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Mathematical Foundations for  
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Mathematical Foundations for Deep Learning bridges the gap between theoretical mathematics and 
practical applications in artificial intelligence (AI). This guide delves into the fundamental mathem-
atical concepts that power modern deep learning, equipping readers with the tools and knowledge 
needed to excel in the rapidly evolving field of artificial intelligence.

Designed for learners at all levels, from beginners to experts, the book makes mathematical 
ideas accessible through clear explanations, real-​world examples, and targeted exercises. Readers 
will master core concepts in linear algebra, calculus, and optimization techniques; understand the 
mechanics of deep learning models; and apply theory to practice using frameworks like TensorFlow 
and PyTorch.

By integrating theory with practical application, Mathematical Foundations for Deep Learning 
prepares you to navigate the complexities of AI confidently. Whether you’re aiming to develop prac-
tical skills for AI projects, advance to emerging trends in deep learning, or lay a strong foundation 
for future studies, this book serves as an indispensable resource for achieving proficiency in the field.

Embark on an enlightening journey that fosters critical thinking and continuous learning. Invest 
in your future with a solid mathematical base, reinforced by case studies and applications that bring 
theory to life, and gain insights into the future of deep learning.
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Preface
Mathematical Foundations for Deep Learning is a guide to the key mathematical principles behind 
modern deep learning techniques. I hope this book brings clarity to these essential concepts in artifi-
cial intelligence (AI), enhancing both your theoretical understanding and practical skills.

In this book, we explore important mathematical areas crucial for deep learning, such as linear 
algebra, calculus, probability theory, and more. Each chapter balances theory with practice, offering 
examples and exercises to strengthen your grasp of the material. We delve into the mathematics that 
power neural networks, optimization algorithms, and various deep learning architectures, aiming to 
connect complex theory with real-​world applications.

The book is organized into 12 chapters, each focusing on a specific area of mathematics as it 
relates to deep learning. We start with foundational concepts to ensure that all readers, regardless of 
their background, have the tools needed to tackle more advanced topics.

Our journey begins with linear algebra and multivariate calculus, the building blocks of deep 
learning models. These chapters lay the groundwork for understanding how data is represented and 
manipulated in neural networks. We then move on to probability theory and optimization, exploring 
how models learn from data and how their performance can be improved.

In later chapters, we introduce subjects like information theory, graph theory, and differential 
geometry, which play important roles in designing and operating deep learning systems. We also 
cover advanced topics like topology, harmonic analysis for convolutional neural networks, and 
dynamical systems for recurrent neural networks, showing how these areas contribute to the latest 
research and applications in AI. Finally, we discuss quantum computing and its potential impact on 
the future of deep learning.

At the core of this book is a detailed look at how these mathematical foundations come together 
in the practical building of deep learning models. By understanding the underlying math, you’ll be 
better equipped to solve complex problems and innovate in the field.

I wrote this book for a wide audience, from students new to deep learning to experienced 
professionals wanting to deepen their understanding of the math behind the models they use. My 
goal is to make the content accessible to everyone, with clear explanations, practical examples, and 
exercises to help you learn and apply what you’ve read.

Thank you for joining me on this journey into the mathematical heart of deep learning. I hope 
this book not only expands your knowledge but also inspires you to push the boundaries of what’s 
possible in AI.

Happy reading!
Mehdi Ghayoumi

Beverly Hills, CA, USA
August 2024
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1	 Introduction

1.1 � INTRODUCTION

Welcome to Mathematical Foundations for Deep Learning, a journey into the core of mathematics 
and its impact on artificial intelligence (AI). Over the past 10 years, deep learning has changed 
industries and how we use technology. This book aims to make these complex ideas easier to 
understand by focusing on the main mathematical principles behind deep learning. Whether 
you’re a computer scientist looking to deepen your knowledge, an artist exploring where cre-
ativity meets technology or just someone who’s curious, this book will show how mathematics is 
the backbone of AI. You’ll learn how abstract concepts turn into real-​world applications through 
clear examples, such as the role of linear algebra in neural networks and the use of calculus 
in optimization algorithms. This chapter gives an overview of the main topics we’ll cover. It 
highlights how these mathematical ideas help build and improve deep learning models, preparing 
you for the detailed exploration ahead.

1.2 � IMPORTANCE OF MATHEMATICS IN DEEP LEARNING

Deep learning is a field that combines many different areas, and mathematics plays a big role in 
it. But why is math so important for deep learning? Simply put, mathematics provides the founda-
tion for everything in deep learning. It helps organize complex information, creates structure from 
random data, and gives meaning to the numbers we work with. If you want to design, understand, 
or improve deep learning algorithms, having a strong grasp of these mathematical ideas is not just 
useful but essential. Mathematics makes it possible to build effective models that can learn from data 
and make accurate predictions.

1.2.1 � Structuring Chaos

Deep learning is about finding meaningful patterns hidden in large amounts of data. However, as 
there’s so much data and it can be quite random, finding these patterns can feel like searching 
for a needle in a haystack. This is where mathematics comes in to turn chaos into something we 
can manage and understand. Mathematical principles, especially linear algebra, provide system-
atic ways to process and represent data. Concepts like vectors, matrices, and tensors are funda-
mental in deep learning. They allow us to represent and manipulate data efficiently. This structured 
approach makes it easier to use computational techniques that speed up data analysis. For example, 
matrix operations let us transform entire datasets into a single, coherent action, greatly simplifying 
the data processing phase. When deep learning algorithms extract insights or patterns from data, 
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2 Mathematical Foundations for Deep Learning

mathematics, particularly statistics and probability, provides the essential tools to measure these 
discoveries. Measures like mean, median, standard deviation, and correlation give us the language to 
describe and assess patterns, turning abstract data into clear insights. Moreover, mathematics plays 
a key role in optimizing deep learning models. Based on calculus, algorithms like gradient descent 
adjust model parameters step by step to minimize errors. This optimization process enables deep 
learning models to learn from data and improve their accuracy over time. Mathematics also offers 
strategies to handle outliers and prevent overfitting. Techniques like regularization help balance a 
model’s complexity, improving its ability to generalize and leading to more reliable predictions in 
real-​world applications.

1.2.2 �I mposing Rules on Randomness

Deep learning often involves dealing with uncertainty, like the random starting weights in neural 
networks. This brings up an important question: How can we use this randomness to improve 
our model’s predictions? Mathematics, with its clear yet flexible rules, offers a structured way to 
handle this uncertainty. A neural network begins by setting initial weights, which greatly affect 
how well it performs. These weights are usually given random values within a specific range, but 
this randomness isn’t without control. Mathematical principles guide the choice of this range and 
how the initial weights are distributed, ensuring they’re set up properly for effective learning. As 
the network trains, it adjusts these weights based on the errors it makes, a process where math-
ematics truly shines. Math provides systematic methods for updating these weights, which is 
crucial for learning effectively from randomness. At the heart of learning in neural networks is 
backpropagation, an algorithm based on the chain rule from calculus. Backpropagation calculates 
the gradient of the loss function with respect to the network’s weights. This gradient shows how to 
update the weights to minimize errors, steadily improving the network’s performance. To put this 
in simple terms, imagine navigating a complex maze without a clear path. Backpropagation acts 
as a guide, giving you step-​by-​step directions on how to adjust your course at each turn. While 
randomness plays a key role in deep learning, the goal is for models to eventually find optimal 
solutions. Mathematics provides the rules and methods that make this convergence happen sys-
tematically and efficiently.

1.2.3 �I nfusing Data with Meaning

In its natural form, data is just a collection of unprocessed facts. Mathematics helps us turn this 
raw data into meaningful information by representing it as mathematical objects like vectors, 
matrices, or higher-​dimensional tensors. This mapping allows us to measure relationships, calcu-
late distances, and find patterns, which are essential steps in deep learning. A key aspect of deep 
learning is how we represent data. Whether we’re dealing with images, text, or sounds, real-​world 
data is often converted into numerical arrays or tensors. This transformation uses the power of 
linear algebra, enabling us to manipulate and analyze data efficiently. By adding structure to 
what might be chaotic information, mathematics makes it easier to manage and understand com-
plex data. Mathematics also helps us quantify relationships between different data points. This 
could involve calculating correlations, finding dependencies, or uncovering hidden patterns using 
techniques like dimensionality reduction. Additionally, mathematical tools allow us to measure 
distances or differences between data points. Methods like Euclidean distance or cosine similarity 
tell us how similar or dissimilar items are. This ability is vital in many deep learning applications, 
such as grouping similar items (clustering), detecting unusual data points (anomaly detection), 
and finding the closest matches in data (nearest-​neighbor searches). By mapping data onto math-
ematical structures, we can identify patterns. For example, Fourier analysis can detect repeating 
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patterns in time-​based data, while convolution operations in convolutional neural networks 
(CNNs) find spatial patterns in images. Recognizing these patterns is fundamental to learning 
from data and making accurate predictions. To bring this idea to life, imagine grouping data points 
based on their similarities. Without mathematical techniques to measure these similarities, effect-
ively clustering data would be nearly impossible.

Figure 1.1 illustrates how various mathematical constructs transform raw data into meaningful 
insights. The first subplot demonstrates the use of principal component analysis (PCA) to reduce 
the dimensionality of data, making it more interpretable and easier to visualize. In the second 
subplot, a heatmap reveals the Euclidean distances between data points, quantifying their dis-
similarities and helping us understand the spatial relationships within the dataset. The third sub-
plot displays a heatmap of cosine similarities, highlighting the degree of similarity between data 
points by focusing on their angular relationships. Finally, the K-​means clustering subplot shows 
how data points are grouped into distinct clusters, revealing underlying patterns and structures in 
the dataset.

1.2.4 �D esigning and Interpreting Algorithms

Mathematical principles act like a compass, helping us choose the right functions, understand the 
effects of our choices, and keep improving existing algorithms. For example, consider how math is 
crucial when selecting activation functions for neural networks. Why are sigmoid functions often 
used? The answer lies in their unique mathematical properties. With their S-​shaped curve, sigmoid 
functions accept any real number as input but always output a value between 0 and 1. This makes 
them perfect for situations where predictions, like probabilities, need to stay within a specific range. 
Understanding the math behind an algorithm also sheds light on how it behaves. For instance, 
knowing that sigmoid functions squeeze extreme input values into a narrow range between 0 and 
1 helps us understand why neural networks using them might face vanishing gradients. This is a 
phenomenon where the gradients become very small, slowing down learning and affecting training 
efficiency. Mathematics is not just foundational for enhancing and creating new algorithms but also 
for understanding current ones.

1.2.5 �I mproving Models

Mathematics is essential for designing and understanding deep learning models, and it plays a 
crucial role in improving their performance. By learning mathematical concepts like overfitting, 
underfitting, and regularization, we can identify issues in our models, optimize their performance, 
and enhance their reliability. Overfitting and underfitting are common challenges in machine 
learning. Understanding these problems is key to fixing weaknesses in our models. Mathematics 
provides us with tools to tackle these issues directly. For example, regularization is a mathemat-
ical technique that improves a model’s ability to generalize by reducing its complexity, helping 
to prevent overfitting. Techniques like L

1
 and L

2
 regularization, each with their own benefits, 

are crucial for simplifying models and making them more effective. Knowing these techniques 
empowers us to choose the best one for our specific needs, further enhancing our model’s per-
formance. Mathematics also plays a vital role in optimizing model parameters. Methods like gra-
dient descent adjust model parameters step by step to minimize errors efficiently. Additionally, 
understanding the bias-​variance trade-​off, a key concept in statistics, helps us balance a model’s 
accuracy on training data (bias) with its ability to perform well on new data (variance). Finding 
the right balance between bias and variance is crucial for building accurate and robust models. By 
applying mathematical insights, we can fine-​tune our models to ensure they perform well both in 
theory and in real-​world situations.
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5Introduction

1.3 � BRIEF OVERVIEW OF DEEP LEARNING

1.3.1 � Simulating Human-​Like Learning

Deep learning takes inspiration from how humans learn, especially through experience. Just like a 
child recognizes shapes, sounds, or faces by seeing them repeatedly, deep learning models process 
vast amounts of data through layers of artificial neural networks (ANNs). These models gradually 
learn to detect patterns, make connections, and develop a deeper understanding of the input data. At 
the core of deep learning is the idea of learning from data. Unlike traditional programming, where 
machines follow specific instructions for every task, deep learning models learn by example. They 
start with raw, unprocessed data and improve their understanding as they process it. This enables 
them to make decisions or predictions without being explicitly programmed for each specific task.

Much like humans, deep learning models improve with experience. They update their parameters 
with each training cycle to reduce prediction errors. The more data they are exposed to, the better 
they perform their tasks. This ongoing process mirrors human learning, where continuous practice 
leads to gradual improvement and mastery. By imitating the way humans learn, deep learning has 
become invaluable in many areas, from image recognition and natural language processing (NLP) 
to self-​driving cars and medical diagnoses. Deep learning models can tackle complex problems that 
were once thought too difficult for artificial intelligence (AI).

1.3.2 �A rtificial Neural Networks

ANNs are the foundation of deep learning and are inspired by the neural networks in the human 
brain. These computational models imitate how the brain processes information but in a much sim-
pler way. ANNs consist of interconnected layers of nodes, or “neurons”, that work together to pro-
cess information and learn patterns from data. An ANN is typically organized into three main layers:

	• Input Layer: This layer receives the raw data that the network will process. Each neuron here 
represents a feature or input variable from your dataset.

	• Hidden Layers: These are the intermediate layers that perform complex transformations on 
the input data. An ANN can have one or more hidden layers, each containing many neurons. 
These neurons are connected to neurons in the previous and next layers through weighted 
connections, similar to synapses in the brain. When a network has multiple hidden layers, it’s 
called a deep neural network.

	• Output Layer: This final layer produces the network’s output, the result of processing the data. 
The number of neurons in this layer depends on how many output variables you need.

Each neuron in an ANN performs a simple operation:

1.	 Receive Inputs: The neuron gets inputs from the neurons in the previous layer. Each input is 
multiplied by a specific weight.

2.	 Calculate Weighted Sum: The neuron sums up all these weighted inputs and adds a bias term.
3.	 Apply Activation Function: The result is passed through an activation function, like the sig-

moid function or ReLU (rectified linear unit). This function introduces nonlinearity into the 
model, allowing the network to learn complex patterns that aren’t just straight lines.

The real strength of ANNs comes from the way neurons and layers are interconnected. During 
training, the network adjusts the weights and biases of each neuron to minimize the difference 
between its predictions and the actual values. This adjustment is done through a process called 
backpropagation, which uses optimization algorithms like gradient descent. Backpropagation 
calculates the gradient of the loss function (which measures the error) with respect to each weight. 
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FIGURE 1.2  (a) Structure of an ANN, (b) neuron operation, and (c) backpropagation and optimization.

 

 
new

genrtpdf



7Introduction

It then updates the weights to reduce this loss. ANNs are powerful because of their layered and 
interconnected structure, and they can model complex patterns and structures in data. They excel 
at finding hidden patterns and subtle relationships that traditional machine learning models might 
miss. This ability has led to major breakthroughs in areas such as computer vision, NLP, and speech 
recognition.

Figure 1.2 illustrates the key components of ANNs. Figure 1.2a depicts the basic structure of 
an ANN, showcasing the input layer, one or more hidden layers, and the output layer. Figure 1.2b 
demonstrates the operation of a single neuron, showing how it processes inputs, applies weights 
and biases, and utilizes an activation function to produce an output. Figure 1.2c visualizes the 
backpropagation process, highlighting how the loss decreases over epochs as the model’s parameters 
are optimized through iterative weight adjustments.

1.3.3 �A pplications of Deep Learning

Deep learning, a major part of AI, has transformed many fields in technology, research, and business 
through its wide-​ranging applications. Its ability to process and learn from large amounts of data 
has led to breakthroughs once thought impossible. In computer vision, deep learning excels at 
image recognition, enabling models to quickly and accurately identify objects, people, and scenes 
in images. This power is behind facial recognition systems, self-​driving cars, and medical imaging. 
For example, deep learning algorithms can detect tumors in medical scans with accuracy similar 
to experienced doctors. In NLP, deep learning has made significant strides. Algorithms can now 
understand and generate human language, allowing for sentiment analysis, language translation, text 
summarization, and question-​answering. These advancements power everyday tools such as voice 
assistants, customer service chatbots, and real-​time translation services, improving communication 
and accessibility worldwide. Beyond recognition and understanding, deep learning fosters creativity 
through generative models like generative adversarial networks (GANs). GANs can produce new 
data that closely resembles their training data, creating realistic images, music, and even art. For 
instance, GANs can generate lifelike human faces of people who do not exist, which has exciting 
applications in entertainment, fashion, and virtual reality. In predictive analytics, deep learning is 
a powerful tool that can analyze vast amounts of data to forecast future events like stock prices, 
customer behavior, disease outbreaks, and natural disasters. Industries such as finance, marketing, 
healthcare, and disaster management use this predictive power to make informed, data-​driven 
decisions with greater confidence. Additionally, reinforcement learning, a subset of deep learning, 
involves models that learn to make decisions by interacting with their environment. This approach 
has achieved remarkable success in game-​playing AI, surpassing human champions in games like 
Go, Chess, and Poker. Reinforcement learning is also applied in robotics, helping robots learn to 
navigate environments and manipulate objects on their own, paving the way for more advanced 
automation and intelligent systems. These applications demonstrate the significant impact deep 
learning has across various fields, driving innovation and enhancing capabilities in many aspects of 
modern life. As deep learning continues to evolve, it holds the promise of unlocking new possibil-
ities and addressing complex challenges that were once beyond our reach.

1.4 � BOOK FEATURES AND STRUCTURE

1.4.1 � Book Features

Math can often feel overwhelming, filled with strange symbols and complex rules, especially when 
you’re new to deep learning. Concepts like vectors and matrices from linear algebra, the tricky 
operations of calculus, and the rules of probability are all deeply connected to deep learning. At first 
glance, these ideas might seem scary, like a wall that’s hard to climb. That’s where this book comes 
in. It aims to guide you through the maze of math by breaking down these abstract concepts and 
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making them easy to grasp. One of our main goals is to uncover the complexity of mathematical 
ideas. Terms like complex numbers, high-​dimensional vectors, and abstract spaces can seem intimi-
dating. The abstract nature of math often makes it hard to see how it applies to real-​life problems, 
leaving many wondering how these theories are useful. This book is dedicated to bridging that gap 
by directly linking mathematical theories to their uses in deep learning. By doing this, abstract ideas 
become practical tools you can use in AI. It’s not just about understanding math; it’s about seeing 
these theories come alive in deep learning. You might think of math and deep learning as completely 
separate fields. Math, with its abstract symbols and strict proofs, often feels very different from the 
hands-​on, algorithm-​focused world of deep learning. However, the connection between them is 
much deeper than it might seem. This book aims to connect these seemingly different areas by cre-
ating clear and practical links between mathematical concepts and deep learning techniques. Each 
math concept is paired with its real-​world application in a deep learning scenario. This approach 
not only applies theoretical knowledge but also shows how to turn abstract formulas into useful 
algorithms. By exploring these connections, you’ll gain deeper insights into deep learning, turning 
it from a mysterious “black box” into a system you can understand and explain. This foundational 
knowledge will help you see how algorithms work, spot potential issues, and find ways to improve 
them. Mastering the math behind deep learning isn’t just about knowing how things work; it’s 
about improving, adapting, and innovating based on a deep understanding of the core principles. 
Understanding deep learning goes beyond just using existing models and tools. It’s about diving 
deep into the algorithms, figuring out how they work, and understanding why they succeed or fail 
in certain situations. Moreover, it’s more than just understanding; it’s about innovation, using your 
new knowledge to build on existing methods and create unique solutions to your challenges. That’s 
why a key goal of this book is to empower you, the reader.

1.4.2 �O verview of Chapters

	• Chapter 1: Introduction: The introductory chapter sets the stage for the book, providing 
an overview of the core topics that will be covered. It emphasizes how these mathematical 
concepts contribute to the development and optimization of deep learning models, preparing 
you for the in-​depth exploration ahead.

