

Mathematical Foundations for
Deep Learning

Mathematical Foundations for Deep Learning bridges the gap between theoretical mathematics and
practical applications in artificial intelligence (Al). This guide delves into the fundamental mathem-
atical concepts that power modern deep learning, equipping readers with the tools and knowledge
needed to excel in the rapidly evolving field of artificial intelligence.

Designed for learners at all levels, from beginners to experts, the book makes mathematical
ideas accessible through clear explanations, real-world examples, and targeted exercises. Readers
will master core concepts in linear algebra, calculus, and optimization techniques; understand the
mechanics of deep learning models; and apply theory to practice using frameworks like TensorFlow
and PyTorch.

By integrating theory with practical application, Mathematical Foundations for Deep Learning
prepares you to navigate the complexities of Al confidently. Whether you’re aiming to develop prac-
tical skills for Al projects, advance to emerging trends in deep learning, or lay a strong foundation
for future studies, this book serves as an indispensable resource for achieving proficiency in the field.

Embark on an enlightening journey that fosters critical thinking and continuous learning. Invest
in your future with a solid mathematical base, reinforced by case studies and applications that bring
theory to life, and gain insights into the future of deep learning.

https://taylorandfrancis.com

Mathematical Foundations for
Deep Learning

Mehdi Ghayoumi

State University of New York

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

Designed cover image: Mehdi Ghayoumi

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton, FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC
© 2026 Mehdi Ghayoumi

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know
so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not
available on CCC please contact mpkbookspermissions @tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification
and explanation without intent to infringe.

ISBN: 978-1-032-69073-5 (hbk)
ISBN: 978-1-032-69072-8 (pbk)
ISBN: 978-1-032-69074-2 (ebk)

DOI: 10.1201/9781032690742

Typeset in Times
by Newgen Publishing UK

http://www.copyright.com
http://dx.doi.org/10.1201/9781032690742

Contents

PIETACE. ... ettt ettt e vii
ACKNOWIEAGIMENES.couiiiiiiiiitiiieit ettt ettt ettt et ettt sbe et sbeenaesbeenaeeanenbeas ix
ADOUL the AUTNOT ..ottt ettt ettt sttt st st sae s e b Xi
Chapter 1 INrOAUCTIONeiiuiieiiiitie ettt ettt ettt e stee st e esaeesabeebeessaeenbeesnseenseenns 1
Chapter 2 Linear AIZEDIa.......cc.coiiiiiiiiiiiiiieteeeeteee ettt 11
Chapter 3 Multivariate CalCulUscccueevuieriiiiiiieie ettt st aee e e 65
Chapter 4 Probability Theory and StatiStiCSccceeeererienerienenieneeieneeteeeeee e 91
Chapter 5 Optimization THEOTYcceeoiiiiiiiiniiiinieieccee ettt 133
Chapter 6 Information TREOTYccc.coiiiiiiiiiiiiieiiectc et 179
Chapter 7 Graph ThEOTYc..coouiriiiiiiiieniceeeeee ettt sttt 205
Chapter 8 Differential GEOMELIYc.eeevuiiriiiiiiieriie ettt ettt erte ettt et esiaeebeeseaeebeenaneens 240
Chapter 9 Topology in Deep Learning...........cocvecuerieriiniiniiniiniiieneeieneeiese et 270
Chapter 10 Harmonic Analysis fOr CININS.......cccieriiiiiierieeiienie ettt see et e steeteesieeeseesineens 298
Chapter 11 Dynamical Systems and Differential Equations for RNNS.........c..cccceviiiinienennnn. 321
Chapter 12 Quantum COMPULING ...cc..eoueeieriiiieniieieritete ettt ettt st eae e 343
BIbOGIapRc..ooiiiiiii ettt s 361
IIMAEX ...ttt b et bttt st nae st 365

https://taylorandfrancis.com

Preface

Mathematical Foundations for Deep Learning is a guide to the key mathematical principles behind
modern deep learning techniques. I hope this book brings clarity to these essential concepts in artifi-
cial intelligence (Al), enhancing both your theoretical understanding and practical skills.

In this book, we explore important mathematical areas crucial for deep learning, such as linear
algebra, calculus, probability theory, and more. Each chapter balances theory with practice, offering
examples and exercises to strengthen your grasp of the material. We delve into the mathematics that
power neural networks, optimization algorithms, and various deep learning architectures, aiming to
connect complex theory with real-world applications.

The book is organized into 12 chapters, each focusing on a specific area of mathematics as it
relates to deep learning. We start with foundational concepts to ensure that all readers, regardless of
their background, have the tools needed to tackle more advanced topics.

Our journey begins with linear algebra and multivariate calculus, the building blocks of deep
learning models. These chapters lay the groundwork for understanding how data is represented and
manipulated in neural networks. We then move on to probability theory and optimization, exploring
how models learn from data and how their performance can be improved.

In later chapters, we introduce subjects like information theory, graph theory, and differential
geometry, which play important roles in designing and operating deep learning systems. We also
cover advanced topics like topology, harmonic analysis for convolutional neural networks, and
dynamical systems for recurrent neural networks, showing how these areas contribute to the latest
research and applications in Al Finally, we discuss quantum computing and its potential impact on
the future of deep learning.

At the core of this book is a detailed look at how these mathematical foundations come together
in the practical building of deep learning models. By understanding the underlying math, you’ll be
better equipped to solve complex problems and innovate in the field.

I wrote this book for a wide audience, from students new to deep learning to experienced
professionals wanting to deepen their understanding of the math behind the models they use. My
goal is to make the content accessible to everyone, with clear explanations, practical examples, and
exercises to help you learn and apply what you’ve read.

Thank you for joining me on this journey into the mathematical heart of deep learning. I hope
this book not only expands your knowledge but also inspires you to push the boundaries of what’s
possible in Al

Happy reading!

Mehdi Ghayoumi
Beverly Hills, CA, USA
August 2024

vii

https://taylorandfrancis.com

Acknowledgments

The creation of this book has been deeply influenced by the extraordinary individuals in my life.
While many have contributed, none have been more significant than my beloved parents, to whom
I offer my deepest gratitude.

First and foremost, I dedicate this book to my dear mother, Khadijeh Ghayoumi. Your
unwavering belief in me, endless love, and constant support have been the foundation of my strength
throughout this journey. This book is a humble tribute to the profound impact you’ve had on my
life. The valuable lessons you’ve taught me continue to guide my path, and your inspiring resilience
reminds me daily to persevere, no matter the challenges that arise.

In loving memory of my father, Aliasghar Ghayoumi, I also dedicate this work. Though you are
no longer with us, your spirit continues to light my way. Your legacy of integrity, perseverance, and
wisdom remains a guiding force in my life. This book honors the values you embodied, and I hope
it stands as a testament to your lasting influence.

To both of you, my parents, I owe the principles that have shaped my academic journey: the
relentless pursuit of knowledge, the importance of perseverance, and the virtue of humility. This
book reflects those values and the love and guidance you’ve given me. I hope it makes you proud.

To my extended family, I express my heartfelt thanks. Your unwavering belief in me and your
constant encouragement have been crucial in achieving this goal.

I also wish to sincerely thank my colleagues, mentors, and collaborators. Your wisdom, expertise,
and guidance have been invaluable as I navigated the complexities of academia. The intellectual
camaraderie we’ve shared has played a pivotal role in bringing this work to completion.

From the bottom of my heart, thank you.

https://taylorandfrancis.com

About the Author

Mehdi Ghayoumi is a distinguished Assistant Professor at the Center for Criminal Justice,
Intelligence, and Cybersecurity at the State University of New York (SUNY) Canton. His academic
career is marked by excellence and leadership, reflecting a deep commitment to both teaching and
research. Previously, as a Research Assistant Professor at SUNY Binghamton, he spearheaded
innovative projects at the Media Core Lab, driving forward research and development in emer-
ging technologies. At Kent State University, his exceptional teaching earned him the prestigious
Teaching Award for two consecutive years, 2016 and 2017.

Ghayoumi has been instrumental in developing several courses in fields such as machine learning,
data science, robotics, and programming. His broad and impactful research interests include Machine
Learning, Machine Vision, Robotics, Human—Robot Interaction (HRI), and privacy. Focusing on the
creation of practical and viable systems for real-world environments, his current multidisciplinary
research spans HRI, manufacturing, biometrics, and healthcare.

Deeply involved in the academic community, Ghayoumi serves on technical program committees
for numerous high-profile conferences and workshops. He is also a member of the editorial boards
for several respected journals in machine learning, mathematics, and robotics. His influence reaches
some of the most prestigious conferences in these domains, including ICML, ICPR, NeurIPS HRI,
FG, WACYV, IROS, CIBCB, and JAIL

Ghayoumi’s contributions are substantial and far-reaching. His research has been presented at
leading conferences and published in top-tier journals, earning recognition for its depth and prac-
tical relevance. He has made significant strides in advancing HRI, Robotics Science and Systems
(RSS), and machine learning applications, demonstrating his ongoing commitment to pushing the
boundaries of knowledge and technology.

Xxi

https://taylorandfrancis.com

’I Introduction

1.1 INTRODUCTION

Welcome to Mathematical Foundations for Deep Learning, a journey into the core of mathematics
and its impact on artificial intelligence (AI). Over the past 10 years, deep learning has changed
industries and how we use technology. This book aims to make these complex ideas easier to
understand by focusing on the main mathematical principles behind deep learning. Whether
you’re a computer scientist looking to deepen your knowledge, an artist exploring where cre-
ativity meets technology or just someone who’s curious, this book will show how mathematics is
the backbone of Al You’ll learn how abstract concepts turn into real-world applications through
clear examples, such as the role of linear algebra in neural networks and the use of calculus
in optimization algorithms. This chapter gives an overview of the main topics we’ll cover. It
highlights how these mathematical ideas help build and improve deep learning models, preparing
you for the detailed exploration ahead.

1.2 IMPORTANCE OF MATHEMATICS IN DEEP LEARNING

Deep learning is a field that combines many different areas, and mathematics plays a big role in
it. But why is math so important for deep learning? Simply put, mathematics provides the founda-
tion for everything in deep learning. It helps organize complex information, creates structure from
random data, and gives meaning to the numbers we work with. If you want to design, understand,
or improve deep learning algorithms, having a strong grasp of these mathematical ideas is not just
useful but essential. Mathematics makes it possible to build effective models that can learn from data
and make accurate predictions.

1.2.1 StrRUCTURING CHAOS

Deep learning is about finding meaningful patterns hidden in large amounts of data. However, as
there’s so much data and it can be quite random, finding these patterns can feel like searching
for a needle in a haystack. This is where mathematics comes in to turn chaos into something we
can manage and understand. Mathematical principles, especially linear algebra, provide system-
atic ways to process and represent data. Concepts like vectors, matrices, and tensors are funda-
mental in deep learning. They allow us to represent and manipulate data efficiently. This structured
approach makes it easier to use computational techniques that speed up data analysis. For example,
matrix operations let us transform entire datasets into a single, coherent action, greatly simplifying
the data processing phase. When deep learning algorithms extract insights or patterns from data,

DOI: 10.1201/9781032690742-1 1

http://dx.doi.org/10.1201/9781032690742-1

2 Mathematical Foundations for Deep Learning

mathematics, particularly statistics and probability, provides the essential tools to measure these
discoveries. Measures like mean, median, standard deviation, and correlation give us the language to
describe and assess patterns, turning abstract data into clear insights. Moreover, mathematics plays
a key role in optimizing deep learning models. Based on calculus, algorithms like gradient descent
adjust model parameters step by step to minimize errors. This optimization process enables deep
learning models to learn from data and improve their accuracy over time. Mathematics also offers
strategies to handle outliers and prevent overfitting. Techniques like regularization help balance a
model’s complexity, improving its ability to generalize and leading to more reliable predictions in
real-world applications.

1.2.2 IMPOSING RULES ON RANDOMNESS

Deep learning often involves dealing with uncertainty, like the random starting weights in neural
networks. This brings up an important question: How can we use this randomness to improve
our model’s predictions? Mathematics, with its clear yet flexible rules, offers a structured way to
handle this uncertainty. A neural network begins by setting initial weights, which greatly affect
how well it performs. These weights are usually given random values within a specific range, but
this randomness isn’t without control. Mathematical principles guide the choice of this range and
how the initial weights are distributed, ensuring they’re set up properly for effective learning. As
the network trains, it adjusts these weights based on the errors it makes, a process where math-
ematics truly shines. Math provides systematic methods for updating these weights, which is
crucial for learning effectively from randomness. At the heart of learning in neural networks is
backpropagation, an algorithm based on the chain rule from calculus. Backpropagation calculates
the gradient of the loss function with respect to the network’s weights. This gradient shows how to
update the weights to minimize errors, steadily improving the network’s performance. To put this
in simple terms, imagine navigating a complex maze without a clear path. Backpropagation acts
as a guide, giving you step-by-step directions on how to adjust your course at each turn. While
randomness plays a key role in deep learning, the goal is for models to eventually find optimal
solutions. Mathematics provides the rules and methods that make this convergence happen sys-
tematically and efficiently.

1.2.3 INFUSING DATA WITH MEANING

In its natural form, data is just a collection of unprocessed facts. Mathematics helps us turn this
raw data into meaningful information by representing it as mathematical objects like vectors,
matrices, or higher-dimensional tensors. This mapping allows us to measure relationships, calcu-
late distances, and find patterns, which are essential steps in deep learning. A key aspect of deep
learning is how we represent data. Whether we’re dealing with images, text, or sounds, real-world
data is often converted into numerical arrays or tensors. This transformation uses the power of
linear algebra, enabling us to manipulate and analyze data efficiently. By adding structure to
what might be chaotic information, mathematics makes it easier to manage and understand com-
plex data. Mathematics also helps us quantify relationships between different data points. This
could involve calculating correlations, finding dependencies, or uncovering hidden patterns using
techniques like dimensionality reduction. Additionally, mathematical tools allow us to measure
distances or differences between data points. Methods like Euclidean distance or cosine similarity
tell us how similar or dissimilar items are. This ability is vital in many deep learning applications,
such as grouping similar items (clustering), detecting unusual data points (anomaly detection),
and finding the closest matches in data (nearest-neighbor searches). By mapping data onto math-
ematical structures, we can identify patterns. For example, Fourier analysis can detect repeating

Introduction 3

patterns in time-based data, while convolution operations in convolutional neural networks
(CNNs) find spatial patterns in images. Recognizing these patterns is fundamental to learning
from data and making accurate predictions. To bring this idea to life, imagine grouping data points
based on their similarities. Without mathematical techniques to measure these similarities, effect-
ively clustering data would be nearly impossible.

Figure 1.1 illustrates how various mathematical constructs transform raw data into meaningful
insights. The first subplot demonstrates the use of principal component analysis (PCA) to reduce
the dimensionality of data, making it more interpretable and easier to visualize. In the second
subplot, a heatmap reveals the Euclidean distances between data points, quantifying their dis-
similarities and helping us understand the spatial relationships within the dataset. The third sub-
plot displays a heatmap of cosine similarities, highlighting the degree of similarity between data
points by focusing on their angular relationships. Finally, the K-means clustering subplot shows
how data points are grouped into distinct clusters, revealing underlying patterns and structures in
the dataset.

1.2.4 DESIGNING AND INTERPRETING ALGORITHMS

Mathematical principles act like a compass, helping us choose the right functions, understand the
effects of our choices, and keep improving existing algorithms. For example, consider how math is
crucial when selecting activation functions for neural networks. Why are sigmoid functions often
used? The answer lies in their unique mathematical properties. With their S-shaped curve, sigmoid
functions accept any real number as input but always output a value between 0 and 1. This makes
them perfect for situations where predictions, like probabilities, need to stay within a specific range.
Understanding the math behind an algorithm also sheds light on how it behaves. For instance,
knowing that sigmoid functions squeeze extreme input values into a narrow range between 0 and
1 helps us understand why neural networks using them might face vanishing gradients. This is a
phenomenon where the gradients become very small, slowing down learning and affecting training
efficiency. Mathematics is not just foundational for enhancing and creating new algorithms but also
for understanding current ones.

1.2.5 IMPROVING MODELS

Mathematics is essential for designing and understanding deep learning models, and it plays a
crucial role in improving their performance. By learning mathematical concepts like overfitting,
underfitting, and regularization, we can identify issues in our models, optimize their performance,
and enhance their reliability. Overfitting and underfitting are common challenges in machine
learning. Understanding these problems is key to fixing weaknesses in our models. Mathematics
provides us with tools to tackle these issues directly. For example, regularization is a mathemat-
ical technique that improves a model’s ability to generalize by reducing its complexity, helping
to prevent overfitting. Techniques like L, and L, regularization, each with their own benefits,
are crucial for simplifying models and making them more effective. Knowing these techniques
empowers us to choose the best one for our specific needs, further enhancing our model’s per-
formance. Mathematics also plays a vital role in optimizing model parameters. Methods like gra-
dient descent adjust model parameters step by step to minimize errors efficiently. Additionally,
understanding the bias-variance trade-off, a key concept in statistics, helps us balance a model’s
accuracy on training data (bias) with its ability to perform well on new data (variance). Finding
the right balance between bias and variance is crucial for building accurate and robust models. By
applying mathematical insights, we can fine-tune our models to ensure they perform well both in
theory and in real-world situations.

FIGURE 1.1

Transforming data and identifying patterns.

Suruaea des(40y suoepunod [edieWwayIe

Introduction 5

1.3 BRIEF OVERVIEW OF DEEP LEARNING
1.3.1 SiMULATING HUMAN-LIKE LEARNING

Deep learning takes inspiration from how humans learn, especially through experience. Just like a
child recognizes shapes, sounds, or faces by seeing them repeatedly, deep learning models process
vast amounts of data through layers of artificial neural networks (ANNs). These models gradually
learn to detect patterns, make connections, and develop a deeper understanding of the input data. At
the core of deep learning is the idea of learning from data. Unlike traditional programming, where
machines follow specific instructions for every task, deep learning models learn by example. They
start with raw, unprocessed data and improve their understanding as they process it. This enables
them to make decisions or predictions without being explicitly programmed for each specific task.

Much like humans, deep learning models improve with experience. They update their parameters
with each training cycle to reduce prediction errors. The more data they are exposed to, the better
they perform their tasks. This ongoing process mirrors human learning, where continuous practice
leads to gradual improvement and mastery. By imitating the way humans learn, deep learning has
become invaluable in many areas, from image recognition and natural language processing (NLP)
to self-driving cars and medical diagnoses. Deep learning models can tackle complex problems that
were once thought too difficult for artificial intelligence (AI).

1.3.2 ARrTIFICIAL NEURAL NETWORKS

ANNs are the foundation of deep learning and are inspired by the neural networks in the human
brain. These computational models imitate how the brain processes information but in a much sim-
pler way. ANNs consist of interconnected layers of nodes, or “neurons”, that work together to pro-
cess information and learn patterns from data. An ANN is typically organized into three main layers:

e [Input Layer: This layer receives the raw data that the network will process. Each neuron here
represents a feature or input variable from your dataset.

* Hidden Layers: These are the intermediate layers that perform complex transformations on
the input data. An ANN can have one or more hidden layers, each containing many neurons.
These neurons are connected to neurons in the previous and next layers through weighted
connections, similar to synapses in the brain. When a network has multiple hidden layers, it’s
called a deep neural network.

e Qutput Layer: This final layer produces the network’s output, the result of processing the data.
The number of neurons in this layer depends on how many output variables you need.

Each neuron in an ANN performs a simple operation:

1. Receive Inputs: The neuron gets inputs from the neurons in the previous layer. Each input is
multiplied by a specific weight.

2. Calculate Weighted Sum: The neuron sums up all these weighted inputs and adds a bias term.

3. Apply Activation Function: The result is passed through an activation function, like the sig-
moid function or ReLU (rectified linear unit). This function introduces nonlinearity into the
model, allowing the network to learn complex patterns that aren’t just straight lines.

The real strength of ANNs comes from the way neurons and layers are interconnected. During
training, the network adjusts the weights and biases of each neuron to minimize the difference
between its predictions and the actual values. This adjustment is done through a process called
backpropagation, which uses optimization algorithms like gradient descent. Backpropagation
calculates the gradient of the loss function (which measures the error) with respect to each weight.

FIGURE 1.2 (a) Structure of an ANN, (b) neuron operation, and (c) backpropagation and optimization.

Suruaea des(40y suoepunod [edieWwayIe

Introduction 7

It then updates the weights to reduce this loss. ANNs are powerful because of their layered and
interconnected structure, and they can model complex patterns and structures in data. They excel
at finding hidden patterns and subtle relationships that traditional machine learning models might
miss. This ability has led to major breakthroughs in areas such as computer vision, NLP, and speech
recognition.

Figure 1.2 illustrates the key components of ANNs. Figure 1.2a depicts the basic structure of
an ANN, showcasing the input layer, one or more hidden layers, and the output layer. Figure 1.2b
demonstrates the operation of a single neuron, showing how it processes inputs, applies weights
and biases, and utilizes an activation function to produce an output. Figure 1.2c visualizes the
backpropagation process, highlighting how the loss decreases over epochs as the model’s parameters
are optimized through iterative weight adjustments.

1.3.3 APrPLICATIONS OF DEEP LEARNING

Deep learning, a major part of Al, has transformed many fields in technology, research, and business
through its wide-ranging applications. Its ability to process and learn from large amounts of data
has led to breakthroughs once thought impossible. In computer vision, deep learning excels at
image recognition, enabling models to quickly and accurately identify objects, people, and scenes
in images. This power is behind facial recognition systems, self-driving cars, and medical imaging.
For example, deep learning algorithms can detect tumors in medical scans with accuracy similar
to experienced doctors. In NLP, deep learning has made significant strides. Algorithms can now
understand and generate human language, allowing for sentiment analysis, language translation, text
summarization, and question-answering. These advancements power everyday tools such as voice
assistants, customer service chatbots, and real-time translation services, improving communication
and accessibility worldwide. Beyond recognition and understanding, deep learning fosters creativity
through generative models like generative adversarial networks (GANs). GANs can produce new
data that closely resembles their training data, creating realistic images, music, and even art. For
instance, GANs can generate lifelike human faces of people who do not exist, which has exciting
applications in entertainment, fashion, and virtual reality. In predictive analytics, deep learning is
a powerful tool that can analyze vast amounts of data to forecast future events like stock prices,
customer behavior, disease outbreaks, and natural disasters. Industries such as finance, marketing,
healthcare, and disaster management use this predictive power to make informed, data-driven
decisions with greater confidence. Additionally, reinforcement learning, a subset of deep learning,
involves models that learn to make decisions by interacting with their environment. This approach
has achieved remarkable success in game-playing Al, surpassing human champions in games like
Go, Chess, and Poker. Reinforcement learning is also applied in robotics, helping robots learn to
navigate environments and manipulate objects on their own, paving the way for more advanced
automation and intelligent systems. These applications demonstrate the significant impact deep
learning has across various fields, driving innovation and enhancing capabilities in many aspects of
modern life. As deep learning continues to evolve, it holds the promise of unlocking new possibil-
ities and addressing complex challenges that were once beyond our reach.

1.4 BOOK FEATURES AND STRUCTURE
1.4.1 Book FEATURES

Math can often feel overwhelming, filled with strange symbols and complex rules, especially when
you're new to deep learning. Concepts like vectors and matrices from linear algebra, the tricky
operations of calculus, and the rules of probability are all deeply connected to deep learning. At first
glance, these ideas might seem scary, like a wall that’s hard to climb. That’s where this book comes
in. It aims to guide you through the maze of math by breaking down these abstract concepts and

8 Mathematical Foundations for Deep Learning

making them easy to grasp. One of our main goals is to uncover the complexity of mathematical
ideas. Terms like complex numbers, high-dimensional vectors, and abstract spaces can seem intimi-
dating. The abstract nature of math often makes it hard to see how it applies to real-life problems,
leaving many wondering how these theories are useful. This book is dedicated to bridging that gap
by directly linking mathematical theories to their uses in deep learning. By doing this, abstract ideas
become practical tools you can use in Al It’s not just about understanding math; it’s about seeing
these theories come alive in deep learning. You might think of math and deep learning as completely
separate fields. Math, with its abstract symbols and strict proofs, often feels very different from the
hands-on, algorithm-focused world of deep learning. However, the connection between them is
much deeper than it might seem. This book aims to connect these seemingly different areas by cre-
ating clear and practical links between mathematical concepts and deep learning techniques. Each
math concept is paired with its real-world application in a deep learning scenario. This approach
not only applies theoretical knowledge but also shows how to turn abstract formulas into useful
algorithms. By exploring these connections, you’ll gain deeper insights into deep learning, turning
it from a mysterious “black box” into a system you can understand and explain. This foundational
knowledge will help you see how algorithms work, spot potential issues, and find ways to improve
them. Mastering the math behind deep learning isn’t just about knowing how things work; it’s
about improving, adapting, and innovating based on a deep understanding of the core principles.
Understanding deep learning goes beyond just using existing models and tools. It’s about diving
deep into the algorithms, figuring out how they work, and understanding why they succeed or fail
in certain situations. Moreover, it’s more than just understanding; it’s about innovation, using your
new knowledge to build on existing methods and create unique solutions to your challenges. That’s
why a key goal of this book is to empower you, the reader.

1.4.2 OvEerRVIEW OF CHAPTERS

¢ Chapter 1: Introduction: The introductory chapter sets the stage for the book, providing
an overview of the core topics that will be covered. It emphasizes how these mathematical
concepts contribute to the development and optimization of deep learning models, preparing
you for the in-depth exploration ahead.

e Chapter 2: Linear Algebra: This chapter delves into the essential elements of linear algebra,
which form the backbone of many deep learning algorithms. Topics include vectors, matrices,
matrix operations, eigenvalues, and eigenvectors. Understanding these concepts is vital for
grasping more advanced techniques, such as matrix factorization and singular value decom-
position, which are critical for neural network computations and data transformations.

e Chapter 3: Multivariate Calculus: Multivariate calculus is integral to the optimization
processes in deep learning. This chapter explores derivatives, gradients, partial derivatives,
and the Hessian matrix. We focus on their applications in neural networks, especially during
the training phase, where gradient-based optimization techniques like backpropagation are
employed to minimize loss functions.

e Chapter 4: Probability Theory and Statistics: Deep learning models operate under uncer-
tainty, making probability and statistics fundamental to their success. This chapter covers
probability distributions, Bayesian inference, hypothesis testing, and statistical methods that
help model uncertainty. These tools enable effective learning from data in environments where
randomness and variability are significant factors.

e Chapter 5: Optimization Theory: At the heart of deep learning is the challenge of opti-
mizing model parameters. This chapter introduces optimization theory, covering both convex
and nonconvex optimization techniques, gradient descent methods, and advanced optimiza-
tion strategies like stochastic gradient descent, Adam, and root mean squared propagation

Introduction 9

(RMSprop). These methods ensure that models efficiently converge to the best possible
performance.

Chapter 6: Information Theory: Information theory provides tools for quantifying the infor-
mation processed by neural networks. This chapter discusses key concepts such as entropy,
mutual information, and Kullback-Leibler divergence (KL divergence), highlighting their
relevance in model regularization, compression, and understanding information flow through
networks. Applications in areas like variational autoencoders and information bottleneck
methods are explored.

Chapter 7: Graph Theory: Graph theory has gained importance in deep learning, particu-
larly with the development of graph neural networks (GNNs). This chapter introduces the
fundamentals of graphs, including nodes, edges, adjacency matrices, and graph Laplacians.
It explores their applications in representing complex relationships in structured data such as
social networks, molecular structures, and knowledge graphs.

Chapter 8: Differential Geometry: Studying high-dimensional spaces is crucial for deep
learning models, which often operate in complex, nonlinear environments. This chapter
introduces the mathematical structures of manifolds and tangent spaces geometry. We demon-
strate how differential geometry enhances our understanding of optimization landscapes and
generalization properties in deep learning.

Chapter 9: Topology in Deep Learning: Topology provides a way to understand the shape
and structure of data. This chapter introduces topological data analysis (TDA), focusing on
concepts like persistent homology and Betti numbers. We discuss how these tools are applied
in deep learning to uncover hidden patterns and structures in data, leading to improved feature
extraction and data representation techniques.

Chapter 10: Harmonic Analysis for CNNs: Harmonic analysis focuses on the frequency
components of signals and has significant applications in CNNs. This chapter explores
Fourier transforms, wavelets, and spectral analysis, illustrating how these mathematical
tools improve feature extraction, signal processing, and understanding of convolution
operations in CNNs.

Chapter 11: Dynamical Systems and Differential Equations for RNNs: Recurrent neural
networks (RNNs) are designed to handle sequential data, where time-dependent behavior
plays a crucial role. This chapter examines the theory of dynamical systems and differential
equations, explaining how they are used to model temporal dependencies in RNNs.

Chapter 12: Quantum Computing: Quantum computing represents the next frontier in com-
putational power, with the potential to revolutionize deep learning. This chapter introduces
quantum principles and quantum algorithms, discussing how quantum computing might be
leveraged to accelerate and enhance neural network training and inference.

1.4.3 CHAPTER’S STRUCTURE

Each chapter in this book is thoroughly crafted to provide a complete understanding of fundamental
mathematical concepts and their relevance to deep learning. To facilitate your learning journey,
every chapter includes the following sections:

Preface: Each chapter begins with a preface that introduces the core concepts to be covered.
Chapter Contents: Definitions, Formulas, Examples, and Real-World Applications:
The main content delves into essential definitions, formulas, and mathematical frameworks.
Concepts are explained step by step, accompanied by practical examples to ensure clarity.
Real-world applications demonstrate how these principles are applied in deep learning models
and related fields, making the transition from theory to practice seamless.

10

Mathematical Foundations for Deep Learning

Hands-On Examples: To bridge the gap between theory and practice, each chapter includes
a hands-on section with programming examples. These examples allow you to imple-
ment the mathematical concepts in code, gaining practical experience and reinforcing your
understanding of how these techniques are applied in deep learning frameworks.

Common Mistakes and Troubleshooting Tips: Learning complex mathematical concepts
often involves overcoming challenges. This section highlights frequent mistakes that students
and practitioners make when applying the material, along with tips for troubleshooting and
avoiding errors in both theoretical understanding and practical implementation.

Review Questions: Review questions are provided to test your understanding of the chapter
material. These questions challenge your understanding of definitions, formulas, and key
concepts, allowing you to self-assess your learning progress.

Programming Exercises: To deepen your programming skills, each chapter includes three
programming problems categorized as easy, medium, and challenging. These exercises are
directly related to the chapter’s content, providing an opportunity to apply what you’ve
learned in a practical coding environment. By solving these problems, you will enhance your
problem-solving abilities and strengthen your grasp of how mathematics drives deep learning
algorithms.

Linear Algebra

2.1 INTRODUCTION

Linear algebra provides the essential framework for describing vectors, matrices, and tensor
operations that form the core of neural network computations. Beyond a set of mathematical tools,
linear algebra is the thread weaving through the fabric of deep learning, enabling us to frame
problems and devise solutions that are both computationally efficient and conceptually profound. In
this chapter, we will delve into critical concepts such as vector spaces, matrix decompositions, and
the operations that empower neural networks to process and learn from vast amounts of data. These
concepts are not only theoretical foundations but also practical instruments that bring deep learning
models to life. As you journey through this chapter, you will discover how the principles of linear
algebra are applied to enable neural networks to learn from data, optimize models, and ultimately
drive innovation in artificial intelligence.

2.2 VECTORS, MATRICES, AND TENSOR OPERATIONS

This section will dive into the fundamental concepts of vectors, matrices, tensor operations, linear
transformations, eigenvalues, eigenvectors, and singular value decomposition (SVD).

2.2.1 UNDERSTANDING VECTORS

2.2.1.1 WhatIs a Vector?

A vector is a fundamental mathematical entity that possesses both magnitude (size) and direction.
You can visualize a vector as an arrow: the length of the arrow represents its magnitude, and the
arrow’s orientation indicates its direction. This concept is not just theoretical; vectors are crucial in
numerous real-world applications, including deep learning, where they are used to represent data
points, model weights, and activations within neural networks (NNs). Imagine you’re playing a
video game where your character’s movement is determined by a two-dimensional (2D) vector. This
vector tells the character how much to move in the x (horizontal) and y (vertical) directions. For
example, consider the vector:
|
v=| |
4

This vector instructs the character to move three units to the right (along the x-axis) and four units
upward (along the y-axis). By representing movement in this way, vectors provide a concise and

DOI: 10.1201/9781032690742-2 11

http://dx.doi.org/10.1201/9781032690742-2

12 Mathematical Foundations for Deep Learning

FIGURE 2.1 Vector representation [3, 4].

powerful way to encode directional information, which is essential in both physics and computa-
tional fields like deep learning.

Figure 2.1 illustrates a vector represented by a red arrow that starts from the origin (0, 0) and
points toward the coordinates (3, 4). The length of the arrow indicates the vector’s magnitude, while
its orientation shows its direction. The magnitude of a vector can be thought of as its “strength” or
“length.” For the vector v given by:

|
v=| |,
4

you can calculate the magnitude using the Pythagorean theorem:

[vl= 2 +v2 =3 +4 =Jo+16 =25 =5.

Here, lIvll = 5 units. This value represents the direct distance from the origin to the point (3, 4) on
a 2D plane.

Linear Algebra 13

2.2.1.2 Vector Operations

Vectors are fundamental in various fields, and understanding their operations is crucial. Here are
some essential vector operations with examples.

(a) Addition: Adding two vectors involves adding their respective components. Geometrically,

(b)

(c)

you place the tail of one vector at the head of the other and then draw a vector from the tail of
the first to the head of the second. This new vector is the resultant or sum of the two vectors.

Example: Let a and b be defined as follows:

a=[1,2] and b=|3, 4].

To add these vectors:

c=a+b=[1,2]+[3,4] =[1+3,2+4]=[4,6].

In Figure 2.2, the red arrow represents a, the blue arrow represents b, and the green arrow ¢
represents the resultant vector ¢ =a + b.

Scalar Multiplication: Multiplying a vector by a scalar changes its magnitude without chan-
ging its direction unless the scalar is negative, in which case the direction is reversed. To
scale a vector by a scalar k, multiply each component of the vector by k.

Example: Let v and scalar k be defined as follows:

3
v= |:4], k =2 The scaled vector is:

£

In Figure 2.3, the red arrow represents v as (a), and the blue arrow represents the scaled
vector kv as (3a). It illustrates the concept of vector scaling on a 2D plane. It shows two
vectors, a and 3a, originating from the origin (0, 0) and extending in the same direction. The
vector a, with coordinates (2, 1), is marked in red, and its magnitude (or length) is labeled as
approximately 2.24, calculated as +/22 + 1% = 5. The second vector, 3a, represents a scaled
version of a by a factor of 3, extending further along the same direction. Its length is shown
as 6.71, three times the magnitude of a (since |3a| =3 ><|a|). This blue vector demonstrates
the effect of scalar multiplication on a vector’s length, keeping the direction unchanged
while proportionally increasing the magnitude.

Dot Product: The dot product is an operation that multiplies two vectors to obtain a scalar. It
helps determine the angle between two vectors and is calculated as the sum of the products
of their respective components.

Example: Let a and b be defined as follows:

14 Mathematical Foundations for Deep Learning

FIGURE 2.2 Vector addition: a + b.

The dot product of a and b is:
a-b=(1)(3)+(2)(4)=3+8=11.

The dot product is 11, and this scalar value is crucial in various applications, such as calcu-
lating the cosine of the angle between the two vectors:

a-b
cosf=——.
el o]

Figure 2.4 shows two vectors, a (red) and b (blue), with the green vector representing the
projection of a onto b. This projection shows how much of a aligns with b. The projection
length depends on the cosine of the angle between a and b, indicating the part of a that points
in b’s direction. The “Dot Product: 11 label represents the dot product, a measure of this
alignment.

Linear Algebra 15

FIGURE 2.3 Scalar multiplication: 3a.

(d) Cross-Product: The cross-product between two vectors in three-dimensional space produces
another vector that is perpendicular to the plane formed by the two original vectors. The
cross-product of vectors a and b produces a third vector, ¢, that is perpendicular to both a
and b.

Example: Let a and b be defined as follows:
0
a=|0|, b=|1|.
0 0

The cross-product is calculated using the determinant of a matrix composed of unit vectors
and the components of a and b:

16 Mathematical Foundations for Deep Learning

FIGURE 2.4 Dot product interpretation.

axb=

oo |1 o0
1o Yo o

S = =
- O =<

z
O|,then c=axb=x
0

ab —ab
y z zy

c=axb= asz—axbZ

Substituting the components:

Linear Algebra 17

FIGURE 2.5 The cross-product of vectors a and b.

Figure 2.5 demonstrates the concept of the cross-product between two vectors, a (red) and b (blue).
The cross-product, shown as the green vector labeled a x b, represents a new vector that is perpen-
dicular to both a and b. This perpendicular direction follows the right-hand rule, meaning if you
point your right-hand’s fingers along a and curl them toward b, your thumb points in the direction of
a x b. The length of the green vector reflects the magnitude of the cross-product, which corresponds
to the area of the parallelogram covered by a and b.

2.2.1.3 Vector Components

In a 2D space, any vector can be decomposed into its components along the axes of the coordinate
system.

Example: Consider a vector that terminates at the point (3, 4) on a 2D Cartesian plane. This vector
can be represented by its components along the x and y axes: A=A l +A]

Figure 2.6 illustrates the components of the vector A on a 2D Carteswn plane, where A _and A
are unit vectors along the x and y directions, respectively. For vector, A, A is 3, and A is 4. The

18 Mathematical Foundations for Deep Learning

FIGURE 2.6 Vector components of A.

red arrow shows the vector A ending at point (3, 4). The green arrow represents the x-component
extending along the x-axis to 3, and the blue arrow indicates the y-component extending along the
y-axis to 4.

2.2.1.4 Magnitude and Direction

The magnitude of a vector A in 2D space is given by: |;1| = JAI + Af . The direction can be found
using trigonometry, typically with the tangent function:

A
0= arctan| — |.
A.’C

Example: Consider a vector that terminates at the point (3, 4) on a 2D Cartesian plane. This vector can
be represented by its components along the x and y axes: A=A i+A NE where A =3 and A = 4

The magnitude is: |A| =32 +42 =/9+16 =25 = 5 and the direction is: 6 = arctan (?) =53.13°.

Linear Algebra 19

FIGURE 2.7 Vector magnitude and direction.

Figure 2.7 shows vector A = (3, 4) on a 2D plane. The red arrow represents vector A, starting
from the origin (0, 0) and pointing to (3, 4). The length, or magnitude, of A, is labeled as 5.00,
calculated from /3% + 4% =5. The angle between A and the x-axis is marked as 53.13°, which is

4
found using tan! (5) The blue and green dashed lines show the projections of A onto the y-axis at

(0, 4) and the x-axis at (3, 0), highlighting its horizontal and vertical components.

2.2.1.5 Vector Spaces

A vector space is a set of vectors combined with two operations (vector addition and scalar multi-
plication) that satisfy specific properties. The space itself can be in any dimension, and the vectors
do not necessarily have to be geometric; they can be functions, polynomials, or other mathematical
entities as long as they follow the defined rules of a vector space. A vector space V over a field F
(often the field of real numbers) must satisfy the following properties:

20 Mathematical Foundations for Deep Learning

(a) Vector Addition

1. Commutativity: u+v=v+u forall u,ve Vs

2. Associativity:u+(v+w)=(u+v)+wforall u, vywe V

3. Identity: There exists avector 0 € Vsuchthatv+0=v forallve V

4. Additive Inverse: Forevery v € V, there exists a vector —v € V such that v + (—v) =0
(b) Scalar Multiplication

1. Distributivity over Vector Addition:

a (u + V) = qu + av for all scalars ¢ and vectorsu,v € V
2. Distributivity over Scalar Addition:
(a + b)u = au + av for allscalars a, b and vectorsu € V

3. Associativity: a (bu) = (ab) u for allscalars a,band vectorsu € V
4. Identity: 1-v = vforallv € V,wherelis the multiplicative identity in the field F

Figure 2.8 shows different operations on two vectors, v, = (1, 2) and v, = (2, 3), on a 2D plane.
The red vector represents v , starting from the origin and pointing to (1, 2), while the blue vector
represents v,, pointing to (2, 3). The pink vector, 3 x v = (3, 6), is a scaled version of v by a
factor of 3, extending in the same direction but with three times the length. The green vector, v,
+v,=(3, 5), shows the result of adding v, and v, together, combining their directions to reach
the point (3, 5). Finally, the cyan vector, —v, = (=1, =2), is v, reversed in direction, pointing to
(-1, =2).

2.2.3 VECTOR RELEVANCE IN THE CONTEXT OF DEEP LEARNING

2.2.3.1 Data Representation

(a) Feature Vectors: In machine learning and deep learning, data is typically represented as
vectors, where each component (or dimension) of the vector corresponds to a specific fea-
ture of the data. For instance, consider an image from the MNIST dataset, which contains
images of handwritten digits, each with a resolution of 28 x 28 pixels. This image can be
flattened into a feature vector with 784 dimensions (since 28 x 28 = 784). Also, each dimen-
sion in this vector represents the intensity of a specific pixel, ranging from 0 (black) to 255
(white). For example, a pixel value of O represents a completely black pixel, and a value of
255 represents a fully white pixel. This representation transforms the image into a manage-
able vector format for machine learning models to process. Suppose we have a 3 x 3 image
for simplicity, with the following pixel intensity values:

255 128 0
64 255 32
0 128 64

Flattening this 3 x 3 image into a vector results in a nine-dimensional feature vector:
[255, 128, 0, 64, 255, 32, 0, 128, 64]

This flattened vector can now be used as input to a machine learning model.

Linear Algebra 21

FIGURE 2.8 Vector operations in R,

(b) Word Embeddings: In natural language processing (NLP), words or phrases are mapped to
vectors of real numbers, known as word embeddings. These embeddings place words in a
high-dimensional vector space, where the distance between words reflects their semantic
relationships. For example, word embeddings might position “king” and “queen” close
to each other because of their similar meanings, while “apple” and “banana” might be
positioned close due to their shared category as fruits. Consider two words, “king” and
“queen,” represented by three-dimensional embeddings as follows: “king” = [0.8, 0.2, 0.7]
and “queen” = [0.75, 0.3, 0.65]. The values for “king” and “queen” are just examples of
values that illustrate how word embeddings work. For example, “king” and “queen” have
similar vectors because they share common features like royalty, but small differences in
their numbers capture distinctions like gender. In practice, the actual numbers would come
from a trained model like Word2Vec, based on analyzing large text corpora. To measure their
similarity, we can compute the cosine similarity between the two vectors:

e imilaricy King-gueen (0.8%0.75)+(0.2x0.3)+(0.7x0.65)
cosine similari = =
Y |king||queen| /0.82 +0.22 +0.72 x+/0.752 +0.32 +0.652

22 Mathematical Foundations for Deep Learning

cosine similarity = LIS = 0.9942.
1.1215

The resulting value (0.994 and close to 1) indicates a strong similarity between “king” and “queen,”
reflecting their semantic connection.

2.2.3.2 Neural Network Parameters

The parameters of NN, specifically the weights and biases, are organized as vectors, matrices, or
higher-dimensional tensors depending on the structure of the network. These parameters are essen-
tial in controlling how the network processes and transforms input data. When the network receives
an input in the form of a feature vector, it performs matrix—vector multiplications using the weights
and biases at each layer. The result is then passed through activation functions, such as the ReL.U
(Rectified Linear Unit) or sigmoid function, to introduce non-linearity. This step-by-step process
transforms the input data, enabling the network to learn complex patterns and generate the desired
output. Let’s consider a simple NN layer with 3 input features and 2 output neurons. The input fea-
ture vector is:

x=1[1.0,0.5,-0.2]

The weight matrix for this layer is a 2 x 3 matrix, where each row corresponds to the weights
connected to a single output neuron:

02 -05 1.0
W= .
-03 0.8 05

The bias vector for the two output neurons is:
b =[0.1,-0.1]

To calculate the output, we perform matrix—vector multiplication and add the bias:

1.0
02 -05 1.0 0.1
7=Wx+b= 0.5 [+ .
-03 0.8 05 0.1
-0.2
Performing the matrix multiplication:
1(0.2x1.0)+(-0.5%0.5)+(1.0x-0.2) [or]_[02-025-02] [o.
* 71 (~03%1.0)+(0.8x0.5)+(0.5x-02) | | -0.1] | -03+04-0.1]" | -0.1
_|-025+0.1 |-0.15
L 00-01 | | -01]
Thus, the output of this layer before applying the activation function is [-0.15, —0.1]. If we apply a

ReLU activation function (which outputs O for negative values), the final output will be [0, 0].

2.2.3.3 Activation Functions and Layers

In an NN, the output from each layer, known as the activations, is represented as a vector. These
activations are computed by first multiplying the input vector by the layer’s weights, adding the
biases, and then applying an activation function to introduce non-linearity. The activation function

Linear Algebra 23

transforms the output in such a way that the network can model complex relationships within the
data. The resulting activation vector from one layer serves as the input to the next layer, allowing
the network to progressively learn more intricate data representations. Consider an NN layer with a
single input value x = 1.0, a weight w = 0.5, and a bias b = 0.2. The layer applies the ReLU activation
function, which outputs the input value if it is positive and returns O otherwise.

Step 1: Compute the linear combination of input, weight, and bias:

z=wx+b=(0.5%1.0)+02=0.5+0.2=0.7

Step 2: Apply the ReLU activation function:
ReLU(z) = max(0,z) = max(0,0.7) = 0.7.

In this example, the activation output is 0.7, which becomes the input to the next layer. If we used a
different activation function, like the sigmoid function, the output would have been:

. . 1 1
Slngld(Z) = [+ = m = 0668

By applying different activation functions, the network can handle various kinds of data patterns,
enabling it to learn more complex representations as it passes data through multiple layers.

2.2.3.4 Dot Product in Neural Network

The dot product is a core mathematical operation in NN, playing a critical role in how information is
processed and propagated through layers. When an input vector is passed into a layer, it is multiplied
by the weight matrix of that layer. This multiplication involves calculating the dot product between the
input vector and each column (or row, depending on the network’s architecture) of the weight matrix.
The result is a transformed output that is passed on to the next layer, making the dot product essential for
updating the network’s activations and learning patterns from the data. Let us take a simple example of an
NN with an input vector x = [2, 3] and a weight matrix W for a layer with two neurons:

0.1 04
W= .
02 05
To calculate the dot product, we multiply the input vector by the weight matrix:
0.1 042
=W -x= €11
02 05(]3
This results in:
(0.1x2)+(04x3)| [02+12] [14
= = = .
(02x2)+(0.5x3)| [04+1.5] [1.9
In this example, the dot product produces a new vector [1.4, 1.9], which serves as the output of this
layer before applying any activation functions. This process enables the network to combine the

input data with the learned weights, transforming the input into a new representation that is then
passed to the next layer for further processing.

24 Mathematical Foundations for Deep Learning

2.2.3.5 Gradient Descent and Backpropagation

A gradient is a vector that contains the partial derivatives of the loss function with respect to each
parameter of the network (weights and biases). During training, the gradient of the loss function
is computed with respect to these parameters, providing insights into how the loss changes as the
parameters are adjusted. The parameters are then updated by moving in the opposite direction of the
gradient, a method known as gradient descent. This iterative process helps the network reduce loss
and improves its performance over time. The backpropagation algorithm is used to efficiently com-
pute the gradients. It works by applying the chain rule of calculus to propagate the error backward
through the network, layer by layer, calculating the gradient of the loss function with respect to each
parameter. By updating the parameters step-by-step, backpropagation enables the network to learn
from data and improve its accuracy. Suppose we have a simple NN with one parameter (weight)
w = 2.0 and a loss function L(w) = (w—15)2 The goal is to minimize the loss using gradient descent.

Step 1: Compute the gradient of the loss function with respect to w:

aL(w)
ow

=2(w-5).

Step 2: Update the parameter using gradient descent. Let the learning rate be a. = 0.1:

oL (w)
Wnew = Wald —oX aW :

w =20-0.1x2(20-5)=2.0-0.1x2(-3)=2.0+0.6 = 2.6.

ne

Step 3: Repeat the process. After the first update, the new weight is w = 2.6, which brings the
loss function closer to its minimum. Over multiple iterations, the weight will converge toward the
optimal value of w = 5, minimizing the loss.

2.2.3.6 Batch Processing

Learning models, particularly in machine learning and deep learning, often process data in batches
to accelerate training and make more efficient use of computational resources. When handling a
batch of data, each input, activation, gradient, and other intermediate values are represented as
matrices or higher-dimensional tensors. This extends the concept of single input vectors to multiple
dimensions, allowing the model to process multiple examples simultaneously. By doing so, the
model can leverage efficient computation and parallel processing, speeding up training and making
better use of available hardware, such as GPUs. Suppose we are training an NN with a batch size
of 3, and each input is a vector of 4 features. Instead of processing each input separately, the model
processes the batch as a whole by organizing the data into a matrix:

X Mo Ky X 1.0 20 30 40
X=|x 1 Xy, X X, = 50 6.0 70 80
X X X X 9.0 10.0 11.0 12.0

Here, each row represents a single input vector, and the network processes all three input vectors in
parallel. The same applies to activations and gradients, which are now computed for the entire batch
in one step, making the training process much faster compared to handling one input at a time. In

Linear Algebra 25

addition to speeding up training, batch processing helps stabilize learning by averaging gradients
across multiple examples, which reduces the noise in parameter updates. This is particularly useful
in stochastic gradient descent (SGD), where updating the model based on a single example can lead
to noisy and inefficient convergence.

2.2.3.7 Convolutional Neural Networks

In convolutional neural networks (CNNs), filters (also known as kernels) are small-weight matrices
that slide over the input data, such as images, to extract important local features. The convolution
process involves taking the dot product between the filter and small patches of the input data at
each position. This operation produces a feature map, which highlights the presence of specific
patterns in the data, such as edges, textures, or corners. By detecting local patterns, CNNs are highly
effective for tasks like image recognition, where spatial relationships between pixels are crucial for
understanding the content. Consider a 3 x 3 filter applied to a 5 x 5 grayscale image. The filter is:

1 0 -1
F=(1 0 -1|
1 0 -1
The input image is:

255 255 255 0 O
255 255 255 0 O
I=[255 255 255 0 O
0 0 0 00
0 0 0 00

Step 1: Apply the filter at the top-left corner of the image. The dot product between the filter and
the corresponding 3 x 3 patch of the image is:

(1x255)+(0%255)+(—1x255)+(1x255)+ (0% 255) +(~1x 255)
+(1x255)+(0%255)+(~1x255)=0

Slide the filter one step to the right (position (1, 2)):

(1x255)+(0%x0)+(-1x0)+(1x255)+(0x0)+(-1x0)
+(1x255)+(0x0)+(-1x0) = 765

Slide the filter one step to the right again (position (1, 3)):

(1%x255)+(0%x0)+(~1x0)+(1x255)+(0x0)+(—1x0)+(1x255)
+(0%0)+(~1x0)=765.

Move down to the second row (position (2, 1)):

(1x255)+(0%255)+(~1x255)+(1x255)+ (0% 255)
+(=1x255)+(1x0)+(0x0)+(-1x0)=0

26 Mathematical Foundations for Deep Learning

Step 2: Slide the filter to the right by one pixel and repeat the process. After sliding the filter over
all positions of the image, we get a 3 x 3 feature map:

0 765 765
F, =l0 765 765|
0 0 0

This feature map highlights the edges or transitions in the original image where the filter detects
changes, specifically horizontal edges, due to the structure of the filter.

2.3 MATRICES
2.3.1 WHAaT Is A MaTrix?

A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns.
Matrices are denoted by capital letters (e.g., A, B, C) and are often used in systems of linear
equations, computer graphics, statistics, and many other areas.

Example: Let us delve into the basics of matrices. Imagine you have a table of numbers where each
cell contains a value. This table can be thought of as a matrix. For instance:

1 2 3
A=|4 5 6]
7 8 9

2.3.2 DIMENSIONS

The size or dimension of a matrix is defined by the number of rows and columns it contains. A matrix
with m rows and n columns is called a matrix, often read as “m by n.”

Example: Consider a matrix B:

1
B=]|3
5

N B

where B is a matrix which has three rows and two columns.

2.3.3 TyPes OF MATRICES

2.3.3.1 Row Matrix
A matrix with only one row.

Example: R=(1 2 3).

Linear Algebra 27

2.3.3.2 Column Matrix
A matrix with only one column.

1
Example: C =] 2
3

2.3.3.3 Square Matrix
A matrix with the same number of rows and columns.

1 2
Example: S =
3 4

2.3.3.4 Diagonal Matrix
A square matrix where all elements outside the main diagonal are zero.

S NN O

1 0
Example: D=| 0 0
0 3
2.3.3.5 Identity Matrix (or Unit Matrix)
A diagonal matrix where all diagonal elements are 1.
1 00

Example: /=(0 1 0
0 0 1

2.3.3.6 Zero Matrix
All elements are zero.

00
Example: O =
0 0

2.3.3.7 Symmetric Matrix
AT = A where AT is the transpose of A.

(O, I SN S

1 3 1 2 3
Example: A =|2 51, AT=(2 4 5
3 6 356

2.3.3.8 Skew-Symmetric Matrix

A skew-symmetric matrix is a square matrix A that satisfies A” = —A, meaning each element
a;, =-a, and all diagonal elements are zero.

0 2 3 0o 2
Example: A={2 0 -5|, AT=|-2 0
35 0 -3 =50

28 Mathematical Foundations for Deep Learning

2.3.4 Matrix OPERATIONS

2.3.4.1 Addition and Subtraction
Matrices can be added or subtracted element-wise if they have the exact dimensions.

1 2 2 0
Let: A= and B=
3 4 1 3
1+2 240 3 3 2
4 7

3+1 4+3
. 1-2 2-0 -1 2
Subtraction: A—B = = .
3—-1 4-3 2 1

2.3.4.2 Scalar Multiplication
Every matrix element is multiplied by the scalar.

Example:

Addition: A+ B= (

Example:
1 2 1 2 3-1 3.2 3 6
Let: A= JIf k=3, thenk-A=3- = = .
3 4 3 4 3.3 3.4 9 12

2.3.4.3 Matrix Multiplication

For two matrices to be multiplied, the number of columns of the first matrix must equal the number
of rows of the second matrix. The resulting matrix has the number of rows of the first matrix and the
number of columns of the second matrix.

(1 2) (z 0)
Let: A= and B=)
3 4 13
coano(l 2)[? O (1-242-1) (1-:0+2-3)) (242 0+6) (4 6
3 4 3) ((32+41) (3:0+4:3)) (6+4 0+12) (10 12)

2.3.4.4 Determinant

For square matrices, the determinant is a scalar value representing the volume scaling factor of the
transformation the matrix represents.

Example:

Example:

Lt-A—1 2 dt(A)—1 2—(1 4)-(2-3)=4-6=-2
AT 4) VTR 4T B

Linear Algebra 29

2.3.4.5 Transpose
Reflects the matrix over its main diagonal.

Example:

1
1 2 3
Let: A= , AT =2

4 5 6 3

() WV, T N

2.3.4.6 Inverse

For some square matrices, the inverse exists such that when the matrix is multiplied by its inverse,
the result is the identity matrix.

Example:

Let: A 12A“ (4 _bydt(A) (1-4)-(2-3)=4-6=-2
: — f— (] = . —_ . = —_ = -
¢ 3 4)7 Tdel-c a)’ :

1(4 =2 -2 1 1 2 -2 1 1 0
Al=— = and A-A7'= . = .
2{-3 1 1.5 0.5 3 4)J\15 =05 0 1

2.3.5 APPLICATIONS IN LINEAR ALGEBRA

2.3.5.1 System of Linear Equations

Matrices can be used to represent and solve systems of linear equations. In a system of linear
equations, the coefficients of the variables can be arranged in a matrix, and the equations can be
solved using matrix operations.

Example:

. x+2y=>5
Consider ,
3x+4y=6

and it can be written in this form

Then, we have :

Now for calculating X, we have:
X=A4"-B,

and for calculating 47! :

30 Mathematical Foundations for Deep Learning

(14)-(2-3)=4—6=— SR e I
de)=(1-4)-(23) =4-6=-2 maar = 4)T

and now we have A~ and B, then we can calculate the X:

o T

then the solution is:

)

x=-4, p=45.

2.3.5.2 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are fundamental in understanding the properties of linear transform-
ations. For a square matrix A, an eigenvector v and eigenvalue A satisfy the equation:

Av = Av

2.3.5.3 Transformations

Matrices perform linear transformations in geometry and computer graphics, such as scaling, rota-
tion, and translation.

Example:

Scaling: S 5 0
caling: S=|

y

. cosf —sin6

* Rotation: R =|
sinf@ cos@

* Translation: This is typically handled in homogeneous coordinates, involving an additional
dimension for translation vectors. In homogeneous coordinates, a 2D point (x, y) becomes

1 0 ¢

X

(x, y, 1), allowing translation by a vector(, ¢) using the matrix| 0 1 e This matrix is

0 0 1
applied to the point (x, y, 1) to produce the translated point (x', y'):

X 1

Y 1=10

1] 1o
wherex'=x+t andy'=y+t.

2.3.6 MATRICES IN DEEP LEARNING

Matrices are fundamental in deep learning, serving as the backbone for data representation, network

parameters, and essential operations. Let us dive into their importance in various aspects of deep
learning.

Linear Algebra 31

2.3.6.1 Data Representation

(a) Input Data: In deep learning, data is often structured and represented in matrix form, particu-
larly for tasks like image processing. For example, a grayscale image is typically represented
as a 2D matrix where each element corresponds to the pixel intensity. A 28 x 28 pixel gray-
scale image from the MNIST dataset can be represented as a 28 x 28 matrix, with each entry
holding a value between O (black) and 255 (white). This matrix representation allows the
model to easily interpret and process the image data by performing matrix operations like
convolutions or transformations. Consider a 3 x 3 grayscale image with the following pixel

intensities:
100 150 200
I=|50 100 150
0 50 100

Here, each element of the matrix represents the intensity of a pixel. This matrix can be fed
into the deep learning model for further processing.

(b) Batch Processing: When processing multiple samples at once, deep learning models stack
the input data into a larger matrix or tensor. Each row in this matrix represents a different
sample from the batch. For example, if we are processing 5 grayscale images of 28 x 28
pixels, the data would be represented as a 3D tensor of shape (5, 28, 28), where 5 represents
the batch size, and 28 x 28 represents the dimensions of each image. Batch processing allows
for more efficient computation and faster training, as multiple samples are processed in par-
allel. Suppose we have a batch of 3 images, each represented by a 2 x 2 matrix:

100 150 200 250 50 75
Il = R 12 = N I,; =
50 100 150 200 7125 50

Stacking these images forms a 3D tensor of shape (3, 2, 2):

! 100 150 200 250 50 75

Batch = , | = , 5

/ 50 100 150 200 25 50
3

This format allows deep learning models to process multiple images simultaneously, improving
computational efficiency and reducing training time.

2.3.6.2 Parameters of the Network

(a) Weights: In an NN, the weights connecting two layers are represented as a matrix. Each
element of this matrix corresponds to a connection between a neuron in the first layer and a
neuron in the subsequent layer. For example, if the first layer has n neurons and the second
layer has m neurons, the weight matrix will have dimensions m x n. These weights are
learned during training, as they define how the input data is transformed and passed through
the network. Consider an NN with 3 input neurons and 2 output neurons. The weights
between the input and output layers are represented by a 2 x 3 matrix:

0.1 02 03
W =
04 0.5 0.6

32

(b)

Mathematical Foundations for Deep Learning

Here, the value 0.1 connects the first input neuron to the first output neuron, 0.2 connects
the second input neuron to the first output neuron, and so on. These weights determine how
much influence each input has on the outputs.

Biases: Biases are typically represented as a vector, with each element corresponding to a
neuron in the output layer. Bias values allow the network to shift the activation function and
provide additional flexibility in learning. In the case of batch processing, bias values are
often broadcast across the entire batch during computation, meaning the same bias is applied
to each example in the batch. The bias vector is added to the result of the matrix multipli-
cation between the input data and the weight matrix, ensuring that each output neuron has
a corresponding bias term. For the previous example with 2 output neurons, the bias vector

might look like this:
0.1
b= .
0.2

If we are processing a batch of three input samples, each input will be multiplied by the
weight matrix, and the same bias vector will be added to the result. For instance, given an
input vector x = [1, 0, —1], the output calculation would be:

1
0.1 02 03 0.1 0.1-0.3+0.1 -0.1
=W -x+b= -0 [+ = =
04 05 0.6 | 0.2 04-0.6+0.2 0.0

2.3.6.3 Operations in Layers

(a)

(b)

Matrix Multiplication: In fully connected (dense) layers of an NN, matrix multiplication
is the fundamental operation. The input data, represented as a matrix, is multiplied by the
weight matrix to produce the output, which is then shifted by adding the bias vector. This
operation transforms the input data and propagates it to the next layer. The matrix multi-
plication allows the network to combine features from the input data based on the learned

0.5 0.1
weights. Suppose we have an input vector x = [1, 2], a weight matrix W = |:0 3 0 7:|, and a

bias vector b = [0.2, 0.3]. The output of this fully connected layer is computed as:

05 0.1][1 0.2 0.5x1+0.1x2 0.2 0.7 (0.2 0.9
=W -x+b= A |+ = + = + =

03 0.7][2] |03 0.3x1+0.7%x2] 0.3 1.7 0.3 2.0
Convolution: In convolutional layers, commonly used in CNNs, the input matrix (or tensor,
for color images) is convolved with a filter (or kernel) matrix to produce feature maps. The
filter slides across the input, and at each position, a dot product is computed between the

filter and the input patch. This operation allows CNNs to detect local patterns, such as edges
or textures, in the input data. Consider a 3 x 3 filter applied to a 4 x 4 input image:

1 0 2 1
1 0 -1

01 0 2
1= , F=|1 0 -1

1 210
1 0 -1

01 01

Linear Algebra 33

The convolution operation slides the filter over the input, performing a dot product at each
position. For example, when the filter is applied to the top-left corner (the first 3 x 3 patch),
the result is:

(1x1)+(0x0)+ (2% =1)+(0x 1)+ (1x0)+(0x=1)+(1x1)+(2x0)+(1x~1)
=1+0-2+0+0+0+14+0-1=-1

Sliding the filter over the rest of the input produces a feature map that highlights specific patterns
in the image. This convolution process enables CNNs to focus on local features in the data and is
crucial for tasks like image recognition.

2.3.6.4 Activation Functions

After matrix multiplication in a layer, the resulting matrix is often passed through an activation
function element-wise, such as ReLL.U, sigmoid, or tanh.

(a)
(b)
(©

ReLU: Returns x if x > 0; otherwise, it returns 0. It is commonly used in CNNs and deep
feedforward networks.

Sigmoid: Squeezes the output between O and 1. It is helpful in early NNs but less common
due to limitations like vanishing gradients.

Tanh (Hyperbolic Tangent): Output values between —1 and 1. Similar to sigmoid but
zero-centered.

2.3.6.5 Backpropagation

(a)

(b)

Gradient Matrices: In the process of training an NN, backpropagation computes the gradients
(partial derivatives) of the loss function with respect to each network parameter, including
weights and biases. These gradients are represented as matrices, where each element cor-
responds to the partial derivative of the loss with respect to a specific weight. The gra-
dient matrix indicates how much the loss function would change if a small change were
made to the corresponding weights. These gradients are crucial for updating the parameters
to minimize the loss and improve model performance. Suppose we have a weight matrix

0.5 0.1
W= [0 3 0 7:|, and during backpropagation, the gradient matrix with respect to the loss is
0.02 -0.01

0.03 0.04
based on small adjustments to each corresponding weight.

Weight Update: Once the gradient matrix is calculated, the weights are updated to reduce the
loss by moving in the opposite direction of the gradient. This process involves subtracting
a fraction of the gradient matrix from the current weight matrix. The fraction is determined
by the learning rate, a hyperparameter that controls how large the weight updates should be.
Let’s assume a learning rate a = 0.1. The updated weight matrix W __ is computed as:

0.5 0.1 0.02 -0.01
W =W-o0G= -0.1-
e 0.3 0.7 0.03 0.04

{0.5—0.002 0.1+0.001:|{0.498 0.101]

computed as:G = |:] This gradient matrix informs us how the loss will change

0.3-0.003 0.7-0.004 0.297 0.696

After updating, the weight matrix is slightly adjusted in a way that reduces the loss. This
iterative process of calculating gradients and updating weights continues until the model

34

Mathematical Foundations for Deep Learning

converges to an optimal set of weights, minimizing the loss function. Backpropagation
ensures that each weight and bias in the network is gradually adjusted to improve perform-
ance, allowing the network to learn complex patterns from the data.

2.3.6.6 Regularization

(a)

(b)

L, Regularization: It, also known as weight decay, adds a penalty to the loss function for
large weights, discouraging the model from relying too heavily on any particular parameter.
This penalty helps prevent overfitting by encouraging the network to keep the weights small,
making the model simpler and more generalizable. The loss function with L, regularization
is given by:

+&Zw2

Loss , =Loss__ .
original 2

where Lossm‘ginal is the original loss (e.g., mean squared error (MSE)), w represents the
weights, and A is the regularization coefficient. A larger A increases the penalty for larger
weights, thus enforcing stronger regularization. Consider a simple network with two weights,
W1=0.5 and w,=0.8, and an original loss of 1.0. If the regularization coefficient L = 0.1, the L,

regularized loss is:

1
Loss, =1.0+ 07 x(0.5> +0.82) =1.0+0.05%(0.25+0.64) = 1.0+ 0.05x 0.89
=1.0+0.0445 = 1.0445

The additional term penalizes large weights, encouraging the model to learn simpler patterns.
Dropout: Dropout is a regularization technique used to prevent overfitting by randomly
“dropping out” or turning off neurons during each forward and backward pass with a prob-
ability p. During training, at each iteration, a fraction of neurons (typically p = 0.5) are set to
zero, which forces the network to rely on multiple pathways for learning. This helps make the
network more robust and prevents neurons from co-adapting too strongly to specific features.
Suppose we have a layer with four neurons and the following activations during training:

a=[0.9,0.8,0.4,0.7]
With a dropout probability of p = 0.5, two neurons might randomly be dropped, resulting in:

a, =[0.9,0,04,0].

dropout

The network then continues training with these modified activations. At test time, dropout
is turned off, but the output is scaled by a factor of 1 — p to account for the dropped neurons
during training, making the network’s predictions more robust. Both L, regularization and
dropout are essential techniques for preventing overfitting and ensuring that NNs generalize
well to unseen data.

2.3.6.7 Optimizers

(a)

RMSprop: RMSprop (Root Mean Square Propagation) is an optimizer that adjusts the
learning rate for each parameter by using a moving average of the squared gradients. This
helps prevent the learning rate from decaying too quickly, as seen in Adagrad, making
RMSprop well-suited for training deep NNs. The update rule for RMSprop is as follows:

Linear Algebra 35

(b)

v =Pv_ +(1-f)g> and w =w_ - g,

Here, v, is the moving average of the squared gradients, g, is the current gradient, B is the
decay rate, 1 is the learning rate, and € is a small constant for numerical stability. RMSprop
helps normalize the gradients, ensuring that each parameter has a more stable and balanced
learning rate. Suppose n = 0.01, B = 0.9, and the gradient g, = 0.5. Initially, v, = 0, and the
updated v, and w, values can be computed as:

.01
v, =0.9%x0+0.1x0.5* =0.1x0.25=0.025 and w, =w —LXO.S.

b0 J0.025+¢

For small €, the update normalizes the gradient, leading to a more balanced update.

Adam: Adam (Adaptive Moment Estimation) combines the benefits of RMSprop and
momentum. [t maintains two moving averages: one for the gradient (momentum) and another
for the squared gradient. This dual mechanism allows Adam to adapt the learning rate based
on the gradient’s magnitude and direction. The update rules are:

mrzﬁlmr—l—i_(l_ﬁl)gt’ vrzﬂzvt—l+(l_ﬂ2)gr2’ ﬁlrz - ’ {/[= :

n

,h?l +e

Here, m, is the moving average of the gradient, v, is the moving average of the squared gra-
dient, B, and B, are decay rates, 1 is the learning rate, and € is a small constant. Suppose 1 =
0.01, B, =0.9, B, = 0.999, and g = 0.5. Initially, m = 0 and v, = 0. The updated values for
m,, v, and the weight update w, are:

Wt :wt—l - mt.

m, =0.9x0+0.1x0.5=0.05 and v, =0.999x0+0.001x0.5> = 0.00025.

The bias-corrected estimates are:

o . R .0002
o 005 oo g 000025 o
1-0.9 1-0.999

The weight update becomes:

wo=w —ﬂXO.S.

b0 J0.25 +e

Adam’s ability to adapt learning rates based on both the gradient’s momentum and its
squared magnitude makes it one of the most effective and widely used optimizers in deep
learning. RMSprop and Adam are both adaptive learning rate optimizers widely used in
training deep NNs, but they differ in their mechanisms and resulting updates. RMSprop
adjusts the learning rate for each parameter by maintaining a moving average of the squared
gradients, effectively normalizing the gradient and stabilizing updates. Its single moving

36 Mathematical Foundations for Deep Learning

average (using a decay rate like = 0.9) ensures that the learning rate adapts based solely on
the magnitude of recent gradients. In contrast, Adam extends RMSprop by also incorporating
a moving average of the gradients themselves (momentum), using separate decay rates for
the first and second moments (e.g., B1 = 0.9 and B, = 0.999). Additionally, Adam applies bias
correction to these moving averages, especially during the initial training steps, to produce
unbiased estimates. As a result, Adam typically provides more balanced and efficient updates
by considering both the direction and magnitude of gradients, often leading to faster conver-
gence and better performance in practice. Consequently, while both optimizers may appear
to produce similar updates in simplified examples, especially in early iterations, their outputs
diverge as training progresses due to Adam’s additional momentum and bias correction,
making Adam generally more robust and effective for a wider range of NN architectures.

2.3.6.8 Batch Normalization

Batch normalization is a technique used to normalize the activations of a layer in an NN. This helps
maintain a consistent mean and variance across different batches during training, improving the
model’s stability and performance. Batch normalization works in the following steps:

1. Calculate the mean (p) and variance (6?) of the input X over the batch:

Hy :lzxi and 0-129 = Z(Xi_ﬂus)z’

1
m m i

where m is the number of samples in the batch, and X; represents each input in the batch.
2. Normalize the input X by subtracting the mean and dividing by the standard deviation:

X = X —Hy

i) .
"GB +e€

Here, € is a small constant added for numerical stability to avoid division by zero.
3. Scale and shift the normalized input using two learnable parameters, v (scale) and f (shift):

Y,=yX +p

The parameters y and B are learned during training and allow the network to restore the rep-
resentational power that might be lost due to normalization.

Figure 2.9 provides a visualization of the forward and backward pass in an NN layer, represented
through a series of matrices. The input data matrix illustrates the initial data fed into the NN, with each
element representing feature values across rows and columns. Following this, the Batch Data (Sample
1) matrix shows how a single sample from the batch is processed, demonstrating the model’s handling
of data during training in smaller chunks, known as mini-batches. Moving to the Weights Matrix, this
highlights the learned weights, which connect the input data to the neurons in the layer. Complementing
the weights, the Biases Vector is shown, which contains bias values added to the weighted sum of
inputs for each neuron, providing additional flexibility in shifting the neuron’s output. The Output
Matrix shows the raw result after multiplying the input data by the weights and adding the biases, yet
before any activation function is applied. The ReLU Activation Output matrix then demonstrates the
effect of applying the ReLU activation function, which zeros out any negative values while keeping
positive values the same. This step introduces non-linearity into the model, making it more capable of

Linear Algebra 37

FIGURE 2.9 Visual representation of matrix concepts in deep learning.

learning complex patterns. Following the forward pass, the Gradients Matrix represents the calculated
gradients during backpropagation, where the network computes how much the weights should be
adjusted to minimize the loss function. These gradients are then used to adjust the model’s parameters,
as illustrated in the weight updates matrix. Finally, the Batch Normalization Output matrix presents the
normalized output values after applying batch normalization.

2.4 TENSOR AND ITS OPERATIONS
2.4.1 TENSORS

A tensor is a multi-dimensional array of numerical values and can be seen as a generalization of
scalars, vectors, and matrices. In deep learning and many applications in physics, tensors are used
to represent many data structures.

38 Mathematical Foundations for Deep Learning

e Scalar (zero-dimensional tensor): A single number. For example, ¢ = 5.
e Vector (one-dimensional tensor): An array of numbers. For example, v =[1, 2, 3].

1 2
* Matrix (two-dimensional tensor): A 2D array of numbers. For example, M = [3 4:|.

* Higher-dimensional Tensor: Tensors can have three or more dimensions. For instance, color
images can be represented as a three-dimensional tensor (height, width, color channels),
such as T for an image with dimensions 100 x 100 pixels and 3 color channels (RGB): Tijk,
where i =1,...,100; j=1,..., 100;k =1,2,3.

2.4.2 TeNsOR OPERATIONS

2.4.2.1 Element-Wise Operations

Operations like addition, subtraction, multiplication, and division are performed element-wise
between two tensors of the same shape. For example, if two matrices (2D tensors) exist, corresponding
elements will be added to A and B.

2.4.2.2 Tensor Dot Product (or Tensor Contraction)

Extends the idea of the dot product in vectors and matrix multiplication. It involves multiplying
elements of tensors and summing the result, often reducing the tensor’s dimensionality.

(a) Tensor Reshaping: It changes the shape of a tensor while preserving its data. It is beneficial
in deep learning when preparing data for different layers.

(b) Reduction Operations: This refers to operations like sum, mean, max, or min, where you
reduce a tensor to a more minor rank. For example, you might take the sum along one dimen-
sion, resulting in a tensor of one less dimension.

2.4.2.3 Matrix-Specific Operations on 2D Tensors
There are several operations including:

(a) Transpose: Swap rows with columns.

(b) Inverse: Find the matrix that gives the identity matrix when multiplied with the original.

(c) Determinant: A scalar value representing specific properties of the matrix.

(d) Tensor Slicing and Indexing: Extracting specific portions of a tensor is analogous to slicing
lists or arrays.

(e) Broadcasting: They make element-wise binary operations compatible with tensors of
different shapes. For instance, adding a vector to a matrix by duplicating the vector along
the rows of the matrix.

(f) Outer Product: Produces a higher-rank tensor from two lower-rank tensors. For vectors, it
produces a matrix.

(g) Tensor Decompositions: Techniques like SVD or QR decomposition can be extended to
tensors.

In Figure 2.10, various tensor operations are performed on sample tensors using TensorFlow and
visualized through heatmaps. The first row of subplots shows the results of element-wise operations.
The element-wise addition plot displays the sum of corresponding elements from tensors A and B.
The element-wise subtraction plot illustrates the difference between the corresponding elements of
A and B. The element-wise multiplication plot highlights the product of corresponding elements
from A and B, while the element-wise division plot shows the quotient of corresponding elements
of A divided by B. The second row of subplots continues with more complex operations. The tensor

Linear Algebra 39

FIGURE 2.10 Visualization of tensor operations.

dot product plot presents the result of a dot product operation between tensors A and B, which
involves summing the products of corresponding elements along the specified axes. The reshaped
tensor plot shows tensor A rearranged into a column vector with a shape of (4, 1). The third row
includes summary statistics and transformations of tensor A.

The tensor sum plot displays the sum of all elements in A as a single value. Similarly, the tensor
mean plot presents the mean of all elements in A, and the tensor max plot shows the maximum
value among all elements in A. The fourth row focuses on matrix transformations and properties.
The transpose of A plot shows the result of swapping the rows and columns of tensor A. The inverse
of the identity matrix plot displays the inverse of a 2 x 2 identity matrix, which remains the identity
matrix itself. Finally, the determinant of the identity matrix plot shows that the determinant of a 2 x
2 identity matrix is 1. Additionally, the SVD results are printed. The singular values (s), left singular
vectors (u), and right singular vectors (v) of tensor A are provided. These values and vectors are
crucial in many applications, such as data compression and noise reduction.

40

243

Mathematical Foundations for Deep Learning

TENSORS IN DEEP LEARNING

At a high level, deep learning involves building and training NNs, which can be thought of as
a composition of functions. These functions are applied to data to make predictions or create
representations. In this paradigm, tensors are the primary data structure for various operations and
transformations.

(a)

(b)

(c)

(d)

244
(a)

Input Data: In deep learning, input data is typically multi-dimensional. For example,
in Image Data, Images are represented as 3D tensors with dimensions corresponding to
height, width, and channels (RGB). For instance, an RGB image of size 32 x 32 pixels
can be represented as a tensor of shape, and for Sequential Data, Text or time series data
can be represented as 2D tensors, where one dimension represents the sequence length,
and the other represents features or embedding dimensions. For example, a sequence of
50 words, each represented by a 300-dimensional embedding, would be a tensor of shape
(50, 300).

Weights and Biases: The parameters of NNs, including weights and biases, are stored as
tensors. The architecture of the network and the connections between neurons dictate the
shape of these tensors. For example, for a convolutional layer in an NN with 16 filters of size
3 x 3 applied to an input with 3 channels (such as RGB images), the weights would be stored
in a 4D tensor of shape (16, 3, 3, 3), representing the number of filters, input channels, and
the spatial dimensions of each filter. Biases would be stored in a 1D tensor of shape (16),
representing one bias per filter.

Intermediate Values: As data progresses through an NN, it gets transformed at each layer.
These transformations yield new tensors, representing the intermediate outputs. For example,
applying a convolutional layer to input images of shape (32, 32, 3) with 16 filters can produce
intermediate tensors of shape (32, 32, 16), where each filter produces a separate feature map
of the same spatial dimensions as the input image.

Final Outputs: The predictions or classifications made by an NN are also represented as
tensors. For example, after passing the intermediate tensor through an activation function
like ReLU and a final dense layer with 10 output neurons (for a classification task with 10
classes), we get the final outputs as a 1D tensor of shape (10), representing the predicted
probabilities for each class.

TeENSOR OPERATIONS IN DEEP LEARNING

Linear Transformations: In fully connected layers, the primary operation is matrix multi-
plication, a tensor operation. For example, given an input tensor X = [1.0, 2.0] and a weight

05 03 .
, the output is calculated as:
0.7 0.9

05 03]]1.0 0.1 1.1
Z=W -X+b= . + = s
[0.7 0.9] [2.0] {0.2} [2.5}

where b is the bias tensor.

tensor W = |:

(b) Activation Functions: After a linear transformation, activation functions are applied element-

wise to tensors. For instance, applying the ReLLU activation to the previous result Z = [1.1,
2.5] results in:

ReLU(Z)=[max(0,1.1),max(0,2.5) |=[1.1, 2.5]

Linear Algebra 41

(©)

(d

(e)

()

(2)

()

®

)

Convolutions: In CNNs, convolution operations involve sliding a filter tensor over an input

1 0 -1
tensor to produce a feature map. For instance, convolving a3 x 3 filter F =1 0 —1|over
1 0 -1

a4 x 4 input tensor, I produce a feature map after calculating dot products at each position.
Pooling: Pooling layers reduce the spatial dimensions of feature maps. For example, max-

1 3
pooling with a 2 x 2 window on a tensor I = |:2 4:| would result in:
Max-Pooling (I) = max(1,2,3,4) = 4

Batch Operations: When processing data in batches, multiple samples are stacked into a
single tensor. For example, processing a batch of two input tensors X, =[1.0, 2.0] and X, =
[0.5, 1.5] results in a batch tensor:

y _[t0 20
bach 105 15

Tensor operations, such as matrix multiplication, are then performed simultaneously on this
entire batch.
Backpropagation: During training, gradients are computed as tensors with the same shape

0.5 0. .
has a gradient tensor

as the weights. For instance, if the weight tensor W = [0 7 09

[am -0.01

, the weight update is:
0.03 0.04

new

05-0.02 0.3+0.01
W _=W-1G-=
0.7-0.03 0.9-0.04

Sequence Processing: In RNNs and transformers, sequences are processed using tensor
operations like the dot product. For instance, calculating the dot product between two
sequences (tensors) determines how much one sequence element influences another.

Broadcasting: Broadcasting allows tensors of different shapes to be combined. For example,

3 4
adding a vector [1.0, 2.0] to each row of a matrix M = {5 6:| results in:

M 3+1.0 4+2.0 4 6
o |5+1.0 6+2.0] |6 8]
Regularization and Normalization: Techniques like dropout randomly drop units during
training, represented by setting some elements of the activation tensor to zero. Batch nor-
malization normalizes activations using tensor operations to maintain a consistent mean and
variance.
Loss Computation: The loss between predictions and actual targets is computed using tensor

operations. For instance, if the predicted tensor is Ypre = [0.8, 0.4] and the actual target
tensoris Y =[1.0, 0.0], the MSE loss is:

d

Lmsz%(QS—Lmz+®4—00Y)=%@04+0Mﬂ=0L

42 Mathematical Foundations for Deep Learning

In Figure 2.11, various tensor operations related to a CNN are performed on a sample input image
and visualized through heatmaps. The first subplot, “Input Image (Channel 1),” displays one channel
of the RGB input image, which is an 8 x 8 pixel grid with intensity values ranging from 0 to 255.
This visualization provides a grayscale representation of the first color channel of the image. The
second subplot, “Convolution Filter 1,” shows the weights of the first convolutional filter applied
to the input image. This 3 x 3 filter is used to detect specific features within the input image. The
heatmap illustrates the values of the filter weights, which will be convolved with the input image.
The third subplot, “Intermediate Tensor (Filter 1),” presents the result of applying the convolutional
filter to the input image. This intermediate tensor captures the feature map produced by the convo-
lution operation, highlighting areas of the input image that match the filter’s pattern. The fourth sub-
plot, “Activated Tensor (ReL.U),” shows the result of applying the ReLU activation function to the
intermediate tensor. The ReLLU function sets all negative values to zero, introducing non-linearity
to the model. This heatmap represents the activated feature map, emphasizing the features detected
by the filter. The fifth subplot, “Flattened Tensor (Segment),” illustrates a segment of the flattened
tensor obtained by reshaping the activated tensor into a 1D array. This transformation prepares
the tensor for input into a dense (fully connected) layer. The heatmap visualizes a segment of this
flattened tensor as an 8 x 8§ grid for better interpretation. The sixth subplot, “Final Output Tensor,”
displays the final output tensor after passing the flattened tensor through a dense layer. This layer
performs a linear transformation using learned weights and biases to produce the final output. The
heatmap represents the output tensor as a row vector, showing the resulting values for each of the
10 output units.

2.5 LINEAR TRANSFORMATIONS

A linear transformation, often called a linear map, is a function between two vector spaces that
preserves the operations of vector addition and scalar multiplication. In simpler terms, it is a trans-
formation that does not “bend” or “twist” the space in a non-linear way. Mathematically, a function
T from a vector space V to a vector space W is called a linear transformation if the following two
properties hold for all vectors u and v in V and any scalar c:

o Additivity: T(u+v)=T (u)+ T (v)
* Homogeneity: T (cu) = cT (u)

2.5.1 MATRIX REPRESENTATION OF LINEAR TRANSFORMATIONS

A matrix can represent every linear transformation. Given a vector space V and a basis for that
space, a linear transformation can be associated with a matrix A. When you multiply this matrix
by a column vector (representing a point in space), you get a new column vector representing the
transformed point. When you have a linear transformation defined by a matrix and want to apply this
transformation to a vector V, you perform the matrix—vector multiplication to obtain the transformed
vector.

2.5.2 ExAMPLES OF LINEAR TRANSFORMATIONS

2.5.2.1 Scaling

Scaling involves multiplying vectors by a scalar, stretching or shrinking them but not changing their
direction unless the scalar is negative. A vector can be scaled using a diagonal matrix where each
diagonal entry corresponds to a scaling factor along each dimension.

FIGURE 2.11

Visual representation of key Tensor Operations in deep learning.

ei1qal|y Jeaur

184

44 Mathematical Foundations for Deep Learning

2.5.2.2 Rotating
Rotating vectors around the origin involves using a rotation matrix. To rotate a 2D vector by a spe-

cific angle:
cos@ —sinf
Ao =|
rotation Sln 6 COS 0

2.5.2.3 Reflecting

Reflecting vectors across a line (in 2D) or a plane (in 3D) can be represented using a reflection
matrix. Reflecting a 2D vector across the x-axis uses the matrix:

1 0
Arcﬂcction = 0 -1
2.5.2.4 Shearing

Shearing involves “sliding” vectors along a fixed line or plane. A shear transformation can be

represented by:
A = 1 k
shear O 1 ’
where K is the shear factor.

Figure 2.12 visualizes various linear transformations applied to an original vector. The ori-
ginal vector, shown in blue, represents the vector before any transformation. The scaled vector,
depicted in red, is the result of scaling the vector by different factors along the x and y directions,
which stretches or shrinks the vector. The rotated vector, shown in green, demonstrates the effect of
rotating the vector by 45° around the origin. The reflected vector, represented in magenta, illustrates
the transformation of reflecting the vector across the x-axis, flipping it over the x-axis. Lastly, the
sheared vector, shown in yellow, represents the vector after being sheared along the x-direction,
sliding the vector along the x-axis while changing its shape without altering its area.

2.5.3 LINEAR TRANSFORMATIONS IN DEEP LEARNING

Linear transformations play a crucial role in deep learning due to their modeling power, efficiency,
and interpretability. While individual linear transformations are limited in their ability to capture
complex relationships, when stacked and combined with non-linear activation functions, they
enable NNs to model intricate, non-linear patterns in data. Additionally, linear operations in matrix
form are highly optimized on modern hardware, particularly GPUs, making the training and infer-
ence processes in deep learning more efficient. Furthermore, linear transformations are often more
interpretable than their non-linear counterparts due to their simplicity, which can be valuable in
applications where understanding the model’s decision-making process is essential.

2.5.3.1 Neural Network Layers

In an NN, a dense (fully connected) layer is a linear transformation of the input. Given an input
vector x = [xl D .,xyj, the dense layer transforms it using a weight matrix W and a bias vector b.
Mathematically, the transformation is expressed as:

z=Wx+b.

Linear Algebra 45

FIGURE 2.12 Visual representation of linear transformations.

Here, W is the weight matrix, and b is the bias vector. This linear transformation maps the input
vector to an output vector, and the bias vector shifts the output. After this linear transformation, an
activation function (e.g., ReLU or sigmoid) is typically applied to introduce non-linear capabilities
0.5 03

and a bias
0.7 0.9

to the model. Suppose we have an input vector x = [1, 2], a weight matrix W = |:

vector b = [0.1, 0.2]. The output is computed as:
05 03]]1 0.1 1.1
z=Wx+b= A+ = .
0.7 09]]2 0.2 2.7

2.5.3.2 Convolutional Neural Networks

In CNN:gs, the convolution operation can be viewed as a series of small, local linear transformations.
A convolutional filter (or kernel) slides over different local regions of the input image, applying a
linear transformation to produce a feature map. By stacking multiple convolution layers, CNNs
detect complex patterns such as edges, textures, and shapes.

46 Mathematical Foundations for Deep Learning

2.5.3.3 Embeddings

In NLP, embedding layers map discrete words or tokens to continuous vector representations in
a high-dimensional space. The transformation from a token to its corresponding vector is a linear
operation. Embedding lookup involves selecting a specific row (vector) from the embedding matrix,
which corresponds to the input token. For an embedding matrix E of size 10 x 4, where each row
represents a word vector of dimension 4, input token 3 corresponds to the third row of E, resulting
in a vector v, .

2.5.3.4 Regularization Techniques

While normalization techniques like batch normalization are not linear by nature, they include learn-
able parameters (gamma and beta) that apply a linear transformation to the normalized output.
Specifically, after normalization, the output is scaled by y and shifted by P, introducing a linear
transformation that adjusts the normalization effect based on the data.

2.5.3.5 Initialization

When initializing the weights of an NN, the initial linear transformations applied to the data must
be carefully chosen. Proper initialization helps ensure that the transformations do not excessively
shrink or expand the data, preventing issues like vanishing or exploding gradients during training.

2.5.3.6 Loss Functions and Optimization

Many loss functions, including MSE, involve linear components. For example, the MSE loss
function, which computes the squared difference between predictions and actual values, includes a
summation of squared errors, a linear operation. During optimization, gradients of the loss function
with respect to the weights are computed, often involving linear operations, and used to update the
model’s parameters. For a simple linear regression model with predicted values y = [2,3] and actual

values y = [1, 4], the MSE is: %((2 -1)*+ (3 -47)=05

The gradient of this loss function with respect to the weights leads to a weight update that is a
linear transformation of the error.

In Figure 2.13, the linear transformation process applied to a 2D input vector using a dense layer
is visualized. This figure illustrates the transformation of the input vector by applying weights and
biases, resulting in an output vector. The input vector is represented in blue, starting from the origin
(0, 0) and pointing to the coordinates (2, 3). The transformed vector is depicted in red, also origin-
ating from (0, 0) but pointing to the coordinates determined by the linear transformation. In this case,
the output vector is calculated using the weights and biases defined for the dense layer. Additionally,
dashed lines indicate the path of each vector from the origin to their respective endpoints, with blue
representing the input vector and red for the transformed vector.

2.6 MATRIX FACTORIZATIONS

Matrix factorization techniques allow us to decompose matrices into products of simpler matrices.
These techniques are beneficial in various applications, from solving systems of equations to data
compression and dimensionality reduction. Here are essential matrix factorization methods.

2.6.1 LU DECOMPOSITION

LU Decomposition factorizes a matrix as the product of a lower L and upper triangular matrix U.
This is particularly useful for solving systems of linear equations, inverting matrices, and computing
determinants.

Linear Algebra 47

FIGURE 2.13 Visual representation of linear transformation in a dense layer.

4 3
Example: Consider a matrix A: 4= (6 3). The LU Decomposition of A expresses it as the

product of a lower triangular matrix L and an upper triangular matrix U:
1 0 4 3
A=L-U where L= 15 1 and U= .

0 -1.5
1 04 3 4 3
Then A = = .
1.5 1)\0 -1.5 6 3

This decomposition is useful for solving equations, inverting A, and finding determinants efficiently

(a) L Matrix: The lower triangular matrix from the LU decomposition of the matrix A. This
matrix has non-zero elements only on and below the main diagonal:

48 Mathematical Foundations for Deep Learning

L, 0 0 0

L, L, 0 0

L= 13' . 13'2 l3.3 0
: 0

Ly Ly Ly L,

The lower triangular matrix from the LU decomposition of the matrix A. This matrix has
non-zero elements only on and below the main diagonal.

1 0
L=
(1.5 1)

(b) U Matrix: The upper triangular matrix from the LU decomposition. This matrix has non-
zero elements only on and above the main diagonal.

n Uy oy,
33 u3n .
0O O 0O - u

nn

The upper triangular matrix from the LU decomposition. This matrix has non-zero elements
only on and above the main diagonal.

4 3
U= .
(o —1.5)

(¢) Reconstructed Matrix A: The original matrix A was reconstructed by multiplying L. and U.
This step verifies the correctness of the decomposition. The original matrix was reconstructed
by multiplying L. and U. This step verifies the correctness of the decomposition.

S (P o

2.6.2 QR DEecomposITION

QR decomposition decomposes a matrix into an orthogonal Q and upper triangular matrix R. This
decomposition is widely used in numerical linear algebra to solve most minor square problems and
in eigenvalue algorithms.

Example:

4 2 1 036 048 0.8 11.18 2.15 =595
A=Q-R,A=|6 3 =8|,0=|054 08 00 |,R=[0 7.68 8.02
=5 7 10 -0.72 0.12 0.68 0 0 3.87

Linear Algebra 49

(a) Q@ Matrix (QR Decomposition): The orthogonal matrix Q from the QR decomposition of the
matrix A. Orthogonal matrices have the property that their columns are orthonormal vectors.

Example:

036 -048 0.8
o=| 054 087 00
-0.72 0.12 0.68

(b) R Matrix (QR Decomposition): The upper triangular matrix from the QR decomposition.
This matrix has non-zero elements only on and above the main diagonal.

Example:

11.18 2.15 -5.95
R=| 0 768 8.02
0 0 3.87

(c) Reconstructed: A(Q *R) the original matrix was reconstructed by multiplying Q and R. This
step confirms that the decomposition accurately represents the original matrix.

Example:

036 -048 0.8)(11.18 2.15 -5.95 4 2 1
A=0Q-R=| 054 087 00 0 7.68 802 (=6 3 -8
-0.72 0.12 0.68 0 0 3.87 =5 7 10

2.6.3 SINGULAR VALUE DECOMPOSITION

SVD represents a matrix as the product of three matrices: an orthogonal matrix U, a diagonal matrix
>, and the transpose of an orthogonal matrix V'

Example: If the matrix A in the image is something like this:
1 00
A=(0 4 0]
000

Its SVD would be: A=UZVT,
where

* A is the original matrix,

e U is an orthogonal matrix (with orthonormal columns),

e ¥ is a diagonal matrix containing the singular values of A,
* VT is the transpose of an orthogonal matrix V,

50 Mathematical Foundations for Deep Learning

where

Each decomposition technique has specific applications and provides unique insights into the matrix
structure. LU decomposition is particularly useful for solving systems of linear equations, QR
decomposition is widely used in numerical linear algebra for solving most minor squares problems,
and SVD is fundamental in applications like principal component analysis (PCA), data compres-
sion, and signal processing.

