provides a
powerful foundation, and it is a model that you’ll see in many different contexts.
It’s also a model that is relatively easy to understand, so it’s a great place to
start!

3.1.2 Helpful context
We’re just starting out here, but we’re kind of assuming you’ve had some
exposure to the idea of statistical or other models, even if only from an
interpretation standpoint or visualizations of various relationships. We assume
you have an understanding of basic stats like central tendency (e.g., a mean or
median), variance, correlation, and stuff like that. And if you intend to get
into the code examples, you’ll need a basic familiarity with Python or R.
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3.1 Key Ideas
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whole.
• It is rather easy to start building upon and adding complexity to a linear
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other types of models, for classification tasks, and more!
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3.2 The Linear Model
The linear model is perhaps the simplest functional model we can use to express
a relationship between the features that serve as inputs, and the targets we
hope to explain with them. And because of that, it’s possibly still the most
common model used in practice, and it is the basis for many types of other
models. So why don’t we do one now?

The following dataset has individual movie reviews containing the movie rating
(1-5 stars scale), along with features pertaining to the review (e.g., word count),
those that regard the reviewer (e.g., age) and features about the movie (e.g.,
genre, release year).

For our first linear model, we’ll keep things simple. Let’s predict the rating
based on the word count of the review using a specific type of linear model
called linear regression which, historically speaking, is probably the most
common model ever used! We’ll use the lm() function in R and the ols()

function in Python2 to fit the model. Both functions take a formula as the
first argument, which, as we noted elsewhere (Section 2.3.3), is just a way
of expressing the relationship between the features and target. The formula
is displayed as y ~ x1 + x2 + ..., where y is the target name and x* are the
feature names. We also need to specify what the data object is, typically a
dataframe, where the features and target are found.

R

# all data found on github repo

df_reviews = read_csv('https://tinyurl.com/moviereviewsdata')

model_lr_rating = lm(rating ~ word_count, data = df_reviews)

summary(model_lr_rating)

Call:

lm(formula = rating ~ word_count, data = df_reviews)

Residuals:

Min 1Q Median 3Q Max

-2.0648 -0.3502 0.0206 0.3352 1.8498

Coefficients:

2We use the smf.ols approach because it is modeled on the R approach.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.49164 0.04236 82.4 <2e-16 ***

word_count -0.04268 0.00369 -11.6 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.591 on 998 degrees of freedom

Multiple R-squared: 0.118, Adjusted R-squared: 0.118

F-statistic: 134 on 1 and 998 DF, p-value: <2e-16

Python

import numpy as np

import pandas as pd

import statsmodels.formula.api as smf

# all data found on github repo

df_reviews = pd.read_csv('https://tinyurl.com/moviereviewsdata')

model_lr_rating = smf.ols('rating ~ word_count', data = df_reviews).fit()

model_lr_rating.summary(slim = True)

<class 'statsmodels.iolib.summary.Summary'>

"""

OLS Regression Results

==============================================================================

Dep. Variable: rating R-squared: 0.118

Model: OLS Adj. R-squared: 0.118

No. Observations: 1000 F-statistic: 134.1

Covariance Type: nonrobust Prob (F-statistic): 3.47e-29

==============================================================================

coef std err t P>|t| [0.025 0.975]

------------------------------------------------------------------------------

Intercept 3.4916 0.042 82.431 0.000 3.409 3.575

word_count -0.0427 0.004 -11.580 0.000 -0.050 -0.035

==============================================================================

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

"""

For such a simple model as this linear regression is, we certainly have a lot to
unpack here! Don’t worry, you’ll eventually come to know what it all means.
But it’s nice to know how easy it is to get the results! For now we can just say
that there’s a negative relationship between the word count and the rating (the
-0.043), which means that we expect lower ratings with longer reviews. The
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output also tells us that the value regarding the relationship is statistically
significant (P(>|t|) value is < .05).

Getting more into the details, we’ll start with the fact that the linear model
posits a linear combination of the features. This is an important concept
to understand, but really, a linear combination is just a sum of the features,
each of which has been multiplied by some specific value. That value is often
called a coefficient, or possibly weight, depending on the context, and will
allow different features to have different contributions to the result. Those
contributions reflect the amount and direction of the feature-target relationship.
The linear model is expressed as (math incoming!):

𝑦𝑦 𝑦 𝑦𝑦0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ... + 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛 (3.1)

• where 𝑦𝑦 is the target.
• 𝑥𝑥1, 𝑥𝑥2, ...𝑥𝑥𝑛𝑛 are the features.
• 𝑏𝑏0 is the intercept, which is kind of like a baseline value or offset. If we had

no features at all, it would just be the mean of the target.
• 𝑏𝑏1, 𝑏𝑏2, ...𝑏𝑏𝑛𝑛 are the coefficients or weights for each feature.

But let’s start with something simpler. Let’s say you want to take a sum of
several features. In math you would write it as:

𝑥𝑥1 + 𝑥𝑥2 + ... + 𝑥𝑥𝑛𝑛

In this equation, 𝑥𝑥 is the feature and 𝑛𝑛 is the number identifier for the features,
so 𝑥𝑥1 is the first feature (e.g., word count), 𝑥𝑥2 the second (e.g., movie release
year), and so on. 𝑥𝑥 is an arbitrary designation - you could use any letter,
symbol you want, or even better would be the actual feature name. Now look
at the linear model.

𝑦𝑦 𝑦 𝑦𝑦1 + 𝑥𝑥2 + ... + 𝑥𝑥𝑛𝑛

In this case, the function is just a sum, something so simple we do it all
the time. In the linear model sense though, we’re actually saying a bit more.
Another way to understand that equation is that y is a function of x. We don’t
show any coefficients here, i.e., the bs in our initial equation (Equation 3.1),
but technically it’s as if each coefficient was equal to a value of 1. In other
words, for this simple linear model, we’re saying that each feature contributes
in an identical fashion to the target.

In practice, features will never contribute in the same ways, because they
correlate with the target differently or are on different scales. So if we want to
relate some features, 𝑥𝑥1 and 𝑥𝑥2, to target 𝑦𝑦, we probably would not assume
that they both contribute in the same way. For instance, we might assign more
weight to 𝑥𝑥1 than 𝑥𝑥2, for whatever reason. In the linear model, this is expressed
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by multiplying each feature by a different coefficient or weight. So the linear
model’s primary component is really just a sum of the features multiplied by
their coefficients, i.e., a weighted sum. Each feature’s contribution to explaining
or accounting for the target is proportional to its coefficient. So if we have
a feature 𝑥𝑥1 and a coefficient 𝑏𝑏1, then the contribution of 𝑥𝑥1 to the target is
𝑏𝑏1 ⋅ 𝑥𝑥1. If we have a feature 𝑥𝑥2 and a coefficient 𝑏𝑏2, then the contribution of 𝑥𝑥2
to the target is 𝑏𝑏2 ⋅ 𝑥𝑥2. And so on. So the linear model is really just a sum of
the features multiplied by their respective weights.

For our specific model, here is the mathematical representation:

rating = 𝑏𝑏0 + 𝑏𝑏1 ⋅ word_count

And with the actual results of our model:

rating = 3.49 + −0.04 ⋅ word_count

Not too complicated, we hope! But let’s make sure we see what’s going on here
just a little bit more.

• Our idea is that the length of the review in words is in some way related
to the eventual rating given to the movie.

• Our target is the movie’s rating by a reviewer, and the feature is the word
count.

• We map the feature to the target via the linear model, which provides an
initial understanding of how the feature is related to the target. In this
case, we start with a baseline of 3.49. This value makes sense only in the
case of a rating with no review, and it is what we would guess if the word
count was 0. But we know there are reviews for every observation, so it’s
not very meaningful as is. We’ll talk about ways to get a more meaningful
intercept later, but for now, that is our starting point. Moving on, if we
add a single word to the review, we expect the rating to decrease by -0.04
stars. So if we had a review that was 10 words long, i.e., the mean word
count, we would predict a rating of 3.49 + 10*-0.04 = 3.1 stars.

3.2.1 The linear model visualized
Given our single feature model, we can easily plot the relationship between
the word count and the rating. Now we can visually see the negative or
downward-sloping relationship.
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Predicted rating = 3.49 + -0.04 * word count
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Figure 3.1: Linear regression of rating vs. word count

We can also express the linear model as a graph or graphical model, which can
be a very useful way to think about models in a visual fashion. As we come
across other models, a visualization like this can help us see both how different
models relate to one another and are actually very similar to one another. In
the following example, we have three features predicting a single target, so we
have three ‘nodes’ for the features, and a single node for the target. The feature
nodes are combined into a linear combination to produce the output of the
model. In the context of linear models, the initial combination is often called
the linear predictor. Each ‘edge’ signifies the connection of a feature to the
combined result and is labeled with the coefficient or weight. The connection
between the linear predictor and final model output is direct, without any
additional change from the linear predictor stage. This output will ultimately
be compared to the observed target value to assess model performance. We’ll
return to this depiction a little bit later in this chapter (Section 3.7), and other
parts as well. But for our standard linear model, we’re all set.

Figure 3.2: Linear regression as a graphical model.
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So at this point you have the basics of what a linear model is and how it works,
and a couple ways to think about it, whether through programming, math, or
just visually. But there is a lot more to it than that. Just getting the model
is easy enough, but we need to be able to use it and understand the details
better, so we’ll get into that now!

3.3 What Do We Do with a Model?
Once we have a working model, there are two primary ways we can use it. One
way to use a model is to help us understand the relationships between the
features and our outcome of interest. In this way, the focus can be said to be
on explanation, or interpreting the model results. The other way to use a
model is to make estimates about the target for specific observations, often
ones we haven’t seen in our data. In this case, the focus is on prediction. In
practice, we often do both, but the focus is usually on one or the other. We’ll
cover both in detail eventually, but let’s start with prediction.

3.3.1 Prediction
A model’s utility often lies in its ability to make predictions about the world
around us, and this depends fundamentally on the model’s ability to predict
the target. Once our model has been fit to the data, we can obtain predictions
by plugging in values for the features that we are interested in, and, using the
corresponding weights and other parameters that have been estimated, come
to a guess about a specific observation. Let’s go back to our results, shown in
the following table.

Table 3.1: Linear Model Output

feature estimate std_error statistic p_value conf_low conf_high

intercept 3.49 0.04 82.43 0.00 3.41 3.57
word_count −0.04 0.00 −11.58 0.00 −0.05 −0.04

Table 3.1 shows the coefficient for the feature and the intercept, which is our
starting point. In this case, the coefficient for word count is -0.04, which means
that for every additional word in the review, the rating goes down by -0.04
stars. So if we had a review that was 10 words long, we would predict a rating
of 3.49 + **10*-0.04** = 3.1 stars.

When we’re talking about the predictions (or outputs) for a linear model, we
usually will see this as the following mathematically:
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̂𝑦𝑦 𝑦 𝑦𝑦0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ... + 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛 (3.2)

What is ̂𝑦𝑦? The ‘hat’ over the 𝑦𝑦 just means that it’s a predicted, or ‘expected’,
or estimated value of the model, i.e., the output. This distinguishes it from
the target value we actually observe in the data. Our first equations that just
used 𝑦𝑦 implicitly suggested that we would get a perfect rating value given the
model, but that’s not the case. We can only get an estimate. The ̂𝑦𝑦 in a linear
regression is also the linear predictor in our graphical version (Figure 3.2),
which makes clear it is not the actual target, but the output produced by a
combination of the features related to the target.

To make our first equation (Equation 3.1) accurately reflect the relationship
between the target and our features, we need to add what is usually referred
to as an error term, 𝜖𝜖, to account for the fact that our predictions will not
be perfect3. So the full linear (regression) model is:

𝑦𝑦 𝑦 𝑦𝑦0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ... + 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛 + 𝜖𝜖 (3.3)

The error term is a random variable that represents the difference between
the actual value and the predicted value, which comes from the weighted
combination of features. We can’t know what the error term is, but we can
estimate its values, often called residuals or just prediction errors, as well as
parameters associated with it, just like we can the coefficients. We’ll talk more
about that in the chapter on estimation (Chapter 6).

Another way to write the model formally is:

𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦𝑦 𝑦 N(𝜇𝜇𝜇𝜇𝜇 2)

𝜇𝜇 𝜇𝜇𝜇 0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ... + 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛 (3.4)

or

𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦𝑦 𝑦 𝑦𝑦0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ... + 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛 + 𝜖𝜖

𝜖𝜖 𝜖 N(0,𝜎𝜎 2) (3.5)

3In most circumstances, if you ever have perfect prediction, or even near-perfect prediction,
the usual issues are that you have either asked a rather obvious/easy question of your data
(e.g., predicting whether an image is of a human or a car), or have accidentally included the
target in your features (or a combination of them) in some way.
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This makes explicit that the target is assumed to be conditionally normally
distributed with a mean corresponding to the linear combination of the features,
and a variance of 𝜎𝜎2. What do we mean by conditionally? This means that,
given the features and the estimated model parameters, the target follows a
normal distribution (N()). This is the standard assumption for linear regression,
and it’s a good one to start with, but it’s not our only option. We’ll talk more
about this later in this chapter (Section 3.6), and see what we might do
differently in Chapter 8. We will also see that we can estimate the model
parameters without any explicit reference to a probability distribution in
Chapter 6.

3.3.2 What kinds of predictions can we get?
What predictions we can get depends on the type of model we are using. For
the linear model we have at present, we can get predictions for the target,
which is a continuous variable. Very commonly, we also can get predictions
for a categorical target, such as whether the rating is ‘good’ or ‘bad’. This
simple breakdown pretty much covers everything, as we typically would be
predicting a continuous numeric variable or a categorical variable, or more of
them, like multiple continuous variables, or a target with multiple categories,
or sequences of categories (e.g., words).

In our case, we can get predictions for the rating, which is a number between
1 and 5. Had our target been a binary good vs. bad rating, our predictions
would still be numeric for most models, and usually expressed as a probability
between 0 and 1, say, for the ‘good’ category, or in an initial form that is
then transformed to a probability. For example, in the context of predicting
a good rating, higher probabilities would mean we’d more likely predict the
movie is good, and lower probabilities would mean we’d more likely predict
the movie is bad. We then would convert that probability to a class of good
or bad depending on a chosen probability cutoff. We’ll talk about how to get
predictions for categorical targets later4.

4Some models, such as the tree approaches outlined in Section 11.6, can directly predict
categorical targets, but we still like, and often prefer using a probability.

INFO Predictions by Any Other Name…

You’ll often see predictions referred to as fitted values, but these imply
we are only talking about the observed data features the model was
trained on or ‘fit’ to. Predictions can also be referred to as expected
values, estimates, outputs, or forecasts, the latter is especially com-
mon in time series analysis. Within generalized linear models and others
where there may ultimately be a transformation of the output, you may
see it referred to as a linear predictor.
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In our case, we can get predictions for the rating, which is a number between
1 and 5. Had our target been a binary good vs. bad rating, our predictions
would still be numeric for most models, and usually expressed as a probability
between 0 and 1, say, for the ‘good’ category, or in an initial form that is
then transformed to a probability. For example, in the context of predicting
a good rating, higher probabilities would mean we’d more likely predict the
movie is good, and lower probabilities would mean we’d more likely predict
the movie is bad. We then would convert that probability to a class of good
or bad depending on a chosen probability cutoff. We’ll talk about how to get
predictions for categorical targets later4.

4Some models, such as the tree approaches outlined in Section 11.6, can directly predict
categorical targets, but we still like, and often prefer using a probability.
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We previously saw a prediction for a single observation where the word count
was 10 words, but we can also get predictions for multiple observations at once.
In fact, we can get predictions for all observations in our data. Besides that,
we can also get predictions for observations that we don’t even have data for,
which is a very neat thing to be able to do! The following shows how we can
get predictions for all data, and for a single observation with a word count of
55.

R

all_predictions = predict(model_lr_rating)

df_prediction = tibble(word_count = 5)

single_prediction = predict(model_lr_rating, newdata = df_prediction)

Python

all_predictions = model_lr_rating.predict()

df_prediction = pd.DataFrame({'word_count': [5]})

single_prediction = model_lr_rating.predict(df_prediction)

Here is a plot of our predictions for the observed data versus the actual ratings6.
The reference line is where the points would fall if we had perfect prediction.
We can see that the predictions are definitely not perfect, but we don’t expect
this. They are not completely off-base either, in that generally higher predicted
scores are associated with higher observed values. We’ll talk about how to
assess the quality of our predictions later, but we can at least get a sense
that we have a correspondence between our predictions and target, which is
definitely better than not having a relationship at all!

5Some not as familiar with R should be aware that tibbles are a type of dataframe.
The name distinguishes them from the standard dataframe, and they have some additional
features that make them more user-friendly.

6Word count is discrete, which means it can only take whole numbers like 3 or 20, and it
is our only feature. Because of this, we can only make very limited predicted rating values,
while the observed rating can take on many other values. Because of this, the raw plot would
show a more banded result with many points overlapping, so we use a technique called
jittering to move the points around a little bit so we can see them all. The points are still
roughly in the same place, but they are moved around a little bit so we can see them all.
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Figure 3.3: Predicted vs. observed ratings.

We saw what our prediction looks like for a single observation, and now we’ll
add in a few more: one for a review of 10 words, and one for 50 words, which is
beyond the length of any review in this dataset, and one for 12.3 words, which
isn’t even possible for this data, since words are only counted as whole values.
To get these values, we just use the same prediction approach as before, and
we specify the word count value we want to predict for.

Table 3.2: Predictions for Specific Observations

Word Count Predicted Rating
5.0 3.3

10.0 3.1
12.3 3.0
50.0 1.4

The values reflect the negative coefficient from our model, showing decreasing
ratings with increasing word counts. Furthermore, we see the power of the
model’s ability to make predictions for what we don’t see in the data. Maybe
we limited our data review size, but we know there are reviews with 50 or
more words out there, and we can still make a guess as to what the rating
would be for such a review. Maybe in another case, we know a group of people
who have on average reviews of 12.3 words, and we can make a guess as to
what the predicted rating would be for that group. Our model doesn’t literally
know anything about the context of the data, but we can use our knowledge to
make predictions that are meaningful to us. This is a very powerful capability,
and it’s one of the main reasons we use models in the first place.
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3.3.3 Prediction error
As we have seen, predictions are not perfect, and an essential part of the
modeling endeavor is to better understand these errors and why they occur.
In addition, error assessment is the fundamental way in which we assess a
model’s performance, and, by extension, compare that performance to other
models. In general, prediction error is the difference between the actual value
and the predicted value or some function of it. In statistical models, it is also
often called the residual. We can look at these individually, or we can look at
them in aggregate with a single metric.

Let’s start with looking at the residuals visually. Often the modeling package
you use will have this as a default plotting method when doing a standard linear
regression, so it’s wise to take advantage of it. We plot both the distribution of
raw error scores and the cumulative distribution of absolute prediction error.
Here we see a couple of things. First, the distribution appears roughly normal,
which is a good thing, since statistical linear regression assumes our error is
normally distributed, and the prediction error serves as an estimate of that.
Second, we see that the mean of the errors is zero, which is a property of linear
regression, and the reason we look at other metrics besides a simple ‘average
error’ when assessing model performance. We can also see that our average
absolute error is around 0.5, most of our predictions (>90%) are within ±1
star rating.
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Figure 3.4: Distribution of prediction errors.

Of more practical concern is that we don’t see extreme values or clustering,
which might indicate a failure on the part of the model to pick up certain
segments of the data. It can still be a good idea to look at the extremes just
in case we can pick up on some aspect of the data that we could potentially
incorporate into the model. So looking at our worst prediction in absolute
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terms, we see the observation has a typical word count, and so our simple
model will just predict a fairly typical rating. But the actual rating is 1, which
is 2.1 away from our prediction, a very noticeable difference. Further data
inspection may be required to figure out why this came about, and this is a
process you should always be prepared to do when you’re working with models.

Table 3.3: Worst Prediction

rating prediction word_count
1.0 3.1 10

3.3.4 Prediction uncertainty
We can also look at the uncertainty of our predictions, which is a measure of
how much we expect our predictions to vary. Not only are they off from the
observed value, but also our predictions themselves are just a guess based on
the data we have, and we’d like to know how much we can trust them.

This trust is often expressed as an interval range of values that we expect
our prediction to fall within, with a certain level of confidence. But! There
are actually two types of intervals we can get. One is really about the mean
prediction, or expected value we would get from the model at that observation.
This is usually called a confidence interval. The other type of interval is
based on the model’s ability to predict new data, and it is typically called a
prediction interval. This interval is about the actual prediction we would
get from the model for any value, whether it was data we had seen before or
not. Because of this, the prediction interval is always wider than the confidence
interval, and it’s the one we usually want to use when we’re making predictions
about new data.

Here is how we can obtain these from our model.

R

prediction_CI = predict(

model_lr_rating,

newdata = df_prediction,

se.fit = TRUE, # standard error of the fit

interval = 'confidence'

)

prediction_PI = predict(

model_lr_rating,

newdata = df_prediction,

se.fit = TRUE,
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interval = 'prediction'

)

pred_intervals = bind_rows(

as_tibble(prediction_CI$fit),

as_tibble(prediction_PI$fit),

) |> mutate(

interval = c('confidence', 'prediction'),

type = c('mean', 'observation')

)

pred_intervals

Python

# contains both confidence ('mean_') and prediction ('obs_') intervals

pred_intervals = (

model_lr_rating

.get_prediction(df_prediction)

.summary_frame(alpha = 0.05)

)

pred_intervals

Table 3.4: Prediction Intervals for Specific Observations

interval type fit lwr upr
confidence mean 3.28 3.23 3.33
prediction observation 3.28 2.12 4.44

As expected, our prediction interval is wider than our confidence interval, and
we can see that the prediction interval is quite wide: from a rating of 2.1 to
4.4. This is a consequence of the fact that we have a lot of uncertainty in our
predictions for new observations, and we can’t expect to get a very precise
prediction from our model with only one feature. This is a common issue with
many models, and one that having a better model can help remedy. We can
also plot these intervals across a range of values to get a better sense of what
they look like. Let’s do so for all observed word counts.
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Figure 3.5: Prediction and confidence intervals compared.

Once you move past simpler linear models and generalized linear models,
obtaining uncertainty estimates for predictions is difficult, and tools to do so
can be scarce. This is especially the case for models used in machine learning
contexts, and relatively rare for deep learning approaches. In practice, you can
use bootstrapping (Section 7.5) to get a sense of the uncertainty, but this is
often not a good estimate in many data scenarios and can be computationally
expensive. Bayesian approaches (Section 7.6) can also provide estimates of
uncertainty, but likewise are computationally expensive, and require a good
deal of expertise to implement for more complex settings. Quantile regression
(Section 9.5) can sometimes be appropriate to estimate predictions at different
quantiles that can serve as a proxy for prediction intervals, but tools to
do so for various models are uncommon. On the other hand, conformal
prediction tools are becoming more popular, and they can provide a more
reliable estimate of prediction uncertainty for any type of model. Yet they too
are computationally expensive for more accurate estimates, and good tools are
only recently becoming available7.

So at this point you have the gist of prediction, prediction error, and uncertainty
in a prediction, but there is still more to modeling! We’ll come back to global
assessments of model error very shortly, and even more detail can be found
in Chapter 4 where we dive deeper into our models and how they work, and
Chapter 6, where we see how to estimate the parameters of our model by
picking those that will reduce the prediction error the most. For now though,

7For a good intro to conformal prediction, see Angelopoulos and Bates (2022). The
mapie package is a good tool for Python, and the tidymodels family has recently added this
functionality via the probably package. Michael Clark has a blog post on this as well.
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let’s move on to the other main use of models, explanation, where the focus
is on understanding the relationships between the features and the target.

3.4 How Do We Interpret the Model?
When it comes to interpreting the results of our model, there are a lot of tools
at our disposal, though many of the tools we can ultimately use will depend
on the specifics of the model we have employed. In general though, we can
group our approach to understanding results at the feature level and the
model level. A feature-level understanding regards the relationship between
a single feature and the target. Beyond that, we also attempt comparisons
of feature contributions to prediction, i.e., relative importance. Model-level
interpretation is focused on assessments of how well the model ‘fits’ the data,
or more generally, predictive performance. We’ll start with the feature level,
and then move on to the model level.

3.4.1 Feature-level interpretation
As mentioned, at the feature level, we are primarily concerned with the
relationship between a single feature and the target, for whatever features are
of interest. More specifically, we are interested in the direction and magnitude
of the relationship, but in general, it all boils down to how a feature induces
change in the target. For numeric features, we are curious about the change in
the target given some amount of change in the feature values. It’s conceptually
the same for categorical features, but often we like to express the change
in terms of group mean differences or something similar, since the order of
categories is not usually meaningful. An important aspect of feature-level
interpretation is the specific predictions we can get by holding the data at key
feature values.

Let’s start with the basics by looking again at our coefficient table from the
model output.

Table 3.5: Linear Regression Coefficients

feature estimate std_error statistic p_value conf_low conf_high

intercept 3.49 0.04 82.43 0.00 3.41 3.57
word_count −0.04 0.00 −11.58 0.00 −0.05 −0.04

Here, the main thing to look at is both the actual feature coefficient values
and the direction of their relationship, positive or negative. The coefficient
for word count is -0.04, and this means that for every additional word in the
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review, the rating goes down by -0.04. This interpretation gives us directional
information, but how can we interpret the magnitude of the coefficient?

Let’s try and use some context to help us. While a drop of -0.04 might not
mean much to us in terms of ratings, we might not be as sure about a change
in one word for a review. However, we do know the standard deviation of the
rating score, i.e., how much it moves around naturally on its own, is 0.63. So
the coefficient is about 6% of the standard deviation of the target. In other
words, the addition of a single word to a review results in an expected decrease
of 6% of what the review would normally bounce around in value. We might
not consider this large, but also, a single word change isn’t much. What would
be a significant change in word count? Let’s consider the standard deviation
of the feature. In this case, it’s 5.1 for word count. So if we increase the word
count by one standard deviation, we expect the rating to decrease by -0.04 * 5.1
= -0.2. That decrease then translates to a change of -0.2/0.63 = -0.32 standard
deviation units of the target. Without additional context, many would think
that’s a significant change8, or at the very least, that the coefficient is not
negligible, and that the feature is indeed related to the target. But we can also
see that the coefficient is not so large that it’s not believable in this context.

INFO Standardized Coefficients

The calculation we just did results in what’s often called a standardized
or ‘normalized’ coefficient. In the case of the simplest model with only
one feature like this, it is identical to the Pearson r correlation metric,
which we invite you to check and confirm on your own. In the case of
multiple features, it represents a (partial) correlation between the target
and the feature, after adjusting for the other features. But before you
start thinking of it as a measure of importance, it is not. It provides
some measure of the feature-target linear relationship, but that does not
entail practical importance, nor is it useful in the presence of nonlinear
relationships, interactions, and a host of other interesting things that are
typical to data and models.

After assessing the coefficients, next up in our table is the standard error.
The standard error is a measure of how much the coefficient varies from sample
to sample. If we collected the data multiple times, even under practically
identical circumstances, we wouldn’t get the same value each time. The value
would bounce around a bit, and the standard error is an estimate of how much
it would bounce around. In other words, the standard error is a measure of

8Historically, people cite Cohen (2009) for effect size guidelines for simple models, but
such guidelines are notoriously problematic. Rely on your own knowledge of the data, provide
reasons for your conclusions, and let others draw their own. If you cannot tell what would
constitute a notable change in your outcome of interest, you probably don’t know the target
well enough to interpret the model regarding it, and you need to do some more research.
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uncertainty, and along with the coefficients, it’s used to calculate everything
else in the table.

The statistic, here a t-statistic from the Student t-distribution9, is the ratio of
the coefficient to the standard error. This gives us a sense of the effect relative
to its variability, but the statistic’s primary use is to calculate the p-value
related to its distribution10, which is the probability of seeing a coefficient as
large (or larger) as the one we have, if we assume from the outset that the
true value of the coefficient is zero, and the model assumptions are true as
well. In this case, the p-value is 3.47e-29, which is extremely small. We can
conclude that the coefficient is statistically different from zero, and that the
feature is related to the target, at least statistically speaking. However, the
interpretation we used regarding the coefficient previously is far more useful
than the p-value, as the p-value can be affected by many things not necessarily
related to the feature-target relationship, such as sample size.

Aside from the coefficients, the most important output is the confidence
interval (CI). The CI is a range of values that encapsulates the uncertainty
we have in our guess about the coefficients. While our best guess for the effect
of word count on rating is -0.04, we know it’s not exactly that, and the CI
gives us a range of reasonable values we might expect the effect to be based
on the data at hand and the model we’ve employed.

In this case, the default is a 95% confidence interval, and we can think of this
particular confidence interval like throwing horseshoes. If we kept collecting
data and running models, 95% of our CIs would capture the true value, and
this is one of the many possible CIs we could have gotten. That’s the technical
definition, which is a bit abstract11, but we can also think of it more simply
as a range of values that are good guesses for the true value, whatever it may
be. In this case, the CI is -0.05 to -0.035 with 95% confidence. We can also see
that the CI is relatively narrow, which is also nice to see, as it implies that
we have a good idea of what the coefficient is. If it was very wide, we would

9Most statistical tables of this sort will use a t (Student t-distribution), Z (normal
distribution), or F (F-distribution) statistic. It doesn’t really matter for your purposes which
is used by default, but the distribution is used to provide the p-value of interest and claim
statistical significance (or not).

10You can calculate this as pt(stat, df = model degrees of freedom, lower=FALSE)*2 in R, or use
stats.t.cdf in Python. The model degrees of freedom provided in the summary output (a.k.a.
residual degrees of freedom) are used when obtaining the two-sided p-value, which is what
we want in this case. When it comes to t and Z statistics, anything over 2 is statistically
significant by the common standard of a p-value of .05 or less. Note that even though output
will round it to zero, the true p-value can never be zero.

11The interpretation regarding the CI is even more nuanced than this, but we’ll leave
that for another time. For now, we’ll just say that the CI is a range of values that are good
guesses for the true value. Your authors have used frequentist and Bayesian statistics for
many years, and we are fine with both of them, because they both work well enough in the
real world. Despite where this ranged estimate comes from, the vast majority use CIs in the
same way, and they are a useful tool for understanding the uncertainty in our estimates.
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have a lot of uncertainty about the coefficient, and we may not want to base
important decisions regarding it.

Keep in mind that your chosen model has a great influence on what you’ll be
able to say at the feature level. As an example, as we get into machine learning
models, you won’t have as easy a time with coefficients and their confidence
intervals, but you still may be able to say something about how your features
relate to the target, and we’ll continue to return to the topic. But first, let’s
take a look at interpreting things in another way.

INFO Hypothesis Testing

The confidence interval and p-value will for coefficients in typical statisti-
cal linear models will coincide with one another in that, for a given alpha
significance level, if the 1-alpha% CI includes zero, then your p-value will
be greater than alpha, and vice versa. This is because the same standard
error is used to calculate both. However, the framework of using a CI
vs. using the p-value for claiming statistical significance actually came
from individuals that were philosophically opposed. Modern-day usage
of both is a bit of a mess that would upset both Fisher (p-value guy)
and Neyman (CI guy), but your authors find that this incorrect practical
usage doesn’t make much practical difference in the end.

3.4.2 Model-level interpretation
So far, we’ve focused on interpretation at the feature level. But knowing the
interpretation of a feature doesn’t do you much good if the model itself is poor!
In that case, we also need to assess the model as a whole, and as with the
feature level, we can go about this in a few ways. Before getting too carried
away with asking whether your model is any good or not, you always need
to ask yourself relative to what? Many models claim top performance under
various circumstances, but which are statistically indistinguishable from many
other models. So we need to be careful about how we assess our model, and
what we compare it to.

Predictions vs. observed

When we looked at the models previously in Figure 3.3, we examined how well
the predictions and target line up, and that gave us an initial feel for how well
the model fits the data. Most model-level interpretation involves assessing and
comparing model fit and variations on this theme. Here we show how easy it
is to obtain such a plot.
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relate to the target, and we’ll continue to return to the topic. But first, let’s
take a look at interpreting things in another way.

INFO Hypothesis Testing

The confidence interval and p-value will for coefficients in typical statisti-
cal linear models will coincide with one another in that, for a given alpha
significance level, if the 1-alpha% CI includes zero, then your p-value will
be greater than alpha, and vice versa. This is because the same standard
error is used to calculate both. However, the framework of using a CI
vs. using the p-value for claiming statistical significance actually came
from individuals that were philosophically opposed. Modern-day usage
of both is a bit of a mess that would upset both Fisher (p-value guy)
and Neyman (CI guy), but your authors find that this incorrect practical
usage doesn’t make much practical difference in the end.

3.4.2 Model-level interpretation
So far, we’ve focused on interpretation at the feature level. But knowing the
interpretation of a feature doesn’t do you much good if the model itself is poor!
In that case, we also need to assess the model as a whole, and as with the
feature level, we can go about this in a few ways. Before getting too carried
away with asking whether your model is any good or not, you always need
to ask yourself relative to what? Many models claim top performance under
various circumstances, but which are statistically indistinguishable from many
other models. So we need to be careful about how we assess our model, and
what we compare it to.

Predictions vs. observed

When we looked at the models previously in Figure 3.3, we examined how well
the predictions and target line up, and that gave us an initial feel for how well
the model fits the data. Most model-level interpretation involves assessing and
comparing model fit and variations on this theme. Here we show how easy it
is to obtain such a plot.
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R

predictions = predict(model_lr_rating)

y = df_reviews$rating

ggplot(

data = data.frame(y = y, predictions = predictions),

aes(x = y, y = predictions)

) +

geom_point() +

labs(x = 'Predicted', y = 'Observed')

Python

import matplotlib.pyplot as plt

predictions = model_lr_rating.predict()

y = df_reviews.rating

plt.scatter(y, predictions)

Model metrics

We can also get an overall assessment of the prediction error from a single
metric. In the case of the linear model we’ve been looking at, we can express
this as the sum or mean of our squared errors, the latter of which is a very
commonly used modeling metric: MSE or mean squared error . Its square
root, RMSE or root mean squared error12, is also very commonly used.
We’ll talk more about this and similar metrics elsewhere (Section 4.2), but we
can take a look at the RMSE for our model now.

If we look back at our results, we can see this expressed as the part of the
output or as an attribute of the model13. The RMSE is more interpretable, as
it gives us a sense that our typical errors bounce around by about 0.59. Given
that the rating is on a 1-5 scale, this maybe isn’t bad, but we could definitely
hope to do better than get within roughly half a point on this scale. We’ll talk
about ways to improve this later.

12Any time we’re talking about MSE for performance, we’re also talking about RMSE, as
it’s just the square root of MSE, so which one you choose is mostly arbitrary. Taking the
square root makes the metric more interpretable, as it’s in the same units as the target, but
it’s not necessary to claim one model performs better than another.

13The actual divisor for linear regression output depends on the complexity of the model,
and in this case the sum of the squared errors is divided by N-2 (due to estimating the
intercept and coefficient) instead of N. This is a technical detail that would only matter for
data too small to generalize beyond anyway, and not important for our purposes here.
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R

# summary(model_lr_rating) # 'Residual standard error' is approx RMSE

summary(model_lr_rating)$sigma # We can extract it directly

[1] 0.5907

Python

np.sqrt(model_lr_rating.scale) # RMSE

0.590728780660127

Another metric we can use to assess model fit in this particular situation is the
mean absolute error(MAE). MAE is similar to the mean squared error, but
instead of squaring the errors, we just take the absolute value. Conceptually it
attempts to get at the same idea, how much our predictions miss the target on
average, and here the value is 0.46, which we actually showed in our residual
plot (Figure 3.4). With either metric, the closer to zero the better, since as we
get closer, we are reducing prediction error.

We can also look at the R-squared (R2) value of the model. R2 is possibly the
most popular measure of model performance with linear regression and linear
models in general. Before squaring, it’s just the correlation of the predicted
versus observed values that we saw in the previous plot (Figure 3.3). When we
square it, we can interpret it as a measure of how much of the variance in the
target is explained by the model. In this case, our model shows the R2 is 0.12,
which is not bad for a single feature model in this type of setting. We interpret
the value as 12% of the target variance is explained by our model, and more
specifically by the features in the model. In addition, we can also interpret R2

as 1 - the proportion of error variance in the target, which we can calculate
as 1 − MSE

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 . In other words the complement of R2 is the proportion of the
variance in the target that is not explained by the model. Either way, since
88% is not explained by the model, our result suggests there is plenty of work
left to do!

Note also, that with R2 we get a sense of the variance shared between all
features in the model and the target, however complex the model gets. As
long as we use it descriptively as a simple correspondence assessment of our
predictions and target, it’s a fine metric. For various reasons, it’s not a great
metric for comparing models to each other, but again, as long as you don’t get
carried away, it’s okay to use.
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3.4.3 Prediction vs. explanation
In your humble authors’ views, one can’t stress enough the importance of a
model’s ability to predict the target. It can be a poor model, maybe because
the data is not great, or perhaps we’re exploring a new area of research, but
we’ll always be interested in how well a model fits the observed data. In
situations where we’re focused on how things will work out in the future,
we’re just as much or even more interested in how well a model predicts new
data.

In many settings, statistical significance is focused on a great deal, and
much is made about models that may actually have little predictive power.
As strange as it may sound to some, you can read results in journal articles,
news features, and business reports in many fields with hardly any mention of
a model’s predictive capability. In these cases, the focus is almost entirely on
the explanation of the model, and usually the statistical significance of the
features with regard to their relationship to the target.

In those settings, statistical significance is often used as a proxy for impor-
tance, though this is rarely ever justified. As we’ve noted elsewhere, statistical
significance is affected by other things besides the size of the coefficient. And
without an understanding of the context of the features, in this case, like how
long typical reviews are, what their range is, what variability of ratings is, etc.,
the information it provides is extremely limited, and many would argue, not
very useful.

If we are very interested in the coefficient or weight value specifically, it is better
to focus on the range of possible values. This is provided by the confidence
interval, along with the predictions that come about based on that coefficient’s
value, which will likewise have interval estimates. Like statistical significance,
a confidence interval is also a ‘loaded’ description of a feature’s relationship to
the target, not without issues. However, we can use it in a very practical way
as a range of possible values for that feature’s weight, and more importantly,
think of possibilities rather than certainties.

Suffice it to say at this point, that how much one focuses on prediction
versus explanation depends on the context and goals of the data endeavor.
There are cases where predictive capability is of utmost importance, and we
care less about explanatory details, but not to the point of ignoring it. For
example, even with deep learning models for image classification, where the
inputs are just RGB values from an image, we’d still like to know what the
(notably complex) model is picking up on. Otherwise, we may be classifying
images based on something like image backgrounds (e.g., outdoors vs. indoors)
instead of the objects of actual interest (dogs vs. cats). In some business or
other organizational settings, we are very, or even mostly, interested in the
coefficients/weights, which might indicate how to allocate monetary resources
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in some fashion. But if those weights come from a model with no predictive
power, placing much importance on them may be a fruitless endeavor.

In the end we’ll need to balance our efforts to suit the task at hand. Prediction
and explanation are both fundamental to the modeling endeavor. We return
to this topic again in Chapter 13 (Section 13.2).

3.5 Adding Complexity
We’ve seen how to fit a model with a single feature and interpret the results,
and that helps us to get oriented to the general process when using a linear
model. However, we’ll always have more than one feature for a model except
under some very specific circumstances, such as exploratory data analysis. So
let’s see how we can implement a model with more features and that makes
more practical sense.

3.5.1 Multiple features
We can add more features to our model very simply. Using the standard
functions we’ve already demonstrated, we just add them to the formula as
follows14.

'y ~ feature_1 + feature_2 + feature_3'

In other cases where we use matrix inputs, additional features will just be the
additional input columns, and nothing conceptually about the model actually
changes.

# X are features, y is the target

GenericModel(X, y)

We might have a lot of features, and even for relatively simple linear models
this could be dozens in some scenarios. A compact depiction of our model
uses matrix representation, which we’ll show in the next callout, but you can
find more detail in the matrix overview Appendix B. For our purposes with a
standard linear model, all you really need to know is that this formula:

𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦 or 𝑦𝑦 𝑦 𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦 (3.6)

14This is the case for both R and statsmodels.
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is the same as this:

𝑦𝑦 𝑦 𝑦𝑦 𝑦 𝑦𝑦1𝑥𝑥1 +𝛽𝛽 2𝑥𝑥2 +𝛽𝛽 3𝑥𝑥3 ⋯ + 𝜖𝜖

where 𝑦𝑦 is the target, 𝑋𝑋 is a 2-d matrix of features15, where the rows are
observations/instances and columns features, and 𝛽𝛽 is a vector of coefficients or
weights corresponding to the number of columns in 𝑋𝑋. Matrix multiplication
provides us an efficient way to get our expected value/prediction, and depicting
the model in this way is a common practice that makes it more succinct.

INFO Matrix Representation of a Linear Model

Here we’ll show the matrix representation form of the linear model in
more detail. In the following, 𝑦𝑦 is a vector of all target observations,
and 𝑋𝑋 is a matrix of features. The 𝛽𝛽 vector is the vector of coefficients.
The column of 1s serves as a means to incorporate the intercept, as
it’s just multiplied by whatever the estimated intercept value is. Matrix
multiplication form can be seen as an efficient way to get the sum of the
features multiplied by their coefficients.
Here is 𝑦𝑦 as a vector of observations, 𝑛𝑛 𝑛 𝑛.

y =
⎡
⎢⎢
⎣

𝑦𝑦1
𝑦𝑦2
⋮

𝑦𝑦𝑛𝑛

⎤
⎥⎥
⎦

(3.7)

Here is the 𝑛𝑛 𝑛 𝑛𝑛 matrix of features, including the intercept:

X =
⎡
⎢
⎢
⎣

1 𝑥𝑥11 𝑥𝑥12 … 𝑥𝑥1𝑝𝑝
1 𝑥𝑥21 𝑥𝑥22 … 𝑥𝑥2𝑝𝑝
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑥𝑛𝑛𝑛 𝑥𝑥𝑛𝑛𝑛 … 𝑥𝑥𝑛𝑛𝑛𝑛

⎤
⎥
⎥
⎦

(3.8)

And finally, here is the 𝑝𝑝𝑝𝑝  , vector of coefficients:

=
⎡
⎢⎢
⎣

b0
b1
⋮

bp

⎤
⎥⎥
⎦

(3.9)

15In the first depiction without 𝛼𝛼, there is an additional column at the beginning of the
matrix that is all 1s, which is a way to incorporate the intercept into the model. However,
most models that use a matrix as input will not have the intercept column, as it’s either
not part of the model estimation, or is automatically added behind the scenes, and may be
estimated separately.
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Putting it all together, along with the error term, we get the linear model
in matrix form:

y = X + (3.10)

You will also see it depicted in a transposed fashion, such that 𝑦𝑦 𝑦 𝑦𝑦⊺𝑋𝑋,
or 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓⊺𝑋𝑋 𝑋 𝑋𝑋, with the latter formula typically seen in the context
of machine learning. This is just a matter of preference, except that
it may assume the data is formatted in a different way, or possibly an
author is talking about matrix/vector operations for a single observation.
You’ll want to pay close attention to what the dimensions are.
For the models considered here and almost all ‘tabular data’ scenarios,
the data is stored in the fashion we’ve represented in this text, but
you should be aware that other data settings will force you to think of
multi-dimensional arrays16 instead of 2-d matrices, for example, with
image processing. So it’s good to be flexible.

With that in mind, let’s get to our model! In what follows, we keep the word
count, but now we add some aspects of the reviewer, such as age and the
number of children in the household, and features related to the movie, like
the release year, the length of the movie in minutes, and the total reviews
received. We’ll use the same approach as before, and literally just add them as
we depicted in our linear model formula (Equation 3.3).

R

model_lr_rating_extra = lm(

rating ~

word_count

+ age

+ review_year

+ release_year

+ length_minutes

+ children_in_home

+ total_reviews,

data = df_reviews

)

summary(model_lr_rating_extra)

Call:

16In deep learning, model arrays are referred to as the more abstract representation of
tensors, but for practical purposes the distinction doesn’t really matter for modeling, as
the tensors are always some n-dimensional array.
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lm(formula = rating ~ word_count + age + review_year + release_year +

length_minutes + children_in_home + total_reviews, data = df_reviews)

Residuals:

Min 1Q Median 3Q Max

-1.8231 -0.3399 0.0107 0.3566 1.5144

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.56e+01 7.46e+00 -6.11 1.5e-09 ***

word_count -3.03e-02 3.33e-03 -9.10 < 2e-16 ***

age -1.69e-03 9.24e-04 -1.83 0.0683 .

review_year 9.88e-03 3.23e-03 3.05 0.0023 **

release_year 1.33e-02 1.79e-03 7.43 2.3e-13 ***

length_minutes 1.67e-02 1.53e-03 10.90 < 2e-16 ***

children_in_home 1.03e-01 2.54e-02 4.05 5.5e-05 ***

total_reviews 7.62e-05 6.16e-06 12.36 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.52 on 992 degrees of freedom

Multiple R-squared: 0.321, Adjusted R-squared: 0.316

F-statistic: 67 on 7 and 992 DF, p-value: <2e-16

Python

model_lr_rating_extra = smf.ols(

formula = 'rating ~ word_count \

+ age \

+ review_year \

+ release_year \

+ length_minutes \

+ children_in_home \

+ total_reviews',

data = df_reviews

).fit()

model_lr_rating_extra.summary(slim = True)

<class 'statsmodels.iolib.summary.Summary'>

"""

OLS Regression Results

==============================================================================

Dep. Variable: rating R-squared: 0.321

Model: OLS Adj. R-squared: 0.316
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No. Observations: 1000 F-statistic: 67.02

Covariance Type: nonrobust Prob (F-statistic): 3.73e-79

====================================================================================

coef std err t P>|t| [0.025 0.975]

------------------------------------------------------------------------------------

Intercept -45.5688 7.463 -6.106 0.000 -60.215 -30.923

word_count -0.0303 0.003 -9.102 0.000 -0.037 -0.024

age -0.0017 0.001 -1.825 0.068 -0.004 0.000

review_year 0.0099 0.003 3.055 0.002 0.004 0.016

release_year 0.0133 0.002 7.434 0.000 0.010 0.017

length_minutes 0.0167 0.002 10.897 0.000 0.014 0.020

children_in_home 0.1028 0.025 4.051 0.000 0.053 0.153

total_reviews 7.616e-05 6.16e-06 12.362 0.000 6.41e-05 8.83e-05

====================================================================================

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 2.82e+06. This might indicate that there are

strong multicollinearity or other numerical problems.

"""

There is definitely more to unpack here than our simpler model, but it’s
important to note that it’s just more stuff, not different stuff. The model-level
components are the same in that we still see R2, etc., although they are all
‘better’ (higher R2, lower error) because we have a model that more accurately
predicts the observed target.

Our coefficients have the same output, and though they are on different scales
we’d interpret them in the same way. Starting with word count, we see that
it’s still statistically significant, but it has been reduced just slightly from our
previous model where it was the only feature (-0.04 vs. -0.03). Why? This
suggests that word count has some non-zero correlation, sometimes called
collinearity, with other features that are also explaining the target to some
extent. Our linear model shows the effect of each feature controlling for other
features, or, holding other features constant, or adjusted for other features17.
Conceptually this means that the effect of word count is the effect of word
count after we’ve accounted for the other features in the model. In this case,
an increase of a single word results in a -0.03 drop, even after adjusting for
the effect of other features. Looking at another feature, the addition of a child
to the home is associated with 0.1 increase in rating, again, accounting for the
other features.

17A lot of statisticians and causal modeling folks get very hung up on the terminology
here, but we’ll leave that to them, as we’d like to get on with things. Don’t get us wrong,
the distinctions are useful. But for our purposes, we’ll just say that we’re interested in the
relationship of a feature with the target after we’ve accounted for the other features in the
model.
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to the home is associated with 0.1 increase in rating, again, accounting for the
other features.

17A lot of statisticians and causal modeling folks get very hung up on the terminology
here, but we’ll leave that to them, as we’d like to get on with things. Don’t get us wrong,
the distinctions are useful. But for our purposes, we’ll just say that we’re interested in the
relationship of a feature with the target after we’ve accounted for the other features in the
model.
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Fire Features Scales Again

The scales of the features are quite different, so we can’t directly compare
the coefficients. For example, the word count coefficient represents a
movement of 1 word, and coefficient for release year represents a move-
ment of 1 year. One way to get a better comparison is to standardize the
features as we talked about previously (Section 3.4.1), and which we’ll
talk about more in the data chapter (Section 14.2) and elsewhere.

Thinking about prediction, how would we get a prediction for a movie rating
with a review that is 12 words long, written in 2020, by a 30-year-old with one
child, for a movie that is 100 minutes long, released in 2015, with 10,000 total
reviews? Exactly the same as we did before (Section 3.3.2)! We just create a
dataframe with the values we want, and we predict accordingly.

R

predict_observation = tibble(

word_count = 12,

age = 30,

children_in_home = 1,

review_year = 2020,

release_year = 2015,

length_minutes = 100,

total_reviews = 10000

)

predict(

model_lr_rating_extra,

newdata = predict_observation

)

1

3.26

Python

predict_observation = pd.DataFrame(

{

'word_count': 12,

'age': 30,

'children_in_home': 1,

'review_year': 2020,

'release_year': 2015,
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'length_minutes': 100,

'total_reviews': 10000

},

index = ['new_observation']

)

model_lr_rating_extra.predict(predict_observation)

new_observation 3.260

dtype: float64

In our example we’re just getting a single prediction, but don’t let that hold
you back! As we did before, you can predict an entire dataset if you want and
use any values for the features you want. Feel free to try a different prediction
of your choosing!

3.5.2 Categorical features
Categorical features can be added to a model just like any other feature. The
main issue is that they have to be represented numerically, because models
only work on numerically coded features and targets. The simplest and most
common encoding is called a one-hot encoding scheme, which creates a new
feature column for each category, and assigns a 1 if the observation has that
category label, and a 0 otherwise. This is also called dummy coding when
used for statistical models. Here is an example of what the coding looks like
for the season feature. This is really all there is to it.

Table 3.6: One-Hot Encoding of the Season Feature

rating season Fall Summer Winter Spring
2.70 Fall 1 0 0 0
4.20 Fall 1 0 0 0
3.70 Fall 1 0 0 0
2.70 Fall 1 0 0 0
2.40 Summer 0 1 0 0
4.00 Summer 0 1 0 0
1.80 Fall 1 0 0 0
2.40 Summer 0 1 0 0
2.50 Winter 0 0 1 0
4.30 Summer 0 1 0 0

When using statistical models we don’t have to do this ourselves. Even other
tools for machine learning models will typically have a way to identify and
appropriately handle categorical features, even in very complex ways when it
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comes to deep learning models. What is important is to be aware that they
require special handling, even if this is done behind the scenes. Now let’s do
a quick example using a categorical feature with our data, and we’ll keep a
numeric feature as well just for consistency.

R

model_lr_cat = lm(

rating ~ word_count + season,

data = df_reviews

)

summary(model_lr_cat)

Call:

lm(formula = rating ~ word_count + season, data = df_reviews)

Residuals:

Min 1Q Median 3Q Max

-1.9184 -0.3622 0.0133 0.3589 1.8372

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.3429 0.0530 63.11 < 2e-16 ***

word_count -0.0394 0.0036 -10.96 < 2e-16 ***

seasonSpring -0.0301 0.0622 -0.48 0.63

seasonSummer 0.2743 0.0445 6.17 9.8e-10 ***

seasonWinter -0.0700 0.0595 -1.18 0.24

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.572 on 995 degrees of freedom

Multiple R-squared: 0.176, Adjusted R-squared: 0.173

F-statistic: 53.1 on 4 and 995 DF, p-value: <2e-16

Python

model_lr_cat = smf.ols(

formula = 'rating ~ word_count + season',

data = df_reviews

).fit()

model_lr_cat.summary(slim = True)
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<class 'statsmodels.iolib.summary.Summary'>

"""

OLS Regression Results

==============================================================================

Dep. Variable: rating R-squared: 0.176

Model: OLS Adj. R-squared: 0.173

No. Observations: 1000 F-statistic: 53.09

Covariance Type: nonrobust Prob (F-statistic): 1.41e-40

====================================================================================

coef std err t P>|t| [0.025 0.975]

------------------------------------------------------------------------------------

Intercept 3.3429 0.053 63.109 0.000 3.239 3.447

season[T.Spring] -0.0301 0.062 -0.483 0.629 -0.152 0.092

season[T.Summer] 0.2743 0.044 6.171 0.000 0.187 0.362

season[T.Winter] -0.0700 0.059 -1.177 0.239 -0.187 0.047

word_count -0.0394 0.004 -10.963 0.000 -0.047 -0.032

====================================================================================

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

"""

We now see the usual output. There is word count again, with its slightly
negative association with rating. And we have an effect for each season as well…
except, wait a second, where is the fall effect? The coefficients are interpreted
the same way. As we move one unit on x, we see a corresponding change in y.
But moving from one category to another requires starting at some category
in the first place: a reference point. So one category is chosen arbitrarily, but
you would have control over this. In our model, ‘fall’ is chosen just because
it is first alphabetically. So if we look at, for example, the effect of summer,
we see an increase in the rating of 0.27 relative to fall. The same goes for the
other seasons, as they all represent a change relative to fall.

Recall also that an interpretation of the intercept is the expected value of the
target when all features are zero. In this case, it’s the expected value of the
target when the word count is zero and the season is fall.

Summarizing categorical features

When we have a lot of categories, it’s often not practical to look at the
coefficients for each one, and even when there aren’t that many, we often
prefer to get a sense of the total effect of the feature. For standard linear
models, we can break down the target variance explained by the model into the
variance explained by each feature, and this is called the ANOVA, or analysis
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of variance18. It is not without its issues, but it’s one way to get a sense of
whether a categorical (or other) feature as a whole is statistically significant.

R

anova(model_lr_cat)

Python

import statsmodels.api as sm

sm.stats.anova_lm(model_lr_cat)

Table 3.7: ANOVA Table for Categorical Feature

Feature DF sumsq meansq F-stat. p.value
word_count 1.00 46.80 46.80 143.02 < 0.001
season 3.00 22.69 7.56 23.12 < 0.001
Residuals 995.00 325.57 0.33

A primary reason to use ANOVA is to make these sorts of summary claims of
statistical significance. In this case, we can say that the relationship of season
to rating is statistically significant. From Table 3.7, the DF (degrees of freedom)
represents the number of categories minus 1, and the F-statistic is a measure
of the mean squared variance explained by the feature relative to the (mean
squared) variance not explained by the feature (F = mean square value divided
by mean square error, or residual variance). The p-value is the probability
of observing an F-statistic as extreme as the one observed, given that the
null hypothesis is true. In this case, the null hypothesis is that the feature
has no effect on the target. The p-value is less than 0.001, so we reject the
null hypothesis and conclude that the observed feature-target relationship is
statistically different from an assumption of no relationship. Note that nothing
here is different from what we saw in our previous regression models, and
we can run an anova function on those too19. As a final note, it’s good to be

18There are actually different types of ANOVA in this context, and different ways to
calculate the variance values. One may notice the Python ANOVA result is different, even
though the season coefficients and initial model are identical. R defaults with what is called
Type II sums of squares, while the Python default uses Type I sums of squares. We won’t
bore you with the details of their differences, and the astute modeler will not come to
different conclusions because of this sort of thing, and you now have enough detail to look it
up.

19For those interested, for those features with one degree of freedom, all else being equal,
the F-statistic here would just be the square of the t-statistic for the coefficients, and the
p-value would be the same.
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reminded that statistical significance is not the same as practical significance.
Whether these group differences are meaningful is still left to be decided by
the modeler given the context of the data.

Group predictions

A better approach to understanding categorical features for standard linear
models is through what are called marginal effects, which can provide a
kind of average prediction for each category while accounting for the other
features in the model. Better still is to visualize these. It’s actually tricky to
define ‘average’ when there are multiple features and interactions involved, so
be more cautious in those contexts. In this case, we expect the highest ratings
for summer releases. We’ll return more to this concept in Section 5.5.

2.8

2.9

3.0

3.1

3.2

Fall Spring Summer Winter

Rating
Marginal Means 

Figure 3.6: Marginal effects of season on rating

3.5.3 Other model complexities
There are a lot more fun things we can do while still employing a linear
model. We can add interactions between features, account for non-linear
relationships, and enhance the linear model we’ve seen to improve predictions.
We’ll talk more about these types of techniques throughout the rest of the
book.

3.6 Assumptions and More
Every model you use has underlying assumptions which, if not met, could
potentially result in incorrect inferences about the effects, performance, or
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predictive capabilities of the model. These are assumptions about the data
generating process, the stability of the data, the correctness of the data, the
appropriateness of the model, and so on.

The standard linear regression model we’ve come to know is no different, and
it has a number of assumptions that must be met for it to be statistically valid.
Briefly, they are:

• The model is not grossly misspecified (e.g., you’ve included the right
features and not left out important ones)

• The data that you’re modeling reflects the population you want to make
generalizations about

• The model is linear in the parameters (i.e., no 𝑒𝑒𝛽𝛽 or 𝛽𝛽1 ⋅ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 ⋅ 𝑋𝑋 type
stuff)

• The features are not correlated with the error (prediction errors, unobserved
causes)

• Your data observations are independent of each other
• The prediction errors are homoscedastic (e.g., some predictions aren’t

associated with very large errors relative to others)
• Normality of the errors (i.e., your prediction errors). Another way to put

it is that your target variable is normally distributed conditional on the
features.

A linear regression model does not assume that:

• The features are normally distributed
– For example, using categorical features is fine

• The target is normally distributed
– The assumed target distribution is conditional on the features, the

target (so-called marginal) distribution can be whatever it is
• The relationship between the features and target is linear

– Interactions, polynomial terms, etc. are all fine
• The features are not correlated with each other

– They usually are

If you do meet these assumptions, it doesn’t mean that:

• You have large effects
• You have a well-performing model
• You have causal effects
• You (necessarily) have less uncertainty about your coefficients or predictions

than other methods

If you don’t meet these assumptions, it doesn’t mean that:

• Your model will have poor predictions
• Your conclusions will necessarily be incorrect or even different
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And finally, most of the time you can use a different type of linear model to
meet these assumptions.

So basically, whether or not you meet the assumptions of your model doesn’t
actually say much about whether the model is great or terrible. For the linear
regression model, if you do meet those assumptions, your coefficient estimates
are unbiased20, and in general, your statistical inferences are valid ones. If you
don’t meet the assumptions, there are alternative versions of the linear model
you could use that would potentially address the issues.

For example, data that runs over a sequence of time (time series data) violates
the independence assumption, since observations closer in time are more likely
to be similar than those farther apart. Violation of this assumption will result
in problems with the standard errors of the coefficients, and thus the p-values
and confidence intervals. But we could use a time series or similar model
instead to account for this. If normality is difficult to meet, you could assume
a different data generating distribution. We’ll discuss some of these approaches
explicitly in later chapters (e.g., Chapter 8), but it’s also important to note
that not meeting the assumptions for the model may only mean you’ll prefer a
different type of linear or other model to use in order to meet them.

3.6.1 Assumptions with more complex models
Let’s say you’re running some XGBoost or a Deep Linear Model and getting
outstanding predictions. ‘Assumptions shmumptions’ you say! And you might
even be right! But if you want to talk confidently about feature contributions,
or know something about the uncertainty in the predictions (which you’re
assessing, right?), well, maybe you might want to know if you’re meeting your
assumptions. Some of them are:

• You have enough data to make the model generalizable
• Your data isn’t biased (e.g., you don’t have 90% of your data from one

particular region when you want to talk about a much wider area)
• You adequately sampled the hyperparameter space (e.g., you didn’t just

use the defaults (Section 15.2.2) or a small grid search)
• Your observations are independent or at least exchangeable and don’t have

data leakage (Section 15.3.5), or you are explicitly modeling observation
dependence

• Your parameter settings you’ve chosen are correct or at least viable (e.g.,

20This means they are correct on average, not that they are the true value. And if they
were biased, this refers to statistical bias, and has nothing to do with the moral or ethical
implications of the data, or whether the features themselves are biased in measurement.
Culturally-biased data is a different problem than statistical/prediction bias or measurement
error, though they are not mutually exclusive. Statistical bias can more readily be tested,
while other types of bias are more difficult to assess. Even statistical unbiasedness is not
necessarily a goal, as we will see later in Section 6.8.
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you let the model run for a long enough set of iterations, your batch size
was adequate, you had enough hidden layers, etc.)

And if you want to talk about specific feature contributions, you are assuming:

• The features are largely uncorrelated
• The features largely do not interact21, or that your understanding of feature

contribution deals with the interactions

The take-home message is that using models in more complex settings like
machine/deep learning doesn’t mean you don’t have to worry about theoretical
and model assumptions. You still have much to consider!

3.7 Classification
Up to this point we’ve been using a continuous, numeric target. But what
about a categorical target? For example, what if we just had a binary target of
whether a movie was good or bad? We will dive much more into classification
models in our upcoming chapters, but it turns out that we can still formulate
it as a linear model, the most common one being a logistic regression. The
main difference is that we use a transformation of our linear combination of
features, using what is sometimes called a link function, and we’ll need to use
a different objective function rather than least squares, such as the binomial
likelihood, to deal with the binary target. This also means we’ll move away
from R2 as a measure of model fit, and focus on something else, like accuracy.

Graphically we can see it in the following way which, when compared with
our linear model (Figure 3.2), doesn’t look much different. In what follows,
we create our linear combination of features exactly as we did for the linear
regression setting. Then we put it through the sigmoid function, which is a
common link function for binary targets22. The result is a probability, which
we can then use to classify the observation as good or bad based on a chosen
threshold. For example, we might say that any instance associated with a
probability greater than 0.5 is classified as ‘good’, and less than that is classified
as ‘bad’.

21But then why would you be using a complex model that is inherently interacting the
features?

22The sigmoid function in this case is the inverse logistic function, and the resulting
statistical model is called logistic regression. In other contexts the model would not be a
logistic regression, but this is still a commonly used activation function. But others could
potentially be used as well. For example, using a (cumulative) normal instead of logistic
distribution to create a probability results in the so-called probit model, which is more
common in econometrics and other fields.
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Figure 3.7: Linear model with transformation can be a logistic regression

As soon as we move away from the standard linear model and use transforma-
tions of our linear predictor, simple coefficient interpretation becomes difficult,
sometimes exceedingly so. We will explore more of these types of models and
how to interpret them in later chapters (e.g., Chapter 8).

3.8 More Linear Models
Before we leave our humble linear model, let’s look at some others. Here is a
brief overview of some of the more common ‘linear’ models you might encounter
but maybe didn’t realize they were still just a linear model not too far removed
from linear regression.

Generalized Linear Models and Related:

• True generalized linear models (GLM) e.g., logistic, poisson
• Other distributions: beta regression, tweedie, t (so-called robust), truncated
• Penalized regression: ridge, lasso, elastic net
• Censored outcomes: survival models, tobit

Multivariate/multiclass/multipart:

• Multivariate regression (multiple targets)
• Multinomial/Categorical/Ordinal regression (>2 classes)
• Zero (or some number) -inflated/hurdle/altered
• Mixture models and cluster analysis
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Random Effects:

• Mixed effects models (random intercepts/coefficients)
• Generalized additive models (GAMs)
• Spatial models (CAR)
• Time series models (ARIMA)
• Factor analysis

Latent Linear Models:

• PCA, Factor Analysis
• Mixture models
• Structural Equation Modeling, graphical models generally

All of these are explicitly linear models or can be framed as such, and may only
require only a tweak or two from what you’ve already seen. For example, they
may have a different distributional assumption, a different link function, penal-
izing the coefficients, etc. In other cases, we can bounce from one to another
and even get similar results. For instance, we can reshape our multivariate
outcome to be amenable to a mixed model approach and get the exact same
results. We can potentially add a random effect to any model, and that random
effect can be based on time, spatial or other considerations. Additionally, the
same type of linear combination of features used in linear regression can be
used in many types of models, even deep learning models!

The important thing to know is that the linear model is a very flexible tool
that expands easily and allows you to model most of the types of outcomes we
are interested in. As such, it’s a very powerful approach to modeling.

3.9 Wrapping Up
Linear models, such as the linear regression demonstrated in this chapter,
are a very popular tool for data analysis, and for a good reason. They are
relatively easy to implement and very flexible. They can be used for prediction,
explanation, and inference, and they can be used across a wide variety of data
types. There are also many tools at our disposal to help us use and explore
them. But the simpler demos we’ve seen here are not without their limitations,
and you’ll want to have more in your toolbox than just the approach we’ve
seen so far.

3.9.1 The common thread
In most of the chapters we want to highlight the connections between models
you’ll encounter. Linear models are the starting point for modeling, and they
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can be used for a wide variety of data types and tasks. The linear regression with
a single feature is identical to a simple correlation if the feature is numeric,
a t-test if it is binary, and an ANOVA if it is categorical. We explored a
more complex model with multiple features, and we saw how to interpret the
coefficients and make predictions. The creation of a combination of features to
predict a target is the basis of all models, and as such, the linear regression
model we’ve just seen is the real starting point on your data science journey.

3.9.2 Choose your own adventure
Now that you’ve got the basics, where do you want to go?

• If you want to know more about how to understand linear and other models:
Chapter 4 and Chapter 5

• If you want a deeper dive into how we get the results from our model:
Chapter 6

• If you want to do some more modeling: Chapter 8, Chapter 9, or Chapter 10
• Got more data questions? Chapter 14

3.9.3 Additional resources
If you are interested in a deeper dive into the theory and assumptions behind
linear models, you can check out more traditional statistical/econometric
treatments such as:

• Gelman, Hill, and Vehtari (2020)
• Gelman (2013)
• Harrell (2015)
• Fahrmeir et al. (2021)
• J. Faraway (2014)
• Wooldridge (2012)
• Greene (2017)

For more applied treatments, consider:

• Navarro (2018)
• Weed and Navarro (2021)
• Kuhn and Silge (2023)

But there are many, many books on statistical analysis, linear models, and
linear regression specifically. Texts tend to get more mathy and theoretical as
you go back in time, to the mostly applied and code-based treatments today.
You will likely need to do a bit of exploration to find one you like best. We also
recommend you check out the many statistics and modeling based courses like
those on Coursera, EdX, and similar ones, and the many tutorials and blog
posts on the internet. Great demonstrations of specific topics can be found on
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YouTube, blog posts, and other places. Just start searching and you’ll find a
lot of great resources!

3.10 Guided Exploration
For this exercise let’s switch to the world happiness 2018 dataset. You can find

the github repo.

• Fit a linear regression model, maybe keep it to three features or less:
– Predict ‘happiness’ (happiness_score)
– Suggestion for features: GDP per capita, Social support, Healthy life

expectancy
• Summarize the model, and interpret the coefficients. What do you find?
• Assess the model fit with RMSE and R2.
• Try to get a prediction of at least one new observation of interest, e.g., log

GDP per capita of 10, life expectancy of 70, social support of 0.8, which
would represent a decently well-off country. Contrast that prediction with
a less well-off country, with values less than the median for each feature.
What do you find?

details about it in the appendix, Section C.2, and you can download it from



https://taylorandfrancis.com
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Understanding the Model

In addition to giving the world one of the greatest television show theme songs
– Quincy Jones’ The Streetbeater – Sanford & Son gave us an insightful quote
for offering criticism: “You big dummy.” While we don’t advocate for swearing
at or denigrating your model, how do you know if your model is performing up
to your expectations? It is easy to look at your coefficients, t-values, and an 𝑅𝑅2,
and say, “Wow! Look at this great model!” Your friends will be envious of such
terrific p-values, and all of the strangers that you see at social functions will
be impressed. What happens if that model falls apart on new data, though?
What if a stakeholder wants to know exactly how a prediction was made for
a specific business decision? Sadly, all of the stars that you gleefully pointed
towards in your console will not offer you any real answers.

Instead of falling in immediate love with your model, you should ask some hard
questions of it. How does it perform on different slices of data? Do predictions
make sense? Is your classification cut-point appropriate? In other words, you
should criticize your model before you decide it can be used for its intended
purposes. Remember that it is data modeling, not data truthing. In other words,
you should always be prepared to call your model a “big dummy”.

59
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4.1 Key Ideas
• Metrics can help you assess how well your model is performing, and they

can also help you compare different models.
• Different metrics can be used depending on the goals of your model.
• Visualizations can further help us understand model performance in a

variety of ways.

4.1.1 Why this matters
It’s never good enough to simply get model results. You need to know how
well your model is performing and how it is making predictions. You also
should be comparing your model to other alternatives. Doing so provides more
confidence in your model and helps you to understand how it is working, and
just as importantly, where it fails. This is actionable knowledge.

4.1.2 Helpful context
This takes some of the things we see in other chapters on linear models and
machine learning, so we’d suggest having the linear model basics down pretty
well.

4.2 Model Metrics
A first step in understanding our model can be done with summary statistics,
typically called metrics. Regression and classification have different metrics
for assessing model performance. We want to give you a sample of some of
the more common ones, but we also want to acknowledge that there are many
more that you can use, and any might be useful. We would always recommend
looking at a few different metrics for any given model to get a better sense of
how your model is performing.

Table 4.1 illustrates some of the most commonly used performance metrics.
Just because these are popular or applicable for your situation doesn’t mean
they are the only ones you can or even should use. Nothing keeps you from
using more than one metric for assessment, and in fact, it is often a good idea
to do so. In general though, you should have a working knowledge of these, as
you will likely come across them even if you don’t use them all the time.
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Table 4.1: Commonly Used Performance Metrics in Machine Learning

Metric Description Other Names/Notes

Regression

RMSE Root mean squared error MSE (before square root)
MAE Mean absolute error
MAPE Mean absolute percentage error
RMSLE Root mean squared log error
R-squared Amount of variance shared by predictions and target Coefficient of determination
Deviance/AIC Generalization of sum of squared error Also ’deviance explained’ for similar R2 interpretation

Classification

Accuracy Proportion correct Error rate is 1 - Accuracy
Precision Proportion of positive predictions that are correct Positive Predictive Value
Recall Proportion of positive samples that are predicted correctly Sensitivity, True Positive Rate
Specificity Proportion of negative samples that are predicted correctly True Negative Rate
Negative Predictive Value Proportion of negative predictions that are correct
F1 Harmonic mean of precision and recall F-Beta1

AUC Area under the ROC curve
False Positive Rate Proportion of negative samples that are predicted incorrectly Type I Error, alpha
False Negative Rate Proportion of positive samples that are predicted incorrectly Type II Error, beta, Power is 1 - beta
Phi Correlation between predicted and actual Matthews Correlation
Log loss Negative log-likelihood of the predicted probabilities

1Beta = 1 for F1
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4.2.1 Regression metrics
The primary goal of our endeavor is to come up with a predictive model.
The closer our model predictions are to the observed target values, the better
our model is performing. As we saw in Table 4.1, when we have a numeric
target, there are quite a few metrics that help us understand prediction-target
correspondence, so let’s look at some of those.

But before we create a model to get us started, we are going to read in our
data and then create two different splits within our data: a training set and a
test set. In other words, we are going to partition our data so that we can
train a model and then see how well that model performs with data it hasn’t
seen1. For more on this process and the reasons why we do it, see Section 10.4
and Section 10.6. For now, we just need to know that assessing prediction error
on the test set will give us a better estimate of our metric of choice.

INFO Splitting Data

This basic split is the foundation of cross-validation. Cross-validation
is a method for partitioning data into training and non-training sets in
a way that allows you to better understand the model’s performance.
You’ll find more explicit demonstration of how to do this in the machine
learning chapter Chapter 11.

R

# all data found on github repo

df_reviews = read_csv('https://tinyurl.com/moviereviewsdata')

set.seed(123) # ensure reproducibility

initial_split = sample(

x = 1:nrow(df_reviews),

size = nrow(df_reviews) * .75,

replace = FALSE

)

df_train = df_reviews[initial_split, ]

df_test = df_reviews[-initial_split, ]

1For anyone comparing Python to R results, the data splits are not the same, so outputs
likewise will not be identical, though they should be very similar. We could have forced them
to use the same data, but we feel you should get used to the randomness of the process.
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Python

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

# all data found on github repo

df_reviews = pd.read_csv('https://tinyurl.com/moviereviewsdata')

df_train, df_test = train_test_split(

df_reviews,

test_size = 0.25,

random_state = 123

)

You’ll notice that we created training data with 75% of our data, and we will
use the other 25% to test our model. This is an arbitrary but common split.
With training data in hand, let’s produce a model to predict review rating.
We’ll use the standardized (scaled _sc) versions of several features and use the
‘year’ features starting at year 0, which represents the earliest year observed
in our data2. Finally, we also include the genre of the movie as a categorical
feature.

R

model_lr_train = lm(

rating ~

review_year_0

+ release_year_0

+ age_sc

+ length_minutes_sc

+ total_reviews_sc

+ word_count_sc

+ genre

,

df_train

)

2See Section 14.6.2 for more on why we like to start year features at 0.
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Python

import statsmodels.api as sm

import statsmodels.formula.api as smf

# we'll use 'features' later also

features = [

"review_year_0",

"release_year_0",

"age_sc",

"length_minutes_sc",

"total_reviews_sc",

"word_count_sc",

"genre",

]

model = 'rating ~ ' + " + ".join(features)

model_lr_train = smf.ols(formula = model, data = df_train).fit()

Now that we have a model from our training data, we can use it to make
predictions on our test data:

R

predictions = predict(model_lr_train, newdata = df_test)

Python

predictions = model_lr_train.predict(df_test)

The goal now is to find out how close our predictions match reality. Let’s look
at them first:
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Figure 4.1: Observed vs. predicted ratings.

Obviously, our points do not make a perfect line on the left, which would
indicate perfect prediction. Also, the distribution of our values suggests we’re
over-predicting on the lower end, as none of our predictions even go below
2. We’re also under-predicting on the higher end of the target’s range. More
generally, we’re not capturing the range of the observed values very well. But
we’d like to determine how far off we are in a general sense. There are a number
of metrics that can be used to measure this. We’ll go through a few of them
here. In each case, we’ll demystify the calculations to make sure we understand
what’s going on.

R-squared

Anyone who has done linear regression has come across the 𝑅𝑅2 value. It is a
measure of how well the model explains the variance in the target. One way to
calculate it is as follows:

𝑅𝑅2 = 1 −
∑𝑛𝑛

𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖 − ̂𝑦𝑦𝑖𝑖)2

∑𝑛𝑛
𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖 − ̄𝑦𝑦𝑦2 (4.1)

where 𝑦𝑦𝑖𝑖 is the observed value, ̂𝑦𝑦𝑖𝑖 is the predicted value, and ̄𝑦𝑦 is the mean
of the observed values. The 𝑅𝑅2 value is basically a proportion of how much
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variance in the target (denominator) is attributable to the model features
in the form of the predictions (numerator). When applied to the training or
observed data, it is a value between 0 and 1, with 1 indicating that the model
explains all of the variance in the target.

Alternatively, 𝑅𝑅2 can be calculated as the squared correlation between the
target and predicted values, which may be more conceptually intuitive. In that
sense it can almost always be useful as a descriptive measure, just like we use
means and standard deviations in exploratory data analysis. However, it is
not so great at telling us about predictive quality. Why? Take the predictions
from our rating model, and add 10 to them, or make them all negative. In
both cases, if you calculate it as the squared correlation of your predictions
and target, even though your predictions would be ridiculous, your 𝑅𝑅2 will be
the same. If you use the formula shown, you could even get negative values!
Another problem is that for training data, 𝑅𝑅2 will always increase as you add
more features to your model, whether they are useful or pure noise! This is
why we use other metrics to assess predictive quality.

R

residual_ss = sum((df_test$rating - predictions)^2)

total_ss = sum((df_test$rating - mean(df_test$rating))^2)

1 - residual_ss / total_ss

yardstick::rsq_trad_vec(df_test$rating, predictions)

# conceptually identical, but slight difference due

# to how internal calculations are done (not shown)

# cor(df_test$rating, predictions)^2

# yardstick::rsq_vec(df_test$rating, predictions)

# exercise

# cor(df_test$rating, predictions)^2

# cor(df_test$rating, predictions + 1)^2 # same

# yardstick::rsq_trad_vec(df_test$rating, predictions + 1) # negative!

[1] 0.5193

[1] 0.5193
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Python

from sklearn.metrics import r2_score

residual_ss = np.sum((df_test.rating - predictions)**2)

total_ss = np.sum((df_test.rating - np.mean(df_test.rating))**2)

1 - residual_ss / total_ss

r2_score(df_test.rating, predictions)

# conceptually identical, but slight difference due to

# how calculations are done (not shown)

# np.corrcoef(df_test.rating, predictions)[0, 1]**2

# exercise

# np.corrcoef(df_test.rating, predictions)[0, 1]**2

# np.corrcoef(df_test.rating, predictions + 1)[0, 1]**2 # same

# r2_score(df_test.rating, predictions + 1) # negative!

0.508431158347433

0.508431158347433

INFO R-squared Variants

There are different versions of R-squared. ‘Adjusted’ R-squared is a
common one, and it penalizes the model for adding features that don’t
really explain the target variance. This is a nice sentiment, but its
difference versus the standard R-squared would only be noticeable for
very small datasets. Some have also attempted to come up with R-
squared values that are more appropriate for GLMs for count, binary
and other models. Unfortunately, these ‘pseudo-R-squared’ values are
not as interpretable as the original R-squared, and they generally have
several issues.

Mean squared error

One of the most common performance metrics for numeric targets is the mean
squared error (MSE) and its square root, root mean squared error (RMSE).
The MSE is the average of the squared differences between the predicted and
actual values. It is calculated as follows:

MSE = 1
𝑛𝑛

𝑛𝑛
∑
𝑖𝑖𝑖𝑖

(𝑦𝑦𝑖𝑖 − ̂𝑦𝑦𝑖𝑖)2 (4.2)
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MSE penalizes large errors more. Since errors are squared, the larger the error,
the larger the penalty. As mentioned previously, RMSE is just the square root
of the MSE. We also saw that it has a similar metric reported in typical linear
regression output (Section 3.4.2). Like MSE, RMSE also penalizes large errors,
but if you want a metric that is in the same units as the original target data,
RMSE is the metric for you. It is calculated as follows:

RMSE =
√
MSE (4.3)

R

mse = mean((df_test$rating - predictions)^2)

mse

yardstick::rmse_vec(df_test$rating, predictions)^2

[1] 0.2133

[1] 0.2133

sqrt(mse)

yardstick::rmse_vec(df_test$rating, predictions)

[1] 0.4619

[1] 0.4619

Python

from sklearn.metrics import mean_squared_error, root_mean_squared_error

mse = np.mean((df_test.rating - predictions)**2)

mse

mean_squared_error(df_test.rating, predictions)

0.20798285555421575

0.20798285555421575

np.sqrt(mse)

root_mean_squared_error(df_test.rating, predictions)
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mean_squared_error(df_test.rating, predictions)

0.20798285555421575

0.20798285555421575

np.sqrt(mse)

root_mean_squared_error(df_test.rating, predictions)
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0.4560513738102493

0.4560513738102493

Mean absolute error

The mean absolute error (MAE) is the average of the absolute differences
between the predicted and observed values. It is calculated as follows:

MAE = 1
𝑛𝑛

𝑛𝑛
∑
𝑖𝑖𝑖𝑖

|𝑦𝑦𝑖𝑖 − ̂𝑦𝑦𝑖𝑖| (4.4)

MAE is a great metric when all you really want to know is how far off your
predictions typically are from the observed values. It is not as sensitive to large
errors as the MSE.