	• Chapter 2: Linear Algebra: This chapter delves into the essential elements of linear algebra, 
which form the backbone of many deep learning algorithms. Topics include vectors, matrices, 
matrix operations, eigenvalues, and eigenvectors. Understanding these concepts is vital for 
grasping more advanced techniques, such as matrix factorization and singular value decom-
position, which are critical for neural network computations and data transformations.

	• Chapter 3: Multivariate Calculus: Multivariate calculus is integral to the optimization 
processes in deep learning. This chapter explores derivatives, gradients, partial derivatives, 
and the Hessian matrix. We focus on their applications in neural networks, especially during 
the training phase, where gradient-​based optimization techniques like backpropagation are 
employed to minimize loss functions.

	• Chapter 4: Probability Theory and Statistics: Deep learning models operate under uncer
tainty, making probability and statistics fundamental to their success. This chapter covers 
probability distributions, Bayesian inference, hypothesis testing, and statistical methods that 
help model uncertainty. These tools enable effective learning from data in environments where 
randomness and variability are significant factors.

	• Chapter 5: Optimization Theory: At the heart of deep learning is the challenge of opti
mizing model parameters. This chapter introduces optimization theory, covering both convex 
and nonconvex optimization techniques, gradient descent methods, and advanced optimiza-
tion strategies like stochastic gradient descent, Adam, and root mean squared propagation 
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(RMSprop). These methods ensure that models efficiently converge to the best possible 
performance.

	• Chapter 6: Information Theory: Information theory provides tools for quantifying the infor
mation processed by neural networks. This chapter discusses key concepts such as entropy, 
mutual information, and Kullback–​Leibler divergence (KL divergence), highlighting their 
relevance in model regularization, compression, and understanding information flow through 
networks. Applications in areas like variational autoencoders and information bottleneck 
methods are explored.

	• Chapter 7: Graph Theory: Graph theory has gained importance in deep learning, particu
larly with the development of graph neural networks (GNNs). This chapter introduces the 
fundamentals of graphs, including nodes, edges, adjacency matrices, and graph Laplacians. 
It explores their applications in representing complex relationships in structured data such as 
social networks, molecular structures, and knowledge graphs.

	• Chapter 8: Differential Geometry: Studying high-​dimensional spaces is crucial for deep 
learning models, which often operate in complex, nonlinear environments. This chapter 
introduces the mathematical structures of manifolds and tangent spaces geometry. We demon-
strate how differential geometry enhances our understanding of optimization landscapes and 
generalization properties in deep learning.

	• Chapter 9: Topology in Deep Learning: Topology provides a way to understand the shape 
and structure of data. This chapter introduces topological data analysis (TDA), focusing on 
concepts like persistent homology and Betti numbers. We discuss how these tools are applied 
in deep learning to uncover hidden patterns and structures in data, leading to improved feature 
extraction and data representation techniques.

	• Chapter 10: Harmonic Analysis for CNNs: Harmonic analysis focuses on the frequency 
components of signals and has significant applications in CNNs. This chapter explores 
Fourier transforms, wavelets, and spectral analysis, illustrating how these mathematical 
tools improve feature extraction, signal processing, and understanding of convolution 
operations in CNNs.

	• Chapter 11: Dynamical Systems and Differential Equations for RNNs: Recurrent neural 
networks (RNNs) are designed to handle sequential data, where time-​dependent behavior 
plays a crucial role. This chapter examines the theory of dynamical systems and differential 
equations, explaining how they are used to model temporal dependencies in RNNs.

	• Chapter 12: Quantum Computing: Quantum computing represents the next frontier in com
putational power, with the potential to revolutionize deep learning. This chapter introduces 
quantum principles and quantum algorithms, discussing how quantum computing might be 
leveraged to accelerate and enhance neural network training and inference.

1.4.3 �C hapter’s Structure

Each chapter in this book is thoroughly crafted to provide a complete understanding of fundamental 
mathematical concepts and their relevance to deep learning. To facilitate your learning journey, 
every chapter includes the following sections:

	• Preface: Each chapter begins with a preface that introduces the core concepts to be covered.
	• Chapter Contents: Definitions, Formulas, Examples, and Real-​World Applications: 

The main content delves into essential definitions, formulas, and mathematical frameworks. 
Concepts are explained step by step, accompanied by practical examples to ensure clarity. 
Real-​world applications demonstrate how these principles are applied in deep learning models 
and related fields, making the transition from theory to practice seamless.
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	• Hands-​On Examples: To bridge the gap between theory and practice, each chapter includes 
a hands-​on section with programming examples. These examples allow you to imple-
ment the mathematical concepts in code, gaining practical experience and reinforcing your 
understanding of how these techniques are applied in deep learning frameworks.

	• Common Mistakes and Troubleshooting Tips: Learning complex mathematical concepts 
often involves overcoming challenges. This section highlights frequent mistakes that students 
and practitioners make when applying the material, along with tips for troubleshooting and 
avoiding errors in both theoretical understanding and practical implementation.

	• Review Questions: Review questions are provided to test your understanding of the chapter 
material. These questions challenge your understanding of definitions, formulas, and key 
concepts, allowing you to self-​assess your learning progress.

	• Programming Exercises: To deepen your programming skills, each chapter includes three 
programming problems categorized as easy, medium, and challenging. These exercises are 
directly related to the chapter’s content, providing an opportunity to apply what you’ve 
learned in a practical coding environment. By solving these problems, you will enhance your 
problem-​solving abilities and strengthen your grasp of how mathematics drives deep learning 
algorithms.
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2	 Linear Algebra

2.1 � INTRODUCTION

Linear algebra provides the essential framework for describing vectors, matrices, and tensor 
operations that form the core of neural network computations. Beyond a set of mathematical tools, 
linear algebra is the thread weaving through the fabric of deep learning, enabling us to frame 
problems and devise solutions that are both computationally efficient and conceptually profound. In 
this chapter, we will delve into critical concepts such as vector spaces, matrix decompositions, and 
the operations that empower neural networks to process and learn from vast amounts of data. These 
concepts are not only theoretical foundations but also practical instruments that bring deep learning 
models to life. As you journey through this chapter, you will discover how the principles of linear 
algebra are applied to enable neural networks to learn from data, optimize models, and ultimately 
drive innovation in artificial intelligence.

2.2 � VECTORS, MATRICES, AND TENSOR OPERATIONS

This section will dive into the fundamental concepts of vectors, matrices, tensor operations, linear 
transformations, eigenvalues, eigenvectors, and singular value decomposition (SVD).

2.2.1 �U nderstanding Vectors

2.2.1.1 � What Is a Vector?
A vector is a fundamental mathematical entity that possesses both magnitude (size) and direction. 
You can visualize a vector as an arrow: the length of the arrow represents its magnitude, and the 
arrow’s orientation indicates its direction. This concept is not just theoretical; vectors are crucial in 
numerous real-​world applications, including deep learning, where they are used to represent data 
points, model weights, and activations within neural networks (NNs). Imagine you’re playing a 
video game where your character’s movement is determined by a two-​dimensional (2D) vector. This 
vector tells the character how much to move in the x (horizontal) and y (vertical) directions. For 
example, consider the vector:

	 v =










3

4
.	

This vector instructs the character to move three units to the right (along the x-​axis) and four units  
upward (along the y-​axis). By representing movement in this way, vectors provide a concise and  
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powerful way to encode directional information, which is essential in both physics and computa-
tional fields like deep learning.

Figure 2.1 illustrates a vector represented by a red arrow that starts from the origin (0, 0) and 
points toward the coordinates (3, 4). The length of the arrow indicates the vector’s magnitude, while 
its orientation shows its direction. The magnitude of a vector can be thought of as its “strength” or 
“length.” For the vector v given by:

	 v =










3

4
,	

you can calculate the magnitude using the Pythagorean theorem:

	 v = + = + = + = =v v
x y
2 2 2 23 4 9 16 25 5. 	

Here, ∥∥v∥∥ =​ 5 units. This value represents the direct distance from the origin to the point (3, 4) on 
a 2D plane.

FIGURE 2.1  Vector representation [3, 4].
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2.2.1.2 � Vector Operations
Vectors are fundamental in various fields, and understanding their operations is crucial. Here are 
some essential vector operations with examples.

(a)	 Addition: Adding two vectors involves adding their respective components. Geometrically, 
you place the tail of one vector at the head of the other and then draw a vector from the tail of 
the first to the head of the second. This new vector is the resultant or sum of the two vectors.

Example: Let a and b be defined as follows:

	 a b= [ ] = [ ]1 2 3 4, , .and 	

To add these vectors:
	

c a b= + =  [1, 2] + [3, 4]  = [1 + 3, 2 + 4] = [4, 6].
	

In Figure 2.2, the red arrow represents a, the blue arrow represents b, and the green arrow c 
represents the resultant vector c =​ a +​ b.

(b)	 Scalar Multiplication: Multiplying a vector by a scalar changes its magnitude without chan-
ging its direction unless the scalar is negative, in which case the direction is reversed. To 
scale a vector by a scalar k, multiply each component of the vector by k.

Example: Let v and scalar k be defined as follows:

v =








 =

3

4
2, k   The scaled vector is:

	 v =








 =









2

3

4

6

8
	

In Figure 2.3, the red arrow represents v as (a), and the blue arrow represents the scaled 
vector kv as (3a). It illustrates the concept of vector scaling on a 2D plane. It shows two 
vectors, a and 3a, originating from the origin (0, 0) and extending in the same direction. The 
vector a, with coordinates (2, 1), is marked in red, and its magnitude (or length) is labeled as 
approximately 2.24, calculated as 2 1 52 2+ = . The second vector, 3a, represents a scaled 
version of a by a factor of 3, extending further along the same direction. Its length is shown 
as 6.71, three times the magnitude of a (since 3 3a a= × ). This blue vector demonstrates 
the effect of scalar multiplication on a vector’s length, keeping the direction unchanged 
while proportionally increasing the magnitude.

(c)	 Dot Product: The dot product is an operation that multiplies two vectors to obtain a scalar. It 
helps determine the angle between two vectors and is calculated as the sum of the products 
of their respective components.

Example: Let a and b be defined as follows:

a b=








 =











1

2

3

4
,  
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The dot product of a and b is:

	 a b⋅ = ( )( ) + ( )( ) = + =1 3 2 4 3 8 11.	

The dot product is 11, and this scalar value is crucial in various applications, such as calcu-
lating the cosine of the angle between the two vectors:

	 cos .θ =
⋅a b

a b 	

Figure 2.4 shows two vectors, a (red) and b (blue), with the green vector representing the 
projection of a onto b. This projection shows how much of a aligns with b. The projection 
length depends on the cosine of the angle between a and b, indicating the part of a that points 
in b’s direction. The “Dot Product: 11” label represents the dot product, a measure of this 
alignment.

FIGURE 2.2  Vector addition: a +​ b.
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(d)	 Cross-​Product: The cross-​product between two vectors in three-​dimensional space produces  
another vector that is perpendicular to the plane formed by the two original vectors. The  
cross-​product of vectors a and b produces a third vector, c, that is perpendicular to both a  
and b.

Example: Let a and b be defined as follows:

a b=
















=
















1

0

0

0

1

0

, .

The cross-​product is calculated using the determinant of a matrix composed of unit vectors 
and the components of a and b:

FIGURE 2.3  Scalar multiplication: 3a.
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	 a b a b× =
















= × = − +
x y z

c x y z1 0 0

0 1 0

0 0

1 0

1 0

0 0

1 0

0 1
, then or 	

	 c a b= × =

−

−

−



















a b a b

a b a b

a b a b

y z z y

z x x z

x y y x

	

Substituting the components:

	 c =
( )( ) − ( )( )
( )( ) − ( )( )
( )( ) − ( )( )

















=





0 0 0 1

0 0 1 0

1 1 0 0

0

0

1










	

FIGURE 2.4  Dot product interpretation.
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Figure 2.5 demonstrates the concept of the cross-​product between two vectors, a (red) and b (blue).  
The cross-​product, shown as the green vector labeled a × b, represents a new vector that is perpen-
dicular to both a and b. This perpendicular direction follows the right-​hand rule, meaning if you  
point your right-​hand’s fingers along a and curl them toward b, your thumb points in the direction of  
a × b. The length of the green vector reflects the magnitude of the cross-​product, which corresponds  
to the area of the parallelogram covered by a and b.

2.2.1.3 � Vector Components
In a 2D space, any vector can be decomposed into its components along the axes of the coordinate 
system.

Example: Consider a vector that terminates at the point (3, 4) on a 2D Cartesian plane. This vector 
can be represented by its components along the x and y axes: 



A A i A j
x y

= +ˆ ˆ

Figure 2.6 illustrates the components of the vector 


A on a 2D Cartesian plane, where Ax and Ay  
are unit vectors along the x and y directions, respectively. For vector, 



A, Ax is 3, and Ay is 4. The  

FIGURE 2.5  The cross-​product of vectors a and b.
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red arrow shows the vector 


A ending at point (3, 4). The green arrow represents the x-​component  
extending along the x-​axis to 3, and the blue arrow indicates the y-​component extending along the  
y-​axis to 4.

2.2.1.4 � Magnitude and Direction
The magnitude of a vector 



A in 2D space is given by: 


A = +A A
x y
2 2 . The direction can be found 

using trigonometry, typically with the tangent function:

	 θ =






arctan .

A

A
y

x

	

Example: Consider a vector that terminates at the point (3, 4) on a 2D Cartesian plane. This vector can 
be represented by its components along the x and y axes: 



A A i A j
x y

= +ˆ ˆ, where A
x

= 3 and A
y

= 4 

The magnitude is: 


A = + = + = =3 4 9 16 25 52 2  and the direction is: θ = 





= °arctan .
4

3
53 13 .

FIGURE 2.6  Vector components of A.
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Figure 2.7 shows vector A =​ (3, 4) on a 2D plane. The red arrow represents vector A, starting 
from the origin (0, 0) and pointing to (3, 4). The length, or magnitude, of A, is labeled as 5.00, 
calculated from 3 4 52 2+ = . The angle between A and the x-​axis is marked as 53.13°, which is 

found using tan− 





1 4

3
. The blue and green dashed lines show the projections of A onto the y-​axis at 

(0, 4) and the x-​axis at (3, 0), highlighting its horizontal and vertical components.

2.2.1.5 � Vector Spaces
A vector space is a set of vectors combined with two operations (vector addition and scalar multi-
plication) that satisfy specific properties. The space itself can be in any dimension, and the vectors 
do not necessarily have to be geometric; they can be functions, polynomials, or other mathematical 
entities as long as they follow the defined rules of a vector space. A vector space V over a field F 
(often the field of real numbers) must satisfy the following properties:

FIGURE 2.7  Vector magnitude and direction.
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(a)	 Vector Addition
1.	 Commutativity: u v v u u v+ = + ∈for all , Vs
2.	 Associativity:u v w) u v w u v,+ + = + + ∈( ( ) for all , w V
3.	 Identity: There exists a vector such that v v for all v V0 0∈ + = ∈V
4.	 Additive Inverse: For every thereexists a vector such thatv V v V v v∈ − ∈ + −( ) =, 0

(b)	 Scalar Multiplication
1.	 Distributivity over Vector Addition:

a a a a Vu v u v u v+( ) = + ∈for allscalars and vectors ,

2.	 Distributivity over Scalar Addition:

a b a a a b V+( ) = + ∈u u v ufor allscalars and vectors,  

3.	 Associativity: a b ab a b Vu u u( ) = ( ) ∈for allscalars and vectors,
4.	 Identity: 1⋅ = ∈v v for all where1is the multiplicativeidentityin the fv V , iield F

Figure 2.8 shows different operations on two vectors, v
1
 =​ (1, 2) and v

2
 =​ (2, 3), on a 2D plane. 

The red vector represents v
1
, starting from the origin and pointing to (1, 2), while the blue vector 

represents v
2
, pointing to (2, 3). The pink vector, 3 × v

1
 =​ (3, 6), is a scaled version of v

1
 by a 

factor of 3, extending in the same direction but with three times the length. The green vector, v
1
 

+​ v
2
 =​ (3, 5), shows the result of adding v

1
 and v

2
 together, combining their directions to reach 

the point (3, 5). Finally, the cyan vector, −v
1
 =​ (−1, −2), is v

1
 reversed in direction, pointing to 

(−1, −2).

2.2.3 �V ector Relevance in the Context of Deep Learning

2.2.3.1 � Data Representation
(a)	 Feature Vectors: In machine learning and deep learning, data is typically represented as 

vectors, where each component (or dimension) of the vector corresponds to a specific fea-
ture of the data. For instance, consider an image from the MNIST dataset, which contains 
images of handwritten digits, each with a resolution of 28 × 28 pixels. This image can be 
flattened into a feature vector with 784 dimensions (since 28 × 28 =​ 784). Also, each dimen-
sion in this vector represents the intensity of a specific pixel, ranging from 0 (black) to 255 
(white). For example, a pixel value of 0 represents a completely black pixel, and a value of 
255 represents a fully white pixel. This representation transforms the image into a manage-
able vector format for machine learning models to process. Suppose we have a 3 × 3 image 
for simplicity, with the following pixel intensity values:

255 128 0

64 255 32

0 128 64

















Flattening this 3 × 3 image into a vector results in a nine-​dimensional feature vector:

	 [255, 128, 0, 64, 255, 32, 0, 128, 64]	

This flattened vector can now be used as input to a machine learning model.
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(b)	 Word Embeddings: In natural language processing (NLP), words or phrases are mapped to  
vectors of real numbers, known as word embeddings. These embeddings place words in a  
high-​dimensional vector space, where the distance between words reflects their semantic  
relationships. For example, word embeddings might position “king” and “queen” close  
to each other because of their similar meanings, while “apple” and “banana” might be  
positioned close due to their shared category as fruits. Consider two words, “king” and  
“queen,” represented by three-​dimensional embeddings as follows: “king” =​ [0.8, 0.2, 0.7]  
and “queen” =​ [0.75, 0.3, 0.65]. The values for “king” and “queen” are just examples of  
values that illustrate how word embeddings work. For example, “king” and “queen” have  
similar vectors because they share common features like royalty, but small differences in  
their numbers capture distinctions like gender. In practice, the actual numbers would come  
from a trained model like Word2Vec, based on analyzing large text corpora. To measure their  
similarity, we can compute the cosine similarity between the two vectors:

cosine similarity
king queen

king queen
=

⋅
=

×( ) + ×( ) +0 8 0 75 0 2 0 3. . . . 00 7 0 65

0 8 0 2 0 7 0 75 0 3 0 652 2 2 2 2 2

. .

. . . . . .

×( )
+ + × + +

FIGURE 2.8  Vector operations in 2.
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cosine similarity = ≈
1 115

1 1215
0 9942

.

.
. .

The resulting value (0.994 and close to 1) indicates a strong similarity between “king” and “queen,” 
reflecting their semantic connection.

2.2.3.2 � Neural Network Parameters
The parameters of NNs, specifically the weights and biases, are organized as vectors, matrices, or 
higher-​dimensional tensors depending on the structure of the network. These parameters are essen-
tial in controlling how the network processes and transforms input data. When the network receives 
an input in the form of a feature vector, it performs matrix–​vector multiplications using the weights 
and biases at each layer. The result is then passed through activation functions, such as the ReLU 
(Rectified Linear Unit) or sigmoid function, to introduce non-​linearity. This step-​by-​step process 
transforms the input data, enabling the network to learn complex patterns and generate the desired 
output. Let’s consider a simple NN layer with 3 input features and 2 output neurons. The input fea-
ture vector is:

	 x =​ [1.0, 0.5, –​0.2]	

The weight matrix for this layer is a 2 × 3 matrix, where each row corresponds to the weights 
connected to a single output neuron:

	 W =
−

−










0 2 0 5 1 0

0 3 0 8 0 5

. . .

. . .
.	

The bias vector for the two output neurons is:

	 b =​ [0.1, –​0.1]	

To calculate the output, we perform matrix–​vector multiplication and add the bias:

	 z Wx b= + =
−

−










−

















+
−

0 2 0 5 1 0

0 3 0 8 0 5

1 0

0 5

0 2

0 1. . .