In Figure 2.14, the results of three different matrix decompositions (LU, QR, and SVD) are
visualized. For the LU decomposition, the L. matrix shows the lower triangular matrix obtained from
the decomposition of matrix A, featuring non-zero elements below the main diagonal and zeros above
it. The U matrix displays the upper triangular matrix, which has non-zero elements on and above the
main diagonal, with zeros below it. The third heatmap shows the reconstructed matrix A obtained
by multiplying the L and U matrices, confirming the accuracy of the decomposition. For the QR
decomposition, the Q matrix is an orthogonal matrix with orthonormal columns, obtained from the
decomposition of matrix A. The R matrix is an upper triangular matrix with non-zero elements on and
above the main diagonal and zeros below it. The reconstructed matrix A, shown in the third heatmap,
is obtained by multiplying the Q and R matrices, demonstrating the correctness of the QR decompos-
ition. Finally, for the SVD, the U matrix represents the left singular vectors of matrix A, forming an
orthogonal matrix. The Sigma matrix is a diagonal matrix of singular values, which are non-negative
and sorted in descending order. The last heatmap shows the reconstructed matrix A, obtained by multi-
plying the U, Sigma, and V* (transpose of V) matrices, validating the SVD process.

2.6.4 EIGENVALUES AND EIGENVECTORS

Eigenvalues and eigenvectors are fundamental concepts in linear algebra with widespread
applications in various fields, including physics, engineering, and data science. Given a square
matrix A, if there exists a non-zero vector v and a scalar A such that the following equation holds:

Av = Av.

Then is an eigenvector of A and is the corresponding eigenvalue.
In Figure 2.15, the visual representation of eigenvalues and eigenvectors for a given square

4 2
matrix A is displayed. The matrix A is defined as: A = (1 3). The plot begins with the original

eigenvectors, which are represented in green. Each eigenvector is plotted starting from the origin (0,
0) and pointing to the coordinates defined by its components. Labels, such as v1 and v2, are placed
at the endpoints of these eigenvectors to clearly identify them. Next, the transformed eigenvectors
are shown in red. These vectors are obtained by multiplying the original eigenvectors by matrix A,
demonstrating how A transforms its eigenvectors.

In Figure 2.16, the SVD of a matrix M is visualized by transforming a grid of points. The matrix
M is defined as:

i
~N B~ =
[<INV, B \S]
O AN W

Linear Algebra 51

FIGURE 2.14 \Visual representation of LU decomposition, QR decomposition, and singular value
decomposition.

The SVD decomposes M into three matrices: U, X, and VT, where U contains the left singular
vectors, X is a diagonal matrix of singular values, and V' contains the right singular vectors. It
presents the effects of these matrices on a grid of points, allowing for a visual understanding of
the SVD components. The original grid is plotted in blue, representing the initial arrangement of
points before any transformation. These points form a regular grid centered around the origin. The
U matrix (left singular vectors) is visualized by transforming the original grid using the U matrix.
This transformation primarily represents a rotation. The green lines and points show how the left
singular vectors of M rotate the grid. The Sigma matrix (singular values) illustrates the scaling effect
of the singular values. The red lines and points depict the grid after being scaled by the diagonal
matrix X. This scaling adjusts the lengths of the vectors but does not change their directions. The V*
matrix (right singular vectors) is visualized by transforming the original grid using the VT matrix.
The orange lines and points show the effect of applying the right singular vectors to the grid, which
typically involves another rotation.

52 Mathematical Foundations for Deep Learning

FIGURE 2.15 Visual representation of eigenvalues and eigenvector.

In Figure 2.17, the SVD of a matrix M is visualized by transforming a grid of points. The first
subplot, titled “Original Grid,” shows the original grid in blue. This grid represents the initial
arrangement of points before any transformation, forming a regular grid centered around the origin.
The second subplot, titled “Left Singular Vectors (U),” illustrates the effect of the U matrix on the
grid. The U matrix primarily represents a rotation. The green lines and points show how the left sin-
gular vectors of M rotate the grid. The third subplot, titled “Singular Values (Sigma),” visualizes the
effect of the Sigma matrix on the grid. The Sigma matrix scales the grid. The red lines and points
depict the grid after being scaled by the diagonal matrix X, which adjusts the lengths of the vectors
while maintaining their directions. The fourth subplot, titled “Right Singular Vectors (V'),” shows
the effect of the V' matrix on the grid. The VT matrix typically involves another rotation. The orange
lines and points illustrate the transformed grid, highlighting the rotation applied by the right singular
vectors.

2.6.5 EIGENVALUES AND EIGENVECTORS IN DEEP LEARNING

The eigenvalues of the Hessian matrix (a matrix of second-order partial derivatives) can indicate
the curvature of the loss landscape around a point. A large eigenvalue indicates a steep curvature

Linear Algebra 53

FIGURE 2.16 Visual representation of singular value decomposition.

(possibly a sharp minimum or a narrow ravine), making optimization challenging. If the largest
eigenvalue of the weight matrices in recurrent neural networks (RNNs) is much larger or much
smaller than 1, it can lead to exploding or vanishing gradients, respectively. A fundamental property
in deep learning optimization is the curvature of the loss landscape, which can influence training

dynamics.

In Figure 2.18, the contours of a quadratic function f (x, y) = ax? + by are visualized along with
the eigenvectors of its Hessian matrix. The function parameters are defined as a =2 and b = 5,
resulting in the quadratic function:

f(x, y) =2x% +5y2.

The Hessian matrix H of this function is calculated as:

4 0
H= :
(o 10)

54 Mathematical Foundations for Deep Learning

FIGURE 2.17 Visual representation of singular value decomposition.

The eigenvalues represent the principal curvatures, while the eigenvectors indicate the directions of
these curvatures. The plot includes several key elements. First, it features the contours of the quadratic
function, where the contour lines represent the levels of the function f(x, y). These lines help visualize
how the function values change across the x and y planes and are plotted using a color gradient from
the colormap with 50 contour levels. Additionally, the plot displays the eigenvectors of the Hessian
matrix, represented as arrows originating from the origin (0, 0). The first eigenvector is shown in
red, and the second in blue, indicating the principal directions of the quadratic function’s curvature.
Each eigenvector is labeled with its corresponding eigenvalue, and the labels are positioned near the
tips of the arrows, with a semi-transparent white background to enhance readability. Using the top
eigenvectors (principal components) corresponding to the largest eigenvalues of the data’s covariance
matrix, we can project data into a lower-dimensional space while retaining most of the variance.
Figure 2.19 consists of two subplots: one showing the original 3D data and the other displaying
the data projected onto the first two principal components. The original 3D data is generated using
a multivariate normal distribution with a specified mean and covariance matrix. This data is then
reduced to 2D using PCA, a technique that identifies the directions (principal components) along

Linear Algebra 55

FIGURE 2.18 Contours of the quadratic function with eigenvalues of the Hessian matrix.

which the variance in the data is maximized. The left subplot, titled “Original 3D Data,” presents a
scatter plot of the original data points in three-dimensional space. Each data point is represented by
a dot, with its coordinates corresponding to the values in the X, Y, and Z dimensions. The right sub-
plot, titled “Data Projected onto the First Two Principal Components,” shows the result of projecting
the 3D data onto the first two principal components identified by PCA. The scatter plot in this sub-
plot displays the data points in the reduced 2D space, with the X-axis representing the first principal
component and the Y-axis representing the second principal component. The axes are labeled with
the percentage of variance explained by each principal component, indicating their significance. The
points are colored based on their values along the second principal component, and a colorbar is
added to provide a reference for the color scale.

L, regularization adds a penalty to the loss function proportional to the sum of the squares of the
model’s weights. This encourages the model to have smaller weights, leading to a smoother model.

FIGURE 2.19 Visualization of PCA—original 3D data and projected 2D Data. 2D, two-dimensional; 3D, three-dimensional; PCA, principal component
analysis.

9¢

Suruaea des(40y suoepunod [edieWwayIe

Linear Algebra 57

In Figure 2.20, the impact of L, regularization on polynomial regression is illustrated using a set of
sample data points generated from a noisy cubic function. The figure contrasts the fitting results of
polynomial regression with and without L, regularization. The sample data consists of 10 random
points in the interval [-5, 5], with the corresponding y-values generated from a cubic function with
added Gaussian noise:

y=0.5x* —=20x + 90 + noise.

Two polynomial regression models of degree 9 are fitted to the data. The first model is trained
without regularization, whereas the polynomial regression model has no penalty applied (alpha = 0).
The second model incorporates L, regularization, specifically Ridge regression, where the regular-
ization strength is set to alpha = 10. Both models are trained on the same dataset, allowing a com-
parison between the effects of no regularization and L, regularization on the polynomial fit.

2.6.6 SINGULAR VALUE DECOMPOSITION IN DEEP LEARNING

One of the uses of SVD in deep learning is in model compression. It can be used to compress fully
connected layers in NNs. We can reduce the number of parameters by approximating the weight
matrix using a low-rank approximation (using the top k singular values and the corresponding
singular vectors), leading to a more compact model with faster inference times and potentially
reduced overfitting. It also can be used in visualization and analysis. SVD, mainly in techniques like
LSA (Latent Semantic Analysis), can help visualize word embeddings or document embeddings
in a lower-dimensional space. Another application is noise reduction in data. By keeping only
the top k singular values (and discarding smaller ones), SVD can filter out noise from data. This
is commonly used in image processing but can be extended to any data preprocessing in deep
learning tasks.

In Figure 2.21, the effect of SVD on denoising an image is demonstrated through a step-by-step
process involving the addition of noise and subsequent reconstruction. The original image of an
astronaut, converted to grayscale format, is shown in the first subplot. This image serves as the ref-
erence for comparison and is displayed without any modifications to highlight its clarity and base-
line quality. The second subplot presents the image after introducing salt-and-pepper noise, which
randomly replaces some pixels with either black or white. The noise amount is set to 10% of the
total pixels, significantly degrading the image quality and making the random black and white pixels
visibly scattered throughout. The third subplot illustrates the reconstructed image using SVD, where
the image is decomposed into three matrices: U, S, and VT. The reconstruction leverages only the
top 50 singular values, effectively reducing the noise while retaining essential features of the image.
This selective reconstruction results in a smoother image with more defined features compared to
the noisy version.

2.7 REAL-WORLD APPLICATIONS AND EXAMPLES
2.7.1 IMAGE PROCESSING AND COMPUTER VISION

In computer vision, linear algebra is fundamental to the processing and analysis of images. Images
are often represented as matrices where each element corresponds to a pixel’s intensity. Operations
such as image rotation, scaling, and translation can be performed using matrix transformations.
For example, a rotation matrix can be applied to an image matrix to rotate the image around a spe-
cific point. CNNs, which are widely used in tasks like facial recognition and object detection, rely
heavily on matrix operations to filter and process images, enabling the network to learn features
such as edges, textures, and shapes.

FIGURE 2.20 Effect of L, regularization on polynomial regression.

8¢S

Suruaea des(40y suoepunod [edieWwayIe

Linear Algebra 59

FIGURE 2.21 SVD-based noise reduction in images. SVD, singular value decomposition.

2.7.2 NATURAL LANGUAGE PROCESSING

In NLP, vectors and matrices are used to represent words and sentences in a way that machines
can understand. Word embeddings, such as Word2Vec, map words to vectors in a high-dimensional
space where semantically similar words are positioned closely together. These embeddings are
created using matrix operations and linear transformations. Additionally, RNNs and transformers
utilize tensor operations to handle text sequences, allowing for the efficient processing of sentences
and paragraphs in tasks like translation, summarization, and sentiment analysis.

2.7.3 RoBoTICS AND AUTONOMOUS SYSTEMS

In robotics, linear algebra is critical for modeling the motion and control of robots. The position and
orientation of a robot in space can be represented using vectors and matrices, and transformations
between different coordinate systems are performed using matrix operations. For example, a robot’s arm
movement is often modeled as a series of matrix multiplications that describe the rotation and translation
of each joint. Autonomous systems, such as self-driving cars, use these principles to navigate and interact
with their environment, calculating paths and making real-time adjustments based on sensor data.

2.8 HANDS-ON EXAMPLE

In this example, we will generate random input data, define an NN layer with weight and bias
matrices, and perform the forward pass using matrix multiplications and transformations.

Step 1: Setting Up the Environment

In this step, we are generating random input data that will serve as a small dataset for demonstra-
tion purposes. By using np.random.seed(0), we ensure that the random values generated will be the
same every time we run the code, which is important for reproducibility. The function np.random.
randn(10, 3) generates a 10 x 3 matrix filled with random numbers sampled from a standard normal
distribution (mean 0, standard deviation 1). This matrix represents 10 samples, each containing 3
features. Printing the matrix helps us inspect the input data before using it in further computations
or visualizations.

import numpy as np
import matplotlib.pyplot as plt
Seed for reproducibility

60 Mathematical Foundations for Deep Learning

np.random.seed (0)

Generate some random input data (10 samples, 3 features)
input data = np.random.randn (10, 3)

print (“Input Data:”)

print (input data)

Step 2: Define the NN Layer

In this step, we are defining a weight matrix and a bias vector that will be used for a simple transform-
ation of the input data, simulating a linear layer of an NN. The weight matrix, weights, is initialized with
random values using np.random.randn (3, 2), which means it has 3 rows (corresponding to the 3 features
of the input data) and 2 columns (corresponding to the 2 output units). The bias vector is also initialized
randomly with 2 values, representing the biases for each of the 2 output units. By printing both the
weights and biases, we can examine the initialized values before applying them to the input data.

Define weight matrix (3 features to 2 outputs)

weights = np.random.randn (3, 2)
Define bias vector (2 outputs)
biases = np.random.randn (2)

print (“\nWeights:”)
print (weights)
print (“\nBiases:”)
print (biases)

Step 3: Perform the Forward Pass

In this step, we are performing a forward pass through a simple linear layer, which is a fundamental
operation in NNs. The formula Z = WX + B represents the transformation of the input data X using
the weight matrix W and the bias vector B. The operation np.dot(input_data, weights) computes the
dot product between the input data and the weight matrix, effectively combining the features and
transforming them to match the 2 output units. We then add the vector biases to adjust the output
values. The result, stored in output_data, represents the output of the linear transformation, which
we print to inspect the result of this forward pass.

Perform the forward pass Z =W * X + B

output data = np.dot (input data, weights) + biases
print (“\nOutput Data:”)

print (output data)

Step 4: Visualize the Transformations

In this final step, we are visualizing the transformation of the data through a plot that compares the
input data and output data. The code uses matplotlib to create a figure with two subplots: one for the
input data and another for the output data. In the input data plot, the first two features of the input
matrix are visualized as a scatter plot with blue points and labeled as “Feature 1” and “Feature 2.”
Similarly, in the output data plot, the transformed output from the forward pass is visualized with
red points, representing “Output 1”” and “Output 2.” This comparison helps in understanding how the
linear transformation affects the original data.

Linear Algebra 61

Visualize the input data and output data

fig, ax = plt.subplots(l, 2, figsize=(14, 7))

Plot input data

ax[0] .scatter (input datal[:, 0], input datal[:, 1], c=‘blue’,
s=50, edgecolors='w’, label="Input Data’)

ax[0] .set title(‘Input Data’)

ax[0] .set xlabel (‘Feature 17)

ax[0] .set ylabel (‘Feature 27)

ax[0].legend()

ax[0] .grid(True)

Plot output data

ax[1l].scatter (output datal:, 0], output datal:, 1], c=‘red’,
s=50, edgecolors="w’, label="Output Data’)
ax[1l].set title (‘Output Data’)

ax[1l].set xlabel (‘Output 1)

ax[1l].set ylabel (‘Output 27°)

ax[1l].legend()

ax[1l].grid(True)

plt.tight layout ()

plt.show()

Figure 2.22 displays the original randomly generated data points in a 2D feature space. Each point
represents a sample with two features plotted on the x-axis (Feature 1) and y-axis (Feature 2). The
points are colored blue and labeled as “Input Data.” The right plot illustrates the “Output Data” after
an NN layer has transformed it.

2.9 COMMON MISTAKES AND TROUBLESHOOTING TIPS
2.9.1 UNDERSTANDING VECTORS

e Mistake: Confusing vectors and scalars.

e Tip: Remember that vectors have both magnitude and direction, whereas scalars only have
magnitude.

* Mistake: Incorrect calculation of vector magnitude.

 Tip: Use the Pythagorean theorem: for a vector v = (x, y), the magnitude is.\/x> + y?.

2.9.2 VECTOR OPERATIONS

* Mistake: Adding vectors incorrectly by not matching corresponding components.

* Tip: Ensure you add vectors component-wise. For u = (u,u,)and v =(v,,v,), the sum is
u+v=(u +v,u, +v,).

e Mistake: Misunderstanding the dot product operation.

e Tip: The dot product of u and v is calculated as u - v = uyvy + u,v,. It results in a scalar, not a
vector.

* Mistake: Incorrectly calculating the cross-product.

e Tip: For u=u +u,+u, and v=v +v,+v, the cross-product is a X Vv = (u2 v, =
u,v,,u, v, —u,v,,u v, —u,v,). Ensure the resulting vector is perpendicular to both u and v.

FIGURE 2.22 Comparison of input and output data in neural network transformations.

29

Suruaea des(40y suoepunod [edieWwayIe

Linear Algebra 63

2.9.3 Matrix OPERATIONS

Mistake: Mismatching matrix dimensions for multiplication.

Tip: Ensure the number of columns in the first matrix matches the number of rows in the
second matrix. For matrices A of size n X p, the product is defined and results in a matrix of
sizemXp.

Mistake: Forgetting the properties of matrix addition and multiplication.

Tip: Remember that matrix multiplication is not commutative(A +B#B+ A). However,
matrix addition is commutative (A +B=B+ A).

Mistake: Incorrectly computing the determinant.

b
], the determinant is ad — bc. Practice finding determinants for larger
C

a
Tip: For a matrix [

matrices using cofactor expansion.

2.9.4 EIGENVALUES AND EIGENVECTORS

Mistake: Misidentifying eigenvectors and eigenvalues.

Tip: For a matrix A, an eigenvector and eigenvalue satisfy Av = Av. Ensure it is non-zero and
is a scalar.

Mistake: Overlooking the geometric interpretation of eigenvalues and eigenvectors.

Tip: Understand that eigenvectors indicate directions that remain invariant under the trans-
formation represented by the matrix, while eigenvalues indicate the scaling factor along those
directions.

2.9.5 SINGULAR VALUE DECOMPOSITION

Mistake: Confusing SVD with eigenvalue decomposition.

Tip: SVD applies to any m x n matrix, decomposing it into A = UXVT, where U and V are
orthogonal matrices, and X is a diagonal matrix of singular values. Eigenvalue decomposition
applies only to square matrices.

2.9.6 PracTicAL APPLICATIONS AND TROUBLESHOOTING

Mistake: Neglecting the importance of normalization in deep learning.

Tip: Normalize vectors and matrices to improve numerical stability and convergence during
training. This can prevent issues like vanishing or exploding gradients.

Mistake: Misapplying regularization techniques.

Tip: Use techniques like L, regularization (adding a penalty proportional to the square of the
magnitude of coefficients) to prevent overfitting. Ensure you understand the implications of
each regularization method on your model.

2.10 REVIEW QUESTIONS

1.

2.

Describe the various roles that vectors play in NNs. How do they contribute to data represen-
tation, weight storage, and activation functions?

Explain how matrices are utilized within deep learning models. Provide an example of how
matrix operations are critical in the functioning of dense layers or convolutional layers.
Discuss why tensors are essential in deep learning. What advantages do they offer over
vectors and matrices, particularly in handling multi-dimensional data?

How do tensor operations, such as reshaping and broadcasting, benefit deep learning
computations?

64

10.

2.11

2.11.1

Mathematical Foundations for Deep Learning

. Why are linear transformations fundamental in NNs? Discuss how these transformations are

applied in different layers of an NN.

. How do eigenvalues and eigenvectors influence model analysis and training? Consider their

role in understanding the curvature of the loss landscape and the impact on gradient-based
optimization.

. How does PCA, based on eigen-decomposition, assist in deep learning? Provide an example

of its application in reducing dimensionality while preserving data variance.

. Discuss the significance of SVD in deep learning. How does it enhance the efficiency and

performance of NNs?

. Why are tensors preferred over matrices for handling image data in deep learning? Explore

the advantages of using tensors in CNNs.
How does SVD support orthogonal initialization in deep NNs? Explain why this is important
for maintaining numerical stability during training.

PROGRAMMING QUESTIONS

EAsy

In this exercise, you will generate random input data and apply a transformation using a weight
matrix and a bias vector, mimicking the forward pass of a single layer in an NN.

1.
2.
3.

Generate random input data
Define weights and biases
Forward pass with linear transformation

2.11.2 Mebpium

In this exercise, you will compare the effects of different weight matrices on the same input data.

Sl

Generate random input data

Define two different weight matrices
Forward pass with first weight matrix
Forward pass with a second weight matrix

2.11.3 Harp

In this exercise, you will generate random input data, apply a linear transformation using a weight
matrix and bias vector, and then apply the ReLU activation function.

Sl

Generate random input data

Define weights and biases

Forward pass with linear transformation
Apply ReLU activation

3 Multivariate Calculus

3.1 INTRODUCTION

In this chapter, we delve into the calculus that underpins key processes such as backpropagation and
optimization. We begin by introducing derivatives and gradients, which are crucial for optimizing
neural networks through methods like gradient descent. Each mathematical concept discussed here
directly impacts how models are built, trained, and optimized, making this chapter an important step
in your journey through deep learning.

3.2 PARTIAL DERIVATIVES

Partial derivatives help us understand how a multivariable function changes to each independent
variable, assuming all other variables remain constant. This concept is fundamental in multivariable
calculus and finds applications across various fields. When dealing with functions of multiple
variables, the rate at which the function changes concerning one variable while keeping other
variables constant is known as the partial derivative. Consider the function f (x,y), when taking
the partial derivative of f to x, treat y as a constant and usually differentiate it to x. The same logic
applies when taking the partial derivative to y. Let: f (x, y) = x2y+ xy?, the partial derivative of f to

X is s =2xy+ y?% here, treat y as a constant and differentiate to x. The partial derivative of f for y is
ox
) . . .
a—f = x2 +2xy here, treat x as a constant and differentiate concerning y.
y

3.2.1 GEOMETRIC INTERPRETATION

af

Imagine a three-dimensional surface described by z = f (x, y). The partial derivative ™ represents
X
the slope of the tangent line to the curve obtained by slicing the surface along the plane where y

is constant. Similarly, a—f provides the slope of the tangent line to the slice given by x = constant.
y

Consider the surface z = x* + y?, which represents a paraboloid. At the point (X, y) = (1, 2), the par-
tial derivatives are as follows:

0z
—=2x=2(1)=2, —=2y=2(2)=4
Eeaxma()=2 F=2=20)

DOI: 10.1201/9781032690742-3 65

http://dx.doi.org/10.1201/9781032690742-3

66 Mathematical Foundations for Deep Learning

This means that at point (1, 2), the slope of the tangent line in the x-direction is 2, and in the y-
direction, it is 4.

3.2.2 HIGHER-ORDER PARTIAL DERIVATIVES
Like single-variable functions, we can have higher-order partial derivatives for multivariable

. . o . . 22
functions. For example, the second partial derivative of f concerning x is denoted B_{ and represents
X

9 . . o .
the rate of change B_f about x. We can also have mixed partial derivatives, denoting the change rate

X
relating to y. Consider the function f (x, y) = x2y+ 3xy?. The first partial derivatives are as follows:
il =2xy+3y?%, i =x%+6xy

ox dy

The second-order partial derivatives are as follows:

I f I f o f

=6x, ——=2x+6y
oxdy

o2 ¥ ﬁ

2

The mixed partial derivative =2x+6y tells us how the change in f with respect to x is affected

Xay
by changes iny.
Figure 3.1 shows the visualization of the mathematical function and its partial derivatives through
a combination of 3D surface and 2D contour plots. The left subplot features a 3D surface plot, illus-

trating how the function g—f = 2xy+ y? values change over a grid of x and y values ranging from -2
X

to 2. The surface, colored using the colormap, transitions from blue to yellow to represent different
function values, with black edges highlighting the surface a—f = x? + 2xy for better visual distinction.
Y

The right subplot is a 2D contour plot showing the partial derivatives of the function concerning
x and y. The filled contours represent the partial derivative with respect to x, using the colormap,
which spans from cool (blue) to warm (red) colors, indicating the magnitude of the derivative. The
black contour lines represent the partial derivative with respect to y. The color bar beside the filled
contours provides a reference for the values of the partial derivative with respect to x. The plot
includes three sample points marked in red with their coordinates labeled for additional reference:
(1, D, (1,-1), and (1, D).

3.3 PARTIAL DERIVATIVES IN DEEP LEARNING

In deep learning, we typically work with deep neural networks comprising multiple layers, each
containing numerous weights and biases. The primary goal during training is to adjust these weights
and biases to optimize the network’s performance on a given task. Partial derivatives guide this
optimization process. Every deep learning model utilizes a loss function (or cost function) that
measures the discrepancy between the model’s predictions and the targets. The objective of training
is to minimize this loss. We need to understand how the loss changes with tiny adjustments to
these parameters to adjust each weight and bias effectively to reduce the loss. This is where partial

FIGURE 3.1

(a) Surface plot of f (x,y) = x2y + xy” and (b) contours of partial derivatives.

SNNd[eD) 91BLIBAI NN

9

68 Mathematical Foundations for Deep Learning

derivatives come into play. It has two features of changes: direction and magnitude. In gradient des-
cent, the weight update rule is as follows:

where:

o w® is the weight at iteration t,
e 1) is the learning rate,

dL
. w is the partial derivative of the loss with respect to w.
W

Consider a quadratic loss function L (w) = (w—3)?%, where w represents a weight in the model. This
. o dL
loss function reaches its minimum when w = 3. After computing the partial derivative w = 2(w - 3)
w
the sign of this derivative tells us whether to increase or decrease w. If w = 4, the derivative
dL L e S
d_ = 2(4 — 3), which is positive, indicating we should reduce w to minimize the loss.
w
Figure 3.2 illustrates the behavior of the loss function and how its derivative indicates the direc-
tion of the steepest descent toward the optimal weight. The first subplot on the left displays the quad-
ratic loss function L (w) = (w—23)? +2, which measures the error or “loss” associated with different
values of the weight w. This plot shows a U-shaped curve where the minimum point represents the
optimal weight. A vertical dashed gray line at w = 3 indicates the optimal weight, where the loss
function reaches its minimum value. The second subplot on the right displays the derivative of the
loss function, which is given by indicating the slope of the loss function. This derivative is crucial
for optimization algorithms like gradient descent. It shows a straight line that crosses the x-axis at
w = 3, where the derivative is zero, corresponding to the optimal weight. A horizontal dashed gray
line at y = 0 indicates where the derivative is zero.

3.4 GRADIENTS

In multivariable calculus, the gradient is a central concept, especially when dealing with functions
of several variables. The gradient provides a way to encapsulate the rates of change of a function in
every direction in a single vector. By pointing in the direction of the steepest ascent and having a
magnitude representing the maximum increase rate, the gradient offers an understanding of how a
function changes in different directions. Given a scalar-valued function f of several variables, such
as f(x, y) or f(x, y, z), the gradient of f, denoted by Vf or “grad f,” is a vector whose components
are the partial derivatives of f concerning each of its variables. For a function f(x, y), the gradient

is Vf = a—f,a—f . For a function f(x, y, z), the gradient is Vf = a—f,a—f,a—f , and so on for functions
dx dy dx dy 0z

with more variables. Its geometric interpretation includes the following:

(a) Direction: The gradient of a function indicates the direction of the steepest ascent. If you
imagine standing on a hill represented by the function f and walking toward the gradient, you
will climb the mountain as steeply as possible.

(b) Magnitude: The gradient vector’s magnitude (or length) represents the function’s maximum
increase rate. If the gradient is zero at a point, then that point is a local maximum, local min-
imum, or a saddle point.

FIGURE 3.2

(a) Loss function and (b) derivative of the loss function.

SNNd[eD) 91BLIBAI NN

69

70 Mathematical Foundations for Deep Learning

Gradient has two main properties:

1. Linearity: For scalar constants a and b and functions F and G: V(af + bg) =aVf+bVg

2. Dot Product with Directional Derivative: The dot product of the gradient of f at a point and
a unit vector u gives the rate of change of f in your direction. This is also known as the dir-
ectional derivative of F in the direction D_f = Vf i .

Gradients can be computed analytically using differentiation rules for each partial derivative.
However, analytical computations can be challenging for complicated functions, especially in high-
dimensional spaces. In such cases, numerical methods or automatic differentiation tools (standard
in machine learning frameworks) might be employed. In gradient descent, the weights are updated
iteratively in the opposite direction of the gradient of the loss function. The update rule for a weight
w at iteration t can be expressed as follows:

L
Wi =W, — n=—

ow

L
where 1 is the learning rate and g— is the gradient of the loss L. with respect to w. Additionally,
w

backpropagation is an algorithm designed to compute gradients efficiently in neural networks. It
propagates the error backward through the network, layer by layer, to determine the gradient of the
loss with respect to each weight. This process relies heavily on the chain rule of calculus to decom-
pose the gradient calculation into manageable steps. Consider a function f (x, y) = x? +y?, the gra-
dient of f is:

Vf(x,y) = (g—i,g—i) = (2x,2y)

At the point (x, y) = (1, 2), the gradient is:

VF(1,2)=(2x1,2%x2)=(2,4)

This tells us that at the point (1, 2), the function increases most rapidly in the direction (2, 4), and the
steepness of the increase is proportional to the length of the gradient, which is:

Vf(1,2) =22 +42 =20 = 4.47

Figure 3.3 illustrates the shape of the function’s surface alongside the direction and magnitude of
its gradient at various points. The contour plot depicts the function f (x, y) = x? + y?, representing
a symmetrical paraboloid surface characterized by lines of constant function value. These contour
lines indicate the function’s elevation as one moves outward from the origin, with labels speci-
fying their corresponding values for enhanced clarity. The gradient vectors are visualized as red
arrows, which embody the direction and magnitude of the function’s gradient V{(x, y) = (2x, 2y).
The length and orientation of each arrow accurately represent the gradient’s strength and direction,
effectively demonstrating the steepest ascent paths of the function at those locations. Key points
such as (1, 1), (-1, -1), (1, —1), and (-1, 1) are distinctly marked on the plot with blue annotations
and corresponding arrows. These annotations are strategically positioned to prevent overlap with
other plot elements, ensuring that each key point is easily identifiable and their associated gradient
vectors are clearly understood. Additionally, black lines are drawn along the y = 0 and x = 0 axes to

FIGURE 3.3 Contour plot f(x,y) = x? + y? with gradient vectors.

SNNd[eD) 91BLIBAI NN

LZ

72 Mathematical Foundations for Deep Learning

denote the origin, aiding in spatial orientation and providing a reference framework for interpreting
the plot’s elements.

3.5 GRADIENT IN DEEP LEARNING

In deep learning, neural networks are trained for classification and regression by fine-tuning their
weights and biases to minimize a specified loss (or cost) function. Gradients are the driving force
behind the training of deep neural networks. By understanding how the loss changes concerning
model parameters, we can iteratively adjust these parameters to improve the model’s performance.
Despite the challenges associated with gradient calculations, the proper techniques and tools make
it possible to harness the power of gradients effectively, maintaining their status as a cornerstone
concept in deep learning. The gradient plays several critical roles in deep learning. One key role is in
training a neural network, where the goal is to minimize the loss function by updating the network’s
weights and biases to reduce the loss. The gradient of the loss function with respect to each weight
and bias indicates both the direction and magnitude of the adjustments needed to decrease the loss.
Before delving into gradients, it is crucial to understand the role of the loss function in neural
networks. The loss function quantifies how well the neural network’s predictions align with the
data. The objective of training a neural network is to minimize this loss function. To achieve this,
we must understand how the loss changes for the model’s parameters (weights and biases). This
is where the gradient comes into play. The gradient of the loss function concerning the model’s
parameters shows how the loss function changes in direction and magnitude when these parameters
are adjusted. Specifically, for a neural network with thousands (or even millions) of parameters, the
gradient is a high-dimensional vector where each component represents the partial derivative of
the loss function with respect to one of these parameters. Each partial derivative indicates how much
the loss will increase or decrease if the corresponding parameter is adjusted by a small amount.
There are several challenges for gradient in deep learning, here we review some of the most common
and their possible solution.

(a) Vanishing Gradients: In deep networks, gradients can become very small as they propa-
gate through the layers, leading to slow learning. Techniques like normalization, appropriate
activation functions, and advanced architectures like long short-term memory networks
help mitigate this issue. Using ReLU (Rectified Linear Unit) or its variants can mitigate the
vanishing gradient problem.

(b) Exploding Gradients: Conversely, gradients can become excessively large, causing unstable
updates. Gradient clipping is widely used to tackle this issue by limiting the gradients to
a maximum value. Gradient clipping involves setting a threshold value and scaling down
gradients that exceed this threshold, preventing the exploding gradient problem.

(c) Saddle Points: Points where the gradient is zero but is neither a minimum nor a maximum of
the loss function can cause neural networks to get stuck, slowing down the training process.
Algorithms like Adam, RMSprop, and Adagrad adjust the learning rate dynamically and
consider past gradients to provide more stable and faster convergence than vanilla gradient
descent.

3.5.1 GRADIENT DESCENT

Gradient descent is an optimization algorithm that minimizes the loss function in neural networks.
The idea is simple, iteratively adjust each parameter in the opposite direction of its corresponding
gradient component, aiming to reduce the loss function. The update rule for gradient descent is:

g = 6 — v (6")

Multivariate Calculus 73

where

e 0 is the parameter vector,
e 1) is the learning rate,
s V,J (9(’)) is the gradient of the loss function with respect to 0 at iteration t.

The variations differ in how much data is used to compute the gradient, affecting the speed and
efficiency of the optimization process. Suppose you are training a neural network with 100,000
parameters, and the goal is to minimize the loss function. The dataset contains 1,000 training
samples. Variations of gradient descent include:

(a) Stochastic Gradient Descent (SGD): In this case, after processing each individual data
sample, the network updates its parameters. So, if you process the first sample, calculate the
loss, and compute the gradient, the parameters are updated immediately, and then you pro-
ceed to the next sample. For example, if the current parameter value is 0 = 0.5, the learning
rate is 1 = 0.01, and the gradient for a particular parameter is VO = 0.2, the update would be:
6+ =0.5-0.01x0.2 = 0.498.

(b) Mini-Batch Gradient Descent: In mini-batch gradient descent, the model updates its
parameters after processing small, manageable batches of data. For example, if the batch
size is 32 samples, the model processes these 32 samples, computes the average gradient
for the batch, and updates the parameters accordingly. This approach balances the trade-off
between the efficiency of SGD and the stability of batch gradient descent, leading to faster
convergence and smoother updates.

(c) Batch Gradient Descent: In batch gradient descent, the model processes the entire dataset
(e.g., all 1,000 samples) before updating the parameters. After computing the gradient for
the entire dataset, the parameters are updated in one large step. This method provides a more
stable gradient estimate, but it is computationally expensive, especially for large datasets, as
it requires going through all data points before making an update.

3.5.2 BACKPROPAGATION

The backpropagation algorithm is essential for determining the gradient of the loss function relative
to each network parameter. It operates through two primary phases:

1. Forward Propagation: Input data is processed layer by layer to produce the network’s output.

2. Reverse Propagation: By applying the chain rule, the gradient of the loss function concerning
each parameter is calculated, starting from the output layer and working backward to the
input layer.

The gradient of the loss function L. with respect to a weight w in layer 1 is computed using the
chain rule:

0L _ 0L da, 9z
dw, da, 3z, ow

1
where:

* a,is the activation at layer I,
* 1z, is the pre-activation (linear combination of weights and inputs) at layer 1.

74 Mathematical Foundations for Deep Learning

Backpropagation efficiently computes gradients for all parameters in the network, making it funda-
mental for training deep neural networks. Suppose you’re training a neural network with three layers
to classify images. During forward propagation, a sample image passes through the network, and
the model predicts a class based on its current parameters. For example, if the true class label is 2
and the network predicts class 3, a loss function (such as cross-entropy) is used to measure the error
between the predicted class and the true class. During reverse (backward) propagation, the algo-
rithm calculates the gradient of the loss with respect to the parameters (weights and biases), starting
from the output layer and propagating back through the three layers to the input. Using the chain
rule of calculus, backpropagation computes how each weight and bias contributes to the loss. These
gradients are then used to update the parameters in the opposite direction of the gradient (through
gradient descent), reducing the loss and improving the model’s predictions. This process is repeated
for multiple samples in the training set, gradually fine-tuning the network’s parameters.

Figure 3.4 illustrates the behavior of a quadratic loss function and the corresponding gradient
descent optimization process used to minimize it. In the subplot (a), the loss function L(w) = (w
—3)? + 2 is displayed as a smooth blue curve. This parabolic curve depicts how the loss varies with
different weight values w, reaching its minimum at the optimal weight w = 3. The Gradient Descent
Path is illustrated with a dashed orange line and highlighted with large red markers, tracing the itera-
tive steps taken from an initial weight of w = 0 toward the minimum. Each red marker represents
an updated weight after applying the gradient descent update rule with a learning rate of 0.1, show-
casing the step-by-step approach toward minimizing the loss. A vertical dashed green line marks
the optimal weight (w = 3), providing a clear reference point for the goal of the optimization. The
subplot (b) focuses on the gradient of the loss function VL(w) = 2(w — 3) depicted as a robust orange
line. This linear function illustrates how the gradient changes with different values of w, crossing
zero precisely at the optimal weight of 3. The gradient steps are marked with purple scatter points,
corresponding to the gradient values at each step of the gradient descent process. These points visu-
ally demonstrate how the gradient diminishes as the weight approaches the optimal value, guiding
the descent toward the minimum loss. A horizontal dashed gray line indicates the zero gradient level,
providing a reference for where the gradient equals zero, signifying the optimal point.

3.6 JACOBIANS

Jacobian is a fundamental concept in various branches of mathematics, including calculus, differen-
tial equations, and geometry. It is essential in multivariate calculus and has numerous applications in
theoretical and applied mathematics. The Jacobian matrix of a system of transformation equations is
a matrix of the first-order partial derivatives of the functions involved. For a vector-valued function/

Si(x)
L. £ (x) : .
mapping itcan be f: R" - R™, f(x)= : R” toR™, the Jacobian matrix is m X n, defined as
1,0
follows:
A9 o %
ox, Ox, ox,
J(f)=|0x, ox, ox,
8fm afm Bfm
ox, ox, ox,

FIGURE 3.4 (a) Loss function and gradient descent path, (b) gradient of the loss function.

SNNd[eD) 91BLIBAI NN

<L

76 Mathematical Foundations for Deep Learning

Here, F, represents the i component of the vector-valued function F. The Jacobian matrix has sev-
eral critical applications. In optimization, the Jacobian provides information about the gradient and
direction to move toward or away from a local optimum, aiding in the optimization process.

3.6.1 JACOBIAN DETERMINANT

The determinant of a Jacobian matrix is called the Jacobian determinant or simply the Jacobian. For
a function that maps from R” — R" , the Jacobian determinant indicates how the function scales
areas or volumes in the neighborhood of a point. If the Jacobian determinant at a point is positive,
the function preserves orientation near that point; if it is negative, the function reverses orientation.
For a transformation function f : R” — R”, the Jacobian determinant is:

O fioforers 1)

det(J) = det a(x],xz,..-’xn)

The Jacobian determinant informs how the function scales areas or volumes locally and whether it
preserves or reverses orientation. Consider a transformation function that maps from R?70 R?. The
function transforms the coordinates (X, y) to new coordinates (u, v) using the equations:

u=2x+y, v=x-y

The Jacobian matrix is:

The Jacobian determinant is calculated as follows:

det(J)=(2x-1)-(1x1)==2-1=-3

As the determinant is negative, the transformation reverses orientation near the point.

3.6.2 RELATIONSHIP WITH THE CHAIN RULE

The Jacobian matrix is closely related to the chain rule in calculus. The chain rule allows us to find
the derivative of a composite function, and when working with tasks from R"to R™, it involves the
Jacobian matrix. Specifically, if f and g are functions such that f : R” — R? and R? — R™, then the
Jacobian matrix of the composite function & = g°f is the product of the Jacobian matrices of g and
f.If f: R" — R” and g : R? — R™, the Jacobian of the composite function h=g (f(x)) is:

J,(0)=7(f(x))-7, (x)

The chain rule in multi-dimensional calculus uses this product of Jacobians to compute the deriva-
tive of composite functions. Suppose you have two functions:

I. fx,y)=02x+y,x-Yy)
2. g(u, v) (where u and v are the outputs of f(x, y))

To find the derivative of the composite function g(f(x, y)), you need to use the chain rule for
multivariable functions, which involves multiplying the Jacobian matrices of g and f. Let us do the
process step by step:

Multivariate Calculus 77

1. Compute the Jacobian of f(x, y): The Jacobian matrix of f(x, y) is the matrix of partial
derivatives of each component of f with respect to x and y:

9(2x+y) 9(2x+y)

ox dy 2 1
)= Ix—y) 9(x-y) :(1 —IJ
ox dy

2. Compute the Jacobian of g(u, v): Suppose g(u, v) is a function of u and v, you need to com-
pute its Jacobian with respect to u and v:

98 98
u v
J (u,v)=
() 9, 98,
du v

3. Apply the Chain Rule: The chain rule for multivariable functions states that the Jacobian of
the composite function g(f(x, y)) is the product of the Jacobian matrices of g and f:

Jg(f) (x,y) = Jg (u,v)-Jf (x,y)

3.6.3 COMPUTATIONAL ASPECTS

In computational fields, the Jacobian is often used in numerical methods, such as Newton’s Method.
This technique finds the roots of equations with multiple variables, utilizing the Jacobian matrix
to approach the solution iteratively. The Jacobian assists in linearizing complex systems, making
numerical approximation methods more efficient. Newton’s Method for systems of equations uses
the Jacobian matrix to update guesses iteratively:

xH) = yln) — g1 (x("))-f(x("))
where

e x™is the current guess,
e Jis the Jacobian matrix of the system,
e frepresents the system of equations.

This iterative process converges to the roots, making it effective for solving non-linear systems.
Suppose you want to find the roots of the system of equations:

fl(x,y)zxz+y2—4=O, fz(x,y)zx—y=0

Using Newton’s Method, you start with an initial guess, say (x,, y,) = (1, 1), and iteratively apply the
method to get closer to the solution. The Jacobian matrix for this system is:

2x 2
7=t
1 -1

This matrix is used in the iterative formula to update the guesses for x and y.

78 Mathematical Foundations for Deep Learning

FIGURE 3.5 Visualization of Jacobian vectors for the function F (x, y) = [xcos(y), ysin(x)].

Figure 3.5 shows the visualization of the Jacobian vectors of a vector-valued function F(x, y).
The function F Ex, y) = [xcos(y), ysin (x)]T is depicted along with its Jacobian matrix, which is
calculated as J , (x, y). The figure is divided into two main components: a contour plot and Jacobian
vectors. The background contour plot displays a quadratic function Z = x? + y?, providing a visual
reference for the domain over which the Jacobian vectors are computed, with filled contours using
the colormap and an accompanying color bar indicating the function levels. Superimposed on
the contour plot are red and blue arrows representing the Jacobian vectors corresponding to the
components of F. The red arrows depict the partial derivatives associated with them, while the blue
arrows depict those associated with them.

3.7 JACOBIANS IN DEEP LEARNING

In the context of deep learning, Jacobians play a crucial role in understanding how small changes
in input can affect the output of a neural network model. This is especially important in scenarios
where the sensitivity and responsiveness of a model to inputs are critical. In deep learning, a neural
network functions as a mapping between input vectors and output vectors. The Jacobian matrix

Multivariate Calculus 79

details the rate at which each output changes in response to variations in each input. Specifically,
for a network that has m outputs and n inputs, the Jacobian is a matrix. Formally, if y =F (x) where
x € R"and y € R™, the Jacobian matrix J is given by

ox, ox, ox,
J(f)=| ox, ox, ox,
9N, 9, 9%,
ox, ox, ox,

The Jacobian matrix is a valuable tool for analyzing the sensitivity of a neural network’s outputs to
input variations. This sensitivity analysis is crucial in adversarial attacks, where minor input alter-
ations can cause substantial output changes. By understanding this sensitivity, we can enhance the
robustness and reliability of the model. While the Jacobian is not directly used in backpropagation,
the concept is closely related. Backpropagation relies on the gradient to adjust weights and biases in
a network. This gradient quantifies how the loss function changes as you adjust the input or weights,
like how the Jacobian quantifies the output change concerning inputs.

In adversarial machine learning, attackers often use the Jacobian matrix to generate adversarial
examples. By understanding how changes in input affect output, attackers can make slight modifications
to an input sample to fool a neural network into misclassifying it. This understanding is crucial for
developing defenses against such attacks. The Jacobian can be useful for visualizing how changes in
specific inputs affect outputs. This visualization aids in interpreting how a deep learning model functions
and helps debug or improve model behavior. By examining the Jacobian, researchers can gain insights
into the model’s internal workings and response to varying inputs. Recent research in deep learning
involves regularizing the Jacobian to ensure that the model is not overly sensitive to input perturbations.
Regularizing the Jacobian can help make the model more robust, improving its performance on real-
world data where slight variations are common. The Jacobian matrix can be massive for large neural
networks, making computation and storage computationally challenging. In many practical scenarios,
approximations or sampling methods might be used to manage these challenges effectively. Despite these
limitations, understanding and utilizing the Jacobian remains a critical aspect of advanced neural network
training and analysis. Consider a simple neural network with two inputs x , X, and two outputs y , y,,
where the output is calculated as follows:

Y, =2x,+3x,, y,=x+4x,

The Jacobian matrix for this network is:

W

ox, Ox, 2 3
J: =

% ayz 2x1 4

ox, ox

At the point (x,, x,) = (1, 2), the Jacobian becomes:

7(1.2)= [211 ﬂ - B ﬂ

80 Mathematical Foundations for Deep Learning

FIGURE 3.6 Visualization of the Jacobian matrix for a simple neural network.

This matrix shows how small changes in x, and x, affect y, and y,. For instance, increasing x, by 1
unit increases y, by 2 units and y, by 2 units, while increasing x, by 1 unit increases y, by 3 units
and y, by 4 units.

Figure 3.6 presents a visualization of the Jacobian matrix of a simple neural network. The
Jacobian matrix, in this context, represents the partial derivatives of the network’s outputs with
respect to its inputs. Each cell in the matrix indicates the sensitivity of an output to a change in a
specific input. The color gradient in the matrix helps to visually differentiate the magnitude and
direction of the sensitivities. Warmer colors (reds) indicate higher positive values, while cooler
colors (blues) represent higher negative values. Neutral values are closer to white. Each cell is
annotated with the exact value of the partial derivative it represents. The x-axis is labeled with
the inputs (Input 1 and Input 2), and the y-axis is labeled with the outputs (Output 1 and Output
2). By examining the Jacobian matrix, you can understand how changes in each input variable
will affect each output variable. For example, a high positive value in a cell indicates that a small
increase in the corresponding input will result in a significant increase in the corresponding
output.

3.8 HESSIAN MATRICES

While the Hessian matrix provides valuable insights into the curvature of a function and can influ-
ence optimization strategies, its direct application in deep learning is limited by practical computa-
tional challenges. However, methods that leverage Hessian information, either directly or indirectly,
can be crucial in specific deep learning scenarios. The Hessian matrix, a square matrix, showcases
the second-order partial derivatives of a scalar function. For a functionR"” — R, the Hessian H(f) is
given by:

Multivariate Calculus 81

*f *f *f
E ox,0x, - ox,0x,
2*f 0*f 2*f
H(f)=| 0x,0x, @ ox,0x,
*f > f 2*f
ox dx, 0x 0x, a @

The importance of Hessian matrices include:

(a) Convexity and Concavity: A function is locally convex if the Hessian is positive definite at a
point. If the Hessian is negative definite, the function is locally concave. This property is crit-
ical in optimization, as it helps identify the nature of critical points, distinguishing between
local minima, maxima, or saddle points.

(b) Second-order Optimization Methods: The Hessian is used in second-order optimization
methods, such as Newton’s Method, which can achieve faster convergence than first-order
methods like gradient descent under certain conditions. However, in deep learning, com-
puting the Hessian is often computationally expensive due to the large number of parameters.

(c) Approximations: Quasi-Newton methods approximate the Hessian. These methods are used
in optimization scenarios where computing the actual Hessian might be too costly.

Consider a simple function f (x, y) = x? + y%. The Hessian matrix of this function, representing the
second-order partial derivatives, is:

>y s

ox> dxdy 2 0
H = =

*f *f 0 2

dyox dy?

As the Hessian matrix is positive definite (both eigenvalues are positive), the function is locally
convex, and any critical point is a local minimum. The Hessian helps determine the curvature of
the function, which influences the optimization strategy by providing insights into local minima,
maxima, and saddle points.

Figure 3.7 shows the behavior of the function f (x, y) = x? + y* + 2xy and its Hessian matrix. The
left subplot features a 3D surface plot of the function, displaying its values over a grid of x and y
ranging from -2 to 2. The axes are labeled x, y, and f(x, y), and a color bar accompanies the plot
to show the corresponding function values. The right subplot presents the Hessian matrix of the
function at the specific point (x, y) = (1, 1). For f (x, y) = x> + y? + 2xy, the Hessian matrix at this

2 2
point is(2 2) . The heatmap visualizes this matrix using the “Blues” colormap, with each cell’s

color reflecting the value of the corresponding second-order partial derivative.

3.9 HESSIAN IN DEEP LEARNING

While direct computation and use of the Hessian in deep learning training are rare due to its high
computational and storage costs, its properties and associated concepts are precious. They provide

FIGURE 3.7 Visualization of the Hessian matrix for the function f(x, y) =x2+y>+2xy.

Z8

Suruaea des(40y suoepunod [edieWwayIe

Multivariate Calculus 83

insights into model optimization, robustness, and generalization and influence the development of
advanced optimization algorithms tailored for deep learning. Research suggests that the eigenvalues
of the Hessian can provide insights into model generalization. Flatter minima (where the Hessian
has smaller eigenvalues) might correspond to better generalization, as they indicate less sensitivity
to small perturbations in the input data. Regularizing the Hessian can help prevent overfitting,
leading to models that better generalize unseen data. The Hessian’s properties can be leveraged
to understand model robustness, especially in adversarial attacks. The curvature information can
provide insights into the model’s susceptibility to perturbations in the input space. By studying the
Hessian, researchers can develop better defense mechanisms against adversarial attacks, enhan-
cing the robustness and reliability of deep learning models. Given the high computational cost of
the Hessian in deep networks, Hessian-free methods aim to leverage its second-order information
without explicitly computing it. Here are some of its features:

(a) High-Dimensional, Non-Convex Landscapes: Deep learning involves training models on
high-dimensional, non-convex optimization landscapes. This makes the training process sus-
ceptible to challenges like getting stuck in saddle points.

(b) Curvature Information: The Hessian matrix provides second-order information about the
curvature of the loss surface. The eigenvalues of the Hessian can indicate whether a point
is a minimum, maximum, or saddle point. Specifically, if all eigenvalues are positive, it
is a local minimum; if all are negative, it is a local maximum; and if there is a mix, it is a
saddle point.

(c) Saddle Points: In deep learning, saddle points are more common than local minima, making
it crucial to understand the role of the Hessian in navigating such points. Understanding
the Hessian can help develop strategies to escape saddle points and improve training
efficiency.

For example, consider that we are training a neural network with a loss function L(w), where w
represents the weight parameters of the network. Suppose at a certain point in the weight space, the
Hessian matrix has the following eigenvalues:

A, =001, A, =01, A,=05 A,=-02

The negative eigenvalue A, =—0.2 indicates the presence of a saddle point, meaning the training pro-
cess might slow down or get stuck at this point. The small positive eigenvalues A, = 0.01, A, = 0.1
suggest a flat region in the loss surface, meaning progress may be slow along these directions. The
larger positive eigenvalue A, = 0.5 indicates that in this direction, the curvature is steeper, meaning
changes in this direction will more rapidly impact the loss.

In Figure 3.8, the Hessian matrix of a simple neural network is visualized to provide insights
into the second-order derivatives of the network’s loss function with respect to its inputs. The neural
network consists of a single fully connected layer that maps a two-dimensional input to a two-
dimensional output using ReLU activation. The sample input tensor [1.0, 2.0] is used for this visu-
alization, and the forward pass through the network produces an output. The loss, defined as the
sum of the outputs, is computed, and the gradients are calculated. The Hessian matrix, representing
the second-order partial derivatives, is then computed using these gradients. The Hessian matrix is
visualized as a heatmap using the colormap, which provides a clear distinction between positive and
negative values. The x and y axes of the heatmap are labeled with x, and x,, representing the inputs
to the neural network.

84

Mathematical Foundations for Deep Learning

FIGURE 3.8 Visualization of the Hessian matrix for a neural network at (x,x,) = (1,2).

The challenges in using the Hessian in deep learning include the following:

(a)

(b)

Computational Complexity: The Hessian is a square matrix of size n x n, where n is the
number of parameters in the model. In modern deep networks, which can have millions or
even billions of parameters, computing the full Hessian becomes computationally prohibi-
tive. The time and resources required to calculate second-order derivatives for such high-
dimensional models are often beyond the capabilities of standard hardware.

Storage Costs: Storing the full Hessian matrix for large-scale models is impractical, as
its memory requirements scale quadratically with the number of parameters. Even using
techniques like sparse or low-rank approximations, the storage costs remain substantial, cre-
ating a bottleneck for efficient computation and optimization.

(c) Non-convexity: The loss surfaces in deep learning models are highly non-convex, meaning

they contain numerous saddle points and local minima. While the Hessian provides informa-
tion about the curvature of the loss surface, the presence of these saddle points complicates
the optimization process. At these points, the Hessian can have both positive and negative
eigenvalues, making it difficult to determine a clear direction for convergence and potentially
leading to slow or unstable training.

Multivariate Calculus 85

3.10 REAL-WORLD APPLICATIONS
3.10.1 AutoNoMOUS VEHICLES

Calculus, particularly gradient descent, is pivotal in training the deep learning models that power
autonomous vehicles. These models rely on calculus to optimize their decision-making processes in
real time. For instance, during navigation, the vehicle must continually adjust its steering and speed
based on the environment, which is captured and processed by sensors. The optimization process
involves minimizing a loss function that represents the difference between the predicted path and
the ideal path. By using gradients, the model updates its parameters to improve accuracy and safety,
ensuring that the vehicle can adapt to changing road conditions and unexpected obstacles.

3.10.2 HEeALTHCARE AND MEDICAL IMAGING

In healthcare, calculus plays a critical role in enhancing the accuracy of diagnostic tools, particularly
in medical imaging. Techniques like backpropagation, which relies on the chain rule of calculus,
are used to train deep learning models for tasks such as detecting tumors in radiographic images.
By optimizing the loss function, which quantifies the discrepancy between the predicted diagnosis
and the actual condition, these models can learn to identify subtle patterns in the images that may be
indicative of early-stage diseases. This application not only improves diagnostic accuracy but also
facilitates earlier detection and treatment, ultimately saving lives.

3.10.3 RosoTtics AND CONTROL SYSTEMS

In robotics, calculus is integral to designing control systems that allow robots to interact with their
environment in real time. Calculus-based algorithms help optimize the robot’s movements and
actions to perform tasks with precision. For instance, in robotic surgery, the robot’s movements
must be incredibly accurate to perform delicate procedures. The optimization of these movements
relies on minimizing a loss function that measures the deviation from the desired motion. By cal-
culating gradients, the control system can continuously adjust the robot’s actions, ensuring safe and
effective operation.

3.10.4 NATURAL LANGUAGE PROCESSING (NLP)

In NLP, calculus underlies the training of models that understand and generate human language.
These models, such as transformers used in machine translation or sentiment analysis, require
extensive optimization during training. The gradients of the loss function guide the updates to
the model’s parameters, improving its ability to understand context, syntax, and semantics. For
example, in machine translation, the model must minimize the error between the translated output
and the correct translation, which is achieved through calculus-driven optimization techniques like
backpropagation.

3.10.5 IMAGE AND VIDEO PROCESSING

Calculus is fundamental in processing and enhancing images and videos through deep learning
models. These models are trained to perform tasks such as image recognition, video analysis, and
facial recognition by optimizing a loss function that measures how well the model’s predictions
match the actual content. For instance, in facial recognition, the model learns to distinguish between
different faces by minimizing the difference between the predicted identity and the true identity.
This process relies on gradient calculations to adjust the model parameters, improving accuracy and
reliability in real-world applications.

86 Mathematical Foundations for Deep Learning

3.11 HANDS-ON EXAMPLE

This section will walk through a programming example to demonstrate how multivariate calculus is
used in deep learning, specifically focusing on gradient descent optimization.

Step 1: Import necessary libraries

In this step, we import essential libraries that will help with data manipulation and visualization. The
NumPy library is imported as np, which is widely used for numerical computations and handling
arrays or matrices. The matplotlib.pyplot module, imported as plt, is used for creating static, inter-
active, and animated visualizations in Python. Additionally, Axes3D from mpl_toolkits.mplot3d is
imported to enable the creation of 3D plots, which will allow us to visualize data in three dimensions,
providing deeper insight into relationships between variables.

import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D

Step 2: Define the multivariate function
We’ll use a simple quadratic function of two variables: f (x,y) = x> +y?

def f(x, y):
return x**2 + y**2

Step 3: Compute the gradient
The gradient of the function is given by the partial derivatives with respect to each

variable:Vf = (g—fg—fj
X oy

def gradient(x, vy):
df dx = 2 * x
df dy = 2 * y
return np.array ([df dx, df dy])

Step 4: Implement gradient descent

In this function, we are implementing a basic version of the gradient descent optimization algorithm. The
gradient_descent function takes in three parameters: starting_point, which is the initial point where the
optimization process begins; learning_rate, which controls the size of the steps taken in the direction of
the gradient; and iterations, which specifies how many times the process should update the point. The
function starts at the given starting_point and iteratively updates the position based on the negative of the
gradient (calculated using the gradient function). The learning rate controls how much the point moves in
the direction of the negative gradient. The new positions (points) are stored in a list and returned, giving
a trace of the steps taken during the optimization process.

Multivariate Calculus 87

def gradient descent (starting point, learning rate, iterations):

points = [starting point]

point = starting point

for in range(iterations):
grad = gradient (point[0], point[1l])
point = point - learning rate * grad

points.append (point)
return points

Step 5: Run gradient descent

In this part of the code, we are setting up the initial parameters to run the gradient descent algorithm.
The starting_point is initialized as a NumPy array [5.0, 5.0], which represents the initial point in a
2D space where the optimization begins. The learning_rate is set to 0.1, which defines the step size
in the direction of the gradient at each iteration, controlling how quickly the algorithm converges.
The iterations parameter is set to 50, meaning that the gradient descent will run for 50 steps. The
gradient_descent function is then called with these parameters, and the points generated throughout
the optimization process are stored in the points variable. Finally, the list of points is converted into
a NumPy array for easier manipulation or visualization in the following steps. This setup is crucial
for tracking how the algorithm converges towards the minimum of the function being optimized.

starting point = np.array([5.0, 5.0])

learning rate = 0.1

iterations = 50

points = gradient descent (starting point, learning rate,
iterations)

points = np.array (points)

Step 6: Visualize the function and Gradient Descent Path
We will create a 3D plot of the function and the path taken by gradient descent.

= np.linspace (-6, 6, 400)

np.linspace (-6, 6, 400)

, Y = np.meshgrid(x, V)

= £(X, Y)

fig = plt.figure (figsize=(12, 8))

ax = fig.add subplot (111, projection=‘3d’)

ax.plot surface(X, Y, Z, cmap=‘viridis’, alpha=0.6)
ax.plot (points[:, 0], points[:, 1], f(points[:, 0], points[:, 11),
color=‘r’, marker=’0’")

ax.set xlabel (‘X’)

ax.set ylabel (‘Y’)

ax.set zlabel (‘f (X, Y)’)

ax.set title(‘Gradient Descent on f (X, Y) = X"2 + Y"2’)
plt.show ()

X
Yy
X
Z

88

Mathematical Foundations for Deep Learning

FIGURE 3.9 Gradient descent on f(x,y)= x>+ 2.

Figure 3.9 is the output of the program, which is a 3D plot that shows the surface of the function and
the path taken by gradient descent.

3.12 COMMON MISTAKES AND TROUBLESHOOTING TIPS

3.12.1 UNDERSTANDING PARTIAL DERIVATIVES

Mistake: Confusing partial derivatives with total derivatives.

Tip: Remember that partial derivatives measure how a function changes with respect to one
variable while keeping other variables constant. In contrast, total derivatives consider the
change with respect to all variables simultaneously.

Mistake: Incorrectly treating constants while taking partial derivatives.

Tip: Always treat other variables as constants when computing the partial derivative with

Jf

respect to a specific variable. For example, when finding ™ for f (x, y), treat it as a constant.
X

3.12.2 HIGHER-ORDER PARTIAL DERIVATIVES

Mistake: Misinterpreting mixed partial derivatives.

Tip: Understand that mixed partial derivatives involve taking the derivative with respect to
different variables in succession. For example, it means taking the partial derivative of f with
respect to y first, then with respect to x .

Mistake: Assuming mixed partial derivatives are always equal.

Tip: Clairaut’s theorem states that mixed partial derivatives are equal if the function and its
partial derivatives are continuous. Verify continuity before assuming equality.

Multivariate Calculus 89

3.12.3 GRADIENTS

Mistake: Misunderstanding the direction of the gradient vector.

Tip: Remember that the gradient vector points in the direction of the steepest ascent. For mini-
mization problems, move in the opposite direction of the gradient (steepest descent).
Mistake: Incorrectly computing the gradient for functions with multiple variables.

Tip: The gradient is a vector of partial derivatives. For a function f (x,y), the gradient is

_(& o
Vi = (ax’ay]'

3.12.4 Opr1iMIZATION AND GRADIENT DESCENT

Mistake: Using a fixed learning rate that is too high or too low.

Tip: Adjust the learning rate dynamically or use adaptive learning rate algorithms like Adam
or RMSprop to improve convergence.

Mistake: Ignoring the potential for vanishing or exploding gradients.

Tip: To mitigate vanishing gradients, use techniques like gradient clipping to handle exploding
gradients and appropriate activation functions (e.g., ReLU).

3.12.5 JACOBIANS

Mistake: Confusing the Jacobian matrix with the Hessian matrix.

Tip: The Jacobian matrix is used for vector-valued functions and contains first-order partial
derivatives. The Hessian matrix is used for scalar-valued functions and contains second-order
partial derivatives.

Mistake: Misinterpreting the role of the Jacobian in transformations.

Tip: Understand that the Jacobian matrix represents the rate of change of each output with
respect to each input. It is crucial for sensitivity analysis and understanding how input changes
affect outputs.

3.12.6 HEessiIAN MATRICES

Mistake: Overlooking the computational complexity of the Hessian.

Tip: Be aware that the Hessian matrix can be computationally expensive for large models. Use
approximations or Hessian-free optimization methods when necessary.

Mistake: Misinterpreting the eigenvalues of the Hessian.

Tip: Positive eigenvalues indicate a local minimum, negative eigenvalues indicate a local max-
imum, and mixed eigenvalues indicate a saddle point.

3.13 REVIEW QUESTIONS

How is matrix multiplication used during the forward propagation of a neural network?
What roles do vectors and matrices play in representing data and weights within the network?
Define a partial derivative and discuss its importance in the context of multivariate functions
in deep learning.

How does a partial derivative differ when calculated with respect to different variables?
What is a gradient in multivariable calculus? Explain its significance in optimizing neural
network parameters during training.

Compare and contrast stochastic, mini-batch, and batch gradient descent. Under what
circumstances might each be preferred?

90 Mathematical Foundations for Deep Learning

7. How do Jacobians and Hessians contribute to deep learning? Provide examples of how these
higher-order derivatives can be applied in model optimization and analysis.
8. How does the learning rate influence the convergence of neural network training? What
potential issues can arise if the learning rate is set too high or too low?
. Explain the backpropagation algorithm.
10. How does backpropagation use the chain rule of calculus to update the weights and biases
in a neural network?

3.14 PROGRAMMING QUESTIONS

3.14.1 Easy

Implement gradient descent to find the minimum of the function g(x, y) = x2+3y%
Define the function g(x, y).

Compute the gradient of the function.

Implement the gradient descent algorithm.
Choose a starting point, learning rate, and number of iterations.

Sl

3.14.2 Mebpium

Implement gradient descent with momentum to minimize the function /(x,y) = (x—2)” +(y+3)".

Define the function h (X, y).

Compute the gradient of the function.

Implement the gradient descent algorithm with momentum.

Choose a starting point, learning rate, momentum factor, and number of iterations.
Visualize the function and the path taken by gradient descent with momentum.

A

3.14.3 Harp

Implement gradient descent to minimize the function k(x,y) = sin(x)+cos(y).

Define the function k(x, y).

Compute the gradient of the function.

Implement the gradient descent algorithm.

Choose a starting point, learning rate, and number of iterations.
Visualize the function and the path taken by gradient descent.

A

Probability Theory and
Statistics

4.1 INTRODUCTION

In this chapter, we begin by exploring the fundamental role of probability distributions in
understanding and modeling the randomness inherent in real-world data. From the discrete sim-
plicity of a dice roll to the continuous variations in financial markets, probability distributions help
us frame our predictive models in terms that align closely with observed phenomena. As we navi-
gate this chapter, we introduce you to various probability distributions tailored to specific data and
analysis requirements. We also discuss how these distributions interact with neural network (NN)
architectures, particularly Bayesian Neural Networks (BNNs), to provide a robust framework for
handling uncertainty and making informed predictions.

4.2 PROBABILITY DISTRIBUTIONS

Probability distributions are fundamental statistical tools, offering mathematical models that predict
the likelihood of various outcomes. These outcomes could be as simple as a dice roll or as complex
as forecasting investment returns. Each type of probability distribution is tailored to specific kinds
of data and assumptions, making them necessary for analyzing patterns, making predictions, and
drawing meaningful conclusions about data.

4.2.1 Discrete PROBABILITY DISTRIBUTIONS

These types of distributions apply discrete random variables with many possible outcomes. For
example, when you roll a dice, the outcomes are discrete numbers ranging from 1 to 6. Another
instance is counting the number of heads when you flip three coins. Here are a few widely used dis-
crete probability distributions.

1. Binomial Distribution: It measures the number of successes in a fixed set of independent yes/
no trials, each with the same probability of success. For instance, it can predict the likelihood

of flipping heads 10 times out of 20 coins’ tosses. Here is the mathematical representation
for binomial distribution:

P(X =k)= (Zj pH(1= pyt

DOI: 10.1201/9781032690742-4 91

http://dx.doi.org/10.1201/9781032690742-4

92

Mathematical Foundations for Deep Learning

where:

¢ nis the number of trials,
e pis the probability of success, and
¢ ks the number of successes.

For binomial distribution, suppose you flip a coin 20 times, and the probability of heads
is 0.5. The binomial distribution can predict the likelihood of getting exactly 10 heads.
Using the binomial formula:

P(X=10)= Gg)(O.S)IO(o.@m =0.176

Poisson Distribution: It is ideal for estimating the probability of a particular number of
events occurring within a fixed interval; this distribution is often used for rare events, such
as the frequency of earthquakes in a specific area over a year. Here is the mathematical
representation for Poisson distribution:

Ake=*

k!

P(X=k)=

where:

e) is the average rate of occurrence,

e ks the number of events.
For the Poisson distribution, if, on average, two earthquakes occur per year in a region,
the Poisson distribution can estimate the probability of having exactly three earthquakes
in a year, with A = 2:

2372
3!

=0.18

P(X=3)=

Geometric Distribution: It shows the probability of achieving the first success on the n' trial.
Here is the general formula for geometric distribution:

P(X=k)=(1=p)}'p
where:

e Xis the random variable representing the number of trials until the first success,
e pis the probability of success on any given trial,

¢ ks the trial number where the first success occurs, and

* (1 - p) is the probability of failure on a given trial.

The formula calculates the probability that the first success happens on the k™ trial. The
term (1 — p)*~! represents the probability of failing k — 1 times before achieving success
on the k™ trial. Suppose you are flipping a coin, and the probability of getting heads
(success) is 0.5. You want to calculate the probability that the first heads appear on the
fifth flip. Using the formula:

Probability Theory and Statistics 93

P(X=5)=(01-0.5"05=(0.5"*-0.5=0.03125

The probability of getting the first heads on the fifth flip is 0.03125, or 3.125%.

4. Uniform Distribution: In uniform distribution (discrete), all outcomes have an equal prob-
ability of occurring, such as rolling any number from 1 to 6 on a fair die. Here is the general
formula for discrete uniform distribution:

P(X:k):l

n
where:

* X s the random variable representing the outcome,
» Kk s a specific outcome, and
* 1 is the number of equally likely outcomes.

The formula is used to calculate the probability of any specific outcome k when all outcomes
are equally probable. For example, rolling any number on a fair six-sided die would have the
same probability because the die is fair, and each face is equally likely. Suppose you roll a fair
six-sided die. The probability of rolling any specific number (like rolling a 3) is equal for all
outcomes. As there are six possible outcomes, the probability is:

1
P(X=3)= & = 01667
The probability of rolling a 3, or any other specific number, is 0.1667, or 16.67%.

4.2.2 CoNTINUOUS PROBABILITY DISTRIBUTIONS

They are used for continuous random variables, assuming any value within a specified range. A typ-
ical example is the height of individuals in a population, which can vary continuously. Some of the
standard continuous probability distributions are as follows.

4.2.2.1 Uniform Distribution (Continuous)

It is applied when any value within a specified range is equally likely. This distribution is typically
used to model situations where every outcome in an interval is equally probable, such as randomly
selecting a number between two values. Here is its general formula:

f(x)zbia, fora<x<bh

where:

¢ ais the lower bound of the interval,
e b is the upper bound of the interval,
e f(x) is the probability density function (PDF).

This distribution is “flat,” meaning every outcome between a and b has the same probability density.
The total area under the PDF equals 1, ensuring it is a valid distribution. Suppose you want to model
the probability of selecting a random number between 0 and 1. The PDF would be:

=1, for0<x<1

f(x)=ﬁ

94 Mathematical Foundations for Deep Learning

Thus, the probability of any specific range (e.g., between 0.2 and 0.8) can be calculated as:

P(02<X<0.8)=(0.8-0.2)-1=0.6

This means the probability of selecting a number between 0.2 and 0.8 is 60%.

4.2.2.2 Normal (Gaussian) Distribution

The normal distribution is one of the most widely used continuous distributions, known for its bell-
shaped curve. It is determined by two parameters: the mean (n) and the standard deviation (o). Here
is its general formula:

where:

e uis the mean,
¢ ¢ is the standard deviation,
¢ f(x) is the PDF.

The mean p represents the center of the distribution, while the standard deviation ¢ determines the
spread of the data. The total area under the curve equals 1. The further a value is from the mean,
the lower the probability density. Suppose the height of individuals in a population is normally
distributed with a mean of 170 cm and a standard deviation of 10 cm. The probability of an indi-
vidual being between 160 and 180 cm can be found using the cumulative distribution function
(CDF). Approximately 68% of individuals fall within 1 standard deviation of the mean:

P(160 < X <180) = 0.68

This means there is a 68% probability that an individual’s height will be between 160 and 180 cm.

4.2.2.3 Exponential Distribution

It is used to model the time between continuous, independent events that occur at a constant average
rate. It is frequently used in scenarios like waiting times, such as the time between incoming calls at
a call center. Here is its general formula:

f(x)= Ae ™, x>0

where:
e) is the rate parameter (the inverse of the mean time between events), and f(x) is the PDF.

The rate parameter A describes how frequently events occur. The exponential distribution has the
“memoryless” property, meaning the probability of an event occurring in the future is independent
of how much time has already passed. If the average time between incoming calls at a call center is

1
2 minutes, the rate parameter is lzz = 0.5 per minute. The probability of waiting less than 1 minute

for the next call is:

Probability Theory and Statistics 95

P(X<)=1-e*'=1-¢"=0.3935
Thus, there is a 39.35% probability of receiving the next call within 1 minute.

4.2.2.4 Beta and Gamma Distributions

The beta distribution is useful for modeling probabilities and proportions for values bounded
between O and 1, while the gamma distribution is often used for modeling waiting times or life
durations and can be seen as a generalization of the exponential distribution. The general formula
for beta distribution is:

x (1= x)p!

B(a.p)

0<x<1

f(x)=

)

where:

e ¢ and P are shape parameters,
* B(a, P) is the beta function.

The beta distribution is highly flexible and can take on various shapes depending on a and B. It is
particularly useful when modeling events that have an inherent probability or proportion. Suppose
you want to model the distribution of success probabilities in a series of experiments with a = 2 and
P = 3, the beta distribution models the probabilities, for example, by getting a success rate between
0.2 and 0.8, using the CDF. The general formula for gamma distribution is:

/’Laxa—le—lx

"=

, x20

where:

o is the shape parameter,
A is the rate parameter,
I'(e) is the Gamma function.

The gamma distribution is a generalization of the exponential distribution (when @ = 1) and is used
for modeling waiting times when there is more than one event occurring. If the average lifespan of
a device is modeled by a Gamma distribution with shape parameter a = 2 and rate parameter A = 1/
3 (representing 3 units of time on average), you can calculate the probability of a device lasting less
than 5 units of time.

4.2.3 CHARACTERISTICS OF PROBABILITY DISTRIBUTIONS

4.2.3.1 Mean (Expected Value)

The mean (or expected value) represents the average or central value of the distribution. It is
calculated as the weighted average of all possible values, with the weights being the probabilities
associated with those values. The mathematical representation is as follows:

u=E(X)= Zx’. P(x,)

96 Mathematical Foundations for Deep Learning

For a continuous distribution:
U= E(X) = jx-f(x)dx

where:

u is the mean,
x, represents the possible values,
f(x) is the PDF (for continuous distributions).

For a normal distribution with a mean of p = 50, the mean represents the center of the distribution.
Most of the data will be centered around 50, with equal probabilities on either side of the mean.

4.2.3.2 Variance and Standard Deviation

Variance and standard deviation measure how much the values of the distribution deviate from
the mean. Variance is the average of the squared differences from the mean, while the standard
deviation is the square root of the variance. The mathematical representation of variance is as
follows:

0® = Var(X)= Y (x, - P(x,)

i

For a continuous distribution:
o = [(x—py - f(x)dx

The mathematical representation of standard deviation is as follows:

o=,/Var(X)

For a normal distribution with p = 50 and a standard deviation ¢ = 5, the variance is 6> = 25. This
means that most values fall within 1 standard deviation of the mean, that is, between 45 and 55.

4.2.3.3 Skewness

Skewness measures the asymmetry of the distribution. A skewness value of zero indicates a sym-
metric distribution. Positive skewness means the distribution has a longer tail on the right, and
negative skewness means it has a longer tail on the left. The mathematical representation is as
follows:

Skewness =

El(X-p] _ X 5w P(x)
o - o
For a right-skewed distribution with a mean of p = 40, if the skewness is positive, it indicates that

there are more extreme values on the right side of the distribution. This often happens in income
distributions where there are a few very high values.

Probability Theory and Statistics 97

4.2.3.4 Kurtosis

Kurtosis measures the heaviness of the tails of the distribution relative to a normal distribution.
A higher kurtosis value indicates heavier tails, meaning more outliers. A kurtosis value of 3 is typ-
ical for a normal distribution (this is referred to as mesokurtic). The mathematical representation is
as follows:

E[(X -)]

-3
ol

Kurtosis =

Subtracting 3 from the formula centers the kurtosis at zero for a normal distribution (called excess
kurtosis). Positive excess kurtosis indicates a heavy-tailed distribution (leptokurtic), while negative
kurtosis suggests a light-tailed distribution (platykurtic). If a distribution has a kurtosis value greater
than 3, it indicates that it has heavy tails and is prone to producing extreme values or outliers.

4.2.3.5 Mode

The mode is the value that appears most frequently in the distribution. In a unimodal distribu-
tion (like the normal distribution), the mode coincides with the mean. However, for multimodal
distributions, there may be more than one mode. The mode is useful for understanding the most fre-
quent outcomes in a distribution, particularly for discrete data or skewed distributions. In a normal
distribution, the mode is equal to the mean (u = 50), and the most frequent value is 50. In a right-
skewed distribution, the mode would be less than the mean and closer to the peak of the distribution.

4.2.4 FUNCTION REPRESENTATIONS

4.2.4.1 Probability Mass Function

The probability mass function (PMF) represents the probability that a discrete random variable is
exactly equal to a specific value. It is used for discrete distributions, where the random variable takes
on a finite or countably infinite number of values. Its general formula is as follows:

P(X =x) = p(x)
where:

* P(X =x) is the probability that the random variable X takes on the value x,
* p(x) represents the PMF for the discrete variable X.

Consider a discrete random variable representing the number of heads when flipping two coins.
The possible outcomes for the number of heads are 0, 1, or 2. The PMF would give the following
probabilities:

P(X=0)=-. P(X=1)==, P(X=2)=

NN

N
N

This shows that there is a 25% probability of getting 0 heads, a 50% probability of getting 1 head,
and a 25% probability of getting 2 heads.

4.2.4.2 Probability Density Function

It is used for continuous random variables and describes the relative likelihood of the random vari-
able taking on a particular value. Unlike the PMF, the PDF does not give the probability of the

98 Mathematical Foundations for Deep Learning

random variable being exactly equal to a value (because for continuous variables, that probability
is zero), but rather the likelihood of it falling within a small interval around that value. The general
formula is as follows:

_ P(xSXSx-I—Ax)
f(x)_AiglO Ax

where:

f(x) is the PDF for the continuous variable X,
X is the continuous random variable.

For a normal distribution with a mean p = 0 and standard deviation ¢ = 1, the PDF is given by:

This PDF describes the likelihood of values around the mean p = 0. The value of f(x) is highest at
the mean and decreases symmetrically as x moves away from the mean. For instance, around x = 0,
the PDF will have its peak, and as you move toward x = +1, the likelihood of these values decreases.

4.2.4.3 Cumulative Distribution Function

It gives the probability that a random variable X is less than or equal to a specific value x. The CDF
is used for both discrete and continuous random variables and is defined as the integral (for con-
tinuous) or sum (for discrete) of the PMF or PDF. The general formula for discrete random variables
is as follows:

F(x)=P(X<x)=YP(X

1<x

The general formula for continuous random variables is as follows:
F (x) X < x J f t)dt

where:

¢ F(x) is the CDF,
¢ f(x) is the PDF for continuous variables, or P(X = t) for discrete variables.

For a normal distribution with u = 0 and ¢ = 1, the CDF gives the probability that the random vari-
able is less than or equal to a particular value. For example:

P(X <1.96)=0.975

This means that approximately 97.5% of the values in this distribution are less than or equal to 1.96.

Figure 4.1 shows four common probability distributions: binomial, Poisson, normal, and uni-
form. In subplot Figure 4.1a (binomial distribution), represented by blue bars, the probability of
achieving a specific number of successes in a fixed number of trials is clearly illustrated. An anno-
tation labeled “Peak at n*p” points to the most probable number of successes, emphasizing the

Probability Theory and Statistics 99

distribution’s central tendency around the expected value n x p. Adjacent to it, Figure 4.1b (Poisson
distribution) showcases orange bars depicting the probability of a given number of events occurring
within a fixed interval. The annotation “Peak at A” highlights the mode of the distribution, where
the expected number of events A occurs with the highest probability. Moving to Figure 4.1c (normal
distribution), a smooth green curve with a shaded area beneath it represents the continuous PDF. An
annotation labeled “Mean (1)” points to the center of the distribution, underscoring the concept of
the mean as the peak of the bell curve. Finally, Figure 4.1d (uniform distribution) is depicted with a
solid purple line and a filled area, illustrating a constant probability density across the interval from
0 to 1. The x-axis covers the range of possible values, and the y-axis shows the uniform probability
density. The annotation “Constant Probability” succinctly conveys the essence of the uniform distri-
bution, where every outcome within the specified interval is equally likely.

4.2.5 CoONNECTION BETWEEN OVERFITTING AND UNDERFITTING TO PROBABILITY
DISTRIBUTIONS

From a probabilistic standpoint, overfitting can be seen as maximizing the likelihood of the
parameters given the training data excessively to the point where the model is improbable to
perform well on new data. This is similar to tuning a musical instrument so precisely to a spe-
cific environment that it sounds out of tune in any other setting. Regularization techniques, such
as L, and L,, address these issues by adding a penalty term to the complexity of the model. This
approach can be conceptualized through Bayesian statistics: the penalty term acts as a prior distri-
bution that inherently favors simpler models, reducing the likelihood of overfitting by penalizing
complexity.

Figure 4.2 demonstrates the concepts of underfitting, good fit, and overfitting using polyno-
mial regression models of varying complexity. The dataset consists of 30 data points generated
using the function y = xsin(x) with some added Gaussian noise. These data points are represented
as black dots on the plot in Figure 4.2, providing a visual reference for the underlying pattern in
the data. Three models with varying degrees of complexity are fitted to the data. The first model,
represented by the blue dashed line, uses simple linear regression. This model fails to capture the
underlying pattern of the data, resulting in a poor fit. This underfitting is characterized by a high
bias and low variance, indicating that the model is too simple to represent the data accurately. The
second model, represented by the green solid line, uses a cubic polynomial (degree 3). This model
accurately captures the underlying pattern of the data, providing a good balance between bias and
variance. This good fit is characterized by an appropriate level of complexity that models the data
well without overfitting. The third model, represented by the red dash-dot line, uses a polynomial
of degree 10. This high-degree polynomial model fits the training data almost perfectly, capturing
both the underlying pattern and the noise in the data. This overfitting is characterized by a low bias
and high variance, indicating that the model is too complex and is likely to perform poorly on new,
unseen data.

4.2.6 CoNNECTING BNNs 10 PROBABILITY DISTRIBUTIONS

BNNs incorporate principles of Bayesian probability into traditional neural network (NN)
architectures. This integration allows BNNs to provide a measure of uncertainty in their predictions,
enhancing decision-making processes in scenarios where certainty is crucial. Unlike traditional NNs
that use fixed weights, BNNs treat weights as probability distributions. This approach means that
a single fixed number does not represent each weight but a distribution that reflects our beliefs or
uncertainties about the values of these weights. This probabilistic treatment allows BNNs to express
and manage uncertainty more effectively. In Bayesian statistics, prior distributions represent our
initial beliefs about the parameters before observing any data. As data is observed and processed

FIGURE 4.1

Common probability distributions.

00l

Suruaea des(40y suoepunod [edieWwayIe

Probability Theory and Statistics 101

FIGURE 4.2 Demonstration of underfitting, good fit, and overfitting.

by a BNN, these prior beliefs are updated to form posterior distributions, which reflect new
understandings gained from the data. This dynamic updating mechanism, absent in traditional NN,
allows BNNs to adapt their beliefs based on incoming information continuously. BNNs generate
a distribution over possible outcomes when making predictions rather than producing a single-
point estimate. This output provides a detailed spectrum of potential results and their associated
probabilities. In Bayesian frameworks like BNNs, regularization is naturally incorporated through
prior distributions. These priors can act as constraints or regularizes, penalizing deviations from
established beliefs or biases. This regularization helps prevent overfitting by smoothing the learning
process, ensuring that the model adheres to the training data at the expense of its generalization
ability. The mathematical representations for the distributions are as follows.

4.2.6.1 Prior Distribution

It represents the distribution of the model’s parameters (e.g., weights) before any data is observed.
In Bayesian inference, this reflects our initial belief or assumptions about the model’s parameters.
The distribution of weights before observing the data:

P(w)~ N (0.0%)
where:

w represents the weights of the NN,
P(w) is the prior distribution of the weights, which could follow a certain distribution (e.g.,
normal distribution).

Suppose you are using a BNN to predict house prices, and you initially believe the weight (or
impact) of the number of rooms on house price follows a normal distribution N (0.5, 0.12) This
means that before seeing any data, you assume the effect of the number of rooms on house price is
centered around 0.5, but with some uncertainty (variance of 0.01).

102 Mathematical Foundations for Deep Learning

4.2.6.2 Posterior Distribution

It represents the updated distribution of the model’s parameters after observing the data. The pos-
terior distribution combines the prior beliefs with the likelihood of the observed data to give an
updated belief about the parameters. After observing the data, the posterior distribution of weights is:

P(wdata) = Pldatalw)P{w) (dj)t?cll:t)a])) ()

where:

w are the weights,

data is the observed data,

P(data | w) is the likelihood of the data the weights,
P(w) is the prior distribution,

P(data) is the evidence (normalizing constant).

The posterior distribution adjusts the prior belief based on the data observed. The more data you
have, the more the posterior distribution reflects the influence of the data rather than the prior. After
observing data (e.g., historical house prices and the number of rooms), the BNN updates its belief
about the weight of the number of rooms. Now, instead of assuming a fixed value for this weight
(e.g., 0.5), the posterior distribution could be refined to something like N (0.55, 0.05°), which means
the model now believes the number of rooms has a slightly higher impact on price, but with reduced
uncertainty (variance of 0.0025).

4.2.6.3 Prediction

In BNNs, predictions are made by integrating the possible weights. This means the model considers
the uncertainty in the weights rather than using a single fixed value. The model predicts a distribu-
tion over possible outcomes rather than a single-point estimate. The general formula for prediction
is as follows:

P(ylx,D)=]P(ylx,w)P(w|D)dw

where:

 y is the predicted output,

* xis the input (e.g., features like the number of rooms),

e P(w | D) is the posterior distribution of weights,

e P(y| x, w) is the likelihood of predicting y given input x and weights w.

The prediction integrates all possible weight values based on the posterior distribution, resulting in
a prediction that captures the uncertainty in the model’s parameters. This is a key feature of BNNs
compared to traditional NNs, which make predictions based on fixed weight values. For predicting
the price of a house, the BNN does not output a single price. Instead, it provides a range of possible
prices, say from $300,000 to $350,000, with different probabilities assigned to each outcome. This
prediction reflects the model’s uncertainty about how strongly the number of rooms influences the
price, as the weight for that feature is not fixed but distributed.

Figure 4.3 presents a visualization of Bayesian ridge regression applied to a synthetic dataset.
Figure 4.3 illustrates several important elements of this regression technique. The data points (in
blue) represent the observed values from the dataset. The predictive mean line (in dark green)

Probability Theory and Statistics 103

FIGURE 4.3 Bayesian ridge regression with uncertainty.

indicates the model’s prediction for the mean outcome as a function of the input variable X. The
shaded region around the predictive mean represents the 95% confidence interval (in light green),
which provides a measure of uncertainty in the model’s predictions. This interval shows where we
expect the true values to lie with 95% confidence, allowing us to assess the model’s reliability.

4.3 SAMPLING METHODS

Sampling methods are essential in statistics, especially in fields like Bayesian statistics, where
they approximate distributions that are otherwise too complex or costly to compute directly. These
methods are vital in various applications, including surveys and statistical model fitting, particularly
in scenarios involving large or inaccessible full datasets due to constraints such as time, cost, or
accessibility.

4.3.1 SimprLE RANDOM SAMPLING

Simple random sampling (SRS) is a sampling method where each member of the population has
an equal chance of being selected, ensuring no selection bias. This method is straightforward and
easy to implement, making it a popular choice for many studies. However, its simplicity can be a
drawback when dealing with heterogeneous populations, as it may not be efficient in such cases
and could lead to the underrepresentation of certain subgroups. Suppose you have a population of
1,000 people, and you want to select a sample of 100 individuals. Using SRS, each person has a
1 in 10 chance of being selected, ensuring that everyone has an equal probability of inclusion in
the sample. The probability of selecting any individual in SRS from a population N with a sample
size n is:

P (selection) = %

104 Mathematical Foundations for Deep Learning

If N = 1000 and n = 100, the probability of selecting any individual is:

1
P(selection) = % =0.1

4.3.2 StRATIFIED RANDOM SAMPLING

Stratified random sampling involves dividing the population into homogeneous subgroups (strata)
and then applying SRS within each section. This method can provide more precise estimates, par-
ticularly if the differences between divisions are significant. However, it is more complex to imple-
ment compared to SRS, requiring careful identification and separation of strata before sampling can
proceed. Suppose a population consists of 1,000 students, and you want to divide them into strata
based on grade level: 200 freshmen, 300 sophomores, 250 juniors, and 250 seniors. If you want to
sample 10% of the population, you apply SRS by selecting 20 freshmen, 30 sophomores, 25 juniors,
and 25 seniors. This ensures that each grade level is proportionally represented in the sample. For a
population divided into k strata, the sample size for each stratum h is calculated as:

where:

* N, is the population size of stratum h,
e N is the total population size,
e nis the total sample size.

If N = 1000, N, = 300 (sophomores), and n = 100, the sample size for sophomores would be:

=29 100=30

n
sophomores 1 000

4.3.3 CLUSTER SAMPLING

Cluster sampling divides the population into clusters, randomly selects certain clusters, and studies
all members within these chosen clusters. This method is particularly efficient for geographically
dispersed populations, reducing the costs and logistical challenges of data collection. However, it
can be potentially less precise than SRS of an equivalent size, as the variability within clusters might
not fully represent the entire population. Suppose a city has 50 schools, and you want to sample
students. Using cluster sampling, you divide the population by schools (each school is a cluster).
You randomly select 10 schools and study all the students in these selected schools. If each school
has 200 students, you end up with a sample size of 2,000 students from the selected clusters. The
probability of selecting a cluster is:

Number of clust lected
P(cluster selected) — UImber OF CUSIers sefecte

Total number of clusters

If 10 clusters are selected from 50 schools, the probability of selecting any specific school is:

1
P(cluster selected) = £ =02

Probability Theory and Statistics 105

4.3.4 SYSTEMATIC SAMPLING

Systematic sampling selects a random starting point, and then every k™ member of the population
is chosen. This method is more convenient than SRS due to its straightforward approach and ease
of implementation. However, there is a risk of bias if the population has a periodic pattern, as this
could result in a non-representative sample. Suppose you have a population of 1,000 people, and you
want to sample 100 individuals. You randomly select a starting point, say 5, and then select every
10th person after that (e.g., Sth, 15th, 25th, and so on) until you have your sample of 100 people. If
N is the population size, and n is the desired sample size, the sampling interval k is calculated as:
=N

n

If N = 1000 and n = 100, the interval K is:

L - L1000 _ o
100

4.3.5 QuotA SAMPLING (NON-PROBABILITY METHOD)

Quota sampling is a non-probability method that divides the population into subgroups and selects
individuals non-randomly. This approach is simple and cost-effective, making it attractive for
studies with limited resources. However, the absence of random selection makes it less reliable, as
it may introduce bias and limit the generalizability of the results. Suppose you want to survey 500
people about their favorite type of transportation. You decide to divide the population into subgroups
by age: 200 people aged 18-29, 150 people aged 30-49, and 150 people aged 50+. Instead of ran-
domly selecting individuals from each group, you select people conveniently or based on certain
characteristics until you meet the quota for each age group. In quota sampling, the sample size for
each subgroup is predefined based on the desired proportions. If the total sample is 500 and 40% of
the population is aged 18-29, you need to select:

n =0.40x500 = 200 individuals from the 18 to 29 group.

4.3.6 MoONTE CARLO SAMPLING

Monte Carlo sampling employs repeated random sampling to compute numerical results based on
the law of large numbers. This method is widely used in numerical integration and probability
computations, providing robust estimates for complex mathematical problems by simulating random
variables and averaging the results. The Monte Carlo estimate of an integral I over a domain D is
computed as:

1 N
1 zﬁg‘f(xl_)

where:

e N is the number of random samples,
¢ f(x) is the function value at random points X, drawn from a uniform distribution over D.

Suppose you want to estimate the value of nt by using the Monte Carlo method. You randomly gen-
erate 100,000 points in a square with side length 2 and count how many fall inside a circle with
radius 1 centered at the origin. If 78,539 points fall inside the circle, the estimate for n is:

106 Mathematical Foundations for Deep Learning

= 4xw=3.14156.

100,000

4.3.7 IMPORTANCE SAMPLING

Importance sampling focuses on sampling more frequently from important but rare regions of the
sample space. This method is particularly effective in scenarios where certain outcomes are rare, as
it allows for more efficient and accurate estimation of probabilities and expectations by emphasizing
the critical regions of the distribution. The expected value E [f (X)] is estimated as:

s £

i=1

where:

e p(X) is the original probability distribution,
e q(X) is the importance sampling distribution, and
e N is the number of samples.

Suppose you want to estimate the probability of an event that occurs rarely, like a tail risk in finance.
Instead of uniformly sampling from the entire space, you sample more frequently from the tail of
the distribution. If you perform 10,000 simulations with a focus on the tail, and 200 events fall in the
rare region, you can adjust the estimates based on the importance of this region, improving accuracy
over random sampling.

4.3.8 REECTION SAMPLING

Rejection sampling involves sampling from a simple distribution and then accepting or rejecting
each sample based on a predefined criterion. This method is particularly useful for sampling from
complex distributions, as it allows for the generation of samples that meet specific criteria even
when direct sampling from the desired distribution is challenging. Given a target distribution p(x)
and a simpler proposal distribution q(x), you accept a sample x if:

where:

¢ uis a random uniform number between O and 1,
e M is a constant such that Mq(x) 2 p(x) for all x.