R

mean(abs(df_test$rating - predictions))

yardstick::mae_vec(df_test$rating, predictions)

[1] 0.352

[1] 0.352

Python

from sklearn.metrics import mean_absolute_error

np.mean(abs(df_test.rating - predictions))

mean_absolute_error(df_test.rating, predictions)

0.3704072983307527

0.3704072983307527

Mean absolute percentage error

The mean absolute percentage error (MAPE) is the average of the absolute
differences between the predicted and observed values, expressed as a percentage
of the observed values. It is calculated as follows:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 1
𝑛𝑛

𝑛𝑛
∑
𝑖𝑖𝑖𝑖

|𝑦𝑦𝑖𝑖 − ̂𝑦𝑦𝑖𝑖|
𝑦𝑦𝑖𝑖

(4.5)
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R

mean(

abs(df_test$rating - predictions) /

df_test$rating

) * 100

yardstick::mape_vec(df_test$rating, predictions)

[1] 12.86

[1] 12.86

Python

from sklearn.metrics import mean_absolute_percentage_error

np.mean(

abs(df_test.rating - predictions) /

df_test.rating

) * 100

mean_absolute_percentage_error(df_test.rating, predictions) * 100

13.464399850975898

13.464399850975898

Which regression metric should I use?

In the end, it won’t hurt to look at a few of these metrics to get a better idea
of how well your model is performing. You will always be using at least one of
these metrics to compare different models, so use a few of them to get a better
sense of how well your models are performing relative to one another. Does
adding a feature help drive down RMSE, indicating that the feature helps to
reduce large errors? In other words, does adding complexity to your model
provide a big reduction in error? If adding features doesn’t help reduce error,
do you really need to include them in your model?

4.2.2 Classification metrics
Whenever we are classifying outcomes in a binary case, we don’t have the
same ability to compare a predicted score to an observed score. Instead, we
typically use the predicted probability of an outcome, establish a cut-point
for that probability, convert everything below that cut-point to 0, and then
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convert everything at or above that cut-point to 1. We can then compare a
table predicted versus target classes, typically called a confusion matrix3.

Let’s start with a model to predict whether a review is “good” or “bad”. We
will use the same training and testing data that we created above. Explore the
summary output if desired (not shown), but we will focus on the predictions
and metrics.

R

model_class_train = glm(

rating_good ~

review_year_0

+ release_year_0

+ age_sc

+ length_minutes_sc

+ total_reviews_sc

+ word_count_sc

+ genre

,

df_train,

family = binomial

)

summary(model_class_train)

# a numeric version to use later

y_target_testing_bin = ifelse(df_test$rating_good == "good", 1, 0)

Python

import statsmodels.api as sm

import statsmodels.formula.api as smf

model = 'rating_good ~ ' + " + ".join(features)

model_class_train = smf.glm(

formula = model,

data = df_train,

3The origin of the term “confusion matrix” is a bit muddled, and it’s not clear why it’s
not just called a classification table/matrix (as it actually is from time to time). If you call
it a classification table, probably everyone will know exactly what you mean, but if you call
it a confusion matrix, probably few outside of data science (or domains that use it) will
know what you’re talking about.
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family = sm.families.Binomial()

).fit()

# model_class_train.summary()

Now that we have our model trained, we can use it to get the predicted
probabilities for each observation4.

R

predicted_prob = predict(

model_class_train,

newdata = df_test,

type = "response"

)

Python

predicted_prob = model_class_train.predict(df_test)

We are going to take those probability values and make a decision to convert
everything above .5 to the positive class (a “good” review), which we can do
simply by rounding, or with an if-else type of approach. It is a bold assumption,
but one that we will make at first!

R

predicted_class = round(predicted_prob)

predicted_class = ifelse(predicted_prob > .5, 1, 0)

Python

predicted_class = predicted_prob.round().astype(int)

Confusion matrix

The confusion matrix is a table that shows the number of correct and incorrect
predictions made by the model. It’s easy enough to get one from scratch, but

4Machine learning libraries in Python based on the scikit-learn API will have a predict_proba

method that will give you the probability of each class, while the predict method will give
you the predicted class. The latter typically makes the assumption that the cut-point for
classification is .5.
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we recommend using a function that will give you a nice table, and possibly all
of the metrics you need along with it. To get us started, we can use a package
function that will take our predictions and observed target as input to create
the basic table.

R

We use mlr3verse in the machine learning chapters, so we’ll use it here for our
confusion matrix. Though our predictions are 0/1, we need to convert it to a
factor for this function.

# we'll use the mlr3verse in the machine learning demos also

rating_cm = mlr3measures::confusion_matrix(

factor(df_test$rating_good), # requires factor

factor(predicted_class),

positive = "1" # class 1 is 'good'

)

Python

We can get an extremely rudimentary confusion matrix by using the
confusion_matrix function from sklearn.metrics. We’ll use it here to get the
basic table, but we’ll use a more advanced function later.

from sklearn.metrics import confusion_matrix

rating_cm = confusion_matrix(df_test.rating_good, predicted_class)

Table 4.2: Example of a Confusion Matrix

True 1 True 0
Predicted 1 TP: 117 FP: 27
Predicted 0 FN: 22 TN: 84

• TP: True Positive is an outcome where the model correctly predicts the
positive class – the model correctly predicted that the review was good.

• TN: True Negative is an outcome where the model correctly predicts the
negative class – the model correctly predicted that the review was not
good.

• FP: False Positive is an outcome where the model incorrectly predicts the
positive class – the model incorrectly predicted that the review was good
when it was bad.

• FN: False Negative is an outcome where the model incorrectly predicts
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the negative class – the model predicted that the review was bad when it
was good.

In an ideal world, we would have all of our observations fitting nicely in the
diagonal of that table. Unfortunately, we don’t live in that world, and the
greater amount we have in the off-diagonal (i.e., in the FN and FP spots), the
worse our model is at classifying outcomes.

Let’s look at some metrics that will help to see if we’ve got a suitable model
or not. We’ll describe each, then show them all after.

Accuracy

Accuracy’s allure is in its simplicity, and because we use it for so many things
in our everyday affairs. It is simply the proportion of correct predictions made
by the model. But accuracy can also easily mislead you into believing a model
is doing better than it is. If you have any class imbalance, where one class
has far more observations than the other, you can get a high accuracy by
simply predicting the majority class all of the time! To get around the false
sense of confidence that accuracy alone can promote, we can look at a few
other metrics.

INFO Accuracy Is Not Enough

Accuracy is the first thing you see and the last thing that you trust!
Seriously, accuracy alone should not be your sole performance metric
unless you have a perfectly even split in the target! If you find yourself
in a meeting where people are presenting their classification models and
they only talk about accuracy, you should be wary. This is especially
true when those accuracy values seem too good to be true. At the very
least, always be ready to compare it to the baseline rate, or prevalence
of the majority class.

Sensitivity/Recall/True positive rate

Sensitivity, also known as recall or the true positive rate, is the proportion
of observed positives that are correctly predicted by the model. If your focus
is on the positive class above all else, sensitivity is the metric for you.

Specificity/True negative rate

Specificity, also known as the true negative rate, is the proportion of
observed negatives that are correctly predicted as such. If you want to know
how well your model will work with the negative class, specificity is a great
metric.
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Precision/Positive predictive value

The precision is the proportion of positive predictions that are correct, and
it is often a key metric in many business use cases. While similar to sensitivity,
precision focuses on positive predictions, while sensitivity focuses on observed
positive cases5.

Negative predictive value

The negative predictive value is the proportion of negative predictions that
are correct, and is the complement to precision.

Now let’s demystify this a bit and see how we’d do this ourselves. Starting
with a basic confusion matrix of counts, we’ll then extract the values to create
the metrics we need.

R

our_cm = rating_cm$matrix

TN = our_cm[2, 2]

TP = our_cm[1, 1]

FN = our_cm[2, 1]

FP = our_cm[1, 2]

acc = (TP + TN) / sum(our_cm) # accuracy

tpr = TP / (TP + FN) # true positive rate, sensitivity, recall

tnr = TN / (TN + FP) # true negative rate, specificity

ppv = TP / (TP + FP) # positive predictive value, precision

npv = TN / (TN + FN) # negative predictive value

Python

our_cm = rating_cm

TN = our_cm[0, 0]

TP = our_cm[1, 1]

FN = our_cm[1, 0]

FP = our_cm[0, 1]

acc = (TP + TN) / np.sum(our_cm) # accuracy

5It’s not obvious why people started using terms like recall/sensitivity and specificity.
Neither of them is as clear as true positive rate and true negative rate in conveying the
underlying metric in our opinion. Why anyone thought ‘precision’ was a good name for any
metric is beyond us, given how many metrics could generically be called as such.
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tpr = TP / (TP + FN) # true positive rate, sensitivity, recall

tnr = TN / (TN + FP) # true negative rate, specificity

ppv = TP / (TP + FP) # positive predictive value, precision

npv = TN / (TN + FN) # negative predictive value

Now that we have a sense of some metrics, let’s get a confusion matrix and
stats using packages that will give us a lot of these metrics at once. In both
cases we have an 0/1 integer where 0 is a rating of “bad” and 1 is “good”.

R

tibble(

metric = c('ACC', 'TPR', 'TNR', 'PPV', 'NPV'),

ours = c(acc, tpr, tnr, ppv, npv),

package = rating_cm$measures[c('acc', 'tpr', 'tnr', 'ppv', 'npv')]

)

Python

We find pycm to be a great package for this purpose, as practically every
metric based on a confusion matrix you can think of is available. You can also
use sklearn.metrics and its corresponding classification_report function.

from pycm import ConfusionMatrix

rating_cm = ConfusionMatrix(

df_test.rating_good.to_numpy(),

predicted_class.to_numpy(),

digit = 3

)

# print(rating_cm) # lots of stats!

package_result = [

rating_cm.class_stat[stat][1] # get results specific to class 1

for stat in ['ACC', 'TPR', 'TNR', 'PPV', 'NPV']

]

pd.DataFrame({

'metric':['ACC', 'TPR', 'TNR', 'PPV', 'NPV'],

'ours': [acc, tpr, tnr, ppv, npv],

'package': package_result

})
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So now we have demystified some classification metrics as well! Your results
may be slightly different due to the random nature of the data splits, but
they should be very similar to these and should match the package results
regardless.

Table 4.3: Classification Results (based on R data/model)

metric ours package
ACC 0.804 0.804
TPR 0.842 0.842
TNR 0.757 0.757
PPV 0.812 0.812
NPV 0.792 0.792

Ideal decision points for classification

Earlier when we obtained the predicted class, and subsequently all the metrics
based on it, we used a predicted probability value of 0.5 as a cutoff for a
‘good’ vs. a ‘bad’ rating, and this is usually the default if we don’t specify it
explicitly. Assuming that this is the best for a given situation is actually a bold
assumption on our part, and we should probably make sure that the cut-off
value we choose is going to offer us the best result given the modeling context.

But what is the best result? That’s going to depend on the situation. If we
are predicting whether a patient has a disease, we might want to minimize
false negatives, since if we miss the diagnosis, the patient could be in serious
trouble. Meanwhile if we are predicting whether a transaction is fraudulent,
we might want to minimize false positives, since if we flag a transaction as
fraudulent when it isn’t, we could be causing a lot of trouble for the customer,
and add cost to the company to deal with it. In other words, we might want
to maximize the true positive or true negative rates, respectively.

Whatever we decide, we ultimately are just shifting the metrics around relative
to one another. As an easy example, if we were to classify all of our observations
as ‘good’, we would have a sensitivity of 1 because all good ratings would be
classified correctly. However, our positive predictive value would not be 1, and
we’d have a specificity of 0. No matter which cut-point we choose, we are going
to have to make a tradeoff.

Where this comes into play is with model selection, where we choose a model
based on a particular metric, and something we will talk about very soon.
If we are comparing models based on accuracy, we might choose a different
model than if we are comparing based on sensitivity. And given a particular
threshold, we might choose a different model based on the same metric than
we would have with a different threshold.
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To help us with the task of choosing a threshold, we will start by creating
what’s called a Receiver Operating Characteristic (ROC) curve. This
curve plots the true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings. The area under the curve (AUC) is a measure
of how well the model is able to distinguish between the two classes. The closer
the AUC is to 1, the better the model is at distinguishing between the two
classes. The AUC is a very popular metric because it is not sensitive to our
threshold, and concerns two metrics we are routinely interested in6.

R

roc = performance::performance_roc(model_class_train, new_data = df_test)

roc

# requires the 'see' package

plot(roc)

Python

from sklearn.metrics import roc_curve, auc, RocCurveDisplay

fpr, tpr, thresholds = roc_curve(

df_test.rating_good,

predicted_prob

)

auc(fpr, tpr)

RocCurveDisplay(fpr=fpr, tpr=tpr).plot()

6The precision-recall curve is a very similar approach which visualizes the tradeoff
between precision and recall. The area under the precision-recall curve (AUPRC) is its
corresponding metric.
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Figure 4.2: ROC curve and AUC value.

With ROC curves and AUC values in hand, now we can find the ideal cut-point
for balancing the TPR and FPR. There are different ways to do this, but one
common way is to use the Youden’s J statistic, which we do here.

R

# produces the same value as before

roc_ = pROC::roc(df_test$rating_good, predicted_prob)

threshold = pROC::coords(roc_, "best", ret = "threshold")

predictions = ifelse(

predict(model_class_train, df_test, type='response') >= threshold$threshold,

1,

0

)

cm_new = mlr3measures::confusion_matrix(

factor(df_test$rating_good),

factor(predictions),

positive = "1"

)

tibble(

threshold = threshold,

TPR = cm_new$measures['tpr'],

TNR = cm_new$measures['tnr']

)

AUC: 0.87
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# A tibble: 1 x 3

threshold$threshold TPR TNR

<dbl> <dbl> <dbl>

1 0.505 0.835 0.766

Python

cut = thresholds[np.argmax(tpr - fpr)]

pd.DataFrame({

'threshold': [cut],

'TPR': [tpr[np.argmax(tpr - fpr)]],

'TNR': [1 - fpr[np.argmax(tpr - fpr)]],

})

threshold TPR TNR

0 0.483 0.887 0.726

The result is a “best” decision cut-point for converting our predicted proba-
bilities to classes, though again, there are different and equally valid ways of
going about this. The take-home point is that instead of being naive about
setting our probability to .5, this will provide a cut-point that will lead to a
more balanced result that recognizes other metrics that are important beyond
accuracy. We will leave it to you to take that ideal cut-point value and update
your metrics to see how much of a difference it will make7.

Note again that this only changes the metric values relative to one another, not
the overall performance of the model - the actual predicted probabilities don’t
change after all. For example, accuracy may go down while recall increases.
You’ll need to match these metrics to your use case to see if the change is
worth it. Whether it is a meager, modest, or meaningful improvement is going
to vary from situation to situation, as will how you determine if your model is
“good” or “bad”. Is this a good model? Are you more interested in correctly
identifying the positive class, or the negative class? Are you more interested in
avoiding false positives/negatives? These are all questions that you will need
to answer depending on the modeling context.

INFO Multiclass Classification

The metrics we’ve discussed here are for binary classification, but there
are also metrics for multiclass classification. The initial conversion from
raw output to probability is done by a softmax function, which extends

7It is not lost on us that our R model actually chose ~ .5! But even then, you can see the
slight difference in TPR/TNR.



80 4 Understanding the Model

# A tibble: 1 x 3

threshold$threshold TPR TNR

<dbl> <dbl> <dbl>

1 0.505 0.835 0.766

Python

cut = thresholds[np.argmax(tpr - fpr)]

pd.DataFrame({

'threshold': [cut],

'TPR': [tpr[np.argmax(tpr - fpr)]],

'TNR': [1 - fpr[np.argmax(tpr - fpr)]],

})

threshold TPR TNR

0 0.483 0.887 0.726

The result is a “best” decision cut-point for converting our predicted proba-
bilities to classes, though again, there are different and equally valid ways of
going about this. The take-home point is that instead of being naive about
setting our probability to .5, this will provide a cut-point that will lead to a
more balanced result that recognizes other metrics that are important beyond
accuracy. We will leave it to you to take that ideal cut-point value and update
your metrics to see how much of a difference it will make7.

Note again that this only changes the metric values relative to one another, not
the overall performance of the model - the actual predicted probabilities don’t
change after all. For example, accuracy may go down while recall increases.
You’ll need to match these metrics to your use case to see if the change is
worth it. Whether it is a meager, modest, or meaningful improvement is going
to vary from situation to situation, as will how you determine if your model is
“good” or “bad”. Is this a good model? Are you more interested in correctly
identifying the positive class, or the negative class? Are you more interested in
avoiding false positives/negatives? These are all questions that you will need
to answer depending on the modeling context.

INFO Multiclass Classification

The metrics we’ve discussed here are for binary classification, but there
are also metrics for multiclass classification. The initial conversion from
raw output to probability is done by a softmax function, which extends

7It is not lost on us that our R model actually chose ~ .5! But even then, you can see the
slight difference in TPR/TNR.

4.3 Model Selection and Comparison 81

the logistic/sigmoid function to multiple classes. So we get probabilities
for each class, and can classify each observation to the class with the
highest probability.
The confusion matrix is extended to show the number of correct and
incorrect predictions for each class and the metrics are extended to show
how well the model is able to distinguish between the classes. All metrics
discussed have a multiclass variant, typically by averaging the metric
across all classes, or by focusing on a particular class versus all other
classes.

4.3 Model Selection and Comparison
Another important way to understand our model is by looking at how it
compares to other models in terms of performance, however we choose to
define that. One common way we can do this is by comparing models based
on the metric(s) of our choice, for example, with RMSE or AUC. Let’s see
this in action for our regression model. Here we will compare three models:
our original model, one with a subset of three features, and the three-feature
model that includes interactions with genre. Our goal will be to see how these
perform on the test set based on RMSE.

R

# create the models

model_lr_3feat = lm(

rating ~ review_year_0 + release_year_0 + age_sc,

df_train

)

model_lr_interact = lm(

rating ~ review_year_0 * genre + release_year_0 * genre + age_sc * genre,

df_train

)

model_lr_train = lm(

rating ~

review_year_0

+ release_year_0

+ age_sc

+ length_minutes_sc
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+ total_reviews_sc

+ word_count_sc

+ genre

,

df_train

)

# get the predictions, calculate RMSE

result = map(

list(model_lr_3feat, model_lr_train, model_lr_interact),

~ predict(.x, newdata = df_test)

) |>

map_dbl(

~ yardstick::rmse_vec(df_test$rating, .)

)

Python

import statsmodels.formula.api as smf

from sklearn.metrics import root_mean_squared_error

# create the models

model_lr_3feat = smf.ols(

'rating ~ review_year_0 + release_year_0 + age_sc',

data=df_train

).fit()

model_lr_interact = smf.ols(

'rating ~ review_year_0 * genre + release_year_0 * genre + age_sc * genre',

data=df_train

).fit()

model_lr_train = smf.ols(

formula=

'''

rating ~

review_year_0

+ release_year_0

+ age_sc

+ length_minutes_sc

+ total_reviews_sc

+ word_count_sc

+ genre
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'''

,

data=df_train

).fit()

models = [model_lr_3feat, model_lr_train, model_lr_interact]

# get the predictions, calculate RMSE

result = pd.DataFrame({

'model': ['3 features', 'original', '3 feat+interact'],

'rmse': [

root_mean_squared_error(

df_test.rating,

model.predict(df_test[features])

)

for model in models

]

})

Table 4.4: RMSE for Different Models

model rmse % Δ RMSE1

original 0.46 27%
3 feat+interact 0.55 12%
3 features 0.63 0%

1% Δ is the percentage drop relative to the largest value.

In this case, the three-feature model does worst, but adding interactions of
those features with genre improves the model. However, we see that our original
model with seven features has the lowest RMSE, indicating that it is the best
model under these circumstances. This suggests that the additional features
have more to add to the model. This is a simple example, but it is a very typical
way to compare models that you would use frequently. The same approach
would work for classification models, just using an appropriate metric like
AUC or F1.

Another thing to consider is that even with a single model, the model fitting
procedure is always comparing a model with the current parameter estimates,
or more generally the current objective function value, to a previous one with
different parameter estimates. In this case, our goal is model selection, or
how we choose the best result from a single model. While this is an automatic
process, the details of how this actually happens is the focus of Chapter 6. In
other cases, we are selecting models through the process of cross-validation
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(Section 10.6), but the idea is largely the same in that we are comparing our
current parameter estimates to other possibilities. We are always doing model
selection and comparison, and as such, we’ll be demonstrating these often.

4.4 Model Visualization
A key method for understanding how our model is performing is through
visualization. You’ll recall that we started out way back by look at the predicted
values against the observed values to see if there was any correspondence
(Figure 3.3), but another key way to understand our model is to look at
the residuals, or errors in prediction, which again is the difference in our
prediction versus the observed value. Here are a couple of plots that can help
us understand our model:

• Residuals vs. Fitted: This type of plot shows predicted values vs. the
residuals (or some variant of the residuals, like their square root). If you see
a pattern, that potentially means your model is not capturing something in
the data. For example, if you see a funnel shape, that would suggest that
you are systematically having worse predictions for some part of the data.
For some plots, patterns may suggest an underlying nonlinear relationship
in the data is yet to be uncovered. For our main regression model, we don’t
see any patterns that would indicate that the model has a notable issue.

Figure 4.3: Residuals vs. fitted plot for our regression model.

• Training/Test Performance: For iterative approaches like deep learning,
we may want to see how our model is performing across iterations, typically
called “epochs”. We can look at the training and testing performance to
see if our model is overfitting or underfitting. We can actually do this
with standard models as well if the estimation approach is iterative, but
it’s not as common. We can also visualize performance across samples of
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with standard models as well if the estimation approach is iterative, but
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the data, such as in cross-validation. The following shows performance for
a model similar to the multilayer perceptron (MLP) demonstrated later
(Section 11.7), and using the same features as our other models. Here we
see it get to a relatively low objective function value after just a few epochs.

Figure 4.4: MSE loss over 25 epochs in an MLP model.

• Predictive Check: This is a basic comparison of predicted vs. observed
target values. In the simplest case you can just examine your predictions
vs. the observed values, and that’s plenty for a quick assessment.

Figure 4.5: Predictive check for a regression model.

We may be getting ahead of ourselves to understand this completely yet, but it’s
worth knowing about posterior predictive checks, which are typically used
with Bayesian models, but are not restricted to that case. A proper posterior
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predictive check is a bit more involved, but there are packages that make it
straightforward8. The basic idea is that we simulate the target based on the
model parameter estimates and their uncertainty. And with that distribution
of estimates (e.g., regression coefficients), we can then simulate random draws
of predicted values. A step-by-step approach is as follows:

1. Simulate the parameters following the assumed distribution, e.g., a
normal distribution for the regression coefficients.

2. For each simulated parameter set, make a model prediction.
3. Repeat this process many times to get a distribution of predictions.
4. Compare this distribution to the observed target distribution.

In our final step, we compare that distribution of predictions to the observed
target distribution. If the two distributions are similar, then the model is doing
a good job of capturing the target distribution.

This plot is ubiquitous in Bayesian modeling, but it can potentially be used
for any model that has uncertainty estimates or is otherwise able to gener-
ate random draws of the target distribution. For our regression model, our
predictions match the target distribution well.

Figure 4.6: Bayesian posterior predictive check for a regression model.

8The performance package in R has a check_predictions function that can do this for you,
and we used it here. Base R has a simulate function that can be used to generate random
draws of the predictive distribution for lm/glm models. For Python, you’ll need to use a
package like arviz for Bayesian models, or write your own function for other models.
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8The performance package in R has a check_predictions function that can do this for you,
and we used it here. Base R has a simulate function that can be used to generate random
draws of the predictive distribution for lm/glm models. For Python, you’ll need to use a
package like arviz for Bayesian models, or write your own function for other models.
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• Other Plots: Other plots may look at the distribution of residuals, check
for extreme values, to see if there is an over-abundance of zero values, and
other issues, some of which may be specific to the type of model you are
using.

The following shows how to get a residuals vs. fitted plot and a posterior
predictive check.

R

performance::check_model(model_lr_train, check = c('linearity', 'pp_check'))

Python

import seaborn as sns

import matplotlib.pyplot as plt

## Residual Plot

sns.residplot(

x = model_lr_train.fittedvalues,

y = df_train.rating,

lowess = True,

line_kws={'color': 'red', 'lw': 1}

)

plt.xlabel('Fitted values')

plt.ylabel('Residuals')

plt.title('Residuals vs. Fitted')

plt.show()

## Posterior Predictive Check

# get the model parameters

pp = model_lr_train.model.get_distribution(

params = model_lr_train.params,

scale = model_lr_train.scale,

exog = model_lr_train.model.exog

)

# Generate 10 simulated predictive distributions

pp_samples = [pp.rvs() for _ in range(10)]

# Plot the distribution of pp_samples

for sample in pp_samples:

sns.kdeplot(sample, label='pp.rvs()', alpha=0.25)
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# Overlay the density plot of df_train.rating

sns.kdeplot(

df_train.rating.to_numpy(),

label='df_train.rating',

linewidth=2

)

plt.xlabel('Rating')

plt.ylabel('Density')

plt.title('Distribution of predictions vs. observed rating')

plt.show()

INFO Tests of Assumptions

For standard GLM models there are an abundance of statistical tests
available for some of these checks, for example heterogeneity of variance,
or whether your residuals are normally distributed. On a practical level,
these are not usually helpful and are often misguided. For example, if you
have a large sample size, you will almost always reject the null hypothesis
that your residuals are normally distributed. It also starts the turtles all
the way down problem of whether you need to check the assumptions of
your test of assumptions! We prefer the ‘seeing is believing’ approach. It
is often pretty clear when there are model and data issues, and if it isn’t,
it’s probably not a big deal.

4.5 Wrapping Up
It is easy to get caught up in the excitement of creating a model and then
using it to make predictions. It is also easy to get caught up in the excitement
of seeing a model perform well on a test set. It is much harder to take a step
back and ask yourself, “Is this model really doing what I want it to do?” It
takes a lot of work to trust what a model is telling you.

4.5.1 The common thread
Much of what you’ve seen in this chapter can be applied to any model. From
linear regression to deep learning, we often use similar metrics to help select
and compare models.
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4.5.2 Choose your own adventure
Now that you’ve gotten a grasp of how to understand the model from a general
perspective, you can focus on understanding more about how features relate
to the target and make predictions. Head to Chapter 5 to find out more!

4.5.3 Additional resources
If this chapter has piqued your curiosity, we would encourage you to check out
the following resources.

Even though we did not use the mlr3 package in this chapter, the Evalua-
tion and Benchmarking chapter of the associated book, Applied Machine
Learning Using mlr3 in R, offers a great conceptual take on model metrics and
evaluation.

For a more Pythonic look at model evaluation, we would highly recommend
going through the sci-kit learn documentation on Model Evaluation. It has
you absolutely covered with code examples and concepts.



https://taylorandfrancis.com


5
Understanding the Features

Assuming our model is adequate, let’s now turn our attention to the features.
There’s a lot to unpack here, so let’s get started!

5.1 Key Ideas
• There are many ways to get to know your features, and though it can be

challenging, it can also be very rewarding!
• Visualizations can help you understand how your model is making predictions

and which features are important.
• Feature importance is difficult to determine even in the simplest of model

settings, but there are tools to help you understand how much each feature
contributes to a prediction.

91
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5.1.1 Why this matters
We often need to, or simply want to, know why our predictions come about.
What’s driving them? What happens for specific observations? By exploring
the features, we can begin to better understand our model, and potentially
improve it. We can also get a sense of what’s important in our data, and what’s
not, and this can help us make better decisions.

5.1.2 Helpful context
We suggest having the linear model basics down pretty well, including basic
logistic regression (Section 8.3), as much of what we explore here can be
understood most easily in that setting. If you already have machine learning
models down too, you’re in good shape, as this can all apply in those modeling
contexts as well.

5.2 Data Setup
We’ll use the movie review data as with our previous chapters. Later on, we’ll
also use the world happiness dataset to explore some more advanced concepts.
For the movie review data, we’ll split the data into training and testing sets,
and then fit a linear regression model and a logistic regression model to the
training data. We’ll then use the testing data to evaluate the models.

R

# all data found on github repo

df_reviews = read_csv('https://tinyurl.com/moviereviewsdata')

set.seed(123)

initial_split = sample(

x = 1:nrow(df_reviews),

size = nrow(df_reviews) * .75,

replace = FALSE

)

df_train = df_reviews[initial_split, ]

df_test = df_reviews[-initial_split, ]

model_lr_train = lm(

rating ~
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review_year_0

+ release_year_0

+ age_sc

+ length_minutes_sc

+ total_reviews_sc

+ word_count_sc

+ genre

,

df_train

)

model_class_train = glm(

rating_good ~

review_year_0

+ release_year_0

+ age_sc

+ length_minutes_sc

+ total_reviews_sc

+ word_count_sc

+ genre

,

df_train,

family = binomial

)

Python

import pandas as pd

import numpy as np

import statsmodels.api as sm

import statsmodels.formula.api as smf

from sklearn.model_selection import train_test_split

# all data found on github repo

df_reviews = pd.read_csv('https://tinyurl.com/moviereviewsdata')

df_train, df_test = train_test_split(

df_reviews,

test_size = 0.25,

random_state = 123

)
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# we'll use this later

features = [

"review_year_0",

"release_year_0",

"age_sc",

"length_minutes_sc",

"total_reviews_sc",

"word_count_sc",

"genre",

]

model = 'rating ~ ' + " + ".join(features)

model_lr_train = smf.ols(formula = model, data = df_train).fit()

model = 'rating_good ~ ' + " + ".join(features)

model_class_train = smf.glm(

formula = model,

data = df_train,

family = sm.families.Binomial()

).fit()

5.3 Basic Model Parameters
We saw in the foundations chapter chapter (3.4.1) that we can get a lot out
of the basic output from standard linear models like linear regression. Our
starting point should be the coefficients or weights, which can give us a sense
of the direction and magnitude of the relationship between the feature and the
target given their respective scales. We can also look at the standard errors
and confidence intervals to get a sense of the uncertainty in those estimates.
Table 5.1 is a basic summary of the coefficients for our regression model on
the training data.
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Table 5.1: Coefficients for Our Regression Model

feature estimate std_error statistic p_value conf_low conf_high

intercept 2.44 0.08 32.29 0.00 2.29 2.59
review_year_0 0.01 0.00 2.65 0.01 0.00 0.01
release_year_0 0.01 0.00 5.29 0.00 0.01 0.01
age_sc −0.05 0.02 −3.21 0.00 −0.09 −0.02
length_minutes_sc 0.19 0.02 10.40 0.00 0.15 0.22
total_reviews_sc 0.26 0.02 14.43 0.00 0.22 0.30
word_count_sc −0.12 0.02 −6.94 0.00 −0.15 −0.08
genreComedy 0.53 0.06 8.26 0.00 0.40 0.65
genreDrama 0.58 0.04 13.50 0.00 0.50 0.67
genreHorror 0.00 0.08 0.03 0.98 −0.16 0.16
genreKids 0.07 0.07 1.05 0.30 −0.06 0.20
genreOther 0.03 0.07 0.36 0.72 −0.12 0.17
genreRomance 0.07 0.07 1.05 0.30 −0.06 0.21
genreSci-Fi −0.01 0.08 −0.17 0.87 −0.18 0.15

We also noted how we can get a bit more relative comparison by using standard-
ized coefficients, or some other scaling of the coefficients that allows for a bit
of a more apples-to-apples comparison. But as we’ll see, in the real world even
if we have just apples, there are fuji, gala, granny smith, honeycrisp, and many
other kinds, and some may be good for snacks, others for baking pies, some are
good for cider, etc. In other words, there is no one-size-fits-all approach
to understanding how a feature contributes to understanding the
target, and the sooner you grasp that, the better.

5.4 Feature Contributions
We can also look at the contribution of a feature to the model’s explanatory
power, namely through its predictions. To start our discussion, we don’t want
to lean too heavily on the phrase feature importance yet, because as we’ll
see later, trying to rank features by an importance metric is difficult at best,
and a misguided endeavor at worst. We can however look at the feature
contribution to the model’s predictions, and we can come to a conclusion
about whether we think a feature is practically important, but we just need to
be careful about how we do it.

Truly understanding feature contribution is a bit more complicated than just
looking at the coefficient if we’re using any model that isn’t a linear regression,
and there are many ways to go about it. We know we can’t compare raw
coefficients across features, because they are on different scales. But even when
we put them on the same scale, it may be very easy for some features to move,
e.g., one standard deviation, and very hard for others. Binary features can
only be on or off, while numeric features can move around more, but numeric
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features may also be highly skewed. We also can’t use statistical significance
based on p-values, because they reflect sample size as much or more than effect
size.

So what are we to do? What you need to know to get started looking at a
feature’s contribution includes the following:

• feature range and variability
• feature distributions (e.g., skewness)
• representative values of the feature
• target range and variability
• feature interactions and correlations

We can’t necessarily do a whole lot about these aspects, but we can at least be
aware of them to help us understand any effects we want to explore. And just
as importantly, knowing this sort of information can help us be aware of the
limitations of our understanding of these effects. In any case, let’s try to get a
sense of how we can understand the contribution of a feature to our model.

5.5 Marginal Effects
One way to understand the contribution of a feature to the model is to look
at the marginal effect of the feature, which conceptually attempts to boil a
feature effect to something simple like an average. Unfortunately, not everyone
means the same thing when they use this term and it can be a bit confusing.
Marginal effects typically refer to a partial derivative of the target with respect
to the feature. Oh no! Math! However, as an example, this becomes very
simple for standard linear models with no interactions and all linear effects,
as in linear regression. The derivative of our coefficient with respect to the
feature is just the coefficient itself! But for more complicated models, even
just a classification model like our logistic regression which is nonlinear on the
probability scale, we need to do a bit more work to get the marginal effect, or
other so-called average effects. Let’s think about a couple of common versions:

• Marginal effect at the mean
• Average Marginal Effect, or Average slope
• Marginal Means (for categorical features)
• Counterfactuals and other predictions at key feature values

Note that if you need an introduction or refresher on logistic regression, you’ll
find it in Section 8.3.
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features may also be highly skewed. We also can’t use statistical significance
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5.5.1 Marginal effects at the mean
First let’s think about an average slope. This is the average of the slopes across
the feature’s values, or values of another feature it interacts with. To begin,
let’s just look at the effect of word count first, and we’ll do this for the logistic
regression model to make things more interesting. A good question to start
with is, how do we visualize the relationship/effect?

Figure 5.1 shows two plots, and both are useful, neither is inherently wrong,
and yet they both tell us something different. The first plot shows the predicted
probability of a good review as word count changes, with all other features at
their mean (or mode for categorical features like genre). We can see that on
the probability scale, this relationship is negative with a bit of a curve that
gets steeper with higher word count values.
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Figure 5.1: Marginal effect at the mean vs. partial dependence plot.

The second plot shows what is called a partial dependence plot, which
shows the average predicted probability of a good review as word count changes.
In both cases we make predictions with imputed values. The left plot imputes
the other features to be their mean or mode, while the right plot leaves the
other features at their actual values, and then, using a range of values for word
count, gets a prediction as if every observation had that value for word count.
We then plot the average of the predictions for each value in the range.
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Let’s demystify this by calculating it ourselves.

R

df_typical = tibble(

genre = names(which.max(table(df_train$genre))),

age_sc = mean(df_train$age_sc),

release_year_0 = mean(df_train$release_year_0),

length_minutes_sc = mean(df_train$length_minutes_sc),

total_reviews_sc = mean(df_train$total_reviews_sc),

word_count_sc = mean(df_train$word_count_sc),

review_year_0 = mean(df_train$review_year_0)

)

# avg prediction when everything is typical

avg_pred = predict(model_class_train, newdata = df_typical, type = "response") |>

mean()

# avg prediction when word count is at its mean

avg_pred_0 = predict(

model_class_train,

newdata = df_train |> mutate(word_count_sc = 0),

type = 'response'

) |>

mean()

c(avg_pred, avg_pred_0)

[1] 0.8212 0.5668

Python

df_typical = pd.DataFrame({

"genre": df_train.genre.mode().values,

"age_sc": df_train.age_sc.mean(),

"release_year_0": df_train.release_year_0.mean(),

"length_minutes_sc": df_train.length_minutes_sc.mean(),

"total_reviews_sc": df_train.total_reviews_sc.mean(),

"word_count_sc": df_train.word_count_sc.mean(),

"review_year_0": df_train.review_year_0.mean()

})

# avg prediction when everything is typical

avg_pred_typical = model_class_train.predict(df_typical).mean()
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length_minutes_sc = mean(df_train$length_minutes_sc),

total_reviews_sc = mean(df_train$total_reviews_sc),

word_count_sc = mean(df_train$word_count_sc),

review_year_0 = mean(df_train$review_year_0)
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) |>
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"total_reviews_sc": df_train.total_reviews_sc.mean(),

"word_count_sc": df_train.word_count_sc.mean(),

"review_year_0": df_train.review_year_0.mean()

})

# avg prediction when everything is typical

avg_pred_typical = model_class_train.predict(df_typical).mean()
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# avg prediction when word count is at its mean

avg_pred_0 = model_class_train.predict(

df_train.assign(word_count_sc = 0)

).mean()

avg_pred_typical.round(3), avg_pred_0.round(3)

(0.83, 0.575)

When word count is zero, i.e., its mean, and everything else is at its mean/mode,
we’d predict a chance of a good review at about 82%. The average prediction
we’d get if we predicted every observation as if it were the mean word count
is more like 57%, which is notably less. Which is correct? Both, or neither!
They are telling us different things, either of which may be useful, or not. If
it’s doubtful that the feature values used in the calculation are realistic, e.g.,
everything at its mean at the same time, or an average word count when length
of a movie is at its minimum, then they may both be misleading. You have to
know your features and your target to know how best to use the information.

5.5.2 Average marginal effects
Let’s say we want to distill our understanding of the feature-target relationship
to a single number. In this case, the coefficient is fine if we’re dealing with
an entirely linear model. In this classification case, the raw coefficient tells us
what we need to know, but on the log-odds scale, which is not very intuitive
for most folks. We can understand the probability scale, but this means things
get nonlinear. As an example, a .1 to .2 change in the probability is doubling
it, while a .8 to .9 change is a 12.5% increase in the probability. But is there
any way we can stick with probabilities and get a single value to understand
the change in the probability of a good review as word count changes by 1
unit?

Yes! We can look at what’s called the average marginal effect of word
count. This is the average of the slope of the predicted probability of a good
review as word count changes. This is a bit more complicated than just looking
at the coefficient, but it’s still intuitive, and more so than a coefficient that
regards odds. How do we get it? By a neat little trick where we predict the
target with the feature at two values. We start with the observed value and
then add or subtract a very small amount. Then we take the difference in
the predictions for those two feature values. This results in the same thing as
taking the derivative of the target with respect to the feature.
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R

fudge_factor = 1e-3

fudge_plus = predict(

model_class_train,

newdata = df_train |> mutate(word_count_sc = word_count_sc + fudge_factor/2),

type = "response"

)

fudge_minus = predict(

model_class_train,

newdata = df_train |> mutate(word_count_sc = word_count_sc - fudge_factor/2),

type = "response"

)

# compare

# mean(fudge_plus - fudge_minus) / fudge_factor

marginaleffects::avg_slopes(

model_class_train,

variables = "word_count_sc",

type = 'response'

)

Term Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %

word_count_sc -0.105 0.0155 -6.74 <0.001 35.8 -0.135 -0.0742

Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high

Type: response

Python

fudge_factor = 1e-3

fudge_plus = model_class_train.predict(

df_train.assign(

word_count_sc = df_train.word_count_sc + fudge_factor/2

)

)

fudge_minus = model_class_train.predict(

df_train.assign(
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df_train.assign(

5.5 Marginal Effects 101

word_count_sc = df_train.word_count_sc - fudge_factor/2

)

)

np.mean(fudge_plus - fudge_minus) / fudge_factor

-0.09447284318194568

# note that the marginaleffects is available in Python, but still very fresh!

# we'll add a comparison in the future, but it doesn't handle models

# with categoricals right now.

# import marginaleffects as me

# me.avg_slopes(model_class_train, variables = "word_count_sc")

Our result suggests we’re getting about a -0.1 drop in the expected probability
of a good review for a 1 standard deviation increase in word count on average.
This is a bit more intuitive than the coefficient or odds ratio based on it, and
we probably don’t want to ignore that sort of change. It also doesn’t take much
to get with the right package, or even on our own. Another nice thing about
this approach is that it can potentially be applied to any model, including
ones that don’t normally produce coefficients, like gradient boosting models or
deep learning models.

5.5.3 Marginal means
Marginal means are just about getting an average prediction for the levels of
categorical features. As an example, we can get the average predicted probability
of a good review for each level of the genre feature, and then compare them.
To do this, we just have to make predictions as if every observation had a
certain value for genre, and then we average the predictions. This is also the
exact same approach that produced the PDP for word count we saw earlier.

R

marginal_means = map_df(

unique(df_train$genre),

~ tibble(

genre = .x,

avg_pred = predict(

model_class_train,

newdata = df_train |>

mutate(genre = .x),
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type = "link"

) |>

mean() |> # get the average log odds then transform

plogis()

)

)

# marginal_means

marginaleffects::avg_predictions(

model_class_train,

newdata = df_train,

variables = "genre"

)

Python

inv_logit = lambda x: 1 / (1 + np.exp(-x))

marginal_means = pd.DataFrame({

"genre": df_train.genre.unique(),

"avg_pred": [

inv_logit(

model_class_train.predict(df_train.assign(genre = g), which='linear')

).mean()

for g in df_train.genre.unique()

]

})

marginal_means

Table 5.2: Average Predicted Probability of a Good Review by Genre

genre estimate conf.low conf.high
Comedy 0.85 0.72 0.92
Drama 0.82 0.76 0.87
Action/Adventure 0.38 0.31 0.46
Horror 0.37 0.22 0.56
Sci-Fi 0.45 0.26 0.64
Romance 0.49 0.33 0.65
Other 0.39 0.24 0.55
Kids 0.41 0.27 0.57

Select output from the R package marginaleffects.
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These results suggest that we can expect a good review for Comedy and
Drama, maybe not so much for the others, on average. It also seems that our
probability of a good review is similar for Comedy and Drama, and the others
kind of group together as well.

INFO That’s Not What I Got!

Just a reminder that if you used a different seed for your split or are
using Python vs. R, you will see slightly different results. This is normal
and expected!

5.6 Counterfactual Predictions
The nice thing about having a model is that we can make predictions for any
set of feature values we want to explore. This is a great way to understand the
contribution of a feature to the model. We can make predictions for a range of
feature values, and then compare the predictions to see how much the feature
contributes to the model. Counterfactual predictions allow us to ask “what
if?” questions of our model, and see how it responds. As an example, we can
get a prediction as if every review was made for a drama, and then see what
we’d expect if every review pertained to a comedy. This is a very powerful
approach, and often utilized in causal inference, but it’s also a great way to
understand the contribution of a feature to a model in general.

Consider an experimental setting where we have lots of control over how the
data is produced for different scenarios. Ideally we’d be able to look at the
same instances in a setting where everything about them was identical, but in
one case, the instance was part of the control group, and in another, part of the
treatment group. Unfortunately, not only is it impossible to have everything
be identical, but it’s also impossible to have the same instance be in two
experimental group settings at the same time! Counterfactual predictions are
the next best thing though, because once we have a model, we can predict an
observation as if it was in the treatment, and then when it is a control. If we
do this for all observations, we can get a sense of the average treatment
effect, one of the main points of interest in causal inference.

But you don’t need an experiment for this. In fact, we’ve been doing this all
along with our marginal effects examples. Take the marginal means, where
we looked at the average predicted probability of a good review as if every
observation was a specific genre. We could have also looked at any specific
observation’s predictions to compare the two genre settings, instead of getting
an average. This is very much in the spirit of a counterfactual prediction.
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Let’s try a new dataset to help drive the point home. We’ll use some data at

we’ll predict the happiness score for a country, considering freedom to make
life choices, GDP and other things associated with it. We’ll then switch the
freedom to make life choices and GDP values for the US and Russia, and see
how the predictions change!

R

# data available on repo (full link in appendix)

df_happiness_2018 = read_csv('https://tinyurl.com/worldhappiness2018')

model_happiness = lm(

happiness_score ~

log_gdp_per_capita

+ healthy_life_expectancy_at_birth

+ generosity

+ freedom_to_make_life_choices

+ confidence_in_national_government,

data = df_happiness_2018

)

df_us_russia = df_happiness_2018 |>

filter(country %in% c('United States', 'Russia'))

happiness_gdp_freedom_values = df_us_russia |>

arrange(country) |>

select(log_gdp_per_capita, freedom_to_make_life_choices)

base_predictions = predict(

model_happiness,

newdata = df_us_russia

)

# switch up their GDP and freedom!

df_switch = df_us_russia |>

mutate(

log_gdp_per_capita = rev(log_gdp_per_capita),

freedom_to_make_life_choices = rev(freedom_to_make_life_choices)

)

switch_predictions = predict(

model_happiness,

newdata = df_switch

the global stage: the world happiness dataset (Section C.2). For our model
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Let’s try a new dataset to help drive the point home. We’ll use some data at
the global stage: the world happiness dataset (Section D.2). For our model
we’ll predict the happiness score for a country, considering freedom to make
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R
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)
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mutate(

log_gdp_per_capita = rev(log_gdp_per_capita),
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)

switch_predictions = predict(

model_happiness,

newdata = df_switch
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)

tibble(

country = c('Russia', 'USA'),

base_predictions,

switch_predictions

) |>

mutate(

diff_in_happiness = switch_predictions - base_predictions

)

Python

# data available on repo (full link in appendix)

df_happiness_2018 = pd.read_csv('https://tinyurl.com/worldhappiness2018')

model_happiness = smf.ols(

formula = 'happiness_score ~ \

log_gdp_per_capita \

+ healthy_life_expectancy_at_birth \

+ generosity \

+ freedom_to_make_life_choices \

+ confidence_in_national_government',

data = df_happiness_2018

).fit()

df_us_russia = df_happiness_2018[

df_happiness_2018.country.isin(['United States', 'Russia'])

]

happiness_gdp_freedom_values = df_happiness_2018.loc[

df_happiness_2018.country.isin(['United States', 'Russia']),

['log_gdp_per_capita', 'freedom_to_make_life_choices']

]

base_predictions = model_happiness.predict(df_us_russia)

# switch up their GDP and freedom!

df_switch = df_us_russia.copy()

df_switch[['log_gdp_per_capita', 'freedom_to_make_life_choices']] = df_switch[

['log_gdp_per_capita', 'freedom_to_make_life_choices']

].values[::-1]
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switch_predictions = model_happiness.predict(df_switch)

pd.DataFrame({

'country': ['Russia', 'USA'],

'base_predictions': base_predictions,

'switch_predictions': switch_predictions,

'diff_in_happiness': switch_predictions - base_predictions

}).round(3)

Here are the results in a clean table.

Table 5.3: Counterfactual Predictions for Happiness Score

country base_predictions switch_predictions diff_in_happiness
Russia 5.7 6.4 0.7
United States 6.8 6.1 −0.7

In this case, we see that the happiness score is expected to be very lopsided in
favor of the US, which our base prediction would suggest the US to be almost
a full standard deviation higher in happiness than Russia given their current
values (SD happiness ~1.1). But if the US was just a bit more like Russia,
we’d see a significant drop even if it maintained its life expectancy, generosity,
and faith in government. Likewise, if Russia was a bit more like the US, we’d
expect to see a significant increase in their happiness score.

It’s very easy even with base package functions to see some very interesting
things about our data and model. As an exercise, you might go back to the
movie reviews data and see what happens if we switch the age of reviewer
and length of a movie for a few observations. Counterfactual predictions get
us thinking more explicitly about what the situation would be if things were
much different, but in the end, we’re just playing around with predicted values
and thinking about possibilities!

5.7 SHAP Values
As we’ve suggested, most models are more complicated than can be explained
by a simple coefficient, for example, nonlinear effects in generalized additive
models. Or, there may not even be feature-specific coefficients available, like
gradient boosting models. Or, we may even have many parameters associated
with a feature, as in deep learning. Such models typically won’t come with
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pd.DataFrame({

'country': ['Russia', 'USA'],

'base_predictions': base_predictions,

'switch_predictions': switch_predictions,

'diff_in_happiness': switch_predictions - base_predictions

}).round(3)

Here are the results in a clean table.

Table 5.3: Counterfactual Predictions for Happiness Score

country base_predictions switch_predictions diff_in_happiness
Russia 5.7 6.4 0.7
United States 6.8 6.1 −0.7

In this case, we see that the happiness score is expected to be very lopsided in
favor of the US, which our base prediction would suggest the US to be almost
a full standard deviation higher in happiness than Russia given their current
values (SD happiness ~1.1). But if the US was just a bit more like Russia,
we’d see a significant drop even if it maintained its life expectancy, generosity,
and faith in government. Likewise, if Russia was a bit more like the US, we’d
expect to see a significant increase in their happiness score.

It’s very easy even with base package functions to see some very interesting
things about our data and model. As an exercise, you might go back to the
movie reviews data and see what happens if we switch the age of reviewer
and length of a movie for a few observations. Counterfactual predictions get
us thinking more explicitly about what the situation would be if things were
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statistical output like standard errors and confidence intervals either. But we’ll
still have some tricks up our sleeve to help us figure things out!

A very common interpretation tool is called a SHAP value. SHAP stands for
SHapley Additive exPlanations, and it provides a means to understand how
much each feature contributes to a specific prediction. It’s based on a concept
from game theory called the Shapley value, which is a way to understand how
much each player contributes to the outcome of a game. For our modeling
context, SHAP values break down a prediction to show the impact of each
feature. The reason we bring it up here is that it has a nice intuition in the
linear model case, and seeing it in that context is a good way to get a sense of
how it works. Furthermore, it builds on what we’ve been talking about with
our various prediction approaches.

While the actual computations behind the scenes can be tedious, the basic idea
is relatively straightforward. For a given prediction at a specific observation
with set feature values, we can calculate the difference between the prediction at
that observation versus the average prediction for the model as a whole. We can
break this down for each feature, and see how much each contributes to the
difference. This provides us the local effect of the feature, or how it plays out
for a specific observation, as opposed to the whole data. The SHAP approach
also has the benefit of being able to be applied to any model, whether a simple
linear or deep learning model. Very cool! To demonstrate, we’ll use the simple
model from our model comparison demo in the previous chapter but keep the
features on the raw scale.

R

model_lr_3feat = lm(

rating ~

age

+ release_year

+ length_minutes,

data = df_reviews

)

# inspect if desired

# summary(model_lr_3feat)

Python

model_lr_3feat = smf.ols(

formula = 'rating ~ \

age \

+ release_year \
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+ length_minutes',

data = df_reviews

).fit()

# inspect if desired

# model_lr_3feat.summary(slim = True)

With our model in place, let’s look at the SHAP values for the features. We’ll
start by choosing the instance we want to explain. Here we’ll consider an
observation where the release year is 2020, age of reviewer is 30, and a movie
length of 110 minutes. To aid our understanding, we calculate the SHAP values
at that observation by hand, and using a package. The by-hand approach
consists of the following steps.

1. Get the average prediction for the model
2. Get the prediction for the feature at the value of interest for all

observations, and average the predictions
3. Calculate the SHAP value as the difference between the average

prediction and the average prediction for the feature value of interest

Note that this approach only works for our simple linear regression case, and
we’d need to use a package incorporating an appropriate method for more
complicated settings. But this simplified approach helps get our bearings on
what SHAP values tell us. Also, be aware that our focus is a feature’s marginal
contribution at a single observation. Our coefficient already tells us the average
contribution of a feature across all observations for this linear regression setting,
i.e., the average marginal effect discussed previously.

R

# first we need to get the average prediction

avg_pred = mean(predict(model_lr_3feat))

# observation of interest we want shap values for

obs_of_interest = tibble(

age = 30,

length_minutes = 110,

release_year = 2020

)

# then we need to get the prediction for the feature value of interest

# for all observations, and average them

pred_age_30 = predict(
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model_lr_3feat,

newdata = df_reviews |> mutate(age = obs_of_interest$age)

)

pred_year_2022 = predict(

model_lr_3feat,

newdata = df_reviews |>

mutate(release_year = obs_of_interest$release_year)

)

pred_length_110 = predict(

model_lr_3feat,

newdata = df_reviews |>

mutate(length_minutes = obs_of_interest$length_minutes)

)

# then we can calculate the shap values

shap_value_ours = tibble(

age = mean(pred_age_30) - avg_pred,

release_year = mean(pred_year_2022) - avg_pred,

length_minutes = mean(pred_length_110) - avg_pred

)

Python

# first we need to get the average prediction

avg_pred = model_lr_3feat.predict(df_reviews).mean()

# observation of interest we want shap values for

obs_of_interest = pd.DataFrame({

'age': 30,

'release_year': 2020,

'length_minutes': 110

}, index = ['new_observation'])

# then we need to get the prediction for the feature value of interest

# for all observations, and average them

pred_dat = df_reviews.assign(

age = obs_of_interest.loc['new_observation', 'age']

)

pred_age_30 = model_lr_3feat.predict(pred_dat)

pred_dat = df_reviews.assign(
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release_year = obs_of_interest.loc['new_observation', 'release_year']

)

pred_year_2022 = model_lr_3feat.predict(pred_dat)

pred_dat = df_reviews.assign(

length_minutes = obs_of_interest.loc['new_observation', 'length_minutes']

)

pred_length_110 = model_lr_3feat.predict(pred_dat)

# then we can calculate the shap values

shap_value_ours = pd.DataFrame({

'age': pred_age_30.mean() - avg_pred,

'release_year': pred_year_2022.mean() - avg_pred,

'length_minutes': pred_length_110.mean() - avg_pred

}, index = ['new_observation'])

Now that we have our own part set up, we can use a package to do the work
more formally, and compare the results.

R

# we'll use the DALEX package for this

explainer = DALEX::explain(model_lr_3feat, verbose = FALSE)

shap_value_package = DALEX::predict_parts(

explainer,

obs_of_interest,

type = 'shap'

)

rbind(

shap_value_ours,

shap_value_package[

c('age', 'release_year', 'length_minutes'),

'contribution'

]

)
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Python

# now use the shap package for this; it does not work with statsmodels though,

# but we still get there in the end!

import shap

from sklearn.linear_model import LinearRegression

# set data up for shap and sklearn

fnames = [

'age',

'release_year',

'length_minutes'

]

X = df_reviews[fnames]

y = df_reviews['rating']

# use a linear model that works with shap

model_reviews = LinearRegression().fit(X, y)

# 1000 instances for use as the 'background distribution'

X_sample = shap.maskers.Independent(data = X, max_samples = 1000)

# # compute the SHAP values for the linear model

explainer = shap.Explainer(

model_reviews.predict,

X_sample

)

shap_values = explainer(obs_of_interest)

shap_value_package = pd.DataFrame(

shap_values.values[0, :],

index = fnames,

columns = ['new_observation']

).T

pd.concat([shap_value_ours, shap_value_package])
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The following table reveals that the results are identical.

Table 5.4: SHAP Value Comparison

source age release_year length_minutes

Ours 0.063 0.206 −0.141
Package 0.063 0.206 −0.141

We can visualize these as well, via a force plot or waterfall plot, the latter
of which is shown in the next plot. The dotted line at E[f(x)] represents the
average prediction from our model (~3.05), and the prediction we have for the
observation at f(x), which is about 3.18.

With the average prediction as our starting point, we add the SHAP values for
each feature to get the prediction for the observation. First we add the SHAP
value for age, which bumps the value by 0.063, then the SHAP value for movie
length, which decreases the prediction -0.141, and finally the SHAP value for
release year, which brings us to the final predicted value by increasing the
prediction 0.206.

Figure 5.2: SHAP waterfall plot.

And there you have it- we’ve demystified the SHAP value! Things get more
complicated in nonlinear settings, dealing with correlated features, and other
cases, but hopefully this provides you some context. SHAP values are useful
because they tell us how much each feature contributes to the prediction for
the observation under consideration.

Pretty neat, huh? So for any observation we want to inspect, and more
importantly, for any model we might use, we can get a sense of how features
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contribute to that prediction. We also can get a sense of how much each feature
contributes to the model as a whole by aggregating these values across all
observations in our data, and this potentially provides a measure of feature
importance, but we’ll come back to that in a bit.

5.8 Related Visualizations
We’ve seen how we can get some plots for predictions in different ways previously
with what’s called a partial dependence plot, or PDP (Figure 5.1). In
essence, a PDP shows the average prediction of a feature on the target across
the feature values. This is also what we were just doing to calculate our SHAP
value, and for the linear case, the PDP has a direct correspondence to the
SHAP. In this setting, the SHAP value is the difference between the average
prediction and the point on the PDP for a feature at a specific feature value. As
an example, for a movie of 110 minutes, the line in the plot below corresponds
to the value in the previous waterfall plot (Figure 5.2).

Figure 5.3: PDP, ICE, and ALE plots.
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We can also look at the individual conditional expectation (ICE) plot,
which is a PDP for a single observation, but across all values of a select feature.
By looking at several observations, as in the second plot, we can get a sense
of the variability in the feature’s effect. As we can see, there is not much to
tell beyond a PDP when we have a simple linear model, but it becomes more
interesting when we have interactions or other nonlinear relationships in our
model.

In addition, there are other plots that are similar to the PDP and ICE, such
as the accumulated local effect (ALE) plot, shown last, which is more
robust to correlated features than the PDP, while also showing the general
feature-target relationship. Where the PDP and ICE plots show the average
effect of a feature on the target, the ALE plot focuses on average differences
in predictions for the feature at a specific value, versus predictions at feature
values nearby, and then centers the result so that the average difference is zero.
In general, all our plots reflect the positive linear relationship between movie
length and rating.

INFO Visualization Tools

The waterfall plot was created using DALEX, but the shap Python
package will also provide this. For PDP, ICE and ALE plots in R, you
can look to the iml package, and in Python, the shap or scikit-learn
package. Many others are available though, so feel free to explore!

5.9 Global Assessment of Feature Importance
Everything we’ve shown so far provides specific information about how a
feature impacts a prediction for a specific observation. But more generally we
often will ask: how important is a feature? It’s a common question, and one
that is often asked of models, but the answer ranges from ‘it depends’ and ‘it
doesn’t matter’. Let’s start with some hard facts:

• There is no single definition or metric of importance for any given model.
• There is no single metric for any model that will conclusively tell you how

important a feature is relative to others in all data/model contexts.
• There are multiple metrics of importance for a given model that are equally

valid, but which may come to different conclusions.
• Any non-zero feature contribution is potentially ‘important’, however small.
• Many metrics of importance fail to adequately capture interactions and/or

deal with correlated features.
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• All measures of importance are measured with uncertainty, and the uncer-
tainty can be large.

• A question for feature importance is relative to… what? A poor model will
still have relatively ‘important’ features, but they still may not be useful
since the model itself isn’t.

• It rarely makes sense to drop features based on importance alone, and doing
so will typically drop performance as well.

• In the end, what will you do with the information?

As we noted previously, if I want to know how a feature relates to a target, I
have to know how a feature moves, and I need to know what types of feature
values are more likely than others, and what a typical movement in its range of
values would be. If a feature is skewed, then the mean may not be the best value
to use for prediction, and basing ‘typical’ movement on its standard deviation
may be misguided. If a unit movement in a feature results in a movement in
the target of 2 units, what does that mean? Is it a large movement? If I don’t
know the target very well, I can’t answer that. As an example, if the target is
in dollars, a $2 movement is nothing for salary, but might be large for a stock
price. We have to know the target as well as we do the feature predicting it.

On top of all this, we need to know how the feature interacts with other
features. If a feature is highly correlated with another feature, then it may not
be adding much to the model even if some metrics would indicate a notable
contribution. In addition, some approaches will either spread the contribution
of correlated features across them, or just pick one of them as being important
to the model. It may be mostly arbitrary which one is included, or you might
miss both if the importance values are split.

If a feature interacts with another feature, then there really is no way to say
how much it contributes to the model without knowing the value of the other
feature. Full stop. Synergistic effects cannot be understood by pretending they
don’t exist. A number of metrics will still be provided for a single feature,
either by trying to include its overall contribution or averaging over the values
of the other feature. But this is a problematic approach because it still ignores
the other feature values. As an example, if a drug doesn’t work for your age
group or for someone with your specific health conditions, do you really care if
it works ‘in general’ or ‘on average’?

To help us further understand this issue, consider the following two plots in
Figure 5.4. On the left we show an interaction between two binary features. If
we were to look at the contribution of each feature without the interaction,
their respective coefficients would be estimated as essentially zero1. On the
right we show a feature that has a strong relationship with the target, but

1To understand why, for the effect of Feature 1, just take the mean of the two points on
the left vs. the mean of the two points on the right. It would basically be a straight line of
no effect as you move from group 0 to group 1. For the effect of Feature 2, the two group
means for A and B would be at the intersection of the two lines.
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only for a certain range of values. If we were to look at a single ‘effect’ of the
feature, we would likely underestimate how strong it is with smaller values
and overestimate the relationship at the upper range.
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Figure 5.4: Two plots showing the importance of understanding feature inter-
actions and nonlinear relationships.

All this is to say, as we get into measures of feature importance, we need to be
very careful about how we interpret and use them!

5.9.1 Example: Feature importance for linear regression
To show just how difficult measuring feature importance is, we only have
to stick with our simple linear regression. Think again about R2: it tells us
the proportion of the target explained by our features. An ideal measure of
importance would be able to tell us how much each feature contributes to
that proportion, or in other words, one that decomposes R2 into the relative
contributions of each feature. One of the most common measures of importance
in linear models is the standardized coefficient we have demonstrated
previously. You know what it doesn’t do? It doesn’t decompose R2 into
relative feature contributions. Even the more complicated SHAP approach will
not do this.
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The easiest situation we could hope for with regard to feature importance
is the basic linear regression model we’ve been using. Everything is linear,
with no interactions or other things going on, as in our demonstration model.
And yet there are many logical ways to determine feature importance. Some
metrics even break down R2 into relative feature contributions, but they won’t
necessarily agree with each other in ranking or relative differences. If you can
get a measure of statistical difference between whatever metric you choose, it’s
often the case that ‘top’ features will not be statistically different from other
features. So what do we do? We’ll show a few methods here, but the main
point is that there is no single answer, and it’s important to understand what
you’re trying to do with the information.

Let’s start things off by using one of our previous linear regression models
with several features, but which has no interactions or other complexity (Sec-
tion 3.5.1). It’s just a model with simple linear relationships and nothing else.
We even remove categorical features to avoid having to aggregate group effects.
In short, it doesn’t get any easier than this!

R

model_importance = lm(

rating ~

word_count

+ age

+ review_year

+ release_year

+ length_minutes

+ children_in_home

+ total_reviews,

data = df_reviews

)

Python

model_importance = smf.ols(

formula = 'rating ~ \

word_count \

+ age \

+ review_year \

+ release_year \

+ length_minutes \

+ children_in_home \

+ total_reviews',
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data = df_reviews

).fit()

Our first metric available for us to use is just the raw coefficient value, but they
aren’t comparable because the features are on very different scales. Moving
one unit in movie length is not the same as moving a unit in age. We can
standardize them which helps in this regard, and you might start there.

Another approach we can use comes from the SHAP value, which, as we saw,
provides a measure of contribution of a feature to the prediction. These can
be positive or negative and are specific to the observation. But if we take the
average absolute SHAP value for each feature, we can maybe get a sense
of the typical contribution size for the features. We can then rank order them
accordingly. Here we see that the most important features are the number of
reviews and the length of the movie. Note that we can’t speak to direction here,
only magnitude. We can also see that word count is relatively less important.

Figure 5.5: SHAP importance.

Now here are some additional methods2. Some of these decompose R2 into the
relative contributions to it from each feature (car, lmg, and pratt). The others

2The car, lmg, pratt, and beta-squared values were provided by the relaimpo package in
R. See the documentation there for details. Permutation-based importance was provided by
the iml package, though we supplied a custom function that returns the drop in R-squared
value. SHAP values were calculated using the fastshap package. In Python you can use the
shap output, and sklearn has a permutation-based importance function as well.
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do not (SHAP, permutation-based, standardized coefficient squared). On the
left, values represent the proportion of the R2 value that is attributable to the
feature– their sum is equal to the overall R2 = 0.32. These are in agreement
for the most part and seem to think more highly of word count as a feature,
but they aren’t actually the same value.

The others on the right suggest word count and age should rank lower, and
length and review year higher. Which is best? Which is correct? Any of them.
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Figure 5.6: Feature importance by various methods.
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All of the metrics shown have uncertainty in their estimate, and some packages
make it easy to plot or extract. As an example one could bootstrap a metric,
or use the permutations as a means to get at the uncertainty. However, the
behavior and distribution of these metrics is not always well understood, and
in some cases, the computation would often be notable (e.g., with SHAP).
You could also look at the range of the ranks created by bootstrapping or
permuting, and take the upper bound as the worst case for a given feature.
Although this might possibly be conservative, the usual problem is that people
are too optimistic about their feature importance result, so this might be a
good thing.

The take-home message is that in the best of circumstances, there is no
automatic way of saying one feature is more important than another. It’s
nice that we can use approaches like SHAP and permutation methods for
more complicated models like boosting and deep learning models, but they’re
not perfect, and they still suffer from most of the same issues as the linear
model. In the end, understanding a feature’s role within a model is ultimately
a matter of context, and highly dependent on what you’re trying to do with
the information.

INFO SHAP as a Global Metric

SHAP values can be useful for observational-level interpretation under
the right circumstances, but they really shouldn’t be used for importance.
The mean of the absolute values is not a good measure of importance
except in the very unlikely case you have purely balanced/symmetric
features of the exact same scale, and which do not correlate with each
other, or have any interactions. But if you had such a setting, you actually
could just use the standardized coefficients.

5.10 Feature Metrics for Classification
All of what’s been demonstrated for feature metrics applies to classification
models, some of which were explicitly demonstrated. In general, counterfactual
predictions, average marginal effects, SHAP, and permutation-based methods
for feature importance would be done in the exact same way. The only real
difference is the reference target – our results would be in terms of probabilities
and using a different loss metric to determine importance, that sort of thing.
But in general, everything we’ve talked about holds for both regression and
binary classification settings as well.
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5.11 Wrapping Up
It’s generally a good idea to look at which features are pulling the most weight
in your model to better understand how predictions are being made. But it
takes a lot of work to trust what a model is telling you.

5.11.1 The common thread
As with Chapter 4, much of what you’ve seen here applies to many modeling
scenarios. In many settings we are interested in feature-level interpretation.
This can take a statistical focus, or use tools that are more model-agnostic
like SHAP. In these situations, we are usually interested in how the model is
making its predictions, and how we can use that information to make better
decisions.

5.11.2 Choose your own adventure
If you haven’t already, feel free to take your linear models further in Chapter 9
and Chapter 8, where you’ll see how to handle different distributions for your
target, add interactions, nonlinear effects, and more. Otherwise, you’ve got
enough at this point to try your hand at the Chapter 10 section, where you
can dive into machine learning!

5.11.3 Additional resources
To get the most out of DaLEX visualizations, check out the authors’ book
Explanatory Model Analysis.

We also recommend checking out Christoph Molnar’s book, Interpretable Ma-
chine Learning. It is a great resource for learning more about model explainers
and how to use them, and it provides a nice package that has a lot of the
functionality we’ve shown here.

The marginal effects zoo, written by the marginaleffects package author, is
your go-to for getting started with marginal effects, but we also recommend the
excellent blog post by Andrew Heiss as a very nifty overview and demonstration.

5.12 Guided Exploration
Let’s put our model understanding that we’ve garnered in this and the previous
chapter to the test. You’ll use the world happiness dataset.
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• Start by creating a model of your choosing that predicts happiness score.
This can be the one you did for the previous exercise (Section 3.10).

• Now create a simpler or more complex model for comparison. The simple
model should just remove a feature, while the complex model should add
features to your initial model.

• Interpret the first model as a whole, then compare it to the simpler/more
complex model. Did anything change in how you assessed the features they
have in common?

• Create a counterfactual prediction for an observation, either one from the
observed data or one that is of interest to you.

• Choose the ‘best’ model, and justify your reason for doing so, e.g., using a
specific metric of your choosing.

• As a bonus, get feature importance metrics for your chosen model. If using
R, we suggest using the iml package (example), and in Python, run the
linear regression with scikit-learn and use the permutation-based importance
function.

R

library(iml)

model = model_happiness

y = df_happiness_2018$happiness_score

X = model$model[,-1] # if using lm -1 removes the happiness score

mod = Predictor$new(model, data = X, y = y)

# Compute feature importances as the performance drop in mean absolute error

imp = FeatureImp$new(mod, loss = "mse")

# Plot the results directly

plot(imp)

Python

from sklearn.linear_model import LinearRegression

from sklearn.inspection import permutation_importance

import pandas as pd

y = df_happiness_2018['happiness_score']

X = df_happiness_2018[[MY_FEATURES]]

model = LinearRegression().fit(X, y)

importance = permutation_importance(
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model,

X,

y,

n_repeats=30,

random_state=0

)

(

pd.DataFrame(

importance.importances_mean,

index=X.columns

)

.sort_values(by=0, ascending=False)

.plot(kind='bar')

)
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6
Model Estimation and Optimization

In our initial linear model, the coefficients for each feature are the key parame-
ters. But how do we know what the coefficients are, and how did we come to
those values? When we explore a linear model using some package function,
they appear magically, but it’s worth knowing a little bit about how they come
to be, so let’s try and dive a little deeper. As we do so, we’ll end up going a
long way into ‘demystifying’ the modeling process.

Model estimation is the process of finding the parameters associated with
a model that allow us to reach a particular modeling goal. Different types
of models will have different parameters to estimate, and there are different
ways to estimate them. In general though, the goal is the same, find the set
of parameters that will lead to the best predictions under the current data
modeling context.

With model estimation, we can break things down into the following steps:

1. Start with an initial guess for the parameters.
2. Calculate the prediction error based on those parameters, or

some function of it, or some other value that represents our model’s
objective.

125
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3. Update the guess.
4. Repeat steps 2 and 3 until we find a ‘best’ guess.

Pretty straightforward, right? Well, it’s not always so simple, but this is the
general idea in most applications, so keep it in mind! In this chapter, we’ll
show how to do this ourselves to take away the mystery a bit from when you
run standard model functions in typical contexts. Hopefully, then you’ll gain
more confidence when you do use them!

6.1 Key Ideas
A few concepts we’ll keep using here are fundamental to understanding esti-
mation and optimization. We should note that we’re qualifying our present
discussion of these topics to typical linear models, machine learning, and similar
settings, but they are much more broad and general than presented here. We’ve
seen some of this before, but we’ll be getting a bit cozier with the concepts
now.

• Parameters are the values associated with a model that we have to estimate.
• Estimation is the process of finding the parameters associated with a model.
• The objective (loss) function takes input and produces a value that we

want to maximize or minimize.
• Prediction error is the difference between the observed value of the target

and the predicted value, and is often used to calculate the objective function.
• Optimization is the specific process of finding the parameters that maximize

or minimize some objective function.
• Model selection is the process of choosing the best model from a set of

models.

INFO Estimation vs. Optimization

We can use estimation as general term for finding parameters, while
optimization can be seen as a term for finding parameters that maxi-
mize or minimize some objective function, or even a combination of
objectives. In some cases, we can estimate parameters without optimiza-
tion, because there is a known way of solving the problem, but in most
modeling situations we are going to use some optimization approach to
find a ‘best’ set of parameters.
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6.1.1 Why this matters
When it comes to modeling, even knowing just a little bit about what goes on
behind the scenes is a great demystifier. And if models are less of a mystery,
you’ll feel more confident using them. Much of what you see here is part of
almost every common model used for statistics and machine learning, and
adding this knowledge provides you a more solid foundation for expanding
your modeling skills.

6.1.2 Helpful context
This chapter is more involved and technical than most of the others, so it
might be more suited for those who like to get their hands dirty. It’s all about
DIY, and so we’ll be doing a lot of the work ourselves. If you’re not one of
those types of people who gets much out of that, that’s okay, you can skip this
chapter and still get a lot out of the rest of the book. But if you’re curious
about how models work, or you want to be able to do more than just run a
canned function, then we think you’ll find the following useful. You’d want to
at least have your linear model basics down (Chapter 3).

6.2 Data Setup
For the examples here, we’ll use the world happiness dataset for the year 2018.
We’ll use the happiness score as our target. Let’s take an initial look at the

Figure 6.1: World happiness data summary.

data here, but for more information see the Appendix Section C.2.
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Our happiness score has values from around 3-7, life expectancy and GDP
appear to have some notable variability, and corruption perception is skewed
toward lower values. We can also see that the features and target are correlated,
which is not surprising.

Table 6.1: Correlation Matrix for World Happiness Data

term happiness life_exp log_gdp_pc corrupt

happiness 1.00 0.78 0.82 −0.47
life_exp 0.78 1.00 0.86 −0.34
log_gdp_pc 0.82 0.86 1.00 −0.34
corrupt −0.47 −0.34 −0.34 1.00

For our purposes here, we’ll drop any rows with missing values, and we’ll use
scaled features so that they have the same variance, which, as noted in the
data chapter (Chapter 14), can help make estimation easier.

R

df_happiness = read_csv('https://tinyurl.com/worldhappiness2018') |>

drop_na() |>

rename(happiness = happiness_score) |>

select(

country,

happiness,

contains('_sc')

)

Python

import pandas as pd

df_happiness = (

pd.read_csv('https://tinyurl.com/worldhappiness2018')

.dropna()

.rename(columns = {'happiness_score': 'happiness'})

.filter(regex = '_sc|country|happ')

)

6.2.1 Other Setup
For the R examples, after the above, nothing beyond base R is needed. For
Python examples, the following should be enough to get you through the
examples.
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import pandas as pd

import numpy as np

import statsmodels.api as sm

import statsmodels.formula.api as smf

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from scipy.optimize import minimize

from scipy.stats import norm

6.3 Starting out by Guessing
So, we’ll start with a model in which we predict a country’s level of happiness
by their life expectancy. If you can expect to live longer, you’re probably
in a country with better health care, higher incomes, and other important
factors. As such, we can probably expect higher happiness scores with higher
life expectancy. We’ll stick with a linear regression model as well to start out.

As a starting point, we can just guess what the parameter should be. But how
would we know what to guess? How would we know which guesses are better
than others? Let’s try a couple guesses and see what happens. Let’s say that
we think all countries start at the bottom on the happiness scale (around 3),
but life expectancy makes a big impact– for every standard deviation of life
expectancy, we go up a whole point on happiness1. We can plug this into the
model and see what we get:

prediction = 3.3 + 1 ⋅ life_exp

For a different model, we’ll say countries start with a mean of happiness score,
and moving up a standard deviation of life expectancy would move us up a
half point of happiness.

prediction = happiness + .5 ⋅ life_exp

How do we know which is better? Let’s find out!
1Since life expectancy is scaled, a standard deviation is 1, and in this case represents

about 7 years.
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6.4 Prediction Error
We’ve seen that a key component to model assessment involves comparing the
predictions from the model to the actual values of the target. This difference
is known as the prediction error, or residuals in more statistical contexts.
We can express this as:

𝜖𝜖 𝜖 𝜖𝜖 𝜖 𝜖𝜖𝜖

error = target − model-based guess

This prediction error tells us how far off our model prediction is from the
observed target values, but it also gives us a way to compare models. How?
With our measure of prediction error, we can calculate a total error for all
observations/predictions (Section 4.2), or similarly, the average error. If one
model or parameter set has less total or average error, we can say it’s a better
model than one that has more (Section 4.3). Ideally we’d like to choose a model
with the least possible error, but we’ll see that this is not always possible2.

However, if we just take the average of our errors from a linear regression
model, you’ll see that it is roughly zero! This is by design for many common
models and is even made explicit in their mathematical depiction. So, to get a
meaningful error metric, we need to use the squared error value or the absolute
value. These also allow errors of similar value above and below the observed
value to cost the same3. As we’ve done elsewhere, we’ll use squared error here,
and we’ll calculate the mean of the squared errors for all our predictions, i.e.,
the Mean Squared Error(MSE).

R

y = df_happiness$happiness

# Calculate the error for the guess of 4

prediction = min(df_happiness$happiness) + 1*df_happiness$life_exp_sc

mse_model_A = mean((y - prediction)^2)

# Calculate the error for our other guess

2It turns out that our error metric is itself an estimate of the true error. We’ll get more
into this later, but for now this means that we can’t ever know the true error, and so we
can’t ever really know the best or true model. However, we can still choose a good or better
model relative to others based on our error estimate.

3We don’t have to do it this way, but it’s the default in most scenarios. As an example,
maybe for your situation, overshooting is worse than undershooting, and so you might want
to use an approach that would weight those errors more heavily.
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prediction = mean(y) + .5 * df_happiness$life_exp_sc

mse_model_B = mean((y - prediction)^2)

tibble(

Model = c('A', 'B'),

MSE = c(mse_model_A, mse_model_B)

)

Python

y = df_happiness['happiness']

# Calculate the error for the guess of four

prediction = np.min(df_happiness['happiness']) + \

1 * df_happiness['life_exp_sc']

mse_model_A = np.mean((y - prediction)**2)

# Calculate the error for our other guess

prediction = y.mean() + .5 * df_happiness['life_exp_sc']

mse_model_B = np.mean((y - prediction)**2)

pd.DataFrame({

'Model': ['A', 'B'],

'MSE': [mse_model_A, mse_model_B]

})

Now let’s look at our MSE, and we’ll also inspect the square root of it, or the
Root Mean Squared Error (), as that puts things back on the original target
scale and tells us the standard deviation of our prediction errors. We also add
the Mean Absolute Error (MAE) as another metric with straightforward
interpretation.