. . .

.

.

.

.

00 1.
.









 	

Performing the matrix multiplication:

	

z =
×( ) + − ×( ) + × −( )

− ×( ) + ×( ) + ×
0 2 1 0 0 5 0 5 1 0 0 2

0 3 1 0 0 8 0 5 0 5

. . . . . .

. . . . . −−( )








 +

−








 =

− −
− + −









0 2

0 1

0 1

0 2 0 25 0 2

0 3 0 4 0 1.

.

.

. . .

. . .
++

−










=
− +

−








 =

−
−











0 1

0 1

0 25 0 1

0 0 0 1

0 15

0 1

.

.

. .

. .

.

.
.

	

Thus, the output of this layer before applying the activation function is [−0.15, −0.1]. If we apply a 
ReLU activation function (which outputs 0 for negative values), the final output will be [0, 0].

2.2.3.3 � Activation Functions and Layers
In an NN, the output from each layer, known as the activations, is represented as a vector. These 
activations are computed by first multiplying the input vector by the layer’s weights, adding the 
biases, and then applying an activation function to introduce non-​linearity. The activation function 
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transforms the output in such a way that the network can model complex relationships within the 
data. The resulting activation vector from one layer serves as the input to the next layer, allowing 
the network to progressively learn more intricate data representations. Consider an NN layer with a 
single input value x =​ 1.0, a weight w =​ 0.5, and a bias b =​ 0.2. The layer applies the ReLU activation 
function, which outputs the input value if it is positive and returns 0 otherwise.

Step 1: Compute the linear combination of input, weight, and bias:

	 z wx b= + = ×( ) + = + =0 5 1 0 0 2 0 5 0 2 0 7. . . . . . 	

Step 2: Apply the ReLU activation function:

ReLU z z( ) = = =max( , ) max( , . ) . .0 0 0 7 0 7

In this example, the activation output is 0.7, which becomes the input to the next layer. If we used a 
different activation function, like the sigmoid function, the output would have been:

	 Sigmoid z
e ez

( ) =
+

=
+

≈
− −

1

1

1

1
0 668

0 7.
. .	

By applying different activation functions, the network can handle various kinds of data patterns, 
enabling it to learn more complex representations as it passes data through multiple layers.

2.2.3.4 � Dot Product in Neural Network
The dot product is a core mathematical operation in NNs, playing a critical role in how information is 
processed and propagated through layers. When an input vector is passed into a layer, it is multiplied 
by the weight matrix of that layer. This multiplication involves calculating the dot product between the 
input vector and each column (or row, depending on the network’s architecture) of the weight matrix. 
The result is a transformed output that is passed on to the next layer, making the dot product essential for 
updating the network’s activations and learning patterns from the data. Let us take a simple example of an 
NN with an input vector x =​ [2, 3] and a weight matrix W for a layer with two neurons:

	 W =










0 1 0 4

0 2 0 5

. .

. .
.	

To calculate the dot product, we multiply the input vector by the weight matrix:

	 z W x= ⋅ =








 ⋅











0 1 0 4

0 2 0 5

2

3

. .

. .
.	

This results in:

	 z =
×( ) + ×( )
×( ) + ×( )









 =

+
+










0 1 2 0 4 3

0 2 2 0 5 3

0 2 1 2

0 4 1 5

. .

. .

. .

. .  =










1 4

1 9

.

.
.	

In this example, the dot product produces a new vector [1.4, 1.9], which serves as the output of this 
layer before applying any activation functions. This process enables the network to combine the 
input data with the learned weights, transforming the input into a new representation that is then 
passed to the next layer for further processing.
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2.2.3.5 � Gradient Descent and Backpropagation
A gradient is a vector that contains the partial derivatives of the loss function with respect to each 
parameter of the network (weights and biases). During training, the gradient of the loss function 
is computed with respect to these parameters, providing insights into how the loss changes as the 
parameters are adjusted. The parameters are then updated by moving in the opposite direction of the 
gradient, a method known as gradient descent. This iterative process helps the network reduce loss 
and improves its performance over time. The backpropagation algorithm is used to efficiently com-
pute the gradients. It works by applying the chain rule of calculus to propagate the error backward 
through the network, layer by layer, calculating the gradient of the loss function with respect to each 
parameter. By updating the parameters step-​by-​step, backpropagation enables the network to learn 
from data and improve its accuracy. Suppose we have a simple NN with one parameter (weight) 
w =​ 2.0 and a loss function L w w( ) = −( )5 2. The goal is to minimize the loss using gradient descent.

Step 1: Compute the gradient of the loss function with respect to w:

	
∂ ( )

∂
= −( )L w

w
w2 5 .	

Step 2: Update the parameter using gradient descent. Let the learning rate be α =​ 0.1:

	 w w
L w

wnew old
= − ×

∂ ( )
∂

α .	

	 w
new

= − × −( ) = − × −( ) = + =2 0 0 1 2 2 0 5 2 0 0 1 2 3 2 0 0 6 2 6. . . . . . . . .	

Step 3: Repeat the process. After the first update, the new weight is w =​ 2.6, which brings the 
loss function closer to its minimum. Over multiple iterations, the weight will converge toward the 
optimal value of w =​ 5, minimizing the loss.

2.2.3.6 � Batch Processing
Learning models, particularly in machine learning and deep learning, often process data in batches 
to accelerate training and make more efficient use of computational resources. When handling a 
batch of data, each input, activation, gradient, and other intermediate values are represented as 
matrices or higher-​dimensional tensors. This extends the concept of single input vectors to multiple 
dimensions, allowing the model to process multiple examples simultaneously. By doing so, the 
model can leverage efficient computation and parallel processing, speeding up training and making 
better use of available hardware, such as GPUs. Suppose we are training an NN with a batch size 
of 3, and each input is a vector of 4 features. Instead of processing each input separately, the model 
processes the batch as a whole by organizing the data into a matrix:

	 X =














x x x x

x x x x

x x x x

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

, , , ,

, , , ,

, , , ,






=
















1 0 2 0 3 0 4 0

5 0 6 0 7 0 8 0

9 0 10 0 11 0 12 0

. . . .

. . . .

. . . .

	

Here, each row represents a single input vector, and the network processes all three input vectors in 
parallel. The same applies to activations and gradients, which are now computed for the entire batch 
in one step, making the training process much faster compared to handling one input at a time. In 
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addition to speeding up training, batch processing helps stabilize learning by averaging gradients 
across multiple examples, which reduces the noise in parameter updates. This is particularly useful 
in stochastic gradient descent (SGD), where updating the model based on a single example can lead 
to noisy and inefficient convergence.

2.2.3.7 � Convolutional Neural Networks
In convolutional neural networks (CNNs), filters (also known as kernels) are small-​weight matrices 
that slide over the input data, such as images, to extract important local features. The convolution 
process involves taking the dot product between the filter and small patches of the input data at 
each position. This operation produces a feature map, which highlights the presence of specific 
patterns in the data, such as edges, textures, or corners. By detecting local patterns, CNNs are highly 
effective for tasks like image recognition, where spatial relationships between pixels are crucial for 
understanding the content. Consider a 3 × 3 filter applied to a 5 × 5 grayscale image. The filter is:

	 F =
−
−
−

















1 0 1

1 0 1

1 0 1

.	

The input image is:

	 I =




















255 255 255 0 0

255 255 255 0 0

255 255 255 0 0

0 0 0 0 0

0 0 0 0 0





.	

Step 1: Apply the filter at the top-​left corner of the image. The dot product between the filter and 
the corresponding 3 × 3 patch of the image is:

1 255 0 255 1 255 1 255 0 255 1 255
1 255

×( ) + ×( ) + − ×( ) + ×( ) + ×( ) + − ×( )
+ ×( ) + 00 255 1 255 0×( ) + − ×( ) =

Slide the filter one step to the right (position (1, 2)):

	

1 255 0 0 1 0 1 255 0 0 1 0
1

×( ) + ×( ) + − ×( ) + ×( ) + ×( ) + − ×( )
+               ××( ) + ×( ) + − ×( ) =255 0 0 1 0 765 	

Slide the filter one step to the right again (position (1, 3)):

	

1 255 0 0 1 0 1 255 0 0 1 0 1 255×( ) + ×( ) + − ×( ) + ×( ) + ×( ) + − ×( ) + ×( )
                              + ×( ) + − ×( ) =0 0 1 0 765. 	

Move down to the second row (position (2, 1)):

	

1 255 0 255 1 255 1 255 0 255×( ) + ×( ) + − ×( ) + ×( ) + ×( )
+ −                11 255 1 0 0 0 1 0 0×( ) + ×( ) + ×( ) + − ×( ) = 	
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Step 2: Slide the filter to the right by one pixel and repeat the process. After sliding the filter over 
all positions of the image, we get a 3 × 3 feature map:

F
map

=
















0 765 765

0 765 765

0 0 0

.

This feature map highlights the edges or transitions in the original image where the filter detects 
changes, specifically horizontal edges, due to the structure of the filter.

2.3 � MATRICES

2.3.1 �W hat Is a Matrix?

A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. 
Matrices are denoted by capital letters (e.g., A, B, C) and are often used in systems of linear 
equations, computer graphics, statistics, and many other areas.

Example: Let us delve into the basics of matrices. Imagine you have a table of numbers where each 
cell contains a value. This table can be thought of as a matrix. For instance:

	 A =














1 2 3

4 5 6

7 8 9

.	

2.3.2 �D imensions

The size or dimension of a matrix is defined by the number of rows and columns it contains. A matrix 
with m rows and n columns is called a matrix, often read as “m by n.”

Example: Consider a matrix B:

	 B =














1 2

3 4

5 6

,	

where B is a matrix which has three rows and two columns.

2.3.3 �T ypes of Matrices

2.3.3.1  Row Matrix
A matrix with only one row.

Example: R = ( )1 2 3 .
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2.3.3.2  Column Matrix
A matrix with only one column.

Example: C =














1

2

3

2.3.3.3  Square Matrix
A matrix with the same number of rows and columns.

Example: S =






1 2

3 4

2.3.3.4  Diagonal Matrix
A square matrix where all elements outside the main diagonal are zero.

Example: D =














1 0 0

0 2 0

0 0 3

2.3.3.5  Identity Matrix (or Unit Matrix)
A diagonal matrix where all diagonal elements are 1.

Example: I =














1 0 0

0 1 0

0 0 1

2.3.3.6  Zero Matrix
All elements are zero.

Example: O =






0 0

0 0

2.3.3.7  Symmetric Matrix
AT =​ A where AT is the transpose of A.

Example: A AT=












 =















1 2 3

2 4 5

3 5 6

1 2 3

2 4 5

3 5 6

,

2.3.3.8  Skew-​Symmetric Matrix
A skew-​symmetric matrix is a square matrix A that satisfies A AT = − , meaning each element 
a a

ij ij
= −  and all diagonal elements are zero.

Example: A AT=
− −

−












 = −

− −















0 2 3

2 0 5

3 5 0

0 2 3

2 0 5

3 5 0

,
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2.3.4 �M atrix Operations

2.3.4.1  Addition and Subtraction
Matrices can be added or subtracted element-​wise if they have the exact dimensions.

Example:

	 Let and: A B=






=






1 2

3 4

2 0

1 3
	

	 Addition : A B+ =
+ +
+ +







=






1 2 2 0

3 1 4 3

3 2

4 7
	

	 Subtraction : .A B− =
− −
− −







=
−





1 2 2 0

3 1 4 3

1 2

2 1
	

2.3.4.2  Scalar Multiplication
Every matrix element is multiplied by the scalar.

Example:

	 Let If then: . ,A k k A=






= ⋅ = ⋅






=
⋅ ⋅
⋅ ⋅




1 2

3 4
3 3

1 2

3 4

3 1 3 2

3 3 3 4



=






3 6

9 12
.	

2.3.4.3  Matrix Multiplication
For two matrices to be multiplied, the number of columns of the first matrix must equal the number 
of rows of the second matrix. The resulting matrix has the number of rows of the first matrix and the 
number of columns of the second matrix.

Example:

	 Let and: ,A B=






=






1 2

3 4

2 0

1 3
	

	 C A B= ⋅ =






⋅






=
⋅ + ⋅( ) ⋅ + ⋅( )
⋅ + ⋅( ) ⋅

1 2

3 4

2 0

1 3

1 2 2 1 1 0 2 3

3 2 4 1 3 0 ++ ⋅( )






=

+ +
+ +







=




4 3

2 2 0 6

6 4 0 12

4 6

10 12
.	

2.3.4.4  Determinant
For square matrices, the determinant is a scalar value representing the volume scaling factor of the 
transformation the matrix represents.

Example:

	 Let : , det( ) .A A=






= = ⋅( ) − ⋅( ) = − = −
1 2

3 4

1 2

3 4
1 4 2 3 4 6 2 	
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2.3.4.5  Transpose
Reflects the matrix over its main diagonal.

Example:

	 Let : , .A AT=






=














1 2 3

4 5 6

1 4

2 5

3 6

	

2.3.4.6  Inverse
For some square matrices, the inverse exists such that when the matrix is multiplied by its inverse, 
the result is the identity matrix.

Example:

	 Let
’

: ,
det( )

, det( )A A
A

d b

c a
A=







=
−

−






= ⋅( ) − ⋅−
1 2

3 4

1
1 4 2 31 (( ) = − = −4 6 2,	

	 A A A− −=
−

−
−







=
−

−






⋅ =



1 11

2

4 2

3 1

2 1

1 5 0 5

1 2

3 4. .
and




⋅
−

−






=






2 1

1 5 0 5

1 0

0 1. .
.	

2.3.5 �A pplications in Linear Algebra

2.3.5.1  System of Linear Equations
Matrices can be used to represent and solve systems of linear equations. In a system of linear 
equations, the coefficients of the variables can be arranged in a matrix, and the equations can be 
solved using matrix operations.

Example:

Consider
x y
x y
+ =
+ =





2 5

3 4 6
,

and it can be written in this form

1 2

3 4

5

6













=






x
y

.

Let and: , ,A X
x

y
B=







=






=






1 2

3 4

5

6

Then we have, :

A X B⋅ = .

Now for calculating X, we have:

X A B= ⋅−1 ,

and for calculating :A−1
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det( ) ,A = ⋅( ) − ⋅( ) = − = −1 4 2 3 4 6 2  and A− =
−

−
−







=
−

−






1 1

2

4 2

3 1

2 1

1 5 0 5. .

and now we have and then we can calculate theA B X−1 , :

X =
−

−












=
− ⋅( ) + ⋅( )
⋅( ) + − ⋅( )




2 1

1 5 0 5

5

6

2 5 1 6

1 5 5 0 5 6. . . .




=

− +
−







=
−





10 6

7 5 3

4

4 5. .
,

then the solution is:

x y= − =4 4 5, . .

2.3.5.2  Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors are fundamental in understanding the properties of linear transform-
ations. For a square matrix A, an eigenvector v and eigenvalue λ satisfy the equation:

	 Av v= λ 	

2.3.5.3  Transformations
Matrices perform linear transformations in geometry and computer graphics, such as scaling, rota-
tion, and translation.

Example:

	• Scaling: S =​ 
s

s
x

y

0

0








	• Rotation: R =​ 
cos sin

sin cos

θ θ
θ θ

−





	• Translation: This is typically handled in homogeneous coordinates, involving an additional 
dimension for translation vectors. In homogeneous coordinates, a 2D point (x, y) becomes 

(x, y, 1), allowing translation by a vector(t
x
, t

y
) using the matrix

1 0

0 1

0 0 1

t

t
x

y

















 . This matrix is 

applied to the point (x, y, 1) to produce the translated point (x′, y′):

	

′
′

















=

































x

y

t

t

x

y
x

y

1

1 0

0 1

0 0 1 1

,	

where x′ =​ x +​ tx and y′ =​ y +​ ty.

2.3.6 �M atrices in Deep Learning

Matrices are fundamental in deep learning, serving as the backbone for data representation, network 
parameters, and essential operations. Let us dive into their importance in various aspects of deep 
learning.
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2.3.6.1 � Data Representation
(a)	 Input Data: In deep learning, data is often structured and represented in matrix form, particu-

larly for tasks like image processing. For example, a grayscale image is typically represented 
as a 2D matrix where each element corresponds to the pixel intensity. A 28 × 28 pixel gray-
scale image from the MNIST dataset can be represented as a 28 × 28 matrix, with each entry 
holding a value between 0 (black) and 255 (white). This matrix representation allows the 
model to easily interpret and process the image data by performing matrix operations like 
convolutions or transformations. Consider a 3 × 3 grayscale image with the following pixel 
intensities:

	 I =
















100 150 200

50 100 150

0 50 100

 	  

Here, each element of the matrix represents the intensity of a pixel. This matrix can be fed 
into the deep learning model for further processing.

(b)	 Batch Processing: When processing multiple samples at once, deep learning models stack 
the input data into a larger matrix or tensor. Each row in this matrix represents a different 
sample from the batch. For example, if we are processing 5 grayscale images of 28 × 28 
pixels, the data would be represented as a 3D tensor of shape (5, 28, 28), where 5 represents 
the batch size, and 28 × 28 represents the dimensions of each image. Batch processing allows 
for more efficient computation and faster training, as multiple samples are processed in par-
allel. Suppose we have a batch of 3 images, each represented by a 2 × 2 matrix:

	 I I I
1 2 3

100 150

50 100

200 250

150 200

50 75

25 50
=









 =









 =







, ,


	

Stacking these images forms a 3D tensor of shape (3, 2, 2):

	 Batch =
















=



















I
I
I

1

2

3

100 150

50 100

200 250

150 200
, 



















,

50 75

25 50
	

This format allows deep learning models to process multiple images simultaneously, improving 
computational efficiency and reducing training time.

2.3.6.2 � Parameters of the Network
(a)	 Weights: In an NN, the weights connecting two layers are represented as a matrix. Each 

element of this matrix corresponds to a connection between a neuron in the first layer and a 
neuron in the subsequent layer. For example, if the first layer has n neurons and the second 
layer has m neurons, the weight matrix will have dimensions m × n. These weights are 
learned during training, as they define how the input data is transformed and passed through 
the network. Consider an NN with 3 input neurons and 2 output neurons. The weights 
between the input and output layers are represented by a 2 × 3 matrix:

	 W =










0 1 0 2 0 3

0 4 0 5 0 6

. . .

. . .
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		 Here, the value 0.1 connects the first input neuron to the first output neuron, 0.2 connects 
the second input neuron to the first output neuron, and so on. These weights determine how 
much influence each input has on the outputs.

(b)	 Biases: Biases are typically represented as a vector, with each element corresponding to a 
neuron in the output layer. Bias values allow the network to shift the activation function and 
provide additional flexibility in learning. In the case of batch processing, bias values are 
often broadcast across the entire batch during computation, meaning the same bias is applied 
to each example in the batch. The bias vector is added to the result of the matrix multipli-
cation between the input data and the weight matrix, ensuring that each output neuron has 
a corresponding bias term. For the previous example with 2 output neurons, the bias vector 
might look like this:

	 b =










0 1

0 2

.

.
.	

If we are processing a batch of three input samples, each input will be multiplied by the 
weight matrix, and the same bias vector will be added to the result. For instance, given an 
input vector x =​ [1, 0, −1], the output calculation would be:

	 z W x b= ⋅ + =








 ⋅

−

















+





0 1 0 2 0 3

0 4 0 5 0 6

1

0

1

0 1

0 2

. . .

. . .

.

. 
 =

− +
− +









 =

−









0 1 0 3 0 1

0 4 0 6 0 2

0 1

0 0

. . .

. . .

.

.
	

2.3.6.3 � Operations in Layers
(a)	 Matrix Multiplication: In fully connected (dense) layers of an NN, matrix multiplication 

is the fundamental operation. The input data, represented as a matrix, is multiplied by the 
weight matrix to produce the output, which is then shifted by adding the bias vector. This 
operation transforms the input data and propagates it to the next layer. The matrix multi-
plication allows the network to combine features from the input data based on the learned 

weights. Suppose we have an input vector x =​ [1, 2], a weight matrix W =










0 5 0 1

0 3 0 7

. .