Suppose you want to sample from a distribution with a complex shape, like a Gaussian distribution,
but instead, you sample from a uniform distribution between 0 and 1. You generate 10,000 points
uniformly, and for each point, you compute its likelihood under the target distribution. If the ratio
of the likelihood to the maximum is greater than a random number, you accept the point; otherwise,
you reject it. After performing this process, you are left with 2,500 valid samples.

4.3.9 Markov CHAIN MoONTE CARLO

Markov Chain Monte Carlo (MCMC) constructs a Markov chain that reaches the desired distribution
as its balance. This approach is widely used for sampling from complex probability distributions.

Probability Theory and Statistics 107

Key algorithms within MCMC include Metropolis—Hastings, Gibbs sampling, and Hamiltonian
Monte Carlo, each offering different strategies for constructing and navigating the Markov chain
to efficiently explore the sample space and achieve accurate results. In Metropolis—Hastings, the
acceptance probability for moving from the current state x to a proposed state x’ is:

| p(x')q(xlx'))

a(x—> x’):min(, p(x)q(x' \x)

where:

e p(x) is the target distribution,
e ((x'|x) is the proposal distribution for transitioning between states.

Suppose you want to estimate the posterior distribution of a parameter in a Bayesian model. Using
MCMC, specifically the Metropolis—Hastings algorithm, you generate a Markov chain of 100,000
samples. The first 10,000 samples are discarded as burn-in to ensure the chain has reached equilib-
rium, and the remaining 90,000 samples represent the parameter’s posterior distribution.

Figure 4.4 demonstrates the results of a Metropolis—Hastings MCMC simulation targeting a
standard normal distribution. It illustrates the dynamics of the MCMC algorithm and its ability to
sample from complex probability distributions. Here, the trace plot illustrates the progression of
sampled values over 1,000 iterations. The blue line represents the MCMC chain, showing how the
sampled values evolve as the algorithm explores the distribution. A vertical red dashed line marks
the end of the burn-in period at iteration 200, after which the samples are considered to have reached
a stable distribution. An annotation highlights the burn-in period, emphasizing its importance in
allowing the chain to converge toward the target distribution before collecting samples for analysis.

Figure 4.5 displays the posterior distribution of the samples collected after the burn-in period.
The green histogram depicts the density of the sampled values, providing a visual approximation of
the target distribution based on the MCMC samples. Overlaid on the histogram is a black dashed line
representing the true standard normal distribution. The close alignment between the histogram and
the target distribution indicates that the MCMC sampler has effectively approximated the standard
normal distribution through the sampling process.

FIGURE 4.4 MCMC trace plot: convergence to target distribution.

108 Mathematical Foundations for Deep Learning

FIGURE 4.5 MCMC sample distribution after burn-in.

4.3.10 GiBBs SAMPLING

Gibbs sampling is a specific type of MCMC method that is particularly suitable for multivariate
distributions. It is often used when the components of the distribution are conditionally independent.
By iteratively sampling each variable conditional on the current values of the other variables,
Gibbs sampling efficiently explores the sample space and can handle complex, high-dimensional
distributions. For a joint distribution p(X, Y), Gibbs sampling iteratively updates the variables by
sampling from the conditional distributions:

X0~ p(x 1Y)
Y([+l) - p(Y | X(t+l))

Suppose you want to sample from a bivariate distribution with variables X and Y. Using Gibbs sam-
pling, you iteratively sample X conditional on Y, and Y conditional on X. After 10,000 iterations,
the algorithm generates a sample that approximates the joint distribution of X and Y.

4.3.11 LatIN HYPERCUBE SAMPLING

Latin hypercube sampling (LHS) is a stratified sampling method that divides the sample space into equally
probable subdivisions. This approach is particularly efficient for multi-dimensional sampling, ensuring
that each variable is sampled across its entire range, which leads to more representative and coverage of
the sample space compared to SRS. In LHS, for each variable X, (where i indexes the dimensions), the
range is divided into N equally probable intervals. Each sample is then selected such that:

i

_ S
xU) e[]—,i for j=1,2,...,N.
N N

Suppose you need to sample from a three-dimensional (3D) parameter space, with each dimension
divided into 10 intervals. Using LHS, you randomly select one point from each interval for all three

Probability Theory and Statistics 109

dimensions, ensuring that every part of the parameter space is represented. This results in 10 points
per dimension, and the total sample size is 10 rather than the 1,000 points needed for full factorial
sampling.

4.3.12 RESAMPLING METHODS

Techniques like bootstrapping estimate properties of estimators by sampling from an approximating
distribution. These methods are commonly used to assess the variability or stability of statistical
models, providing insights into the accuracy and reliability of the model’s predictions by repeatedly
sampling with replacement from the dataset to create numerous simulated samples. For each boot-
strap sample B, drawn with replacement from the original dataset D:

~

g, = statistic (resample)

The empirical distribution of o (e.g., the sample mean) across many resamples provides an esti-
mate of the variability and confidence intervals for 0, the population parameter. Suppose you have a
dataset with 500 observations and want to estimate the mean of the population. Using bootstrapping,
you generate 1,000 resampled datasets by randomly selecting 500 observations with replacements
from the original dataset. For each of the 1,000 resamples, you calculate the mean, and the distri-
bution of these means provides an estimate of the variability and confidence intervals for the popu-
lation mean.

Figure 4.6 illustrates three distinct sampling methods, SRS, stratified random sampling, and
cluster sampling, through a series of subplots, each providing a visual representation of how samples
are drawn from a population. In subplot Figure 4.6a, the SRS method is depicted, where 15 samples
are randomly selected from the entire population without replacement. The population data is
represented by light gray dots spread uniformly along the index axis, while the SRS samples are
highlighted with red dots edged in black, scattered randomly across the index range. Figure 4.6b
showcases stratified random sampling, where the population is divided into three distinct strata.
Each stratum is sampled separately, with five samples drawn randomly from each. The sampled data
points are colored differently, green, blue, and purple, to represent each stratum, and are also edged
in black for emphasis. In Figure 4.6c, cluster sampling is presented, where the population is divided
into five clusters, and two clusters (specifically clusters 2 and 5) are entirely selected for sampling.
The sampled clusters are depicted with orange and purple dots, again edged in black, and an anno-
tation points to one of the sampled clusters to illustrate that entire groups, rather than individual
random samples, are included.

4.3.13 SAMPLING METHODS AND OVERFITTING/ UNDERFITTING

Sampling methods are pivotal in how well a statistical model can learn and generalize from data.
Improper sampling can lead to overfitting and underfitting, each affecting model performance
significantly.

4.3.13.1 Overfitting

Overfitting occurs when a model learns the specific details and noise within the training data, which
can ultimately reduce its performance on new, unseen data. One contributing factor to overfitting
is biased sampling, where non-representative sampling techniques lead to training on a skewed
subset of the population. For example, if a model is trained primarily on data from a particular
demographic due to sampling biases, it may struggle to generalize to data from other demographics.
Another factor is the overuse of resampling techniques. While bootstrapping can be useful for esti-
mating model accuracy, excessive use without proper cross-validation can result in overly optimistic

FIGURE 4.6 Comparison of sampling methods. (a) Simple random, (b) stratified random, (c) cluster sampling.

oLL

Suruaea des(40y suoepunod [edieWwayIe

Probability Theory and Statistics 111

performance evaluations. This can create a false impression of a model’s effectiveness, leading to
overly complex models that are prone to overfitting the training data.

4.3.13.2 Underfitting

Underfitting occurs when a model is too simple to capture the underlying patterns in the data effect-
ively or when it has not been exposed to a sufficient amount of data. One cause of underfitting is
insufficient sampling, where the sampling method fails to gather enough data or fails to capture the
complexity of the underlying population. For instance, in a large and diverse dataset, sparse sam-
pling may result in a model that struggles to generalize beyond the limited training examples it has
seen. Another issue that can lead to underfitting is the use of sparse sampling methods, which may
provide too few data points or systematically overlook key aspects of the data distribution. This risk
is common with systematic sampling techniques, where an overly large step size may skip important
variations in the data, preventing the model from learning the full range of patterns needed for
accurate predictions.

Figure 4.7 demonstrates the concepts of overfitting and underfitting through two illustrative plots.
In subplot Figure 4.7a, the overfitting example showcases how an overly complex model, a high-
degree polynomial, fits the sampled data perfectly within a limited range but fails to generalize to
the broader dataset. The sampled data, represented by red dots, are collected from a biased portion
of the dataset (specifically where x < 4), and the overfitted model is depicted by a dark red curve
closely following these points. However, this model diverges significantly from the true underlying
function, indicated by the green dashed line, when extended beyond the sampled region, highlighting
the model’s inability to generalize. In subplot Figure 4.7b, the underfitting example illustrates how a
simplistic linear model fails to capture the complexity of the data due to insufficient model capacity
and sparse sampling. The sampled data here are blue dots sparsely scattered across the entire range
of x, and the underfit model is represented by a dark blue straight line that does not align well with
the true function’s quadratic and sinusoidal patterns.

4.4 BAYESIAN STATISTICS

Bayesian statistics is a branch of statistics that employs probability to represent all forms of uncer-
tainty. After Thomas Bayes formulated the fundamental theorem underpinning this method, Bayesian
statistics offered a robust framework for making inferences. At the core of Bayesian statistics lies
Bayes’ theorem, which provides a method for updating probabilities as new evidence is introduced.
The theorem is expressed as:

P(BIA)P(A)

P(B)

P(AIB) =

where:

* P(A | B) is the posterior probability,

* P(B|A) is the likelihood,

e P(A) is the prior probability, and

e P(B) is the evidence (the marginal likelihood).

The prior represents initial beliefs about an event or model parameters before any new evidence
is considered. It sets the baseline from which Bayesian inference starts. Likelihood measures how
probable the observed data are, given the model parameters. It plays a crucial role in updating the
prior into the posterior. The posterior is the result of combining the prior and the likelihood of
the observed data. It represents updated beliefs after considering new evidence. Often acting as a

FIGURE 4.7 Impact of sampling methods on model. (a) Overfitting scenario and (b) underfitting.

44}

Suruaea des(40y suoepunod [edieWwayIe

Probability Theory and Statistics 113

normalization constant, the evidence ensures that the posterior probabilities sum to one. It integrates
the likelihood over all possible values of the unknown parameters. The advantages of Bayesian
statistics are:

1. Flexibility: Incorporates both new data and prior knowledge.

2. Interpretability: Results are expressed as probabilities, making them intuitively
understandable.

3. Full Distribution: Provides a complete probabilistic description of model parameters, not
just point estimates.

Given the complexity of deriving posterior distributions analytically, computational methods
like MCMC and variational inference are crucial for approximating these distributions. Bayesian
methods are employed across various fields, including machine learning, genetics, medicine, eco-
nomics, and astronomy. There are still some challenges like:

1. Choice of Prior: The subjective nature of selecting a prior can lead to biases.
2. Computational Intensity: Bayesian methods can require significant computational resources,
particularly for complex models.

Unlike frequentist statistics, which often focuses on likelihoods and provides point estimates and
confidence intervals without incorporating prior beliefs, Bayesian statistics integrate prior know-
ledge with observed data to offer a probabilistic view of model parameters.

Figure 4.8 illustrates the Bayesian updating of beliefs regarding the probability of heads in a
coin flip. It compares the prior belief with the posterior belief after observing the outcome of 50
coin’s flips. Initially, the prior belief is represented by a beta distribution with parameters a = 2 and
P =2, reflecting an assumption that the coin is fair. The blue dashed line shows this prior distribu-
tion, which is symmetric around 0.5. The prior mean, indicated by a vertical blue dashed line, is
0.5. After conducting 50 coin’s flips with an observed true probability of heads being 0.7, the data
yields 35 heads and 15 tails. This observed data updates the prior distribution to form the posterior
distribution, depicted by the red solid line. The updated posterior parameters are o = 37 and § = 17.
The posterior mean, shown by a vertical red dashed line, shifts towards the observed probability of
heads and is approximately 0.69, reflecting the new belief after incorporating the evidence from the
coin flips.

4.4.1 OVERFITTING AND BAYESIAN STATISTICS

Overfitting occurs when a statistical model captures noise or random fluctuations in the data instead
of the true underlying patterns. This is often a result of model complexity exceeding what the data
can support. Bayesian statistics offer several tools and concepts to mitigate this common problem. In
Bayesian modeling, priors serve as a form of regularization. By incorporating prior beliefs about the
parameters, Bayesian methods can constrain parameter estimates, pulling them toward more plaus-
ible values despite what the raw data might suggest. This is particularly useful when the likelihood
derived from a small or noisy dataset might lead the model to overfit. A well-chosen strong prior can
effectively shrink estimates, thus preventing the model from fitting too closely to the noise. Bayesian
model comparison inherently includes a penalty for complexity. Tools like the Bayesian Information
Criterion (BIC) or the Deviance Information Criterion (DIC) balance model fit with complexity, dis-
couraging unnecessary complexity in model structure. This approach helps select complex models
to capture essential data characteristics that are simple enough that they overfit the noise. The pen-
alties ensure that a simpler, more generalizable model may be chosen over a more complex one that
fits the training data slightly better. Unlike frequentist approaches that often yield point estimates,

FIGURE 4.8 Bayesian updating of beliefs in coin toss.

vLL

Suruaea des(40y suoepunod [edieWwayIe

Probability Theory and Statistics 115

Bayesian methods provide complete probability distributions over model parameters, offering a
deeper insight into the uncertainty associated with each parameter. This feature of Bayesian analysis
is particularly beneficial for identifying overfitting; an overfitted model may display implausibly
narrow confidence intervals around predictions, indicating excessive confidence. In contrast, a well-
fitted Bayesian model will show wider uncertainty intervals in areas where the data does not provide
strong evidence, thereby reflecting a more realistic level of confidence.

Figure 4.9 compares two approaches to modeling noisy data: an overfitted model and a Bayesian
model with a strong prior. The synthetic data is generated by adding Gaussian noise to a sine wave,
creating a realistic scenario where noise is present. In Figure 4.9, the data points are shown as gray
dots, representing the noisy observations of the sine function. The overfitted model, represented
by the red line, is fitted using a high-degree polynomial (degree 15). This model captures the noise
along with the underlying trend, resulting in a wavy and complex fit that closely follows the data
points but is likely to generalize poorly to new data. The Bayesian model with a strong prior is
depicted by the blue line. This model uses a simple linear fit with added Gaussian noise to simulate
uncertainty. The simplicity of the model, enforced by the strong prior, prevents it from overfitting
the noise in the data. The shaded blue region around the Bayesian model line represents the uncer-
tainty interval, illustrating the confidence range of the predictions.

4.4.2 UNDERFITTING AND BAYESIAN STATISTICS

Underfitting in statistical modeling occurs when a model is too simplistic, failing to capture the data’s
complexities or underlying distribution. Bayesian statistics offer robust tools to tackle underfitting,
enhancing model complexity appropriately without overcomplicating the model. Bayesian statistics
allow for constructing hierarchical models, which is particularly useful for managing model
complexity. One model’s parameters can be modeled in hierarchical models, creating layers of
parameters, each with its priors. By allowing parameters to vary across groups or contexts within a
structured framework, hierarchical models can introduce complexity dynamically, adapting to the
data’s structure. This helps capture underlying patterns without needing an overly complex global
model that could lead to overfitting. Hierarchical modeling facilitates borrowing strength across
groups, improving estimation accuracy, especially in cases where data for certain groups might be
sparse. One common reason for underfitting is overly restrictive priors that must adequately reflect
the data’s reality or variability. Bayesian statistics provide:

1. Adaptability: The flexibility to adjust and choose priors based on updated knowledge or new
data. If initial assumptions lead to underfitting, priors can be revised to be less informative
or adjusted to capture the data’s distribution better.

2. Incorporation of Expert Knowledge: Bayesian methods allow the integration of expert
knowledge through the selection of priors, which can be particularly beneficial in fields
where prior research or domain expertise can inform model parameters.

Figure 4.10 illustrates the differences between an underfitted model, and a Bayesian model
applied to a synthetic dataset. The orange line represents the underfitted model, a low-degree poly-
nomial that is too simplistic to capture the true underlying function of the data (dashed green line).
This model fails to represent the complexity of the data, leading to poor performance. In contrast,
the blue lines represent samples from a Bayesian model, which introduces uncertainty around the
mean prediction (solid blue line) by incorporating priors. This allows the model to balance com-
plexity and uncertainty, improving its ability to generalize to new data. The true underlying function
is shown by the dashed green line, and the observed noisy data points are plotted in gray. Figure 4.10
demonstrates how Bayesian regularization can avoid the issues of underfitting by dynamically
adjusting model complexity to better capture the underlying patterns in the data.

FIGURE 4.9 Comparison of overfitting vs. Bayesian regularization.

9LL

Suruaea des(40y suoepunod [edieWwayIe

FIGURE 4.10 Comparison of underfitting and Bayesian regularization.

So1IS13eIS pue A1oay] Aljiqeqold

LLL

118 Mathematical Foundations for Deep Learning

4.4.3 BAYESIAN NEURAL NETWORKS

BNNs extend traditional NN architectures by incorporating probabilistic inference into their frame-
work. This involves placing a prior distribution on the network weights, fundamentally changing
how learning and prediction are approached. In BNNS, the use of priors acts as a natural form of
regularization. By imposing prior beliefs about the distribution of weights, BNNs inherently reduce
the risk of overfitting. These priors can penalize weights that stray too far from zero (or some other
prior assumption), much like L, or L, regularization in traditional networks. Unlike traditional NNs
that output single-point estimates, BNNs distribute possible outputs for each input. This probabilistic
output is crucial for applications where understanding the uncertainty of predictions is important, such
as in medical diagnosis, where it is essential to quantify confidence in diagnostic decisions. The prob-
abilistic nature of BNNs contributes to their robustness, particularly in handling adversarial attacks
or responding to shifts in data distribution. BNNs can maintain performance even when conditions
change or when faced with deliberately misleading input data by considering a range of possible
weight configurations rather than a single fixed set. Bayesian methods are known for their data effi-
ciency. In the context of NNs, BNNs can often achieve comparable or superior performance to trad-
itional NNs with less data. This is because they effectively leverage prior knowledge and the inherent
uncertainty in their parameters to make more informed predictions. The major drawback of BNNss is
their computational cost. The process of maintaining and updating distributions over weights is com-
putationally intensive.

Figure 4.11 compares a traditional NN prediction and a BNN prediction for a synthetic dataset.
The gray dots represent the original data points generated using a polynomial function with added
noise. These points are the actual observations from which predictions are made. The red dashed
line, marked with circles, represents the prediction made by a traditional NN. This line is fitted
to the data using a polynomial regression as a proxy for the traditional NN. The red circles indi-
cate specific prediction points along the red dashed line, making it easier to see the line’s trajec-
tory. The solid blue line represents the mean prediction made by the BNN. This line is also fitted
using the same polynomial regression but incorporates Bayesian inference to estimate the mean

FIGURE 4.11 Comparison of traditional NN and BNN predictions.

Probability Theory and Statistics 119

prediction. The light blue shaded area around the blue line represents the uncertainty in the BNN
predictions. This region is defined by an upper and lower bound, calculated as the mean prediction
plus or minus a constant uncertainty value. The shaded area highlights the range within which
the true values are expected to fall with a certain confidence level, reflecting the model’s uncer-
tainty in its predictions. The red arrow points to the red dashed line, representing the traditional
NN prediction.

4.5 MOMENTS IN STATISTICS AND PROBABILITY THEORY

In statistics and probability theory, moments are fundamental metrics that describe the shape and
characteristics of probability distributions. The n"" moment of a random variable X about a value ¢
is the expected value (X —c¢)". If this expectation exists and is finite, the n™ moment of X is said to
exist. The types of moments are as follows.

1. Raw Moments (Crude Moments): The raw moments of a distribution describe the expected
values of powers of the random variable. When ¢ = 0, these moments are referred to as raw
or crude moments. They provide insights into the overall shape of the distribution. The gen-
eral formula is as follows:

w=E(X")
where:

ey’ is the n™ raw moment,
e E ZX ") is the expected value of the nth power of the random variable X.

The raw moments capture the distribution’s shape relative to the origin (0). The first
raw moment is the mean, which provides the central tendency of the distribution. For a
normal distribution with a mean of 0 and a standard deviation of 1, the first raw moment
E(X) is 0, and the second raw moment £ (X 2) is 1, representing the variance.

2. Central Moments: The central moments are the expected values of powers of deviations
from the mean. The n™ central moment measures the variability of the random variable
around the mean. The general formula is as follows:

4, = EI(X - E(x)r]
where:

* u, is the n™ central moment,
¢ E(X) is the mean of the random variable X.

The first central moment is always zero because it represents the deviation of the data
from the mean, and the second central moment is the variance, which quantifies the dis-
persion or spread of the distribution. Higher-order central moments help describe the
shape of the distribution. For a normal distribution with a mean of 50 and standard devi-
ation of 5, the first central moment (deviation from the mean) is zero, and the second
central moment (variance) is 5% = 25.

120 Mathematical Foundations for Deep Learning

3. Standardized Moments: Standardized moments are the central moments divided by an appro-
priate power of the standard deviation. These moments provide shape-related characteristics
of the distribution, including skewness and kurtosis. The general formula is as follows:

n

Standardized moment =

where:

c o, is the n™ central moment,
e ¢ is the standard deviation.

4. Skewness (Third Standardized Moment): We explained skewness as it measures the asym-
metry of the distribution. A skewness value of zero indicates a symmetric distribution.
Positive skewness indicates a longer right tail, and negative skewness indicates a longer left
tail:

u
Skewness = —
63

4. Kurtosis (Fourth standardized moment): We explained kurtosis as it measures the
“tailedness” of the distribution. A kurtosis of 3 corresponds to a normal distribution. Values
greater than 3 indicate heavy tails (leptokurtic), while values less than 3 indicate light tails
(platykurtic).

Kurtosis = ﬂ -3
o'

For a right-skewed distribution with a positive skewness value of 1.5, this means that the distribution
has a longer right tail compared to the left. If the kurtosis is greater than 3, it indicates the distribu-
tion has more extreme values or outliers compared to a normal distribution.

Figure 4.12 illustrates a comparative analysis of three different probability distributions using
histograms: the normal distribution, the skewnorm (positive skew) distribution, and the Laplace
(heavy tails) distribution. Figure 4.12, top-left, subplot displays the normal distribution in blue,
showcasing a symmetric bell-shaped curve centered around the mean, highlighting its character-
istic of light tails and symmetry, which indicates that data is evenly distributed around the central
value. Figure 4.12, top-right, subplot presents the skewnorm distribution in green, demonstrating
a positive skew where the tail on the right side is longer or fatter than the left. This indicates that
a majority of the data values fall to the left of the mean, with fewer high-value outliers stretching
the distribution to the right. Figure 4.12, bottom-left, subplot depicts the Laplace distribution in
red, characterized by a sharper peak at the mean and heavier tails compared to the normal distribu-
tion, signifying a higher probability of extreme values occurring and more variability in the data.
Figure 4.12, bottom-right, subplot overlays all three distributions using their respective colors, blue
for normal, green for skewnorm, and red for Laplace, with semi-transparency, allowing for direct
comparison of the distributions within the same scale and axes. This composite view highlights the
differences in their shapes, central tendencies, and tail behaviors. Each subplot includes grid lines
for better readability and axes labeled with “Value” and “Frequency” to indicate the data range and
the count of occurrences within each bin, respectively. The normal distribution shows symmetry
and light tails, suggesting data points are commonly close to the mean. The skewnorm distribution

FIGURE 4.12 Comparison of distribution shapes.

So1IS13eIS pue A1oay] Aljiqeqold

LZL

122 Mathematical Foundations for Deep Learning

highlights asymmetry due to its positive skew, indicating a tendency toward lower values with occa-
sional higher outliers. The Laplace distribution emphasizes the presence of heavy tails, implying a
higher likelihood of extreme deviations from the mean.

4.5.1 MomenTs AND BNNs

BNNs fundamentally alter the traditional NN paradigm by directly incorporating uncertainty into
the model’s structure using probability distributions for weights. Let us explore how moments are
critical in managing this uncertainty and influencing model performance. In BNNs, each weight is
characterized not by a single fixed value but by a probability distribution. The first two moments
of these distributions, the mean and variance, are particularly significant. The mean represents the
expected value of the weight, essentially indicating the “average” strength of the connection the
weight represents. The variance measures the uncertainty or reliability of this weight. A higher
variance suggests less confidence in the weight’s exactness, introducing a degree of flexibility or
hesitance in the model’s decisions.

The complexity of a BNN can have a profound impact on its performance. A highly complex
BNN, with numerous parameters or low variance in weight distributions, might be overfitted by
capturing not just the underlying data patterns but also the noise, including higher moments like
skewness and kurtosis. Conversely, a too simplistic BNN might fail to capture sufficient moments of
the data distribution, overlooking crucial information that could lead to underfitting. In BNNs, vari-
ance also plays a dual role by acting as a form of regularization. High variance on certain weights
can indicate areas where the model should be less confident, preventing it from relying too heavily
on data that may represent noise rather than signal. This mechanism helps to balance the model,
ensuring it does not become overly confident based on the limited or noisy training data, thereby
mitigating the risk of overfitting. Overfitting could occur if the model’s weights had variances close
to 0, leading to excessive certainty in potentially noisy data patterns. In BNNs, each weight w; is
modeled as a distribution characterized by moments (mean and variance):

wi~N(ui,G,.2)

where:

* W, is the mean (expected value) of the weight,
* o, is the variance (uncertainty) of the weight.

Suppose in a BNN a particular weight has a mean of 0.5 and a variance of 0.1. The model is confi-
dent in the connection strength but allows for some uncertainty. If another weight has a variance of
0.3, this indicates more uncertainty in that weight’s value, meaning the model is less confident in
the connection.

Figure 4.13 illustrates the effect of weight variance in BNNs on prediction stability and con-
fidence. Figure 4.13 is divided into two subplots: In subplot Figure 4.13a (BNN with low weight
variance), the blue prediction lines are closely clustered around the true function, represented by the
green line. This clustering indicates that the model’s predictions are consistent and closely aligned
with the actual underlying relationship, demonstrating high confidence and stability. The light blue
shaded area encompasses the range of these predictions, highlighting the model’s narrow uncer-
tainty band. Conversely, subplot Figure 4.13b (BNN with high weight variance) showcases a more
dispersed set of orange prediction lines surrounding the same green true function. This dispersion
reflects the model’s increased uncertainty due to high variance in its weights, resulting in a broader
prediction range illustrated by the light orange shaded area.

FIGURE 4.13 Effect of weight variance in BNN. (a) BNN with low variance, (b) BNN with high variance.

So1IS13eIS pue A1oay] Aljiqeqold

€Tl

124 Mathematical Foundations for Deep Learning

4.5.2 CoONNECTION BETWEEN MOMENTS AND OVERFITTING/ UNDERFITTING

Moments are crucial in shaping our understanding of data distributions and how they relate to model
fitting in statistics and machine learning. Here, we explore how moments impact the assumptions
behind model building and the common pitfalls of overfitting and underfitting. Statistical and
machine learning models often rely on specific assumptions about their data distributions. For
example, linear regression models assume that residuals are normally distributed, which pertains
to having zero skewness (symmetry) and a certain kurtosis (peakedness). We can validate these
assumptions by understanding moments such as mean, variance, skewness, and kurtosis. Significant
deviations in these moments from expected values can indicate a potential misfit, suggesting that
the model may not perform well on data that does not adhere to these assumed distributions.
Overfitting occurs when a model too closely fits the training data, capturing noise and outliers as
if they were true underlying patterns. This issue can arise if the model is excessively complex or
needs to be correctly regularized. While mean and variance often receive most of the focus, higher
moments like skewness and kurtosis are also critical. If these higher moments are influenced by
noise, and the model attempts to accommodate them, it may overfit. Monitoring these moments
can serve as a diagnostic tool; for instance, a model that captures extreme skewness or kurtosis
in the training data may be overfitting, especially if these characteristics are not representative
of the broader dataset. Conversely, underfitting happens when a model is too simplistic, often
considering only the first moment (mean) and possibly the second (variance) but ignoring more
complex moments such as skewness and kurtosis. This lack of complexity can prevent the model
from capturing essential patterns in the data, leading to poor training and unseen data performance.
Monitoring all moments provides insights into potentially overlooked data distribution aspects. For
example, if the data exhibits high skewness or kurtosis and the model needs to account for these, it
might underfit, failing to generalize effectively. The higher moments (skewness y and kurtosis k)
are computed as:

_B(X-w] _BUX -]
o c*

where:

* nis the mean,
¢ ¢ is the standard deviation.

Suppose you are fitting a regression model to a dataset with a mean (first moment) of 0, variance
(second moment) of 1, skewness (third moment) of 0.5, and kurtosis (fourth moment) of 3.5. If your
model only accounts for the mean and variance, it may underfit by failing to capture the skewness
and kurtosis of the data. Alternatively, if the model attempts to fit extreme skewness (e.g., skewness
of 2) caused by noise in the training set, it may overfit. In overfitting, the model may overly conform
to deviations in these higher moments (e.g., skewness and kurtosis), while in underfitting, it ignores
these moments, leading to poor generalization. Monitoring these metrics helps diagnose and miti-
gate fitting issues.

Figure 4.14 presents a comparative analysis of how different data distributions, specifically posi-
tively skewed data and high kurtosis data, impact the performance of a simple linear regression
model. Figure 4.14a displays positively skewed data generated using a skewed normal distribution.
The scatter plot, depicted in blue, shows a concentration of data points on the left side with a tail
extending to the right, characteristic of positive skewness. The orange line represents the linear fit
applied to this skewed data. Due to the asymmetry in the data distribution, the linear model fails to
capture the underlying trend effectively, resulting in a fit that does not align well with the majority of

FIGURE 4.14 (a) Fit to positively skewed data, and (b) fit to high kurtosis data.

So1IS13eIS pue A1oay] Aljiqeqold

T4

126 Mathematical Foundations for Deep Learning

the data points. Conversely, Figure 4.14b on the right showcases high kurtosis data generated using
the Laplace distribution. The scatter plot in green exhibits a sharp peak with heavy tails, indicative of
high kurtosis. The same orange linear fit is applied to this dataset, revealing that the model struggles
to accommodate the pronounced peak and the extreme values in the tails. This results in a linear fit
that oversimplifies the data’s variability, failing to accurately represent the distribution’s heavy tails.

4.6 REAL-WORLD APPLICATIONS AND EXAMPLES
4.6.1 IMAGE RECOGNITION AND PROCESSING

Linear algebra is fundamental in image recognition and processing tasks. Images are typically
represented as matrices, where each pixel is a value in a matrix. Operations like image filtering,
transformation, and enhancement involve matrix manipulations such as convolution, eigen-
value decomposition, and singular value decomposition (SVD). convolutional neural networks
(CNNs), which are widely used for image recognition tasks, rely on these linear algebra
operations to extract features, recognize patterns, and classify images accurately. For example,
in facial recognition systems, CNNs process the pixel values of images through multiple layers
of convolutions, pooling, and fully connected layers to identify and verify individuals based on
their facial features.

4.6.2 NATURAL LANGUAGE PROCESSING

Probability theory and statistics are essential in Natural Language Processing (NLP), where models
often need to handle the uncertainty and variability inherent in human language. Language models,
such as those used in machine translation or text generation, rely on probability distributions to
predict the likelihood of a word or sequence of words given a context. Bayesian methods, which
combine prior knowledge with observed data to update beliefs, are particularly useful in NLP tasks
that involve uncertainty. For example, in a spam detection system, Bayesian classifiers use prob-
ability distributions to calculate the likelihood that an email is spam based on the presence of certain
keywords or phrases, making decisions even when there is ambiguity in the data.

4.6.3 Rosotics AND CONTROL SYSTEMS

In robotics, the principles of multivariate calculus and linear algebra are applied to control systems
and motion planning. Robots must navigate and interact with their environment, which requires
solving optimization problems in real time. For example, the control of a robotic arm involves
computing the joint angles needed to move the end effector to a desired position. This computa-
tion requires solving a system of non-linear equations, which is achieved using techniques from
multivariate calculus and linear algebra. Additionally, probability theory is used in robotics for state
estimation and sensor fusion, where the robot must estimate its position and orientation based on
noisy sensor data.

4.6.4 HeALTHCARE AND MEDICAL DIAGNOSTICS

In healthcare, statistical methods and probability theory are applied to medical diagnostics and
treatment planning. Bayesian networks, which model the probabilistic relationships between
different variables, are used to predict the likelihood of diseases based on patient symptoms and
medical history. For example, in a diagnostic system for cancer detection, a Bayesian network can
integrate various risk factors, such as genetic predispositions and lifestyle choices, to estimate the
probability of a patient having cancer. This probabilistic approach allows for more personalized and
accurate diagnoses, enabling better treatment decisions.

Probability Theory and Statistics 127

4.7 HANDS-ON EXAMPLE

In this section, we will walk through a hands-on example that demonstrates the application of
probabilistic models and the handling of uncertainty in NNs using BNNs. We will use a synthetic
dataset to show how BNNs provide a measure of uncertainty in their predictions compared to trad-
itional NNs.

4.7.1 Step 1. SETuP AND IMPORT LIBRARIES

In this section, we are installing and importing the necessary packages for our project. The
command!pip install tensorflow tensorflow-probability matplotlib NumPy ensures that the latest
versions of the TensorFlow, TensorFlow Probability, matplotlib, and NumPy libraries are installed.
After installing, we import these libraries to make use of their functions and capabilities throughout
the project.

Install the required packages

'pip install tensorflow tensorflow-probability matplotlib numpy
import tensorflow as tf

import tensorflow probability as tfp

import numpy as np

import matplotlib.pyplot as plt

4.7.2 Step 2. GENERATE SYNTHETIC DATA

In this step, we are generating synthetic data to use in our model or for visualization purposes.
First, by setting np.random.seed(42), we ensure that the random number generation is consistent
across runs, which is important for reproducibility. Then, x = np.linspace(-3, 3, 100) creates an
array of 100 evenly spaced values between —3 and 3, which serves as the input data points. The
corresponding y values are generated using the sine function (np.sin(x)) with added noise (0.3 *
np.random.randn(100)) to simulate a real-world scenario where data is often noisy. Finally, a scatter
plot of the data is created using matplotlib, with appropriate labels for the axes and a title to describe
the plot.

Generate synthetic data
np.random.seed (42)

X = np.linspace (-3, 3, 100)

y = np.sin(x) + 0.3 * np.random.randn (100)
plt.scatter(x, y, label=‘Data’)
plt.xlabel (‘x’)

plt.ylabel (
plt.legend()
plt.title (‘Synthetic Data’)
plt.show()

[

Y)

128 Mathematical Foundations for Deep Learning

4.7.3 Step 3. DerINE THE BNN

In this step, we are defining a BNN using TensorFlow and TensorFlow Probability. First, the tf.
keras.backend.set_floatx(‘float64’) command ensures that all computations are done with double
precision (64-bit floats) for better numerical stability. The create_bnn_model() function builds a
sequential model with three layers using DenseFlipout from TensorFlow Probability. DenseFlipout
layers allow the model to learn weight distributions, enabling it to estimate uncertainty in
predictions. The model has two hidden layers, each with 64 units and Rectified Linear Unit (ReLU)
activation, and one output layer with a single unit for regression. After creating the model, it is
compiled with the Adam optimizer and mean squared error loss, which are commonly used for
training NNs. This setup prepares the BNN for training on data, enabling it to handle uncertainty
in predictions effectively.

Define a Bayesian Neural Network
tf.keras.backend.set floatx (‘float64’)
def create bnn model () :
model = tf.keras.Sequential ([
tfp.layers.DenseFlipout (64, activation=‘relu’, input
shape=(1,)),
tfp.layers.DenseFlipout (64, activation=‘relu’),
tfp.layers.DenseFlipout (1)
1)
return model
bnn model = create bnn model ()
bnn model.compile (optimizer=tf.optimizers.Adam(learning rate=
0.01),
loss=‘mean squared error’)

4.7.4 Step 4. TRAIN THE BNN

Train the Bayesian Neural Network
bnn model.fit (x, y, epochs=1000, verbose=0)

4.7.5 Step 5. MAKE PReDICTIONS AND PLOT UNCERTAINTY

In this step, we are using the previously defined BNN to make predictions and visualize the results
along with uncertainty estimates. The x_test array is created using np.linspace(-3, 3, 100) to gen-
erate 100 evenly spaced points within the range of —3 to 3, which serve as test inputs. The BNN
model is run 100 times (for _ in range(100)) to obtain multiple predictions for each input point,
capturing the model’s uncertainty. These predictions are stored in y_pred, which is then converted
into a NumPy array for easier manipulation. We calculate the mean (y_pred_mean) and standard
deviation (y_pred_std) of the predictions at each test point, reflecting the model’s predictive distri-
bution. Finally, we plot the results: the original data points are shown as blue scatter points, the mean
predictions as a red line, and the uncertainty (+2 standard deviations) as a shaded region around
the mean.

Probability Theory and Statistics 129

Make predictions with the BNN

x test = np.linspace (-3, 3, 100)

y _pred = [bnn model (x test) for in range(100)]

y _pred = np.array(y pred)

Calculate mean and standard deviation of predictions

y _pred mean = y pred.mean (axis=0) .flatten ()

y_pred std = y pred.std(axis=0) .flatten ()

Plot the results

plt.figure (figsize= (10, 6))

plt.scatter(x, y, label=‘Data’, color='blue’)
plt.plot (x test, y pred mean, label=‘Predictive Mean’, color='red’)
plt.fill between(x test, y pred mean - 2 * y pred std, y
pred mean + 2 * y pred std, color=‘red’, alpha=0.3, label=
’Uncertainty (2 std)’)

plt.xlabel (‘x’)

plt.ylabel (‘y’)

plt.legend()

plt.title (‘Bayesian Neural Network Predictions with
Uncertainty’)

plt.show()

Figure 4.15 demonstrates the predictive capability and uncertainty quantification of a BNN on a
synthetic dataset. Figure 4.15a shows the predictive mean (red line) and the actual data points (blue).
Figure 4.15b highlights the uncertainty (+2 standard deviations), predictive mean, and actual data.
The shaded area in Figure 4.15b represents the uncertainty, showing how the BNN captures the vari-
ability in its predictions.

4.8 COMMON MISTAKES AND TROUBLESHOOTING TIPS
4.8.1 UNDERSTANDING PROBABILITY DISTRIBUTIONS

e Mistake: Confusing discrete and continuous distributions.

» Tip: Remember that discrete distributions deal with countable outcomes (e.g., number of
heads in coin flips), while continuous distributions handle outcomes over a range (e.g., height
of individuals).

FIGURE 4.15 Predictive mean and actual data points of a BNN on synthetic data.

130 Mathematical Foundations for Deep Learning

* Mistake: Misinterpreting the properties of distributions (e.g., thinking all data are normally
distributed).

e Tip: Always check the data and select the appropriate distribution. For example, a Poisson
distribution can model the number of events occurring in a fixed interval.

4.8.2 ArpLYING PROBABILITY DISTRIBUTIONS

e Mistake: Using inappropriate distributions for the data type.

e Tip: Match your data characteristics to the distribution. For instance, the binomial distribu-
tion can be used for binary outcomes, and the normal distribution can be used for continuous,
symmetric data.

4.8.3 OVERFITTING AND UNDERFITTING

* Mistake: Ignoring signs of overfitting and underfitting in model performance.

 Tip: Monitor model performance on both training and validation sets. High training accuracy but
low validation accuracy indicates overfitting. Low accuracy on both sets suggests underfitting.

* Mistake: Not using regularization techniques to combat overfitting.

e Tip: To penalize model complexity, Implement regularization methods like L /L, regulariza-
tion, dropout, or Bayesian priors.

4.8.4 BAYESIAN NEURAL NETWORKS

* Mistake: Treating BNNs like traditional NNs without considering uncertainty.
* Tip: Embrace the probabilistic nature of BNNs. Use the posterior distributions of weights to
gauge uncertainty in predictions, which is crucial for making informed decisions.

4.8.5 MOMENTS IN STATISTICS

* Mistake: Misinterpreting the significance of higher-order moments like skewness and kurtosis.

e Tip: Use skewness to understand asymmetry in data and kurtosis to assess tail heaviness.
These moments provide deeper insights into data distribution beyond mean and variance.

e Mistake: Relying solely on mean and variance for data analysis.

e Tip: Consider higher-order moments when data exhibits skewness or heavy tails. This can pre-
vent misinterpretation of data characteristics and improve model fitting.

4.8.6 SAMPLING METHODS

* Mistake: Not ensuring randomness in sampling.

e Tip: Implement truly random sampling methods to avoid bias. For systematic sampling, ensure
that the population does not have periodic patterns that could bias results.

* Mistake: Ignoring the need for stratified sampling in heterogeneous populations.

e Tip: Use stratified sampling to ensure all population subgroups are adequately represented,
improving the precision of estimates.

4.8.7 BAYESIAN STATISTICS

e Mistake: Choosing inappropriate priors in Bayesian models.

e Tip: Select priors that reflect prior knowledge or are non-informative when little prior infor-
mation is available. Sensitivity analysis can help understand the impact of different priors on
posterior distributions.

Probability Theory and Statistics 131

4.9 REVIEW QUESTIONS

1. How do BNNs handle uncertainty differently from traditional NNs? Discuss the role of prob-
ability distributions in BNNs.

2. Explain the concepts of overfitting and underfitting in the context of statistical modeling.
What are some methods used to prevent these issues in machine learning models?

3. Define and explain the importance of the following terms in the context of probability
distributions: mean, variance, skewness, kurtosis.

4. What is Bayes’ theorem, and how is it applied to Bayesian statistics? Provide a simple
example to illustrate its use.

5. Discuss how model complexity affects the performance of a machine learning model. How
do Bayesian statistics help manage model complexity?

6. Compare and contrast the three sampling methods discussed in the chapter. Which method
would you choose for a given scenario involving a large, heterogeneous population, and
why?

7. Provide an example of a real-world application where the statistical principles discussed in
this chapter can be applied. How do these principles improve the prediction accuracy or reli-
ability of the model?

8. What are regularization techniques, and how do they relate to Bayesian statistics? Explain
how these techniques help in handling overfitting.

9. How does understanding the uncertainty in model predictions benefit the deployment of
machine learning models in sensitive areas like healthcare or autonomous driving?

10. How do prior and posterior distributions differ in Bayesian statistics? Discuss their roles in
updating beliefs as new data becomes available and provide an example of how this concept
is applied in machine learning.

4.10 PROGRAMMING QUESTIONS
4.10.1 Easy

Implement a program that generates a set of data points following a normal distribution.

1. Use a random number generator to create a set of data points that follow a normal distribu-
tion with a specified mean and standard deviation.

2. Calculate the theoretical PDF of the normal distribution using the specified mean and
standard deviation.

4.10.2 Mebium

Implement Bayesian linear regression to predict a dependent variable based on an independent
variable.

1. Create a dataset with an independent variable, x, and a dependent variable, y, with added
Gaussian noise.

2. Specify the Bayesian linear regression model with priors for the weights and noise.

Use a Bayesian inference method to estimate the posterior distributions of the weights.

4. Generate predictions for new data points and compute credible intervals for the
predictions.

W

132 Mathematical Foundations for Deep Learning

4.10.3 Harp

Implement variational inference for a BNN to perform classification on a synthetic dataset.

1. Create a synthetic dataset for a binary classification problem with clear decision boundaries.

Specify the architecture of the BNN using variational inference methods (e.g., Bayes by

Backprop or Flipout layers in TensorFlow Probability).

Train the BNN on the synthetic dataset using an appropriate optimizer and loss function.

Perform variational inference to estimate the posterior distributions of the weights.

5. Generate predictions for a grid of points covering the input space. Compute the uncertainty
in the predictions for each point in the grid.

B w

5 Optimization Theory

5.1 INTRODUCTION

Optimization theory is a key part of mathematics and applied sciences, and it takes a deep look
into how we make decisions. At its core, optimization is about finding the best solution from many
possible options. It’s focused on accuracy, blending logic and function to achieve the most effective
results. Whenever we seek knowledge or try to solve a problem, we’re quietly pursuing perfection,
and optimization guides us on this journey toward excellence. From dividing up resources in an
economy to improving the algorithms that run our digital world, the search for the best choice is
always ongoing. Optimization theory provides the tools and viewpoints we need to navigate this
area, offering solutions and a deeper understanding of how we reach them. This chapter explores
some of the most popular optimization methods in deep learning.

5.2 OPTIMIZATION THEORY

Optimization theory is basically about making choices and picking the best option from a set of
available alternatives based on specific, measurable criteria. At its core, it sheds light on the prin-
ciple of selection: when faced with many options, how do we identify the most suitable or advan-
tageous one? This field provides systematic and analytical methods to determine the “best” choice,
where “best” could mean minimizing costs, maximizing efficiency, reducing waste, or achieving
any other measurable goal. For example, imagine a business evaluating different marketing strat-
egies to find the most cost-effective one, an engineer choosing the most durable material for a new
design, or a traveler planning the quickest route to their destination. Constraints are an essential
part of optimization problems. They define the feasible solutions and ensure that these solutions are
practical and applicable to real-world scenarios. Constraints limit the decision variables and set the
boundaries for the optimal solution. They are restrictions or limitations placed on decision variables
and can be equality constraints (e.g., x + y = 10) or inequality constraints (e.g., x + y < 10). These
constraints shape the feasible region in the decision variable space, within which the optimal solu-
tion must be found. There are different types of constraints:

* Equality constraints must be satisfied exactly, such as the total weight of items in a knapsack
problem.

* Inequality constraints set an upper or lower limit, like a budget constraint where total costs
must not exceed a specific value.

* Bound constraints directly limit the range of decision variables, such as a percentage that
must be between 0 and 100.

DOI: 10.1201/9781032690742-5 133

http://dx.doi.org/10.1201/9781032690742-5

134 Mathematical Foundations for Deep Learning

FIGURE 5.1 Feasible region and constraints in linear programming.

Feasible solutions are those that meet all the constraints, while infeasible solutions violate one
or more constraints. Active constraints are those that, if slightly changed, would alter the optimal
solution. Binding constraints are specific inequality constraints that are exactly met at the optimal
solution and directly influence it. Many optimization algorithms are initially designed for problems
without constraints. However, there are several effective methods to handle constraints. Penalty
methods convert a constrained problem into an unconstrained one by adding penalties to the
objective function for any violations of the constraints.

Figure 5.1 features two primary constraint lines: the green line represents the inequality x, + x, < 4,
while the orange line corresponds to 2x, + x, < 6. These lines present the boundaries within which
the variables x, and x, must lie to satisfy both constraints simultaneously. The area where these
constraints overlap is a shaded area, highlighting the feasible region where potential solutions exist.
At the core of this feasible region lies the optimal solution, marked prominently with a large purple
scatter point. This point, situated at the coordinates (x|, X,), represents the values of x, and x, that
maximize the objective function 3x, + 2x, while adhering to the defined constraints.

5.3 TYPES OF OPTIMIZATIONS
5.3.1 LINEAR OPTIMIZATION

Linear optimization, also known as linear programming, focuses on finding the best outcome, like
maximizing profit or minimizing cost, in models where all relationships are linear. The main com-
ponent is the objective function that you want to optimize. For example, if you’re trying to maximize
profit from selling two products, A and B, the objective function could be written as P = aA + bB,
where a and b represent the profit per unit of products A and B, respectively. In linear optimization,

Optimization Theory 135

you have limits called constraints, which are expressed as linear equations or inequalities. Using
the example above, constraints might include limitations on available resources like raw materials
or labor, represented in linear terms. These constraints define the set of all feasible solutions that
meet the requirements. The optimal solution is the one that maximizes or minimizes the objective
function within this feasible set. In two-dimensional cases, this optimal point is often found at a
vertex of the feasible polygon, the corner points of the area defined by the constraints. The sim-
plex method is the most recognized technique for solving linear optimization problems, but other
methods, like interior point methods, are also effective, especially in specific situations. However,
linear optimization assumes that both the objective function and the constraints are linear, which
might not be true in more complex, real-world scenarios. Nonetheless, some non-linear problems
can be approximated as linear to make use of linear optimization methods, broadening their applic-
ability. The general form of a linear optimization problem is:

Maximize or minimize Z = X, Fe,x, . tcx

Subject to:
a,x, +a,x,+...+a, x <b

a, X, +a,x,+...+a, x sz

2n""n

X5 Xysenen X 2 0
Suppose a company produces two products, A and B, with profit margins of $3 per unit for product
A and $4 per unit for product B. The objective function for maximizing profit is:

Maximize P =3A+4B

Subject to the following constraints: A + 2B < 14 (raw material constraint), 3A + B < 18 (labor con-
straint), and A, B > 0.

Figure 5.2 features two primary constraint lines: the light blue line represents the inequality
A+2B <14, while the blue line corresponds to A + B < 18. These lines present the boundaries within
which the variables A and B must reside to satisfy both constraints simultaneously. The intersection
of these constraints forms the vertices of the feasible region, which is shaded to visually demarcate
the area where potential solutions lie. At the core of this feasible region is the optimal solution,
marked prominently with a large green point. This point, situated at approximately (4, 3), represents
the values of A and B which maximize the objective function P = 3A + 4B while adhering to the
defined constraints. Additionally, the red dashed line represents the objective function at its optimal
value, P = 24, illustrating the level curve of the objective function that intersects the feasible region
at the optimal point. This line serves as a visual cue, demonstrating how the objective function
interacts with the constraints to determine the optimal solution.

5.3.2 NON-LINEAR OPTIMIZATION

Non-linear optimization deals with situations where the objective function, the constraints, or both
involve non-linear relationships. Unlike linear relationships, which are represented by straight lines
or flat surfaces, non-linear interactions add complexity, making these problems more challenging
and more reflective of real-world dynamics. This flexibility is crucial in many scientific and indus-
trial applications because it models complex relationships. In non-linear optimization, the objective
function includes non-linear expressions of the decision variables. For example, consider the

136 Mathematical Foundations for Deep Learning

FIGURE 5.2 Linear optimization: feasible region and objective function.

function P = A% +3B° —4AB, where the goal is to maximize or minimize P. This creates a dynamic
landscape of possible solutions, making the optimization process more complicated. Constraints can
also be non-linear, such as A + B> <9, which represents a circular boundary in a two-dimensional
space for variables A and B. This geometric constraint shapes the feasible solution space into forms
that are not just flat or polyhedral. The solution techniques include:

(a) Gradient-Based Methods: These include gradient descent, Newton’s method, and quasi-
Newton methods, which utilize derivatives to guide the optimization process.

(b) Direct Search Methods: For instance, the Nelder—Mead method operates without derivative
information and is suitable for problems where derivatives are infeasible to calculate.

(c) Evolutionary and Genetic Algorithms: Inspired by natural selection, these methods use
heuristic approaches to explore the solution space, which is especially useful in complex
landscapes.

A general non-linear optimization problem can be formulated as:

Maximize or minimize f(x,x,,...,X
. 1 2 n

Subject to:

Optimization Theory 137

In this case, f(x,, x,) represents the non-linear objective function, and g(x,, X,) represents the non-
linear constraints, shaping the feasible region. Techniques like gradient descent would be used to find
optimal solutions. Suppose you aim to maximize the non-linear objective function P (A, B) = A2+ B,
subject to the non-linear constraint A% + B> <9, which represents a circular boundary with a radius
of 3. The feasible solution space is the interior of this circle, and the maximum value of P occurs at
the boundary where P = A? + 3B* —4AB, producing a maximum value of P(3, 0)=9.

Figure 5.3 features a vibrant contour map of the objective function P = A% + 3B3 —4AB, rendered
using the perceptually uniform colormap. Central to the visualization is the constraint A2 + B> <9
, depicted as a prominent dashed black circle with a radius of 3. This boundary defines the feasible
region in which optimization must occur. The area inside the circle, where both constraints are sat-
isfied, is subtly highlighted with a semitransparent overlay of the same colormap, reinforcing the
feasible region’s significance without overwhelming the objective function’s contours. Additionally,
a specific point within the feasible region, such as (1, 1), is marked with a large red scatter point.

5.3.3 INTEGER OPTIMIZATION

Integer optimization (IO), or integer programming (IP), focuses on optimization problems where
some or all decision variables must assume integer values. This requirement arises when fractional
solutions are impractical, such as determining the number of items to produce, personnel assignments,
or scheduling tasks. IO is critical for problems demanding discrete solutions, presenting unique
challenges distinct from those of continuous optimization. The types of 10 are:

FIGURE 5.3 Non-linear optimization with constraints.

138 Mathematical Foundations for Deep Learning

(a) Pure Integer Programming (PIP): All decision variables are integers.

(b) Mixed Integer Programming (MIP): Combines integer and continuous variables, addressing
a more complete range of practical scenarios.

(c) Binary Integer Programming (BIP): Decision variables are binary (0 or 1), ideal for problems
involving binary decisions like turning a process on or off.

In some optimization problems, the variables are required to be whole numbers (integers). The
objective function, which we aim to maximize or minimize, can be linear or non-linear, leading to
situations known as linear IP or non-linear IP. Similarly, the constraints in these problems can be linear
or non-linear and may also demand that the variables be integers. Several techniques are employed to
solve these IP problems. One method is branch and bound (B&B), which involves branching on the
fractional parts of variables. This technique systematically explores different possible solutions and
uses upper and lower bounds to reduce the search space, making it easier to find the optimal integer
solution. Another approach is cutting plane method, which add extra constraints called cutting planes
to the problem. These methods derive valid inequalities to eliminate fractional solutions, guiding the
search toward integer solutions. Additionally, heuristic methods like rounding or diving provide quick
ways to find feasible integer solutions. While these methods are faster, they may not always find the
best possible solution but offer an acceptable one. A general IO problem can be formulated as:

Maximize or minimize Z = cx te,x, +...+c x,

Subject to:

a,x, +a,x,+...+a, x < bw X5 Xy5eee X, € Z

This formulation captures the requirement that decision variables must be integers, and methods
like B&B or cutting plane methods are used to solve these problems. Suppose a company needs
to produce tables and chairs. The decision variables are the number of tables T and chairs C to
produce. The profit is given by the linear objective function Z=207+15C, and the constraint is
that the total production cannot exceed 100 units 7+ C < 100. As fractional tables or chairs cannot
be produced, T and C must be integers. The 10 problems are classified as NP-hard, meaning the
computational difficulty can scale exponentially with problem size. The discrete nature of the solu-
tion space restricts the use of gradient-based optimization methods that are effective in continuous
scenarios. Due to their complexity, IO problems often necessitate specialized computational tools.

Figure 5.4 illustrates the feasible region defined by the constraint A + B < 12 and highlights the
optimal solution that maximizes the objective function P = 3A + 2B. The plot features a grid of
discrete points where both A and B range from O to 12, representing all possible combinations of
these variables. The feasible solutions are depicted using a scatter plot with square markers, colored
according to their corresponding objective function values P. The semitransparent light gray shading
delineates the feasible region where the constraint A + B < 12 is satisfied, providing a boundary
that confines the optimization problem’s solution space. At the heart of the feasible region lies the
optimal solution, marked prominently with a large golden-yellow scatter point. This point represents
the values of A and B that maximize the objective function P while adhering to the constraint.

5.3.4 ConNvex OPTIMIZATION

Convex optimization is a specialized area within optimization where both the objective function and
the constraints are convex. This property greatly simplifies the optimization process because any
local minimum is also a global minimum, eliminating the uncertainty often found in non-convex
optimization. A function f is considered convex over an interval I if, for any two points x, and x, in
I and any A in the interval [0, 1], the following inequality holds:

Optimization Theory 139

FIGURE 5.4 Integer optimization.

F(Ax +(1=2)x,) < Af(x,)+(1-2) f(x,)

Graphically, this means that the line segment between any two points on the graph of the function
lies above or on the graph itself. A set S is convex if, for every pair of points X, and x, in S and
any A in the interval [0, 1], the point Ax, +(1—l) x, also belongs to S. This ensures that the
entire line segment between any two points in S is contained within S. Convex optimization
problems have several key features. First, if a solution exists, it is unique and globally optimal.
Unlike non-convex problems, convex optimization does not have local optima that are not global.
Additionally, the intersection of all constraints forms a convex feasible set, which simplifies
the search for the optimal solution. Various techniques are used to solve convex optimization
problems. Gradient descent is an iterative method that moves in the direction of the steepest
decrease of the function. Interior point methods explore the inside of the feasible set to find the
optimal solution. Subgradient and proximal methods are particularly useful for convex optimiza-
tion problems that are not smooth. Despite their advantages, convex optimization problems can
present challenges. Finding the global optimum might be computationally demanding, especially
in high-dimensional spaces. Moreover, not all real-world problems are convex, and transforming
non-convex problems into convex ones can be limiting and impractical. A general convex opti-
mization problem can be formulated as:

Minimize f(x)

140 Mathematical Foundations for Deep Learning

FIGURE 5.5 Convex optimization using gradient descent on f (x) =x%

Subject to:

g[.(x)SO Vi, xeC
where:

¢ f(x) is a convex function,
* g,(x) represents convex constraints, and
e (Cis aconvex set.

This ensures that any local minimum is also a global minimum, and techniques like gradient descent
or interior point can efficiently solve such problems. Consider the convex function f(x) = x> + 4x +
4, which has a global minimum at x = —2. The objective is to minimize this function, subject to the
constraint x > —3. As f(x) is convex and the constraint forms a convex set, the optimal solution is
x = =2, where the function achieves its minimum value of 0.

In Figure 5.5, the function f (x) = x? is plotted as a smooth curve. This quadratic function
represents a simple convex shape, making it suitable for demonstrating the gradient descent method.
The gradient descent process begins at the starting point, marked by the green dot, located on the
right side of the function. From here, gradient descent iteratively updates the value of x to minimize
f(x). At each step, the algorithm moves in the direction of the negative gradient (the slope of the
function at the current point), adjusting x to decrease the function value. These steps are represented
by the blue dots along the curve. Each dot shows a position where the algorithm evaluates and
updates the function value, gradually moving toward the minimum. As the algorithm approaches

Optimization Theory 141

the minimum point, highlighted in yellow, the steps become smaller. This behavior illustrates that
as the gradient (slope) decreases near the minimum, the updates become less significant, allowing
the algorithm to converge precisely at the minimum. The minimum of f (x) = x? occurs at x = 0,
where the function value is also zero. The shaded area under the curve provides visual emphasis on
the function’s domain, while the red dashed line shows the trajectory of the algorithm’s updates,
highlighting how it progressively converges toward the minimum.

5.3.5 CoMBINATORIAL OPTIMIZATION

Combinatorial optimization is an important field within optimization that deals with problems
in discrete and combinatorial settings, such as finding the shortest path in a network or graph. It
addresses optimization challenges where the solution space consists of distinct, countable options,
and the number of possible solutions can be immense, often increasing exponentially as the problem
grows larger. A key feature of combinatorial optimization is the discrete nature of its solution space,
meaning solutions are separate and countable. As the size of the problem increases, the complexity
and the number of potential solutions expand dramatically. These problems often involve selecting
the best combination or sequence of elements from a set, which is a defining characteristic of this
type of optimization. Common examples of combinatorial optimization problems include the trav-
eling salesman problem (TSP), where the objective is to find the shortest possible route that visits
each city exactly once and returns to the starting point. Another example is graph coloring, where
colors are assigned to the vertices of a graph so that no two adjacent vertices share the same color,
aiming to use the fewest colors possible. Bin packing involves efficiently packing objects of different
sizes into the smallest number of bins. Various techniques are used to solve combinatorial optimiza-
tion problems. Exact algorithms, such as B&B or the Hungarian algorithm, guarantee an optimal
solution but are often very computationally intensive. Heuristic algorithms, like the greedy method
or hill climbing, aim to find a good solution quickly, though they do not guarantee the best pos-
sible solution. Metaheuristic algorithms, such as genetic algorithms or ant colony optimization, are
higher-level strategies that guide simpler heuristics toward better solutions. The main challenges in
combinatorial optimization include the NP-hard nature of many of these problems, meaning there is
no known efficient (polynomial-time) solution, and it is uncertain if one exists. Additionally, the vast
size of the solution space makes exhaustive searches impractical except for the smallest problems.

Figure 5.6 showcases an example of the TSP, which is a classic optimization problem where the
objective is to determine the shortest possible route that visits each city exactly once and returns to
the starting point. The figure illustrates five cities, labeled A, B, C, D, and E, positioned on a 2D
coordinate plane. Each city is marked with a distinct shape and color to enhance clarity. The optimal
path connecting these cities is shown by the dark line traversing from one city to the next. The total
length of this optimal route is indicated in the legend as 20.06 units, representing the shortest path
that satisfies the TSP criteria for these specific cities. The path begins at city A (blue circle), moves
through city B (orange star), then continues to city E (purple plus), city C (green triangle), and
finally reaches city D (red diamond) before looping back to city A.
The objective function for the TSP is:

n
Minimize Y d(x,.x,,)

i+1
i=1

where:

* x, is the i* city in the tour,
e d(x, x,) represents the distance between cities x, and x. ,, and

 the solution space consists of all possible permutations of city visits, making the problem
combinatorial.

142 Mathematical Foundations for Deep Learning

FIGURE 5.6 Traveling salesman problem.

This formulation represents the challenge of finding the optimal sequence of cities with an enormous
solution space, often tackled using exact or heuristic methods. Consider the TSP with five cities.
The goal is to find the shortest route that visits each city exactly once and returns to the starting city.
If there are five cities, there are 120 possible routes (since 5! = 120). Using an exact algorithm like
B&B, the shortest route can be found by systematically evaluating and pruning possible routes.

5.3.6 GRADIENT DESCENT

Gradient descent is a foundational optimization technique in machine learning, essential for solving
complex problems where analytical solutions are either unavailable or computationally prohibitive.
This iterative method is adept at navigating multi-dimensional data landscapes to find the local min-
imum of a function, typically a loss function in machine learning contexts. The primary objective
of gradient descent is to minimize the loss function, which measures the discrepancy between the
predicted outputs of a model and the actual outcomes. The principle behind gradient descent is
analogous to descending a hill. Mathematically, this is achieved by moving in the direction opposite
to the function’s gradient at the current point, which points toward the steepest ascent. Let us go to
the detailed mechanics of it:

e Gradient: For a function f (x) where x is a vector of parameters, the gradient Vf (x) is a
vector of partial derivatives. It indicates the direction and rate of the steepest increase.

Optimization Theory 143

* UpdateRule: The parameter vectorxisupdatediterativelyusingtherule:x | =x , —oV f (xol d)
where « is the learning rate.

e Convergence: Properly tuning the learning rate, and under certain conditions (e.g., con-
vexity of the function), gradient descent can converge to the global minimum. In non-convex
scenarios, it may settle at a local minimum or a saddle point.

Gradient descent comes in several variations, each designed to enhance efficiency, stability, or con-
vergence when solving optimization problems. Stochastic gradient descent (SGD) uses a single
randomly selected data point to estimate the gradient, which speeds up each iteration and can help
avoid getting stuck in local minima. Mini-batch gradient descent uses a small subset of data to com-
pute the gradient, offering a middle ground between the speed of SGD and the stability of using
the full dataset. The momentum method adds a portion of the previous update to the current step.
This approach aims to accelerate convergence and reduce oscillations, especially in areas where the
loss function changes sharply. Adaptive learning rate methods, like Adagrad, RMSprop, and Adam,
adjust the learning rate based on previous gradients. This allows for more precise convergence and
improved stability during training. Setting the learning rate too high can cause the algorithm to
diverge, while setting it too low might lead to slow convergence or getting stuck in suboptimal points.
With non-convex functions, there’s a risk of converging to local minima or saddle points instead of
the global minimum. As gradient descent is sensitive to the scale of the features, normalizing or
standardizing them is often necessary for effective optimization. Despite these challenges, gradient
descent remains a fundamental tool in optimization, especially in machine learning. It supports a
wide range of applications, from simple regression tasks to complex deep learning algorithms. Its
flexibility and efficiency make it indispensable for researchers and practitioners.
The updated rule for gradient descent is given by:
0., =0, —aVJ(G)

ne
where:

e 0 is the parameter vector,
e ¢ is the learning rate, and
e VJ(0) is the gradient of the cost function with respect to 0.

This iterative process continues until the gradient converges, minimizing the loss function and
finding the optimal parameters for the model. Suppose you are training a linear regression model

1
to predict house prices. The cost function J (9) = 2—Z(h9 (xi) —y,)* needs to be minimized, where
m
0 represents the model parameters. Let the initial value of @ = 0.5, and the gradient at this point be
calculated as VJ(0) = 1.2. Using a learning rate o = 0.01, the update rule would adjust 0 as follows:
6, =6-0VJ(6)=0.5-0.01x1.2=0.488

ne

Figure 5.7 shows the trajectory of gradient descent on the quadratic function f(x) = x2. The plot starts
with a high initial value (the “Starting Point”) and iteratively updates based on the gradient, moving
toward the function’s minimum. The objective is to reach the lowest point of the function, which is
at x = 0, also marked as the “Final Point.” Each red dashed line and crimson scatter point represents
a step in the gradient descent process, with every fifth step labeled for clarity. The goal is to illus-
trate how the gradient descent algorithm takes steps proportional to the negative of the gradient to
minimize the function. The plot helps visualize the optimization process, showing how the gradient
descent path narrows down towards the optimal solution.

FIGURE 5.7 Gradient descent on a quadratic function.

144"

Suruaea des(40y suoepunod [edieWwayIe

Optimization Theory 145

5.3.7 StocHASTIC OPTIMIZATION

Stochastic optimization is a field that deals with problems under uncertainty. In these cases, some
parts of the model, such as parameters, constraints, or the objective function, include random
variables. This uncertainty makes the optimization process more complex but also more reflective
of real-world situations. The goal in stochastic optimization is often to find a feasible and optimal
solution on average or with a high probability rather than one that is deterministically optimal. This
approach is crucial for handling scenarios where exact information about the model is unavailable
or when the system is subject to random fluctuations and noise. Several techniques are used in sto-
chastic optimization. One method is sample average approximation (SAA), which involves solving
the problem multiple times using different samples from the probability distributions of the uncer-
tain parameters and then averaging the results. Another technique is SGD, an extension of the trad-
itional gradient descent method that uses a randomly selected subset of data, called a mini-batch,
to perform each update. This method is commonly used in machine learning for training models on
large datasets. Monte Carlo simulation is also employed to assess the impact of risk and uncertainty
in prediction and forecasting models by simulating a wide range of possible outcomes. Stochastic
optimization faces several challenges. The inherent uncertainty in these problems makes solutions
computationally complex and difficult to obtain. The quality of the solutions heavily depends on the
quality and quantity of the data available about the uncertainties involved, leading to data depend-
ency issues. Scalability becomes a concern as the size of the data and the number of uncertain
parameters increase, requiring significantly more computational resources to find a solution effi-
ciently. Despite these challenges, stochastic optimization is increasingly important in industries
and sectors where uncertainty is a significant factor. By incorporating randomness directly into
the decision-making process, organizations can develop strategies that are not only theoretically
optimal but also practical and robust against real-world variability and unpredictability. This opti-
mization approach improves decision-making by providing frameworks that anticipate and effect-
ively manage the inherent uncertainties of various operational environments. The general form of a
stochastic optimization problem is:

Minimize B[f(x.)]

where:

e f(x, &) is the objective function,
» §represents random variables (uncertainties), and
» [E is the expectation over the random variables.

Techniques such as SAA estimate the objective by averaging over several samples of &, helping
optimize decisions under uncertainty. Suppose a company wants to optimize its inventory man-
agement under uncertain demand. Using SGD, they aim to minimize the cost function J(0), where
0 represents the reorder point. With demand data subject to randomness, they update the reorder
point iteratively using small mini-batches of demand data. If the gradient estimate at iteration 1 is
VJ(0) = 0.6 and the learning rate is a = 0.05, the updated reorder point would be:

6., =6,-0avVi(6)=6-0.05x0.6

ne'

Figure 5.8, illustrates the process of SGD for optimizing the objective function f (x) = x? + noise.
The blue line represents the noisy objective function, f (x) = x? +noise, which includes random-
ness, making the curve less smooth. The path of SGD is traced with red dashed lines, highlighting
the steps taken from the starting point to the final point. The green dot marks the starting point of

146 Mathematical Foundations for Deep Learning

FIGURE 5.8 Stochastic gradient descent.

Optimization Theory 147

x = 10, where the optimization process begins. The orange dot indicates the final point after 30
iterations, showing where the algorithm has converged. Red dots along the dashed line indicate the
positions visited by SGD at each iteration. To avoid clutter, every fifth step is annotated with “Step
X, where X is the iteration number, showing the algorithm’s progression.

5.3.8 SiMPLEX METHOD

The Simplex method is a fundamental algorithm in linear optimization, widely used to solve linear
programming problems. In linear programming, the primary objective is to maximize or minimize
a linear function while satisfying a set of linear equality or inequality constraints. These constraints
define the feasible region, which is typically a polyhedron or polytope where the solution must lie.
If an optimal solution exists, it will be found at one of the vertices (corner points) of this feasible
region. The algorithm starts at a vertex of the feasible region and moves from one vertex to another,
checking at each step whether the move improves the value of the objective function. This process
continues until it reaches a vertex where no adjacent vertex offers a better value, indicating that the
optimal solution has been found. The Simplex method is generally very efficient in practice, even
though its worst-case time complexity can be exponential. This means that while it could theoretic-
ally take a very long time for some problems, it usually performs exceptionally well in real-world
scenarios. Sometimes, the method might cycle between the same vertices without making progress.
To prevent this, strategies like Bland’s Rule are used to ensure that the algorithm moves toward a
solution without getting stuck in a loop. Every linear programming problem has a corresponding
dual problem. Understanding the relationship between the original (primal) problem and its dual can
provide deeper insights and can sometimes simplify finding the solution. The Simplex method has
been adapted into various forms to handle more complex situations, such as the Two-Phase Simplex
method and the Revised Simplex method. While the Simplex method remains a dominant technique
in linear programming, it faces competition from interior-point methods, which can be more suit-
able for solving very large-scale linear programming problems. The linear programming problem
in standard form is:

Maximize Z = c X, te,x, +...4+c x
n n

Subject to:
Ax<b, x20

where:

C;>Cys...sC, ATE the coefficients of the objective function,
¢ A is the matrix of constraint coefficients,
¢ x is the vector of decision variables, and
¢ b is the vector of constraint bounds.

This formulation represents the optimization problem, where the Simplex method navigates the
feasible region defined by the constraints to find the optimal solution. Consider a linear program-
ming problem to maximize the objective function Z = 3x, + 2x,, subject to the constraints:

X, +x, S4,2x1 +x, S6,x1,x2 >0

The Simplex method starts at one vertex of the feasible region, say (0, 0), and iteratively moves
to adjacent vertices, checking for improvement in the objective function. The method eventually
reaches the optimal solution at x, = 2, where Z = 10.

148 Mathematical Foundations for Deep Learning

FIGURE 5.9 Simplex method.

Figure 5.9 demonstrates the application of the Simplex method in solving a linear programming
problem. The objective is to find the optimal solution that maximizes or minimizes a linear
objective function subject to constraints. In this illustration, the constraints are represented by the
lines: x, +x, <4 (blue line) and 2x, +x, <6 (green line). These constraints define the feasible
region, shaded in light gray. The feasible region is the set of all points that satisfy both inequalities
simultaneously, and it represents all possible solutions to the linear programming problem. The
Simplex path is marked in brown and shows the sequence of steps taken by the Simplex algorithm
as it moves from one vertex of the feasible region to another, improving the objective function
value at each step. The path culminates at the optimal point (2, 2), highlighted in yellow, which
represents the optimal solution that maximizes (or minimizes) the objective function under the
given constraints.

5.3.9 LAGRANGIAN MULTIPLIERS

Lagrange multipliers are a robust optimization method used to find a function’s local maxima
and minima subject to equality constraints. Named after Joseph-Louis Lagrange, this technique
transforms constrained optimization problems into unconstrained ones, facilitating their solu-
tion. Consider the problem of finding the extremum (maximum or minimum) of a function/
subject to a constraint g(xl,xz,...,xn) =0. The method introduces an auxiliary variable, A (the
Lagrange multiplier), to incorporate the constraint into the objective function. The Lagrangian,
L, is formulated as:

E(xl,xz,...,xn,l)= f(xl,xz,...,xn)+ﬂ.g(xl,x2,...,xn)

Optimization Theory 149

To find the extremum of f subject to g, we solve for the points where the gradient of the Lagrangian
is zero:

VL=Vf+AVg=0

This results in a system of equations that, when solved, provide the values of the variables and
the Lagrange multiplier. The Lagrange multiplier, has a meaningful interpretation. Generally, it
measures the rate of change in the maximum or minimum value of the objective function as the
constraint varies. Lagrange multipliers are applied across various fields. In economics, they are
used for utility maximization and cost minimization problems. In machine learning, algorithms
like support vector machines use Lagrange multipliers for optimization with constraints. While
robust, Lagrange multipliers are primarily suited for equality constraints. For problems involving
inequality constraints, methods like the Karush—Kuhn-Tucker (KKT) conditions are more appro-
priate. Consider maximizing the function f(x, y) = Xy, subject to the constraint x + y = 10. Using the
Lagrange multiplier A, we form the Lagrangian:

L(x,3,A)=xy+A(10-x—y)

To find the extremum, we take the partial derivatives with respect to x, y, and A and set them equal
to zero:

oL oL oL
Eoy-2=0, E=x-2=0, &E=10-x-y=0
ax P) Y

Solving this system yields x =y = 5, giving the maximum value of f(x, y) = 25. The Lagrange multi-
plier method transforms a constrained optimization problem into an unconstrained one by introdu-
cing a new variable A. The Lagrangian is defined as:

E(x, l) = f(x)+ l[g(x)—c]
where:

¢ f(x) is the objective function,
e g(x) = c is the constraint,
e \is the Lagrange multiplier.

The solution is found by solving the system of equations obtained from setting the gradients of the
Lagrangian to zero:

Vﬁ(x,l) =0

Figure 5.10 displays a contour plot of the function f(x, y)= xy, with contour lines representing levels
of constant function values. The color gradient indicates the objective function’s values, transitioning
from blue (lower values) to red (higher values), giving a visual sense of how f(x, y) changes across
the plane. The dashed blue circle represents the constraint x> + y? = 1, which defines the feasible
region for this optimization problem. This constraint forms a circle of radius 1 centered at the origin,
encompassing all points that satisfy the equation. The red dots marked as optimal points (0.71, 0.71
and —0.71, —0.71) indicate where the function reaches its maximum and minimum values within the
constrained region. These points are located on the circle where the product xy is maximized and
minimized, showing how the constraint influences the objective function’s optimization.

150 Mathematical Foundations for Deep Learning

FIGURE 5.10 Optimization with constraints.

5.3.10 BraNcH AND BouND AND CUTTING PLANE METHODS

B&B and cutting plane methods are crucial algorithms for solving optimization problems, particu-
larly combinatorial and IP challenges. B&B is a systematic method for exploring possible solutions
within a tree structure. The process begins with branching, where the main problem is divided
into smaller subproblems, creating branches in a solution tree. In bounding, each subproblem is
evaluated by calculating a bound, and if this bound is better than the current best solution, the
subproblem is explored further; otherwise, it is discarded. Pruning occurs when subproblems that
cannot improve upon the best-known solution are eliminated, enhancing efficiency by reducing
unnecessary calculations. The cutting plane methods iteratively solve IP problems by refining the
feasible region. Here are its general steps:

(a) Starting Solution: Start by solving the problem’s linear programming relaxation, ignoring
integer constraints.

Optimization Theory 151

(b) Check & Cut: Verify if the solution meets integer constraints. If not, a cut (linear inequality)
is added to exclude the current fractional solution while retaining feasible integer points.
(c) Iterate: Repeat until an acceptable integer solution is found or proven that none exists.

The B&B method explores a solution tree, where each subproblem is a branch, and solutions are
bounded. The cutting plane method iterates by adding constraints to refine the feasible region. For
the cutting plane method, starting from a linear relaxation:

Maximize Z = ¢ x, + ¢, x, Subject to:Ax < b, x=0

If the solution is not integer, add a cut (a linear inequality) to exclude fractional solutions while
retaining feasible integer points. These methods iteratively refine and solve the problem, improving
computational efficiency by avoiding exhaustive searches. Consider an IP problem where we aim to
maximize Z = 3x, + 4x,, subject to the constraints X, + 2x, < 8 and X, X, > 0, with x, and x, required
to be integers. Using B&B, we solve the linear relaxation (ignoring integer constraints), yielding
a solution of x =4, x, = 2. We then branch by creating subproblems where x, < 3 and x, > 4, con-
tinuing to solve and prune subproblems until the optimal integer solution is found.

Figure 5.11 illustrates the B&B tree used to solve a knapsack problem, a combinatorial optimiza-
tion challenge where the goal is to maximize the value of items placed in a knapsack without exceeding
its weight capacity. The tree starts with the initial node labeled “Start” (value = 0, weight = 0), where
no items have been considered yet. From this node, the algorithm branches out, evaluating two
choices: Include item 1 (value = 40, weight = 2) or exclude item 1 (value = 0, weight = 0). Each
choice generates a new branch, exploring the impact of either including or excluding the item. As
the tree progresses, it evaluates further branches for item 2, following the same process of including
or excluding the item. Nodes that exceed the weight capacity are marked as pruned/infeasible, indi-
cating that these paths do not satisfy the problem’s constraints and are thus discarded from fur-
ther consideration. The algorithm eventually reaches the optimal node (value = 190, weight = 10),
representing the best possible solution that maximizes the value while staying within the weight
limit. This node is highlighted to signify that the optimal solution has been found.

Figure 5.12 illustrates the cutting plane method for solving an integer linear programming (ILP)
problem. This approach refines the feasible region of a linear programming problem to efficiently iden-
tify integer solutions. The plot presents a system of constraints, each represented as a line: —x — 2y <
-3 (blue line), x + 2y < 8 (green line), and 2x +y < 10 (purple line). These constraints collectively form
the feasible region, shaded in light gray, where all points satisfy the inequalities simultaneously. The
objective is to find an integer solution within this region that optimizes the objective function. To achieve
this, the figure shows two cutting planes represented by dashed lines. Cutting plane 1, marked as a red
dashed line, adds an additional constraint to exclude non-integer solutions from the feasible region.
Cutting plane 2, shown as an orange dashed line, further refines the solution space, ensuring that only
integer solutions remain. The optimal solution, indicated by a yellow dot within the feasible region,
represents the best integer solution that meets all constraints while optimizing the objective function.

5.3.11 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are optimization techniques inspired by natural selection. They
simulate the biological principles of evolution, including survival of the fittest, to solve complex
problems in various fields such as computer science and engineering. These are the basic concepts:

e Population: A group of potential solutions.

e Chromosomes: Each potential solution.

e Genes: Elements of a solution.

e Fitness: The quality or suitability of a solution.

FIGURE 5.11

Branch and Bound tree for knapsack problem.

r4 8

Suruaea des(40y suoepunod [edieWwayIe

Optimization Theory 153

FIGURE 5.12 Cutting plane method.

The major steps in EAs are:

 [nitialization: Generate an initial population of possible solutions randomly.

» Selection: Choose solutions based on fitness to contribute to the next generation. Higher
fitness increases the likelihood of selection.

e Crossover (Recombination): Combine selected solutions to create new ones, mimicking
reproduction.

* Mutation: Introduce small changes to new solutions with a certain probability to ensure gen-
etic diversity.

e Replacement: Replace the old population with the new one.

e Termination: Repeat the process until a stopping criterion is met, such as a maximum number
of generations or a satisfactory fitness level.

The types of EAs include genetic algorithms (GAs), which are the most popular type and use muta-
tion, crossover, and selection to evolve potential solutions. Genetic programming evolves computer
programs as solutions, while differential evolution is used for real-valued function optimization.
Evolution strategies focus on strategy parameters such as mutation strength, and evolutionary pro-
gramming focuses on the mutation of finite-state machines. The main applications of EAs include
function optimization, where they are used to find the maximum or minimum of functions. In machine
learning, they are used for feature selection, hyperparameter tuning, and neural network training.
The advantages of EAs include flexibility, as they can be applied to a wide range of problems, and
global search capabilities, as they have a higher likelihood of finding global optima than many trad-
itional methods. They also support parallelism, allowing for the simultaneous evaluation of many

154 Mathematical Foundations for Deep Learning

solutions, which can be done in parallel with modern hardware. However, the limitations include
being computationally intensive, as the required computational resources can grow significantly
with problem size and complexity. Additionally, they do not provide certainty, often offering rea-
sonable solutions without guaranteeing the global optimum. In GAs, the fitness function evaluates
each solution x:

Fitness(x) = f(x)

The process involves applying selection, where individuals are chosen based on fitness scores. This
is followed by crossover, which generates new offspring by combining traits from selected individ-
uals. Finally, mutation is applied by randomly altering some genes to maintain diversity within the
population and prevent premature convergence. This iterative process continues until the stopping
criteria are met, typically optimizing the objective function. Suppose you are optimizing a function
f(x) = —x? + 4x. You initialize a population of 10 potential solutions (chromosomes) for the variable
x, each with random values between O and 5. The fitness of each solution is calculated using the
objective function f(x), and after selection, crossover, and mutation steps, the best solution x = 2,
with a fitness value of f(2) = 4, is found after 100 generations.

Figure 5.13, demonstrates the application of a GA to optimize the Rastrigin function, a common
benchmark problem in evolutionary computation. The Rastrigin function, known for its large search

d
space and many local minima, is defined as f (x) =10-d+ z(xf —10cos(27rxl.)), where d is the
i=1

FIGURE 5.13 Genetic algorithm optimization of Rastrigin function.

Optimization Theory 155

number of dimensions. This example plots the function in two dimensions over the range [-5.12,
5.12] for x and y. The contours are filled using the colormap, visually representing the function’s
values across the grid. A color bar on the side indicates the corresponding function values. The GA
is executed to find the minimum value of the Rastrigin function over 50 generations with a popula-
tion size of 100, selecting 20 parents in each generation and applying a mutation rate of 0.1. The best
solution the GA finds is highlighted with a red dot on the contour map, indicating the optimal point.

5.4 GLOBAL VERSUS LOCAL OPTIMA

Understanding the difference between global and local best solutions in optimization is very
important because it affects how we find the best answer to a problem. This challenge is especially
significant in complex problems where the solution landscape has many ups and downs. A global
optimum is the absolute best solution among all possible options. For problems where we want to
minimize something (like cost), it’s the lowest point. For problems where we want to maximize
something (like profit), it’s the highest point. A local optimum, on the other hand, is a solution that’s
better than nearby options but might not be the best overall, like finding a small hill that isn’t the
tallest mountain. You can think of the function we’re trying to optimize as a landscape with hills and
valleys. The local optima are the smaller hills and valleys, while the global optimum is the highest
hill or the deepest valley. Many optimization methods might get stuck at a local optimum, depending
on where they start. When there are multiple local optima, the landscape becomes rugged, making
it harder to find the global best solution. In simpler problems, called convex problems, any local
optimum is also a global optimum, which makes finding the best solution easier. However, in more
complicated, non-convex problems, it’s hard to tell if the solution we found is the absolute best
without knowing the whole landscape. To avoid getting stuck at local optima, we can use sev-
eral strategies. One method is random restarts, where we run the optimization multiple times from
different starting points to increase the chances of finding the global optimum. Another technique is
simulated annealing, which is inspired by the process of slowly cooling metal to make its structure
more uniform—a practice in metallurgy. In optimization, this means occasionally accepting worse
solutions to escape local optima and explore more possibilities. We can also use GAs, which mimic
natural selection by keeping a group of possible solutions and combining them in new ways, hoping
to find better solutions through processes similar to mutation and crossover in biology. Swarm intel-
ligence techniques, like particle swarm optimization, use multiple agents that move through the
solution space, sharing information to find the best solution together. In real-world applications
such as machine learning, finance, and engineering, optimization problems often have complex
landscapes with many local optima. Whether we end up at a local or global optimum can greatly
affect performance, costs, and outcomes. While we can’t always guarantee we’ll find the global best
solution, using different techniques, monitoring how the solution progresses, and understanding the
problem better can help us get closer to it.
A general optimization problem can be represented as:

Minimize f (x), xeS8S
where f(x) is the objective function, and S is the solution space. A global minimum is defined as:
f(x*)Sf(x), VxeS

A local minimum occurs when:

f(x*)< f(x), Vx in the neighborhood of x*

156 Mathematical Foundations for Deep Learning

FIGURE 5.14 Global versus local optima.

Strategies like simulated annealing or GAs are used to escape local optima and find the global min-
imum in complex landscapes. Consider a non-convex function f (x) = x* =3x% + 2. The function
has two local minima and one global minimum. A local minimum occurs at x = 2, where f(2) = 2,
but the global minimum occurs at x = 0.5, where £(0.5) = —0.375. If an optimization algorithm starts
near X = 2, it may converge to the local minimum instead of the global minimum.

Figure 5.14 presents the plot of the function f (x) =(x—-1)y? -(x + 2) showing its behavior across
the domain with key points. The graph illustrates the different types of extrema, including a local
minimum, a local maximum, and a global minimum. The function initially rises to a local maximum
at the point (-0.60, 3.58), marked in green. This point is where the function reaches a temporary peak
before declining. As the graph continues, it reaches a local minimum at (-2, 0), highlighted in red.
This local minimum indicates a point where the function temporarily decreases before increasing
again. However, this is not the lowest value the function can attain within the entire domain. Further
along, the function drops to the global minimum at the point (1, 0), shown in orange. This global
minimum represents the lowest point of the function across its entire domain, indicating the true
minimum value of f{x). Beyond this point, the function rises again.

5.5 RECENT DEVELOPMENTS IN OPTIMIZATION

The rise of big data and more powerful computers has greatly changed the field of optimization. New
developments such as distributed and real-time optimization, quantum computing, and advances in
machine learning are key areas of current research. These advancements are driven by the need
to solve large problems efficiently and make quick decisions. As data grows rapidly, optimiza-
tion algorithms need to process huge amounts of information effectively. Big data often involves

Optimization Theory 157

complex, high-dimensional spaces where traditional methods may not work well, so new strategies
are needed to handle these challenges. Optimization tasks are now often spread out and run across
multiple computers or nodes, which helps in dealing with large-scale problems. However, this brings
challenges like ensuring data security, keeping everything synchronized, and managing communica-
tion between nodes. Optimization is also very important in situations that need immediate solutions
or decisions in a short time, often as data is being created. Examples include self-driving cars and
high-speed trading systems. These applications must balance speed and accuracy to compute quickly
without losing solution quality. Quantum computers, which use principles from quantum mechanics,
offer incredible computing power. Algorithms like the quantum approximate optimization algorithm
(QAOA) are being developed to tap into this potential, possibly bringing big changes to fields like
cryptography, materials science, and machine learning. Machine learning, especially deep learning,
relies a lot on optimization to train models. At the same time, machine learning techniques are
improving optimization algorithms. Automated systems help in choosing the best machine learning
models and fine-tuning their settings. In real-world situations that often have uncertain or noisy data,
robust optimization finds solutions that work well under different scenarios, while stochastic opti-
mization deals with uncertainties in constraints and objectives. Moreover, real-world problems often
have conflicting goals, leading to new methods that aim to find the best possible solutions where
improving one goal doesn’t make another worse. Optimization is going through a major change,
driven by new technologies and the complexities of modern problems. As we move further into the
digital age, optimization remains essential for finding efficient and effective solutions in a rapidly
changing world. In distributed optimization, we often solve a problem by spreading it across mul-
tiple computers or nodes. This can be represented as:

Minimize f(x) = if, (x) xeX

where:

* f(x) is the local objective function on the i node,
¢ X is the shared feasible set across nodes.

Techniques such as distributed gradient descent are used to optimize functions across mul-
tiple machines, significantly speeding up the process for large-scale data. Consider an optimiza-
tion problem in high-frequency trading that requires decision-making in less than a millisecond.
Using real-time optimization, an algorithm balances speed and accuracy by processing 1 million
transactions per second across 100 nodes, reducing latency from 5 milliseconds to 1 millisecond.

Figure 5.15 demonstrates the process of distributed optimization applied to the objective
function f(x)z x?+10sin(x). The function’s behavior, represented by the blue curve, displays
the combined effects of a quadratic term and a sinusoidal component, resulting in multiple local
minima and maxima across the domain. The function’s domain is divided into different regions,
each assigned to a separate node, indicated by distinct shaded areas. Node 1, represented in dark
gray, Node 2 in green, Node 3 in tan, Node 4 in pink, and Node 5 in light blue, each handle a specific
segment of the function. The results from each node are marked with dots, showing where each node
has found significant points such as local minima or maxima. For example, Node 1 identifies a point
at (—6.00, 38.79), while Node 3 finds a local minimum at (-2.00, —5.09). The figure illustrates how
distributed optimization techniques divide the problem into smaller, manageable parts, allowing
each node to optimize the function locally within its region. This approach not only enhances com-
putational efficiency but also allows for parallel processing, which is especially advantageous for
large-scale or complex optimization problems.

158 Mathematical Foundations for Deep Learning

FIGURE 5.15 Distributed optimization.

Optimization Theory 159

5.6 OPTIMIZATION METHODS IN DEEP LEARNING

Optimization in deep learning is crucial because the goal is to minimize (or sometimes maximize)
a loss function. This loss function measures how far our predictions are from the actual values. By
optimizing this function, we ensure that our model generalizes well to new, unseen data.

5.6.1 BatcH GRADIENT Descent (BGD)

BGD, specifically, calculates the gradient of the loss function with respect to each parameter for
the entire training dataset at once. BGD guarantees convergence to the global optimum for convex
functions and is straightforward to implement. It systematically reduces the loss function by taking
steps proportional to the negative gradient of the loss function. The steps are controlled by a learning
rate, which determines the size of each step. The algorithm works by first initializing the parameters
randomly. Then, for each iteration, the gradient of the loss function with respect to each parameter
is calculated using the entire dataset. The parameters are updated by subtracting the product of the
learning rate and the gradient. This process is repeated until the parameters converge to values that
minimize the loss function. However, BGD is not feasible for large datasets that do not fit in memory.
It can also be slow on extensive datasets due to the need to process the entire dataset for each update.
This means that every iteration can be time-consuming, especially for high-dimensional data. The
update rule for BGD is:
0. =0,- avJ(6)

new
where:

* 0 is the parameter vector,
e o 1is the learning rate, and
e VJ(0) is the gradient of the loss function J(0), calculated over the entire dataset.

This process is repeated until convergence, minimizing the loss function for the entire dataset.
Suppose you are training a linear regression model to predict house prices. The loss function is the
mean squared error (MSE), and you have a dataset with 1,000 houses. Using BGD, you calculate the
gradient of the loss function for all 1,000 houses in each iteration. With a learning rate of a = 0.01,
the parameters 0 are updated by subtracting a x VJ(0) from the current values. For example, if the
gradient of the loss function at a specific iteration is VJ(0) = [1.5, —2.0], and the current parameter
values are 6 = [2.0, 3.0], the updated parameters will be calculated as:
06 =0 —axVJ(6)

new current
Substituting the values:

0., =[2.0.3.0]-0.01x[1.5-2.0]=[2.0-0.015,3.0+0.02]=[1.985,3.02]

This process continues until the parameters 0 converge to values that minimize the loss function,
ensuring the model provides the best predictions for house prices based on the training data.
BGD ensures smooth updates, but its computational cost can become a bottleneck for very large
datasets.

160 Mathematical Foundations for Deep Learning

5.6.2 StocHASTIC GRADIENT DESCENT (SGD)

SGD is an optimization algorithm used to minimize the loss function by iteratively adjusting the
model parameters. Unlike BGD, which computes the gradient using the entire dataset, SGD computes
the gradient using only a single sample (or a small batch) at each iteration. SGD is known for its
faster convergence compared to BGD, especially when dealing with large datasets. As it updates the
parameters more frequently, it often reaches a good solution faster. Additionally, the noisy updates
from using individual samples can help SGD escape local optima, providing a better chance of
finding a global optimum in non-convex optimization problems. The algorithm works by first initial-
izing the parameters randomly. For each iteration, it selects a random sample from the dataset and
computes the gradient of the loss function with respect to each parameter. The parameters are then
updated by subtracting the product of the learning rate and the gradient. This process is repeated,
and a new random sample is selected at each iteration until convergence. However, the high vari-
ance in updates can cause SGD to oscillate around the minimum, making convergence harder to
control. This variability means that while SGD can quickly reach the vicinity of the optimal solu-
tion, it might struggle to settle precisely at the minimum. Techniques such as learning rate decay,
momentum, and mini-batching are often employed to mitigate these issues and stabilize conver-
gence. The update rule for SGD is:

0., =0,,—avJ(6x0)

ne

where:

e 0 is the parameter vector,
* o is the learning rate, and
e VJ ((9, X, y(")) is the gradient of the loss function computed for the single sample (x(i),))

This process repeats, updating the model for each random sample, allowing faster convergence in
large datasets. Suppose you are training a model to predict stock prices with a dataset of 10,000
samples. In each iteration, SGD randomly selects one sample and updates the parameters based on
that sample. If the learning rate @=0.001 and the gradient for a specific iteration is 0.5, the parameter
0 is updated as:

0., =06,-0001x05=86 —0.0005

ne

5.6.3 MiNI-BATcH GRADIENT DESCENT

Mini-batch gradient descent is an optimization algorithm that offers a compromise between BGD
and SGD. It updates the model parameters based on smaller subsets, or “mini-batches,” of the
dataset. Mini-batch gradient descent combines the advantages of both BGD and SGD. By using
mini-batches, it reduces the variance in parameter updates compared to SGD, leading to more stable
convergence. At the same time, it does not require processing the entire dataset in each iteration,
making it more efficient than BGD. This approach can also benefit from parallelized hardware, such
as Graphics Processing Units (GPUs), which can process mini-batches concurrently. The algorithm
works by first initializing the parameters randomly. Each iteration randomly selects a mini-batch
of samples from the dataset and computes the gradient of the loss function with respect to the
parameters using only this mini-batch. The parameters are then updated by subtracting the product
of the learning rate and the gradient. This process is repeated for each mini-batch until the entire
dataset has been processed, completing one epoch. The procedure is iterated over multiple epochs
until convergence. One of the key considerations in mini-BGD is the choice of batch size. The batch

Optimization Theory 161

size can significantly impact performance and convergence speed. A smaller batch size offers noisier
updates and may benefit from the regularization effects similar to those of SGD. In contrast, a larger
batch size provides a more accurate estimate of the gradient, leading to more stable updates, but at
the cost of computational efficiency. The update rule for mini-BGD is:

1 « A
new = eold - a; ZIVJ(H;X(L)’y(l))

iz
where:

e 0 is the parameter vector,

e ¢ is the learning rate,

e m is the mini-batch size, and

. VJ(&, x(i),y(")) is the gradient of the loss function computed for the mini-batch samples

(00, y10).