Table 6.2: Comparison of Error Metrics for Two Models

Model MSE RMSE MAE RMSE % drop MAE % drop
A 5.09 2.26 1.52
B 0.64 0.80 0.58 65% 62%

Inspecting the metrics, we can see that we are off on average by over a point
for model A (MAE), and a little over half a point on average for model B. So
we can see that model B is not only better, but it results in a 65% drop in
RMSE, and similar for MAE. We’d definitely prefer it over model A. This
approach is also how we can compare models in a general fashion.
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Now all of this is useful, and at least we can say one model is better than
another. But you’re probably hoping there is an easier way to get a good guess
for our model parameters, especially when we have possibly dozens of features
and/or parameters to keep track of, and there is!

6.5 Ordinary Least Squares
In a simple linear model, we often use the Ordinary Least Squares (OLS)
method to estimate parameters. This method finds the coefficients that min-
imize the sum of the squared differences between the predicted and actual
values4. In other words, it finds the coefficients that minimize the sum of the
squared differences between the predicted values and the actual values, which
is what we just did in our previous example. The sum of the squared errors is
also called the Residual Sum of Squares (RSS), as opposed to the ‘total’
sums of squares (i.e., the variance of the target), and the part explained by
the model (‘model’ or ‘explained’ sums of squares). We can express this as
follows, where 𝑦𝑦𝑖𝑖 is the observed value of the target for observation 𝑖𝑖, and ̂𝑦𝑦𝑖𝑖 is
the predicted value from the model.

Value =
𝑛𝑛

∑
𝑖𝑖𝑖𝑖

(𝑦𝑦𝑖𝑖 − ̂𝑦𝑦𝑖𝑖)2 (6.1)

It’s called ordinary least squares because there are other least squares methods,
generalized least squares, weighted least squares, and others, but we don’t
need to worry about that for now. The sum or mean of the squared errors
is our objective value. The objective function takes the predictions and
observed target values as inputs and returns the objective value as an output.
We can use this value to find the best parameters for a specific model, as well
as compare models with different parameters.

Now let’s calculate the OLS estimate for our model. We need our own function
to do this, but it doesn’t take much to create one. We need to map our inputs
to our output, which are the model predictions. We then calculate the error,
square it, and then average the squared errors to provide the mean squared
error.

4Some disciplines seem to confuse models with estimation methods and link functions.
It doesn’t really make sense, nor is it informative, to call something an OLS model or a
logit model. Many models are estimated using a least squares objective function, even deep
learning, and different types of models use a logit link, from logistic regression, to beta
regression, to activation functions used in deep learning.
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R

# for later comparison

model_lr_happy = lm(happiness ~ life_exp_sc, data = df_happiness)

ols = function(X, y, par) {

# add a column of 1s for the intercept

X = cbind(1, X)

# Calculate the predicted values

y_hat = X %*% par # %*% is matrix multiplication

# Calculate the error

error = y - y_hat

# Calculate the value as mean squared error

value = sum(error^2) / nrow(X)

# Return the objective value

return(value)

}

Python

# for later comparison

model_lr_happy = smf.ols('happiness ~ life_exp_sc', data = df_happiness).fit()

def ols(par, X, y):

# add a column of 1s for the intercept

X = np.c_[np.ones(X.shape[0]), X]

# Calculate the predicted values

y_hat = X @ par # @ is matrix multiplication

# Calculate the mean of the squared errors

value = np.mean((y - y_hat)**2)

# Return the objective value

return value

We’ll want to make a bunch of guesses for the parameters, so let’s create data
for those guesses. We’ll then choose the guess that gives us the lowest objective
value. But before getting carried away, try it out for just one guess to see how
it works!
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R

# create a grid of guesses

guesses = crossing(

b0 = seq(1, 7, 0.1),

b1 = seq(-1, 1, 0.1)

)

# Example for one guess

ols(

X = df_happiness$life_exp_sc,

y = df_happiness$happiness,

par = unlist(guesses[1, ])

)

[1] 23.78

Python

# create a grid of guesses

from itertools import product

guesses = pd.DataFrame(

product(

np.arange(1, 7, 0.1),

np.arange(-1, 1, 0.1)

),

columns = ['b0', 'b1']

)

# Example for one guess

ols(

par = guesses.iloc[0,:],

X = df_happiness['life_exp_sc'],

y = df_happiness['happiness']

)

23.77700449624871

Now we’ll calculate the loss for each guess and find which one gives us the
smallest function value.
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R

# Calculate the function value for each guess, mapping over

# each combination of b0 and b1

guesses = guesses |>

mutate(

objective = map2_dbl(

guesses$b0,

guesses$b1,

\(b0, b1) ols(

par = c(b0, b1),

X = df_happiness$life_exp_sc,

y = df_happiness$happiness

)

)

)

min_loss = guesses |> filter(objective == min(objective))

min_loss

# A tibble: 1 x 3

b0 b1 objective

<dbl> <dbl> <dbl>

1 5.4 0.9 0.491

Python

# Calculate the function value for each guess, mapping over

# each combination of b0 and b1

guesses['objective'] = guesses.apply(

lambda x: ols(

par = x,

X = df_happiness['life_exp_sc'],

y = df_happiness['happiness']

),

axis = 1

)

min_loss = guesses[guesses['objective'] == guesses['objective'].min()]

min_loss

b0 b1 objective

899 5.400 0.900 0.491
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The following plot shows the objective value for each guess in a smooth fashion
as if we had a more continuous space. Darker values indicate we’re getting
closer to our smallest objective value. The star notes our best guess.

Figure 6.2: Results of parameter search.

Now let’s run the model using standard functions.

R

model_lr_happy_life = lm(happiness ~ life_exp_sc, data = df_happiness)

# not shown

c(

coef(model_lr_happy_life),

performance::performance_mse(model_lr_happy_life)

)

Python

model_lr_happy_life = sm.OLS(

df_happiness['happiness'],

sm.add_constant(df_happiness['life_exp_sc'])

).fit()

# not shown

model_lr_happy_life.params, model_lr_happy_life.scale
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If we inspect our results from the standard functions, we had estimates of 5.44
and 0.89 for our coefficients versus the best guess from our approach of 5.4
and 0.9. These are very similar but not exactly the same, but this is mostly
due to the granularity of our guesses. Even so, in the end we can see that we
get pretty dang close to what our basic lm or statsmodels functions would get
us. Pretty neat!

INFO Estimation as ‘Learning’

Estimation and/or optimization can be seen as the process of a model
learning which parameters will best allow the predictions to match the
observed data, and hopefully, predict as-yet-unseen future data. This is
a very common way to think about estimation in machine learning, and
it is a useful way to think about our simple linear model also.
One thing to keep in mind is that it is not a magical process. It takes
good data, a good idea (model), and an appropriate estimation method
to get good results.

6.6 Optimization
Before we get into other objective functions, let’s think about a better way to
find good parameters for our model. Rather than just guessing, we can use a
more systematic approach, and thankfully, there are tools out there to help us.
We just use a function like our OLS function, give it a starting point, and let
the algorithms do the rest! These tools eventually arrive at a pretty good set
of parameters and are optimized for speed.

Previously we created a set of guesses and tried each one. This approach is
often called a grid search, as we search over a grid of possible parameters
as in Figure 6.2, and it is a bit of a brute-force approach to finding the best
fitting model. You can maybe imagine a couple of unfortunate scenarios for this
approach. One is just having a very large number of parameters to search, a
common issue in deep learning. Or it may be that our range of guesses doesn’t
allow us to find the right set of parameters. Or perhaps we specify a very large
range, but the best fitting model is within a very narrow part of that, so that
it takes a long time to find them. In any of these cases, we waste a lot of time
or may not find an optimal solution.

In general, we can think of optimization as employing a smarter, more
efficient way to find what you’re looking for. Here’s how it works:

• Start with an initial guess for the parameters.
• Calculate the objective function given the parameters.
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• Update the parameters to a new guess (that hopefully improves the
objective function).

• Repeat, until the improvement is small enough to not be worth continuing,
or an arbitrary maximum number of iterations is reached.

With optimization, the key aspect is how we update the old parameters with a
new guess at each iteration. Different optimization algorithms use different
approaches to find those new guesses. The process stops when the improvement
is smaller than a set tolerance level, or the maximum number of iterations
is reached. If the objective is met, we say that our model has converged.
Sometimes, the number of iterations is not enough for us to reach convergence
in terms of tolerance, and we have to try again with a different set of parameters,
a different algorithm, maybe use some data transformations, or something else.

So, let’s try it out! We start out with several inputs:

• the objective function,
• the initial guess for the parameters to get things going,
• other related inputs to the objective function, such as the data, and
• options for the optimization process, e.g., algorithm, maximum number of

iterations, etc.

With these inputs, we’ll let the chosen optimization function do the rest of the
work. We’ll again compare our results to the standard functions to make sure
we’re on the right track.

R

We’ll use the optim function in R.

our_ols_optim = optim(

par = c(1, 0), # initial guess for the parameters

fn = ols,

X = df_happiness$life_exp_sc,

y = df_happiness$happiness,

method = 'BFGS', # optimization algorithm

control = list(

reltol = 1e-6, # tolerance

maxit = 500 # max iterations

)

)

our_ols_optim
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Python

We’ll use the minimize function in Python.

from scipy.optimize import minimize

our_ols_optim = minimize(

fun = ols,

x0 = np.array([1., 0.]), # initial guess for the parameters

args = (

np.array(df_happiness['life_exp_sc']),

np.array(df_happiness['happiness'])

),

method = 'BFGS', # optimization algorithm

tol = 1e-6, # tolerance

options = {

'maxiter': 500 # max iterations

}

)

our_ols_optim

Optimization functions typically return multiple values, including the best
parameters found, the value of the objective function at that point, and
sometimes other information like the number of iterations it took to reach the
returned value and whether or not the process converged. This can be quite
a bit of stuff, so we don’t show the raw output, but we definitely encourage
you to inspect it closely. The following table shows the estimated parameters
and the objective value for our model, and we can compare it to the standard
functions to see how we did.

Table 6.3: Comparison of OLS Results to a Standard Function

Parameter Standard Our Result
Intercept 5.4450 5.4450
Life Exp. Coef. 0.8880 0.8880
Objective/MSE 0.4890 0.4890

So, our little function and the right tool allow us to come up with the same
thing as base R and statsmodels! I hope you’re feeling pretty good at this point
because you should! You just proved you could do what seemed before to be
like magic, but really all it took is just a little knowledge about some key
concepts to demystify the process. So, let’s keep going!
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INFO A Note on Terminology

The objective function is often called the loss function, and sometimes
the cost function. However, these both imply that we are trying to
minimize the function, which is not always the case5, and it’s arbitrary
whether you want to minimize or maximize the function.
The term metric, such as the MSE or AUROC we’ve seen elsewhere,
is a value that you might also want to use to evaluate the model. Some
metrics are also used as an objective function. For instance, we might
minimize MSE as our objective, but also calculate other metrics like
Adjusted R-squared or Mean Absolute Error to evaluate the model. It’s
fine to use MSE as the sole objective/metric as well.
This can be very confusing when starting out! We’ll try to stick to the
term metric for additional values that we might want to examine, apart
from the objective function value, which is specifically used for estimating
model parameters.

6.7 Maximum Likelihood
In our example, we’ve been minimizing the mean of the squared errors to
find the best parameters for our model. But let’s think about this differently.
Now we’d like you to think about the data generating process. Ignoring
the model, imagine that each happiness value is generated by some random
process, like drawing from a normal distribution. So, something like this would
describe it mathematically:

happiness ∼ 𝑁𝑁𝑁mean, sd)

where the mean is just the mean of happiness, and sd is its standard deviation. In
other words, we can think of happiness as a random variable that is drawn from
a normal distribution with mean and standard deviation as the parameters of
that distribution.

5You may find that some packages will only minimize (or maximize) a function, even to
the point of reporting nonsensical things like negative squared values, so you’ll need to take
care when implementing your own metrics.
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Let’s apply this idea to our linear model setting. In this case, the mean is a
function of life expectancy, and we’re not sure what the standard deviation is,
but we can go ahead and write our model as follows.

mean = 𝛽𝛽0 + 𝛽𝛽1 ∗ life_exp

happiness ∼ 𝑁𝑁𝑁mean, sd)

Now, our model is estimating the parameters of the normal distribution. We
have an extra parameter to estimate: the standard deviation, which is similar
to our RMSE.

In our analysis, instead of merely comparing the predicted happiness score to
the actual score by looking at their difference, we do something a little different
to get a sense of their correspondence. We consider how likely it is to observe
the actual happiness score based on our prediction. The value known as the
likelihood depends on our model’s parameters. The likelihood is determined
by the statistical distribution we’ve selected for our analysis. We can write
this as:

Pr(happiness ∣ life_exp, 𝛽𝛽0, 𝛽𝛽1, sd)

Pr(happiness ∣ mean, sd)

Thinking more generally, the likelihood gives us the probability of the observed
data given the parameter estimates.

Pr(Data ∣ Parameters)

The following shows how to calculate a likelihood for our model. The values you
see are called probability density values. They’re not exactly probabilities,
but they show the relative likelihood of each observation6. You can think of
them like you do for probabilities, but remember that likelihoods are slightly
different.

R

# two example life expectancy scores, at the mean (0) and 1 sd above

life_expectancy = c(0, 1)

# observed happiness scores

happiness = c(4, 5.2)

6The actual probability of a specific value in this setting is 0, but the probability of a
range of values is greater than 0. You can find out more about likelihoods and probabilities
at the StackExchange discussion on the difference between likelihood and probability, but
many traditional statistical texts will cover this also.
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# predicted happiness with rounded coefs

mu = 5 + 1 * life_expectancy

# just a guess for sigma

sigma = .5

# likelihood for each observation

L = dnorm(happiness, mean = mu, sd = sigma)

L

[1] 0.1080 0.2218

Python

from scipy.stats import norm

# two example life expectancy scores, at the mean (0) and 1 sd above

life_expectancy = np.array([0, 1])

# observed happiness scores

happiness = np.array([4, 5.2])

# predicted happiness with rounded coefs

mu = 5 + 1 * life_expectancy

# just a guess for sigma

sigma = .5

# likelihood for each observation

L = norm.pdf(happiness, loc = mu, scale = sigma)

L

array([0.1080, 0.2218])

With a guess for the parameters and an assumption about the data’s distribu-
tion, we can calculate the likelihood of each data point, which is what our final
result L shows. We eventually get a total likelihood for all observations, similar
to how we added squared errors previously. But unlike errors, we want more
likelihood, not less. In theory, we’d multiply each likelihood, but in practice
we sum the log of the likelihood, otherwise values would get too small for
our computers to handle. We can also turn our problem into a minimization
problem by calculating the negative log-likelihood, and then minimizing that
value, which many optimization algorithms are designed to do7.

7The negative log-likelihood is often what is reported in the model output as well.
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The following is a function we can use to calculate the likelihood of the data
given our parameters. This value, just like MSE, can also be used to compare
models with different parameter guesses8. For the estimate of sigma, note that
we are estimating its log value by exponentiating the parameter guess. This
will keep it positive, as the standard deviation must be positive. We’ll hold off
with our result until Table 6.4, which is shown next.

R

max_likelihood = function(par, X, y) {

# setup

X = cbind(1, X) # add a column of 1s for the intercept

beta = par[-1] # coefficients

sigma = exp(par[1]) # error sd, exp keeps positive

N = nrow(X)

LP = X %*% beta # linear predictor

mu = LP # identity link in the glm sense

# calculate (log) likelihood

ll = dnorm(y, mean = mu, sd = sigma, log = TRUE)

value = -sum(ll) # negative for minimization

return(value)

}

our_max_like = optim(

par = c(1, 0, 0), # first param is sigma

fn = max_likelihood,

X = df_happiness$life_exp_sc,

y = df_happiness$happiness

)

our_max_like

# logLik(model_lr_happy_life) # one way to extract the LL from a model

8Those who have experience here will notice we aren’t putting a lower bound on sigma.
You typically want to do this, otherwise you may get nonsensical results by not keeping
sigma positive. You can do this by setting a specific argument for an algorithm that uses
boundaries, or more simply by exponentiating the parameter so that it can only be positive.
In the latter case, you’ll have to exponentiate the final parameter estimate to get back to
the correct scale. We leave this detail out of the code for now to keep things simple.
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Python

def max_likelihood(par, X, y):

# setup

X = np.c_[np.ones(X.shape[0]), X] # add a column of 1s for the intercept

beta = par[1:] # coefficients

sigma = np.exp(par[0]) # error sd, exp keeps positive

N = X.shape[0]

LP = X @ beta # linear predictor

mu = LP # identity link in the glm sense

# calculate (log) likelihood

ll = norm.logpdf(y, loc = mu, scale = sigma)

value = -np.sum(ll) # negative for minimization

return value

our_max_like = minimize(

fun = max_likelihood,

x0 = np.array([1, 0, 0]), # first param is sigma

args = (

np.array(df_happiness['life_exp_sc']),

np.array(df_happiness['happiness'])

)

)

our_max_like

# model_lr_happy_life.llf # one way to extract the log likelihood from a model

We can compare our result to a built-in function that has capabilities beyond
OLS, and the table shows we’re duplicating the basic result. We show more
decimal places on the log-likelihood estimate to prove we aren’t getting exactly
the same result.
Table 6.4: Comparison of Max. Likelihood Results to a Standard Function

Parameter Standard Our Result

Intercept 5.445 5.445
Life Exp. Coef. 0.888 0.888
Sigma1 0.705 0.699
LogLik (neg) 118.804 118.804

1Parameter estimate is exponentiated for the by-hand approach.
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np.array(df_happiness['happiness'])

)

)

our_max_like

# model_lr_happy_life.llf # one way to extract the log likelihood from a model

We can compare our result to a built-in function that has capabilities beyond
OLS, and the table shows we’re duplicating the basic result. We show more
decimal places on the log-likelihood estimate to prove we aren’t getting exactly
the same result.
Table 6.4: Comparison of Max. Likelihood Results to a Standard Function

Parameter Standard Our Result

Intercept 5.445 5.445
Life Exp. Coef. 0.888 0.888
Sigma1 0.705 0.699
LogLik (neg) 118.804 118.804

1Parameter estimate is exponentiated for the by-hand approach.
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To use a maximum likelihood approach for linear models, you can use functions
like glm in R or GLM in Python, which is the reference used in the table above. We
can also use different likelihoods corresponding to the binomial, Poisson and
other distributions. Still other packages would allow even more distributions
for consideration. In general, we choose a distribution that we feel best reflects
the data generating process. For binary targets for example, we typically would
feel a Bernoulli or binomial distribution is appropriate. For count data, we
might choose a Poisson or negative binomial distribution. For targets that fall
between 0 and 1, we might go for a beta distribution. You can see some of
these demonstrated in Chapter 8.

There are many distributions to choose from, and the best one depends on
your data. Sometimes, even if one distribution seems like a better fit, we might
choose another one because it’s easier to use. Some distributions are special
cases of others, or they might become more like a normal distribution under
certain conditions. For example, the exponential distribution is a special case
of the gamma distribution, and a t-distribution with many degrees of freedom
looks like a normal distribution. Here is a visualization of the relationships
among some of the more common distributions (Wikipedia (2023)).

Figure 6.3: Relationships among some probability distributions.

When you realize that many distributions are closely related, it’s easier to
understand why we might choose one over another. But also, you can see why
we might use a simpler option even if it’s not the best fit – you likely won’t
come to a different practical conclusion about your model. Ultimately, you’ll
get a better feel for this as you work with different types of data and models.

Here are examples of standard GLM functions, which just require an extra
argument for the family of the distribution.
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R

glm(happiness ~ life_exp_sc, data = df_happiness, family = gaussian)

glm(binary_target ~ x1 + x2, data = some_data, family = binomial)

glm(count ~ x1 + x2, data = some_data, family = poisson)

Python

import statsmodels.formula.api as smf

smf.glm(

'happiness ~ life_exp_sc',

data = df_happiness,

family = sm.families.Gaussian()

)

smf.glm(

'binary_target ~ x1 + x2',

data = some_data,

family = sm.families.Binomial()

)

smf.glm(

'count ~ x1 + x2',

data = some_data,

family = sm.families.Poisson()

)

6.7.1 Diving deeper
Let’s think more about what’s going on here, as it applies to estimation and
optimization in general. It turns out that our objective function defines a
‘space’ or ‘surface’. You can imagine the process as searching for the lowest
point on a landscape, with each guess a point on this landscape. Let’s start to
get a sense of this with the following visualization, based on a single parameter.
The following visualization shows this for a single parameter. The data comes
from a variable with a true average of 5. As our guesses get closer to 5,
the likelihood increases. However, with more and more data, the final guess
converges on the true value. Model estimation finds that maximum on the
curve, and optimization algorithms are the means to find it.
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Figure 6.4: Likelihood function for one parameter.

Now let’s add a parameter. If we have more than one parameter, we now have
an objective surface to deal with. Given a starting point, an optimization
procedure then travels along the surface looking for a minimum/maximum
point. For simpler settings such as this, we can visualize the likelihood surface
and its minimum point. However, even our simple model has three parameters
plus the likelihood, so it would be difficult to visualize without additional
complexity. Instead, we show the results for an alternate model where happiness
is standardized also, which means the intercept is zero9, and so it is not shown.

Figure 6.5: Likelihood surface for two parameters.

9Linear regression will settle on a line that cuts through the means, and when standardizing
all variables, the mean of the features and target are both zero, so the line goes through the
origin.
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We can also see the path our estimates take. Starting at a fairly bad estimate,
the optimization algorithm quickly updates to estimates that result in a better
likelihood value. We also see little exploratory jumps creating a star-like pattern,
before things ultimately settle to the best values. In general, these updates
and paths are dependent on the optimization algorithm one uses.

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.25 0.50 0.75
b1

sigma

110 120 130 140 150

Figure 6.6: Optimization path for two parameters.

What we’ve shown here with maximum likelihood applies in general to searching
for the best solution along an objective function surface. In most modeling
circumstances, the surface is very complex with lots of points that might
represent ‘local’ minimums, even though we’d ideally find the ‘global’ minimum.
This is why we need optimization algorithms to help us find the best solution10.
The optimization algorithms we’ll use are general purpose, and can be used for
many different types of problems. The key is to define an appropriate objective
function, and then let the algorithm do the work.

INFO MLE and OLS

For linear regression assuming a normal distribution, the maximum
likelihood estimate of the standard deviation is the OLS estimate of
the standard deviation of the residuals. Furthermore, the maximum
likelihood coefficient estimates and OLS estimates converge to the same

10There is no way to know if we have found a global minimum, and truthfully, we probably
rarely do with complex models. But optimization algorithms are designed to find the best
solution they can under the data circumstances, and some minimums may be practically
indistinguishable from the global minimum anyway (we hope!).



148 6 Model Estimation and Optimization

We can also see the path our estimates take. Starting at a fairly bad estimate,
the optimization algorithm quickly updates to estimates that result in a better
likelihood value. We also see little exploratory jumps creating a star-like pattern,
before things ultimately settle to the best values. In general, these updates
and paths are dependent on the optimization algorithm one uses.

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.25 0.50 0.75
b1

sigma

110 120 130 140 150

Figure 6.6: Optimization path for two parameters.

What we’ve shown here with maximum likelihood applies in general to searching
for the best solution along an objective function surface. In most modeling
circumstances, the surface is very complex with lots of points that might
represent ‘local’ minimums, even though we’d ideally find the ‘global’ minimum.
This is why we need optimization algorithms to help us find the best solution10.
The optimization algorithms we’ll use are general purpose, and can be used for
many different types of problems. The key is to define an appropriate objective
function, and then let the algorithm do the work.

INFO MLE and OLS

For linear regression assuming a normal distribution, the maximum
likelihood estimate of the standard deviation is the OLS estimate of
the standard deviation of the residuals. Furthermore, the maximum
likelihood coefficient estimates and OLS estimates converge to the same

10There is no way to know if we have found a global minimum, and truthfully, we probably
rarely do with complex models. But optimization algorithms are designed to find the best
solution they can under the data circumstances, and some minimums may be practically
indistinguishable from the global minimum anyway (we hope!).

6.8 Penalized Objectives 149

estimates as the sample size increases. In practice these estimates are
indistinguishable, and the OLS estimate is the maximum likelihood
estimate for linear regression. So OLS and variants (such as those used
for GLM) are maximum likelihood estimation methods.

6.8 Penalized Objectives
One thing we may want to take into account with our models is their complexity,
especially in the context of overfitting. We talk about this with machine
learning also (Chapter 10), but the basic idea is that we can get too familiar
with the data we have, and when we try to predict on new data the model
hasn’t seen before, model performance suffers. In other words, we are not
generalizing well (Section 10.4).

One way to deal with this is to penalize the objective function value for
complexity, or at least favor simpler models that might do as well. In some
contexts this is called regularization, and in other contexts shrinkage, since
the parameter estimates are typically shrunk toward some specific value (e.g.,
zero).

As a starting point, in our basic linear model we can add a penalty that is
applied to the size of coefficients. This is called ridge regression, or, more
mathily, L2 regularization. We can write this formally as:

Value =
𝑛𝑛

∑
𝑖𝑖𝑖𝑖

(𝑦𝑦𝑖𝑖 − ̂𝑦𝑦𝑖𝑖)2 + 𝜆𝜆
𝑝𝑝

∑
𝑗𝑗𝑗𝑗

𝛽𝛽2
𝑗𝑗 (6.2)

The first part is the same as basic OLS (Equation 6.1), but the second part is
the penalty for 𝑝𝑝 features. The penalty is the sum of the squared coefficients
multiplied by some value, which we call 𝜆𝜆. This is an additional model parameter
that we typically want to estimate, for example, through cross-validation. This
kind of parameter is often called a hyperparameter, mostly just to distinguish
it from those that may be of actual interest. For example, we could probably
care less what the actual value for 𝜆𝜆 is, but we would still be interested in the
coefficients.

In the end this is just a small change to OLS regression (Equation 6.1), but it
can make a big difference. It introduces some bias in the coefficients – recall that
OLS is unbiased if assumptions are met – but it can help to reduce variance,
which can help the model perform better on new data (Section 10.4.2). In
other words, we are willing to accept some bias in order to get a model that
generalizes better.
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But let’s get to an example to demystify this a bit! Here is an example of
a function that calculates the ridge objective. To make things interesting,
let’s add the other features we talked about regarding GDP per capita and
perceptions of corruption.

R

ridge = function(par, X, y, lambda = 0) {

# add a column of 1s for the intercept

X = cbind(1, X)

mu = X %*% par # linear predictor

# Calculate the value as sum squared error

error = sum((y - mu)^2)

# Add the penalty

value = error + lambda * sum(par^2)

return(value)

}

X = df_happiness |>

select(-happiness, -country) |>

as.matrix()

our_ridge = optim(

par = c(0, 0, 0, 0),

fn = ridge,

X = X,

y = df_happiness$happiness,

lambda = 0.1,

method = 'BFGS'

)

our_ridge$par

Python

# we use lambda_ because lambda is a reserved word in Python

def ridge(par, X, y, lambda_ = 0):

# add a column of 1s for the intercept

X = np.c_[np.ones(X.shape[0]), X]
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# Calculate the predicted values

mu = X @ par

# Calculate the error

value = np.sum((y - mu)**2)

# Add the penalty

value = value + lambda_ * np.sum(par**2)

return value

our_ridge = minimize(

fun = ridge,

x0 = np.array([0, 0, 0, 0]),

args = (

np.array(df_happiness.drop(columns=['happiness', 'country'])),

np.array(df_happiness['happiness']),

0.1

)

)

our_ridge['x']

We can compare this to built-in functions as we have before11, and we can
see that the results are very similar, but not exactly the same. We would not
worry about such differences in practice, but the main point is again, that we
can use simple functions that do just about as well as those from common
packages.

Table 6.5: Comparison of Ridge Regression Results

Parameter Standard1 Our Result
Intercept 5.44 5.44
life_exp_sc 0.49 0.52
corrupt_sc −0.12 −0.11
gdp_pc_sc 0.42 0.44

1Showing results from the R glmnet package with alpha = 0, lambda = .1.

11For R, one can use the glmnet, while for Python, the Ridge class in scikit-learn is a good
choice.
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INFO Analytical Solution for Ridge Regression

It turns out that given a fixed 𝜆𝜆 penalty ridge regression estimates can be
derived analytically. Clark (2021a) (one of your authors) has an example
in his Model Estimation by Example demos.

Another very common penalized approach is to use the sum of the absolute
value of the coefficients, which is called lasso regression or L1 regularization.
An interesting property of the lasso is that in typical implementations, it will
potentially produce a value of zero for some coefficients, which is the same as
dropping the associated feature from the model altogether. This is a form of
feature selection or variable selection. The true values are never zero, but
if we want to use a ‘best subset’ of features, this is one way we could do so.
We can write the lasso objective as follows. The chapter exercise asks you to
implement this yourself.

Value =
𝑛𝑛

∑
𝑖𝑖𝑖𝑖

(𝑦𝑦𝑖𝑖 − ̂𝑦𝑦𝑖𝑖)2 + 𝜆𝜆
𝑝𝑝

∑
𝑗𝑗𝑗𝑗

|𝛽𝛽𝑗𝑗| (6.3)

6.9 Classification
So far, we’ve been assuming a continuous target, but what if we have a
categorical target? Now we have to learn a bunch of new stuff for that situation,
right? Actually, no! When we want to model categorical targets, conceptually,
nothing changes with our estimation approach! We still have an objective
function that maximizes or minimizes some goal, and we can use the same
algorithms to estimate parameters. However, we need to think about how we
can do this in a way that makes sense for the binary target, or generalize to
the multiclass case.

6.9.1 Misclassification rate
A straightforward correspondence to common loss functions we’ve seen is a
function that minimizes classification error, or by the same token, maximizes
accuracy. In other words, we can think of the objective function as the pro-
portion of incorrect classifications. This is called the misclassification rate.

Value = 1
𝑛𝑛

𝑛𝑛
∑
𝑖𝑖𝑖𝑖

𝟙𝟙𝟙𝟙𝟙𝑖𝑖 ≠ ̂𝑦𝑦𝑖𝑖) (6.4)
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Value = 1
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In the equation, 𝑦𝑦𝑖𝑖 is the actual value of the target for observation 𝑖𝑖, arbitrarily
coded as 1 or 0, and ̂𝑦𝑦𝑖𝑖 is the predicted class from the model. The 𝟙𝟙 is an
indicator function that returns 1 if the condition is true, and 0 otherwise. In
other words, we are counting the number of times the predicted value is not
equal to the actual value, and dividing by the number of observations. Very
straightforward, so let’s do this ourselves!

R

misclassification = function(par, X, y, class_threshold = .5) {

X = cbind(1, X)

# Calculate the 'linear predictor'

mu = X %*% par

# Convert to a probability ('sigmoid' function)

p = 1 / (1 + exp(-mu))

# Convert to a class

predicted_class = as.integer(

ifelse(p > class_threshold, 'good', 'bad')

)

# Calculate the mean error

value = mean(y - predicted_class)

return(value)

}

Python

def misclassification_rate(par, X, y, class_threshold = .5):

# add a column of 1s for the intercept

X = np.c_[np.ones(X.shape[0]), X]

# Calculate the 'linear predictor'

mu = X @ par

# Convert to a probability ('sigmoid' function)

p = 1 / (1 + np.exp(-mu))

# Convert to a class

predicted_class = np.where(p > class_threshold, 1, 0)
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# Calculate the mean error

value = np.mean(y - predicted_class)

return value

Note that our function first adds a step to convert the linear combination
of features, the linear predictor (called mu), to a probability. Once we have a
probability, we use some threshold to convert it to a ‘class’. In this case, we
use 0.5 as the threshold, but this could be different depending on the context,
something we talk more about elsewhere (Section 4.2.2). We’ll leave it as
an exercise for you to play around with this function, as the next objective
function is far more commonly used. But at least you can see how easy it can
be to switch from a numeric target to the classification case.

6.9.2 Log loss
A very common objective function for classification is log loss, sometimes
called logistic loss, or cross-entropy12. For a binary target, it is:

Value = −
𝑛𝑛

∑
𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖 log( ̂𝑦𝑦𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − ̂𝑦𝑦𝑖𝑖) (6.5)

Where 𝑦𝑦𝑖𝑖 is the actual value of the target for observation 𝑖𝑖, and ̂𝑦𝑦𝑖𝑖 is the
predicted value from the model (essentially a probability). It turns out that
this is the same as the log-likelihood used in a maximum likelihood approach
for logistic regression, made negative so we can minimize it.

We typically prefer this objective function to classification error because it
results in a smooth optimization surface, like in the visualization we showed
before for maximum likelihood (Section 6.7.1), which means it is differen-
tiable in a mathematical sense. This is important because it allows us to use
optimization algorithms that rely on derivatives in updating the parameter
estimates. You don’t really need to get into that too much, but just know
that a smoother objective function is something we prefer. Here’s some code
to try out.

R

log_loss = function(par, X, y) {

X = cbind(1, X)

# Calculate the predicted values on the raw scale

12A nice demo from the pytorch perspective can be found at Raschka (2022a).
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y_hat = X %*% par

# Convert to a probability ('sigmoid' function)

y_hat = 1 / (1 + exp(-y_hat))

# likelihood

ll = y * log(y_hat) + (1 - y) * log(1 - y_hat)

# alternative

# dbinom(y, size = 1, prob = y_hat, log = TRUE)

value = -sum(ll)

return(value)

}

Python

def log_loss(par, X, y):

# add a column of 1s for the intercept

X = np.c_[np.ones(X.shape[0]), X]

# Calculate the predicted values

y_hat = X @ par

# Convert to a probability ('sigmoid' function)

y_hat = 1 / (1 + np.exp(-y_hat))

# likelihood

ll = y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat)

value = -np.sum(ll)

return value

Let’s go ahead and demonstrate this. To create a classification problem, we’ll
say that a country is ‘happy’ if the happiness score is greater than 5.5, and
‘unhappy’ otherwise. We’ll use the same features as before.
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R

df_happiness_bin = df_happiness |>

mutate(happiness = ifelse(happiness > 5.5, 1, 0))

model_logloss = optim(

par = c(0, 0, 0, 0),

fn = log_loss,

X = df_happiness_bin |>

select(life_exp_sc:gdp_pc_sc) |>

as.matrix(),

y = df_happiness_bin$happiness

)

model_glm = glm(

happiness ~ life_exp_sc + corrupt_sc + gdp_pc_sc,

data = df_happiness_bin,

family = binomial

)

model_logloss$par

Python

df_happiness_bin = df_happiness.copy()

df_happiness_bin['happiness'] = np.where(df_happiness['happiness'] > 5.5, 1, 0)

model_logloss = minimize(

log_loss,

x0 = np.array([0, 0, 0, 0]),

args = (

df_happiness_bin[['life_exp_sc', 'corrupt_sc', 'gdp_pc_sc']],

df_happiness_bin['happiness']

)

)

model_glm = smf.glm(

'happiness ~ life_exp_sc + corrupt_sc + gdp_pc_sc',

data = df_happiness_bin,

family = sm.families.Binomial()

).fit()

model_logloss['x']
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R

df_happiness_bin = df_happiness |>

mutate(happiness = ifelse(happiness > 5.5, 1, 0))

model_logloss = optim(

par = c(0, 0, 0, 0),

fn = log_loss,

X = df_happiness_bin |>

select(life_exp_sc:gdp_pc_sc) |>

as.matrix(),

y = df_happiness_bin$happiness

)

model_glm = glm(

happiness ~ life_exp_sc + corrupt_sc + gdp_pc_sc,

data = df_happiness_bin,

family = binomial

)

model_logloss$par

Python

df_happiness_bin = df_happiness.copy()

df_happiness_bin['happiness'] = np.where(df_happiness['happiness'] > 5.5, 1, 0)

model_logloss = minimize(

log_loss,

x0 = np.array([0, 0, 0, 0]),

args = (

df_happiness_bin[['life_exp_sc', 'corrupt_sc', 'gdp_pc_sc']],

df_happiness_bin['happiness']

)

)

model_glm = smf.glm(

'happiness ~ life_exp_sc + corrupt_sc + gdp_pc_sc',

data = df_happiness_bin,

family = sm.families.Binomial()

).fit()

model_logloss['x']
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Once again, we can see that the results are very similar between our classifica-
tion result and the built-in function.

Table 6.6: Comparison of Log Loss Results

parameter Standard Our result
LogLike 40.6635 40.6635
intercept −0.1637 −0.1642
life_exp_sc 1.8172 1.8168
corrupt_sc −0.4648 −0.4638
gdp_pc_sc 1.1311 1.1307

So, when it comes to classification, you should feel confident in what’s going on
under the hood, just like you did with a numeric target. Too much is made of
the distinction between ‘regression’ and ‘classification’, and it can be confusing
to those starting out. In reality, classification just requires a slightly different
way of thinking about the target, not something fundamentally different about
the modeling process.

6.10 Optimization Algorithms
When it comes to optimization, there are many algorithms that have been
developed over time. The main thing to keep in mind is that these are all just
different ways to find the best fitting parameters for a model. Some may be
better suited for certain data tasks, or provide computational advantages, but
usually the choice of algorithm is not as important as many other modeling
choices you’ll have to make.

6.10.1 Common methods
Here are some of the options available in R’s optim or scipy’s minimize function.
In addition, they are commonly used behind the scenes in many modeling
functions.

• Nelder-Mead
• BFGS
• L-BFGS-B (provides constraints)
• Conjugate gradient
• Simulated annealing
• Newton’s method
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Other common optimization methods include:

• Genetic algorithms
• Other popular SGD extensions and variants

– RMSProp
– Adam/momentum
– AdaGrad

The main reason to choose one method over another usually is based on
factors like speed, memory use, or how well the method works for certain
models. For statistical contexts, many functions for generalized linear models
use Newton’s method by default, but more complicated models, for example,
mixed models, may implement a different approach for better convergence.
In machine learning, stochastic gradient descent is popular because it can be
relatively efficient in large data settings and easy to implement.

In general, we can always try different methods to see which works best, but
usually the results will be similar if the results reach convergence. We’ll now
demonstrate one of more common methods to get a sense of how these work.

6.10.2 Gradient descent
One of the most popular approaches in optimization is called gradient descent.
It uses the gradient of the function we’re trying to optimize to find the best
parameters. We still use objective functions as before, and gradient descent
is just a way to find that path along the objective function surface as we
discussed previously in the deep dive (Section 6.7.1).

More formally, the gradient is the vector of partial derivatives of the objective
function with respect to each parameter. That may not mean much to you,
but the basic idea is that the gradient provides a direction that points in the
direction of steepest increase in the function. So if we want to maximize the
objective function, we can take a step in the direction of the gradient, and if
we want to minimize it, we can take a step in the opposite direction of the
gradient (use the negative gradient).

The size of the ‘step’ is called the learning rate. Like the penalty parameter
we saw with penalized regression, it is a hyperparameter that we can tune
through cross-validation (Section 10.7). If the learning rate is too small, it
will take a longer time to converge. If it’s too large, we might overshoot the
objective and miss the best parameters. There are a number of variations on
gradient descent that have been developed over time. Let’s see this in action
with the world happiness model.
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R

gradient_descent = function(

par,

X,

y,

tolerance = 1e-3,

maxit = 1000,

learning_rate = 1e-3

) {

X = cbind(1, X) # add a column of 1s for the intercept

N = nrow(X)

# initialize

beta = par

names(beta) = colnames(X)

mse = crossprod(X %*% beta - y) / N # crossprod provides sum(x^2)

tol = 1

iter = 1

while (tol > tolerance && iter < maxit) {

LP = X %*% beta

grad = t(X) %*% (LP - y)

betaCurrent = beta - learning_rate * grad

tol = max(abs(betaCurrent - beta))

beta = betaCurrent

mse = append(mse, crossprod(LP - y) / N)

iter = iter + 1

}

output = list(

par = beta,

loss = mse,

MSE = crossprod(LP - y) / nrow(X),

iter = iter,

predictions = LP

)

return(output)

}
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Python

def gradient_descent(

par,

X,

y,

tolerance = 1e-3,

maxit = 1000,

learning_rate = 1e-3

):

# add a column of 1s for the intercept

X = np.c_[np.ones(X.shape[0]), X]

# initialize

beta = par

loss = np.sum((X @ beta - y)**2)

tol = 1

iter = 1

while (tol > tolerance and iter < maxit):

LP = X @ beta

grad = X.T @ (LP - y)

betaCurrent = beta - learning_rate * grad

tol = np.max(np.abs(betaCurrent - beta))

beta = betaCurrent

loss = np.append(loss, np.sum((LP - y)**2))

iter = iter + 1

output = {

'par': beta,

'loss': loss,

'MSE': np.mean((LP - y)**2),

'iter': iter,

'predictions': LP

}

return output

With our functions in hand, let’s apply them to the world happiness data. We’ll
keep the default settings, but feel free to play around with the learning_rate

and tolerance parameters.
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Python

def gradient_descent(

par,

X,

y,

tolerance = 1e-3,
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learning_rate = 1e-3
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output = {
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}

return output
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R

X = df_happiness |>

select(life_exp_sc:gdp_pc_sc) |>

as.matrix()

our_gd = gradient_descent(

par = c(0, 0, 0, 0),

X = X,

y = df_happiness$happiness

)

Python

our_gd = gradient_descent(

par = np.array([0, 0, 0, 0]),

X = df_happiness[['life_exp_sc', 'corrupt_sc', 'gdp_pc_sc']].to_numpy(),

y = df_happiness['happiness'].to_numpy()

)

We compare our results in Table 6.7. As usual, we see that the results are
very similar to the standard linear regression approach. Once again, we have
demystified a step in the modeling process!

Table 6.7: Comparison of Gradient Descent Results

Value Standard Our Result
Intercept 5.445 5.437
life_exp_sc 0.525 0.521
corrupt_sc −0.105 −0.107
gdp_pc_sc 0.438 0.439
MSE 0.367 0.367

In addition, when we visualize the loss function across iterations, we see a
smooth decline in the MSE value as we go along each iteration (Figure 6.7).
This is a good sign that we are converging to an optimal solution.
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Figure 6.7: Loss with gradient descent.

6.10.3 Stochastic gradient descent
Stochastic gradient descent (SGD) is a version of gradient descent that uses
a random sample of data to calculate the gradient, instead of using all the data.
This makes it less accurate in some ways, but it’s faster and can be parallelized
across the CPU/GPU cores of the computing hardware environment. This
speed is useful in machine learning when there’s a lot of data, which often
makes the discrepancy of results small between standard GD and SGD. As
such, you will see variants of it incorporated in many models in deep learning,
but know that it can be used with much simpler models as well.

Let’s see this in action with the happiness model. The following is a conceptual
version of the AdaGrad approach13, which is a variation of SGD that adjusts
the learning rate for each parameter. We will also add a variation that you
can explore that averages the parameter estimates across iterations, which is a
common approach to improve the performance of SGD.

We are going to use a batch size of one, which is similar to a ‘streaming’
or ‘online’ version where we update the model with each observation. Since
our data are alphabetically ordered, we’ll shuffle the data first. We’ll also
use a stepsize_tau parameter, which is a way to adjust the learning rate at
early iterations. The values for the learning rate and stepsize_tau are arbitrary,
selected after some initial playing around, but you can play with them to see
how they affect the results.

13MC wrote this function a long time ago but does not recall exactly what the origin is,
except that Murphy’s PML book was something he was poring through at the time (Murphy
(2012)).
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6.10.3 Stochastic gradient descent
Stochastic gradient descent (SGD) is a version of gradient descent that uses
a random sample of data to calculate the gradient, instead of using all the data.
This makes it less accurate in some ways, but it’s faster and can be parallelized
across the CPU/GPU cores of the computing hardware environment. This
speed is useful in machine learning when there’s a lot of data, which often
makes the discrepancy of results small between standard GD and SGD. As
such, you will see variants of it incorporated in many models in deep learning,
but know that it can be used with much simpler models as well.

Let’s see this in action with the happiness model. The following is a conceptual
version of the AdaGrad approach13, which is a variation of SGD that adjusts
the learning rate for each parameter. We will also add a variation that you
can explore that averages the parameter estimates across iterations, which is a
common approach to improve the performance of SGD.

We are going to use a batch size of one, which is similar to a ‘streaming’
or ‘online’ version where we update the model with each observation. Since
our data are alphabetically ordered, we’ll shuffle the data first. We’ll also
use a stepsize_tau parameter, which is a way to adjust the learning rate at
early iterations. The values for the learning rate and stepsize_tau are arbitrary,
selected after some initial playing around, but you can play with them to see
how they affect the results.

13MC wrote this function a long time ago but does not recall exactly what the origin is,
except that Murphy’s PML book was something he was poring through at the time (Murphy
(2012)).
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R

stochastic_gradient_descent = function(

par, # parameter estimates

X, # model matrix

y, # target variable

learning_rate = 1, # the learning rate

stepsize_tau = 0, # if > 0, a check on the LR at early iterations

seed = 123

) {

# initialize

set.seed(seed)

# shuffle the data

idx = sample(1:nrow(X), nrow(X))

X = X[idx, ]

y = y[idx]

X = cbind(1, X)

beta = par

# Collect all estimates

betamat = matrix(0, nrow(X), ncol = length(beta))

# Collect fitted values at each point))

fits = NA

# Collect loss at each point

loss = NA

# adagrad per parameter learning rate adjustment

s = 0

# a smoothing term to avoid division by zero

eps = 1e-8

for (i in 1:nrow(X)) {

Xi = X[i, , drop = FALSE]

yi = y[i]

# matrix operations not necessary here,

# but makes consistent with previous gd func

LP = Xi %*% beta

grad = t(Xi) %*% (LP - yi)
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s = s + grad^2 # adagrad approach

# update

beta = beta - learning_rate /

(stepsize_tau + sqrt(s + eps)) * grad

betamat[i, ] = beta

fits[i] = LP

loss[i] = crossprod(LP - yi)

}

LP = X %*% beta

lastloss = crossprod(LP - y)

output = list(

par = beta, # final estimates

par_chain = betamat, # estimates at each iteration

MSE = sum(lastloss) / nrow(X),

predictions = LP

)

return(output)

}

Python

def stochastic_gradient_descent(

par, # parameter estimates

X, # model matrix

y, # target variable

learning_rate = 1, # the learning rate

stepsize_tau = 0, # if > 0, a check on the LR at early iterations

average = False # a variation of the approach

):

# initialize

np.random.seed(1234)

# shuffle the data

idx = np.random.choice(

df_happiness.shape[0],

df_happiness.shape[0],
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s = s + grad^2 # adagrad approach

# update

beta = beta - learning_rate /

(stepsize_tau + sqrt(s + eps)) * grad

betamat[i, ] = beta

fits[i] = LP

loss[i] = crossprod(LP - yi)

}

LP = X %*% beta

lastloss = crossprod(LP - y)

output = list(

par = beta, # final estimates

par_chain = betamat, # estimates at each iteration

MSE = sum(lastloss) / nrow(X),

predictions = LP

)

return(output)

}

Python

def stochastic_gradient_descent(

par, # parameter estimates

X, # model matrix

y, # target variable

learning_rate = 1, # the learning rate

stepsize_tau = 0, # if > 0, a check on the LR at early iterations

average = False # a variation of the approach

):

# initialize

np.random.seed(1234)

# shuffle the data

idx = np.random.choice(

df_happiness.shape[0],

df_happiness.shape[0],
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replace = False

)

X = X[idx, :]

y = y[idx]

X = np.c_[np.ones(X.shape[0]), X]

beta = par

# Collect all estimates

betamat = np.zeros((X.shape[0], beta.shape[0]))

# Collect fitted values at each point))

fits = np.zeros(X.shape[0])

# Collect loss at each point

loss = np.zeros(X.shape[0])

# adagrad per parameter learning rate adjustment

s = 0

# a smoothing term to avoid division by zero

eps = 1e-8

for i in range(X.shape[0]):

Xi = X[None, i, :]

yi = y[i]

# matrix operations not necessary here,

# but makes consistent with previous gd func

LP = Xi @ beta

grad = Xi.T @ (LP - yi)

s = s + grad**2 # adagrad approach

# update

beta = beta - learning_rate / \

(stepsize_tau + np.sqrt(s + eps)) * grad

betamat[i, :] = beta

fits[i] = LP

loss[i] = np.sum((LP - yi)**2)

LP = X @ beta

lastloss = np.sum((LP - y)**2)
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output = {

'par': beta, # final estimates

'par_chain': betamat, # estimates at each iteration

'MSE': lastloss / X.shape[0],

'predictions': LP

}

return output

Let’s now use the functions as we did before. We’ll show the results in Table 6.8.

R

X = df_happiness |>

select(life_exp_sc, corrupt_sc, gdp_pc_sc) |>

as.matrix()

y = df_happiness$happiness

our_sgd = stochastic_gradient_descent(

par = c(mean(df_happiness$happiness), 0, 0, 0),

X = X,

y = y,

learning_rate = .15,

stepsize_tau = .1

)

c(our_sgd$par, our_sgd$MSE)

Python

X = df_happiness[['life_exp_sc', 'corrupt_sc', 'gdp_pc_sc']].to_numpy()

y = df_happiness['happiness'].to_numpy()

our_sgd = stochastic_gradient_descent(

par = np.array([np.mean(df_happiness['happiness']), 0, 0, 0]),

X = X,

y = y,

learning_rate = .15,

stepsize_tau = .1

)

our_sgd['par'], our_sgd['MSE']
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output = {
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R

X = df_happiness |>

select(life_exp_sc, corrupt_sc, gdp_pc_sc) |>

as.matrix()

y = df_happiness$happiness

our_sgd = stochastic_gradient_descent(

par = c(mean(df_happiness$happiness), 0, 0, 0),

X = X,

y = y,

learning_rate = .15,

stepsize_tau = .1

)

c(our_sgd$par, our_sgd$MSE)

Python

X = df_happiness[['life_exp_sc', 'corrupt_sc', 'gdp_pc_sc']].to_numpy()

y = df_happiness['happiness'].to_numpy()

our_sgd = stochastic_gradient_descent(

par = np.array([np.mean(df_happiness['happiness']), 0, 0, 0]),

X = X,

y = y,

learning_rate = .15,

stepsize_tau = .1

)

our_sgd['par'], our_sgd['MSE']
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Now we’ll compare it to OLS estimates and our previous ‘batch’ gradient
descent results. Even though SGD normally would not be used for such a small
dataset, we at least get close14!

Table 6.8: Comparison of Stochastic Gradient Descent Results

Value Standard Our Result Batch SGD
Intercept 5.445 5.469 5.437
life_exp_sc 0.525 0.514 0.521
corrupt_sc −0.105 −0.111 −0.107
gdp_pc_sc 0.438 0.390 0.439
MSE 0.367 0.370 0.367

Figure 6.8 shows the estimates as they moved along the data. For this plot
we don’t include the intercept, as it’s on a notably different scale. We can see
that the estimates are moving around a bit, but they appear to be converging
to a solution.

Figure 6.8: Stochastic gradient descent path.

To wrap things up, here are the results for the happiness model using different
optimization algorithms, with a comparison to the standard linear regression

14You’d get better results in a couple of ways. The easiest is just to repeat the process a
couple of times and average the results. This is a common approach in SGD. The initial
shuffling that we did can help with convergence as well, and it would be done each repetition.
With larger data and repeated runs/epochs, shuffling allows the samples/batches to be more
representative of the entire dataset. Also, we ‘hand-tune’ our learning rate and step size
here, but normally we’d use cross-validation to find the best values.

-0.25

0.00

0.25

0.50

0 30 60 90
(Shuffled) Data Index

Parameter
Estimate

corrupt_sc gdp_pc_sc life_exp_sc



168 6 Model Estimation and Optimization

model function. We can see that the results are very similar, and for simpler
modeling endeavors they should converge on the same result.

Table 6.9: Comparison of Optimization Results

parameter NM1 BFGS2 CG3 GD4 Standard5

Intercept 5.445 5.445 5.445 5.437 5.445
life_exp_sc 0.525 0.525 0.525 0.521 0.525
gdp_pc_sc −0.105 −0.105 −0.105 −0.107 −0.105
corrupt_sc 0.437 0.438 0.438 0.439 0.438
MSE 0.367 0.367 0.367 0.367 0.367

1NM = Nelder-Mead
2BFGS = Broyden–Fletcher–Goldfarb–Shanno
3CG = Conjugate gradient
4GD = Our gradient descent function
5Standard = Standard package function

Before leaving our estimation discussion, we should mention there are other
approaches one could use to estimate model parameters, including variations on
least squares, themethod of moments, generalized estimating equations,
robust estimation, and more. We’ve focused on the most common ones generally,
but it’s good to be aware of others that might be more popular in some domains.

6.11 Wrapping Up
Wow, we covered a lot here! But this is the sort of stuff that can take you
from just having some fun with data, to doing that and also understanding
how things are actually happening. Just having the basics of how modeling
actually is done ‘under the hood’ makes so many other things make sense, and
it can give you a lot of confidence, even in less familiar modeling domains.

6.11.1 The common thread
Simply put, the content in this chapter ties together any and every model you
will ever undertake, from linear regression to reinforcement learning, computer
vision, and large language models. Estimation and optimization are the core of
any modeling process, and understanding the basics is key to understanding
how models work in general.
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6.11.2 Choose your own adventure
Seriously, after this chapter, you should feel fine with any of the others in this
book, so dive in!

6.11.3 Additional resources
OLS and Maximum Likelihood Estimation:

For OLS and maximum likelihood estimation, there are so many resources out
there, so we recommend just taking a look and seeing which one suits you
best. Practically any more technically-oriented statistical book will cover these
topics in detail.

• A list of classical references

Gradient Descent:

• Gradient Descent, Step-by-Step StatQuest with Josh Starmer (2019a)
• Stochastic Gradient Descent, Clearly Explained StatQuest with Josh Starmer

(2019b)
• A Visual Explanation of Gradient Descent Methods Jiang (2020)

More demonstration of the simple AdaGrad algorithm used above:

• Brownlee (2021)
• DataBricks (2019)

6.12 Guided Exploration
For this exercise, you’ll have two tasks:

• Try creating an objective function for a continuous target that uses the
mean absolute error, and compare your estimated parameters to the previous
results for ordinary least squares. Use the OLS function from the chapter as
a basis (Section 6.5), but modify it for the new objective.

• Use the estimation function we demonstrated for ridge regression (Section 6.8)
and change it to use the lasso approach.

Both of these can be done by changing one line in the previous functions used.
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7
Estimating Uncertainty

Our focus thus far has been on estimating the best parameters for a model.
But we also want to know how certain we are about those estimates. There are
different ways to estimate uncertainty, and understanding the uncertainty in
our results helps us make better decisions from our model. We’ll briefly cover a
few approaches here, but realize we are merely scratching the surface on these
approaches. There are whole books, and even philosophies, dedicated to the
topic of uncertainty estimation.

7.1 Key Ideas
• There are multiple ways to estimate uncertainty in parameters or prediction.
• Many statistical models provide formulaic interval estimates for parameters

and predictions, couched in a frequentist framework.
• Monte Carlo methods use a simulation approach to estimate uncertainty.
• Bootstrap methods use resampling to estimate uncertainty.
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• Bayesian methods provide a different way to estimate uncertainty and an
alternative philosophical spirit.

• Conformal prediction provides a way to estimate uncertainty in predictions
where other methods falter.

7.1.1 Why this matters
Understanding uncertainty is crucial for making decisions based on model
results. It’s difficult to make informed decisions if we don’t know how certain we
are about our estimates. This is especially important in high-stakes decisions,
where the consequences of being wrong are severe. For example, in medical
diagnosis, we want to be as certain as possible about the diagnosis before
starting treatment. In finance, we want to be as certain as possible about
the risk of an investment before making it. In all these cases, understanding
uncertainty is key to making the best decision.

7.1.2 Helpful context
If you are comfortable with standard linear models, you should be okay here.
This chapter does get a bit more technical and is more DIY than others, but
the examples should prove straightforward.

7.2 Data Setup
Data setup follows the estimation chapter for consistency (Section 6.2).

R

df_happiness = read_csv('https://tinyurl.com/worldhappiness2018') |>

drop_na() |>

rename(happiness = happiness_score) |>

select(

country,

happiness,

contains('_sc')

)
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Python

import pandas as pd

df_happiness = (

pd.read_csv('https://tinyurl.com/worldhappiness2018')

.dropna()

.rename(columns = {'happiness_score': 'happiness'})

.filter(regex = '_sc|country|happ')

)

Nothing beyond base R is needed. For Python examples, the following are
required.

import numpy as np

import statsmodels.api as sm

import statsmodels.formula.api as smf

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from scipy import stats

7.3 Standard Frequentist
We talked a bit about the frequentist approach in our discussion of confidence
intervals (Section 3.4.1). There we described the process using the interval to
capture the ‘true’ parameter value a certain percentage of the time. The key
assumption is that the true parameter is fixed, and the interval is a random
variable that will contain the true value with some percentage frequency. With
this approach, if you were to repeat the experiment, i.e., data collection and
analysis, many times, each interval would be slightly different. Although they
would be different, any one of the intervals is as good or valid as the others.
You also know that a certain percentage of them will contain the true value,
and a (usually small) percentage will not. You will never know if a specific
interval does actually capture the true value, because we don’t know the true
value in practice.

This is a common approach in traditional statistical analysis, and so it’s used in
many modeling contexts. If no particular estimation approach is specified, the
default is usually a frequentist one. The approach not only provides confidence
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intervals for the parameters, but we can also get them for predictions, which,
as we’ve seen elsewhere, is typically also a goal.

Here is an example using our previous model to get interval estimates for
predictions. Here we get so-called ‘confidence’ or ‘prediction’ intervals. Both
are confidence intervals in the frequentist sense, just for different purposes. The
confidence interval is for the average prediction, while the prediction interval
is for a future observation. The prediction interval is wider because it includes
the uncertainty in the model parameters as well as the uncertainty in the
prediction itself.

R

model = lm(

happiness ~ life_exp_sc + corrupt_sc + gdp_pc_sc,

data = df_happiness

)

confint(model)

predict(model, interval = 'confidence') # for an average prediction

predict(model, interval = 'prediction') # for a future observation (wider)

Python

model = smf.ols(

'happiness ~ life_exp_sc + corrupt_sc + gdp_pc_sc',

data = df_happiness

).fit()

model.conf_int()

# both 'confidence' and 'prediction' intervals

model.get_prediction().summary_frame()

The confidence interval is narrower because it only includes the uncertainty in
the model parameters, while the prediction interval is wider because it includes
the uncertainty in the model parameters and the prediction itself. The linear
regression model provides these intervals by default, but we can also calculate
them by hand. Here we show how to calculate the intervals for the predictions
by hand by essentially performing the formula for the interval estimates. A
sample of results are shown in Table 7.1.
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R

X = model.matrix(model)

# get the prediction

y_hat = X %*% coef(model)

# get the standard error

se = sqrt(diag(X %*% vcov(model) %*% t(X)))

# critical value for 95% confidence

cv = qt(0.975, df = model$df.residual)

# get the confidence interval

tibble(

prediction = y_hat[,1],

lower = y_hat[,1] - cv * se,

upper = y_hat[,1] + cv * se

) |>

head()

predict(model, interval = 'confidence') |> head()

# get the prediction interval

se_pred = sqrt(se^2 + summary(model)$sigma^2)

data.frame(

prediction = y_hat[,1],

lower = y_hat[,1] - cv * se_pred,

upper = y_hat[,1] + cv * se_pred

) |>

head()

predict(model, interval = 'prediction') |> head()

Python

X = model.model.exog

# get the prediction

y_hat = X @ model.params

# get the standard error

se = np.sqrt(np.diag(X @ model.cov_params() @ X.T))
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# critical value for 95% confidence

cv = stats.t.ppf(0.975, model.df_resid)

# get the confidence interval

pd.DataFrame({

'prediction': y_hat,

'lower': y_hat - cv * se,

'upper': y_hat + cv * se

}).head()

model.get_prediction().summary_frame().head()

# get the prediction interval

se_pred = np.sqrt(se**2 + model.mse_resid)

pd.DataFrame({

'prediction': y_hat,

'lower': y_hat - cv * se_pred,

'upper': y_hat + cv * se_pred

}).head()

model.get_prediction().summary_frame().head()

Table 7.1: Confidence and Prediction Interval Estimates

prediction our_lwr our_upr lm_lwr lm_upr
Confidence

3.99 3.72 4.25 3.72 4.25
5.50 5.29 5.70 5.29 5.70
5.68 5.50 5.85 5.50 5.85

Prediction
3.99 2.74 5.24 2.74 5.24
5.50 4.26 6.74 4.26 6.74
5.68 4.44 6.91 4.44 6.91

These interval estimates for parameters and predictions are actually not easy to
get right for more complicated models beyond generalized linear models. Given
this, one should be cautious when moving beyond standard linear models.
The next two approaches we’ll discuss are often used within the frequentist
framework to estimate uncertainty in more complex models.
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7.4 Monte Carlo
Monte Carlo methods derive their name from the famous casino in Monaco1.
The idea is to use random sampling to estimate a value. With statistical
models, we can use Monte Carlo methods to estimate uncertainty in our model
parameters and predictions. The general idea is as follows:

1. Estimate the model parameters using the data and their range
of possible values (e.g., based on a probability distribution).

2. Simulate new data from the model using the estimated parameters
and assumed probability distributions for those parameters.

3. Estimate the metrics of interest using the simulated data.
4. Repeat many times.

The result is a distribution of the value of interest, be it a parameter, a
prediction, or maybe an evaluation metric like RMSE. This distribution can
then be used to provide a sense of uncertainty in the value, such as an interval
estimate. We can use Monte Carlo methods to estimate the uncertainty in
predictions for our happiness model as follows.

R

# we'll use the model from the previous section

model = lm(

happiness ~ life_exp_sc + corrupt_sc + gdp_pc_sc,

data = df_happiness

)

# number of simulations

mc_predictions = function(

model,

nsim = 2500,

seed = 42

) {

set.seed(seed)

params_est = coef(model)

params = mvtnorm::rmvnorm(

1The name originates with Stanislav Ulam, who worked on the Manhattan Project and
would actually come up with the idea from playing solitaire. He is also the one who inspired
the name of the Bayesian probabilistic programming language Stan!
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n = nsim,

mean = params_est,

sigma = vcov(model)

)

sigma = summary(model)$sigma

X = model.matrix(model)

y_hat = X %*% t(params) + rnorm(n = nrow(X) * nsim, sd = sigma)

pred_int = apply(y_hat, 1, quantile, probs = c(.025, .975))

return(pred_int)

}

our_mc = mc_predictions(model)

Python

# we'll use the model from the previous section

model = smf.ols(

'happiness ~ life_exp_sc + corrupt_sc + gdp_pc_sc',

data = df_happiness

).fit()

def mc_predictions(model, nsim=2500, seed=42):

np.random.seed(seed)

params_est = model.params

params = np.random.multivariate_normal(

mean = params_est,

cov = model.cov_params(),

size = nsim

)

sigma = model.mse_resid**.5

X = model.model.exog

y_hat = X @ params.T + \

np.random.normal(scale = sigma, size = (X.shape[0], nsim))

pred_int = np.quantile(y_hat, q = [.025, .975], axis = 1)
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return pred_int

our_mc = mc_predictions(model)

Here are the results of the Monte Carlo simulation for the prediction intervals.
They are pretty close to what we’d already have available from the model
package used for linear regression. However, we can use this for other models
where uncertainty estimates are not readily available, providing a more general
tool.

Table 7.2: Monte Carlo Prediction Intervals

observed_value prediction lower upper lower_lm upper_lm
3.63 3.99 2.78 5.19 2.74 5.24
4.59 5.50 4.32 6.73 4.26 6.74
6.39 5.68 4.43 6.84 4.44 6.91
4.32 5.41 4.21 6.67 4.17 6.65
7.27 6.97 5.71 8.19 5.72 8.21
7.14 6.88 5.63 8.13 5.64 8.12

Results based on the R simulation.

Monte Carlo simulation is a very popular approach in modeling, and a variant
of it, Markov Chain Monte Carlo (MCMC), is the basis for Bayesian
estimation, which we’ll also talk about in more detail later.

7.5 Bootstrap
An extremely common method for estimating uncertainty is the bootstrap.
The bootstrap is a method where we create new datasets by randomly sampling
the original data with replacement. This means that each new dataset is the
same size as the original, but some observations may be selected multiple times,
while others may not be selected at all. We then estimate our model with
each dataset, and each time, we can collect parameter estimates, predictions,
or any other calculations we are interested in. Ultimately, we end up with a
distribution of all the things we calculated. The nice thing about this is that
we don’t need to know the specific distribution (e.g., normal, or t-distribution)
of the values we want to get uncertainty estimates for, we can just use the
data we have to produce that distribution. And this is a key distinction from
the Monte Carlo method just discussed.
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The results of bootstrapping give us a range of possible values, which is useful
for inference2, as we can use the distribution to calculate interval estimates. The
average parameter estimate is typically the same as whatever the underlying
model used would produce, so not really useful for that in the context of
simpler linear models. Even so, we can calculate derivatives of the parameters,
like say a ratio or sum, or a model metric like R2, or a prediction. Some of
these normally would not be estimated as part of the model, or maybe the
model tool does not provide anything beyond the value itself. Yet the bootstrap
provides a way to get at a measure of uncertainty for the values of interest,
with fewer assumptions about how that distribution should take shape.

The approach is very flexible, and it can potentially be used with any model
whether in a statistical or machine learning context. Let’s see this in action
with the happiness data. We’ll create a bootstrap function, then we’ll use it to
estimate the uncertainty in the coefficients for the model.

R

bootstrap = function(X, y, nboot = 100, seed = 123) {

N = nrow(X)

p = ncol(X) + 1 # add one for intercept

# initialize

beta = matrix(NA, p*nboot, nrow = nboot, ncol = p)

colnames(beta) = c('Intercept', colnames(X))

mse = rep(NA, nboot)

# set seed

set.seed(seed)

for (i in 1:nboot) {

# sample with replacement

idx = sample(1:N, N, replace = TRUE)

Xi = X[idx,]

yi = y[idx]

# estimate model

mod = lm(yi ~., data = Xi)

# save results

2We’re using inference here in the standard statistical/philosophical sense, not as a
synonym for prediction or generalization, which is how it is often used in machine learning.
We’re not exactly sure how that terminological muddling arose in ML, but be on the lookout
for it.
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beta[i, ] = coef(mod)

mse[i] = sum((mod$fitted - yi)^2) / N

}

# given mean estimates, calculate MSE

y_hat = cbind(1, as.matrix(X)) %*% colMeans(beta)

final_mse = sum((y - y_hat)^2) / N

output = list(

par = as_tibble(beta),

MSE = mse,

final_mse = final_mse

)

return(output)

}

X = df_happiness |>

select(life_exp_sc:gdp_pc_sc)

y = df_happiness$happiness

our_boot = bootstrap(

X = X,

y = y,

nboot = 1000

)

Python

def bootstrap(X, y, nboot=100, seed=123):

# add a column of 1s for the intercept

X = np.c_[np.ones(X.shape[0]), X]

N = X.shape[0]

# initialize

beta = np.empty((nboot, X.shape[1]))

# beta = pd.DataFrame(beta, columns=['Intercept'] + list(cn))

mse = np.empty(nboot)

# set seed

np.random.seed(seed)
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for i in range(nboot):

# sample with replacement

idx = np.random.randint(0, N, N)

Xi = X[idx, :]

yi = y[idx]

# estimate model

model = LinearRegression(fit_intercept=False) # from sklearn

mod = model.fit(Xi, yi)

# save results

beta[i, :] = mod.coef_

mse[i] = np.sum((mod.predict(Xi) - yi)**2) / N

# given mean estimates, calculate MSE

y_hat = X @ beta.mean(axis=0)

final_mse = np.sum((y - y_hat)**2) / N

output = {

'par': beta,

'mse': mse,

'final_mse': final_mse

}

return output

our_boot = bootstrap(

X = df_happiness[['life_exp_sc', 'corrupt_sc', 'gdp_pc_sc']],

y = df_happiness['happiness'],

nboot = 1000

)

Here are the results of the interval estimates for the coefficients in Table 7.3.
Each parameter has the mean estimate, the lower and upper bounds of the 95%
confidence interval, and the width of the interval. The bootstrap intervals are
a bit wider than the OLS intervals, but for this model these should converge
as the number of observations increases.
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Table 7.3: Bootstrap Parameter Estimates

Parameter mean Lower BS Upper BS Lower OLS Upper OLS Diff Width1

Intercept 5.45 5.34 5.55 5.33 5.56 −0.01
life_exp_sc 0.52 0.30 0.74 0.35 0.70 0.09
corrupt_sc −0.11 −0.30 0.08 −0.25 0.04 0.09
gdp_pc_sc 0.45 0.17 0.76 0.24 0.64 0.19

1Width of bootstrap estimate minus width of OLS estimate.

Let’s look more closely at the distributions for each coefficient in Figure 7.1.
Standard statistical estimates assume a specific distribution like the normal.
But the bootstrap method provides more flexibility, even though it often leans
toward the assumed distribution. We can see these distributions aren’t perfectly
symmetrical like a normal distribution, but they suit our needs in that we can
extract the lower and upper quantiles to create an interval estimate.

Figure 7.1: Bootstrap distributions of parameter estimates.

As mentioned, the bootstrap is often used to provide uncertainty for unmodeled
parameters, predictions, and other metrics. However, because we repeatedly run
the model or some aspect of it over and over, it is computationally inefficient,
and might not be suitable with large data sizes. It also may not estimate the
appropriate uncertainty for some types of statistics (e.g., extreme values) or in
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some data contexts (e.g., correlated observations) without extra considerations.
Variants exist to help deal with some of these issues, and despite limitations,
the bootstrap method is a useful tool and can be used together with other
methods to understand uncertainty in a model.

7.6 Bayesian
The Bayesian approach to modeling is many things: a philosophical viewpoint,
an entirely different way to think about probability, a different way to measure
uncertainty, and on a practical level, just another way to get model parameter
estimates. It can be as frustrating as it is fun to use, and one of the really nice
things about using Bayesian estimation is that it can handle model complexities
that other approaches don’t do well or at all.

The basis of Bayesian estimation is the likelihood, the same as with maximum
likelihood, and everything we did there applies here. So you need a good grasp
of maximum likelihood to understand the Bayesian approach. However, the
Bayesian approach is different because it also lets us use our knowledge about
the parameters through prior distributions. For example, we may think that
the coefficients for a linear model come from a normal distribution centered on
zero with some variance. That would serve as our prior distribution for those
parameters.

The combination of a prior distribution with the likelihood results in the
posterior distribution, which is a distribution of possible parameter values.
It falls somewhere between the prior and the likelihood. With more data, it
tends toward the likelihood result, and with less data, it tends toward what the
prior would have suggested. The posterior distribution is what we ultimately
use to make inferences about the parameters, and it can be used to estimate
uncertainty in the same way as the bootstrap.

Figure 7.2: Prior, likelihood, and posterior distributions.
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Example

Let’s do a simple example to show how this comes about. We’ll use a binomial
model where we have penalty kicks taken for a soccer player, and we want to
estimate the probability of the player making a goal, which we’ll call 𝜃𝜃.

For our prior distribution, we’ll use a beta distribution that has a mean of
0.5, suggesting that we think this person would have about a 50% chance of
converting the kick on average. However, we will keep this prior fairly loose,
with a range that spans most of the (0, 1) interval. For the likelihood, we’ll use
a binomial distribution. We also use this in our discussion of generalized linear
models (see Equation 8.3), which, as we have also noted, is akin to using the
log loss (Section 6.9.2). We’ll then calculate the posterior distribution for the
probability of making a shot, given our prior and the evidence at hand, i.e.,
the data.

Let’s start with some data, and just like our other estimation approaches, we’ll
have some guesses for 𝜃𝜃 which represents the probability of making a goal.
We’ll use the prior distribution to represent our beliefs about those parameter
values, assigning more weight to values around 0.5. We’ll then calculate the
likelihood of the data given the parameter, which will put more weight on
values closer to the observed chance of scoring a goal. Finally, we calculate the
posterior distribution.

R

pk = c(

'goal','goal','goal','miss','miss',

'goal','goal','miss','goal','goal'

)

# convert to numeric, arbitrarily picking goal=1, miss=0

N = length(pk) # sample size

n_goal = sum(pk == 'goal') # number of pk made

n_miss = sum(pk == 'miss') # number of those miss

# grid of potential theta values

theta = seq(

from = 1 / (N + 1),

to = N / (N + 1),

length = 10

)

### prior distribution

# beta prior with mean = .5, but fairly diffuse
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# examine the prior

# theta = rbeta(1000, 5, 5)

# hist(theta, main = 'Prior Distribution', xlab = 'Theta', col = 'lightblue')

p_theta = dbeta(theta, 5, 5)

# Normalize so that values sum to 1

p_theta = p_theta / sum(p_theta)

# likelihood (binomial)

p_data_given_theta = choose(N, n_goal) * theta^n_goal * (1 - theta)^n_miss

# posterior (combination of prior and likelihood)

# p_data is the marginal probability of the data used for normalization

p_data = sum(p_data_given_theta * p_theta)

p_theta_given_data = p_data_given_theta*p_theta / p_data # Bayes theorem

# final estimate

theta_est = sum(theta * p_theta_given_data)

theta_est

[1] 0.6

Python

from scipy.stats import beta

pk = np.array([

'goal','goal','goal','miss','miss',

'goal','goal','miss','goal','goal'

])

# convert to numeric, arbitrarily picking goal=1, miss=0

N = len(pk) # sample size

n_goal = np.sum(pk == 'goal') # number of pk made

n_miss = np.sum(pk == 'miss') # number of those miss

# grid of potential theta values

theta = np.linspace(1 / (N + 1), N / (N + 1), 10)

### prior distribution

# beta prior with mean = .5, but fairly diffuse

# examine the prior

# theta = beta.rvs(5, 5, size = 1000)
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# plt.hist(theta, bins = 20, color = 'lightblue')

p_theta = beta.pdf(theta, 5, 5)

# Normalize so that values sum to 1

p_theta = p_theta / np.sum(p_theta)

# likelihood (binomial)

p_data_given_theta = np.math.comb(N, n_goal) * theta**n_goal * \

(1 - theta)**n_miss

# posterior (combination of prior and likelihood)

# p_data is the marginal probability of the data used for normalization

p_data = np.sum(p_data_given_theta * p_theta)

p_theta_given_data = p_data_given_theta * p_theta / p_data # Bayes theorem

# final estimate

theta_est = np.sum(theta * p_theta_given_data)

theta_est

0.599999996503221

Table 7.4 that puts all this together. Our prior distribution is centered around
a 𝜃𝜃 of 0.5 because we made it that way. The likelihood is centered closer to 0.7
because that’s the observed chance of scoring a goal. The posterior distribution
is a combination of the two. It gives no weight to smaller values, or to the max
value. Our final estimate is 0.6, which falls between the prior and likelihood
values that have the most weight. With more evidence in the form of data, our
estimate will shift more and more toward what the likelihood would suggest.
This is a simple example, but it shows how the Bayesian approach works, and
this conceptually holds for more complex parameter estimation as well.

Table 7.4: Bayesian Demo Results

theta prior like post

0.09 0.00 0.00 0.00
0.18 0.03 0.00 0.00
0.27 0.09 0.01 0.00
0.36 0.16 0.03 0.03
0.45 0.22 0.08 0.14
0.55 0.22 0.16 0.28
0.64 0.16 0.24 0.32
0.73 0.09 0.26 0.19
0.82 0.03 0.18 0.04
0.91 0.00 0.05 0.00
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INFO Priors as Regularization

In the context of penalized estimation and machine learning, the prior distri-
bution can be thought of as a form of regularization (See Section 6.8 and
Section 10.5 later). In this context, the prior shrinks the estimate, pulling the
parameter estimates toward it, just like the penalty parameter does in the
penalized estimation methods. In fact, many penalized methods can be thought
of as a Bayesian approach with a specific prior distribution. An example would
be ridge regression, which can be thought of as a Bayesian linear regression
with a normal prior distribution for the coefficients. The variance of the prior
is inversely related to the ridge penalty parameter.

Application

Just like with the bootstrap which also provided distributions for the param-
eters, we can use the Bayesian approach to understand how certain we are
about our estimates. We can look at any range of values in the posterior
distribution to get what is often referred to as a credible interval, which is
the Bayesian equivalent of a confidence interval3. Here is an example of the
posterior distribution for the parameters of our happiness model, along with
95% intervals4.

Figure 7.3: Posterior distribution of parameters.

3Many people’s default interpretation of a standard confidence interval is usually something
like ‘the range we expect the parameter to reside within’. Unfortunately, that’s not quite
right, though it is how you interpret the Bayesian interval. The frequentist confidence interval
is a range that, if we were to repeat the experiment/data collection many times, contains
the true parameter value a certain percentage of the time. For the Bayesian, the parameter
is assumed to be random, and so the interval is that which we expect the parameter to fall
within a certain percentage of the time. The Bayesian is probably a bit more intuitive for
most, even if it’s not the more widely used.

4We used the R package for brms for these results.
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Figure 7.3: Posterior distribution of parameters.

3Many people’s default interpretation of a standard confidence interval is usually something
like ‘the range we expect the parameter to reside within’. Unfortunately, that’s not quite
right, though it is how you interpret the Bayesian interval. The frequentist confidence interval
is a range that, if we were to repeat the experiment/data collection many times, contains
the true parameter value a certain percentage of the time. For the Bayesian, the parameter
is assumed to be random, and so the interval is that which we expect the parameter to fall
within a certain percentage of the time. The Bayesian is probably a bit more intuitive for
most, even if it’s not the more widely used.

4We used the R package for brms for these results.
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With Bayesian estimation we also provide starting values for the algorithm,
which is a form of Monte Carlo estimation5, to get things going. We also
typically specify a number of iterations, or times the model will run, as the
stopping rule. Each iteration gives us a new guess for each parameter,
which amounts to a random draw from the posterior distribution. With more
iterations the model takes longer to run, but the length often reflects the
complexity of the model.

We also specify multiple chains, which do the same estimation procedure, but
due to the random nature of the Bayesian approach and starting point, take
different estimation paths6. We can then compare the chains to see if they
are converging to the same result, which is a check on the model. If they are
not converging, we may need to run the model longer, or it may indicate a
problem with how we set up the model.

Here’s an example of the four chains for our happiness model for the life
expectancy coefficient. The chains bounce around a bit from one iteration
to the next, but on average, they’re giving very similar results, so we know
the model is working well. Nowadays, we have default statistics in the output
that also provide this information, which makes it easier to quickly check
convergence for many parameters.