. .
, and a 

bias vector b =​ [0.2, 0.3]. The output of this fully connected layer is computed as:

	 z W x b= ⋅ + =








 ⋅









 +









 =

× +0 5 0 1

0 3 0 7

1

2

0 2

0 3

0 5 1 0 1. .

. .

.

.

. . ××
× + ×









 +









 =









 +










2

0 3 1 0 7 2

0 2

0 3

0 7

1 7

0 2

0 3. .

.

.

.

.

.

.  =










0 9

2 0

.

.
	

(b)	 Convolution: In convolutional layers, commonly used in CNNs, the input matrix (or tensor, 
for color images) is convolved with a filter (or kernel) matrix to produce feature maps. The 
filter slides across the input, and at each position, a dot product is computed between the 
filter and the input patch. This operation allows CNNs to detect local patterns, such as edges 
or textures, in the input data. Consider a 3 × 3 filter applied to a 4 × 4 input image:

	 I F=


















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The convolution operation slides the filter over the input, performing a dot product at each 
position. For example, when the filter is applied to the top-​left corner (the first 3 × 3 patch), 
the result is:

	

1 1 0 0 2 1 0 1 1 0 0 1 1 1 2 0 1 1
1

×( ) + ×( ) + × −( ) + ×( ) + ×( ) + × −( ) + ×( ) + ×( ) + × −( )
= ++ − + + + + + − = −0 2 0 0 0 1 0 1 1 	

Sliding the filter over the rest of the input produces a feature map that highlights specific patterns 
in the image. This convolution process enables CNNs to focus on local features in the data and is 
crucial for tasks like image recognition.

2.3.6.4 � Activation Functions
After matrix multiplication in a layer, the resulting matrix is often passed through an activation 
function element-​wise, such as ReLU, sigmoid, or tanh.

(a)	 ReLU: Returns x if x > 0; otherwise, it returns 0. It is commonly used in CNNs and deep 
feedforward networks.

(b)	 Sigmoid: Squeezes the output between 0 and 1. It is helpful in early NNs but less common 
due to limitations like vanishing gradients.

(c)	 Tanh (Hyperbolic Tangent): Output values between –​1 and 1. Similar to sigmoid but 
zero-​centered.

2.3.6.5 � Backpropagation
(a)	 Gradient Matrices: In the process of training an NN, backpropagation computes the gradients 

(partial derivatives) of the loss function with respect to each network parameter, including 
weights and biases. These gradients are represented as matrices, where each element cor-
responds to the partial derivative of the loss with respect to a specific weight. The gra-
dient matrix indicates how much the loss function would change if a small change were 
made to the corresponding weights. These gradients are crucial for updating the parameters 
to minimize the loss and improve model performance. Suppose we have a weight matrix 

W =










0 5 0 1

0 3 0 7

. .

. .
, and during backpropagation, the gradient matrix with respect to the loss is 

computed as:G =
−









0 02 0 01

0 03 0 04

. .

. .
. This gradient matrix informs us how the loss will change 

based on small adjustments to each corresponding weight.
(b)	 Weight Update: Once the gradient matrix is calculated, the weights are updated to reduce the 

loss by moving in the opposite direction of the gradient. This process involves subtracting 
a fraction of the gradient matrix from the current weight matrix. The fraction is determined 
by the learning rate, a hyperparameter that controls how large the weight updates should be. 
Let’s assume a learning rate α =​ 0.1. The updated weight matrix W

new
 is computed as:

W W G
new

= − ⋅ =








 − ⋅

−









=

α
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. .

. .
.

. .

. .
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.

− +
− −









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77 0 696.
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







After updating, the weight matrix is slightly adjusted in a way that reduces the loss. This 
iterative process of calculating gradients and updating weights continues until the model 
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converges to an optimal set of weights, minimizing the loss function. Backpropagation 
ensures that each weight and bias in the network is gradually adjusted to improve perform-
ance, allowing the network to learn complex patterns from the data.

2.3.6.6 � Regularization
(a)	 L

2
 Regularization: It, also known as weight decay, adds a penalty to the loss function for 

large weights, discouraging the model from relying too heavily on any particular parameter. 
This penalty helps prevent overfitting by encouraging the network to keep the weights small, 
making the model simpler and more generalizable. The loss function with L2 regularization 
is given by:

Loss Loss
L2 original

= + ∑
λ
2

2w   

		 where Loss
original

 is the original loss (e.g., mean squared error (MSE)), w represents the 
weights, and λ is the regularization coefficient. A larger λ increases the penalty for larger 
weights, thus enforcing stronger regularization. Consider a simple network with two weights, 
w1=​0.5 and w2=​0.8, and an original loss of 1.0. If the regularization coefficient λ =​ 0.1, the L2 
regularized loss is:

Loss
L2

= + × +( ) = + × +( ) = + ×1 0
0 1

2
0 5 0 8 1 0 0 05 0 25 0 64 1 0 0 052 2.

.
. . . . . . . . 00 89

1 0 0 0445 1 0445

.

. . .= + =

The additional term penalizes large weights, encouraging the model to learn simpler patterns.
(b)	 Dropout: Dropout is a regularization technique used to prevent overfitting by randomly 

“dropping out” or turning off neurons during each forward and backward pass with a prob-
ability p. During training, at each iteration, a fraction of neurons (typically p =​ 0.5) are set to 
zero, which forces the network to rely on multiple pathways for learning. This helps make the 
network more robust and prevents neurons from co-​adapting too strongly to specific features. 
Suppose we have a layer with four neurons and the following activations during training:

	 a = [ ]0 9 0 8 0 4 0 7. , . , . , . 	

With a dropout probability of p =​ 0.5, two neurons might randomly be dropped, resulting in:

	 a
dropout

= [ ]0 9 0 0 4 0. , , . , .	

The network then continues training with these modified activations. At test time, dropout 
is turned off, but the output is scaled by a factor of 1 − p to account for the dropped neurons 
during training, making the network’s predictions more robust. Both L2 regularization and 
dropout are essential techniques for preventing overfitting and ensuring that NNs generalize 
well to unseen data.

2.3.6.7 � Optimizers
(a)	 RMSprop: RMSprop (Root Mean Square Propagation) is an optimizer that adjusts the 

learning rate for each parameter by using a moving average of the squared gradients. This 
helps prevent the learning rate from decaying too quickly, as seen in Adagrad, making 
RMSprop well-​suited for training deep NNs. The update rule for RMSprop is as follows:
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	 v v g w w
v

g
t t t t t

t

t
= + −( ) = −

+− −β β η
1

2
1

1 and


.	

Here, vt is the moving average of the squared gradients, gt is the current gradient, β is the 
decay rate, η is the learning rate, and ϵ is a small constant for numerical stability. RMSprop 
helps normalize the gradients, ensuring that each parameter has a more stable and balanced 
learning rate. Suppose η =​ 0.01, β =​ 0.9, and the gradient gt =​ 0.5. Initially, v0 =​ 0, and the 
updated vt and wt values can be computed as:

v w w
1

2
1 0

0 9 0 0 1 0 5 0 1 0 25 0 025
0

= × + × = × = = −. . . . . .
.

and
001

0 025
0 5

.
. .

+
×



For small ϵ, the update normalizes the gradient, leading to a more balanced update.

(b)	 Adam: Adam (Adaptive Moment Estimation) combines the benefits of RMSprop and 
momentum. It maintains two moving averages: one for the gradient (momentum) and another 
for the squared gradient. This dual mechanism allows Adam to adapt the learning rate based 
on the gradient’s magnitude and direction. The update rules are:

	 m m g v v g m
m
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ˆ
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

	

Here, mt is the moving average of the gradient, vt is the moving average of the squared gra-
dient, β1 and β2 are decay rates, η is the learning rate, and ϵ is a small constant. Suppose η =​ 
0.01, β1 =​ 0.9, β2 =​ 0.999, and gt =​ 0.5. Initially, m0 =​ 0 and v0 =​ 0. The updated values for 
mt, vt, and the weight update wt are:

	 m v
1 1

20 9 0 0 1 0 5 0 05 0 999 0 0 001 0 5 0 00= × + × = = × + × =. . . . . . . .and 0025.	

The bias-​corrected estimates are:
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The weight update becomes:

	 w w
1 0

0 01

0 25
0 5= −

+
×

.

.
. .


	

Adam’s ability to adapt learning rates based on both the gradient’s momentum and its 
squared magnitude makes it one of the most effective and widely used optimizers in deep 
learning. RMSprop and Adam are both adaptive learning rate optimizers widely used in 
training deep NNs, but they differ in their mechanisms and resulting updates. RMSprop 
adjusts the learning rate for each parameter by maintaining a moving average of the squared 
gradients, effectively normalizing the gradient and stabilizing updates. Its single moving 
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average (using a decay rate like β =​ 0.9) ensures that the learning rate adapts based solely on 
the magnitude of recent gradients. In contrast, Adam extends RMSprop by also incorporating 
a moving average of the gradients themselves (momentum), using separate decay rates for 
the first and second moments (e.g., β₁ =​ 0.9 and β₂ =​ 0.999). Additionally, Adam applies bias 
correction to these moving averages, especially during the initial training steps, to produce 
unbiased estimates. As a result, Adam typically provides more balanced and efficient updates 
by considering both the direction and magnitude of gradients, often leading to faster conver-
gence and better performance in practice. Consequently, while both optimizers may appear 
to produce similar updates in simplified examples, especially in early iterations, their outputs 
diverge as training progresses due to Adam’s additional momentum and bias correction, 
making Adam generally more robust and effective for a wider range of NN architectures.

2.3.6.8 � Batch Normalization
Batch normalization is a technique used to normalize the activations of a layer in an NN. This helps 
maintain a consistent mean and variance across different batches during training, improving the 
model’s stability and performance. Batch normalization works in the following steps:

1.	 Calculate the mean (μ) and variance (σ2) of the input X over the batch:

	 µ σ µ
B

i

m

i B
i

m

i Bm
X

m
X= = −

= =
∑ ∑1 1

1

2

1

2and ( ) ,	

where m is the number of samples in the batch, and Xi represents each input in the batch.
2.	 Normalize the input X by subtracting the mean and dividing by the standard deviation:

	 ˆ .X
X

i
i B

B

=
−

+

µ

σ2 
	

Here, ϵ is a small constant added for numerical stability to avoid division by zero.
3.	 Scale and shift the normalized input using two learnable parameters, γ (scale) and β (shift):

	 Y X
i i

= +γ βˆ 	

The parameters γ and β are learned during training and allow the network to restore the rep-
resentational power that might be lost due to normalization.

Figure 2.9 provides a visualization of the forward and backward pass in an NN layer, represented  
through a series of matrices. The input data matrix illustrates the initial data fed into the NN, with each  
element representing feature values across rows and columns. Following this, the Batch Data (Sample  
1) matrix shows how a single sample from the batch is processed, demonstrating the model’s handling  
of data during training in smaller chunks, known as mini-​batches. Moving to the Weights Matrix, this  
highlights the learned weights, which connect the input data to the neurons in the layer. Complementing  
the weights, the Biases Vector is shown, which contains bias values added to the weighted sum of  
inputs for each neuron, providing additional flexibility in shifting the neuron’s output. The Output  
Matrix shows the raw result after multiplying the input data by the weights and adding the biases, yet  
before any activation function is applied. The ReLU Activation Output matrix then demonstrates the  
effect of applying the ReLU activation function, which zeros out any negative values while keeping  
positive values the same. This step introduces non-​linearity into the model, making it more capable of  
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learning complex patterns. Following the forward pass, the Gradients Matrix represents the calculated  
gradients during backpropagation, where the network computes how much the weights should be  
adjusted to minimize the loss function. These gradients are then used to adjust the model’s parameters,  
as illustrated in the weight updates matrix. Finally, the Batch Normalization Output matrix presents the  
normalized output values after applying batch normalization.

2.4 � TENSOR AND ITS OPERATIONS

2.4.1 �T ensors

A tensor is a multi-​dimensional array of numerical values and can be seen as a generalization of 
scalars, vectors, and matrices. In deep learning and many applications in physics, tensors are used 
to represent many data structures.

FIGURE 2.9  Visual representation of matrix concepts in deep learning.
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	• Scalar (zero-​dimensional tensor): A single number. For example, c =​ 5.
	• Vector (one-​dimensional tensor): An array of numbers. For example, v =​ [1, 2, 3].

	• Matrix (two-​dimensional tensor): A 2D array of numbers. For example, M =










1 2

3 4
.

	• Higher-​dimensional Tensor: Tensors can have three or more dimensions. For instance, color 
images can be represented as a three-​dimensional tensor (height, width, color channels), 
such as T for an image with dimensions 100 × 100 pixels and 3 color channels (RGB): Tijk, 
where i j k= … = … =1 100 1 100 1 2 3, , ; , , ; , , .

2.4.2 �T ensor Operations

2.4.2.1  Element-​Wise Operations
Operations like addition, subtraction, multiplication, and division are performed element-​wise 
between two tensors of the same shape. For example, if two matrices (2D tensors) exist, corresponding 
elements will be added to A and B.

2.4.2.2  Tensor Dot Product (or Tensor Contraction)
Extends the idea of the dot product in vectors and matrix multiplication. It involves multiplying 
elements of tensors and summing the result, often reducing the tensor’s dimensionality.

(a)	 Tensor Reshaping: It changes the shape of a tensor while preserving its data. It is beneficial 
in deep learning when preparing data for different layers.

(b)	 Reduction Operations: This refers to operations like sum, mean, max, or min, where you 
reduce a tensor to a more minor rank. For example, you might take the sum along one dimen-
sion, resulting in a tensor of one less dimension.

2.4.2.3  Matrix-​Specific Operations on 2D Tensors
There are several operations including:

(a)	 Transpose: Swap rows with columns.
(b)	 Inverse: Find the matrix that gives the identity matrix when multiplied with the original.
(c)	 Determinant: A scalar value representing specific properties of the matrix.
(d)	 Tensor Slicing and Indexing: Extracting specific portions of a tensor is analogous to slicing 

lists or arrays.
(e)	 Broadcasting: They make element-​wise binary operations compatible with tensors of 

different shapes. For instance, adding a vector to a matrix by duplicating the vector along 
the rows of the matrix.

(f)	 Outer Product: Produces a higher-​rank tensor from two lower-​rank tensors. For vectors, it 
produces a matrix.

(g)	 Tensor Decompositions: Techniques like SVD or QR decomposition can be extended to 
tensors.

In Figure 2.10, various tensor operations are performed on sample tensors using TensorFlow and  
visualized through heatmaps. The first row of subplots shows the results of element-​wise operations.  
The element-​wise addition plot displays the sum of corresponding elements from tensors A and B.  
The element-​wise subtraction plot illustrates the difference between the corresponding elements of  
A and B. The element-​wise multiplication plot highlights the product of corresponding elements  
from A and B, while the element-​wise division plot shows the quotient of corresponding elements  
of A divided by B. The second row of subplots continues with more complex operations. The tensor  
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dot product plot presents the result of a dot product operation between tensors A and B, which  
involves summing the products of corresponding elements along the specified axes. The reshaped  
tensor plot shows tensor A rearranged into a column vector with a shape of (4, 1). The third row  
includes summary statistics and transformations of tensor A.

The tensor sum plot displays the sum of all elements in A as a single value. Similarly, the tensor 
mean plot presents the mean of all elements in A, and the tensor max plot shows the maximum 
value among all elements in A. The fourth row focuses on matrix transformations and properties. 
The transpose of A plot shows the result of swapping the rows and columns of tensor A. The inverse 
of the identity matrix plot displays the inverse of a 2 × 2 identity matrix, which remains the identity 
matrix itself. Finally, the determinant of the identity matrix plot shows that the determinant of a 2 × 
2 identity matrix is 1. Additionally, the SVD results are printed. The singular values (s), left singular 
vectors (u), and right singular vectors (v) of tensor A are provided. These values and vectors are 
crucial in many applications, such as data compression and noise reduction.

FIGURE 2.10  Visualization of tensor operations.
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2.4.3 �T ensors in Deep Learning

At a high level, deep learning involves building and training NNs, which can be thought of as 
a composition of functions. These functions are applied to data to make predictions or create 
representations. In this paradigm, tensors are the primary data structure for various operations and 
transformations.

(a)	 Input Data: In deep learning, input data is typically multi-​dimensional. For example, 
in Image Data, Images are represented as 3D tensors with dimensions corresponding to 
height, width, and channels (RGB). For instance, an RGB image of size 32 × 32 pixels 
can be represented as a tensor of shape, and for Sequential Data, Text or time series data 
can be represented as 2D tensors, where one dimension represents the sequence length, 
and the other represents features or embedding dimensions. For example, a sequence of 
50 words, each represented by a 300-​dimensional embedding, would be a tensor of shape 
(50, 300).

(b)	 Weights and Biases: The parameters of NNs, including weights and biases, are stored as 
tensors. The architecture of the network and the connections between neurons dictate the 
shape of these tensors. For example, for a convolutional layer in an NN with 16 filters of size 
3 × 3 applied to an input with 3 channels (such as RGB images), the weights would be stored 
in a 4D tensor of shape (16, 3, 3, 3), representing the number of filters, input channels, and 
the spatial dimensions of each filter. Biases would be stored in a 1D tensor of shape (16), 
representing one bias per filter.

(c)	 Intermediate Values: As data progresses through an NN, it gets transformed at each layer. 
These transformations yield new tensors, representing the intermediate outputs. For example, 
applying a convolutional layer to input images of shape (32, 32, 3) with 16 filters can produce 
intermediate tensors of shape (32, 32, 16), where each filter produces a separate feature map 
of the same spatial dimensions as the input image.

(d)	 Final Outputs: The predictions or classifications made by an NN are also represented as 
tensors. For example, after passing the intermediate tensor through an activation function 
like ReLU and a final dense layer with 10 output neurons (for a classification task with 10 
classes), we get the final outputs as a 1D tensor of shape (10), representing the predicted 
probabilities for each class.

2.4.4 �T ensor Operations in Deep Learning

(a)	 Linear Transformations: In fully connected layers, the primary operation is matrix multi-
plication, a tensor operation. For example, given an input tensor X =​ [1.0, 2.0] and a weight 

tensor W =










0 5 0 3

0 7 0 9

. .

. .
, the output is calculated as:
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





 ,	

where b is the bias tensor.
(b)	 Activation Functions: After a linear transformation, activation functions are applied element-​

wise to tensors. For instance, applying the ReLU activation to the previous result Z =​ [1.1, 
2.5] results in:

	 ReLU Z( ) = [ ) =] [max( , . ,max( , . ) . , . ]0 1 1 0 2 5 1 1 2 5 	
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(c)	 Convolutions: In CNNs, convolution operations involve sliding a filter tensor over an input 

tensor to produce a feature map. For instance, convolving a 3 × 3 filter F =
−
−
−

















1 0 1

1 0 1

1 0 1

 over 

a 4 × 4 input tensor, I produce a feature map after calculating dot products at each position.
(d)	 Pooling: Pooling layers reduce the spatial dimensions of feature maps. For example, max-​

pooling with a 2 × 2 window on a tensor I =










1 3

2 4
 would result in:

Max-Pooling I( ) = =max( , , , )1 2 3 4 4

(e)	 Batch Operations: When processing data in batches, multiple samples are stacked into a 
single tensor. For example, processing a batch of two input tensors X1 =​ [1.0, 2.0] and X2 =​ 
[0.5, 1.5] results in a batch tensor:

	 X
batch

=










1 0 2 0

0 5 1 5

. .

. .
	

Tensor operations, such as matrix multiplication, are then performed simultaneously on this 
entire batch.

(f)	 Backpropagation: During training, gradients are computed as tensors with the same shape 

as the weights. For instance, if the weight tensor W =










0 5 0 3

0 7 0 9

. .

. .
 has a gradient tensor 

G =
−









0 02 0 01

0 03 0 04

. .

. .
, the weight update is:

	 W W G
new

= − ⋅ =
− +
− −









η

0 5 0 02 0 3 0 01

0 7 0 03 0 9 0 04
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. . . .
	