This method strikes a balance between the computational efficiency of BGD and the frequent
updates of SGD. Suppose you are training a neural network with 10,000 samples, and you decide
to use a mini-batch size of 100. In each iteration, you randomly select 100 samples from the dataset
and compute the gradient. If the learning rate a = 0.01 and the average gradient for the mini-batch
is 0.4, the parameter 0 is updated as:

0. =0,-001x04=06 -0.004

ne’

5.6.4 MOMENTUM

Momentum is an optimization technique used to accelerate gradient descent by considering past
gradients in the update process. This approach helps gradient descent algorithms converge faster
and reduce oscillations, especially in cases where the objective function’s surface has features of
different scales or saddle points. The key idea behind momentum is to maintain a velocity vector
that accumulates the gradient of the loss function over time. This accumulated gradient is used to
update the model parameters, resulting in faster convergence and smoother trajectories. The velocity
vector is updated using a combination of the current gradient and the previous velocity. The updated
equations for gradient descent with momentum are as follows:

v =pv + Och(Gt)
em = 9t -V,
where:

v is the velocity vector at iteration t,

e [is the momentum term (a hyperparameter typically set between 0 and 1),

e Vf (9[)is the gradient of the loss function with respect to the parameters at iteration t,
. 0[are the model parameters at iteration t, and

e s the learning rate.

The momentum term f controls the contribution of the previous gradients to the current update.
A higher momentum value emphasizes the past gradients more, leading to faster convergence but

162 Mathematical Foundations for Deep Learning

potentially overshooting the minimum if set too high. Momentum offers several advantages. It
accelerates convergence compared to vanilla SGD, particularly in the presence of saddle points or
when the features have different scales. Reducing fluctuations helps the optimization process navi-
gate the parameter space more efficiently and reach the optimum faster. However, momentum also
introduces an additional hyperparameter, the momentum term f3, which requires tuning. The choice
of B can also significantly impact the performance of the optimization algorithm, and finding the
optimal value often involves empirical experimentation. Assume we’re optimizing a simple quad-
ratic function using gradient descent with momentum. The function we want to minimize is:

f(x)=(x=3y
For example, if the parameters are:

e Learning rate (a): 0.1,

e Momentum (f): 0.9,

* Initial value of x: O (starting point), and
* Gradient at iteration ¢ is g, = 2(x~3)

At iteration 1, starting from x,=0:

* Gradientis: g =2(x,~3)=2(0-3)=-6
* Velocity update is: v, = v, + ag, =0.9x0+0.1x (—6) =-0.6
* Parameter update is: x, =x, - v, =0 - (-0.6) = 0.6

At iteration 2:

* Gradientis: g, =2(x,~-3) =2(-0.6 - 3) =-7.2
* Velocity update is: v, = Bv, + org, = 0.9x (—0.6) +0.1x (—7.2) =-1.26
* Parameter update is: x, = x, - v,=-0.6 - (=1.26) = 1.86

Here, you can see how the momentum term accelerates the descent by considering the past vel-
ocity v, along with the new gradient g,, leading to a faster movement toward the minimum at x = 3.
As the iterations progress, the oscillations are reduced, allowing the algorithm to converge more
efficiently.

5.6.5 ADAGRAD (ADAPTIVE GRADIENT ALGORITHM)

Adagrad is an optimization algorithm that adapts the learning rates of all model parameters by
scaling them inversely proportional to the square root of the sum of all historical squared gradients.
This method is particularly useful for dealing with sparse data and features that have varying degrees
of informativeness. The key idea behind Adagrad is to adjust the learning rate for each parameter
individually, allowing for larger updates for infrequent parameters and smaller updates for frequent
ones. This is achieved by accumulating the squared gradients over time and using this accumulated
value to adjust the learning rates. The update rule for Adagrad is as follows:

g, =8, +(Vf(6,)r

=1,

Optimization Theory 163

where:

Vf (Gm_) is the gradient of the loss function with respect to parameter i at iteration t,

* g, 1s the sum of the squares of the gradients with respect to parameter i up to iteration t,
* ais the global learning rate, and

e is a small constant added to prevent division by zero.

Adagrad is particularly advantageous for dealing with sparse data, where some features are much
more informative than others. By scaling the learning rate based on historical gradients, Adagrad
ensures that infrequent but informative features receive larger updates, improving the model’s ability
to learn from these features. However, one of the main drawbacks of Adagrad is that the learning
rate can decrease significantly over time, causing the algorithm to stop learning prematurely. As the
sum of squared gradients grows, the effective learning rate diminishes, which can hinder further
progress, especially in non-convex optimization problems or over long training periods. Assume we
are optimizing a simple function:

f(x,y) =x2+2y?
For example, if the parameters are:

* Global learning rate (a): 0.1
e Small constant (¢): 107
* Initial values of x; =2, y =2

At iteration 1, we calculate the gradients for x and y:

e Gradientof x: g, =2x, =2x2=4
* Gradientofy: g =4y =4x2=38
¢ Accumulated squared gradients forx and y: G | = g% = 4% =16, G, = gil =82 =64

zz_Lx4:2—0.lx1:1.9

o
—X
JG,, +e S J16+10°*
o X g
|G | +e o
y

¢ Update rule for x: x, = x, —

0.1
e Update rule fory: y, =y, ———— =2—-—=%8=2-0.1x1=1.9

V64 +1078

At iteration 2:

* Gradients at new values x, =1.9,y, =1.9: g ., =2x1.9=3.8, 8, = 4%x1.9="17.6
e Accumulated squared gradients:

G,=G, +g,=16+38=3044, G =G, +g’ =64+7.6"=121.76

0.1
e Update rule for x,: x, =1.9 - ——=—==x%x3.8 =1.9-0.069 = 1.831
v 30.44+10°
 Update rule for y,: y, = I.Q—Lx7.6 =1.9-0.069 =1.831

V121.76 +1078

As you can see, the learning rate for both x and y decreased slightly at the second iteration due to
the accumulation of squared gradients. This helps balance the learning, allowing more updates to

164 Mathematical Foundations for Deep Learning

infrequent parameters while slowing down updates to frequent ones. However, over many iterations,
the learning rate will continue to diminish.

5.6.6 RooTt MEAN SQUARE ProrPaGATION (RMSPrOP)

RMSprop is an optimization algorithm designed to address the issue of diminishing learning rates in
Adagrad. By introducing a decay factor, RMSprop ensures that the learning rate does not decrease
too aggressively, making it more suitable for training deep networks. RMSprop modifies Adagrad by
maintaining a moving average of the squared gradients instead of accumulating all the past squared
gradients. This moving average helps to prevent the learning rates from becoming excessively small,
allowing the optimization process to continue learning effectively over time. The update rule for
RMSprop is as follows:

2., =Vr(o,)

E[g = BE[g2,, |+(1-B)(g,,?

0 = 0$.——g”.

where:

* g, is the gradient of the function f with respect to the parameter 0, at iteration t,
e B is the decay rate (typically set to 0.9),

e E [gtzj] is the moving average of squared gradients for parameter i up to iteration t,

e 0, is the updated parameter,
e o is the global learning rate,

e ¢ is a small constant to prevent division by zero.

RMSprop’s decay rate ¥ controls how much the algorithm considers the recent gradients compared
to the past gradients. By adjusting this parameter, RMSprop can balance the influence of the current
gradient and the historical gradients, preventing the learning rate from diminishing too quickly. The
main advantage of RMSprop is that it resolves Adagrad’s problem of diminishing learning rates,
making it more suitable for training deep neural networks. The controlled adjustment of learning
rates allows RMSprop to maintain a more consistent and effective learning process, even over
extended training periods. Assume we are optimizing a simple function:

f(x)=(x=2)
For example, if the parameters are:

* Global learning rate (a): 0.01,
e Decay rate (): 0.9,

e Small constant (¢): 1078, and
* Initial value of x, = 4.

At iteration 1, we calculate the gradient for x:

e Gradientat x: g, = 2(x,~2) =2(4-2) =4
e Exponential moving average of squared gradients (starting from 0):

Optimization Theory 165
E[¢, |=BE[%, |+ (1-B)g?, =0.9x0+0.1x4> = 1.6

—a 00 44 01=39

a
e Update rule forx: x, = x, —————=—=Xg =
S JE[e e JL6+10"

At iteration 2:

* Gradientatx, =3.9: g =2(3.9-2) =38
e Update the exponential moving average of squared gradients:

E[g2,]=09%1.6+0.1x3.8> =2.928

* Update rule for x,: x, = 3.9—$x 3.8=3.9-0.07=3.83

N2.928+1078

In this example, RMSprop adjusts the learning rate dynamically by calculating the exponentially
decaying average of past squared gradients. This prevents the learning rate from diminishing too
rapidly, as seen with Adagrad, allowing for more controlled and consistent updates to x.

5.6.7 ApbpAM (ADAPTIVE MOMENT ESTIMATION)

Adam is an optimization algorithm that combines the benefits of both Adagrad and RMSprop.
It leverages the advantages of adaptive learning rates and incorporates momentum to accelerate
convergence and stabilize updates. Adam maintains individual learning rates for each param-
eter by computing the first and second moments of the gradients. The first moment is the mean
of the gradients, and the second is the gradients’ uncentered variance. These moments are used
to adapt the learning rates for each parameter dynamically. The updated rules for Adam are as
follows:

g, =Vf(9,)

166 Mathematical Foundations for Deep Learning

where:

* g, is the gradient of the loss function with respect to the parameters at iteration t

e m andv, are the first-moment (mean) and second-moment (uncentered variance) estimates,
respectively

* B and B, are the decay rates for the moment estimates (commonly set to 0.9 and 0.999,
respectively)

s and 7 are the bias-corrected moment estimates

e o 1is the learning rate

* ¢ isasmall constant added to prevent division by zero

Adam combines the adaptive learning rate benefits of Adagrad and the exponentially decaying
average of squared gradients from RMSprop while also incorporating momentum to smooth out
the updates. This results in a robust and efficient optimization algorithm that performs well across
various problems. The main advantages of Adam are its suitability for problems with extensive
data and parameter spaces and its general effectiveness in practice. Adam typically converges faster
and more reliably than other optimization algorithms, making it a popular choice for training deep
neural networks and other complex models. However, Adam also has some drawbacks. The choices
of hyperparameters, such as learning and decay rates, can be critical and require fine-tuning. The
default values for these hyperparameters often work well, but for specific problems, manual tuning
may be necessary to achieve optimal performance. Assume we are optimizing a simple quadratic
function:

f(x)=(x=3)7?
For example, if the parameters are:

e Global learning rate (a): 0.1,

* Decay rates for the first moment (5,): 0.9,

* Decay rates for the second moment (5,): 0.999,
e Small constant (¢): 1078,

¢ [Initial value of x,=0,

* Gradient at iteration #: g = 2(x~3).

At iteration 1:

* Gradientis: g, =2(x;~3) =2(0-3) = -6
* First-moment estimate (m,): m, = fBm, + (1 - B,)gl =0.9%0+0.1x(—6)=-0.6
* Second-moment estimate (v,): v, = B,v, +(1-,)g? =0.999 X 0+0.001x (-6)> = 0.036

m.o 06

e Bias-corrected first moment (n%l): ﬂzl == -6
1-B 1-0.9
V .
* Bias-corrected second moment (V)): ¥, = L - =- 0.036 -
-8, 1-0.999

0.1

(04 ~
———xiit, = 0= ————x(-6)=0+0.1=0.1
JP, +e " V36 +10°8 -0

* Parameter update: x, = x, —

Optimization Theory 167

At iteration 2:

e Gradientatx, =0.1: g, =2(0.1-3) =-5.8
* First-moment estimate (m,): m, = 0.9 X (—0.6) +0.1x (—5.8) =-1.12
* Second-moment estimate (v,): v, = 0.999x0.036 +0.001 (-5.8)> =0.068

m
* Bias-corrected first moment (772,): 712, = . 0292 =-5.89
v
* Bias-corrected second moment (V,): v, = — 2 =34.06
1-0.9992

0.1

V34.06 +e

In this example, you can see how Adam combines the first and second moments (mean and variance)
to adjust the learning rate dynamically. The algorithm benefits from both momentum (accelerating
convergence) and adaptive learning rates (preventing small updates), making it highly effective for
optimizing complex functions.

e Parameter update: x, = x, — x(-5.89)=0.1+0.1=0.2

5.6.8 AbpaMax

AdaMax is an Adam optimization algorithm variant based on the infinity norm (maximum norm)
rather than the L, norm used in Adam. By using the infinity norm, AdaMax provides a different way
of adapting the learning rates, often leading to more stable and robust performance. The update rules
for AdaMax are like Adam but with modifications to incorporate the infinity norm:

g, = V(o)
mr =ﬁl’nt—l +(1_ﬁl)gt

)

u, =max(B,u,_,|g,

-1

where:

* g, is the gradient of the loss function with respect to the parameters at iteration t,

* m, is the first-moment (mean) estimate,

* u, is the exponentially weighted infinity norm,

* B and B, are the decay rates for the moment estimates (commonly set to 0.9 and 0.999,
respectively),

. r?zt is the bias-corrected first-moment estimate, and

e s the learning rate.

168 Mathematical Foundations for Deep Learning

The key difference between AdaMax and Adam lies in the estimation of the second moment. Instead
of using the uncentered variance, AdaMax uses the gradients’ infinity norm. This change simplifies
the denominator of the parameter update rule, leading to potentially more stable updates.

The main advantage of AdaMax is its stability and robustness compared to Adam. Using the
infinity norm helps control the learning rate more effectively, especially in scenarios where the
gradients can vary significantly. This can lead to more consistent performance and faster conver-
gence in some cases. Assume we are optimizing a simple quadratic function:

f (x) =(x-3)?
For example, if the parameters are:

e Global learning rate (a): 0.1,

* Decay rates for the first moment (5,): 0.9,

* Decay rates for the second moment (5,): 0.999,
¢ [Initial value of x,=0, and

* Gradient at iteration #: g = 2(x~3).

At iteration 1:

* Gradient: g, =2(x;~3) =2(0-3) =-6

* First-moment estimate (m,): m, = Bm, +(1-P,)g, = 0.9x0+0.1x(-6) = -0.6

* Infinity norm (maximum gradient value) (u): u, = max(ﬁ2u0,| g |) =max(0.999 x O,|—6|) =6
m, 0.6

* Bias-corrected first moment (77z,): 7it, = —— = =-6
-8 1-09

.1
* Parameter update: x, = x, —gxn%1 =0—0?><(—6):O+O.1 =0.1

u,

At iteration 2:

e Gradientatx, =0.1: g, =2(0.1-3) =-5.8
* First-moment estimate (m,): m, = 0.9%(-0.6)+0.1x(-5.8) = -1.12
* Infinity norm update (u,): u, = max(0.999 ><6,|—5.8|) =6

m
* Bias-corrected first moment (12,): 71, = 2_—_589

1-0.9?
¢ Parameter update: x, = x, —% X (—5.89) =~(0.1+0.098 = 0.198

In this example, AdaMax uses the infinity norm (maximum value) of the gradient, which makes the
denominator stable over iterations. This ensures smoother and more stable parameter updates, even
when gradients fluctuate. AdaMax’s stability can lead to more consistent performance, particularly
in problems where the gradients vary significantly.

5.6.9 NADAM (NESTEROV-ACCELERATED ADAPTIVE MOMENT ESTIMATION)

Nadam is an optimization algorithm combining RMSprop’s and Nesterov momentum’s benefits. By
integrating the adaptive learning rate mechanism of RMSprop with the momentum-accelerated gra-
dient updates of Nesterov momentum, Nadam aims to achieve faster and more reliable convergence

Optimization Theory 169

in various optimization tasks. Nadam modifies the standard Adam update rules by incorporating
Nesterov momentum. The key difference is in how the gradients are calculated, with Nadam com-
puting the gradients at the predicted future position of the parameters. The updated rules for Nadam
are as follows:

8, =V1(6)

where:

* g, is the gradient of the loss function with respect to the parameters at iteration t,

e m andv, are the first-moment (mean) and second-moment (uncentered variance) estimates,
respectively,

* B and B, are the decay rates for the moment estimates (commonly set to 0.9 and 0.999,
respectively),

s 7 and ¥, are the bias-corrected moment estimates,

* s the learning rate, and

e ¢ is a small constant added to prevent division by zero.

Nadam enhances the standard Adam algorithm by incorporating the look-ahead mechanism of
Nesterov momentum. This mechanism anticipates the future position of the parameters based on
their current velocity, leading to more informed and potentially more effective updates. The main
advantage of Nadam is that it can converge faster than Adam in some scenarios due to the added
momentum. By leveraging the predictive capability of Nesterov momentum, Nadam can accelerate
the optimization process, especially in cases where the objective function has complex or noisy
gradients. Assume we are optimizing a simple quadratic function:

f(x)=(x-3)
For example, if the parameters, be:

e Global learning rate (a): 0.1,
* Decay rates for the first moment (5,): 0.9,

170 Mathematical Foundations for Deep Learning

* Decay rates for the second moment (5,): 0.999,
e Small constant (¢): 1078,

¢ [Initial value of x,=0, and

* Gradient at iteration #: g = 2(x~3).

At iteration 1:

* Gradient: g1 =2(x,~3) =2(0-3) = -6
* First-moment estimate (m,): m, = ,m, + (1 -B,)gl =0.9%0+0.1x(—6)=-0.6
* Second-moment estimate (v,): v, = B,v, +(1-,)g? =0.999 X 0+0.001x (-6)* = 0.036

* Bias-corrected first moment (772,): 71, = ﬁ = 09" -6

* Bias-corrected second moment (V)): ¥, = l_vlﬁl =36

. L(,ool)<-ahela1d4gradient adjustment using Nesierov momentum: g’l =& +,31’h1 =-6+0.9x%
. 0.1

e Parameter update: x, = x, — X(—l 1.4) =0+0.19=0.19

L X g — 0 -
ﬁ +e J36 +10°8
At iteration 2:

* Gradient at x, = 0.19: g, = 2(0.19-3) = -5.62
* First-moment estimate (m,): m, = 0.9%(-0.6)+0.1x(-5.62) = —1.1
* Second-moment estimate (v,): v, = 0.999x0.036 +0.001x (-5.62)*> = 0.067

m

* Bias-corrected first moment (112,): 7, = 0 0292 =-5.89

* Bias-corrected second moment (V,): v, = —2 =335
1-0.9992

* Look-ahead gradient adjustment: g, = g, +0.9%(=5.89) = =5.62 +(-5.3) = =10.92

e Parameter update: x, = x, — %(-10.92)=0.19+0.19 =0.38

0.1
" /335+10°®

In this example, Nadam combines the adaptive learning rate of Adam and the look-ahead mech-
anism of Nesterov momentum. By anticipating the future position of the parameters, Nadam can
accelerate convergence, especially when dealing with noisy gradients. The look-ahead adjustment
helps make more informed updates, potentially improving performance over Adam in some opti-
mization tasks.

5.6.10 LeARNING RATE ANNEALING OR DEcay

Limited-memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) is an optimization algorithm
approximating the BFGS process using limited computer memory. It is a quasi-Newton method
that is particularly efficient for smaller datasets and certain types of optimization problems where
memory usage is a concern. Unlike the standard BFGS algorithm, which requires storing and
updating a full approximation of the Hessian matrix, L-BFGS maintains only a limited number of
vectors representing the approximation. This makes it more memory-efficient while still benefiting

Optimization Theory 171

from the quasi-Newton approach, which leverages curvature information to accelerate convergence.
The key steps of L-BFGS include initialization, iteration, and updating. Initially, the parameters
are set, and initial values for the limited-memory vectors are established. For each iteration, the
parameters are updated using a direction derived from the limited-memory approximation of the
inverse Hessian. The limited-memory vectors are then updated based on the latest parameter values
and gradients. The algorithm repeats these steps until convergence, using a small set of historical
gradients and parameter updates to approximate the curvature information. L-BFGS is efficient
for smaller datasets and certain types of optimization problems where memory usage is a concern.
It leverages curvature information to potentially accelerate convergence compared to first-order
methods like gradient descent. It is well-suited for optimization problems with a relatively small
number of parameters or when the full Hessian is impractical to compute and store. However, L-
BFGS is less commonly used for very large-scale deep learning tasks due to memory constraints
and the complexity of maintaining the limited-memory approximation in high-dimensional spaces.
It may not perform as well as some specialized optimization algorithms designed for deep learning
tasks, which can handle the unique challenges of training large neural networks. Suppose you are
optimizing a function with 50 parameters and storing a full Hessian matrix (which would require 50
x 50 = 2500 elements) is too memory-intensive. Using L-BFGS, you limit the storage to only the
five most recent updates, significantly reducing memory usage while still approximating the curva-
ture information. After initializing the parameters, each iteration updates the parameters using the
stored five vectors, allowing for faster convergence with minimal memory overhead. The L-BFGS
update rule is derived from the BFGS update but uses limited memory. The direction p, at iteration
k is calculated as:

p,=—H, ka
where:

e H, is the inverse Hessian approximation,
e V£ _is the gradient of the function at iteration k.

L-BFGS stores a small number of past gradients and updates to approximate H, efficiently, updating
the inverse Hessian approximation iteratively. This allows for memory-efficient optimization while
still leveraging second-order information. Suppose you are optimizing the function:

F(xy)=(x=2)+(y+3)
For example, if the parameters are:

e The function has two parameters, x and y, to minimize.

e Let’s assume you are using L-BFGS with a memory size of 2, meaning you store the 2 most
recent gradient updates.

¢ Initial values: X, = 0, Vo= 0.

Iteration 1 (Initial Setup):

I Gradient is: Vf (x,.3,)=(2(x,=2).2(y, +3)) = (2(0-2),2(0+3)) = (~4,6). This gradient
will be stored as the first historical gradient.

2 Initialize Hessian approximation H = I (the identity matrix, as L-BFGS starts with no curva-
ture information).

172 Mathematical Foundations for Deep Learning

3 Direction calculation: Py = —HOVf(xo,yO) =—IX (—4,6) = (4, —6)
4 Parameter update: (xl Y,) = (xo,y0)+ op, = (0,0)+ 0.1x (4, —6) = (0.4, —0.6)

Iteration 2:

1. Gradient is: Vf (xl 2V,) = (2(0.4 — 2),2(—0.6 + 3)) = (—3.2,4.8). This gradient is stored as the
second historical gradient.

2. Approximate Hessian update: Using the difference between gradients and parameter updates
from iteration 1 to iteration 2, the Hessian inverse approximation H, is updated using limited
memory (only the last two updates are stored).

3. Direction calculation: p, = —H Vf (xl,yl)

The direction now incorporates curvature information from the stored gradients, allowing for
a more efficient update.
4. Parameter update: (xz A) = (xl 2V,) +op,

The updated parameter values after this step will move toward the minimum more efficiently than
gradient descent. Instead of storing the full Hessian matrix (which for two parameters would be 2 x
2), L-BFGS only stores the most recent two gradients and updates, making it much more memory-
efficient. In a higher-dimensional example with 50 parameters, L-BFGS would store only a few
historical gradients and parameter updates (e.g., 5 or 10), rather than the full Hessian, which would
require 50 x 50 = 2500 elements. This reduction in memory allows for optimization in cases where
the full Hessian is impractical to compute and store. This memory efficiency makes L-BFGS suit-
able for smaller-scale problems or problems with limited memory resources while still benefiting
from second-order information for faster convergence.

5.7 REAL-WORLD APPLICATIONS AND EXAMPLES
5.7.1 SuppLy CHAIN OPTIMIZATION

Optimization techniques are extensively used in supply chain management to streamline operations
and reduce costs. For instance, linear programming is often employed to optimize the distribution
of goods from warehouses to various retail outlets. The goal is to minimize transportation costs
while meeting demand at each location. This involves solving a linear optimization problem where
constraints include transportation capacities, demand requirements, and available inventory. The
Simplex method is particularly effective here, providing an optimal solution that balances these
factors and ensures efficient resource allocation across the supply chain.

5.7.2 PortroLIO OPTIMIZATION IN FINANCE

In finance, optimization theory plays a crucial role in portfolio management, where the objective is
to maximize returns while minimizing risk. Portfolio optimization typically involves solving a non-
linear optimization problem where the return on investment is maximized under constraints such as
budget limitations and risk tolerance. Techniques such as quadratic programming are used to allo-
cate assets in a way that optimizes the expected return for a given level of risk, taking into account
the covariance between different assets. This approach helps investors make informed decisions,
balancing potential gains with associated risks.

5.7.3 TELECOMMUNICATIONS NETWORK DESIGN

Designing efficient telecommunications networks requires solving complex optimization problems
to ensure reliable and cost-effective service delivery. Integer programming is frequently used to

Optimization Theory 173

determine the optimal placement of network nodes and the routing of data across the network. This
involves minimizing the overall cost of the network infrastructure while ensuring sufficient cap-
acity and coverage to meet user demand. The B&B method is particularly useful for these types of
problems, where decision variables are often binary (e.g., whether to install a particular piece of
equipment or not).

5.7.4 ENERGY MANAGEMENT AND POWER GRID OPTIMIZATION

The management of power grids is a complex optimization problem that involves balancing supply
and demand while minimizing operational costs and ensuring stability. Convex optimization is often
applied to optimize the generation and distribution of electricity across the grid. The objective is
to minimize the cost of power generation while meeting the demand and adhering to operational
constraints, such as transmission limits and generation capacities. This is crucial for maintaining a
reliable power supply and reducing energy costs.

5.7.5 TRANSPORTATION AND LOGIsTICS

Combinatorial optimization is widely used in transportation and logistics to solve problems like
vehicle routing and scheduling. The TSP is a classic example where the goal is to find the shortest
possible route that visits a set of locations and returns to the starting point. Solutions to this problem
are crucial for delivery companies that need to minimize fuel costs and delivery times. Advanced
algorithms like genetic algorithms or ant colony optimization are employed to find near-optimal
solutions to these NP-hard problems, enabling companies to optimize their logistics operations.

5.8 HANDS-ON EXAMPLE

In this hands-on example, we’ll explore advanced optimization techniques for deep learning,
focusing on gradient descent and its variants.

Step 1: Import necessary libraries

In this step, we are importing the necessary libraries to build and train a neural network using
TensorFlow’s Keras API. First, we import the TensorFlow library and essential components from
TensorFlow.Keras, which is an easy-to-use API for building deep learning models. The sequential
class is used to create a linear stack of layers for the model, while dense layers are fully connected
layers, commonly used in neural networks. We also import three popular optimizers: SGD, Adam,
and RMSprop, each of which offers different strategies for adjusting the model’s weights during
training to minimize the loss function. Lastly, matplotlib.pyplot is imported as plt, which allows us
to create visualizations and plot the model’s performance.

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.optimizers import SGD, Adam, RMSprop
import matplotlib.pyplot as plt

5.7.2 Step 2: Prepare the dataset
In this step, we are loading and preprocessing the MNIST dataset, which is a widely used dataset of
handwritten digits (0-9) for training and evaluating machine learning models. The tf.keras.datasets.

174 Mathematical Foundations for Deep Learning

mnist is a built-in function in TensorFlow that provides easy access to this dataset. The dataset is
split into training (X_train, y_train) and testing (x_test, y_test) sets. Each image is represented as a
28 x 28-pixel grayscale image, where the pixel values range from 0 to 255. To simplify the model’s
learning process, the images are normalized by dividing each pixel value by 255, resulting in pixel
values within the range [0, 1]. This normalization step ensures that all input values are on the same
scale, which improves convergence during training. Finally, the images are flattened from 2D arrays
(28 x 28) into 1D arrays with 784 elements (28 x 28) to prepare them for input into a fully connected
neural network. This preprocessing step transforms the dataset into a suitable format for training
neural networks.

Load the MNIST dataset

mnist = tf.keras.datasets.mnist

(x_train, y train), (x test, y test) = mnist.load data()
Normalize the images to the range [0, 1]

x train, x test = x train / 255.0, x test / 255.0

Flatten the images

x _train = x train.reshape (-1, 28 * 28)

x test = x test.reshape (-1, 28 * 28)

5.7.3 Step 3: Build a simple neural network model

In this step, we define the function build_model that creates a simple neural network model using
the Keras Sequential API. The model consists of two layers: the first is a dense layer with 128
neurons and the Rectified Linear Unit (ReLU) activation function, which processes the flattened
784-dimensional input (representing each 28 x 28 pixel MNIST image), and the second layer is a
dense output layer with 10 neurons (one for each digit class, 0-9) and a softmax activation function.
The softmax function converts the outputs into probability distributions, making it suitable for
multi-class classification tasks. The model is compiled with the specified optimizer, the sparse cat-
egorical crossentropy loss function, which is used for multi-class classification, and the accuracy
metric to monitor performance during training. The function returns the compiled model, ready to
be trained on the MNIST dataset. This model is a simple feed-forward neural network designed to
classify the handwritten digits.

def build model (optimizer) :
model = Sequential ([
Dense (128, activation=‘relu’, input shape=(784,)),
Dense (10, activation=‘softmax’)
1)
model.compile (optimizer=optimizer,
loss=‘sparse categorical crossentropy’,
metrics=[‘accuracy’])
return model

5.7.4 Step 4: Train the model with different optimizers

In this step, we are defining a dictionary of three different optimizers (SGD, RMSprop, and Adam),
each with specified learning rates. These optimizers control how the model updates its weights
during training. The goal is to compare how different optimization algorithms perform on the same

Optimization Theory 175

task. The for loop goes through each optimizer in the dictionary and builds a new model using the
build_model function with that optimizer. For each model, training is carried out for 10 epochs
on the MNIST dataset with an 80-20 split between training and validation data. The model.fit()
function is responsible for training the model, and the training history, which includes details about
the loss and accuracy over each epoch, is stored in the histories dictionary. This setup allows us to
compare the performance of different optimization algorithms on the same model and dataset. The
progress of each optimizer is printed out, although the training output is set to be quiet with ver-
bose=0 to avoid cluttering the console.

optimizers = {
‘SGD’: SGD(learning rate=0.01),
‘RMSprop’: RMSprop (learning rate=0.001),
‘Adam’: Adam (learning rate=0.001)

}

histories = {}
for name, optimizer in optimizers.items() :
print (f“Training with {name}...”)
model = build model (optimizer)
history = model.fit (x train, y train, epochs=10, validation
split=0.2, verbose=0)
histories[name] = history

5.7.5 Step 5: Evaluate the models

In this step, we are evaluating the performance of models trained with different optimizers on the
test set. For each optimizer in the optimizers dictionary, a new model is created using the build_
model function, and the model is trained for 10 epochs on the MNIST dataset. The validation_
split=0.2 ensures that 20% of the training data is used for validation during training. After training,
the model is evaluated on the test set (x_test, y_test) using the model.evaluate() function, which
computes the test loss and test accuracy. The accuracy on the test set is printed for each optimizer,
allowing us to compare how well each optimization algorithm generalizes to unseen data. The ver-
bose=0 option ensures that the output is minimal, focusing on the final test accuracy results for each
optimizer, formatted to four decimal places for clarity.

for name, optimizer in optimizers.items() :
model = build model (optimizer)

model.fit (x train, y train, epochs=10, validation split=0.2,
verbose=0)

test loss, test acc = model.evaluate(x test, y test, verbose=0)
print (f’Test accuracy with {name}: {test acc:.4f}’)

5.9 COMMON MISTAKES AND TROUBLESHOOTING TIPS IN OPTIMIZATION

5.9.1 LINEAR OPTIMIZATION

* Mistake: Misinterpreting the feasible region in linear programming problems.

e Tip: Always clearly define and plot the constraints. Ensure the feasible region is correctly
identified as the intersection of all constraint regions.

176 Mathematical Foundations for Deep Learning

5.9.2 NON-LINEAR OPTIMIZATION

* Mistake: Ignoring the potential for multiple local optima.

* Tip: Use multiple starting points or global optimization techniques to increase the likelihood
of finding the global optimum.

* Mistake: Assuming that gradient-based methods will always converge to the global optimum.

» Tip: Recognize that gradient-based methods can get stuck in local optima. Consider using
hybrid methods that combine gradient-based approaches with heuristic or metaheuristic
methods.

5.9.3 INTEGER OPTIMIZATION

* Mistake: Treating integer variables as continuous.

e Tip: Ensure that the optimization algorithm respects the integer constraints. Use specific
integer programming solvers like B&B or cutting plane methods.

* Mistake: Using standard linear programming methods for integer problems.

e Tip: Employ algorithms designed for integer programming, such as the Simplex method
combined with B&B, to handle integer constraints effectively.

5.9.4 CoNvex OPTIMIZATION

* Mistake: Misidentifying non-convex problems as convex.

e Tip: Verify the convexity of the objective function and the feasible region. Only convex
problems guarantee that any local minimum is a global minimum.

* Mistake: Neglecting the role of constraints in defining convexity.

* Tip: Ensure that both the objective function and all constraints are convex so that convex opti-
mization techniques can be applied correctly.

5.9.5 CoMBINATORIAL OPTIMIZATION

* Mistake: Expecting exact solutions from heuristic methods.

e Tip: Understand that heuristic and metaheuristic methods provide good approximations
but not necessarily exact solutions. Use them when exact methods are computationally
infeasible.

5.9.6 STOCHASTIC OPTIMIZATION

* Mistake: Ignoring the impact of randomness on convergence.

e Tip: Use multiple runs with different random seeds to ensure robustness. Average the results
to get a more reliable solution.

* Mistake: Failing to model uncertainty accurately.

* Tip: Incorporate accurate probabilistic models for uncertainty. Use methods such as SGD and
SAA appropriately.

5.9.7 GRADIENT DESCENT

* Mistake: Using an inappropriate learning rate.
e Tip: Tune the learning rate carefully. A too-high learning rate can cause divergence, while a
too-low rate can lead to slow convergence.

Optimization Theory 177

e Mistake: Not normalizing input features.
e Tip: Normalize or standardize input features to ensure that gradient descent converges more
efficiently.

5.9.8 SiMPLEX METHOD

* Mistake: Misinterpreting degeneracy and cycling.

» Tip: Use anti-cycling rules like Bland’s rule to handle degeneracy and ensure convergence.

* Mistake: Ignoring the potential for large numbers of iterations in complex problems.

» Tip: For significant problems, consider alternative methods like Interior Point Methods that
may be more efficient.

5.9.9 LAGRANGIAN MULTIPLIERS

* Mistake: Misapplying Lagrangian multipliers to inequality constraints.
e Tip: Use Karush-Kuhn-Tucker (KKT) conditions for problems involving inequality
constraints.

5.9.10 B&B AND CuTTING PLANE METHODS

* Mistake: Underestimating the computational effort required.

e Tip: Use hybrid and heuristic methods to reduce computational effort in large-scale problems.
e Mistake: Ignoring the importance of initial bounds.

e Tip: Start with reasonable initial bounds to enhance the efficiency of B&B methods.

5.9.11 EVOLUTIONARY ALGORITHMS

* Mistake: Overfitting to the training data in GAs.

e Tip: Use techniques like cross-validation and regularization to ensure the generalizability of
the solutions.

* Mistake: Neglecting parameter tuning.

e Tip: Tune parameters such as population size, mutation rate, and crossover rate to balance
exploration and exploitation effectively.

5.10 REVIEW QUESTIONS

What are the critical differences between linear and non-linear optimization?

How do objective functions and constraints define an optimization problem?

What is the Simplex method, and how is it used to solve linear optimization problems?
How are feasible regions, constraints, and objective functions represented in linear
programming?

What challenges are associated with non-linear optimization compared to linear optimization?
What standard methods are used to solve non-linear optimization problems, such as
gradient-based and direct search methods?

What is integer programming, and in what scenarios is it advantageous?

How do B&B and cutting plane methods work, and what problems do they solve?

How do techniques like SAA and SGD handle uncertainty in optimization problems?

. In what types of optimization problems are GAs particularly effective?

Eall o e

oW

—_
© 0o © N

178 Mathematical Foundations for Deep Learning

5.11 PROGRAMMING QUESTIONS
5.11.1 Easy

Implement a simple linear regression model using gradient descent to fit a line to a set of data points.

Generate or load a dataset with a single feature and target variable.

Set initial values for the slope (/) and intercept (b) of the line.
Calculate the predictions using the current values of m and b.

Calculate the gradients of the loss function with respect to m and b.
Repeat the gradient descent steps for the specified number of iterations.

M

5.11.2 Mebium

Build a neural network to classify handwritten digits from the MNIST dataset.

Load the MNIST dataset. Normalize the images to the range [0, 1].
Split the dataset into training and testing sets.

Define a sequential model with input, hidden, and output layers.
Select an optimizer, loss function, and evaluation metric.

Include a validation split to monitor validation accuracy and loss.

M

5.11.3 HARD PROBLEM

Create a CNN to classify images from the CIFAR-10 dataset.

Load the CIFAR-10 dataset. Normalize the images to the range [0, 1].

Define a sequential model with convolutional, pooling, and dense layers.

Select an optimizer, loss function, and evaluation metrics.

Train the model on the training data with validation.

Evaluate the model’s performance on the test set.

Experiment with different architectures, hyperparameters, and regularization techniques
to improve performance. Use techniques such as grid search or random search for
hyperparameter optimization.

O

6 Information Theory

6.1 INTRODUCTION

Information theory is foundational in various areas, including communication, data compression,
cryptography, etc. Information is paramount in our rapidly evolving technological landscape,
bridging the gap between abstract thought and tangible computation. It defines how we communi-
cate, store, and process data. The theory’s ability to measure uncertainty, optimize data encoding,
and ensure reliable communication even in noisy environments underpins today’s digital infrastruc-
ture. As we delve into this subject, you will be introduced to foundational concepts such as entropy,
which quantifies the unpredictability of information content, and mutual information, which reveals
the shared knowledge between variables.

6.2 ENTROPY

Entropy, in the context of information theory, can be considered a measure of unpredictability or
uncertainty. Regarding data or messages, entropy scales the average level of “surprise” contained
in the potential outcomes. This might seem abstract but consider the flip of a fair coin. As it has an
equal probability of landing heads or tails, the result is very uncertain, leading to higher entropy.
In contrast, if you had a biased coin that almost always landed heads, its outcome’s entropy (or
uncertainty) would be much lower. For a discrete random variable x with a given probability distri-
bution P(x), where x is an outcome and P(x) is the probability of that outcome, the entropy H(x) is
calculated as:

ZP logP

xeX
where:

* H(X) is the entropy of the discrete random variable X,
e P(x) is the probability of outcome x,
e The summation runs over all possible outcomes x in the set X.

Here, the sum spans over all possible outcomes of x. The logarithm base often used in information
theory is base 2, which means the entropy is measured in bits. However, natural or logarithms to the
base 10 can also be used, resulting in entropy being measured in nats (when the logarithm base is
e (natural logarithm)) or dits (or Hartleys (when the logarithm base is 10)), respectively. The main
question is: Why does entropy matter? When considering transmitting messages or data, we want

DOI: 10.1201/9781032690742-6 179

http://dx.doi.org/10.1201/9781032690742-6

180 Mathematical Foundations for Deep Learning

FIGURE 6.1 Probability distributions of a fair coin and a biased coin.

to use as few bits as possible. Entropy gives us a lower bound on the average number of bits needed
to represent symbols from x. If symbols are encoded optimally, a more frequent symbol should
be assigned a shorter code, while a rare symbol might get a more extended code. This principle is
leveraged in data compression techniques like Huffman coding. Entropy H(x) tells us the minimum
average number of bits we would need per symbol if we could design our encoding most efficiently.
Entropy quantifies the uncertainty or unpredictability in a set of outcomes, guiding efficient data
encoding and offering insights into data’s inherent structure and randomness.

Figure 6.1 illustrates the probability distributions of a fair coin and a biased coin. The bar
plot shows the probability of obtaining “Heads” and “Tails” for each type of coin. The fair coin,
represented in blue with a striped pattern, has equal probabilities of 0.5 for both outcomes, resulting
in higher entropy, indicating maximum uncertainty. In contrast, the biased coin, shown in orange
with a slanted hatch, has a much higher probability for “Heads” (0.9) and a lower probability for
“Tails” (0.1), leading to lower entropy and reduced uncertainty.

6.3 JOINT AND CONDITIONAL ENTROPY

Joint and conditional entropies offer richer insights into systems with multiple interacting variables.
They provide a deeper understanding beyond individual uncertainties, offering a clearer picture of
the system’s dynamics and the relationships between its components.

6.3.1 JoINT ENTROPY

When we talk about two random variables, let us say X and Y, their combined uncertainty can be
represented by what we term “Joint Entropy.” The joint entropy of X and Y measures the uncer-
tainty (or unpredictability) associated with the pair (X, Y) when they are considered together.

Information Theory 181

Mathematically, for discrete random variables X and Y with joint probability distribution P(x, y),
the joint entropy H(X, Y) is defined as:

H(X,Y)==Y > P(xy)logP(x,y)

xeXyeY
where:

* H(X, Y) is the joint entropy of the random variables X and Y,
* P(x,y) is the joint probability of the outcomes x and y,

Here, the sum runs over all possible combinations of outcomes x from X and y from Y. Joint entropy
provides a more general view of the system’s unpredictability when both random variables are
considered together. For instance, if we have two correlated variables, knowing the outcome of one
might reduce the unpredictability of the other, leading to a joint entropy that is less than the sum of
their entropies. Suppose we have two random variables, X and Y, where X represents the outcome of
a coin toss (Heads or Tails), and Y represents the outcome of rolling a six-sided die (numbers 1-6).
Let’s assume that X has two possible outcomes: Heads (H) and Tails (T), each with a probability of
P(X=H)=0.5and P(X =T) =0.5. Y has six possible outcomes: Y = {1, 2, 3, 4, 5, 6}, with each

1
outcome having a probability P(Y = y) = P (fair die). The joint probability distribution P(X, Y)

would give the probability of each combination of X and Y. As X and Y are independent, the joint
probability PX =x,Y =y) = P(X =x) - P(Y =y). For example:

P(X:H,Y=1)=0.5><1=i, and P(X:T,Y:2)=0.5><1=i
6 12 6 12

and so on for all other combinations. Let’s compute joint entropy H(X, Y) for this example:

H(X.Y)= -3 Y P(xy)log,P(x.)

xeH y=1

1 .
As P(x, y) = T for each combination, the joint entropy will be:

1 1 1

H(X,Y)=-12X| —log, — [=—12X| — % (=3.585) [=3.585 bits
12 12 12

This value, 3.585 bits, represents the total uncertainty in the system when considering both the coin

toss and die roll together. The joint entropy is smaller than the sum of the individual entropies of X

and Y, reflecting the combined unpredictability of both variables.

6.3.2 ConNDITIONAL ENTROPY

Conditional entropy, denoted as H (Y|X), represents the average uncertainty remaining in Y once
the value of X is known. In other words, it quantifies how much we still do not know about Y even
after observing X. The conditional entropy H (Y|X) can be defined as:

H(Y1X)= Y P(x)H(YIX = x)

xeX

182 Mathematical Foundations for Deep Learning

where H (Y|X = x) is the entropy of Y given a particular value x for X. Alternatively, it can be
expressed in terms of joint and marginal probabilities:

H(Y1X)=-)Y Y P(x,y)log P(ylx)

xeXyeY

It is a powerful metric to determine how much one variable informs about another, providing
insights into the interdependencies and relationships between variables. This measure is central to
information theory and has significant implications in various domains, including data analysis and
machine learning. Imagine we have two random variables: X represents the weather, with possible
outcomes: Sunny (S) or Rainy (R). Y represents whether a person will carry an umbrella, with pos-
sible outcomes: Yes (Y) or No (N). Let’s say the following probabilities are given based on past data:

e P(X=95)=0.7, P(X =R) = 0.3 (the weather is sunny 70% of the time and rainy 30% of the
time).

e P(Y=YIX=S5)=02,P(Y =N | X =S8)=0.8 (if it’s sunny, the person carries an umbrella
20% of the time).

* PY=YI|X=R)=009,P(Y =N| X=R) =0.1 (if it’s rainy, the person carries an umbrella
90% of the time).

The conditional entropy H(Y | X) measures the uncertainty in Y (whether the person carries an
umbrella) given that we already know X (the weather). We can calculate it using the formula:

H(YIX)=-YP(X=x)YPY =ylX=x)log,P(Y =y I|X=x)

Now, let’s compute it:
1. ForX=S (Sunny): P(Y=Y|X=S5)=02,PY=N|X=S5)=0.8

H(Y1X =5)=—(021og,(0.2)+0.8log, (0.8)) = — (0.2 x (-2.322) + 0.8 X (-0.322))
=0.2X2.322+0.8x0.322 = 0.4644 +0.2576 = 0.722 bits

2. ForX=R (Rainy): P(Y=Y|X=R)=09,P(Y=N|X=R)=0.1

H(Y 1X = R) = —(0.910g,(0.9) +0.1log, (0.1)) = = (0.9 (~0.152) + 0.1 x (~3.322))
=0.9%0.152+0.1x3.322 = 0.1368 + 0.3322 = 0.469 bits

Now, using the total probability P(X), we can compute the overall conditional entropy:
H(YIX)=P(X=S)-H(YIX=S)+P(X=R)-H(YIX=R)
HY1X)=0.7-0.72240.3-0.469 = 0.5054 + 0.1407 = 0.646 bits

Thus, the conditional entropy H(Y | X) = 0.646 bits tells us the remaining uncertainty about whether
the person will carry an umbrella after knowing the weather. As this value is less than the entropy of
Y alone, it indicates that knowing the weather reduces our uncertainty about Y.

Figure 6.2 illustrates two key concepts in information theory: joint probability distribution and
conditional entropy. The left part of Figure 6.2a displays the joint probability distribution P(X, Y),

FIGURE 6.2

(a) Joint probability distribution P(X, Y), and (b) conditional entropy H(Y | X).

A109Y] uonew.loju|

€81

184 Mathematical Foundations for Deep Learning

showing how two random variables, X and Y, are related. Each cell in the matrix represents the
probability of a particular combination of values of X (X, X,, X,) and Y (¥, Y, Y,). For instance,
the probability of X, occurring with Y, is 0.20, indicating that this combination is more likely
compared to others, such as X and Y3, which have a lower probability of 0.05. The color scale on
the right provides a visual guide, with higher probabilities represented by yellow and lower prob-
abilities by darker shades. The right part of Figure 6.2b shows the conditional entropy H(Y | X)
for each value of X. This measure quantifies the uncertainty or unpredictability of Y given that X
has already occurred. For example, when X = X, the conditional entropy is approximately 1.522,
indicating a moderate level of uncertainty about Y. In contrast, when X = X, the entropy value is
lower at around 1.379, suggesting that knowing X, provides more information about ¥ compared
to other cases.

6.4 INFORMATION GAIN

Information gain quantifies the reduction in uncertainty about one variable given knowledge of
another variable. When the value of X significantly reduces the uncertainty of Y, the conditional
entropy H(Y | X) becomes much smaller than the entropy H(Y). This reduction in uncertainty indicates
that X provides information about Y, suggesting a strong dependency between them. Conversely, if
H(Y | X) is approximately equal to H(Y), knowing X does not enhance the prediction of Y signifi-
cantly, indicating that X and Y are largely independent regarding the information they convey. If
H(Y'| X) =0, knowing X allows us to predict Y perfectly, indicating a deterministic relationship. If
H(Y'| X) is high but not equal to H(Y), X provides some information about Y, but significant uncer-
tainty remains. In machine learning, information gain is crucial for feature selection and decision
tree algorithms. During feature selection, conditional entropy helps identify features that reduce
the uncertainty of the target variable. A feature X that significantly reduces H(Y | X) compared to
H(Y) is valuable for the model. Algorithms like decision trees use information gain to select features
that provide the highest reduction in entropy. At each step, the feature that offers the most signifi-
cant information gain about the target variable is chosen, improving the tree’s predictive accuracy.
Consider a simple weather prediction scenario where we want to predict whether it will rain (Y)
based on whether there are clouds in the sky (X).

¢ QOutcomes for Y (Rain): Yes (1), No (0)
¢ OQOutcomes for X (Clouds): Yes (1), No (0)

Probabilities are:

e PY=1)=04P(Y=1)=0.4 P(Y=1)=0.4 (probability of rain)

e P(Y=0)=0.6 P(Y=0)=0.6 P(Y=0) = 0.6 (probability of no rain)

e PX=1)=05PX=1)=0.5P(X=1)=0.5 (probability of clouds)

e PX=0)=0.5PX=0)=0.5P(X=0)=0.5 (probability of no clouds)

e PY=11X=1)=08PF¥=11X=1)=08P(Y=1|X=1)=0.8 (probability of rain given
clouds)

e PY=11X=0=02PFY=11X=0)=02PY=1]|X=0)=0.2 (probability of rain given
no clouds)

Let us calculate the entropy:

1. Entropy of Y (Rain):

H(Y)=—[0.41og, 0.4+0.6log, 0.6] = -[0.4x (—1.322) + 0.6 X (~0.737)] = 0.970 bits

Information Theory 185

2. Conditional Entropy of Y given X:
H(YIX)=P(X=1)-H(YIX=1)+P(X=0)-HYIX =0)
H(Y 1 X =1)=-[0.8log, 0.8+0.2log, 0.2] = 0.722 bits

HY X =0)=-0.2log,0.2+0.8log, 0.8] = 0.722 bits

HY1X)=0.5-0.722+0.5-0.722 = 0.722 bits

3. Information gain:
IG(Y;X)=H(Y)-H(Y1X)=0.970-0.722 = 0.249 bits

The information gain of 0.249 bits indicates that knowing whether there are clouds in the sky reduces
the uncertainty about whether it will rain by 0.249 bits.

6.5 MUTUAL INFORMATION

Mutual information is a fundamental quantity in information theory that quantifies the information
obtained about one random variable by observing another. It measures the dependence between two
variables and has wide applications in feature selection, machine learning, and data analysis. Mutual
information provides a quantitative measure of the relationship between two random variables. In
contexts like feature selection, it can help determine which features (variables) carry the most infor-
mation about the target variable, thereby being most relevant for tasks like classification or regres-
sion. There are three main basic properties of mutual information:

1. Symmetry: Mutual information is symmetric. This means that the amount of information
gained about X by knowing Y is the same as the amount of information gained about Y by
knowing X. It can be shown as: I(X; Y) = I(Y; X)

2. Non-Negative: Mutual information is always non-negative. If I(X; ¥) = 0, it implies that the
two random variables are independent, and knowing the value of one does not provide any
information about the other.

3. Range: Mutual information can take a value between 0 (when the variables are independent) and
the entropy of one of the variables (when one variable is a deterministic function of the other).

Here are the brief explanations of the mutual information formula:
IX;Y)=HX)-HXIY)

This formula means that the mutual information between X and Y is the difference between the
entropy of X (the uncertainty in X) and the conditional entropy of X given Y (the remaining uncer-
tainty in X when we know Y):

IX;Y)=H(Y)-H(YX)

Similarly, this formula shows that the mutual information between X and Y is the difference between
the entropy of Y (the total uncertainty in Y) and the conditional entropy H(Y | X) (the remaining
uncertainty in Y given that X is known).

186 Mathematical Foundations for Deep Learning

Mutual information is a powerful tool because it captures non-linear dependencies between
variables, unlike other measures, such as correlation, which capture only linear dependencies. If
the mutual information between two variables is high, the variables are strongly related. Suppose
we have two random variables: X represents the outcome of flipping a fair coin, with possible
outcomes: Heads (H) or Tails (T), each with a probability P(X =H) =0.5and PX=T)=05.Y
represents whether or not a person decides to walk based on the weather, with possible outcomes: Walk
(W) or Stay (S), each with a probability dependent on the coin flip (to simulate a correlation).

Let’s assume the probabilities based on the coin flip are:

If X = H (Heads), the person decides to walk with probability P(Y = W | X = H) = 0.8 and stays
withP(Y=S|X=H)=0.2.
If X =T (Tails), the person decides to stay with probability P(Y =S | X = T) = 0.9, and walks
withP(Y=W | X=T)=0.1.
Step 1: Calculate the individual entropies H(X) and H(Y):
H(X): Since X is a fair coin flip, the entropy of X is:
H(X)= —z P(X = x)log, P(X = x) =—(0.5log, 0.5+0.51log, 0.5) = 1 bit
H(Y): To calculate the entropy of Y, we first need the marginal probabilities for Y. These are:
P(Y=W)=PY=WIX=H)-P(X=H)+PY=WIX=T)-P(X=T)P
P(Y=W)=(0.8-0.5)+(0.1:0.5) = 0.4 +0.05=0.45
P(Y=S)=1-P(Y=W)=0.55
Now, we can calculate H(Y):
H(Y)=—(0.45log, 0.45+0.55log, 0.55) = —(0.45x ~1.152+ 0.55 x —0.863) = 1.027 bits

Step 2: Calculate the conditional entropy H(X | Y):

We need the conditional probabilities P(X | Y), but it’s easier to calculate H(X | Y) using the joint
probabilities of X and Y:

P(X=HY=W)=PY=WIX=H)P(X=H)=0.8x05=04
P(X=HY=S)=PY=SIX=H)-P(X=H)=02x05=0.1
P(X=T,Y=W)=PY =WIX=T)-P(X=T)=0.1x0.5=0.05
P(X=T.Y=8)=PY=SI1X=T)-P(X=T)=09%0.5=0.45

Using the joint probabilities, we calculate the conditional entropy H(X | Y):

P(X=xY=
H(X|Y>=—ZP(X=X,Y=y)10gz(p(+=y)y)

Information Theory 187

4 . .1 4
HX1Y)= —(0.4 log, % +0.051og, %+ 0.1log, % +0.451og, %) = (.56 bits

Step 3: Calculate mutual information I(X; Y):
Finally, mutual information I(X; Y) is the difference between the entropy of X and the conditional
entropy H(X | Y):

IX;Y)=HX)-HX|Y)=1-0.56 =0.44 bits

This result tells us that knowing Y provides 0.44 bits of information about X, meaning there is
some dependency between the two variables (but not complete dependence). The mutual infor-
mation quantifies this relationship and can be used to assess the strength of the dependency
between X and Y.

Figure 6.3 provides a view of the relationship between variables X and Y using information-
theoretic concepts. In subplot Figure 6.3a, the joint probability distribution P(X, Y) is visualized
as a heatmap. The distribution shows the probability values for combinations of X (with values X ,
X,, X,) and Y (with values Y, Y, Y)). Each cell in the matrix displays the probability associated
with a particular combination of X and Y. For example, P(X,, Y,) has a higher probability value
(0.20), highlighted in yellow, compared to other combinations. This heatmap provides insight into
how the two variables interact, showing the likelihood of different outcomes. Subplot Figure 6.3b
illustrates the conditional entropy H(Y | X), which measures the uncertainty in Y given that X is
known. The bar plot presents the conditional entropy values for each category of X. The values are
1.522 for X, 1.379 for X, and 1.500 for X, indicating how much uncertainty remains in Y when
each corresponding value of X is observed. Subplot Figure 6.3c shows the mutual information /(X;
Y), which quantifies the amount of information shared between X and Y. It is represented as a single
bar with a value of 0.059 bits, indicating that there is some degree of dependency between X and Y,
although it is relatively small.

6.6 DATA COMPRESSION

Data compression is a method to reduce the quantity of data used to represent information.
Understanding the statistical properties of data makes it possible to represent it more compactly
without losing essential information. With concepts like entropy, information theory offers a math-
ematical foundation to understand the limits and potential of data compression. The tools and
principles derived from this theory have driven the development of many efficient algorithms and
standards in digital communication and storage. In simple terms, entropy quantifies the amount
of uncertainty or randomness in a source of information. It measures the “surprisal,” how unex-
pected or uncertain a message is. When considering data compression, a high-entropy source means
that the data is complex to predict and, hence, more challenging to compress, while a low-entropy
source indicates the opposite. For a given source of data or a message, the entropy provides a the-
oretical lower bound on the average number of bits needed to encode symbols from that source. In
other words, it gives the minimum bits required to represent the information without any loss. This
understanding is pivotal in designing efficient encoding schemes. If an encoding scheme achieves
this bound, it is considered optimal. There are several applications for it in encoding. For instance,
if you are trying to encode a text written in English, not all letters or combinations of letters occur
with equal frequency. Spaces, vowels like “e” and “a,” are more frequent than letters like “z” or “q.”
One can achieve compression by using fewer bits to represent frequently occurring letters and more
bits for less frequent ones. This is the basic idea behind Huffman coding, a popular lossless data

FIGURE 6.3 (a) Joint probability distribution P(X, Y), (b) conditional entropy H(Y | X), and (c) mutual information I(X; Y).

881

Suruaea des(40y suoepunod [edieWwayIe

Information Theory 189

compression algorithm. Let us have a review on lossless vs. lossy compression. It is essential to dif-
ferentiate between two primary types of data compression: lossless and lossy.

1. Lossless Compression: This method ensures that the original data can be perfectly
reconstructed from the compressed data. It is used in applications where the preservation of
original data is crucial, like text files or certain types of image and audio files (e.g., PNG,
FLAC).

2. Lossy Compression: This method sacrifices some data for higher compression rates, meaning
the original data cannot be perfectly reconstructed. It is often acceptable for multimedia
applications like audio, images, and videos where some loss of detail might not be percep-
tible to human senses (e.g., MP3, JPEG).

Consider a text written in English where each letter has a different frequency of occurrence. The
letter “e” appears frequently, while the letter “z” appears much less often. Using Huffman coding, a
lossless data compression technique, we can assign shorter codes to more frequent letters and longer

codes to less frequent ones. Suppose the probabilities of four letters are as follows:
“e”:0.3; “a”: 0.25; “t”: 0.2; and “z”: 0.05
Using Huffman coding, we can assign binary codes like this:

“e” — 1 (1 bit), “a” — 01 (2 bits), “t” — 001 (3 bits) and “z”” — 000 (3 bits)
The most frequent letter, “‘e,” gets the shortest code (1 bit), while the least frequent letter, “z,” gets
a longer code (3 bits), making the overall encoding more efficient. The entropy of a source, denoted
as H(X), quantifies the uncertainty or “randomness” in the source and provides a lower bound on the
average number of bits required to encode the data. For a source X with probabilities p(x,) for each
symbol x,, the entropy is defined as:

n

H(X)= —Zp(xi)logZP(xl.)

i=1

For the example above with letters “e,” “a,” ““t,” and “z,” the entropy calculation would be:
H(X)=—-(0.3log, 0.3+0.251log, 0.25+0.21og, 0.2+ 0.05log, 0.05) = 1.9 bits

This means, on average, 1.9 bits are required to represent a letter from this source, and Huffman
coding brings us close to this limit.

Figure 6.4 explores the frequency distribution of letters in English text and their corresponding
encoding lengths using Huffman Encoding. In subplot Figure 6.4a, the letter probabilities are shown
as a bar chart, representing the relative frequencies of each letter in English text. The chart reveals
that some letters, like “e” (with a probability of 0.112) and “#” (with a probability of 0.080), occur
more frequently than others, such as “g” and “z,” which have much lower probabilities (0.001). This
variation in frequencies reflects the nature of English, where certain letters are used far more often.
Understanding these probabilities is fundamental for efficient data encoding, as frequent letters
can be assigned shorter codes to reduce overall message length. Subplot Figure 6.4b illustrates
the Huffman Encoding Lengths assigned to each letter based on the probabilities shown in subplot
Figure 6.4a. In Huffman encoding, letters that appear more frequently are assigned shorter binary
codes, while those that occur less frequently are given longer codes. For instance, the letter “e” with

FIGURE 6.4 (a) Letter probabilities in English text, and (b) Huffman encoding lengths for letters.

061

Suruaea des(40y suoepunod [edieWwayIe

Information Theory 191

the highest probability, has an encoding length of 4 bits, while infrequent letters like “g” and “z”
require 11 bits.

6.7 CHANNEL CAPACITY AND SHANNON’S THEOREM

In practical terms, Shannon’s theorem laid the theoretical foundation for modern digital communi-
cation systems. Many communication systems today, like those used in cellular networks or satel-
lite communication, employ error-correcting codes to approach the channel capacity as closely as
possible and ensure reliable data transfer. Channel capacity is a fundamental concept in information
theory. It represents the highest rate at which information can be reliably transmitted over a given
communication channel. Expressed in bits per second (bps), the maximum number of bits that can
be sent over the channel per unit of time with an arbitrarily low error rate. Importantly, capacity is
not about the speed of data transfer but how much information can be reliably conveyed. This means
that even if a channel can transfer large amounts of data quickly, it might still have a low capacity
if much of that data is redundant or corrupted. Factors that can impact the channel capacity include
the channel’s bandwidth, the signal’s power, the environment’s noise, and the channel’s inherent
characteristics. The Shannon theorem is a profound insight into the nature of communication over
noisy channels. In essence, it states that reliable communication over a noisy channel is possible
up to a specific maximum rate, known as the channel capacity. It is possible to encode messages
below this rate so that the probability of error in decoding the message can be made arbitrarily small.
However, above this rate, no encoding method will avoid a high probability of error. Given a noisy
channel with a known capacity, it suggests that one can design encoding and decoding schemes (or
error-correcting codes) to ensure almost error-free communication as long as the communication
rate stays below the channel capacity. However, errors will become unavoidable once you try to
transmit information at a rate higher than the channel capacity. Consider a cellular network where
the channel has a bandwidth of 1 MHz (1,000,000 Hz), and the signal-to-noise ratio (SNR) is 10 (in
linear scale, equivalent to 10 dB). Using Shannon’s theorem, we can calculate the maximum channel
capacity, which gives the upper limit on how much information can be transmitted reliably over
this channel. Shannon’s channel capacity theorem defines the maximum rate C (in bps) at which
information can be transmitted over a noisy channel without error as long as the transmission rate is
below this capacity. The formula for the channel capacity C is given by:

C = Blog, (1+SNR)

where:

e C s the channel capacity in bps,
e B is the bandwidth of the channel in hertz (Hz),
* SNRis the signal-to-noise ratio (in linear form, not dB).

For the cellular network example, bandwidth B = 1,000,000 Hz, and SNR = 10 (in linear scale).
Using the formula:

C =1,000,000x log, (1 + 10) = 1,000,000 x 3.459 = 3.459 Mbps

This means the maximum channel capacity for this network is approximately 3.459 Mbps. As long
as the transmission rate remains below this limit, reliable communication with very low error rates
is possible.

192 Mathematical Foundations for Deep Learning

FIGURE 6.5 Channel capacity as a function of SNR.

Figure 6.5 represents the relationship between SNR and the maximum achievable data rate (in
bps/Hz) of a communication channel, following Shannon’s capacity formula. The blue curve shows
how the channel capacity increases as the SNR improves. At lower SNR values, specifically when
the SNR is below 0 dB (marked by the vertical dashed line), the capacity remains low, indicating
the region of unreliable communication, highlighted in red. This area signifies that when the noise
level is too high compared to the signal strength, achieving a reliable communication rate is challen-
ging or impossible. As the SNR increases beyond the 0 dB threshold, the channel enters the reliable
communication region, shaded in green. In this region, the capacity of the channel improves signifi-
cantly with higher SNR values, reflecting that a stronger signal relative to noise allows for higher
data transmission rates while maintaining reliability.

6.8 KULLBACK-LEIBLER DIVERGENCE

The Kullback-Leibler (KL) divergence is used to quantify the difference between two probability
distributions. It is essential in statistics, information theory, and machine learning. The KL divergence
is a powerful tool for understanding and quantifying differences between probability distributions,
playing a central role in many machine learning algorithms and statistical measures. The KL diver-
gence is defined for two discrete probability distributions, P and Q. Usually, P represents the “true”
distribution of data, observations, or a precisely calculated theoretical distribution. In contrast, Q
typically represents the approximation, hypothesis, or a model’s predictions. The KL divergence of
Q from P is defined as:

P(x)
0(x)

The logarithm is typically taken in base two if we measure the divergence in bits or base e (natural
logarithm) for nats. KL divergence is asymmetric, meaning D, (P Il Q) is not necessarily equal

Dy, (P11Q)=YP(x)log

Information Theory 193

to D, (O Il P). This is a fundamental property, implying that the “cost” of approximating P with
Q can differ from the “cost” of approximating Q with P. In machine learning, KL divergence
is commonly used in algorithms that involve probability distributions. For instance, it is used in
variational inference to measure the divergence between the actual posterior distribution and its
approximation. We are training specific generative models like variational autoencoders (VAESs).
Information retrieval is used to compare the distribution of terms in different documents. A KL
divergence of 0 indicates that the two distributions are identical. As the divergence increases, the
difference between the two distributions grows. However, be cautious: the KL divergence can be
infinite if any value for which P(x) is non-zero and Q(x) is zero. This is because the logarithm of
zero becomes undefined, highlighting a fundamental mismatch between the distributions. Consider
two probability distributions P and Q for a simple coin flip scenario, where the coin can land on
heads (H) or tails (T). Let:

e P(H)=0.6, P(T) = 0.4 (true distribution),
e Q(H)=0.5Q(T) =0.5 (model’s predicted distribution).

The KL divergence between P and Q quantifies how much information is lost when using Q to
approximate P. The KL divergence between two discrete probability distributions, P and Q, is
defined as:

P(x)
0(x)

Dy, (P11Q) =Y P(x)log

where:

DKL(P Il Q) is the KL divergence of Q from P,
* P(x) is the probability of event x in the true distribution P,
* Q(x) is the probability of event x in the model’s approximation Q.

For the coin flip example, the KL divergence is calculated as:

0.6 0.4
D (PI1Q)=0.6log 22 +0410g 2
w (P1O) 805 805

Calculating each term:
0.6 0.4
0.6logﬁ ~0.6x1log(1.2)=0.04751 and 0.4 1ogE ~ 0.4 x1og(0.8) = 0.03876

Thus:

D, (P11Q)=0.04751-0.03876 = 0.00875

In this case, the KL divergence (D, (P Il Q)) is approximately 0.00875, quantifying the extent to
which the distribution Q diverges from P. KL divergence of 0 would indicate that the two distributions
are identical, while any positive value reflects the difference in information content between them.
Figure 6.6 represents these differences and quantifies them using KL divergence. Figure 6.6
subplot a illustrates the true distribution (P), where probabilities are assigned to each event as
follows: Event 1 has a probability of 0.40, Event 2 is assigned 0.35, Event 3 is 0.20, and Event 4 is
0.05. This distribution serves as the baseline or observed probabilities for each event. In contrast,

FIGURE 6.6 (a) True distribution P and (b) approximate distribution Q.

6l

Suruaea des(40y suoepunod [edieWwayIe

Information Theory 195

subplot Figure 6.6b displays the approximate distribution (Q), where the probabilities differ: Event
1 is assigned a probability of 0.30, Event 2 is 0.25, Event 3 remains at 0.20, and Event 4 increases
significantly to 0.25. These changes indicate deviations between P and Q, suggesting that Q only
partially approximates the true distribution. Above the bar plots, the figure presents the calculated
KL divergence values. The KL(P || Q) is 0.220 bits (shown in blue), quantifying the information lost
when Q is used to approximate P. The KL(Q |l P) is 0.335 bits (shown in red), measuring the diver-
gence in the reverse direction. The asymmetry in these values highlights that KL divergence is not
symmetric. The difference in magnitude reflects the distinct perspectives of approximating P using
Q vs. Q using P. The smaller value for KL(P || Q) suggests that Q provides a relatively reasonable
approximation of P, but some discrepancies remain.

6.9 INFORMATION THEORY IN MACHINE LEARNING AND DEEP LEARNING

In machine learning, information gain, a concept based on entropy, is used in decision trees to decide
which feature to split on at each node. Clustering algorithms utilize mutual information to measure
cluster similarity, enhancing the grouping of similar data points. In neural networks, especially in
areas like VAESs, concepts such as KL divergence are employed to measure the difference between
the learned representation and the actual data distribution, thereby optimizing model performance
and representation accuracy. As deep learning continues to evolve, the foundational principles of
information theory will likely remain integral in providing insights and tools for advancing the field.
Information theory provides a framework to quantify the maximum amount of information that a
network can store or process, which is intricately linked to its architecture and size. The architecture
of a neural network, including the number of layers and the number of neurons per layer, determines
its capacity to represent complex functions. Information theory helps quantify this capacity, offering
a precise measure of how much information the network can capture from the input data. This
understanding is crucial for designing networks that are neither underfitting nor overfitting the
data. Activation functions play a pivotal role in how information flows through a network. From
an information-theoretic perspective, activation functions can be analyzed based on their ability to
maintain or transform information as it propagates through the layers. For instance, functions like
ReLU (Rectified Linear Unit) can help preserve the gradient during backpropagation, preventing
issues like vanishing gradients and ensuring efficient information flow. Optimizing the selection and
design of activation functions can significantly enhance the network’s performance and efficiency.
The information bottleneck principle provides another layer of understanding by examining how
networks compress input information into a more compact representation while retaining essen-
tial features. This principle aids in developing models that balance complexity and generalization,
ensuring that the network captures the most relevant information for the task at hand. Techniques
such as mutual information can measure the amount of information shared between different net-
work layers. This measurement can guide the adjustment of network parameters to maximize the
flow of relevant information, thereby improving the learning process and the model’s overall effect-
iveness. Consider a neural network with three layers: an input layer with 10 neurons, a hidden layer
with 50 neurons, and an output layer with 5 neurons. The architecture defines the network’s capacity
to store and process information. Using information theory, we can analyze how much information
this network can theoretically capture from the input data and how efficiently it can transform that
information across layers. The capacity of a neural network can be related to the number of weights
(parameters) it has. For a simple, fully connected neural network with L layers, where each layer i
has n, neurons, the total number of weights is:

L-1
Total weights = Zni Xn,,

i=1

196 Mathematical Foundations for Deep Learning

In our example:

e Input layer: 10 neurons,
e Hidden layer: 50 neurons,
e Output layer: 5 neurons.

The number of weights between layers is:

* From input to hidden: 10 x 50 = 500 weights,
e From hidden to output: 50 x 5 = 250 weights.

Thus, the total number of weights is:
500 + 250 = 750 weights

This means the network can store a significant amount of information across these 750 connections,
which directly influences its capacity to represent complex functions.

6.9.1 REGULARIZATION AND OPTIMIZATION

Regularization and optimization in neural networks often utilize concepts from information theory
to improve model performance and generalization. For example, VAEs are a generative model
that incorporates the KL divergence as a regularization term. This information-theoretic measure
ensures that the learned latent variable distribution remains close to a prior distribution, typically
Gaussian, thereby enhancing the generative capabilities of the model. Another method, the infor-
mation bottleneck, aims to retain as much relevant information about the input while compressing
or removing irrelevant information. This method quantifies compression and retention using mutual
information, balancing the trade-off between preserving essential information and reducing redun-
dancy. By focusing on these principles, neural networks can achieve more efficient and effective
learning outcomes. Regularization techniques, such as dropout or weight decay, are also informed
by information theory, aiming to control the amount of information stored in the network weights
and promoting better generalization to unseen data. Consider training a VAE on the MNIST dataset,
where the latent space is represented by two dimensions, and the goal is to generate digit images.
A KL divergence regularization term is used to ensure that the latent space z follows a Gaussian
distribution with a mean of 0 and variance of 1. Let’s assume the learned latent variable distribution
has a mean p = 0.5 and variance 6 = 0.25. The KL divergence between this learned distribution and
the prior N(0, 1) (a standard normal distribution) is calculated as:

2
I 025+(0.5)

g ~1=1.386
0.25 2

Dy, (q(z1x) lIp(z)) =1lo

This KL divergence value of 1.386 indicates that the learned distribution deviates from the Gaussian
prior, and the model will be penalized accordingly.

6.9.2 GENERALIZATION AND OVERFITTING

The capacity of a model is intrinsically related to its ability to fit noise in the data. A model with
a higher capacity, such as a deep neural network, can fit the training data more closely but is also
more prone to overfitting. Overfitting occurs when the model captures not only the underlying
patterns but also the random noise in the data, leading to poor generalization on new, unseen data.

Information Theory 197

Information-theoretic measures provide a quantitative framework to assess this capacity and the
trade-off between fitting the data and overfitting. By using concepts such as entropy and mutual
information, researchers can evaluate how much information the model retains and whether this
information is relevant or merely noise. This approach helps in designing models that balance com-
plexity and generalization, ultimately enhancing their performance on real-world tasks. Consider a
neural network trained on a dataset of 1000 points. The model has 100,000 parameters (weights),
which gives it a high capacity to fit the data. During training, the model achieves near-perfect
accuracy, with a training loss of 0.02. However, when tested on unseen data, the test loss is much
higher, at 1.5, indicating overfitting. The model has captured not only the true patterns in the training
data but also the noise, leading to poor generalization.

6.9.3 MODEL INTERPRETABILITY

Model interpretability is crucial for understanding how a deep learning model makes its predictions.
Using mutual information, we can quantify the importance of different features or inputs by meas-
uring how much information each feature shares with the output. This information-theoretic
approach provides a clear and quantitative method to identify which features contribute most to the
model’s predictions, enhancing our ability to interpret and trust the model. By analyzing mutual
information, researchers can gain insights into the relationships between inputs and outputs, leading
to more transparent and explainable models. This interpretability is essential for applications where
understanding the decision-making process is as important as the predictions themselves. Suppose
a neural network is trained to predict housing prices using features like square footage, number
of rooms, and distance to the city center. Using mutual information, we can calculate that square
footage has a mutual information score of 0.8, while the distance to the city center has a mutual
information score of 0.4. This tells us that square footage contributes more to the model’s predictions
than the distance to the city center, helping us interpret the model.

6.9.4 TRANSFER LEARNING AND DOMAIN ADAPTATION

Information theory offers valuable tools for measuring and managing the differences between
source and target domains in transfer learning and domain adaptation. A crucial aspect of this pro-
cess is measuring domain shift, which involves quantifying the difference between source and
target distributions using measures like KL divergence. These information-theoretic metrics help in
understanding how much the domains differ, allowing models to be adapted accordingly. Optimal
transport techniques, such as the Wasserstein distance, which is rooted in information geom-
etry, provide a more nuanced approach to measuring the difference between distributions. These
techniques are particularly effective in guiding the alignment of source and target domains, ensuring
that the model can generalize well to the target domain by minimizing the discrepancies between the
distributions. By leveraging these information-theoretic approaches, transfer learning, and domain
adaptation can be more precisely tuned, leading to better model performance in new and diverse
environments. Imagine a model trained on a source domain of animal images (e.g., cats and dogs)
and then applied to a target domain of wild animals (e.g., lions and tigers). The KL divergence
between the source and target distributions is calculated as 1.2, indicating a significant shift in data.
By minimizing this divergence, the model can be adapted to perform better on the target domain.

6.9.5 ADVERSARIAL ATTACKS AND ROBUSTNESS

Information theory can be a powerful tool for measuring the robustness of neural networks to
adversarial attacks. By quantifying how much an adversarial input perturbs the information flow
within the network, we can assess the network’s vulnerability. Specifically, information-theoretic

198 Mathematical Foundations for Deep Learning

measures can help determine the extent to which an adversarial input disrupts the network’s
internal representations and decision-making processes. This quantification allows for a deeper
understanding of the network’s resilience and provides insights into developing more robust models
that can withstand adversarial perturbations, ultimately leading to more secure and reliable neural
network applications. Suppose a neural network is trained to classify images of digits (0-9), and an
adversarial attack perturbs an input image, changing the model’s classification from 3 to 7. Using
mutual information, we calculate that the perturbed input reduces the information shared between
the network’s internal layers and the true label by 0.6 bits, indicating a significant disruption in the
network’s decision-making process.

6.9.6 NEURAL ARCHITECTURE SEARCH

Information-theoretic concepts can significantly enhance the process of Neural Architecture Search
(NAS) by guiding the exploration of efficient neural architectures with an optimal trade-off between
accuracy and complexity. By applying measures such as entropy and mutual information, researchers
can evaluate and compare different architectures to identify those that capture the most relevant
information while maintaining a manageable level of complexity. This approach helps in designing
neural networks that achieve high performance without unnecessary computational overhead,
leading to models that are both accurate and efficient. Utilizing information theory in NAS allows
for a more systematic and theoretically grounded search for the best possible neural architectures.
Consider two neural architectures: Architecture A with 5 million parameters and Architecture B
with 2 million parameters. Using mutual information, we find that Architecture A captures 1.2 bits
of relevant information from the input, while Architecture B captures 1.1 bits. Despite the slight
difference in information captured, Architecture B is more efficient due to its lower parameter count,
making it a better choice in terms of balancing accuracy and complexity.

6.9.7 LAYER-WISE RELEVANCE PROPAGATION

Layer-wise relevance propagation (LRP) is an interpretability technique that uses concepts rooted
in information theory to explain the decisions of deep networks. By propagating relevance scores
from the output back to the input, LRP provides a measure of the contribution of each input feature
to the final decision. This backward propagation of relevance scores helps in understanding which
features are most influential in the model’s predictions, offering valuable insights into the inner
workings of the network. This technique enhances model transparency and trustworthiness, making
it easier to diagnose model behavior and improve its design based on the relevance of different
features. Consider a neural network that classifies images of cats and dogs. For an image of a dog,
LRP assigns relevance scores to input pixels. The pixels corresponding to the dog’s ears and eyes
receive high relevance scores of 0.9 and 0.8, respectively, indicating that these features are the most
influential in the model’s decision. LRP computes relevance scores for each neuron in the network.
The relevance score Rj for neuron j in layer | is propagated from the relevance scores R, of neurons
in the next layer 1 + 1:

aj ij
Beds o,k
kL 5
where:

* a is the activation of neuron j,
* w, is the weight between neuron j and neuron K in the next layer.

Information Theory 199

6.10 REAL-WORLD APPLICATIONS
6.10.1 DATA COMPRESSION

One of the most direct applications of information theory is in data compression. The concept of
entropy, which measures the unpredictability or information content of a source, is foundational in
developing efficient compression algorithms. For instance, Huffman coding, a widely used method
for lossless data compression, leverages entropy to assign shorter codes to more frequent symbols
and longer codes to less frequent ones. This approach minimizes the average length of the data
representation, reducing storage requirements without losing any information. This principle is vital
in formats such as PNG for images and FLAC for audio, where exact reproduction of the original
data is crucial.

6.10.2 CRYPTOGRAPHY

Information theory plays a crucial role in cryptography, ensuring secure communication by meas-
uring the uncertainty and unpredictability of data. The entropy of a cryptographic key, for instance,
quantifies its strength: the higher the entropy, the more unpredictable and secure the key is.
Information theory also guides the design of encryption algorithms, helping to balance the trade-offs
between security and performance. Mutual information, which measures the dependency between
variables, is used to assess the strength of encryption schemes by ensuring that encrypted data
reveals minimal information about the original data.

6.10.3 TeLECOMMUNICATIONS AND ERROR CORRECTION

Shannon’s noisy channel coding theorem, a cornerstone of information theory, underpins the design
of reliable communication systems. This theorem quantifies the maximum rate at which information
can be transmitted over a noisy channel while still being reliably decoded. In practice, this principle
is applied in developing error-correcting codes, such as Reed-Solomon or Turbo codes, which are
used in CDs, DVDs, and mobile communications. These codes add redundancy to the transmitted
data, allowing the receiver to correct errors caused by noise, ensuring the integrity of the information
despite transmission errors.

6.10.4 NETWORK SECURITY AND ANOMALY DETECTION

Information theory aids in detecting anomalies in network traffic, a crucial aspect of cybersecurity.
By analyzing the entropy of network packets, security systems can identify unusual patterns that may
indicate a security breach or attack. For example, a sudden decrease in entropy might suggest that
an attacker is using a predictable, repetitive pattern to infiltrate the network. Similarly, mutual infor-
mation can be used to detect relationships between seemingly unrelated data streams, uncovering
hidden channels or covert communication attempts within the network.

6.10.5 BioLocicAL DATA ANALYSIS

In bioinformatics, information theory is employed to analyze complex biological data, such as
gene expression patterns. Entropy measures the diversity and variability within gene expression
profiles, helping researchers identify genes that are most variable across conditions or diseases.
Mutual information is used to assess the dependency between different genes or between genes and
phenotypic traits, providing insights into the underlying regulatory mechanisms. This application is
crucial for understanding complex biological systems and for identifying potential targets for drug
development.

200 Mathematical Foundations for Deep Learning

6.10.6 FINANCE AND RISk MANAGEMENT

In finance, information theory assists in portfolio optimization and risk management by analyzing
the dependency and information flow between different financial assets. Mutual information can be
used to measure the strength of the relationship between different stocks or asset classes, helping
investors diversify their portfolios effectively. By understanding the information shared between
assets, financial models can predict market movements more accurately and manage risk more
effectively, leading to more robust investment strategies.

6.11 HANDS-ON EXAMPLE

In this section, we will explore the concept of entropy and mutual information within the context of
neural networks.

6.11.1 Step 1: IMPORT NECESSARY LIBRARIES

First, we are importing essential libraries for building and evaluating machine learning models. First,
NumPy is imported as np for numerical operations such as array manipulation. Then, matplotlib.
pyplot is imported as plt for plotting and visualizing data. TensorFlow (tensorflow) is imported,
along with Keras modules (Sequential and Dense) to define and build neural network models.
Additionally, we import mutual_info_score from the sklearn.metrics library, which is used to com-
pute the mutual information between two variables, a measure of how much information one vari-
able provides about another. Finally, entropy from scipy.stats is imported to compute the entropy of
distributions, which quantifies the uncertainty or randomness in the data.

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

from sklearn.metrics import mutual info score
from scipy.stats import entropy

6.11.2 Step 2: GENERATE SAMPLE DATA

We define a function generate_data to create a simple synthetic dataset for binary classification. The
function takes n_samples as an input, which specifies the number of data points to generate. Inside
the function, X is a 2D array of shape (n_samples, 2) containing random values between 0 and 1,
generated using np.random.rand(). Each row of X represents a sample with two features. The target
labels y are then computed based on a simple rule: if the sum of the two features in a sample is
greater than 1, the corresponding label is set to 1; otherwise, it’s set to 0. This creates a classification
problem where the decision boundary is the line x, + x, = 1. The dataset consists of X (features) and
y (labels), and after generating the data for 1000 samples, it is stored in the variables X and y for
further analysis or model training.

Generate a simple dataset
def generate data(n_samples) :
X = np.random.rand(n_samples, 2)

Information Theory 201

y = (X[:, 0] + X[:, 1] > 1).astype(int)
return X, y
X, y = generate data(1000)

6.11.3 Step 3: CaLcuLATE ENTROPY

Here, we define a function calculate_entropy that calculates the entropy of a given set of labels.
Entropy is a measure of the uncertainty or randomness in the distribution of labels. The function uses
np.unique() to find the unique values in the labels array and count their occurrences. The entropy
is then computed using the entropy() function from the scipy.stats library, which takes the counts
of each unique value as input. Higher entropy means the labels are more evenly distributed, while
lower entropy indicates that the labels are more skewed toward a particular value. After defining the
function, we calculate and print the entropy of the labels y, which were generated in the previous
dataset, with the result formatted to four decimal places. This allows us to quantify the uncertainty
or distribution balance of the labels in the dataset.

def calculate entropy(labels) :
value, counts = np.unique (labels, return counts=True)
return entropy (counts)

print (f’Entropy of y: {calculate entropy(y):.4£f}’)

6.11.4 Step 4: MuTUAL INFORMATION CALCULATION

Now, we define a function calculate_mutual_information to compute the mutual information
between the features X and the labels y. Mutual information is a measure of how much infor-
mation one variable provides about another, quantifying the dependency between them. In this
case, we are using mutual_info_score from the sklearn.metrics library to calculate the mutual
information between X (the features) and y (the labels). The X.ravel() function flattens the 2D
array X into a 1D array to align with the expected input format for the mutual information calcu-
lation. After defining the function, we compute and print the mutual information between X and
y, formatted to four decimal places. This measure helps us understand how much information the
features X contain about the target labels y, thereby indicating the strength of the relationship
between them.

def calculate mutual information (X, vy):

return mutual info score(X.ravel (), y)
print (f’Mutual Information between X and y: {calculate mutual
information (X, y):.4f}")

6.11.5 Step 5: BuiLb AND TRAIN A SIMPLE NEURAL NETWORK

Finally, we are building and training a simple neural network using TensorFlow’s Keras API. The
network is defined using the Sequential model, which stacks layers sequentially. The first layer is a
Dense layer with 10 neurons, a ReL.U activation function, and an input dimension of 2 (as the input

202 Mathematical Foundations for Deep Learning

data X has two features). The second layer is a Dense output layer with 1 neuron and a sigmoid acti-
vation function, which is commonly used for binary classification problems. The model is compiled
with the Adam optimizer, a popular optimization algorithm for training neural networks, and the
binary cross-entropy loss function, which is appropriate for binary classification tasks. The perform-
ance is tracked using accuracy as the evaluation metric. Finally, the model is trained on the dataset
X and y for 100 epochs using model.fit(), with the training progress being silent (verbose = 0). This
neural network is designed to learn the relationship between the two input features and the binary
target labels in the dataset generated earlier.

Build a simple neural network
model = Sequential ([
Dense (10, input dim=2, activation=‘relu’),
Dense (1, activation=‘sigmoid’)
1)
model .compile (optimizer=°‘adam’, loss=’binary crossentropy’,
metrics=[‘accuracy’])
history = model.fit (X, y, epochs=100, verbose=0)

6.12 COMMON MISTAKES AND TROUBLESHOOTING TIPS
6.12.1 MISINTERPRETING ENTROPY

* Mistake: Confusing entropy with variance or other measures of spread.

e Tip: Remember that entropy measures the unpredictability or uncertainty of a random vari-
able, not the variability of its outcomes. Entropy quantifies the average amount of information
produced by a stochastic data source.

6.12.2 INCcORRecT CALCULATION OF ENTROPY

* Mistake: Using incorrect probabilities or forgetting to sum over all possible outcomes.
e Tip: Ensure that the probability distribution sums to 1 and carefully calculate entropy by
summing the product of each probability and its logarithm.

6.12.3 MISUNDERSTANDING JOINT AND CONDITIONAL ENTROPIES

* Mistake: Treating joint and conditional entropies as independent of each other.

* Tip: Joint entropy accounts for the combined uncertainty of two variables, while conditional
entropy measures the remaining uncertainty of one variable given the other. Always consider
their relationship and dependencies.

6.12.4 OVERLOOKING THE AsYMMETRY OF KL DIVERGENCE

* Mistake: Assuming KL divergence is symmetric and misinterprets the results.
* Tip: Remember that D, (P Il Q) # D, (Q Il P). The divergence from P to Q is not the same as
from Q to P. Always interpret the direction correctly.

Information Theory 203

6.12.5 CoNFUSING MUTUAL INFORMATION WITH CORRELATION

* Mistake: Equating mutual information with linear correlation.
e Tip: Mutual information measures any dependency between variables, not just linear
relationships. It captures both linear and non-linear dependencies, unlike Pearson correlation.

6.12.6 IGNORING THE BAsis OF LOGARITHMS IN ENTROPY CALCULATIONS

* Mistake: Using inconsistent logarithm bases when calculating entropy.
» Tip: Use base 2 logarithms for entropy measured in bits. Ensure consistency in the logarithm
base throughout your calculations.

6.12.7 MisapPLYING SHANNON’s Noisy CHANNEL CODING THEOREM

* Mistake: Misinterpreting the channel capacity or ignoring noise effects.

* Tip: Understand that channel capacity is the maximum reliable transmission rate over a noisy
channel. Ensure that your encoding and decoding schemes are designed to operate below this
capacity to minimize errors.

6.13 REVIEW QUESTIONS

Define entropy. How does it measure the unpredictability or randomness of information?

. Explain the significance of entropy in the context of data transmission and compression.

3. How is entropy mathematically defined for a discrete random variable? Provide an example
using a binary source.

4. What are joint entropy and conditional entropy? How do they differ from and relate to
standard entropy?

5. Provide an example where knowing one variable significantly reduces the uncertainty of
another variable.

6. Define mutual information and explain its importance in feature selection and machine
learning models.

7. How is mutual information used to assess the relationship between two variables?

How does Shannon’s theorem guide the design of error-correcting codes?

9. Explain the concept of the information bottleneck method. In what ways is this method
utilized in deep learning?

10. Describe the KL divergence and its significance in comparing probability distributions.

o =

I

6.14 PROGRAMMING QUESTIONS

6.14.1 Easy

Calculate the entropy of a given discrete random variable and plot its probability distribution.
1. Define a discrete random variable with given probabilities for each outcome.

2. Calculate the entropy of the random variable using the entropy formula.
3. Create a bar plot to visualize the probability distribution of the random variable.

204

Mathematical Foundations for Deep Learning

6.14.2 MEebpium

Calculate the mutual information between two discrete random variables and interpret the results.

M

Define two discrete random variables with given joint probabilities.

Calculate the marginal probabilities of each variable.

Compute the joint entropy, marginal entropies, and conditional entropies.

Calculate the mutual information using the formula: I(X; Y) = HX) + H(Y) - HX, Y).
Interpret the mutual information value and explain what it signifies about the relationship
between the two variables.

6.14.3 Harp

Implement and train a neural network on a synthetic dataset, then analyze the change in entropy and
mutual information of the hidden layers’ activations during training.

1.

Generate a synthetic dataset for binary classification.

Build a neural network with multiple hidden layers using a deep learning framework (e.g.,
TensorFlow or PyTorch).

Train the neural network on the synthetic dataset, recording the activations of each hidden
layer at each epoch.

Calculate the entropy of the activations for each hidden layer at different epochs.

Calculate the mutual information between the input and the activations and between the
activations and the output at different epochs.

Visualize the change in entropy and mutual information over the training epochs using line
plots.

7 Graph Theory

7.1 INTRODUCTION

In the world of deep learning, mathematical structures like graphs have emerged as an effective
tool to model complex relationships and patterns. Graph theory, with its ability to depict pairwise
relations between entities, has proven to be required, bridging gaps that traditional linear methods in
machine learning could not address. As our digital universe grows increasingly connected, the webs
of relationships, from social networks to molecular structures, demand a more subtle approach to
data representation and analysis. Neural networks, the backbone of many modern artificial intelli-
gence (Al) systems, have started integrating principles from graph theory, giving birth to innovative
models tailored to handle this newfound complexity. The union of graph theory and neural networks
is not just a theoretical attraction; it carries significant practical implications. By treating data as
nodes and their relationships as edges, a crowd of real-world applications, from social media ana-
lysis to drug discovery, has been unlocked. This chapter explores the role of graph theory in deep
learning.

7.2 GRAPH THEORY FOR DEEP LEARNING

Understanding the basic types of graphs and their properties is fundamental for modeling and
solving problems in various domains, including computer science, biology, social sciences,
and more. Graphs provide a useful and powerful way to represent and analyze the relationships and
structures within data.

7.2.1 GRAPH

A graph is a fundamental mathematical structure consisting of a set of nodes (vertices) and edges.
The key components of the graph are nodes and edges.

7.2.1.1 Nodes (Vertices)

Nodes represent entities or objects within the graph. Each node can contain attributes or features that
provide additional information about the entity it represents.

7.2.1.2 Edges (Connections)

Edges represent the relationships or connections between nodes. Edges can be directed or undir-
ected, weighted or unweighted, depending on the nature of the relationship they model.

DOI: 10.1201/9781032690742-7 205

http://dx.doi.org/10.1201/9781032690742-7

206 Mathematical Foundations for Deep Learning

7.2.2 DirecteD GRAPH

A directed graph is a type of graph in which the edges have a specific direction. This means each edge
points from one node to another, indicating a one-way relationship. Directed graphs are represented
visually by arrows that show the direction of the connection between nodes. Directed graphs provide
a clear and effective way to model and analyze systems where directionality is a critical component
of the relationships between entities. They enable the study of influence, flow, and hierarchy within
a network. Its key characteristics are directional edges and asymmetry.

7.2.2.1 Directional Edges

Each edge has a direction, typically represented by an arrow pointing from the source node (start)
to the target node (end).

7.2.2.2 Asymmetry

The relationship between nodes is not necessarily equal. For instance, if there is a directed edge
from Node A to Node B, it does not imply there is an edge from B to A.