Figure 7.4: Bayesian chains for life expectancy coefficient.

5The most common method for the Bayesian approach is Markov Chain Monte Carlo
(MCMC), which is a way to sample from the posterior distribution. There are many MCMC
algorithms, many of which are a form of the now fairly old Metropolis-Hastings algorithm,
which you can find a demo of at Michael’s doc.

6Some deep learning implementations will use multiple random starts for similar reasons.
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When we are interested in making predictions, we can use the results to
generate a distribution of possible predictions for each observation, which can
be very useful when we want to quantify uncertainty for complex models. This
is referred to as posterior predictive distribution, which is explored in a
non-Bayesian context in Section 4.4. Here is a plot of several draws of predicted
values against the true happiness scores.

Figure 7.5: Posterior predictive distribution of happiness values.

With the Bayesian approach, every metric we calculate has a range of possible
values, not just one. For example, if you have a classification model and want
to know the accuracy, AUROC, or true positive rate of the model, instead of a
single number, you would now have access to a whole distribution of values
for that metric. How? For each possible set of model parameters from the
posterior distribution, we apply those values and model to data to make a
prediction. We can then assign it to a class, and compare it to the actual class.
This gives us a range of possible predictions and classes. We can then calculate
metrics like accuracy or true positive rate for each possible prediction set. As
an example, we did this for our happiness model with a numeric target to
obtain the interval estimate for R-squared in Table 7.5. Pretty neat!
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With the Bayesian approach, every metric we calculate has a range of possible
values, not just one. For example, if you have a classification model and want
to know the accuracy, AUROC, or true positive rate of the model, instead of a
single number, you would now have access to a whole distribution of values
for that metric. How? For each possible set of model parameters from the
posterior distribution, we apply those values and model to data to make a
prediction. We can then assign it to a class, and compare it to the actual class.
This gives us a range of possible predictions and classes. We can then calculate
metrics like accuracy or true positive rate for each possible prediction set. As
an example, we did this for our happiness model with a numeric target to
obtain the interval estimate for R-squared in Table 7.5. Pretty neat!
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Table 7.5: Bayesian R2

Estimate Lower Upper
0.71 0.65 0.75

95% Credible interval for R-squared.

INFO Frequentist PP check

As we saw in Section 4.4, nothing is keeping you from doing ‘predictive
checks’ with other estimation approaches, and it’s a very good idea to do
so. For example, with a GLM you can use Monte Carlo simulation or the
Bootstrap to generate a distribution of predictions, and then compare that
to the actual data. This is a good way to check the model’s assumptions
and see if it’s doing what you think it’s doing. It’s more straightforward
with the Bayesian approach, since many modeling packages will do it for
you with little effort.

Additional Thoughts

It turns out that any standard (frequentist) statistical model can be seen as a
Bayesian one from a certain point of view7. Here are a couple.

• GLM and related models estimated via maximum likelihood: Bayesian esti-
mation with a flat/uniform prior on the parameters.

• Ridge Regression: Bayesian estimation with a normal prior on the coefficients,
penalty parameter is related to the variance of the prior.

• Lasso Regression: Bayesian estimation with a Laplace prior on the coefficients,
penalty parameter is related to the variance of the prior.

• Mixed Models: Random effects are, as the name suggests, random, and they
are estimated as a distribution of possible values, which is conceptually in
line with the Bayesian approach.

So, in many modeling contexts, you’re actually doing a restrictive form of
Bayesian estimation already.

The Bayesian approach is very flexible, can be used for many different types of
models, and can be used to get at uncertainty in a model in ways that other
approaches can’t. It’s not always the best approach, even when appropriate
due to the computational burden and just diagnostic complexity, but it’s a
good one to have in your toolbox8. Hopefully we’ve helped to demystify the
Bayesian approach a bit here, and you feel more comfortable trying it out.

7Cue Obi-Wan Kenobi.
8R has excellent tools here for modeling and post-processing, like brms and tidybayes,

and Python has pymc3, numpyro, and arviz, which are also useful. Honestly, R has way
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7.7 Conformal Methods
Conformal approaches bring us back to the frequentist world, and specifically
regard prediction uncertainty. One of the primary strengths of the approach
is that it is model agnostic and theoretically can work for any model, from
linear regression to deep learning. Like the bootstrap and Bayesian methods,
conformal prediction makes us think in terms of distributions of possible values,
but it focuses on residuals or errors in prediction.

It is based on the idea that we can estimate the uncertainty in our predictions
by looking at the distribution of the predictions from the model, or more specif-
ically, the prediction error. Using the observed prediction error on a calibration
set that was not used to train the model, we can order those errors and find
the quantile corresponding to the desired uncertainty coverage/error rate9.
When predicting on new data, we assume the predictions and corresponding
errors come from a similar distribution as what we’ve seen already in our
training/calibration process. We do this with no particular assumption about
that distribution. We then use the estimated quantile to create upper and
lower bounds for a prediction for a new observation.

While the implementation for various settings can get quite complicated,
the conceptual approach is mostly straightforward. As an example, we can
demonstrate the split-conformal procedure with the following steps.

1. Split Data: Split the dataset into training and calibration sets.
2. Train Model: Train the model using the training set.
3. Calculate Scores: Calculate conformity scores on the calibration

set. These are the absolute residuals between the predicted and
actual values on the calibration set.

4. Quantile Calculation: Determine the quantile value of the confor-
mity scores for the desired confidence level.

5. Generate Intervals: Generate prediction intervals for new data
points. For new data points, use the trained model to make pre-
dictions. Adjust these predictions by adding and subtracting the
quantile value obtained from the conformity scores to generate the
lower and upper bounds of the prediction intervals.

Let’s now demonstrate the split-conformal method with our happiness model.
We’ll start by defining the split-conformal function. The function takes the
training data, the target variable, and new data for which we want to make

more going on here, with many packages devoted to Bayesian estimation of specific models
even, but if you want to stick with Python it’s gotten a lot better recently.

9The error rate (𝛼𝛼) is the proportion of the data that would fall outside the prediction
interval, while the coverage rate/interval is 1 - 𝛼𝛼.
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predictions. It also takes an 𝛼𝛼 value, which is the error rate we want to control,
and a calibration split, which is the proportion of the data we use for calibration.
And finally, we designate new data for which we want to make predictions.

R

split_conformal = function(

X,

y,

new_data,

alpha = .05,

calibration_split = .5

) {

# Splitting the data into training and calibration sets

idx = sample(1:nrow(X), size = floor(nrow(X) / 2))

train_data = X |> slice(idx)

cal_data = X |> slice(-idx)

train_y = y[idx]

cal_y = y[-idx]

N = nrow(train_data)

# Train the base model

model = lm(train_y ~ ., data = train_data)

# Calculate residuals on calibration set

cal_preds = predict(model, newdata = cal_data)

residuals = abs(cal_y - cal_preds)

# Sort residuals and find the quantile corresponding to (1-alpha)

residuals = sort(residuals)

quantile = quantile(residuals, (1 - alpha) * (N / (N + 1)))

# Make predictions on new data and calculate prediction intervals

preds = predict(model, newdata = new_data)

lower_bounds = preds - quantile

upper_bounds = preds + quantile

# Return predictions and prediction intervals

return(

list(

cp_error = quantile,

preds = preds,
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lower_bounds = lower_bounds,

upper_bounds = upper_bounds

)

)

}

Python

def split_conformal(X, y, new_data, alpha = .05, calibration_split = .5):

# Splitting the data into training and calibration sets

X_train, X_cal, y_train, y_cal = train_test_split(

X,

y,

test_size = calibration_split,

random_state = 123

)

N = X_train.shape[0]

# Train the base model

model = LinearRegression().fit(X_train, y_train)

# Calculate residuals on calibration set

cal_preds = model.predict(X_cal)

residuals = np.abs(y_cal - cal_preds)

# Sort residuals and find the quantile corresponding to (1-alpha)

residuals = np.sort(residuals)

# The correction here is useful for small sample sizes

quantile = np.quantile(residuals, (1 - alpha) * (N / (N + 1)))

# Make predictions on new data and calculate prediction intervals

preds = model.predict(new_data)

lower_bounds = preds - quantile

upper_bounds = preds + quantile

# Return predictions and prediction intervals

return {

'cp_error': quantile,

'preds': preds,

'lower_bounds': lower_bounds,
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lower_bounds = lower_bounds,

upper_bounds = upper_bounds

)

)

}

Python

def split_conformal(X, y, new_data, alpha = .05, calibration_split = .5):
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X_train, X_cal, y_train, y_cal = train_test_split(

X,

y,

test_size = calibration_split,

random_state = 123

)

N = X_train.shape[0]

# Train the base model

model = LinearRegression().fit(X_train, y_train)

# Calculate residuals on calibration set

cal_preds = model.predict(X_cal)

residuals = np.abs(y_cal - cal_preds)

# Sort residuals and find the quantile corresponding to (1-alpha)

residuals = np.sort(residuals)

# The correction here is useful for small sample sizes

quantile = np.quantile(residuals, (1 - alpha) * (N / (N + 1)))

# Make predictions on new data and calculate prediction intervals

preds = model.predict(new_data)

lower_bounds = preds - quantile

upper_bounds = preds + quantile

# Return predictions and prediction intervals

return {

'cp_error': quantile,

'preds': preds,

'lower_bounds': lower_bounds,
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'upper_bounds': upper_bounds

}

With our functions in place, we can now use them to calculate the prediction
intervals for the happiness model. The cp_error value gives us the quantile value
that we use to generate the prediction intervals. Raw result is not shown, but
Table 7.6 shows the first few predictions and their corresponding prediction
intervals.

R

# split data

set.seed(123)

idx_train = sample(nrow(df_happiness), nrow(df_happiness) * .8)

idx_test = setdiff(1:nrow(df_happiness), idx_train)

df_train = df_happiness |>

slice(idx_train) |>

select(happiness, life_exp_sc, gdp_pc_sc, corrupt_sc)

y_train = df_happiness$happiness[idx_train]

df_test = df_happiness |>

slice(idx_test) |>

select(life_exp_sc, gdp_pc_sc, corrupt_sc)

y_test = df_happiness$happiness[idx_test]

# apply the function

cp_error = split_conformal(

df_train |> select(-happiness),

y_train,

df_test,

alpha = .1

)

# cp_error[['cp_error']]

tibble(

prediction = cp_error[['preds']],

lower_bounds = cp_error[['lower_bounds']],

upper_bounds = cp_error[['upper_bounds']]
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) |>

head()

Python

# split data

X = df_happiness[['life_exp_sc', 'corrupt_sc', 'gdp_pc_sc']]

y = df_happiness['happiness']

X_train, X_test, y_train, y_test = train_test_split(

df_happiness[['life_exp_sc', 'corrupt_sc', 'gdp_pc_sc']],

df_happiness['happiness'],

test_size = 0.5,

random_state = 123

)

our_cp_error = split_conformal(

X_train,

y_train,

X_test,

alpha = .1

)

# print(our_cp_error['cp_error'])

pd.DataFrame({

'prediction': our_cp_error['preds'],

'lower_bounds': our_cp_error['lower_bounds'],

'upper_bounds': our_cp_error['upper_bounds']

}).head()

Table 7.6: Split-Conformal Prediction Intervals

prediction lower bound upper bound
4.04 2.94 5.13
5.27 4.18 6.37
6.84 5.74 7.94
4.34 3.24 5.44
4.15 3.05 5.24
7.26 6.16 8.36

Result based on the R code.
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As a method of uncertainty estimation, conformal prediction is not without
its challenges. It is computationally intensive for large datasets or complex
models. There are multiple variants of conformal prediction, most of which
attempt to alleviate a deficiency of simpler approaches. But they generally
further increase the computational burden.

Conformal prediction still relies on the assumptions about the data and the
underlying model, and violations of these assumptions can lead to invalid
prediction intervals. Furthermore, conformal prediction methods assume that
the training and test data come from the same distribution, which may not
always be the case in real-world applications due to distribution shifts or
domain changes. In addition, validation sets must be viable splits of the
data, which default splitting methods may not always provide. In general,
conformal prediction provides an alternative to other frequentist or Bayesian
approaches that, under the right circumstances, may produce a better estimate
of uncertainty, but it does not come for free.

7.8 Wrapping Up
Understanding uncertainty is key to understanding the quality of your model.
It’s not just about the point estimate, or getting a prediction, but also about
how confident you are in value. We’ve covered several avenues from the basics
of estimation to the more complex Bayesian and conformal methods. If the
model provides a standard statistical solution, take it. Otherwise, the bootstrap
is easy to understand and implement. Bayesian methods are more complex but
can provide more information about the uncertainty in your model. Conformal
prediction is a good choice when you want to make predictions without making
strong assumptions about the underlying model, and may be the best option
for many contexts.

We hope you now have a better understanding of how to estimate uncertainty
in your models, and how to use that information to make better decisions.

7.8.1 The common thread
No model is without uncertainty, so any of these techniques may be applicable
to your work. The choice of method depends largely on how you want to tackle
the issue.
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7.8.2 Choose your own adventure
This chapter colors all others that focus on specific modeling techniques. You
can think about how you might implement uncertainty estimation for any of
them.

7.8.3 Additional resources
Frequentist Approaches:

• Most statistical texts cover uncertainty estimation from the frequentist
perspective. Pick one you like.

• Error Statistics Deborah Mayo’s blog and comments on other blogs have
always provided a strong philosophical defense of frequentist statistics.

Monte Carlo:

• Monte Carlo Methods John Guttag’s MIT Course lecture on YouTube.

Bootstrap:

Classical treatments:

• Efron and Tibshirani (1994)
• Davison and Hinkley (1997)

A more fun demo:

• Bootstrapping Main Ideas StatQuest with Josh Starmer (2021)

Bayesian:

• Bayesian Data Analysis, Gelman et al. (2013). For many, this is the Bayesian
bible.

• Statistical Rethinking, McElreath (2020). A fantastic modeling book,
Bayesian or otherwise.

• Choosing priors

Conformal Prediction:

General:

• A Gentle Introduction to Conformal Prediction and Distribution-Free Un-
certainty Quantification, Angelopoulos and Bates (2022); Example Python
Notebooks

R demos:

• Conformal inference for regression models
• Conformal prediction
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Python demos:

• Introduction To Conformal Prediction With Python, Molnar (2024)
• Mapie Docs

Other: - Sources of Uncertainty in Machine Learning – A Statisticians’ View,
Gruber et al. (2023)

7.9 Guided Exploration
We find that simulation is a great way to understand models, and the Monte
Carlo approach to uncertainty definitely puts simulation at the forefront. The
next chapter focuses on generalized linear models, so if you’re not familiar with
logistic regression, head there first. If you are familiar, see if you can apply the
Monte Carlo approach to get predicted probabilities for a logistic regression
model. You really only need to change two lines from our previous code.

R

mc_predictions = function(

model,

nsim = 2500,

seed = 42

) {

...

# we aren't dealing with a normal distribution for this

# how should we change this line?

yhat = X %*% t(params) + rnorm(n = nrow(X) * nsim, sd = sigma)

# how do we get probabilities from this?

???? = ????

# proceed as before

pred_int = apply(y_hat, 1, quantile, probs = c(.025, .975))

return(pred_int)

}
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Python

def mc_predictions(model, nsim=2500, seed=42):

...

# we aren't dealing with a normal distribution for this

# how should we change this line?

yhat = X @ params + \

np.random.normal(scale = sigma, size = (X.shape[0], nsim))

# how do we get probabilities from this?

???? = ????

# proceed as before

pred_int = np.quantile(yhat, q = [.025, .975], axis = 1)

return pred_int
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Python

def mc_predictions(model, nsim=2500, seed=42):

...

# we aren't dealing with a normal distribution for this

# how should we change this line?

yhat = X @ params + \

np.random.normal(scale = sigma, size = (X.shape[0], nsim))

# how do we get probabilities from this?

???? = ????

# proceed as before

pred_int = np.quantile(yhat, q = [.025, .975], axis = 1)

return pred_int

8
Generalized Linear Models

What happens when your target variable isn’t really something you feel com-
fortable modeling with a normal distribution? Maybe you’ve got a binary
condition, like good or bad, or maybe you’ve got a skewed count of something,
like the number of times a person who has been arrested has been reincarcer-
ated. In these cases, you can use a linear regression, but it often won’t get you
exactly what you want in terms of predictive performance. Instead, you can
generalize your approach to handle these scenarios.

Generalized linear models allow us to implement different probability
distributions, taking us beyond the normal distribution that is assumed for
linear regression. This allows us to use the same linear model framework that
we’ve been using, but with different types of targets. As such, these models
generalize the linear model to better capture the nuances of different types of
feature-target relationships.

201
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8.1 Key Ideas
• A simple tweak to our previous approach allows us to generalize our linear

model to account for other types of target data.
• Common distributions such as binomial, Poisson, and others can often

improve model fit and interpretability.
• Getting familiar with just a couple of distributions will allow you to really

expand your modeling repertoire.

8.1.1 Why this matters
The linear model is powerful on its own, but even more so when you realize you
can extend it to many other data settings, some of which may have implicitly
nonlinear feature-target relationships! When we want to classify observations,
count them, or deal with proportions and other things, very simple tweaks of
our standard linear model allow us to handle such situations.

8.1.2 Helpful context
Generalized linear models are a broad class of models that extend the linear
model to different distributions of the target variable. In general, you’d need
to have a pretty good grasp of linear regression before getting too carried away
here.

8.2 Distributions and Link Functions
Remember how linear regression models really enjoy the whole Gaussian, i.e.,
‘normal’, distribution scene? We saw that the essential form of the linear
model can be expressed as follows. With probabilistic models such as these,
the formula is generally expressed as 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦 𝑦 𝑦𝑦𝑦, where X is the matrix of
features (data) and 𝜃𝜃 the parameters estimated by the model. We simplify this
as 𝑦𝑦∗ here.

𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦𝑦 𝑦 N(𝜇𝜇𝜇𝜇𝜇 2) (8.1)

𝑦𝑦∗ ∼ N(𝜇𝜇𝜇𝜇𝜇 2)

𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇
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We create the linear combination of our features, and then we employ a normal
distribution that uses that combination as the mean, which will naturally vary
for each sample of data. However, this may not be the best approach in many
cases. Instead, we can use some other distribution that potentially fits the
data better. But often these other distributions don’t have a direct link to our
features, and that’s where a link function comes in.

Think of the link function as a bridge between our features and the distribution
we want to use. It lets us use a linear combination of features to predict the
mean or other parameters of the distribution. As an example, we can use a log
to link the mean to the linear predictor, or conversely, exponentiate the linear
predictor to get the mean. In this example, the log is the link function and we
use its inverse to map the linear predictor back to the mean.

More generically, we can write this as follows, with some parameter 𝜃𝜃, and
where 𝑔𝑔 is the link function with 𝑔𝑔−1 is its inverse. The link function and its
inverse relates 𝑥𝑥 to 𝜃𝜃.

𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔 (8.2)

𝜃𝜃 𝜃𝜃𝜃 −1(𝑥𝑥𝑥

If you know a distribution’s ‘canonical’ link function, which is like the default
for a given distribution, that is all the deeper you will probably ever need to
go. At the end of the day, these link functions will link your model output
to the parameters required for the distribution. The take-away here is that
the link function describes how the mean or other parameters of interest are
generated from the (linear) combination of features.

INFO Conditional Reminder

One thing to note, when we switch distributions for GLMs, we’re still
concerning ourselves with the conditional distribution of the target
variable given the features. The distribution of the target variable itself
is not changing per se, even though its nature, e.g., as a binary variable,
is suggesting to us to try something that would allow us to produce a
binary outcome from the model. But just like we don’t assume the target
itself is normal in a linear regression, here we are assuming that the
conditional distribution of the target given the features is the distribution
we are specifying.
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8.3 Logistic Regression
As we’ve seen, you will often have a binary variable that you might want to
use as a target – it could be dead/alive, lose/win, quit/retain, etc. You might
be tempted to use a linear regression, but you will quickly find that it’s not
the best option in that setting. So let’s try something else.

8.3.1 The binomial distribution
Logistic regression differs from linear regression mostly because it is used
with a binary target instead of a continuous one as with linear regression. As a
result, we typically assume that the target follows a binomial distribution.
Unlike the normal distribution, which is characterized by its mean (𝜇𝜇) and
variance (𝜎𝜎2), the binomial distribution is defined by the parameters: p (also
commonly 𝜋𝜋) and a known value n. Here, p represents the probability of a
specific event occurring (like flipping heads, winning a game, or defaulting on
a loan), and n is the number of trials or attempts under consideration.

It’s important to note that the binomial distribution, which is commonly
employed in GLMs for logistic regression, doesn’t just describe the probability
of a single event that is observed or not. It actually represents the distribution
of the number of successful outcomes in n trials, which can be greater than 1.
In other words, it’s a count distribution that tells us how many times we can
expect the event to occur in a given number of trials.

Let’s see how the binomial distribution looks with 100 trials and probabilities
of ‘success’ at p = .25, .5, and .75:

Figure 8.1: Binomial distributions for different probabilities.
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Figure 8.1: Binomial distributions for different probabilities.

8.3 Logistic Regression 205

If we examine the distribution for a probability of .5, we will see that it is
roughly centered over a total success count of 50 out of the 100 trials. This
tells us that we have the highest probability of encountering 50 successes if
we ran 100 trials. Shifting our attention to a .75 probability of success, we see
that our distribution is centered over 75. In practice we probably end up with
something around that value, but on average and over repeated runs of 100
trials, the value would be 𝑝𝑝 𝑝 𝑝𝑝. Try it yourself.

R

Note that R switches ‘size’ and ‘n’ names relative to numpy. n regards the
number of values you want returned.

set.seed(123)

# produces a count whose mean is n*p

rbinom(n = 6, size = 100, prob = .75)

# produces a binary 0, 1 as seen in logistic regression target (with mean p)

rbinom(n = 6, size = 1, prob = .75)

[1] 77 72 76 70 68 82

[1] 1 0 1 1 0 1

Python

Note that numpy switches ‘size’ and ‘n’ names relative to R. Here n is the
same as depicted in the formulas later.

import numpy as np

np.random.seed(123)

# produces a count whose mean is n*p

np.random.binomial(n = 100, p = .75, size = 6)

# produces a binary 0, 1 as seen in logistic regression target (with mean p)

np.random.binomial(n = 1, p = .75, size = 6)

array([73, 78, 78, 75, 73, 76])

array([0, 1, 1, 1, 1, 1])

Since we are dealing with a number of trials, it is worth noting that the
binomial distribution is a discrete distribution. If we have any interest in
knowing the probability for a number of successes, we can use the following
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formula, where 𝑛𝑛 is the number of trials, 𝑥𝑥 is the number of successes, and 𝑝𝑝
is the probability of success:

𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑛𝑛𝑛
(𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝𝑥𝑥(1 − 𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛 (8.3)

Now let’s see how the binomial distribution relates to the linear model space:

𝑦𝑦∗ ∼ Binomial(𝑛𝑛𝑛 𝑛𝑛𝑛

logit(𝑝𝑝𝑝𝑝  𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 (8.4)

In this case, we are using the logit function to map the linear combination of
our features to the probability of success. The logit function is defined as:

log 𝑝𝑝
1 − 𝑝𝑝

We are literally just taking the log of the odds of whichever label we’re calling
‘success’ in the binomial sense. For example, if we are predicting the probability
of a person subscribing to a membership, we might call ‘subscribes’ the ‘success’
label.

Now we can map this back to our model:

log 𝑝𝑝
1 − 𝑝𝑝

=𝛼𝛼𝛼𝛼𝛼𝛼𝛼  

And finally, we can take that logistic function and use the inverse-logit
function to produce the probabilities:

𝑝𝑝 𝑝 exp(𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 
1 + exp(𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 

or equivalently:

𝑝𝑝 𝑝 1
1 + exp(−(𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 

Whenever we get results for a logistic regression model, the default coefficients
and predictions are almost always on the log-odds scale. We usually exponenti-
ate the coefficients to get the odds ratio. For example, if we have a coefficient
of .5, we would say that for every one-unit increase in the feature, the odds of
the target being a ‘success’ increase by a factor of exp(.5) = 1.6. And we can
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convert the predicted log odds to probabilities using the inverse-logit function.
We explore this more in the next section.

8.3.2 Probability, odds, and log odds
Probability lies at the heart of a logistic regression model, so let’s look more
closely at the relationship between the probability and log odds. In our model,
the log odds are produced by the linear combination of our features. Let’s say
we have a model that gives us those values for each observation. We can then
convert them from the linear space to the (nonlinear) probability space with
our inverse-logit function, which might look something like this.

Figure 8.2: Log-odds and probability values.
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increasingly negative, and approaches 1 when the log odds are increasingly
positive. The shape is something like an S, which also tells us that we are not
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any value below 0 indicates a probability of success less than 0.5. However,
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don’t get too hung up on a .5 probability as being fundamentally important
for any given problem.

As mentioned, logistic regression models usually report coefficients on the log-
odds scale by default. The coefficients reflect the odds associated with predicted
probabilities given the feature at different values one unit apart. Log-odds
are not the most intuitive thing to interpret. For additional interpretability,
we often convert the coefficients to odds ratios by exponentiating them. In
logistic regression models, the odds ratio is the ratio of the odds of the outcome
occurring (vs. not occurring) for a one-unit increase in the feature.

The following function will calculate the odds ratio for two probabilities, which
we can think of as prediction outcomes for two values of a feature one unit
apart.

R

calculate_odds_ratio = function(p_1, p_2) {

odds_1 = p_1 / (1 - p_1)

odds_2 = p_2 / (1 - p_2)

odds_ratio = odds_2 / odds_1

tibble(

value = c('1', '2'),

p = c(p_1, p_2),

odds = c(odds_1, odds_2),

log_odds = log(odds),

odds_ratio = c(NA, odds_ratio)

)

}

result_A = calculate_odds_ratio(.5, .6)

result_B = calculate_odds_ratio(.1, .2)

result_C = calculate_odds_ratio(.9, .8) # inverse of the .1, .2 example

result_A

Python

import pandas as pd

import numpy as np

def calculate_odds_ratio(p_1, p_2):

odds_1 = p_1 / (1 - p_1)

odds_2 = p_2 / (1 - p_2)
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odds_ratio = odds_2 / odds_1

return pd.DataFrame({

'value': ['1', '2'],

'p': [p_1, p_2],

'odds': [odds_1, odds_2],

'log_odds': [np.log(odds_1), np.log(odds_2)],

'odds_ratio': [np.nan, odds_ratio]

})

result_A = calculate_odds_ratio(.5, .6)

result_B = calculate_odds_ratio(.1, .2)

result_C = calculate_odds_ratio(.9, .8) # inverse of the .1, .2 example

result_A

Table 8.1: Odds Ratios for Different Probabilities

value p odds1 log_odds odds_ratio2

A 1 0.50 1.00 0.00 NA
2 0.60 1.50 0.41 1.50

B 1 0.10 0.11 −2.20 NA
2 0.20 0.25 −1.39 2.25

C 1 0.90 9.00 2.20 NA
2 0.80 4.00 1.39 0.44

1The odds are p / (1 - p).
2The odds ratio refers to value 2 versus value 1.

In the table we see that even though each probability difference is the same, the
odds ratio is different. Comparing A to B, the difference between a probability
of .5 to .6 is not as much of a change on the odds (linear) scale as the difference
between .1 to .2. The first setting is a 50% increase in the odds, whereas the
second more than doubles the odds. However, the difference between .9 to .8
is the same probability difference as the difference between .1 to .2, as they
reflect points that are the same distance from the boundary. The odds ratio
for setting C is just the inverse of setting B. The following shows our previous
plot with the corresponding settings shaded.
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Figure 8.3: Comparison of probability and odds differences.

Odds ratios might be more interpretable to some, but since they are ratios of
ratios, people have historically had a hard time with those as well. As shown in
Table 8.1, knowledge of the baseline rate is required for a good understanding
of them. Furthermore, doubling the odds is not the same as doubling the
probability, so we’re left doing some mental calisthenics to interpret them.
Odds ratios are often used in academic settings, but elsewhere they are not as
common. The take-home message is that we can interpret our result in terms
of odds (ratios of probabilities), log odds (linear space), or as probabilities
(nonlinear space), but it can take a little more effort than our linear regression
setting1. Our own preference is to stick with predicted probabilities, but it’s
good to have familiarity with odds ratios, as well as understand the purely
linear aspect of the model.

8.3.3 A logistic regression model
Now let’s get our hands dirty and do a classification model using logistic
regression. For our model, let’s return to the movie review data, but now we’ll
use the binary rating_good (‘good’ vs. ‘bad’) as our target. Before we get to
modeling, see if you can find out the frequency of ‘good’ and ‘bad’ reviews,

1For more on interpreting odds ratios, see this article.
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and the probability of getting a ‘good’ review. We examine the relationship of
word_count and gender features with the likelihood of getting a good rating.

R

df_reviews = read_csv('https://tinyurl.com/moviereviewsdata')

model_logistic = glm(

rating_good ~ word_count + gender,

data = df_reviews,

family = binomial

)

summary(model_logistic)

Call:

glm(formula = rating_good ~ word_count + gender, family = binomial,

data = df_reviews)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.7124 0.1814 9.44 <2e-16 ***

word_count -0.1464 0.0155 -9.44 <2e-16 ***

gendermale 0.1189 0.1375 0.86 0.39

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1370.4 on 999 degrees of freedom

Residual deviance: 1257.4 on 997 degrees of freedom

AIC: 1263

Number of Fisher Scoring iterations: 4

Python

import pandas as pd

import statsmodels.formula.api as smf

import statsmodels.api as sm

df_reviews = pd.read_csv('https://tinyurl.com/moviereviewsdata')
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model_logistic = smf.glm(

'rating_good ~ word_count + gender',

data = df_reviews,

family = sm.families.Binomial()

).fit()

model_logistic.summary()

<class 'statsmodels.iolib.summary.Summary'>

"""

Generalized Linear Model Regression Results

==============================================================================

Dep. Variable: rating_good No. Observations: 1000

Model: GLM Df Residuals: 997

Model Family: Binomial Df Model: 2

Link Function: Logit Scale: 1.0000

Method: IRLS Log-Likelihood: -628.70

Date: Sat, 10 May 2025 Deviance: 1257.4

Time: 11:06:15 Pearson chi2: 1.02e+03

No. Iterations: 4 Pseudo R-squ. (CS): 0.1068

Covariance Type: nonrobust

================================================================================

coef std err z P>|z| [0.025 0.975]

--------------------------------------------------------------------------------

Intercept 1.7124 0.181 9.442 0.000 1.357 2.068

gender[T.male] 0.1189 0.138 0.865 0.387 -0.151 0.388

word_count -0.1464 0.016 -9.436 0.000 -0.177 -0.116

================================================================================

"""

Now that we have some results, we can see that they aren’t too dissimilar from
the linear regression output we obtained before. But, let’s examine them more
closely in the next section.

INFO Binomial Regression

As noted, the binomial distribution is a count distribution. For a binary
outcome, we can only have a 0 or 1 outcome for each ‘trial’, and the ‘size’
or ‘n’ for the binomial distribution is 1. In this case, we can also use
the Bernoulli distribution (Bern(𝑝𝑝𝑝). This does not require the number
of trials, since, when the number of trials is 1, the factorial part of
Equation 8.3 drops out.
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INFO Binomial Regression

As noted, the binomial distribution is a count distribution. For a binary
outcome, we can only have a 0 or 1 outcome for each ‘trial’, and the ‘size’
or ‘n’ for the binomial distribution is 1. In this case, we can also use
the Bernoulli distribution (Bern(𝑝𝑝𝑝). This does not require the number
of trials, since, when the number of trials is 1, the factorial part of
Equation 8.3 drops out.
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Many coming from a non-statistical background are not aware that their
logistic model can actually handle count and/or proportional outcomes.

8.3.4 Interpretation and visualization
If our modeling goal is not just producing predictions, we need to know what
those results mean. The coefficients that we get from our model are in the
log-odds scale. Interpreting log odds is difficult, but we can at least get a feeling
for them directionally. A log odds of 0 (odds ratio of 1) would indicate no
relationship between the feature and target. A positive log odds would indicate
that an increase in the feature will increase the log odds of moving from ‘bad’
to ‘good’, whereas a negative log odds would indicate that an increase in
the feature will decrease the log odds of moving from ‘bad’ to ‘good’. On the
log-odds scale, the coefficients are symmetric as well, such that, e.g., a +1
coefficient denotes a similar increase in the log odds, as a -1 coefficient denotes
a decrease. As we demonstrated, we can exponentiate them to get the odds
ratio for additional interpretability.

Table 8.2: Raw Coefficients and Odds Ratios for a Logistic Regression

Parameter Coefficient Exp. Coef (OR)
(Intercept) 1.71 5.54
word_count −0.15 0.86
gendermale 0.12 1.13

The intercept provides a baseline odds of a ‘good’ review when word count
is 0 and gender is ‘female’. From there, we see that we’ve got a negative raw
coefficient and odds ratio of 0.86 for the word count variable. We have a
positive raw coefficient and 1.13 odds ratio for the male variable. This means
that for every one-unit increase in word count, the odds of a ‘good’ review
decreases by about 14%. Males are associated with an odds of a ‘good’ review
that is 13% higher than females.

We feel it is much more intuitive to interpret things on the probability scale,
so we’ll get predicted probabilities for different values of the features. The
way we do this is through the (inverse) link function, which will convert our
log odds of the linear predictor to probabilities. We can then look at specific
predictions, calculate marginal effects, or plot these probabilities to see how
they change with the features. For the word count feature in the following
visualization, we hold gender at the reference group (‘female’), and for the
gender feature, we hold word count at its mean. In addition we convert the
probability to the percentage chance of a ‘good’ review.
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Figure 8.4: Model predictions for word count feature.

In Figure 8.4, we can see a clear negative relationship between the number
of words in a review and the probability of being considered a ‘good’ movie.
As we get over 20 words, the predicted probability of being a ‘good’ movie is
less than .2. We also calculated the average marginal effect (Section 5.5.2), or
average slope, for word count. It suggests a -0.03 decrease in the probability of
a ‘good’ rating for each additional word in the review (on average).

We also see an increase in the chance for a good rating with males vs. females,
but our model results suggest this is not a statistically significant difference.

In the end, whether you think these differences are practically significant is up
to you. And you’ll still need to do the standard model exploration to further
understand the model (Chapter 4 has lots of detail on this). But this is a good
start.

INFO A Note on 𝑅𝑅2 for Logistic Regression

Logistic regression does not have an 𝑅𝑅2 value in the way that a linear
regression model does. Instead, there are pseudo-𝑅𝑅2 values, but they
are not the same as the 𝑅𝑅2 value that you are used to seeing (UCLA
Advanced Research Computing (2023)).
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8.4 Poisson Regression
Poisson regression also belongs to the class of generalized linear models,
and it is used specifically when you have a count variable as your target. After
logistic regression for binary outcomes, Poisson regression is probably the next
most common type of generalized linear model you will encounter. Unlike
continuous targets, a count starts at 0 and can only be a whole number. Often
it is naturally skewed as well, so we’d like a model that is well suited to this
situation. Unlike the binomial, there is no concept of number of trials, just the
count of events.

8.4.1 The Poisson distribution
The Poisson distribution is very similar to the binomial distribution, because
the binomial is also a count distribution, and in fact generalizes the Poisson2.
The Poisson has a single parameter noted as 𝜆𝜆, which makes it the simplest
model setting we’ve seen so far3. Conceptually, this rate parameter is going to
estimate the expected number of events during a time interval. This can be
accidents in a year, pieces produced in a day, or hits during the course of a
baseball season.

Let’s see what the particular distribution might look like for different rates.
We can see that for low count values, the distribution is skewed to the right,
but note how the distribution becomes more symmetric and bell-shaped as
the rate increases4. You might also be able to tell that the variance increases
along with the mean, and in fact, the variance is equal to the mean for the
Poisson distribution.

2If your binomial setting has a very large number of trials relative to the number of
successes, which amounts to very small proportions 𝑝𝑝, you would find that the binomial
distribution would converge to the Poisson distribution.

3Neither the binomial nor the Poisson has a variance parameter to estimate, as the
variance is determined by the mean. This is in contrast to a normal distribution model,
where the variance is an estimated parameter. For the Poisson, the variance is equal to the
mean, and for the binomial, the variance is equal to 𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛. The Poisson assumption
of equal variance rarely holds up in practice, so people often use the negative binomial
distribution instead.

4From a modeling perspective, for large mean counts you can just go back to using the
normal distribution if you prefer, without losing much predictively and possibly gaining
interpretability.
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Figure 8.5: Poisson distributions for different rates.

INFO More Poisson

A cool thing about these distributions is that they can deal with different
exposure rates. They can also be used to model inter-arrival times and
time-until-events.

Let’s make a new variable that will count the number of times a person uses a
personal pronoun word in their review. We’ll use it as our target variable and
see how it relates to the number of words and gender in a review as we did
before.

R

df_reviews$poss_pronoun = stringr::str_count(

df_reviews$review_text,

'\\bI\\b|\\bme\\b|\\b[Mm]y\\b|\\bmine\\b|\\bmyself\\b'

)

hist(df_reviews$poss_pronoun)
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A cool thing about these distributions is that they can deal with different
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Let’s make a new variable that will count the number of times a person uses a
personal pronoun word in their review. We’ll use it as our target variable and
see how it relates to the number of words and gender in a review as we did
before.

R

df_reviews$poss_pronoun = stringr::str_count(

df_reviews$review_text,

'\\bI\\b|\\bme\\b|\\b[Mm]y\\b|\\bmine\\b|\\bmyself\\b'
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Python

df_reviews['poss_pronoun'] = (

df_reviews['review_text']

.str.count('\\bI\\b|\\bme\\b|\\b[Mm]y\\b|\\bmine\\b|\\bmyself\\b')

)

df_reviews['poss_pronoun'].hist()

Figure 8.6: Distribution of personal pronouns seen across reviews.

8.4.2 A Poisson regression model
Recall that GLM specific distributions have a default link function. The Poisson
distribution uses a log link function:

𝑦𝑦∗ ∼ Poisson(𝜆𝜆𝜆 (8.5)
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Using the log link keeps the outcome non-negative when we use the inverse of
it. For model fitting with standard functions, all we have to do is switch the
family from ‘binomial’ to ‘poisson’. As the default link is the ‘log’, we don’t
have to specify it explicitly5.

So in this model we’ll predict the number of personal pronouns used in a
review, and we’ll use word count and gender as our features like we did with
the logistic model.

R

model_poisson = glm(

poss_pronoun ~ word_count + gender,

data = df_reviews,

family = poisson

)

summary(model_poisson)

Call:

glm(formula = poss_pronoun ~ word_count + gender, family = poisson,

data = df_reviews)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.88767 0.10851 -17.40 <2e-16 ***

word_count 0.10365 0.00646 16.05 <2e-16 ***

gendermale 0.07980 0.08806 0.91 0.36

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 996.21 on 999 degrees of freedom

Residual deviance: 775.38 on 997 degrees of freedom

AIC: 1701

Number of Fisher Scoring iterations: 5

# exponentiate the coefficients to get the rate ratio

# exp(model_poisson$coefficients)

5It is not uncommon in many disciplines to use different link functions for logistic models,
but the log link is always used for Poisson models.
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Python

model_poisson = smf.glm(

formula = 'poss_pronoun ~ word_count + gender',

data = df_reviews,

family = sm.families.Poisson()

).fit()

model_poisson.summary()

<class 'statsmodels.iolib.summary.Summary'>

"""

Generalized Linear Model Regression Results

==============================================================================

Dep. Variable: poss_pronoun No. Observations: 1000

Model: GLM Df Residuals: 997

Model Family: Poisson Df Model: 2

Link Function: Log Scale: 1.0000

Method: IRLS Log-Likelihood: -847.43

Date: Sat, 10 May 2025 Deviance: 775.38

Time: 11:06:17 Pearson chi2: 717.

No. Iterations: 5 Pseudo R-squ. (CS): 0.1981

Covariance Type: nonrobust

================================================================================

coef std err z P>|z| [0.025 0.975]

--------------------------------------------------------------------------------

Intercept -1.8877 0.109 -17.395 0.000 -2.100 -1.675

gender[T.male] 0.0798 0.088 0.906 0.365 -0.093 0.252

word_count 0.1036 0.006 16.053 0.000 0.091 0.116

================================================================================

"""

# exponentiate the coefficients to get the rate ratio

# np.exp(model_poisson.params)

8.4.3 Interpretation and visualization
Now let’s check out the results more deeply. Like with logistic, we can expo-
nentiate the coefficients to get what’s now referred to as the rate ratio. This is
the ratio of the rate of the outcome occurring for a one-unit increase in the
feature.
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Table 8.3: Rate Ratios for a Poisson Regression

Parameter Coefficient Exp. Coef.
(Intercept) −1.89 0.15
word_count 0.10 1.11
gendermale 0.08 1.08

For this model, an increase in one review word leads to an expected log count
increase of ~0.1. We can exponentiate this to get 1.11, and this tells us that
every added word in a review gets us a 11% increase in the number of possessive
pronouns. This is probably not a surprising result – wordier stuff has more
types of words! In addition, the average marginal effect (Section 5.5.2), or
average slope, for word count suggested a 0.06 increase in the number of
possessive pronouns per word on average. A similar, though slightly smaller,
increase is seen for males relative to females, but, as with our previous model,
this is not statistically significant.

But as usual, the visualization tells the better story. Here is the relationship
for word count. Notice that the predictions are not discrete like the raw count,
but continuous. This is because predictions here are the same as with our other
models, and reflect the expected, or average, count that we’d predict with this
data.

Figure 8.7: Poisson model predictions for word count feature.

1

2

3

4

5

30

N Pronouns
Poisson Regression Predictions

10 20
Word Count
Word count relationship shown is with gender set to the reference level (female)



220 8 Generalized Linear Models

Table 8.3: Rate Ratios for a Poisson Regression

Parameter Coefficient Exp. Coef.
(Intercept) −1.89 0.15
word_count 0.10 1.11
gendermale 0.08 1.08

For this model, an increase in one review word leads to an expected log count
increase of ~0.1. We can exponentiate this to get 1.11, and this tells us that
every added word in a review gets us a 11% increase in the number of possessive
pronouns. This is probably not a surprising result – wordier stuff has more
types of words! In addition, the average marginal effect (Section 5.5.2), or
average slope, for word count suggested a 0.06 increase in the number of
possessive pronouns per word on average. A similar, though slightly smaller,
increase is seen for males relative to females, but, as with our previous model,
this is not statistically significant.

But as usual, the visualization tells the better story. Here is the relationship
for word count. Notice that the predictions are not discrete like the raw count,
but continuous. This is because predictions here are the same as with our other
models, and reflect the expected, or average, count that we’d predict with this
data.

1

2

3

4

5

10 20 30
Word Count

N Pronouns
Poisson Regression Predictions

Word count relationship shown is with gender set to the reference level (female)

Figure 8.7: Poisson model predictions for word count feature.
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With everything coupled together, we have an interpretable coefficient for
word_count, a clear plot, and adequate model fit. Therefore, we might conclude
that there is a positive relationship between the number of words in a review
and the number of times a person uses a personal possessive.

INFO Nonlinear Linear Models?

You’ll note again that our effects for word count in the logistic (Figure 8.4)
and Poisson (Figure 8.7) models were not exactly the straightest of lines.
Once we’re on the probability and count scales, we’re not going to see the
same linear relationships that we might expect from a linear regression
model due to the transformation. If we plot the effect on the log-odds
or log-count scale, we’re back to straight lines, as demonstrated with
the logistic model. This is a first taste in how the linear model can be
used to get at nonlinear relationships depending on the scale we focus
on. More explicit nonlinear relationships are the focus of Chapter 9.

8.5 DIY
If we really want to demystify the modeling process for GLMs, let’s create
our own function to estimate the coefficients. We can use maximum likelihood
estimation to estimate the parameters of our model, which is the approach used
by standard package functions. Feel free to skip this part if you only wanted
the basics, but for even more information on maximum likelihood estimation,
see Section 6.7 where we take a deeper dive into the topic and with a similar
function. The following code is a simple and conceptual version of what goes
on behind the scenes with ‘glm’ type functions.

R

glm_simple = function(par, X, y, family = 'binomial') {

# add a column for the intercept

X = cbind(1, X)

# Calculate the linear predictor

mu = X %*% par # %*% is matrix multiplication

# get the likelihood for the binomial or poisson distribution

if (family == 'binomial') {

# Convert to a probability ('logit' link/inverse)

p = 1 / (1 + exp(-mu))
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L = dbinom(y, size = 1, prob = p, log = TRUE)

}

else if (family == 'poisson') {

# Convert to a count ('log' link/inverse)

p = exp(mu)

L = dpois(y, lambda = p, log = TRUE)

}

# return the negative sum of the log-likelihood (for minimization)

value = -sum(L)

return(value)

}

Python

from scipy.stats import poisson, binom

def glm_simple(par, X, y, family = 'binomial'):

# add a column for the intercept

X = np.column_stack((np.ones(X.shape[0]), X))

# Calculate the linear predictor

mu = X @ par # @ is matrix multiplication

# get the likelihood for the binomial or poisson distribution

if family == 'binomial':

p = 1 / (1 + np.exp(-mu))

L = binom.logpmf(y, 1, p)

elif family == 'poisson':

lambda_ = np.exp(mu)

L = poisson.logpmf(y, lambda_)

# return the negative sum of the log-likelihood (for minimization)

value = -np.sum(L)

return value

Now that we have our objective function, we can fit our models, starting with
the logistic model. We will use the optim function in R and the minimize function
in Python. We’ll convert our data to matrix format for this purpose as well.
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R

X = df_reviews |>

select(word_count, male = gender) |>

mutate(male = ifelse(male == 'male', 1, 0)) |>

as.matrix()

y = df_reviews$rating_good

init = rep(0, ncol(X) + 1)

names(init) = c('intercept', 'b1', 'b2')

our_logistic = optim(

par = init,

fn = glm_simple,

X = X,

y = y,

control = list(reltol = 1e-8)

)

our_logistic$par

Python

import numpy as np

from scipy.optimize import minimize

# for the 'by-hand' option later

X = (

df_reviews[['word_count', 'gender']]

.rename(columns = {'gender': 'male'})

.assign(male = np.where(df_reviews[['gender']] == 'male', 1, 0))

)

y = df_reviews['rating_good']

init = np.zeros(X.shape[1] + 1)

our_logistic = minimize(

fun = glm_simple,

x0 = init,

args = (X, y),

method = 'BFGS'
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)

our_logistic['x']

And here is our comparison table of the raw coefficients. It looks like our little
function worked well!

Table 8.4: Comparison of Coefficients

Parameter Ours Standard
Intercept 1.7122 1.7124
Word Count −0.1464 −0.1464
Male 0.1189 0.1189

Similarly, we can also use our function to estimate the coefficients for the
Poisson model. Just like the GLM function we might normally use, we can
change the family option to specify the distribution we want to use.

R

our_poisson = optim(

par = c(0, 0, 0),

fn = glm_simple,

X = X,

y = df_reviews$poss_pronoun,

family = 'poisson'

)

our_poisson$par

Python

our_poisson = minimize(

fun = glm_simple,

x0 = init,

args = (

X,

df_reviews['poss_pronoun'],

'poisson'

)

)

our_poisson['x']
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df_reviews['poss_pronoun'],

'poisson'

)

)
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And once again we’re able to get the same results (raw coefficients shown).

Table 8.5: Comparison of Coefficients

Parameter Ours Standard
Intercept −1.8876 −1.8877
Word Count 0.1036 0.1036
Male 0.0800 0.0798

This goes to show that just a little knowledge of the underlying mechanics can
go a long way in understanding how many models work.

8.6 Wrapping Up
So at this point you have standard linear regression with the normal distribution
for continuous targets, logistic regression for binary/proportional ones via the
binomial distribution, and Poisson regression for counts. These models combine
to provide much of what you need for starting out in the linear modeling world,
and all serve well as baseline models for comparison when using more complex
methods (Section 11.4). However, what we’ve seen is just a tiny slice of the
potential universe of distributions that you could use. Here is a brief list of
some that are still in the GLM family proper, and others that technically
aren’t GLMs but can be similarly useful6:

Other Core GLM (available in standard functions):

• Gamma: For continuous, positive targets that are skewed.
• Inverse Gaussian: For continuous, positive targets that are skewed and

have a long tail.

Others (some fairly common):

• Beta: For continuous targets that are bounded between 0 and 1.
• Log-Normal: For continuous targets that are skewed. Essentially what you

get with linear regression and logging the target7.
• Tweedie: Generalizes several core GLM family distributions.

In the ballpark:

• Negative Binomial: For count targets that are ‘overdispersed’.
• Multinomial: Typically used for categorical targets with more than two

categories, but like the binomial, it is actually a more general (multivariate)
count distribution.
6There is no strict agreement about what qualifies for being in the GLM family.
7But there is a variance issue to consider.
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• Student t: For continuous targets that are conditionally distributed similar
to normal, but with heavier tails.

• Categorical/Ordinal: For categorical targets with more than two categories,
or ordered categories. In the former case, it’s a different distribution than
the multinomial but is applied to the same setting.

• Quasi *: For example Quasi-Poisson. These ‘quasi-likelihoods’ served a need
at one point that is best served by other approaches these days.

You’ll typically need separate packages to fit some of these, but most often
the tools keep to a similar functional approach. The main thing is to know
that certain distributions might help your model fit the data a bit better than
others, and that you can use both the same basic framework and mindset to
conduct the analysis, and maybe get a little closer to the answer you seek
about your data!

8.6.1 The common thread
GLMs extend your standard linear model as a powerful tool for modeling
a wide range of data types. They are a great way to get started with more
complex models, and even allow us to linear models in a not so linear way.
It’s best to think of GLMs more broadly than the strict statistical definition,
and consider many models like ordinal regression, ranking models, survival
analysis, and more as part of the same extension.

8.6.2 Choose your own adventure
At this point you have a pretty good sense of what linear models have to offer,
but there’s even more! You can start to look at more complex models that
build on these ideas, like mixed models, generalized additive models and more
in Chapter 9. You can also feel confident heading into the world of machine
learning (Chapter 10), where you’ll find additional ways to think about your
modeling approach.

8.6.3 Additional resources
If you are itching for a textbook, there isn’t any shortage of those that focus on
GLMs out there, and you can essentially take your pick. Most purely statistical
treatments are going to be a bit dated at this point, but still accurate and
maybe worth your time.

• Generalized Linear Models (McCullagh (2019)) is a classic text on the subject,
but it is a bit dense and not for the faint of heart, or even Nelder and
Wedderburn (1972), which is a very early treatment.
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For more accessible fare that doesn’t lack on core details either:

• An Introduction to Generalized Linear Models is generally well regarded
(Dobson and Barnett (2018)).

• Generalized Linear Models is another accessible text (Hardin and Hilbe
(2018)).

• RBeyond Multiple Linear Regression, is available for free (Roback and Legler
(2021)).

• Applied Regression Analysis and Generalized Linear Models, Fox (2015).
• Generalized Linear Models with Examples in R, Dunn and Smyth (2018).
• Extending the Linear Model with R is a great resource for moving beyond

the basics with R (J. J. Faraway (2016)).

8.7 Guided Exploration

• Conduct a Poisson regression to predict the number of fish caught based on
the other features like how many people were on the trip, how many children,
whether live bait was used (or any others). Interpret your model results in
terms of the coefficients/rate ratios. Inspect your model more generally to
see how well it fits the data, do you spot any issues?

• Using the same data, binarize the count target variable for whether any
fish were caught, and proceed similarly as you would have with the Poisson
regression.

R

# Load the data

df_fish = read_csv('https://tinyurl.com/fishcountdata')

df_fish$any_catch = ifelse(df_fish$count > 0, 1, 0)

model = glm(count ~ ???)

model = glm(any_catch ~ ???)

summary(model)

exp(coef(model)) # IRR/OR

You have two options here, both using the fish data (Section C.4).
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Python

import pandas as pd

import statsmodels.api as sm

import statsmodels.formula.api as smf

# Load the data

df_fish = pd.read_csv('https://tinyurl.com/fishcountdata')

df_fish['any_catch'] = (df_fish['count'] > 0).astype(int)

model = smf.glm(

formula = 'count ~ ???',

data = df_fish,

family = ???,

).fit()

model.summary()

np.exp(model.params) # IRR/OR
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Python
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9
Extending the Linear Model

With just linear and generalized linear models, we have a very solid foundation
for modeling, and we’ve seen how there is a notable amount we can do with a
conceptually simple approach. We’ve also seen how we can extend the linear
model to handle different types of target distributions to help us understand
and make some inferences about the relationships between our features and
target.

In this chapter, we will extend our linear models with additional common and
valuable modeling tools. These methods provide good examples of how we can
think about our data and modeling approach in different ways, and they can
serve as a foundation for exploring more advanced techniques in the future. A
thread that binds these techniques together is the ability to use a linear model
to investigate explicitly nonlinear relationships!

229
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9.1 Key Ideas
• The standard and generalized linear models are great and powerful starting

points for modeling, but there’s even more we can do!
• Linear models can be used to model nonlinear feature-target relationships!
• While these seem like different approaches, we can still use our linear model

concepts and approach at the core, take similar estimation steps, and even
have similar interpretation. However, we’ll have even more results to explore
and interpret.

9.1.1 Why this matters
The linear model is a great starting point for modeling. It is a simple approach
that can be used to model a wide variety of relationships between features
and targets, and it’s also a great way to get a feel for how to think about
modeling. But linear and generalized models are just the beginning, and the
models depicted here are common extensions used in a variety of disciplines
and industries. More generally, the following techniques allow for nonlinear
relationships while still employing a linear model approach. This is a very
powerful tool to have in your toolkit, and it’s a great way to start thinking
about how to model more complex relationships in your data.

9.1.2 Helpful context
While these models are extensions of the linear model, they are not significantly
more complicated in terms of how they are implemented or how they are
interpreted. However, like anything new, it can take a bit more effort to
understand. You likely want to be comfortable with standard linear models at
least before you start to explore these extensions.

9.2 Interactions
Things can be quite complex in a typical model with multiple features, but
just adding features may not be enough to capture the complexity of the
relationships between features and target. Sometimes, we need to consider
how features interact with each other to better understand how they correlate
with the target. A common way to add complexity in linear models is through
interactions. This is where we allow the effect of a feature to vary depending
on the values of another feature, or even itself!
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As a conceptual example, we can think about a movie’s rating being different
for movies from different genres. For example, maybe by default, ratings are
higher for kids’ movies, and lower for horror movies. But, genre and season
might work together in some way to affect rating, e.g., action movies get higher
ratings in the summer. Or maybe having kids in the home might also interact
with genre ratings by naturally resulting in higher ratings for kids’ movies. As
a different example, we might also consider that the length of a movie might
positively relate to rating, but plateau or even have a negative effect on rating
after a certain point. In other words, it would have a curvilinear effect where
really long movies aren’t as highly rated as those of shorter length.

All of these are types of interactions we can explore. Interactions allow us
to incorporate nonlinear relationships into the model, and so greatly extend
the linear model’s capabilities. We basically get to use a linear model in a
nonlinear way!

With that in mind, let’s explore how we can add interactions to our models.
Going with one of our examples, let’s see how having kids impacts the rela-
tionship between genre and rating. We’ll start with a standard linear model,
and then add an interaction term. Using a formula approach makes it very
straightforward to add an interaction term. We just need to add a : between
the two features we want to interact, or a * to denote both main effects and
the interaction. As elsewhere, we present simplified results in the next table.

R

df_reviews = read_csv('https://tinyurl.com/moviereviewsdata')

model_baseline = lm(rating ~ children_in_home + genre, data = df_reviews)

model_interaction = lm(rating ~ children_in_home * genre, data = df_reviews)

summary(model_interaction)

Python

import pandas as pd

import statsmodels.formula.api as smf

df_reviews = pd.read_csv('https://tinyurl.com/moviereviewsdata')

model_baseline = smf.ols(

formula = 'rating ~ children_in_home + genre',

data = df_reviews

).fit()
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model_interaction = smf.ols(

formula = 'rating ~ children_in_home * genre',

data = df_reviews

).fit()

model_interaction.summary()

Here is a quick look at the model output for the interaction vs. no interaction
interaction model. Starting with the baseline model, the coefficients look like
what we’ve seen before, but we have several coefficients for genre. The reason is
that genre is composed of several categories and converted to a set of dummy
variables (refer to Section 3.5.2 and Section 14.2.2). In the baseline model,
the intercept tells us what the mean is for the reference group, in this case
Action/Adventure, and the genre coefficients tell us the difference between the
mean for that genre and the reference genre. For example, the mean rating for
Action/Adventure is 2.76, and the difference between that genre rating for the
drama genre is 0.55. Adding the two gives us the mean for drama movies 2.76
+ 0.55 = 3.32. We also have the coefficient for the number of children in the
home, and this does not vary by genre in the baseline model.

Table 9.1: Model Coefficients with Interaction

feature coef_base coef_inter
(Intercept) 2.764 2.764
children_in_home 0.142 0.142
genreComedy 0.635 0.637
genreDrama 0.554 0.535
genreHorror 0.129 0.194
genreKids −0.199 −0.276
genreOther 0.029 0.084
genreRomance 0.227 0.298
genreSci-Fi −0.123 −0.109
children_in_home:genreComedy −0.006
children_in_home:genreDrama 0.053
children_in_home:genreHorror −0.127
children_in_home:genreKids 0.231
children_in_home:genreOther −0.106
children_in_home:genreRomance −0.124
children_in_home:genreSci-Fi −0.029

But in our other model, we have an interaction between two features: ‘children
in the home’ and ‘genre’. So let’s start with the coefficient for children. It is
0.14, which means that for every additional child, the rating for any movie
increases by that amount. But because of the interaction, we now interpret that
as the effect of children when genre is the reference group Action/Adventure.
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in the home’ and ‘genre’. So let’s start with the coefficient for children. It is
0.14, which means that for every additional child, the rating for any movie
increases by that amount. But because of the interaction, we now interpret that
as the effect of children when genre is the reference group Action/Adventure.
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Now let’s look at the interaction effect for children and the kids’ genre. It is
0.23, which means that for the kids’ genre, the effect of having children in the
home increases by that amount. So our actual effect for an additional child for
the kids’ genre is 0.14 + 0.23 = 0.37 increase in the expected review rating.
In other words, the effect of children in the home is stronger for kids’ movies
than for other genres.

We can also interpret this interaction in the reverse fashion. It is also correct to
say that the difference in rating between the kids genre and the reference group
Action/Adventure when there are no kids in the home is -0.28. This means
kids’ movies are generally rated worse if there are no kids in the home. But,
with an increase in children, the difference in rating between the kids’ genre
and Action/Adventure increases by 0.23. In other words, it is a difference in
differences1.

When we talk about differences in coefficients across values of features, it can
get a little bit hard to follow. To combat this, we believe that in every case
that you employ an interaction, you should look at the interaction visually for
interpretation. Here is a plot of the predictions from the interaction model.
We can see that the effect of children in the home is stronger for kids’ movies
than for other genres, which makes a whole lot of sense! In other genres, the
effect of having children seems to produce little difference, and in others it still
has a positive effect, but not as strong as for kids’ movies.

Figure 9.1: Interaction plot.

1Some models that employ an interaction that investigates categorical group differences
like this actually call their model a difference-in-difference model.
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Table 9.2: Average Marginal Effects of Children in the Home

term estimate std.error statistic p.value conf.low conf.high

children_in_home 0.152 0.03 5.68 0.00 0.10 0.20

So we can see that interactions can allow a linear effect to vary depending
on the values of another feature. But the real take-home message from this
is that the general effect is actually not just a straight line! The linear effect
changes depending on the setting. Furthermore, the effect for children when
the interaction is present only applies when ‘genre’ is at its default group, or
when other features are at their default or zero.

So, when we have interactions, we can’t talk about a feature’s relationship
with a target without considering the other features it interacts with. Some
might see this as a downside, but it’s actually how most feature relationships
work, namely, that they don’t exist in isolation. Interactions let us model these
complex relationships, and they’re used a lot in real-world situations.

9.2.1 Summarizing interactions
So what is the effect of children in the home? Or a particular genre, for that
matter? This is a problematic question, because the effect of one feature
depends on the setting of the other feature. We can summarize interactions,
and we show two ways in which to do so. But we need to be very careful about
summarizing a single feature’s effects when we know it interacts with another
feature.

9.2.2 Average effects
One thing we can do is get an average effect for a feature. In other words, we
can say what the effect of a feature is on average across the settings of the
other features. This is called the average marginal effect, something we’ve
talked about in Section 5.5.22. Here is the average effect of children in the
home across all genres.

So-called marginal effects, and related approaches such as SHAP values (see
Section 5.7), attempt to boil down the effect of a feature to a single number.
Here we see the average coefficient for children in the home is 0.15, with a
range from 0.1 to 0.2.

But this is difficult even in the simpler GLM settings, and can be downright
misleading in interaction models. We saw from Table 9.1 that this average is
slightly larger than what we would estimate in the baseline model, and we saw
in Figure 9.1 it’s actually near zero (flat) for some genres in the interaction

2These results are provided by the marginaleffects R package, which is a great tool.
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model. So what is the average effect really telling us? Consider a more serious
case of drug effects across demographic groups, where the effect of the drug
is much stronger for some groups than others. Would you want your doctor
to prescribe you a drug based on the average effect across all groups, or the
specific group to which you belong?

9.2.3 ANOVA
A common method for summarizing categorical effects in linear models is
through analysis of variance (ANOVA), something we touched on earlier in
Section 3.5.2. ANOVA breaks down the variance in a target attributable to
different features or their related effects such as interactions. It’s a bit beyond
the scope here to get into all the details, but we demonstrate it here, as it’s
also used to summarize interactions. It also summarizes the random effects
and spline terms we’ll see in the coming sections on mixed and generalized
additive models.

R

anova(model_interaction)

Python

sm.stats.anova_lm(model_interaction)

Table 9.3: ANOVA Table for an Interaction Model

feature df sum_sq mean_sq f p
children_in_home 1.00 6.45 6.45 21.25 0.00
genre 7.00 86.17 12.31 40.55 0.00
children_in_home:genre 7.00 3.75 0.54 1.76 0.09
Residuals 984.00 298.69 0.30

In this case, it doesn’t appear that the general interaction effect is statistically
significant if we use the typical .05 cut-off. We know the effect of children in
the home varies across genres, but this result suggests maybe it’s not as much
as we might think. However, we also saw that the estimate for the children
effect more than doubled for the kids genre, so maybe we don’t want to ignore
it. That’s for you to decide.

The ANOVA approach can be generalized to provide a statistical test to
compare models. For example, we can compare the baseline model to the
interaction model to see if the interaction model is a better fit. However, it’s
entirely consistent with just looking at the interaction’s statistical result in the
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ANOVA for the interaction model alone, so it doesn’t provide any additional
information in this case. Note that the only models that can be compared with
ANOVA must be nested, i.e., one model is an explicit subset of the other.

INFO ANOVA Is Not a Model

It’s worth noting that ANOVA is often confused with being a model
itself. When people use it this way, it is just a linear regression with only
categorical features, something that is usually only seen within strict
experimental designs. It’s pretty difficult to think of a linear regression
setting where no continuous features would be of theoretical interest, but
back when people were doing this stuff by hand, they just categorized
everything to enable doing an ANOVA, which was tedious arithmetic but
more manageable. It’s a bit of a historical artifact, but might be useful
for exploratory purposes of feature relationships. For model comparison
however, other approaches are more general than ANOVA and preferred.
An example is using AIC, or the other methods employed that we discuss
in the machine learning chapters, like cross-validation error.

9.2.4 Interactions in practice
When dealing with interactions in a model, it’s best to consider how the
feature-target relationship changes based on the values of other features it
interacts with. Visualizing these effects is important in helping us understand
how the relationships change. It’s also helpful to consider what the predicted
outcome is at important feature values, and how this changes with different
feature values. This is the approach we’ve used with interactions, and it’s a
good strategy overall.

9.3 Mixed Models
9.3.1 Knowing your data
As much fun as modeling is, knowing your data is far more important. You
can throw any model you want at your data, from simple to fancy, but you
can count on disappointment if you don’t fundamentally know the structure
that lies within your data. Let’s take a look at the following visualizations. In
Figure 9.2, we see a positive relationship between the length of the movie and
ratings.
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Figure 9.2: Linear relationship between length of movie and rating.

We could probably just stop there, but given what we just saw with interaction,
we might think to ourselves to be ignoring something substantial within our
data: genre. We might want to ask a question, “Does this relationship work
the same way across the different genres?”

Genre Effects on Length and Rating

Figure 9.3: Genre effects on length and rating.
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A very quick examination of Figure 9.3 might suggest that the rating varies by
genre, and that the relationship between length and rating varies significantly
over the different genres. The group means in the right panel show variability
across genres. In addition, in the left panel, some genres show a strong positive
relationship, some show less of a positive relationship, a couple even show a
negative relationship, and one even looks flat. We can also see that they would
have different intercepts. This is a very important thing to know about your
data! If we had just run a model with length as a feature and nothing else, we
would have missed this important information.

Now consider something a bit more complicated. Here is a plot of the rela-
tionship between the length of a movie and the rating, but across release year.
Again we might think there is notable variability in the effect across years,
as some slopes are positive, some very strongly positive, and some are even
negative. How can we account for this when there are so many group effects
to consider?
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Figure 9.4: Release year effects on length and rating.

9.3.2 Overview of mixed models
What we’ve just seen might initially bring to mind an interaction effect, and
that’s the right way to think about it! A mixed model can be used to
incorporate that type of relationship into our model, which we can think of as
a group interaction, without much hassle and additional explainability. But
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it’s actually a quite flexible class that can also allow for more complicated but
related types.

Before going too much further, the term mixed model is as vanilla as we
can possibly make it, but you might have heard of different names such as
hierarchical linear models, or multilevel models, or maybe mixed-effects models.
Maybe you’ve even been exposed to ideas like random effects or random slopes.
These are in fact all instances of what we’re calling a mixed model.

What makes a model a mixed model? The mixed model is characterized by the
idea that a model can have fixed effects and random effects. Fortunately,
you’ve already encountered fixed effects – those are the features that we
have been using in all of our models so far! We are assuming a single true
parameter (e.g., coefficient/weight) to estimate for each of those features, and
that parameter is fixed.

In mixed models, a random effect instead comes from a specific distribution,
and this is almost always a normal distribution. This random effect adds a
unique source of variance in the target variable. This distribution of effects can
be based on a grouping variable (such as genre), where we let those parameters,
i.e., coefficients (or weights), vary across the groups, creating a distribution of
values.

Let’s take our initial example with movie length and genre. Formally, we might
specify something like this:

Rating = 𝑏𝑏int[genre] + 𝑏𝑏length ∗ length + 𝜖𝜖

In this formula, we are saying that genre has its own unique effect for this
model in the form of specific intercepts for each genre3. This means that
whenever an observation belongs to a specific genre, it will have an intercept
that reflects that genre, and that means that two observations with the same
movie length but from different genres would have different predictions.

We also posit, and this a key point, that those group effects come from a
random distribution. We can specify that as:

𝑏𝑏int[genre] ∼ N(𝑏𝑏intercept, 𝜎𝜎int_genre)

This means that the random intercepts will be normally distributed and the
overall intercept is just the mean of those random intercepts, and with its own
variance. It also means our model will have to estimate that variance along
with our residual variance. Another very common depiction is as follows, which
makes explicit the addition of a random effect to the intercept:

3The error term 𝜖𝜖 is still assumed normal with mean zero and variance 𝜎𝜎2.
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re[int_genre] ∼ N(0, 𝜎𝜎int_genre)

𝑏𝑏int[genre] = 𝑏𝑏intercept + re[int_genre]

The same approach would apply with a random slope, where we would have
a random slope for each group, and that random slope would be normally
distributed with its own variance. Compared to our first formulation, it would
look like this:

𝑏𝑏length[genre] ∼ N(𝑏𝑏length, 𝜎𝜎length_genre)

A simple random intercept and slope is just the start. As an example, we
can let the intercepts and slopes correlate with one another, and we could
have multiple grouping factors, as well as allowing multiple features and even
interactions themselves to vary by group! So mixed models can get quite
complex, but the basic idea is still the same: we are allowing parameters to
vary across groups, and we are estimating the variance of those parameters.

9.3.3 Using a mixed model
One of the key advantages of a mixed model is that we can use it when the
observations within a group are not independent. This is a very common
situation in many fields, and it’s a good idea to consider this when you have
grouped data. As an example we’ll use the happiness data for all available
years, and we’ll consider the country as a grouping variable. In this case,
observations within a country are likely to be more similar to each other than
to observations from other countries. Such longitudinal data is a classic
example of when to use a mixed model. This is also a case where we wouldn’t
just throw in ‘country’ as a feature like any other factor, since there are 164
countries in the data. We need an easier way to handle so many groups!

In general, to use mixed models, we have to specify a random effect pertaining
to the categorical feature of focus, but that’s the primary difference from
our previous approaches used for linear or generalized linear models. For
our example, we’ll look at a model with a random intercept for the country
feature, and one that adds a random coefficient for the yearly trend across
countries. This means that we are allowing the intercepts and slopes to vary
across countries, and the intercepts and slopes can correlate with one another.
Furthermore, by recoding year to start at zero, the intercept will represent the
happiness score at the start of the data. In addition, to see a more reasonable
effect, we also divide the yearly trend by 10, so the coefficient provides the
change in happiness score per decade.
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R

We’ll use the lme4 package in R which is the most widely used package for
mixed models.

library(lme4)

df_happiness_all = read_csv("https://tinyurl.com/worldhappinessallyears")

df_happiness_all = df_happiness_all |>

mutate(decade_0 = (year - min(year))/10)

# random intercepts are specified by a 1

model_ran_int = lmer(

happiness_score ~ decade_0 + (1| country),

df_happiness_all

)

model_ran_slope = lmer(

happiness_score ~ decade_0 + (1 + decade_0 | country),

df_happiness_all

)

# not shown

summary(model_ran_int)

summary(model_ran_slope)

Python

As with our recommendation with GAMs later, R is the better tool for mixed
models, as the functionality is overwhelmingly better there for modeling and
post-processing. However, you can use statsmodels in Python to fit them as
well4.

import statsmodels.api as sm

df_happiness_all = pd.read_csv("https://tinyurl.com/worldhappinessallyears")

df_happiness_all = (

df_happiness_all

.assign(decade_0 = lambda x: (x['year']- x['year'].min())/10)

4One of your authors worked for several years with the key developer of the mixed models
functionality in statsmodels. As such, we can say there is zero doubt about the expertise
going into its development, as there are few in the world with such knowledge. Even so, you
probably won’t find the functionality is as mature or as expansive as what you get in R.
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)

model_ran_int = sm.MixedLM.from_formula(

"happiness_score ~ decade_0",

df_happiness_all,

re_formula='1',

groups=df_happiness_all["country"]

).fit()

model_ran_slope = sm.MixedLM.from_formula(

"happiness_score ~ decade_0",

df_happiness_all,

re_formula='1 + decade_0',

groups=df_happiness_all["country"]

).fit()

# not shown

# model_ran_int.summary()

# model_ran_slope.summary()

Table 9.4 shows some typical output from a mixed model, focusing on the
random slope model. The fixed effect part (Fixed) is your basic GLM result
and interpreted the same way. Nothing is new there, and we can see a slight
positive decade trend in happiness, though maybe not a strong one. But the
random effects (Random) are where the action is! We can see the standard
deviation of the random effects, i.e., the intercepts and slopes. We can also
see the correlation between the random intercepts and random slopes. And
finally we also have the residual (observation level) standard deviation, which
is interpreted the same as with standard linear regression. Depending on your
modeling tool, the default result may be in terms of variances and covariances
rather than standard deviations and correlations, but it is generally similar.

Table 9.4: Mixed Model Results

Parameter Coefficient SE CI_low CI_high Group

Fixed

(Intercept) 5.34 0.09 5.16 5.52
decade_0 0.06 0.05 -0.04 0.16

Random

SD (Intercept) 1.15 country
SD (decade_0) 0.57 country
Cor (Intercept~decade_0) -0.38 country
SD (Observations) 0.34 Residual
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In this case, we can see notable variability attributable to the random effects.
How do we know this? Well, if our happiness score is on a 1 to 8 scale, and we
have a standard deviation of happiness of 1.13 before accounting for anything
else, then we might surmise that having an effect of that size (roughly 1.15)
is a relatively notable amount, as it suggests we would move around about
a standard deviation of happiness just going from country to country (on
average).

The trend variability is also notable. Although the overall effect is small, the
coefficient standard deviation shows that it ranges from a notable negative
trend to a notable positive trend (± 0.57) depending on which country we’re
looking at. In addition, we can also see that the correlation between the random
intercepts and random slopes is negative, which means that the groups with
higher starting points have more negative slopes.

Now let’s look at the estimates for the random effects for the model with both
intercepts and slopes5.

R

estimated_RE = ranef(model_ran_slope)

Python

estimated_RE = pd.DataFrame(model_ran_slope.random_effects)

5MC provides a package for mixed models in R called mixedup. It provides a nice way to
extract random effects and summarize such models (link).
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Figure 9.5: Estimated random effects.
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How do we interpret these deviations? For starters, they are deviations from
the fixed effect for the intercept and decade trend coefficient. Here that means
anything negative is an intercept or slope below the corresponding fixed effect
value, and anything positive is above that value. If we want the specific effect
for a country, we just add its random effect to the fixed effect, and we can
refer to those as random coefficients.

For example, if we wanted to know the effects for the US, we would add its
random effects to the population level fixed effects. This is exactly what we
did in the previous section in our interpretation with the interaction model.
However, you can typically get these from the package functionality directly.
The result shows that the US starts at a very high happiness score, but actually
has a negative trend over time6.

R

# coef(model_ran_slope) stored here

ranef_usa = estimated_RE$country

ranef_usa = ranef_usa |>

rownames_to_column('country') |>

filter(country == 'United States')

ranef_usa[1, c('(Intercept)', 'decade_0')] + fixef(model_ran_slope)

(Intercept) decade_0

1 7.296 -0.2753

Python

ranef_usa = estimated_RE['United States'].rename({'Group': 'Intercept'})

ranef_usa + model_ran_slope.fe_params

Intercept 7.296

decade_0 -0.275

dtype: float64

INFO Averages in Mixed Models

In the linear mixed effect model setting with a random intercept, the
fixed effects can be seen as the (population) average effects, but this
is not exactly what you are getting from the mixed model. To make
the distinction clear, consider family groups and a gender effect for
males vs. females. The linear regression and some other types of models

6Life expectancy in the US has actually declined recently.
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(e.g., estimated via generalized estimating equations) would give you
the average effect male-female difference across all families. The mixed
model actually tells you the male-female difference as if they were in the
same family (e.g., siblings). Again, in the simplest mixed model setting
these are the same. Beyond that, when we start dealing with random
slopes and non-Gaussian distributions, they are not.
In general, if we set the random effect to 0 to get a prediction, that tells
us what the prediction would be for a typical group, in this case, a typical
country. Often we want to get something more like the average slope or
prediction across countries that we would have with linear regression.
This gets us back to the idea of the marginal effect we discussed earlier.
While the mechanics are not straightforward for mixed models, the tool
use generally takes no additional effort.

Let’s plot those random coefficients together to see how they relate to each
other.
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Figure 9.6: Random effects for a mixed model.

From this plot, we can sense why the estimated random effect correlation was
negative. For individual country results, we can see that recently war-torn
regions like Syria and Afghanistan have declined over time even while they
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started poorly as well. Some like Guinea and Togo started poorly but have
improved remarkably over time. Many western countries started high and
mostly stayed that way, though generally with a slight decline. Perhaps there’s
only one direction to go when you’re already starting off well!

INFO Always Scale Features for Mixed Models

Your authors have run a lot of these models. Save yourself some trouble
and standardize or otherwise scale your features before fitting the model.
Just trust us, or at least don’t be surprised when your model doesn’t
converge.

9.3.4 Mixed model summary
For a model with just one feature, we certainly had a lot to talk about! And
this is just a glimpse of what mixed models have to offer, and the approach can
be even richer than what we’ve just seen. But you might be asking: Why don’t
I just put genre or country in the model like other categorical features? In the
case of genre for movie reviews where there are few groups, that’s okay. But
doing that with features with a lot of levels would typically result in estimation
issues due to having so many parameters to estimate. In general mixed models
provide several advantages for the data scientist:

• Any coefficient can be allowed to vary by groups, including other random
effects. It actually is just an interaction in the end as far as the linear
predictor and conceptual model is concerned.

• The group-specific effects are penalized, which shrinks them toward the
overall mean and makes this a different approach from just adding a ‘mere
interaction’. This helps avoid overfitting, and that penalty is related to the
variance estimate of the random effect. In other words, you can think of
it as running a penalized linear model where the penalty is applied to the
group-specific effects (see Section 6.8).

• Unlike standard interaction approaches, we can estimate the covariance of the
random effects, and specify different covariance structures for observations
within groups. Standard interactions implicitly assume independence.

• Because of the way they are estimated, mixed models can account for lack
of independence of observations7, which is a common issue in many datasets.
This is especially important when you have repeated measures, or when you
have a hierarchical structure in your data, such as students within schools,
or patients within hospitals.

7Independence of observations is a key assumption in linear regression models, and when
it’s violated, the standard errors of the coefficients are biased, which can lead to incorrect
inferences. Rather than hacking a model (so-called ‘fixed effects’ models) or ‘correcting’ the
standard error (e.g., with some ‘sandwich’ or estimator), mixed models can account for this
lack of independence through the model itself.
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• Standard modeling approaches can estimate these difficult models very
efficiently, even with thousands of groups and millions of observations.

• The group effects are like a very simplified embedding (Section 14.2.2),
where we have taken a categorical feature and turned it into a numeric
one, like those shown in Figure 9.5. This may help you understand other
embedding techniques that are used in other places like deep learning.

• When you start to think about random effects and/or distributions for effects,
you’re already thinking like a Bayesian (Section 7.6), who is always thinking
about the distributions for various effects. Mixed models are the perfect
segue from standard linear model estimation to Bayesian estimation, where
everything is random.

• The random effect is akin to a latent variable of ‘unspecified group causes’.
This is a very powerful idea that can be used in many different ways, but
importantly, you might want to start thinking about how you can figure out
what those ‘unspecified’ causes may be!

• Group effects will almost always improve your model’s predictive performance
relative to not having them, especially if you weren’t including those groups
in your model because of how many groups there were.

In short, mixed models are a fun way to incorporate additional interpretive
color to your model, while also getting several additional benefits to help you
understand your data!