(g)	 Sequence Processing: In RNNs and transformers, sequences are processed using tensor 
operations like the dot product. For instance, calculating the dot product between two 
sequences (tensors) determines how much one sequence element influences another.

(h)	 Broadcasting: Broadcasting allows tensors of different shapes to be combined. For example, 

adding a vector [1.0, 2.0] to each row of a matrix M =










3 4

5 6
 results in:

M
new

=
+ +
+ +









 =











3 1 0 4 2 0

5 1 0 6 2 0

4 6

6 8

. .

. .
.

(i)	 Regularization and Normalization: Techniques like dropout randomly drop units during 
training, represented by setting some elements of the activation tensor to zero. Batch nor-
malization normalizes activations using tensor operations to maintain a consistent mean and 
variance.

(j)	 Loss Computation: The loss between predictions and actual targets is computed using tensor 
operations. For instance, if the predicted tensor is Y

pred
 =​ [0.8, 0.4] and the actual target 

tensor is Y
true

 =​ [1.0, 0.0], the MSE loss is:

	 Loss = − + −( ) = +( ) =
1

2
0 8 1 0 0 4 0 0

1

2
0 04 0 16 0 12 2(( . . ) . . ) . . . .	
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In Figure 2.11, various tensor operations related to a CNN are performed on a sample input image 
and visualized through heatmaps. The first subplot, “Input Image (Channel 1),” displays one channel 
of the RGB input image, which is an 8 × 8 pixel grid with intensity values ranging from 0 to 255. 
This visualization provides a grayscale representation of the first color channel of the image. The 
second subplot, “Convolution Filter 1,” shows the weights of the first convolutional filter applied 
to the input image. This 3 × 3 filter is used to detect specific features within the input image. The 
heatmap illustrates the values of the filter weights, which will be convolved with the input image. 
The third subplot, “Intermediate Tensor (Filter 1),” presents the result of applying the convolutional 
filter to the input image. This intermediate tensor captures the feature map produced by the convo-
lution operation, highlighting areas of the input image that match the filter’s pattern. The fourth sub-
plot, “Activated Tensor (ReLU),” shows the result of applying the ReLU activation function to the 
intermediate tensor. The ReLU function sets all negative values to zero, introducing non-​linearity 
to the model. This heatmap represents the activated feature map, emphasizing the features detected 
by the filter. The fifth subplot, “Flattened Tensor (Segment),” illustrates a segment of the flattened 
tensor obtained by reshaping the activated tensor into a 1D array. This transformation prepares 
the tensor for input into a dense (fully connected) layer. The heatmap visualizes a segment of this 
flattened tensor as an 8 × 8 grid for better interpretation. The sixth subplot, “Final Output Tensor,” 
displays the final output tensor after passing the flattened tensor through a dense layer. This layer 
performs a linear transformation using learned weights and biases to produce the final output. The 
heatmap represents the output tensor as a row vector, showing the resulting values for each of the 
10 output units.

2.5 � LINEAR TRANSFORMATIONS

A linear transformation, often called a linear map, is a function between two vector spaces that 
preserves the operations of vector addition and scalar multiplication. In simpler terms, it is a trans-
formation that does not “bend” or “twist” the space in a non-​linear way. Mathematically, a function 
T from a vector space V to a vector space W is called a linear transformation if the following two 
properties hold for all vectors u and v in V and any scalar c:

	• Additivity: T (u +​ v) =​ T (u) +​ T (v)
	• Homogeneity: T (cu) =​ cT (u)

2.5.1 �M atrix Representation of Linear Transformations

A matrix can represent every linear transformation. Given a vector space V and a basis for that 
space, a linear transformation can be associated with a matrix A. When you multiply this matrix 
by a column vector (representing a point in space), you get a new column vector representing the 
transformed point. When you have a linear transformation defined by a matrix and want to apply this 
transformation to a vector V, you perform the matrix–​vector multiplication to obtain the transformed 
vector.

2.5.2 �E xamples of Linear Transformations

2.5.2.1 � Scaling
Scaling involves multiplying vectors by a scalar, stretching or shrinking them but not changing their 
direction unless the scalar is negative. A vector can be scaled using a diagonal matrix where each 
diagonal entry corresponds to a scaling factor along each dimension.
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FIGURE 2.11  Visual representation of key Tensor Operations in deep learning.
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2.5.2.2 � Rotating
Rotating vectors around the origin involves using a rotation matrix. To rotate a 2D vector by a spe-
cific angle:

	 A
rotation

=
−





cos sin

sin cos

θ θ
θ θ

	

2.5.2.3 � Reflecting
Reflecting vectors across a line (in 2D) or a plane (in 3D) can be represented using a reflection 
matrix. Reflecting a 2D vector across the x-​axis uses the matrix:

	 A
reflection

=
−







1 0

0 1
	

2.5.2.4 � Shearing
Shearing involves “sliding” vectors along a fixed line or plane. A shear transformation can be 
represented by:

	 A
k

shear
=







1

0 1
,	

where k is the shear factor.
Figure 2.12 visualizes various linear transformations applied to an original vector. The ori

ginal vector, shown in blue, represents the vector before any transformation. The scaled vector, 
depicted in red, is the result of scaling the vector by different factors along the x and y directions, 
which stretches or shrinks the vector. The rotated vector, shown in green, demonstrates the effect of 
rotating the vector by 45° around the origin. The reflected vector, represented in magenta, illustrates 
the transformation of reflecting the vector across the x-​axis, flipping it over the x-​axis. Lastly, the 
sheared vector, shown in yellow, represents the vector after being sheared along the x-​direction, 
sliding the vector along the x-​axis while changing its shape without altering its area.

2.5.3 �L inear Transformations in Deep Learning

Linear transformations play a crucial role in deep learning due to their modeling power, efficiency, 
and interpretability. While individual linear transformations are limited in their ability to capture 
complex relationships, when stacked and combined with non-​linear activation functions, they 
enable NNs to model intricate, non-​linear patterns in data. Additionally, linear operations in matrix 
form are highly optimized on modern hardware, particularly GPUs, making the training and infer-
ence processes in deep learning more efficient. Furthermore, linear transformations are often more 
interpretable than their non-​linear counterparts due to their simplicity, which can be valuable in 
applications where understanding the model’s decision-​making process is essential.

2.5.3.1 � Neural Network Layers
In an NN, a dense (fully connected) layer is a linear transformation of the input. Given an input 
vector x = … x x x

n1 2
, , , , the dense layer transforms it using a weight matrix W and a bias vector b. 

Mathematically, the transformation is expressed as:

	 z Wx b= + .	
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Here, W is the weight matrix, and b is the bias vector. This linear transformation maps the input 
vector to an output vector, and the bias vector shifts the output. After this linear transformation, an 
activation function (e.g., ReLU or sigmoid) is typically applied to introduce non-​linear capabilities 

to the model. Suppose we have an input vector x =​ [1, 2], a weight matrix W =










0 5 0 3

0 7 0 9

. .

. .
 and a bias 

vector b =​ [0.1, 0.2]. The output is computed as:

	 z Wx b= + =








 ⋅









 +









 =






0 5 0 3

0 7 0 9

1

2

0 1

0 2

1 1

2 7

. .

. .

.

.

.

. 
 .	

2.5.3.2 � Convolutional Neural Networks
In CNNs, the convolution operation can be viewed as a series of small, local linear transformations. 
A convolutional filter (or kernel) slides over different local regions of the input image, applying a 
linear transformation to produce a feature map. By stacking multiple convolution layers, CNNs 
detect complex patterns such as edges, textures, and shapes.

FIGURE 2.12  Visual representation of linear transformations.
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2.5.3.3 � Embeddings
In NLP, embedding layers map discrete words or tokens to continuous vector representations in 
a high-​dimensional space. The transformation from a token to its corresponding vector is a linear 
operation. Embedding lookup involves selecting a specific row (vector) from the embedding matrix, 
which corresponds to the input token. For an embedding matrix E of size 10 × 4, where each row 
represents a word vector of dimension 4, input token 3 corresponds to the third row of E, resulting 
in a vector v3 .

2.5.3.4  Regularization Techniques
While normalization techniques like batch normalization are not linear by nature, they include learn-
able parameters (gamma and beta) that apply a linear transformation to the normalized output. 
Specifically, after normalization, the output is scaled by γ and shifted by β, introducing a linear 
transformation that adjusts the normalization effect based on the data.

2.5.3.5 � Initialization
When initializing the weights of an NN, the initial linear transformations applied to the data must 
be carefully chosen. Proper initialization helps ensure that the transformations do not excessively 
shrink or expand the data, preventing issues like vanishing or exploding gradients during training.

2.5.3.6 � Loss Functions and Optimization
Many loss functions, including MSE, involve linear components. For example, the MSE loss 
function, which computes the squared difference between predictions and actual values, includes a 
summation of squared errors, a linear operation. During optimization, gradients of the loss function 
with respect to the weights are computed, often involving linear operations, and used to update the 
model’s parameters. For a simple linear regression model with predicted values ˆ ,y = [ ]2 3  and actual 

values y =​ [1, 4], the MSE is: (( ) ) .
1

2
2 1 3 4 0 52 2− + −( ) =

The gradient of this loss function with respect to the weights leads to a weight update that is a 
linear transformation of the error.

In Figure 2.13, the linear transformation process applied to a 2D input vector using a dense layer 
is visualized. This figure illustrates the transformation of the input vector by applying weights and 
biases, resulting in an output vector. The input vector is represented in blue, starting from the origin 
(0, 0) and pointing to the coordinates (2, 3). The transformed vector is depicted in red, also origin-
ating from (0, 0) but pointing to the coordinates determined by the linear transformation. In this case, 
the output vector is calculated using the weights and biases defined for the dense layer. Additionally, 
dashed lines indicate the path of each vector from the origin to their respective endpoints, with blue 
representing the input vector and red for the transformed vector.

2.6 � MATRIX FACTORIZATIONS

Matrix factorization techniques allow us to decompose matrices into products of simpler matrices. 
These techniques are beneficial in various applications, from solving systems of equations to data 
compression and dimensionality reduction. Here are essential matrix factorization methods.

2.6.1 �LU  Decomposition

LU Decomposition factorizes a matrix as the product of a lower L and upper triangular matrix U. 
This is particularly useful for solving systems of linear equations, inverting matrices, and computing 
determinants.
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Example: Consider a matrix A The: .A =






4 3

6 3
LU  Decomposition of A expresses it as the 

product of a lower triangular matrix L and an upper triangular matrix U:

	

A L U L U

A

= ⋅ =






=
−







=



where

Then

1 0

1 5 1

4 3

0 1 5
1 0

1 5 1

. .
.

.

and


 −







=






4 3

0 1 5

4 3

6 3.
. 	

This decomposition is useful for solving equations, inverting A, and finding determinants efficiently 

(a)	 L Matrix: The lower triangular matrix from the LU decomposition of the matrix A. This 
matrix has non-​zero elements only on and below the main diagonal:

FIGURE 2.13  Visual representation of linear transformation in a dense layer.
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L

l

l l

l l l

l l l l
n n n nn

=

















11

21 22

31 32 33

1 2 3

0 0 0

0 0

0

0

…
…
…

⋮ ⋮ ⋮ ⋱
…







The lower triangular matrix from the LU decomposition of the matrix A. This matrix has 
non-​zero elements only on and below the main diagonal.

	 L =






1 0

1.5 1 	

(b)	 U Matrix: The upper triangular matrix from the LU decomposition. This matrix has non-​
zero elements only on and above the main diagonal.

	 U

u u u u

u u u

u u

u

n

n

n

nn

=

















11 12 13 1

22 23 2

33 3

0

0 0

0 0 0

…
…
…

⋮ ⋮ ⋮ ⋱ ⋮
…







.	

The upper triangular matrix from the LU decomposition. This matrix has non-​zero elements 
only on and above the main diagonal.

	 U =
−







4 3

0 1 5.
.	

(c)	 Reconstructed Matrix A: The original matrix A was reconstructed by multiplying L and U. 
This step verifies the correctness of the decomposition. The original matrix was reconstructed 
by multiplying L and U. This step verifies the correctness of the decomposition.

	 A L U= ⋅ =




 −







=






1 0

1 5 1

4 3

0 1 5

4 3

6 3. .
.	

2.6.2 � QR Decomposition

QR decomposition decomposes a matrix into an orthogonal Q and upper triangular matrix R. This 
decomposition is widely used in numerical linear algebra to solve most minor square problems and 
in eigenvalue algorithms.

Example:

	 A Q R A Q= ⋅ =
−

−
−













 =

−

−
, ,

. . .

. . .

4 2 1

6 3 8

5 7 10

0 36 0 48 0 8

0 54 0 87 0 0

0.. . .

,

. . .

. .

.72 0 12 0 68

11 18 2 15 5 95

0 7 68 8 02

0 0 3 87













 =

−









R 

 .	
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(a)	 Q Matrix (QR Decomposition): The orthogonal matrix Q from the QR decomposition of the 
matrix A. Orthogonal matrices have the property that their columns are orthonormal vectors.

Example:

	 Q =
−

−















0 36 0 48 0 8

0 54 0 87 0 0

0 72 0 12 0 68

. . .

. . .

. . .

.	

(b)	 R Matrix (QR Decomposition): The upper triangular matrix from the QR decomposition. 
This matrix has non-​zero elements only on and above the main diagonal.

Example:

	 R =
−













11 18 2 15 5 95

0 7 68 8 02

0 0 3 87

. . .

. .

.

.	

(c)	 Reconstructed: A(Q *R) the original matrix was reconstructed by multiplying Q and R. This 
step confirms that the decomposition accurately represents the original matrix.

Example:

	 A Q R= ⋅ =
−

−















0 36 0 48 0 8

0 54 0 87 0 0

0 72 0 12 0 68

11 18 2 1. . .

. . .

. . .

. . 55 5 95

0 7 68 8 02

0 0 3 87

4 2 1

6 3 8

5 7 10

−











 =

−
−

−















.

. .

.

.	

2.6.3 � Singular Value Decomposition

SVD represents a matrix as the product of three matrices: an orthogonal matrix U, a diagonal matrix 
∑, and the transpose of an orthogonal matrix VT

Example: If the matrix A in the image is something like this:

	 A =














1 0 0

0 4 0

0 0 0

.	

Its SVD would be: A U V= Σ  ,

where

	• A is the original matrix,
	• U is an orthogonal matrix (with orthonormal columns),
	• Σ  is a diagonal matrix containing the singular values of A,
	• V  is the transpose of an orthogonal matrix V,
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where

	 U V=












 =













 =












0 1 0

1 0 0

0 0 1

4 0 0

0 1 0

0 0 0

0 1 0

1 0 0

0 0 1

, ,Σ  
 .	

Each decomposition technique has specific applications and provides unique insights into the matrix 
structure. LU decomposition is particularly useful for solving systems of linear equations, QR 
decomposition is widely used in numerical linear algebra for solving most minor squares problems, 
and SVD is fundamental in applications like principal component analysis (PCA), data compres-
sion, and signal processing.

In Figure 2.14, the results of three different matrix decompositions (LU, QR, and SVD) are 
visualized. For the LU decomposition, the L matrix shows the lower triangular matrix obtained from 
the decomposition of matrix A, featuring non-​zero elements below the main diagonal and zeros above 
it. The U matrix displays the upper triangular matrix, which has non-​zero elements on and above the 
main diagonal, with zeros below it. The third heatmap shows the reconstructed matrix A obtained 
by multiplying the L and U matrices, confirming the accuracy of the decomposition. For the QR 
decomposition, the Q matrix is an orthogonal matrix with orthonormal columns, obtained from the 
decomposition of matrix A. The R matrix is an upper triangular matrix with non-​zero elements on and 
above the main diagonal and zeros below it. The reconstructed matrix A, shown in the third heatmap, 
is obtained by multiplying the Q and R matrices, demonstrating the correctness of the QR decompos-
ition. Finally, for the SVD, the U matrix represents the left singular vectors of matrix A, forming an 
orthogonal matrix. The Sigma matrix is a diagonal matrix of singular values, which are non-​negative 
and sorted in descending order. The last heatmap shows the reconstructed matrix A, obtained by multi-
plying the U, Sigma, and Vt (transpose of V) matrices, validating the SVD process.

2.6.4 �E igenvalues and Eigenvectors

Eigenvalues and eigenvectors are fundamental concepts in linear algebra with widespread 
applications in various fields, including physics, engineering, and data science. Given a square 
matrix A, if there exists a non-​zero vector v and a scalar λ such that the following equation holds:

	 Av v= λ .	

Then is an eigenvector of A and is the corresponding eigenvalue.
In Figure 2.15, the visual representation of eigenvalues and eigenvectors for a given square 

matrix A is displayed. The matrix A is defined as: A =






4 2

1 3
. The plot begins with the original 

eigenvectors, which are represented in green. Each eigenvector is plotted starting from the origin (0, 
0) and pointing to the coordinates defined by its components. Labels, such as v1 and v2, are placed 
at the endpoints of these eigenvectors to clearly identify them. Next, the transformed eigenvectors 
are shown in red. These vectors are obtained by multiplying the original eigenvectors by matrix A, 
demonstrating how A transforms its eigenvectors.

In Figure 2.16, the SVD of a matrix M is visualized by transforming a grid of points. The matrix 
M is defined as:

	 M =














1 2 3

4 5 6

7 8 9
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The SVD decomposes M into three matrices: U, Σ, and VT, where U contains the left singular  
vectors, Σ is a diagonal matrix of singular values, and VT contains the right singular vectors. It  
presents the effects of these matrices on a grid of points, allowing for a visual understanding of  
the SVD components. The original grid is plotted in blue, representing the initial arrangement of  
points before any transformation. These points form a regular grid centered around the origin. The  
U matrix (left singular vectors) is visualized by transforming the original grid using the U matrix.  
This transformation primarily represents a rotation. The green lines and points show how the left  
singular vectors of M rotate the grid. The Sigma matrix (singular values) illustrates the scaling effect  
of the singular values. The red lines and points depict the grid after being scaled by the diagonal  
matrix Σ. This scaling adjusts the lengths of the vectors but does not change their directions. The VT  
matrix (right singular vectors) is visualized by transforming the original grid using the VT matrix.  
The orange lines and points show the effect of applying the right singular vectors to the grid, which  
typically involves another rotation.

FIGURE 2.14  Visual representation of LU decomposition, QR decomposition, and singular value 
decomposition.
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In Figure 2.17, the SVD of a matrix M is visualized by transforming a grid of points. The first  
subplot, titled “Original Grid,” shows the original grid in blue. This grid represents the initial  
arrangement of points before any transformation, forming a regular grid centered around the origin.  
The second subplot, titled “Left Singular Vectors (U),” illustrates the effect of the U matrix on the  
grid. The U matrix primarily represents a rotation. The green lines and points show how the left sin-
gular vectors of M rotate the grid. The third subplot, titled “Singular Values (Sigma),” visualizes the  
effect of the Sigma matrix on the grid. The Sigma matrix scales the grid. The red lines and points  
depict the grid after being scaled by the diagonal matrix Σ, which adjusts the lengths of the vectors  
while maintaining their directions. The fourth subplot, titled “Right Singular Vectors (VT),” shows  
the effect of the VT matrix on the grid. The VT matrix typically involves another rotation. The orange  
lines and points illustrate the transformed grid, highlighting the rotation applied by the right singular  
vectors.

2.6.5 �E igenvalues and Eigenvectors in Deep Learning

The eigenvalues of the Hessian matrix (a matrix of second-​order partial derivatives) can indicate  
the curvature of the loss landscape around a point. A large eigenvalue indicates a steep curvature  

FIGURE 2.15  Visual representation of eigenvalues and eigenvector.

 

 

 



53Linear Algebra

(possibly a sharp minimum or a narrow ravine), making optimization challenging. If the largest  
eigenvalue of the weight matrices in recurrent neural networks (RNNs) is much larger or much  
smaller than 1, it can lead to exploding or vanishing gradients, respectively. A fundamental property  
in deep learning optimization is the curvature of the loss landscape, which can influence training  
dynamics.