7.2.2.3 Directed Graph Example

Consider a citation network in academia. Each research paper is represented as a node, and a citation
from one paper to another forms a directed edge. For instance, if Paper A cites Paper B, we have a
directed edge from Node A to Node B. This means that the influence flows in one direction—Paper
A is influenced by Paper B. However, this does not imply the reverse relationship (i.e., Paper B may
not cite Paper A). A directed graph is defined as G = (V, E), where V is a set of vertices (or nodes),
and E €V x V is a set of directed edges. Each edge (u, v) € E represents a directed connection from
Node u to Node v. This directionality distinguishes directed graphs from undirected graphs. For
instance, let’s define a small citation network with three papers: Paper A cites Paper B and Paper C,
and Paper B cites Paper C. This directed graph can be represented as: V = {A, B, C} and E = {(A,
B), (A, €), (B, O)}.

7.2.3 UNDIRECTED GRAPH

An undirected graph is a type of graph in which the edges have no direction. This means that
each edge simply connects two nodes without implying any order or hierarchy between them. In
undirected graphs, the relationships represented by the edges are mutual and bidirectional. Its key
characteristics are bidirectional edges and symmetry.

7.2.3.1 Bidirectional Edges
Each edge connects two nodes without any direction, indicating that the relationship goes both ways.

7.2.3.2 Symmetry

If there is an edge between Node A and Node B, it implies a two-way relationship, meaning A is
connected to B, and B is connected to A.

7.2.3.3 Undirected Graph Example

Undirected graphs are ideal for modeling scenarios where the relationships are inherently mutual.
Consider a social network. In this network, each person is represented by a node, and each friendship
is represented by an undirected edge between two nodes. For example, if Alice and Bob are friends,
there is an undirected edge between the nodes representing Alice and Bob. This edge implies a
mutual relationship, meaning Alice is connected to Bob, and Bob is equally connected to Alice. An

Graph Theory 207

undirected graph is defined as G = (V, E), where V is a set of vertices (or nodes), and E € {{u, v} |
u, v € V}is a set of edges, where each edge {u, v} connects Node u and Node v, with no direction
implied. For example, consider a simple social network with three people: Alice (A), Bob (B), and
Carol (C). Suppose Alice is friends with both Bob and Carol, and Bob is friends with Carol. The
undirected graph representing this network can be expressed as: V = {A, B, C} and E = {{A, B}, {A,
C}, {B, C}}. In this graph, the edge {A, B} means that Alice and Bob are friends, and the relation-
ship is bidirectional.

7.2.4 WEGHTED GRAPH

A weighted graph is a type of graph in which each edge has an associated weight. These weights
typically represent some quantitative attribute of the connection between nodes, such as cost, length,
capacity, or strength. Weighted graphs provide a more detailed representation of relationships by
incorporating the magnitude of the connections. One of the key characteristics of weighted graphs is
the presence of edge weights. Each edge in the graph has a numerical value, or weight, that quanti-
fies the strength, cost, or capacity of the connection between the nodes. These weights play a crucial
role in determining the significance of relationships within the graph. Weighted graphs are particu-
larly useful in scenarios where the strength or cost of connections needs to be considered. Consider
a transportation network where cities are nodes and roads between them are edges. A weighted
graph is defined as G = (V, E, w), where V is the set of vertices (or nodes), E €V x V is the set of
edges, and w: E — R is a function that assigns a weight to each edge. In this case, the weight w(e)
represents the quantitative value associated with edge e. For example, consider a transportation net-
work with three cities: A, B, and C. Let the distances between the cities be: A to B: 200 km, A to
C: 150 km, and B to C: 300 km. This weighted graph can be represented as follows: V = {A, B, C},
E ={(A, B), (A, C), (B, C)}, w(A, B) = 200, w(A, C) = 150, and w(B, C) = 300.

Figure 7.1 illustrates the structure and transformation of graphs under different configurations.
In Figure 7.1a, an undirected graph is displayed, where nodes A through E are connected by edges
that do not have any directional information. This layout is useful for modeling scenarios where the
relationship between entities is bidirectional or symmetrical, such as social connections or mutual
collaborations. Figure 7.1b shows the same set of nodes in a directed graph configuration. In this
graph, the edges are directed, indicated by arrows pointing from one node to another, demonstrating
that the relationship now has directionality. This change is essential in cases where the flow of infor-
mation or influence is one way, such as in citation networks or communication pathways. Nodes A
through E are connected in a manner that shows the direction of influence or dependency among
them, providing insights into the asymmetry of these relationships. The third Figure 7.1c introduces
a weighted directed graph, where both the direction and the magnitude of influence are represented.
The edges not only show the direction (as indicated by arrows) but also have associated weights,
which are indicated by the thickness of the edges and labeled numbers along the arrows. These
weights quantify the strength or significance of the connections, which is crucial for understanding
the intensity of relationships or the capacity of flows between nodes, such as in transportation
networks or neural connections in brain models.

7.3 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) seamlessly blend classical graph algorithms with deep learning
techniques, showcasing neural networks’ incredible flexibility and adaptability. They represent a
promising future where diverse data types are naturally integrated into AI models. Unlike images or
sequences with structured formats, graph data is inherently irregular. GNNS rise to this challenge,
offering a class of neural networks designed explicitly for graph-structured data. At the heart of
GNN:s lies the principle of neighborhood aggregation, also known as message passing. Each node

FIGURE 7.1

(a) Undirected graph, (b) directed graph, and (c) ss weighted graph.

80¢

Suruaea des(40y suoepunod [edieWwayIe

Graph Theory 209

aggregates information from its immediate neighbors to update its representation in this process.
This iterative approach allows information to flow through the graph, ensuring each node gains con-
textual knowledge about its broader neighborhood. The update rule is mathematically expressed as:

A = o‘(W(") - AGGREGATE ({hfj“) ‘ueN (V)}))

where:

. hf,k) is the representation of Node v at the k™ iteration,

e (o is a nonlinear activation function,

* W s a learnable weight matrix,

* N(v) denotes the neighbors of Node v, and

* AGGREGATE is an aggregation function, such as sum, mean, or max.

Consider a simple graph with four nodes: A, B, C, and D. The connections are as follows:

¢ Node A is connected to Node B and Node C,
¢ Node B is connected to Node A and Node D,
¢ Node C is connected to Node A, and

e Node D is connected to Node B.

The adjacency list representation is N(A) = {B, C}, N(B) ={A, D}, N(C) = {A} and N(D) = {B} and
each node has an initial feature vector (representation): /") =[1], i) =[2], A*) = [3], and A{?) =[4];
for example, the parameters are as follows:

* Aggregation function: Sum
e Activation function (6): ReLU (Rectified Linear Unit), defined as o(x) = max(0, x)
* Weight matrix (W): For simplicity, use a scalar W = [0.5].

Here, we’ll perform one iteration (k =0 to k = 1).

1. Aggregate Neighbor Features: For each node, sum the features of its neighbors.
* Node A:
a. Neighbors: N(A) = {B, C}
b. Neighbor features: h(o) = [],h(c" = [3]
c. Aggregated features: AGG, = hl") + h® =[2]+[3]=[5].
* Node B:
a. Neighbors: N(B) = {A D}

b. Neighbor features: 2" =[1],4{") =[4]
c. Aggregated features: AGG,, —h)+h [1]
* Node C:

a. Neighbors: N(C) = {A}
b. Neighbor features: h []

c. Aggregated features: AGG . = h [1]
* Node D:

a. Neighbors: N(D) = {B}

b. Neighbor features: 4" = 2]

c. Aggregated features: AGG, = hgo) = [2]

210 Mathematical Foundations for Deep Learning

2. Apply Weight Matrix and Activation Function: Compute the new representation for each node.

e Node A:

a. Before activation: W-AGG , = ~[5 —[2 5]

b. After activation: h ([2 5]) = max(O 2 5) [2 5].
e Node B:

a. Before activation: W-AGG, = [0.5]{5]2[2.5]

b. After activation: h ([2 5]) [2.5].
e Node C:
a. Before activation: W-AGG = [0.5]-[1]=[0.5]

b. After activation: h ([O 5]) [0.5].
e Node D:
a. Before activation: W-AGG,, = [0.5]-[2]=[1.0]

b. After activation:h{}) = o([1.0]) = [1.0].

Updated node features after one iteration: h [2 5] h [2 5] h [O 5] and h [1 .O]. Node
A and Node B now have the same updated feature reﬂectmg the mﬂuence of their nelghbors. Node
C has a lower updated feature because it is only connected to Node A, which had an initial lower
feature. Finally, Node D’s updated feature reflects its connection to Node B.

Figure 7.2 depicts a graph with 20 nodes and 40 edges. Each node is represented as a circle,
with its color indicating the predicted class determined by the GNN. The layout uses a spring-
based algorithm, ensuring an even distribution of nodes for better visualization. The dashed edges

FIGURE 7.2 Graph neural network (GNN).

Graph Theory 211

connect related nodes and emphasize the graph’s topology. A color bar on the side maps the colors
to corresponding node classes, making each node’s class after classification clear. The node classi-
fication relies on node features and numerical attributes specific to each node. These features are
processed through the GNN layers, which learn patterns based on both the node features and their
connections in the graph. After the second layer of the GNN, each node is assigned to one of two
classes (class 0 or class 1), visualized by distinct colors in the figure. The process demonstrates how
GNNss capture structural information and use it for classification tasks. Here are the node features
after GNN propagation:

[[-1.2524378, -0.33660233], [-1.3791587, —0.29007196], [-1.0469463, —0.43233487]
[-0.92821044, —0.5029573], [-0.73885995, —0.6494331], [-0.9682473, —0.47762945]
[-2.123791, —-0.12735331], [-1.6736698, —0.2077101], [-0.6209714, —0.7709404]
[-0.5346627, —0.88156784], [-1.7315028, —0.19482112], [-0.51204944, —0.91445786]
[-0.5225032, —0.89902604], [-0.90361524, —-0.5193661], [-2.2530715, -0.11101644]
[-2.3229516, —0.10312293], [-0.5895047, —0.80878687], [-0.6153719, —0.77748555]
[-1.3487849, —0.30050445], [-0.92802536, —0.50307834]]

The output numbers represent the transformed node features after passing through the GNN. Each pair
corresponds to a specific node, with two values indicating the log probabilities of the node belonging to
two different classes (class 0 and class 1). Below is an example of how nodes are classified:

* Example I (Node 0): The output is [-1.2524378, —0.33660233]. The first value (—1.2524378)
corresponds to class 0, and the second value (—0.33660233) corresponds to class 1.
As —0.33660233 is greater (less negative) than —1.2524378, Node 0 is assigned to class 1.

* Example 2 (Node 4): The output is [-0.73885995, —0.6494331]. The first value (—0.73885995)
corresponds to class 0, and the second value (—0.6494331) corresponds to class 1.
As —0.6494331 is greater (less negative) than —0.73885995, Node 4 is also assigned to class 1.

The classification process determines the class of each node by selecting the class with the higher
log probability value. These assignments are visualized in Figure 7.2, where nodes are color coded
according to their respective class.

7.4 WHY GRAPHS FOR DEEP LEARNING?

Data in many real-world applications, such as social networks, transportation systems, and biological
networks, is inherently graph-structured. Traditional neural networks aren’t designed to handle this
type of data effectively. Graph-based deep learning methods, like GNNs, address this challenge by
modeling relationships and interactions between entities, capturing underlying structures that trad-
itional methods cannot. Here, we discuss why graphs are crucial for deep learning in these contexts.

7.4.1 INTUITIVE REPRESENTATION OF COMPLEX RELATIONSHIPS

Graphs effectively represent complex relationships and dependencies between entities. In social
networks, for example, users are nodes connected by edges representing friendships or follows. This

212 Mathematical Foundations for Deep Learning

structure is fundamental for analyzing user behavior, predicting community formation, and studying
information propagation. By examining these connections, we gain valuable insights into individual
and collective behaviors, which is essential for tailoring services and targeting audiences.

7.4.2 ENCODING RELATIONAL INFORMATION

Graphs inherently encode relational information by directly representing connections between
entities. This allows models to leverage these relationships for analytical tasks. A key application
is link prediction, which infers missing or future connections by analyzing existing patterns. This
is useful for suggesting new friends in social networks, recommending products in e-commerce,
or hypothesizing protein interactions in biology. Another application is node classification, where
nodes are labeled based on their attributes and connections, improving accuracy in tasks like classi-
fying research papers or categorizing users into interest groups.

7.4.3 FLEXIBILITY AND VERSATILITY

Graphs can represent diverse data types and relationships, making them suitable for various
applications. They can include weighted edges with numerical values like strength or cost, useful in
transportation networks (distances and travel times) and communication networks (bandwidth and
latency). Directed edges indicate one-way relationships, essential for modeling web links, citation
networks, and social media interactions. Graphs can also represent heterogeneous relationships,
modeling different types of connections in complex systems like biological networks or recom-
mendation systems. For instance, in transportation networks, cities are nodes, and roads are edges
with weights representing distances to calculate efficient routes; in airline networks, directed edges
represent one-way flights.

7.4.4 ErriciENcY AND ScALABILITY WiITH GNNs

GNNs excel at efficiently propagating information through graphs, capturing both local and global
structures. They allow nodes to aggregate information from neighbors, learning features from imme-
diate connections and distant nodes, resulting in a complete representation of the graph. Unlike
traditional methods that struggle with scalability due to complex connections, GNNs reduce com-
putational complexity by focusing on neighborhood aggregation. This makes them well-suited for
processing large-scale datasets like social networks or biological networks without compromising
speed or accuracy. Their ability to capture intricate relationships enhances performance in tasks like
node classification, link prediction, and recommendation systems.

7.4.5 UNCOVERING ADVANCED INSIGHTS

Graph-based methods enable deep learning models to uncover advanced insights that are valuable
for decision-making and predictive modeling. They help identify influential nodes, those with many
connections or those bridging different communities. In social networks, these influential users
effectively spread information and are central to multiple groups; targeting them is invaluable for
marketing campaigns or strategic dissemination. Graph algorithms also detect communities within
the network by revealing clusters where nodes are densely connected. Understanding these com-
munities provides insights into the network’s structure and behavior, aiding in discovering user
groups with similar interests or identifying functional modules in biological networks. Additionally,
analyzing how graphs evolve over time enhances understanding of network dynamics, including
information spread and relationship changes, which is critical for predicting future trends and
behaviors.

Graph Theory 213

Figure 7.3 offers an exploration of various graph configurations and processes, demonstrating how
different graph structures and analyses reveal distinct aspects of networked systems. In Figure 7.3a,
an undirected graph is shown, where each connection between nodes is mutual, representing a
scenario where relationships are bidirectional, such as friendships in a social network. Figure 7.3b
displays a directed graph, introducing arrows that indicate the direction of relationships between
nodes. This structure is essential for modeling systems where interactions are not reciprocal, such
as citations in academic papers or one-way communication channels. Nodes like D and C show
directional influence over other nodes, highlighting how information or influence flows through
the network. Figure 7.3c progresses to a weighted directed graph, where each edge not only has
a direction but also a weight that quantifies the strength of the relationship. The weights, labeled
and represented by the thickness of the edges, provide additional depth by illustrating the intensity
or capacity of each connection, which is crucial in contexts like transportation networks or influ-
ence spread models. Figure 7.3d illustrates information propagation within the graph, showing how
information can travel from one node to others based on their connections. Figure 7.3e depicts com-
munity detection within the graph, where nodes are grouped based on their connectivity patterns.
Nodes that are closely interconnected are grouped together, representing clusters or communities.
Figure 7.3f focuses on identifying influential nodes in the graph. The nodes are colored based on
their influence, with red indicating the most influential Node A.

7.5 NODE AND GRAPH CLASSIFICATION
7.5.1 NobDE CLASSIFICATION

Graph convolutional networks (GCNs) effectively predict labels for nodes within a graph by lever-
aging both the features of each node and the attributes of its neighbors, a task known as node classi-
fication. This application is crucial across many domains, offering valuable insights and enhancing
predictive capabilities. For example, in social networks, GCNs can categorize users based on
behavior and connections, distinguishing between influencers, regular users, or potential spammers
and predicting user interests for personalized recommendations and targeted advertising. The clas-
sification process involves aggregating features from a node’s neighbors and combining them with
its own features to capture the local structure and context within the graph. Through multiple layers
of convolution, GCNs learn meaningful representations of nodes that encode both their attributes
and relational context. These representations are then used by a classifier to predict the label or
category of each node. Imagine a small social network where we want to classify users into two
categories: “Regular Users” or “Influencers” based on their connections and attributes. Assume, we
have a graph with five nodes representing users: Node A, Node B, Node C, Node D, and Node E.
The connections (edges) are as follows:

e Node A is connected to Node B and Node C.

¢ Node B is connected to Node A, Node C, and Node D.
¢ Node C is connected to Node A, Node B, and Node E.
¢ Node D is connected to Node B.

e Node E is connected to Node C.

The adjacency list is as follows: N(A) = {B, C}, N(B) = {A, C, D}, N(C) = {A, B, E}, N(D) = {B},
and N(E) = {C}. Each node has a two-dimensional feature vector representing user attributes (e.g.,
activity level and content quality):

e = [0.9, 0.11 (high activity and low content quality)

A
o 19 =108,0.2

B

FIGURE 7.3

(a) Undirected graph, (b) directed graph, (c) weighted graph, (d) information propagation, (¢) community detection, and (f) influential nodes.

14 X

Suruaea des(40y suoepunod [edieWwayIe

Graph Theory 215

« h9=[03,07
. hi)o): 0.2,0.8
. hEO) =10.1, 0.9| (low activity and high content quality).

Node labels are as follows:

* Labeled Nodes: Node A: Regular user (Label 0) and Node D: Influencer (Label 1)
e Unlabeled Nodes: Node B:?, Node C:?, Node E:?.

Our goal is to predict the labels for Nodes B, C, and E. GCN layer equation is as follows:

) — G(D—l/ZAb—l/ZH(k)W(k))
where:

e H®: Node features at layer k,

e A= A+1I: Adjacency matrix with self-loops (I is the identity matrix),
« D: Diagonal node degree matrix of A,

o W®: Weight matrix at layer Kk,

* o: Activation function (e.g., ReLU).

We’ll perform one GCN layer (k=0tok =1) and use ReLU as the activation function: 6(x) = max(0,x).
For simplicity, we will use the mean aggregation instead of normalized adjacency and the same

weight matrix W for all nodes. Here are the step-by-step computations:

1. Build the Adjacency Matrix with Self-Loops: The adjacency matrix (A) is:

01100
1 01 10
A=|1 1 0 0 1
010 0O
00100

A is Adjacency matrix (without self-loops) and With self-loops added (A=A + I):

11100
1 1110
A=A+I=|1 11 0 1
01 010
00101

2. Compute Degree Matrix: Calculate the degree (number of connections) for each node,
including self-loops.
e Node A: Degree = 1 (self-loop) + 2 (B and C) = 3,
e Node B: Degree = 1 (self-loop) + 3 (A, C, D) =4,
* Node C: Degree = 1 (self-loop) + 3 (A, B, E) =4,
* Node D: Degree = 1 (self-loop) + 1 (B) =2,
e Node E: Degree = 1 (self-loop) + 1(C) = 2.

216

Mathematical Foundations for Deep Learning

Degree matrix (D) is as follows:

30000
04000
D=|0 0 4 0 0
00020
00002

(3) Compute Normalized Adjacency Matrix: Using mean aggregation (simplified here), we’ll

4.

divide each row of A by the degree of the node. The normalized adjacency matrix Ais:

A
iy = l’j_”
Compute each element:
A 1 - 1 - 1
* For Node A (Row 1): A g,AA,Bzg,andAAczg.
I - I - - 1
¢ For Node B (Row 2): A Z Ay =Z’AB,C =—,and A, =Z.

Continue similarly for other nodes. For shortness, we’ll represent Aas a matrix:

1114,
3 3 3
11 1 1
- - - >0
4 4 4 4
a=|l 1 41
4 4 4 4
o Lol o
2 2
o0 L oL
i 2 2]

Define Weight Matrix: Assume a weight matrix W for transforming features:

105 0.1

103 07
As our initial features are two-dimensional and we aim to obtain two-dimensional outputs,
W should be a 2 x 2 matrix.

Compute Updated Node Features: Compute H") = 6(AH (O)W). Let’s compute this step by
step for each node. Compute the product HOW for each node:

« For Node A: "W =[0.9, 0.1] 0.5 0.1
- | 03 07

=[(0.9)(0.5)+(0.1)(0.3).(0.9)(0.1)+(0.1)(0.7)]=[0.48, 0.16]

Graph Theory 217

* For Node B: AW =[0.8, 0.2]W =[0.44, 0.22].

« For Node C: WW =103, 0.71W =[0.36, 0.52]
* For Node D: hW =[0.2, 0.8]W =[0.34, 0.58].

* For Node E: h®W =[0.1,0.9]W =[0.32,0.64] .

Assemble HOW matrix:

[0.48 0.16]
044 022
0.36 0.52
0.34 0.58
0.32 0.64

Compute AHOW: Compute the weighted sum of neighbor features for each node. For
Node A:

Compute the contributions:
] 1
* Self-loop contribution: A, , -h()W = 3 [0.48,0.16]=[0.16,0.053].
. 1
* FromNodeB: A, ,-h'W = 3 [0.44,0.22]=[0.147,0.073]
« FromNode C: A, .- hOW = %-[0.36, 0.52]=[0.12,0.173].

Sum them up:

h) = o([0.16,0.053] + [0.147,0.073] + [0.12, 0.173])
= 0([0.427, 0.299]) =[0.427, 0.299]

For Node B, the contributions are:

« Self-loop: A, , - hOW = i-[0.44, 0.22]=[0.11,0.055 .
« From Node A: A, -hO)W = i-[0.48, 0.16]=[0.12,0.04 .
« From Node C: A, .-hOW = %[0.36, 0.52]=[0.09,0.13].

« FromNode D: A, -hlOW = i- [0.34,0.58]=[0.085,0.145].

218

Mathematical Foundations for Deep Learning

Sum them up:

h) = o{[0.11,0.055] +[0.12, 0.04] +[0.09, 0.13] + [0.085, 0.145)
= 6([0.405, 0.37]) =[0.405, 0.37]

For Node C, the contributions are:

* Self-loop: A, -HOW = %- [0.36,0.52]=[0.09,0.13].

. 1
» From Node A: A, -hPW = - [0.48,0.16]=[0.12,0.04].
* FromNode B: A, -A)W =[0.11,0.055]

. 1
* FromNode E: A, -hO'W = Z'[osz, 0.641=[0.08,0.16].
Sum them up:

Y = 5([0.09, 0.13]+[0.12, 0.04]+[0.11, 0.055]+[0.08, 0.16)
= 0([0.4, 0.385]) =[0.4, 0.385]

For Node D, the contributions are:

« Self-loop: Ap.p-hOW = %-[0.34, 0.58]=[0.17,0.29].

* FromNodeB: A, -h)W = % [0.44,0.22]=[0.22,0.11].
Sum them up:

hY) = o([0.17, 0.29]+[0.22, 0.11]) = 5([0.39, 0.4]) = [0.39, 0.4]

For Node E, the contributions are:

* Self-loop: A, , -hOW = %-[0.32, 0.64]=[0.16,0.32].

] 1
* FromNode C: A, .- hOW = 5-[0.36, 0.52]=[0.18,0.26]
Sum them up:

h) = o([0.16,0.32]+[0.18,0.26]) = 5([0.34,0.58]) = [0.34,0.58]

Classification: Now, we’ll use the updated node features H? to classify the unlabeled nodes.
We’ll use a simple linear classifier:

Logits = H (I)WC, where W _is a weight matrix mapping node features to class scores.

Graph Theory 219

Assume:

1.0 -1.0
W, =
¢ 1-1.0 1.0
This is a simple weight matrix for illustrative purposes. Compute logits for each node.

, 0 1.0 -1.0
~ Logits,, = h{) W =[0.405,0.37] Lo 1017

[(0.405)(1.0)+(0.37)(~1.0), (0.405)(~1.0) +(0.37)(1.0)]=[0.035,-0.035 |
* Node C: Logits,. h((:‘) =[0.4, 0.385]W._=[0.015, —0.015].
* Node E: Logits, = i)W _=[0.34, 0. 58]W [-0.24, 0.24].

E

e NodeB

Apply SoftMax to get probabilities:

Softmax (Zi) =

2
J

Compute for Node B:

e z=1[0.035,-0.035].
» Exponentials: ¢*** = 1.0357, ¢7%9% = 0.9658.
* Sum:1.0357 + 0.9658 = 2.0015.

* Probabilities: Class 0 (regular user): ;(())(3)?; ~(0.5178, Class 1 (Influencer):
0.9658 =~ (0.4822.
2.0015

Similarly, compute for Nodes C and E. For Node C, the probabilities are similar to Node B
due to close logits. These probabilities will be around 0.5075 for Class 0 and 0.4925 for class
1. The Node E probabilities are:

o z=[-0.24,0.24]

* Exponentials: e = 0.7866, ¢*** ~ 1.2712

* Sum: 0.7866 + 1.2712 = 2.0578

i 1.2712
The probability of class 0 is 0.7866 = (.3823 0 and that of class 1 is
2.0578 2.0578

=0.6177.
Assign predicted labels:

* Node B: Class 0 (regular user) with probability ~51.78%
e Node C: Class 0 (regular user) with probability ~50.75%
* Node E: Class 1 (influencer) with probability ~61.77%

Here, Node B and Node C are predicted to be regular users, which aligns with their
connections to Node A, a regular user. Node E is predicted to be an influencer due
to its strong feature vector, which reflects high content quality, and its connection to
Node C.

220 Mathematical Foundations for Deep Learning

7.5.2 GRAPH CLASSIFICATION

GCNs can predict labels for entire graphs, a task known as graph classification. This is particu-
larly valuable in fields where the overall graph structure determines its classification. In fraud
detection, for instance, financial transactions can be represented as graphs, where the nodes
are bank accounts or individuals, and the edges represent transactions between these accounts.
GCNs classify these graphs as either “Fraudulent” or “Legitimate.” The methodology involves
representing each graph with nodes, edges, and features. GCNs aggregate features from all nodes
and edges to capture the graph’s global structure. After multiple convolutional layers, a global
pooling operation generates a fixed-size representation of the entire graph. This pooled represen-
tation is then fed into a classifier to predict the graph’s label. Let’s consider an example of finan-
cial transaction data for fraud detection. Each transaction network is represented as a graph.
The nodes represent bank accounts, and the edges represent the transactions between them. Our
goal is to classify these networks as either “Fraudulent” or “Legitimate” based on the graph
structure. Let us work with a small dataset consisting of three transaction networks: Network A,
Network B, and Network C. Network A is a legitimate transaction network (Label 0), Network
B is fraudulent (Label 1), and Network C is legitimate (Label 0). The graph structures for these
networks are as follows: In Network A, there are three nodes representing three accounts. Account
1 has transactions with Account 2 and Account 3. In Network B, Account 1 is linked to a poten-
tially fraudulent account (Account 4), which in turn transacts with Account 3. Lastly, Network C
consists of four nodes, with Account 1 connected to Accounts 2 and 3, and Account 2 connected
to Account 4. The graph structure allows us to represent the relationships between accounts. We
begin by representing each account using a one-hot encoding based on its type: regular accounts
are encoded as [1, 0], and potentially fraudulent accounts are encoded as [0, 1]. The initial node
features for each network are as follows:

* Network A: Account 1, Account 2, and Account 3 are regular accounts, so their initial features
are [1, 0].

* Network B: Account 1 is regular [1, 0], Account 4 is potentially fraudulent [0, 1], and Account
3 is regular [1, 0].

* Network C: Accounts 1, 2, 3, and 4 are all regular accounts, so their initial features are [1, 0].

Next, we define the adjacency matrices to represent the connectivity between nodes. For Network
A, the adjacency matrix would look like this:

Network A

0
=1
1

S o =
S o =

This matrix shows that Account 1 is connected to both Account 2 and Account 3, while Account
2 and Account 3 are not directly connected to each other. Similarly, the adjacency matrices
for Networks B and C would represent their respective connections. We then perform graph
convolutions to update the node features. A GCN layer aggregates the feature vectors of each
node’s neighbors. The aggregation function we use here is mean aggregation, where each node’s
feature is updated by averaging its own features and those of its neighboring nodes. The GCN
layer equation for Node v at layer k + 1 is:

1
e = o — LS
‘ [lzv(v) PR

Graph Theory 221

where:

* h® is the feature vector of Node v at layer k,
o W® is the weight matrix for layer k,

* N(v) is the set of neighbors of Node v, and

* ¢ is the activation function (ReLU).

We start with Network A, where the initial node features for all nodes are [1, 0]. We use the following
weight matrix for the first GCN layer:
WO — 0.5 0.1
0.3 0.7

Step 1: Initial Node Features for Network A: Account 1: [1, 0], Account 2: [1, 0], and Account
3:[1,0].

Step 2: Linear Transformation: Using the weight matrix W©®, we perform the linear transform-
ation for each node:

Account 1: [1, 0]-W©® =[0.5, 0.1],
Account 2: [1, 0]-W©® =[0.5, 0.1],
Account 3: [1,0]-W©® =[0.5, 0.1].

Step 3: Mean Aggregation: Now, we aggregate the node features using the mean of the neighbors’
features (including self-loops). For Account 1, its neighbors are Account 2 and Account 3. The
aggregated feature for Account 1 is:

[os01blosorblos0l] s,

Similarly, for Accounts 2 and 3, the aggregation process results in the same feature: [0.5, 0.1].

Step 4: Apply Activation Function (ReLU): The ReLU activation function keeps the features
unchanged as they are all positive. The updated node features after this GCN layer remain [0.5,
0.1] for all nodes in Network A.

We repeat this process for Network B and Network C by applying the same linear transformation
and aggregation steps and adjusting for the different adjacency structures. After updating the node
features, we use global pooling to generate graph-level representations. We apply sum pooling,
which adds the feature vectors of all nodes in a graph. Here is the sum of the features of all three
nodes, known as the graph-level representation:

¢ For Network A, the graph-level representation is: g, =[1.5, 0.3].
¢ For Network B, the graph-level representation is: g, = [1.3, 0.9].
¢ For Network C, the graph-level representation is: g = [2.0, 0.4].

Finally, we classify the graphs using a simple classification layer. We define a weight vector
W_=[-1.0, 1.0] and a bias b = 0. We compute the logits for each network:

¢ Network A: logit, =W -g, +b=-1.2
¢ Network B: logit, = -0.4

222 Mathematical Foundations for Deep Learning
Applying the sigmoid function to get probabilities:

1
* Probability of Fraud for Network A: P (Fraud) = TTa2 = (.23 (predicted as legitimate).
el

* Probability of Fraud for Network B: P(Fraud)

i 0.40 (predicted as legitimate).
+e

If these predictions don’t match the actual labels, the model needs further training to adjust the
weights and improve accuracy.

Figure 7.4 illustrates different network structures, distinguishing between legitimate and fraudulent
patterns through node interactions and configurations. In Figure 7.4a, the graph shows a variety of node
colors, each indicating different account types or groups within a network of legitimate interactions.
Nodes are connected in a way that suggests diverse, healthy exchanges with no apparent signs of
suspicious clustering. Figure 7.4b depicts a linear, chain-like structure where each node connects to
the next in a sequence. This pattern is often associated with fraudulent activity as it may signify a
controlled sequence of interactions or transactions, a common tactic in creating synthetic behavior
that mimics legitimate patterns. Figure 7.4c shows a fully connected triangle, where each node is
interconnected with others in a balanced and symmetrical manner. Figure 7.4d presents a quadrilateral
structure, suggesting a looped pattern where nodes engage in orchestrated interactions. The symmetry
and closed shape indicate a coordinated fraud ring, which could be used to manipulate interactions,
such as forming closed loops to hide the origin and destination of transactions. Figure 7.4e highlights
a combination of legitimate and fraudulent nodes. The red nodes (A, B, C, and D) represent fraudu-
lent entities embedded within a chain of blue nodes, which may be legitimate. This setup shows how
fraudulent actors could leverage legitimate accounts to facilitate fraudulent transactions or disguise
their activities, creating a mixed network where legitimate and fraudulent behaviors are intertwined.
Figure 7.4f illustrates a scenario where a central node (B1) serves as a hub, connected to various other
nodes that represent legitimate accounts (green nodes). This central hub potentially manages fraudu-
lent operations by utilizing these connections to distribute activities or transactions, making it harder
to trace. The presence of the central fraud node indicates a strategic attempt to leverage legitimate
connections for malicious purposes, a hallmark of organized fraud operations.

7.6 CHALLENGES

Addressing the challenges associated with GCNs is crucial for their broader adoption and effect-
iveness in real-world applications. Researchers are actively developing techniques to improve
scalability, handle dynamic graphs, and manage heterogeneous graphs more effectively. These
advancements aim to make GCNs more robust, efficient, and capable of dealing with the complex-
ities of real-world graph data. In this section, we discuss some of these challenges.

7.6.1 ScCALABILITY

One of the significant challenges with GCNs is scalability. Deep learning models, particularly
those involving graphs, can be computationally intensive. As the size of the graph increases, the
amount of data and the number of computations required also grow, leading to high memory and
processing demands. Large graphs, such as social networks or biological networks with millions
of nodes and edges, can be particularly challenging to process efficiently. To address this issue,
researchers are developing methods that help manage the scalability of GCNs. One such approach
is graph sampling, as exemplified by techniques like GraphSAGE. This method involves sampling
a subset of nodes and edges to create mini-batches for training, which reduces the computational
burden while preserving the graph’s structural information. Another approach is mini-batch training,

FIGURE 7.4 These graphs represent various account interactions, including (a, c) legitimate loops, (b, d) potential fraud rings, (e) mixed

legitimate and fraudulent networks, (f) centralized fraud operations.

A1oay] ydein

€TC

224 Mathematical Foundations for Deep Learning

which processes the graph incrementally rather than all at once. This technique allows for incre-
mental updates, making it possible to train on large graphs without exceeding memory limits. These
methods are crucial for enabling the use of GCNs on large-scale data, ensuring that the models
remain efficient and effective even as the size and complexity of the graphs increase. Consider a
social network where millions of users (nodes) and billions of connections (edges) form a massive
graph. Processing this entire graph at once using traditional GCNs would require enormous compu-
tational resources, making it difficult to scale effectively.

7.6.2 DyNaMIC GRAPHS

Many real-world graphs are not static but dynamic, with nodes and edges frequently being added
or removed. Handling such dynamic graphs poses a significant challenge because the model must
continuously update its structure and parameters to accommodate these changes. This requires
algorithms that can adapt to changes in the graph in real time without necessitating a complete
retraining of the model. One key approach to addressing this challenge is incremental learning. This
method involves developing techniques that update the model incrementally as new data arrives,
allowing the GCN to adapt to changes without starting from scratch. Another approach is processing
graph data in a streaming fashion, known as streaming graphs. This allows for real-time updates and
ensures that the model maintains its accuracy over time as the graph evolves. These approaches are
essential for effectively managing dynamic graphs, enabling the models to remain responsive and
accurate as the underlying data changes. Consider a social network where new users (nodes) are
constantly joining, existing users are unfollowing or following others, and posts (edges) are continu-
ously being posted or deleted. This creates a dynamic graph that evolves over time. To ensure that
the GCN handling this data remains accurate and up-to-date, it must be capable of adjusting to these
changes without needing to be retrained from scratch every time the graph changes.

7.6.3 HETEROGENEOUS GRAPHS

Another challenge is dealing with heterogeneous graphs, where nodes and edges can be of different
types. For example, in a knowledge graph, nodes might represent various entities such as people,
places, and organizations, while edges might represent different types of relationships such as
friendships, locations, and affiliations. Heterogeneous graphs require models capable of handling
multiple types of nodes and edges, capturing the complex interactions between them. One solution
to this challenge is the use of heterogeneous GNNs (HetGNN). These specialized architectures
are designed to process and learn from heterogeneous graphs, effectively capturing the diverse
interactions and relationships within the data. Another approach is the use of metapath-based
methods, which leverage metapaths to capture the relationships between different types of nodes
and edges, enhancing the model’s ability to learn from heterogeneous data.

7.7 OTHER GRAPH-BASED DEEP LEARNING MODELS

These models represent significant advancements in graph-based deep learning, each addressing
specific challenges associated with processing graph-structured data. By incorporating techniques
such as neighborhood sampling, attention mechanisms, and polynomial approximations, these
models enhance the scalability, expressiveness, and efficiency of GNNs, making them more suitable
for various real-world applications.

7.7.1 GRAPHSAGE (GRAPH SAMPLE AND AGGREGATION)

GraphSAGE is a scalable technique designed to address the computational challenges of GCNs when
applied to large graphs. By sampling a fixed-size subset of neighbors for each node, GraphSAGE

Graph Theory 225

reduces computational complexity while preserving essential structural information. This approach
ensures that memory and processing requirements remain manageable, even as the graph size grows,
making it ideal for large-scale graphs, such as social networks or biological networks. A key feature
of GraphSAGE is its neighborhood sampling method. Rather than using all neighbors of a node,
it samples a fixed number, allowing the model to scale without sacrificing important local struc-
ture. The model introduces several aggregation functions to combine the features of the sampled
neighbors. The mean aggregation function calculates the mean of the neighbors’ features, pro-
viding a smooth representation of the local structure. The long short-term memory network (LSTM)
aggregation function uses a LSTM to capture sequential information and dependencies between
neighbors. The pooling aggregation function, such as max pooling, highlights the most significant
features in the neighborhood. The GraphSAGE methodology involves several steps. First, a fixed
number of neighbors is sampled for each node, reducing neighborhood size while capturing repre-
sentative structural information. Next, an aggregation function (mean, LSTM, or pooling) is applied
to combine the sampled neighbors’ features, which are then used to update the node’s representa-
tion. Through multiple layers of sampling and aggregation, GraphSAGE learns meaningful node
representations that incorporate both node features and the structural information from their neigh-
borhood. These learned representations are then used to perform tasks such as node classification,
link prediction, or graph classification. For a given Node v, GraphSAGE first samples a fixed-size
set of neighbors N(v). The feature vectors of these neighbors are then aggregated using one of the
aggregation functions. For example, using mean aggregation, the new representation for Node v at
layer 1 + 1 is computed as:

i+t = G(W’ -mean ({hé } U {hﬁVu € N(v)}))

where:

. hf is the feature vector of Node v at layer I,

* W'is a weight matrix,

* N(v) is the set of sampled neighbors of v, and

e ¢ is a nonlinear activation function, such as ReLLU.

This process is repeated over multiple layers, enabling the model to incorporate multi-hop neigh-
borhood information. Consider a simple undirected graph with six nodes: A, B, C, D, E, and F.
Connections (edges) are as follows:

e Node A is connected to Nodes B and C.

¢ Node B is connected to Nodes A, D, and E.
e Node C is connected to Nodes A and F.

e Node D is connected to Node B.

e Node E is connected to Node B.

e Node F is connected to Node C.

The adjacency list is: N(A) = {B,C}, N(B) = {A,D,E}, N(C) = {A,F}, N(D) = {B}, N(E) = {B},
and N(F) = {C}. Each node has a two-dimensional feature vector representing certain attributes
(e.g., properties or characteristics): h(A") = [1, 0], hgo) = [0, 1], h(CO) = [1, 1], hg)) = [0,0] , h(E") = [O, 1],
and h(FO) = [1, 0]. The parameters, for example, are:

o Sampling Size (K): At each layer, sample up to two neighbors per node
* Number of Layers: Two layers (we will update node representations over two iterations)

226 Mathematical Foundations for Deep Learning

o Aggregation Function: Mean aggregation
* Activation Function (c): ReLU

. . 0.5 0.1 0.6 0.2
o Weight Matrices: W) = and W = .
03 0.7 04 0.8

For each node and at each layer, these three steps should be done:

Step 1: Sampling Neighbors: Randomly sample up to K neighbors from the node’s immediate
neighbors.

Step 2: Aggregate Neighbor Features: Apply the aggregation function to the sampled neighbors’
features.

Step 3: Update Node Representation: Combine the node’s own feature with the aggregated
neighbor features, apply the weight matrix, and pass it through the activation function to get
the new node representation.

The step-by-step computation is as follows. At the first layer (from h® to h™"):

Step 1. Sampling Neighbors: For this example, we’ll fix the sampled neighbors for consistency:
* Node A: Sampled Nodes B and C
* Node B: Sampled Nodes A and D
* Node C: Sampled Nodes A and F
* Node D: Sampled Node B (only neighbor)
* Node E: Sampled Node B (only neighbor)
* Node F: Sampled Node C (only neighbor).

Step 2. Aggregate Neighbor Features: Using mean aggregation, compute the aggregated neighbor
features for each node.
* Node A:
a. Sampled neighbors: B and C

b. Neighbor features: hg)) =[0,1] and h(CO) =[11]

= (o 1n1] =[0.5,1].

c. Aggregated feature: agg!) = mean ({hg’),h((’)}) 5

C
* Node B:
a. Sampled neighbors: A and D

b. Neighbor features: hff) = [1, 0] and hg’) = [0, 0]

w =[0.5, 0].

c. Aggregated feature: aggg) =
* Node C:

a. Sampled neighbors: A and F

b. Neighbor features: hff) = [1, 0] and hg’) = [1,0]

LO[H L0
c. Aggregated feature: agg(cl) = # = [1, 0].

* NodeD:
a. Sampled neighbor: B
b. Aggregated feature:agg(Dl) =h0 = [0,1].

B

Graph Theory 227

* NodeE:

a. Sampled neighbor: B

b. Aggregated feature: agg(E‘) = hg’) = [O, 1].
* NodeF:

a. Sampled neighbor: C

b. Aggregated feature: agg(F‘) = h(co) = [1, 1].

Step 3. Update Node Representations: Update each node’s representation using
n) = o(wt ~(h£°)l Iagg(v'))r) . Here, || denotes the concatenation of the node’s own features with
its aggregated neighbor features, resulting in a four-dimensional vector. Accordingly, W®
should be a 2 x 4 matrix. For simplicity, we’ll adjust W® to match the dimensions. Let us

redefine W® as a 2 x 4 matrix:

o _[05 01 04 02
03 0.7 06 08

e Node A:
a. Concatenated features: hgo)llaggﬂ) = [1, 0, 0.5, l]
b. Multiply by W®:

0.5
W = o(W0)-[1,0,05,1T)= &
0.3

A
0.5+0+0.2+0.2=0.9
=0 =[0.9, 1.4]
0.3+0+03+0.8=1.4

—
~—
—
—_
~—
+
—
~—
—
=
~—
+
—
e 2
N B
~—
—
e @
W W
~—
—
~—
—
—_
~—
| S
N—o

c. Apply ReLU: h&‘) = [0.9, 1.4]
* Node B:
a. Concatenated features: h{%lbgg!) =[0,1,0.5,0]
b. Multiply by W®:

5= %1(0.3)(0)+(0.7)(1)+(0.6)(0.5)+ (0.8)(0)

0+0.1+02+0=0.3
=0 =[0.3,1.0]
0+0.7+03+0=1.0

hU)::G({«xsﬂo)+(0J)0)+(04)(05)+(oz)an})

Nodes C, D, E, and F can be computed similarly. Also, similar steps should be done for layer 2
(from h™ to h®).

7.7.2 GRAPH ATTENTION NETWORKS

Graph attention networks (GATs) enhance GCNs by introducing an attention mechanism that
allows nodes to assign different levels of importance to their neighbors’ features. Instead of treating
all neighboring nodes equally, each node dynamically learns which neighbors are most relevant
during the training process. This adaptive focus enables the model to capture intricate relationships
within the graph more effectively, improving its expressiveness and performance, especially
in heterogeneous and complex graphs where nodes and edges vary in type and significance.

228 Mathematical Foundations for Deep Learning

By selectively concentrating on the most pertinent neighbors, GATs provide more accurate and
insightful representations of the data. The methodology includes the following steps:

Step 1. Graph Representation: Each node is initially represented by its feature vector, capturing
the node’s attributes.

Step 2. Attention Calculation: For each node, calculate the attention coefficients with its neighbors.
These coefficients represent the importance of each neighbor’s features. The attention coeffi-
cient a; between nodes i and j is computed as:

a; = softmax (LeakyReLU (aT [Whi | Wh,]))

where a is the attention vector, W is the weight matrix, hl. and h]. are the feature vectors of nodes
i and j, Il denotes concatenation, softmax , is the softmax function applied over all neighbors
j of Node i, and LeakyReLU is a nonlinear activation function applied to the computed value
before the softmax.

Step 3. Feature Aggregation: Aggregate the features of the neighbors using the attention
coefficients. This results in a new feature representation for each node that emphasizes the
more relevant neighbors:

h, = a[D aijWhj]
jen(i)

where N (1) denotes the neighbors of Node i, and 4 is an activation function such as ReLU.

Step 4. Multihead Attention: To stabilize the learning process and improve performance, GATs
often use multihead attention, where multiple attention mechanisms run in parallel, and their
outputs are concatenated or averaged.

7.7.3 CHEBNET (CHEBYSHEV NETWORKS)

ChebNet utilizes Chebyshev polynomials to generalize convolution operations on graphs, enab-
ling efficient and localized computations. By approximating the graph Laplacian’s eigenfunctions
with Chebyshev polynomials, ChebNet avoids the explicit computation of eigenvectors, addressing
computational challenges associated with spectral methods. This approach enhances scalability and
performance, particularly for large and sparse graphs. ChebNet employs Chebyshev polynomials,
orthogonal polynomials that approximate spectral graph convolutions, to make the convolution pro-
cess more efficient. This method allows the network to perform localized operations, effectively
capturing the local structure of the graph by focusing on the immediate neighborhood of each node.
This focus preserves important local details while maintaining computational efficiency. By lever-
aging polynomial approximations, ChebNet significantly reduces computational costs, streamlining
spectral graph convolutions and making it suitable for large-scale graphs. Its scalability allows it
to handle large and sparse graphs efficiently, making it well-suited for real-world datasets without
overwhelming computational resources. Additionally, ChebNet’s approach enables the model to
capture multiscale features within the graph, providing a better understanding of the graph’s struc-
ture and properties. This multiscale feature capture enhances the model’s ability to perform various
complex graph-based tasks effectively. The methodology includes the following steps:

Step 1. Graph Representation: Each node in the graph is represented by its feature vector. The
graph’s structure is captured by its adjacency matrix A and the degree matrix D.

Graph Theory 229

Step 2. Chebyshev Polynomial Approximation: ChebNet approximates the spectral convolution
operation using Chebyshev polynomials of the graph Laplacian L. The graph Laplacian is
defined as A (adjacency matrix), D (degree matrix), and L. = D-A (graph Laplacian). The

-~ 2L
scaled graph Laplacian is: L = T I, where A__is the largest eigenvalue of L, and I is the

identity matrix. The convolution operation is defined as:

e x'is the output feature vector after applying the convolution,
* g, represents the filter parameterized by the Chebyshev coefficient 0,
* 0, is the Chebyshev coefficient to be learned,

- - 2L
e T, (L) is the Chebyshev polynomial evaluated at the scaled Laplacian L = ———1, and
A

x is the input feature vector.

Step 3. Localized Convolution: Using a finite number of Chebyshev polynomials, the convolu-
tion operation becomes localized, meaning that the filter only considers a local neighborhood
of nodes.

Step 4. Model Training: Train the ChebNet model using the localized convolution operations to
learn meaningful node representations for various tasks such as node classification or graph
classification.

7.7.4 IMPROVED SCALABILITY AND EFFICIENCY

Traditional graph algorithms are often designed to be highly efficient and scalable, particularly for
large graphs. By combining these algorithms with deep learning models, it is possible to preprocess
or simplify the graph structure using classical methods, reducing the computational burden on the
deep learning model. For example, a graph clustering algorithm can be used to partition the graph
into smaller, more manageable subgraphs, which can then be processed by a GNN. Deep learning
models can be used to predict important graph properties or optimize certain aspects of the graph,
which can then guide the application of classical algorithms. For instance, a GNN can predict the
critical nodes or edges in a network, which can be prioritized in a shortest path or maximum flow
algorithm. This combination can lead to more targeted and efficient solutions for problems such as
network optimization, routing, and resource allocation. Many real-world problems require both the
predictive power of deep learning and the optimization capabilities of classical algorithms. By inte-
grating these approaches, it is possible to tackle complex, multifaceted problems more effectively.
For example, in transportation networks, a GNN can predict traffic patterns and congestion, while
the shortest path algorithm can optimize routes based on these predictions, providing a solution for
traffic management. Consider a transportation network where cities are represented as nodes and
roads as edges, and the goal is to optimize traffic management. Traditional graph algorithms like
shortest path or maximum flow can effectively solve specific optimization problems, such as finding
the quickest route or maximizing traffic throughput. However, predicting future traffic conditions or
identifying critical points in the network requires more advanced models. By combining GNNs with
classical algorithms, we can achieve both predictive power and optimization. For instance, a GNN
can be trained to predict traffic patterns based on historical data, identifying critical nodes where
congestion is likely to occur. These predictions can then inform the shortest path algorithm, allowing
it to prioritize specific routes that avoid congested areas. In this way, the integration of deep learning

230 Mathematical Foundations for Deep Learning

FIGURE 7.5 (a) Initial node features, (b) node classification using GCN, (c) graph with weighted edges, and
(d) graph with attention mechanisms.

with classical methods leads to a more scalable and efficient solution for optimizing transportation
networks.

Figure 7.5 offers a visualization of the different stages and components involved in the GNN
process, specifically illustrating how it transforms graph data for node classification. In Figure 7.5a,
initial node features, the graph is presented in its original state, with each node colored based on the
average of its normalized feature values. Moving to Figure 7.5b, node classification using GCN, the
graph displays the results of node classification after being processed by a GCN. In Figure 7.5¢c, a
graph with weighted edges, the focus shifts to the relationships between nodes, with edges assigned
random weights to simulate varying degrees of connection strength. The thickness and color inten-
sity of the edges represent the magnitude of these weights, utilizing the “Blues” colormap. This
gradient ranges from light blue for weaker connections to deep blue for stronger ones, visually
conveying the influence of each connection between nodes. Thicker edges denote higher weights,
emphasizing more influential relationships within the graph. Finally, Figure 7.5d, a graph with
attention mechanisms, incorporates attention mechanisms into the graph, illustrating how the GNN
selectively focuses on certain edges over others. This gradient highlights the edges that the GNN
deems more influential or relevant for node classification tasks. Thicker and more intensely colored
edges indicate higher attention weights, showcasing the GNN'’s ability to prioritize significant node
relationships while downplaying less important ones.

Graph Theory 231

Figure 7.6 provides a visualization of the GNN process, showcasing various stages and meth-
odologies employed in transforming and analyzing graph-structured data for node classification.
In Figure 7.6a, a directed graph, a foundational directed graph is depicted, consisting of five nodes
interconnected by several directed edges. Transitioning to Figure 7.6b, an undirected graph, the
same set of nodes and connections from Figure 7.6a is presented without the directional arrows. This
undirected version underscores mutual relationships or bidirectional connections between nodes,
suggesting that interactions are reciprocal and not confined to a single direction. Figure 7.6c, a
weighted graph, introduces an additional layer of complexity by assigning random weights to the
previously unweighted directed edges. These weights symbolize the strength or significance of the
connections between nodes. In Figure 7.6d, initial node features, the focus shifts to the attributes
of the nodes themselves. Figure 7.6e, node classification using GCN, showcases the impact of the
GCN on node classification. After undergoing two convolutional layers, each node’s features are
updated by aggregating information from their immediate neighbors. In Figure 7.6f, node classifi-
cation using GAT, the results of node classification after processing with a graph attention network
(GAT) are illustrated. Figure 7.6g, node classification using GraphSAGE, presents the outcomes of
node classification using the GraphSAGE algorithm. GraphSAGE aggregates features from a node’s
local neighborhood to generate its representation, which is then utilized for classification.

7.8 REAL-WORLD APPLICATIONS
7.8.1 SociAL NETWORK ANALYSIS

Social networks are a prime example where graph theory is extensively applied. Users are represented
as nodes, and their interactions, such as friendships or follows, are depicted as edges. By analyzing
the structure of these networks, we can gain insights into social behaviors, community formation,
and information propagation. For example, social network platforms use graph-based deep learning
models to recommend new friends or connections by predicting potential links between users. These
models analyze the existing connections and suggest new links based on patterns observed in the
network, enhancing user engagement and expanding the social graph.

7.8.2 RECOMMENDATION SYSTEMS

Graph-based recommendation systems leverage user—item interaction graphs to provide personalized
suggestions. In these systems, nodes represent users and items (e.g., movies, products), while edges
represent interactions such as ratings or purchases. GNNs process these interactions to predict which
items a user might be interested in, leading to more accurate and relevant recommendations. This
approach is widely used by platforms, where understanding the relationships between users and
items is crucial for delivering a tailored experience.

7.8.3 BioLocicAL NETWORK ANALYSIS

In biology, graph theory is essential for understanding the interactions within complex biological
systems, such as protein—protein interaction networks or gene regulatory networks. By representing
these interactions as graphs, researchers can apply GNNs to predict unknown interactions or clas-
sify proteins based on their functions. This method is particularly valuable in drug discovery, where
identifying potential interactions between proteins can lead to the development of new therapeutic
targets.

FIGURE 7.6 (a) Directed graph, (b) undirected graph, (c) weighted directed graph, (d) initial node features, (e) node classification using GNN, (f) node classification
using GAT, and (g) node classification using GraphSAGE.

€T

Suruaea des(40y suoepunod [edieWwayIe

Graph Theory 233

7.8.4 TRANSPORTATION AND LoOGisTICS

Graph theory also plays a vital role in optimizing transportation networks. In these networks, cities
or transportation hubs are represented as nodes, and the routes between them as edges. The effi-
ciency of these networks can be improved by applying graph-based algorithms to optimize routes,
reduce travel times, and minimize costs. For example, delivery companies use these models to opti-
mize their logistics operations, ensuring timely and cost-effective deliveries.

7.8.5 Fraup DETECTION

In finance, graph theory is employed to detect fraudulent activities by analyzing transaction networks.
In these networks, accounts are represented as nodes and transactions as edges. By identifying
unusual patterns or anomalies in the graph, such as clusters of accounts with suspicious interactions,
financial institutions can detect and prevent fraudulent activities more effectively. This approach is
particularly useful in combating complex financial crimes, where traditional methods may fall short.

7.8.6 HEeALTHCARE AND EPIDEMIC MODELING

Graph theory is increasingly used in healthcare to model and predict the spread of diseases. In epi-
demic modeling, individuals are represented as nodes, and their interactions as edges. By analyzing
these graphs, public health officials can predict how diseases spread through populations and iden-
tify critical nodes (individuals or locations) where interventions can be most effective.

7.9 HANDS-ON EXAMPLE

The objective is to build a simple GNN model that can classify nodes in a graph based on their
features and connections.

7.9.1 Step 1: IMPORT REQUIRED LIBRARIES

In this code snippet, we import various libraries necessary for building a GCN using TensorFlow
and the Spektral library, along with utilities for data manipulation and visualization. NumPy is
imported for numerical operations, while tensorflow.keras is used to build neural network models.
The input and dense layers from Keras will help define the network structure. Spektral’s GCNConv
layer is a specialized layer for handling graph data, which operates by learning features for nodes
in a graph based on their connections. The normalized_adjacency function helps in normalizing the
adjacency matrix of the graph, a preprocessing step often required in graph-based learning tasks.
The adjacency matrix will be handled as a sparse matrix using csr_matrix from scipy.sparse, which
efficiently stores large, sparse matrices. For visualization, matplotlib.pyplot is used to plot graphs,
and networkx is imported for graph generation and manipulation.

import numpy as np

import tensorflow as tf

from tensorflow.keras.layers import Input, Dense
from tensorflow. keras.models import Model

from spektral.layers import GCNConv

from spektral.utils import normalized adjacency
from scipy.sparse import csr matrix

import matplotlib. pyplot as plt

import networkx as nx

234 Mathematical Foundations for Deep Learning

7.9.2 Step 2: CReATE THE GRAPH

In this part of the code, we create an adjacency matrix representing a simple undirected graph using
a sparse matrix format. The matrix adj_matrix is constructed using the csr_matrix function from
scipy.sparse, which is efficient for storing large matrices with many zeros. In this example, the adja-
cency matrix represents a graph with three nodes. The value 1 in position (i, j) indicates that Node i
is connected to Node j, while 0 indicates no connection. For this specific matrix, Node 0 is connected
to Node 1, Node 1 is connected to both Node 0 and Node 2, and Node 2 is connected to Node
1. This symmetric structure of the matrix reflects the undirected nature of the graph. The dtype=
np.float32 ensures that the values are stored as 32-bit floating-point numbers, which is common in
deep learning applications. This adjacency matrix will later be used in a GCN to define the structure
of the graph on which the model operates.

adj matrix = csr matrix([[O0, 1, 0],

[0, 1, 0]], dtype=np.float32)

7.9.3 Ster 3: NORMALIZE THE ADJACENCY MATRIX

In this section, we prepare the normalized adjacency matrix for use in a GCN by converting it into a
format suitable for TensorFlow. First, the normalized_adjacency() function normalizes the adjacency
matrix, a common preprocessing step in GNNs to ensure the graph’s structure is properly scaled.
Here, we use symmetric normalization (symmetric = True), which adjusts the adjacency matrix
symmetrically to account for the degree of each node. Next, the adjacency matrix is converted to
COO (coordinate list) format using tocoo(). COO is an efficient format for sparse matrices, which
stores the nonzero elements by their row and column coordinates. The indices variable is created by
stacking the row and column indices of the nonzero elements, which will be used to build a sparse
tensor in TensorFlow. The adjacency matrix is then converted into a TensorFlow SparseTensor (A_tf),
where indices hold the coordinates of nonzero elements, values hold the actual nonzero values from
the adjacency matrix, and dense_shape represents the overall shape of the matrix. Finally, tf.sparse.
reorder() ensures that the sparse tensor is correctly ordered internally for efficient computations in
TensorFlow. This processed sparse adjacency matrix will be used as input for graph-based deep
learning models like a GCN, allowing the model to learn from the graph structure.

adj matrix = normalized adjacency(adj matrix, symmetric=True)
Convert to COO format if not already

adj matrix = adj matrix.tocoo()

indices = np.column stack((adj matrix.row, adj matrix.col))

A tf = tf.sparse.SparseTensor (indices=indices, values=adj
matrix.data, dense shape=adj matrix.shape)

Ensure the sparse tensor is in the correct order

A tf = tf.sparse.reorder (A tf)

7.9.4 Step 4: DerINE NODE FEATURES

In this line of code, we create a feature matrix for the graph’s nodes using np.eye(3, dtype=
np.float32), which generates a 3 x 3 identity matrix. The identity matrix is often used as a simple

Graph Theory 235

feature representation in graph-based learning tasks, where each node has a unique feature vector.
For a graph with three nodes, each row of the matrix represents the features of a node, and the iden-
tity matrix ensures that each node is represented by a unique one-hot encoded feature vector. For
instance, Node 0 has the feature vector [1, 0, O][1, O, O][1, O, O], Node 1 has [0, 1, 0][0, 1, O][O, 1,
0], and Node 2 has [0, 0, 1][0, 0, 1][0, O, 1]. The dtype=np.float32 ensures the matrix is stored as
32-bit floating-point numbers, which is common in machine learning tasks. This feature matrix will
be used as input to the GCN, allowing the model to learn relationships between the graph’s nodes
based on their features.

features = np.eye (3, dtype=np.float32)

7.9.5 Step 5: DerINE NODE LABELS

In this line of code, we are creating a label matrix for a classification task associated with the nodes
of the graph. The labels array is a 3 x 2 matrix, where each row corresponds to the one-hot encoded
label for a node. The np.array() function is used to create the matrix, and dtype=np.float32 ensures
the data is stored as 32-bit floating-point numbers. For this example, Node 0 and Node 2 have the
label [1, O][1, O][1, O], meaning they belong to class 0, and Node 1 has the label [0, 1][0, 1][0, 1],
meaning it belongs to class 1. Each label is a one-hot encoded vector representing the class member-
ship of the corresponding node. This label matrix will be used during training of the GCN, allowing
the model to learn to classify each node into the appropriate class based on its features and the graph
structure.

labels = np.array([[1, 0], [0, 11, [1, 0]], dtype=np.float32)

7.9.6 Step 6: Buib THE GCN MoDEL

In this part of the code, we are building a GCN model using TensorFlow and the Spektral library.
The model takes both node features and the adjacency matrix as inputs to learn from graph-structured
data.

input features = Input (shape=(3,), dtype=‘float32’)
input adj = Input (shape=(None,), sparse=True, dtype=‘float32’)
gc = GCNConv (16, activation=‘relu’) ([input features, input adj])

output = Dense (2, activation=‘softmax’) (gc)
model = Model (inputs=[input features, input adj], outputs=
output)

model.compile (optimizer=‘adam’, loss='categorical crossentropy’,
metrics=[‘accuracy’])

7.9.7 Step 7: TRAIN THE MODEL

In this line, we are training the GCN model on the graph data using the model.fit() function. The
inputs to the model are the features matrix and the adjacency matrix (in sparse tensor format),

236 Mathematical Foundations for Deep Learning

and the target labels are provided in the labels array. During training, the GCN learns to classify
nodes by propagating and transforming information from node features and neighboring nodes’
features based on the structure of the graph. The model will adjust its weights to minimize the
categorical cross-entropy loss, and the accuracy will be evaluated after each epoch to track
progress.

model.fit (x=[features, A tf], y=labels, epochs=10, verbose=1)

7.9.8 Step 8: PReDICT AND VISUALIZE

Finally, the graph is displayed with plt.show(), providing a visual representation of the nodes and
their predicted classes, demonstrating the classification results of the GCN model.

Predict the node classes
predictions = model.predict ([features, A tf])
predicted classes = np.argmax (predictions, axis=1)
Create a simple graph for visualization
G = nx.Graph()
for i in range(len(predicted classes)) :

G.add node (i, label=predicted classes[i])
Add edges
edges = [(int (i), int(j)) for i, Jj in zip(adj matrix.row, adj_
matrix.col) if i < j]
G.add edges from(edges)
Color map for visualization
color map = [‘blue’ if label == 0 else ‘red’ for label in
predicted classes]
Draw the graph
plt.figure (figsize=(8, 8))
pos = nx.spring layout (G, seed=42) # for consistent layout
nx.draw (G, pos, node color=color map, with labels=True,
labels={i: f'Node {i}\nClass {predicted classes[i]}’ for i in
G.nodes () },

node size=700, font color=‘white’, font weight="bold’,

edge color=’gray’, linewidths=2, alpha=0.9)
plt.title (‘Node Classification with GCN’, fontsize=16)
plt.show ()

7.10 COMMON MISTAKES AND TROUBLESHOOTING TIPS
7.10.1 ImPROPER NODE AND EDGE REPRESENTATION

* Mistake: Incorrectly representing node features or edge connections, leading to errors in graph
construction and analysis.

e Tip: Verify the structure of your graph data by visualizing it. Ensure that node features and
edge connections are accurately represented and that any preprocessing steps (like normaliza-
tion) are correctly applied.

Graph Theory 237

7.10.2 INADEQUATE DATA PREPROCESSING

* Mistake: Failing to preprocess data appropriately, which can lead to poor model performance
or training issues.

* Tip: Normalize node features and ensure that the graph’s adjacency matrix is correctly
constructed. Handle missing data, and ensure consistency in the representation of nodes and
edges.

7.10.3 OVER-SMOOTHING IN GNNs

* Mistake: Over-smoothing where node representations become too similar after multiple layers
of graph convolutions.

e Tip: Limit the number of GNN layers, and consider using skip connections or residual
connections to mitigate over-smoothing. Experiment with different aggregation functions and
regularization techniques.

7.10.4 IGNORING GRAPH Size AND COMPLEXITY

* Mistake: Applying standard GNN models directly to very large or complex graphs without
considering scalability.

* Tip: Use models like GraphSAGE or sampling techniques to handle large graphs. Consider
hierarchical approaches or graph coarsening to reduce complexity.

7.10.5 OVERLOOKING EDGE WEIGHTS AND ATTENTION MECHANISMS

* Mistake: Not leveraging edge weights or attention mechanisms, leading to suboptimal per-
formance in tasks requiring nuanced relational understanding.

» Tip: Incorporate edge weights into your model if your graph data includes them. Use graph
attention networks (GATs) to apply attention mechanisms, which can weigh the importance
of different edges.

7.10.6 INSUFFICIENT MODEL EVALUATION

* Mistake: Failing to evaluate models thoroughly, leading to misleading conclusions about
model performance.

» Tip: Use cross-validation, and ensure that evaluation metrics are appropriate for the specific
graph-related task. Visualize model predictions and errors to gain insights into performance.

7.10.7 MisaprpLYING CrAssicAL GRAPH ALGORITHMS

* Mistake: Incorrectly integrating classical graph algorithms with neural network models,
leading to errors in analysis or suboptimal solutions.

* Tip: Thoroughly understand the principles of classical graph algorithms before integrating
them with neural networks. Ensure compatibility and correctness in implementation.

7.10.8 NEGLECTING DYNAMIC AND HETEROGENEOUS GRAPHS

* Mistake: Ignoring the dynamic nature of graphs or the presence of multiple types of nodes and
edges, leading to incomplete or incorrect analysis.

* Tip: Use dynamic GNN models and account for the heterogeneity in your graph data. Develop
custom models or preprocessing steps to handle dynamic and heterogeneous graphs effectively.

238 Mathematical Foundations for Deep Learning
7.11 REVIEW QUESTIONS
1. What are the fundamental components of a graph, and how do they contribute to the graph’s
structure and functionality?
2. How do directed and undirected graphs differ, and in which scenarios is each type particu-
larly useful?
3. What is a weighted graph, and how do edge weights influence the outcomes of graph
analysis?
4. What are the limitations of traditional neural networks when processing graph-structured
data, and why are specialized models like GNNs necessary?
5. How do GNNs process graph-structured data, and what is the significance of their architec-
ture in handling complex networks?
6. How do GCNs generalize the convolution operation to effectively handle graph data?
7. What are the typical real-world applications of GCNs, and how do they provide value in
those contexts?
8. What are the primary challenges encountered when implementing graph-based deep learning
models, particularly in large-scale or complex datasets?
9. What is GraphSAGE, and how does it enhance the scalability and efficiency of GNNs in
processing large graphs?
10. How does ChebNet utilize Chebyshev polynomials to generalize the convolution operation
for graphs, and what advantages does this method offer?
7.12 PROGRAMMING QUESTIONS
7.12.1 Easy
Implement a single GCN.
1. Define the adjacency matrix and node feature matrix for a small graph.
Implement the GCN layer function, which includes normalizing the adjacency matrix and
applying the GCN formula to the node features.
3. Apply the GCN layer to the graph data, and print the updated node features.

7.12.2 MEebpium

Use a GCN to perform node classification on the Cora citation network dataset.

M

Load and preprocess the Cora dataset, including the adjacency matrix and feature matrix.
Split the dataset into training and test sets.

Define a GCN model using TensorFlow/Keras or PyTorch with multiple GCN layers.
Train the GCN model on the training set and evaluate its performance on the test set.
Visualize the learned node embeddings and the classification results.

7.12.3 Harp

Implement and train a GAT for node classification on a large graph dataset.

1.

Load and preprocess a large graph dataset, such as PubMed or Reddit, including adjacency
matrix and feature matrix.

Graph Theory 239

Eal

Implement the GAT layer, focusing on computing attention coefficients and applying
attention to the node features.

Define a GAT model with multiple GAT layers.

Train the GAT model using appropriate techniques for large graphs.

Evaluate the model’s performance on a test set and visualize the results, comparing them
with a baseline GCN model.

8 Differential Geometry

8.1 INTRODUCTION

As we move into the digital age, with rapid advances in technology, differential geometry is finding
new importance in deep learning. As deep learning becomes more complex, the need to under-
stand its inner workings grows. This is where differential geometry becomes crucial. By interpreting
neural networks using concepts like manifolds and curvature, we can gain valuable insights into how
these networks train, optimize, and represent information. This chapter reviews these concepts in
more detail.

8.2 BASICS OF DIFFERENTIAL GEOMETRY

Differential focuses on properties of space that remain unchanged under smooth transformations,
like bending or stretching, and its understanding of the geometry of data and model parameters is
crucial in deep learning and neural networks.

8.2.1 MANIFOLDS

A manifold is a topological space that, when examined closely, looks like a flat piece of Euclidean
space. To illustrate, think of an ant walking on the surface of a basketball. From the ant’s perspec-
tive, the surface appears flat, as it can only see a small portion at any given time, even though the
surface is curved. This idea of being “locally flat” is the essence of a manifold. The number of
coordinates required to describe a point on the manifold determines its dimension. For example,
while the surface of a sphere curves in three-dimensional (3D) space, it is a 2D manifold because
any small region looks flat, like a plane. In deep learning, data often exists in high-dimensional
spaces, and understanding the structure and dimensionality of this data is essential for tasks like
visualization, dimensionality reduction, and feature extraction. The manifold hypothesis suggests
that high-dimensional data often resides on or near a lower-dimensional manifold. For instance,
images of faces might occupy a lower-dimensional space within the vast high-dimensional space
of all possible images. Consider a set of handwritten digits. Each image may be high-dimensional,
such as a 28 x 28 pixel grid, but the variations between different images of the same digit can often
be captured by just a few parameters, like thickness or slant. This implies that the images of hand-
written digits sit on a lower-dimensional manifold within the higher-dimensional space of all pos-
sible pixel combinations. Methods such as Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE) help identify these lower-dimensional manifolds, making
data analysis and visualization more manageable. Understanding manifolds helps deep learning

240 DOI: 10.1201/9781032690742-8

http://dx.doi.org/10.1201/9781032690742-8

Differential Geometry 241

practitioners grasp the underlying structure of data, leading to more effective models and deeper
insights. Let X c R" be a high-dimensional dataset, and assume that X lies on a manifold M c R,
where d < n. The goal of techniques like PCA or autoencoders is to find a mapping f: R* — R,
such that:

x=f(z), wherezeR? and xeR".

Here, z represents the coordinates on the lower-dimensional manifold, and f maps these coordinates
back to the high-dimensional space. For example, in PCA, the data are projected onto the first few
principal components, which form the lower-dimensional manifold.

8.2.2 TANGENT SPACE

To understand a tangent space, imagine picking a point on a curved surface, like a sphere. Now
picture a flat plane that touches the surface at that exact point but doesn’t cut through it. This plane
represents tangent space, and it captures all possible directions from which you could move. For
a 2D surface, the tangent space is a flat plane, but for higher-dimensional manifolds, the concept
extends into more complex spaces. In deep learning, the idea of a tangent space becomes important
when we consider optimization methods like gradient descent. When we compute the gradient of
a loss function at a given point, that gradient can be viewed as a vector lying in the tangent space
of the loss landscape. This vector points in the steepest direction of increase, and by following its
opposite direction, we perform gradient descent, moving toward a local or global minimum. The
tangent space provides a useful linear approximation of the curved manifold at a specific point.
This approximation allows gradient-based optimization methods to update parameters effectively,
even in the complex, curved spaces that arise in deep learning. For example, imagine standing at the
North Pole of a sphere; the tangent space at this point would be a flat plane, representing all pos-
sible directions you could step. Though the surface is curved, the tangent plane gives a simple, local
approximation of the surface’s behavior. In the context of deep learning, the loss landscape can be
seen as a high-dimensional manifold. The tangent space at any point on this manifold provides a
way to navigate the loss landscape using gradient information. The gradient vector within this space
shows the direction of the steepest ascent, but in optimization, the algorithm moves in the opposite
direction, down the slope, toward minimizing the loss. For a manifold M € R" and a point p € M,
the tangent space at p, denoted as T M, is a vector space that contains all the possible directions in
which one can move from p on the manifold. Formally, the tangent space at p is spanned by the par-
tial derivatives of the coordinate functions at p. In the context of gradient descent, at each iteration,
the parameter update is given by:

6, =6-nVL(6,).

+

where

* 6 represents the parameters at time step 7,
e 7 1is the learning rate,
» VL(0) is the gradient of the loss function L at 6.

The gradient VL(6) can be interpreted as a vector in the tangent space of the loss surface at 6. This
vector points in the steepest direction of increase, but gradient descent moves in the opposite direc-
tion to minimize the loss.

242 Mathematical Foundations for Deep Learning

FIGURE 8.1 3D paraboloid surface with tangent plane and vectors at (1, 1).

Figure 8.1 illustrates a 3D visualization of a paraboloid surface defined by the function z = x? + y?.
The plot highlights the geometric and differential properties of the surface at a specific point of
tangency located at coordinates (1, 1, 2). The paraboloid surface extends upward, demonstrating
a smooth, continuous curvature characteristic of this quadratic function. At the point of tangency
(1, 1, 2), a tangent plane is shown in light blue, providing a linear approximation of the surface
at this point. This plane represents the best local approximation of the surface around this point,
illustrating how the differential geometry concept of tangent spaces applies to this curved surface.

Additionally, two tangent vectors, labeled Tangent Vector 1 and Tangent Vector 2, are visualized
on the plane. Tangent Vector 1 is depicted in red, while Tangent Vector 2 is in green. These vectors
lie within the tangent plane, showing the directions along which the surface changes most rapidly
at the point of tangency. The vectors highlight how the surface’s behavior can be understood locally
through these directional derivatives, capturing the rate and direction of change. The point of tan-
gency itself is marked by a black dot, emphasizing the specific location where the tangent plane and
vectors interact with the surface.

Differential Geometry 243

8.2.3 MEeTrIC TENSOR

The metric tensor is a key concept that helps us understand how to measure distances on curved
surfaces or manifolds. It extends the idea of the dot product, which we use in flat, Euclidean spaces,
to more complex, curved spaces. This allows us to calculate distances and angles on those curved
surfaces. Essentially, the metric tensor gives a manifold its unique geometric structure by defining
how lengths and angles are measured at each point. Mathematically, the metric tensor works by
taking two tangent vectors at any point on the manifold and returning a number (a scalar). This
number represents the inner product of those two vectors, which helps determine their lengths and
the angle between them. Through this process, the metric tensor defines the local geometric prop-
erties of the manifold. In the context of neural networks, the metric tensor is closely related to
something called the Fisher Information Matrix. The Fisher Information Matrix helps us understand
the shape (or curvature) of the parameter space, showing how changes in the model’s parameters
influence its predictions. It essentially measures how much information a random variable provides
about an unknown parameter. Understanding the metric tensor and Fisher Information Matrix can
be beneficial in several ways. In optimization, knowing the geometry of the parameter space can
lead to better strategies; for example, natural gradient descent leverages the Fisher Information
Matrix to adjust parameter updates, enabling faster and more efficient convergence. Regularization
also benefits from this understanding, as the curvature of the parameter space defined by the metric
tensor provides insights into designing regularization methods. By assessing the complexity of a
model’s geometry, techniques can be developed to prevent overfitting by penalizing overly complex
models. Additionally, the metric tensor aids in interpreting how sensitive a model is to changes in
its parameters. By analyzing the parameter space geometry, we can pinpoint areas where the model
remains stable or becomes highly sensitive to small changes, which can inform efforts to refine
model performance. Consider a 2D surface, like the surface of a sphere. To measure the distance
between two points on this curved surface, we need more than the usual Euclidean distance formula
because the surface is not flat. The metric tensor defines how distances and angles are measured on
this curved surface, giving us the ability to compute the length of curves and the angle between two
directions at a given point. In 2D Euclidean space, the metric tensor is simply the identity matrix,
but on a curved surface like a sphere, the metric tensor is more complex, adapting to the curvature
of the space. For a manifold M with coordinates (X, X,, ..., X), the metric tensor g is a function that
assigns a matrix g, to each point on the manifold. This matrix is used to compute the inner product
of two tangent vectors u and v at a point p on the manifold:

u,v = Zgl.j (p)u’vf,
ij

where ' and v are the components of the tangent vectors, and g, are the components of the metric
tensor at point p. For example, on the surface of a 2D sphere, the metric tensor g might look like:

(10
8o sin20))

where 6 is the angle in spherical coordinates. This metric tensor adjusts how distances and angles
are measured depending on where you are on the sphere.

Figure 8.2 provides a 3D visualization of a curved surface, illustrating the impact of the metric
tensor on vector lengths across different regions of the surface. The surface itself is defined by a
function that creates a wavelike structure, showing variations in height represented by the color
gradient. The surface height ranges from lower elevations in deep purple to higher elevations in
yellow, as indicated by the color bar on the right. Vectors are placed at various points on the surface,

244 Mathematical Foundations for Deep Learning

FIGURE 8.2 Influence of metric tensor on vector lengths on a curved surface.

and their lengths are determined by the metric tensor, which accounts for the local curvature of the
surface. The vectors, shown in red, indicate the directions and magnitudes at these points. As the
surface curves, the vectors change in length, reflecting the influence of the metric tensor in scaling
them according to the surface’s geometric properties.

8.2.4 CuURVATURE

Curvature is a concept that describes how much a surface or manifold bends or deviates from being
flat. For example, a sheet of paper has zero curvature because it’s perfectly flat, while a sphere has
positive curvature because it curves uniformly in all directions. Curvature gives us insight into the
local shape and geometry of a manifold, and it can be measured in different ways. One common
method is Gaussian curvature, which considers the bending in two principal directions at a point,
while Ricci curvature generalizes this concept to higher dimensions, helping us understand the overall
shape of the space. In the context of deep learning, curvature plays an important role when analyzing
the loss landscape, the complex surface that represents how the model’s performance changes with
different parameter values. Understanding the curvature of this surface is crucial for several reasons.
In optimization, areas of the loss landscape with high curvature represent steep slopes and sharp
valleys, which can make it challenging for optimization algorithms like gradient descent to find
the optimal solution. The steepness in these regions can cause unstable updates or slow progress.
Conversely, flatter regions with lower curvature are easier to navigate, enabling smoother and faster
convergence. Curvature also plays a role in parameter sensitivity; in high-curvature areas, even
small changes to the model’s parameters can lead to significant changes in the loss function, making
the model more sensitive and potentially unstable. Recognizing these high-curvature regions allows

Differential Geometry 245

for adjustments in optimization strategies, such as lowering the learning rate, to prevent instability.
Furthermore, curvature affects generalization, as flat regions in the loss landscape are typically
linked to better generalization. In these areas, the model is less sensitive to small variations in
the data, resulting in more stable and robust performance. In contrast, high-curvature regions may
suggest that the model is overly fine-tuned to the training data, which can be a sign of overfitting and
lead to poor performance on unseen data.

Consider a simple loss landscape shaped like a bowl. If the bowl is steep and narrow (high curva-
ture), it will have a sharp minimum, and gradient-based optimization methods like gradient descent
may struggle to converge quickly or smoothly. Conversely, if the bowl is shallow and wide (low
curvature), the optimization process is easier, and the parameter updates are more stable and less
sensitive to small changes. One common way to measure curvature is through Gaussian curvature,
which is the product of the principal curvatures k and k, at a given point on a 2D surface:

K=k k

e If K> 0, the surface has positive curvature, like a sphere,
» If K =0, the surface is flat, like a plane,
» If K <0, the surface has negative curvature, like a saddle.

For higher-dimensional manifolds, Ricci curvature is used to generalize this concept. The Ricci
curvature at a point provides a way to quantify how much the manifold deviates from being flat in
various directions.

Figure 8.3 visualizes a 2D manifold represented by a sphere, with a tangent plane positioned
at the point (1, 0, 0). The sphere, shown in light blue, models the manifold, emphasizing its
curved nature and continuous surface. At the point (1, 0, 0), marked in red, the tangent plane is
illustrated as a flat, yellow surface intersecting the sphere. This plane serves as the best local
approximation of the manifold at that specific point, demonstrating the concept of a tangent
space in differential geometry. It is depicted as being tangent to the sphere’s surface only at the
red point, illustrating how the manifold’s curvature is locally linearized at this location. Two tan-
gent vectors, labeled Tangent Vector 1 (in blue) and Tangent Vector 2 (in green), lie within this
tangent plane. These vectors represent the directions along which the surface changes most rap-
idly at the point of tangency. They provide insight into the local geometry of the sphere, showing
how different directional derivatives describe the manifold’s behavior at this point. The vectors
highlight how, even in a higher-dimensional curved space, local analysis can be simplified using
linear approximations.

8.3 DIFFERENTIAL GEOMETRY IN DEEP LEARNING

Differential geometry offers a robust mathematical framework that provides profound insights into
the behavior, optimization, and utility of neural network models when applied to deep learning. As
deep learning continues to evolve, integrating these fields is expected to deepen, leading to more
robust and interpretable models.

8.3.1 Loss LANDSCAPES

In deep learning, the loss function is critical as it measures how far a model’s predictions deviate
from the true values. Training a model means adjusting its parameters iteratively to minimize this
loss. As models grow in complexity, often with millions or billions of parameters, the loss landscape
becomes a highly intricate, multi-dimensional surface. You can imagine it as a vast, uneven terrain

246 Mathematical Foundations for Deep Learning

FIGURE 8.3 Visualization of a 2D manifold (sphere) with a tangent plane at the point (1, 0, 0).

filled with valleys, mountains, plateaus, and ridges. Navigating this terrain to find the lowest point
(the minimum loss) is key to improving model performance, and this is where concepts from differ-
ential geometry, like curvature, become essential. Curvature provides insights into the shape of the
loss landscape. For instance, in convex regions, imagine the inside of a bowl, the path to the min-
imum is smooth and straightforward. Gradient descent can reliably find the minimum in these areas,
which leads to faster and more predictable convergence. These are the regions we want our opti-
mization methods to find. However, deep neural networks rarely have simple, convex landscapes.
Instead, they often feature saddle points, places on the surface that are neither a peak nor a valley
but a combination of both, like a mountain pass. These points have a mix of positive and negative
curvature along different directions. Because the gradient is close to zero in these regions, training
can stall, with gradient descent making painfully slow progress. Understanding the curvature of
the loss landscape is critical for developing more efficient optimization techniques. For example,
methods like Newton’s method use second-order information (such as the Hessian matrix) to cap-
ture the curvature more accurately, allowing for smarter updates to the parameters. However, these
methods can be computationally expensive for large networks. Alternatively, adaptive learning rate

Differential Geometry 247

algorithms like Adam or RMSprop adjust the learning rate based on the observed gradients, which
allows them to implicitly respond to the local curvature, making them more efficient in navigating
complex loss landscapes. Let’s say you're training a neural network to classify images, and your loss
function is cross-entropy. As the model updates its parameters, it effectively “travels” across this
multi-dimensional loss landscape. Curvature tells you a lot about where you are on the landscape. In
a convex region, like the inside of a bowl, gradient descent works smoothly because the slope always
leads toward the minimum. But if you hit a concave region (the outside of a dome) or a saddle point,
optimization becomes more difficult. Saddle points, where the gradient is nearly zero, but you’re not
at the lowest point, are particularly tricky in deep learning because they can slow training and con-
fuse the optimizer. In higher-dimensional spaces, saddle points become even more common. This is
because there are many directions in which the curvature can be either negative (concave) or zero.
For instance, imagine a deep network’s loss surface has a saddle point where the gradient is nearly
zero, but the surrounding areas have varying curvatures. This can stall the training process, as the
gradient descent algorithm may mistakenly interpret this point as being close to an optimum, even
though it is not. Let L(#) represent the loss function, where 6 is the vector of model parameters. The
gradient VL(0) gives the direction of steepest ascent, and the Hessian matrix H(6) provides second-
order information about the curvature of the loss landscape:

At a convex point, all eigenvalues of the Hessian are positive, indicating that the surface curves
upwards in every direction. At a saddle point, some eigenvalues are positive, and others are negative,
indicating mixed curvature.

Figure 8.4 visualizes a hypothetical loss landscape, illustrating the presence of different critical
points, a global minimum (convex), a local maximum (concave), and a saddle point. The global min-
imum, marked with a red sphere, represents the lowest point on the surface, indicating where the loss
function reaches its minimum value. This convex region is where optimization algorithms ideally
aim to converge, as it signifies the most optimal solution in the parameter space. The surrounding
contour lines further emphasize this low point, showing concentric circles that decrease in height
as they approach the minimum. The local maximum, indicated by a blue triangle, is a peak in the
landscape where the function reaches a temporary high value within a specific region. This concave
region demonstrates how optimization paths might be trapped if they encounter this point, thinking
they have reached a maximum when, in reality, it is not the global extremum. The blue arrow points
to this maximum, showing its prominence within its neighborhood. The saddle point, marked by a
yellow square, is another critical feature of the landscape. This point illustrates where the surface
curves upward in one direction and downward in another, forming a mix of convex and concave
characteristics. Saddle points are significant in optimization because they can mislead algorithms, as
gradients might not clearly indicate which direction moves toward the global minimum. The labeled
yellow square highlights its position, and its location shows how it interrupts smooth descent or
ascent paths on the surface.

Suppose we are training a simple neural network with one parameter to minimize a loss function.
We’ll explore different loss functions to see how their landscapes affect the optimization process.

Step 1. Quadratic Loss Function (Convex Region)
e Loss Function: For this L(G) =(0—2)* as a simple convex function (a parabola) with
a minimum at d = 2. The loss landscape is “bowl-shaped,” and gradient descent should
efficiently find the minimum.
* Gradient and Hessian: the gradient is VL(G) = 2(9— 2) and Hessian is H(B) =2

248 Mathematical Foundations for Deep Learning

FIGURE 8.4 Hypothetical loss landscape with convex, concave, and saddle point regions.

Optimization Steps: Let’s start with an initial parameter 6, = —4.
1. TIteration 1:
a. Compute gradient: VL(6)) =2(-4-2)= 2(—6) =-12
b. Update parameter (using a learning rate o = 0.1): 6, =6,— O‘VL(QO) =
—4-0.1(-12)=—-4+12=-28

c. Compute loss: L (6,) = (-2.8—2)> = (-4.8)> = 23.04
2. Iteration 2:
a. Compute gradient: VL (91) =2(-2.8-2)=2(-4.8)=-9.6
b. Update parameter: 6, = —2.8—0.1(-9.6) = —2.8+0.96 = —1.84
c. Compute loss: L (6,) = (—1.84 —2)* = (-3.84)> = 14.7456

The parameter € is moving toward the minimum at 8 = 2. The loss decreases with each
iteration, and the convex landscape allows gradient descent to converge efficiently.

Step 2. Saddle Point Example
* Loss Function: This function L(Q) = 6 has a saddle point at § = 0. The gradient is zero
at @ = 0, but it’s neither a minimum nor a maximum. The loss landscape is not convex
or concave throughout.
e Gradient and Hessian: The gradient is VL(6) = 3 and the Hessian is H (6) = 66
At6#=0:VLO)=0and HO)=0

Differential Geometry 249

e Optimization Steps: Starting with 6 = 0.01:
1. Iteration 1:
a. Gradient: VL(6,)=3(0.01* =3x0.0001 =0.0003

b. Update: 6, =0.01-0.1(0.0003) = 0.01-0.00003 = 0.00997
c. Loss: L(6,)=(0.00997)* =9.910x10~

2. lteration 2:
a. Gradient: VL() 3(0.00997)% = 0.0002982

b. Update: 6, = 0.00997 —0.1(0.0002982) = 0.00997 — 0.00002982 =~ 0.00994018
c. Loss: L(6,)=(0.00994018)° ~9.821x 10~

The gradient is very small near the saddle point. Parameter updates are tiny, causing slow progress.
Even though the gradient is near zero, we’re not at a minimum. Gradient descent struggles to escape
the saddle point region.

Step 3. Non-Convex Function with Multiple Minima
« Loss Function: This function L(6)= (6" =1 has two minima at # = —1 and 0 = 1.
There is a saddle point at § = 0.
* Gradient and Hessian: The gradient is VL(Q) = 40(02 —1) and the Hessian is
H(6)=4(3¢" 1)
At 8=0: VL(0) = 0 and H(0) = —4 (negative curvature)
* Optimization Steps: Starting with 6, = 0.1:
1. Tteration 1:
a. Gradient: VL(1) = 4(0.1)(0.01 - 1) = 4(0.1)(—0.99) =-0.396
b. Update: 6, =0.1-0. 1(—0 396) =0.1+0.0396 =0.1396
c. Loss: L(6,)=(0.1396> —1)> = 0.738

2. Iteration 2:
a. Gradient: VL(O.1396) = 4(0.1396)(0.0195 - 1) = 4(0.1396)(—0.9805) =~ —0.5467

b. Update: 6, =0.1396—0.1(-0.5467) = 0.1396 +0.05467 = 0.19427
c. Loss: L(6,)=(0.19427 —1) = 0.648

The gradient descent is moving away from the saddle point at & = O toward one of the
minima. Depending on the starting point, it could converge to either 8 = -1 or 6 = 1.
The saddle point at & = 0 can slow down the optimization if the starting point is near it.

Step 4. Hessian Matrix and Curvature
In higher dimensions, we consider the Hessian matrix H(8), which contains second-order partial
derivatives of the loss function with respect to the parameters.

* Loss Function: For example, it has two parameters 6 = [0,, 0,]: L(R 2) 6 -6

o
Gradient: VL (6)=| ° | =| 29
radient: ()— B_L = 20,
20,
FL L
6‘912 891892 2 0
e Hessian Matrix: H (9): =
0’L 82_L 0 2

00,00, 06

250 Mathematical Foundations for Deep Learning

The eigenvalues of H(6) are 4, = 2 and 4, = —2. Positive eigenvalue indicates convexity
in the 6, direction. A negative eigenvalue indicates concavity in the 6, direction. This
confirms that L(6) has a saddle point at § = [0, 0]. Gradient descent may oscillate or make
slow progress near the saddle point because the gradient points in different directions.
The optimizer might need many iterations to move away from the saddle point.

Step 5. Improving Optimization with Adaptive Methods

Improving optimization with adaptive methods helps navigate complex loss landscapes that
include saddle points and varying curvature. Algorithms like Adam or RMSprop are particu-
larly effective in these scenarios. The Adam algorithm uses adaptive learning rates, adjusting
the rate for each parameter based on the first and second moments of the gradients. This adjust-
ment accelerates training by enabling larger steps in directions with small gradients, which are
common near saddle points. For instance, when using Adam with default parameters, during
iterations near a saddle point, the algorithm increases the effective learning rate for parameters
with small gradients. This helps the optimizer move past regions where gradient descent might
otherwise stall. The result is faster convergence, as the model escapes saddle points more effi-
ciently, and greater stability, as adaptive methods handle varying curvature better, leading to
more stable training.

8.3.2 FEATURE SPACE ANALYSIS

As data passes through a neural network, it changes form, moving from raw input to increasingly
abstract representations. Early layers pick up on simple features, like edges in an image, while
deeper layers capture more complex patterns, shapes, objects, or even higher-level concepts. This
transformation shifts the data into what’s called a “feature space,” a high-dimensional space where
each point represents the processed version of the original input. Understanding this feature space
gives us important insights into what the network has learned. In this space, data points that are
similar to one another are mapped closer together, while points that are different are pushed apart.
This is crucial for tasks like classification, where the goal is to group similar items and separate
those that belong to different categories. By studying how data is arranged in this feature space,
we can get a sense of how well the model is performing its task. A key tool in understanding the
feature space is the concept of a metric tensor, which essentially measures the distances between
points in the space. By calculating these distances, we can tell how well the network can differ-
entiate between different classes of data. For instance, if points from the same class are grouped
tightly together, it means the network has learned to recognize important features of that class. If
points from different classes are well-separated, it suggests the network is good at distinguishing
between categories. Here are some practical uses for feature space analysis. Techniques like t-SNE
and Uniform Manifold Approximation and Projection (UMAP) can simplify the high-dimensional
feature space into a 2D or 3D map, making it easier to see how the network is organizing the data.
This lets us check whether the network is correctly grouping similar data points (such as different
images of the same object) and separating different classes. By analyzing how far apart the clusters
of data from different classes are, we can evaluate the network’s ability to separate categories. If the
clusters overlap, it might indicate problems with the model, while large separations suggest strong
performance. Looking at misclassified points in the feature space can help pinpoint where the model
is going wrong and how to improve it. When a network has learned features that generalize well,
they can be reused for other tasks. By analyzing the feature space, we can figure out if the network’s
learned features can be transferred to new problems or datasets, saving time and effort by avoiding
retraining from scratch. Adversarial examples, intentionally crafted inputs designed to trick a model,
can be studied in the feature space. A robust model should keep real and adversarial examples far

Differential Geometry 251

apart in this space. By examining how these inputs are mapped, we can develop strategies to protect
against such attacks. Let us have an example for better understanding. Consider a simple image clas-
sification task using the MNIST dataset of handwritten digits. Each input image is a 28 x 28 pixel
grid, resulting in a high-dimensional input space (784 dimensions). As the data moves through the
layers of a neural network, it is transformed into different representations, with each layer extracting
increasingly complex features. In the earlier layers, the network might focus on low-level features
such as edges, while in the deeper layers, it learns more abstract features like digit shapes. By the
time the data reaches the final layer, each input image is represented as a point in a high-dimensional
feature space, where similar digits (e.g., “1”’s) are mapped closer together, and dissimilar digits (e.g.,
“1”s and “8”s) are pushed farther apart. Let’s define the feature space mathematically. Suppose x
€ R" is the input (an image), and f(x) is the neural network that transforms this input into a high-
dimensional feature vector. After several layers of transformation, the feature vector z = f; (x) lies
in a high-dimensional space R?, where d < n. The distance between two feature vectors z, and z,
(representing two different images) can be computed using the Euclidean distance:

, d
: _1. _ _ _ 2
Distance (ZI’ZZ) - "Z,) "2 - Z(Zu Zz,i)
i=1

This distance quantifies how similar or dissimilar the representations of two images are in the fea-
ture space. If the network has learned good features, images of the same digit (e.g., “1”") will have
smaller distances between their feature vectors, while images of different digits (e.g., “1” and “8”)
will have larger distances. Suppose we have a simple neural network trained to classify two types of
data points: Class A: Points clustered around [2, 2] and Class B: Points clustered around [-2, -2].
The Class A data points are [2, 2], [2.1, 1.9], [1.9, 2.2], and Class B data points are: [-2, 2], [-1.8,
—2.1], and [-2.2, —1.9]. The neural network structure is as follows:

e Input layer: 2 neurons (features x, and x,)
* Hidden layer: 2 neurons with ReLU activation

e OQutput layer: 1 neuron with sigmoid activation (for binary classification)

The weights and biases are as follows:

1 0
¢ Weights from input to hidden layer (W)): W, = [0 1]

0
Biases for hidden layer (b)): b, = |:0}

1
¢ Weights from hidden to output layer (W,): W, = [1:|

* Bias for output layer (b,): 0

Here is a forward pass example. Let’s compute the network’s output for a data point from Class A,
say [2, 2]:

e Hidden layer activation (h):

st sonenan(y)l

252 Mathematical Foundations for Deep Learning

¢ Output layer activation (9):

$=0(W, -h+b,)= G([l 1]-[5} 0) = 0(4) = 0.982,

is the sigmoid function. The output y = 0.982 indicates a high probability that

-z

where O'(Z) =]

the input belongs to Class A.