9.4 Generalized Additive Models
9.4.1 When straight lines aren’t enough
Linear models, as their name implies, generally assume a linear relationship
between the features and the target by default. But fitting a line through your
data isn’t always going to be the best approach. Not every relationship is linear
and not every relationship is monotonic. Sometimes, you need to be able to
model a relationship that has a fair amount of nonlinearity – they can appear
as slight curves, waves, and any other type of wiggle that you can imagine.

In other words, we can go from the straight line in Figure 9.7:
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There are many ways to go about this, and common approaches include using
polynomial regression, using feature transformations, or using a nonlinear
regression model. The curved line in Figure 9.8 is the result of what’s called a
spline. It is created by a feature and expanding it to multiple columns, each
of which is a function of the original feature. We then fit a linear model to
that data as usual. What this ultimately means is that we can use a linear
model to fit a curve through the data. While this might not give us the same
tidy explanation that a typical linear approach would offer, we will certainly
get better predictions if it’s appropriate, and a better understanding of the
reality and complexity of the true relationship. It’s also useful for exploratory
purposes, and visualization tools can make it easy. Here is some demonstration
code (result not shown).

R

x = rnorm(1000)

y = sin(x)

tibble(x, y) |>

ggplot(aes(x = x, y = y)) +

geom_smooth(method = 'gam', se = FALSE)

Python

import plotly.graph_objects as go

import numpy as np

x = np.random.normal(size = 1000)

y = np.sin(x)

fig = go.Figure()

fig.add_trace(

go.Scatter(

x = x,

y = y,

line_shape = 'spline'

)

)

Models incorporating this type of effect belong to a broad group of generalized
additive models (GAMs). When we explored interactions and mixed models,
we explored how the feature-target relationship varies with another feature.
There we focused on our feature and its relationship to the target at different
values of other features. When we use a GAM, our initial focus is on a specific
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feature and how its relationship with the target changes at different values of
that feature. How are we going to do this, you might ask? Conceptually, we
will have a model that looks like this:

𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦

This isn’t actually any different than what you’ve seen, it really isn’t! It’s just
shorthand for the input 𝑋𝑋 being fed into a function 𝑓𝑓𝑓𝑓 of some kind, exactly
as we saw in Section 2.3.1. That function is very flexible and can be anything
you want.

What we’re going to do with the function now is expand the feature 𝑥𝑥 in some
way, which on a practical level means it will actually become multiple columns
of input instead of just one. Some approaches to creating the expansion can
be quite complex, with the goal of tackling spatial, temporal, or other aspects
of the data. But, in the end, it’s just extra columns in the model matrix
that go into the model-fitting function like any other feature. This enables the
model to explore a more complex representation space, ultimately helping us
capture nonlinear patterns in our data.

At this point, you might be asking yourself, “Why couldn’t I just use some
type of polynomial regression or even a nonlinear regression?”. Of course you
could, but both have limitations relative to a GAM. If you are familiar with
polynomial regression, where we add columns that are squares, cubes, etc. of
the original feature, you can think of GAMs as a more general approach, and
very similar in spirit. But that polynomial approach assumes a specific form of
nonlinearity and has no regularization. This means that it tends to overfit the
data you currently have, and you are forcing curves to fit through the data,
rather than exploring what naturally may arise.

Another approach besides polynomials is to use a nonlinear regression
model. In this setting, you need to know what the underlying functional
form is. An example is a logistic growth curve model for population growth.
Without taking extra steps, such models can also overfit. Furthermore, outside
of well-known physical, chemical, or biological processes, it’s rarely clear what
the underlying functional form should be. At the very least, we wouldn’t know
a formula for life expectancy and happiness!

GAMs are better in such settings because they fit the data well without needing
to know the underlying form. They also prevent overfitting in smaller data
and/or more complex settings by using a penalized estimation approach. We
can use them for multiple features at once, and even include interactions
between features. We also can use different types of splines, which you can
think of as different functions to apply to features, to capture different types
of nonlinearities. Here is another formal definition of a GAM that makes it
more clear we can deal with multiple features.
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̂𝑦𝑦 𝑦 𝑦 𝑦𝑦𝑗𝑗𝛽𝛽𝑗𝑗

In this case, each 𝑋𝑋𝑗𝑗 is a matrix of the feature and its basis expansion, which
is created by the spline function. The 𝛽𝛽𝑗𝑗 are the coefficients for each of those
basis expansion columns. But a specific 𝑋𝑋𝑗𝑗 could also just be a single feature
and it’s coefficient to model a linear relationship. You can pick and choose,
which features to use it on, and how to use it.

The nice thing is that you don’t have to worry about the details of the basis
expansion. The package you choose will take care of that for you. You’ll have
different options, and often the default is fine, but sometimes you’ll want to
adjust the technique and how ‘wiggly’ you want the curve to be.

9.4.2 A standard GAM
Now that you have some background, let’s give this a shot! In most respects,
we can use the same sort of approach as we did with our other linear model
examples. For our example here, we’ll use the model that was depicted in
Figure 9.8, which looks at the relationship between life expectancy and happi-
ness score from the world happiness data (2018). Results are simplified in the
subsequent table.

R

We’ll use the very powerful mgcv package in R. The s function will allow us to
use a spline approach to capture the nonlinearity. The bs argument specifies
the type of spline, and here we use a B-spline, but there are many options. The
k argument provides a means to control the complexity of the spine, historically
thought of as ‘knots’ where bends in the curve can occur.

library(mgcv)

df_happiness_2018 = read_csv('https://tinyurl.com/worldhappiness2018')

model_gam = gam(

happiness_score ~ s(healthy_life_expectancy_at_birth, bs = 'bs'),

data = df_happiness_2018

)

summary(model_gam)

Python

We can use the statsmodels package in Python to fit a GAM, or alternatively,
pygam, and for consistency with previous models, we’ll choose the former.
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Honestly though, you should use R’s mgcv, as these require notably more work
without having some of the basic functionality available there. In addition,
there is an ecosystem of R packages to further extend mgcv, while these are
not as mature in Python. Here we must create the spline explicitly first, a
so-called B-spline, and add it to the model.

from statsmodels.gam.api import GLMGam, BSplines

df_happiness_2018 = pd.read_csv('https://tinyurl.com/worldhappiness2018')

bs = BSplines(

df_happiness_2018['healthy_life_expectancy_at_birth'],

df = 9,

degree = 3

)

gam_happiness = GLMGam.from_formula(

'happiness_score ~ healthy_life_expectancy_at_birth',

smoother = bs,

data = df_happiness_2018

)

model_gam = gam_happiness.fit()

model_gam.summary()

Table 9.5: GAM Model Results

Component Term Estimate Std.Error t.value p.value

parametric coefficients Intercept 5.44 0.06 92.73 0
EDF Ref.df F.value p.value

smooth terms s(Life Exp.) 5.55 6.49 40.11 0

When you look at the model output, what you get will depend a lot on the tool
you use, and the details are mostly beyond the scope we want to present here
(check out Michael Clark’s (2022b) document on GAMs for a lot more). But
in general, the following information will be provided as part of the summary
ANOVA table or as an attribute of the model object:

• Coefficients: The coefficients for each of the features in the model. For a
GAM, these are the coefficients for the basis expansion columns, as well as
standard linear feature effects.

• Global test of a feature: Some tools will provide a statistical test of the
significance of the entire feature’s basis expansion, as opposed to just the
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individual coefficients. In the table we have the intercept and the summarized
smooth term.

• EDF/EDoF: Effective degrees of freedom. This is a measure of ‘wiggle’ in
the relationship between the feature and the target. The higher the value,
the more wiggle you have. If you have a value close to 1, then you have a
linear relationship. With our current result, we can be pretty confident that
a nonlinear relationship gives a better idea about the relationship between a
country’s life expectancy and happiness than a linear one.

• R-squared: Adjusted/Pseudo 𝑅𝑅2 or deviance explained. This is a measure
of how much of the variance in the target is explained by the model. The
higher the value, the better the model. Deviance explained is an analog to
the unadjusted 𝑅𝑅2 value for a Gaussian model that is used in the GLM
setting. It’s fine as a general assessment of prediction-target correspondence,
and in this case, we might be feeling pretty good about the model.

Far more important than any of these is the visual interpretation, and we can
get plots from GAMs easily enough.

R

# not shown

plot(model_gam)

Python

# not shown

model_gam.plot_partial(0, cpr=True)

Unfortunately, the default package plots are not pretty, and sadly they also
aren’t provided in the same way we’d expect for interpretation. But they’re
fine for a quick look at your wiggly result. We provide a better looking one
here8. The main interpretation is that there is not much relationship between
life expectancy and happiness score until you get to about 60 years of life
expectancy, and then it increases at a faster rate. Various tools are available
to easily plot the derivatives for more understanding.

8We used the see package in R for a quick plot. We also recommend the functionality via
the gratia package to visualize the derivatives, which will show where the feature effect is
changing most.
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Figure 9.9: Visualizing a GAM.

9.4.3 GAM Summary
To summarize, we can use a GAM to model nonlinear relationships with a
linear model approach. We can use splines to capture those nonlinearities, and
we can use a penalized approach to control the amount of wiggle in our model.
What’s more, we can interact the wiggle with other categorical and numeric
features to capture even more complexity in our data. This allows us to model
spatial, temporal, and other types of data that have complex relationships.

GAMs are a very powerful modeling tool that take us a step toward more
complex models, but without the need to go all the way to a neural network
or similar. Plus they still provide standard statistical inference information. In
short, they’re a great tool for modeling!

INFO GAMs Are Random Effects Models

It turns out that GAMs have a very close relationship to mixed models,
where splines can be thought of as random effects (see Gavin Simpson’s
post also), and GAMs can even incorporate the usual random effects
for categorical variables. So you can think of GAMMs, or generalized
additive mixed models, as a way to combine the best of both GAM and
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mixed model worlds into one extremely powerful modeling that covers a
lot of ground. It’s also a great baseline and sanity check model for when
you’re trying boosting or deep learning models, where a well-specified
GAMM can be hard to beat for tabular data and still can be highly
interpretable, while coming with built-in uncertainty estimates and better
visualization tools.

9.5 Quantile Regression
People generally understand the concept of the arithmetic mean, or ‘average’.
You see it some time during elementary school, it gets tossed around in daily
language, and it is statistically important. After all, so many distributions
depend on it! Why, though, do we feel so tied to it from a regression modeling
perspective? Yes, it has handy features, but it can limit the relationships we
can otherwise model effectively. Here we’ll show you what to do when the
mean betrays you – and trust us, the mean will betray you at some point!

9.5.1 When the mean breaks down
In a perfect data world, we like to assume the mean is equal to the middle
observation of the data: the median. But that is only when things are symmetric
though, and usually our data comes loaded with challenges. Skewness and even
just a few extreme scores in your data may cause a rift between the median
and the mean.

Let’s say we take the integers between 1 and 10, and find the mean.

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
10

= 5.5

The middle value in that vector of numbers would also be 5.5.

What happens if we replace the 1 with a more extreme value, like -10?

−10 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
10

= 4.5

With just one dramatic change, our mean went down by a whole point. The
median observation, though, is still 5.5. In short, the median is invariant to
wild swings out in the tails of your numbers.

You might be saying to yourself, “Why should I care about this central tendency
chicanery?”. Let us tell you why! The least squares approach to the standard
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linear model dictates that the regression line needs to be fit through the means
of the variables. If you have extreme scores that influence the mean, then your
regression line will also be influenced by those extreme scores.

Consider the following regression line:

-2

0

2

-2 0 2
x

y

Figure 9.10: Linear relationship without extreme scores.

Now, what would happen if we replaced a few of our observations with extreme
scores?

-2

0

2

-2 0 2
x

y

Figure 9.11: Linear relationship with extreme scores.
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With just a casual glance, it doesn’t look like our two regression lines are that
different. They both look like they have a similar positive slope, so all should
be good. To offer a bit more clarity, let’s put those lines in the same space:

Figure 9.12: Linear relationships with and without extreme scores.

With 1000 observations, we see that having just 10 relatively extreme scores is
enough to change the regression line, even if just a little. But that little bit
can mean a huge difference for predictions and the conclusions we come to.

There are a few approaches we could take here, with common approaches being
dropping those observations, winsorizing them, or doing some transformation.
Throwing away data because you don’t like the way it behaves is almost
statistical abuse, and winsorization is just replacing those extreme values with
numbers that you like a little bit better. Transformations done independently
of the model rarely work for this purpose either. So let’s try something else!

9.5.2 A standard quantile regression
A better answer to this challenge might be to try a median-based approach
instead. This is where a model like quantile regression becomes handy.
Quantile regression is a type of regression that allows us to model the relation-
ship between the features and the target at different quantiles of the target.
For example, we can examine models at the 10th, 25th, 50th, 75th, and 90th
percentiles of the target. This is very cool, as it allows us to model the rela-
tionship between the features and the target in a way that is robust to outliers
and extreme scores. It’s also a way to understand a type of nonlinearity that
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-0.4
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is not captured by a standard linear model, as the feature target relationship
may change at different quantiles of the target.

To demonstrate this type of model, let’s use our movie reviews data. Let’s say
that we are curious about the relationship between the word_count and rating

to keep things simple. To make it even more straightforward, we will use the
standardized (scaled) version of the feature. In our default approach, we will
start with a median regression.

R

library(quantreg)

model_median = rq(rating ~ word_count_sc, tau = .5, data = df_reviews)

summary(model_median)

Python

model_median = smf.quantreg('rating ~ word_count_sc', data = df_reviews)

model_median = model_median.fit(q = .5)

model_median.summary()

Table 9.6: Quantile Regression Model Results

feature coef conf.low conf.high
(Intercept) 3.09 3.05 3.26
word_count_sc −0.29 −0.40 −0.20

Fortunately, our interpretation of this result isn’t all that different from a
standard linear model. The rating should decrease by -0.29 for every bump in
a standard deviation for the number of words, which in this case is about 5
words. However, this concerns the expected median rating, not the mean, as
would be the case with standard linear regression.

Quantile regression is not a one-trick pony though – being able to compute
a median regression is just the default. As mentioned, we can also explore
different quantiles, and this gives us the ability to answer brand new questions
such as, “Does the relationship between word count and their ratings change
at different quantiles of rating?”. Very cool!
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Let’s now examine the trends within five different quantiles of the data: .1,
.3 .5, .7, and .99. We aren’t limited to just those quantiles though, and you
can examine any of them that you might find interesting. Here is a plot of the
results of these models.

1

2

3

4

5

0 2 4
Word Count (Standardized)

Rating

0.1 0.3 0.5 0.7 0.9

Points jittered for visibility
Lines represent different quantile regression models

Figure 9.13: Quantile regression lines.

To interpret our visualization, we could start by saying that all of the model
results suggest a negative relationship. The 10th and 90th quantiles seem
weakest, while those in the middle show a notably stronger relationship. We
can also see that the 90th percentile model is better able to capture those values
that would otherwise be deemed as outliers using other standard techniques.
The following table shows the estimated coefficients for each of the quantiles,
and it suggests that all word count relationships are statistically significant,
since the confidence intervals do not include zero.

9The R function can take a vector of quantiles, while the Python function can only take
a single quantile, so you would need to loop through the quantiles.
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Table 9.7: Quantile Regression Model Results

feature coef SE CI_low CI_high quantile

(Intercept) 2.27 0.03 2.21 2.33 tau (0.1)
word_count_sc −0.13 0.03 −0.19 −0.07 tau (0.1)
(Intercept) 2.79 0.03 2.73 2.84 tau (0.3)
word_count_sc −0.23 0.02 −0.27 −0.19 tau (0.3)
(Intercept) 3.09 0.02 3.06 3.12 tau (0.5)
word_count_sc −0.29 0.01 −0.31 −0.26 tau (0.5)
(Intercept) 3.32 0.02 3.28 3.36 tau (0.7)
word_count_sc −0.30 0.02 −0.34 −0.27 tau (0.7)
(Intercept) 3.85 0.05 3.76 3.95 tau (0.9)
word_count_sc −0.14 0.06 −0.25 −0.03 tau (0.9)

95% confidence intervals are shown.

9.5.3 The quantile loss function
Formally, the objective function for the quantile regression model can be
expressed as:

Value = Σ ((𝜏𝜏 𝜏𝜏 𝜏 𝜏
𝑦𝑦𝑖𝑖< ̂𝑦𝑦

(𝑦𝑦𝑖𝑖 − ̂𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦
𝑦𝑦𝑖𝑖≥ ̂𝑦𝑦

(𝑦𝑦𝑖𝑖 − ̂𝑦𝑦𝑦𝑦 (9.1)

Compared to a standard linear regression, we are given an extra parameter for
the model: 𝜏𝜏. It’s a number between 0 and 1 representing the desired quantile
(e.g., 0.5 for the median)10. The objective function treats positive residuals
differently than negative residuals. If the residual is positive, then we multiply
it by 𝜏𝜏. If the residual is negative, then we multiply it by 𝜏𝜏 𝜏𝜏 . The increased
penalty for over-predictions ensures that the estimated quantile ̂𝑦𝑦 is such that
𝜏𝜏 proportion of the data falls below it, balancing the total loss and providing a
robust estimate of the desired quantile.

9.5.4 DIY
Given how relatively simple the objective function is, let’s demystify this model
further by creating our own quantile regression model and see if we can get
the same results. We’ll start by creating a loss function that we can use to fit
our model.

10This is equivalent to using the least absolute deviation objective.
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R

quantile_loss = function(par, X, y, tau) {

y_hat = X %*% par

residual = y - y_hat

loss = ifelse(

residual < 0,

(tau - 1) * residual,

tau * residual

)

sum(loss)

}

Python

def quantile_loss(par, X, y, tau):

y_hat = X.dot(par)

residual = y - y_hat

loss = np.where(

residual < 0,

(tau-1)*residual,

tau*residual

)

return sum(loss)

This code is just the embodiment of the formula shown for the quantile objective
function. Compared to some of our other approaches demonstrated, we add
an argument for 𝜏𝜏, but we otherwise proceed very similarly. We calculate the
residuals or errors in prediction, and then we sum the loss function based on
those errors.

Now that we have our data and our loss function, we can fit the model almost
exactly like our standard linear model. Again, note the 𝜏𝜏 value, which we’ve
set to .5 to represent the median.
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R

X = cbind(1, df_reviews$word_count_sc)

y = df_reviews$rating

optim(

par = c(intercept = 0, word_count_sc = 0),

fn = quantile_loss,

X = X,

y = y,

tau = .5

)$par

intercept word_count_sc

3.0886 -0.2852

Python

from scipy.optimize import minimize

import numpy as np

X = pd.DataFrame(

{'intercept': 1,

'word_count_sc': df_reviews['word_count_sc']}

)

y = df_reviews['rating']

minimize(quantile_loss, x0 = np.array([0, 0]), args = (X, y, .5)).x

array([3.0901, -0.2842])

Let’s compare this to our previous result, and the OLS results as well. As
usual, our simple code does what we need it to do! We also see that the linear
regression model would produce a relatively smaller coefficient.

Table 9.8: Comparison of Quantile Regression Models

feature OLS QReg Ours
intercept 3.051 3.089 3.089
word_count_sc −0.216 −0.285 −0.285
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INFO Yet Another Interaction

One way to interpret this result is that we have a nonlinear relationship
between the word count and the rating, in the same way we had an
interaction previously. In this case, our effect of word count interacts
with the target! In other words, we have a different word count effect
for different ratings. This is a bit of a mind bender to process, but it’s
another good example of how a linear approach can be used to model
quirky relationships!

9.6 Wrapping Up
The standard linear model is useful across many different data situations. It
does, unfortunately, have some issues when data becomes a little bit more
“real”. When you have extreme scores or relationships that a standard model
might miss, you don’t necessarily need to abandon your linear model in favor
of something more exotic. Instead, you might just need to think about how
you are actually fitting the line through your data.

9.6.1 The common thread
The models discussed in this chapter are all linear models, but they add flexi-
bility in how they model the relationship between the features and the target,
and provide a nonlinear aspect to the otherwise linear model. Furthermore,
with tools like mixed models, GAMs, and quantile regression, we generalize
our GLMs to handle even more complex data settings.

9.6.2 Choose your own adventure
No matter how much we cover in this book, there is always more to learn.
Hopefully you’ve got a good grip on linear models and related topics, so feel
free to try out some machine learning in Chapter 10!

9.6.3 Additional resources
There is no shortage of great references for mixed effects models. If you are
looking for a great introduction to mixed models, we would recommend starting
with yet another tutorial by one of your fearless authors! Michael Clark’s
Mixed Models with R (2023) is a great introduction to mixed models and is
available for free. For a more comprehensive treatment, you can’t go wrong with
Gelman & Hill’s Data Analysis Using Regression and Multilevel/Hierarchical
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Models (2006), and their more recent efforts in Regression and Other Stories
(2020), which will soon have an added component for mixed models: Advanced
Regression and Multilevel Models (2025).

If you want to dive more into the GAM world, we would recommend that you
start with the Moving Beyond Linearity chapter in An Introduction to
Statistical Learning (James et al. 2021). Not only do they have versions for both
R and Python, but both have been made available online. If you are wanting
something more technical, you can’t beat Simon Wood’s book, Generalized
Additive Models: An Introduction with R (2017), or a more digestible covering
of the same content by one of your own humble authors (Clark 2022b).

For absolute depth on quantile regression, we will happily point you to the
OG of quantile regression, Roger Koenker. His book, Quantile Regression
(2005) is a must read for anyone wanting to dive deep into quantile regression,
or just play around with his R package quantreg. Galton, Edgeworth, Frisch,
and Prospects for Quantile Regression in Econometrics is another of his. And
finally, you might also consider Fahrmeir et al. (2021), which takes an even
more generalized view of GLMs, GAMs, mixed models, quantile regression,
and more (very underrated).

9.7 Guided Exploration
These models are so much fun, so you should feel comfortable just swapping
any feature(s) in and out of the models. For example, for the mixed model,
try using GDP per capita or life expectancy instead of (just a) trend effect.
For the GAM, try using several features with nonlinear effects and see what
shakes out. For quantile regression, try a different feature like movie length
and use different quantiles.

R

library(lme4)

library(mgcv)

library(quantreg)

df_happiness = read_csv('https://tinyurl.com/worldhappinessallyears')
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data = df_happiness_2018
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model_gam = gam(

happiness_score ~ s(???)...,

data = df_happiness

)

model_quant = rq(

happiness_score ~ ???,

tau = ???,

data = df_happiness

)

Python

import pandas as pd

import statsmodels.formula.api as smf

from statsmodels.gam.api import GLMGam, BSplines

df_happiness = pd.read_csv('https://tinyurl.com/worldhappinessallyears')

model_mixed = smf.mixedlm(

'happiness_score ~ ???',

data = df_happiness,

groups = df_happiness['country']

).fit()

bs = BSplines(

df_happiness['???'],

df = 9, # fiddle with these if you like

degree = 3

)

gam_happiness = GLMGam.from_formula(

'happiness_score ~ ???',

smoother = bs,

data = df_happiness

).fit()

model_quant = smf.quantreg(

'happiness_score ~ ???',

data = df_happiness['???']

).fit(q = ???)
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10
Core Concepts in Machine Learning

Machine learning (ML) is used everywhere, and it allows us to do things
that would have been impossible just a couple of decades ago. It is used in
everything from self-driving cars, to medical diagnosis, to predicting the next
word in your text message. The ubiquity of it is such that machine learning
and related adventures like artificial intelligence are used as buzzwords, and
it is not always clear what is meant by the one speaking about them. In this
chapter we hope to demystify what machine learning is, and how it can be
used in your own work.

At its core, machine learning is a form of data analysis with a primary focus
on predictive performance. Honestly, that’s pretty much it from a practical
standpoint. It is not a subset of particular types of models, it does not prohibit
using statistical models, it doesn’t mean that a program spontaneously learns
without human involvement1, it doesn’t require any ‘machines’ outside of a

1The description of ML as machines learning ‘without being programmed’ can be mislead-
ing to the newcomer. In fact, many of the most common models used in machine learning
are not capable of learning ‘on their own’ at any level, and require human intervention
to provide processed data, specify the model, its parameters, set up the search through
that parameter space, analyze the results, update the model, etc. We only very recently,
post-2020, have developed models that appear to be able to generalize well to new tasks

267
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laptop, and it doesn’t even mean that the model used is particularly complex.
Machine learning is a set of tools and a modeling approach that attempts to
improve and generalize model performance2.

This is a different focus than statistical modeling approaches that put much
more emphasis on interpreting coefficients and uncertainty. But these two
approaches can work together. Some implementations of machine learning
include models that have their basis in traditional statistics, while others are
often sufficiently complex that they are barely interpretable at all. However,
even after you conduct your modeling via machine learning, you may still fall
back on statistical analysis for further exploration of the results.

Here we will discuss some of the key ideas in machine learning, such as
model assessment, loss functions, and cross-validation. Later we’ll demonstrate
common models used, but if you want to dive in, you can head there now!

INFO ML by Any Other Name…

AI, statistical learning, data mining, predictive analytics, data science,
and BI… there are a lot of names used alongside or even interchangeably
with machine learning. It’s mostly worth noting that using ‘machine
learning’ without context makes it very difficult to know what tools have
actually been employed, so you may have to do a bit of digging to find
out the details.

10.1 Key Ideas
Here are the key ideas we’ll cover in this chapter:

• Machine learning is an approach that prioritizes making accurate predictions
using a variety of tools and methods.

• Models used in machine learning are typically more complex and difficult

as if they have learned them without human involvement, but we still can’t ignore all the
hands-on work that went into the development of those models, which never could have such
capabilities otherwise. When you see this ‘learning without being programmed’, it is an odd
way to say that we don’t have to guess the parameters ourselves (aside from the first guess).
That said, it does feel like the worlds of The Matrix, Star Trek, and the rest are just around
the corner though, doesn’t it?

2Generalization in statistical analysis is more about generalizing from our sample of data
to the population from which it’s drawn. In order to do that well or precisely, one needs to
meet certain assumptions about the model. In machine learning, generalization is more about
how well the model will perform on new data, and it is often referred to as ‘out-of-sample’
performance. These are not mutually exclusive, but the connotation is different.
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to interpret than those used in standard statistical models. However, any
model can be used with ML.

• There are many performance metrics used in machine learning, and care
should be taken to choose the appropriate one for your situation. You can
also use multiple performance metrics to evaluate a model.

• Objective functions likewise should be chosen for the situation, and they are
often different from the performance metric.

• Regularization is a general approach to penalize complexity in a model, and
it is typically used to improve generalization.

• Cross-validation is a technique that helps us choose parameters for our models
and compare different models.

10.1.1 Why this matters
Machine learning applications help define the modern world and how we
interact with it. There are few aspects of modern society that have not been
touched by it in some way. With a basic understanding of the core ideas behind
machine learning, you will better understand the models and techniques that
are used in ML applications and be able to apply them to your own work.
You’ll also be able to understand the limitations of these models, and not think
of machine learning as ‘magic’.

10.1.2 Helpful context
To dive into applying machine learning models, you really only need a decent
grasp of linear models as applied to regression and classification problems
(Chapter 3 and Chapter 8). It would also be good to have an idea behind how
they are estimated (Chapter 6), as the same basic logic serves as a starting
point here.

10.2 Objective Functions
We’ve implemented a variety of objective functions in other chapters, such as
mean squared error for numeric targets and log loss for binary targets (Chap-
ter 6). The objective function is what we used to estimate model parameters,
but it’s not necessarily the same as the performance metric we ultimately use
to select a model. For example, we may use log loss as the objective function,
but then use accuracy as the performance metric. In that setting, the log
loss provides a ‘smooth’ objective function to search the parameter space
over, while accuracy is a straightforward and more interpretable metric for
stakeholders. In this case, the objective function is used to optimize the model,
while the performance metric is used to evaluate the model. In some cases,
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the objective function and performance metric are the same (e.g., (R)MSE),
and even if not, they might have selected the same ‘best’ model, but this is
not always the case. The following breakdown shows some commonly used
objective functions in machine learning for regression and classification tasks.

Regression

• Mean Squared Error (MSE): Average of the squared differences between
the predicted and actual values.

• Mean Absolute Error (MAE): Average of the absolute differences between
the predicted and actual values.

• Huber Loss: A robust approach that is less sensitive to outliers than MSE.
• Log Likelihood: Maximizes the likelihood of the data given the model

parameters.

Classification

• Binary Cross-Entropy / Log-Likelihood (Loss): Used for binary classi-
fication problems. Same as log-likelihood.

• Categorical Cross-Entropy: Binary approach extended to multiclass
classification problems.

Of course, there are many more objective functions than these, and they can
be quite complex. The choice of objective function will depend on the type of
problem you are trying to solve, and the characteristics of your data.

10.3 Performance Metrics
When discussing how to understand our model (Section 4.2), we noted there
are many performance metrics used in machine learning. Care should be taken
to choose the appropriate one for your situation. Usually we have a standard
set we might use for the type of predictive problem. For example, for numeric
targets, we typically are interested in (R)MSE and MAE. For classification
problems, many metrics are based on the confusion matrix, which is a table
of the predicted classes versus the observed classes. From that we can calculate
things like accuracy, precision, recall, AUROC, etc. (see Table 4.1).

As an example, and as a reason to get our first taste of machine learning, let’s
get some metrics for a movie review model. We’ll do this for both numeric
and classification targets to demonstrate the different types of metrics we can
obtain. As we start our journey into machine learning, we’ll show Python code
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first, as it’s the dominant tool for ML. Here we’ll model the target in both
numeric and binary form with corresponding metrics.

Python

In Python, we can use the sklearn.metrics module to get a variety of metrics.

from sklearn.metrics import (

mean_squared_error, root_mean_squared_error,

mean_absolute_error, r2_score,

accuracy_score, precision_score, recall_score,

roc_auc_score, roc_curve, auc, confusion_matrix

)

from sklearn.linear_model import LinearRegression, LogisticRegression

import pandas as pd

df_reviews = pd.read_csv('https://tinyurl.com/moviereviewsdata')

X = df_reviews[

[

'word_count',

'age',

'review_year',

'release_year',

'length_minutes',

'children_in_home',

'total_reviews',

]

]

y = df_reviews['rating']

y_class = df_reviews['rating_good']

model_lin_reg = LinearRegression().fit(X, y)

# note that sklearn uses regularization by default for logistic regression

model_log_reg = LogisticRegression().fit(X, y_class)

y_pred_linreg = model_lin_reg.predict(X)

y_pred_logreg = model_log_reg.predict(X)

# regression metrics

rmse = root_mean_squared_error(y, y_pred_linreg)
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mae = mean_absolute_error(y, y_pred_linreg)

r2 = r2_score(y, y_pred_linreg)

# classification metrics

accuracy = accuracy_score(y_class, y_pred_logreg)

precision = precision_score(y_class, y_pred_logreg)

recall = recall_score(y_class, y_pred_logreg)

R

In R, we can use mlr3measures, which has a variety of metrics.

library(mlr3measures)

# convert rating_good to factor for some metric inputs

df_reviews = read_csv('https://tinyurl.com/moviereviewsdata') |>

mutate(rating_good = factor(rating_good, labels = c('bad', 'good')))

model_lin_reg = lm(

rating ~

word_count

+ age

+ review_year

+ release_year

+ length_minutes

+ children_in_home

+ total_reviews,

data = df_reviews

)

model_log_reg = glm(

rating_good ~

word_count

+ age

+ review_year

+ release_year

+ length_minutes

+ children_in_home

+ total_reviews,

data = df_reviews,

family = binomial(link = 'logit')

)

y_pred_linreg = predict(model_lin_reg)
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y_pred_logreg = predict(model_log_reg, type = 'response')

y_pred_logreg = factor(ifelse(y_pred_logreg > .5, 'good', 'bad'))

# regression metrics

rmse_val = rmse(df_reviews$rating, y_pred_linreg)

mae_val = mae(df_reviews$rating, y_pred_linreg)

r2_val = rsq(df_reviews$rating, y_pred_linreg)

# classification metrics

accuracy = acc(df_reviews$rating_good, y_pred_logreg)

precision = precision(df_reviews$rating_good, y_pred_logreg, positive = 'good')

recall = recall(df_reviews$rating_good, y_pred_logreg, positive = 'good')

We put them all together in the following table. Now we know how to get
them, and it was easy! But as we’ll see later, there is a lot more to think about
before we use these for model assessment.

Table 10.1: Example Metrics for Linear and Logistic Regression Models

Metric Value
Linear Regression
RMSE 0.52
MAE 0.41
R-squared 0.32
Logistic Regression
Accuracy 0.71
Precision 0.72
Recall 0.79

10.4 Generalization
So getting metrics is easy enough, but how will we use them? One of the key
differences separating ML from traditional statistical modeling approaches is
the assessment of performance on unseen or future data, a concept commonly
referred to as generalization. The basic idea is that we want to build a model
that will perform well on new data, and not just the data we used to train
the model. This is because ultimately data is ever evolving, and when we
are concerned with making predictions, we don’t want to be beholden to a
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particular set of data that we just happened to have at a particular time and
context.

But how do we do this? As a starting point, we can simply split (often called
partitioning) our data into two sets, a training set and a test set, or,
holdout set. The test set is typically a smaller subset, say 25% of the original
data, but this amount is arbitrary and will reflect the data situation. We
fit or train the model on the training set, and then use the model to make
predictions on, or score, the test set. This general approach is also known as
the holdout method.

Consider a simple linear regression. We can fit the linear regression model
on the training set, which provides us coefficients, etc. We can then use that
model result to predict on the test set, and then compare the predictions to
the observed target values in the test set. We can calculate metrics on both
the training and test sets. Here we demonstrate this with our simple linear
model.

Python

from sklearn.model_selection import train_test_split

X = df_reviews[[

'word_count',

'age',

'review_year',

'release_year',

'length_minutes',

'children_in_home',

'total_reviews',

]]

y = df_reviews['rating']

X_train, X_test, y_train, y_test = train_test_split(

X,

y,

test_size=0.25,

random_state=123

)

model_linreg_train = LinearRegression().fit(X_train, y_train)

# get predictions

y_pred_train = model_linreg_train.predict(X_train)
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y_pred_test = model_linreg_train.predict(X_test)

# get RMSE

rmse_train = root_mean_squared_error(y_train, y_pred_train)

rmse_test = root_mean_squared_error(y_test, y_pred_test)

pd.DataFrame(

dict(

prediction = ['Train', 'Test'],

rmse = [rmse_train, rmse_test]

)

).round(3)

R

# create a train and test set

library(rsample)

set.seed(123)

split = initial_split(df_reviews, prop = .75)

X_train = training(split)

X_test = testing(split)

model_linreg_train = lm(

rating ~

word_count

+ age

+ review_year

+ release_year

+ length_minutes

+ children_in_home

+ total_reviews,

data = X_train

)

# get predictions

y_train_pred = predict(model_linreg_train, newdata = X_train)

y_test_pred = predict(model_linreg_train, newdata = X_test)

# get RMSE

rmse_train = rmse(X_train$rating, y_train_pred)
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rmse_test = rmse(X_test$rating, y_test_pred)

tibble(

prediction = c('Train', 'Test'),

rmse = c(rmse_train, rmse_test)

)

Table 10.2: RMSE for Linear Regression Model on Train and Test Sets

prediction rmse
Train 0.515
Test 0.530

So there you have it – you just did some machine learning! And now we have
a model that we can use to predict with any new data that comes along with
ease. But as we’ll soon see, there are limitations to doing things this simply.
But conceptually this is an important idea, and one we will continue to return
to.

INFO Split Results

A reminder: the results of the split can vary depending on the random
seed used, and whether you are using R or Python. So your results may
look slightly different from the presented tables.

10.4.1 Using metrics for model evaluation and selection
As we’ve seen elsewhere, there are many performance metrics to choose from
to assess model performance, and the choice of metric depends on the type of
problem (Section 4.2). It also turns out that assessing the metric on the data
we used to train the model does not give us the best assessment of that metric.
This is because the model will do better on the data it was trained on than on
data it wasn’t trained on, and we can generally always improve that metric
in training by making the model more complex. However, in many modeling
situations, this complexity comes at the expense of generalization. So what we
really want to ultimately say about our model will regard performance on the
test set with our chosen metric, and not the data we used to train the model.
At that point, we can also compare multiple models to one another given their
performance on the test set, and select the one that performs best.

In the previous section you can compare our results on the tests vs. training
set. Metrics are notably better on the training set on average, and that’s what
we see here. But since we should be more interested in how well the model will
do on new data, we should focus on the test set result.
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10.4.2 Understanding test error and generalization
This part gets into the weeds a bit. If you are not so inclined, skip to the
summary of this section.

In the following discussion, you can think of a standard linear model scenario,
for example, with squared-error loss function, and a dataset where we split
some of the observations in a random fashion into a training set, for initial
model fitting, and a test set, which will be kept separate and independent,
and used to measure generalization performance. We note training error
as the average loss over all the training sets we could create in this process
of random splitting. The test error is the average prediction error obtained
when a model fitted on the training data is used to make predictions on the
test data.

Generalization in the classical regime

So what result should we expect in this scenario? Let’s look at the following
visualization, inspired by Hastie, Tibshirani, and Friedman (2017).

Figure 10.1: Bias-variance tradeoff.

Prediction error on the test set is a function of several components, and two
of these are bias and variance.
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A key idea is that as the model complexity increases, we potentially capture
more of the data variability. This reduces bias, which is the difference in our
average prediction and the true model prediction. But this only works for
training error, where eventually our model can potentially fit the training data
perfectly!

For test error though, as the model complexity increases, the bias decreases,
but the variance eventually increases. This variance reflects how much our
prediction changes with different data. If our model gets too cozy with the
training data, it will do poorly when we try to generalize beyond it, and
this will be reflected in increased variance. This is traditionally known as the
bias-variance tradeoff – we can reduce one source of error in the test set
at the expense of the other, but not both at the same time indefinitely. In
other words, we can reduce bias by increasing model complexity, but this will
eventually increase variance in our test predictions. As seen in Figure 10.13,
we can reduce variance by reducing model complexity, but this will increase
bias. One additional thing to note is that even if we had the ‘true’ model
given the features specified correctly, for the vast majority of cases there would
still be prediction error due to the random data generating process (noise).
This can potentially be reduced using additional valid features, getting better
measurements, etc., but it will still be there to some extent in practice, and so
will limit test set performance.

The ultimate goal is to find the sweet spot. We want a model that’s complex
enough to capture the data, but not so complex that it overfits the training
data.

Generalization in deep learning

It turns out that with lots of data and very complex models, or maybe even in
most settings, the ‘classical’ understanding just described doesn’t hold up. In
fact, it is possible to get a model that fits the training data perfectly, and yet
ultimately still generalizes well to new data!

This phenomenon is encapsulated in the notion of double descent. The idea
is that, with very complex and flexible models such as those employed with
deep learning, we can get to the point of interpolating the data exactly. But
as we continue to increase the complexity of the model, we actually start to
generalize better again, as the model continues to explore potential options for
fitting the data. This is a fascinating and somewhat counterintuitive result,
and visually this displays as a ‘double descent’ in terms of test error. We see
an initial decrease in test error as the model gets better in general. After a
while, it begins to rise as we would expect in the classical regime (Figure 10.1).
Eventually it peaks at the point where we have as many parameters as data

3For those viewing the pdf, we recommend turning off the ‘enhance thin lines’ option in
‘Preferences’ for this and the next plot.
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points. Beyond that however, as we get even more complex with our model,
we can possibly see a decrease in test error again4. Crazy!

We can demonstrate this on the classic mtcars dataset5, which has only 32
observations! We repeatedly trained a model to predict miles per gallon on
only 10 of those observations, and assess test error on the rest. The model we
used is a form of ridge regression6, but we implemented splines for the car’s
weight, horsepower, and displacement, i.e., we GAMed it up (Section 9.4). We
trained increasingly complex models, and in what follows we visualize the error
as a function of model complexity as we did previously.

Figure 10.2: Double descent on the classic mtcars dataset.

On the left part of the Figure 10.2, we see that the test error dips as we
get a better model. Our best test error is noted by the large dot on the left.
Eventually though, the test error rises as expected, even as training error gets
better. Test error eventually hits a peak when the number of parameters equals

4A similar phenomenon is found in the idea of grokking in deep learning. In this case,
even after seemingly doing as well as the model can on training and validation, the model
‘spontaneously’ starts to improve on validation with continued iterations. See Power et al.
(2022) for more on this.

5If not familiar, the mtcars object is a dataset that comprises fuel consumption and 10
aspects of automobile design and performance for 32 automobiles (1973-74 models).

6It’s actually called ridgeless regression.
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the number of training observations. But then we keep adding to the model
complexity, and the test error starts to decrease again! By the end we have
essentially perfect training prediction, and our test error is as good as it was
with the simpler models (large dot on the right). This is the double descent
phenomenon with one of the simplest datasets around. Cool!

Generalization summary

The take-home point is this: our primary concern is generalization error. We
can reduce this error by increasing model complexity, but this may eventually
cause test error to increase. However, with enough data and model complexity,
we can get to the point where we can fit the training data perfectly and yet
still generalize well to new data. In many standard, or at least smaller, data
and model settings, you can maybe assume the classical regime holds. But
when employing deep learning with massive data and billions of parameters,
you can worry less about the model’s complexity. But no matter what, we
should use tools to help make our model work better, and we prefer smaller
and simpler models that can do as well as more complex ones, even if those
‘smaller’ models are still billions of parameters!

10.5 Regularization
We now are very aware that a key aspect of the machine learning approach is
having our model to work well with new data. One way to improve general-
ization is through the use of regularization, which is a general approach to
penalize complexity in a model, and is typically used to prevent overfitting.
Overfitting occurs when a model fits the training data very well but does
not generalize well to new data. This usually happens when the model is
too complex and starts fitting to random noise in the training data. We can
also have the opposite problem, where the model is too simple to capture the
patterns in the data, and this is known as underfitting7.

In the following demonstration, the first plot shows results from a model that
is probably too complex for the data setting. The curve is very wiggly as it
tries as much of the data as possible, and it is an example of overfitting. The
second plot shows a straight line fit as we’d get from linear regression. It’s too

7Underfitting is a notable problem in many academic disciplines, where the models
are often too simple to capture the complexity of the underlying process. Typically, the
model employed assumes linear relationships without any interactions, and the true data
generating process may be anything but. These models are chosen for their simplicity and
interpretability, rather than how well they can explain the phenomenon in question. However,
one could make the argument that ‘understanding’ an unrealistic result is not very useful
either, and that the goal should be to understand the true process however we can, and not
just choose a model that’s convenient.



280 10 Core Concepts in Machine Learning

the number of training observations. But then we keep adding to the model
complexity, and the test error starts to decrease again! By the end we have
essentially perfect training prediction, and our test error is as good as it was
with the simpler models (large dot on the right). This is the double descent
phenomenon with one of the simplest datasets around. Cool!

Generalization summary

The take-home point is this: our primary concern is generalization error. We
can reduce this error by increasing model complexity, but this may eventually
cause test error to increase. However, with enough data and model complexity,
we can get to the point where we can fit the training data perfectly and yet
still generalize well to new data. In many standard, or at least smaller, data
and model settings, you can maybe assume the classical regime holds. But
when employing deep learning with massive data and billions of parameters,
you can worry less about the model’s complexity. But no matter what, we
should use tools to help make our model work better, and we prefer smaller
and simpler models that can do as well as more complex ones, even if those
‘smaller’ models are still billions of parameters!

10.5 Regularization
We now are very aware that a key aspect of the machine learning approach is
having our model to work well with new data. One way to improve general-
ization is through the use of regularization, which is a general approach to
penalize complexity in a model, and is typically used to prevent overfitting.
Overfitting occurs when a model fits the training data very well but does
not generalize well to new data. This usually happens when the model is
too complex and starts fitting to random noise in the training data. We can
also have the opposite problem, where the model is too simple to capture the
patterns in the data, and this is known as underfitting7.

In the following demonstration, the first plot shows results from a model that
is probably too complex for the data setting. The curve is very wiggly as it
tries as much of the data as possible, and it is an example of overfitting. The
second plot shows a straight line fit as we’d get from linear regression. It’s too

7Underfitting is a notable problem in many academic disciplines, where the models
are often too simple to capture the complexity of the underlying process. Typically, the
model employed assumes linear relationships without any interactions, and the true data
generating process may be anything but. These models are chosen for their simplicity and
interpretability, rather than how well they can explain the phenomenon in question. However,
one could make the argument that ‘understanding’ an unrealistic result is not very useful
either, and that the goal should be to understand the true process however we can, and not
just choose a model that’s convenient.

10.5 Regularization 281

simple for the underlying feature-target relationship, and it is an example of
underfitting. The third plot shows a model that is a better fit to the data, and
it is an example of a model that is complex enough to capture the nonlinear
aspect of the data, but not so complex that it capitalizes on a lot of noise.

Overfit Underfit Better

Figure 10.3: Overfitting and underfitting.

As a demonstration, let’s examine generalization performance in this type of
setting8 with the following table that represents the test set RMSE. We see
that the overfit model does best on training data, but relatively very poorly
on test, with nearly a 20% increase in the RMSE value. The underfit model
doesn’t change as much in test performance because it was poor to begin with
and is the worst performer for both. Our ‘better’ model wasn’t best on training
but was best on the test set.

Table 10.3: RMSE for Each Model on Test Data

Data Over Under Better
Train 1.97 3.05 2.18
Test 2.34 3.24 2.19
% inc. RMSE 19.09 6.08 0.56

A fairly simple example of regularization can be seen with a ridge regression
model (Section 6.8), where we add a penalty term to the objective function.
The penalty is a function of the size of the coefficients and helps keep the

8The data is based on a simulation (using mgcv::gamSim), with training sample of 200 and
scale of 1, so the test data is just more simulated data points.
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model from getting too complex. It is also known as L2 regularization due
to squaring the coefficients (formally, the 𝐿𝐿2 norm). Another type is the L1
penalty, used in the ‘lasso’ model, which is based on the absolute values of the
coefficients (𝐿𝐿1 norm). Yet another common approach combines the two, called
elastic net. There, we use both L1 and L2 penalties with different weights,
and use cross-validation to find the best balance. L1 and/or L2 penalties are
applied in many other models such as gradient boosting, neural networks, and
others, and they are a key aspect of machine learning.

Regularization is used in many modeling scenarios. Here is a quick rundown of
some examples.

• GAMs use penalized regression for estimation of the coefficients for the basis
functions (typically with L2). This keeps the ‘wiggly’ part of the GAM from
getting too wiggly, as in the overfit model in Figure 10.3. This shrinks the
feature-target relationship toward a linear one.

• Similarly, the variance estimate of a random effect in mixed models, e.g.,
for the intercept or slope, is inversely related to an L2 penalty on the effect
estimates for that group effect. The more penalization applied, the less
random effect variance, and the more the random effect is shrunk toward
the overall mean9.

• Still another form of regularization occurs in the form of priors in Bayesian
models. There we use priors to control the influence of the data on the
final model. A small variance on the prior shrinks the model toward the
prior mean. If large, there is little influence of the prior on the posterior.
In regression models, there is correspondence between ridge regression and
using a normal distribution prior for the coefficients in Bayesian regression,
where the L2 penalty is related to the variance of that prior. Even in deep
learning, there is usually a ‘Bayesian interpretation’ of the regularization
approaches employed.

• As a final example of regularization, dropout is a technique used in deep
learning to prevent overfitting. Feel free to return to this discussion after
seeing neural networks in action in the next chapter (Section 11.7), as that
will provide the appropriate context. But the gist is that dropout works
by randomly removing some of the nodes in intervening/hidden layers in
the network during training. This tends to force the network to learn more
robust features, allowing for better generalization10.

9One more reason to prefer a random effects approach over so-called fixed effects models,
as the latter are not penalized at all and as a result are more prone to overfitting.

10Batch normalization, another common layer application in deep learning, also has a
regularizing effect by adding a bit of noise to the network. This can help with generalization
and also helps with training stability.
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Figure 10.4: Neural network with dropout.

In the end, regularization comes in many forms across the modeling landscape,
and it is a key aspect of machine learning and traditional statistical modeling
alike. The primary goal is to decrease model complexity in the hopes of
increasing our ability to generalize the selected model to new data scenarios.

INFO Regularization with Large Data

For the linear model and related models for typical tabular data, a very
large dataset can often lessen the need for regularization. This is because
the model can learn the patterns in the data without overfitting, and the
penalty ultimately is overwhelmed by the other parts of the objective
function. However, regularization is still useful in many cases, and can
help with model stability and speed of convergence.

10.6 Cross-validation
We’ve talked a lot about generalization, so now let’s think about some ways to
go about a general process of selecting parameters for a model and assessing
performance in a way that helps us generalize to new data better.

We previously used a simple approach where we split the data into training
and test sets. We then fit the model on the training set and subsequently
assessed performance on the test set. This is fine, but the test set error, or any
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other metric, has uncertainty. It could be slightly different with any random
training-test split we came up with.

We’d also like to get better model assessment when searching the hyperparam-
eter space, because we have no way of guessing the value beforehand, and we’ll
need to try out different ones. An example would be the penalty parameter in
lasso regression. In this case, we need to figure out the best parameters before
assessing a final model’s performance.

One way to do this is to split the training data into different partitions, which
we now call validation sets. We fit the model on the training set, and then
assess performance on the validation set(s). We then repeat this process for
many different splits of the data into training and validation sets, and average
the results. This is known as K-fold cross-validation. It’s important to note
that we still want a test set to be held out that is in no way used during the
training process. The validation sets are used to help us choose the best model
based on some metric, and the test set is used to assess the chosen model’s
performance.

Here is a visualization of how 3-fold cross-validation works. We split the data
such that two-thirds of it will be used for training, and one-third for validation.
We then do this for a total of three times, so that the validation set represents
a different part of the data each time. Ultimately, all observations are used for
both training and validation by the end of the process. We then average the
results of any metric across the validation sets. Note that in each case here,
there is no overlap of data between the training and validation sets.

3-fold Cross Validation. Each fold is used for validation once.

Figure 10.5: Three-fold cross-validation.

The idea is that we are trying to get a better estimate of the error by averaging
over many different validation sets. The number of folds, or splits, is denoted
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Figure 10.5: Three-fold cross-validation.
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over many different validation sets. The number of folds, or splits, is denoted
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by 𝐾𝐾. The value of 𝐾𝐾 can be any number, but typically is 10 or less. The
larger the value of 𝐾𝐾, the more accurate the estimate of the metric, but the
more computationally expensive it is, and in application, you generally don’t
need much to get a good estimate. With smaller datasets, one can even employ
a leave-one-out approach, where 𝐾𝐾 is equal to the number of observations
in the data. In this case, a validation prediction is made for each observation,
which we can then accumulate to calculate the metric of choice.

So cross-validation provides a better measure of the metric we use to choose
our model. When comparing a model with different parameter settings, we
can look at the (average) metric each has from the validation process, and
select the model parameter set that has the best metric value. This process
is typically known as model selection. This works for choosing a model
across different sets of hyperparameter settings, for example, with different
penalty parameters for regularized regression. But it can also aid in choosing a
model from a set of different model types, for example, standard linear model
approach vs. boosting. In that case we apply the cross-validation approach for
each model, and the ‘winner’ is the one with the best average metric value on
the test set.

Now how might we go about this for modeling purposes? Very easily with
modern packages. In the following we demonstrate cross-validation with a
logistic regression model.

Python

from sklearn.linear_model import LogisticRegressionCV

X = df_reviews.filter(regex='_sc$') # grab the standardized features

y = df_reviews['rating_good']

# Cs is the (inverse) penalty parameter

model_logistic_l2 = LogisticRegressionCV(

penalty='l2', # penalty type

Cs=[1], # penalty parameter value

cv=5,

max_iter=1000,

verbose=False

).fit(X, y)

# model_logistic_l2.scores_ # show the accuracy score for each fold

# print the average accuracy score

model_logistic_l2.scores_[1].mean()

0.671
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R

For R, we prefer mlr3 for our machine learning demonstrations, as we feel it
is more like sklearn in spirit, and offers computational advantages when you
need it most11. The tidymodels ecosystem is also a good option.

library(mlr3)

library(mlr3learners)

X = df_reviews |>

select(matches('_sc|good')) # grab the standardized features/target

# Define task

task_lr_l2 = TaskClassif$new('movie_reviews', X, target = 'rating_good')

# Define learner (alpha = 0 is ridge/l2 regression)

learner_lr_l2 = lrn('classif.cv_glmnet', alpha = 0, predict_type = 'response')

# set the penalty parameter to some value

learner_lr_l2$param_set$values$lambda = c(.1, .2)

# Define resampling strategy

model_logistic_l2 = resample(

task = task_lr_l2,

learner = learner_lr_l2,

resampling = rsmp('cv', folds = 5),

store_models = TRUE

)

# show the accuracy score for each fold

# model_logistic_l2$score(msr('classif.acc'))

model_logistic_l2$aggregate(msr('classif.acc'))

classif.acc

0.671

From the five validation sets, we end up with five separate accuracy values,
one for each fold. Our final assessment of the model’s accuracy is the average
of these five values, which is shown. This is a better estimate of the model’s

11In this particular case, we’re using glmnet for the logistic regression. To say that it is a
confusing implementation of a model function compared to standard R approaches is an
understatement. While it’s hard to argue with the author of the lasso itself (who is an author
of the package), it’s not the most user-friendly package in the world and has confused most
who’ve used it. Our example does actually set the penalty parameter, but it’s not the most
straightforward thing to do.
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accuracy than if we had just used a single test of the model, and in the end, it
is still based on the entire training data.

10.6.1 Methods of cross-validation
There are different approaches we can take for cross-validation that we may
need for different data scenarios. Here are some of the more common ones.

• Shuffled: Shuffling prior to splitting can help avoid data ordering having
undue effects.

• Grouped/Stratified: In cases where we want to account for the grouping
of the data, e.g., for data with a hierarchical structure.
– Grouped: We may want groups to appear in training or test, but not

both. This allows us to generalize to new groups.
– Stratified: We may want to ensure group proportions are consistent

across training and test sets. This is especially useful in unbalanced
target settings to ensure all class labels are present in training and test.

• Time-based: For time series data, where we only want to assess error on
future values.

• **Combinations.: For example, grouped and time-based

Here are images based on the scikit-learn library documentation (Pedregosa
et al. (2011)) depicting some different cross-validation approaches. In general,
the type we use will be based on our data needs12.

Figure 10.6: Comparison of cross-validation strategies.

12These images likely don’t work well for black-white printing, but there are multiple
groups and using a bunch of different patterns would make the figure worse. We invite you
to examine the pdf or web version.
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INFO Stratified Cross-Validation

It’s generally always useful to use a stratified approach to cross-validation,
especially with classification problems, as it helps ensure a similar balance
of the target classes across training and test sets. You can also use this
with numeric targets, enabling you to have a similar distribution of the
target across training and test sets.

10.7 Tuning
One problem with the previous ridge logistic model we just used is that we
set the penalty parameter to a fixed value. We can do better by searching
over a range of values instead, and picking a ‘best’ value based on which
model performs best with a specific penalty value. This is generally known
as hyperparameter tuning, or simply tuning. It is one aspect of machine
learning that distinguishes it from traditional statistical modeling, where
we usually don’t have hyperparameters to consider. For this example with
penalized regression, we can tune our model with k-fold cross-validation to
assess the error for each proposed value of the penalty parameter. We then
select the value of the penalty parameter for which the associated model gives
the lowest average error. This is a form of model selection.

Another potential point of concern is that we are using the same data to both
select the model and assess its performance. This is a type of data leakage,
and it may result in an overly optimistic assessment of performance. One
solution is to do as we’ve discussed before, which is to split the data into
three parts: training, validation, and test. We use the training set(s) to fit
the models, assess their performance on the validation set(s), and select the
best model. Then we use the test set to assess the best model’s performance.
So the validation approach is used to select the model, and the test set is
used to assess that model’s performance. The following visualizations from the
scikit-learn documentation illustrate the process.

INFO Nested Cross-Validation

As the performance on test is not without uncertainty, we can actually
nest the entire process within a validation approach, where we have
an inner loop of k-fold cross-validation and an outer loop to assess the
model’s performance on multiple hold-out sets. This is known as nested
cross-validation. It is a more computationally expensive approach, and
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generally would require more data, but it would result in a more robust
assessment of performance.

(a) Train-Validation-Test Workflow
(b) 5-fold Cross-Validation

Figure 10.7: A tuning workflow.

10.7.1 A tuning example
While this may start to sound complicated, it doesn’t have to be, as tools are
available to make our generalization journey a lot easier. In the following we
demonstrate the approach with the same ridge logistic regression model as
before. The specific type of parameter search we’ll use is called a grid search,
where we explicitly step through potential values of the penalty parameter,
fitting a model with the selected value through cross-validation. While we
only look at one parameter here, for a given modeling approach we could
construct a ‘grid’ of sets of parameter values to search over as well13. For each
hyperparameter value, we are interested in the average accuracy score across
the validation folds to assess the best performance. The final model can then
be assessed on the test set14.

13We can use expand.grid or crossing functions in R, or pandas’ expand_grid to easily construct
these values to iterate over. scikit-learn’s GridSearchCV function does this for us when we
provide the dictionary of values for each parameter.

14If you’re comparing the Python vs. R approaches, while the name explicitly denotes no
penalty, the scikit-learn model by default uses ridge regression. In R we set the value alpha
to enforce the ridge penalty, since glmnet by default uses the elastic net, a mixture of lasso
and ridge, and we only want the ridge approach. Also, scikit-learn uses the inverse of the
penalty parameter, while mlr3 uses the penalty parameter directly. And obviously, no one
will agree on what we should name the value, and we have no idea where ‘C’ comes from,
maybe ‘complexity’(?), though we have seen 𝜆𝜆 used in many statistical publications.
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Python

With a set of penalty values to explore, we again use the LogisticRegression

function in sklearn to perform k-fold cross-validation to select the best per-
forming penalty parameter. We then apply the chosen model to the test set
and calculate accuracy.

from sklearn.model_selection import GridSearchCV

# split the dataset from the previous example into

# training and test sets

X_train, X_test, y_train, y_test = train_test_split(

X,

y,

test_size=0.25,

random_state=42

)

# define the parameter values for GridSearchCV

param_grid = {

'C': [0.1, 1, 2, 5, 10, 20],

}

# perform k-fold cross-validation to select the best penalty parameter

# Note that LogisticRegression by default is ridge regression for scikit-learn

model_logistic_grid = GridSearchCV(

LogisticRegression(),

param_grid=param_grid,

cv=5,

scoring='accuracy'

).fit(X_train, y_train)

# if you want to inspect the results

best_model = model_logistic_grid.best_estimator_

best_param = model_logistic_grid.best_params_['C']

# apply the best model to the test set and calculate accuracy

acc_train = model_logistic_grid.score(X_train, y_train)

acc_test = model_logistic_grid.score(X_test, y_test)

Best C: 2

Accuracy on train set: 0.661

Accuracy on test set: 0.692
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R

We use the auto_tuner function to perform k-fold cross-validation to select the
best penalty parameter (lambda). We set the mixing parameter (alpha) to zero,
because glmnet is by default elastic net, or a mixture of ridge and lasso. This
ensures we are only using a ridge (L2) penalty. See the glmnet vignette for
details.

# Load necessary libraries

library(mlr3learners) # for a choice of modeling approaches

library(mlr3tuning) # for tuning

X = df_reviews |>

mutate(rating_good = as.factor(rating_good)) |>

select(matches('sc|rating_good')) |>

as.data.table()

# Define task

task = TaskClassif$new(

'movie_reviews',

X,

target = 'rating_good',

positive = 'good'

)

# split the dataset into training and test sets

splits = partition(task, ratio = 0.75)

# Define learner

learner = lrn('classif.glmnet', alpha = 0, predict_type = 'response')

# Define resampling strategy

cv_k5 = rsmp('cv', folds = 5)

# Define measure

measure = msr('classif.acc')

# Define parameter space

param_set = ParamSet$new(list(

lambda = p_dbl(lower = 1e-3, upper = 1)

))

# Define tuner

model_logistic_grid = auto_tuner(

learner = learner,



292 10 Core Concepts in Machine Learning

resampling = cv_k5,

measure = measure,

search_space = param_set,

tuner = tnr('grid_search', resolution = 10),

terminator = trm('evals', n_evals = 10)

)

# Tune hyperparameters

model_logistic_grid$train(task, row_ids = splits$train)

# Get best hyperparameters

best_param = model_logistic_grid$model$learner$param_set$values

# Use the best model to predict and get metrics

pred_train = model_logistic_grid$predict(task, row_ids = splits$train)

pred_test = model_logistic_grid$predict(task, row_ids = splits$test)

acc_train = pred_train$score(measure)

acc_test = pred_test$score(measure)

Best lambda: 0.556

Accuracy on train set: 0.674666666666667

Accuracy on test set: 0.684

So there you have it. We searched the parameter space, chose the best hyper-
parameter via k-fold cross-validation, and got an assessment of generalization
error. Neat!

10.7.2 Parameter spaces
In the previous example, we used a grid search to search over a range of
values for the penalty parameter. It is a quick and easy way to get started,
but generally we want something that can search a better space of parameter
values rather than a limited grid. It can also be computationally expensive
with many hyperparameters, as we might have with boosting methods. We
can do better by using more efficient approaches. For example, we can use a
randomized search, where we randomly sample from the parameter space.
This is generally faster than a grid search, and can be just as effective. Other
methods are available that better explore the space and do so more efficiently.

INFO Tuning and Overfitting

A word of caution. Cross-validation is not a perfect solution, and you can
still overfit the model selection process. This is especially true when you
have a large number of parameters and other model aspects to search
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over. It may help to use more sophisticated approaches to search the
parameter space, such as Bayesian optimization, hyperband, or
genetic algorithms, along with the nested cross-validation mentioned
before (e.g., Cawley and Talbot (2010)).

10.8 Pipelines
For production-level work, or just for reproducibility, it is useful to create
a pipeline for your modeling work. In essence, a pipeline is just a series of
steps that are performed in a particular order. For example, we might want to
perform the following steps:

• Impute missing values
• Transform features
• Create new features
• Split the data into training and test sets
• Fit the model on the training set with cross-validation
• Assess the model’s performance on the test set
• Compare the model with others put through the same process
• Save the ‘best’ model
• Use the model for prediction on future data, sometimes called scoring
• Redo the whole thing on a regular basis

We can create a pipeline that performs all of these steps in sequence. This is
useful for a number of reasons:

1. Using a pipeline makes it far easier to reproduce the results as
needed. Running the pipeline means you are running each of the
same exact steps in the same exact order.

2. It is relatively easy to change the steps in the pipeline. For example,
we might want to try a different imputation method, or add a new
model. The pipeline is already built to handle these steps, so any
modification is straightforward and more easily applied.

3. It is relatively easy to use the pipeline with new data. We can just
start with the new data, and it will perform all of the steps in
sequence.

4. Having a pipeline facilitates model comparison, as we can ensure
that the models are receiving the same data process.

5. We can save the pipeline for later use. We just save the pipeline as
a file, and then load it later when we want to use it again.
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While pipelines are useful for any modeling work, they are especially useful for
machine learning, where we often have many steps to perform, and where we
are often trying to compare many different models. You don’t have to have
a formal pipeline, but it is a good practice to have a script that performs all
of the steps in sequence, and that can be run at any time to reproduce the
results. Formal pipeline tools make it easier to manage the process, and the
following demonstrates how that might look.

Python

Here is an example of a pipeline in Python. We use the make_pipeline function
from scikit-learn. This function takes a series of steps as arguments, and then
performs them in sequence. We can then use the pipeline to fit the model,
assess its performance, and save it for later use.

from sklearn.pipeline import make_pipeline

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import StandardScaler

# create pipeline

logistic_cv_pipeline = make_pipeline(

SimpleImputer(strategy='mean'),

StandardScaler(),

LogisticRegressionCV(penalty='l2', Cs=[1], cv=5, max_iter=1000),

)

# Fit the pipeline

logistic_cv_pipeline.fit(X_train, y_train)

# Assess the pipeline on test

y_pred = logistic_cv_pipeline.predict(X_test)

accuracy_score(y_test, y_pred)

# Save the pipeline

# from joblib import dump, load

# dump(logistic_cv_pipeline, 'logistic_cv_pipeline.joblib')

0.692

R

With R, mlr3 works in a similar fashion to scikit-learn. We create a pipeline
with the po, or pipe operator function, which takes a series of steps as arguments,
and then performs them in sequence.
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# Using task/splits/resampling from tuning section

library(mlr3pipelines)

# Define pipeline

logistic_cv_pipeline = po('imputemean') %>>%

po('scale') %>>%

po(

'learner',

lrn('classif.cv_glmnet', predict_type = 'response'),

alpha = to_tune(1e-04, 1e-1, logscale = TRUE), # mixing parameter

lambda = c(1e-3, 1e-2, 1e-1, 1) # penalty

)

model_logistic_cv_pipeline = AutoTuner$new(

learner = logistic_cv_pipeline,

resampling = cv_k5, # defined earlier 5-fold cv

measure = measure,

tuner = tnr('grid_search', resolution = 10),

terminator = trm('evals', n_evals = 10)

)

# Fit pipeline

model_logistic_cv_pipeline$train(task, row_ids = splits$train)

# Assess pipeline on test

preds = model_logistic_cv_pipeline$predict(task, row_ids = splits$test)

preds$score(msr('classif.acc'))

# Save pipeline

# saveRDS(logistic_cv_pipeline, 'pipeline.rds')

classif.acc

0.664

Development and deployment of pipelines will depend on your specific use
case, and it can get notably complicated. Think of a case where your model
is the culmination of features drawn from a dozen wildly different databases,
and the model itself being a complex ensemble of models, each with its own
hyperparameters. Your final modeling approach then produces predictions that
are used in a variety of ways, from simple reports to real-time decision-making.
Fun stuff!

You can imagine the complexity of the pipeline that would be required to handle
all of that, but it is possible, and the entire pipeline from data ingestion to
outputs that include reports, dashboards, etc. comprise the essence of MLOps
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(Google (2024)). But even for your own personal model efforts, pipelines are a
great way to organize your modeling work.

10.9 Wrapping Up
When machine learning began to take off, it seemed many in the field of
statistics sat on their laurels, and often scoffed at these techniques that didn’t
bother to test their assumptions15! ML was, after all, mostly just a rehash of
statistics, right? But the machine learning community, which actually comprised
both computer scientists and statisticians, was able to make great strides in
predictive performance, and the application of machine learning in myriad
domains continues to enable us to push the boundaries of what is possible.
Statistical analysis wasn’t going to provide ChatGPT or self-driving cars, but
it remains vitally important whenever we need to understand the uncertainty
of our predictions, make causal statements, or want to make inferences about
the data generating process. Eventually, the more general field of data science
became the way people use traditional statistical analysis and machine learning
to solve their data challenges. The best data scientists will be able to draw
from both, use the best tool for the job, and as importantly, have fun with
modeling!

10.9.1 The common thread
If using a model like the lasso or ridge regression, machine learning is simply
a different focus to modeling compared to what we see in traditional linear
modeling contexts. You could still do standard interpretation and statistical
inference regarding the estimated coefficients. However, in traditional statistical
application of linear models, we rarely see cross-validation or hyperparameter
tuning. It does occur in some contexts though, and definitely should be more
common.

As we will see, the generality of machine learning’s approach allows us to
use a wider variety of models than in standard linear model settings, and it
incorporates those that are not easily summarized from a statistical standpoint,

15Brian Ripley, a core R developer in the early days, said: “To paraphrase provocatively,
‘machine learning is statistics minus any checking of models and assumptions’ ”. Want to
know what’s even crazier than that statement? It was said by the guy who literally wrote
the book on neural networks before anyone was even using them in any practical way! He’s
also the author of the nnet package in R, which existed even before there was a scikit-learn
in Python. Also interesting to note is that techniques like the lasso, random forests, and
others associated with machine learning actually came from established statisticians. In
short, there never was a statistics vs. machine learning divide. Tools are tools, and the best
data scientists will have many at their disposal for any project.
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such as boosting and deep learning models. The key is that any model, from
linear regression to deep learning, can be used with the tools of machine
learning we’ve covered here.

10.9.2 Choose your own adventure
At this point, you’re ready to dive in and run some common models used in
machine learning for tabular data, so head to Chapter 11!

10.9.3 Additional resources
If looking for a deeper dive into some of these topics, here are some resources
to consider:

• A core ML text is Elements of Statistical Learning (Hastie, Tibshirani,
and Friedman (2017)) which paved the way for modern ML.

• A more recent treatment is Probabilistic Machine Learning (Murphy
(2023)).

On the more applied side, you might consider courses on Coursera and similar
ones, as some are both good and taught by some very well-known folks in
machine learning. Michael got his first formal taste of ML from Andrew Ng’s
course on Coursera back in the day, and it was a great introduction. You can
also get overviews on Google’s Developer pages (Google (2023)). And if we’re
being honest, one of the mostly widely used resources for ML is the scikit-learn
documentation.

Python resources include:

• Machine Learning with PyTorch and Scikit-Learn (Raschka (2022b))
• An Introduction to Statistical Learning (Python) (James et al. (2021))

R resources include:

• An Introduction to Statistical Learning (R) (James et al. (2021))
• Applied Machine Learning for Tabular Data (Kuhn and Johnson

(2023))
• Applied Machine Learning Using mlr3 in R (Bischl et al. (2024))

Miscellaneous resources related to topics covered:

• Ridge - Bayesian connection
• Bias-Variance tradeoff
• A great thread on double descent using a GAM example by Daniela Witten
• Reconciling modern machine-learning practice and the classical bias-variance

trade-off
• Overview of dropout in deep learning
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• Annotated History of Modern AI and Deep Learning (Schmidhuber
(2022))

• Machine Learning Flashcards (Albon (2024))

10.10 Guided Exploration
We did not run the pipeline previously, but we think that doing so would be a
good way for you to put your new skills to the test.

1. Start by using the non-standardized features from the movie_reviews

dataset.
2. Split the data into training and test sets.
3. Create a pipeline as we did previously that has at least two steps,

e.g., scales the data and fits a model. Try a different model than the
logistic regression we fit earlier (your choice).

4. Examine the validation set results.
5. Assess the pipeline’s performance on the test set, but use a different

metric than accuracy.
6. Bonus: Tune a hyperparameter for the model using a grid search or

random search.

You can just modify the previous pipeline. Here is some helper code to get you
going.

Python

# import the metrics and model you want

from sklearn.model_selection import RandomizedSearchCV

from sklearn.metrics import accuracy_score, roc_auc_score, recall_score

from sklearn.tree import DecisionTreeClassifier

pipeline = make_pipeline(

SimpleImputer(strategy='mean'),

StandardScaler(),

RandomizedSearchCV(

DecisionTreeClassifier(),

param_distributions={'max_depth': [2, 5, 7]},

cv=5,

scoring='???', # change to some other metric

),

)
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good way for you to put your new skills to the test.

1. Start by using the non-standardized features from the movie_reviews

dataset.
2. Split the data into training and test sets.
3. Create a pipeline as we did previously that has at least two steps,

e.g., scales the data and fits a model. Try a different model than the
logistic regression we fit earlier (your choice).

4. Examine the validation set results.
5. Assess the pipeline’s performance on the test set, but use a different

metric than accuracy.
6. Bonus: Tune a hyperparameter for the model using a grid search or

random search.

You can just modify the previous pipeline. Here is some helper code to get you
going.

Python

# import the metrics and model you want

from sklearn.model_selection import RandomizedSearchCV

from sklearn.metrics import accuracy_score, roc_auc_score, recall_score

from sklearn.tree import DecisionTreeClassifier

pipeline = make_pipeline(

SimpleImputer(strategy='mean'),

StandardScaler(),

RandomizedSearchCV(

DecisionTreeClassifier(),

param_distributions={'max_depth': [2, 5, 7]},

cv=5,

scoring='???', # change to some other metric

),

)
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# extract the best model from the pipeline

best_model = pipeline.named_steps['randomizedsearchcv'].best_estimator_

# extract the best parameter from the pipeline

best_model.max_depth

# ???(y_test, y_pred) # use your chosen metric on the test set

R

task = TaskClassif$new('movie_reviews', df_reviews, target = 'rating_good')

split = partition(task, ratio = 0.75) # set train/test split

# Define learner

learner = lrn(

'classif.rpart',

predict_type = 'prob', # get predicted probabilities

cp = to_tune(1e-04, 1e-1, logscale = TRUE)

)

pipeline = ??? # see the text example

at = auto_tuner(

tuner = tnr('random_search'),

learner = pipeline,

resampling = rsmp ('cv', folds = 5),

measure = msr('classif.???'), # change ??? e.g., try auc, recall, logloss

term_evals = 10

)

#

at$train(task, row_ids = split$train)

at$model$learner$param_set$values # get the best parameter

at$predict(task, row_ids = split$test)$score(msr('classif.???')) # change ???
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11
Common Models in Machine Learning

Before really getting into some machine learning models, let’s get one thing
straight from the outset: any model may be used in machine learning,
from a standard linear model to a deep neural network. The key focus in ML
is on performance, and generally we’ll go with what works for the situation.
This means that the modeler is often less concerned with the interpretation of
the model, and more with the ability of the model to predict well on new data.
But, as we’ll see, we can do both if desired. In this chapter, we will explore
some of the more common machine learning models and techniques.

11.1 Key Ideas
The take-home messages from this section include the following:

• Any model can be used with machine learning.
• A good and simple baseline is essential for interpreting your performance

results.
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• You only need a small set of tools (models) to go very far with machine
learning.

11.1.1 Why this matters
Having the right tools in data science saves time and improves results, and
using well-known tools means you’ll have plenty of resources for help. It also
allows you to focus more on the data and the problem, rather than the details
of the model. A simple model might be all you need, but if you need something
more complex, these models can still provide a performance benchmark.

11.1.2 Helpful context
Before diving in, it’d be helpful to be familiar with the following:

• Linear models, especially linear and logistic regression (Chapter 3 and Chap-
ter 8)

• Basic machine learning concepts as outlined in Chapter 10
• Model estimation as outlined in Chapter 6

11.2 General Approach
Let’s start with a general approach to machine learning to help us get some
bearings. Here is an example outline of the process we could typically take.
It incorporates some of the ideas we also cover in other chapters, and we’ll
demonstrate most of this in the following sections.

• Define the problem, including the target variable(s)
• Select the model(s) to be explored, including one baseline model
• Define the performance objective and metric(s) used for model assessment
• Define the search space (parameters, hyperparameters) for those models
• Define the search method (optimization)
• Implement a validation technique and collect the corresponding performance

metrics
• Evaluate the chosen model on unseen data
• Interpret the results

Here is a more concrete example:

• Define the problem: predict the probability of heart disease given a set of
features

• Select the model(s) to be used: ridge regression (main model), standard
regression with no penalty (baseline)

• Define the objective and performance metric(s): RMSE, R-squared
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• Define the search space (parameters, hyperparameters) for those models:
ridge penalty parameter

• Define the search method (optimization): grid search
• Implement some sort of cross-validation technique: 5-fold cross-validation
• Evaluate the results on unseen data: RMSE on test data
• Interpret the results: the ridge regression model performed better than the

baseline model, and the coefficients tell us something about the nature of
the relationship between the features and the target

As we go along in this chapter, we’ll see most of this in action. So let’s get to
it!

11.3 Data Setup
For our demonstration here, we’ll use the heart disease dataset. This is a
popular ML binary classification problem, where we want to predict whether
a patient has heart disease, given information such as age, sex, resting heart

There are two forms of the data that we’ll use: one which is mostly in raw form,
and one that is purely numeric, where the categorical features are dummy
coded and where numeric variables have been standardized (Section 14.2). The
purely numeric version will allow us to forgo any additional data processing for
some model/package implementations (like penalized regression). We have also
dropped the handful of rows with missing values, even though some techniques,
like tree-based models, naturally handle missing values. This form of the data
will allow us to use any model and make direct comparisons among them later.

Python

For Python we’ll go ahead and do all the imports needed for this chapter.

# Basic data packages

import pandas as pd

import numpy as np

# Models

from sklearn.linear_model import LogisticRegression

from lightgbm import LGBMClassifier

from sklearn.neural_network import MLPClassifier

# Metrics and more

from sklearn.model_selection import (

rate, etc. (Section C.3).
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cross_validate, RandomizedSearchCV, train_test_split

)

from sklearn.metrics import accuracy_score

from sklearn.inspection import PartialDependenceDisplay

df_heart = pd.read_csv('https://tinyurl.com/heartdiseaseprocessed')

df_heart_num = pd.read_csv('https://tinyurl.com/heartdiseaseprocessednumeric')

# convert appropriate features to categorical

non_num_cols = df_heart.select_dtypes(exclude='number').columns

df_heart[non_num_cols] = df_heart[non_num_cols].astype('category')

X = df_heart_num.drop(columns=['heart_disease']).to_numpy()

y = df_heart_num['heart_disease'].to_numpy()

prevalence = np.mean(y)

majority = np.max([prevalence, 1 - prevalence])

R

library(tidyverse)

df_heart = read_csv('https://tinyurl.com/heartdiseaseprocessed') |>

mutate(across(where(is.character), as.factor))

df_heart_num = read_csv('https://tinyurl.com/heartdiseaseprocessednumeric')

# for use with for mlr3

X = df_heart_num |>

as_tibble() |>

mutate(heart_disease = factor(heart_disease)) |>

janitor::clean_names() # remove some symbols

prevalence = mean(df_heart_num$heart_disease)

majority = pmax(prevalence, 1 - prevalence)

In this data, roughly 46% suffered from heart disease, so if we’re interested in
accuracy, we could get 54% correct by just guessing the majority class of no
disease. Hopefully we can do better than that!

One last thing, as we go along, performance metrics will vary depending on
your setup (e.g., Python vs. R), package versions used, and other things. As
such, your results may not look exactly like these, and that’s okay! Your results



304 11 Common Models in Machine Learning

cross_validate, RandomizedSearchCV, train_test_split

)

from sklearn.metrics import accuracy_score

from sklearn.inspection import PartialDependenceDisplay

df_heart = pd.read_csv('https://tinyurl.com/heartdiseaseprocessed')

df_heart_num = pd.read_csv('https://tinyurl.com/heartdiseaseprocessednumeric')

# convert appropriate features to categorical

non_num_cols = df_heart.select_dtypes(exclude='number').columns

df_heart[non_num_cols] = df_heart[non_num_cols].astype('category')

X = df_heart_num.drop(columns=['heart_disease']).to_numpy()

y = df_heart_num['heart_disease'].to_numpy()

prevalence = np.mean(y)

majority = np.max([prevalence, 1 - prevalence])

R

library(tidyverse)

df_heart = read_csv('https://tinyurl.com/heartdiseaseprocessed') |>

mutate(across(where(is.character), as.factor))

df_heart_num = read_csv('https://tinyurl.com/heartdiseaseprocessednumeric')

# for use with for mlr3

X = df_heart_num |>

as_tibble() |>

mutate(heart_disease = factor(heart_disease)) |>

janitor::clean_names() # remove some symbols

prevalence = mean(df_heart_num$heart_disease)

majority = pmax(prevalence, 1 - prevalence)

In this data, roughly 46% suffered from heart disease, so if we’re interested in
accuracy, we could get 54% correct by just guessing the majority class of no
disease. Hopefully we can do better than that!