In Figure 2.18, the contours of a quadratic function f x y ax by,( ) = +2 2 are visualized along with 
the eigenvectors of its Hessian matrix. The function parameters are defined as a =​ 2 and b =​ 5, 
resulting in the quadratic function:

	 f x y x y, .( ) = +2 52 2 	

The Hessian matrix H of this function is calculated as:

	 H =






4 0

0 10
.	

FIGURE 2.16  Visual representation of singular value decomposition.
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The eigenvalues represent the principal curvatures, while the eigenvectors indicate the directions of  
these curvatures. The plot includes several key elements. First, it features the contours of the quadratic  
function, where the contour lines represent the levels of the function f(x, y). These lines help visualize  
how the function values change across the x and y planes and are plotted using a color gradient from  
the colormap with 50 contour levels. Additionally, the plot displays the eigenvectors of the Hessian  
matrix, represented as arrows originating from the origin (0, 0). The first eigenvector is shown in  
red, and the second in blue, indicating the principal directions of the quadratic function’s curvature.  
Each eigenvector is labeled with its corresponding eigenvalue, and the labels are positioned near the  
tips of the arrows, with a semi-​transparent white background to enhance readability. Using the top  
eigenvectors (principal components) corresponding to the largest eigenvalues of the data’s covariance  
matrix, we can project data into a lower-​dimensional space while retaining most of the variance.

Figure 2.19 consists of two subplots: one showing the original 3D data and the other displaying  
the data projected onto the first two principal components. The original 3D data is generated using  
a multivariate normal distribution with a specified mean and covariance matrix. This data is then  
reduced to 2D using PCA, a technique that identifies the directions (principal components) along  

FIGURE 2.17  Visual representation of singular value decomposition.
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which the variance in the data is maximized. The left subplot, titled “Original 3D Data,” presents a  
scatter plot of the original data points in three-​dimensional space. Each data point is represented by  
a dot, with its coordinates corresponding to the values in the X, Y, and Z dimensions. The right sub-
plot, titled “Data Projected onto the First Two Principal Components,” shows the result of projecting  
the 3D data onto the first two principal components identified by PCA. The scatter plot in this sub-
plot displays the data points in the reduced 2D space, with the X-​axis representing the first principal  
component and the Y-​axis representing the second principal component. The axes are labeled with  
the percentage of variance explained by each principal component, indicating their significance. The  
points are colored based on their values along the second principal component, and a colorbar is  
added to provide a reference for the color scale.

L2 regularization adds a penalty to the loss function proportional to the sum of the squares of the 
model’s weights. This encourages the model to have smaller weights, leading to a smoother model. 

FIGURE 2.18  Contours of the quadratic function with eigenvalues of the Hessian matrix.
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FIGURE 2.19  Visualization of PCA—​original 3D data and projected 2D Data. 2D, two-​dimensional; 3D, three-​dimensional; PCA, principal component 
analysis.
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In Figure 2.20, the impact of L2 regularization on polynomial regression is illustrated using a set of 
sample data points generated from a noisy cubic function. The figure contrasts the fitting results of 
polynomial regression with and without L2 regularization. The sample data consists of 10 random 
points in the interval [−5, 5], with the corresponding y-​values generated from a cubic function with 
added Gaussian noise:

	 y x x= − + +0 5 20 903. noise.	

Two polynomial regression models of degree 9 are fitted to the data. The first model is trained 
without regularization, whereas the polynomial regression model has no penalty applied (alpha =​ 0). 
The second model incorporates L2 regularization, specifically Ridge regression, where the regular-
ization strength is set to alpha =​ 10. Both models are trained on the same dataset, allowing a com-
parison between the effects of no regularization and L2 regularization on the polynomial fit.

2.6.6 � Singular Value Decomposition in Deep Learning

One of the uses of SVD in deep learning is in model compression. It can be used to compress fully 
connected layers in NNs. We can reduce the number of parameters by approximating the weight 
matrix using a low-​rank approximation (using the top k singular values and the corresponding 
singular vectors), leading to a more compact model with faster inference times and potentially 
reduced overfitting. It also can be used in visualization and analysis. SVD, mainly in techniques like 
LSA (Latent Semantic Analysis), can help visualize word embeddings or document embeddings 
in a lower-​dimensional space. Another application is noise reduction in data. By keeping only 
the top k singular values (and discarding smaller ones), SVD can filter out noise from data. This 
is commonly used in image processing but can be extended to any data preprocessing in deep 
learning tasks.

In Figure 2.21, the effect of SVD on denoising an image is demonstrated through a step-​by-​step 
process involving the addition of noise and subsequent reconstruction. The original image of an 
astronaut, converted to grayscale format, is shown in the first subplot. This image serves as the ref-
erence for comparison and is displayed without any modifications to highlight its clarity and base-
line quality. The second subplot presents the image after introducing salt-​and-​pepper noise, which 
randomly replaces some pixels with either black or white. The noise amount is set to 10% of the 
total pixels, significantly degrading the image quality and making the random black and white pixels 
visibly scattered throughout. The third subplot illustrates the reconstructed image using SVD, where 
the image is decomposed into three matrices: U, S, and VT. The reconstruction leverages only the 
top 50 singular values, effectively reducing the noise while retaining essential features of the image. 
This selective reconstruction results in a smoother image with more defined features compared to 
the noisy version.

2.7 � REAL-​WORLD APPLICATIONS AND EXAMPLES

2.7.1 �I mage Processing and Computer Vision

In computer vision, linear algebra is fundamental to the processing and analysis of images. Images 
are often represented as matrices where each element corresponds to a pixel’s intensity. Operations 
such as image rotation, scaling, and translation can be performed using matrix transformations. 
For example, a rotation matrix can be applied to an image matrix to rotate the image around a spe-
cific point. CNNs, which are widely used in tasks like facial recognition and object detection, rely 
heavily on matrix operations to filter and process images, enabling the network to learn features 
such as edges, textures, and shapes.
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FIGURE 2.20  Effect of L2 regularization on polynomial regression.
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2.7.2 �N atural Language Processing

In NLP, vectors and matrices are used to represent words and sentences in a way that machines 
can understand. Word embeddings, such as Word2Vec, map words to vectors in a high-​dimensional 
space where semantically similar words are positioned closely together. These embeddings are 
created using matrix operations and linear transformations. Additionally, RNNs and transformers 
utilize tensor operations to handle text sequences, allowing for the efficient processing of sentences 
and paragraphs in tasks like translation, summarization, and sentiment analysis.

2.7.3 �R obotics and Autonomous Systems

In robotics, linear algebra is critical for modeling the motion and control of robots. The position and 
orientation of a robot in space can be represented using vectors and matrices, and transformations 
between different coordinate systems are performed using matrix operations. For example, a robot’s arm 
movement is often modeled as a series of matrix multiplications that describe the rotation and translation 
of each joint. Autonomous systems, such as self-​driving cars, use these principles to navigate and interact 
with their environment, calculating paths and making real-​time adjustments based on sensor data.

2.8 � HANDS-​ON EXAMPLE

In this example, we will generate random input data, define an NN layer with weight and bias 
matrices, and perform the forward pass using matrix multiplications and transformations.

Step 1: Setting Up the Environment
In this step, we are generating random input data that will serve as a small dataset for demonstra-
tion purposes. By using np.random.seed(0), we ensure that the random values generated will be the 
same every time we run the code, which is important for reproducibility. The function np.random.
randn(10, 3) generates a 10 × 3 matrix filled with random numbers sampled from a standard normal 
distribution (mean 0, standard deviation 1). This matrix represents 10 samples, each containing 3 
features. Printing the matrix helps us inspect the input data before using it in further computations 
or visualizations.

import numpy as np
import matplotlib.pyplot as plt
# Seed for reproducibility

FIGURE 2.21  SVD-​based noise reduction in images. SVD, singular value decomposition.
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np.random.seed(0)
# Generate some random input data (10 samples, 3 features)
input_​data =​ np.random.randn(10, 3)
print(“Input Data:”)
print(input_​data)

Step 2: Define the NN Layer
In this step, we are defining a weight matrix and a bias vector that will be used for a simple transform-
ation of the input data, simulating a linear layer of an NN. The weight matrix, weights, is initialized with 
random values using np.random.randn (3, 2), which means it has 3 rows (corresponding to the 3 features 
of the input data) and 2 columns (corresponding to the 2 output units). The bias vector is also initialized 
randomly with 2 values, representing the biases for each of the 2 output units. By printing both the 
weights and biases, we can examine the initialized values before applying them to the input data.

# Define weight matrix (3 features to 2 outputs)
weights =​ np.random.randn(3, 2)
# Define bias vector (2 outputs)
biases =​ np.random.randn(2)
print(“\nWeights:”)
print(weights)
print(“\nBiases:”)
print(biases)

Step 3: Perform the Forward Pass
In this step, we are performing a forward pass through a simple linear layer, which is a fundamental 
operation in NNs. The formula Z =​ WX +​ B represents the transformation of the input data X using 
the weight matrix W and the bias vector B. The operation np.dot(input_​data, weights) computes the 
dot product between the input data and the weight matrix, effectively combining the features and 
transforming them to match the 2 output units. We then add the vector biases to adjust the output 
values. The result, stored in output_​data, represents the output of the linear transformation, which 
we print to inspect the result of this forward pass.

# Perform the forward pass Z =​ W * X +​ B
output_​data =​ np.dot(input_​data, weights) +​ biases
print(“\nOutput Data:”)
print(output_​data)

Step 4: Visualize the Transformations
In this final step, we are visualizing the transformation of the data through a plot that compares the 
input data and output data. The code uses matplotlib to create a figure with two subplots: one for the 
input data and another for the output data. In the input data plot, the first two features of the input 
matrix are visualized as a scatter plot with blue points and labeled as “Feature 1” and “Feature 2.” 
Similarly, in the output data plot, the transformed output from the forward pass is visualized with 
red points, representing “Output 1” and “Output 2.” This comparison helps in understanding how the 
linear transformation affects the original data.
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# Visualize the input data and output data
fig, ax =​ plt.subplots(1, 2, figsize=​(14, 7))
# Plot input data
ax[0]‌.scatter(input_​data[:, 0], input_​data[:, 1], c=​‘blue’,   
s=​50, edgecolors=​’w’, label=​’Input Data’)
ax[0]‌.set_​title(‘Input Data’)
ax[0]‌.set_​xlabel(‘Feature 1’)
ax[0]‌.set_​ylabel(‘Feature 2’)
ax[0]‌.legend()
ax[0]‌.grid(True)
# Plot output data
ax[1]‌.scatter(output_​data[:, 0], output_​data[:, 1], c=​‘red’,   
s=​50, edgecolors=​’w’, label=​’Output Data’)
ax[1]‌.set_​title(‘Output Data’)
ax[1]‌.set_​xlabel(‘Output 1’)
ax[1]‌.set_​ylabel(‘Output 2’)
ax[1]‌.legend()
ax[1]‌.grid(True)
plt.tight_​layout()
plt.show()

Figure 2.22 displays the original randomly generated data points in a 2D feature space. Each point 
represents a sample with two features plotted on the x-​axis (Feature 1) and y-​axis (Feature 2). The 
points are colored blue and labeled as “Input Data.” The right plot illustrates the “Output Data” after 
an NN layer has transformed it.

2.9 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

2.9.1 �U nderstanding Vectors

	• Mistake: Confusing vectors and scalars.
	• Tip: Remember that vectors have both magnitude and direction, whereas scalars only have 

magnitude.
	• Mistake: Incorrect calculation of vector magnitude.
	• Tip: Use the Pythagorean theorem: for a vector v =​ (x, y), the magnitude is. x y2 2+ .

2.9.2 �V ector Operations

	• Mistake: Adding vectors incorrectly by not matching corresponding components.
	• Tip: Ensure you add vectors component-​wise. For u v= =( , ) ( , )u u and v v

1 2 1 2
, the sum is 

u v+ = + +( , )u v u v
1 1 2 2

.
	• Mistake: Misunderstanding the dot product operation.
	• Tip: The dot product of u and v is calculated as u · v = u₁v₁ + u₂v₂. It results in a scalar, not a 

vector.
	• Mistake: Incorrectly calculating the cross-​product.

	• Tip: For u = + +u u u
1 2 3

 and v = + +v v v
1 2 3

, the cross-​product is a × v = (u2 v3 –   
u v u v u v u v u v

3 2 3 1 1 3 1 2 2 1
, , )− − . Ensure the resulting vector is perpendicular to both u and v.
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FIGURE 2.22  Comparison of input and output data in neural network transformations.
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2.9.3 �M atrix Operations

	• Mistake: Mismatching matrix dimensions for multiplication.
	• Tip: Ensure the number of columns in the first matrix matches the number of rows in the 

second matrix. For matrices A of size n p× , the product is defined and results in a matrix of 
size m p×  .

	• Mistake: Forgetting the properties of matrix addition and multiplication.
	• Tip: Remember that matrix multiplication is not commutative A B B A+ ≠ +( ). However, 

matrix addition is commutative A B B A+ = +( ).
	• Mistake: Incorrectly computing the determinant.

	• Tip: For a matrix 
a b

c d






, the determinant is ad bc− . Practice finding determinants for larger 

matrices using cofactor expansion.

2.9.4 �E igenvalues and Eigenvectors

	• Mistake: Misidentifying eigenvectors and eigenvalues.
	• Tip: For a matrix A, an eigenvector and eigenvalue satisfy Av v= λ . Ensure it is non-​zero and 

is a scalar.
	• Mistake: Overlooking the geometric interpretation of eigenvalues and eigenvectors.
	• Tip: Understand that eigenvectors indicate directions that remain invariant under the trans-

formation represented by the matrix, while eigenvalues indicate the scaling factor along those 
directions.

2.9.5 � Singular Value Decomposition

	• Mistake: Confusing SVD with eigenvalue decomposition.
	• Tip: SVD applies to any m × n matrix, decomposing it into A =​ UΣVᵀ, where U and V are 

orthogonal matrices, and Σ is a diagonal matrix of singular values. Eigenvalue decomposition 
applies only to square matrices.

2.9.6 �P ractical Applications and Troubleshooting

	• Mistake: Neglecting the importance of normalization in deep learning.
	• Tip: Normalize vectors and matrices to improve numerical stability and convergence during 

training. This can prevent issues like vanishing or exploding gradients.
	• Mistake: Misapplying regularization techniques.
	• Tip: Use techniques like L2 regularization (adding a penalty proportional to the square of the 

magnitude of coefficients) to prevent overfitting. Ensure you understand the implications of 
each regularization method on your model.

2.10 � REVIEW QUESTIONS

1.	 Describe the various roles that vectors play in NNs. How do they contribute to data represen-
tation, weight storage, and activation functions?

2.	 Explain how matrices are utilized within deep learning models. Provide an example of how 
matrix operations are critical in the functioning of dense layers or convolutional layers.

3.	 Discuss why tensors are essential in deep learning. What advantages do they offer over 
vectors and matrices, particularly in handling multi-​dimensional data?

4.	 How do tensor operations, such as reshaping and broadcasting, benefit deep learning 
computations?
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5.	 Why are linear transformations fundamental in NNs? Discuss how these transformations are 
applied in different layers of an NN.

6.	 How do eigenvalues and eigenvectors influence model analysis and training? Consider their 
role in understanding the curvature of the loss landscape and the impact on gradient-​based 
optimization.

7.	 How does PCA, based on eigen-​decomposition, assist in deep learning? Provide an example 
of its application in reducing dimensionality while preserving data variance.

8.	 Discuss the significance of SVD in deep learning. How does it enhance the efficiency and 
performance of NNs?

9.	 Why are tensors preferred over matrices for handling image data in deep learning? Explore 
the advantages of using tensors in CNNs.

10.	 How does SVD support orthogonal initialization in deep NNs? Explain why this is important 
for maintaining numerical stability during training.

2.11 � PROGRAMMING QUESTIONS

2.11.1 �E asy

In this exercise, you will generate random input data and apply a transformation using a weight 
matrix and a bias vector, mimicking the forward pass of a single layer in an NN.

1.	 Generate random input data
2.	 Define weights and biases
3.	 Forward pass with linear transformation

2.11.2 �M edium

In this exercise, you will compare the effects of different weight matrices on the same input data.

1.	 Generate random input data
2.	 Define two different weight matrices
3.	 Forward pass with first weight matrix
4.	 Forward pass with a second weight matrix

2.11.3 �H ard

In this exercise, you will generate random input data, apply a linear transformation using a weight 
matrix and bias vector, and then apply the ReLU activation function.

1.	 Generate random input data
2.	 Define weights and biases
3.	 Forward pass with linear transformation
4.	 Apply ReLU activation
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3	 Multivariate Calculus

3.1 � INTRODUCTION

In this chapter, we delve into the calculus that underpins key processes such as backpropagation and 
optimization. We begin by introducing derivatives and gradients, which are crucial for optimizing 
neural networks through methods like gradient descent. Each mathematical concept discussed here 
directly impacts how models are built, trained, and optimized, making this chapter an important step 
in your journey through deep learning.

3.2 � PARTIAL DERIVATIVES

Partial derivatives help us understand how a multivariable function changes to each independent 
variable, assuming all other variables remain constant. This concept is fundamental in multivariable 
calculus and finds applications across various fields. When dealing with functions of multiple 
variables, the rate at which the function changes concerning one variable while keeping other 
variables constant is known as the partial derivative. Consider the function f x y,( ), when taking 
the partial derivative of f to x, treat y as a constant and usually differentiate it to x. The same logic 
applies when taking the partial derivative to y. Let: f x y x y xy,( ) = +2 2, the partial derivative of f to 

x is 
∂
∂

= +
f

x
xy y2 2, here, treat y as a constant and differentiate to x. The partial derivative of f for y is 

∂
∂

= +
f

y
x xy2 2  here, treat x as a constant and differentiate concerning y.

3.2.1 �G eometric Interpretation

Imagine a three-​dimensional surface described by z f x y= ( ), . The partial derivative 
∂
∂

f

x
 represents 

the slope of the tangent line to the curve obtained by slicing the surface along the plane where y 

is constant. Similarly, 
∂
∂
f

y
 provides the slope of the tangent line to the slice given by x =​ constant. 

Consider the surface z x y= +2 2, which represents a paraboloid. At the point (x, y) =​ (1, 2), the par-
tial derivatives are as follows:

	
∂
∂

= = ( ) =
∂
∂

= = ( ) =
z

x
x

z

y
y2 2 1 2 2 2 2 4, 	

 

 

 

 

 

 

http://dx.doi.org/10.1201/9781032690742-3


66 Mathematical Foundations for Deep Learning

This means that at point (1, 2), the slope of the tangent line in the x-​direction is 2, and in the y-​
direction, it is 4.

3.2.2 �H igher-​Order Partial Derivatives

Like single-​variable functions, we can have higher-​order partial derivatives for multivariable 

functions. For example, the second partial derivative of f concerning x is denoted 
∂
∂

2

2

f

x
 and represents 

the rate of change 
∂
∂

f

x
 about x. We can also have mixed partial derivatives, denoting the change rate 

relating to y. Consider the function f x y x y xy,( ) = +2 23 . The first partial derivatives are as follows:

	
∂
∂

= +
∂
∂

= +
f

x
xy y

f

y
x xy2 3 62 2, 	

The second-​order partial derivatives are as follows:

	
∂
∂

=
∂
∂

=
∂
∂ ∂

= +
2

2

2

2

2

2 6 2 6
f

x
y

f

y
x

f

x y
x y, , 	

The mixed partial derivative 
∂
∂ ∂

= +
2

2 6
f

x y
x y  tells us how the change in f with respect to x is affected 

by changes in y.
Figure 3.1 shows the visualization of the mathematical function and its partial derivatives through 

a combination of 3D surface and 2D contour plots. The left subplot features a 3D surface plot, illus-

trating how the function 
∂
∂

= +
f

x
xy y2 2 values change over a grid of x and y values ranging from –​2 

to 2. The surface, colored using the colormap, transitions from blue to yellow to represent different 

function values, with black edges highlighting the surface 
∂
∂

= +
f

y
x xy2 2  for better visual distinction. 