8.3.3 NEURAL NETWORK GENERALIZATION

Generalization refers to how well a trained model performs on new, unseen data. It’s a measure of
the model’s usefulness; if it can’t generalize beyond the data it was trained on, it won’t be effective
in real-world applications. Improving generalization is a key goal when building machine learning
models. Interestingly, the shape of the loss landscape, which reflects how the model’s performance
changes with different parameter settings, has a strong link to generalization. Research shows that
models tend to generalize better when the loss landscape has wide, flat regions (minima). In con-
trast, sharp, narrow minima often lead to models that perform well on the training data but struggle
with new data. Here’s how the geometry of the loss landscape relates to generalization. Flat regions
in the loss landscape indicate that small changes in the model’s parameters don’t drastically affect
its predictions. This stability means the model is less sensitive to slight variations in the data, making
it more robust for new inputs. Models that find flat minima are better at capturing general patterns
in the data rather than overfitting to specific examples in the training set. In practice, this results in
better performance when the model encounters unseen data. Sharp, narrow minima suggest that the
model is highly sensitive to its parameters. In these regions, the model’s parameters are finely tuned
to the training data, which may lead to excellent performance during training but poor results on
new data. In these cases, even small changes in the input or the parameters can cause the model’s
output to vary dramatically, making it less reliable when faced with unfamiliar data. This is often a
sign that the model has overfitted, memorizing the training data rather than learning general patterns.
Let’s have an example for better understanding. Consider two neural networks trained on the same
dataset for a classification task. Network A converges to a flat minimum, while network B converges
to a sharp minimum on the loss landscape. Network A might not achieve the lowest possible training
error but performs well on unseen test data, indicating strong generalization. In contrast, network B
achieves near-perfect performance on the training set but struggles with test data due to overfitting.
Flat minima correspond to regions in the loss landscape where the loss function remains relatively
constant over a broad range of parameter values. This implies that the model’s predictions are stable
and not overly sensitive to small changes in the parameters. Mathematically, this flatness can be
captured by the eigenvalues of the Hessian matrix H, which is the second derivative of the loss
function with respect to the model parameters:

_ 0’L(0)

H(6) 5

For flat minima, the eigenvalues of the Hessian are small, indicating low curvature. This suggests
that the model has found a stable set of parameters, making it more robust to small perturbations
in the input or noise in the data. A model that converges to a flat minimum is likely to have better
generalization because it has learned general patterns in the data rather than memorizing the training
examples. In contrast, sharp minima are regions where the loss function changes rapidly with small
parameter adjustments. This is characterized by large eigenvalues of the Hessian matrix, indicating

Differential Geometry 253

high curvature. A model that converges to a sharp minimum is typically more sensitive to small
variations in the data, meaning that a slight change in the input can lead to significant changes in
the model’s predictions. This sensitivity is often a sign of overfitting, where the model has learned
specific details of the training data that do not generalize well to new, unseen data. Let L(6) represent
the loss function, where 6 is the vector of model parameters. Generalization can be influenced by
the sharpness of the minimum found during training, which is often measured by the Hessian matrix
H(6). If the Hessian’s eigenvalues are small, we are in a flat region, which is beneficial for general-
ization. Conversely, large eigenvalues indicate sharp regions:

A (H)=0 (flatregion) vs. A_ (H)>O0 (sharpregion),

max

where A_ (H) is the largest eigenvalue of the Hessian. Suppose we are training a simple neural
network to perform binary classification on a small dataset. We want to classify whether a number
is even or odd.

Training Data Validation Data
Input (x) Label (y) Input (x) Label (y)
1 1 5 1
2 0 6 0
3 1
4 0

We will compare two models with the same architecture but different training outcomes: Model A
to find a flat minimum in the loss landscape and Model B to Find a sharp minimum in the loss land-
scape. The loss function is mean squared error (MSE) and the architecture is as follows: input layer;
1 neuron and output layer; 1 neuron with Sigmoid activation (outputs probability). Let do train the
models:

1. Model A (Flat Minimum): Uses L2 regularization to prevent overfitting. The training
outcomes are weight (w): 0.5 and bias (b): 0.

2. Model B (Sharp Minimum): No regularization; the model may overfit the training data and
the training outcomes are weight (w): 10 and bias (b): -25.

Now, let us do model predictions

1. Model A Predictions: Using § = o(wx+b), where o is the sigmoid function.
a. Training Data:
e Forx=1:3=0(05x1+0)=0(0.5) = 0.622
* Forx=2:=0(05%2+0)=0(1.0)=0.731
Predictions are around 0.6—0.7, not exactly matching labels but reasonable.
b. Validation Data:
* Forx=5:9=0(0.5%x5+0)=0(2.5)=0.924

* Forx=6:y=0(0.5x6+0)=0(3.0)~ 0.953
Predictions are high, indicating even numbers, which may not perfectly match validation
labels.

254 Mathematical Foundations for Deep Learning

2. Model B Predictions:
a. Training Data:
« Forx=1:9=0(10x1-25)=0(-15)=3x1077

* Forx=2: y=0(10x2-25)= o(-5) = 0.0067
The model outputs are extremely low or high, closely matching labels.
b. Validation Data:
¢ Forx=5:9=0(10x5-25)=0(25)=1.0
« Forx=6:3=0(10x6-25)=0(35)=1.0
Predictions are very high, indicating odd numbers, which is incorrect for x = 6.

In flat minimum (Model A), the loss doesn’t change drastically with small changes in weights, and
the model is not overly sensitive to exact weight values. In sharp minimum (Model B), small changes in
weights cause a significant loss increase, and the model memorizes training data but doesn’t generalize
well. But for generalization performance, Model A, the training loss is slightly higher due to less precise
fitting, and validation accuracy is better, as the model makes reasonable predictions on unseen data on
Model B, the training loss is very low, almost zero, the model fits training data perfectly, and validation
accuracy is poor, as the model fails to predict correct labels on new data (e.g., misclassifies x = 6). The
model’s performance is stable under small data or parameter changes and gives better generalization as
handling unseen data more effectively. On sharp minima, sensitivity, and minor variations can lead to
large errors and overfitting, and it performs well on training data but poorly on new data.

8.3.4 INFORMATION GEOMETRY

Information geometry is a fascinating intersection of probability theory and differential geometry.
It studies random variables and probability distributions using geometric structures. One prominent
concept from information geometry is the Fisher Information Metric. In deep learning, this metric
helps us understand the sensitivity of a model’s predictions to its parameters. In Bayesian deep
learning, where we consider a distribution over neural network weights instead of fixed values,
information geometry plays a crucial role in understanding the model’s uncertainty and guiding the
learning process. Imagine a neural network trained for image classification. Instead of treating the
weights of the network as fixed values, we treat them as random variables, representing our uncer-
tainty about the optimal weights. In this probabilistic framework, Information Geometry helps us
understand the geometry of the parameter space in terms of probability distributions. The Fisher
Information Metric is a key tool here, as it measures how sensitive the model’s predictions are to
small changes in the weights. The Fisher Information Metric defines a Riemannian metric on the
space of probability distributions. It essentially measures how much information a random variable
carries about the unknown parameters of a distribution. In the context of deep learning, it helps
quantify how much influence a small change in the model’s parameters # has on the predicted prob-
ability distribution. Mathematically, if p(x|6) is the probability distribution of the data x given the
parameters 6, the Fisher Information Matrix 1(6) is defined as:

1(6)=E (alogp(xle))[E)IOgp(xle))r |

00 00

where:

e p(x 1 0)is the likelihood function.
* The expectation E is taken with respect to the data distribution.

Differential Geometry 255

This matrix tells us how sensitive the likelihood is to changes in the parameters. If the Fisher
Information Matrix has large values, it indicates that small changes in the parameters will signifi-
cantly affect the likelihood, suggesting that the model is highly sensitive to those parameters.

In Bayesian deep learning, where we model a distribution over the neural network weights
instead of using fixed weights, information geometry provides insights into uncertainty. The Fisher
Information Metric can guide how the weight distribution is updated during training. Instead of
taking fixed steps in parameter space, we adjust the steps based on the geometry of the space,
leading to more informed updates. Consider the Fisher Information Matrix as a measure of the local
geometry around a point in parameter space. In natural gradient descent, the Fisher Information
Matrix is used to scale the parameter updates in a way that takes into account the underlying geom-
etry of the probability distributions. The natural gradient update is given by:

9t+1 = er - T]I(@t)_IVGL(et),

where:

 I(0)"is the inverse of the Fisher Information Matrix,
V,L(0) is the gradient of the loss function,
* 7 is the learning rate.

This approach ensures that parameter updates are adapted to the sensitivity of the model to changes
in the parameters, improving convergence, especially in high-dimensional or complex models.

Figure 8.5 provides a comparative visualization of a loss landscape Figure 8.5a and feature space
clusters Figure 8.5b to demonstrate how different parameter configurations and feature distributions
impact classification and optimization in machine learning. In Figure 8.5a, the 3D loss landscape
illustrates how the value of the loss function changes across different parameter settings. The sur-
face is colored using a gradient from blue (Iow loss) to red (high loss), indicating convex, concave,
and saddle regions as the parameter values vary. The contour lines highlight the elevation levels,
making it easier to visualize the gradient flow and pathways toward minima. The convex region
(highlighted in red) represents areas where the function value is higher, typically seen in regions
away from the global minimum. The concave region (blue) indicates a valley where the loss value
is minimized. The green dot marks a saddle point, where the surface curves upward in one direc-
tion and downward in another, demonstrating the challenges faced during optimization when tra-
versing such regions. Figure 8.5b presents a 2D scatter plot of feature space, showing two clusters
corresponding to different classes: Class 1 (orange circles) and Class 2 (blue squares). The clusters
are well-separated, indicating that the features provide enough distinction for classification. Arrows
point to the centers of each class cluster, demonstrating the centroids where the mean feature values
for each class lie.

8.4 PRACTICAL IMPLICATIONS
8.4.1 REGULARIZATION

Building on our earlier example of Model A, which converges to a flat minimum, and Model B,
which settles into a sharp minimum, regularization techniques play a crucial role in guiding the opti-
mization process toward flatter regions of the loss landscape. To explore these concepts, we begin
by creating a simple graph with three nodes arranged in a chain structure. The adjacency matrix is
normalized and converted into a sparse tensor format suitable for processing by a Graph Neural
Network (GCN). Each node’s features are represented by an identity matrix, and the labels are
encoded using one-hot vectors for two distinct classes. After training the GCN, we predict the node

FIGURE 8.5

(a) Loss landscape, and (b) feature space clusters.

94¢

Suruaea des(40y suoepunod [edieWwayIe

Differential Geometry 257

classes and visualize the graph with nodes colored based on their predicted classes. To further dem-
onstrate manifold learning, we generate a Swiss roll dataset with 1,000 samples and a small amount
of noise. We apply t-SNE and UMAP, two popular dimensionality reduction techniques, to project
the high-dimensional Swiss roll data into two dimensions. Additionally, we compute the pairwise
distance matrix, derive the Laplacian matrix, and perform singular value decomposition (SVD) to
understand the data’s geometric structure.

Figure 8.6 provides a visual exploration of different data transformation and dimensionality
reduction techniques. Figure 8.6a shows node classification results from a graph convolutional net-
work (GCN). The blue dots likely represent nodes in a graph that have been classified into distinct
categories after training the model. This visualization demonstrates how the GCN has grouped nodes
based on their learned features. In Figure 8.6b, we see the popular 3D Swiss roll dataset, which is
often used to test algorithms that deal with nonlinear data structures. The Swiss roll is a twisted
3D manifold that provides a challenging structure for machine learning algorithms to untangle and
understand. Figure 8.6c and d display the results of applying two different dimensionality reduction
techniques to the Swiss roll dataset. In Figure 8.6¢c, the t-SNE method has been used to reduce the
high-dimensional data into a 2D space. t-SNE focuses on preserving the local relationships between
points, meaning points that were close in the original high-dimensional space are still close in this
2D projection. In Figure 8.6d, the UMAP method has been applied to the same dataset. UMAP, like
t-SNE, reduces high-dimensional data into two dimensions but often does so more efficiently, pre-
serving both local and global relationships between points.

8.4.2 OPTIMIZATION

Optimizing deep neural networks involves finding effective minima within the complex, high-
dimensional loss landscapes they inhabit. Differential geometry provides powerful tools to better
understand and navigate these landscapes, leading to improved optimization strategies. Saddle
points are locations in the loss landscape where the curvature changes direction; they are neither
purely convex nor concave. In high-dimensional spaces, these points can significantly delay the
training process, causing slow convergence. At saddle points, the curvature of the loss landscape is
positive in some directions and negative in others. This variation in curvature means that conven-
tional optimization algorithms may struggle, as they might incorrectly interpret the local geometry.
By considering curvature information, optimization algorithms can be designed to rapidly escape
saddle points. Techniques such as second-order optimization methods or algorithms incorporating
curvature estimations can effectively navigate away from these problematic regions. Understanding
the geometry of the loss landscape can inform the design of optimization techniques that achieve
faster convergence. By adapting to the local curvature of the landscape, these methods can make
more informed updates to the model parameters. Metrics derived from differential geometry, such as
the curvature of the loss surface, can guide the adjustment of step sizes. This adaptive approach helps
maintain an efficient trajectory through the landscape, avoiding areas of slow progress and making
the optimization process more robust. Algorithms like Adaptive Moment Estimation (Adam) exem-
plify this approach. Adam adjusts the optimization trajectory based on the geometry of the loss
landscape, effectively using curvature information to adapt learning rates. This results in more effi-
cient and stable convergence, even in the presence of varying curvature. By leveraging the insights
provided by differential geometry, deep learning practitioners can develop optimization algorithms
that not only avoid saddle points but also achieve faster convergence. This dual focus on geometry-
aware optimization techniques leads to more efficient training processes and improved performance
of deep neural networks.

258 Mathematical Foundations for Deep Learning

FIGURE 8.6 (a) Node classification results (GCN), (b) 3D Swiss roll dataset, (c) t-SNE embedding,
(d) UMAP embedding.

8.4.3 MODEL INTERPRETABILITY

As neural networks become more complex, understanding their decision-making process becomes
crucial. Deep neural networks transform input data into abstract representations in hidden layers
known as feature spaces. The geometry of these feature spaces can provide insights into the
relationships between different inputs and the learned features. For example, points close in the fea-
ture space might be similar in a meaningful way. Techniques like t-SNE, a dimensionality reduction
method, can visualize these high-dimensional feature spaces in 2D or 3D. It tries to preserve the
local structure, allowing us to see clusters of similar data points. By understanding the geometry of
feature spaces, we can gain insight into what features the network considers essential. The curva-
ture or shape of these spaces at different layers can tell us about the complexity and hierarchy of the
learned features. Activation maximization or feature inversion techniques can be employed to study
the feature spaces. By examining what excites the neurons the most, we can visualize the patterns

Differential Geometry 259

or features the network has learned. This approach helps in understanding the network’s learning
process and the importance of various features in decision-making.

Figure 8.7 illustrates the practical implications of differential geometry in deep learning: The left
plot shows a loss landscape with sharp (blue) and flat (red) minima. Penalizing regions of the loss
landscape with high curvature (sharp minima) can guide the training process toward flatter areas,
leading to better generalization. The middle plot shows a lost landscape with a saddle point (green).
Saddle points can slow down the training process as the loss landscape is not purely convex or con-
cave at these points. By understanding the curvature of the loss landscape, optimization algorithms
can be designed to quickly escape from saddle points, improving the overall training efficiency. The
right plot shows the feature space clusters for two classes using t-SNE. Data progresses through
a neural network and is transformed into various representations in hidden layers. The clusters
represent how the data for each class is grouped in the feature space, providing insights into what
the network has learned.

8.5 CHALLENGES
8.5.1 HiGH DIMENSIONALITY

Deep neural networks can have millions, if not billions, of parameters. This results in a highly high-
dimensional parameter space, which introduces a significant level of complexity when trying to
understand or visualize the behavior of the network. Differential geometric concepts like curvature,
tangent spaces, and manifolds become increasingly complex in high dimensions, making their study
and application non-trivial. The challenges in high-dimensional spaces are as follows.

8.5.1.1 Curvature

In high-dimensional spaces, curvature becomes a multi-faceted concept that is challenging to com-
pute and interpret. Curvature can vary dramatically in different directions, making the loss landscape
highly intricate. Understanding curvature in high-dimensional spaces is crucial for optimization.
Techniques that use second-order information, such as Newton’s method, rely on understanding
the curvature to adjust the optimization path. However, computing and storing the Hessian matrix
(which contains second-order derivatives) becomes impractical for large networks due to their size
and computational cost. Tangent spaces provide a local linear approximation of the manifold at a
point. In high dimensions, the concept of a tangent space helps in understanding local behavior but
becomes harder to visualize and compute. The gradient, which lies in the tangent space, guides the
optimization process. In high-dimensional settings, the gradient can point in complex directions,
and small changes can have significant impacts, making the optimization path difficult to predict
and control. Data and parameter spaces in neural networks often form high-dimensional manifolds.
Understanding the structure and geometry of these manifolds is crucial for tasks like optimiza-
tion, regularization, and generalization. Techniques like PCA, t-SNE, and UMAP attempt to reduce
high-dimensional manifolds to lower dimensions for visualization and analysis. However, these
techniques can lose important structural details, making it challenging to capture the true com-
plexity of the manifold.

8.5.2 VISUALIZATION

One of the most discussed topics about differential geometry in deep learning is the loss land-
scape. However, visualizing a high-dimensional loss landscape is inherently challenging. Simple
visualizations, like 2D or 3D plots, provide only a limited view, which might not capture the intri-
cacies of the loss landscape of deep networks. While techniques like dimensionality reduction can
help, they may not retain all the essential geometric features of the original space. The challenges

FIGURE 8.7 (a) Regularization: penalizing sharp minima, (b) optimization: avoiding saddle points, and (c) model interpretability: feature space clusters.

09¢

Suruaea des(40y suoepunod [edieWwayIe

Differential Geometry 261

in visualizing high-dimensional loss landscapes. Traditional visualizations are limited to two or
three dimensions, whereas the loss landscape in deep learning is typically situated in a param-
eter space with millions or billions of dimensions. These simple visualizations can only provide a
very narrow perspective on the true complexity of the landscape. Projecting high-dimensional data
into lower dimensions often leads to a loss of important structural information. Critical features
such as the curvature and the arrangement of minima and saddle points might not be accurately
represented. Methods like PCA, t-SNE, and UMAP attempt to reduce the dimensionality of the
data while preserving its most significant features. While these techniques can highlight certain
aspects of the loss landscape, they might fail to retain all the essential geometric properties. For
example, they might distort distances or lose information about the local curvature and the shape
of valleys and ridges.

8.5.3 ComruTtatioNAL CosT

Computing specific differential geometric properties, such as curvature, for high-dimensional
spaces can be computationally expensive. In a training loop where computations need to be effi-
cient, introducing these calculations might significantly slow down the training process. This high
computational cost can make the application of these concepts infeasible for extensive models or
large datasets. Challenges of computational cost are as follows. Calculating curvature involves
second-order derivatives, such as those found in the Hessian matrix. For high-dimensional spaces,
the Hessian is extremely large, making its computation and storage impractical. The time com-
plexity of computing the Hessian matrix scales quadratically with the number of parameters,
resulting in significant computational overhead for large networks. In practice, training loops are
designed to be as efficient as possible to handle large datasets and complex models. Introducing
additional computations for differential geometric properties can hinder the overall training speed.
Modern deep learning relies on batch processing to optimize resource utilization. Incorporating
curvature computations within each batch can disrupt this balance and slow down the training pro-
cess significantly.

8.5.4 THEeORETICAL Vs. PracTicAL Gar

Differential geometry is a mathematical field that deals with abstract structures and concepts. In
the context of deep learning, there is often a gap between theoretical insights and practical imple-
mentation. While differential geometric properties such as curvature can provide valuable insights
into the behavior of neural networks, translating these insights into concrete steps for training and
optimizing models can be challenging. The challenges of the theoretical vs. practical gap are as
follows. Differential geometric concepts like curvature, manifolds, and tangent spaces are inher-
ently complex and abstract. Understanding these concepts requires a solid foundation in advanced
mathematics, which can be a barrier for many practitioners. While these concepts can offer deep
intuition about the behavior of neural networks, applying them in a practical setting, such as during
the training of a model, is not always straightforward. Theoretical insights suggest that regions
with flat minima in the loss landscape correlate with better generalization. However, designing
algorithms or modifying training procedures to explicitly find these flat regions is challenging.
While understanding the curvature of the loss landscape can guide the development of optimization
algorithms, implementing these ideas in a way that is computationally efficient and effective for
large-scale neural networks is non-trivial.

262 Mathematical Foundations for Deep Learning

8.5.5 ScALABILITY

Modern deep learning often involves massive models and huge datasets. Even if specific differential
geometric tools prove beneficial for smaller problems, scaling them to handle state-of-the-art models
and datasets can be challenging. The ability to apply these tools efficiently at scale is critical for their
practical adoption in contemporary deep learning applications. The challenges of scalability are as
follows. State-of-the-art deep learning models can have millions or even billions of parameters. The
sheer size of these models makes computing differential geometric properties, such as curvature or
the Hessian matrix, computationally intensive and often impractical. Storing and manipulating large
parameter sets and their associated geometric properties require substantial memory, which can
exceed the capacity of even high-end hardware. Training on large datasets involves processing vast
amounts of data in each training iteration. Integrating differential geometric computations into this
process can significantly slow down the training pipeline. Efficient training relies on processing data
in batches. Adding complex geometric calculations to each batch increases the computational over-
head, making it difficult to maintain the required throughput for timely model training.

8.5.6 EMERGING INSIGHTS

Deep learning research is vibrant and ever-evolving, with new architectures, techniques, and best
practices emerging regularly. As the field progresses, the relevance and applicability of specific differ-
ential geometric insights might change. Keeping geometric tools and analyses updated and relevant in
this dynamic environment is a constant challenge. The challenges of emerging insights are as follows.
The introduction of new neural network architectures, such as transformers, graph neural networks,
and neural ordinary differential equations (ODESs), can shift the focus of geometric analysis. Methods
that were effective for earlier architectures may need adaptation or re-evaluation for these newer
models. Advances in training techniques, such as self-supervised learning, transfer learning, and meta-
learning, introduce new dynamics in the loss landscape and optimization process, impacting the appli-
cation of geometric insights. The geometric tools and methods must evolve alongside advancements
in deep learning. This requires ongoing research to refine and adapt these tools to new contexts and
challenges. Collaboration between mathematicians, computer scientists, and domain experts is essen-
tial to ensure that geometric tools remain relevant and effective for emerging deep learning paradigms.

The plots in Figure 8.8 illustrate some of the challenges of applying differential geometry
concepts to deep learning: The left plot shows a simplified high-dimensional loss landscape in 2D.
This highlights the difficulty of understanding and visualizing complex, high-dimensional, deep-
learning concepts. The middle plot shows the impact of additional computational cost on training
time. The shaded area represents the additional time required for these computations. The right plot
illustrates the gap between theoretical insights (green) and practical impact (orange) on training due
to curvature.

8.6 REAL-WORLD APPLICATIONS
8.6.1 AutoNomous SYsTEMs AND RoBorics

In the realm of robotics, differential geometry is instrumental in path planning and control.
Autonomous systems, such as drones or self-driving cars, must navigate through complex envir-
onments while making real-time decisions. The concept of manifolds, which represent the possible
states or configurations of a system, is crucial in this context. For instance, the configuration space
of a robot arm, which includes all possible positions and orientations, can be modeled as a mani-
fold. Understanding the curvature and topology of this space allows the robot to plan efficient and
collision-free paths. This geometric insight is particularly valuable in dynamic environments, where
the robot must adapt to changing conditions while maintaining optimal performance.

FIGURE 8.8 (a) High dimensionality: simplified loss landscape, (b) computational cost impact on training time, and (c) theoretical vss. practical gap.

Anpwoan [enuaiapqg

€9¢

264 Mathematical Foundations for Deep Learning

8.6.2 MEeDIcAL IMAGE ANALYSIS

Differential geometry is also pivotal in the analysis of medical images, where it aids in the seg-
mentation and interpretation of complex anatomical structures. In medical imaging, the surfaces
of organs or tissues can be modeled as manifolds, and the curvature of these surfaces provides
critical information about their shape and structure. For instance, in brain imaging, the cortex can
be represented as a 2D manifold embedded in 3D space. By analyzing the curvature of the cortical
surface, researchers can detect abnormalities such as tumors or atrophy, which are indicative of
neurological disorders. The ability to model and analyze these geometric properties enables more
accurate diagnoses and better treatment planning.

8.6.3 Computer VisION AND IMAGE RECOGNITION

In computer vision, differential geometry provides the mathematical foundation for understanding
how images are processed and recognized by neural networks. The concept of manifolds is particu-
larly important in image recognition tasks, where the high-dimensional space of all possible images
is often constrained to a lower-dimensional manifold that captures the essential features of specific
objects. For example, face recognition systems rely on the fact that images of the same person under
different conditions (e.g., lighting, pose) lie on a manifold in the space of all possible images. By
learning the geometry of this manifold, the system can accurately identify individuals across a wide
range of variations. This approach has been successfully applied in various domains, from security
systems to social media platforms.

8.6.4 SIGNAL PROCESSING AND COMMUNICATIONS

Differential geometry is also used in signal processing, where it helps in the analysis and compres-
sion of complex signals. For instance, in wireless communications, signals transmitted through the
air can be affected by the curvature of the Earth’s surface and other obstacles. By modeling the
signal propagation using geometric principles, engineers can design more efficient communication
systems that minimize interference and maximize data transmission rates.

8.7 HANDS-ON SECTION

In this hands-on section, we will explore the concepts of manifold learning and curvature in high-
dimensional spaces using differential geometry.

8.7.1 Step 1: IMPORT LIBRARIES

In this part of the code, we are installing and importing the necessary packages for dimensionality
reduction and visualization. The command!pip install umap-learn scikit-learn matplotlib ensures
that the required libraries are installed. After installation, we import key functions and classes. These
tools are essential for exploring and visualizing high-dimensional data in a lower-dimensional space,
making it easier to understand patterns, clusters, and relationships in the data.

Install necessary packages

!pip install umap-learn scikit-learn matplotlib
import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make swiss roll

Differential Geometry 265

from sklearn.decomposition import PCA
from sklearn.manifold import Isomap, TSNE
import umap

8.7.2 Step 2: SET RANDOM SEED FOR REPRODUCIBILITY

In this section, we are generating a synthetic dataset known as the Swiss roll using make_swiss_
roll from scikit-learn. The Swiss roll is a common 3D dataset used to test and demonstrate
dimensionality reduction techniques because it has a complex, curved structure that is challenging
for linear methods to handle.

np.random.seed (42)

Generate the Swiss Roll dataset

n_samples = 1000

noise = 0.05

X, color = make swiss roll(n_samples, noise=noise)

8.7.3 Step 3: Arpry PCA ror DIMENSIONALITY REDUCTION

In this section, we are applying four different dimensionality reduction techniques to project the
high-dimensional Swiss roll dataset into 2D space. Dimensionality reduction is crucial for visual-
izing complex datasets in lower dimensions, making patterns or clusters easier to interpret.

pca = PCA(n_components=2)
X pca = pca.fit transform (X)
Apply Isomap for Dimensionality Reduction
isomap = Isomap (n_components=2, n neighbors=10)
X isomap = isomap.fit transform (X)
Apply t-SNE for Dimensionality Reduction
tsne = TSNE (n_components=2, random state=42)
X tsne = tsne.fit transform (X)
Apply UMAP for Dimensionality Reduction
try:
umap reducer = umap.UMAP (random state=42)
X umap = umap_ reducer.fit transform (X)
except Exception as e:
print (f“Error with UMAP: {e}”)
X umap = np.zeros((X.shape[0], 2)) # Fallback to prevent
plot from being empty

8.7.4 Step 4: PLoOTTING ALL GRAPHS IN ONE FRAME

In this section, we are visualizing the results of dimensionality reduction techniques applied to the
Swiss roll dataset in a series of subplots.

266 Mathematical Foundations for Deep Learning

fig, axs = plt.subplots (2, 3, figsize=(18, 12))
Plot a: Swiss Roll Dataset in 3D
ax = fig.add subplot (2, 3, 1, projection=‘3d’)
ax.scatter (X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.
cm.Spectral)
ax.set title(“a) 3D Swiss Roll Dataset”)
Plot b: PCA projection
axs[0, 1].scatter(X pcal:, 0], X pcal[:, 1], c=color, cmap=plt.
cm.Spectral)
axs[0, 1].set title(“b) PCA Projection”)
axs[0, 1].set xlabel (“PCA 17)
axs[0, 1].set ylabel (“PCA 27)
Plot c: Isomap embedding
axs[0, 2].scatter(X isomap[:, 0], X isomap[:, 1], c=color,
cmap=plt.cm.Spectral)
axs[0, 2].set title(“c) Isomap Embedding”)
axs[0, 2].set xlabel (“Isomap 17)
axs[0, 2].set ylabel (“Isomap 27)
Plot d: t-SNE embedding
axs[1l, 0].scatter (X tsne[:, 0], X tsne[:, 1], c=color, cmap=
plt.cm.Spectral)
axs[l, 0].set title(“d) t-SNE Embedding”)
axs[1l, 0].set xlabel (“t-SNE 17)
axs[1l, 0].set ylabel (“t-SNE 27)
Plot e: UMAP embedding
if X umap.any() :
axs[1l, 1].scatter(X umap[:, 0], X umap[:, 1], c=color,
cmap=plt.cm.Spectral)
else:
axs[1l, 1].text(0.5, 0.5, ‘UMAP Failed’, horizontalalignment=
‘center’, verticalalignment='center’)
axs[l, 1].set title(“e) UMAP Embedding”)
axs[1l, 1].set xlabel (“UMAP 17)
axs[1l, 1].set ylabel (“UMAP 27)

Figure 8.9 presents a comparative analysis of various dimensionality reduction techniques applied
to the Swiss roll dataset. Figure 8.9a depicts the original 3D Swiss roll, illustrating its complex and
nonlinear structure. Figure 8.9b shows the results of PCA, a linear technique, which flattens the
data and loses much of the intrinsic geometric structure of the manifold, revealing only the global
variance. Figure 8.9c displays the Isomap embedding, which successfully captures the underlying
manifold by preserving geodesic distances, offering a more accurate low-dimensional representa-
tion. Figure 8.9d presents the t-SNE embedding, which excels in maintaining local relationships and
clusters within the data but might distort global distances, offering a view of fine-grained structures.
Figure 8.9e shows the UMAP embedding, which provides a balanced representation that preserves
both local and global structures, giving a clear and meaningful visualization of the data’s manifold
structure.

FIGURE 8.9 Comparing dimensionality reduction techniques on the Swiss roll dataset. (a) 3D Swiss roll dataset, (b) PCA projection, (c) Isomap embedding, (d) t-
SNE embedding, and () UMAP embedding.

Anpwoan [enuaiapqg

£9¢

268 Mathematical Foundations for Deep Learning

8.8 COMMON MISTAKES AND TROUBLESHOOTING TIPS
8.8.1 MISINTERPRETING GEOMETRIC CONCEPTS

* Mistake: Misunderstanding fundamental geometric concepts like manifolds, tangent spaces,
and curvature can lead to incorrect assumptions and implementations.

* Tip: Review basic differential geometry textbooks and online resources. Visual aids and inter-
active tools can help solidify understanding.

8.8.2 VisuALIZING HIGH-DIMENSIONAL SPACES

* Mistake: Attempting to visualize high-dimensional loss landscapes or feature spaces without
appropriate techniques can result in misleading interpretations.

* Tip: Use dimensionality reduction techniques like t-SNE or PCA to visualize high-dimensional
data. Be aware of the limitations and what information might be lost during dimensionality
reduction.

8.8.3 IGNORING CURVATURE IN OPTIMIZATION

* Mistake: Neglecting the curvature of the loss landscape during optimization can lead to poor
convergence or getting stuck at saddle points.

e Tip: Implement optimization algorithms that consider curvature, such as those based on
second-order derivatives or adaptive learning rates. Regularly evaluate and adjust these
methods based on empirical performance.

8.8.4 OVERFITTING AND GENERALIZATION

* Mistake: Focusing too much on achieving low training loss without considering the geometry
of the loss landscape can lead to overfitting.

* Tip: Use regularization techniques that penalize sharp minima. Monitor validation perform-
ance closely and use early stopping to prevent overfitting.

8.8.5 CoMPUTATIONAL OVERHEAD

* Mistake: Incorporating complex differential geometric calculations without considering com-
putational cost can slow down training significantly.

» Tip: Balance the computational cost with the benefits. Use approximations or heuristics where
possible to reduce the computational burden.

8.8.6 BRIDGING THEORY AND PRACTICE

* Mistake: Failing to translate theoretical insights from differential geometry into practical
applications can limit the usefulness of these concepts.

» Tip: Focus on practical implementations and empirical validation. Start with simple models
and gradually incorporate more complex geometric insights as you gain confidence and
understanding.

8.8.7 HANDLING LARGE-SCALE MODELS

* Mistake: Applying techniques that work well on small models to large-scale models without
considering scalability issues can lead to inefficiencies.

Differential Geometry 269

e Tip: Test on smaller subsets of your data and incrementally scale up. Use distributed com-
puting and parallel processing techniques to handle large-scale models effectively.

8.9 REVIEW QUESTIONS

1. What are the fundamental concepts of differential geometry, and how do they apply to neural
networks?

2. What is the difference between flat and sharp minima, and why are flat minima preferred for

better generalization?

How do neural networks transform input data into high-dimensional feature spaces?

What insights can be gained from analyzing the geometry of these feature spaces?

5. Why is understanding the curvature of the loss landscape crucial for improving a model’s
generalization to unseen data?

6. What is the Fisher information metric, and how does it help understand the sensitivity of a
model’s predictions?

7. How does information geometry apply to Bayesian deep learning?

8. What is the impact of penalizing sharp minima on the training and generalization of neural
networks?

9. What are saddle points, and why is it essential to design optimization techniques that
avoid them?

10. How does the geometry of feature spaces enhance the interpretability of neural networks?

Hw

8.10 PROGRAMMING QUESTIONS
8.10.1 EAsy: IMPLEMENTING BAsic MANIFOLD LEARNING

1. Generate a synthetic high-dimensional dataset.
2. Apply PCA to reduce the dimensions to 2.
3. Visualize the reduced dataset using a scatter plot.

8.10.2 MEepium: COMPARING MANIFOLD LEARNING TECHNIQUES

1. Use a complex dataset such as MNIST or CIFAR-10.
2. Apply t-SNE and UMAP separately to reduce the dimensions to 2.
3. Visualize the results side by side and compare their ability to preserve the structure.

8.10.3 HarDp: ANALYZING CURVATURE IN HIGH-DIMENSIONAL DATASET

1. Implement Laplacian eigenmaps to reduce the dimensions of a high-dimensional dataset.
2. Calculate the Laplacian matrix and perform eigenvalue decomposition.
3. Visualize the eigenvalues and analyze the curvature based on their distribution.

9 Topology in Deep Learning

9.1 INTRODUCTION

In the vast field of deep learning, the design and layout of neural networks are crucial in shaping how
they work and how effective they are. This design, often referred to as “topology” in deep learning,
is the base that allows algorithms to learn and improve. However, the word “topology” isn’t used
only for neural networks. It originally comes from a detailed area of mathematics that studies the
properties of spaces that stay the same even when they are stretched or bent without breaking. This
link between deep learning and mathematical topology helps us better understand how neural net-
work algorithms come together and behave. This chapter reviews this concept in more detail.

9.2 BASICTOPOLOGY

Topology is a part of mathematics that looks at the ways spaces can stay the same even when they
are changed in certain ways, especially smooth and continuous changes. It began by trying to under-
stand the basic nature of shapes and spaces, focusing on important features rather than minor details.
In the end, although the word “topology” is used differently in pure mathematics and deep learning,
both areas are all about structure and the properties that come from that structure.

9.2.1 CoNTINUOUS TRANSFORMATIONS AND INVARIANCE

A key idea in topology is the concept of homeomorphism: a continuous, one-to-one, onto map
whose inverse is also continuous. Intuitively, a homeomorphism lets you bend or stretch one shape
into another without cutting or attaching new pieces. If two shapes are connected by a homeo-
morphism, they are considered the same in topology, or “homeomorphic.” This concept ignores
measures like distances or angles, focusing instead on the fundamental properties that remain
unchanged under continuous deformations. For example, topologically, a circle can be deformed
into an ellipse without breaking or merging parts, so they are homeomorphic. A classic illustration
is the coffee mug and the donut, each has exactly one hole, making them topologically equivalent
despite looking quite different in everyday terms.

Figure 9.1a shows a circle (solid blue line) and an ellipse (dashed green line), which can be
stretched or compressed into each other without cutting or gluing. This ability to transform smoothly
shows that the circle and ellipse are topologically equivalent, they share the same fundamental struc-
ture in topology. Figure 9.1b illustrates a 3D view of a torus (donut shape) characterized by a single
hole. This hole is a key topological feature that distinguishes it from shapes like the circle or ellipse,
which have none. Together, these plots demonstrate how topology focuses on properties like con-
nectedness and the number of holes rather than exact shapes.

270 DOI: 10.1201/9781032690742-9

http://dx.doi.org/10.1201/9781032690742-9

FIGURE 9.1
feature.

(a) Circle and ellipse, topologically equivalent due to smooth transformations. (b) Torus, highlighting its single hole as a distinct topological

Suiurea deag ui A8ojodo|

14T

272 Mathematical Foundations for Deep Learning

9.2.2 NEURAL NETWORKS AND TOPOLOGICAL STRUCTURE

In deep learning, when we talk about the topology of a neural network, we mean its structure or
design. This includes how many nodes (or neurons) there are, how they are arranged into layers,
and how they are connected to each other. This “structure” acts like a plan that guides how the net-
work works. However, comparing the topology of neural networks to mathematical topology is not
straightforward. In mathematics, topology is about properties that stay the same even when shapes
are stretched or bent. In deep learning, topology is more about the basic setup of the network, such
as the number of layers and how the neurons are linked. The “shape” of the network affects how
powerful it is, how it processes information, and the types of problems it can solve. There is also a
deeper link between them. The way you design the topology of a neural network can affect how well
it learns and how it can apply what it has learned to new situations. In some ways, the network’s
design and the way it learns work, like the rules in mathematical topology, deciding what parts can
change and what parts stay the same as the network learns from data.

9.3 RELATION TO CONVERGENCE OF LEARNING ALGORITHMS

The topology of a neural network sets the foundation for how well it performs. However, factors
like the number of layers (depth), the number of neurons in each layer (width), how the neurons are
connected, and the activation functions used, all along with the type of data and the specific task,
play a crucial role in how effectively the learning algorithm works and how quickly it converges.
Good design, proper ways to start the network (initialization), and techniques to prevent overfitting
(regularization) are essential, especially as the network becomes more complex. The way a neural
network is structured can greatly affect how successfully the learning algorithm can find the best
solution.

9.3.1 DeptH AND WIDTH

9.3.1.1 Depth (Number of Layers)

The depth of a network, meaning the number of layers it has, is very important for its ability to
understand and learn complex patterns and ideas. The layers in a deep network learn features in a
hierarchical way:

1. Initial Layers: The first layers of a deep network usually learn simple and basic features, like
edges, corners, and textures in images. These simple parts are the building blocks for more
complicated patterns.

2. Intermediate Layers: As the data move through the network, the middle layers combine
these simple features to create more complex shapes and outlines. This stage provides a
more detailed and richer understanding of the input data.

3. Deep Layers: The deepest layers of the network capture very complex and abstract features.
For example, in image recognition, these layers might identify specific objects, scenes, or
intricate patterns that are important for high-level understanding and making decisions.

Adding more layers to neural networks has clear benefits for both how they represent data and how
well they perform. First, having more layers helps the network learn and show complex patterns
in data, which is especially useful for tasks like recognizing images and speech or processing lan-
guage. With more layers, deep networks can understand features at different levels, allowing them to
grasp data in a hierarchical way, which often works better than networks with fewer layers. Second,
deeper networks have led to major improvements in performance. For example, very deep networks
have achieved significant increases in accuracy for image recognition, setting new records in various

Topology in Deep Learning 273

tasks and demonstrating how depth can enhance a neural network’s performance. However, deeper
networks also bring some challenges, such as overfitting, problems with training, and the need for
a lot of computing power. First, deeper networks with more parameters are more likely to overfit,
especially when there is not enough data. Overfitting happens when the model learns the noise in the
data instead of the useful patterns, which makes it worse at handling new data. Second, as networks
become deeper, they can have trouble converging during training. This means that the gradients used
to update the network’s parameters can either become very small (vanish) or very large (explode),
making it hard to optimize the model effectively. Finally, deeper networks need more computa-
tional power, which makes training them time-consuming and resource-heavy. These networks often
require powerful GPUs or TPUs and distributed computing systems, which can be a challenge for
those who do not have access to advanced hardware.

Figure 9.2a shows the decision boundary created by a shallow neural network with a single hidden
layer containing five neurons. The network is limited in its ability to capture complex patterns, leading
to a relatively simple decision boundary. This demonstrates how initial layers in a shallow network
primarily capture basic features, resulting in a straightforward separation of the data. Figure 9.2b
shows the decision boundary of a neural network with two hidden layers, each containing 10 neurons.
This medium-depth network captures more complex patterns than the shallow network, leading to a
smoother and more detailed decision boundary. The plot illustrates how intermediate layers allow the
network to learn and combine more intricate features, improving its ability to model the underlying
structure of the data. Figure 9.2¢ shows the decision boundary produced by a deep neural network
with three hidden layers, each containing 50 neurons. The deep network is capable of capturing
highly complex and abstract patterns, resulting in a very refined and intricate decision boundary.

9.3.1.2 Width (Number of Nodes per Layer)

The width of a layer in a neural network refers to how many nodes or neurons are in that layer. The
width affects how well the network can learn from data and recognize complex patterns. Making
the network wider can sometimes mean you don’t need to make it deeper, but it also brings its own
challenges. One of the main benefits of having wider neural networks is that they have a better ability
to learn. Wider layers have more parameters, which allows the network to learn more features and
handle more complicated tasks. This increased capacity can help the network fit the training data
better. Sometimes, a wider network can perform just as well as a deeper one while being simpler
in design. Another advantage of wider layers is that they enable the model to learn a more diverse
set of features from the data. This variety helps the model work better with different types of data,
especially complex datasets, and can improve performance without needing to add more layers.
However, there are also challenges when increasing the width of neural networks. One major issue
is overfitting. Wider layers can make the network too complex, causing it to memorize the training
data instead of learning to work well with new, unseen data. This can lead to poor performance
when the network is tested with real-world data. Making the network wider also means there are
more parameters, which requires more computing power and longer training times. This can slow
down the training process and may need stronger hardware like GPUs or TPUs. Additionally, more
parameters use more memory, which can be a problem for very wide networks. Lastly, there comes
a point where making the network wider won’t significantly improve its performance. Adding more
nodes might not make the network more accurate or effective. It’s important to balance the width
of the network with how efficiently it uses resources. Finding the right design is often better than
simply adding more nodes. For example, imagine a neural network that classifies images into 10
categories, such as handwritten digits from O to 9. In this case, adjusting the width of the network
can help it learn to recognize the different digits more effectively without necessarily making the
network deeper. Let’s look at two different situations: In the first situation, called a narrow network,
the hidden layer has 50 nodes. If the input layer has 784 nodes, which represent a 28 by 28 image,
then the number of connections between the input layer and the hidden layer is 784 multiplied by 50.

FIGURE 9.2 Hierarchical feature learning across network depths, (a) initial layers, (b) intermediate layers, (c) deep layers.

| 744

Suruaea des(40y suoepunod [edieWwayIe

Topology in Deep Learning 275

This equals 39,200 connections. In the second situation, called a wide network, the hidden layer has
500 nodes instead of 50. With the same input layer of 784 nodes, the number of connections between
the input and hidden layers becomes 784 multiplied by 500, which is 392,000 connections. In this
example, the wider network has ten times more connections than the narrow network. This larger
number of connections allows the network to recognize more detailed and complex patterns in the
training data. However, having so many connections also increases the chance that the network will
overfit. Overfitting happens when the network learns the training data too well, including any noise
or specific details, which makes it perform poorly when it encounters new, unseen data.

9.3.2 Skip CONNECTIONS

Skip connections, also known as residual connections, allow information to move directly across
one or more layers by creating a straight path around certain layers. This design is important for
training very deep neural networks because it helps solve some of the main problems that come
with having many layers. Skip connections have several benefits. They help prevent the vanishing
gradient problem, which is when the signals used to train the network become too small as they
move through many layers. By providing a direct path for these signals, skip connections keep them
strong, making the training process more stable and efficient. This allows deeper networks to be
trained effectively. Another advantage of skip connections is that they support a type of learning
called ensemble learning. This means that each layer can focus on learning the difference between
what it currently predicts and what it should predict. This approach allows each layer to build on
what the previous layers have learned, leading to better performance and faster learning.

Skip connections also make the network more flexible. They let different layers adjust their
outputs on their own, which helps the network handle various levels of detail and complexity in
the data. This makes the network more adaptable to different tasks. However, skip connections also
come with some challenges. They make the network more complex by creating multiple paths for
information to flow, which requires careful design to keep everything stable. Additionally, they use
a bit more memory and processing power because the network needs to combine the outputs from
both the direct and the bypassed paths. Despite these challenges, the advantages of skip connections
usually outweigh the drawbacks, especially when using efficient designs and modern hardware.
Figure 9.3 illustrates the impact of skip connections on the gradient flow through a neural network’s
layers, comparing scenarios with and without skip connections. On the y-axis, the plot represents
the gradient magnitude on a logarithmic scale, while the x-axis displays the layers of the network.
Without skip connections, represented by the red dashed line, there is a significant reduction in
gradient magnitude across layers, a phenomenon known as the vanishing gradient. This issue is
prominent in deeper networks, where gradients become too small to effectively update weights,
leading to poor learning. In contrast, the blue solid line shows the preserved gradient flow when
skip connections (residuals) are introduced. These connections enable the gradient to remain rela-
tively stable even as the network deepens, addressing the vanishing gradient problem. As seen in the
plot, the gradient magnitude remains higher and more stable, preventing degradation of the learning
process. The shaded gray region between the lines emphasizes the difference in gradient behavior,
highlighting the improvement achieved through skip connections in deep neural networks.

9.3.3 REecURRENT CONNECTIONS

Recurrent neural networks (RNNs) are built to work with data that comes in a sequence by using
loops that let information carry over from one step to the next. This setup allows RNNs to handle
sequences of different lengths and understand how things change over time and depend on each
other in order. The main benefits of these looping connections in neural networks are seen when pro-
cessing sequential data and keeping information over time. First, the loops let RNNs handle data in

276 Mathematical Foundations for Deep Learning

FIGURE 9.3 Impact of skip connections on gradient flow in deep networks.

the order it happens, making them great for tasks like analyzing time-based data, understanding lan-
guage, and recognizing speech. These networks can work with input sequences that vary in length,
which is important for tasks where the size of the input can change a lot, such as predicting the next
word in a sentence or processing spoken words. Second, the looping connections give the network a
kind of memory because information can stay available across different steps. This means the model
can use what it learned before to make better predictions now, giving it a deeper understanding of
how things are related in the sequence. For example, think about trying to predict the next word in
a sentence. Suppose we have the sequence: “The cat is on the.” The goal is to guess the next word,
which is likely “mat.” An RNN looks at this sequence one word at a time, using the words that came
before to help predict the next one. In this case, each word is treated as a separate step. At each step
t, the RNN takes in an input X, (like the word “The,” “cat,” “is,” etc.) and updates its hidden state ht
based on the current word and the hidden state from the previous step h,_,. For example:

* Att=1, the RNN processes “The,” and updates its hidden state hr
e Att=2, itprocesses “cat,” using both x, (“cat”) and the hidden state h, (from “The”).

This continues until the RNN processes “the” at t = 4, using all previous context to predict the next
word, “mat.” The RNN’s recurrent connections allow information from earlier time steps to influ-
ence later predictions. In the example above, knowing “The cat is on the” helps the model predict
“mat” because of the context it has accumulated over the sequence. At each time step t, the RNN
updates its hidden state using the following equations:

ho=f(W,-h_ +W x +b)
where:

. ht is the hidden state at time t,
* h,_ is the hidden state from the previous time step,

Topology in Deep Learning 277

* X, is the input at time t,

e W, and W_are weight matrices,

e b is the bias term, and

 fis the activation function (typically a non-linear function like tanh or ReLU).

The hidden state h, stores information from previous time steps, enabling the RNN to “remember”
the context as it processes new data. Finally, the output at each time step, y,, is given by:

y, =f(Wy-hr +c)
where:

* W, is the output weight matrix,
* cis the output bias.

For example, if we want to guess the next word in a sentence, Y, would show the chances of different
words coming next. The word with the highest chance is chosen as the next word. Recurrent
connections in neural networks have some problems, such as vanishing and exploding gradients,
and slow training. First, when training the network, the information (called gradients) is sent
back through time. In long sequences, these gradients can either become very small (vanishing
gradients) or very large (exploding gradients). When gradients vanish, the network struggles to learn
connections that are far apart in the sequence. When gradients explode, the training can become
unstable. These problems can make training slow or ineffective, especially for tasks that need to
understand long-term relationships. Second, RNNs handle data one step at a time, with each step
depending on the one before it. This makes training slower compared to other types of networks like
convolutional neural networks (CNNs), which can handle many parts of the data at the same time.
Because RNNs work step by step, they require more computing power and memory, making the
training process take longer and use more resources.

9.3.4 AcTivaTioN FUNCTIONS

Activation functions add non-linearity to the network, which helps it learn complex patterns. ReLU is
a popular activation function used in neural networks. It doesn’t get stuck at certain values, which often
makes the network train faster. However, ReLU can cause some neurons to stop working, meaning
they never activate. To fix this, variations like LeakyReLLU and ParametricReLU have been created.
Other common activation functions are Sigmoid and Tanh. Sigmoid functions are usually used in the
output layer for tasks that have two possible outcomes because they produce values between 0 and
1. Tanh functions are used when the output needs to be between —1 and 1, which is useful for certain
hidden layers. However, both Sigmoid and Tanh can cause a problem called the vanishing gradient
because they can make the values very small. This makes it hard to train deep networks effectively.

Figure 9.4 presents six subplots, each representing the training process of neural network models
with different depths and activation functions. The x-axis represents the number of epochs, while
the y-axis displays the loss and accuracy values. The red line indicates the loss, and the blue line
shows the accuracy.

Depth: 1, Activation: relu: This subplot shows the training results for a neural network with a
single hidden layer using the ReLLU activation function. Initially, the loss decreases rapidly, and
the accuracy increases, indicating that the model is learning. As training progresses, both metrics
stabilize, suggesting the model has reached a plateau. Depth: 1, Activation: tanh: This subplot
represents a neural network with one hidden layer using the Tanh activation function. The loss

FIGURE 9.4 Effect of depth and activation functions on convergence.

8¢

Suruaea des(40y suoepunod [edieWwayIe

Topology in Deep Learning 279

decreases steadily over the epochs, while the accuracy improves. Compared to the ReL.U activation,
the Tanh function shows a more gradual learning curve, reflecting different dynamics in how the
network converges. Depth: 3, Activation: relu: This subplot corresponds to a neural network with
three hidden layers and the ReLU activation function. Initially, the model showed rapid improve-
ment in both loss and accuracy. The increased depth allows the network to capture more complex
patterns, leading to higher accuracy than the single-layer models. Depth: 3, Activation: tanh: Here,
the neural network with three hidden layers uses the Tanh activation function. The training process
shows a steady decrease in loss and an increase in accuracy. The multiple layers with Tanh acti-
vation help the network learn effectively, with the training curves indicating smooth convergence.
Depth: 5, Activation: relu: This subplot shows the performance of a deeper neural network with
five hidden layers using ReLU. The training curves indicate rapid initial learning, with both loss
and accuracy reaching stable values. The depth of the network provides the capacity to model com-
plex relationships, reflected in the training metrics. Depth: 5, Activation: tanh: This final subplot
represents a neural network with five hidden layers and Tanh activation. The loss decreases, and
accuracy increases steadily, similar to other Tanh-activated models. The depth combined with Tanh
activation allows the network to converge smoothly, capturing intricate patterns in the data.

9.4 TOPOLOGICAL DATA ANALYSIS IN NEURAL NETWORKS

Integrating Topological Data Analysis (TDA) with neural networks is a new and promising area that
can lead to many discoveries and improvements. TDA provides tools and methods to examine and
understand the shape and structure of datasets. This helps us gain deep insights into how data are
organized and how different parts of the data are related. When TDA is used with neural networks
that are learning intensively, it offers a unique way to understand both the data and how the network
behaves.

9.4.1 PersistTeNt HomoLoGy

Persistent homology is a technique from computational topology that helps analyze the shape
and structure of data at different levels. It is especially useful for understanding complex, high-
dimensional data by looking at how its features remain or change as we examine it at various scales.
In persistent homology, the main ideas include topological features, filtration, and visualizations
like persistence diagrams and barcodes. Topological features are the basic shapes in the data, such
as points, lines, loops, and cavities. These features are counted using Betti numbers. For example,
the zeroth Betti number counts the number of separate pieces or connected components, the first
Betti number counts the number of loops or cycles, and the second Betti number counts the number
of voids or enclosed spaces. A filtration is a step-by-step process where we build a series of shapes
called simplicial complexes by changing a scale parameter. A simplicial complex is made up of
points, lines, triangles, and other simple shapes that approximate the data’s structure. This process
allows us to analyze the topological features at different scales. Each feature has a birth scale, which
is when it appears, and a death scale, which is when it disappears. The difference between these
scales measures how long the feature persists. Visualizations like persistence diagrams and barcodes
are used to show how the topological features appear and disappear as the scale changes. Features
that last through many scales are considered important, while those that appear and disappear
quickly are usually seen as noise. Consider a group of six data points: (0, 0), (1, 0), (0, 1), (1, 1), (2,
1), and (3, 1) arranged in a two-dimensional (2D) space. We will use persistent homology to study
the shapes and structures within this data. First, let’s talk about topological features, specifically
Betti numbers, which help us understand the structure of the data. The Betti-O number counts the
number of separate pieces or connected components. Initially, with a very small radius around each
point, there are six separate components because all points are disconnected. As we increase the

280 Mathematical Foundations for Deep Learning

radius, some points start to connect. For example, at a radius of 0.5, some points merge into fewer
connected components. Eventually, when the radius is large enough, all points come together into
one single connected component, so the Betti-0 number drops to one. Next, Betti-1 numbers count
the number of loops or cycles in the data. When we increase the radius further, some connections
form loops. For instance, the points at (0, 0), (1, 0), (0, 1), and (1, 1) can create a square-like loop,
making the Betti-1 number equal to one. If we keep increasing the radius, this loop might fill in
and disappear, causing the Betti-1 number to go back to zero. Filtration is the process of gradually
increasing the radius around each point and keeping track of when topological features appear and
disappear. At the start, with radius r = 0, there are six separate components. As the radius grows to
0.5, some points connect, reducing the number of components to three. When the radius reaches 1.5,
these connections might form one connected component and one loop. Finally, when the radius is
2.5, all points merge into a single connected component, and no loops remain. A persistence dia-
gram is a way to visualize when each feature (like connected components or loops) appears and
disappears as the radius changes. For example, a connected component might appear at r = 0 and
merge with others at » = 0.5. A loop might form at » = 1.0 and disappear at » = 2.0. These diagrams
help us see which features last longer and are more important, while short-lived features are often
considered noise. Persistent homology has many useful applications in data analysis. In shape ana-
lysis, it helps examine the geometric structure of data, such as 3D shapes or molecular structures, by
identifying important shapes within the data. In machine learning, persistent homology can extract
topological features from complex data, which can improve tasks like classification or grouping
similar data together by capturing structural information that traditional methods might miss. It also
helps reduce noise by focusing on features that persist over many scales and ignoring those that dis-
appear quickly, making it especially useful for datasets with a lot of noise. Additionally, in network
analysis, persistent homology can study complex networks like social, biological, or communica-
tion networks, providing insights into how these networks are connected, how they cluster, and their
overall structure.

Figure 9.5 demonstrates the application of TDA using persistent homology to analyze and visu-
alize topological features in a dataset. Figure 9.5a shows a scatter plot of data points grouped into
two clusters, labeled as Cluster 1 and Cluster 2. These clusters highlight distinct regions in the
dataset, illustrating how data can be divided into separate components based on proximity. The
arrows point to representative clusters, emphasizing the idea of connectivity within each region.
Figure 9.5b presents a persistence diagram, a tool that visualizes the birth and death of topological
features as the scale parameter varies. Two types of features are shown: connected components
(HO) and loops (H1). The diagonal line represents features that appear and quickly disappear, which
are often considered noise. Points farther from the diagonal correspond to persistent features that
remain across multiple scales, indicating their importance in understanding the data’s structure. For
instance, a loop (H1) appears at a specific scale and persists for some time, reflecting a significant
cycle in the data’s topology.

Figure 9.6 illustrates a visualization of TDA using three interconnected panels: (a) a point cloud,
(b) a persistence diagram, and (c) a persistence barcode. These visualizations collectively show-
case the persistence of topological features in the data across multiple scales. Figure 9.6a depicts
the scatter plot of a two-cluster point cloud, with Cluster 1 and Cluster 2 labeled in blue and green,
respectively. This representation highlights the raw spatial distribution and connectivity of data
points, providing an initial view of the clusters’ structure. Figure 9.6b, the persistence diagram,
captures the birth and death of topological features, such as connected components (HO) and loops
(H1). Points closer to the diagonal indicate short-lived features, often regarded as noise, while points
farther from the diagonal represent persistent features that are structurally significant. For example,
loops (H1) and connected components (HO) are annotated to emphasize their relevance at specific
scales. Figure 9.6¢ visualizes the same topological features using a persistence barcode. Each hori-
zontal bar represents a feature’s lifespan, starting at its birth and ending at its death. Longer bars

FIGURE 9.5

(a) Point cloud and (b) persistence diagram.

Suiurea deag ui A8ojodo|

18¢C

FIGURE 9.6 TDA visualization. (a) Point cloud, (b) persistence diagram, (c) persistence barcode.

8¢

Suruaea des(40y suoepunod [edieWwayIe

Topology in Deep Learning 283

signify features that persist over a wide range of scales, indicating their importance, while shorter
bars represent transient noise. The barcode succinctly complements the persistence diagram by pro-
viding an alternative view of feature longevity.

9.5 TOPOLOGICAL DATA ANALYSIS WITH DEEP LEARNING

Combining TDA with deep learning is becoming more popular and provides new ways to under-
stand and improve neural network models. TDA helps us examine and use the natural shape and
structure of data, which can lead to stronger and more efficient learning methods.

9.5.1 PersISTENT HOMOLOGY IN DEEP LEARNING

Persistent homology is an important idea in TDA. It looks at the shapes and features of data at
different levels. By doing this, it helps us understand the data’s structure by finding things like
connected parts, loops, and empty spaces. In deep learning, persistent homology can be used in
several powerful ways. One key use is analyzing the loss landscape, which is the graph of the
loss function that the neural network tries to minimize. Persistent homology helps us study the
shapes of this loss function by looking at how many low points and saddle points it has. This gives
researchers important information about how difficult the optimization problem is. With this know-
ledge, they can create better algorithms to optimize the network. For example, if there are many low
points, they can develop methods to avoid getting stuck and find better overall solutions. Another
major use is feature extraction. Persistent homology can pull out topological features from the data,
such as connected parts, holes, and higher-dimensional empty spaces. These features capture com-
plex information that regular methods might miss. These extracted features can be added as extra
inputs to neural networks, helping the model find more detailed patterns, work better on new data,
and be more reliable. Additionally, persistent homology helps reduce the number of dimensions
by highlighting the most important topological features. This makes the input data simpler for the
neural network to handle.

When using persistent homology in deep learning, there are several practical things to consider.
First, it can be very computationally heavy. Calculating persistent homology for large or complex
datasets can take a lot of resources, so efficient algorithms and software are needed. To use persistent
homology in large-scale deep learning, it’s important to manage the computational load carefully.
Next, integrating persistent homology with neural networks requires several preprocessing steps
to calculate the topological features and then smoothly add them to the network’s structure. It’s
important to make sure this process doesn’t slow down training or prediction. Also, calculating per-
sistent homology involves setting certain parameters, like the scale for filtering, which need to be
carefully adjusted to capture important features without adding unnecessary noise. Finally, being
able to interpret and visualize the topological features is crucial. The features found by persistent
homology need to make sense for the specific task, and understanding how they relate to the data is
key for using them effectively. Imagine we have two datasets: Dataset A, points arranged in a cir-
cular shape, and Dataset B, points scattered randomly within a square. Our goal is to train a neural
network to classify new data points as belonging to either Dataset A or Dataset B. To improve
the neural network’s performance, we will extract topological features from each dataset using
persistent homology and incorporate these features into the training process. Let’s represent each
dataset numerically. In Dataset A (circle), we have eight points evenly spaced around a unit circle:

(1,0),(v2/2.4212).(0,1),(—2/2.42/12).(-1,0),
(—v272. =212).(0. -1).(v272. ~212)

284 Mathematical Foundations for Deep Learning

In Dataset B (square), we have eight points randomly scattered within a unit square:

(0.1,0.9),(0.4,0.7),(0.6,0.2),(0.9,0.4),(0.3,0.5),(0.7,0.8),(0.5,0.1),(0.2,0.6)

To extract topological features, we’ll compute the persistent homology of each dataset. Persistent
homology studies the shape of data by analyzing features like connected components and loops
across different scales.

Step 1: First, we calculate the pairwise Euclidean distances between points in each dataset.
For Dataset A (circle), let’s compute the distance between the first point (1, 0) and the other
points: The distance to (\/5/2, 2/2):

d=(1-v212)? +(0-+212)? =[(0.2929) +(~0.7071)°
~0.0858 +0.5 = +/0.5858 = 0.7654

And distance to (0, 1) is d = [(1-0)2 +(0—1)> =+/1+1 =2 = 1.4142. We repeat this for all
pairs, constructing a distance matrix D, for Dataset A. For Dataset B (square), We compute
distances between each pair of points in a similar manner, creating a distance matrix D, .

Step 2: We construct Vietoris—Rips complexes for each dataset at various distance thresholds
€. A Vietoris—Rips complex connects points that are within a distance € of each other. Let’s
choose several € values (e.g., 0.5, 1.0, 1.5) and observe how the topology changes. For Dataset
A (circle), at € = 0.5, points are connected only to their immediate neighbors, forming indi-
vidual edges and resulting in multiple connected components. As € increases to 0.8, more
points connect, forming a loop that represents a 1D hole resembling a circular shape. When €
reaches 1.5, all points are connected, and the loop fills in, causing the hole to disappear. For
Dataset B (square), at € = 0.5, some points are connected, but no significant loops are formed.
As € increases to 1.0, more connections appear; however, any loops that emerge are due to
random arrangements and are not persistent, indicating they do not represent meaningful topo-
logical features.

Step 3. Betti numbers quantify the topological features: B is a number of connected components,
and B, is a number of 1D holes (loops). For each €, we compute B, and B,. For Dataset A
(circle), at € = 0.5, the Betti numbers are o = 8 (each point is a separate component) and ; =0
(no loops). At € = 0.8, Bo becomes 1 as all points connect into one component, and ; becomes
1, indicating one persistent loop. By € = 1.5, B remains 1, and B, returns to 0 as the loop fills
in. For Dataset B (square), at € = 0.5, B¢ varies depending on the point distribution, while B4
remains 0 (no loops). As € increases, Bo decreases as components merge, and B4 stays at 0 or
shows insignificant loops that quickly disappear.

Step 4: We plot persistence diagrams for each dataset, where each topological feature is represented
as a point with coordinates (birth €, death €). For Dataset A (circle), the persistent loop appears
at € = 0.8 and disappears at € = 1.5. This results in a point at (0.8, 1.5) in the persistence dia-
gram, indicating a significant topological feature. For Dataset B (square), No significant per-
sistent loops are observed, and features in the diagram have short lifespans (birth and death €
values are close), indicating they are noise.

Step 5: From the persistence diagrams, we extract features: For Dataset A, the most significant
B, feature (loop) has a persistence of 1.5 — 0.8 = 0.7. For Dataset B, any B, features have low
persistence, close to zero. We can define a topological feature vector for each dataset based on
the persistence of loops. For Dataset A, the topological feature is the persistence of the loop,
which is 0.7. For Dataset B, the topological feature is the persistence of the loop, which is 0,
indicating no significant loops persist.

Topology in Deep Learning 285

Step 6: We augment each data point with its dataset’s topological feature. For example, the first point
in Dataset A has original coordinates (1, 0) and a topological feature value of 0.7. Therefore, the
augmented vector is (1, 0, 0.7). Similarly, for Dataset B, the first point has coordinates (0.1, 0.9)
with a topological feature value of 0, resulting in the augmented vector (0.1, 0.9, 0).

Step 7: We use the augmented data to train a neural network for classification. The network archi-
tecture is structured as follows: The input layer consists of three neurons, representing the
x-coordinate, y-coordinate, and topological feature. The hidden layer contains a small number
of neurons, such as five, using an activation function like ReL.U. The output layer comprises
one neuron with a sigmoid activation function, designed for binary classification to distinguish
between Dataset A and Dataset B. The training process is as follows: For each epoch, we per-
form the following steps:

1. Forward Pass: Compute the output of the network for each data point.

2. Loss Calculation: Use a loss function like binary crossentropy to measure the difference

between predicted and actual labels.

Backpropagation: Compute gradients of the loss with respect to weights and biases.

4. Parameter Update: Adjust weights and biases using an optimizer like stochastic gra-
dient descent (SGD).

(O8]

Step 8: After training, we evaluate the neural network’s performance on a test set (could be a
subset of the data or new data points).

Figure 9.7 presents an analysis of two datasets, one circular (Dataset A) and one square (Dataset
B), using persistent homology and Vietoris—Rips complexes to study their topological features
across different scales. Figure 9.7a shows Dataset A, which consists of points arranged in a circular
shape. Similarly, Figure 9.7b displays Dataset B, where points form a square-like structure. These
datasets highlight the initial spatial arrangement of the data. Figure 9.7c illustrates the Vietoris—Rips
complex for the circular dataset at € = 0.8. This complex connects points based on their pairwise
distances, capturing the underlying circular topology through the formation of loops while pre-
serving the dataset’s geometric structure. Figure 9.7d shows the persistence diagram for Dataset
A (circle), where connected components (HO) and loops (H1) are tracked as the scale parameter
changes. The diagram reveals the persistence of the circular structure, with the H1 loop indicating
the presence of a significant circular feature. Figure 9.7e presents the Vietoris—Rips complex for
the square dataset at € = 0.8. This representation connects points in the square, forming a network
that captures its geometric structure, including potential loops. Figure 9.7f displays the persistence
diagram for Dataset B (square), showing connected components (HO) and loops (H1). The square’s
topology is reflected in the emergence and disappearance of loops, highlighting differences in per-
sistence compared to the circular dataset.

9.5.2 Berti NUMBERS IN DEEP LEARNING

Betti numbers are whole numbers that show how many different types of holes exist in a shape or
space. They provide a quick summary of how complex the shape of the data is. In deep learning,
Betti numbers help us understand the structure of the data better and make our models stronger and
more reliable. Using Betti numbers in neural networks is useful for two main purposes: analyzing
data complexity and improving model robustness. When analyzing data complexity, Betti numbers
can be calculated to measure how complicated the dataset is. This understanding helps in choosing
the right neural network design. For example, if the data has many complex features indicated by
high Betti numbers, we might need deeper or more advanced network structures to capture these
intricate patterns. Additionally, Betti numbers can guide us in deciding how to prepare the data or
apply specific techniques to handle its complexity effectively during training. In terms of model

FIGURE 9.7 (a) Dataset A (circle), (b) Dataset B (square), (c) Vietoris—Rips complex circle at epsilon 0.8, (d) persistence diagram for Dataset A (circle), (e) Vietoris—
Rips complex square at epsilon = 0.8, (f) persistence diagram for Dataset B (square).

98¢

Suruaea des(40y suoepunod [edieWwayIe

Topology in Deep Learning 287

robustness, Betti numbers provide insights into the topological properties of the data, which helps
in building models that can handle these features well. For instance, if the data has many loops, as
shown by a high first Betti number, the model can be designed to recognize and work with these
loops accurately. Incorporating this topological information makes models better at dealing with
noisy data and unexpected changes. Furthermore, Betti numbers can be added as extra features to
the data, enhancing the model’s ability to capture the true structure of the data and perform better on
new, unseen information. Imagine we have two datasets composed of 2D points: Dataset A: Points
arranged in a circular shape (simple topology), and Dataset B: Points forming a figure-eight shape
(more complex topology). Our goal is to analyze the topological complexity of these datasets using
Betti numbers and understand how this information can inform the design and robustness of a neural
network trained to classify these shapes. Betti numbers are integers that quantify the topological
features of a space: By (Zeroth Betti number) counts the number of connected components. 4 (first
Betti number) counts the number of 1D holes (loops). B2 (second Betti number) counts the number
of 2D voids (in 3D space).
e Computing Betti Numbers for Dataset A (Circle):

1. We represent the circle using points sampled uniformly around a unit circle. Points, (cos(0,)
,sin(0,)) fori=1, 2, ..., N, where 0, are angles evenly spaced between 0 and 27z. For simpli-

city, let’s take N = 8 points:

a. (cos(0),sin(0)) = (1,0),

s

(cos(r/4),sin(m/4)) = (V2/2.212),

(cos(/2),sin(7/2)) = (0,1),

o

d. (cos(37/4),sin(3m/4)) = (—2 /2,\/5/2),

¢

. (cos(m),sin(m)) = (-1,0),

ja

(cos(5774),sin(5714)) = (—2/2,—212),
g (cos(37/2), sin(37/2)) =(0,-1),

h. (cos(77/4), sin(7r/4) = (v2/2,—272).

2. We Construct a Vietoris—Rips Complex: In constructing a Vietoris—Rips complex, the first
step is to compute the distance matrix, which involves calculating the pairwise distances
between points in the dataset. For instance, the distance between Point 1 and Point 2 is

approximately d,, = \/(1—\/5/2)2 +(0—~/2/2)? =0.765. The next step is to choose a
distance threshold (€). This value determines which points are connected; if the distance
between two points is less than or equal to €, they are connected in the complex.

3. Computing Betti Numbers at Different € Values: At € = 0.7, edges connect pairs of points
where dl.,j < 0.7 di. The connected components (fo) indicate that each point remains a sep-
arate component, so Bo = 8. No loops are formed at this stage, resulting in f; =0. Ate=1.1,

288 Mathematical Foundations for Deep Learning

more connections form between the points. All points become connected, resulting in o = 1.
A single loop forms around the circle, so 1 = 1. At € = 2.0, the complex fills in with higher-
dimensional simplices. The connected components remain at one (o = 1), but the loop fills
in, causing 4 to drop to O.

. Computing Betti Numbers for Dataset B:

1. Dataset Representation: We represent the figure-eight by combining two circles intersecting
at the origin: The top loop is centered at (0, 1) with points defined as (cos(8i), sin(0i)+1). The
bottom loop is centered at (0, —1) with points given by (cos(0i), sin(0i) — 1). In both cases,
N = 8 points are used per loop.

2. Building a Simplicial Complex: Building a simplicial complex begins with computing the
distance matrix by calculating pairwise distances between points. Next, choose appropriate
€ values, similar to the previous approach, to determine which points are connected in the
complex based on their pairwise distances.

3. Computing Betti Numbers: At € = 0.7, points within each loop start connecting internally.
The total number of connected components is two, as the top and bottom loops remain sep-
arate, resulting in Po = 2. No loops are present at this stage, so p; = 0. At € = 1.1, the inter-
section point at the origin connects the two loops, reducing the connected components to
one (Bo = 1). Two loops form, one in each loop of the figure-eight, giving 1 =2. At € = 2.0,
the loops begin to fill in, and the connected components remain at one (o = 1). Both loops
are filled, reducing B4 to 0. Interpreting the Betti numbers for the given datasets provides
insights into their topological structure. For Dataset A, the Betti numbers are B = 1 and
P1 = 1. The value of B = 1 indicates that the dataset consists of one connected component,
meaning all points form a single continuous structure. The value of B, = 1 means there is one
loop, which corresponds to the circular shape of the dataset. In Dataset B, the Betti numbers
are Bo = 1 and By = 2. The PBp = 1 shows that after merging all parts of the figure-eight, the
dataset still has one connected component. The B, = 2 indicates the presence of two loops,
corresponding to the two distinct loops in the figure-eight shape.

Figure 9.8 illustrates the application of TDA in deep learning, focusing on the relationship
between the loss landscape and topological persistence. Figure 9.8a depicts the loss landscape,
where the normalized loss is plotted against the perturbation index. The color gradient highlights
variations in normalized loss, with darker shades representing lower values and lighter shades indi-
cating higher losses. This visualization captures the ruggedness and overall structure of the opti-
mization surface, emphasizing regions of low loss that correspond to stable solutions. Figure 9.8b
presents the persistence diagram, which tracks the birth and death of topological features, such
as connected components (HO) and loops (H1), during the analysis of the loss landscape. Points
near the diagonal represent short-lived features, typically considered noise, while points farther
away correspond to significant topological structures that persist across scales. For example, the
HO features highlight the number of distinct connected regions, while H1 features capture cyclic
patterns in the loss landscape.

9.6 REAL-WORLD APPLICATIONS AND EXAMPLES
9.6.1 BioLocicAL NETWORK ANALYSIS

In the field of bioinformatics, topology plays a crucial role in understanding the complex interactions
within biological networks, such as protein—protein interaction networks and gene regulatory
networks. TDA enables researchers to uncover patterns and relationships that are not immediately

FIGURE 9.8 TDA in deep learning: (a) loss landscape and (b) persistence diagram.

Suiurea deag ui A8ojodo|

68¢

290 Mathematical Foundations for Deep Learning

apparent using traditional methods. For example, by analyzing the topological features of these
networks, such as loops and connected components, scientists can identify key regulatory pathways
and potential targets for drug development. The use of Betti numbers and persistent homology helps
in quantifying the robustness and connectivity of these networks, leading to better insights into the
underlying biological processes.

9.6.2 MATERIAL SCIENCE AND NANOTECHNOLOGY

Topology is also integral to material science, particularly in the design and analysis of nanomaterials.
The topological properties of materials, such as the arrangement of atoms in a lattice or the connect-
ivity of pores in a spongy material, can significantly influence their physical properties. For instance,
topological insulators, materials that conduct electricity on their surface but not in their interior,
are a prime example of how topological considerations guide the development of new materials
with unique electrical properties. Understanding the topological structure of these materials allows
scientists to design more efficient and resilient nanostructures for applications in electronics, energy
storage, and catalysis.

9.6.3 RoBOTICS AND AUTONOMOUS SYSTEMS

In robotics, topology helps in the design and control of autonomous systems that must navigate com-
plex environments. Topological maps, which abstract the environment into a network of connected
regions, enable robots to plan and execute paths efficiently. For instance, in the development of
autonomous vehicles, topological mapping allows the vehicle to understand its surroundings and
navigate safely through dynamic and unpredictable environments. This approach is essential for
tasks such as urban driving, where the vehicle must make decisions based on the connectivity and
layout of roads, intersections, and other obstacles.

9.6.4 NEUROSCIENCE AND BRAIN CONNECTIVITY

In neuroscience, topology provides valuable insights into the brain’s connectivity and function.
The human brain can be modeled as a complex network where neurons and synapses form intricate
topological structures. By applying TDA, researchers can study the brain’s connectivity patterns and
understand how different regions interact to produce cognitive functions. For example, persistent
homology has been used to analyze the topology of brain networks in patients with neurological
disorders, revealing changes in connectivity that correlate with disease progression. This approach
is crucial for developing more effective treatments and interventions for conditions like Alzheimer’s.

9.6.5 SociAL NETWORK ANALYSIS

Topology is also applicable in the analysis of social networks, where it helps in understanding the
structure and dynamics of human interactions. Social networks can be represented as graphs, with
individuals as nodes and their relationships as edges. By studying the topological features of these
graphs, such as clusters and communities, researchers can gain insights into social behavior, influ-
ence patterns, and the spread of information or diseases. For instance, topological analysis can
identify influential individuals or groups within a network, which is valuable for targeted marketing
campaigns, public health interventions, and understanding the spread of misinformation.

Topology in Deep Learning 291

9.6.6 FINANCIAL MODELING AND RiSK ASSESSMENT

In finance, topology aids in modeling the complex relationships between assets and markets. TDA
allows for the identification of persistent features in financial data, such as market cycles and
anomalies, which can inform trading strategies and risk management practices. By analyzing the
topological structure of financial networks, such as the connections between different markets or
the relationships between assets in a portfolio, investors can better understand market dynamics
and make more informed decisions. This approach is particularly useful in stress testing, where
understanding the topological structure of financial systems can help in predicting how markets
might react to extreme events.

9.7 HANDS-ON EXAMPLE

In this hands-on section, we will cover persistent homology, Betti numbers, and visualize high-
dimensional data using t-SNE and UMAP.

9.7.1 Step 1. INSTALL REQUIRED LIBRARIES

In this section, we are installing and importing a variety of libraries essential for working with
graph neural networks, dimensionality reduction, and topological data analysis. This combination of
libraries enables us to work with graph-based neural networks, analyze high-dimensional data using
dimensionality reduction techniques, and perform topological data analysis, which can uncover
hidden structures in datasets.

lpip install spektral umap-learn gudhi

import numpy as np

import tensorflow as tf

from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model

from spektral.layers import GCNConwv

from spektral.utils import normalized adjacency
from scipy.sparse import csr matrix

import matplotlib.pyplot as plt

import networkx as nx

from sklearn.datasets import make swiss roll
from sklearn.manifold import TSNE

import umap

import gudhi as gd

from gudhi import CubicalComplex, SimplexTree

9.7.2 Step 2. GENERATE THE Swiss RoLL DATASET

In this line of code, we are generating a synthetic Swiss Roll dataset using the make_swiss_roll
function from scikit-learn. This dataset is often used in machine learning to test and visualize
dimensionality reduction techniques because of its complex, non-linear structure. The Swiss Roll is
a 3D dataset that resembles a spiral rolled up in 3D space.

292 Mathematical Foundations for Deep Learning

n_samples = 1000
noise = 0.05
X, color = make swiss roll(n_samples, noise=noise)

9.7.3 Step 3. CoMpPUTE THE PErsISTENT HoMoLOGY UsING GUDHI

In this section, we are performing TDA on the Swiss Roll dataset using the Gudhi library. Specifically,
we are computing the persistence diagram of the dataset through the following tasks: Rips Complex
Construction, Simplex Tree Creation and Persistence Diagram Computation.

rips complex = gd.RipsComplex (points=X, max edge length=1.0)
simplex tree = rips complex.create simplex tree (max dimension=2)
diag = simplex tree.persistence()

9.7.4 Step 4. ExTRACT BETTI NUMBERS

In this line of code, we are calculating the Betti numbers of the Swiss Roll dataset using the sim-
plex tree that was constructed earlier through the Rips complex. By calculating Betti numbers, we
gain a deeper understanding of the inherent structure of the Swiss Roll dataset, revealing important
topological properties that may not be easily visible in lower-dimensional projections or traditional
data analysis methods.

betti numbers = simplex tree.betti numbers ()

9.7.5 Step 5. Apprry T-SNE 10 REDUCE DIMENSIONS

In this section, we are applying t-SNE (t-Distributed Stochastic Neighbor Embedding) to the Swiss
Roll dataset for dimensionality reduction. t-SNE is particularly useful for visualizing complex
datasets with non-linear structures, as it reveals clusters and local patterns that might not be captured
by linear methods like PCA.

tsne = TSNE (n_components=2, random state=42)
X tsne = tsne.fit transform (X)

9.7.6 Step 6. Aprry UMAP 10 REDUCE DIMENSIONS

In this section, we are applying UMAP (Uniform Manifold Approximation and Projection) to
the Swiss Roll dataset for dimensionality reduction. UMAP is favored in many cases due to
its balance between preserving local and global structures in the data, and the results can be
visualized to reveal patterns, clusters, or the underlying structure of complex datasets like the
Swiss Roll.

umap reducer = umap.UMAP (random state=42)

Topology in Deep Learning 293

X umap = umap_ reducer.fit transform (X)

9.7.7 Step 7. PLoTTING ALL GRAPHS IN ONE FRAME

In this section, we are visualizing the Swiss Roll dataset and its dimensionality-reduced
representations using t-SNE, UMAP, and a Persistence Diagram to explore the topological features
of the dataset.

fig, axs = plt.subplots (2, 2, figsize=(1l6, 12))

Plot a: Swiss Roll Dataset

ax = fig.add subplot (2, 2, 1, projection=‘3d’)

ax.scatter (X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.
cm.Spectral)

ax.set title(“a) Swiss Roll Dataset”)

Plot b: t-SNE Embedding of the Swiss Roll Dataset
axs[0, 1].scatter(X tsne[:, 0], X tsne[:, 1], c=color, cmap=
plt.cm.Spectral)

axs[0, 1].set title(“b) t-SNE Embedding of the Swiss Roll
Dataset”)

axs[0, 1].set xlabel (“t-SNE 17)

axs[0, 1].set ylabel (“t-SNE 27)

Plot c: UMAP Embedding of the Swiss Roll Dataset

axs[1l, 0].scatter (X umap[:, 0], X umap[:, 1], c=color, cmap=
plt.cm.Spectral)

axs[1l, 0].set title(“c) UMAP Embedding of the Swiss Roll
Dataset”)

axs[1l, 0].set xlabel (“UMAP 17)

axs[1l, 0].set ylabel (“UMAP 27)

Plot d: Persistence Diagram

gd.plot persistence diagram(diag, axes=axs[l, 1])

axs[l, 1].set title(“d) Persistence Diagram”)

plt.tight layout ()

plt.show()

Figure 9.9 provides a detailed analysis of the Swiss Roll dataset using dimensionality reduc-
tion techniques and persistent homology. Figure 9.9a illustrates the Swiss Roll dataset in its ori-
ginal 3D form, with points color-coded to represent variations along the z-axis. This dataset is a
well-known example of a non-linear manifold in 3D space, often used to evaluate the effective-
ness of dimensionality reduction algorithms. Figure 9.9b presents a 3D t-SNE embedding of the
dataset, where the high-dimensional Swiss Roll is projected into a lower-dimensional space. The
t-SNE embedding focuses on preserving local neighborhoods, effectively revealing clusters and
the dataset’s overall structure. Figure 9.9¢ displays the results of applying UMAP to the Swiss Roll
dataset, also reducing its dimensionality to two dimensions. UMAP emphasizes both local and global
structural preservation, offering a clear representation of the Swiss Roll’s continuity and manifold
properties, sometimes surpassing t-SNE in retaining the dataset’s global relationships. Figure 9.9d
shows the persistence diagram of the Swiss Roll dataset, capturing its topological features across
various scales. The HO features represent connected components, while the H1 features correspond

FIGURE 9.9 (a) 3D visualization of the Swiss Roll dataset, (b) 2D t-SNE embedding of the Swiss Roll dataset, (c) 2D
UMAP embedding of the Swiss Roll dataset, (d) persistence diagram for the Swiss Roll dataset.

v6c

Suruaea des(40y suoepunod [edieWwayIe

Topology in Deep Learning 295

to loops in the data. The most persistent H1 loop, highlighted in red, signifies the prominent spiral
structure inherent in the dataset.

9.8 COMMON MISTAKES AND TROUBLESHOOTING TIPS
9.8.1 MISUNDERSTANDING ToroLoGicAL CONCEPTS

* Mistake: Misinterpreting fundamental topological concepts like continuous transformations,
homeomorphisms, and Betti numbers can lead to incorrect applications and analyses.

e Tip: Review foundational resources on topology and TDA. Use visual aids and interactive
tools to solidify your understanding of these abstract concepts.

9.8.2 OVERFITTING IN DEePp NETWORKS

* Mistake: Designing neural networks with excessive depth or width without adequate regular-
ization, leading to overfitting.

» Tip: Use techniques like dropout, batch normalization, and early stopping to prevent overfitting.
Regularly validate your model on separate datasets to monitor for overfitting.

9.8.3 IGNORING THE IMPACT OF NETWORK ARCHITECTURE

* Mistake: Neglecting the importance of network architecture and its influence on convergence
and performance.

» Tip: Experiment with different architectures and configurations. Use grid search or random
search to find the optimal structure for your specific problem.

9.8.4 VisuALizING HiGH-DIMENSIONAL DATA

* Mistake: Struggling to visualize high-dimensional data and loss landscapes, leading to misin-
terpretation of model behavior.

» Tip: Utilize dimensionality reduction techniques like t-SNE or PCA for visualizing high-
dimensional data. Understand the limitations and ensure the reduced dimensions retain critical
information.

9.8.5 CoMmruUTATIONAL CosT AND EFFICIENCY

* Mistake: Underestimating the computational cost of applying topological analysis to large
datasets and neural networks.

e Tip: Optimize your code and use efficient libraries for TDA computations. Consider using
cloud computing resources or distributed computing to handle large-scale analyses.

9.8.6 INTEGRATING TDA wiTH NEURAL NETWORKS

* Mistake: Failing to effectively integrate TDA insights with neural network models, resulting
in limited improvements.

* Tip: Apply TDA techniques to extract meaningful features and incorporate them into your
neural network pipeline. Validate the added value through controlled experiments.

296 Mathematical Foundations for Deep Learning

9.8.7 OVERAITTING TO ToPOLOGICAL FEATURES

* Mistake: Overfitting to topological features extracted from the data, leading to models that do
not generalize well.

» Tip: Ensure a balance between topological features and other relevant data features. Use cross-
validation to assess the generalization performance of your models.

9.8.8 BRIDGING THEORY AND PRACTICE

* Mistake: Struggling to bridge the gap between theoretical insights from topology and their
practical application in deep learning.

» Tip: Focus on practical implementation and empirical validation. Collaborate with domain
experts to translate theoretical concepts into actionable strategies for improving neural net-
work models.

9.9 REVIEW QUESTIONS

1. What is topology, and why is it important to understand the properties of space?

2. How do continuous transformations define topological equivalence? Provide examples.

3. How does the topology of a neural network influence its performance and convergence
properties?

4. Explain the differences between network depth and width. What are the pros and cons of
increasing each?

5. What are skip connections, and how do they benefit deep neural networks like ResNet?

6. Describe the advantages and challenges of using RNNs for sequential data.

7. What are the benefits and potential problems associated with using the ReLU activation
function?

8. What is persistent homology, and how can it be applied to analyze neural network loss
landscapes?

9. How do Betti numbers help understand the topological complexity of data?

10. How can integrating TDA and neural networks lead to more robust and effective models?

9.10 PROGRAMMING QUESTIONS

9.10.1 Easy

Generate a 3D S-curve dataset and visualize it.

Generate the S-curve dataset.

Apply t-SNE to the dataset and visualize the 2D embedding.

Apply UMAP to the dataset and visualize the 2D embedding.
Compare the embeddings from t-SNE and UMAP.

el N

Topology in Deep Learning 297

9.10.2 Mebium

For a given high-dimensional dataset, compute its persistence diagram using different metrics (e.g.,
Euclidean, cosine) and compare the results.

Select a high-dimensional dataset (e.g., MNIST or CIFAR-10).
Compute the pairwise distance matrices using different metrics.
Generate persistence diagrams for each metric.

Compare the persistence diagrams and interpret the results.

el N

9.10.3 Harp

Using the MNIST dataset, compute the persistence diagrams for each image and use the resulting
topological features as input to a machine learning classifier.

Preprocess the MNIST dataset to compute persistence diagrams for each image.

Extract topological features (e.g., persistence pairs) from the diagrams.

Train a machine learning classifier using these topological features.

Evaluate the classification performance using standard metrics (accuracy, precision, recall).
Compare the performance to a classifier trained on raw pixel values.

M

’I O Harmonic Analysis for CNNs

10.1 INTRODUCTION

Understanding signals in both time and frequency is important for digital signal processing. Tools
like Fourier (FT) and Wavelet (WT) transform help find hidden patterns in raw data, such as radio
waves or images used in machine learning. In deep learning, convolutional neural networks (CNN5s)
examine images by identifying features from pixel information. This is similar to harmonic analysis,
where frequency methods explain how signals behave. By combining deep learning with harmonic
ideas, we can better understand how CNNs work and find more efficient ways to compute. In this
chapter, we explore these ideas.

10.2 FOURIER ANALYSIS
10.2.1 FUNDAMENTALS OF FOURIER ANALYSIS

The strength of Fourier analysis is that it can break any complex signal into simple sine and cosine
waves. This separation lets us look closely at the signal’s different frequencies. Understanding these
frequencies is important in many areas, from engineering to science. It helps us design filters, study
waveforms, and process data more effectively.

10.2.2 FoOURIER TRANSFORM

The Fourier transform (FT) is a mathematical operation that converts a function from its original
domain (typically time or space) into the frequency domain. This transformation provides a fre-
quency spectrum that shows how much of each frequency is present in the original signal. For a
continuous time-domain function f(t), the FT F(W) is defined as:

Fw)= If(t)emdz

where:
« f(t)is the function in the time domain,

* o is the angular frequency, which is related to the frequency f by ® = 2nxf, and
o e is the complex exponential function, where j is the imaginary unit (i.e., j> = —1).

298 DOI: 10.1201/9781032690742-10

http://dx.doi.org/10.1201/9781032690742-10

Harmonic Analysis for CNNs 299

This transformation is similar to decomposing a complex musical chord into individual notes.
Each note corresponds to a frequency component of the chord, and the FT helps identify these
components. Let’s consider a time-domain signal composed of two sine waves:

f(#)=3sin(2x 50¢) +2sin(2wx 120¢)

Here:

* 3sin(27 x 50¢) is a sine wave with an amplitude of 3 and a frequency of 50 Hz.
* 2 sin(27 x 120¢) is a sine wave with an amplitude of 2 and a frequency of 120 Hz.

We plan to use the FT to identify the frequency components and their amplitudes in f(t).

Step 1. Apply the FT: Think of the FT as a tool that takes your complex sound and breaks it down
into its basic building blocks, the pure tones (sine waves). For our sound, which is:

F(ow)= j [3sin(27rx 501) + 2sin(27rx 1201) | e~/ dt

—oo

Using the linearity property of the FT, this can be separated into:

F(w)=3[" sin@mx500e dr+2[" sin2ax1200)e™ dt

We want to find out the frequencies (50 and 120 Hz) and their strengths (3 and 2).
Step 2. Compute the Transform for Each Sine Wave: The FT of sin(2nf') is given by:

F{sinQxft)} = %[5((0—271]‘)— §(w+2rf)]

Applying this to each sine component:

1. For the 50 Hz tone: 3 sin(27 x 50¢): The math shows that there’s a spike (a sharp point) at 50
Hz. The strength of this spike is related to the number 3 in front of the sine wave.

3 x%[é(m—an 50) - 8(w+27%50)| = %[5@0— 1007) - 8(w+1007) |

2. For the 120 Hz tone: 2 sin(27 x 120¢): Similarly, there ’s another spike at 120 Hz, and its
strength comes from the number 2.

2x%[6(a)—2nx120)— 8(w+2wx120)] = j[8(w—2407) - 5(w+2407)]
Step 3. Combine the Results:

F(ow)= 3?] 5(60—100%)—3?] 8(w+1007)+ j&(w—-2407)— j&(w+2407)

300 Mathematical Foundations for Deep Learning

The FT F(®) reveals spikes (delta functions) at specific angular frequencies: @ = 100m rad/s
(which corresponds to 50 Hz) and @ = 240n rad/s (which corresponds to 120 Hz). The
coefficients in front of the delta functions indicate the amplitude and phase of each frequency

component. At 50 Hz the amplitude is % and at 120 Hz the amplitude is j. As the original signal

f(t) is real-valued, the FT exhibits symmetry: Positive frequencies (e.g., 50 and 120 Hz) have
corresponding negative frequencies. The magnitudes of the Fourier coefficients correspond to
the amplitudes of the sine waves.