One last thing, as we go along, performance metrics will vary depending on
your setup (e.g., Python vs. R), package versions used, and other things. As
such, your results may not look exactly like these, and that’s okay! Your results

11.4 Beat the Baseline 305

should still be similar, and the important thing is to understand the concepts
and how to apply them to your own data.

11.4 Beat the Baseline

Figure 11.1: Hypothetical model comparison.

Before getting carried away with models, we should have a good reference
point for performance – a baseline model. The baseline model should serve
as a way to gauge how much better your model performs over one that is
simpler, probably more computationally efficient, more interpretable, and is
still viable. It could also be a model that is sufficiently complex to capture
something about the data you are exploring, but not as complex as the models
you’re also interested in.

Take a classification model, for example. In this case we might use a logistic
regression as a baseline. It is a viable model to begin answering some questions,
and get a sense of performance possibilities, but it is often too simple to be
adequately performant for many situations. We should be able to do better
with more complex models, or if we can’t, there is little justification for using
them.

Baseline

Model MC

Model SB

0.00 0.25 0.50 0.75
Performance (Awesome Units)

Beat the Baseline!
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11.4.1 Why do we do this?
Having a baseline model can help you avoid wasting time and resources imple-
menting more complex models, and to avoid mistakenly thinking performance
is better than expected. It is probably rare, but sometimes relationships for
the selected features and target are mostly or nearly linear and have little
interaction. In this case, no amount of fancy modeling will make complex
feature targets exist if they don’t already. Also, if our baseline is a more com-
plex model that actually incorporates nonlinear relationships and interactions
(e.g., a GAMM), you’ll often find that the more complex models often don’t
significantly improve on it. As a last example, in time series settings, a moving
average can often be a difficult baseline to beat, so it can be a good starting
point.

So you may find that the initial baseline model is good enough for your
purposes, and you can then move on to other problems to solve, like acquiring
data that is more predictive. This is especially true if you are working in a
situation with limited time and resources.

11.4.2 How much better?
In many settings, it often isn’t enough to merely beat the baseline model. Your
model should perform statistically better. For instance, if your advanced model
accuracy is 75% and your baseline model’s accuracy is 73%, that’s great. But,
it’s good to check if this 2% difference is statistically significant. Remember,
accuracy and other metrics are estimates and come with uncertainty1. This
means you can get a ranged estimate for them, as well as test whether they are
different from one another. Table 11.1 shows an example comparison of 75%
vs. 73% accuracy at different sample sizes. If the difference is not statistically
significant, then it’s possible you should stick with the baseline model, or
maybe try a different approach to compete with it. This is because such a
result means that the next time you run the model on new data, the baseline
may actually perform better, or at least you can’t be sure that it won’t.

Table 11.1: Interval Estimates for Accuracy Differences

Sample Size Lower Bound Upper Bound p-value
1000 −0.02 0.06 0.31

10000 0.01 0.03 0.00

Statistics regard the difference in proportions of .75 and .73.

1There would be far less hype and wasted time if those in ML and DL research simply
did this rather than just reporting the chosen metric of their model ‘winning’ against other
models. It’d also be nice if they used a more meaningful baseline than logistic regression, but
that’s a different story. And one more thing, although many papers also rank the competing
models, ranks and mean ranks also have uncertainty, and ranks are typically very noisy.
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That said, in some situations any performance increase is worth it, and even
if we can’t be certain a result is statistically better, any sign of improvement
is worth pursuing. For example, if you are trying to predict the next word in
a sentence, and your baseline is 70% accurate, and your new model is 72%
accurate, that may be significant in terms of user experience. You should still
try and show that this is a consistent increase and not a fluke if possible.
In other settings, you’ll need to make sure the cost is worth it. Is 2% worth
millions of dollars? Six months of research? These are among many of the
practical considerations you may have to make as well.

11.5 Penalized Linear Models
So let’s get on with some models already! Let’s use the classic linear model
as our starting point for ML. We show explicitly how to estimate models like
lasso and ridge regression in Section 6.8. Those work well as a baseline, and so
should be in your ML modeling toolbox.

11.5.1 Elastic net
Another common linear model approach is elastic net, which we also saw
in Chapter 10. It combines two techniques: lasso and ridge regression. We
demonstrate the lasso and ridge penalties in Section 6.8, but all you have to
know is that elastic net combines the two penalties: one for lasso and one for
ridge, along with a standard objective function for a numeric or categorical
target. The relative proportion of the two penalties is controlled by a mixing
parameter, and the optimal value for it is determined by cross-validation. So
for example, you might end up with a 75% lasso penalty and 25% ridge penalty.
In the end though, it’s just a slightly fancier logistic regression!

Let’s apply this to the heart disease data. We are only doing simple cross-
validation here to get a better performance assessment, but you are more
than welcome to tune both the penalty parameter and the mixing ratio as we
have demonstrated before (Section 10.7). We’ll revisit hyperparameter tuning
toward the end of this chapter.

Python

model_elastic = LogisticRegression(

penalty = 'elasticnet',

solver = 'saga',

l1_ratio = 0.5,

random_state = 42,
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max_iter = 10000,

verbose = False,

)

model_elastic_cv = cross_validate(

model_elastic,

X,

y,

cv = 5,

scoring = 'accuracy',

)

# pd.DataFrame(model_elastic_cv) # default output

Training accuracy: 0.828

Guessing: 0.539

R

library(mlr3verse)

tsk_elastic = as_task_classif(

X,

target = "heart_disease"

)

model_elastic = lrn(

"classif.cv_glmnet",

nfolds = 5,

type.measure = "class",

alpha = 0.5

)

model_elastic_cv = resample(

task = tsk_elastic,

learner = model_elastic,

resampling = rsmp("cv", folds = 5)

)

# model_elastic_cv$aggregate(msr('classif.acc')) # default output

Training Accuracy: 0.825

Guessing: 0.539
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So we’re starting off with what seems to be a good model. Our average
accuracy across the validation sets is definitely doing better than guessing,
with a performance increase of more than 50%!

11.5.2 Strengths and weaknesses
Let’s take a moment to consider the strengths and weaknesses of penalized
regression models.

Strengths

• Intuitive approach. In the end, it’s still just a standard regression model
you’re already familiar with.

• Widely used for many problems. Lasso/Ridge/ElasticNet would be fine to
use in any setting you would use linear or logistic regression.

• A good baseline for tabular data problems.

Weaknesses

• Does not automatically seek out interactions and nonlinearity, and as such
will generally not be as predictive as other techniques.

• Variables have to be scaled or results will largely reflect data types.
• May have interpretability issues with correlated features.
• Relatively weaker performance compared to other models, especially in

high-dimensional settings.

11.5.3 Additional thoughts
Using penalized regression is a very good default method in the tabular
data setting, and it is something to strongly consider for more interpretation-
focused model settings. These approaches predict better on new data than
their standard, non-regularized complements, so they provide a nice balance
between interpretability and predictive power. However, in general they are
not going to be as strong of a method as others typically used in the machine
learning world, and they may not even be competitive without a lot of feature
engineering. If prediction is all you care about, you’ll likely need something
else. Now let’s see if we can do better with other models!



310 11 Common Models in Machine Learning

11.6 Tree-based Models

Let’s move beyond standard linear models and get into a notably different type
of approach. Tree-based methods are a class of models that are very popular
in machine learning contexts, and for good reason, they work very well. To get
a sense of how they work, consider the following classification example where
we want to predict a binary target as ‘Yes’ or ‘No’.

Figure 11.2: Simple classification tree.

We have two numeric features, 𝑋𝑋1 and 𝑋𝑋2. At the start, we take 𝑋𝑋1 and make
a split at the value of 5. Any observation less than 5 on 𝑋𝑋1 goes to the right
with a prediction of No. Any observation greater than or equal to 5 goes to
the left, where we then split based on values of 𝑋𝑋2. Any observation less than
3 goes to the right with a prediction of Yes. Any observation greater than
or equal to 3 goes to the left with a prediction of No. So in the end, we see
that an observation that is relatively lower on 𝑋𝑋1, or relatively higher on both,
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results in a prediction of No. On the other hand, an observation that is high
on 𝑋𝑋1 and low on 𝑋𝑋2 results in a prediction of Yes.

This is a simple example, but it illustrates the core idea of a tree-based model,
where the tree reflects the total process, and branches are represented by
the splits going down, ultimately ending at leaves where predictions are made.
We can also think of the tree as a series of if-then statements, where we start
at the top and work our way down until we reach a leaf node, which is a
prediction for all observations that qualify for that leaf.

A single tree would likely be the most interpretable model we could probably
come up with. Furthermore, it incorporates nonlinearities through multiple
branches on a single feature, interactions by branching across different features,
and feature selection by excluding features that do not result in useful splits
for the objective, all in one.

However, a single tree is not a very stable model unfortunately, and so it
does not generalize well. For example, just a slight change in data, or even
just starting with a different feature, might produce a very different tree2.
Even though predictions could be similar, model interpretation would be very
different.

The solution to that problem is straightforward though. By using the power of
a bunch of trees, we can get predictions for each observation from each tree, and
then average the predictions, resulting in a much more stable estimate. This
is the concept behind both random forests (RF) and gradient boosting
(GB), which can be seen as different algorithms to produce a bunch of trees.
They are also considered types of ensemble models, which are models that
combine the predictions of multiple models, to ultimately produce a single
prediction for each observation. In this case each tree serves as a model.

Random forests and boosting methods are very easy to implement, to a point.
However, there are typically several hyperparameters to consider for tuning.
Here are just a few to think about:

• Number of trees
• Learning rate (GB)
• Maximum depth of each tree
• Minimum number of observations in each leaf
• Number of features to consider at each tree/split
• Regularization parameters (GB)
• Out-of-bag sample size (RF)

The number of trees is simply how many trees you want to build, and it is a
key parameter setting for both RF and GB. For boosting models, the number
of trees and learning rate play off of each other. Having more trees allows for

2A single regression/classification tree actually could serve as a decent baseline model,
especially given the interpretability, and modern methods try to make them more stable.
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a smaller rate3, which might improve the model but will take longer to train.
However, it can lead to overfitting if other steps are not taken.

The depth of each tree refers to how many levels we allow the model to branch
out and is a crucial parameter. It controls the complexity of each tree, and
thus the complexity of the overall model – less depth helps to avoid overfitting,
but if the depth is too shallow, you won’t be able to capture the nuances of
the data. The minimum number of observations required for each leaf is also
important for similar reasons. A lower number will allow for more complex
trees, while a higher number will result in simpler trees.

It’s also generally a good idea to take a random sample of features for each
tree (or possibly even each branch), to also help reduce overfitting, but it’s not
obvious what proportion to take. The regularization parameters4 are typically
less important in practice, but can help reduce overfitting as in other modeling
circumstances we’ve talked about. As with hyperparameters in other model
settings, you’ll use something like cross-validation to settle on final values.

11.6.1 Example with LightGBM
Here is an example of gradient boosting with the heart disease data. We’ll
explicitly set some of the parameters, and use 5-fold cross-validation to estimate
performance.

Python

Although boosting methods are available in scikit-learn for Python, in general
we recommend using the lightgbm or xgboost packages directly for boosting,
as both have a sklearn API (as demonstrated). Also, they both provide R and
Python implementations of the package, making it easy to not lose your place
when switching between languages. We’ll use lightgbm here5.

model_boost = LGBMClassifier(

n_estimators = 1000,

learning_rate = 1e-3,

max_depth = 5,

verbose = -1,

3For boosting models, the learning rate is a scaling factor for the contribution of each
tree to the overall model. A smaller learning rate means that each tree contributes less to
the overall model, and so you’ll need more trees to get the same performance, all else being
equal.

4For boosting models, the regularization parameters are basically penalties on the weights
of the leaves. For example, a smaller value would reduce the contribution of that leaf to the
overall model, and so would help to reduce overfitting.

5Some also prefer catboost. Your humble authors have not actually been able to practically
implement catboost in a setting where it was more predictive or as efficient/speedy as xgboost
or lightgbm to get to the same performance level, but some have had notable success with it.
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random_state=42,

)

model_boost_cv = cross_validate(

model_boost,

df_heart.drop(columns='heart_disease'),

df_heart['heart_disease'],

cv = 5,

scoring='accuracy',

)

# pd.DataFrame(model_boost_cv)

Training accuracy: 0.835

Guessing: 0.539

R

Note that as of writing, the mlr3 requires one of the extended packages for its
implementation of lightgbm, and so we’ll use the mlr3extralearners package.

library(mlr3verse)

# for lightgbm, you need mlr3extralearners and lightgbm package installed

# it is available from github via:

# remotes::install_github("mlr-org/mlr3extralearners@*release")

library(mlr3extralearners)

set.seed(42)

# Define task

# For consistency we use X, but lgbm can handle factors and missing data

# and so we can use the original df_heart if desired

tsk_boost = as_task_classif(

df_heart, # can use the 'raw' data

target = "heart_disease"

)

model_boost = lrn(

"classif.lightgbm",

num_iterations = 1000,

learning_rate = 1e-3,

max_depth = 5

)
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model_boost_cv = resample(

task = tsk_boost,

learner = model_boost,

resampling = rsmp("cv", folds = 5)

)

Training Accuracy: 0.828

Guessing: 0.539

So here we have a model that is also performing well, though not significantly
better or worse than our elastic net model. For most tabular data situations,
we’d expect boosting to do better, but this shows why we want a good baseline
or simpler model for comparison. We’ll revisit hyperparameter tuning using
this model later.

11.6.2 Strengths and weaknesses
Random forests and boosting methods, though not new, are still ‘state of the
art’ in terms of performance on tabular data like the type we’ve been using for
our demos here. You’ll often find that it will usually take considerable effort
to beat them.

Strengths

• A single tree is highly interpretable.
• Relatively good prediction out of the box.
• Easily incorporates features of different types, regardless of scale or whether

it’s categorical.
• Tolerance to irrelevant features.
• Some tolerance to correlated inputs.
• Handling of missing values. Missing values are just another value to potentially

split on6.

Weaknesses

• Honestly few, but like all techniques, it might be relatively less predictive in
certain situations. There is no free lunch.

• It does take more effort to tune relative to linear model methods, so this
wouldn’t be the best choice for a baseline model.

• Predictions, though relatively accurate, will be less smooth relative to some
models like GAMs, and a smooth result may be more desirable in some
settings.

6It’s not clear why most model functions still have no default for this sort of thing in
2025. Is it that hard to drop or impute them with an informative message?
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11.7 Deep Learning and Neural Networks

Figure 11.3: Neural network.

Deep learning has fundamentally transformed the world of data
science, and, in many ways, the world itself. It has been used to solve
problems in image detection, speech recognition, natural language process-
ing, and more, from assisting with cancer diagnosis, to writing entire novels,
providing self-driving cars, and even helping the formerly blind see. It is an
extremely powerful tool.

For tabular data, however, the story is a bit different. Here, deep learning has
consistently struggled to outperform models like boosting and even penalized
regression in many cases. But while it is not always the best option, it should
be in your modeling toolbox, if only because it potentially can be the most
performant model and may well become the dominant model for tabular data in
the future. Here we’ll provide a brief overview of the key concepts behind neural
networks, the underlying approach to deep learning, and then demonstrate
how to implement a simple neural network to get things started.

11.7.1 What is a neural network?
Neural networks form the basis of deep learning models. They have actually
been around a while – both computationally and conceptually going back
decades7, 8. Like other models, they are computational tools that help us

7Most consider the scientific origin with McCulloch and Pitts (1943).
8On the conceptual side, they served as a rudimentary model of neuronal functioning in

the brain, and a way to understand how the brain processes information. The models sprung
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understand how to get outputs from inputs. However, they weren’t quickly
adopted due to computing limitations, similar to the slow adoption of Bayesian
methods. But now, neural networks, or deep learning more generally, have
recently become the go-to method for many problems.

11.7.2 How do they work?
At its core, a neural network can be seen as a series of matrix multiplications
and other operations to produce combinations of features, and ultimately
a desired output. We’ve been talking about inputs and outputs since the
beginning (Section 2.3), but neural networks like to put a lot more in between
the inputs and outputs than we’ve seen with other models. However, many
of the key operations are often no different than what we’ve done with a
basic linear model, and they sometimes even simpler! But the combinations
of features they produce can represent many aspects of the data that are not
easily captured by simpler models.

One notable difference from models we’ve been seeing is that neural networks
implement multiple combinations of features, where each combination is referred
to as a hidden node or unit9. In a neural network, each feature has a weight
(or coefficient), just like in a linear model of the type we’ve used before. These
features are multiplied by their weights and then added together. But we
actually create multiple such combinations, as depicted in the ‘H’ or ‘hidden’
nodes in the following visualization.

Figure 11.4: The first hidden layer.

from the cognitive revolution, a backlash against the behaviorist approach to psychology,
and used the computer as a metaphor for how the brain might operate.

9The term ‘hidden’ is used because these nodes are between the input or output. It does
not imply a latent/hidden variable in the sense used in many statistical models, but there
is common ground. See the connection with principal components analysis, for example
(Section 12.2.1).
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The next phase is where things can get more interesting. We take those hidden
units and add in nonlinear transformations before moving deeper into the
network. The transformations applied are typically referred to as activation
functions10. So, the output of the current (typically linear) part is transformed
in a way that allows the model to incorporate nonlinearities. While this might
sound new, this is just like how we use link functions in generalized linear
models (Section 8.2). Furthermore, these multiple combinations also allow us
to incorporate interactions between features.

But we can go even further! We can add more layers, and more nodes in each
layer, even different types of layers, to create a deep neural network. We can
also add components specific to certain types of processing, have some parts of
the network only connected to certain other parts, apply specific computations
to specific components, and more. The complexity really is only limited by
our imagination, and computational capacity! This is what helps make neural
networks so powerful. Given enough nodes, layers, and components, they can
approximate any function, which could include the true function that connects
our features to the target. Practically though, the feature inputs become an
output or multiple outputs that can then be assessed in the same ways as
other models.

Figure 11.5: Complex neural network.

10We have multiple options for our activation functions, and probably the most common
one in deep learning is the rectified linear unit or ReLU, and its more recent variants.
Others used include the sigmoid function, which is the same as what we used in logistic
regression, the hyperbolic tangent function, and the linear/identity function, which does not
do any transformation at all.
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Before getting too carried away, let’s simplify things a bit by returning to some
familiar ground. Consider a logistic regression model. There we take the linear
combination of features and weights, and then apply the sigmoid function
(inverse logit) to it, and that is the output of the model that we compare to
our observed target and calculate an objective function.

We can revisit a plot we saw earlier (Figure 3.7) to make things more concrete.
The input features are 𝑋𝑋1, 𝑋𝑋2, and 𝑋𝑋3, and the output is the probability of
a positive outcome of a binary target. The weights are 𝑤𝑤1, 𝑤𝑤2, and 𝑤𝑤3, and
the bias11 is 𝑤𝑤0. The hidden node is just our linear predictor which we can
create via matrix multiplication of the feature matrix and weights. The sigmoid
function is the activation function, and the output is the probability of the
chosen label.

Figure 11.6: Logistic regression as a neural network with a single hidden layer
with one node, and sigmoid activation

This shows that we can actually think of logistic regression as a very simple
neural network, with a linear combination of the inputs as a single hidden
node and a sigmoid activation function adding the nonlinear transformation.
Indeed, the earliest multilayer perceptron models were just composed of
multiple layers of logistic regressions!

INFO GAMs and Neural Networks

You can think of neural networks as nonlinear extensions of linear models.
Regression approaches like GAMs and Gaussian process regression can
be seen as approximations to neural networks (see also Rasmussen
and Williams (2005)), bridging the gap between the simpler, and more
interpretable linear model, and black box of a deep neural network. This
brings us back to having a good baseline. If you know some simpler

11It’s not exactly clear why computer scientists chose to call this the bias, but it’s the
same as the intercept in a linear model, or conceptually as an offset or constant. It has
nothing to do with the word bias as used in every other modeling context.
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tools that can approximate more complex ones, you can often get ‘good
enough’ results with the simpler models.

11.7.3 Trying it out
The neural network model we’ll use is a multilayer perceptron (MLP),
which is a model like the one we’ve been showing. It consists of multiple hidden
layers of potentially varying sizes, and we can incorporate activation functions
as we see fit.

INFO More on Neural Networks for Tabular Data

Be aware that this would be considered a bare minimum approach for a
neural network, and generally you’d need to do more, even for standard
tabular data. To begin with, you’d want to tune the architecture, or
structure of hidden layers. For example, you might want to try more
layers, as well as ‘wider’ layers, or more nodes per layer. Also, we’d
usually want to use embeddings for categorical features as opposed to
the one-hot approach used here (Section 14.2.2)12.

For our demo, we’ll use the numeric heart disease data with one-hot encoded
categorical features. For our architecture, we’ll use three hidden layers with
200 nodes each. As noted, these and other settings are hyperparameters that
you’d normally prefer to tune, but we’ll just set them as fixed parameters.

Python

For our demonstration we’ll use sklearn’s built-in MLPClassifier. We set the
learning rate to 0.001. We set an adaptive learning rate, which is a way to
automatically adjust the learning rate as the model trains. The ReLU activation
function is default. We’ll also use the nesterov momentum approach, which
is a modification to an SGD variant (Adam). We use a warm start, which
allows us to train the model in stages, and is useful for allowing the algorithm
to stop before the maximum number of iterations. We’ll also set the validation
fraction, which is the proportion of data to use for the validation set. And
finally, we’ll use shuffle to shuffle each batch used during the SGD approach
(Section 6.10.3).

model_mlp = MLPClassifier(

hidden_layer_sizes = (200, 200, 200),

12A really good tool for a standard MLP type approach with automatic categorical
embeddings is fastai’s tabular learner. For a more flexible, DIY type of approach, consider
the recently developed torch_frame package.
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learning_rate = 'adaptive',

learning_rate_init = 0.001,

shuffle = True,

random_state = 123,

warm_start = True,

nesterovs_momentum = True,

validation_fraction = .2,

verbose = False,

)

# with the above settings, this will take a few seconds

model_mlp_cv = cross_validate(

model_mlp,

X,

y,

cv = 5

)

# pd.DataFrame(model_mlp_cv) # default output

Training accuracy: 0.818

Guessing: 0.539

R

For R, we’ll use mlr3torch, which calls pytorch directly under the hood. We’ll
use the same architecture as was done with the Python example. It uses the
ReLU activation function as a default. We’ll also use the Adam SGD variant
as the optimizer, which is a popular choice in deep learning models, and the
default for the sklearn approach. We’ll use cross-entropy as the loss function,
which is the same as the log loss objective function used in logistic regression
and other ML classification models. We use a batch size of 16. Batch size is
the number of observations to use for each batch of training. We’ll also use
epochs of 50, which is the number of times to train on the entire dataset
(probably way more than necessary). We’ll also use predict type of prob,
which is the type of prediction to make. Finally, we’ll use both logloss and
accuracy as the metrics to track. As specified, this took over a minute.

library(mlr3torch)

learner_mlp = lrn(

"classif.mlp",

# defining network parameters

neurons = c(200, 200, 200),
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# training parameters

batch_size = 16,

epochs = 50,

# Defining the optimizer, loss, and callbacks

optimizer = t_opt("adam", lr = 1e-3),

loss = t_loss("cross_entropy"),

# Measures to track

measures_train = msrs(c("classif.logloss")),

validate = .1,

measures_valid = msrs(c("classif.logloss", "classif.ce")),

# predict type (required by logloss)

predict_type = "prob",

seed = 123

)

tsk_mlp = as_task_classif(

x = X,

target = 'heart_disease'

)

# this will take a few seconds depending on your chosen settings and hardware

model_mlp_cv = resample(

task = tsk_mlp,

learner = learner_mlp,

resampling = rsmp("cv", folds = 5),

)

model_mlp_cv$aggregate(msr("classif.acc")) # default output

Training Accuracy: 0.842

Guessing: 0.539

This model actually did pretty well, and we’re on par with our accuracy as we
were with the other two models. This is somewhat surprising given the nature
of the data, small number of observations with different data types, a type
of situation in which neural networks don’t usually do as well as others. Just
goes to show, you never know until you try!

INFO Deep and Wide

A now relatively old question in deep learning is what is the better
approach: deep networks, with more layers, or extremely wide (lots of
neurons) and fewer layers? The answer is that it can depend on the
problem, but in general, deep networks are more efficient and easier to
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train, and will generalize better. Deeper networks have the ability to build
upon what the previous layers have learned, basically compartmentalizing
different parts of the task to learn. More important to the task is creating
an architecture that is able to learn the appropriate aspects of the data,
and generalize well.

11.7.4 Strengths and weaknesses
So why might we want to use neural networks for tabular data? The main
reason is that they can be the most performant model and can potentially
capture the most complex relationships in the data. They can also be used
for a wide variety of data types and tasks. However, they are also the most
complex model and can be the most difficult to tune and interpret.

Strengths

• Good prediction generally.
• Incorporates the predictive power of different combinations of inputs.
• Some tolerance to correlated inputs.
• Batch processing and parallelization of many operations makes it very efficient

for large datasets.
• Can be used for even standard GLM approaches.
• Can be added as a component to other deep learning models (e.g., LLMs

that are handling text input).

Weaknesses

• Susceptible to irrelevant features.
• Doesn’t consistently outperform other methods that are easier to implement

on tabular data.

11.8 Tuned Example
We noted in the chapter on machine learning concepts that there are often mul-
tiple hyperparameters we are concerned with for a given model (Section 10.7).
We had hyperparameters for each of the models in this chapter also. For the
elastic net model, we might want to tune the penalty parameters and the
mixing ratio. For the boosting method, we might want to tune the number
of trees, the learning rate, the maximum depth of each tree, the minimum
number of observations in each leaf, and the number of features to consider
at each tree/split. And for the neural network, we might want to tune the
number of hidden layers, the number of nodes in each layer, the learning rate,
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the batch size, the number of epochs, and the activation function. There is
plenty to explore!

Here is an example of a hyperparameter search using the boosting model.
We’ll tune the number of trees, the learning rate, the minimum number of
observations in each leaf, and the maximum depth of each tree. We’ll use a
randomized search across the parameter space to sample from the set of
hyperparameters, rather than searching every possible combination as in a
grid search. This is a good approach when you have a lot of hyperparameters
to tune, and/or when you have a lot of data.

Python

# train-test split

X_train, X_test, y_train, y_test = train_test_split(

df_heart.drop(columns='heart_disease'),

df_heart['heart_disease'],

test_size = 0.2,

random_state = 42

)

model_boost = LGBMClassifier(verbose = -1)

param_grid = {

'n_estimators': [500, 1000],

'learning_rate': [1e-3, 1e-2, 1e-1],

'max_depth': [3, 5, 7, 9],

'min_child_samples': [1, 5, 10],

}

# this will take a few seconds

model_boost_cv_tune = RandomizedSearchCV(

model_boost,

param_grid,

n_iter = 10,

cv = 5,

scoring = 'accuracy',

n_jobs = -1,

random_state = 42

)

model_boost_cv_tune.fit(X_train, y_train)

test_predictions = model_boost_cv_tune.predict(X_test)

accuracy_score(y_test, test_predictions)
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Test Accuracy 0.8
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)

model_boost_cv_tune$train(tsk_model_boost_cv_tune, row_ids = split$train)

test_preds = model_boost_cv_tune$predict(

tsk_model_boost_cv_tune,

row_ids = split$test

)

test_preds$score(msr("classif.acc"))

Test Accuracy: 0.831

Guessing: 0.539



324 11 Common Models in Machine Learning

Test Accuracy 0.8

Guessing: 0.539

R

set.seed(1234)

tsk_model_boost_cv_tune = as_task_classif(

df_heart,

target = "heart_disease",

positive = "yes"

)

split = partition(tsk_model_boost_cv_tune, ratio = .8)

lrn_lgbm = lrn(

"classif.lightgbm",

num_iterations = to_tune(c(500, 1000)),

learning_rate = to_tune(1e-3, 1e-1, logscale = TRUE),

max_depth = to_tune(c(3, 5, 7, 9)),

min_data_in_leaf = to_tune(c(1, 5, 10))

)

model_boost_cv_tune = auto_tuner(

tuner = tnr("random_search"),

learner = lrn_lgbm,

resampling = rsmp("cv", folds = 5),

measure = msr("classif.acc"),

terminator = trm("evals", n_evals = 10)

)

model_boost_cv_tune$train(tsk_model_boost_cv_tune, row_ids = split$train)

test_preds = model_boost_cv_tune$predict(

tsk_model_boost_cv_tune,

row_ids = split$test

)

test_preds$score(msr("classif.acc"))

Test Accuracy: 0.831

Guessing: 0.539

11.9 Comparing Models 325

It looks like we’ve done a lot better than guessing. Even if we don’t do better
than our previously untuned model, we should feel better that we’ve done our
due diligence in trying to find the best set of underlying parameters, rather
than just going with defaults or what seems to work best.

11.9 Comparing Models
We can tune all the models and compare them head to head. For this demo,
we’ll just describe what we did, as you’ve seen the code for how to do so
throughout this chapter already. We first split the same data into training
and test sets (20% test). Then with training data, we tuned each model over
different settings:

• Elastic net: penalty and mixing ratio
• Boosting: number of trees, learning rate, and maximum depth, etc.
• Neural network: number of hidden layers, number of nodes in each layer, etc.

After this, we used the tuned values to retrain the model on the complete
training dataset. At this stage it’s not necessary to investigate in most settings,
but we show the results of the 10-fold cross-validation for the already-tuned
models, to give a sense of the uncertainty in error estimation with a small
sample like this. Even with the ‘best’ settings, we can see that there is definitely
some variability across data splits.

Figure 11.7: Cross-validation results for tuned models.
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We now look at the performance on the holdout set with our tuned models in
the following table13. In this case, we see something that might surprise you –
the simplest model does really well! In this case, we’d probably declare it the
winner given the combination of ease of use and interpretability. Again, your
results may vary depending on whether you used a seed, R vs. Python, and
possibly other aspects of your modeling environment.

Table 11.2: Metrics for Tuned Models on Holdout Data

model acc tpr tnr f1 ppv npv
Elastic Net 0.88 0.83 0.92 0.85 0.87 0.89
Boost 0.85 0.92 0.81 0.83 0.76 0.94
MLP 0.80 0.83 0.78 0.77 0.71 0.88

It’s important to note that, for each metric, none of the model results are
statistically different from each other. As an example, the elastic net model
had an accuracy of 0.88, but the interval estimate for such a small holdout
sample is very wide – from 0.77 to 0.95. The interval estimate for the difference
in accuracy between the elastic net and boosting models is from -0.1 to 0.1714.
Again, we shouldn’t take this result too far, as we’re dealing with a small
dataset and it is difficult to detect potentially complex relationships in such a
setting. In addition, we could have done more to explore the parameter space of
the models, but we’ll leave that for another time. But this was a good example
of the importance of having an adequate baseline, and where complexity didn’t
really help much, though all our approaches did reasonably well.

INFO Test Metrics Better than Training?

Some may wonder how the holdout results can be better than training,
which you might have seen in playing around with the models for this data.
This can definitely happen and, at least in this case, would probably just
reflect the small sample size. The holdout set is a random sample of 20% of
the complete data, which is 59 examples. Just slightly different predictions
could result in a several percentage point difference in accuracy. In general
though, you’d expect the holdout results to be a bit, or even significantly,
worse than the training results.

13This table was based on Python with randomized CV search, but the R approach
produced similar results. However, they can both vary quite a bit even with just a random
seed change due to the small sample size.

14We just used the prop.test function in R for these values with the key question of whether
these proportions are different. A lot of the metrics people look at from confusion matrices
are proportions.
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11.10 Interpretation
When it comes to machine learning, many models we use don’t have an easy
interpretation, like with coefficients in a linear regression model. However, that
doesn’t mean we can’t still figure out what’s going on. Let’s use the boosting
model as an example.

11.10.1 Feature importance
The default importance metric for a lightgbm model is the number of splits in
which a feature is used across trees, and this will depend a lot on the chosen
parameters of the best model. For the table below, we show the top 4 features
from the tuned model and values rescaled to be between 0 and 1 for easier
comparison. But there are other ways to think about what importance means
that will be specific to a model, data setting, and the ultimate goal of the
modeling process.

Python

# Get feature importances

best_model = model_boost_cv_tune.best_estimator_

best_model.feature_importances_ # seriously, no feature names?

# if it's not obvious which of these values belongs to which feature, do this:

pd.DataFrame({

'Feature': best_model.feature_name_,

'Importance': best_model.feature_importances_

}).sort_values('Importance', ascending=False)

R

R shows the proportion of splits in which a feature is used across trees rather
than the raw number.

# Get feature importances

model_boost_cv_tune$learner$importance()
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Table 11.3: Top 4 Features from a Tuned LGBM model

Feature Importance
age 1.00
cholesterol 0.97
max_heart_rate 0.83
resting_bp 0.68

Now let’s think about a visual display to aid our understanding. Here we show
a partial dependence plot (Section 5.8) to see the effects of cholesterol and
being male. From this we can see that males are expected to have a higher
probability of heart disease, and that cholesterol has a positive relationship
with heart disease, though this occurs mostly after midpoint for cholesterol
(shown by vertical line). The plot shown is a prettier version of what you’d get
with the following code, but the model predictions are the same.

Python

PartialDependenceDisplay.from_estimator(

model_boost_cv_tune,

df_heart.drop(columns='heart_disease'),

features=['cholesterol', 'male'],

categorical_features=['male'],

percentiles=(0, .9),

grid_resolution=75

)

R

For R we’ll use the iml package.

library(iml)

prediction = Predictor$new(

model_boost_cv_tune$model$learner,

data = df_heart,

type = 'prob',

class = 'yes'

)

# interaction plot, select a single feature for a single feature plot

effect_dat = FeatureEffect$new(

prediction,

feature = c('cholesterol', 'male'),
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method = "pdp",

)

effect_dat$plot(show.data = TRUE)
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Figure 11.8: Partial dependence plot for cholesterol.

11.11 Other ML Models for Tabular Data
When you research classical machine learning models for the kind of data
we’ve been exploring, you’ll find a variety of methods. Popular approaches
from the past include k-nearest neighbors regression, principal components
regression, support vector machines (SVM), and more. You don’t see these
used in practice as much though for several reasons:

• Some, like k-nearest neighbors regression, generally don’t predict as well as
other models.

• Others, like linear discriminant analysis, make strong assumptions about
how the data is distributed.
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• Some models, like SVM, tend to work well only with ‘clean’ and well-
structured data of the same type.

• Many of these models’ standard approach is computationally demanding,
making them less practical for large datasets.

• Lastly, some of these models are less interpretable, making it hard to under-
stand their predictions without an obvious gain in performance.

While some of these classical models might still work well in unique situations,
when you have tools that can handle a lot of data complexity and predict very
well (and usually better) like tree-based methods, there’s not much reason to
use the historical alternatives. If you’re interested in learning more about them
or think one of them is just ‘neat’, you could potentially use it as a baseline
model. Alternatively, you could maybe employ them as part of an ensemble
or stacked model, where you combine the predictions of multiple models to
produce a single prediction. This is a common approach in machine learning
and is often used in Kaggle competitions.

There are also other methods that are more specialized, such as those for
text, image, and audio data. We will provide an overview of these elsewhere
(Chapter 12). Currently, the main research effort for new models for tabular
data regards deep learning methods like large language models (LLMs). While
typically used for text data, they can be adapted for tabular data as well. They
are very powerful but also computationally expensive. The issue is primarily
whether a model can be devised that can consistently beat boosting and other
approaches that already do very well. While it hasn’t happened yet, there is a
good chance it will in the near future. For now, the best approach is to use
the best model that works for your data and to be open to new methods as
they come along.

INFO SOTA Deep Learning for Tabular Data

As of this writing, the current state of the art (SOTA) for deep learning
on tabular data appears to be techniques like TabR (Gorishniy et al.
(2023)) and Modern NCA (Ye, Yin, and Zhan (2024)). These are very
new and not yet widely used, but they are showing promise in some
benchmarks.

11.12 Wrapping Up
In this chapter we’ve provided a few common and successful models you can
implement with much success in machine learning. You don’t really need much
beyond these for tabular data unless your unique data condition somehow
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requires it. But here are some things are worth mentioning before moving on
from models in machine learning:

Thinking hard about the problem and the data is more important
than the model choice.

Feature engineering will typically pay off more in performance
than the model choice.

The best model is simply the one that works best for your
situation.

You’ll always get more payoff by coming up with better features to use in
the model, as well as just using better data that’s been ‘fixed’ because you’ve
done some good exploratory data analysis. Thinking harder about the problem
means you will waste less time going down dead-ends. You also can find better
data to use to solve the problem by thinking more clearly about the question
at hand. And finally, it’s good to not be stuck on one model and be willing to
use something new to get the job done.

11.12.1 The common thread
When it comes to machine learning, you can use any model you feel like, and
this could be standard statistical models like we’ve covered elsewhere. Both
boosting and neural networks, like GAMs and related techniques, can be put
under a common heading of basis function models. GAMs with certain types
of smooth functions are approximations of Gaussian processes, and Gaussian
processes are equivalent to a neural network with an infinitely wide hidden
layer (Neal (1996)). Even the most complicated deep learning model typically
has components that involve feature combinations and transformations that
we use in far simpler models like linear regression.

11.12.2 Choose your own adventure
If you haven’t had much exposure to statistical approaches, we suggest head-
ing to any chapter before Chapter 10. Otherwise, consider an overview of
more machine learning techniques (Chapter 12), data-specific considerations
(Chapter 14), or causal modeling (Chapter 13).

11.12.3 Additional resources
Additional resources include those mentioned in Section 10.9.3, but here are
some more to consider:

• Interpretable ML (Molnar (2023))
• Interpretable Machine Learning with Python (Masis (2023))
• Machine Learning Q & AI (Raschka (2023b))
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• Google’s Course on Decision Forests

For deep learning specifically:

• Common activation functions
• An overview of deep learning applications for tabular data by Michael (see

Clark 2021b, 2022a)
• Dive into Deep Learning (Zhang et al. (2023))
• Fast AI course (Howard (2024))

11.13 Guided Exploration
Tune a model of your choice to predict whether a movie is good or bad with
the movie review data. Use the categorical target, and use one-hot encoded
features if needed. Make sure you use a good baseline model for comparison!

Python

df_reviews = pd.read_csv('https://tinyurl.com/moviereviewsdata')

df_reviews_sub = df_reviews[[

'review_year',

'age',

'children_in_home',

'education',

'work_status',

'genre',

'release_year',

'word_count',

'rating_good'

]]

X_train, X_test, y_train, y_test = train_test_split(

df_reviews_sub.drop(columns='rating_good'),

df_heart_num['rating_good'],

test_size = ???,

random_state = 42

)

model_boost = LGBMClassifier(

verbose = -1
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)

param_grid = {

'n_estimators': ???,

'learning_rate': ???,

'max_depth': ???,

'min_child_samples': ???,

}

# this will take a few seconds

model_boost_cv_tune = RandomizedSearchCV(

model_boost,

param_grid,

n_iter = 10,

cv = ???,

scoring = ????,

n_jobs = -1,

random_state = 42

)

model_boost_cv_tune.fit(X_train, y_train)

test_predictions = model_boost_cv_tune.predict(X_test)

accuracy_score(y_test, test_predictions)

R

df_reviews = read_csv('https://tinyurl.com/moviereviewsdata')

df_reviews_sub = df_reviews %>%

select(

review_year,

age,

children_in_home,

education,

work_status,

genre,

release_year,

word_count,

rating_good

) |>

mutate(

across(where(is.character), \(x) as.factor(x))
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)

set.seed(42)

tsk_model_boost_cv_tune = as_task_classif(

df_reviews_sub,

target = "rating_good"

)

split = partition(tsk_model_boost_cv_tune, ratio = ??)

lrn_lgbm = lrn(

"classif.lightgbm",

num_iterations = to_tune(c(???, ???)),

learning_rate = to_tune(1e-3, 1e-1, logscale = TRUE),

max_depth = to_tune(c(???, ???)),

min_data_in_leaf = to_tune(c(???, ???))

)

model_boost_cv_tune = auto_tuner(

tuner = tnr("random_search"),

learner = lrn_lgbm,

resampling = rsmp("cv", folds = ???),

measure = msr("classif.acc"),

terminator = trm("evals", n_evals = ???)

)

model_boost_cv_tune$train(tsk_model_boost_cv_tune, row_ids = split$train)

model_boost_cv_tune$predict(

tsk_model_boost_cv_tune,

row_ids = split$test

)$score(msr("classif.acc"))
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12
Extending Machine Learning

We’ve explored some fundamental aspects of machine learning (ML) for typical
data settings and modeling objectives, but there are many other areas of ML
that we haven’t covered, and honestly, you just can’t cover everything in a
single book. The field is always evolving, progressing, branching out, and covers
every data domain, which is what makes it so fun! Here we’ll briefly discuss
some of the other aspects of ML that you’ll want to be aware of as you continue
your journey.

12.1 Key Ideas
As we wrap up our focus on ML, here are some things to keep in mind:

• ML can be applied to virtually any modeling or data domain.
• Other widely used areas and applications of ML include unsupervised learning,

reinforcement learning, computer vision, natural language processing, and
more generally, artificial intelligence.

• While tabular data has traditionally been the primary format for modeling,

335
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the landscape has changed dramatically, and you may need to incorporate
other data to reach your modeling goals.

12.1.1 Why this matters
It’s very important to know just how unlimited the modeling universe is, but
also to recognize the common thread that connects all models. Even when we
get into other data situations and complex models, we can always fall back on
the core approaches we’ve already seen and know well at this point, and know
that those ideas can potentially be applied in any modeling situation.

12.1.2 Helpful context
For the content in this chapter, a basic idea of modeling and machine learning
would probably be enough. We’re not going to get too technical in this section.

12.2 Unsupervised Learning
All the models considered thus far would fall under supervised learning.
That is, we have a target variable that we are trying to predict with various
features, and we use the data to train a model to predict it. However, there
are settings in which we do not have a target variable, or we do not have a
target variable for all of the data. In these cases, we can still use what’s often
referred to as unsupervised learning to learn about the data.

Unsupervised learning is a type of machine learning that involves training a
model without an explicit target variable in the sense that we’ve seen. But
to be clear, a model and target is still definitely there! Unsupervised learning
attempts learn patterns in the data in a general sense and can be used in a
wide range of applications, including cluster analysis, anomaly detection, and
dimensionality reduction. Although these may initially seem as fundamentally
different modeling approaches, just like much of what we’ve seen, it’s probably
best to think of these as different flavors of a more general approach.

Traditionally, one of the more common applications of unsupervised learning
falls under the heading of dimension reduction, or data compression. Here
we reduce our feature set to a smaller latent, or hidden, or unobserved, subset
that accounts for most of the (co-)variance of the larger set. Alternatively, we
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account for most of what’s important in the original set, or we classify each
observation as belonging to 2-3 clusters. Either way, the primary goal is to
reduce the dimensionality of the data, not predict an explicit target.
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the landscape has changed dramatically, and you may need to incorporate
other data to reach your modeling goals.

12.1.1 Why this matters
It’s very important to know just how unlimited the modeling universe is, but
also to recognize the common thread that connects all models. Even when we
get into other data situations and complex models, we can always fall back on
the core approaches we’ve already seen and know well at this point, and know
that those ideas can potentially be applied in any modeling situation.

12.1.2 Helpful context
For the content in this chapter, a basic idea of modeling and machine learning
would probably be enough. We’re not going to get too technical in this section.

12.2 Unsupervised Learning
All the models considered thus far would fall under supervised learning.
That is, we have a target variable that we are trying to predict with various
features, and we use the data to train a model to predict it. However, there
are settings in which we do not have a target variable, or we do not have a
target variable for all of the data. In these cases, we can still use what’s often
referred to as unsupervised learning to learn about the data.

Unsupervised learning is a type of machine learning that involves training a
model without an explicit target variable in the sense that we’ve seen. But
to be clear, a model and target is still definitely there! Unsupervised learning
attempts learn patterns in the data in a general sense and can be used in a
wide range of applications, including cluster analysis, anomaly detection, and
dimensionality reduction. Although these may initially seem as fundamentally
different modeling approaches, just like much of what we’ve seen, it’s probably
best to think of these as different flavors of a more general approach.

Traditionally, one of the more common applications of unsupervised learning
falls under the heading of dimension reduction, or data compression. Here
we reduce our feature set to a smaller latent, or hidden, or unobserved, subset
that accounts for most of the (co-)variance of the larger set. Alternatively, we
may reduce the rows to a small number of hidden, or unobserved, clusters. For
example, we start with 100 features and reduce them to 10 features that still
account for most of what’s important in the original set, or we classify each
observation as belonging to 2-3 clusters. Either way, the primary goal is to
reduce the dimensionality of the data, not predict an explicit target.

12.2 Unsupervised Learning 337

Figure 12.1: Two variables with three overlapping clusters.

Classical methods in this domain include principal components analysis
(PCA), singular value decomposition (SVD), factor analysis, and latent
Dirichlet allocation, which are geared toward reducing column dimensions.
Also included are clustering methods such as k-means and hierarchical
clustering, where we reduce observations into clusters or groups. Sometimes,
these methods are often used as preprocessing steps for supervised learning
problems, or as a part of exploratory data analysis, but often they are an end
in themselves.

Most of us are familiar with recommender systems, e.g., with Netflix or
Amazon recommendations, which suggest products or movies, and we’re all
now becoming extremely familiar with text analysis methods through chatbots
and similar tools. While the underlying models are notably more complex these
days, they actually just started off as SVD (recommender systems) or a form
of factor analysis (text analysis via latent semantic analysis/latent Dirichlet
allocation). Having a conceptual understanding of the simpler methods can
aid in understanding the more complex ones.

INFO Dimension Reduction in Preprocessing

You probably should not use a dimension reduction technique as a
preprocessing step for a supervised learning problem. Instead, use a
modeling approach that can handle high-dimensional data, has a built-in
way to reduce features (e.g., lasso, boosting, dropout), or use a dimension
reduction technique that is specifically designed for supervised learning
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(e.g., partial least squares). Creating a reduced set of features, but which
are created without any connection to the target, will generally be
suboptimal for a supervised learning problem.

12.2.1 Connections
Clusters are latent categorical features

In both clustering rows and reducing columns, we’re essentially reducing
the dimension of the features. For methods like PCA and factor analysis,
we’re explicitly reducing the number of data columns to a smaller set of
numeric features. For example, we might take answers to responses to dozens
of questions from a personality inventory, and reduce them to five key features
that represent general aspects of personality. These new features are on their
own scale, often standardized, but they still reflect at least some of the original
items’ variability1.

Now, imagine if we reduced the features to a single categorical variable, say,
with two or three groups. Now you have cluster analysis! You can discretize
any continuous feature to a coarser set of categories, and this goes for latent
variables as well as those we actually observe in our data. For example, if we
do a factor analysis with one latent feature, we could either convert it to a
probability of some class with an appropriate transformation, or just say that
scores higher than some cutoff are in cluster A and the others are in cluster B.
Indeed, there is a whole class of clustering models called mixture models
that do just that – they estimate the latent probability of class membership.
Many of these approaches are conceptually similar or even identical to the
continuous method counterparts, and the primary difference is how we think
about and interpret the results.

PCA as a neural network

Consider the following neural network, called an autoencoder. Its job is to
shrink the features down to a smaller, simpler representation, and then rebuild
the feature set from the compressed state, resulting in an output that matches
the original as closely as possible. It’s trained by minimizing the error between
the original data and the reconstructed data. The autoencoder is a special case
of a neural network used as a component of many larger architectures such
as those seen with large language models, but it can be used for dimension

1Ideally we’d capture all the variability, but that’s not the end result, and some techniques
or results may only capture a relatively small percentage. In our personality example,
this could be because the questions don’t adequately capture the underlying personality
constructs (i.e., an issue of the reliability of instrument), or because personality is just not
that simple and we’d need more dimensions.
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reduction in and of itself if we are specifically interested in the compression
layer, sometimes called a bottleneck.

Figure 12.2: PCA or autoencoder.

Consider the following setup for such a situation:

• Single hidden layer
• Number of hidden nodes = number of inputs
• Linear activation function

An autoencoder in this case would be equivalent to principal components
analysis. In the approach described, PCA perfectly reconstructs the original
data when considering all components, and so the error would be zero. But
that doesn’t give us any dimension reduction, as we have as many nodes in
the compression layer as we did inputs. So with PCA, we often only focus on a
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small number of components that capture the data variance by some arbitrary
amount. The discarded nodes are actually still estimated though.

Neural networks are not bound to linear activation functions, the size of the
inputs, or even a single layer. As such, they provide a much more flexible
approach that can compress the data at a certain layer, but still have very
good reconstruction error. Typical autoencoders would have multiple layers
with notably more nodes than inputs, at least for some layers. They may
ultimately compress to a bottleneck layer consisting of a fewer set of nodes,
before expanding out again. An autoencoder is not as easily interpretable as
typical factor analytic techniques, and we still have to sort out the architecture.
However, it’s a good example of how the same underlying approach can be
used for different purposes.

Figure 12.3: Conceptual diagram of an autoencoder.

INFO Autoencoders and LLMs

Encoder-decoder models, which are the basis for large language models
(LLMs), can be seen as a type of autoencoder, and are used in many
applications, including machine translation, image captioning, and more.
Autoencoders suggest the same inputs and outputs, but a similar type of
architecture, or even part of it, as in ‘decoder-only’ approaches of many
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of the current popular LLMs, might be used to classify or generate text,
as with large language models.

Latent linear models

Some dimension reduction techniques can be thought of as latent linear models.
The following depicts factor analysis as a latent linear model. The ‘targets’ are
the observed features, and we predict each one by some linear combination of
latent variables.

𝑥𝑥1 = 𝛽𝛽11ℎ1 + 𝛽𝛽12ℎ2 + 𝛽𝛽13ℎ3 + 𝛽𝛽14ℎ4 + 𝜖𝜖1

𝑥𝑥2 = 𝛽𝛽21ℎ1 + 𝛽𝛽22ℎ2 + 𝛽𝛽23ℎ3 + 𝛽𝛽24ℎ4 + 𝜖𝜖2

𝑥𝑥3 = 𝛽𝛽31ℎ1 + 𝛽𝛽32ℎ2 + 𝛽𝛽33ℎ3 + 𝛽𝛽34ℎ4 + 𝜖𝜖3

In this scenario, the ℎ are estimated latent variables, and 𝛽𝛽 are the coefficients,
which in some contexts are called loadings. The 𝜖𝜖 are the residuals, which
are assumed to be independent and normally distributed as with a standard
linear model. The 𝛽𝛽 are usually estimated by maximum likelihood. The latent
variables are not observed, but are to be estimated as part of the modeling
process, and typically standardized with mean 0 and standard deviation of 12.
The number of latent variables we use is a hyperparameter in the ML sense
and so they can be determined by the usual means3. To tie some more common
models together:

• Factor analysis is the more general approach with varying residual variance.
In a multivariate sense, we can write the model with X is the data matrix,
W is the loading matrix (weights), Z is the latent variable matrix, and Ψ is
the covariance.

X = N(ZW, Ψ)

• Probabilistic PCA is a factor analysis with Ψ = 𝜎𝜎2I, where 𝜎𝜎2 is the (constant
across X) residual variance.

• PCA is a factor analysis with no (residual) variance, and the latent variables
are orthogonal (independent).

• Independent component analysis is a factor analysis that does not assume
an underlying Gaussian data generating process.

• Non-negative matrix factorization and latent Dirichlet allocation are factor
analyses applied to counts (think Poisson and multinomial regression).

2They can also be derived in post-processing depending on the estimation approach.
3Actually, in application as typically seen in social sciences, cross-validation is very rarely

employed, and the number of latent variables is determined by some combination of theory,
model comparison for training data only, or trial and error. Not that we’re advocating for
that, but it’s a common practice.
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In other words, many traditional dimension reduction techniques can be
formulated in the context of a linear model.

12.2.2 Other unsupervised learning techniques
There are several techniques that are used to visualize high-dimensional data in
simpler ways, such asmultidimensional scaling, t-SNE, and (H)DBSCAN.
These are often used as a part of exploratory data analysis to identify groups.

Cluster analysis is a method with a long history and many different ap-
proaches, including hierarchical clustering algorithms (agglomerative, divisive),
k-means, and more. Distance matrices are often the first step for these clus-
tering approaches, and there are many ways to calculate distances between
observations. With the distances we can group observations with small dis-
tances and separate those with large distances. Conversely, some methods
use adjacency matrices, which focus on similarity of observations rather than
differences (like correlations), and can be used for graph-based approaches to
find hidden clusters (see network analysis).

Anomaly/outlier detection is an approach for finding ‘unusual’ data points,
or otherwise small, atypical clusters. This is often done by looking for data
points that are far from the rest of the data, or that are not well explained by
the model. This approach is often used for situations like fraud detection or
network intrusion detection. For example, standard clustering (small anomalous
groups) or modeling techniques (observations with high residuals) might be
used to identify outliers.

Figure 12.4: Network graph regarding some US cities.
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Network analysis is a type of unsupervised learning that involves analyzing
the relationships between entities. It is a graph-based approach that involves
identifying nodes (e.g., people) and edges (e.g., do they know each other?) in a
network. It is used in a wide range of applications, like identifying communities
within a network or seeing how they evolve over time. It is also used to
identify relationships between entities, such as people, products, or documents.
One might be interested in such things as which nodes that have the most
connections, or the general ‘connectedness’ of a network. Network analysis
or similar graphical models typically have their own clustering techniques
that are based on the edge (connection) weights between individuals, such as
modularity, or the number of edges between individuals, such as k-clique.

In summary, there are many methods that fall under the umbrella of unsu-
pervised learning, but even when you don’t think you have an explicit target
variable, you can still understand or frame these as models in familiar ways.
It’s important to not get hung up on trying to distinguish modeling approaches
with somewhat arbitrary labels, and focus more on what their modeling goal
is and how best to achieve it!

INFO Generative vs. Discriminative Models

Many unsupervised learning and many deep learning techniques involved
in computer vision and natural language processing are often thought
of as generative models. These attempt to model the underlying data
generating process, i.e., the features, but possibly a target variable also.
In contrast, most supervised learning models are often thought of as
discriminative models that try to model the conditional distribution
of the target given the features only.

These labels are a bit problematic though. Any probabilistic model can
be used to generate data, even if it is only for the target, so simply calling
a model ‘generative’ isn’t all that clarifying. And models that might be
thought of as discriminative in a machine learning context might not be
in others (e.g., Bayesian).
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12.3 Reinforcement Learning

Figure 12.5: Reinforcement learning.

Reinforcement learning (RL) is a type of modeling approach that involves
training an agent to make decisions in an environment. The agent receives
feedback in the form of rewards or punishments for its actions, and the goal is
to maximize its rewards over time by learning which actions lead to positive
or negative outcomes. Typical data involves a sequence of states, actions, and
rewards, and the agent learns a policy that maps states to actions. The agent
learns by interacting with the environment, and the environment changes based
on the agent’s actions.

The agent’s goal is to learn a policy, which is a set of rules that dictate which
actions to take in different situations. The agent learns by trial and error,
adjusting its policy based on the feedback it receives from the environment.
The classic example is a game like chess or a simple video game. In these
scenarios, the agent learns which moves (actions) lead to winning the game
(positive reward) and which moves lead to losing the game (negative reward).
Over time, the agent improves its policy to make better moves that increase
its chances of winning.

One of the key challenges in reinforcement learning is balancing exploration
and exploitation. Exploration is about trying new actions that could lead to
higher rewards, while exploitation is about sticking to the actions that have
already been found to give good rewards.
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Reinforcement learning has many applications, including robotics, games, and
autonomous driving, but there is little restriction on where it might be applied.
It is also often a key part of some deep learning models, where reinforcement
is supplied via human feedback or other means to an otherwise automatic
modeling process.

12.4 Working with Specialized Data Types
While our focus in this book is on tabular data due to its ubiquity, there are
many other types of data used for machine learning and modeling in general.
This data often starts in a special format or must be considered uniquely.
You’ll often hear this labeled as ‘unstructured’, but that’s probably not the
best conceptual way to think about it, as the data is still structured in some
way, sometimes in a strict format (e.g., images). Here we’ll briefly discuss some
of the other types of data you’ll potentially come across.

12.4.1 Spatial

Figure 12.6: Spatial Demographic Data (code available from Kyle Walker)

Spatial data, which includes geographic and similar information, can be quite
complex. It often comes in specific formats (e.g., shapefiles), and may require
specialized tools to work with it. Spatial specific features may include con-
tinuous variables like latitude and longitude, or tracking data from a device
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like a smartwatch. Other spatial features are more discrete, such as states or
political regions within a country.

We could use these spatial features as we would others in the tabular setting,
but we often want to take into account the uniqueness of a particular region,
or the correlation of spatial regions. Historically, most spatial data can be
incorporated into approaches like mixed models or generalized additive models,
but in certain applications, such as satellite imagery, deep learning models
are more the norm, and the models often transition into image processing
techniques.

12.4.2 Audio

Figure 12.7: Sound wave.

Audio data is a type of time series data that is also the focus for many modeling
applications. Think of the sound of someone speaking or music playing, as it
changes over time. Such data is often represented as a waveform, which is a
plot of the amplitude of the sound wave over time.

The goal of modeling audio data may include speech recognition, language
translation, music generation, and more. Like spatial data, audio data is
typically stored in specific formats and can be quite large by default. Also
like spatial data, the specific type of data and research question may allow for
a tabular format. In that case, the modeling approaches used are similar to
those for other time series data.

Deep learning methods have proven very effective for analyzing audio data,
and they can even create songs people actually like, even recently helping the
Beatles to release one more song. Nowadays, you can generate an entire song
in any genre you want, just by typing a text prompt!
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12.4.3 Computer vision

Figure 12.8: Convolutional neural network LeNet4.

Computer vision involves a range of models and techniques for analyzing
and interpreting image-based data. It includes tasks like image classification
(labeling an image), object detection (finding the location of objects in an
image), image segmentation (identifying the boundaries of objects in an image),
and object tracking (following objects as they move over time).

Typically, your raw data is an image, which is represented as a matrix of
pixel values. For example, each row of the matrix could be a grayscale value
for a pixel, or it could be a three-dimensional array of Red, Green, and Blue
(RGB) values for each pixel. The modeling goal is to extract features from the
image data that can be used for the task at hand. For example, you might
extract features that relate to color, texture, and shape. You can then use
these features to train a model to classify images or whatever your task may
be.

Image processing is a broad field with many applications. It is used in medical
imaging, satellite imagery, self-driving cars, and more. And while it can be
really fun to classify objects such as cats and dogs, or generate images from
text and vice versa, it can be challenging due to the size of the data, issues
specific to video/image quality, and the model complexity. Even if your base
data is often the same or very similar across tasks, the model architecture and
training process can vary widely depending on the task at hand.

These days we generally don’t have to start from scratch though, as there
are pretrained models that can be used for image processing tasks, which you
can then fine-tune for your specific task. These models are often based on
convolutional neural networks (CNNs), which are a type of deep learning
model. CNNs are designed to take advantage of the spatial structure of images,
and they use a series of convolutional layers to extract features from the image.
These features are then passed through a series of fully connected layers to

4Image from Alex Lenail, LeNail (2024).
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make a prediction. CNNs have been used to achieve state-of-the-art results
on a wide range of image processing tasks and are the standard for many
image processing applications. More recently, diffusion models, which seek to
reconstruct images after successively adding noise to the initial input, have
been shown to be quite effective for a wide range of tasks involving image
generation.

12.4.4 Natural language processing

Figure 12.9: Partial GPT4 output from a prompt: Write a very brief short
story about using models in data science. It should reflect the style of Donald
Barthelme.

One of the hottest areas of modeling development in recent times regards
natural language processing, as evidenced by the runaway success of
models like ChatGPT. Natural language processing (NLP) is a field of study
that focuses on understanding human language, and along with computer
vision, is a very visible subfield of artificial intelligence. NLP is used in a wide
range of applications, including language translation, speech recognition, text
classification, and more. NLP is behind some of the most exciting modeling
applications today, with tools that continue to amaze with their capabilities
to generate summaries of articles, answer questions, write code, and even pass
the bar exam with flying colors!

Early efforts in this field were based on statistical models, and then variations
on things like PCA, but it took a lot of data pre-processing work to get much
from those approaches, and results could still be unsatisfactory. More recently,
deep learning models became the standard application, and there is no looking
back in that regard due to their success. Current state-of-the-art models have
been trained on massive amounts of data, even much of the internet, and
require a tremendous amount of computing power. Thankfully, you don’t have
to train such a model yourself to take advantage of the results. Now you can
simply use a pretrained model like GPT or Claude for your own tasks. In
some cases, much of the trouble comes with just generating the best prompt
to produce the desired results. However, the field and the models are evolving
very rapidly, and, for those who don’t have the resources of Google, Meta, or
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OpenAI, things are getting easier to implement all the time. In the meantime,
feel free to just play around with ChatGPT yourself.
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Pretrained models are those that have been trained on a massive amount
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allowing the model to relearn the weights for the last layer(s) on your data.
This can save a lot of time and resources, and it can be especially useful when
you don’t have a lot of data to train your model on.

12.5.1 Self-supervised learning
Self-supervised learning is a type of machine learning technique that involves
training a model on a task that can be generated from the data itself. In this
setting, there is no labeled data as such. For example, you might train a model
to predict the next word in a sentence, and while you know what that word
is, for purposes of modeling it is hidden. The idea is that the model learns
to extract (represent) useful features from the data by trying to predict the
missing information, which is imposed by a mask that hides parts of the
data and may change from sample to sample5. We can then see how well our
predictions match the targets that were masked.

This can be a useful approach when you don’t have labeled data, or just when
you don’t have a lot of labeled data. Once trained, the model can be used
as other pretrained models to predict other unlabeled data. Self-supervised

5If your ‘mask’ was a truly missing value rather than self-imposed, in the provided example
self-supervised learning would essentially be the same as missing value imputation, but the
latter doesn’t sound as sexy and was already well established.
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learning is often used in natural language processing but can be applied to
other types of data as well.

12.6 Combining Models
It’s important to note that the types of data used in ML and DL and their
associated models are not mutually exclusive. For example, you might have a
video that contains both audio and visual information pertinent to the task,
or you might want to produce images from text inputs. When dealing with
diverse data sources, you can combine different models to process them. This
approach can range from simply adding extracted features to your dataset, to
implementing complex multimodal deep learning architectures that handle
multiple data types simultaneously.

Many computer vision, audio, natural language and other modeling approaches
incorporate transformers. They are based on the idea of attention, which
is a mechanism that allows the model to focus on certain parts of the input
sequence and less on others. Transformers are used in many state-of-the-art
models with different data types, such as those that combine text and images.
The transformer architecture, although complex, underpins many of today’s
most sophisticated models, so it is worth being aware of even if it isn’t your
usual modeling domain.

As an example6, we added a transformer-based approach to process the text
reviews in the movie review dataset used in other chapters. We kept to the same
basic data setup otherwise, and we ended up with notably better performance
than the other models demonstrated, pushing toward 90% accuracy on test,
even without fiddling too much with many hyperparameters. It’s a good
example of a case where we have standard tabular data, but we need to deal
with additional data structure in a different way. By combining the approaches
to obtain a final output for prediction, we obtained better results than we
would with a single model. This won’t always be the case, but keep it in mind
when you are dealing with different data sources or types.

6We use a recently developed Python module torch_frame for this. Our approach is in a
notebook available in the python chapter notebooks.
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Figure 12.10: AI as envisioned by AI7

The prospect of combining models for computer vision, natural language pro-
cessing, audio processing, and other domains can produce tools that mimic
many aspects of what we call intelligence8. Current efforts in artificial in-
telligence (AI) produce models that can pass law and medical exams, create
better explanations of images and text than average human effort, and produce
conversation on par with humans. AI even helped to create this book! From
code assistance to editing for clarity, and fleshing out ideas, AI has been a key
part of the process of putting this book together.

In many discussions of ML and AI, many put ML as a subset of AI, but this
is a bit off the mark from a modeling perspective in our opinion9. In terms
of models, practically most of what we’d call modern AI almost exclusively
employs deep learning models, particularly transformer architectures covered
earlier, which enabled the leap from early, limited AI systems to today’s more
capable ones. Meanwhile, the ML approach to training and evaluating models

7Image created by MC using Dalle-2.
8It seems most discussions of AI in the public sphere haven’t really defined intelligence

very clearly in the first place, and the academic realm has struggled with the concept for
centuries. This is why you can see people arguing about whether a model is ‘intelligent’,
what is ‘general intelligence’, whether AI ‘reasons’, etc. The only place it makes sense to ask
these questions is with an operational definition of these terms that works for (data) science,
but that doesn’t mean the definition would be satisfying to most people. Unfortunately,
the leading researchers in AI keep changing the definitions as well, so at this point A*I is
whatever we’re currently deciding it is. Also, just like what happened with ML, many are
now referring to potentially anything within the realm of data science as AI.

9In almost every instance of this we’ve seen, there isn’t any actual detail or specific
enough definitions provided to make the comparison meaningful to begin with, so don’t take
it too seriously.
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can be used for any underlying model, from simple linear models to the most
complex deep learning models, and whether the application falls under the
domain of AI or not. Furthermore, statistical model applications have never
seriously attempted what we might call AI.

If AI is some ‘autonomous and general set of tools that attempt to engage
the world in a human-like way or better’, it’s not clear why it’d be compared
to ML in the first place. That’s kind of like saying the brain is a subset of
cognition. The brain does the work, much like ML does the modeling work
with data, and gives rise to what we call cognition, but generally we would not
compare the brain to cognition. We also wouldn’t call ML a subset of climate
science or medicine for similar reasons. They are domains in which it is used,
much like the domain of artificial intelligence.

The main point is to not get too hung up on the labels, and focus on the
modeling goal and how best to achieve it. Deep learning models, and machine
learning in general, can be used for AI or non-AI settings, as we have seen
for ourselves. And models used for AI still employ the perspective of the ML
approach. The steps taken from data to model output are largely the same, as
we are concerned with validation and generalization.

Many of the non-AI settings we use modeling for may well be things we can
eventually rely on AI to do. At present though, the computational limits,
and the amount of data that would be required for AI models to do well, or
the ability of AI to deal with situations in which there is only small bits of
data to train on, are still hindrances in many places we would like to use it.
However, we feel it’s likely these issues will eventually be overcome. Even then,
a statistical approach may still have a place when the data is small.

In addition, as AI capabilities expand, ethical considerations become increas-
ingly important. Issues of bias, privacy, transparency, job displacement, and
security require careful thought alongside technical advancement. The models
we build reflect our data, values, and assumptions - a reality that demands
responsible development and deployment.

Artificial general intelligence (AGI) is the “holy grail” of AI, and like
AI itself, it is not consistently defined. Generally, the idea behind AGI is
the creation of some autonomous agent that can perform any task that a
human can perform, many that humans cannot, and generalize abilities to new
problems that have not even been seen yet. It seems we are getting closer to
AGI all the time, especially with recent developments in Agentic AI, which
are AI systems that can autonomously plan and execute sequences of actions
to achieve goals, rather than just responding to prompts. But it’s not yet clear
when it will be achieved, or even what it will look like when it is, especially
since no one has an agreed-upon definition of what intelligence is in the first
place.
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All that being said, to be perfectly honest, you may well be reading a history
book. Given advancements just in the last couple years, it almost seems unlikely
that the data science being performed 5 years from now will resemble much
of how things are done today. We are already capable of making faster and
further advancements in many domains due to AI, and it’s likely that the next
generation of data scientists will be able to do so even more easily. The future
is here, and it is amazing. Buckle up!

12.8 Wrapping Up
We hope you’ve enjoyed the journey and have a better understanding of the
core concepts. By now you also have a couple of modeling tools in hand, and
you also have a good idea of where things can go. We encourage you to continue
learning and experimenting with what you’ve seen, and to apply what you’ve
learned to your own problems. The best way to learn is by doing, so don’t be
afraid to get your hands dirty and start building models!

12.8.1 The common thread
Even the most complex models can be thought of as a series of steps that go
from input to output. In between, things can get very complicated, but often
the underlying operations are the same ones you saw used with the simplest
models. One of the key goals of any model is to generalize to new data, and
this is the same no matter what type of data you’re working with or what type
of model you’re using.

12.8.2 Choose your own adventure
The sky’s the limit with machine learning modeling techniques, so go where
your heart leads you, and have some fun! If you started here, feel free to go back
to the linear model chapters for a more traditional and statistical modeling
overview. Otherwise, continue on for an overview of a few more modeling
topics, such as causal modeling (Chapter 13), data issues (Chapter 14), and
things to avoid (Chapter 15).

12.8.3 Additional resources
• Courses on ML and DL: FastAI (Howard (2024)), Coursera, edX, DeepLearn-

ing.AI, and many others are great places to get more formal training.
• Kaggle: Even if you don’t compete, you can learn a lot from what others are

doing.
• Unsupervised learning overview at Google
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• Machine Learning and AI: Beyond the Basics (Raschka (2023b))
• A Visual Introduction to LLMs (3Blue1Brown (2024))
• Build a LLM from Scratch (Raschka (2023a))
• Visualizing Transformer Models (Vig (2019))
• Self-supervised learning: The dark matter of intelligence (LeCun and Misra

(2021))
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13
Causal Modeling

Causal inference is a very important topic in machine learning and statistical
modeling approaches. It is also a very difficult one to understand well, or
consistently, because not everyone agrees on how to define a cause in the first
place. Our focus here is merely practical – we just want to discuss some of
the modeling approaches commonly used when attempting to answer causal
questions. But causal modeling in general is such a deep topic that we won’t
be able to go into as much detail as it deserves. However, we will try to give
you a sense of the landscape and some of the key ideas.

13.1 Key Ideas
• No model can tell you whether a relationship is causal or not. Causality is

inferred, not proven, based on the available evidence.
• The same models could be used for similar data settings to answer a causal

question or a purely predictive question. A key difference is in the interpre-
tation of the results.
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• Experimental design, such as randomized control trials, are considered the
gold standard for causal inference. But the gold standard is often not practical,
and not without its limitations even when it is.

• Causal inference is often done with observational data, which is often the
only option, and that’s okay.

• Counterfactual thinking is at the heart of causal inference but can be useful
for all modeling contexts.

• Several models exist which are typically employed to answer a more causal-
oriented question. These include graphical models, uplift modeling, and
more.

• Interactions are the norm for most modeling scenarios, while causal inference
generally regards a single effect. If an effect varies depending on other features,
you should be cautious trying to aggregate your results to a single effect,
since that effect would be potentially misleading.

13.1.1 Why it matters
Often we need a precise statement about the feature-target relationship, not
just a declaration that there is ‘some’ relationship. For example, we might want
to know how well a drug works and for whom, or show that an advertisement
results in a certain amount of new sales. We generally need to know whether
the effect is real, and the size of the effect, and often, the uncertainty in that
estimate.

Causal modeling is, like machine learning, more of an approach than a specific
model, and that approach may involve the design or implementation of models
we’ve already seen, but conducted in a different way to answer the key question.
Without more precision in our understanding, we could miss the effect, or
overstate it, and make bad decisions as a result.

13.1.2 Helpful context
This section is pretty high level, and we are not going to go into much detail
here, so even just some understanding of correlation and modeling would likely
be enough.

13.2 Prediction and Explanation Revisited
We introduced the idea of prediction and explanation in the context of linear
models in Section 3.4.3, and it’s worth revisiting here. One attribute of a causal
model is an intense focus on the explanatory power of the model. We want to
demonstrate that there is a relationship between (usually) a single feature and
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the target, and we want to know the precise manner of this relationship as
much as possible. Even if we use complex models, the endeavor is to explain
the specifics.

Let’s say that we used some particular causal modeling approach to explain a
feature-target relationship in a classification setting. We have 10,000 observa-
tions, and the baseline rate of the target is about ~50%. We have a model that
predicts the target y based on the feature of interest x, and we may have used
some causal technique like propensity score weighting or some other approach
to help control for confounding (we’ll discuss these later).

The coefficient, though small with an odds ratio of 1.05, is statistically signifi-
cant (take our word for it), so we have a slight positive relationship. Under
certain settings such as this, where we are interested in causal effects and
where we have controlled for various other factors to obtain this result, we
might be satisfied with interpreting this relationship as is.

Figure 13.1: Results from a hypothetical causal model.

But if we are interested in predictive performance, we would be disappointed
with this model. It predicts the target at about the same rate as guessing,
even with the data it’s fit on, and does even worse with new data. Even the
effect as shown is quite small by typical standards, as it would take a standard
deviation change in the feature to get a ~1% change in the probability of the
target (x is standardized).

If we are concerned solely with explanation, we now would want to ask ourselves
first if we can trust our result based on the data, model, and various issues
that went into producing it. If so, we can then see if the effect is large enough
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to be of interest, and if the result is useful in making decisions1. It may very
well be, maybe the target concerns the rate of survival, where any increase is
worthwhile. Or perhaps the data circumstances demand such interpretation,
because it is costly to obtain more. For more exploratory efforts however, this
sort of result would likely not be enough to come to any strong conclusion,
even if explanation is the only goal.

As another example, consider the world happiness data we’ve used in pre-
vious demonstrations. We want to explain the association of country level
characteristics and the population’s happiness. We likely aren’t going to be as
interested in predicting next year’s happiness score, but rather what attributes
are correlated with a happy populace in general. For another example, in the
U.S., we might be interested in specific factors related to presidential elections,
of which there are relatively very few data points. In these cases, explanation is
the focus, and we may not even need a model at all to come to our conclusions.

So we can see that in some settings we may be more interested in understanding
the underlying mechanisms of the data, and in others we may be more interested
in predictive performance. However, the distinction between prediction and
explanation in the end is a bit problematic, not the least of which is that we
often want to do both.

Although it’s often implied as such, prediction is not just what we do with new
data. It is the very means by which we get any explanation of effects via coeffi-
cients, marginal effects, visualizations, and other model results. Additionally,
when the focus is on predictive performance, if we can’t explain the results
we get, we will typically feel dissatisfied and may still question how well the
model is actually doing.

Here are some ways we might think about different modeling contexts:

• Descriptive Analysis: Here we have an exploration of data with no modeling
focus. We’ll use descriptive statistics and visualizations to help us understand
what’s going on. An end product may be an infographic or a highly visual
report. Even here, we might use models to aid visualizations, or otherwise
to help us understand the data better, but their specific implementation or
result is not of much interest.

• Exploratory Modeling: When using models for exploration, focus should
probably be on both prediction and explanation. The former can help inform

1This is a contrived example, but it is definitely something that you might see in the wild.
The relationship is weak, and though statistically significant, the model can’t predict the
target well at all. The statistical power is actually decent in this case, roughly 70%, but
this is mainly because the sample size is so large, and it is a very simple model setting. The
same coefficient with a base rate of around 5% would have a power of around 20%. This
is a common issue, and it’s why we always need to be careful about how we interpret our
models. In practice, we would generally need to consider other factors, such as the cost of
a false positive or false negative, or the cost of the data and running the model itself, to
determine if the model is worth using.
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the strength of the results for future exploration, while the latter will often
provide useful insights.

• Causal Modeling: Here the focus is on understanding causal effects. We
focus on explanation, and prediction on the current data. We may very well
be interested in predictive performance also, and we often are in industry.

• Generalization: When our goal is generalizing to unseen data as we have
discussed elsewhere, the focus is mostly on predictive performance2, as we
need something to help us predict things in the future. This does not mean
we can’t use the model to understand the data though, and explanation
could still possibly be as important depending on the context.

Depending on the context, we may be more interested in explanation or
predictive performance, but in practice we often want both. It is crucial to
remind yourself why you are interested in the problem, what a model is capable
of telling you about it, and to be clear about what you want to get out of the
result.

13.3 Classic Experimental Design

Figure 13.2: Random assignment.

Many are familiar with the basic idea of an experiment, where we have a
treatment group and a control group, and we want to measure the difference
between the two groups. The ‘treatment’ could regard a new drug, a marketing
campaign, or a new app’s feature. If we randomly assign our observational

2In causal modeling, there is the notion of transportability, which is the idea that
a model can be used in, or generalize to, a different setting than it was trained on. For
example, you may see an effect for one demographic group and want to know whether it
holds for another. It is closely related to the notion of external validity and is also related to
the concepts we’ve hit on in our discussion of interactions (Section 9.2).

Random Assignment to Groups A and B

A B

A B

□ ○ △ ◇ ▽ □ ○ △ ◇ ▽



360 13 Causal Modeling

units to the two groups, say, one that gets the new app feature and the other
doesn’t, we can be more confident that the two groups are essentially the
same aside from the treatment. Furthermore, any difference we see in the
outcome, for example, customer satisfaction with the app, is probably due to
the treatment.

This is the basic idea behind a randomized control trial (RCT). We can
randomly assign the groups in a variety of ways, but you can think of it as
flipping a coin, and assigning each sample to the treatment when the coin
comes up on one side, and to the control when it comes up on the other. The
idea is that the only difference between the two groups is the treatment, and
so any difference in the outcome can be attributed to the treatment. This is
visualized in Figure 13.2, where the color/shapes represent different groups
that are the same. Their distribution is roughly similar after assignment to
the treatment groups and would become more so with more data.

13.3.1 Analysis of experiments
Many who have taken a statistics course have been exposed to the simple t-test
to determine whether two groups are different. For many, this is their first
introduction to statistical modeling. The t-test tells us whether the difference in
means between the two groups is statistically significant. However, it definitely
does not tell us whether the treatment itself caused the difference, whether
the effect is large, nor whether the effect is real, or even if the treatment is a
good idea to do in the first place. It just tells us whether the two groups are
statistically different.

It turns out that a t-test is just a linear regression model. It’s a special case
of linear regression where there is only one independent variable, and it is a
categorical variable with two levels. The coefficient from the linear regression
would tell you the mean difference of the outcome between the two groups.
Under the same conditions, the t-statistic from the linear regression and the
t-test from a separate function would have identical statistical results.