The right subplot is a 2D contour plot showing the partial derivatives of the function concerning 
x and y. The filled contours represent the partial derivative with respect to x, using the colormap, 
which spans from cool (blue) to warm (red) colors, indicating the magnitude of the derivative. The 
black contour lines represent the partial derivative with respect to y. The color bar beside the filled 
contours provides a reference for the values of the partial derivative with respect to x. The plot 
includes three sample points marked in red with their coordinates labeled for additional reference:   
(–​1, 1), (1, –​1), and (1, 1).

3.3 � PARTIAL DERIVATIVES IN DEEP LEARNING

In deep learning, we typically work with deep neural networks comprising multiple layers, each 
containing numerous weights and biases. The primary goal during training is to adjust these weights 
and biases to optimize the network’s performance on a given task. Partial derivatives guide this 
optimization process. Every deep learning model utilizes a loss function (or cost function) that 
measures the discrepancy between the model’s predictions and the targets. The objective of training 
is to minimize this loss. We need to understand how the loss changes with tiny adjustments to 
these parameters to adjust each weight and bias effectively to reduce the loss. This is where partial 
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FIGURE 3.1  (a) Surface plot of f x y x y xy,( ) = +2 2 and (b) contours of partial derivatives.
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derivatives come into play. It has two features of changes: direction and magnitude. In gradient des-
cent, the weight update rule is as follows:

	 w w
dL

dw
t t+( ) ( )= −1 η 	

where:

	• w(t) is the weight at iteration t,
	• η is the learning rate,

	•
dL

dw
 is the partial derivative of the loss with respect to w.

Consider a quadratic loss function L w w( ) = −( )3 2, where w represents a weight in the model. This 

loss function reaches its minimum when w =​ 3. After computing the partial derivative 
dL

dw
w= −( )2 3

  

the sign of this derivative tells us whether to increase or decrease w. If w =​ 4, the derivative 

dL

dw
= −( )2 4 3 , which is positive, indicating we should reduce w to minimize the loss.

Figure 3.2 illustrates the behavior of the loss function and how its derivative indicates the direc
tion of the steepest descent toward the optimal weight. The first subplot on the left displays the quad-
ratic loss function L w w( ) = − +( )3 22 , which measures the error or “loss” associated with different 
values of the weight w. This plot shows a U-​shaped curve where the minimum point represents the 
optimal weight. A vertical dashed gray line at w =​ 3 indicates the optimal weight, where the loss 
function reaches its minimum value. The second subplot on the right displays the derivative of the 
loss function, which is given by indicating the slope of the loss function. This derivative is crucial 
for optimization algorithms like gradient descent. It shows a straight line that crosses the x-​axis at 
w =​ 3, where the derivative is zero, corresponding to the optimal weight. A horizontal dashed gray 
line at y =​ 0 indicates where the derivative is zero.

3.4 � GRADIENTS

In multivariable calculus, the gradient is a central concept, especially when dealing with functions 
of several variables. The gradient provides a way to encapsulate the rates of change of a function in 
every direction in a single vector. By pointing in the direction of the steepest ascent and having a 
magnitude representing the maximum increase rate, the gradient offers an understanding of how a 
function changes in different directions. Given a scalar-​valued function f of several variables, such 
as f(x, y) or f(x, y, z), the gradient of f, denoted by ∇f  or “grad f,” is a vector whose components 
are the partial derivatives of f concerning each of its variables. For a function f(x, y), the gradient   

is ,∇ =
∂
∂

∂
∂







f
f

x

f

y
. For a function f(x, y, z), the gradient is , ,∇ =

∂
∂

∂
∂

∂
∂







f
f

x

f

y

f

z
, and so on for functions 

with more variables. Its geometric interpretation includes the following:

(a)	 Direction: The gradient of a function indicates the direction of the steepest ascent. If you 
imagine standing on a hill represented by the function f and walking toward the gradient, you 
will climb the mountain as steeply as possible.

(b)	 Magnitude: The gradient vector’s magnitude (or length) represents the function’s maximum 
increase rate. If the gradient is zero at a point, then that point is a local maximum, local min-
imum, or a saddle point.
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FIGURE 3.2  (a) Loss function and (b) derivative of the loss function.
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Gradient has two main properties:

1.	 Linearity: For scalar constants a and b and functions F and G: ∇ +( ) = ∇ + ∇af bg a f b g
2.	 Dot Product with Directional Derivative: The dot product of the gradient of f at a point and 

a unit vector u gives the rate of change of f in your direction. This is also known as the dir-
ectional derivative of F in the direction D f f u

u


= ∇ ⋅  .

Gradients can be computed analytically using differentiation rules for each partial derivative. 
However, analytical computations can be challenging for complicated functions, especially in high-​
dimensional spaces. In such cases, numerical methods or automatic differentiation tools (standard 
in machine learning frameworks) might be employed. In gradient descent, the weights are updated 
iteratively in the opposite direction of the gradient of the loss function. The update rule for a weight 
w at iteration t can be expressed as follows:

	 w w
L

wt t+ = −
∂
∂1

η 	

where η is the learning rate and 
∂
∂

L

w
 is the gradient of the loss L with respect to w. Additionally, 

backpropagation is an algorithm designed to compute gradients efficiently in neural networks. It 
propagates the error backward through the network, layer by layer, to determine the gradient of the 
loss with respect to each weight. This process relies heavily on the chain rule of calculus to decom-
pose the gradient calculation into manageable steps. Consider a function f x y x y,( ) = +2 2, the gra-
dient of f is:

	 ∇ ( ) =
∂
∂

∂
∂







= ( )f x y
f

x

f

y
x y, , ,2 2 	

At the point (x, y) =​ (1, 2), the gradient is:

	 ∇ ( ) = × ×( ) = ( )f 1 2 2 1 2 2 2 4, , , 	

This tells us that at the point (1, 2), the function increases most rapidly in the direction (2, 4), and the 
steepness of the increase is proportional to the length of the gradient, which is:

	  ∇ ( ) = + = ≈f 1 2 2 4 20 4 472 2, . 	

Figure 3.3 illustrates the shape of the function’s surface alongside the direction and magnitude of 
its gradient at various points. The contour plot depicts the function f x y x y,( ) = +2 2, representing 
a symmetrical paraboloid surface characterized by lines of constant function value. These contour 
lines indicate the function’s elevation as one moves outward from the origin, with labels speci-
fying their corresponding values for enhanced clarity. The gradient vectors are visualized as red 
arrows, which embody the direction and magnitude of the function’s gradient ∇f(x, y) =​ (2x, 2y). 
The length and orientation of each arrow accurately represent the gradient’s strength and direction, 
effectively demonstrating the steepest ascent paths of the function at those locations. Key points 
such as (1, 1), (–​1, –​1), (1, –​1), and (–​1, 1) are distinctly marked on the plot with blue annotations 
and corresponding arrows. These annotations are strategically positioned to prevent overlap with 
other plot elements, ensuring that each key point is easily identifiable and their associated gradient 
vectors are clearly understood. Additionally, black lines are drawn along the y =​ 0 and x =​ 0 axes to 
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FIGURE 3.3  Contour plot f x y x y,( ) = +2 2 with gradient vectors.
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denote the origin, aiding in spatial orientation and providing a reference framework for interpreting 
the plot’s elements.

3.5 � GRADIENT IN DEEP LEARNING

In deep learning, neural networks are trained for classification and regression by fine-​tuning their 
weights and biases to minimize a specified loss (or cost) function. Gradients are the driving force 
behind the training of deep neural networks. By understanding how the loss changes concerning 
model parameters, we can iteratively adjust these parameters to improve the model’s performance. 
Despite the challenges associated with gradient calculations, the proper techniques and tools make 
it possible to harness the power of gradients effectively, maintaining their status as a cornerstone 
concept in deep learning. The gradient plays several critical roles in deep learning. One key role is in 
training a neural network, where the goal is to minimize the loss function by updating the network’s 
weights and biases to reduce the loss. The gradient of the loss function with respect to each weight 
and bias indicates both the direction and magnitude of the adjustments needed to decrease the loss. 
Before delving into gradients, it is crucial to understand the role of the loss function in neural 
networks. The loss function quantifies how well the neural network’s predictions align with the 
data. The objective of training a neural network is to minimize this loss function. To achieve this, 
we must understand how the loss changes for the model’s parameters (weights and biases). This 
is where the gradient comes into play. The gradient of the loss function concerning the model’s 
parameters shows how the loss function changes in direction and magnitude when these parameters 
are adjusted. Specifically, for a neural network with thousands (or even millions) of parameters, the 
gradient is a high-​dimensional vector where each component represents the partial derivative of    
the loss function with respect to one of these parameters. Each partial derivative indicates how much 
the loss will increase or decrease if the corresponding parameter is adjusted by a small amount. 
There are several challenges for gradient in deep learning, here we review some of the most common 
and their possible solution.

(a)	 Vanishing Gradients: In deep networks, gradients can become very small as they propa-
gate through the layers, leading to slow learning. Techniques like normalization, appropriate 
activation functions, and advanced architectures like long short-​term memory networks 
help mitigate this issue. Using ReLU (Rectified Linear Unit) or its variants can mitigate the 
vanishing gradient problem.

(b)	 Exploding Gradients: Conversely, gradients can become excessively large, causing unstable 
updates. Gradient clipping is widely used to tackle this issue by limiting the gradients to 
a maximum value. Gradient clipping involves setting a threshold value and scaling down 
gradients that exceed this threshold, preventing the exploding gradient problem.

(c)	 Saddle Points: Points where the gradient is zero but is neither a minimum nor a maximum of 
the loss function can cause neural networks to get stuck, slowing down the training process. 
Algorithms like Adam, RMSprop, and Adagrad adjust the learning rate dynamically and 
consider past gradients to provide more stable and faster convergence than vanilla gradient 
descent.

3.5.1 �G radient Descent

Gradient descent is an optimization algorithm that minimizes the loss function in neural networks. 
The idea is simple, iteratively adjust each parameter in the opposite direction of its corresponding 
gradient component, aiming to reduce the loss function. The update rule for gradient descent is:

	 θ θ η θθ
t t tJ+( ) ( ) ( )= − ∇ ( )1 	
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where

	• θ is the parameter vector,
	• η is the learning rate,
	• ∇ ( )( )

θ θJ t  is the gradient of the loss function with respect to θ at iteration t.

The variations differ in how much data is used to compute the gradient, affecting the speed and 
efficiency of the optimization process. Suppose you are training a neural network with 100,000 
parameters, and the goal is to minimize the loss function. The dataset contains 1,000 training 
samples. Variations of gradient descent include:

(a)	 Stochastic Gradient Descent (SGD): In this case, after processing each individual data 
sample, the network updates its parameters. So, if you process the first sample, calculate the 
loss, and compute the gradient, the parameters are updated immediately, and then you pro-
ceed to the next sample. For example, if the current parameter value is θ(t) =​ 0.5, the learning 
rate is η =​ 0.01, and the gradient for a particular parameter is ∇∇θ =​ 0.2, the update would be: 

. . . .θ t +( ) = − × =1 0 5 0 01 0 2 0 498.
(b)	 Mini-​Batch Gradient Descent: In mini-​batch gradient descent, the model updates its 

parameters after processing small, manageable batches of data. For example, if the batch 
size is 32 samples, the model processes these 32 samples, computes the average gradient 
for the batch, and updates the parameters accordingly. This approach balances the trade-​off 
between the efficiency of SGD and the stability of batch gradient descent, leading to faster 
convergence and smoother updates.

(c)	 Batch Gradient Descent: In batch gradient descent, the model processes the entire dataset 
(e.g., all 1,000 samples) before updating the parameters. After computing the gradient for 
the entire dataset, the parameters are updated in one large step. This method provides a more 
stable gradient estimate, but it is computationally expensive, especially for large datasets, as 
it requires going through all data points before making an update.

3.5.2 � Backpropagation

The backpropagation algorithm is essential for determining the gradient of the loss function relative 
to each network parameter. It operates through two primary phases:

1.	 Forward Propagation: Input data is processed layer by layer to produce the network’s output.
2.	 Reverse Propagation: By applying the chain rule, the gradient of the loss function concerning 

each parameter is calculated, starting from the output layer and working backward to the 
input layer.

The gradient of the loss function L with respect to a weight w in layer l is computed using the 
chain rule:

	
∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂
∂

L

w

L

a

a

z

z

w
l l

l

l

l

l

	

where:

	• al is the activation at layer l,
	• zl is the pre-​activation (linear combination of weights and inputs) at layer l.
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Backpropagation efficiently computes gradients for all parameters in the network, making it funda-
mental for training deep neural networks. Suppose you’re training a neural network with three layers 
to classify images. During forward propagation, a sample image passes through the network, and 
the model predicts a class based on its current parameters. For example, if the true class label is 2 
and the network predicts class 3, a loss function (such as cross-​entropy) is used to measure the error 
between the predicted class and the true class. During reverse (backward) propagation, the algo-
rithm calculates the gradient of the loss with respect to the parameters (weights and biases), starting 
from the output layer and propagating back through the three layers to the input. Using the chain 
rule of calculus, backpropagation computes how each weight and bias contributes to the loss. These 
gradients are then used to update the parameters in the opposite direction of the gradient (through 
gradient descent), reducing the loss and improving the model’s predictions. This process is repeated 
for multiple samples in the training set, gradually fine-​tuning the network’s parameters.

Figure 3.4 illustrates the behavior of a quadratic loss function and the corresponding gradient 
descent optimization process used to minimize it. In the subplot (a), the loss function L(w) =​ (w 
− 3)2 +​ 2 is displayed as a smooth blue curve. This parabolic curve depicts how the loss varies with 
different weight values w, reaching its minimum at the optimal weight w =​ 3. The Gradient Descent 
Path is illustrated with a dashed orange line and highlighted with large red markers, tracing the itera-
tive steps taken from an initial weight of w =​ 0 toward the minimum. Each red marker represents 
an updated weight after applying the gradient descent update rule with a learning rate of 0.1, show-
casing the step-​by-​step approach toward minimizing the loss. A vertical dashed green line marks 
the optimal weight (w =​ 3), providing a clear reference point for the goal of the optimization. The 
subplot (b) focuses on the gradient of the loss function ∇L(w) =​ 2(w − 3) depicted as a robust orange 
line. This linear function illustrates how the gradient changes with different values of w, crossing 
zero precisely at the optimal weight of 3. The gradient steps are marked with purple scatter points, 
corresponding to the gradient values at each step of the gradient descent process. These points visu-
ally demonstrate how the gradient diminishes as the weight approaches the optimal value, guiding 
the descent toward the minimum loss. A horizontal dashed gray line indicates the zero gradient level, 
providing a reference for where the gradient equals zero, signifying the optimal point.

3.6 � JACOBIANS

Jacobian is a fundamental concept in various branches of mathematics, including calculus, differen-
tial equations, and geometry. It is essential in multivariate calculus and has numerous applications in 
theoretical and applied mathematics. The Jacobian matrix of a system of transformation equations is 
a matrix of the first-​order partial derivatives of the functions involved. For a vector-​valued function/​

mapping it can be f f: , ( )
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n mto , the Jacobian matrix is m × n, defined as 

follows:
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FIGURE 3.4  (a) Loss function and gradient descent path, (b) gradient of the loss function.
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Here, F
i
 represents the ith component of the vector-​valued function F. The Jacobian matrix has sev-

eral critical applications. In optimization, the Jacobian provides information about the gradient and 
direction to move toward or away from a local optimum, aiding in the optimization process.

3.6.1 � Jacobian Determinant

The determinant of a Jacobian matrix is called the Jacobian determinant or simply the Jacobian. For 
a function that maps from  

n n→  , the Jacobian determinant indicates how the function scales 
areas or volumes in the neighborhood of a point. If the Jacobian determinant at a point is positive, 
the function preserves orientation near that point; if it is negative, the function reverses orientation.
For a transformation function f n n: → , the Jacobian determinant is:

	 det( ) det
, , ,

, , ,
J

f f f

x x x
n

n

=
∂ …( )
∂ …( )









1 2

1 2

	

The Jacobian determinant informs how the function scales areas or volumes locally and whether it 
preserves or reverses orientation. Consider a transformation function that maps from  2 2to . The 
function transforms the coordinates (x, y) to new coordinates (u, v) using the equations:

	 u x y v x y= + = −2 , 	

The Jacobian matrix is:

	 J =
−





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2 1

1 1
	

The Jacobian determinant is calculated as follows:

	 det J( ) = × −( ) − ×( ) = − − = −2 1 1 1 2 1 3	

As the determinant is negative, the transformation reverses orientation near the point.

3.6.2 �R elationship with the Chain Rule

The Jacobian matrix is closely related to the chain rule in calculus. The chain rule allows us to find 
the derivative of a composite function, and when working with tasks from nto m, it involves the 
Jacobian matrix. Specifically, if f and g are functions such that f n p: →  and  p m→ , then the 
Jacobian matrix of the composite function h g f= °  is the product of the Jacobian matrices of g and 
f. If f n p: →  and g p m: → , the Jacobian of the composite function h g f x= ( )( ) is:

	 J x J f x J x
h g f( ) = ( )( )⋅ ( )	

The chain rule in multi-​dimensional calculus uses this product of Jacobians to compute the deriva-
tive of composite functions. Suppose you have two functions:

1.	 f(x, y) =​ (2x + ​y, x − y)
2.	 g(u, v) (where u and v are the outputs of f(x, y))

To find the derivative of the composite function g(f(x, y)), you need to use the chain rule for 
multivariable functions, which involves multiplying the Jacobian matrices of g and f. Let us do the 
process step by step:
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1.	 Compute the Jacobian of f(x, y): The Jacobian matrix of f(x, y) is the matrix of partial 
derivatives of each component of f with respect to x and y:
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2.	 Compute the Jacobian of g(u, v): Suppose g(u, v) is a function of u and v, you need to com-
pute its Jacobian with respect to u and v:
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3.	 Apply the Chain Rule: The chain rule for multivariable functions states that the Jacobian of 
the composite function g(f(x, y)) is the product of the Jacobian matrices of g and f:

	
J x y J u v J x y

g f g f( ) ( ) = ( )⋅ ( ), , ,
	

3.6.3 �C omputational Aspects

In computational fields, the Jacobian is often used in numerical methods, such as Newton’s Method. 
This technique finds the roots of equations with multiple variables, utilizing the Jacobian matrix 
to approach the solution iteratively. The Jacobian assists in linearizing complex systems, making 
numerical approximation methods more efficient. Newton’s Method for systems of equations uses 
the Jacobian matrix to update guesses iteratively:

	 x x x f xn n n nJ+( ) ( ) − ( ) ( )= − ( )⋅ ( )1 1 	

where

	• x( )n is the current guess,
	• J is the Jacobian matrix of the system,
	• f represents the system of equations.

This iterative process converges to the roots, making it effective for solving non-​linear systems. 
Suppose you want to find the roots of the system of equations:

	 f x y x y f x y x y
1

2 2
2

4 0 0, , ,( ) = + − = ( ) = − = 	

Using Newton’s Method, you start with an initial guess, say (x0, y0) =​ (1, 1), and iteratively apply the 
method to get closer to the solution. The Jacobian matrix for this system is:

	 J
x y

=
−





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2 2

1 1
	

This matrix is used in the iterative formula to update the guesses for x and y.
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Figure 3.5 shows the visualization of the Jacobian vectors of a vector-​valued function F(x, y).  
The function , ,F x y xcos y ysin x( ) = ( ) ( ) 

T is depicted along with its Jacobian matrix, which is  
calculated as ,J x y

F ( ). The figure is divided into two main components: a contour plot and Jacobian  
vectors. The background contour plot displays a quadratic function Z x y= +2 2, providing a visual  
reference for the domain over which the Jacobian vectors are computed, with filled contours using  
the colormap and an accompanying color bar indicating the function levels. Superimposed on  
the contour plot are red and blue arrows representing the Jacobian vectors corresponding to the  
components of F. The red arrows depict the partial derivatives associated with them, while the blue  
arrows depict those associated with them.