Figure 10.1 illustrates three individual sine waves at 5, 50, and 120 Hz, along with their combined
time-domain signal and their frequency-domain representation. In Figure 10.1a, the slowest oscilla-
tion at 5 Hz is shown, displaying only a few cycles over the 1-second interval. Figure 10.1bintroduces
the 50 Hz wave, which has considerably more peaks and troughs in the same time frame. Figure 10.1c
presents the highest-frequency component at 120 Hz, where many closely spaced oscillations occur
within one second. These three sine waves are summed in Figure 10.1d, producing a complex wave-
form in the time domain whose various undulations result from the superposition of 5, 50, and 120
Hz components. In Figure 10.1e, the FT of this combined signal shows three clear spectral peaks
corresponding to each individual sine wave, verifying that all three frequencies are indeed present.
Finally, Figure 10.1f zooms in on the 0—100 Hz region, highlighting the 5 and 50 Hz peaks more
clearly while the 120 Hz peak remains outside the zoomed frequency range.

10.2.3 INVERSE FOURIER TRANSFORM

The inverse Fourier transform (IFT) reverses the FT process, converting a function from the fre-
quency domain back to its original domain (often time or space). This operation is crucial for
reconstructing the original signal after analysis or manipulation in the frequency domain. The
inverse transform of F (a)) is given by:

£(1)= %{iF(w)e-’“”da)

where:

¢ f(t) is the recovered time-domain function.

1 . . .
* The factor Py ensures proper scaling during the transformation.

Understanding the IFT is essential for practical applications where signals are analyzed in the fre-
quency domain and then transformed back to their original form for further processing or interpret-
ation. Suppose we plan to reconstruct the original time-domain signal from its frequency components
using the IFT. Given frequency components: A sine wave with amplitude 3 at 50 Hz and a sine wave
with amplitude 2 at 120 Hz. These components can be represented in the frequency domain as spikes
at their respective frequencies.

Step 1. Express the Frequency Components: Each sine wave in the frequency domain can be
represented using delta functions (spikes):

F(w)=3[8(w-1007)- 8(w+1007) |+ 2[§(w—2407) - §(w+2407) |

SNND 10J sisAjeuy dluouwiey

FIGURE 10.1 (a) Sine wave 1 (5 Hz). This waveform oscillates at the slowest frequency of the three, completing 5 cycles per second. (b) Sine wave 2 (50 Hz).
A higher-frequency sinusoid that completes 50 cycles per second. (c) Sine wave 3 (120 Hz). The fastest oscillation among the three waves, with 120 cycles per second.
(d) Combined time-domain signal. The result of summing all three sine waves (5, 50, and 120 Hz). (e) Frequency-domain representation. The FT of the combined signal,
showing distinct peaks at 5, 50, and 120 Hz. (f) Zoomed-in frequency domain (0—100 Hz). A closer look at the low- and mid-frequency peaks (5 and 50 Hz), with the
120 Hz peak lying outside this zoom range.

L0€

302 Mathematical Foundations for Deep Learning

(Note: w = 27f, so 50 Hz becomes 1007 rad/s and 120 Hz becomes 2407 rad/s.)
Step 2. Apply the IFT: Using the IFT formula:

f(t) — ZL 3(6_/100”: _e—j100n1)+2(e_/'240m — o-J240m)]
T

Step 3. Simplify Using Euler’s Formula: Recall that e/% —e=7/% =2 jsin(6):

1
f(2) 2—[3 X2 jsin(10077)+2 x 2 jsin(2407)| and then
T

1
£ (1) = [6]5in(100m) +4sin(2407)]
T
As the original signal is real, the imaginary units cancel out:
6 g 4 . 3 2 .
f(#)==—sin(1007) + — sin(2407¢) and then f (¢) = =sin(1007) + =sin(2407¢)
2r 2 ju o

Simplifying further, recognizing that 1007 rad/s is 50 Hz and 240 rad/s is 120 Hz:
£ () =3sin(2mwx 50t) + 2sin(27wx 120¢)

This matches our original time-domain signal:

f(#)=3sin(2wx 50¢) + 2sin(2wx 120¢)

Figure 10.2 depicts on the same three-sine-wave combination but provides additional insights
into reconstruction and error analysis. Figure 10.2a again displays the time-domain signal formed
by superimposing 5, 50, and 120 Hz waves, reflecting a more complex pattern compared to any
single wave alone. Figure 10.2b shows the frequency-domain representation, showing distinct peaks
at 5, 50, and 120 Hz that confirm the presence of all three components. Figure 10.2c illustrates
how the inverse fast Fourier transform (IFFT) can recover the original time-domain waveform
from its frequency-domain data, demonstrating near-perfect alignment with the combined signal.
Figure 10.2d shows the minimal difference between the original and reconstructed signals, which
hovers near numerical precision and confirms the accuracy of the forward and IFT process.

10.3 WAVELETS

Wavelet analysis is a useful tool in signal processing, offering capabilities that extend beyond those
of Fourier analysis. While Fourier analysis breaks signals into sine and cosine waves, wavelet ana-
lysis uses wavelets, functions that can capture both frequency and time (or space) information simul-
taneously. This makes wavelets particularly effective for analyzing non-stationary signals, where the
characteristics of the signal change over time or space. Wavelets are especially useful in applications
where localized variations in the signal must be captured and analyzed. Wavelets are oscillating
functions that start and end at zero, with their amplitude peaking in between. This shape gives
wavelets the ability to zoom in on localized signal features. Their flexibility makes them ideal for
multi-resolution analysis, enabling the study of signals at different scales. By adjusting the scale of
the wavelet, we can analyze both the fine details and broader patterns in the signal, making wavelet
analysis highly effective for signals that vary over time or space.

SNND 10J sisAjeuy dluouwiey

FIGURE 10.2 (a) Combined time-domain signal. This is the same three-wave sum shown in Figure 1(d), plotted over 1 second. (b) Frequency-domain representation.
The magnitude spectrum again reveals peaks at 5, 50, and 120 Hz. (c) Reconstructed signal (IFFT). The IFT of the frequency-domain data, showing a near-identical
recovery of the original time-domain signal. (d) Difference between original and reconstructed signals. The minimal discrepancy on the order of numerical precision,
verifies the accuracy of the FT and IFT.

€0€

304 Mathematical Foundations for Deep Learning

10.3.1 WAVELET TRANSFORM

The wavelet transform (WT) is an advanced analytical method that converts signals from the time
domain into a series of coefficients based on shifted and scaled versions of a predetermined base
function, known as a mother wavelet. This transformation is particularly adept at handling non-
stationary signals, those whose frequency content changes over time. The continuous wavelet trans-
form (CWT) of a function f(t) is mathematically represented as:

CWT(T,s)zﬁIcf(t)y/(t?]dt

Here, T and s are parameters that control the translation (shift) and scale (compression or stretching)
of the wavelet, respectively. y(t) is the mother wavelet, a function localized in both time and fre-

quency. The normalization factor L ensures that the wavelet has the same energy at each scale.
i

Wavelets are unique in that they are localized in time and frequency, unlike the sinusoids used in
FTs, which extend infinitely. This localization allows wavelets to precisely capture and analyze
transient features and abrupt changes in a signal. The adaptability of wavelets in terms of scale
and translation makes them ideal for analyzing signals that exhibit features at multiple scales or
that have significant local variations in time or frequency. Consider an example where a heartbeat
signal is analyzed using the WT. A heartbeat signal, characterized by sharp spikes followed by slow
waves, presents challenges in identifying features like the QRS complex and the T wave when
using Fourier analysis due to its non-stationary nature. Using a WT, the signal is decomposed into
coefficients that represent different frequency components at different times. For instance, selecting
a wavelet such as the Daubechies wavelet, which closely resembles the sharp spikes of a QRS com-
plex, would allow for efficient isolation and analysis of these features without interference from
slower-moving trends in the signal. This ability to customize the wavelet to match specific features
of the signal is a key advantage of the WT, enabling more effective signal analysis and feature detec-
tion. Consider a simple time-domain signal composed of two parts:

1. A sharp spike (representing a transient event) lasting from t = 1 to t = 2 seconds.
2. A slow sine wave with a frequency of 5 Hz active throughout the signal duration.

The signal f(t) can be represented as:

f(f)={

10, 112
5sin(2mx5t), otherwise

Step 1. Choose a Mother Wavelet: Let’s use the Daubechies 4 (db4) wavelet, known for its ability
to handle sharp transitions effectively.

Step 2. Apply the WT: The CWT will analyze the signal at different scales and positions. For sim-
plicity, we’ll examine two scales: Scale 1 captures high-frequency components, such as sharp
spikes, while Scale 8 captures low-frequency components, like a slow sine wave.

Step 3. Compute Wavelet Coefficients: At scale 1, the wavelet is narrow and highly responsive
to rapid changes. The sharp spike occurring between ¢ = land t = 2 generates significant
wavelet coefficients, indicating a strong transient event. In contrast, the sine wave produces
minimal coefficients at this scale due to its low-frequency nature. At Scale 8, the wavelet is
wider, enabling it to capture slower variations. The sine wave at 5 Hz results in prominent
wavelet coefficients, reflecting its sustained oscillation. The sharp spike contributes less to the
coefficients at this scale due to the wavelet’s lower sensitivity to high-frequency events.

Harmonic Analysis for CNNs 305

Step 4: Reconstruct the Signal Using Selected Scales: To reconstruct the original signal, we can
combine the wavelet coefficients from both scales:

f(#) = Reconstruction from Scalel+ Reconstruction from Scale 8

This combination captures both the transient spike and the underlying sine wave.

10.3.2 ArpLicATIONS OF WT

WTs have broad applications across various fields. In image compression, they are the backbone of
the JPEG 2000 standard, offering efficient, high-quality compression. Wavelets are also key in noise
reduction, where they remove noise while preserving important signal features. In signal processing,
wavelets enable time-frequency analysis, making them ideal for examining signals that change over
time. Additionally, in medical imaging, WTs help enhance image analysis by highlighting crucial
structures and details, improving diagnostic accuracy. Consider a signal composed of two sine
waves with frequencies of 5 and 20 Hz.

Figure 10.3 illustrates the relationship between the original signal and its WT. Figure 10.3a
shows the time-domain signal, which is a combination of two sine waves. The signal’s varying
pattern over time is a result of these interacting frequencies. Figure 10.3b represents the WT of the
signal, revealing how its frequency components change over time. The color intensity in the plot
corresponds to the magnitude of the wavelet coefficients, highlighting the signal’s decomposition
into different scales, where the red regions indicate higher magnitudes.

10.4 CONVOLUTION IN THE FREQUENCY DOMAIN FOR CNNS

CNNss are very important in deep learning, especially for tasks like processing images and videos.
The key part of CNNSs is the convolution operation. In this operation, a filter (or kernel) moves over
an input (like an image) to calculate sums of products for each area it covers. When we look at
convolution in the frequency domain, it has big computational benefits, especially for large filters
or specific tasks. It can change the convolution process into simple multiplications, which makes
computations faster in some situations.

10.4.1 CoNvoLUTION THEOREM

The convolution theorem explains how two important math operations, convolution and multiplica-
tion, are connected using the FT. This theorem is a powerful tool for studying and changing signals
in both time and frequency. When you convolve two signals in the time domain, you mix them
together to create a new signal that combines features from both original signals. Similarly, when
you multiply the FTs of two signals in the frequency domain, it has the same effect as convolving
the two signals in time. This means that by working in the frequency domain, we can simplify the
convolution process by just multiplying the FTs, which can make calculations faster. The convolu-
tion theorem can be expressed mathematically as:

Flr(t)*s(r)}=F(0)G(o)
where:

« f(t)and g(t) are signals in the time domain,
e F (w) and G(w) are their corresponding Fourier,

FIGURE 10.3

(a) Original signal (time domain) and (b) WT (frequency domain).

90¢

Suruaea des(40y suoepunod [edieWwayIe

Harmonic Analysis for CNNs 307

* *denotes the convolution operation in the time domain, and
e .represents multiplication in the frequency domain.

The applications of the convolution theorem include signal processing, where it allows for effi-
cient computation of convolutions by transforming signals to the frequency domain, performing
element-wise multiplication, and then using the IFT to return the result to the time domain. This
method is often faster than direct convolution, especially for large signals. In filter design, the the-
orem is fundamental, as it enables the specification of filtering effects in the frequency domain. By
defining the filter’s frequency response and multiplying it with the FT of the input signal, the filtered
signal can be obtained efficiently. In image processing, convolutional filters like edge detectors, blur
filters, and sharpening filters can be applied more easily using the convolution theorem, simplifying
the implementation of complex filtering operations. Additionally, in system analysis, particularly for
linear time-invariant (LTI) systems, the theorem aids in understanding system responses to various
inputs by analyzing the system’s impulse response in the frequency domain, allowing prediction of
the output for any given input. Consider two time-domain signals, f(t) and g(t). To convolve these
signals using the convolution theorem:

1. Compute the FTs of f(t) and g(t):
Flo)=F{f ()} G(0)=7F{g(n)}
2. Multiply the FTs in the frequency domain:
H(w)=F(0) G(o)
3. Compute the IFT of the product to obtain the convolved signal in the time domain:
n(0)= 7 {H(0)} = 7 {F(0) G(0)}
Consider two simple continuous-time signals:

1. Signal f(t):

f(t)— 1, 0<r<l1
a 0, otherwise

A rectangular pulse of amplitude 1 lasting from t =0 to t = 1 second.

2. Signal g(t):

1, 0<r<1
g(r)= .
0, otherwise

Another identical rectangular pulse of amplitude 1 lasting from t =0 to t = 1 second.

308 Mathematical Foundations for Deep Learning

Step 1: Compute the FTs of f(t) and g(t)
The FT of a rectangular pulse f(t) is given by:

¢ . 0 I—e®
Flw)=|f(t)e/¥dt = |e/¥dt = —
(0)= [rperar=fermar= =
Similarly, the FT of g(t) is:
N t 1—e o
G(w)= |g(t)e/™dt = |e7/®dt = —
(0)= [(erea = feomar ==

Step 2: Multiply the FTs in the frequency domain
According to the convolution theorem:

F{r()e(0)} = F(0)-G(w)

Multiply F(®) and G(®):

. 2 .
l=ej@ a- —j(A))Z

Step 3: Compute the IFT to obtain the convolved signal. To find f(t) * g(t), take the IFT of F(®)
- G(m):

stra-=-fo=r)

(joy
Simplifying the expression:

(I-e/®)y 1 2e7i0 g7i20

Gor Gor Gor Goy

1 e o e /20
*g(r)= F- —2F F
S () {(jw)z } {(jw)z }+ {(jw)z }

Using standard FT pairs:

R SO R ot SRR

(1-e7®)? =1-2¢7/*+¢772® and

IFT:

(joy (joy
where u(t) is the unit step function.
Applying these:

F)*g(t)=t-u(t)-2(t=1)-u(t=1)+(r=2)-u(r-2)

Harmonic Analysis for CNNs 309

Final convolved signal:

0, t<0
t, 0<r<1
* =
f(t) g(t) 2—t, 1<t<2
0, t>2

A triangular pulse that rises linearly from O to 1 between t =0 and t = 1, then decreases linearly from
1 to 0 between t = 1 and t = 2. To ensure our frequency-domain approach is correct, let’s perform
the convolution directly in the time domain.

<f*g><r>=if(r>g<r—rwr

Given the definitions of f(t) and g(t), the limits of integration are reduced based on the overlap of
the signals.

1. ForO<t<1:
t
(/8)(1)=[1-1d7=1
0
2. Forl<t<2:

(f+e)(1)= jl-ldr:z_t

t—1

3. Fort<Oandt>?2:

(f*g)(r)=0

This matches the result obtained using the convolution theorem.

10.4.2 ImpLicaTION FOR CNNs

Convolution is a basic operation in CNNs, where a filter (or kernel) moves over an input, like an
image, to calculate the sum of element-wise products. Usually, this convolution happens in the
spatial domain, meaning the filter works directly with the image. This approach is easy to under-
stand and is commonly used in tasks like image processing, where the filter finds features by
repeatedly applying to small parts of the input, creating an output feature map. While this method
is simple, it can become very slow when the filter size grows. Looking at convolution from the
frequency domain can offer useful insights, especially for tasks that require a lot of computation.
The convolution theorem says that convolution in the spatial domain is the same as multiplica-
tion in the frequency domain. In practice, this means that instead of convolving directly in the
spatial domain, we can transform both the input and the filter into the frequency domain using
the FT. Once in the frequency domain, convolution turns into a simple element-wise multiplica-
tion. After multiplying, we use the IFT to convert the result back to the spatial domain, getting

310 Mathematical Foundations for Deep Learning

the final output. This method can save a lot of computation time, especially with large filters,
because the complexity of convolution in the frequency domain grows more slowly compared to
the spatial domain. In the spatial domain, the time it takes to perform convolution increases with
the filter size, which is a problem for large filters. However, in the frequency domain, using the
fast Fourier transform (FFT) can reduce this complexity, making it much more efficient for large-
scale operations. For small filters, traditional spatial convolution is usually faster, but for larger
filters or big datasets, frequency-domain convolution can provide quicker results. This is espe-
cially useful in large-scale image processing or signal processing tasks. Deciding whether to use
the spatial or frequency domain depends on the specific problem, available resources, and filter
size. If you’re working with standard-sized filters and have enough computational power, spatial
domain convolution is still practical and effective. On the other hand, for larger filters or when
computational resources are limited, the frequency-domain method can offer significant perform-
ance improvements. Additionally, understanding convolution in the frequency domain can help
develop more efficient CNN designs or specialized approaches that combine the strengths of both
domains. By exploring frequency-domain convolution, you can optimize parts of CNN design,
improve computational efficiency, or customize the convolution process for tasks that use large
filters, such as video processing or high-resolution image analysis. For example, consider a scen-
ario where a CNN is processing high-resolution images with very large filters. The frequency-
domain approach can be utilized as follows:

1. Transform to Frequency Domain: Compute the FT of the input image I and the filter K:
H{o)=F{1(xy)}, K(o)=F{K(x)}

2. Element-Wise Multiplication: Perform element-wise multiplication in the frequency domain:

3. IFT: Transform the result back to the spatial domain using the IFT:

h(x,y)=F' {H ()}

This approach can significantly reduce the computational burden for large filters, making it a valu-
able technique in specific applications. Let us review an example for better understanding. A CNN
is processing a small grayscale image with a size of 3 x 3 pixels using a 2 x 2 filter (kernel). We’ll
demonstrate both spatial and frequency-domain convolution. Given:

1. Input Image I:

~

Il
=N R~ =
0 W N
© O W

2. Filter K:

Harmonic Analysis for CNNs 311

Step 1. Spatial Domain Convolution: Perform convolution by sliding the filter over the input image.
Convolution output size:

B-2+D)x@B-2+1)=2x2
Computing each output element:

1. Top-Left Position:

[411 i”é _OJ=(IX1)+(2X0)+(4><0)+(5><—1)=1+0+o_5=_4

2. Top-Right Position:

[i ZH(I) _()J:(2X1)+(3X0)+(5><0)+(6><—1)=2+0+o_6=_4

3. Bottom-Left Position:

4 3L |-astsetpseorstixn-ssoso-s——

4. Bottom-Right Position:

[2 g}[(l) _01]:(5X1)+(6X0)+(8X0)+(9X—1)=5+0+o_9:_4

Resulting Convolved Feature Map:

(F*8) g ={_4 _4}
spatial _4 _4

Step 2. Frequency-Domain Convolution: Now, we’ll perform convolution using the convolution
theorem.

Step 2.1. Zero-Padding: To perform convolution via the FT, zero-pad both the input image and the
filter to match the size of the convolution result.

e Input Image I (padded to 4 x 4):

pad

S N B~ =
S 0 W N
S O AN W
o O o O

312 Mathematical Foundations for Deep Learning

» Filter K (padded to 4 x 4):

10 00
0 -100

K =

P10 0 000
00 00

Step 2.2. Compute the FTs: Compute the 2D FFTs of both padded signals. For simplicity, we’ll
present hypothetical FFT results:

F[k][k,]=FFT2D(1) and G[K,][,]=FFT2D(K |

Step 2.3. Element-Wise Multiplication in Frequency Domain: Multiply the corresponding elem-
ents of F and G:

H[k][k, |= F[&][k,]%G[&][,]

Step 2.4. Compute the IFT: Take the IFFT of H[k][k,] to obtain the convolved feature map in
the spatial domain.

(%8 hegeney = FFT2D(H [&,][,])

Assuming accurate FFT computations, the result should match the direct convolution:

(f*g) .
frequency . 4 . 4

Figure 10.4 illustrates the process of filtering an input image using frequency-domain techniques,
highlighting both the spatial and frequency-domain representations. Figure 10.4a shows the original
input image, a binary image containing a white square at the center. This serves as the starting point
for the filtering process. Figure 10.4b depicts the filter image, which is a smaller white square designed
to act as a convolution kernel in the spatial domain. This filter will be applied in the frequency
domain to modify the original image’s components. Figure 10.4c presents the filtered image obtained
after applying the convolution operation in the frequency domain. The result demonstrates how the
filter modifies the spatial characteristics of the input image, introducing smoothed edges around the
square. Figure 10.4d visualizes the FT of the input image, where the central peak represents low-
frequency components that capture the overall structure of the image, while surrounding patterns
indicate higher-frequency details. Figure 10.4e shows the FT of the filter, highlighting its effect in the
frequency domain. The smaller peak emphasizes the localized nature of the filter’s influence on the
input image. Figure 10.4f displays the FT of the result image, showing how the filtered peaks reflect
the combined effect of the input image and the filter in the frequency domain.

10.5 REAL-WORLD APPLICATIONS
10.5.1 MEebicaL IMAGING AND DIAGNOSTICS

In medical imaging, FT and WT play a key role in enhancing and analyzing images like MRIs, CT
scans, and X-rays. FTs are used to filter out noise and enhance resolution by converting image data

FIGURE 10.4 (a—c) Example input image and filter. (d—f) Frequency-domain representations and the convolution result after applying the IFTs.

SNND 10J sisAjeuy dluouwiey

€Le

314 Mathematical Foundations for Deep Learning

from the time domain to the frequency domain. For example, in MRI scans, Fourier analysis allows
clear visualization of tissues and abnormalities. WTs, on the other hand, are effective in isolating
fine details, such as detecting microcalcifications in mammograms, aiding in early cancer detection
through multi-resolution analysis.

10.5.2 AuDIO SIGNAL PROCESSING

Harmonic analysis plays a fundamental role in audio signal processing, helping to analyze, com-
press, and enhance sound signals. The FT breaks down audio into its frequency components,
allowing specific sounds to be isolated or unwanted noise to be removed. This method is crucial in
applications like audio compression (e.g., MP3 encoding) and noise reduction technologies, such
as in hearing aids. WTs offer better time-frequency localization, which is vital for processing tran-
sient sounds, such as speech or music, enhancing applications like speech recognition and audio
watermarking.

10.5.3 DATA COMPRESSION

Data compression methods like JPEG and JPEG 2000 depend on harmonic analysis to reduce image
size while maintaining quality. The JPEG standard uses Fourier analysis to transform image data into
the frequency domain, where high-frequency components (often linked to noise) can be minimized
or removed. JPEG 2000 employs WTs, allowing for multi-resolution image representation, leading
to more efficient compression and better preservation of key details. These compression techniques
are essential in reducing storage needs and transmission costs, particularly in bandwidth-limited
environments.

10.5.4 COMMUNICATIONS AND SIGNAL TRANSMISSION

FT and WT are essential in communications, enabling efficient modulation and demodulation of
signals. In digital communication, FTs and converts signals between the time and frequency domains,
facilitating technologies like Orthogonal Frequency Division Multiplexing (OFDM), which is used
in 4G and 5G networks to boost data rates. WTs, with their multi-scale analysis, enhance advanced
coding methods such as wavelet-based data compression in satellite communications, ensuring
high-quality transmission even in challenging environments and optimizing both bandwidth and
reliability.

10.5.5 CRYPTOGRAPHY AND SECURITY

Harmonic analysis plays a significant role in cryptography by enhancing the design of secure com-
munication systems and encryption algorithms. Fourier analysis is used to study signals, identi-
fying potential vulnerabilities in communication channels. WTs, with their ability to localize both
time and frequency information, are employed in steganography, a technique for embedding hidden
information within digital media. These methods are crucial for safeguarding sensitive data, pro-
viding additional layers of security in today’s digital and interconnected world.

10.6 HANDS-ON EXAMPLE

Enhance image features using convolutional filters in the frequency domain to demonstrate the com-
putational advantages and precision aspects discussed in the chapter.

Harmonic Analysis for CNNs 315

10.6.1 Step 1: LoAD THE IMAGE

At first, we define a function load image to load an image from a given file path using the OpenCV
library (cv2). This function is useful in various computer vision applications, especially when
working with grayscale images, such as in image classification, feature extraction, or object
detection.

import cv2

def load image (file path) :
Load an image from file path
image = cv2.imread (file path, cv2.IMREAD GRAYSCALE)
return image

10.6.2 Step 2: Aprpry FT

Here, we define a function apply_Fourier_transform that computes the discrete Fourier transform
(DFT) of an input image and returns its magnitude spectrum. This function is useful in various
image processing applications where understanding or manipulating the frequency components of
an image is required, such as in edge detection, image compression, or denoising.

import numpy as np
def apply fourier transform(image) :
Apply the Discrete Fourier Transform
dft = cv2.dft (np.float32 (image), flags=cv2.DFT COMPLEX OUTPUT)
dft shift = np.fft.fftshift (dft)
magnitude spectrum = 20 * np.log(cv2.magnitude (dft
shift[:,:,0], dft shift[:,:,1]) + 1)
return magnitude spectrum

10.6.3 Step 3: AppLy SoBEL EDGE DETECTION

Then, we define the function apply_sobel_filter, which applies the Sobel operator to an image to
detect edges by calculating the gradient in both horizontal and vertical directions. The Sobel filter is
commonly used in image processing to detect edges and features. By computing the gradient in both
horizontal and vertical directions, the Sobel operator identifies regions of an image where intensity
changes sharply, making it useful for tasks such as edge detection, feature extraction, and object
recognition.

def apply sobel filter (image) :
Apply Sobel operator in both horizontal and vertical
directions
sobelx = cv2.Sobel (image, cv2.CV_64F, 1, 0, ksize=5)
sobely = cv2.Sobel (image, cv2.CV_64F, 0, 1, ksize=5)
sobel = cv2.magnitude (sobelx, sobely)
return sobel

316 Mathematical Foundations for Deep Learning

10.6.4 Step 4: DispLAY ResuLTs

Now, we define the function display results, which creates a visualization of multiple images in a
grid layout using Matplotlib.

import matplotlib.pyplot as plt
def display results(images, titles):
Display the list of images with titles
plt.figure (figsize= (10, 5))
for i in range(len (images)) :
plt.subplot(l, len(images), i+1)
plt.imshow (images[i], cmap=‘gray’)
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()

10.6.5 Step 5: INTEGRATE AND RUN

Finally, we define a function process_and_display_image that processes an image using various
image processing techniques and displays the results.

def process and display image (file path) :
image = load image (file path)
magnitude spectrum = apply fourier transform(image)
sobel image = apply sobel filter (image)
display results([image, magnitude spectrum, sobel image],
[‘Original Image’, ‘Magnitude Spectrum’,
‘Sobel Edge Detection’])
Replace ‘path to _image.Jjpg’ with your actual image file path
process_and display image (‘path to image.jpg’)

Figure 10.5 presents a comparison of image processing techniques applied to an input image,
thereby highlighting transformations in both the spatial and frequency domains. Figure 10.5a shows
the original image, which serves as the input for subsequent processing. This grayscale image
contains intricate details and textures, forming the basis for analysis. Figure 10.5b displays the
magnitude spectrum obtained by applying the FT to the original image. This visualization maps the
frequency components of the image, with the central peak representing the low-frequency features
that correspond to the overall structure. Figure 10.5¢ illustrates the Sobel-filtered image, empha-
sizing edges and transitions in intensity within the original image. This technique detects gradients,
highlighting the boundaries and contours of the objects in the image. Figure 10.5d shows the
resulting image after IFFT, reconstructed by modifying and then inverting the frequency-domain
representation. This reconstruction retains specific features based on the frequency modifications
applied, demonstrating the selective enhancement or suppression of image components. Figure
10.5e visualizes the FFT of the input image, providing a detailed frequency-domain representation
before any modifications. This serves as a baseline for comparison with the processed results. Figure
10.5f displays the FFT of the result image, capturing the frequency components of the reconstructed
image. Comparing this with the FFT of the input image reveals changes introduced by the pro-
cessing steps, particularly the filtering and reconstruction stages.

FIGURE 10.5 (a) Input image. (b) Log-magnitude FFT of the input. (c) Canny edge map (0=2, dilated). (d) FFT of input with DC peak annotated. (e) FFT of
the Laplacian filter. (f) FFT of the filtered result.

SNND 10J sisAjeuy dluouwiey

LLE

318 Mathematical Foundations for Deep Learning

10.7 COMMON MISTAKES AND TROUBLESHOOTING TIPS
10.7.1 MISINTERPRETING FT AND WT

* Mistake: Confusing the mathematical principles and practical applications of FT and WT.
» Tip: Review fundamental resources and practical tutorials on both transforms. Use visualiza-
tion tools to see how each transform decomposes signals and to understand their differences.

10.7.2 OVERLOOKING THE DISADVANTAGES OF FREQUENCY-DOMAIN CONVOLUTION

* Mistake: Assuming frequency-domain convolution is always faster and more efficient than
spatial domain convolution without considering filter size and computational overhead.

» Tip: Evaluate the specific use case to determine whether frequency-domain convolution offers
a computational advantage. For small filters, stick with spatial domain convolution to avoid
unnecessary overhead.

10.7.3 IGNORING PRECISION ISSUES

* Mistake: Neglecting the precision errors that can arise when performing FT and IFT.
» Tip: Be aware of the potential for numerical approximation errors. Validate the results by com-
paring the outputs of frequency-domain and spatial-domain convolutions.

10.7.4 MisarpLYING WT FOR NON-STATIONARY SIGNALS

* Mistake: Using WTs incorrectly, particularly when dealing with non-stationary signals, and
failing to exploit their multi-resolution analysis capabilities.

* Tip: Understand the nature of your signals and the specific advantages that wavelets offer. Use
appropriate mother wavelets and scales to capture the signal characteristics accurately.

10.7.5 OVERFITTING IN CONVOLUTIONAL NEURAL NETWORKS

* Mistake: Designing CNNs with excessive depth or complexity, leading to overfitting.
* Tip: Implement regularization techniques like dropout, batch normalization, and early
stopping. Regularly validate your model on separate datasets to monitor for overfitting.

10.7.6 INEFFICIENT IMPLEMENTATION OF CONVOLUTION THEOREM

* Mistake: Inefficiently implementing the convolution theorem, leading to suboptimal perform-
ance gains.

» Tip: Utilize optimized libraries and tools for FFT and IFFT operations. Parallelize operations
where possible to enhance computational efficiency.

10.7.7 MISUNDERSTANDING THE CONVOLUTION THEOREM

* Mistake: Misinterpreting the convolution theorem and its application to CNNs, leading to
incorrect implementations.

e Tip: Study the mathematical foundation of the convolution theorem and its practical
implications. Ensure you understand the steps involved in transforming, multiplying, and
inverse transforming signals.

Harmonic Analysis for CNNs 319

10.7.

8 FAILING TO VALIDATE MODELS

Mistake: Neglecting to validate CNN models after implementing harmonic analysis
techniques, resulting in unchecked errors and inefficiencies.

Tip: Conduct thorough validation using various datasets and benchmarks. Compare the per-
formance of models using harmonic analysis techniques against traditional methods.

10.8 REVIEW QUESTIONS
1. What is the primary purpose of Fourier analysis in signal processing?
2. How does the FT convert a time-domain signal into its frequency-domain representation?
3. Explain the difference between the FT and the IFT.
4. What are the key features of the WT that make it suitable for analyzing non-stationary
signals?
5. How does the convolution theorem relate convolution in the time domain to multiplication
in the frequency domain?
6. What steps involve convolution in the frequency domain using the FT?
7. Discuss the advantages and disadvantages of using frequency-domain convolution
in CNNs.
8. In what scenarios might you prefer wavelet analysis over Fourier analysis?
9. How can understanding frequency-domain convolution improve the efficiency of signal-
processing tasks in deep learning?
10. Provide examples of real-world applications where FT and WT are particularly useful.
10.9 PROGRAMMING QUESTIONS
10.9.1 Easy
Implement a 1D convolutional layer using TensorFlow and visualize the filter’s response to a sine
wave input.
1. Create a simple 1D convolutional model.
2. Generate a sine wave as input data.
3. Apply the convolutional filter to the input data.
4. Plot the input sine wave and the filter’s output.
10.9.2 Mebpium

Compare the performance of different activation functions (ReLU, Sigmoid, Tanh) in a simple CNN
on the CIFAR-10 dataset.

el N

Create a simple CNN model with configurable activation functions.

Train the model with ReLLU activation and record the accuracy.

Repeat the training with Sigmoid and Tanh activations.

Compare the results and discuss the impact of each activation function on model
performance.

320 Mathematical Foundations for Deep Learning

10.9.3 Harp

Implement a CNN with batch normalization and dropout layers to improve the model’s robustness
and accuracy on the Fashion MNIST dataset.

1. Create a CNN model with batch normalization and dropout layers.
Train the model on the Fashion MNIST dataset.

3. Evaluate the model’s performance and compare it with a baseline CNN without batch nor-
malization and dropout.

4. Analyze the effects of batch normalization and dropout on the model’s training stability and
accuracy.

’I ’I Dynamical Systems and
Differential Equations
for RNNs

11.1 INTRODUCTION

In this chapter, we look at how recurrent neural networks (RNNs) are connected to the math ideas of
dynamical systems and differential equations. RNNs are especially good at working with sequences
and remembering information over time, which makes them important for many real-life uses. By
understanding the basic ideas behind RNNs, we can better see how they function. Here, we’ll go
beyond the simple concepts of neural networks and use ideas from dynamical systems to understand
how RNNs handle and process data that come in a sequence. The goal is to give a clearer picture of
how these networks work and how their functions are similar to those of dynamical systems.

11.2 THEORY OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS

Dynamical systems and differential equations help us understand how things change, grow, or
decrease over time, both in nature and in human-made systems. These math ideas let us study and
predict how complex systems behave as they develop. By learning about them, we can see the
patterns that shape the world around us and use these principles in different areas, including tech-
nology and neural networks.

11.2.1 DYNAMICAL SYSTEMS

A dynamical system is a way to describe how something changes over time using a set of rules.
These systems are used in many areas of science and engineering to track things like how planets
move or how populations grow. The strength of dynamical systems is their ability to show how
different states change, making them useful for understanding and predicting behavior over time. In
math, they are shown by maps that illustrate how one state changes to another, allowing us to follow
paths and predict future states in a certain space.

11.2.1.1 Discrete Dynamical Systems

Not all changes occur continuously; some happen in a distinct, step-wise fashion. In discrete dynam-
ical systems, state changes are quantized and occur in well-defined steps. A function, commonly
denoted as f, governs these steps. If we know the system’s state at a particular step n, we can apply f
to determine the state at the next step, n + 1. This type of system is particularly useful for modeling
processes that evolve in stages, such as population growth in generations or iterative algorithms in
computer science. Consider the discrete dynamical system represented by:

'xn+l = f(xn)

DOI: 10.1201/9781032690742-11 321

http://dx.doi.org/10.1201/9781032690742-11

322 Mathematical Foundations for Deep Learning

where X, is the state at step n, and f is the function defining the rule of evolution. This framework
allows for the analysis and prediction of future states based on the initial condition. Let us con-
sider a simple population growth model with an initial population of 100 individuals. The growth
function, given as f{x) = 1.2x, indicates a 20% growth per generation. The population size in the next
generation can be calculated using this growth function. For example, starting with 100 individuals,
the population after the first generation would be 100 x 1.2 = 120. After the second generation, the
population would be 120 x 1.2 = 144, and so on, increasing by 20% with each generation. Let’s con-
sider a simple population growth model. Here are the steps:

Generation 0: x, = 100

Generation 1: x, = 1.2 x 100 = 120
Generation 2: x, = 1.2 x 120 = 144
Generation 3: x, = 1.2 x 144 = 172.3
Generation 4: x, = 1.2 x 172.8 = 207.36
Generation 5: x; = 1.2 x 207.36 = 248.83

AW

After five generations, the population grows from 100 to approximately 249 individuals. This
example shows how discrete dynamical systems predict fut ure states through repeated application
of a growth function.

11.2.1.2 Continuous Dynamical Systems

Unlike discrete systems, continuous dynamical systems change smoothly over time, with each tiny
moment affecting the system’s state. These systems are usually modeled with differential equations,
which explain how the system changes continuously. Continuous dynamical systems are important
in areas like physics and engineering, where processes such as fluid flow, electrical circuits, and
mechanical motion change smoothly over time. A continuous dynamical system is represented by a
differential equation:

where:

e x(t) is the system’s state at time t,
» fdescribes how the state changes over time.

Let’s model a simple exponential growth system:

dx(t)
dt

=0.5x(¢)

This equation describes a system where the growth rate is proportional to the current state, with a
growth rate of 0.5. Initial Condition: x(0) = 100. In this equation:

x(t) = x(O) et

Substitute the initial condition x(0) = 100:

x(t)=100-¢"%

Dynamical Systems and Differential Equations for RNNs 323

FIGURE 11.1 Comparison of continuous and discrete dynamical systems.

For different time values, we can calculate various states of the system:

e At1=1:x(1)=100-¢" ~164.87
e At1=2:x(2)=100-¢' =271.83
© At 1=3:x(3)=100-¢"5 ~448.17.

The system grows continuously, with the population increasing exponentially over time.

Figure 11.1 presents a comparison between continuous and discrete dynamical systems, illus-
trating their behavior over a specified time interval. The x-axis denotes time, while the y-axis
represents the state of the system. The continuous system is depicted by a smooth blue curve, thus
highlighting the uninterrupted, smooth evolution of the state as time progresses. This smooth curve
signifies that in continuous systems, changes occur gradually and are tracked at every infinitesimal
point in time, providing a view of the state dynamics. On the other hand, the discrete system is
shown as a red line connecting markers at specific time intervals. The markers represent the state
values captured at each discrete time step, reflecting how the system’s state is updated only at these
discrete points. This piecewise linear representation indicates that in discrete systems, time and
state changes are not continuously tracked but rather approximated at selected intervals. In sections
where the state changes gradually (e.g., between time steps 0 to 2 and 6 to 8), both the continuous
and discrete trajectories closely align. However, at regions where the state exhibits rapid changes
(e.g., around time steps 3 and 9), slight discrepancies emerge. These differences illustrate how dis-
crete systems might approximate the continuous system’s behavior but may miss finer details or
introduce minor deviations when the state changes abruptly.

11.2.2 DirrereNTIAL EQUATIONS

Differential equations, often called the language of change, let us model how systems behave. These
equations describe the state of a system and tell how it changes by using derivatives, which measure
how quickly things are changing.

324 Mathematical Foundations for Deep Learning

11.2.2.1 Ordinary Differential Equations

Ordinary differential equations (ODEs) describe how a function and its rates of change are related
using one variable, usually time. These equations are often used to model natural things, like how a
pendulum swings or how diseases spread. ODEs help us explain how a system’s state changes over
time based on its current state. An ODE is typically expressed in the form:

d
%=f(t,y)

where y represents the dependent variable (the state of the system), t is the independent variable
(often representing time), and f(t,y) is a function that describes the rate of change of y with respect to
t. A classic example of an ODE is the simple harmonic oscillator, which models the motion of systems
such as a pendulum or a mass-spring system. The equation for a harmonic oscillator is given by:

d*y

F+a)2y=0

where y(t) represents the position of the object over time, and ® is the angular frequency of the
oscillation. This second-order ODE describes how the position of the object changes as it oscillates
back and forth under the influence of a restoring force proportional to its displacement. The general
solution to this equation is:

y(t) = Acos(wrt)+ Bsin(wt)

where A and B are constants determined by the initial conditions of the system, such as the initial
position and velocity of the object. For instance, if the system begins at y(0) = 1 with an initial vel-
ocity of zero, the solution simplifies to y(t) = cos(2t), assuming an angular frequency ® = 2 rad/s.
This equation describes an object oscillating with a frequency of 2 rad/s, moving smoothly between
its maximum and minimum positions over time. In this way, ODEs serve as a powerful tool for mod-
eling dynamic behaviors in various fields, providing insights into how systems evolve continuously
over time based on their initial conditions and the laws that govern them.

Figure 11.2 depicts the displacement of a simple harmonic oscillator, modeled as a mass-spring
system, over time. The x-axis represents time in seconds, while the y-axis indicates the displacement
in meters from the equilibrium position. The blue curve follows the equation x(¢) = Acos(w? + 6),
where A is the amplitude, ® is the angular frequency, and 0 is the phase angle. The graph highlights
several key aspects of the oscillator’s behavior. The maximum displacement, marked by a green
dot, shows the furthest point the mass reaches above the equilibrium. At this point, the energy in the
system is entirely potential, with zero velocity. The minimum displacement, marked by a red dot,
indicates the lowest point the mass reaches, showing a similar state where the velocity is zero and
the potential energy is maximized. The purple dot represents the phase angle, illustrating how the
initial position and timing of the oscillator’s motion are influenced, shifting the curve horizontally.
(1)

dr?

The differential equation + a)zx(t) =0, displayed at the bottom left, governs this harmonic

motion. It indicates that the acceleration of the system is directly proportional and opposite to the
displacement, a characteristic of simple harmonic oscillators.

11.2.2.2 Partial Differential Equations

Partial differential equations (PDEs) are more complicated than ODEs because they involve
functions with several variables and their partial derivatives. These equations are fundamental in

Dynamical Systems and Differential Equations for RNNs 325

FIGURE 11.2 Simple harmonic oscillator: mass-spring system.

many areas of physics and engineering, like modeling how heat spreads, how fluids flow, and elec-
tromagnetic fields. PDEs let us describe systems where changes happen in multiple directions, such
as time and space. A PDE is typically written in the form:

du du d%*u
—=F|t,xu,—,—,...
ot ox ox?

where u is the dependent variable representing the state of the system, t, and x are independent
variables (often representing time and space), and F is a function that describes how u changes over
time and space. A well-known example of a PDE is the heat equation, which describes how heat
diffuses through a material. It is expressed as:

u_ ou
o ox?

where u(t, x) represents the temperature of the material as a function of time t and position x, and a
is the thermal diffusivity, a constant that quantifies how quickly heat spreads through the material.
Consider a metal rod of length 10 units. The ends of the rod are maintained at a constant tempera-
ture of 0°C, while the initial temperature at the center of the rod is 100°C, with the rest of the rod at
0°C. The goal is to determine how the temperature changes over time. At time t = 0, the temperature
distribution along the rod can be described as:

326 Mathematical Foundations for Deep Learning

FIGURE 11.3 Heat equation: temperature distribution over time.

100, ifx=5
u (O, x) = .
0, otherwise

With the given boundary conditions, u(t, 0) = u(t, 10) = 0 for all values of t. Assuming the thermal
diffusivity a is 0.01, the heat equation governs how the temperature evolves over time. After a short
time, say at t = 1, the temperature at the center of the rod would decrease as heat begins to diffuse
toward the ends of the rod. The approximate temperature distribution at this point might be:

60, ifx=5
u(l,x)= e a
0, ifx=0o0rx=10

As time progresses, the temperature continues to even out along the rod. By t = 5, the temperature
at the center might decrease further to 20°C, while the ends of the rod remain at 0°C. The tempera-
ture distribution over time can be obtained by solving the heat equation numerically or analytically,
depending on the specific boundary and initial conditions.

Figure 11.3 displays the temperature distribution along a rod over time, as governed by the heat
equation. The x-axis represents the position along the rod in meters, while the y-axis indicates time in
seconds. The color gradient in the figure reflects temperature values, ranging from low (dark colors)
to high (light colors). The heat distribution evolves as time progresses, showing how heat diffuses
from the center toward the ends of the rod. At the initial moment, the temperature is concentrated at
the center, indicated by the bright yellow region. As time advances, the heat spreads outward, grad-

ually decreasing in intensity as it moves toward the boundaries of the rod. The equation displayed at
ou 0*u . .
the lower left corner, o = o——, represents the heat equation, where u denotes the temperature, t is
t

ox?

time, x is the spatial position along the rod, and @ is the thermal diffusivity constant. This equation

Dynamical Systems and Differential Equations for RNNs 327

describes the rate of change in temperature over time and position, indicating that the temperature
change depends on the second spatial derivative of the temperature, which signifies the flow of heat.
The temperature color map on the right further provides a scale, showing the range of temperatures
from 0°C (dark) to 96°C (light yellow), allowing for a clear visualization of how the temperature
changes over both space and time.

Figure 11.4a illustrates a discrete dynamical system modeled using the logistic map equation
x,,, =rx (1 —x). The x-axis represents iterations, while the y-axis shows the population value
normalized between O and 1. The blue line, with points marking each iteration, demonstrates the
population’s evolution over time, revealing oscillatory and chaotic behavior typical of discrete
non-linear systems. The red dot marks the final population state at the end of the 100 iterations,
highlighting how such systems can vary and exhibit complex, unpredictable behavior despite being
governed by a simple equation. Figure 11.4b displays a continuous dynamical system in the form
of a simple harmonic oscillator. The x-axis shows time in seconds, while the y-axis indicates the

%
position of the oscillating mass. The green curve follows the equation x(z) = Acos(a)t) +-2sin (wt),
0}

representing a combination of cosine and sine components where A is the amplitude, ® is the
angular frequency, and v, is the initial velocity.

11.3 UNDERSTANDING THE BEHAVIOR OF RNNS
11.3.1 MEeMoRry AND DyYNAMICS

Recurrent neural networks (RNNs) can remember past information because of their repeating struc-
ture. This means that at any time, an RNN’s state shows not only the current input but also infor-
mation from earlier inputs, similar to how a dynamical system changes over time with its current
state affected by previous states. This “memory” makes RNNs very powerful for tasks that involve
sequences of data. For example, in time series prediction, consider predicting stock prices over a few
days. If the stock prices over five days are:

Prices = [100, 102, 101, 105, 107]

An RNN can be trained to predict the price for the next day (day 6) based on these previous values.
After training, the RNN might predict:

Predicted Price on Day 6 = 109

In this case, the RNN learns the trend from the data; the general upward movement in prices
suggests that the next value will likely be higher. By remembering the prices from the previous
days, the model can make a more informed prediction about the future. In natural language pro-
cessing (NLP), RNNs also excel. For instance, consider sentence generation. Given the starting
phrase:

“The stock market”
The RNN uses its memory of the earlier words to predict the next word. If the RNN has been trained
on financial articles, it might generate the sentence:

““is expected to rise.”

Here, the prediction of each word is influenced by the previous words, allowing the RNN to create
a coherent sentence by remembering the context. Similarly, in speech recognition, the input to an
RNN might be a sequence of sounds, such as:

FIGURE 11.4 (a) Discrete dynamical system: logistic map, (b) continuous dynamical system: harmonic oscillator.

8¢¢

Suruaea des(40y suoepunod [edieWwayIe

Dynamical Systems and Differential Equations for RNNs 329

Sounds = [“s,” “0,” “f “t”]
- > ’) .

Using the memory of the earlier sounds, the RNN can predict that the word is “soft.” If the input
sounds were:

Sounds = [“h,” “a’” “l',” “d”].

The RNN might predict the word “hard.” In both cases, the ability to maintain context across the
sequence of sounds allows the RNN to recognize entire words. This memory of past inputs is crit-
ical to understanding the current input and making accurate predictions, whether it’s a word in a
sentence or a value in a time series.

Figure 11.5 illustrates the memory dynamics of a RNN over time, showing both a broad over-
view and a detailed zoomed-in view of the input and output sequences. Figure 11.5a displays the
overall behavior of the RNN across 4000 time steps. The blue line represents the input sequence,
demonstrating its repetitive and periodic pattern, which spans the entire range. The green line cor-
responds to the true output sequence generated based on the input, while the orange dashed line
shows the RNN’s predicted output sequence. Despite the periodicity and repetition in the input
sequence, the predicted output remains close to the true output sequence, indicating the RNN’s
capability to learn and generalize the pattern over a long duration. Figure 11.5b zooms into the
first 100 time steps to provide a detailed view of the RNN’s behavior. The blue line continues to
represent the input sequence, showing sharp spikes at regular intervals. The green line captures
the true output sequence, which responds more gradually and sinusoidally to changes in the input,
demonstrating how the system processes and smooths the input signals. The orange dashed line is
the predicted output sequence by the RNN, closely following the pattern of the true output but with
slight deviations. A red dot marks the maximum prediction value in this window, highlighting a spe-
cific point where the RNN reaches its highest output, with the annotation indicating the maximum
value observed.

11.3.2 ExpPLAINING viaA ODEs

RNN:Ss, especially those built with continuous changes, can be easily understood using ODEs. Using
ODE:s helps us model how the system changes over time, giving us a better understanding of how
the network behaves. One important idea in this approach is stationary states, or fixed points, which
are states where the system stays the same and does not change over time. A fixed point x* occurs
when the ODE governing the system reaches a state where:

In the context of RNNs, these fixed points represent the long-term behavior of the network, where
the internal state stays the same over time. For example, if an RNN reaches a stable fixed point, it
will give consistent outputs for sequences, making its performance reliable. Another important idea
is stability analysis, which looks at whether the fixed points of the system are stable or unstable.
A stable fixed point means that if the system’s state is slightly changed, it will eventually go back to
the fixed point. On the other hand, an unstable fixed point means that any small change will make
the system move away from that point. This analysis helps us understand if the RNN will settle into
a stable state, show repeating patterns, or even behave unpredictably over time. To explain this with
a numerical example, consider a simple ODE describing the continuous evolution of a state x(t)
over time:

330 Mathematical Foundations for Deep Learning

FIGURE 11.5 RNN memory dynamics.

Dynamical Systems and Differential Equations for RNNs 331

where k > 0 is a constant. In this case, the system has a fixed point at x* = 0. The stability of this
fixed point can be analyzed by observing how the state changes for different initial conditions. If
x(t) starts at a positive value, it will gradually decay toward zero, indicating that the fixed point at
x* = 0 is stable. This behavior models how some RNNs stabilize over time to produce consistent
outputs. In more complex RNNs, ODEs can model situations where multiple fixed points exist. For
example, consider the ODE:

dx(t)
dt

= x(t) —x(1)?

This system has three fixed points: x* =—1, 0, and 1. The stability of these points can be determined
by analyzing the derivative of the function around these points. In this case, x* = —1 and x* = 1 are
stable fixed points, while x* = 0 is unstable. This means that the system will converge to either —1
or 1, depending on the initial state, but if the system starts exactly at x = 0, any small perturbation
will push it away from this point.

11.3.3 TRAINING AND DYNAMICS

Training of RNNs can be very difficult, especially in deep networks where the training process can
act like chaotic systems. Small changes in settings can lead to very different results, making the
network’s behavior hard to predict. Ideas from dynamical systems theory, such as chaotic behavior
and bifurcations, can help us understand and manage these challenges. In deep RNNs, even small
changes in the weights can cause big changes in the output, similar to chaos in dynamical systems.
Tiny changes in the starting conditions can lead to very different outcomes over time. For example,
imagine an RNN with a single neuron where the hidden state h, at time t is calculated as:

h, =tanh(W h +W x)
Here, W, is the recurrent weight, W_is the input weight, and x is the input at time t. Suppose:
W, =09, W_= 1.0, Initial state h, = 0.5 and Input sequence x = [1,0,1,0]
The hidden states over time would be:

* h =tanh(0.9 x 0.5 + 1 x 1) = tanh(1.45) = 0.9,

1
* h,=tanh(0.9 X 0.9 + 1 x 0) = tanh(0.81) ~ 0.67,
* h,=tanh(0.9 x 0.67 + 1 x 1) = tanh(1.603) ~ 0.92,
* h,=tanh(0.9 X 0.92 + 1 x 0) = tanh(0.828) ~ 0.68.

Now, suppose we make a small change in the recurrent weight, increasing W, slightly to 0.91. The
hidden states will change as follows:

* h, =tanh(0.91 x 0.5 + 1 x 1) = tanh(1.455) = 0.9,

* h,=tanh(0.91 x 0.9 + 1 x 0) = tanh(0.819) = 0.67,
* h,=tanh(0.91 x 0.67 + 1 x 1) = tanh(1.611) = 0.92,
* h,=tanh(0.91 x 0.92 + 1 x 0) = tanh(0.835) ~ 0.68.

332 Mathematical Foundations for Deep Learning

The changes in the output may seem small here, but as the network gets deeper, small changes like
this accumulate, leading to chaotic behavior where outputs can change unpredictably. Bifurcations
occur when a small change in a parameter causes a qualitative change in the network’s behavior.
Consider the same RNN, but instead of a small change, we increase W, significantly from 0.9 to 1.2.
The hidden states now evolve as follows:

e h =tanh(1.2x 0.5+ 1 x 1) = tanh(1.6) ~ 0.92,

e h,=tanh(1.2x0.92 + 1 x 0) = tanh(1.104) ~ 0.8,
e h,=tanh(1.2x 0.8 + 1 x 1) = tanh(1.96) = 0.96,
* h,=tanh(1.2 x 0.96 + 1 x 0)=tanh(1.152)~0.82.

Compared to the previous example, a larger change in the weight W, has caused the hidden state to
jump to much higher values. This is a bifurcation point, where the small increase in the weight led
to a qualitative change in the RNN’s behavior, making the network more prone to oscillations or
even chaotic patterns. These dynamics make training RNNs difficult because even small parameter
changes can lead to instability or chaotic behavior, disrupting the training process. Gradient clipping
can prevent weights from growing too large, helping to avoid bifurcations or chaotic dynamics.

11.3.4 VANISHING AND ExPLODING GRADIENTS

One big problem when training deep RNNss is the vanishing and exploding gradient issue. To under-
stand this, think of RNNs as dynamic systems where each step is like a moment in time. As the
RNN processes more steps (or inputs), the gradients used to update the model during training can
either get very small (vanish) or become too large (explode), making the model hard to train. This
happens because, like in dynamic systems where states can grow or shrink over time, RNNs can
have their gradients affected the same way during backpropagation. If the gradients vanish, the
model has trouble learning long-term dependencies because the updates become too small. If the
gradients explode, the updates become too large, causing the training to become unstable. To fix
exploding gradients, a common method is gradient clipping, which limits the size of the gradients
during backpropagation to keep them from getting too big. For the vanishing gradient problem,
more advanced RNN architectures like long short-term memory (LSTM) networks and gated recur-
rent units (GRU) were created. These architectures have built-in systems that help keep important
information over long sequences, thus allowing the model to remember things for longer and avoid
the vanishing gradient issue. Additionally, techniques like batch normalization can also help by
stabilizing gradients during training, making the optimization process smoother and improving
the model’s performance. A helpful way to understand this issue is by viewing RNNs as dynamic
systems, where each step in an RNN is like a moment in time. Over time, the gradients used to
update the network’s parameters can either become too small (vanish) or grow too large (explode),
making training difficult. To make this clearer, let’s look at an example. Imagine an RNN processing
a sequence over 10 time steps. If the gradient at each step is slightly smaller than 1 (say 0.8), after
10 steps, the gradient would shrink as follows:

o After 1 step: 0.8,
o After 2 steps: 0.8 x 0.8 = 0.64,
e After 3 steps: 0.8 x 0.64 =0.512,

e After 10 steps: 0.8 =0.107.

After 10 steps, the gradient decreases to around 0.107. This small value makes it hard for the net-
work to learn because the gradient becomes too tiny to make useful updates to the model’s weights;

Dynamical Systems and Differential Equations for RNNs 333

this is the vanishing gradient problem. Now let’s see what happens with an exploding gradient.
Suppose the gradient at each step is slightly larger than 1 (say 1.2). Over the same 10 steps:

o After 1 step: 1.2,
o After 2 steps: 1.2 x 1.2 =1.44,
o After 3 steps: 1.2 x 1.44 = 1.728,

o After 10 steps: 1.21°=6.191.

In this case, after 10 steps, the gradient has grown to about 6.191. As the network gets deeper, this value
continues to grow larger, making the training unstable and causing the weights to update too aggres-
sively; this is the exploding gradient problem. Gradually clipping is often used to deal with exploding
gradients. This method limits the size of the gradients during backpropagation so that they don’t grow
too large. For example, if the gradient exceeds a certain value (say 5), it’s clipped to 5. This helps keep
the training process stable. These architectures have special gates that help maintain important infor-
mation over time, allowing the model to avoid losing the gradient in long sequences.

Figure 11.6 illustrates critical challenges and dynamics within RNNs, focusing on the vanishing
and exploding gradient problems as well as memory retention behavior. Figure 11.6a highlights the
vanishing and exploding gradient issues encountered during training RNNs. The x-axis represents
the timestep, while the y-axis shows the gradient magnitude. The blue line indicates the vanishing
gradient, where the gradient value diminishes over time, approaching zero as timesteps increase.
This phenomenon hampers the RNN’s ability to learn and update weights effectively, especially for
long-term dependencies. In contrast, the red line represents the exploding gradient, where the gra-
dient magnitude increases exponentially with each timestep. This can lead to instability in training as
the gradient becomes excessively large, making it challenging to converge. Figure 11.6b illustrates
the memory dynamics of an RNN, focusing on how the network retains and decays information over
time. The x-axis represents the timestep, while the y-axis denotes the memory state. The green curve
shows memory decay, where the memory state gradually reduces as time progresses. This decay
demonstrates how RNNSs struggle to maintain information over long sequences, contributing to dif-
ficulties in capturing long-term dependencies without enhancements like LSTMs or GRUs, which
are designed to preserve memory over extended periods.

11.4 DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS FOR DEEP
LEARNING

The interplay between dynamical systems and differential equations offers a rich framework for
understanding and improving deep learning models, particularly RNNs. In RNNs, small differences
in the initial states or input data can lead to completely different outputs, making the network’s
behavior hard to predict. This sensitivity can be both good and bad. On one hand, it allows the net-
work to capture complex patterns. On the other hand, it can make training the network unstable.
Looking at RNNs from the perspective of dynamic systems helps us understand these complexities
and shows how they can work well with new data.

11.4.1 LotkA—VOLTERRA EQUATIONS AND NEURAL NETWORKS

The Lotka—Volterra equations, also known as the predator—prey equations, are a pair of first-order,
non-linear differential equations used to describe the dynamics of biological systems where two
species interact: predator and prey. The equations are:

dx dy
—=oax—-Pxy, —=0dxy—
" Bxy " y =7y

334 Mathematical Foundations for Deep Learning

FIGURE 11.6 (a) Vanishing and exploding gradient in RNNs, (b) memory dynamics in RNNs.

where:

* X is the number of prey,
* yis the number of predators, and
* o,B,0,y are parameters representing the interaction between the two species.

We can generate data using the Lotka—Volterra (predator—prey) equations and then train a neural
network to learn their underlying dynamics. To make the concept clearer with specific numbers, let’s
assume the following parameters:

Dynamical Systems and Differential Equations for RNNs 335

* o= 1.1 (prey reproduction rate),

p = 0.4 (rate of predation),

e v =0.4 (predator death rate),

0 = 0.1 (rate of predator growth by eating prey).

Suppose we start with an initial population of 40 prey and 9 predators. Using the equations, we can
calculate how both populations change over time. At the initial time step (t = 0), the populations
are: x(0) =40, y(0) =9.

At the next time step, we calculate the change in prey and predator populations using the differ-
ential equations:

%:1.1><4o-o.4><40><9=44—144=—1oo

So, the prey population decreases by 100.

%=0.1x40x9—0.4x9=36—3.6=32.4

Thus, the predator population increases by 32.4. Update populations over Ar = 0.1:

«(0.1)= x(0)+(%)At= 40+(~100)0.1 = 40~10 = 30,

y(0.1)= y(O)+(%)At =9+32.4x0.1=9+324=12.24.

After just 0.1 unit of time, the prey population is 30 (instead of going negative), and the predators
have risen to 12.24. By repeating these small-step updates over many increments, you will typ-
ically see oscillatory cycles: as prey increases, predators flourish; as predators increase, they
reduce the prey supply, leading to a subsequent predator decline, and so forth. In practice, this
generates time-series data that mimic real predator—prey interactions. You can then train a neural
network to learn these dynamics, by feeding it time-lagged samples of (x, y), so it can predict
future population levels given current conditions. This offers a powerful way for neural networks
to capture complex biological interactions and other non-linear systems governed by differential
equations.

Figure 11.7 illustrates the analysis of predator—prey dynamics using the Lotka—Volterra model
and a neural network for population prediction. Figure 11.7a represents the Lotka—Volterra predator—
prey model, showing the oscillatory relationship between prey (x) and predator (y) populations over
time. The prey population (blue) and predator population (orange) exhibit periodic fluctuations,
reflecting the cyclical nature of ecological interactions. The equations governing the system,

d d
d—x = ax — fxy andd—y = Oxy — vy, are annotated on the plot. A key observation is marked by a red
t t

dot at the point of maximum predator population (23.0073), emphasizing the peak of the predator cycle.
Figure 11.7b compares the actual predator population (orange) against the predicted predator population
(green, dashed) generated by a neural network. The model includes two hidden layers with 64 neurons

336 Mathematical Foundations for Deep Learning

FIGURE 11.7 (a) Lotka—Volterra predator—prey model. (b) Actual vs. predicted predator population.

each. A notable point, labeled “First Prediction” (purple dot), demonstrates the neural network’s ini-
tial prediction accuracy. Despite capturing the trend, the predicted population deviates from the actual
values, reflected in the high mean squared error (MSE: 766.06) and poor R? score (-7707.30).

11.5 REAL-WORLD APPLICATIONS AND EXAMPLES
11.5.1 MODELING EPIDEMICS WITH DIFFERENTIAL EQUATIONS

Differential equations can accurately model how infectious diseases spread. One common model is
the Susceptible, Infected, Recovered (SIR) model. This model tracks how people move from being
susceptible to an infection to becoming infected and then recovering (or gaining immunity). By
using these rates, public health officials can predict how an epidemic will grow and see how different
strategies can help control it. For example, during the COVID-19 pandemic, differential equations
were very important for forecasting the virus’s spread. These models helped show the possible
effects of actions like social distancing, wearing masks, and vaccination programs. This allowed
governments and health organizations to make better, data-based decisions. By understanding how
fast the virus spreads and how people recover, authorities could plan and adjust their responses to
reduce the epidemic’s impact. This mathematical approach is crucial for controlling outbreaks and
getting ready for future waves.

11.5.2 STABILITY ANALYSIS IN ENGINEERING

In engineering, dynamical systems theory is an important tool for checking the stability of structures
and machines. For example, in aerospace engineering, engineers study the stability of an aircraft’s
flight path using differential equations that model how it moves through the air. These equations help
engineers understand when an aircraft might become unstable, such as during a stall or spin, which
could cause it to lose control. By examining these possible instabilities, engineers can create control
systems that automatically detect and fix problems, ensuring the aircraft flies steadily. This stability

Dynamical Systems and Differential Equations for RNNs 337

analysis is essential not only for safety but also for improving the performance of aircraft in different
flight conditions, leading to more efficient and safer aviation systems.

11.5.3 EcoNomic MODELING AND FORECASTING

In economics, dynamical systems and differential equations are important tools for modeling and
predicting how markets and economies behave over time. A good example is using the Lotka—
Volterra equations, which were first used in biology to describe predator and prey relationships, to
model competition between companies in a market. These equations help economists study how
things like available resources or the level of competition affect whether businesses grow or decline.
By using these models, economists can better understand how markets work and create strategies
or policies to encourage economic stability and growth. For example, the equations can show how
market competition affects whether companies survive, helping decision-makers adjust regulations
or policies to ensure a healthy and competitive economic environment.

11.5.4 CumAate CHANGE PROJECTIONS

Climate scientists use differential equations a lot to model the Earth’s climate and predict how human
activities will affect it. These models include the complex interactions between the air, oceans, and
land, tracking how things like temperature, humidity, and carbon dioxide levels change over time.
By considering these factors, scientists can create different scenarios, such as varying amounts of
greenhouse gas emissions. These simulations help scientists forecast possible climate changes and
understand the likely effects of human actions. This information is essential for shaping global pol-
icies on climate action and helping governments and organizations make informed decisions about
reducing emissions, setting environmental regulations, and adopting sustainable practices to lessen
the impact of climate change.

11.5.5 NEUROSCIENCE AND BRAIN DYNAMICS

In neuroscience, dynamical systems and differential equations help model the brain’s electrical
activity. A famous example is the Hodgkin—Huxley model, which uses these equations to show
how neurons create action potentials, electrical signals that send information through the nervous
system. These models are important for understanding how brain circuits work and how problems
in these circuits can cause conditions like epilepsy. By studying these models, neuroscientists learn
how brain disorders happen and can develop treatments like deep brain stimulation to restore normal
brain function. These mathematical tools are powerful for exploring both healthy and unhealthy
brain activity and for guiding treatment methods.

11.5.6 RoOBOTICS AND AUTONOMOUS SYSTEMS

In robotics, dynamical systems theory is important for controlling how robots and self-driving
vehicles move. For example, path planning algorithms often use differential equations to calculate
the best path a robot should take, making sure it reaches its destination while avoiding obstacles.
This method is essential for designing robots that can work safely and efficiently in changing envir-
onments. For instance, drones flying through complicated areas or robotic arms doing precise tasks
in factories rely on these models to adjust their movements in real time. By using dynamical systems
theory, robots can respond to changes around them and handle new challenges, making them more
reliable and effective in real-world situations.

338 Mathematical Foundations for Deep Learning

11.6 HANDS-ON EXAMPLE

We’ll simulate a scenario where the RNN is tasked with learning a time-dependent sequence,
allowing us to observe the effects of memory retention and the potential occurrence of vanishing or
exploding gradients.

11.6.1 Ster 1: IMPORT LIBRARIES

First, we import essential libraries for building machine learning models and visualizing results.
Together, these libraries are essential for tasks ranging from building neural network models and
handling data to visualizing results for analysis and interpretation.

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

11.6.2 Step 2: GENERATE SYNTHETIC SINE WAVE DATA

In this section, we are generating a time series dataset using the sine function. This setup is useful
for simulating periodic data, such as waves or oscillations, which can be visualized and analyzed.

time variable
t = np.linspace (0, 2*np.pi, 100)
data = np.sin(t)

11.6.3 Step 3: PrerARE DATA FOR RNN: FORMAT (BATCH_S1ZE, TIMESTEPS, FEATURES)

In this section, we are preparing the input and target data for a time series prediction model, where
each value in the sine wave is used to predict the next value. We are creating a one-step-ahead pre-
diction model, where the goal is to predict the next value in the time series based on the current
value. This reshaping process is crucial for feeding the data into machine learning models, particu-
larly RNNs or LSTMs, where the 3D input shape is required.

X = data[:-1].reshape(-1, 1, 1)
Y = data[l:].reshape (-1, 1)

11.6.4 Step 4: DeriNeE THE RNN MobDEL

In this section, we are building a simple RNN using the Keras Sequential API from TensorFlow.
The model consists of an RNN layer followed by a Dense output layer for time series prediction.

model = tf.keras.Sequential ([tf.keras.layers.SimpleRNN (10,
input shape= (None, 1), activation=‘tanh’), tf.keras.layers.
Dense (1)])

Dynamical Systems and Differential Equations for RNNs 339

11.6.5 Step 5: ComPILE THE MODEL

Here, we are compiling the RNN model, which prepares it for training by specifying the optimizer,
loss function, and potentially other metrics. By compiling the model with the Adam optimizer and
mean squared error loss, we ensure that the model will learn effectively during training by minim-
izing the prediction error on the time series data. This setup is ideal for time series prediction tasks,
where the goal is to make accurate continuous-value predictions.

model.compile (optimizer=‘adam’, loss='mean squared error’)

11.6.6 StEpP 6: TRAIN THE MODEL

In this line of code, we are training the RNN model on the time series data using the fit function in
Keras.

history = model.fit (X, Y, epochs=100, verbose=0)

11.6.7 Step 7: Prepict USING THE TRAINED MODEL

In this line of code, we are using the trained RNN model to make predictions on the time series
data. This line is crucial in time series forecasting, as it allows us to observe how well the model
has learned to predict future values based on the historical data provided during training. These
predictions can be compared to the actual target values (Y) to evaluate the model’s performance.

predictions = model.predict (X)

11.6.8 Step 8: PLoT THE RESULTS

In this section, we are visualizing the results of the RNN predictions alongside the actual data using
Matplotlib.

plt.figure (figsize= (10, 5))

plt.plot(t[l:], Y, label=‘Actual Data’)

plt.plot(t[l:], predictions, label=‘Predicted Data’, linestyle=
==")

plt.title (‘RNN Simulation of a Sine Wave’)

plt.xlabel (‘Time’)

plt.ylabel (‘Amplitude’)

plt.legend()

plt.show()

340 Mathematical Foundations for Deep Learning

FIGURE 11.8 RNN simulation of a sine wave.

Figure 11.8 illustrates how the RNN has learned to approximate the sine wave pattern. By
training on sequences of the wave, the RNN effectively captures both the amplitude and phase of
the cycle, thus demonstrating its utility in time-series prediction tasks. The slight discrepancies
between the actual and predicted values underscore the challenges inherent in perfecting sequence
modeling, particularly in capturing exact dynamics without overfitting to noise or anomalies in the
data.

11.7 COMMON MISTAKES AND TROUBLESHOOTING TIPS
11.7.1 MISINTERPRETING DYNAMICAL SYSTEMS THEORY

* Mistake: Failing to grasp the fundamental principles of dynamical systems and how they
relate to RNN behavior.

» Tip: Start with the basics of dynamical systems theory before diving into its applications in
RNNs. Use simple examples and simulations to build a solid foundation.

11.7.2 OVERLOOKING THE IMPORTANCE OF INITIAL CONDITIONS

* Mistake: Ignoring the sensitivity of RNNs to initial conditions, leading to unpredictable
behavior during training.

» Tip: Pay close attention to the initialization of RNN parameters. Use strategies like careful
initialization and gradient clipping to mitigate sensitivity issues.

11.7.3 UNDERESTIMATING THE COMPLEXITY OF TRAINING DYNAMICS

* Mistake: Simplifying the training process of RNNs without considering the complex dynamics
that can arise, such as bifurcations and chaotic behavior.

* Tip: Monitor the training process closely, looking for signs of instability. Employ regulariza-
tion techniques and dynamic learning rate adjustments to stabilize training.

Dynamical Systems and Differential Equations for RNNs 341

11.7.4 NEGLECTING THE VANISHING AND EXPLODING GRADIENT PROBLEM

Mistake: Failing to address the vanishing and exploding gradient problem, which can severely
affect the training of deep RNNs.

Tip: Use techniques like LSTM networks, GRUs, gradient clipping, and proper initialization
methods to manage gradient issues.

11.7.5 MisArpPLYING DIFFERENTIAL EQUATIONS

Mistake: Incorrectly applying differential equations to model RNN behavior, leading to
flawed analyses.

Tip: Ensure a strong understanding of ODEs and their application to continuous-time RNNs.
Validate your models with known solutions and simpler systems.

11.7.6 OVERCOMPLICATING MODELS

11.7.

11.8

1.

2.

10.

Mistake: Creating overly complex models without sufficient justification, leading to difficul-
ties in training and interpretation.

Tip: Start with simpler models and gradually increase complexity as needed. Use model selec-
tion criteria and cross-validation to ensure that added complexity improves performance.

7 FAILING TO VALIDATE NEURAL NETWORK MODELS

Mistake: Neglecting thorough validation of neural network models, resulting in unchecked
errors and inefficiencies.

Tip: Validate models using various datasets and benchmarks. Compare the performance of
RNNs modeled with dynamical systems theory against traditional methods.

REVIEW QUESTIONS

What is the difference between discrete and continuous dynamical systems? Provide
examples of each.

How do the Lotka—Volterra equations model the interaction between predator and prey
populations? What do the parameters @, B, y represent?

How do RNNSs retain information from previous inputs? How is this similar to the behavior
of dynamical systems?

Explain how ODEs can represent certain RNNs. Why is this helpful representation?
Describe the challenges of training RNNss, particularly the vanishing and exploding gradients.
How does viewing RNN_ as dynamic systems help address these challenges?

. What are bifurcations in dynamical systems, and how can similar phenomena affect the

behavior of RNN_ during training?

How do the concepts of chaotic behavior and sensitivity to initial conditions in dynamical
systems relate to the predictability and complexity of RNNs?

How can neural networks be used to learn the dynamics of systems described by differential
equations, such as the Lotka—Volterra model?

. Why is it important to understand the behavior of dynamical systems and differential

equations when working with deep learning models, particularly RNNs?
Discuss how the principles and tools of dynamical systems can be applied to real-world
problems beyond biological systems, providing at least one example.

342

Mathematical Foundations for Deep Learning

11.9 PROGRAMMING QUESTIONS

11.9.1

Easy

Design a Sequence Generation Task for RNN Evaluation.

1.

bl

Choose a type of sequence, such as arithmetic progressions (e.g., 2, 4, 6, 8, ...) or sinusoidal
sequences.

Explain why this sequence can effectively test the RNN’s learning capabilities.

Generate training data that reflects the chosen sequence.

Split the data into training and validation sets.

Train the RNN on the training dataset.

11.9.2 Mebpium
Analyze RNN Behavior with Variable Input Lengths.

1.

2.
3.
4.

Create datasets with varying lengths of input sequences, maintaining consistent complexity
across datasets.

Adjust the RNN architecture if necessary to handle variable input lengths.

Train the same RNN model on each dataset separately.

Evaluate the model on a validation set that also varies in sequence length.

11.9.3 Harp
Explore the Impact of Network Depth in RNNs.

1.

3.

Modify an existing RNN model by adding multiple recurrent layers.

Ensure gradient clipping is implemented to mitigate exploding gradients.

Prepare a dataset suitable for deep RNNs, ensuring it has enough complexity to benefit from
deeper architectures.

Train the modified RNN model using a rigorous training regime, possibly involving
techniques like curriculum learning to gradually increase difficulty.

Evaluate the deep RNN model on a test set and compare it against a shallower baseline model.

12 Quantum Computing

12.1 INTRODUCTION

Quantum computing combines ideas from quantum mechanics and computer science, and it could
change deep learning. By using the special abilities of quantum systems, we might soon be able to
handle and analyze data in ways that regular computers can’t. This chapter will look at how quantum
computing can make deep learning better, such as speeding up the learning process, improving
complex models, and even solving problems that were once impossible. We will focus on important
quantum algorithms, like Shor’s algorithm, which can break encryption, and Grover’s algorithm,
which can search through large databases quickly. We will also discuss how these algorithms can
help deep learning by providing new methods to optimize and manage data.

12.2 INTRODUCTION TO QUANTUM COMPUTING

Quantum computing has grown from just an idea into a fast-developing technology. It is based on
quantum mechanics, a branch of science that started in the early 1900s when scientists studied how
tiny particles behave in strange ways. It wasn’t until the 1980s that people began to understand
what quantum computing could be. Early researchers saw that regular computers had a hard time
simulating quantum systems efficiently. They suggested that a computer using quantum ideas could
do these tasks better by using quantum superposition, which allows for natural parallel processing
and could make quantum computers much faster. In the 1990s, important discoveries in quantum
algorithms showed that quantum computing could change areas like encryption and searching
through large databases. Even with these theoretical successes, creating real quantum computers
was difficult because of problems like keeping quantum states stable and reducing mistakes. Since
the 2000s, big companies have invested a lot in quantum research, and there has been significant
progress. A major achievement happened in 2019 when a quantum processor was shown to be
faster than classical supercomputers for certain tasks. Today, quantum computing keeps advancing
quickly, with ongoing improvements in qubit stability, error correction methods, and algorithms, all
building on the basic work from earlier years. Quantum computing is an exciting mix of quantum
mechanics and computer science, using ideas that seem almost magical compared to regular physics.
Three main ideas drive quantum computing: qubits, superposition, and entanglement.

12.2.1 QusiTts

Think of qubits as the quantum version of regular bits. While regular bits can only be a O or a 1,
qubits can be both at the same time because of something called superposition. This ability allows

DOI: 10.1201/9781032690742-12 343

http://dx.doi.org/10.1201/9781032690742-12

344 Mathematical Foundations for Deep Learning

quantum computers look at many possibilities all at once, making them potentially much faster than
regular computers for certain tasks.

12.2.2 SUPERPOSITION

Imagine a spinning coin that’s both heads and tails at the same time, only deciding which side it
is when you stop it. Superposition works like that; it lets a qubit be in multiple states at once. This
ability to hold and consider many possibilities all at once gives quantum computers incredible power
for certain calculations.

12.2.3 ENTANGLEMENT

One of the strangest parts of quantum mechanics is entanglement. When two qubits become
entangled, the state of one instantly affects the state of the other, regardless of how far apart they are.
This “spooky action at a distance” means that if you change one qubit, it immediately influences its
entangled partner. This allows for fast and coordinated calculations across many qubits.

12.3 QUANTUM ALGORITHMS
12.3.1 Key QUANTUM ALGORITHMS

Quantum algorithms leverage the unique properties of quantum mechanics to solve problems more
efficiently than classical algorithms. Two key algorithms have had a major impact and have broad
applications.

(a) Factoring Algorithm: This algorithm revolutionized cryptography by making it possible
to factor large numbers exponentially faster than classical methods. While traditional
algorithms take significantly more time as the numbers grow larger, this quantum algorithm
uses superposition and entanglement, along with a quantum Fourier transform, to factor
numbers quickly. This poses a serious threat to widely used encryption systems like RSA,
pushing the need for quantum-safe cryptography.

(b) Search Algorithm: This algorithm dramatically speeds up the process of unstructured
searching. In a database of N entries, the quantum algorithm can find the target in about
YN steps, while classical methods would require N steps. By amplifying the probability of
finding the correct answer, this algorithm is especially useful for tasks like database searches
and optimization problems.

In Figure 12.1, the Bloch sphere provides a three-dimensional visualization of a qubit’s state space.
The sphere represents all possible states a qubit can take, with different arrows showing specific
states. The dark red arrow indicates the |0) state, which points along the positive z-axis. This corres-
ponds to the qubit being in a pure state of 0, as seen at the top of the sphere. On the other hand, the
dark green arrow points in the opposite direction, along the negative z-axis, representing the qubit
in the |1) state. This highlights the qubit being in the pure 1 state. These two states, |0) and |1), are
analogous to the binary states in classical computing. The dark blue arrow, located on the equator of
the sphere, represents the |+) state. This state is a superposition of both |0) and |1), where the qubit
is not purely in one state but exists in a blend of both. The positioning of the |[+) state on the equator
emphasizes the fact that it is a balanced superposition, equidistant from [0) and |1), thereby demon-
strating the core idea of quantum superposition.

Quantum Computing 345

FIGURE 12.1 Qubit states on the Bloch sphere.

12.3.2 QUANTUM MACHINE LEARNING ALGORITHMS

Quantum machine learning combines quantum computing with regular machine learning, opening
up new possibilities for tasks like grouping data (clustering), sorting it into categories (classifica-
tion), and making predictions (regression). Quantum clustering methods, like the Quantum k-means
algorithm, improve how we group items by using quantum properties like superposition to calculate
distances between data points all at once. For example, imagine you have 10 apples and want to
group them by weight. With quantum clustering, the computer can compare all the apples simul-
taneously, making the process much faster than traditional methods that handle comparisons one at
a time. Quantum classification algorithms, such as Quantum Support Vector Machines (QSVM),
enhance how we classify data by mapping features into a higher-dimensional quantum space. Think
of it like sorting animals based on size, habitat, and diet. A QSVM can make it easier to find clear
differences, even between animals with similar traits, uncovering patterns that regular methods
might miss. Quantum regression algorithms, like quantum linear regression, offer faster predictions
by solving complex equations more efficiently. For instance, when predicting future temperatures
from past data, quantum regression can quickly spot trends and create accurate forecasts, saving
time compared to classical methods.

While quantum machine learning holds great promise, it is still in its early stages. One major
challenge is converting regular data into quantum states, a process that can be complicated and
time-consuming, sometimes canceling out the speed advantages. Additionally, current quantum
computers are prone to errors and can only hold quantum states for a limited time, which can affect
the accuracy of calculations. For example, suppose you’re using a quantum machine learning algo-
rithm to predict stock prices based on the last 10 days’ closing prices: $150, $152, $148, $155,
$160, $158, $162, $165, $167, and $170. First, you need to convert these numbers into quantum
states, which is tricky. Even if the data is successfully encoded, errors might occur because the
quantum computer may struggle to maintain its state, potentially leading to incorrect predictions.
Instead of forecasting a rise to $175, the computer might mistakenly predict a drop to $140 due to
the instability of the quantum system.

346 Mathematical Foundations for Deep Learning

12.4 INTEGRATION WITH DEEP LEARNING
12.4.1 QuanTUM NEURAL NETWORKS (QNN’s)

QNNs combine quantum computing with artificial neural networks to boost their performance,
especially for complex tasks like high-dimensional data analysis and pattern recognition. QNNs are
built using quantum bits (qubits) instead of classical binary units, allowing them to take advantage
of quantum mechanics, like superposition and entanglement. This gives them a huge computational
advantage over traditional neural networks. Here’s how QNNs work:

1. Quantum Gates as Neurons: Each quantum neuron acts like a quantum gate, performing
operations on input qubits while preserving quantum information.

2. Superposition and Parallelism: QNNs use superposition, allowing quantum neurons to pro-
cess multiple calculations at once, making the network much faster.

3. Entanglement for Feature Correlation: Entanglement links quantum neurons, helping QNNs
detect and relate complex data patterns more effectively than classical networks.

Suppose we have a binary classification task where we want to classify inputs into two classes based
on a single binary feature. There are class 0 and class 1, and the two inputs are as follows: Input 0,
with a binary value of 0, should be classified as class 0, and Input 1, with a binary value of 1, should
be classified as class 1. To perform this classification, we will design a simple QNN using one qubit
and basic quantum gates. Before we proceed, let’s review some fundamental quantum computing
concepts. Qubit is the basic unit of quantum information, analogous to a bit in classical computing.
A qubit can be in a superposition of states [0) and |1): | 1//> = (x| O> +p | 1>, where a and f are complex
numbers satisfying |0(I2 +| BPP=1. Quantum Gates are operations that change the state of qubits.
Examples include:

11
e Hadamard Gate (H): H = L|: :|

N

0 1
* Pauli-X Gate (X) (analogous to the NOT gate): X = [1 0}

o) (4
off) off

Measurement is observing a qubit collapse of its state to either |0) or |1) with certain probabilities.
Let us go to the computation steps:

* Rotation Gate around the y-axis (Ry): R (9) =

Step 1. We need to encode our classical binary inputs into quantum states. Input 0, represented by
the quantum state |0), and Input 1, represented by the quantum state |1), which we obtain by
applying the Pauli-X gate to [0): |1)=X]0). Quantum states for Inputs are as follows: For Input

1 0
0, ‘ Winpul> =[0)= |:0:| and for Input 1, y/inpm> =1)= [1:|

Step 2. Our QNN consists of one Qubit to represent the quantum state and one Quantum Gate
with a trainable parameter. We’ll use the rotation gate Ry(ﬂ) as our quantum neuron.

Step 3. We apply the rotation gate Ry(O) to the input qubit. The angle 0 is our trainable parameter
(analogous to weights in classical neural networks).

Quantum Computing 347

- Rotation Gate R(0): R (6)= Let’s choose 9:% for

demonstration: sin (
V22
e Compute R_ 7—T): cos(’—r)zﬁ, sin E)ZQ.SO,R(EJ: 2 2 ,
2 4 2 4 2 T2 NG
2 2
V2
T 2
* Process Input 0: ‘ Vo 1> =R (—)|0> =)
outpu y 2 \/5
2
2
T 2
» Process Input 1: ‘ Vo 1> = R(—)|1> =
outpuf {2 \/5
2

Step 4. When we measure the qubit, the probability of getting |0) or |1) is given by the square of
the amplitudes. For a state || I//> = a||0> + ﬂ| 1>, probability of |0) is P (0) =l o I* and probability
of [1)is P(1) =1 BP.

2

e Calculate probabilities for Input 0: ‘lyompm> = % |0>+% |1>, P(0)= % _% and
1
P(1)=~,
-1
e Calculate probabilities for Input 1:’ '//nmpm> = —% |O> + g |1>, P(O) = % and P(l) = %

The probabilities are the same for both inputs, so the QNN cannot distinguish between the

classes with 6= g

Step 5. Our goal is to find a 0 that allows the QNN to classify the inputs correctly. The desired
probabilities are as follows: For Input O (should be Class 0), Maximize P(0), and for Input 1

1 0
(should be Class 1): Maximize P(1). Try 8 = 0 and compute Ry(O): Ry (O) = |:O 1:|.

Process Input 0: | .. } = R (0)[|0) =[|0): P(©) = 1 and P(1) =0,

Process Input 1: | ‘ y/ompm> =R (0)[1)=[|1): P0) =0 and P(1) = 1,
Input 0: High probability of |0) = Class O (correct),
Input 1: High probability of [1) = Class 1 (correct).

348 Mathematical Foundations for Deep Learning

If we set 0 to 0, the QNN correctly sorts the inputs. In this case, 0 acts like a trainable parameter,
similar to weights in regular neural networks, that we adjust to reduce classification errors. QNNs
have significant advantages over classical neural networks. They can process certain tasks exponen-
tially faster, especially those involving large datasets or complex pattern recognition. This speed is
a huge benefit in fields with high computational demands. Quantum mechanics naturally handles
calculations in spaces with many dimensions, making QNNs highly efficient for tasks like image
recognition, modeling complex systems, and financial analysis where there are many features to
consider. Additionally, unique quantum properties like superposition and entanglement could lead to
new learning algorithms that outperform classical ones in efficiency or effectiveness. The qubits are
then processed through a series of quantum gates like the Hadamard, CNOT, and Pauli-X gates. The
Hadamard gate creates a superposition of states, allowing qubits to be in multiple states at once. The
CNOT gate is used to entangle qubits, linking their states no matter how far apart they are. The Pauli-
X gate flips the state of a qubit, like changing from O to 1. These gates are essential for manipulating
qubit states to perform complex calculations that are uniquely quantum. The transformed qubits pass
through quantum circuits, which are dynamic arrangements of various quantum gates designed to
run specific quantum algorithms. These circuits are the backbone of quantum computing, allowing
for smooth control of qubits to solve problems that classical computers can’t handle. After the
quantum operations are complete, the qubits are measured. This crucial step causes the qubit states
to collapse from their quantum superpositions into definite states that we can interpret using clas-
sical computing. The measurement outputs classical data, keeping the computational advantages
gained from quantum processing. These classical data are then sent through traditional computing
stages. Here, regular computing techniques refine, analyze, and use the data from the quantum
processes. This integration bridges the gap between quantum and classical computing, using the
strengths of both to enhance computational power and efficiency.

12.4.2 HysriD QUANTUM-CLASSICAL MODELS

Hybrid quantum-classical models combine the strengths of both quantum and classical com-
puting, improving performance by using each where it works best. Instead of trying to replace
classical computing entirely, quantum methods are used for specific tasks like advanced optimiza-
tion or handling complex calculations where they have clear advantages. This mix is especially
useful in neural networks, where hybrid models can speed up learning and enhance results. In these
models, tasks are divided between the quantum and classical parts. One key example is creating
quantum feature maps. Here, classical data is turned into a quantum state in a high-dimensional
space, making it easier to see relationships between data points. This clearer view helps with tasks
like classification or clustering, which can then be converted back into classical data for further
analysis. Another important use is quantum optimization. Quantum algorithms, like the Quantum
Approximate Optimization Algorithm (QAOA), fine-tune parameters like weights and biases in
neural networks. These algorithms are especially helpful in complex situations with many local
minima, where traditional methods might struggle. By finding better solutions faster, quantum opti-
mization can improve the overall performance of the model. Hybrid models are practical because
they use the best features of both computing systems. They offer enhanced computational power
while staying within the current limits of quantum technology. This makes hybrid models more
scalable and usable than purely quantum systems. In practice, they help solve problems that are too
slow or complicated for classical computers alone, especially in tasks involving large datasets or
heavy computational demands. Another benefit is flexibility; hybrid models can incorporate future
quantum advancements without needing to overhaul the entire system. However, there are challenges.
Integrating quantum and classical components is complex, requiring careful engineering and pro-
gramming. Current limitations of quantum hardware, such as short qubit coherence times, high error
rates, and a limited number of qubits, also reduce the efficiency of hybrid models. Additionally,

Quantum Computing 349

developing algorithms that fully take advantage of these hybrid systems demands ongoing research
and a solid understanding of both quantum mechanics and machine learning. A practical example
of a hybrid quantum-classical model is in financial modeling. In this case, the quantum component
might be used to optimize investment portfolios across many variables, while the classical part
handles routine data processing and transaction tasks. This combination allows quantum computing
to tackle complex, high-level problems while classical systems manage day-to-day operations.

12.5 APPLICATIONS OF QUANTUM COMPUTING IN DEEP LEARNING
12.5.1 ENHANCED OPTIMIZATION

Quantum computing offers exciting possibilities for improving how we optimize neural network
training, potentially outperforming classical methods in both speed and efficiency. The power of
quantum optimization comes from its unique properties, superposition, entanglement, and quantum
tunneling, which allow quantum algorithms to explore complex optimization landscapes more
effectively than classical approaches. In quantum computing, superposition lets each quantum
bit (qubit) represent multiple states at once. This means quantum algorithms can evaluate many
possible solutions simultaneously, unlike classical computers that process one solution at a time.
For neural network training, this ability allows a quantum optimizer to assess different combin-
ations of weights and biases all at once, reducing the time needed to find the best or nearly the best
configurations. Quantum systems also use quantum tunneling, a phenomenon where particles can
“tunnel” through barriers that would be impossible to cross in classical physics. In optimization, this
allows a quantum optimizer to avoid getting stuck in local minima, solutions that seem optimal but
aren’t the best overall. Instead, it can keep exploring other areas of the solution space, increasing the
chances of finding the global minimum. Entanglement, another key property, means that the state
of one qubit can instantly affect the state of another, no matter how far apart they are. In optimiza-
tion, entanglement helps quantum algorithms by linking the relationships between different parts of
a solution. This means the quantum optimizer can consider how various parameters are connected,
leading to a more efficient exploration of possible configurations. Consider a simple non-convex
function: L(x) = x* —8x% +16. This function has multiple minima and maxima. The function has
local minima and maxima due to its quartic and quadratic terms. The global minimum is at x = 0. Let
us first do classical optimization using gradient descent. We start at an initial point and iteratively
move in the direction opposite to the gradient.

1. Initialization: Start at X, = 4 and Learning rate a = 0.1,

2. Iteration 1: Compute the gradient of L()c)zx4 —8x2+16 that is equal to
L’(x)=4x’—16x, L’(4)=4(64)-16(4)=256-64=192and If x, = 4, you then
update x by subtracting the product of the gradient L'(x)) = 192 and the learning
rate 0.1: L'(x,) =4-0.1(192) = 4-19.2 = -15.2

3. lteration 2: L' (~15.2) = 4(~15.2)* =16(—15.2), then, Compute and update X,.

The steps may overshoot or get stuck in local minima. Finding the global minimum is not guaran-
teed. Now, let us do quantum optimization. Quantum annealing uses quantum mechanics to find
the global minimum of an objective function by exploiting quantum tunneling and superposition.
The key concepts in quantum mechanics that influence quantum computing include superposition,
quantum tunneling, and entanglement. Superposition allows a system to consider all possible states
simultaneously, which is fundamental to quantum computation’s ability to handle complex problems
efficiently. Quantum tunneling enables the system to transition through energy barriers between local
minima, helping escape from suboptimal solutions in optimization tasks. Entanglement correlates
different variables in such a way that it allows a holistic search of the solution space, enhancing the

350 Mathematical Foundations for Deep Learning

system’s capacity to explore multiple possibilities simultaneously. These concepts provide quantum
computing with its unique computational power.

In this scenario, we represent possible values of x using a finite set of states, where xe{-4, -3,
-2,-1,0, 1, 2, 3, 4}. Each state corresponds to a unique qubit configuration, and we use qubits to
encode these states. The Hamiltonian H encodes the objective function L(x), with the goal of finding
the state with the lowest energy, which corresponds to the global minimum of L(x).

We begin by preparing the qubits in a superposition of all possible states, such that the quantum

system is represented by a state ’1//(0)> = 2cx|x>, where ¢_are complex coefficients, and |x)

represents each state. The system’s Hamiltonian then evolves slowly from an initial Hamiltonian
H, to the problem Hamiltonian H , which encodes the objective function. The adiabatic theorem
ensures that if the evolution is slow enough, the system will remain in its ground state throughout
the process. During this evolution, quantum tunneling enables the system to pass through barriers,
allowing it to avoid being trapped in local minima and ensuring it can find better solutions. At the
end of the annealing process, the qubits are measured, collapsing the quantum system into a single
state |x_,), which corresponds to the global minimum and provides the optimal solution to the
problem. This process efficiently leverages quantum properties such as superposition and tunneling
to explore the solution space and find the global minimum. Now, let’s look at a numerical example
by computing the function L(x) for discrete states:

o L(=4)=256—128 + 16 = 144,
e L(=3)=81-72+16=25,

e L(=2)=16-32+16=0,

e L(-1)=1-8+16=09,

« L0)=0-0+16=16,

e L()=1-8+16=09,

« LQ2)=16-32+16=0,

e L3)=81-72+16=25,

o L(4)=256-128 + 16 = 144.