Analysis of variance (ANOVA), allows the t-test to be extended to more than
two groups, and multiple features, and is also commonly employed to analyze
the results of experimental design settings. But ANOVA is still just a linear
regression. Even when we get into more complicated design settings such as
repeated measures and mixed design, it’s still just a linear model, we’d just
be using mixed models (Section 9.3). In general, we’re going to use similar
tools to analyze the results of our experiments as we would for other modeling
settings.

If linear regression didn’t suggest any notion of causality to you before, it
shouldn’t now either. The model is identical whether there was an experimental
design with random assignment or not. The only difference is that the data was
collected in a different way, and the theoretical assumptions and motivations
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are different. Even the statistical assumptions are the same whether you use
random assignment, or whether there are more than two groups, or whether
the treatment is continuous or categorical.

Experimental design3 can give us more confidence in the causal explanation of
model results, whatever model is used, and this is why we like to use it when
we can. It helps us control for the unobserved factors that might otherwise
be influencing the results. If we can be fairly certain the observations are
essentially the same except for the treatment, then we can be more confident
that the treatment is the cause of any differences we see, and be more confident
in a causal interpretation of the results. But it doesn’t change the model itself,
and the results of a model don’t prove a causal relationship on their own. Your
experimental study will also be limited by the quality of the data, and the
population it generalizes to. Even with strong design and modeling, if care
isn’t taken in the modeling process to even assess the generalization of the
results (Section 10.4), you may find they don’t hold up4.

INFO A/B Testing

A/B testing is generally used as a marketing term for a project focused
on comparing two groups or scenarios, e.g., to see if a new marketing
campaign results in a positive business outcome. It implies random-
ized assignment, but you’d have to understand the context to know if
that is actually being implemented, and in a way that would allow for
causal inference. In addition, the implementation and models involved
in A/B testing are often more complex than those in used for classical
experimental design.

3Note that experimental design is not just any setting that uses random assignment, but
more generally how we introduce control in the sample settings.

4Many experimental design settings involve sometimes very small samples due to the cost
of the treatment implementation and other reasons. This often limits exploration of more
complex relationships (e.g., interactions), and it is relatively rare to see any assessment of
performance generalization. It would probably worry many to know how many important
experimental results are based on p-values with small data, and this is the part of the
problem seen with the replication crisis in science.
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13.4 Natural Experiments

Figure 13.3: Covid vaccinations and deaths in the US.

As we noted, random assignment or a formal experiment is not always possible
or practical to implement. But sometimes we get to do it anyway, or at least we
can get pretty close! Occasionally, the world gives us a natural experiment,
where the assignment to the groups is essentially random, or where there is
clear break before and after some event occurs, such that we examine the
change as we would in pre-post design.

The COVID-19 pandemic provides an example of a natural experiment. The
pandemic introduced sudden and widespread changes that were not influenced
by individuals’ prior characteristics or behaviors, such as lockdowns, remote
work, and vaccination campaigns. The randomness in the timing and imple-
mentation of these changes allows researchers to compare outcomes before and
after the policy implementation or pandemic, or between different regions with
varying policies, to infer causal effects.

For instance, we could compare states or counties that had mask mandates to
those that didn’t at the same time or with similar characteristics. Or we might
compare areas that had high vaccination rates to those nearby that didn’t.
But these still aren’t true experiments. So we’d need to control for as many
additional factors that might influence the results, like population density, age,
wealth and so on, and eventually we might still get a pretty good idea of the
causal impact of these interventions.

0

50

100

150

200

250

Dec
2020

Jan
2021

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2022

# deaths per million
# vaccinated in millions

Covid Vaccinations and Deaths in the US

Data from Our World in Data: https://github.com/owid/



362 13 Causal Modeling

13.4 Natural Experiments

0

50

100

150

200

250

Dec
2020

Jan
2021

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2022

# deaths per million
# vaccinated in millions

Covid Vaccinations and Deaths in the US

Data from Our World in Data: https://github.com/owid/

Figure 13.3: Covid vaccinations and deaths in the US.

As we noted, random assignment or a formal experiment is not always possible
or practical to implement. But sometimes we get to do it anyway, or at least we
can get pretty close! Occasionally, the world gives us a natural experiment,
where the assignment to the groups is essentially random, or where there is
clear break before and after some event occurs, such that we examine the
change as we would in pre-post design.

The COVID-19 pandemic provides an example of a natural experiment. The
pandemic introduced sudden and widespread changes that were not influenced
by individuals’ prior characteristics or behaviors, such as lockdowns, remote
work, and vaccination campaigns. The randomness in the timing and imple-
mentation of these changes allows researchers to compare outcomes before and
after the policy implementation or pandemic, or between different regions with
varying policies, to infer causal effects.

For instance, we could compare states or counties that had mask mandates to
those that didn’t at the same time or with similar characteristics. Or we might
compare areas that had high vaccination rates to those nearby that didn’t.
But these still aren’t true experiments. So we’d need to control for as many
additional factors that might influence the results, like population density, age,
wealth and so on, and eventually we might still get a pretty good idea of the
causal impact of these interventions.

13.5 Causal Inference 363

13.5 Causal Inference
While we all have a natural intuition about causality, it can actually be a fairly
elusive notion to grasp. Causality is a very old topic, philosophically dating
back millennia, and more formally hundreds of years. Random assignment is
a relatively new idea, say 150 years old, and was posited even before Wright,
Fisher, and Neyman, and the 20th century rise of statistics. But with stats and
random assignment, we had a way to start using models to help us reason about
causal relationships. Pearl and others came along to provide an algorithmic
perspective from computer science, and economists like Heckman also got
into the game too. We were even using programming approaches to do causal
inference back in the 1970s! Eventually most scientific academic disciplines
were well acquainted with causal inference in some fashion, and things have
been progressing along for some time.

Because of its long history, causal inference is a broad field, and there are
many ways to approach it. We’ve already discussed some of the basics, but
there are many other ways to reason about causality. And of course, we can
use models to help us understand the causal effects we are interested in.

13.5.1 Key assumptions of causal inference
Causal inference at its core is the process of identifying and estimating causal
effects. But like other scientific and modeling endeavors, it relies on several
key assumptions to identify and estimate those effects. The main assumptions
include:

• Consistency: The potential outcome under the observed treatment is the
same as the observed outcome. This suggests there is no interference between
units, and that there are no hidden variations of the treatment.

• Exchangeability: The treatment assignment is independent of the potential
outcomes, given the observed covariates. In other words, the treatment
assignment is as good as random after conditioning on the covariates. This
is often referred to as no unmeasured confounding.

• Positivity: Every individual has a positive probability of receiving each
treatment level.

It can be difficult to meet these assumptions, and there is not always a clear
path to a solution. As an example, say we want to assess a new curriculum’s
effect on student performance. We can randomly assign students, but they
can interact with one another both in and outside of the classroom. Those
who receive the treatment may be more likely to talk to one another, and this
could affect the outcome, enhancing its effects if it is beneficial. This would
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violate our assumption of no interference between units, and we’d need to
maybe choose an alternative design or outcome to account for this.

The following demonstrates a common assumption that is regularly guarded
against in causal modeling – confounding. The confounder, U, is a variable that
affects both treatment X and target Y. We’ll generate some synthetic data with
a confounder, and fit two models, one with the confounder and one without.
We’ll compare the coefficients of the feature of interest in both models.

Python

from numpy.random import normal as rnorm

import pandas as pd

import statsmodels.api as sm

def get_coefs(n = 100, true = 1):

U = rnorm(size=n) # Unmeasured confounder

X = 0.5 * U + rnorm(size=n) # Treatment influenced by U

Y = true * X + U + rnorm(size=n) # Outcome influenced by X and U

data = pd.DataFrame({'X': X, 'U': U, 'Y': Y})

# Fit a linear regression model with and

# without adjusting for the unmeasured confounder

model = sm.OLS(data['Y'], sm.add_constant(data['X'])).fit()

model2 = sm.OLS(data['Y'], sm.add_constant(data[['X', 'U']])).fit()

return model.params['X'], model2.params['X']

def simulate_confounding(nreps = 100, n = 100, true=1):

results = []

for _ in range(nreps):

results.append(get_coefs(n, true))

results = np.mean(results, axis=0)

return pd.DataFrame({

'true': true,

'estimate_1': results[0],

'estimate_2': results[1],

}, index=['X']).round(3)

simulate_confounding(n=1000, nreps=500)
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R

get_coefficients = function(n = 100, true = 1) {

U = rnorm(n) # Unmeasured confounder

X = 0.5 * U + rnorm(n) # Treatment influenced by U

Y = true * X + U + rnorm(n) # Outcome influenced by X and U

data = data.frame(X = X, Y = Y)

# Fit a linear regression model with and

# without adjusting for the unmeasured confounder

model = lm(Y ~ X, data = data)

model2 = lm(Y ~ X + U, data = data)

c(coef(model)['X'], coef(model2)['X'])

}

simulate_confounding = function(nreps, n, true) {

results = replicate(nreps, get_coefficients(n, true))

results = rowMeans(results)

data.frame(

true = true,

estimate_1 = results[1],

estimate_2 = results[2]

)

}

simulate_confounding(nreps = 500, n = 1000, true = 1)

Results suggest that the coefficient for X is different in the two models. If
we don’t include the confounder, the feature’s relationship with the target is
biased upward. The nature of the bias ultimately depends on the relationship
between the confounder and the treatment and target, but in this case it’s
pretty clear!

Table 13.1: Coefficients with and without the Confounder

true with conf. no conf.
1.00 1.00 1.40

Though this is a simple demonstration, it shows why we need to be careful
in our modeling and analysis, and if we are interested in causal relationships,
we need to be aware of our assumptions and help make them plausible. If we
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suspect something is a confounder, we can include it in our model to get a
more accurate estimate of the effect of the treatment.

More generally, with causal approaches to modeling, we are expressly interested
in interpreting the effect of one feature on another, and we are interested in
the mechanisms that bring about that effect. We are not just interested in the
mere correlation between variables, or just predictive capabilities of the model.
As we’ll see though, we can use the same models we’ve seen already, but we’ll
need these additional considerations to draw causal conclusions.

13.6 Models for Causal Inference
We can use many modeling approaches to help us reason about causal rela-
tionships, and this can be both a blessing and a curse. Our models can be
more complex, and we can use more data, which can potentially give us more
confidence in our conclusions. But we can still be easily fooled by our models,
as well as by ourselves. We’ll need to be careful in how we go about things,
but let’s see what some of our options are!

Any model can potentially be used to answer a causal question, and which
one you use will depend on the data setting and the question you are asking.
The following covers a few models that might be seen in various academic and
professional settings.

13.6.1 Linear regression
Yep, linear regression. The old standby is possibly the mostly widely used
model for causal inference, historically speaking and even today. We’ve seen
linear regression as a kind of graphical model in Figure 3.2, and in that sense,
it can serve as the starting point for those that many consider to be true causal
models. It can also be used as a baseline model for other more complex causal
model approaches.

Linear regression can potentially tell us for any particular feature what that
feature’s relationship with the target is, holding the other features constant.
This ceteris paribus interpretation – ‘all else being equal’ – already gets us
into a causal mindset. If we had randomization and no confounding, and the
feature-target relationship was linear, we could interpret the coefficient of the
feature as the causal effect.

However, your standard linear model doesn’t care where the data came from or
what the underlying structure should be. It only does what you ask of it, and
will tell you about group differences whether they come from a randomized
experiment or not. For example, as we saw earlier, if potential confounders
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aren’t included, the estimated effect could be biased5. It also cannot tell you
whether X effects Y or vice versa. So linear regression by itself cannot save us
from the difficulties of causal inference, nor really can be considered a causal
model. But it can be useful as a starting point in conjunction with other
approaches.

INFO Weighting and Sampling Methods

Common techniques for traditional statistical models used for causal
inference include a variety of weighting or sampling methods. These
methods are used to adjust the data so that the treatment groups are more
similar, and a causal effect can be more accurately estimated. Sampling
methods include techniques such as stratification andmatching, which
focus on the selection of the sample as a means to balance treatment
and control groups. Weighting methods include inverse probability
weighting and propensity score weighting, which focus on adjusting
the weights of the observations to make the groups more similar. They
have extensions to continuous treatments as well.
Sampling and weighting methods are not models themselves, and poten-
tially can be used with just about any model that attempts to estimate
the effect of a treatment, or balance the data in some fashion. An nice
overview of using such methods vs. standard regression/ML can be found
on Cross Validated.

13.6.2 Graphical and structural equation models

Cholesterol
Access

Phys.
Act.

Diet.
Habit

Figure 13.4: Causal DAG.

Graphical and Structural Equation Models (SEM) are flexible ap-
proaches to regression and classification, and they have one of the longest

5A reminder that a conclusion of ‘no effect’ is also a causal statement, and it too can be
a biased one. Also, you can come to the same practical conclusion with a biased estimate as
with an unbiased one.
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histories of formal statistical modeling, dating back over a century6. As an ini-
tial example, Figure 13.4 shows a directed acyclic graph (DAG) that represents
a causal model. The arrows indicate the direction of the causal relationship,
and each node is a feature or target, and some features are influenced by
others.

In that graph, our focal treatment, or ‘exposure’, is physical activity, and we
want to see its effect on a health outcome like cholesterol levels. However,
dietary habits would affect both the outcome and affect how much physical
activity one does. Both dietary habits and physical activity may in part reflect
access to healthy food. The target in question does not affect any other nodes,
and in fact the causal flow is in one direction, so there is no cycle in the graph
(i.e., it is ‘acyclic’).

One thing to note relative to the other graphical model depictions we’ve seen
is that the arrows directly flow to a target or set of targets, as opposed to just
producing an ‘output’ that we then compare with the target. In graphical causal
models, we’re making clear the direction and focus of the causal relationships,
i.e., the causal structure, as opposed to the model structure. Also, in graphical
causal models, the effects for any given feature are adjusted for the other
features in the model in a particular way, so that we can think about them in
isolation, rather than as a collective set of features that are all influencing the
target7.

Structural equation models are widely employed in the social sciences and
education, and they are often used to model both observed and latent variables
(Section 14.9), with either serving as features or targets8. They are also used to
model causal relationships, to the point that historically they were even called
‘causal graphical models’ or ‘causal structural models’. SEMs are actually a
special case of the graphical models just described, which are more common in
non-social science disciplines. Compared to other graphical modeling techniques

6Sewall Wright is credited with what would be called path analysis back in the 1920s,
which is a precursor to and part of SEM and a form of graphical model.

7If we were to model this in an overly simple fashion with linear regressions for any
variable with an arrow to it, you could say physical activity and dietary habits would
basically be the output of their respective models. It isn’t that simple in practice though,
such that we can just run separate regressions and feed in the results to the next one, though
that’s how they used to do it back in the day. We have to take more care in how we adjust
for all features in the model, as well as correctly account for the uncertainty if we do take a
multistage approach.

8Your authors have to admit some bias here, but we hope the presentation for SEM is
balanced. We’ve spent a lot of our past dealing with SEMs, and almost every application we
saw had too little data and was grossly overfit. Many SEM programming approaches even
added multiple ways to overfit the data even further, and it is difficult to trust the results
reported in many papers that used them. But that’s not the fault of SEM in general. Like any
model it can be a useful tool when used correctly, and it can help answer causal questions.
But it can easily be misused by those not familiar with its assumptions and limitations.
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like DAGs, SEMs will typically have more assumptions, and these are often
difficult to meet9.

The following shows a relatively simple SEM, a latent variable mediation
model involving social support and self-esteem, and with depression as the
outcome of interest (Figure 13.5). Each latent variable has three observed
measures, e.g., item scores collected from a psychological inventory or personal
survey. The observed variables are caused by the latent, i.e., unseen or hidden,
variables. In other words, the observed item score is a less than perfect reflection
of the true underlying latent variable, which is what we’re really interested
in. The effects of the latent constructs of social support and self-esteem on
depression may be of equal interest in this setting. For social support, we’d
be interested in the direct effect on depression, as well as the indirect effect
through self-esteem.

Figure 13.5: SEM with latent and observed variables.

Formal graphical models provide a much richer set of tools for controlling
various confounding, interaction, and indirect effects than simpler linear mod-
els. For this reason, they can be very useful for causal inference. It may be
cautionary to note that models like linear regression can be seen as a special
case, and we know that linear regression by itself is not a causal model. So in
order for these tools to provide valid causal estimates, they need to be used in
a way that is consistent with the assumptions of both the underlying causal
model as well as the model estimation approach.

INFO Causal Language

It’s often been suggested that we keep certain phrasing, for example,
feature X has an effect on target Y, only for the causal model setting.
But the model we use can only tell us that the data is consistent with

9VanderWeele (2012) provides a nice overview of the increased assumptions of SEM
relative to other methods.
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the effect we’re trying to understand, not that it actually exists. In
everyday language, we often use causal language whenever we think the
relationship is or should be causal, and that’s fine, and we think that’s
okay in a modeling context too, as long as you are clear about the limits
of your generalizability.

13.6.3 Counterfactual thinking
When we think about causality, we really ought to think about counterfac-
tuals. What would have happened if I had done something different? What
would have happened if I had done something sooner rather than later? What
would have happened if I had done nothing at all? It’s natural to question our
own actions in this way, but we can think like this in a modeling context too.
In terms of our treatment effect example, we can summarize counterfactual
thinking as:

The question is not whether there is a difference between A and B but
whether there would still be a difference if A was B and B was A.

This is the essence of counterfactual thinking. It’s not about whether there is a
difference between two groups, but whether there would still be a difference if
those in one group had actually been treated differently. In this sense, we are
concerned with the potential outcomes of the treatment, however defined.

Here is a more concrete example:

• Roy is shown ad A and buys the product.
• Pris is shown ad B and does not buy the product.

What are we to make of this? Which ad is better? A seems to be, but maybe
Pris wouldn’t have bought the product if shown that ad either, and maybe
Roy would have bought the product if shown ad B too! With counterfactual
thinking, we are concerned with the potential outcomes of the treatment, which
in this case is whether or not to show the ad.

Let’s say ad A is the new one, i.e., our treatment group, and B is the status
quo ad, our control group. Without randomization, our real question can’t be
answered by a simple test of whether means or predictions are different among
the two groups, as this estimate would be biased if the groups are already
different in some way to start with. The real effect is, for those who saw ad A,
what the difference in the outcome would be if they hadn’t seen it.

From a prediction standpoint, we can get an initial estimate straightforwardly.
We demonstrated counterfactual predictions before in Section 5.6, but we can
revisit it briefly here. For those in the treatment, we can just plug in their
feature values with treatment set to ad A. Then we just make a prediction with
treatment set to ad B. This approach is basically the S-Learner approach



370 13 Causal Modeling

the effect we’re trying to understand, not that it actually exists. In
everyday language, we often use causal language whenever we think the
relationship is or should be causal, and that’s fine, and we think that’s
okay in a modeling context too, as long as you are clear about the limits
of your generalizability.

13.6.3 Counterfactual thinking
When we think about causality, we really ought to think about counterfac-
tuals. What would have happened if I had done something different? What
would have happened if I had done something sooner rather than later? What
would have happened if I had done nothing at all? It’s natural to question our
own actions in this way, but we can think like this in a modeling context too.
In terms of our treatment effect example, we can summarize counterfactual
thinking as:

The question is not whether there is a difference between A and B but
whether there would still be a difference if A was B and B was A.

This is the essence of counterfactual thinking. It’s not about whether there is a
difference between two groups, but whether there would still be a difference if
those in one group had actually been treated differently. In this sense, we are
concerned with the potential outcomes of the treatment, however defined.

Here is a more concrete example:

• Roy is shown ad A and buys the product.
• Pris is shown ad B and does not buy the product.

What are we to make of this? Which ad is better? A seems to be, but maybe
Pris wouldn’t have bought the product if shown that ad either, and maybe
Roy would have bought the product if shown ad B too! With counterfactual
thinking, we are concerned with the potential outcomes of the treatment, which
in this case is whether or not to show the ad.

Let’s say ad A is the new one, i.e., our treatment group, and B is the status
quo ad, our control group. Without randomization, our real question can’t be
answered by a simple test of whether means or predictions are different among
the two groups, as this estimate would be biased if the groups are already
different in some way to start with. The real effect is, for those who saw ad A,
what the difference in the outcome would be if they hadn’t seen it.

From a prediction standpoint, we can get an initial estimate straightforwardly.
We demonstrated counterfactual predictions before in Section 5.6, but we can
revisit it briefly here. For those in the treatment, we can just plug in their
feature values with treatment set to ad A. Then we just make a prediction with
treatment set to ad B. This approach is basically the S-Learner approach

13.6 Models for Causal Inference 371

to meta-learning, which we’ll discuss in a bit, as well as a simple form of
G-computation, widely used in causal inference.

Python

model.predict(X.assign(treatment = 'A')) -

model.predict(X.assign(treatment = 'B'))

R

predict(model, X |> mutate(treatment = 'A')) -

predict(model, X |> mutate(treatment = 'B'))

With counterfactual thinking explicitly in mind, we can see that the difference
in predictions is the difference in the potential outcomes of the treatment.
This is a very simple demo to illustrate how easy it is to start getting some
counterfactual results from our models. But it’s typically not quite that simple
in practice, and there are many ways to get this estimate wrong as well. As
in other circumstances, the data and our assumptions about the problem
can potentially lead us astray. But, assuming those aspects of our modeling
endeavor are in order, this is one way to get an estimate of a causal effect.

13.6.4 Uplift modeling
The counterfactual prediction we just did provides a result that can be called
the uplift or gain from the treatment, particularly when compared to a
baseline metric. Uplift modeling is a general term applied to models where
counterfactual thinking is at the forefront, especially in a marketing context.
Uplift modeling is not a specific model per se, but any model that is used
to answer a question about the potential outcomes of a treatment. The key
question is what is the gain, or uplift, in applying a treatment vs. the baseline?
Typically any statistical model can be used to answer this question, and often
the model is a classification model, for example, whether Roy from the previous
section bought the product or not.

It is common in uplift modeling to distinguish certain types of individuals or
instances, and we think it’s useful to extend this to other modeling contexts
as well. In the context of our previous example, they are:

• Sure things: those who would buy the product whether or not shown the
ad.

• Lost causes: those who would not buy the product whether or not shown
the ad.

• Sleeping dogs: those who would buy the product if not shown the ad, but
not if they are shown the ad. Also referred to as the ‘Do not disturb’ group!
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• Persuadables: those who would buy the product if shown the ad, but not
if not shown the ad.

We can generalize these conceptual groups beyond the marketing context to
any treatment effect we might be interested in. So it’s worthwhile to think
about which aspects of your data could correspond to these groups. One of the
additional goals in uplift modeling is to identify persuadables for additional
treatment efforts, and to avoid wasting money on the lost causes. But to reach
such goals, we have to think causally first!

INFO Uplift Modeling in R and Python

There are more widely used tools for uplift modeling and meta-learners
in Python than in R, but there are some options in R as well. In Python
you can check out causalml and sci-kit uplift for some nice tutorials and
documentation.

13.6.5 Meta-Learners
Meta-learners are used in machine learning contexts to assess potentially
causal relationships between some treatment and outcome. The core model can
actually be any kind you might want to use, but in which extra steps are taken
to assess the causal relationship. The most common types of meta-learners are:

• S-learner: single model for both groups; predict the (counterfactual) differ-
ence as when all observations are treated vs. when all are not, similar to our
previous demonstrations of counterfactual predictions.

• T-learner: two models, one for each of the control and treatment groups
respectively; get predictions as if all observations are ‘treated’ (i.e., using the
treatment model) vs. when all are ‘control’ (using the control model), and
take the difference.

• X-learner: a more complicated modification to the T-learner using a multi-
step approach.

• R-learner: also called (Double) Debiased ML. An approach that uses a
residual-based model to adjust for the treatment effect10.

Some variants of these models exist also. As elsewhere, the key idea is to use
the model to predict the potential outcomes of the treatment levels to estimate

10As a simple overview, think of it this way with Y outcome, T treatment and X con-
founders/other features. Y and T are each regressed on X via some ML model, and the
residuals from both are used in a subsequent model, 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟, to estimate the treatment
effect. Or, if you know how path analysis works, or even standard linear regression, it’s
pretty much just that with ML. As an exercise, start with a linear regression for the target
on all features, then just do a linear regression for a chosen focal feature predicted by the
nonfocal features. Next, regress the target on the nonfocal features. Finally, just do a linear
regression with the residuals from both models. The resulting coefficient will be what you
started with for the focal feature in the first regression.
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the causal effect. Most models traditionally used in a machine learning context,
e.g., random forests, boosted trees, or neural networks, are not designed to
accurately estimate causal effects, nor correctly estimate the uncertainty in
those effects. Meta-learners attempt to address the issue with regard to the
effect, but you’ll typically still have your work cut out for you to understand
the uncertainty in that effect.

INFO Meta-Learners vs. Meta-Analysis

Meta-learners are not to be confused with meta-analysis, which is
also related to understanding causal effects. Meta-analysis attempts to
combine the results of multiple studies to get a better estimate of the true
effect. The studies are typically conducted by different researchers and in
different settings. The term meta-learning has also been used to refer
to what is more commonly called ensemble learning, the approach
used in random forests and boosting. It is also probably used by other
people who don’t bother to look things up before naming their technical
terms.

13.6.6 Other models used for causal inference
Note that there are many models that would fall under the umbrella of causal
inference. But typically these models are only a special application of some of
the ones we’ve already become well acquainted with, so you should feel good
about trying them out. Here are a few you might come across specific to the
causal modeling domain:

• G-computation, doubly robust estimation, targeted maximum likelihood
estimation11

• Marginal structural models12

• Instrumental variables and two-stage least squares13

• Propensity score matching/weighting
• Regression discontinuity design14

• Difference-in-differences15

11The G-computation approach and S-learners are essentially the same approach, but
came about from different domain contexts.

12Very common in epidemiology, and a nice introduction can be found in Robins, Hernán,
and Brumback (2000).

13Instrumental variables are used in econometrics and are a way to get around the problem
of unmeasured confounding.

14Regression discontinuity design is a quasi-experimental design that is used when compar-
ing an outcome on either side of a threshold, such as a cutoff for a program or policy. The
idea is that those just above the threshold are similar to those just below, and the difference
in the outcome can be attributed to the program or policy. This is at its core just a pre-post
type of analysis.

15Difference-in-differences just involves an interaction of a treatment with something else,
typically time.



374 13 Causal Modeling

• Mediation/moderation analysis16

• Meta-analysis
• Bayesian networks

In general, any modeling technique can be employed as part of a causal
modeling endeavor. To actually make causal statements, you’ll generally need
to ensure that the assumptions for those claims are tenable.

13.7 Wrapping Up
We’ve been pretty loose in our presentation here, and we intentionally glossed
over many details with causal modeling. Our main goal is to give you some
idea of the domain, but more so the models used and things to think about
when you want to answer a causal question with your data.

Models used in statistical analysis and machine learning are not causal models,
but when we take a causal model from the realm of ideas and apply it to
the real world, a causal model becomes a statistical/ML model with more
assumptions, and with additional steps taken to address those assumptions17.
These assumptions are required in order to make stronger causal statements,
but neither the assumptions, data, nor model can prove that the underlying
theory is causally correct. Things like random assignment, sampling, a complex
model and good data can possibly help the situation, but they can’t save you
from a fundamental misunderstanding of the problem, or data that may still
be consistent with that misunderstanding. Nothing about employing a causal
model inherently makes better predictions either.

Causal modeling is hard, and most of the difficulty lies outside of the realm of
models and data. The model implemented reflects the causal theory, which can
be a correct or incorrect idea about how the world works. In the end, the main
thing is that when we want to make causal statements, we’ll make do with
what data we have, and be careful that we rule out some of the other obvious
explanations and issues. The better we can control the setting, or the better
we can do things from a modeling standpoint, the more confident we can be
in making causal claims. Causal modeling is really an exercise in reasoning,
which makes it such an interesting endeavor!

16Mediation/moderation are special applications of structural equation modeling.
17Gentle reminder that making an assumption does not mean the assumption is correct,

or even provable.



374 13 Causal Modeling

• Mediation/moderation analysis16

• Meta-analysis
• Bayesian networks

In general, any modeling technique can be employed as part of a causal
modeling endeavor. To actually make causal statements, you’ll generally need
to ensure that the assumptions for those claims are tenable.

13.7 Wrapping Up
We’ve been pretty loose in our presentation here, and we intentionally glossed
over many details with causal modeling. Our main goal is to give you some
idea of the domain, but more so the models used and things to think about
when you want to answer a causal question with your data.

Models used in statistical analysis and machine learning are not causal models,
but when we take a causal model from the realm of ideas and apply it to
the real world, a causal model becomes a statistical/ML model with more
assumptions, and with additional steps taken to address those assumptions17.
These assumptions are required in order to make stronger causal statements,
but neither the assumptions, data, nor model can prove that the underlying
theory is causally correct. Things like random assignment, sampling, a complex
model and good data can possibly help the situation, but they can’t save you
from a fundamental misunderstanding of the problem, or data that may still
be consistent with that misunderstanding. Nothing about employing a causal
model inherently makes better predictions either.

Causal modeling is hard, and most of the difficulty lies outside of the realm of
models and data. The model implemented reflects the causal theory, which can
be a correct or incorrect idea about how the world works. In the end, the main
thing is that when we want to make causal statements, we’ll make do with
what data we have, and be careful that we rule out some of the other obvious
explanations and issues. The better we can control the setting, or the better
we can do things from a modeling standpoint, the more confident we can be
in making causal claims. Causal modeling is really an exercise in reasoning,
which makes it such an interesting endeavor!

16Mediation/moderation are special applications of structural equation modeling.
17Gentle reminder that making an assumption does not mean the assumption is correct,

or even provable.

13.8 Guided Exploration 375

13.7.1 The common thread
Engaging in causal modeling may not even require you to learn any new models,
but you will typically have to do more to be able to make causal statements.
The key is to think about the problem in a different way, and to be more
clear and careful about the assumptions you are making. You may need to do
more work to ensure that your data and chosen model are consistent with the
assumptions you are making.

13.7.2 Choose your own adventure
From here you might revisit some of the previous models and think about how
you might use them to answer a causal question. You might also look into
some of the other models we’ve mentioned here and see how they are used in
practice via the additional resources.

13.7.3 Additional resources
We have only scratched the surface here, and there is a lot more to learn. Here
are some resources to get you started:

• Causal Inference in R, Barrett, McGowan, and Gerke (2024)18

• Causal Inference The Mixtape, Cunningham (2023)
• Causal Inference for the Brave and True, Facure Alves (2022)
• Applied Causal Inference Powered by ML and AI,Chernozhukov et al. (2024)
• Metalearners for estimating heterogeneous treatment effects using machine

learning, Künzel et al. (2019)
• The C-Word, Hernán (2018)

13.8 Guided Exploration
If you look into causal modeling, you’ll find mention of problematic covariates
such as colliders or confounders. We’ve talked about confounders already.
A collider is a variable that is caused by two other variables, and when
you condition on it, it can induce a spurious relationship between those two
variables.

In this exercise, we’ll look at a simple example of a collider in the manner we
did the confounder. First, run the available code to see what you get. Then,

18Malcolm Barrett was kind enough to give us a review of the content in this chapter, and
their text was a great resource for much of it. As a result, it’s much better than it would
have been, and we definitely recommend it for a more in-depth look at causal inference.
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attempt to incorporate the simulation approach we used for the confounder
example (Section 13.5.1), and change some of the relevant coefficients around.

Python

import numpy as np

import pandas as pd

from sklearn.linear_model import LinearRegression

# Set seed for reproducibility

np.random.seed(42)

# Generate synthetic data

n = 2500

x = np.random.normal(size=n) # the feature

y = np.random.normal(size=n) # the target (no relation to x)

z = x + y + np.random.normal(size=n) # the collider

data = pd.DataFrame({'x': x, 'y': y, 'z': z})

# Fit linear models

model_without_z = LinearRegression().fit(data[['x']], data['y'])

model_with_z = LinearRegression().fit(data[['x', 'z']], data['y'])

# Compare x coefficients

pd.DataFrame({

'estimate_1': model_without_z.coef_[0],

'estimate_2': model_with_z.coef_[0]

}, index=['x']).round(3)

R

# Set seed for reproducibility

library(tidyverse)

set.seed(42)

# Generate synthetic data

n = 2500

x = rnorm(n) # the feature

y = rnorm(n) # the target (no relation to x)

z = x + y + rnorm(n) # the collider

data = tibble(x = x, y = y, z = z)
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# Fit linear models

model_without_z = lm(y ~ x, data = data)

model_with_z = lm(y ~ x + z, data = data)

# Compare x coefficients

tibble(

estimate_1 = coef(model_without_z)['x'],

estimate_2 = coef(model_with_z)['x']

)



https://taylorandfrancis.com


14
Dealing with Data

It’s an inescapable fact that models need data to work. One of the dirty secrets
in data science is that getting the data right will do more for your model than
any fancy algorithm or hyperparameter tuning. Data is messy, and there are a
lot of ways it can be messy. In addition, dealing with a target variable on its
terms can lead to more interesting results. In this chapter we’ll discuss some
of the most common data issues and things to consider. There’s a lot to know
about data before you ever get into modeling it, so we’ll give you some things
to think about in this chapter.

14.1 Key Ideas
• Data transformations can provide many modeling benefits.
• Label and text-based data still needs a numeric representation, and this can

be accomplished in a variety of ways.
• The data type for the target may suggest a particular model but does not

necessitate one.
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• The data structure, for example, temporal, spatial, censored, etc., may suggest
a particular modeling domain to use.

• Missing data can be handled in a variety of ways, and the simpler approaches
are typically not great.

• Class imbalance is a very common issue in classification problems, and there
are a number of ways to deal with it.

• Latent variables are everywhere!

14.1.1 Why this matters
Knowing your data is one of the most important aspects of any application of
data science. It’s not just about knowing what you have, but also what you can
do with it. The data you have will influence the models you can potentially
use, the features you can create and manipulate, and have a say on the results
you can expect.

14.1.2 Helpful context
We’re talking very generally about data here, so not much background is
needed. The models mentioned here are covered in other chapters, or build
upon those, but we’re not doing any actual modeling here.

14.2 Feature and Target Transformations
Transforming variables from one form to another provides several benefits in
modeling, whether applied to the target, features, or both. Transformation
should be used in most model situations. Just some of these benefits include:

• More comparable feature effects and related parameters
• Faster estimation
• Easier convergence
• Helping with heteroscedasticity

For example, just centering features, i.e., subtracting their respective means,
provides a more interpretable intercept that will fall within the actual range
of the target variable in a standard linear regression. After centering, the
intercept tells us what the value of the target variable is when the features
are at their means (or reference value if categorical). Centering also puts the
intercept within the expected range of the target, which often makes for easier
parameter estimation. So even if easier interpretation isn’t a major concern,
variable transformations can help with convergence and speed up estimation,
so can always be of benefit.
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14.2.1 Numeric variables
The following table shows the interpretation of some very common transfor-
mations applied to numeric variables: logging, and standardizing to mean
zero, standard deviation of one1. Note that for logging, these are approximate
interpretations.

Table 14.1: Common Numeric Transformations

Target Feature Change in X Change in Y
y x 1 unit B unit
log(y) x 1 unit 100 * (exp(B) -1)%
log(y) log(x) 1% change B%
y scale(x) 1 standard deviation B unit
scale(y) scale(x) 1 standard deviation B standard deviation

For example, it is very common to use standardized or scaled variables.
Some also call this normalizing, as with batch or layer normalization in
deep learning, but this term can mean a lot of things, so one should be clear
in their communication. If 𝑦𝑦 and 𝑥𝑥 are both standardized, a one-unit (i.e., one
standard deviation) change in 𝑥𝑥 leads to a 𝛽𝛽 standard deviation change in
𝑦𝑦. So, if 𝛽𝛽 was .5, a standard deviation change in 𝑥𝑥 leads to a half standard
deviation change in 𝑦𝑦. In general, there is nothing to lose by standardizing, so
you should employ it often.

Another common transformation, particularly in machine learning, ismin-max
scaling. This involves changing variables to range from a chosen minimum
value to a chosen maximum value, and usually this means zero and one
respectively. This transformation can make numeric and categorical indicators
more comparable, or at least put them on the same scale for estimation
purposes, and so can help with convergence and speed up estimation. The
following demonstrates how we can employ such approaches.

Python

When using sklearn, it’s a bit of a verbose process to do such a simple trans-
formation. However, it is beneficial when you want to do more complicated
things, especially when using data pipelines.

1Scaling to a mean of zero and standard deviation of one is not the only way to scale
variables. You can technically scale to any mean and standard deviation you want, but in
tabular data settings you will have different and possibly less interpretability, and you may
lose something in model estimation performance (convergence). For deep learning, the actual
normalization may be adaptive applied across iterations.
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from sklearn.preprocessing import StandardScaler, MinMaxScaler

import numpy as np

# Create a random sample of integers

data = np.random.randint(low=0, high=100, size=(5, 3))

# Apply StandardScaler

scaler = StandardScaler()

scaled_data = scaler.fit_transform(data)

# Apply MinMaxScaler

minmax_scaler = MinMaxScaler()

minmax_scaled_data = minmax_scaler.fit_transform(data)

R

R makes it easy to do simple transformations like standardization and logs
without external packages, but you can also use tools like recipes and mlr3
pipeline operations when needed to make sure your preprocessing is applied
appropriately.

# Create a sample dataset

data = matrix(sample(1:100, 15), nrow = 5)

# Standardization

scaled_data = scale(data)

# Min-Max Scaling

minmax_scaled_data = apply(data, 2, function(x) {

(x - min(x)) / (max(x) - min(x))

})

Using a log transformation for numeric targets and features is straightforward
and comes with several benefits. For example, it can help with heteroscedas-
ticity, which is when the variance of the target is not constant across the
range of the predictions2. It can also help to keep predictions positive after
transformation, allows for interpretability gains, and more.

2For the bazillionth time, logging does not make data ‘normal’ so that you can meet your
normality assumption in linear regression.
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Figure 14.1: Log transformation and heteroscedasticity.

One issue with logging is that it is not a linear transformation. While this
can help capture nonlinear feature-target relationships, it can also make some
post-modeling transformations less straightforward. Also if you have a lot of
zeros, ‘log plus one’ transformations are not going to be enough to help you
overcome that hurdle3. Logging also won’t help much when the variables in
question have few distinct values, like ordinal variables, which we’ll discuss
later in Section 14.2.3.

INFO Categorizing Continuous Variables

It is rarely a good idea or necessary to transform a numeric feature
or target to a categorical one. Doing so potentially throws away useful
information by making the feature a less reliable measure of the under-
lying construct. For example, discretizing age to ‘young’ and ‘old’ does
not help your model, and you can always get predictions for what you
would consider ‘young’ and ‘old’ after the fact. It is extremely common
to see, particularly in machine learning contexts when applied to target
variables. The main reason appears to be just so that a classification

3That doesn’t mean you won’t see many people try (and fail).
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approach can be used. But it’s just not a statistically or practically sound
thing to do, and can ultimately hinder interpretation.
One caveat to discretizing continuous variables is in very large data
situations where it is applied to features or parameters, and is often done
to speed up estimation or provide computational benefits. In the long
run, the desired results will be similar to using the original continuous
values. For example, this principle is at the heart of quantization,
which is a common approach in deep learning that reduces the precision
of values (like converting 32-bit floating points to 8-bit integers) to
improve computational efficiency while maintaining acceptable model
performance.

14.2.2 Categorical variables
Despite their ubiquity in data, we can’t analyze raw text information as it is.
Character strings, and labeled features like factors, must be converted to a
numeric representation before we can analyze them. For categorical features,
we can use something called effects coding to test for specific types of group
differences. Far and away the most common type is called dummy coding or
one-hot encoding4, which we visited previously in Section 3.5.2. In these
situations we create columns for each category, and the value of the column
is 1 if the observation is in that category, and 0 otherwise. Here is a one-hot
encoded version of the season feature that was demonstrated previously.

Table 14.2: One-Hot Encoding

seasonFall seasonSpring seasonSummer seasonWinter season
1 0 0 0 Fall
1 0 0 0 Fall
1 0 0 0 Fall
1 0 0 0 Fall
0 0 1 0 Summer
0 0 1 0 Summer
1 0 0 0 Fall
0 0 1 0 Summer
0 0 0 1 Winter

4Note that one-hot encoding can refer to just the 1/0 coding for all categories, or to the
specific case of dummy coding where one category is dropped. Make sure the context is clear.
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INFO Dummy Coding Explained

For statistical models, when doing one-hot encoding all relevant infor-
mation is incorporated in k-1 groups, where k is the number of groups,
so one category will be dropped from the model matrix. This dropped
category is called the reference. In a standard linear model, the inter-
cept represents the mean of the target for the reference category. The
coefficients for the other categories are the difference between the mean
for the reference category and the group mean of the category being
considered.
As an example, in the case of the season feature, if the dropped category is
winter, the intercept tells us the mean rating for winter, and the coefficients
for the other categories are the difference between the value for winter

and the mean of the target for fall, summer and spring.
In other models, we include all categories in the model. The model learns
how to use them best and might only consider some or one of them at a
time.

When we encode categories for statistical analysis, we can summarize their
impact on the target variable in a single result for all categories. For a model
with only categorical features, we can use an ANOVA (Section 3.5.2) for this.
But a similar approach can also be used for mixed models, splines, and other
models to summarize categorical, spline, and other effects. Techniques like
SHAP also provide a way to summarize the total effect of a categorical feature
(Section 5.7).

Text embeddings

When it comes to other string representations like sentences and paragraphs,
we can use other methods to represent them numerically. One important way
to encode text is through an embedding. This is a way of representing the
text as a vector of numbers, at which point the numeric embedding feature is
used in the model like any other. The way to do this usually involves a model
or a specific part of the model’s architecture, one that learns the best way to
represent the text or categories numerically. This is commonly used in deep
learning, and natural language processing in particular. However, embeddings
can also be used as a preprocessing step in any modeling situation.

To understand how embeddings work, consider a one-hot encoded matrix
for a categorical variable. This matrix then connects to a hidden layer of a
neural network. The weights learned for that layer are the embeddings for
the categorical variable. While this isn’t the exact method used (there are
more efficient methods that don’t require the actual matrix), the concept is
the same. In addition, we normally don’t even use whole words. Instead, we
break the text into smaller units called tokens, like characters or subwords,
and then use embeddings for those units. Tokenization is used in many of the
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most successful models for natural language processing, including those such
as ChatGPT.

Figure 14.2: Conceptual example of an embedding.

Multiclass targets

We’ve talked about and demonstrated models with binary targets, but what
about when there are more than two classes? In statistical settings, we can use
a multinomial regression, which is a generalization of (binomial) logistic
regression to more than two classes via the multinomial distribution. Depending
on the tool, you may have to use a multivariate target of the counts, though
most commonly they would be zeros and ones for a classification model, which
then is just a one-hot encoded target. The following table demonstrates how
this might look.

Table 14.3: Multinomial Data Example

x1 x2 target Class A Class B Class C
−0.61 2 A 1 0 0
−0.20 1 C 0 0 1
−0.27 7 C 0 0 1
−0.47 5 B 0 1 0
0.70 7 A 1 0 0

With Bayesian tools, it’s common to use the categorical distribution, which
is a different generalization of the Bernoulli distribution to more than two
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classes. Unlike the bi/multinomial distribution, it is not a count distribution,
but an actual distribution over discrete values.

In the machine learning context, we can use a variety of models we’d use
for binary classification. How the model is actually implemented will depend
on the tool, but one of the more popular methods is to use one-vs.-all or
one-vs.-one strategies, where you treat each class as the target in a binary
classification problem. In the first case of one vs. all, you would have a model
for each class that predicts whether an observation is in that class versus the
other classes. In the second case, you would have a model for each pair of
classes. You should generally be careful with either approach if interpretation
is important, as it can make the feature effects very difficult to understand. As
an example, we can’t expect feature X to have the same effect on the target in
a model for class A vs. B, as it does in a model for class A vs. (B & C) or A
& C. As such, it can be misleading when the models are conducted as if the
categories are independent.

Regardless of the context, interpretation is now spread across multiple target
outputs, and so it can be difficult to understand the overall effect of a feature on
the target. Even in the statistical model setting (e.g., a multinomial regression),
you now have coefficients that regard relative effects for one class versus a
reference group, and so they cannot tell you a general effect of a feature on
the target. This is where tools like marginal effects and SHAP can be useful
(Chapter 5).

Multilabel targets

Multilabel targets are a bit more complicated and are not as common as
multiclass targets. In this case, each observation can have multiple labels. For
example, if we wanted to predict genre based on the movie review data, we
could choose to allow a movie to be both a comedy and action film, a sci-fi
horror, or a romantic comedy. In this setting, labels are not mutually exclusive.
If there are not too many unique label settings, we can treat the target as we
would other multiclass targets. But if there are many, we might need to use a
different model to go about things more efficiently.

INFO Categorical Objective Functions

In many situations where you have a categorical target, you will use
a form of cross-entropy loss for the objective function. You may see
other names such as log loss or logistic loss or negative log-likelihood
depending on the context, but usually it’s just a different name for the
same underlying objective.
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14.2.3 Ordinal variables
So far in our discussion of categorical data, the categories are assumed to
have no order. But it’s quite common to have labels like “low”, “medium”,
and “high”, or “very bad”, “bad”, “neutral”, “good”, “very good”, or are a
few numbers, like ratings from 1 to 5. Ordinal data is categorical data that
has a known ordering, but which still has arbitrary labels. Let us repeat that,
ordinal data is categorical data.

Ordinal features

The simplest way to treat ordinal features is as if they were numeric. If you do
this, then you’re just pretending that it’s not categorical. In practice this is
usually fine for features. Most of the transformations we mentioned previously
aren’t going to be as useful, but you can still use them if you want. For
example, logging ratings 1-5 isn’t going to do anything for you model-wise, but
it technically doesn’t hurt anything. You should know that typical statistics
like means and standard deviations don’t really make sense for ordinal data,
so the main reason for treating them as numeric is for modeling convenience.

If you choose to treat an ordinal feature as categorical, you can ignore the
ordering and do the same as you would with categorical data. This would
allow for some nonlinearity since the category means will be whatever they
need to be. There are some specific techniques to coding ordinal data for use
in linear models, but they are not commonly used, and they generally aren’t
going to help the model performance or interpreting the feature, so we do not
recommend them. You could, however, use old-school effects coding that you
would incorporate traditional ANOVA models, but again, you’d need a good
reason to do so5.

The take-home message for ordinal features is generally simple. Treat them as
you would numeric features or non-ordered categorical features. Either is fine.

Ordinal targets

Ordinal targets, on the other hand, can be trickier to deal with. If you treat
them as numeric, you’re assuming that the difference between 1 and 2 is the
same as the difference between 2 and 3, and so on. This is probably not true.
You are also ignoring how predictions are bounded by the observed values. If
you treat them as categorical and use standard models for that setting, you’re
assuming that there is no connection between categories. So what should you
do?

There are a number of ways to model ordinal targets, but probably the most
common is the proportional odds model. This model can be seen as a
generalization of the logistic regression model, and is very similar to it, and

5Try Helmert coding for instance! No, don’t do that.
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actually identical if you only had two categories. It basically is a model of
category (2 or higher) vs. category 1, (3 or higher) vs. (2 or 1), etc. Basically
you can think of it as subsequent binary model settings, but which you assume
the feature effects are constant across settings. But other models beyond
proportional odds that relax the assumptions are also possible. As an example,
one approach would concern subsequent categories, the 1-2 category change,
the 2-3 category change, and so on.

As an example, here are predictions from an ordinal model. In this case, we
categorize6 rounded movie ratings as 2 or less (Low), 3 (Average), or 4 or
more (High), and predict the probability of each category based on the release
year of the movie. So we get three sets of predicted probabilities, one for each
category. In this example, we see that the probability of a movie being rated 4
or more has increased over time, while the probability of a movie being rated
2 or less has decreased. The probability of a movie being rated 3 has remained
relatively constant, and is most likely.
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Proportional Odds Model for Rating by Release Year

Predicted Probability (as percentage) of a rounded rating score: 2 or less (Low), 3 (Average) or 4 or more (High).

Figure 14.3: Proportional odds model for rating by release year.

Ordinality of a categorical outcome is largely ignored in machine learning ap-
plications. The outcome is either treated as numeric or multiclass classification.

6This is just for demonstration purposes. You should not categorize a continuous variable
unless you have a very good reason to do so.
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This is not necessarily a bad thing, especially if prediction is the primary goal.
But if you need a categorical prediction, treating the target as numeric means
you have to make an arbitrary choice to classify the predictions. And if you
treat it as multiclass, you’re ignoring the ordinality of the target, which may
not work as well in terms of performance.

Rank data

Though ranks are ordered, with rank data we are referring to cases where the
observations are uniquely ordered. An ordinal vector of 1-6 with numeric labels
could be something like [2, 1, 1, 3, 4, 2], where no specific value is required and
any value could be repeated. In contrast, rank data would be [2, 1, 3, 4, 5, 6],
each being unique (unless you allow for ties). For example, in sports, a ranking
problem would regard predicting the actual finish of the runners. Assuming
you have a modeling tool that actually handles this situation, the objective will
be different from other scenarios. Statistical modeling methods include using
the Plackett-Luce distribution (or the simpler variant Bradley-Terry model).
In machine learning, you might use so-called learning to rank methods, like the
RankNet and LambdaRank algorithms, and other variants for deep learning
models.

14.3 Missing Data

Table 14.4: Data with Missing Values

x1 x2 x3
4 0 ?
7 3 B
? 5 A
8 ? B
? 3 C

Missing data is a common challenge in data science, and there are a number
of ways to deal with it, usually by substituting, or imputing, the substituted
value for the missing one. Here we’ll provide an overview of common techniques
to deal with missing data.

14.3.1 Complete case analysis
The first way to deal with missing data is the simplest – complete case
analysis. Here we only use observations that have no missing data and drop
the rest. Unfortunately, this can lead to a lot of lost data, and it can lead to
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biased statistical results if the data is not missing completely at random
(missingness is not related to the observed or unobserved data). There are
special cases of some models that by their nature can ignore the missingness
under an assumption of missing at random (missingness is not related to the
unobserved data), but even those models would likely benefit from some sort of
imputation. If you don’t have much missing data though, dropping the missing
data is fine for practical purposes7. How much is too much? Unfortunately
that depends on the context, but if you have more than 10% missing, you
should probably be looking at alternatives.

14.3.2 Single value imputation
Single value imputation involves replacing missing values with a single
value, such as the mean, median, mode or some other typical value of the
feature. As common an approach as this is, it will rarely help your model for
a variety of reasons. Consider a numeric feature that is 50% missing, and for
which you replace the missing with the mean. How good do you think that
feature will be when at least half the values are identical? Whatever variance
it normally would have and share with the target is probably reduced, and
possibly dramatically. Furthermore, you’ve also attenuated correlations it has
with the other features, which may mute other modeling issues that you would
otherwise deal with in some way (e.g., collinearity), or cause you to miss out
on interactions.

Single value imputation makes perfect sense if you know that the missingness
should be a specific value, like a count feature where missing means a count
of zero. If you don’t have much missing data, it’s unlikely this would have
any real benefit over complete case analysis. One exception is the case where
imputing the feature then allows you to use all the other complete feature
samples that would otherwise be dropped. But then, you could just drop this
less informative feature while keeping the others, as it will often not be very
useful in the model.

14.3.3 Model-based imputation
Model-based imputation is more complicated but can be very effective. In
essence, you run a model for complete cases in which the feature with missing
values is now the target, and all the other features and primary target are used
to predict it. You then use that model to predict the missing values, using
the predictions as the imputed values. After these predictions are made, you

7While many statisticians will possibly huff and puff at the idea of dropping data, there
are two things to consider. With minimal missingness you’ll likely never come to a different
conclusion unless you have very little data to come to a conclusion about, which is already
the bigger problem. Secondly, it’s impossible to prove one way or another if the data is
missing at random, because doing so would require knowing the missing values.
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move on to the next feature and do the same. There are no restrictions on
which model you use for which feature. If the other features in the imputation
model also have missing data, you can use something like mean imputation to
get more complete data if necessary as a first step, and then when their turn
comes, impute those values.

Although the implication is that you would have one model per feature and
then be done, you can do this iteratively for several rounds, such that the
initial imputed values are then used in subsequent model rounds to reimpute
other features’ missing values. You can do this as many times as you want, but
the returns will diminish. In this setting, we are assuming you’ll ultimately
end with a single imputed value for each missing one, which reflects the last
round of imputation.

14.3.4 Multiple imputation
Multiple imputation (MI) is a more complicated technique, but it can be
very useful in some situations, depending on what you’re willing to sacrifice
for having better uncertainty estimates. The idea is that you create multiple
imputed datasets, each of which is based on the predictive distribution
of the model used in model-based imputation (see Section 4.4). Say we use
a linear regression assuming a normal distribution to impute feature A. We
would then draw repeatedly from the predictive distribution of that model to
create multiple datasets with (randomly) imputed values for feature A.

Let’s say we do this 10 times, and we now have 10 imputed datasets, each
with a now complete feature A, but each with somewhat different imputed
values. We now run our desired model on each of these datasets. Final model
results are averaged in some way to get final parameter estimates. Doing so
acknowledges that your single imputation methods have uncertainty in those
imputed values, and that uncertainty is incorporated into the final model
estimates, including the uncertainty in those estimates.

MI can in theory handle any source of missingness and can be a very powerful
technique. But it has some drawbacks that are often not mentioned, but which
everyone that’s used it has experienced. One is that you need a specified
target distribution for all imputation models used, in order to generate random
draws with appropriate uncertainty. Your final model presumably is also a
probabilistic model with coefficients and variances you are trying to estimate
and understand. MI probably isn’t going to help boosting or deep learning
models that have native methods for dealing with missing values, or at least,
offers little over single value imputation for those approaches. In addition, if
you have very large data and a complicated model, you could be spending a
long time both waiting for the models and debugging them, because you still
would need to assess the imputation models much like any other for the most
part. Finally, few data or post-model processing tools that you commonly use
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14.3.4 Multiple imputation
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imputed datasets, each of which is based on the predictive distribution
of the model used in model-based imputation (see Section 4.4). Say we use
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would then draw repeatedly from the predictive distribution of that model to
create multiple datasets with (randomly) imputed values for feature A.
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results are averaged in some way to get final parameter estimates. Doing so
acknowledges that your single imputation methods have uncertainty in those
imputed values, and that uncertainty is incorporated into the final model
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everyone that’s used it has experienced. One is that you need a specified
target distribution for all imputation models used, in order to generate random
draws with appropriate uncertainty. Your final model presumably is also a
probabilistic model with coefficients and variances you are trying to estimate
and understand. MI probably isn’t going to help boosting or deep learning
models that have native methods for dealing with missing values, or at least,
offers little over single value imputation for those approaches. In addition, if
you have very large data and a complicated model, you could be spending a
long time both waiting for the models and debugging them, because you still
would need to assess the imputation models much like any other for the most
part. Finally, few data or post-model processing tools that you commonly use
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will work with MI results, especially those regarding visualization. So you will
have to hope that whatever package you use for MI will do what you need. As
an example, you’d have to figure out how you’re going to impute interaction
or spline terms if you have them.

Practically speaking, MI takes a lot of effort to often come to the same
conclusions you would have with a single imputation method, or possibly fewer
conclusions for anything beyond GLM coefficients and their standard errors.
But if you want the best uncertainty estimates for those models, MI can be
the way to go.

14.3.5 Bayesian imputation
One final option is to run a Bayesian model where the missing values are treated
as parameters to be estimated, and they would have priors just like other
parameters as well. MI is basically a variant of Bayesian imputation that can
be applied to the non-Bayesian model setting, so why not just use the actual
Bayesian approach? Some modeling packages can allow you to try this very
easily, and it can be very effective. But it is also very computationally intensive
and can be very slow as you may be increasing the number of parameters to
estimate dramatically. At least it would be more fun than standard MI, so we
recommend exploring it if you were going to do MI anyway.

14.4 Class Imbalance
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Figure 14.4: Class imbalance.
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Class imbalance refers to the situation where the target variable has a large
difference in the number of observations in each class. For example, if you
have a binary target, and 90% of the observations are in one class, and 10% in
the other, you would have class imbalance. You’ll almost never see a 50/50
split in the real world, but the issue is that as we move further away from
that point, we can start to see problems in model estimation, prediction, and
interpretation. In this example, if we just predict the majority class in a binary
classification problem, our accuracy would be 90%! Under other circumstances
that might be a great result for accuracy, but in this case it’s not. So right off
the bat one of our favorite metrics to use for classification models isn’t going
to help us much.

For classification problems, class imbalance is the rule, not the exception. This
is because nature just doesn’t sort itself into nice and even bins. The majority
of people in a random sample do not have cancer, the vast majority of people
have not had a heart attack in the past year, most people do not default on
their loans, and so on.

There are a number of ways to help deal with class imbalance, and the method
that works best will depend on the situation. Some of the most common are:

• Use different metrics: Use metrics that are less affected by class imbalance,
such as area under a receiver operating characteristic curve (AUC), or those
that balance the tradeoff between precision and recall, like the F1 score, or
something like the balanced accuracy score, which balances recall and true
negative rate.

• Oversampling/Undersampling: Randomly sample from the minority
(majority) class to increase (decrease) the number of observations in that
class. For example, we can randomly sample with replacement from the
minority class to increase the number of observations in that class. Or we
can take a sample from the majority class to balance the resulting dataset.

• Weighted objectives: Weight the loss function to give more weight to the
minority class. Although commonly employed, and simple to implement with
tools like lightgbm and xgboost, it often fails to help and can cause other
issues.

• Thresholding: Change the threshold for classification to be more sensitive
to the minority class. Nothing says you have to use 0.5 as the threshold for
classification, and you can change it to be more sensitive to the minority
class. This is a very simple approach and may be all you need.

These are not necessarily mutually exclusive. For example, it’s probably a good
idea to switch your focus to a metric besides accuracy even as you employ
other techniques to handle imbalance. See (Clark 2025).
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14.4.1 Calibration issues in classification
Probability calibration is often a concern in classification problems. It is a
bit more complex of an issue than just having class imbalance but is often
discussed in the same setting. Having calibrated probabilities refers to the
situation where the predicted probabilities of the target match up well to the
actual proportion of observed classes. For example, if a model predicts an
average 0.5 probability of loan default for a certain segment of the samples,
the actual proportion of defaults should be around 0.5.

One way to assess calibration is to use a calibration curve, which is a
plot of the predicted probabilities vs. the observed proportions. We bin our
predicted probabilities, say, into 5 or 10 equal bins. We then calculate the
average predicted probability and the average observed proportion of the target
in each bin. If the model is well calibrated, the points should fall along the
45-degree line. If not, the points will fall above or below the line.

In Figure 14.5, one model seems to align well with the observed proportions
based on the chosen bins. The other model (dashed line) is not so well calibrated
and is overshooting with its predictions. For example, that model’s average
prediction for the third bin predicts a ~0.5 probability of the outcome, while
the actual proportion is around 0.2.
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Figure 14.5: Calibration plot.

While the issue is an important one, it’s good to keep the issue of calibration
and imbalance separate. As miscalibration implies bias, bias can happen
irrespective of the class proportions, and it can be due to a variety of factors
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related to the model, target, or features. Furthermore, miscalibration is not
inherent to any particular model.

The assessment of calibration in this manner also has a few issues that we
haven’t seen reported in the documentation for it. For one, the observed
‘probabilities’ are proportions based on arbitrarily chosen bins, and there
are multiple ways to choose the bins. The observed values also have some
measurement error and have a natural variability that will partly reflect
sample size8. In addition, these plots are often presented such that observed
proportions are labeled as the ‘true’ probabilities. However, you do not have
the true probabilities, just the observed class labels, so whether your model’s
predicted probabilities match observed proportions is actually a bit of a different
question. The predictions have uncertainty as well, and this will depend on the
model, sample size, and other factors. And finally, the number of bins chosen
can also affect the appearance of the plot in a notable way if the sample size
is small, which is a perceptual issue that can be misleading regardless of the
models in question.

All this is to say that each point in a calibration plot, ‘true’ or predicted, has
some uncertainty with it, and the difference in those values is not formally
tested in any way by a calibration curve plot. Their uncertainty, if it was
actually measured, could even overlap while still being statistically different!
So, if we’re interested in a more rigorous statistical assessment, the differences
between models and the ‘best case scenario’ would need additional steps to
suss out.

Some methods are available to calibrate probabilities if they are deemed
miscalibrated, but they are not commonly implemented in practice and often
involve another model-based technique, with all of its own assumptions and
limitations. It’s also not exactly clear that forcing your probabilities to be on
the line is helping solve the actual modeling goal in any way9. But if you are
interested, you can read more at the sklearn documentation on calibration.

8Note that each bin will reflect the portion of the test set size in this situation. If you
have a small test set, the observed proportions will be more variable, and the calibration
plot will be more variable as well.

9Oftentimes we are only interested in the ordering of the predictions, and not the actual
probabilities. For example, if we are trying to identify the top 10% of people most likely to
default on their loans, we’ll just take the top 10% of predictions, and the actual probabilities
are irrelevant for that goal.
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14.5 Censoring and Truncation
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Figure 14.6: Censoring for time until death.

Sometimes, we just don’t see all the data there is to see. Censoring is one
situation where the target variable is not fully observed. This is common
in techniques where the target is the ‘time to an event’, like death from
a disease, but the event has not yet occurred for some observations in the
data (thankfully!). Specifically this is called right censoring, and is the
most common type of censoring, and depicted in Figure 14.6, where several
individuals are only observed to a certain age and were still alive at that time.
There is also left censoring, where the censoring happens from the other
direction, and data before a certain point is unknown. Finally, there is interval
censoring, where the event of interest occurs within some interval, but the
exact value is unknown.

Survival analysis10 is a common modeling technique in this situation, es-
pecially in fields informed by biostatistics, but you may also be able to keep
things even more simple via something like tobit regression. In the tobit model,
you assume that the target is fully observed, but that the values are censored,
and you model the probability of censoring. This is a common technique in
econometrics, and it allows you to keep a traditional linear model context.

Truncation is a situation where the target variable is only observed if it is
above or below some value, even though we know other possibilities exist. One
of the issues is that default distributional methods assume a distribution that

10Survival analysis is also called event history analysis, and is widely used in biostatistics,
sociology, demography, and other disciplines where the target is the time to an event, such
as death, marriage, divorce, etc.
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is not bounded in the way that the data exhibits. In Figure 14.7, we restrict
our data to 70 and below for practical or other reasons, but typical modeling
methods predicting age would not respect that.

Unobserved

50 60 70 80
Ages

Figure 14.7: Truncation.

You could truncate predictions after the fact, but this is a bit of a hack, and
often results in lumpiness in the predictions at the boundary that is rarely
realistic. Alternatively, Bayesian methods allow you to model the target as a
distribution with truncated distributions, and so you can model the probability
of the target being above or below some value. There are also models such as
hurdle models that might prove useful where the truncation is theoretically
motivated, for example, a zero-inflated Poisson model for count data where
the zero counts are due to a separate process than the non-zero counts.

INFO Censoring vs. Truncation

One way to distinguish censored and truncated data is that censored
data is usually due to some external process such that the target is not
observed, but could be possible (capping reported income at $1 million).
Truncated data, on the other hand, is due to some internal process that
prevents the target from being observed and is often derived from sample
selection (we only want to model non-millionaires). We would not want
predictions past the censored point to be unlikely, but we would want
predictions past the truncated point to be impossible. Trickier still is
that for bounded or truncated distributions that might be applied to
the truncated scenario, such as folded vs. truncated distributions, they
would not result in the same probability distributions even if they can
be applied to the same data situation.
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Figure 14.8: Folded and truncated distributions.

14.6 Time Series

Figure 14.9: Time-series data.

Time series data is any data that incorporates values over a period of time.
This could be something like a state’s population over years, or the max
temperature of an area over days. Time series data is very common in data
science, and there are a number of ways to model such data.
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14.6.1 Time-based targets
As in other settings, when the target is a value that varies over time, the most
common approach is to use a linear model of some kind. Note that while the
target varies over time, the features may be time-varying or not, and it is very
common to have both types of features (e.g., a person’s age vs. the person’s
race/ethnicity).

There are traditional autoregressive models that use the target’s past values
(lags) as features, for example, autoregressive moving average (ARIMA)
models. In this case, the target is a function of its past values, and possibly
the past values of other features. In these models, forecasting, or making
predictions about future values, is the primary goal. Care will have to be taken
to avoid data leakage in the training process, and to use proper standardization
of the data if applicable. In some settings, common transformations such as
logging can be used. In other cases, you may want to use a differencing
approach to make the data stationary, which can be useful for some models.
Differencing is the process of subtracting the previous value from the current
value, and it can be done multiple times to remove trends and seasonality.
Often this is done automatically as part of a hyperparameter search, but it
can be done manually as well. Boosting models using lagged features can also
be used for time series data and can be very effective in many situations.

Longitudinal data11 is a special case of time series data, where the target is a
function of time (e.g., date), but the data is typically grouped in some fashion
and is often of a shorter sequence. An example would be a model for school
performance for students over several semesters, where values are clustered
within students over time. In this case, you can use some sort of time series
regression, though many do not do well with shorter series. Instead, you can
use a mixed model (Section 9.3), where you model the target as a function
of time, but also include a random effect for the grouping variable, in this case,
students. This could, and typically does, include both random intercepts and
slopes for time. This is a very common approach in many domains and can
be very effective in terms of performance as well. Mixed models can also be
used for longer series, where the random effects are based on autoregressive
covariance matrices. In this case, an ARIMA component is added to the linear
model as a random effect to account for the time series nature of the data.
This is fairly common in Bayesian contexts. Generalized additive models also
work well in this setting.

Other models provide additional options for incorporating historical informa-
tion, such as Bayesian methods for marketing data (Section 7.6) or reinforce-
ment learning approaches (Section 12.3). Some models get more complex, like
recurrent neural networks and their generalizations, and were specifically
developed for sequential data. More recently, transformer-based models have

11You may also hear the term panel data in econometrics-oriented disciplines.
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11You may also hear the term panel data in econometrics-oriented disciplines.
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shown promise for time series analysis beyond text. In this area, ‘foundational’
models like TimeGPT, Moirai, Chronos, or TinyTimeMixers have been pro-
posed, though they often require more data than is typically available in many
common settings. In addition, they have not proven to be as effective as simpler
models in many cases12.

So, many models can be found specific to time series targets, and the choice of
model will depend on the data, the questions we want to ask, and the goals we
have. Most traditional models are still linear models, but traditional machine
learning models, like boosting, and many neural network models have been
developed that can handle time series data as well. It may be the case that
you will switch to using different loss functions or metrics with time series
data, such as (symmetric) mean absolute percentage error and scaled errors
(Hyndman and Athanasopoulos (2021)).

INFO Time Series vs. Longitudinal

The primary distinguishing feature for referring to data as ‘time series’
or ‘longitudinal’ is the number of time points, where the latter typically
has relatively few. This is arbitrary though.

14.6.2 Time-based features
When it comes to time-series features, we can apply time-specific transfor-
mations. One technique is the fourier transform, which can be used to
decompose a time series into its component frequencies, much like how we use
PCA (Section 12.2). This can be useful for identifying periodicity in the data,
which can be used as a feature in a model.

In marketing contexts, some perform adstocking with features. This approach
models the delayed effect of features over time, such that they may have their
most important impact immediately, but still can impact the present target
value from past values. For example, a marketing campaign might have the
most significant impact immediately after it’s launched, but it can still influence
the target variable at later time points, albeit more weakly as the distance in
time is extended. Adstocking helps capture this delayed effect without having
to include multiple lagged features in the model. That said, including lagged
features is also an option in this setting. In this case, you would have a feature
for the current time point (t), the same feature for the previous time point
(t-1), the feature for the time point before that (t-2), and so on.

12For example, see Nixtla’s experiments with Amazon’s Chronos vs. a simple combination
of univariate models. NB: Amazon said that the default settings were not very good, and
it would perform much better with different settings, but possibly still would not beat the
simpler model.
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Scaling time features

If you have the year as a feature, you can use it as a numeric feature or as a
categorical feature. If you treat it as numeric, you need to consider what a zero
means. In a linear model, the intercept usually represents the outcome when all
features are zero. But with a feature like year, a zero year isn’t meaningful in
most contexts. To solve this, you can shift the values so that the earliest time
point, like the first year in your data, becomes zero. This way, the intercept
in your model will represent the outcome for this first time point, which is
more meaningful. The same goes if you are using months or days as a numeric
feature. It doesn’t really matter which year/month/day is zero, just that zero
refers to one of the actual time points observed. Shifting your time feature
in this manner can also help with convergence for some types of models. In
addition, you may want to convert the feature to represent decades, or quarters,
or some other time period, to help with interpretation.

Dates and/or times can be a bit trickier. Often you can just split dates out
into year, month, day, etc., and proceed with those as features. In other cases
you’d want to track the time period to assess possible seasonal effects. You
can use something like a cyclic approach (e.g., cyclic spline or sine/cosine
transformation) to get at yearly or within-day seasonal effects. As mentioned,
a fourier transform can also be used to decompose the time series into its
component frequencies for use as model features. Time components like hours,
minutes, and seconds can often be dealt with in similar ways, but you will more
often deal with the periodicity in the data. For example, if you are looking at
hourly data, you may want to consider the 24-hour cycle.

INFO Calendars Are Hard

Weeks are not universal. Some start on Sunday, others Monday. Some
data contexts only consider weekdays. Some systems may have 52 or 53
weeks in a year, and dates may not be in the same week from one year to
the next, etc. So use extra caution when considering weeks as a feature.

Covariance structures

In many cases you’ll have features that vary over time but are not a time-
oriented feature like year or month. For example, you might have a feature that
is the number of people who visited a website over days. This is a time-varying
feature, but it’s not a time metric in and of itself.

In general, we’d like to account for the time-dependent correlations in our data,
and a common way to do so is to posit a covariance structure that accounts
for this in some fashion. This helps us understand how data points are related
to each other over time, and requires us to estimate the correlations between
observations. As a starting point, consider linear regression. In a standard
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means. In a linear model, the intercept usually represents the outcome when all
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point, like the first year in your data, becomes zero. This way, the intercept
in your model will represent the outcome for this first time point, which is
more meaningful. The same goes if you are using months or days as a numeric
feature. It doesn’t really matter which year/month/day is zero, just that zero
refers to one of the actual time points observed. Shifting your time feature
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component frequencies for use as model features. Time components like hours,
minutes, and seconds can often be dealt with in similar ways, but you will more
often deal with the periodicity in the data. For example, if you are looking at
hourly data, you may want to consider the 24-hour cycle.

INFO Calendars Are Hard

Weeks are not universal. Some start on Sunday, others Monday. Some
data contexts only consider weekdays. Some systems may have 52 or 53
weeks in a year, and dates may not be in the same week from one year to
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and a common way to do so is to posit a covariance structure that accounts
for this in some fashion. This helps us understand how data points are related
to each other over time, and requires us to estimate the correlations between
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linear regression model, we assume that the samples are independent of one
another, with a constant variance and no covariance.

Instead, we can also use something like a mixed model, where we include
a random effect for each group and estimate the variance attributable to the
grouping effect. By default, this ultimately assumes a constant correlation from
time point to time point, but many tools allow you to specify a more complex
covariance structure. A common method is to use autoregressive covariance
structure that allows for correlations further apart in time to lessen. In this
sense the covariance comes in as an added random effect, rather than being a
model in and of itself as with ARIMA. Many such approaches to covariance
structures are special cases of Gaussian processes, which are a very general
technique to model time series, spatial, and other types of data.
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Figure 14.10: AR (1) covariance structure visualized.
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14.7 Spatial Data

Figure 14.11: Spatial weighting applied to the Dallas-Fort Worth area census
tracts.

We visited spatial data in a discussion on non-tabular data (Section 12.4.1), but
here we want to talk about it from a modeling perspective, especially within
the tabular domain. Say you have a target that is a function of location, such
as the proportion of people voting a certain way in a county, or the number of
crimes in a city. You can use a spatial regression model, where the target is
a function of location, among other features that may or may not be spatially
oriented. Two approaches already discussed may be applied in the case of
having continuous spatial features, such as latitude and longitude, or discrete
features like county. For the continuous case, we could use a GAM (Section 9.4)
that employs a smooth interaction of latitude and longitude. For the discrete
setting, we can use a mixed model (Section 9.3.2), where we include a random
effect for county.

There are other traditional techniques to spatial regression, especially in the
continuous spatial domain, such as using a spatial lag. In this case, we
incorporate information about the neighborhood of an observation’s location
into the model. An example is shown in the previous visualization that depicts
a weighted mean of neighboring values for different tracts (based on code from
Walker (2023))13. Techniques include CAR (conditional autoregressive), SAR
(spatial autoregressive), BYM, kriging, and more, and these models can be very
effective. They can also be seen as a different form of random effects models
very similar to those used for time-based settings via covariance structures.
They can also be seen as special cases of Gaussian process regression more

13In the book’s print version, darker colors indicate higher values, but in the web version,
red represents larger relative values.
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generally. So don’t let the names fool you, you often will incorporate similar
modeling techniques for both the time and spatial domains.

14.8 Multivariate Targets
Often you will encounter settings where the target is not a single value, but
a vector of values. This is often called a multivariate target in statistical
settings, or just the norm for deep learning. For example, you might be
interested in predicting the number of people who will buy a product, the
number of people who will click on an ad, and the number of people who will
sign up for a newsletter. The main idea is that there is a correlation among
the targets, and you want to take this into account when analyzing them
simultaneously.

One model example we’ve already seen is the case where we have more than
two categories for the target (Section 14.2.2). Some default approaches may
take that input and just do a one-vs.-all, for each category, but this kind
of misses the point. Others will simultaneously model the multiple targets
in some way. On the other hand, it can be difficult to interpret results with
multiple targets. Because of this, you’ll often see results presented in terms of
the respective targets anyway, and often even ignoring parameters specifically
associated with such a model14.

It is also common to have multiple targets in a regression setting, where you
might want to predict multiple outcomes simultaneously. This is sometimes
called multivariate regression and is a common technique in many fields.
In this case, you can use a linear model, but you’ll have to account for the
correlation between the targets. This can be done with amultivariate normal
distribution, where the targets are assumed to be normally distributed, and
the covariance matrix for the targets is estimated rather than just a single
variance value. This is a very common approach and is often used in mixed
models as well, which offer a different way to go about the same model.

In deep learning contexts, the multivariate setting is ubiquitous. For example,
if you want to classify the content of an image, you might have to predict
something like different species of animals, or different types of car models.
In natural language processing, you might want to predict the probability of
different words in a sentence. In some cases, there are even multiple kinds of
targets considered simultaneously! It can get very complex, but often in these

14It was common in social sciences back in the day to run a Multivariate ANOVA, and
then if the result was statistically significant, and mostly because few practitioners knew
what to do with the result, they would run separate ANOVAs for each target.
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settings prediction performance far outweighs the need to interpret specific
parameters, and so it’s a good fit.

14.9 Latent Variables

Figure 14.12: Latent variable model (bifactor).

Latent variables are a fundamental aspect of modeling, and simply put, they
are variables that are not directly observed, but instead are inferred from other
variables. Here are some examples of what might be called latent variables:

• The linear combination of features in a linear regression model is a latent
variable, but usually we only think of it as such before the link transformation
in GLMs (Chapter 8).

• The error term in any model is a latent variable representing all the
unknown/unobserved/unmodeled factors that influence the target (Equa-
tion 3.3).

• The principal components in PCA (Chapter 12).
• The measurement error in any feature or target.
• The factor scores in a factor analysis model or structural equation (visualiza-

tion above).
• The true target underlying the censored values (Section 14.5).
• The clusters in cluster analysis/mixture models (Section 12.2.1).
• The random effects in a mixed model (Section 9.3).
• The hidden states in a hidden Markov model.
• The hidden layers in a deep learning model (Section 11.7).

Though they may be used in different ways, it’s easy to see that latent variables
are very common in modeling, so it’s good to get comfortable with the concept.
Whether they’re appropriate to your specific situation will depend on a variety
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of factors, but they can be very useful in many settings, if not a required part
of the modeling approach.

14.10 Data Augmentation
Data augmentation is a technique where you artificially increase the size of
your dataset by creating new data points based on the existing data. This is
a common technique in deep learning for computer vision, where you might
rotate, flip, or crop images to create new training data. This can help improve
the performance of your model, especially when you have a small dataset.
Conceptually similar techniques are also available for text.

In the tabular domain, data augmentation is less common but still possible.
For example, you can see it applied in class-imbalance settings (Section 14.4),
where you might create new data points for the minority class to balance the
dataset. This can be done by randomly sampling from the existing data points,
or by creating new data points based on the existing data points. For the
latter, SMOTE and many variants of it are quite common (for better or worse;
see Elor and Averbuch-Elor (2022)).

Unfortunately for tabular data, these techniques are not nearly as successful
as augmentation for computer vision or natural language processing, nor
consistently so. Part of the issue is that tabular data is very noisy and fraught
with measurement error, so in a sense, such techniques are just adding noise
to the modeling process without any additional means to amplify the signal15.
Downsampling the majority class can potentially throw away useful information.
Simple random upsampling of the minority class can potentially lead to an
overconfident model that doesn’t generalize well. In the end, the best approach
is to get more and/or better data, but as that often is not possible, hopefully
more successful methods will be developed in the future for the tabular domain.

14.11 Wrapping Up
There’s a lot going on with data before you ever get to modeling, and which
will affect every aspect of your modeling approach. This chapter outlined
common data types, issues, and associated modeling aspects, but in the end,
you’ll always have to make decisions based on your specific situation, and they

15Compare to the image settings where there is relatively little measurement error, by just
rotating an image, you are still preserving the underlying structure of the data.
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will often not be easy ones. These are only some of the things to consider, so
be ready for surprises, and be ready to learn from them!

14.11.1 The common thread
Many of the transformations and missing data techniques can be applied in
diverse modeling settings. Likewise, you may find yourself dealing with different
target variable issues like imbalance or censoring, and dealing with temporal,
spatial or other structures, in a variety of models. The key is to understand the
data well, and to make the best decisions you can based on that knowledge.

14.11.2 Choose your own adventure
Consider revisiting a model covered elsewhere in this book in light of the data
issues discussed here. For example, how might you deal with class imbalance
for a boosted tree model? How would you deal with spatial structure in a
neural network? How would you deal with a multivariate target in a time series
model?

14.11.3 Additional resources
Here are some additional resources to help you learn more about the topics
covered in this chapter.