In this case, the function reaches its global minimum when L(x) equals 0 at x = -2 and x = 2. When
comparing classical gradient descent with quantum annealing, we see distinct differences in how
each method searches for solutions. Classical gradient descent often follows the steepest path and
can get stuck in local minima, such as at x = —1 or x = 1, where L(x) equals 9. This happens because
gradient descent moves toward the nearest low point without a mechanism to escape local minima.
In contrast, quantum annealing uses quantum tunneling to perform a more global exploration of the
solution space, allowing it to pass through barriers and avoid being trapped in local minima. As a
result, quantum annealing finds the global minimum at x = -2 or x = 2, where L(x) equals 0. This
ability to bypass local minima makes quantum annealing more efficient at identifying the best pos-
sible solution.

12.5.2 AprpLICATIONS IN NEURAL NETWORK TRAINING

Quantum computing offers new ways to improve how we train neural networks, making the learning
process faster and more efficient. Quantum algorithms, like the Quantum Approximate Optimization
Algorithm (QAOA), can adjust the weights and biases in neural networks more effectively than trad-
itional methods. For example, in an image recognition neural network, each neuron’s weight and
bias affect how it processes data like pixel values. Traditionally, finding the best set of weights and
biases is a slow, repetitive task that becomes very demanding for large networks. QAQOA solves this
problem by converting it into a quantum system, where all possible combinations of weights and

Quantum Computing 351

biases are represented as quantum states. Superposition allows the algorithm to explore many com-
binations at the same time, while quantum entanglement ensures these combinations are updated
based on how well they recognize images. This parallel exploration speeds up the process, improves
the network’s accuracy, and reduces training time. Quantum computing is also helpful for handling
high-dimensional data, which is a common challenge in machine learning. Quantum algorithms can
reduce the size of the data by selecting the most important features. For instance, when predicting
patient health outcomes based on hundreds of variables, not all features are equally useful, and some
may add noise. A quantum algorithm can turn this complex data into a quantum state, allowing it to
process the data naturally in a high-dimensional space. By using techniques like quantum annealing,
the algorithm finds the most relevant features, reducing the data’s complexity without hurting the
model’s performance.

12.5.3 HANDLING CompPLEX DATA

Quantum computing has special abilities for handling data with many features, because of the unique
properties of quantum mechanics. When you add more qubits to a quantum system, its data-handling
capacity grows exponentially. In classical computing, doubling the number of bits only doubles the
capacity in a straightforward way. However, in quantum systems, each qubit can represent both 0
and 1 at the same time due to superposition, so adding a qubit doubles the state space, leading to
exponential growth. This exponential increase means that quantum computers, even with relatively
few qubits, can handle an enormous number of possible states. This is especially useful for pro-
cessing complex, high-dimensional datasets that can overwhelm classical systems. For example,
imagine a machine learning task that requires analyzing hundreds of features to classify data. In
classical computing, this would need vast amounts of memory and computational power. A quantum
system, however, can manage this high dimensionality much more efficiently because each added
qubit greatly increases its capacity to represent and process data. Quantum systems can encode high-
dimensional data into the amplitudes of a quantum state using a method called quantum amplitude
embedding. This allows classical data to be represented within a quantum state, enabling efficient
manipulation during quantum operations. For instance, in a quantum machine learning application,
complex feature vectors can be encoded into a quantum state using fewer qubits than the number of
dimensions in the original dataset. Once encoded, quantum algorithms can quickly perform tasks
like calculating inner products or measuring distances between data points. These operations, which
would take significant time and resources on a classical computer, are completed more efficiently in a
quantum system by using superposition and entanglement to explore the high-dimensional space all
at once. Although the theoretical advantages of quantum computing for handling high-dimensional
data are clear, several challenges remain. These include building stable quantum systems that resist
errors and developing algorithms that consistently outperform classical methods. Another difficulty
is encoding real-world data into quantum states in a way that keeps important information without
adding unnecessary complexity. Researchers are actively working on these challenges, aiming to
fully unlock the potential of quantum computing for processing complex datasets.

12.5.4 PROCESSING COMPLEX STRUCTURES

Quantum computing could greatly improve how we process complex data structures like 3D models
and images by changing how we handle feature extraction and pattern recognition. Traditional
methods for analyzing geometry, texture, or spatial relationships in 3D models can require a lot
of computing power. Quantum computing changes this by using quantum parallelism, which lets
us process multiple features or data points at the same time. For example, think about a 3D model
used in architectural design or virtual reality. This model has various elements like edges, surfaces,
and textures, all of which need to be analyzed for rendering or simulation. Quantum algorithms can

352 Mathematical Foundations for Deep Learning

encode these elements into quantum states, and by using superposition, they can evaluate different
combinations of features all at once. This parallel processing speeds up tasks like simplifying the
model by removing unnecessary details or enhancing features to improve visual quality and func-
tionality. Quantum computing is especially powerful for pattern recognition, which is essential
when analyzing complex 3D datasets. Its ability to assess multiple patterns simultaneously allows
for a deeper exploration of spatial relationships, which is vital for accurate pattern recognition in
3D spaces. In medical imaging, such as MRI scans that create 3D views of organs, finding patterns
and abnormalities is crucial for diagnosis. A quantum system could quickly scan the 3D structure
for irregularities like tumors by analyzing different parts of the image in parallel. This parallel pro-
cessing, made possible by quantum superposition, is much faster and more efficient than classical
methods. Entanglement, another important quantum property, enhances how quantum algorithms
analyze connections between different parts of a 3D object. For example, in mechanical engineering,
simulating how different parts of a machine interact under stress is a complex task. Quantum com-
puting can model these interactions more thoroughly by entangling quantum states that represent
different components, allowing for simultaneous stress tests across multiple configurations. Despite
these promising advantages, challenges remain in applying quantum computing to 3D data pro-
cessing. The accuracy of quantum-based feature extraction and pattern recognition depends heavily
on the stability of quantum states, and current systems still face issues like decoherence and high
error rates. Additionally, efficiently converting classical 3D data into formats that work with quantum
computers while keeping important details is a critical area of ongoing research.

12.6 CHALLENGES AND LIMITATIONS
12.6.1 TecHNIcAL CHALLENGES

Quantum computing has huge potential, but it faces important technical challenges before we can
fully use it. These challenges mainly involve the physical hardware, errors in quantum operations,
and how long qubits can maintain their quantum state. Each problem presents unique difficulties
that researchers are actively trying to solve. One big issue is the hardware used to build quantum
computers, especially when it comes to making them bigger and more complex. As we add more
qubits, keeping them stable and controlling how they interact becomes harder. For example,
superconducting qubits need to be cooled to near absolute zero. While adding more qubits increases
processing power, it also makes it tougher to maintain quantum coherence and control interactions.
Heat and electromagnetic interference can cause qubits to interfere with each other, reducing per-
formance. Building quantum processors requires extreme precision, and even small flaws in materials
or design can lead to errors. This problem is made worse by the lack of large-scale manufacturing,
making production expensive and difficult. Advances in materials science and error correction
techniques are slowly addressing these challenges, improving scalability and reliability. Quantum
systems also have high error rates, mainly because of quantum decoherence and low gate fidelity.
Decoherence happens when qubits lose their quantum state due to interactions with the environ-
ment, leading to computation errors. Researchers are improving isolation techniques, like better
shielding and cooling, to combat this. Quantum error correction also helps by spreading quantum
information across multiple qubits, allowing errors to be detected and corrected. Gate fidelity, which
is the accuracy of quantum operations, is another challenge. Small mistakes in gate operations can
add up over time, especially in complex circuits. In systems like trapped ion quantum computers,
even tiny changes in laser intensity or timing can disrupt operations. Progress in error correction and
gate control is making these systems more reliable, but challenges remain. Coherence time, or how
long a qubit can keep its quantum state before decoherence occurs, is crucial for effective quantum
computing. Longer coherence times allow for more complex calculations, but current systems often
have short coherence times, limiting their ability to handle advanced tasks. For example, running
Shor’s algorithm to factor large numbers requires many operations, but if a qubit loses coherence

Quantum Computing 353

too soon, the computation will fail. To extend coherence times, superconducting qubits need to be
cooled to near absolute zero, and systems require advanced designs like dilution refrigerators to
minimize environmental noise. Scaling quantum systems while maintaining coherence will need
further innovation. Several strategies are being developed to overcome these challenges. Quantum
error correction plays a key role, with methods like the surface code that encodes logical qubits
across multiple physical qubits to detect and fix errors without destroying the quantum state. New
designs are also emerging to reduce errors and improve coherence. For example, topological qubits,
which use the properties of topological phases to resist disturbances, are being explored for their
robustness against errors. Hybrid quantum-classical systems are another promising approach. They
use quantum hardware for specific tasks, like optimization, while relying on classical computers
for more routine computations. This allows quantum computers to focus on areas where they excel
without being overburdened by the entire computational workload.

12.6.2 ALGORITHMIC CHALLENGES

While quantum computing could revolutionize many fields, developing and using quantum
algorithms have significant challenges. These challenges come from limitations in algorithm design
and the difficulty of scaling quantum algorithms to effectively solve real-world problems. Quantum
algorithms must be designed to fully use quantum properties like superposition, entanglement, and
interference. This requires deep expertise in quantum mechanics and computational theory, which
means only a small number of researchers can contribute to the field. Many quantum algorithms show
theoretical speed-ups for specific tasks but finding quantum solutions that work across a wide range
of problems, which classical algorithms have already solved, is a complex challenge. One major
hurdle is translating real-world problems into formats that quantum algorithms can process. Setting
up quantum states, gates, and system dynamics accurately is critical because even small errors can
lead to inefficient or incorrect results. Hybrid algorithms, which combine quantum and classical
computing, are commonly used in practical applications. However, designing these algorithms to
effectively manage tasks between quantum and classical systems is challenging. Often, the clas-
sical parts become bottlenecks, reducing the potential speed-up from quantum computing. Another
issue is scalability. Current quantum computers, called Noisy Intermediate-Scale Quantum (NISQ)
machines, have limited qubits and are prone to errors and decoherence, limiting their ability to solve
large, complex problems. Many quantum algorithms require large numbers of qubits and specific
configurations of entanglement. As the complexity of algorithms grows, so do resource demands.
Additionally, quantum error correction, which is essential for reliable quantum computing, requires
many physical qubits to create a single logical qubit, greatly increasing the resources needed as
algorithms scale. This makes large-scale quantum computing difficult with current technology.
To address these challenges, researchers are working on new quantum algorithms that need fewer
resources, are more resistant to errors, and can operate with fewer qubits and gates. In quantum
machine learning, for example, variational quantum algorithms are being explored because they can
adapt to the problem, allowing more efficient model training with fewer resources and better noise
resistance. Innovations in quantum error correction also aim to reduce the extra resources needed for
reliable computation. Software and compilers are becoming critical as quantum systems grow more
complex. These tools help translate high-level quantum algorithms into instructions that can run on
quantum hardware. They optimize circuit layouts, reduce gate usage, and manage error correction
more efficiently. Future compilers that can adjust circuits based on specific hardware setups and
error rates will be key to improving performance and scalability. Hardware improvements are at
the heart of progress in quantum computing. Researchers are focused on increasing the number
of qubits while improving their quality, especially regarding coherence times and error rates.
Innovations in materials science, superconducting technologies, and new qubit designs like topo-
logical qubits are expected to make quantum computers more stable and capable. Silicon-based

354 Mathematical Foundations for Deep Learning

quantum dots, which use existing semiconductor manufacturing techniques, could also help make
scalable quantum computing possible, potentially allowing the production of quantum chips with
thousands of qubits. These hardware advancements are essential to support the growing complexity
of quantum algorithms and their practical uses.

12.7 REAL-WORLD APPLICATIONS
12.7.1 CRYPTOGRAPHY AND CYBERSECURITY

Quantum computing brings both challenges and opportunities to cybersecurity. Quantum algorithms
like Shor’s algorithm could potentially break many of today’s encryption systems, such as RSA
and ECC, which rely on the difficulty of factoring large numbers or solving certain mathematical
problems. This threat has spurred the development of quantum-resistant or post-quantum cryptog-
raphy, aiming to create encryption methods secure against both quantum and classical computers.
Quantum Key Distribution (QKD) uses principles of quantum mechanics to allow secure communi-
cation, where keys are shared using quantum states, making any interception detectable.

12.7.2 DRuG DiscOVERY AND MATERIALS SCIENCE

Quantum computing could greatly change the way how we find new drugs and develop materials
by improving how we model molecules. By precisely simulating molecular structures and how they
interact, quantum computers can help predict how effective potential drugs are and what side effects
they might have, making the drug discovery process faster.

12.7.3 FINANCIAL MODELING

Quantum computing can greatly improve finance, especially in tasks like choosing the best
investments and analyzing risks. Quantum algorithms can evaluate and optimize many finan-
cial scenarios at the same time, offering solutions that consider more variables and how they are
connected, all at incredible speeds. With better computing power, it’s possible to analyze huge
amounts of data for unusual or fraudulent patterns more efficiently than ever before.

12.7.4 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Quantum computing is expected to greatly change artificial intelligence (AI) and machine learning.
Quantum machine learning algorithms can handle large datasets more efficiently, leading to faster
training of models and better accuracy in areas like image recognition, natural language processing,
and predictive analytics. Because quantum computers can explore many states at the same time,
they are especially good at processing complex, high-dimensional data and optimizing complicated
models. This opens up new possibilities in Al research and applications.

12.7.5 CLIMATE MODELING AND SUSTAINABILITY

To accurately predict climate change, we need complex simulations that include many factors,
like weather conditions and human activities. Quantum computers can handle these complicated
simulations faster, leading to more precise climate models. This could result in better predictions
of future environmental changes, thereby helping governments and organizations make smarter
decisions to fight climate change and manage resources more sustainably.

Quantum Computing 355

12.7.6 HEALTHCARE AND PERSONALIZED MEDICINE

Quantum computing’s ability to handle complex data could have a big impact on healthcare, espe-
cially in personalized medicine. By analyzing huge amounts of genetic and clinical data, quantum
algorithms can help find the best treatments for each individual patient. This could lead to more
targeted therapies, reducing trial and error in treatments, and improving patient outcomes.

12.8 HANDS-ON EXAMPLE

This example demonstrates how to integrate quantum computing into a machine learning task, spe-
cifically using a quantum node within a classical neural network for classification.

Step 1: Import libraries

First, we install and import several key libraries to work on quantum machine learning and classical
machine learning tasks using TensorFlow and PennyLane. This combination of libraries allows us
to work on hybrid quantum-classical machine learning models. PennyLane provides the tools for
quantum computing, TensorFlow enables classical machine learning models, and Matplotlib helps
with visualizing the results.

'pip install pennylane tensorflow matplotlib

import pennylane as gml

from pennylane import numpy as np

import tensorflow as tf

from sklearn.model selection import train test split
import matplotlib.pyplot as plt

Step 2: Quantum device setup: 2 qubits with default.qubit simulator
In step 2, we set up a quantum device using PennyLane, which is essential for running quantum
circuits.

dev = gml.device (“default.qubit”, wires=2)

Step 3: Quantum circuit: define a simple quantum node with two qubits

In this step, we define a quantum circuit using the PennyLane framework. This circuit applies
quantum gates to two qubits and measures their expectation values. The quantum circuit is decorated
with @gml.qnode(dev), indicating that it runs on the quantum device dev (previously defined as
default.qubit with 2 qubits).

1. Quantum Node (@gml.qnode(dev)): @qml.qnode(dev): This decorator converts the function
quantum circuit into a quantum node (QNode), which represents a quantum circuit executed
on the device dev. A QNode is responsible for running quantum operations and returning the
results. In this case, the QNode runs on the two-qubit default.qubit simulator.

2. Quantum Circuit Definition (quantum_circuit): The function quantum_circuit(x1, x2) takes
two input parameters (x1 and x2), which represent the angles for rotating the qubits along
the x-axis.

3. Quantum Gates:

356

Mathematical Foundations for Deep Learning

o gml.RX(x1, wires=0): This applies an RX gate (rotation around the x-axis) to qubit 0,
with a rotation angle x1. The RX gate is a fundamental single-qubit gate used to rotate
qubits in quantum circuits.

o gml.RX(x2, wires=1): This applies an RX gate to qubit 1, rotating it around the x-axis
by the angle x2.

o gml.CNOT(wires=[0, 1]): A CNOT gate (Controlled-NOT gate) is applied between
qubit 0 and qubit 1, entangling them. The CNOT gate flips qubit 1 (target) if qubit O
(control) is in the I1) state. This gate creates quantum correlations between the two
qubits.

return [gml.expval(gml.PauliZ(i)) for i in range(2)]: This line measures the expectation

value of the Pauli-Z operator for both qubits (0 and 1). The expectation value of the Pauli-Z

operator reflects the probability of measuring the qubits in the l0) state (up spin) versus the

I1) state (down spin). These expectation values are returned as a list.

@gml .gnode (dev)
def quantum circuit(xl, x2):

gml .RX (x1, wires=0) # Rotate around x-axis for qubit O
gml .RX (x2, wires=1) # Rotate around x-axis for qubit 1
gqml .CNOT (wires=[0, 1]) # Entangle qubit 0 and 1

return [gml.expval (gml.PauliZ(i)) for i in range(2)] #
Measure expectation values

Step 4: Define a quantum layer

Here, we define a function quantum layer that integrates a quantum circuit into a TensorFlow work-
flow. The function applies the quantum circuit to input data using TensorFlow’s map_fn to handle
batch processing.

def quantum layer (inputs) :

Use tf.map_fn to apply the quantum circuit over the input data
output = tf.map fn(lambda x: tf.cast (tf.stack (quantum
circuit (x[0], x[1])), tf.float32), inputs, dtype=tf.float32)
return output

Step 5: Generate a toy dataset

In this section, we are generating synthetic data for a binary classification task using NumPy. The
input data consists of random values, and the labels are assigned based on the sum of the values in
each input sample.

X

= np.random.uniform(0, np.pi, (100, 2)) # Random values

between 0 and n

Yy

= np.array ([0 1if np.sum(x) < np.pi else 1 for x in X]) #

Binary labels

Quantum Computing 357

Step 6: Split into training and testing sets
In this line of code, we are splitting the dataset into training and test sets using the train_test_split
function from scikit-learn.

X train, X test, y train, y test = train test split(X, y, test
size=0.2, random state=42)

Step 7: Build a simple classical neural network

In this section, we are building a hybrid quantum-classical neural network using TensorFlow and
Keras. The model integrates a quantum layer (defined by the quantum_layer function) into a clas-
sical neural network architecture.

inputs = tf.keras.Input (shape=(2,))

quantum output = tf.keras.layers.Lambda (quantum layer) (inputs)
outputs = tf.keras.layers.Dense (2, activation=‘softmax’)
(quantum output)

model = tf.keras.models.Model (inputs=inputs, outputs=outputs)

Step 8: Compile the model
In this line of code, we are compiling the hybrid quantum-classical neural network, which prepares
the model for training by specifying the optimizer, loss function, and evaluation metrics.

model .compile (optimizer=°‘adam’, loss="sparse categorical
crossentropy’, metrics=[‘accuracy’])

Step 9: Train the model
Finally, we are training the hybrid quantum-classical model using the fit function from Keras, which
runs the training process over a specified number of epochs, batch size, and validation data.

history = model.fit (X train, y train, epochs=30, batch size=8,
validation data=(X test, y test))

12.9 COMMON MISTAKES AND TROUBLESHOOTING TIPS
12.9.1 MISUNDERSTANDING SUPERPOSITION AND ENTANGLEMENT

* Mistake: Assuming that superposition means a qubit is “both 0 and 1 at the same time” in a
classical sense or confusing entanglement with simple data correlations.

e Tip: Superposition means the qubit exists in a probability state of both |0) and [1) until
measured. Always think in terms of probabilities rather than absolutes. For entanglement,
remember that it is a quantum connection where the state of one qubit directly affects another,
regardless of distance.

358 Mathematical Foundations for Deep Learning

12.9.2 OVERLOOKING QUANTUM DECOHERENCE

* Mistake: Not accounting for quantum decoherence when designing quantum algorithms.
Many assume qubits will remain stable throughout long computations, but decoherence can
lead to loss of information.

* Tip: Always factor in the limitations of coherence time when designing algorithms, espe-
cially for complex tasks. Use techniques such as error correction to mitigate the effects of
decoherence.

12.9.3 IMPROPER QUANTUM STATE INITIALIZATION

* Mistake: Incorrectly initializing quantum states or failing to prepare qubits in the necessary
initial states. This can lead to faulty results from the very start of the computation.

* Tip: Carefully define the initial state of each qubit before performing quantum operations.
Double-check the input states in algorithms such as QAOA or Grover’s algorithm to ensure
accuracy.

12.9.4 NEGLECTING HYBRID SYSTEM INTEGRATION

* Mistake: Assuming quantum computers will handle everything without recognizing the need
for hybrid quantum-classical algorithms.

* Tip: For now, quantum computers are best suited for specific tasks like optimization, while
classical systems handle data preprocessing and other computations. Focus on a balanced
approach, where quantum and classical systems work together to solve parts of the problem
efficiently.

12.9.5 MISINTERPRETING QUANTUM REsSuLTS

* Mistake: Expecting deterministic results from quantum algorithms. Quantum computing is
inherently probabilistic, so the results are based on probabilities, not guarantees.

* Tip: Run quantum algorithms multiple times and analyze the distribution of results. Use stat-
istical methods to interpret outcomes rather than relying on a single execution.

12.9.6 IGNORING HARDWARE LIMITATIONS

* Mistake: Designing algorithms that assume ideal, large-scale quantum hardware, which isn’t
yet available. Many fail to consider the qubit limitations and error rates in current NISQ
devices.

» Tip: Always account for the limitations of available hardware, such as qubit count, error rates,
and gate fidelity, when designing and testing quantum algorithms. Keep algorithms simple and
adaptable to near-term quantum hardware.

12.9.7 FAiLURE TO OPTIMIZE QUBIT ALLOCATION

* Mistake: Using too many qubits for simple operations, which can lead to inefficiencies and
increase the likelihood of errors.

» Tip: Optimize your algorithm by reducing unnecessary qubits or operations. Efficient use of
qubits can significantly improve system performance and reduce error rates.

Quantum Computing 359

12.9.

8 Nort UsING ERROR CORRECTION

Mistake: Assuming that current quantum systems are stable enough without error correction,
leading to inaccurate computations.

Tip: Always implement quantum error correction schemes, such as the surface code, espe-
cially for long or complex computations. These techniques help maintain the integrity of
quantum states over time.

12.10 REVIEW QUESTIONS

1.

2.

10.

Explain how superposition and entanglement contribute to the power of quantum computing.
How do these concepts differ from classical computing?

What is quantum decoherence, and why is it a challenge for building stable quantum
computers?

Define the Bloch sphere and describe how it represents the state of a qubit. Why is the |+)
state positioned on the equator of the sphere?

Describe the key difference between Shor’s Algorithm and Grover’s Algorithm. In what spe-
cific areas can these algorithms outperform classical methods?

. In your own words, explain how the Quantum Approximate Optimization Algorithm

(QAOA) works in the context of neural network training. How does it differ from classical
optimization methods?

. Provide an example of how hybrid quantum-classical algorithms are used in machine

learning. What challenges arise in designing these hybrid algorithms?

How can quantum computers improve feature extraction and pattern recognition in 3D data
structures, such as in medical imaging or 3D modeling?

What are the practical challenges of integrating quantum computing into neural network
training? Discuss both algorithmic and hardware limitations.

. What role does quantum error correction (QEC) play in ensuring the accuracy of quantum

optimization algorithms? Give an example of a QEC method and explain how it improves
performance.

What are the major algorithmic challenges in designing quantum algorithms for real-
world applications? Why is it difficult to scale these algorithms using current quantum
hardware?

12.11 PROGRAMMING QUESTIONS
12.11.1 Easy

Write

a Python program that simulates a quantum superposition of a qubit using classical bits. The

qubit can be in the |0) state, |1) state, or a superposition of both. The program should print both the

|0) an

1.

W

d |1) probabilities.

Create a function to simulate the qubit’s superposition state using random probability values
for |0) and [1).

Ensure the probabilities for |0) and |1) sum to 1.

Print the final probabilities for each state.

Test the program by running it several times to observe different superposition states.

360

Mathematical Foundations for Deep Learning

12.11.2 Mebpium

Implement a Python program that represents a quantum state as a vector of complex numbers.
Write a function that normalizes a quantum state vector, ensuring that the sum of the squared
magnitudes of the elements equals 1 (i.e., unitary condition). Test the function on a vector of your

choice.

el N

Define a quantum state as a list of complex numbers, e.g., [1+0j, 0+1j].

Write a function to compute the squared magnitude of each element in the vector.

Sum the squared magnitudes to check if the total is 1 (or normalize the vector if it isn’t).
Output the normalized vector and verify the result.

12.11.3 HarD

Implement a simplified version of the QAOA to solve a small optimization problem.

Choose an optimization problem, such as minimizing the sum of squares:
f(x)= X2+ X7+t Xl

Write a function to generate random potential solutions using superposition-like behavior,
where multiple potential values for variables are explored.

Implement an iterative optimization process that simulates QAOA by “measuring” potential
solutions, updating probabilities, and converging toward the optimal solution.

Output the steps and final result of the optimization

Bibliography

Agresti, Alan. (2002). Categorical Data Analysis. Wiley.

Akhiezer, Naum I., & Glazman, Izrail M. (1993). Theory of Linear Operators in Hilbert Space. Dover
Publications.

Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman &
Hall/CRC.

Alpaydin, Ethem. (2010). Introduction to Machine Learning. MIT Press.

Amari, Shun-ichi. (2016). Information Geometry and Its Applications. Springer.

Ash, R. B. (1970). Basic Probability Theory. Wiley.

Barber, David. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press.

Bengio, Y. (2009). “Learning Deep Architectures for AL Foundations and Trends in Machine Learning,
2(1), 1-127.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). “Geometric Deep Learning: Going
Beyond Euclidean Data.” IEEE Signal Processing Magazine, 34(4), 18-42.

Chollet, Francois, & Allaire, J. J. (2018). Deep Learning with R. Manning Publications.

Cinlar, Erhan. (2011). Probability and Stochastics. Springer.

Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (2nd ed.). Wiley-Interscience.

Delalleau, O., & Bengio, Y. (2011). Shallow vs. Deep Sum-Product Networks. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems
24 (pp. 666—674). Curran Associates, Inc.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248—
255). IEEE.

Devroye, Luc. (1986). Non-Uniform Random Variate Generation. Springer.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification (2nd ed.). Wiley.

Dudley, Richard M. (2002). Real Analysis and Probability. Cambridge University Press.

Eaton, Morris L. (2007). Multivariate Statistics: A Vector Space Approach. Institute of Mathematical Statistics
Lecture Notes.

Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing Higher-Layer Features of a Deep
Network. Technical Report 1341, University of Montreal.

Fei-Fei, L., Fergus, R., & Perona, P. (2006). “One-Shot Learning of Object Categories.” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(4), 594—611.

Friedman, J., Hastie, T., & Tibshirani, R. (2009). The Elements of Statistical Learning: Data Mining, Inference,
and Prediction (2nd ed.). Springer.

Girtner, Thomas. (2008). Kernels for Structured Data. World Scientific.

Gelman, Andrew, Carlin, John B., Stern, Hal S., & Rubin, Donald B. (2004). Bayesian Data Analysis. Chapman
and Hall/CRC.

Ghayoumi, M. (2021). Deep Learning in Practice. CRC Press.

Ghayoumi, M. (2023). Generative Adversarial Networks in Practice. CRC Press.

Gohberg, Israel, Goldberg, Seymour, & Krupnik, Nahum. (2012). Traces and Determinants of Linear
Operators. Birkhéuser.

Golub, Gene H., & Van Loan, Charles F. (2013). Matrix Computations (4th ed.). Johns Hopkins University Press.

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair S., et al. (2014). “Generative
Adversarial Nets.” In Advances in Neural Information Processing Systems (NIPS), Vol. 27, pp. 2672—
2680. Curran Associates, Inc.

Grigoryan, A. (2009). Introduction to Analysis on Graphs. American Mathematical Society.

Grimmett, G. R., & Welsh, D. (2014). Probability: An Introduction. Oxford University Press.

Grinstead, C. M., & Snell, J. L. (1997). Introduction to Probability. American Mathematical Society.

361

362 Bibliography

Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 855—
864). Association for Computing Machinery.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference,
and Prediction (2nd ed.). Springer.

Hecht-Nielsen, R. (1989). “Theory of the Backpropagation Neural Network.” In Neural Networks for
Perception, Vol. 2, pp. 65-93. Academic Press.

Hiriart-Urruty, J.-B., & Lemaréchal, C. (2001). Fundamentals of Convex Analysis. Springer.

Hochreiter, S., & Schmidhuber, J. (1997). “Long Short-Term Memory.” Neural Computation, 9(8), 1735-1780.

Hornik, K., Stinchcombe, M., & White, H. (1989). “Multilayer Feedforward Networks Are Universal
Approximators.” Neural Networks, 2(5), 359-366.

Jacod, J., & Protter, P. (2004). Probability Essentials (2nd ed.). Springer.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University Press.

Jeffreys, H. (1961). Theory of Probability (3rd ed.). Oxford University Press.

Joachims, T., Scholkopf, B., Burges, C.J. C., & Smola, A.J. (Eds.). (1999). Advances in Kernel Methods: Support
Vector Learning. MIT Press.

Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). Springer.

Kingma, D. P., & Ba, J. (2015). “Adam: A Method for Stochastic Optimization.” In Proceedings of the 3rd
International Conference on Learning Representations (ICLR), pages 13. Ithaca, NY: ArXiv. https://
arxiv.org/abs/1412.6980

Kolter, J. Z., & Ng, A. Y. (2009). “Regularization and Feature Selection in Least-Squares Temporal Difference
Learning.” In Danyluk, Andrea Pohoreckyj and Bottou, Leon and Littman, Michael L. (Eds.), Proceedings
of the 26th Annual International Conference on Machine Learning (ICML), pp. 521-528. ACM.

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). “ImageNet Classification with Deep Convolutional
Neural Networks.” Communication of the ACM, 60(6), 84-90. DOI: 10.1145/3065386.

Lang, S. (1987). Linear Algebra (3rd ed.). Springer.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). “Deep Learning.” Nature, 521(7553), 436-444.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). “Gradient-Based Learning Applied to Document
Recognition.” Proceedings of the IEEE, 86(11), 2278-2324.

Lehmann, E. L., & Casella, G. (1998). Theory of Point Estimation (2nd ed.). Springer.

Lehmann, E. L., & Romano, J. P. (2005). Testing Statistical Hypotheses (3rd ed.). Springer.

Luenberger, D. G. (1969). Optimization by Vector Space Methods. Wiley.

MacKay, D.J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge University Press.

Magnus, J. R., & Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics and
Econometrics (3rd ed.). Wiley.

Mallat, S. (2009). A Wavelet Tour of Signal Processing: The Sparse Way (3rd ed.). Academic Press.

Maybeck, P. S. (1979). Stochastic Models, Estimation, and Control. Academic Press.

Meyer, Y. (1993). Wavelets: Algorithms & Applications. SIAM.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Moonen, M., & De Moor, B. (Eds.). (1995). SVD and Signal Processing, I1l: Algorithms, Architectures, and
Applications. Elsevier.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

Nesterov, Y. (2018). Lectures on Convex Optimization. Springer.

Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information (10th Anniversary
ed.). Cambridge University Press.

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization (2nd ed.). Springer.

Papoulis, A., & Pillai, S. U. (2002). Probability, Random Variables, and Stochastic Processes (4th ed.).
McGraw-Hill.

Rudin, W. (1976). Principles of Mathematical Analysis (3rd ed.). McGraw-Hill.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). “Learning Representations by Back-Propagating
Errors.” Nature, 323(6088), 533-536.

Shannon, C. E. (1948). “A Mathematical Theory of Communication.” Bell System Technical Journal, 27(3),
379-423.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1145/3065386

Bibliography 363

Strang, G. (2016). Introduction to Linear Algebra (5th ed.). Wellesley-Cambridge Press.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). “Attention Is All You
Need.” In Advances in Neural Information Processing Systems (NIPS), Vol. 30.

ONLINE RESOURCES

TensorFlow. Retrieved from www.tensorflow.org/

Keras. Retrieved from https://keras.io/

Python. Retrieved from www.python.org/

Papers with Code. Retrieved from https://paperswithcode.com/

http://www.tensorflow.org/
https://keras.io/
http://www.python.org/
https://paperswithcode.com/

https://taylorandfrancis.com

Index

3D visualization, of a curved surface, 243, 244

A

Activation functions, 3, 5, 7, 22-23, 32-33, 36, 40, 42, 44,
45, 63-64, 72, 89, 174, 195, 201, 209, 215, 226,
228,272,277-279, 285, 319

Adagrad (Adaptive Gradient Algorithm), 162-164

drawbacks of, 163

Adam (adaptive moment estimation), 35-36, 165-167, 247,

250, 257
advantages of, 166
algorithm, 169
optimizer, 128, 202, 339

AdaMax, 167-168

advantage of, 168

Adaptive learning, 35, 89, 143, 165, 166-167, 170, 246,
250, 268

Artificial intelligence (Al), 1, 5

game-playing, 7

neural networks, 205

use of quantum computing in, 354
Artificial neural networks (ANNSs), 5-7

key components of, 6, 7

layers of, 5

operations performed by, 5

structure of, 6, 7
Audio signal processing, 314
Autonomous vehicles, 85, 290

B

Backpropagation algorithm, 2, 5, 41
forward propagation, 73
gradient descent and, 24
gradient matrices, 33
Jacobian matrix and, 79
reverse propagation, 73
weight update, 33-34
Batch gradient descent (BGD), 73, 89, 143, 159, 160
Batch normalization, 36-37, 41, 46, 295, 318, 320, 332
Batch operations, 41
Batch processing, 24-25, 31-32, 261, 356
Bayesian deep learning, 254-255, 269
Bayesian inference, 8, 101, 111, 118, 131
Bayesian Information Criterion (BIC), 113
Bayesian Neural Networks (BNNs), 91, 118-119, 126
common mistakes and troubleshooting tips, 130
connecting to probability distributions, 99—103
defined, 128
drawback of, 118
effect of weight variance in, 123
moments and, 122
Bayesian probability, 99
Bayesian regularization, 115
vs. overfitting, 116
vs. underfitting, 117

Bayesian statistics, 99, 103, 111-113
common mistakes and troubleshooting tips, 130
overfitting and, 113-115
underfitting and, 115-117
Bayes’ theorem, 111, 131
Bayes, Thomas, 111
Beta distribution, 95, 113
Betti numbers, 279-280, 284, 292
in deep learning, 285-288
Biases vector, 36
Bias-variance trade-off, 3
Bidirectional edges, 206
Binary integer programming (BIP), 138
Binomial distribution, 91-92, 98
Bioinformatics, 288
Biological data analysis, 199
Biological networks, 211-212, 222, 225, 231, 288-290
Bits per second (bps), 191
Bland’s Rule, 147, 177
Bootstrapping technique, 109
Bound constraints, 133
Brain connectivity, 290
Brain imaging, 264
Branch and bound (B&B) method, 138, 141, 150-152,
173,177
Broadcasting, 38, 41, 63

C

Cellular networks, 191
Channel capacity, 191-192
as a function of SNR, 192

ChebNet (Chebyshev Networks), 228-229

Chebyshev coefficient, 229

Chebyshev polynomials, 228-229, 238

Choice of prior, 113

CIFAR-10 dataset, 178, 269, 297, 319

Climate modeling and sustainability, use of quantum
computing in, 354

Clustering algorithms, 195

Cluster sampling, 104, 109

CNOT gate, 348

Column matrix, 27

Combinatorial optimization, 141-142, 176

Common probability distributions, 98, 100

Communication channel, 192

Communications and signal transmission, 314

Complex relationships, intuitive representation of, 211-212

Computational cost, 83, 118, 159, 228, 259, 261, 262,
268, 295

Computational efficiency, 31, 151, 157, 161, 228, 310, 318

Computational intensity, 113

Computational topology, 279

Computer vision, 7, 57, 264, 315

Constant probability, 99

Constraints, types of, 133

365

366

Continuous dynamical systems, 322-323
Continuous Wavelet Transform (CWT), 304
Convergence, effect of depth and activation functions
on, 278
Convex optimization, 138-141, 176
using gradient descent, 140
Convolutional neural networks (CNNs), 3, 25-26, 32-33,
45,57, 126, 178, 277, 298
convolution in the frequency domain for, 305
convolution theorem, 305-309
harmonic analysis for
common mistakes and troubleshooting tips, 318-319
Fourier analysis, 298-302
frequency domain for CNNs, 305-312
hands-on example of, 314-317
programming questions, 319-320
real-world applications of, 312-314
review questions, 319
Wavelet analysis, 302-305
implication for, 309-312
Convolution theorem, 305-309
implementation of, 318
misunderstanding, 318
Cross-entropy, 74
Cryptography, 157, 199, 314
quantum-safe, 344
use of quantum computing in, 354
Cumulative distribution function (CDF), 94, 98-99
Curvature, 244-245, 259
Hessian Matrix and, 249-250
Cutting plane methods, 150-151, 153, 177
Cybersecurity
use of information theory in, 199
use of quantum computing in, 354

D

Data compression, 39, 180, 187-191, 199, 314
Data distribution, 111, 118, 124
Data representation
use of matrix in
batch processing, 31
input data, 31
vector relevance in, 20-22
feature vectors, 20
word embeddings, 21-22
Data transfer, 191
Data transformation, 8, 257
Daubechies wavelet, 304
Decision boundary, 200, 273
Decision-making processes, 44, 145, 197, 258
in real time, 85

Deep learning, 11-12, 24, 157, 171, 197, 229, 240, 241, 298

algorithms, 1

applications of, 7

Bayesian deep learning, 255

Betti numbers in, 285-288

brief overview of
artificial neural networks, 5-7
simulating human-like learning, 5

Index

differential geometry in, 245-255
dynamical systems and differential equations for,
333-336
gradient in, 72-74
graph theory for, 205-207
Hessian matrix in, 81-84
importance of mathematics in
designing and interpreting algorithms, 3
imposing rules on randomness, 2
improving models, 3
infusing data with meaning, 2-3
structuring chaos, 1-2
information theory in, 195-198
Jacobians in, 78-80
in linear transformations, 44—46
matrices in, 30-37
visual representation of, 37
optimization methods in, 159-172
partial derivatives in, 66—68
predictive power of, 229
singular value decomposition in, 57
tensors in, 40
topology in, see topology, in deep learning
vector relevance in the context of
activation functions and layers, 22-23
batch processing, 24-25
convolutional neural networks (CNNs), 25-26
data representation, 20-22
dot product in neural network, 23
gradient descent and backpropagation, 24
neural network parameters, 22
Deep neural networks, 72, 74, 196, 257
Depth of a network, 272-273
Deviance Information Criterion (DIC), 113
Diagonal matrix, 27, 42, 49-52, 63
Differential equations, 323
for deep learning, 333-335
ordinary differential equations (ODEs), 324
partial differential equations (PDEs), 324-327
Differential geometry
basics of
curvature, 244-245
manifolds, 240-241
metric tensor, 243-244
tangent space, 241-242
challenges associated with
computational cost, 261
emerging insights, 262
high dimensionality, 259
scalability, 262
theoretical vs. practical gap, 261
visualization, 259-261
common mistakes and troubleshooting tips
bridging theory and practice, 268
computational overhead, 268
handling large-scale models, 268-269
ignoring curvature in optimization, 268
misinterpreting geometric concepts, 268
overfitting and generalization, 268
visualizing high-dimensional spaces, 268

Index

in deep learning
feature space analysis, 250-252
information geometry, 254-255
loss landscapes, 245-250
neural network generalization, 252-254
hands-on example of
apply PCA for dimensionality reduction, 265
import libraries, 264-265
plotting all graphs in one frame, 265-267
set random seed for reproducibility, 265
practical implications
model interpretability, 258-259
optimization, 257-258
regularization, 255-257
programming questions, 269
real-world applications of
autonomous systems and robotics, 262-263
computer vision and image recognition, 264
in medical image analysis, 264
signal processing and communications, 264
review questions, 269
Digital age, 240
Digital communication, 187, 191
Directed graphs, 206-208, 213-214, 225, 231, 234
Directional edges, 206
Direct search methods, 136
Discrete Fourier transform (DFT), 315
Discrete random variable, 97
Disease progression, 290
Distribution shapes, comparison of, 121
Domain adaptation, 197
Dot product, in neural network, 23
Dropout, 34
Drug discovery, use of quantum computing in, 354
Dynamical system, theory of
continuous dynamical systems, 322-323
for deep learning, 333-335
discrete dynamical systems, 321-322
hands-on example of
defining the RNN model, 338
generate synthetic sine wave data, 338
import libraries, 338
preparation of data for RNN, 338
real-world applications of
climate change projections, 337
economic modeling and forecasting, 337

modeling epidemics with differential equations, 336

neuroscience and brain dynamics, 337

robotics and autonomous systems, 337

stability analysis in engineering, 336-337
Dynamic graphs, 222, 224

E

Edge detection, 315-317

Eigenvalues and eigenvectors, 30, 126, 250
common mistakes and troubleshooting tips, 63
in deep learning, 52-57
of Hessian matrix, 83
in linear algebra, 50-52

quadratic function with, 55
visual representation of, 52
Embedding layers, 46

Energy management and power grid optimization, 173

Equality constraints, 133, 148-149

Euclidean distance, 2, 251
between data points, 3

Euclidean space, 240, 243

Euler’s formula, 302

Evolutionary algorithms (EAs), 136, 151-155, 177
steps in, 153
types of, 153

Expert knowledge, 115

367

Exploding gradients, 46, 63, 72, 89, 277, 332-333, 338,

341-342

F

Factoring algorithm, 344
Fast Fourier transform (FFT), 310, 316
Feature space, 250-252

Feature vectors, 20, 22, 209, 213, 219-221, 225, 228-229,

235,251, 284, 351

Financial modeling, 291

use of quantum computing in, 354
Fisher Information Matrix, 243, 254-255
Fourier analysis, fundamentals of, 298
Fourier transform (FT), 298-300
Fraud detection, use of graph theory in, 233
Frequency-domain convolution, 310, 318-319
Function representations

cumulative distribution function, 98-99

probability density function, 97-98

probability mass function (PMF), 97

G

Game-playing Al, 7

Gamma distribution, 95

Gated recurrent units (GRU), 332-333

Gate fidelity, 352

Gaussian curvature, 244-245

Gaussian noise, 57, 99, 115, 131

Gene expression profiles, 199

Generative adversarial networks (GANs), 7

Gene regulatory networks, 231, 288

Genetic algorithms (GAs), 136, 141, 153

Genetic programming, 153

Geometric distribution, 92-93

Gibbs sampling, 107, 108

Global versus local optima, 155-156

Gradient-based methods, 136, 138, 176
optimization methods, 241

Gradient descent, 24, 72-73, 142-144, 176177, 246, 249

batch gradient descent (BGD), 159

convex optimization using, 140

mini-batch gradient descent, 73, 160-161

on a quadratic function, 144

stochastic, 146

Stochastic Gradient Descent (SGD), 25, 73, 143,
146, 160

368

types of, 73
updated rule for, 143
Gradients
common mistakes and troubleshooting tips, 89
concept of, 68-72
in deep learning, 72-74
backpropagation algorithm, 73-74
gradient descent, 7273
exploding, 72
geometric interpretation of, 68
loss function of, 69
power of, 72
properties of, 70
saddle points, 72
vanishing, 72
Graph attention networks (GATs), 227-228, 231, 237
Graph-based algorithms, 233
Graph clustering algorithm, 229
Graph convolutional networks (GCNs), 213, 234, 257
computational challenges of, 224
node classification using, 231
scalability of, 222
use of, 224
Graphics Processing Units (GPUs), 160, 273
Graph neural networks (GNNs), 207-211, 229, 234,
255,262
over-smoothing in, 237
visualization of, 231
GraphSAGE (Graph Sample and Aggregation), 222,
224-227, 231, 237
Graph theory
advanced insights in, 212-213
challenges associated with
dynamic graphs, 224
heterogeneous graphs, 224
scalability, 222-224
ChebNet (Chebyshev Networks), 228-229
common mistakes and troubleshooting tips
ignoring graph size and complexity, 237
improper node and edge representation, 236
inadequate data preprocessing, 237
insufficient model evaluation, 237
misapplying classical graph algorithms, 237

neglecting dynamic and heterogeneous graphs, 237

overlooking edge weights and attention
mechanisms, 237
over-smoothing in GNNs, 237
for deep learning, 205-207
directed graph, 206
graph, 205
undirected graph, 206-207
weighted graph, 207
encoding relational information, 212
flexibility and versatility, 212
graph attention networks (GATSs), 227-228
graph classification, 220-222
graph neural networks (GNNs), 207-211
efficiency and scalability with, 212

GraphSAGE (Graph Sample and Aggregation), 224-227

hands-on example of
building the GCN model, 235

Index

creating the graph, 234
defining the node features, 234-235
defining the node labels, 235
importing required libraries, 233
normalization of the adjacency matrix, 234
predicting and visualizing, 236
training the model, 235-236
improved scalability and efficiency, 229-231
intuitive representation of complex relationships,
211-212
node classification, 213-219
programming questions, 238-239
real-world applications of
biological network analysis, 231-232
fraud detection, 233
healthcare and epidemic modeling, 233
recommendation systems, 231
social network analysis, 231
transportation and logistics, 233
review questions, 238
Grayscale image, 316
Grouping data (clustering), 345
Grover’s algorithm, 343, 358, 359
GUDHI library, 292

H

Hamiltonian, 350
Monte Carlo sampling, 107
Harmonic oscillators, 324-325, 327, 328
Healthcare
medical diagnostics, 126
medical imaging, 85
Healthcare and epidemic modeling, use of graph theory
in, 233
Healthcare and personalized medicine, use of quantum
computing in, 355
Heat equation, 325-326
Hessian matrix, 53, 55, 170, 246247, 252, 259, 261
challenges in using in deep learning, 84
common mistakes and troubleshooting tips, 89
concept of, 80-81
and curvature, 249-250
in deep learning training, 81-84
eigenvalues of, 83
features of, 83
importance of, 81
for large-scale models, 84
of simple neural network, 83
visualization of, 82, 84
Heterogeneous GNNs (HetGNN), 224
Heterogeneous graphs, 222, 224, 237
Homeomorphism, concept of, 270
Huffman coding, 180, 187, 199
Human-like learning, simulation of, 5
Hungarian algorithm, 141
Hybrid quantum-classical models, 348-349, 353

Identity matrix (or unit matrix), 27, 234
Image compression, 305, 315

Index

Image filtering, 126
Image processing, 57, 85, 126, 309, 316
comparison of, 317
Image recognition, 5, 7, 25, 33, 85, 126, 264, 272, 348,
350, 354
Importance sampling, 106
Inequality constraints, 133, 147
Information gain, 184—185
Information geometry, 254-255
Information-theoretic metrics, 197
Information theory
channel capacity and, 191-192
common mistakes and troubleshooting tips, 202-203
data compression, 187-191, 199
entropy of, 179-180
conditional, 181-184
joint, 180181
hands-on example of
building and training a simple neural network,
201-202
in calculating entropy, 201
in generating sample data, 200-201
importing necessary libraries, 200
mutual information calculation, 201
information gain, 184—185
Kullback-Leibler (KL) divergence, 192-195
in machine learning and deep learning, 195-198
adversarial attacks and robustness, 197-198
generalization and overfitting, 196—-197
Layer-wise relevance propagation (LRP), 198
model interpretability, 197
Neural Architecture Search (NAS), 198
regularization and optimization, 196
transfer learning and domain adaptation, 197
mutual information, 185-187
probability distributions of a fair coin and a biased
coin, 180
programming questions, 203-204
real-world applications of
biological data analysis, 199
cryptography, 199
data compression, 199
finance and risk management, 200
network security and anomaly detection, 199
telecommunications and error correction, 199
review questions, 203
Shannon’s theorem, 191-192
Integer linear programming (ILP), 151
Integer optimization (I0), 137-139, 176
types of, 137
Integer programming (IP), 137-138, 172
Interior Point Methods, 177
Inverse fast Fourier transform (IFFT), 302, 316
Inverse Fourier transform (IFT), 300-302, 307

J

Jacobian matrix
and backpropagation, 79
color gradient in, 80
common mistakes and troubleshooting tips, 89

369

components of, 78
computational aspects, 77-78
concept of, 74-76
in deep learning, 78-80
determinant of, 76
optimization process, 76
relation with the chain rule, 76-77
as tool for analyzing the sensitivity of a neural network’s
outputs, 79
vector-valued function, 78
visualization of, 78, 80
Joint probability distribution, 181-183, 187188

K

Karush—Kuhn-Tucker (KKT) conditions, 149, 177
Kernels, 25

Knapsack problem, Branch and Bound tree for, 152
Kullback-Leibler (KL) divergence, 192-197, 202
Kurtosis value, 97

L

L, and L, regularization techniques, 3
Lagrange, Joseph-Louis, 148
Lagrange multipliers, 148-149, 177
Laplace distribution, 120, 122, 126
Laplacian matrix, 257, 269
Latent Semantic Analysis (LSA), 57
Latin hypercube sampling (LHS), 108-109
Layer-wise relevance propagation (LRP), 198
LeakyReLU, 277
Learning algorithms, convergence of, 272
Learning rate annealing, 170-172
Leptokurtic (heavy-tailed distribution) value, 97
Limited-memory approximation, 171
Limited-memory Broyden—Fletcher—Goldfarb—Shanno
(L-BFGS) optimization algorithm, 170-172
Limited-memory vectors, 171
Linear algebra, 7, 126
application of matrices in, 29-30
common mistakes and troubleshooting tips, 61-62
eigenvalues and eigenvectors, 30
hands-on example, 59-61
real-world applications of
image processing and computer vision, 57
natural language processing, 59
robotics and autonomous systems, 59
system of linear equations, 29-30
transformations, 30
Linear approximation, 241-242, 245, 259
Linear equality, 147
Linear equations, 29-30, 50
Linear inequality, 151
Linear optimization, 134-135, 147, 175
Linear programming, 147, 150, 172
feasible region and constraints in, 134
Linear regression model, 46, 124, 131, 143, 159, 178
Linear transformations, 30, 40, 42
in deep learning, 44-46
convolutional neural networks, 45
embedding layers, 46

370

initialization, 46
loss functions and optimization, 46
neural network layers, 44-45
regularization techniques, 46
matrix representation of, 42
reflecting vectors, 44
rotating vectors, 44
scaling, 42-43
shearing, 44
visual representation of, 45
Long short-term memory (LSTM) networks, 225, 332-333
Loss computation, 41-42
Loss functions, 245-250
Lossless compression, 189
Lossy compression, 189
Lotka—Volterra equations, 333-336

M

Machine learning, 24, 142, 157, 192, 255, 298, 345, 349
information theory in, 195-198
use of quantum computing in, 354
vector format for, 20
Markov Chain Monte Carlo (MCMC), 106-108, 113
sample distribution after burn-in, 108
trace plot, 107
Materials science, 157, 290, 353
use of quantum computing in, 354
Matrices
applications in
deep learning, 30-37
linear algebra, 29-30
concept of, 26
in deep learning, 30-37
activation functions, 33
backpropagation, 33-34
batch normalization, 36-37
data representation, 31
operations in layers, 32-33
optimizers, 34-36
parameters of the network, 31-32
regularization, 34
definition of, 26
dimension of, 26
operations of
addition and subtraction, 28
common mistakes and troubleshooting tips, 63
determinant, 28
inverse, 29
matrix multiplication, 28, 32
scalar multiplication, 28
transpose, 29
types of, 26-27
Matrix factorization techniques
eigenvalues and eigenvectors, 50-52
in deep learning, 52-57
LU decomposition, 46-48
QR decomposition, 48-49
singular value decomposition, 49-50
in deep learning, 57
Matrix multiplication, 22, 28, 32-33, 38, 4041, 59, 63, 89

Index

Matrix—vector multiplications, 22, 42
Mean squared error (MSE), 34, 159, 253, 339
Medical image analysis, 264, 312-314
Memory-efficient optimization, 171
Message passing, 208
Metaheuristic algorithms, 141
Metric tensor, concept of, 243-244
Metropolis—Hastings sampling, 107
Mini-batch, 145
gradient descent, 73, 160-161
Mixed integer programming (MIP), 138
MNIST dataset, 20, 31, 173, 178, 251, 297, 320
Mobile communications, 199
Model interpretability, 197, 258-260
Momentum technique, 161-162
Monte Carlo sampling, 105
Monte Carlo simulation, 145
Mother wavelet, 304, 318
Multivariate calculus, 74
applications of, 85
common mistakes and troubleshooting tips, 88—89
example of, 86-88
gradients, 68—74
Hessian matrix, 80-84
Jacobian matrix, 74-80
partial derivatives, 65-68
programming questions, 90
review questions, 89-90
Mutual information, 185-187

N

Nanotechnology, 290
Natural language processing (NLP), 5, 21, 59, 85, 126, 327
Nelder-Mead method, 136
Nesterov-accelerated Adaptive Moment Estimation
(NADAM), 168-170
Network security and anomaly detection, 199
Neural Architecture Search (NAS), 198
Neural networks (NNs), 2, 11, 40, 44-45, 72,79, 91, 99,
173, 195, 201, 205, 207, 243, 270
activation functions for, 3
architectures, 262
artificial neural networks (ANNs), 5-7
convolutional neural networks (CNNs), 3, 25-26
dot product in, 23
generalization of, 252-254
Hessian matrix of, 83
mathematical operation in, 23
optimization algorithm for training, 202
parameters, 22, 31-32
quantum computing, 350-351
robustness of, 197
and topological structure, 272
topology of, 272
weights and biases in, 348
width of a layer in, 273-275
Neuroscience, 290, 337
Newton’s Method, 77, 81, 136, 246, 259
Node classification, 213-219
Noise reduction, 39, 57, 59, 305, 314

Index

Noisy channel, 199

Noisy Intermediate-Scale Quantum (NISQ) machines, 353
Non-convex optimization problems, 160, 163

Non-linear dependencies, 186, 203

Non-linear differential equations, 333

Non-linear equations, 126

Non-linear optimization, 135-137, 176

NumPy library, 86, 200

(0]

Optimization algorithms, 5, 160, 162, 166, 244, 257
for training neural networks, 202
Optimization theory
branch and bound and cutting plane methods, 150-151
common mistakes and troubleshooting tips in
B&B and cutting plane methods, 177
combinatorial optimization, 176
convex optimization, 176
evolutionary algorithms, 177
gradient descent, 176-177
integer optimization, 176
Lagrangian multipliers, 177
linear optimization, 175
non-linear optimization, 176
simplex method, 177
stochastic optimization, 176
concept of, 133-134
in deep learning
Adagrad (adaptive gradient algorithm), 162-164
Adam (adaptive moment estimation), 165-167
AdaMax, 167-168
batch gradient descent (BGD), 159
learning rate annealing or decay, 170-172
mini-batch gradient descent, 160-161
momentum, 161-162
Nadam (Nesterov-accelerated Adaptive Moment
Estimation), 168-170
root mean square propagation (RMSprop), 164-165
Stochastic Gradient Descent (SGD), 160
evolutionary algorithms (EAs), 151-155
global versus local optima, 155-156
hands-on example of
in building of a simple neural network model, 174
in evaluation the models, 175
importing of necessary libraries, 173
preparation of the datasets, 173-174
training the model with different optimizers, 174-175
programming questions, 178
real-world applications and examples
energy management and power grid optimization, 173
portfolio optimization in finance, 172
supply chain optimization, 172
telecommunications network design, 172-173
transportation and logistics, 173
recent developments in, 156-157
review questions, 177
types of
combinatorial optimization, 141-142
convex optimization, 138-141
gradient descent, 142—144

371

integer optimization (10), 137-138
Lagrange multipliers, 148-149
linear optimization, 134—135
non-linear optimization, 135-137
simplex method, 147-148
stochastic optimization, 145-147
Optimizers
Adam (Adaptive Moment Estimation), 35-36
RMSprop (Root Mean Square Propagation), 34-35
Ordinary differential equations (ODEs), 262, 324, 331
Orthogonal Frequency Division Multiplexing (OFDM), 314
Overfitting
vs. Bayesian regularization, 116
and Bayesian statistics, 113—115
common mistakes and troubleshooting tips, 130
concept of, 109-111
connection between moments and, 124-126
risk of, 118

P

Parametric ReLU (PReLU), 277
Partial derivatives
common mistakes and troubleshooting tips, 88
concept of, 65
contours of, 67
in deep learning, 6668
geometric interpretation of, 65-66
higher-order, 66
surface plot of, 67
Partial differential equations (PDEs), 324-327
Pattern detection, 5
Pattern recognition, 3, 346, 348, 351-352, 359
PennyLane, 355
Perturbation index, 288
Platykurtic (light-tailed distribution) value, 97
Poisson distribution, 92, 99, 130
Polyhedron, 147
Polynomial-time solution, 141
Polytope, 147
Pooling layers, 41
Portfolio optimization, 200
in finance, 172
Power grids, management of, 173
Predator—prey equations, see Lotka—Volterra equations
Principal component analysis (PCA), 3, 50, 54, 240,
266, 292
goal of, 241
visualization of, 56
Probability density function (PDF), 93, 97-98
Probability distributions, 181, 192, 254
characteristics of
kurtosis, 97
mean (expected value), 95-96
mode, 97
skewness, 96
variance and standard deviation, 96
common mistakes and troubleshooting tips, 129-130
concept of, 91
connecting BNNs to, 99-103
posterior distribution, 102

372 Index

predictions, 102-103 enhanced optimization, 349-350
prior distribution, 101 in financial modeling, 354
connection between overfitting and underfitting to, 99 in handling complex data, 351
continuous probability distributions in healthcare and personalized medicine, 355
beta and gamma distributions, 95 in neural network training, 350-351
exponential distribution, 94-95 in processing complex structures, 351-352
normal (Gaussian) distribution, 94 challenges and limitations of
uniform distribution (continuous), 93-94 algorithmic challenges, 353-354
discrete probability distributions technical challenges, 352-353
binomial distribution, 91-92 common mistakes and troubleshooting tips
geometric distribution, 92-93 failure to optimize qubit allocation, 358
Poisson distribution, 92 ignoring hardware limitations, 358
uniform distribution, 93 improper quantum state initialization, 358
function representations misinterpreting quantum results, 358
cumulative distribution function, 98-99 misunderstanding superposition and
probability density function, 97-98 entanglement, 357
probability mass function (PMF), 97 neglecting hybrid system integration, 358
hands-on example not using error correction, 359
defining a BNN using TensorFlow and TensorFlow overlooking quantum decoherence, 358
Probability, 128 entanglement, 344
generating synthetic data, 127 hands-on example of, 355-357
make predictions and plot uncertainty, 128-129 integration with deep learning
setup and import libraries, 127 hybrid quantum-classical models, 348-349
training the BNN, 128 Quantum Neural Networks (QNNs), 346-348
moments in, 119-122 programming questions, 359-360
central moments, 119-120 qubits, 343-344
kurtosis (fourth standardized moment), 120 review questions, 359
raw moments (crude moments), 119 superposition, 343, 344
skewness (third standardized moment), 120 theory of, 343
programming questions, 131-132 Quantum decoherence, 352, 358-359
real-world applications and examples Quantum dots, silicon-based, 354
healthcare and medical diagnostics, 126 Quantum error correction (QEC), 352, 359
image recognition and processing, 126 Quantum Fourier transform, 344
Natural Language Processing (NLP), 126 Quantum gates, 346, 355
robotics and control systems, 126 as neurons, 346
Probability distributions of a fair coin and a biased Quantum Key Distribution (QKD), 354
coin, 180 Quantum k-means algorithm, 345
Probability mass function (PMF), 97 Quantum linear regression, 345
Problem solving, 343 Quantum machine learning algorithms, 345-346, 354
Protein—protein interaction networks, 288 Quantum mechanics, 157, 343, 348-349
Pure integer programming (PIP), 138 Quantum Neural Networks (QNNs), 346-348
Pythagorean theorem, 12, 61 Quantum node (QNode), 355
Python program, 359-360 Quantum optimization, 348-349, 359
Quantum optimizers, 349
Q Quantum regression algorithms, 345

Quantum superpositions, 344, 348

Quantum Support Vector Machines (QSVM), 345
Quantum technology, 348

Quantum tunneling, 349-350

Quasi-Newton methods, 136, 170-171

Qubit states, on the Bloch sphere, 345

Quota sampling (non-probability method), 105

QRS complex, 304
Quantum algorithms, 350, 354, 358
key quantum algorithms, 344-345
quantum machine learning algorithms, 345
Quantum annealing, 349
Quantum Approximate Optimization Algorithm (QAOA),
157, 348, 350, 358, 359
Quantum clustering methods, 345

Quantum computers, 157, 353 R
Quantum computing Real numbers, 19
applications of Rectified Linear Unit (ReLU), 5, 22-23, 33, 42, 72, 83,
in artificial intelligence and machine learning, 354 128, 174, 195, 201, 228, 277, 279, 285
in climate modeling and sustainability, 354 Activation Output matrix, 36
in cryptography and cybersecurity, 354 Recurrent neural networks (RNNs), 53, 59, 275-277, 321, 341

in drug discovery and materials science, 354 explaining via ODEs, 329-331

Index

memory dynamics in, 327-329, 334

training and dynamics of, 331-332

vanishing and exploding gradients, 332-333, 334
Reed-Solomon code, 199
Reflecting vectors, 44

Regularization techniques, 34, 46, 63, 99, 130-131, 196,

237, 255,268, 318
Reinforcement learning, 7
Rejection sampling, 106
Relational information, encoding of, 212
Resampling methods, 109
Residual connections, see Skip connections
Reverse (backward) propagation, 74
Revised Simplex method, 147
Ricci curvature, 244-245
Riemannian metric, 254
Risk assessment, 291
Risk management, 200
Robotics
and autonomous systems, 59, 262, 290
and control systems, 85, 126
Root Mean Square Propagation (RMSprop), 34-35,
164-165, 168, 173, 247
Rotating vectors, 44
Row matrix, 26

S

Saddle points, 72, 83
Sample average approximation (SAA), 145, 176
Sampling methods
cluster sampling, 104
common mistakes and troubleshooting tips, 130
Gibbs sampling, 108
importance sampling, 106
Latin hypercube sampling (LHS), 108-109
Markov Chain Monte Carlo (MCMC), 106-108
Monte Carlo sampling, 105
overfitting, 109-111
quota sampling, 105
rejection sampling, 106
resampling methods, 109
simple random sampling (SRS), 103-104
stratified random sampling, 104
systematic sampling, 105
underfitting, 111
Satellite communication, 191, 314
Scaling vectors, 42-43
Search algorithm, 344
Self-driving cars, 59, 262
Sequence processing, 41
Sequential Data, 40
Shannon’s theorem, 191-192, 199
Shearing, 44
Shor’s algorithm, 343, 354, 359
Sigma matrix, 50-52
Sigmoid, 33
Signal processing and communications, 264, 310
Signal-to-noise ratio (SNR), 191
channel capacity as a function of, 192

373

Simple random sampling (SRS), 103—-104

Simplex method, 147-148, 176, 177
application of, 148

Sine wave, 115

Single input vectors, concept of, 24

Singular value decomposition (SVD), 11, 39, 49-50, 126, 257
common mistakes and troubleshooting tips, 63
in deep learning, 57
visual representation of, 54

Skewnorm distribution, 120

Skew-symmetric matrix, 27

Skip connections, 275

Sobel filter, 315

Social network analysis, 231, 290

Social networks, 213, 222

Spatial-domain convolutions, 318

Spring-based algorithm, 210

Square matrix, 27

Stochastic Gradient Descent (SGD), 25, 73, 143, 146,

160, 285

Stochastic optimization, 145-147, 157, 176

Stratified random sampling, 104, 109

Stress testing, 291

Superconducting technologies, 353

Supply chain optimization, 172

Symmetric matrix, 27

Symmetry, 206

Systematic sampling, 105, 111, 130

T

Tangent space, 9, 241-242, 245, 259, 261, 268
Tangent vectors, 243, 245
Tanh (hyperbolic tangent), 33
Tanh-activated models, 279
t-Distributed Stochastic Neighbor Embedding (t-SNE), 240,
250, 257, 259, 266, 291
Telecommunications
and error correction, 199
mobile communications, 199
network design, 172-173
satellite communication, 191
TensorFlow, 128, 173-174, 200, 233, 355
Keras API, 201
TensorFlow Probability, 127-128, 132
Tensors
concept of, 37-38
in deep learning, 4042
higher-dimensional, 38
one-dimensional, 38
operations of
dot product (contraction), 38
element-wise, 38
matrix-specific, 38-39
two-dimensional, 38
zero-dimensional, 38
Thermal diffusivity constant, 326
Time-frequency localization, 314
Topological Data Analysis (TDA), 295
application of, 280, 288

374

with deep learning
Betti numbers, 285-288
persistent homology, 283-285
in neural networks, 279-283
persistent homology, 279-283
visualization of, 280, 282
Topological mapping, 290
Topology, in deep learning
basic topology
continuous transformations and invariance, 270
neural networks and topological structure, 272
common mistakes and troubleshooting tips, 295-296
data analysis with deep learning
Betti numbers, 285-288
persistent homology, 283-285
hands-on example
to apply t-SNE to reduce dimensions, 292
apply UMAP to reduce dimensions, 292-293
computing the persistent homology using Gudhi, 292
to extract Betti numbers, 292
to generate the Swiss roll dataset, 291-292
in installation of required libraries, 291
plotting all graphs in one frame, 293-295
programming questions, 296-297
real-world applications of
biological network analysis, 288-290
financial modeling and risk assessment, 291
material science and nanotechnology, 290
neuroscience and brain connectivity, 290
robotics and autonomous systems, 290
social network analysis, 290
relation to convergence of learning algorithms
activation functions, 277-279
depth and width, 272-275
recurrent connections, 275-277
skip connections, 275
review questions, 296
topological data analysis in neural networks
persistent homology, 279-283
Traffic management, 229
Transfer learning, 197
Transforming data and identifying patterns, 4
Transportation and logistics
optimization of, 173
use of graph theory in management of, 233
Transportation networks, 207, 212-213, 229-230
Traveling salesman problem (TSP), 141-142, 173
objective function for, 141
Turbo code, 199
Two-Phase Simplex method, 147

U

Underfitting
vs. Bayesian regularization, 117

and Bayesian statistics, 115-117
common mistakes and troubleshooting tips, 130
concept of, 111
connection between moments and, 124-126
Undirected graphs, 206, 208
Uniform distribution, 93

Index

Uniform Manifold Approximation and Projection (UMAP),

250, 257, 266, 291
Uniform probability density, 99
Unimodal distribution, 97

\%

Vanishing gradients, 72
Variational autoencoders (VAEs), 193, 196
Vectors
components of, 17-18
concept of, 11-12
in context of deep learning
activation functions and layers, 22-23
batch processing, 24-25
convolutional neural networks (CNNs), 25-26
data representation, 20-22
dot product in neural network, 23
gradient descent and backpropagation, 24
neural network parameters, 22
format for machine learning models, 20
magnitude and direction of, 18—19
operations of, 13-17, 61
addition, 13
cross product, 15-17
dot product, 13-14
scalar multiplication, 13
representation of, 12
spaces, 19-20
two-dimensional (2D), 11
Video processing, 85
Vietoris—Rips complex, 284-285, 287

w

Wavelet analysis, 302
‘Wavelet transform (WT), 298, 304-305
applications of, 305
for non-stationary signals, 318
Weighted graphs, 208
key characteristics of, 207
Weights Matrix, 36
‘Wide network, 274-275
Word2Vec, 59
Word embeddings, 21-22, 59
Worst-case time complexity, 147

y4

Zero matrix, 27

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Acknowledgments
	About the Author
	1 Introduction
	1.1 Introduction
	1.2 Importance of Mathematics In Deep Learning
	1.2.1 Structuring Chaos
	1.2.2 Imposing Rules On Randomness
	1.2.3 Infusing Data With Meaning
	1.2.4 Designing and Interpreting Algorithms
	1.2.5 Improving Models

	1.3 Brief Overview of Deep Learning
	1.3.1 Simulating Human-Like Learning
	1.3.2 Artificial Neural Networks
	1.3.3 Applications of Deep Learning

	1.4 Book Features and Structure
	1.4.1 Book Features
	1.4.2 Overview of Chapters
	1.4.3 Chapter’s Structure

	2 Linear Algebra
	2.1 Introduction
	2.2 Vectors, Matrices, and Tensor Operations
	2.2.1 Understanding Vectors
	2.2.1.1 What Is a Vector?
	2.2.1.2 Vector Operations
	2.2.1.3 Vector Components
	2.2.1.4 Magnitude and Direction
	2.2.1.5 Vector Spaces

	2.2.3 Vector Relevance in the Context of Deep Learning
	2.2.3.1 Data Representation
	2.2.3.2 Neural Network Parameters
	2.2.3.3 Activation Functions and Layers
	2.2.3.4 Dot Product in Neural Network
	2.2.3.5 Gradient Descent and Backpropagation
	2.2.3.6 Batch Processing
	2.2.3.7 Convolutional Neural Networks

	2.3 Matrices
	2.3.1 What Is a Matrix?
	2.3.2 Dimensions
	2.3.3 Types of Matrices
	2.3.4 Matrix Operations
	2.3.5 Applications in Linear Algebra
	2.3.6 Matrices in Deep Learning
	2.3.6.1 Data Representation
	2.3.6.2 Parameters of the Network
	2.3.6.3 Operations in Layers
	2.3.6.4 Activation Functions
	2.3.6.5 Backpropagation
	2.3.6.6 Regularization
	2.3.6.7 Optimizers
	2.3.6.8 Batch Normalization

	2.4 Tensor and Its Operations
	2.4.1 Tensors
	2.4.2 Tensor Operations
	2.4.3 Tensors in Deep Learning
	2.4.4 Tensor Operations in Deep Learning

	2.5 Linear Transformations
	2.5.1 Matrix Representation of Linear Transformations
	2.5.2 Examples of Linear Transformations
	2.5.2.1 Scaling
	2.5.2.2 Rotating
	2.5.2.3 Reflecting
	2.5.2.4 Shearing

	2.5.3 Linear Transformations in Deep Learning
	2.5.3.1 Neural Network Layers
	2.5.3.2 Convolutional Neural Networks
	2.5.3.3 Embeddings
	2.5.3.4 Regularization Techniques
	2.5.3.5 Initialization
	2.5.3.6 Loss Functions and Optimization

	2.6 Matrix Factorizations
	2.6.1 LU Decomposition
	2.6.2 QR Decomposition
	2.6.3 Singular Value Decomposition
	2.6.4 Eigenvalues and Eigenvectors
	2.6.5 Eigenvalues and Eigenvectors in Deep Learning
	2.6.6 Singular Value Decomposition in Deep Learning

	2.7 Real-World Applications and Examples
	2.7.1 Image Processing and Computer Vision
	2.7.2 Natural Language Processing
	2.7.3 Robotics and Autonomous Systems

	2.8 Hands-On Example
	2.9 Common Mistakes and Troubleshooting Tips
	2.9.1 Understanding Vectors
	2.9.2 Vector Operations
	2.9.3 Matrix Operations
	2.9.4 Eigenvalues and Eigenvectors
	2.9.5 Singular Value Decomposition
	2.9.6 Practical Applications and Troubleshooting

	2.10 Review Questions
	2.11 Programming Questions
	2.11.1 Easy
	2.11.2 Medium
	2.11.3 Hard

	3 Multivariate Calculus
	3.1 Introduction
	3.2 Partial Derivatives
	3.2.1 Geometric Interpretation
	3.2.2 Higher-Order Partial Derivatives

	3.3 Partial Derivatives In Deep Learning
	3.4 Gradients
	3.5 Gradient In Deep Learning
	3.5.1 Gradient Descent
	3.5.2 Backpropagation

	3.6 Jacobians
	3.6.1 Jacobian Determinant
	3.6.2 Relationship With the Chain Rule
	3.6.3 Computational Aspects

	3.7 Jacobians In Deep Learning
	3.8 Hessian Matrices
	3.9 Hessian In Deep Learning
	3.10 Real-World Applications
	3.10.1 Autonomous Vehicles
	3.10.2 Healthcare and Medical Imaging
	3.10.3 Robotics and Control Systems
	3.10.4 Natural Language Processing (NLP)
	3.10.5 Image and Video Processing

	3.11 Hands-On Example
	3.12 Common Mistakes and Troubleshooting Tips
	3.12.1 Understanding Partial Derivatives
	3.12.2 Higher-Order Partial Derivatives
	3.12.3 Gradients
	3.12.4 Optimization and Gradient Descent
	3.12.5 Jacobians
	3.12.6 Hessian Matrices

	3.13 Review Questions
	3.14 Programming Questions
	3.14.1 Easy
	3.14.2 Medium
	3.14.3 Hard

	4 Probability Theory and Statistics
	4.1 Introduction
	4.2 Probability Distributions
	4.2.1 Discrete Probability Distributions
	4.2.2 Continuous Probability Distributions
	4.2.2.1 Uniform Distribution (Continuous)
	4.2.2.2 Normal (Gaussian) Distribution
	4.2.2.3 Exponential Distribution
	4.2.2.4 Beta and Gamma Distributions

	4.2.3 Characteristics of Probability Distributions
	4.2.3.1 Mean (Expected Value)
	4.2.3.2 Variance and Standard Deviation
	4.2.3.3 Skewness
	4.2.3.4 Kurtosis
	4.2.3.5 Mode

	4.2.4 Function Representations
	4.2.4.1 Probability Mass Function
	4.2.4.2 Probability Density Function
	4.2.4.3 Cumulative Distribution Function

	4.2.5 Connection Between Overfitting and Underfitting to Probability Distributions
	4.2.6 Connecting BNNs to Probability Distributions
	4.2.6.1 Prior Distribution
	4.2.6.2 Posterior Distribution
	4.2.6.3 Prediction

	4.3 Sampling Methods
	4.3.1 Simple Random Sampling
	4.3.2 Stratified Random Sampling
	4.3.3 Cluster Sampling
	4.3.4 Systematic Sampling
	4.3.5 Quota Sampling (Non-Probability Method)
	4.3.6 Monte Carlo Sampling
	4.3.7 Importance Sampling
	4.3.8 Rejection Sampling
	4.3.9 Markov Chain Monte Carlo
	4.3.10 Gibbs Sampling
	4.3.11 Latin Hypercube Sampling
	4.3.12 Resampling Methods
	4.3.13 Sampling Methods and Overfitting/Underfitting
	4.3.13.1 Overfitting
	4.3.13.2 Underfitting

	4.4 Bayesian Statistics
	4.4.1 Overfitting and Bayesian Statistics
	4.4.2 Underfitting and Bayesian Statistics
	4.4.3 Bayesian Neural Networks

	4.5 Moments In Statistics and Probability Theory
	4.5.1 Moments and BNNs
	4.5.2 Connection Between Moments and Overfitting/Underfitting

	4.6 Real-World Applications and Examples
	4.6.1 Image Recognition and Processing
	4.6.2 Natural Language Processing
	4.6.3 Robotics and Control Systems
	4.6.4 Healthcare and Medical Diagnostics

	4.7 Hands-On Example
	4.7.1 Step 1. Setup and Import Libraries
	4.7.2 Step 2. Generate Synthetic Data
	4.7.3 Step 3. Define the BNN
	4.7.4 Step 4. Train the BNN
	4.7.5 Step 5. Make Predictions and Plot Uncertainty

	4.8 Common Mistakes and Troubleshooting Tips
	4.8.1 Understanding Probability Distributions
	4.8.2 Applying Probability Distributions
	4.8.3 Overfitting and Underfitting
	4.8.4 Bayesian Neural Networks
	4.8.5 Moments in Statistics
	4.8.6 Sampling Methods
	4.8.7 Bayesian Statistics

	4.9 Review Questions
	4.10 Programming Questions
	4.10.1 Easy
	4.10.2 Medium
	4.10.3 Hard

	5 Optimization Theory
	5.1 Introduction
	5.2 Optimization Theory
	5.3 Types of Optimizations
	5.3.1 Linear Optimization
	5.3.2 Non-Linear Optimization
	5.3.3 Integer Optimization
	5.3.4 Convex Optimization
	5.3.5 Combinatorial Optimization
	5.3.6 Gradient Descent
	5.3.7 Stochastic Optimization
	5.3.8 Simplex Method
	5.3.9 Lagrangian Multipliers
	5.3.10 Branch and Bound and Cutting Plane Methods
	5.3.11 Evolutionary Algorithms

	5.4 Global Versus Local Optima
	5.5 Recent Developments In Optimization
	5.6 Optimization Methods In Deep Learning
	5.6.1 Batch Gradient Descent (BGD)
	5.6.2 Stochastic Gradient Descent (SGD)
	5.6.3 Mini-Batch Gradient Descent
	5.6.4 Momentum
	5.6.5 Adagrad (Adaptive Gradient Algorithm)
	5.6.6 Root Mean Square Propagation (RMSprop)
	5.6.7 Adam (Adaptive Moment Estimation)
	5.6.8 AdaMax
	5.6.9 Nadam (Nesterov-Accelerated Adaptive Moment Estimation)
	5.6.10 Learning Rate Annealing Or Decay

	5.7 Real-World Applications and Examples
	5.7.1 Supply Chain Optimization
	5.7.2 Portfolio Optimization in Finance
	5.7.3 Telecommunications Network Design
	5.7.4 Energy Management and Power Grid Optimization
	5.7.5 Transportation and Logistics

	5.8 Hands-On Example
	5.9 Common Mistakes and Troubleshooting Tips In Optimization
	5.9.1 Linear Optimization
	5.9.2 Non-Linear Optimization
	5.9.3 Integer Optimization
	5.9.4 Convex Optimization
	5.9.5 Combinatorial Optimization
	5.9.6 Stochastic Optimization
	5.9.7 Gradient Descent
	5.9.8 Simplex Method
	5.9.9 Lagrangian Multipliers
	5.9.10 B&B and Cutting Plane Methods
	5.9.11 Evolutionary Algorithms

	5.10 Review Questions
	5.11 Programming Questions
	5.11.1 Easy
	5.11.2 Medium
	5.11.3 Hard Problem

	6 Information Theory
	6.1 Introduction
	6.2 Entropy
	6.3 Joint and Conditional Entropy
	6.3.1 Joint Entropy
	6.3.2 Conditional Entropy

	6.4 Information Gain
	6.5 Mutual Information
	6.6 Data Compression
	6.7 Channel Capacity and Shannon’s Theorem
	6.8 Kullback–Leibler Divergence
	6.9 Information Theory In Machine Learning And Deep Learning
	6.9.1 Regularization and Optimization
	6.9.2 Generalization and Overfitting
	6.9.3 Model Interpretability
	6.9.4 Transfer Learning and Domain Adaptation
	6.9.5 Adversarial Attacks and Robustness
	6.9.6 Neural Architecture Search
	6.9.7 Layer-Wise Relevance Propagation

	6.10 Real-World Applications
	6.10.1 Data Compression
	6.10.2 Cryptography
	6.10.3 Telecommunications and Error Correction
	6.10.4 Network Security and Anomaly Detection
	6.10.5 Biological Data Analysis
	6.10.6 Finance and Risk Management

	6.11 Hands-On Example
	6.11.1 Step 1: Import Necessary Libraries
	6.11.2 Step 2: Generate Sample Data
	6.11.3 Step 3: Calculate Entropy
	6.11.4 Step 4: Mutual Information Calculation
	6.11.5 Step 5: Build and Train a Simple Neural Network

	6.12 Common Mistakes and Troubleshooting Tips
	6.12.1 Misinterpreting Entropy
	6.12.2 Incorrect Calculation of Entropy
	6.12.3 Misunderstanding Joint and Conditional Entropies
	6.12.4 Overlooking the Asymmetry of KL Divergence
	6.12.5 Confusing Mutual Information With Correlation
	6.12.6 Ignoring the Basis of Logarithms in Entropy Calculations
	6.12.7 Misapplying Shannon’s Noisy Channel Coding Theorem

	6.13 Review Questions
	6.14 Programming Questions
	6.14.1 Easy
	6.14.2 Medium
	6.14.3 Hard

	7 Graph Theory
	7.1 Introduction
	7.2 Graph Theory For Deep Learning
	7.2.1 Graph
	7.2.1.1 Nodes (Vertices)
	7.2.1.2 Edges (Connections)

	7.2.2 Directed Graph
	7.2.2.1 Directional Edges
	7.2.2.2 Asymmetry
	7.2.2.3 Directed Graph Example

	7.2.3 Undirected Graph
	7.2.3.1 Bidirectional Edges
	7.2.3.2 Symmetry
	7.2.3.3 Undirected Graph Example

	7.2.4 Weighted Graph

	7.3 Graph Neural Networks
	7.4 Why Graphs For Deep Learning?
	7.4.1 Intuitive Representation of Complex Relationships
	7.4.2 Encoding Relational Information
	7.4.3 Flexibility and Versatility
	7.4.4 Efficiency and Scalability With GNNs
	7.4.5 Uncovering Advanced Insights

	7.5 Node and Graph Classification
	7.5.1 Node Classification
	7.5.2 Graph Classification

	7.6 Challenges
	7.6.1 Scalability
	7.6.2 Dynamic Graphs
	7.6.3 Heterogeneous Graphs

	7.7 Other Graph-Based Deep Learning Models
	7.7.1 GraphSAGE (Graph Sample and Aggregation)
	7.7.2 Graph Attention Networks
	7.7.3 ChebNet (Chebyshev Networks)
	7.7.4 Improved Scalability and Efficiency

	7.8 Real-World Applications
	7.8.1 Social Network Analysis
	7.8.2 Recommendation Systems
	7.8.3 Biological Network Analysis
	7.8.4 Transportation and Logistics
	7.8.5 Fraud Detection
	7.8.6 Healthcare and Epidemic Modeling

	7.9 Hands-On Example
	7.9.1 Step 1: Import Required Libraries
	7.9.2 Step 2: Create the Graph
	7.9.3 Step 3: Normalize the Adjacency Matrix
	7.9.4 Step 4: Define Node Features
	7.9.5 Step 5: Define Node Labels
	7.9.6 Step 6: Build the GCN Model
	7.9.7 Step 7: Train the Model
	7.9.8 Step 8: Predict and Visualize

	7.10 Common Mistakes and Troubleshooting Tips
	7.10.1 Improper Node and Edge Representation
	7.10.2 Inadequate Data Preprocessing
	7.10.3 Over-Smoothing in GNNs
	7.10.4 Ignoring Graph Size and Complexity
	7.10.5 Overlooking Edge Weights and Attention Mechanisms
	7.10.6 Insufficient Model Evaluation
	7.10.7 Misapplying Classical Graph Algorithms
	7.10.8 Neglecting Dynamic and Heterogeneous Graphs

	7.11 Review Questions
	7.12 Programming Questions
	7.12.1 Easy
	7.12.2 Medium
	7.12.3 Hard

	8 Differential Geometry
	8.1 Introduction
	8.2 Basics Of Differential Geometry
	8.2.1 Manifolds
	8.2.2 Tangent Space
	8.2.3 Metric Tensor
	8.2.4 Curvature

	8.3 Differential Geometry In Deep Learning
	8.3.1 Loss Landscapes
	8.3.2 Feature Space Analysis
	8.3.3 Neural Network Generalization
	8.3.4 Information Geometry

	8.4 Practical Implications
	8.4.1 Regularization
	8.4.2 Optimization
	8.4.3 Model Interpretability

	8.5 Challenges
	8.5.1 High Dimensionality
	8.5.1.1 Curvature

	8.5.2 Visualization
	8.5.3 Computational Cost
	8.5.4 Theoretical Vs. Practical Gap
	8.5.5 Scalability
	8.5.6 Emerging Insights

	8.6 Real-World Applications
	8.6.1 Autonomous Systems and Robotics
	8.6.2 Medical Image Analysis
	8.6.3 Computer Vision and Image Recognition
	8.6.4 Signal Processing and Communications

	8.7 Hands-On Section
	8.7.1 Step 1: Import Libraries
	8.7.2 Step 2: Set Random Seed for Reproducibility
	8.7.3 Step 3: Apply PCA for Dimensionality Reduction
	8.7.4 Step 4: Plotting All Graphs in One Frame

	8.8 Common Mistakes and Troubleshooting Tips
	8.8.1 Misinterpreting Geometric Concepts
	8.8.2 Visualizing High-Dimensional Spaces
	8.8.3 Ignoring Curvature in Optimization
	8.8.4 Overfitting and Generalization
	8.8.5 Computational Overhead
	8.8.6 Bridging Theory and Practice
	8.8.7 Handling Large-Scale Models

	8.9 Review Questions
	8.10 Programming Questions
	8.10.1 Easy: Implementing Basic Manifold Learning
	8.10.2 Medium: Comparing Manifold Learning Techniques
	8.10.3 Hard: Analyzing Curvature in High-Dimensional Dataset

	9 Topology in Deep Learning
	9.1 Introduction
	9.2 Basic Topology
	9.2.1 Continuous Transformations and Invariance
	9.2.2 Neural Networks and Topological Structure

	9.3 Relation To Convergence of Learning Algorithms
	9.3.1 Depth and Width
	9.3.1.1 Depth (Number of Layers)
	9.3.1.2 Width (Number of Nodes Per Layer)

	9.3.2 Skip Connections
	9.3.3 Recurrent Connections
	9.3.4 Activation Functions

	9.4 Topological Data Analysis In Neural Networks
	9.4.1 Persistent Homology

	9.5 Topological Data Analysis With Deep Learning
	9.5.1 Persistent Homology in Deep Learning
	9.5.2 Betti Numbers in Deep Learning

	9.6 Real-World Applications and Examples
	9.6.1 Biological Network Analysis
	9.6.2 Material Science and Nanotechnology
	9.6.3 Robotics and Autonomous Systems
	9.6.4 Neuroscience and Brain Connectivity
	9.6.5 Social Network Analysis
	9.6.6 Financial Modeling and Risk Assessment

	9.7 Hands-On Example
	9.7.1 Step 1. Install Required Libraries
	9.7.2 Step 2. Generate the Swiss Roll Dataset
	9.7.3 Step 3. Compute the Persistent Homology Using Gudhi
	9.7.4 Step 4. Extract Betti Numbers
	9.7.5 Step 5. Apply T-SNE to Reduce Dimensions
	9.7.6 Step 6. Apply UMAP to Reduce Dimensions
	9.7.7 Step 7. Plotting All Graphs in One Frame

	9.8 Common Mistakes and Troubleshooting Tips
	9.8.1 Misunderstanding Topological Concepts
	9.8.2 Overfitting in Deep Networks
	9.8.3 Ignoring the Impact of Network Architecture
	9.8.4 Visualizing High-Dimensional Data
	9.8.5 Computational Cost and Efficiency
	9.8.6 Integrating TDA With Neural Networks
	9.8.7 Overfitting to Topological Features
	9.8.8 Bridging Theory and Practice

	9.9 Review Questions
	9.10 Programming Questions
	9.10.1 Easy
	9.10.2 Medium
	9.10.3 Hard

	10 Harmonic Analysis for CNNs
	10.1 Introduction
	10.2 Fourier Analysis
	10.2.1 Fundamentals of Fourier Analysis
	10.2.2 Fourier Transform
	10.2.3 Inverse Fourier Transform

	10.3 Wavelets
	10.3.1 Wavelet Transform
	10.3.2 Applications of WT

	10.4 Convolution In The Frequency Domain For CNNs
	10.4.1 Convolution Theorem
	10.4.2 Implication for CNNs

	10.5 Real-World Applications
	10.5.1 Medical Imaging and Diagnostics
	10.5.2 Audio Signal Processing
	10.5.3 Data Compression
	10.5.4 Communications and Signal Transmission
	10.5.5 Cryptography and Security

	10.6 Hands-On Example
	10.6.1 Step 1: Load the Image
	10.6.2 Step 2: Apply FT
	10.6.3 Step 3: Apply Sobel Edge Detection
	10.6.4 Step 4: Display Results
	10.6.5 Step 5: Integrate and Run

	10.7 Common Mistakes and Troubleshooting Tips
	10.7.1 Misinterpreting FT and WT
	10.7.2 Overlooking the Disadvantages of Frequency-Domain Convolution
	10.7.3 Ignoring Precision Issues
	10.7.4 Misapplying WT for Non-Stationary Signals
	10.7.5 Overfitting in Convolutional Neural Networks
	10.7.6 Inefficient Implementation of Convolution Theorem
	10.7.7 Misunderstanding the Convolution Theorem
	10.7.8 Failing to Validate Models

	10.8 Review Questions
	10.9 Programming Questions
	10.9.1 Easy
	10.9.2 Medium
	10.9.3 Hard

	11 Dynamical Systems and Differential Equations for RNNs
	11.1 Introduction
	11.2 Theory Of Dynamical Systems and Differential Equations
	11.2.1 Dynamical Systems
	11.2.1.1 Discrete Dynamical Systems
	11.2.1.2 Continuous Dynamical Systems

	11.2.2 Differential Equations
	11.2.2.1 Ordinary Differential Equations
	11.2.2.2 Partial Differential Equations

	11.3 Understanding The Behavior of RNNs
	11.3.1 Memory and Dynamics
	11.3.2 Explaining Via ODEs
	11.3.3 Training and Dynamics
	11.3.4 Vanishing and Exploding Gradients

	11.4 Dynamical Systems and Differential Equations For Deep Learning
	11.4.1 Lotka–Volterra Equations and Neural Networks

	11.5 Real-World Applications and Examples
	11.5.1 Modeling Epidemics With Differential Equations
	11.5.2 Stability Analysis in Engineering
	11.5.3 Economic Modeling and Forecasting
	11.5.4 Climate Change Projections
	11.5.5 Neuroscience and Brain Dynamics
	11.5.6 Robotics and Autonomous Systems

	11.6 Hands-On Example
	11.6.1 Step 1: Import Libraries
	11.6.2 Step 2: Generate Synthetic Sine Wave Data
	11.6.3 Step 3: Prepare Data for RNN: Format (Batch_size, Timesteps, Features)
	11.6.4 Step 4: Define the RNN Model
	11.6.5 Step 5: Compile the Model
	11.6.6 Step 6: Train the Model
	11.6.7 Step 7: Predict Using the Trained Model
	11.6.8 Step 8: Plot the Results

	11.7 Common Mistakes and Troubleshooting Tips
	11.7.1 Misinterpreting Dynamical Systems Theory
	11.7.2 Overlooking the Importance of Initial Conditions
	11.7.3 Underestimating the Complexity of Training Dynamics
	11.7.4 Neglecting the Vanishing and Exploding Gradient Problem
	11.7.5 Misapplying Differential Equations
	11.7.6 Overcomplicating Models
	11.7.7 Failing to Validate Neural Network Models

	11.8 Review Questions
	11.9 Programming Questions
	11.9.1 Easy
	11.9.2 Medium
	11.9.3 Hard

	12 Quantum Computing
	12.1 Introduction
	12.2 Introduction to Quantum Computing
	12.2.1 Qubits
	12.2.2 Superposition
	12.2.3 Entanglement

	12.3 Quantum Algorithms
	12.3.1 Key Quantum Algorithms
	12.3.2 Quantum Machine Learning Algorithms

	12.4 Integration With Deep Learning
	12.4.1 Quantum Neural Networks (QNNs)
	12.4.2 Hybrid Quantum-Classical Models

	12.5 Applications of Quantum Computing In Deep Learning
	12.5.1 Enhanced Optimization
	12.5.2 Applications in Neural Network Training
	12.5.3 Handling Complex Data
	12.5.4 Processing Complex Structures

	12.6 Challenges and Limitations
	12.6.1 Technical Challenges
	12.6.2 Algorithmic Challenges

	12.7 Real-World Applications
	12.7.1 Cryptography and Cybersecurity
	12.7.2 Drug Discovery and Materials Science
	12.7.3 Financial Modeling
	12.7.4 Artificial Intelligence and Machine Learning
	12.7.5 Climate Modeling and Sustainability
	12.7.6 Healthcare and Personalized Medicine

	12.8 Hands-On Example
	12.9 Common Mistakes and Troubleshooting Tips
	12.9.1 Misunderstanding Superposition and Entanglement
	12.9.2 Overlooking Quantum Decoherence
	12.9.3 Improper Quantum State Initialization
	12.9.4 Neglecting Hybrid System Integration
	12.9.5 Misinterpreting Quantum Results
	12.9.6 Ignoring Hardware Limitations
	12.9.7 Failure to Optimize Qubit Allocation
	12.9.8 Not Using Error Correction

	12.10 Review Questions
	12.11 Programming Questions
	12.11.1 Easy
	12.11.2 Medium
	12.11.3 Hard

	Bibliography
	Index