Transformations

• About Feature Scaling and Normalization (Raschka (2014))
• What are Embeddings (Boykis (2023))

Class Imbalance

• Brief Overview (Google)

• Handling imbalanced datasets in machine learning (Rocca (2019))

• Imbalanced Outcomes: Challenges & Solutions (Clark (2025))

• A Gentle Introduction to Imbalanced Classification (Brownlee (2019))

Calibration

• Why some algorithms produce calibrated probabilities (StackExchange)
• Predicting good probabilities with supervised learning (Niculescu-Mizil and

Caruana (2005))

Survival, Ordinal and Other Models

• Regression Modeling Strategies is a great resource for statistical modeling in
general (Harrell (2015))

• Ordinal Regression Models in Psychology: A Tutorial is a great resource
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by the author of the best Bayesian modeling package brms16 (Bürkner and
Vuorre (2019))

Time Series

• Forecasting: Principles and Practice (Hyndman and Athanasopoulos (2021))

Latent Variables

There’s a ton of stuff, but one of your humble authors has an applied treatment
that is not far from the conceptual approach of this text, along with a bit
more general exploration. However, we’d recommend more of an ‘awareness’ of
latent variable modeling, as you will likely be more interested in the specific
application for your data and model, which can be very different from these
contexts.

• Thinking about Latent Variables (Clark (2018b))

• Graphical and Latent Variable Modeling (Clark (2018a))

Data Augmentation

• What is Data Augmentation? (Amazon (2024))

Other

We always need to inspect the data closely and see if it matches our expectations.
This is a critical part of the modeling process and can often be the most time-
consuming part. There are tools that can help with the validation process, and
to that end, you might look at pointblank in R or y_data_profiling in Python
as options to get started.

16No, we’re not qualifying that statement.
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15
Danger Zone

When it comes to conducting models in data science, a lot can go wrong, and
in many cases it’s easy to get lost in the weeds and lose sight of the bigger
picture. Throughout the book, we’ve covered many instances in which caution
is warranted in the modeling approach.

In this chapter, we’ll more explicitly discuss some common pitfalls that can
sneak up on you when you’re working on a data science project, and others
that just came to mind while we were thinking about it. The topics are based
on things we’ve commonly seen in consulting across many academic disciplines
and industries, and here we attempt to provide a very general overview. That
said, it is by no means exhaustive, and you may come across additional issues
in your situation. The following groups of focus attempt to reflect the content
of the book as it was presented.
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15.1 Linear Models and Related Statistical Endeavors
Statistical models are a powerful tool for understanding the structure and
meaning in your data. They are also excellent at helping us to understand
the uncertainty in our data and the aspects of the model we wish to estimate.
However, there are many ways in which problems can arise with statistical
models.

15.1.1 Statistical significance
One of the most common mistakes when conducting statistical linear models
is simply relying too heavily on the statistical result. Statistical significance
is simply not enough to determine feature importance or model performance.
When complex statistical models are applied to small data, the results are
typically very noisy and statistical significance can be misleading. This also
means that ‘big’ effects can be a reflection of that noise, rather than something
meaningful.

Focusing on statistical significance can lead you down other dangerous paths.
For example, relying on statistical tests of assumptions instead of visualizations
or practical metrics can lead you to believe that your model is valid when it is
not. Using a statistical testing approach to select features can often result in
incorrect choices about feature contributions, as well as poorer models.

A related issue is p-hacking, which occurs when you try many different models,
features, or other aspects of the model until you find one that is statistically
significant. This is a problem because it can reflect spurious results, and make
it difficult to generalize the results of the model (overfitting). It also means
you ignored null results, which can be just as informative as significant ones, a
problem known as the file drawer problem.

15.1.2 Ignoring complexity
While techniques like standard linear/logistic regression and GLMs are valid
and very useful, for many modeling contexts they may be too simple to capture
the complexity of the data generating process, a form of underfitting. On the
other side of the coin, many applications of statistical models ignore model
assessment on a separate dataset, which can lead to overfitting. This makes
generalization of such results more problematic. Those applications typically
use a single model as well, and so they may not be indicative of the best
approach that could be taken. It’d be better to have a few models of varying
complexity to explore.
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15.1.3 Using outdated techniques
If you wanted to go on a road trip, would you prefer a 1973 Ford Pinto or
a Tesla Model S? If you want to browse the web, would you prefer to use
a computer from the 90s and 56k modem, or a modern laptop with a high-
speed internet connection? In both cases, you could potentially get to your
destination or browse the web, but the experience would be much different,
and you would likely have a clear preference1. The same goes with the models
you use for your data analysis.

This is not specific to the statistical linear modeling realm, but there are many
applications of statistical models that rely on outdated techniques, metrics, or
other tools that solve problems that don’t exist anymore. For example, using
stepwise/best subset regression for feature selection is not really viable when
more principled approaches like the lasso are available. Likewise, we can’t really
think of a case where something like MANOVA/discriminant function analysis
would provide the best answer to a data problem, or where a pseudo-R2 metric
would help us understand a model better or make a decision about it.

Statistical analysis has been around a long time, and many of the techniques
that have been developed are still valid, useful, and very powerful. But some
reflect the limitations of the time in which they were developed. Others were an
attempt to take something that was straightforward for simpler settings (e.g.,
linear regression) and apply to settings where it doesn’t make sense (nonlinear,
non-Gaussian, etc.). Even when still valid, there may be better alternatives
available now.

15.1.4 Simpler is not necessarily more interpretable
Standard linear models are often used because of their interpretability, but in
many of these modeling situations, interpretability can be difficult to obtain
without using the same amount of effort one would for more complex models.
Many statistical/linear models employ interactions, or nonlinear feature-target
relationships (e.g., GLM/GAMs). If your goal is interpretability, these settings
can be as difficult to interpret as features in a random forest. They still have
the added benefit of more reliable uncertainty estimation. But you should not
assume you will have a result as simple as a coefficient in a linear regression
just because you didn’t use a deep learning model.

15.1.5 Model comparison
When comparing models, especially in the statistical modeling realm, many will
use a statistical test to compare them. An example would be using an ANOVA
or likelihood ratio test to compare a model with and without interactions.
Unfortunately, this doesn’t actually tell us how the models perform under

1Granted, if it was a Pinto wagon, the choice could be more difficult.
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realistic settings, and it comes with the usual statistical significance issues,
like using an arbitrary threshold for claiming significance. You could basically
claim that one terrible model is statistically better than another terrible model,
but there isn’t much value in that.

Some like to look at R2 to compare models, but it has a lot of problems. People
think it’s more interpretable than other options, yet there is no value of ‘good’
you can universally apply, even in very similar scenarios. It can arbitrarily
increase with the number of features whether they are actually predictive or
not, and it doesn’t tell you how well the model will perform on new data. It can
also simply reflect that you have time-series data, as you are just witnessing
spurious correlations over time. In short, you can use it to get a sense of how
your predictions correlate with the target, but that can be a fairly limited
assessment.

The following plot shows 250 simulations with a sample size of 100 and 40
completely meaningless features used in a linear regression. The R2 values
would all suggest the model is somewhat useful, with an average of ~.4. The
adjusted R2 values average zero, which is correct, but they can only average
that by being negative, which is a meaningless value. Many of the adjusted
values still get into higher areas that would be viable for some domains2.

Figure 15.1: The problem of R2.

Other commonly used metrics, like AIC, might be better in theory for model
comparison. But they approximate the model selection one would get through
cross-validation, so why not just do the cross-validation as due diligence?
Furthermore, as long as you are using those metrics only on the training data,
you probably aren’t getting a good idea of how the model will generalize
(Section 10.4).

2Also, adjusted R2 would not be practically different from R2 except for very small data
situations.
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Other commonly used metrics, like AIC, might be better in theory for model
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INFO Garden of Forking Paths

A common issue in statistical and machine learning modeling is the
garden of forking paths. This is the idea that there are many different
ways to analyze a dataset, and that the results of these analyses can be
very different. When you don’t have a lot of data, or when the data is
complex and the data generating process is not well understood, there
can be a lot of forks that lead to many different models with varying
results. In these cases, the interpretation of a single model from the many
that are actually employed can be misleading and can lead to incorrect
conclusions about the data.

15.2 Estimation
15.2.1 What if I just tweak this…
From traditional statistical models to deep learning, the more you know about
the underlying modeling process, the more apt you are to tweak some aspect
of the model to try and improve performance. When you start thinking about
changing optimizer options, link/activation functions, learning rates, etc., you
can easily get lost in the weeds. This would be okay if you knew ahead of time it
would make a big difference. However, in many, or maybe even most cases, this
sort of tweaking doesn’t improve model results by much, or there are ways to
not have to make the choice in the first place such as through hyperparameter
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15.2.2 Everything is fine
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a ‘production’ setting. For example, the default number of boosting rounds for
xgboost will rarely be adequate3. Again, an appropriately tuned model should
cover your bases.

15.2.3 Just bootstrap it!
When it comes to uncertainty estimation, many common modeling tools
leave that to the user, and when the developers are pressed on how to get
uncertainty estimates, they will often suggest to just bootstrap the result.
While the bootstrap is a powerful tool for inference, it isn’t appropriate just
because you decide to use it. The suggestion to use bootstrapping is often
made in the context of a complex modeling situation where it would be very
(prohibitively) computationally expensive, and in other cases the properties
of the results are not well understood. Other methods of prediction inference,
such as conformal prediction, may be better suited to the task. In general,
if a package developer suggests you bootstrap because their package doesn’t
have any means of uncertainty estimation, you should be cautious. If it’s the
obvious option, it should be included in the package.

While we’re at it, another common suggestion is to use a quantile regression
(Section 9.5) approach to get prediction intervals. This is a valid option in
some cases, but it’s not clear how appropriate it is for complex models or for
certain types of outcomes, and modeling tools for predicting quantiles are not
typically available for a given model implementation.

15.3 Machine Learning
15.3.1 General ML modeling issues
We see a lot of issues with machine learning approaches, and many of them
are the same as those that come up with statistical models, but some are more
unique to the machine learning world. A starting point is that many forget
to create a baseline model, and instead jump right into a complicated model.
This is a problem because it is hard to improve performance if you don’t know
what a good baseline score is. So create that baseline model and iterate from
there.

A related point is that many will jump into machine learning without fully
investigating the data. Standard exploratory data analysis (EDA) is a prereq-
uisite for any modeling and can go a long way toward saving time and effort

3The number is actually dependent on other parameters, like whether early stopping is
used, the number of classes, etc.
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in the modeling process. It’s here you’ll find problematic cases and features,
and can explore ways to deal with it.

When choosing a model or set of models, one should have a valid reason for the
choice. Some less stellar reasons include using a model just because it seems
popular in machine learning. And as mentioned with other types of models,
you want to avoid using older methods that really don’t perform well in most
situations compared to others4.

15.3.2 Classification
Machine learning is not synonymous with a classification problem, but this
point seems to be lost on many. As an example, many will split their target just
so they can do classification, when the target is a more expressive continuous
variable. This is a problem because you are unnecessarily diminishing the
reliability of the target score, and losing information about it. This can lead
to a well-known statistical issue: attenuation of the correlation between
variables, which the following demonstrates.

Python

import numpy as np

import pandas as pd

def simulate_binarize(

N = 1000,

correlation = .5,

num_simulations = 100,

bin_y_only = False

):

correlations = []

for i in range(num_simulations):

# Simulate two variables with the given correlation

xy = np.random.multivariate_normal(

mean = [0, 0],

cov = [[1, correlation], [correlation, 1]],

size = N

)

# binarize on median split

4As we mentioned in the statistical section, many older methods are still valid and useful.
But it’s not clear what would be gained by using things like a basic support vector machine
or knn-regression related to more recently developed or other techniques that have shown
more flexibility.
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if bin_y_only:

x_bin = xy[:, 0]

else:

x_bin = np.where(xy[:, 0] >= np.median(xy[:, 0]), 1, 0)

y_bin = np.where(xy[:, 1] >= np.median(xy[:, 1]), 1, 0)

raw_correlation = np.corrcoef(xy[:, 0], xy[:, 1])[0, 1]

binarized_correlation = np.corrcoef(x_bin, y_bin)[0, 1]

correlations.append({

'sim': i,

'raw_correlation': raw_correlation,

'binarized_correlation': binarized_correlation

})

cors = pd.DataFrame(correlations)

return cors

simulate_binarize(correlation = .25, num_simulations = 5)

R

simulate_binarize = function(

N = 1000,

correlation = .5,

num_simulations = 100,

bin_y_only = FALSE

) {

correlations = list()

for (i in 1:num_simulations) {

# Simulate two variables with the given correlation

xy = MASS::mvrnorm(

n = N,

mu = c(0, 0),

Sigma = matrix(c(1, correlation, correlation, 1),

nrow = 2),

empirical = FALSE

)

# binarize on median split
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if (bin_y_only) {

x_bin = xy[, 1]

} else {

x_bin = ifelse(xy[, 1] >= median(xy[, 1]), 1, 0)

}

y_bin = ifelse(xy[, 2] >= median(xy[, 2]), 1, 0)

raw_correlation = cor(xy[, 1], xy[, 2])

binarized_correlation = cor(x_bin, y_bin)

correlations[[i]] = tibble(

sim = i,

raw_correlation,

binarized_correlation

)

}

cors = bind_rows(correlations)

cors

}

simulate_binarize(correlation = .25, num_simulations = 5)

The following plot shows the case where we only binarize the target variable for
500 simulations. The true correlation between the raw and binarized variables
is .25, .5, or .75, but the correlation in the binarized case is notably less. This
is because the binarization process has removed the correlation between the
variables.

Figure 15.2: Density plots of raw and binarized correlations.
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Common issues with ML classification don’t end here, however. Another
problem is that many will use a simple .5 cutoff for binary classification, when
it is probably not the best choice in most classification settings. Related to
this, many only focus on accuracy as a metric for performance. Others are
more useful in many situations, or just add more information to assess the
model. Each metric has its own pros and cons, so you should evaluate your
model’s performance with a suite of metrics.

15.3.3 Ignoring uncertainty
It is very common in ML practice to ignore uncertainty in predictions or metrics.
This is a problem because there is always uncertainty, and acknowledging that
it exists can help one have better expectations of performance. This is especially
true when you are using a model in a production setting, where the model’s
performance can have real-world consequences.

It is often computationally difficult to get uncertainty estimates for many of
the black-box techniques that are popular in ML. Some might suggest that
there is enough data such that uncertainty is not needed, but this would have
to be demonstrated in some fashion. Furthermore, there is always increased
uncertainty for prediction on new data and for smaller subsets of the population
we might be interested in. In general, there are ways to get uncertainty estimates
for these models, e.g., bootstrapping, conformal prediction, and simulation,
and it is often worth the effort to do so.

15.3.4 Hyperfocus on feature importance
Researchers and businesses often have questions about which features in an ML
model are important. Yet this can be a difficult question to answer, and the
answer is often not practically useful. For example, most models used in ML
are going to have interactions, so the importance of any single feature is likely
going to depend on other features in the model. If you can’t disentangle the
effects of one feature from another, then trying to talk about a single feature’s
relative worth is often a misguided endeavor, even if you use an importance
metric that tries to account for the interaction.

Even if we can deem a variable ‘important’, this doesn’t imply a causal
relationship, and it doesn’t mean that the variable is the best of the features
you have. In addition, other metrics, which might be just as valid, may provide
a different rank ordering of importance.

What’s more, just because an importance metric may deem a feature as not
important, that doesn’t mean it has no effect on the target. It may be that
the feature is correlated with other features that are more important, and so
the metric is just reflecting that. It may also just mean that the importance
metric is not well suited to assessing that particular feature’s contribution.
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As we have seen (Section 5.9), the reality is that multiple valid measures of
importance can come to different conclusions about the relative importance of
a feature, even within the same model setting. One should be very cautious in
how they interpret these.

INFO SHAP for Feature Importance

SHAP values are meant to assess local, i.e., observation level, feature
contributions to a prediction. They are also used as global features of
importance in many ML contexts, even though they are not meant to
be used this way. Doing so can be misleading, and often, average SHAP
values will just reflect the distribution of the feature more than its
importance. SHAP can also be notably inconsistent with other metrics
even in simple settings.

15.3.5 Other common pitfalls
A few other common pitfalls in ML modeling include:

• Forgetting that the data is more important than your modeling technique.
You will almost always get more mileage out of improving your data than
you will out of improving your model.

• Ignoring data leakage. Letting training data leak into the test set. As a simple
example, consider if we use random validation splits with time-based data.
This would allow the model to train with future data it will ultimately be
assessed on. That may be an obvious example, but there are many more subtle
ways this can happen. Data leakage gives your model an unfair advantage
when it is time for testing, leading you to believe that your model is doing
better than it really is.

• Forgetting you will ultimately need to be able to explain your model to
someone else. The only good model is a useful one; if you can’t explain it to
someone, you can’t expect others to trust you with it or your results.

• Assuming that grid search is good enough for all or even most cases. Not
only is it computationally expensive, but you can easily miss valid tuning
parameter values that are outside of the grid. Many other methods are
available that more efficiently search the space and are as easy to implement.

• Thinking deep learning will solve all your problems. If you are dealing with
standard, tabular data, at present deep learning will often just increase com-
putational complexity and time, with no guarantee of increased performance,
and often does notably worse. Hopefully this will change in the future, but
for now, you should not expect major performance gains.

• Comparing models on different datasets. If you run different models on
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separate data, there is no objective way to compare them. As an example,
the accuracy may be higher on one dataset just because the baseline rate is
much higher.

The list goes on. In short, many of the pitfalls in ML modeling are the same as
those in statistical modeling, but there are some unique to or more common in
the ML world. The most important thing to remember is that due diligence is
key when conducting any modeling exercise, and ML doesn’t change that. You
should always be able to explain and defend your model choices and results to
someone else.

15.4 Causal Inference
Causal inference and modeling is hard. Very hard.

15.4.1 The hard work is done before data analysis
The most important part of causal modeling is the conceptualization of the
problem and the general design of the study to answer the specific questions
related to that problem. You have to think very hard about the available
data, what variables may be confounders, which effects may be indirect, and
many other aspects of the process you want to measure. A causal model is the
one you draw up, possibly before you even start collecting data, and it is the
one you use to guide your data collection and ultimately your data modeling
process.

15.4.2 Models can’t prove causal relationships
Causal modeling focuses on addressing issues like confounding, selection bias,
and measurement error, which can skew interpretations about cause and effect.
While predictive accuracy is key in some scenarios, understanding these issues
is crucial for making valid causal claims.

A common mistake in modeling is assuming that a model can prove causality.
You can have a very performant model, but the model results cannot prove
that one variable causes another just because it is highly predictive. There
is also nothing in the estimation process that can magically extract a causal
relationship even if it exists. Reality is even more complex than our models,
and no model can account for every possibility. Causal modeling attempts to
account for some of these issues, but it is limited by our own biases in thinking
about a particular problem.
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Predictive features in a model might reflect a true causal link, act as stand-ins
for one, or merely reflect spurious associations. Conversely, true causal effects
of a feature may not be large, but it doesn’t mean they are unimportant.
Assuming you have done the hard work of developing the causal structure
beforehand, model results can provide more confidence in your ultimate causal
conclusions, and that is very useful, despite lingering uncertainties.

15.4.3 Random assignment is not enough
Many believe experimental design is the gold standard for making causal
claims, and it is certainly a good way to control for various aspects that can
make causal claims difficult. Consider a randomized control trial (RCT) where
you assign people to a treatment or control group. The left panel in Figure 15.3
shows the overall treatment effect, where the main effect would suggest a causal
conclusion of no treatment effect. However, the right panel shows the same
treatment effect across another group factor, and it is clear that the treatment
effect is not the same across groups.

Figure 15.3: Main effect vs. interaction.

So random assignment cannot save us from misunderstanding the causal
mechanisms at play. Other issues to think about are that the treatment may be
implemented poorly, participants may not be compliant, or the treatment may
not even be well defined, and these are not uncommon situations. This comes
back to having the causal structure understood as best as you can before any
analysis.

15.4.4 Ignoring causal issues
Causal modeling is concerned with things like confounding, selection bias,
measurement error, reverse causality and more. These are all issues that can
lead to incorrect causal conclusions. A lot of this can be ignored when predictive
performance is of primary importance, and some can be ignored when we
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are not interested in making causal claims. But when you are interested in
making causal claims, you will have some work to do in order for your model to
help you make said claims, regardless of the modeling technique you choose to
implement. And it doesn’t hurt to be concerned about these issues in noncausal
situations.

15.5 Data
When it comes to data, plenty can go wrong before even starting with any
modeling attempt. Let’s take a look at some issues that can regularly arise.

15.5.1 Transformations
Many models will fail miserably without some sort of scaling or transformation
of the data. A few techniques, like tree-based approaches, do not benefit,
but practically all others do. At the very least, models will converge faster
and possibly be more interpretable. However, you should generally not use
transformations that would lose the expressivity of the data, because as we
noted with binarization (Section 15.3.2), some can do more harm than good.
But you should always consider the need for transformations, and not just
assume that the data is in a form that is ready for modeling.

15.5.2 Measurement error
Measurement error is a common issue in data collection, and it can lead
to biased estimates and reduce our ability to detect meaningful feature-target
relationships. Generally speaking, the reliability of a feature or target is its
ability to measure what it’s supposed to, while measurement error reflects its
failure to do so. There is no perfectly measured variable, and measurement
error can come from a variety of sources and be difficult to assess. But it is
important to try and understand how well your data reflects the construct it is
supposed to. If you can’t correct for a measurement problem, for example, by
finding better data, you should at least be aware of the issue and consider how
they might affect your results. There is a saying about squeezing blood from a
stone, or putting lipstick on a pig, or something like that, and it applies here.
If your data is poor, your model won’t save it.

15.5.3 Simple imputation techniques
Imputation may be required when you have missing data, but it can be done
in ways that don’t help your model. Simple imputation techniques, like using
the mean or modal category, can produce faulty, or at best, noisier, results.
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First you should consider why you want to keep a feature that doesn’t have
a lot of data. Do you even trust the values that are present? If you really
need to impute, use an actual model to do so, but recognize that the resulting
value has uncertainty associated with it. There are practical problems with
implementing techniques to incorporate the uncertainty (Section 14.3.4), so
there is no free lunch there. But at least having a better imputation model
will provide a better guess than a mean, and still better is to use a model that
would handle the missing values natively, like tree-based methods that can
split on the missingness.

15.5.4 Outliers are real!
One common practice in modeling is to drop or modify values considered as
“outliers”. However, extreme values in the target variable are often a natural
part of the data. Assuming there is no actual error in recording them, often, a
simple transformation can address the issue. If extremes persist after modeling,
it indicates that the model is unable to capture the underlying data structure,
rather than an inherent problem with the data itself. Additionally, even values
that may not appear extreme can still have large residuals, so it’s important
not to solely focus on just the most extreme observed values.

In terms of features, extreme values can cause strange effects, but often they
reflect a data problem (e.g., incorrect values) or can be resolved using the
transformations you should already be considering (e.g., taking the log). In
other cases, they don’t really cause any modeling problems at all. And again,
some techniques are fairly robust to feature extremes, like tree-based methods.

15.5.5 Big data isn’t always as big as you think
Consider a model setting with 100,000 samples. Is this large? Let’s say you
have a rare outcome that occurs 1% of the time. This means you have 1000
samples where the outcome label you’re interested in is present. Now consider
a categorical feature (A) that has four categories, and one of those categories
is relatively small, say 5% of the data, or 5000 cases, and you want to interact
it with another categorical feature (B), one whose categories are all equally
distributed. Assuming no particular correlation between the two, you’d be
down to ~1% of the data for the least category of A across the levels of B. Now
if there is an actual interaction effect on the target, some of those interaction
cells may have only a dozen or so positive target values. Odds are pretty good
that you don’t have enough data to make a reliable estimate of that effect
unless it is extremely large.

Oh wait, did you want to use cross-validation also? A simple random CV
approach might result in some validation sets with no positive values in those
interaction groups at all! Don’t forget that you may have already split your
100,000 samples into training and test sets, so you have even less data to start
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with! The following table shows the final cell count for a dataset with these
properties.

Start N Train N A p B p 5cv Final Cell p Cell N Target N in Cell

100, 000 80, 000 0.05 0.25 0.20 0.0025 200 2

The point is that it’s easy to forget that large data can get small very quickly
due to class imbalance, interactions, etc. There is not much you can do about
this, but you should not be surprised when these situations are not very
revealing in terms of your model results.

15.6 Wrapping Up
Though we’ve covered many common issues in modeling here, there are plenty
more ways we can trip ourselves up. The important thing to remember is that
we’re all prone to making and repeating mistakes in modeling. But awareness
and effort can go a long way, and we can more easily avoid these problems
with practice. The main thing is to try and do better each time, and learn
from any mistakes you do make.

15.6.1 The common thread
Many of the issues here are model-agnostic and could creep into any modeling
exercise you undertake.

15.6.2 Choose your own adventure
If you’ve made it through the previous chapters, there’s only one place to go.
But you might revisit some of those in light of the common problems we’ve
discussed here.

15.6.3 Additional resources
Mostly we recommend the same resources we did in the corresponding sections
of the previous chapters. However, a couple of others to consider are:

• Shalizi (2015) (start with the fantastic concluding comment)
• Questionable Practices in Machine Learning (Leech et al. 2024)
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16
Parting Thoughts

As we wrap things up, let’s revisit some of the key points we’ve covered in this
text and talk more about the modeling process in general.

16.1 How to Think About Models
When we first started our discussion of models in data science (Chapter 2),
we talked about how a model is a simplified representation of reality. They
start as ideas based on our intuition or experience, and they can sometimes
be very simple ones. But at some point we start to think of them more
formally, as a step toward testing those ideas in the real world. For statistics,
machine learning, and data science more generally, models are then put into
mathematical equations that give us a common language to reference them by.
This does not have to be complex though. As an example, most of the models
you’ve seen so far can be expressed as follows:

427



428 16 Parting Thoughts

Figure 16.1: Generic model.

In words, this equation says that the target variable 𝑦𝑦 is a function of the
feature inputs 𝑋𝑋, along with anything else that we don’t include in that set.
This is a basic form of a model, and it’s the same for linear regression, logistic
regression, and even random forests and neural networks1.

To aid our understanding beyond the math, we try to visually express models
in a variety of ways2, as in the following images.

Figure 16.2: Logistic Regression Model

1Neural networks are a bit different in that they can be thought of as a series of (typically
nested) functions that are applied to the data, but they can still be expressed in this form
e.g., ℎ(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. The functions are more complex, and the parameters are estimated in a
different way than typical tabular data models, but the basic idea is the same.

2The LDA model depicted from Wikipedia was one of the early machine learning models
for understanding natural language, and in particular to extract topics from text. It was
a lot of fun to play with these, but it took a lot of pre-processing of text to get them to
work at all, and they were performed pretty poorly in practice. That model may look like
something peculiar, but it’s not much more than a flexible PCA on a matrix of word counts,
or from another perspective, a Bayesian multinomial model.
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Figure 16.3: Plate Notation for Latent Dirichlet Allocation

Figure 16.4: Just part of the Nano GPT model

But even now these models are still at the idea stage, and we ultimately need
to see how they work in the world, make predictions, and help us to make
informed decisions. We’ve seen how to do this with linear models of various
forms, and more unusual model implementations in the form of tree-based
models, and even highly complex neural networks. These are the tools that
allow us to take our ideas and turn them into something that can be used to
make decisions, and that’s the real power of using models in data science.
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16.2 More Models
When choosing a model, there’s a lot at your disposal, and we’ve only scratched
the surface of what’s out there. Here are a few more models that you may
encounter in your data science journey:

Statistical Models

In the statistical realm there are many more models that focus on different
target distributions and types. For instance, we might use a beta distribution
for targets between 0 and 1, ordinal logistic regression for ordinal targets, or
survival models for time-to-event outcomes. Some models are field-specific, like
two-stage least squares in econometrics. Beyond these, specific implementations
will be found for time series (ARIMA, state space models), spatial data (kriging,
CAR), and other special target considerations. Most of these models are
essentially linear models with slight modifications.

Nonlinear models are another realm, which are a bit different from the nonlinear
aspects of GLMs, GAMs, or deep learning. These models assume a specific
(nonlinear) functional form and can be used to explore relationships that are
not well captured by standard linear models. Examples range from something
as simple as a polynomial regression or logistic growth model, to more complex
biological and epidemiological models. These approaches are not as flexible as
GAMs, or as predictive as neural networks, but they can potentially be useful
in the right context.

In addition, there are ‘multivariate’ techniques like PCA, factor analysis, and
similar ones which are still pretty widely used. There are also cases where the
primary target is multivariate in nature, meaning a standard regression with
multiple outcomes. These are more common within some areas like economics
and psychology.

Machine Learning

In a purely machine learning context, you may find other models beyond those
just mentioned in the statistical realm. However, as we have mentioned several
times at this point, potentially any model can be used with machine learning,
including statistical models. The machine learning context prioritizes prediction,
and many models used would not usually produce standard statistical output
like coefficients and uncertainty estimates by default. Examples include support
vector machines, k-nearest neighbors regression, and other techniques. Most
of these traditional ‘machine learning models’ have fallen out of favor due to
their inflexibility with heterogeneous data types, and/or poor performance or
efficiency compared to more modern approaches. However, even then, their
spirit may live on in modern approaches.
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You’ll also find models that focus on ranking, either with an outcome of ranks
requiring a specific loss function (e.g., LambdaRank), or where ranking is used
to simplify decision-making through post-estimation ranking of predictions
(e.g., decile ranking, uplift modeling). In addition, you can find machine learning
techniques extended to survival, ordinal, and other situations that are more
common in the statistical realm.

Other areas of machine learning, like reinforcement learning, recommender
systems, network analysis, and unsupervised learning techniques, provide more
options that might be useful. Plenty is left for you to explore here as well!

Deep Learning

When it comes to deep learning, it seems there is a new model every day, and
it’s hard to keep up. In general, convolutional neural networks are still the go-to
for many types of computer vision tasks, while transformers are commonly
used for natural language processing, but both have been applied to the other
domain with success. Many ‘foundational’ models have been developed that
allow you to apply pretrained models to your specific problem, and form the
basis of modern AI. For tabular data as we’ve focused on here, you’ll typically
see some variant of MLPs, often with embeddings for categorical features.
Some have attempted transformers and CNNs here as well, but results are
mixed.

The deep learning landscape also includes models like deep graphical networks,
and deep Q learning for reinforcement learning, specific models for image
segmentation (e.g., SAM), recurrent neural network variants for time-series
data, and generative adversarial networks for a variety of tasks. Some specific
techniques are falling out of favor, as transformer-based architectures are being
applied to seemingly everything. But the field is dynamic, and it remains to
be seen which methods will prevail in the long run.

INFO List of Models

You can find a list of some specific models for each of these categories
in the appendix (web only). It is by no means an exhaustive list, but it
should give you a good starting point for exploring additional models
once you’re finished here.
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16.3 Families of Models
While there are many models out there, even if we restrict the discussion to
tabular data, we can group them in a fairly simple way that would cover most
of the standard problems you’ll come across.

GLM and Related: Interpretable Insights

Here we have standard linear models with a focus on interpretability. Basically
anything you’d find in a traditional stats or econometrics textbook would
belong to this ‘family’.

- Includes: GLM, survival, ordinal, time-series, other distributions (beta,
tweedie) - Best for: small data situations (samples and features), a baseline
model, a causal model, post-model analysis of the results from more complex
models - Primary strength: ease of estimation, interpretability, uncertainty
estimation - Primary weakness: relatively poor prediction, may not capture
natural data complexity without additional work

Penalized Regression and Friends: Predictive Progress

This family encompasses techniques that could be used as stepping stones
toward machine learning. These include linear models enhanced with reg-
ularization, and advanced statistical models that deliberately incorporate
nonlinearities and other complexities. Moreover, our emphasis begins to shift
more to prediction in this context, though these models still provide relatively
easier interpretation compared to the next group.

• Includes: lasso/ridge, mixed models, GAMs, Bayesian
• Best for: small to large data, possibly a relatively large number of features

(esp. lasso), baseline model
• Primary strength: increased predictive capability while maintaining inter-

pretability
• Primary weakness: interpretability can decrease, estimation difficulty can

start to arise (convergence issues, uncertainty)

Trees and Nets: Champion’s Choice

This family includes tree-based models and neural networks, which are almost
exclusively focused on predictive performance by default and represent a
significant increase in complexity and computational requirements.

• Includes random forests, gradient boosting, neural networks (‘basis function
models’)

• Best for: prediction/performance
• Primary strength: prediction, ability to handle potentially very large data

and numbers of features
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• Primary weakness: interpretability and uncertainty estimation

Thinking about families or groups of models can do a lot to help demystify the
modeling process. You could come up with other schemas within a specific data
domain or group of models, there’s no solid rule here. But it can be helpful to
compartmentalize the models so that you don’t get overwhelmed by what are
often minor details that won’t significantly impact the practical application.

The differences between the model families are not substantial, particularly
between the first two. Specific models may only differ in the likelihood function,
the penalty term, or just a shift in focus. The third group is a bit different, but
it mostly just extends the application of nonlinear and interaction effects we
can implement from the first groups, allowing for more computational capacity
and flexibility. But if you’re new to modeling or dabbling in a new area, we
think this grouping can quickly help you understand what you’re looking at
and what you might want to use for a given problem. As you do more modeling,
you’ll likely come up with your own.

16.3.1 A simple modeling toolbox
In practice, just a handful of techniques from this text can provide a lot of
modeling power. Here’s a simple toolbox that can cover a lot of the ground
you’d need in a typical data science project:

• Penalized Regression: Lasso, ridge, GAMs, mixed models and similar
methods keep things linear while increasing predictive power and accommo-
dating more features than their non-penalized counterparts. If you need to
focus more on the explanatory and statistical side of things, you can use the
standard GLM.

• Boosting/Tree-Based Models: At the time of this writing, boosting
methods consistently deliver the best predictive performance for tabular
data, and they are quite computationally efficient relative to deep learning
techniques. That’s reason enough to know how to use them and keep them
handy.

• Basic Deep Learning Model: A ‘simple’ deep learning model that incor-
porates embeddings for categorical and text features is a very powerful tool3.
Additionally, using a deep learning approach can be integrated with other DL
models that process different types of data, such as images or text, to enhance
predictive performance. We’re still working toward an implementation of
deep learning that can handle any tabular data we throw at it, but we’re
not quite there yet.

Besides the models, it’s crucial to understand how to evaluate your models
(cross-validation, metrics), how to interpret them (coefficients, SHAP, feature

3Some seem to think that deep learning is only deep learning if it’s a transformer-based
model or a convolutional neural network. However ‘deep’ is not formally defined, and we
more simply see a deep learning model as just a model with multiple layers.
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importance, uncertainty), and how to manage the data you’re working with.
While we’ve discussed many topics in the text, there’s always more to learn,
and more to practice.

INFO The Tweener

Despite getting an occasional shout-out, GAMs appear to still be quite
underrated in the data science community, probably because the tools
in Python to implement and explore them are relatively lacking4. On
the plus side, the tools in R are excellent, though they can take some
getting used to.
GAMs are a great way to handle nonlinear relationships, interactions,
and add penalization, all in a way that can be more interpretable than
boosting or a neural network. They can be used in a wide variety of data
situations and can be a great way to get more predictive power while
staying within a traditional linear model setting. If you’re looking for a
way to get a bit more out of your linear models without diving into deep
learning, GAMs are a great place to start and are often a tough model
to beat for those who know how to use them.

16.4 How to Choose?
So how should we choose a specific model for our data? People love to say
that ‘all models are wrong, but some are useful’5. We prefer to think of this a
bit differently. There is no (necessarily) wrong model to use to answer your
question, and there’s no guarantee that you would come to a different practical
conclusion from using a simple correlation than you would from a complex
neural network. But some models can be more useful depending on the context
and the question you’re asking.

In the end, nothing says you can’t use multiple models to answer your question,
and in fact, this is often a good idea assuming you have the time and resources
to do so. As we’ve talked about, you can use a simple model to get a baseline,
and then use a more complex model to see if you can improve on that. You
can use a model that’s easy to interpret to get a sense of what’s going on, and

4Until Python can go from model to visualizing the marginal effect with uncertainty in
two or three lines of code (even with a Bayesian implementation), possibly on millions of
observations in a few seconds, and even visualizing the derivatives (also with uncertainty
estimates), it’s not going to be as easy to use as R for GAMs. But here’s hoping the current
efforts continue there.

5George Box, a famous statistician, said this in 1976.
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then use a model that’s better at prediction. Even when your primary focus is
prediction, you can often combine models to potentially get a better result.

And that’s the main thing – you don’t have to restrict yourself when it comes
to modeling in data science, and you shouldn’t. The key is to understand what
you’re trying to do, and to use the right tools for the job.

16.5 Choose Your Own Adventure
We’ve covered a lot of ground in this text, and we hope you’ve learned something
new along the way. But there’s so much more out there for you to continue
to explore. We hope that you’ll be able to take what you’ve learned here and
apply it to your own work, and that you’ll continue to learn and grow as a
data scientist.

So where do you go from here? The world of data science is vast – choose your
own adventure!
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B
Matrix Operations

Addition, subtraction, multiplication, and division. These are all things you
already know how to do with single numbers. What happens, though, if you
want to multiply two different matrices together. Does that simple, ‘scalar’
operation still translate if you have a 2𝑥𝑥𝑥 matrix and a 3𝑥𝑥𝑥 matrix? If words
like matrix and scalar make you break out in a sweat, then this chapter is for
you!

Matrix operations, especially multiplication, are critical for understanding core
aspects of how modeling actually produces all these cool results that help us
discover so many interesting things. Knowing the underlying mechanics of
matrix operations helps to demystify several issues that you might run into
with your models. It can also help to get the gist of various articles and papers
that you might come across. Before we get into any operations, though, let’s
make sure we are together on some concepts.

A scalar is a single numeric value. It might help if you think about a scalar as
a single ‘block’.

Figure B.1: Scalar.

Code

scalar_example = 1 # scalar value in r or python

And just like we can line blocks up on the floor, we can put our scalars together
to form a vector. A vector is a collection of scalars with a length of n. We
can also think of a vector as a single row or column of scalars.
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Row Vector Column Vector

Figure B.2: Row and column vectors.

There are many ways to create a vector in R and Python. Here are a couple.

R

vector_example = 1:6

vector_example = c(1, 2, 3, 4, 5, 6)

vector_example = matrix(1:6, nrow = 1) # or ncol = 1

Python

import numpy as np

vector_example = range(5)

vector_example = [1, 2, 3, 4, 5] # as list

row_vector = np.array([1, 2, 3]) # create a row vector

column_vector = np.array([[1], [2], [3]]) # create a column vector

Now, we can take a few of our block vectors and stack them into a matrix,
assuming the vectors are of the same size. A matrix is a two-dimensional
collection of vectors, and it is the fundamental structure for tabular data and
beyond.

Figure B.3: Matrix.

And here is a matrix of specific values:
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⎡⎢
⎣

1 2 3
4 5 6
7 8 9

⎤⎥
⎦

If you think about most tables you’ve ever seen, you’ll see that the simple
matrix looks remarkably familiar!

R

matrix_example = matrix(1:6, nrow = 2, ncol = 3)

dim(matrix_example)

Python

matrix_example = np.array([[1, 2, 3], [4, 5, 6]])

matrix_example.shape

A matrix has two dimensions, rows and columns, which can be any size. When
we talk about the dimensions of a matrix, we always make note of the rows
first, followed by the columns. This matrix has two rows and three columns,
so we have a 2 × 3, or ‘two-by-three’ matrix1.

Beyond matrices, we can also have tensors – multi-dimensional arrays that
generalize matrices to more than 2 dimensions. Tensors are widely used in
machine learning applications, especially deep learning. For example, a 3D
tensor might represent an image with dimensions for width, height, and color
channels, visualized as a stack of matrices, or a cube of numbers. Even standard
linear models can be conceptualized using tensor structures, such as when a
third dimension extends the core data matrix to accommodate geographical
regions (e.g., states) or other groupings (e.g., time points in longitudinal data).

1Numpy arrays/matrices are in row major order, while R is column major order.
You’ll note how with numpy we essentially provided two rows to the array function, which
automatically created the 2 × 3 matrix. The R matrix is not the same, because by default it
fills in the columns. If you add by_row = TRUE, you’d then get the same result as the numpy
example. Column major is generally more intuitive for tabular data, because that’s how
we think of data stored in tables, and why the pandas package in Python is also column
major/oriented. However, both R and Python are very flexible and more generally work in
arrays. If you use both, it can take a bit to settle with one if you’ve used the other (especially
for ‘apply’ functions). The reticulate package has a vignette that provides a nice overview,
while the rray package actually brings the numpy approach to the R landscape.
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B.1 Addition
Matrix addition, along with subtraction, is the easiest concept when dealing
with matrices. There is one rule though: the matrices need to have the same
dimensions. From a practical code perspective, if one is a scalar, addition of
the scalar will be applied to every element in the matrix.

Let’s check out these two matrices:

Matrix A
[111 212 313
421 522 623

]
Matrix B

[711 812 913
921 822 723

]

You probably noticed that we gave each scalar within the matrix a label
associated with its row and column position. We can use these to see how we
will produce the new matrix.

Now, we can set this up as an addition problem to produce Matrix C:

Matrix A
[111 212 313
421 522 623

] +
Matrix B

[711 812 913
921 822 723

]=
Matrix C

[𝐴𝐴11 + 𝐵𝐵11 𝐴𝐴12 + 𝐵𝐵12 𝐴𝐴13 + 𝐵𝐵13
𝐴𝐴21 + 𝐵𝐵21 𝐴𝐴22 + 𝐵𝐵22 𝐴𝐴23 + 𝐵𝐵23

]

Now we can pull in the real numbers:

Matrix A
[111 212 313
421 522 623

] +
Matrix B

[711 812 913
921 822 723

]=
Matrix C

[1 + 7 2 + 8 3 + 9
4 + 9 5 + 8 6 + 7]

Giving us Matrix C:

Matrix A
[111 212 313
421 522 623

] +
Matrix B

[711 812 913
921 822 723

]=
Matrix C

[ 8 10 12
13 13 13]

First, let’s create those matrices in R and Python.

R

In R, we can create a matrix with the matrix function or by row binding numeric
vectors.
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matrix_A = rbind(1:3, 4:6)

# The following is an equivalent

# to rbind:

# matrix_A = matrix(

# c(1:3, 4:6),

# nrow = 2,

# ncol = 3,

# byrow = TRUE

# )

matrix_B = rbind(7:9, 9:7)

Python

The task is just as easy in Python. We will import numpy and then use the
matrix method to create the matrices:

import numpy as np

matrix_A = np.array([[1, 2, 3], [4, 5, 6]])

matrix_B = np.array([[7, 8, 9], [9, 8, 7]])

Once we have those matrices created, we can use the standard + to add them
together:

R

matrix_A + matrix_B

[,1] [,2] [,3]

[1,] 8 10 12

[2,] 13 13 13

matrix_A + 3

[,1] [,2] [,3]

[1,] 4 5 6

[2,] 7 8 9

Python

Just like R, we can use + with those matrices.
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matrix_A + matrix_B

array([[ 8, 10, 12],

[13, 13, 13]])

matrix_A + 3

array([[4, 5, 6],

[7, 8, 9]])

B.2 Subtraction
Take everything that you just saw with addition and replace it with subtraction!
But just like addition, every matrix needs to have the same dimensions.

Here is the result:

Matrix A
[111 212 313
421 522 623

] −
Matrix B

[711 812 913
921 822 723

]=
Matrix C

[−6 −6 −6
−5 −3 −1]

Subtracting matrices in R and Python is the same as addition, just using -

instead.

R

matrix_A - matrix_B

[,1] [,2] [,3]

[1,] -6 -6 -6

[2,] -5 -3 -1

matrix_A - 3

[,1] [,2] [,3]

[1,] -2 -1 0

[2,] 1 2 3

Python

matrix_A - matrix_B
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matrix_A + matrix_B

array([[ 8, 10, 12],

[13, 13, 13]])

matrix_A + 3

array([[4, 5, 6],

[7, 8, 9]])

B.2 Subtraction
Take everything that you just saw with addition and replace it with subtraction!
But just like addition, every matrix needs to have the same dimensions.

Here is the result:

Matrix A
[111 212 313
421 522 623

] −
Matrix B

[711 812 913
921 822 723

]=
Matrix C

[−6 −6 −6
−5 −3 −1]

Subtracting matrices in R and Python is the same as addition, just using -

instead.

R

matrix_A - matrix_B
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matrix_A - 3
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[2,] 1 2 3

Python

matrix_A - matrix_B
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array([[-6, -6, -6],

[-5, -3, -1]])

matrix_A - 3

array([[-2, -1, 0],

[ 1, 2, 3]])

B.3 Transpose
You might see a matrix denoted as 𝐴𝐴𝑇𝑇 or 𝐴𝐴′. The superscripted 𝑇𝑇 or ′ for
matrix transpose. If we transpose a matrix, all we are doing is flipping the
rows and columns along the matrix ‘main diagonal’. A visual example is much
easier:

Matrix A
[111 212 313
421 522 623

] − >

Matrix A transposed

⎡⎢
⎣

1 4
2 5
3 6

⎤⎥
⎦

R

In R, all we need is the t function:

t(matrix_A)

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

Python

In Python, we can use numpy’s transpose method:

matrix_A.transpose()

array([[1, 4],

[2, 5],

[3, 6]])

matrix_A.T # shorthand
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array([[1, 4],

[2, 5],

[3, 6]])

B.4 Multiplication
Now you probably have some confidence in doing matrix operations. Just as
quickly as we built that confidence, it will be crushed when learning about
matrix multiplication.

When dealing with matrix multiplication, we have a huge change to our previous
rule. No longer do our dimensions have to be the same! Instead, the matrices
need to be conformable – the first matrix needs to have the same number of
columns as the number of rows within the second matrix. In other words, the
inner dimensions must match.

Look one more time at these matrices:

Matrix A
[111 212 313
421 522 623

] .
Matrix B

[711 812 913
921 822 723

]

Matrix A has dimensions of 2 × 3, as does Matrix B. Putting those dimensions
side by side – 2 × 3 ∗ 2 × 3 – we see that our inner dimensions are 3 and 2 and
do not match.

What if we transpose Matrix B?

Matrix B𝑇𝑇

⎡⎢
⎣

711 912
821 822
931 732

⎤⎥
⎦

Now we have something that works!

Matrix A
[111 212 313
421 522 623

] .

Matrix B𝑇𝑇

⎡⎢
⎣

711 912
821 822
931 732

⎤⎥
⎦

=
Matrix C

[. .
. .]

Now we have a 2 × 3 ∗ 3𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 matrix multiplication problem! The resulting
matrix will have the same dimensions as our two matrices’ outer dimensions:
2 × 2.
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Here is how we will get a 2 × 2 matrix:

Matrix A
[111 212 313
421 522 623

] .

Matrix B𝑇𝑇

⎡⎢
⎣

711 912
821 822
931 732

⎤⎥
⎦

=

Matrix C
[(𝐴𝐴11 ∗ 𝐵𝐵11) + (𝐴𝐴12 ∗ 𝐵𝐵21) + (𝐴𝐴13 ∗ 𝐵𝐵31) (𝐴𝐴11 ∗ 𝐵𝐵12) + (𝐴𝐴12 ∗ 𝐵𝐵22) + (𝐴𝐴13 ∗ 𝐵𝐵32)
(𝐴𝐴21 ∗ 𝐵𝐵11) + (𝐴𝐴22 ∗ 𝐵𝐵21) + (𝐴𝐴23 ∗ 𝐵𝐵31) (𝐴𝐴21 ∗ 𝐵𝐵12) + (𝐴𝐴22 ∗ 𝐵𝐵22) + (𝐴𝐴23 ∗ 𝐵𝐵32)]

That might look like a horrible mess and likely isn’t easy to commit to memory.
Instead, we’d like to show you a way that might make it easier to remember
how to multiply matrices. It also gives a nice representation of why your
matrices need to be conformable.

We can leave Matrix A exactly where it is, flip Matrix B𝑇𝑇, and stack it right
on top of Matrix A:

⎡
⎢
⎢
⎢
⎣

9𝑏𝑏 8𝑏𝑏 7𝑏𝑏
7𝑏𝑏 8𝑏𝑏 9𝑏𝑏

1𝑎𝑎 2𝑎𝑎 3𝑎𝑎
4𝑎𝑎 5𝑎𝑎 6𝑎𝑎

⎤
⎥
⎥
⎥
⎦

Now, we can let those rearranged columns from Matrix B𝑇𝑇 ‘fall down’ through
the rows of Matrix A:

⎡
⎢⎢
⎣

9𝑏𝑏 8𝑏𝑏 7𝑏𝑏

1𝑎𝑎 ∗ 7𝑏𝑏 2𝑎𝑎 ∗ 8𝑏𝑏 3𝑎𝑎 ∗ 9𝑏𝑏
4𝑎𝑎 5𝑎𝑎 6𝑎𝑎

⎤
⎥⎥
⎦

=
Matrix C
[50 .

. .]

Adding those products together gives us 50 for 𝐶𝐶11.

Let’s move that row down to the next row in the Matrix A, multiply, and sum
the products.

⎡
⎢⎢
⎣

9𝑏𝑏 8𝑏𝑏 7𝑏𝑏

1𝑎𝑎 2𝑎𝑎 3𝑎𝑎
4𝑎𝑎 ∗ 7𝑏𝑏 5𝑎𝑎 ∗ 8𝑏𝑏 6𝑎𝑎 ∗ 9𝑏𝑏

⎤
⎥⎥
⎦

=
Matrix C
[ 50 .
122 .]

We have 122 for 𝐶𝐶21. That first column from Matrix B𝑇𝑇 won’t be used any
more, but now we need to move the second column through Matrix A.
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[1𝑎𝑎 ∗ 9𝑏𝑏 2𝑎𝑎 ∗ 8𝑏𝑏 3𝑎𝑎 ∗ 7𝑏𝑏
4𝑎𝑎 5𝑎𝑎 6𝑎𝑎

] =
Matrix C
[ 50 46
122 . ]

That gives us 46 for 𝐶𝐶12.

And finally:

[ 1𝑎𝑎 2𝑎𝑎 3𝑎𝑎
4𝑎𝑎 ∗ 9𝑏𝑏 5𝑎𝑎 ∗ 8𝑏𝑏 6𝑎𝑎 ∗ 7𝑏𝑏

] =
Matrix C

[ 50 46
122 118]

We have 118 for 𝐶𝐶22.

Now that you know how these work, you can see how easy it is to handle these
tasks in R and Python.

R

In R, we need to use a fancy operator: %*%. This is just R’s matrix multiplication
operator. We will also use the transpose function: t.

matrix_A %*% t(matrix_B)

[,1] [,2]

[1,] 50 46

[2,] 122 118

Python

In Python, we can just use the regular multiplication operator and the transpose
method:

matrix_A @ matrix_B.T

array([[ 50, 46],

[122, 118]])

You can see that whether we do this by hand, R, or Python, we come up with
the same answer! While these small matrices can definitely be done by hand,
we will always trust the computer to handle larger matrices. The main thing
is to understand the mechanics behind the operation.
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INFO Element-wise Multiplication

Matrix multiplication is not the same as element-wise multiplication.
Element-wise multiplication is when you multiply each element in one
matrix by the corresponding element in another matrix. This is done
with the * operator in R and Python. The matrices must have identical
dimensions for this. As with addition and subtraction, if one matrix is
a scalar, the operation is automatically applied to every element in the
matrix.

B.5 Division
Though addition, subtraction, and multiplication are all pretty straightforward,
matrix division is not. In fact, there really isn’t such a thing as matrix division,
we just use matrix multiplication in a particular way. This is similar to how
we can divide two numbers, for example, 𝑎𝑎𝑎𝑎𝑎, but we can also multiply by the
reciprocal, 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎. In matrix terms, this would look something like:

𝐴𝐴𝐴𝐴−1

While that may also seem straightforward on the surface, matrix inversion is
not. The basic idea is that we are looking for a matrix that, when multiplied by
the original matrix like 𝐵𝐵, gives us the identity matrix. The identity matrix
is a matrix that has 1s along the diagonal and 0s everywhere else.

⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

Another caveat is that not all matrices have inverses. If the determinant of a
matrix is 0, then it does not have an inverse. Technically, only square matrices
can have inverses, but not all square matrices have inverses. We can, however,
get a pseudo-inverse for nonsquare matrices.

R

matrix_B_inv = MASS::ginv(matrix_B)

round(matrix_B %*% matrix_B_inv)

[,1] [,2]

[1,] 1 0
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[2,] 0 1

Python

matrix_B_inv = np.linalg.pinv(matrix_B)

(matrix_B @ matrix_B_inv).round()

array([[ 1., -0.],

[-0., 1.]])

More to the point, when would we do this? In the world of modeling, we might
use matrix inversion to solve a system of equations. For example, this can be
implemented in linear regression, where we are trying to find the coefficients
that minimize the error in our model. That problem has an analytical solution
that involves matrix inversion.

𝛽𝛽 𝛽 𝛽𝛽𝛽𝑇𝑇𝑋𝑋𝑋−1𝑋𝑋𝑇𝑇𝑦𝑦

Let’s see this for ourselves. We will create a simple linear regression model and
solve for the coefficients using matrix inversion.

R

set.seed(123)

x = rnorm(100)

y = 2*x + rnorm(100)

X = cbind(1, x)

beta = MASS::ginv(t(X) %*% X) %*% t(X) %*% y

tibble(

ours = beta[,1],

standard = coef(lm(y ~ x))

)

# A tibble: 2 x 2

ours standard

<dbl> <dbl>

1 -0.103 -0.103

2 1.95 1.95
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[2,] 0 1
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Python

import statsmodels.api as sm

import pandas as pd

np.random.seed(123)

x = np.random.normal(size = 100)

y = 2*x + np.random.normal(size = 100)

X = np.c_[np.ones(100), x]

beta = np.linalg.pinv(X.T @ X) @ X.T @ y

beta

array([-0.01908575, 1.98340745])

model_sm = sm.OLS(y, X)

results_sm = model_sm.fit()

coefficients_sm = results_sm.params

pd.DataFrame({

'ours': beta,

'standard': coefficients_sm

})

ours standard

0 -0.019086 -0.019086

1 1.983407 1.983407

B.6 Summary
While matrix operations are not something we explicitly do everyday data
science, it is always lurking behind the scenes. Having a grasp of the underlying
model mechanics helps demystify the modeling process, and can greatly expand
a data scientist’s abilities when you have to dive into matrix operations for
model building. Whether linear regression or deep learning, matrix operations
are at the core of almost every model you come across.
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C
Dataset Descriptions

All data can be found in the book’s repo. Depending on when you access it,
there may be more or less data available. We’ll try to clean it up to make it
more clear eventually, but it’s easiest to use the code in the demonstrations to
download the data directly.

C.1 Movie Reviews
The movie reviews dataset was a fun way to use an LLM to create movie titles
and reviews in a specific way, as well as other features. With features in hand,
we then generated a rating outcome with specific feature-target relationships.
It has 1000 rows and the following columns:

• title: The title of the movie
• review_year: The year the review was written
• age: The age of the reviewer
• children_in_home: The number of children in the reviewer’s home
• education: The educational level of the reviewer (Post-Graduate, Completed

College, Completed High School)
• gender: The gender of the reviewer (Male or Female)
• work_status: The work status of the reviewer (Employed, Retired, Unemployed,

Student)
• genre: The genre of the movie
• release_year: The year the movie was released
• length_minutes: The length of the movie in minutes
• season: The season the movie was released (e.g., Fall, Winter)
• total_reviews: The total number of reviews for the movie
• rating: The rating of the movie
• review_text: The text of the review
• word_count: The number of words in the review
• review_year_0: The review year starting from 0
• release_year_0: The release year starting from 0
• *_sc: Scaled (standardized) versions of age, length_minutes, total_reviews,

and word_count
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• rating_good: A binary version of rating, where 1 is a good rating (>= 3) and
0 is a bad rating (<3)

Link:

• https://tinyurl.com/moviereviewsdata

Repo File:

• data/movie_reviews.csv

Table C.1: Movie Reviews Dataset (String)

variable empty n_unique

title 0.0 100.0
education 0.0 3.0
gender 0.0 2.0
work_status 0.0 4.0
genre 0.0 8.0
season 0.0 4.0
review_text 0.0 442.0

Table C.2: Movie Reviews Dataset (Numeric)

variable mean sd min med max

review_year 2015.8 5.1 2000.0 2017.0 2022.0
age 46.9 18.3 18.0 47.0 80.0
children_in_home 0.4 0.7 0.0 0.0 3.0
release_year 2008.1 9.6 1983.0 2010.0 2020.0
length_minutes 121.0 11.5 98.0 120.0 147.0
total_reviews 4921.7 2837.9 374.0 4464.0 9926.0
rating 3.1 0.6 1.0 3.1 5.0
word_count 10.3 5.1 2.0 9.0 32.0
rating_good 0.6 0.5 0.0 1.0 1.0

C.2 World Happiness Report
The World Happiness Report is a survey of the state of global happiness that
ranks countries by how ‘happy’ their citizens perceive themselves to be. You
can also find additional details in their supplemental documentation. Our
2018 data is from what was originally reported at that time (figure 2.2 in the
corresponding report), and it also contains a life ladder score from the most
recent survey, which is similar and very highly correlated.

The datasets contain the following columns:

• country: The country name
• year: The year of the survey

https://www.tinyurl.com/moviereviewsdata
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• life_ladder: The happiness score
• log_gdp_per_capita: The log of GDP per capita
• social_support: The social support score
• healthy_life_expectancy_at_birth: The healthy life expectancy at birth
• freedom_to_make_life_choices: The freedom to make life choices score
• generosity: The generosity score
• perceptions_of_corruption: The perceptions of corruption score
• positive_affect: The positive affect score
• negative_affect: The negative affect score
• confidence_in_national_government: The confidence in national government

score
• happiness_score: The happiness score
• dystopia_residual: The dystopia residual score (difference from a ‘least happy’

country)

In addition, there are standardized/scaled versions of the features, which are
suffixed with _sc.

Links:

• All years: https://tinyurl.com/worldhappinessallyears
• 2018: https://tinyurl.com/worldhappiness2018

Repo Files:

• data/world_happiness_all_years.csv

• data/world_happiness_2018.csv

Table C.3: World Happiness Report Dataset (All Years)

variable n_missing mean sd min med max

year 0.0 2014.2 4.7 2005.0 2014.0 2022.0
happiness_score 0.0 5.5 1.1 1.3 5.4 8.0
log_gdp_per_capita 20.0 9.4 1.2 5.5 9.5 11.7
social_support 13.0 0.8 0.1 0.2 0.8 1.0
healthy_life_expectancy_at_birth 54.0 63.3 6.9 6.7 65.0 74.5
freedom_to_make_life_choices 33.0 0.7 0.1 0.3 0.8 1.0
generosity 73.0 0.0 0.2 −0.3 0.0 0.7
perceptions_of_corruption 116.0 0.7 0.2 0.0 0.8 1.0
positive_affect 24.0 0.7 0.1 0.2 0.7 0.9
negative_affect 16.0 0.3 0.1 0.1 0.3 0.7

https://www.tinyurl.com/worldhappinessallyears
https://www.tinyurl.com/worldhappiness2018
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Table C.4: World Happiness Report Dataset (2018)

variable mean sd min med max

life_ladder 5.6 1.1 2.7 5.5 7.9
log_gdp_per_capita 9.3 1.2 6.6 9.5 11.5
social_support 0.8 0.1 0.5 0.8 1.0
healthy_life_expectancy_at_birth 64.7 6.8 48.2 66.7 75.0
freedom_to_make_life_choices 0.8 0.1 0.4 0.8 1.0
generosity 0.0 0.2 −0.3 0.0 0.5
perceptions_of_corruption 0.7 0.2 0.2 0.8 1.0
positive_affect 0.7 0.1 0.4 0.7 0.9
negative_affect 0.3 0.1 0.2 0.3 0.5
confidence_in_national_government 0.5 0.2 0.1 0.5 1.0
happiness_score 5.4 1.1 3.3 5.4 7.6
dystopia_residual 2.0 0.5 0.3 1.9 2.9

C.3 Heart Disease UCI
This classic dataset comes from the UCI ML repository. We took a version
from Kaggle, and features and target were renamed to be more intelligible.
Here is a brief description from UCI:

This database contains 76 attributes, but all published experiments refer to
using a subset of 14 of them. In particular, the Cleveland database is the
only one that has been used by ML researchers to date. The “goal” field
refers to the presence of heart disease in the patient. It is integer valued
from 0 (no presence) to 4. Experiments with the Cleveland database have
concentrated on simply attempting to distinguish presence (values 1,2,3,4)
from absence (value 0).

• age: Age in years
• male: ‘yes’ or ‘no’
• chest_pain_type: ‘typical’, ‘atypical’, ‘non-anginal’, ‘asymptomatic’
• resting_bp: Resting blood pressure (mm-Hg)
• cholesterol: Serum cholesterol (mg/dl)
• fasting_blood_sugar: ‘> 120 mg/dl’ or ‘<= 120 mg/dl’
• resting_ecg: ‘normal’, ‘left ventricular hypertrophy’, ‘ST-T wave abnormality’
• max_heart_rate: Maximum heart rate achieved
• exercise_induced_angina: ‘yes’ or ‘no’
• st_depression: ST depression induced by exercise relative to rest
• slope: ‘upsloping’, ‘flat’, ‘downsloping’
• num_major_vessels: Number of major vessels (0-3) colored by fluoroscopy
• thalassemia: ‘normal’, ‘fixed defect’, ‘reversible defect’
• heart_disease: ‘yes’ or ‘no’
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Links:

• Processed: https://tinyurl.com/heartdiseaseprocessed
• Numeric features only: https://tinyurl.com/heartdiseaseprocessednumeric

Repo Files:

• data/heart_disease_processed.csv

• data/heart_disease_processed_numeric_sc.csv

Table C.5: Heart Disease UCI Dataset (String)

variable empty n_unique

chest_pain_type 0.0 4.0
fasting_blood_sugar 0.0 2.0
resting_ecg 0.0 3.0
exercise_induced_angina 0.0 2.0
slope 0.0 3.0
thalassemia 0.0 3.0
heart_disease 0.0 2.0

Table C.6: Heart Disease UCI Dataset (Numeric)

variable mean sd min med max

age 54.5 9.0 29.0 56.0 77.0
male 0.7 0.5 0.0 1.0 1.0
resting_bp 131.7 17.8 94.0 130.0 200.0
cholesterol 247.4 52.0 126.0 243.0 564.0
max_heart_rate 149.6 22.9 71.0 153.0 202.0
st_depression 1.1 1.2 0.0 0.8 6.2
num_major_vessels 0.7 0.9 0.0 0.0 3.0

C.4 Fish
This is a very simple dataset with a count target variable. It’s also good if you
want to try your hand at zero-inflated models. The background is that state
wildlife biologists want to model how many fish are being caught by fishermen
at a state park.

• nofish: We’ve never seen this explained. Originally 0 and 1, 0 is equivalent
to livebait equals ‘yes’, so it may be whether the primary motivation of the
camping trip is for fishing or not.

• livebait: Whether or not live bait was used
• camper: Whether or not they brought a camper
• persons: How many total persons on the trip
• child: How many children present

https://www.tinyurl.com/heartdiseaseprocessed
https://www.tinyurl.com/heartdiseaseprocessednumeric
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• count: Number of fish caught

Link:

• https://tinyurl.com/fishcountdata

Repo File:

• data/fish.csv

Table C.7: Fish Dataset (String)

variable empty n_unique

nofish 0.0 2.0
livebait 0.0 2.0
camper 0.0 2.0

Table C.8: Fish Dataset (Numeric)

variable mean sd min med max

persons 2.5 1.1 1.0 2.0 4.0
child 0.7 0.9 0.0 0.0 3.0
count 3.3 11.6 0.0 0.0 149.0

https://www.tinyurl.com/fishcountdata
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• count: Number of fish caught

Link:

• https://tinyurl.com/fishcountdata

Repo File:

• data/fish.csv

Table D.7: Fish Dataset (String)

variable empty n_unique

nofish 0.0 2.0
livebait 0.0 2.0
camper 0.0 2.0

Table D.8: Fish Dataset (Numeric)

variable mean sd min med max

persons 2.5 1.1 1.0 2.0 4.0
child 0.7 0.9 0.0 0.0 3.0
count 3.3 11.6 0.0 0.0 149.0
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Index

A/B testing, 361
accumulated local effect (ALE),

114
activation functions, 53, 317
adstocking, 401
AIC, 236
anomaly detection, 342
ANOVA, 48, 235–236, 360

for model comparison, 236
area under a ROC curve, see

metrics, AUROC Curve
area under the precision-recall

curve, see metrics,
AUPRC

ARIMA models, 400
artificial intelligence (AI), 351–353

agentic ai, 352
artificial general intelligence

(AGI), 352
attenuation of correlation, 417
audio data, 346
autoencoders, 338

and large language models,
340

average slope, see marginal effects,
average marginal effects

baseline models, 305–307
basis expansion, 251
batch normalization, 282, 381, see

also regularization
batch size, 162
Bayesian, see also uncertainty

credible interval, 188
likelihood, 184
posterior distribution, 184

posterior predictive checks, 85,
190

posterior predictive
distribution, 190

prior distribution, 184
Bayesian networks, 374
Bernoulli distribution, 212, 386
bias

in AI, 352
statistical, 52, 246

bias-variance tradeoff, 277–278
binomial distribution, 204–207
bootstrap, 32, 416
bottleneck, 339

calibration (classification), 395–396
categorical distribution, 386
causal inference, 355–374, 422–424

assumptions, 363–366
average treatment effect, 103
consistency, 363
exchangeability, 363
general, 363–366
models, 366–374
positivity, 363
transportability, 359

censoring, 397–399
ceteris paribus, 366
ChatGPT, 348
class imbalance, 394–396, 407
cluster analysis, 338, 342
coding, 384

dummy, 46, 384
effects, 384, 388
one-hot, 46, 384

coefficient, 21, 22, 33
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Index

standardized, 34, 116
collider, 375
collinearity, 44
computer vision, 347–348, 405, see

also deep learning
confidence interval, 30, 35–36, 94,

173–176, 188
conformal prediction, 32, 192, see

also uncertainty
confounding, 357, 363–366
confusion matrix, 71–74, 270
convolutional neural networks, 347
correlation, 9
cost function, see objective

function
counterfactual predictions,

103–106
in causal inference, 370–371

covariance structures, 402, 405
cross-validation, 62, 283–288

grouped, 287
k-fold, 284
leave-one-out, 285
model selection, 285
nested, 288
shuffled, 287
stratified, 287
time-based, 287

data augmentation, 407
data compression, see dimension

reduction
data leakage, 288, 421
data transformations, 380–390

centering, 380
discretizing, 383
lags, 400
log, 381, 382
log plus one, 383
min-max scaling, 381
normalization, 381
standardizing, 381

DBSCAN, 342
deep learning, 315–317, 421,

430–431

computer vision, 347
fine tuning, 349
multimodal, 350
natural language processing,

348
pretrained models, 349
self-supervised learning, 349
transfer learning, 349

difference in differences, 233, 373
differencing, 400
dimension reduction, 336

as preprocessing step, 337
directed acyclic graph, 368
double descent, 278–280
dropout, 282, see also

regularization
dummy coding, see coding, dummy

effect size, 34, 96
effects coding, see coding, effects
elastic net, 282, 307, see also

penalized linear models
embeddings, 247, 385–386
ensemble models, 311, 373
event history analysis, see survival

analysis
experimental design, 359–361

factor analysis, 337
features

categorical, 46
defined, 8
importance, 114–120, 327–329,

420–421
model contribution, 95–96
transformations, 380–393, 424
visualizations of effects,

113–114
vs. model level interpretation,

33–38
file drawer problem, 412
fine tuning, 349
fixed effects

vs. random, 239
force plot, 112
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standardized, 34, 116
collider, 375
collinearity, 44
computer vision, 347–348, 405, see

also deep learning
confidence interval, 30, 35–36, 94,

173–176, 188
conformal prediction, 32, 192, see

also uncertainty
confounding, 357, 363–366
confusion matrix, 71–74, 270
convolutional neural networks, 347
correlation, 9
cost function, see objective

function
counterfactual predictions,

103–106
in causal inference, 370–371

covariance structures, 402, 405
cross-validation, 62, 283–288

grouped, 287
k-fold, 284
leave-one-out, 285
model selection, 285
nested, 288
shuffled, 287
stratified, 287
time-based, 287

data augmentation, 407
data compression, see dimension

reduction
data leakage, 288, 421
data transformations, 380–390

centering, 380
discretizing, 383
lags, 400
log, 381, 382
log plus one, 383
min-max scaling, 381
normalization, 381
standardizing, 381

DBSCAN, 342
deep learning, 315–317, 421,

430–431

computer vision, 347
fine tuning, 349
multimodal, 350
natural language processing,

348
pretrained models, 349
self-supervised learning, 349
transfer learning, 349

difference in differences, 233, 373
differencing, 400
dimension reduction, 336

as preprocessing step, 337
directed acyclic graph, 368
double descent, 278–280
dropout, 282, see also

regularization
dummy coding, see coding, dummy

effect size, 34, 96
effects coding, see coding, effects
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penalized linear models
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ensemble models, 311, 373
event history analysis, see survival

analysis
experimental design, 359–361
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features
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importance, 114–120, 327–329,
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model contribution, 95–96
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visualizations of effects,
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vs. model level interpretation,
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file drawer problem, 412
fine tuning, 349
fixed effects
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force plot, 112
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fourier transform, 401

g-computation, 371, 373
Gaussian process, 318, 403
generalization, 273–280

test error, 277–280
generalized additive models,
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vs. neural networks, 318
vs. nonlinear regression, 250
vs. polynomial regression, 250

generalized estimating equations,
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generalized linear models, 201–228,
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binomial regression, 212
logistic regression, 204–214
maximum likelihood

estimation, 221–225
Poisson regression, 215–221
related, 225–226

gradient boosting, 282, 311–314
gradient descent, 158–162
graphical models, 10–11, 367–370

in machine learning, 343
linear regression, 23
logistic regression, 53

grid search, 137, 421
grokking, 279

HDBSCAN, 342
heteroscedasticity, 380, 382
hidden Markov model, 406
hierarchical clustering, 337
hierarchical linear models, see

mixed models
holdout set, see cross-validation
hurdle models, 398
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functions
hyperparameter tuning, see tuning
hypothesis testing, 34, 36, 412

imputation, 390, 424, see also
missing data

Bayesian, 393
model-based, 391
multiple imputation, 392
single value imputation, 391

independent component analysis,
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individual conditional expectation
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instrumental variables, 373
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as nonlinear effects, 231
intervals, see also uncertainty

prediction vs. confidence, 30
inverse probability weighting, 367

k-fold cross-validation, see
cross-validation

k-means cluster analysis, 337
k-nearest neighbors regression, 329,

417

L1, see regularization
L2, see regularization
large language models (LLM), 330,
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lasso (L1) penalty, 282, 307, see

also penalized linear
models

lasso penalty, 152
latent Dirichlet allocation, 337, 341
latent linear models, 341–342
latent variables, 336, 406–407
learning rate, 158
leave-one-out cross-validation, see

cross-validation
likelihood, 141
linear activation, see activation

functions
linear mixed model, see mixed

models
linear model

defined, 19
examples of, 54
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matrix representation, 41
parameters, 94–95

linear predictor, 23
linear regression, 19–53

assumptions, 50–52
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link function, 53, 202–203, see also
activation functions

log, 217
logit, 206

local effects, 107
log odds, 206
logistic regression, 204–214

as a neural network, 318
overview, 53

longitudinal data, 400
loss function, see objective

function

machine learning, 267–297,
301–331, 430–431

extensions, 336–353
general approach, 302
overview, 267–269
tabular data, 329–330

marginal effects, 50, 96–103, 245
average marginal effects,

99–101, 234
marginal effects at the mean,

97–99
marginal means, 101–103

marginal structural models, 373
Markov Chain Monte Carlo

(MCMC), 179, 189
matching, 367
matrix, 440
matrix operations, 439–451
maximum likelihood estimation,

140–149
measurement error, 396, 424
measurement errror, 417
mediation, 369
meta-analysis, 373
meta-learners, 371–373

method of moments, 168
metrics, 37–38

accuracy, 74
AUPRC, 78
AUROC Curve, 78
classification, 70–81
commonly used, 61
cross-entropy, 270, 387
deviance explained, 253
for model evaluation, 276
huber loss, 270
log loss, 154, 270, 387
mean absolute error, 38, 69,

131, 270
mean absolute percentage

error, 69–70
mean squared error, 37, 67–69,

130, 270
misclassification rate, 152
negative predictive value, 75
positive predictive value, see

precision
precision, 75
R-squared, 38, 65–67, 414–415
recall, see true positive rate
regression, 62–70
root mean squared error, 37,

131
sensitivity, see true positive

rate
specificity, see true negative

rate
true negative rate, 74
true positive rate, 74
vs. objective function, 140

missing data, 390–393
complete case analysis, 390
missing at random, 391
missing completely at random,

391
mixed models, 236–247, 400,

403–405
as penalized linear models,

246
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longitudinal data, 400
loss function, see objective
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Markov Chain Monte Carlo
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matrix operations, 439–451
maximum likelihood estimation,

140–149
measurement error, 396, 424
measurement errror, 417
mediation, 369
meta-analysis, 373
meta-learners, 371–373

method of moments, 168
metrics, 37–38

accuracy, 74
AUPRC, 78
AUROC Curve, 78
classification, 70–81
commonly used, 61
cross-entropy, 270, 387
deviance explained, 253
for model evaluation, 276
huber loss, 270
log loss, 154, 270, 387
mean absolute error, 38, 69,

131, 270
mean absolute percentage

error, 69–70
mean squared error, 37, 67–69,

130, 270
misclassification rate, 152
negative predictive value, 75
positive predictive value, see

precision
precision, 75
R-squared, 38, 65–67, 414–415
recall, see true positive rate
regression, 62–70
root mean squared error, 37,

131
sensitivity, see true positive

rate
specificity, see true negative

rate
true negative rate, 74
true positive rate, 74
vs. objective function, 140

missing data, 390–393
complete case analysis, 390
missing at random, 391
missing completely at random,

391
mixed models, 236–247, 400,

403–405
as penalized linear models,
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vs. Bayesian, 247
mixture models, 338
MLOps, 296
model metrics, see metrics
model selection, comparison,

81–84, 325–326
model visualization, 84–88

model assumptions, 88
predictive check, 85

model(s)
as code, 11
as implementations, 12
as mathematical expression,

10
causal, see causal inference
components, 12
conceptually, 7
generative vs. discriminative,

343
interpretability, 413
nomenclature, 8
problems to avoid, 411–426
steps, 14
visually, 10

multidimensional scaling, 342
multilabel targets, 387
multilayer perceptron (MLP), 85,

318–322
multilevel models, see mixed

models
multinomial regression, 386
multivariate normal distribution,

405
multivariate regression, 405–406

natural experiment, 362
natural language processing

(NLP), 348–349, 405, see
also deep learning

network analysis, 343
neural networks, 315–322, see also

deep learning
tabular data, 315

non-negative matrix factorization,
341

nonlinear models, 250
generalized additive models,

247
linear models with

interactions, 230
neural networks, 315
quantile regression, 263
random slopes, 236
tree-based models, 310

objective function, 53, 132
in machine learning, 269–270
vs. metrics, 140

odds ratio, 206
one-hot encoding, see coding,

one-hot
optimization

algorithms, 157–168
common, 157

for classification, 152–157
overview, 137–140

ordinal data, 383, 388–390
ordinary least squares (OLS),

132–137
overfitting, 149, 250, 280, 412

p-hacking, 412
panel data, 400
partial dependence plot (PDP), 97,

113, 328
partitioning (data), 274
path analysis, 368
penalized linear models, 307–309,

432
generalized additive models,

250
mixed models, 246

penalized objectives, 149–152
performance metrics, see metrics

in machine learning, 270–273
pipelines, 293–296
Poisson distribution, 215–217
Poisson regression, 215–221
polynomials, 250
prediction
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error, 25, 130–132
intervals, 30, 174, 416
other names, 26
vs. explanation, 24, 39–40,

356–359
pretrained models, 349
principal components analysis

(PCA), 337
compared to autoencoder, 338
probabilistic, 341

propensity score weighting, 367
proportional odds model, 388

quantile loss, 260
quantile regression, 255–263, 416

loss function, 260
quantization, 384

R-Learner, 372
R-squared, see metrics, R-squared

adjusted, 67, 414–415
pseudo, 67, 214

random effects, see mixed models
random forests, 311–312
randomized control trial, 360, 423
rank data, 390
rate ratio, 219
Receiver Operating Characteristic

(ROC) curve, see metrics,
AUROC Curve

recommender systems, 337
recurrent neural networks, 400
regression discontinuity design, 373
regularization, 149, 188, 280–283

L1, 282
L2, 149, 282
ridge, 149

reinforcement learning, 344, 400
ReLU, see activation functions
reproducibility, 293
residuals, 25, 29
ridge (L2) penalty, 149, 281, 307,

see also penalized linear
models

robust estimation, 168

S-Learner, 370, 372
sampling, 367
scalar, 439
self-supervised learning, 349
SHAP values, 106–113, 421

for feature importance,
118–120

Shapley values, see SHAP values
shrinkage, 149, see also

regularization
sigmoid, see activation functions
singular value decomposition, 337
SMOTE, 407
spatial data, 404
spatial lag, 404
spatial models, 345, 404, 430
spline, 249
stacking (models), 330
standard error, 34
step size, see learning rate
stochastic gradient descent,

162–168
stratification, 367
structural equation models, 368
supervised learning, 336
support vector machines, 329, 417
survival analysis, 397

T-Learner, 372
t-SNE, 342
t-test, 360
target(s)

defined, 8
transformations, 380–393

tensors, 42, 441
test set, see cross-validation
time series data, 399–403

features, 401–402
scaling, 402
seasonality, 402
targets, 400–401

time series models, 306, 430
tobit regression, 397
transfer learning, 349
transformers, 350, 401
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tree-based models, 310–314, 432,
see also random forests,
gradient boosting

truncation, 397
tuning, 288–293, 322–326, 415

Bayesian optimization, 293
genetic algorithms, 293
grid search, 289, 323
hyperband, 293
randomized search, 292, 323

uncertainty, 35, 420
Bayesian, 184–191
bootstrap, 179–184, 416
conformal prediction, 192–197
frequentist, 173–184

monte carlo, 177–179
underfitting, 280, 412
unsupervised learning, 336–343
uplift modeling, 371–372

lost causes, 371
persuadables, 372
sleeping dogs, 371
sure things, 371

validation set, see cross-validation
vector, 439

waterfall plot, 112

X-Learner, 372

zero-inflated models, 398
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