3.7 � JACOBIANS IN DEEP LEARNING

In the context of deep learning, Jacobians play a crucial role in understanding how small changes 
in input can affect the output of a neural network model. This is especially important in scenarios 
where the sensitivity and responsiveness of a model to inputs are critical. In deep learning, a neural 
network functions as a mapping between input vectors and output vectors. The Jacobian matrix 

FIGURE 3.5  Visualization of Jacobian vectors for the function F x y xcos y ysin x, ,( ) = ( ) ( ) .
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details the rate at which each output changes in response to variations in each input. Specifically, 
for a network that has m outputs and n inputs, the Jacobian is a matrix. Formally, if y x= F ( ) where 
x ∈

n and y ∈

m, the Jacobian matrix J is given by
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The Jacobian matrix is a valuable tool for analyzing the sensitivity of a neural network’s outputs to 
input variations. This sensitivity analysis is crucial in adversarial attacks, where minor input alter-
ations can cause substantial output changes. By understanding this sensitivity, we can enhance the 
robustness and reliability of the model. While the Jacobian is not directly used in backpropagation, 
the concept is closely related. Backpropagation relies on the gradient to adjust weights and biases in 
a network. This gradient quantifies how the loss function changes as you adjust the input or weights, 
like how the Jacobian quantifies the output change concerning inputs.

In adversarial machine learning, attackers often use the Jacobian matrix to generate adversarial 
examples. By understanding how changes in input affect output, attackers can make slight modifications 
to an input sample to fool a neural network into misclassifying it. This understanding is crucial for 
developing defenses against such attacks. The Jacobian can be useful for visualizing how changes in 
specific inputs affect outputs. This visualization aids in interpreting how a deep learning model functions 
and helps debug or improve model behavior. By examining the Jacobian, researchers can gain insights 
into the model’s internal workings and response to varying inputs. Recent research in deep learning 
involves regularizing the Jacobian to ensure that the model is not overly sensitive to input perturbations. 
Regularizing the Jacobian can help make the model more robust, improving its performance on real-​
world data where slight variations are common. The Jacobian matrix can be massive for large neural 
networks, making computation and storage computationally challenging. In many practical scenarios, 
approximations or sampling methods might be used to manage these challenges effectively. Despite these 
limitations, understanding and utilizing the Jacobian remains a critical aspect of advanced neural network 
training and analysis. Consider a simple neural network with two inputs x

1
, x

2
 and two outputs y

1
, y

2
, 

where the output is calculated as follows:
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The Jacobian matrix for this network is:
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At the point (x
1
, x

2
) =​ (1, 2), the Jacobian becomes:
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This matrix shows how small changes in x1 and x2 affect y1 and y2. For instance, increasing x1 by 1  
unit increases y1 by 2 units and y2 by 2 units, while increasing x2 by 1 unit increases y1 by 3 units  
and y2 by 4 units.

Figure 3.6 presents a visualization of the Jacobian matrix of a simple neural network. The 
Jacobian matrix, in this context, represents the partial derivatives of the network’s outputs with 
respect to its inputs. Each cell in the matrix indicates the sensitivity of an output to a change in a 
specific input. The color gradient in the matrix helps to visually differentiate the magnitude and 
direction of the sensitivities. Warmer colors (reds) indicate higher positive values, while cooler 
colors (blues) represent higher negative values. Neutral values are closer to white. Each cell is 
annotated with the exact value of the partial derivative it represents. The x-​axis is labeled with 
the inputs (Input 1 and Input 2), and the y-​axis is labeled with the outputs (Output 1 and Output 
2). By examining the Jacobian matrix, you can understand how changes in each input variable 
will affect each output variable. For example, a high positive value in a cell indicates that a small 
increase in the corresponding input will result in a significant increase in the corresponding 
output.

3.8 � HESSIAN MATRICES

While the Hessian matrix provides valuable insights into the curvature of a function and can influ-
ence optimization strategies, its direct application in deep learning is limited by practical computa-
tional challenges. However, methods that leverage Hessian information, either directly or indirectly, 
can be crucial in specific deep learning scenarios. The Hessian matrix, a square matrix, showcases 
the second-​order partial derivatives of a scalar function. For a function 

n → , the Hessian H(f) is 
given by:

FIGURE 3.6  Visualization of the Jacobian matrix for a simple neural network.
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The importance of Hessian matrices include:

(a)	 Convexity and Concavity: A function is locally convex if the Hessian is positive definite at a 
point. If the Hessian is negative definite, the function is locally concave. This property is crit-
ical in optimization, as it helps identify the nature of critical points, distinguishing between 
local minima, maxima, or saddle points.

(b)	 Second-​order Optimization Methods: The Hessian is used in second-​order optimization 
methods, such as Newton’s Method, which can achieve faster convergence than first-​order 
methods like gradient descent under certain conditions. However, in deep learning, com-
puting the Hessian is often computationally expensive due to the large number of parameters.

(c)	 Approximations: Quasi-​Newton methods approximate the Hessian. These methods are used 
in optimization scenarios where computing the actual Hessian might be too costly.

Consider a simple function f x y x y,( ) = +2 2. The Hessian matrix of this function, representing the 
second-​order partial derivatives, is:
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As the Hessian matrix is positive definite (both eigenvalues are positive), the function is locally 
convex, and any critical point is a local minimum. The Hessian helps determine the curvature of 
the function, which influences the optimization strategy by providing insights into local minima, 
maxima, and saddle points.

Figure 3.7 shows the behavior of the function f x y x y xy,( ) = + +2 2 2  and its Hessian matrix. The 
left subplot features a 3D surface plot of the function, displaying its values over a grid of x and y 
ranging from –​2 to 2. The axes are labeled x, y, and f(x, y), and a color bar accompanies the plot 
to show the corresponding function values. The right subplot presents the Hessian matrix of the 
function at the specific point (x, y) =​ (1, 1). For f x y x y xy,( ) = + +2 2 2 , the Hessian matrix at this 

point is
2 2

2 2






 . The heatmap visualizes this matrix using the “Blues” colormap, with each cell’s 

color reflecting the value of the corresponding second-​order partial derivative.

3.9 � HESSIAN IN DEEP LEARNING

While direct computation and use of the Hessian in deep learning training are rare due to its high 
computational and storage costs, its properties and associated concepts are precious. They provide 
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FIGURE 3.7  Visualization of the Hessian matrix for the function f x y x y xy,( ) = + +2 2 2 .
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insights into model optimization, robustness, and generalization and influence the development of 
advanced optimization algorithms tailored for deep learning. Research suggests that the eigenvalues 
of the Hessian can provide insights into model generalization. Flatter minima (where the Hessian 
has smaller eigenvalues) might correspond to better generalization, as they indicate less sensitivity 
to small perturbations in the input data. Regularizing the Hessian can help prevent overfitting, 
leading to models that better generalize unseen data. The Hessian’s properties can be leveraged 
to understand model robustness, especially in adversarial attacks. The curvature information can 
provide insights into the model’s susceptibility to perturbations in the input space. By studying the 
Hessian, researchers can develop better defense mechanisms against adversarial attacks, enhan-
cing the robustness and reliability of deep learning models. Given the high computational cost of 
the Hessian in deep networks, Hessian-​free methods aim to leverage its second-​order information 
without explicitly computing it. Here are some of its features:

(a)	 High-​Dimensional, Non-​Convex Landscapes: Deep learning involves training models on 
high-​dimensional, non-​convex optimization landscapes. This makes the training process sus-
ceptible to challenges like getting stuck in saddle points.

(b)	 Curvature Information: The Hessian matrix provides second-​order information about the 
curvature of the loss surface. The eigenvalues of the Hessian can indicate whether a point 
is a minimum, maximum, or saddle point. Specifically, if all eigenvalues are positive, it 
is a local minimum; if all are negative, it is a local maximum; and if there is a mix, it is a 
saddle point.

(c)	 Saddle Points: In deep learning, saddle points are more common than local minima, making 
it crucial to understand the role of the Hessian in navigating such points. Understanding 
the Hessian can help develop strategies to escape saddle points and improve training 
efficiency.

For example, consider that we are training a neural network with a loss function L(w), where w 
represents the weight parameters of the network. Suppose at a certain point in the weight space, the 
Hessian matrix has the following eigenvalues:

	 λ λ λ λ
1 2 3 4

0 01 0 1 0 5 0 2= = = = −. , . , . , . 	

The negative eigenvalue λ4 =​ –​0.2 indicates the presence of a saddle point, meaning the training pro-
cess might slow down or get stuck at this point. The small positive eigenvalues λ1 =​ 0.01, λ2 =​ 0.1 
suggest a flat region in the loss surface, meaning progress may be slow along these directions. The 
larger positive eigenvalue λ3 =​ 0.5 indicates that in this direction, the curvature is steeper, meaning 
changes in this direction will more rapidly impact the loss.

In Figure 3.8, the Hessian matrix of a simple neural network is visualized to provide insights 
into the second-​order derivatives of the network’s loss function with respect to its inputs. The neural 
network consists of a single fully connected layer that maps a two-​dimensional input to a two-​
dimensional output using ReLU activation. The sample input tensor [1.0, 2.0] is used for this visu-
alization, and the forward pass through the network produces an output. The loss, defined as the 
sum of the outputs, is computed, and the gradients are calculated. The Hessian matrix, representing 
the second-​order partial derivatives, is then computed using these gradients. The Hessian matrix is 
visualized as a heatmap using the colormap, which provides a clear distinction between positive and 
negative values. The x and y axes of the heatmap are labeled with x

1
 and x

2
, representing the inputs 

to the neural network.
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The challenges in using the Hessian in deep learning include the following:

(a)	 Computational Complexity: The Hessian is a square matrix of size n × n, where n is the 
number of parameters in the model. In modern deep networks, which can have millions or 
even billions of parameters, computing the full Hessian becomes computationally prohibi-
tive. The time and resources required to calculate second-​order derivatives for such high-​
dimensional models are often beyond the capabilities of standard hardware.

(b)	 Storage Costs: Storing the full Hessian matrix for large-​scale models is impractical, as 
its memory requirements scale quadratically with the number of parameters. Even using 
techniques like sparse or low-​rank approximations, the storage costs remain substantial, cre-
ating a bottleneck for efficient computation and optimization.

(c)	 Non-​convexity: The loss surfaces in deep learning models are highly non-​convex, meaning 
they contain numerous saddle points and local minima. While the Hessian provides informa-
tion about the curvature of the loss surface, the presence of these saddle points complicates 
the optimization process. At these points, the Hessian can have both positive and negative 
eigenvalues, making it difficult to determine a clear direction for convergence and potentially 
leading to slow or unstable training.

FIGURE 3.8  Visualization of the Hessian matrix for a neural network at (x
1
,x

2
) =​ (1,2).
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3.10 � REAL-​WORLD APPLICATIONS

3.10.1 �A utonomous Vehicles

Calculus, particularly gradient descent, is pivotal in training the deep learning models that power 
autonomous vehicles. These models rely on calculus to optimize their decision-​making processes in 
real time. For instance, during navigation, the vehicle must continually adjust its steering and speed 
based on the environment, which is captured and processed by sensors. The optimization process 
involves minimizing a loss function that represents the difference between the predicted path and 
the ideal path. By using gradients, the model updates its parameters to improve accuracy and safety, 
ensuring that the vehicle can adapt to changing road conditions and unexpected obstacles.

3.10.2 �H ealthcare and Medical Imaging

In healthcare, calculus plays a critical role in enhancing the accuracy of diagnostic tools, particularly 
in medical imaging. Techniques like backpropagation, which relies on the chain rule of calculus, 
are used to train deep learning models for tasks such as detecting tumors in radiographic images. 
By optimizing the loss function, which quantifies the discrepancy between the predicted diagnosis 
and the actual condition, these models can learn to identify subtle patterns in the images that may be 
indicative of early-​stage diseases. This application not only improves diagnostic accuracy but also 
facilitates earlier detection and treatment, ultimately saving lives.

3.10.3 �R obotics and Control Systems

In robotics, calculus is integral to designing control systems that allow robots to interact with their 
environment in real time. Calculus-​based algorithms help optimize the robot’s movements and 
actions to perform tasks with precision. For instance, in robotic surgery, the robot’s movements 
must be incredibly accurate to perform delicate procedures. The optimization of these movements 
relies on minimizing a loss function that measures the deviation from the desired motion. By cal-
culating gradients, the control system can continuously adjust the robot’s actions, ensuring safe and 
effective operation.

3.10.4 �N atural Language Processing (NLP)

In NLP, calculus underlies the training of models that understand and generate human language. 
These models, such as transformers used in machine translation or sentiment analysis, require 
extensive optimization during training. The gradients of the loss function guide the updates to 
the model’s parameters, improving its ability to understand context, syntax, and semantics. For 
example, in machine translation, the model must minimize the error between the translated output 
and the correct translation, which is achieved through calculus-​driven optimization techniques like 
backpropagation.

3.10.5 �I mage and Video Processing

Calculus is fundamental in processing and enhancing images and videos through deep learning 
models. These models are trained to perform tasks such as image recognition, video analysis, and 
facial recognition by optimizing a loss function that measures how well the model’s predictions 
match the actual content. For instance, in facial recognition, the model learns to distinguish between 
different faces by minimizing the difference between the predicted identity and the true identity. 
This process relies on gradient calculations to adjust the model parameters, improving accuracy and 
reliability in real-​world applications.
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3.11 � HANDS-​ON EXAMPLE

This section will walk through a programming example to demonstrate how multivariate calculus is 
used in deep learning, specifically focusing on gradient descent optimization.

Step 1: Import necessary libraries
In this step, we import essential libraries that will help with data manipulation and visualization. The 
NumPy library is imported as np, which is widely used for numerical computations and handling 
arrays or matrices. The matplotlib.pyplot module, imported as plt, is used for creating static, inter-
active, and animated visualizations in Python. Additionally, Axes3D from mpl_​toolkits.mplot3d is 
imported to enable the creation of 3D plots, which will allow us to visualize data in three dimensions, 
providing deeper insight into relationships between variables.

import numpy as np
import matplotlib.pyplot as plt
from mpl_​toolkits.mplot3d import Axes3D

Step 2: Define the multivariate function
We’ll use a simple quadratic function of two variables: f x y x y,( ) = +2 2

def f(x, y):
  return x**2 +​ y**2

Step 3: Compute the gradient
The gradient of the function is given by the partial derivatives with respect to each 

variable:∇ =
∂
∂
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∂
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def gradient(x, y):
df_​dx =​ 2 * x
df_​dy =​ 2 * y
return np.array([df_​dx, df_​dy])

Step 4: Implement gradient descent
In this function, we are implementing a basic version of the gradient descent optimization algorithm. The 
gradient_​descent function takes in three parameters: starting_​point, which is the initial point where the 
optimization process begins; learning_​rate, which controls the size of the steps taken in the direction of 
the gradient; and iterations, which specifies how many times the process should update the point. The 
function starts at the given starting_​point and iteratively updates the position based on the negative of the 
gradient (calculated using the gradient function). The learning rate controls how much the point moves in 
the direction of the negative gradient. The new positions (points) are stored in a list and returned, giving 
a trace of the steps taken during the optimization process.
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def gradient_​descent(starting_​point, learning_​rate, iterations):
points =​ [starting_​point]
point =​ starting_​point
for _​ in range(iterations):
grad =​ gradient(point[0]‌, point[1])
point =​ point -​ learning_​rate * grad
points.append(point)

return points

Step 5: Run gradient descent
In this part of the code, we are setting up the initial parameters to run the gradient descent algorithm. 
The starting_​point is initialized as a NumPy array [5.0, 5.0], which represents the initial point in a 
2D space where the optimization begins. The learning_​rate is set to 0.1, which defines the step size 
in the direction of the gradient at each iteration, controlling how quickly the algorithm converges. 
The iterations parameter is set to 50, meaning that the gradient descent will run for 50 steps. The 
gradient_​descent function is then called with these parameters, and the points generated throughout 
the optimization process are stored in the points variable. Finally, the list of points is converted into 
a NumPy array for easier manipulation or visualization in the following steps. This setup is crucial 
for tracking how the algorithm converges towards the minimum of the function being optimized.

starting_​point =​ np.array([5.0, 5.0])
learning_​rate =​ 0.1
iterations =​ 50
points =​ gradient_​descent(starting_​point, learning_​rate, 
iterations)
points =​ np.array(points)

Step 6: Visualize the function and Gradient Descent Path
We will create a 3D plot of the function and the path taken by gradient descent.

x =​ np.linspace(-​6, 6, 400)
y =​ np.linspace(-​6, 6, 400)
X, Y =​ np.meshgrid(x, y)
Z =​ f(X, Y)
fig =​ plt.figure(figsize=​(12, 8))
ax =​ fig.add_​subplot(111, projection=​‘3d’)
ax.plot_​surface(X, Y, Z, cmap=​‘viridis’, alpha=​0.6)
ax.plot(points[:, 0], points[:, 1], f(points[:, 0], points[:, 1]), 
color=​‘r’, marker=​’o’)
ax.set_​xlabel(‘X’)
ax.set_​ylabel(‘Y’)
ax.set_​zlabel(‘f(X, Y)’)
ax.set_​title(‘Gradient Descent on f(X, Y) =​ X^2 +​ Y^2’)
plt.show()
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Figure 3.9 is the output of the program, which is a 3D plot that shows the surface of the function and  
the path taken by gradient descent.

3.12 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

3.12.1 �U nderstanding Partial Derivatives

	• Mistake: Confusing partial derivatives with total derivatives.
	• Tip: Remember that partial derivatives measure how a function changes with respect to one 

variable while keeping other variables constant. In contrast, total derivatives consider the 
change with respect to all variables simultaneously.

	• Mistake: Incorrectly treating constants while taking partial derivatives.
	• Tip: Always treat other variables as constants when computing the partial derivative with 

respect to a specific variable. For example, when finding 
∂
∂

f

x
 for f x y,( ), treat it as a constant.

3.12.2 �H igher-​Order Partial Derivatives

	• Mistake: Misinterpreting mixed partial derivatives.
	• Tip: Understand that mixed partial derivatives involve taking the derivative with respect to 

different variables in succession. For example, it means taking the partial derivative of f with 
respect to y first, then with respect to x .

	• Mistake: Assuming mixed partial derivatives are always equal.
	• Tip: Clairaut’s theorem states that mixed partial derivatives are equal if the function and its 

partial derivatives are continuous. Verify continuity before assuming equality.

FIGURE 3.9  Gradient descent on f x y x y,( ) = +2 2.
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3.12.3 �G radients

	• Mistake: Misunderstanding the direction of the gradient vector.
	• Tip: Remember that the gradient vector points in the direction of the steepest ascent. For mini-

mization problems, move in the opposite direction of the gradient (steepest descent).
	• Mistake: Incorrectly computing the gradient for functions with multiple variables.
	• Tip: The gradient is a vector of partial derivatives. For a function f x y,( ), the gradient is 
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∂
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3.12.4 �O ptimization and Gradient Descent

	• Mistake: Using a fixed learning rate that is too high or too low.
	• Tip: Adjust the learning rate dynamically or use adaptive learning rate algorithms like Adam 

or RMSprop to improve convergence.
	• Mistake: Ignoring the potential for vanishing or exploding gradients.
	• Tip: To mitigate vanishing gradients, use techniques like gradient clipping to handle exploding 

gradients and appropriate activation functions (e.g., ReLU).

3.12.5 � Jacobians

	• Mistake: Confusing the Jacobian matrix with the Hessian matrix.
	• Tip: The Jacobian matrix is used for vector-​valued functions and contains first-​order partial 

derivatives. The Hessian matrix is used for scalar-​valued functions and contains second-​order 
partial derivatives.

	• Mistake: Misinterpreting the role of the Jacobian in transformations.
	• Tip: Understand that the Jacobian matrix represents the rate of change of each output with 

respect to each input. It is crucial for sensitivity analysis and understanding how input changes 
affect outputs.

3.12.6 �H essian Matrices

	• Mistake: Overlooking the computational complexity of the Hessian.
	• Tip: Be aware that the Hessian matrix can be computationally expensive for large models. Use 

approximations or Hessian-​free optimization methods when necessary.
	• Mistake: Misinterpreting the eigenvalues of the Hessian.
	• Tip: Positive eigenvalues indicate a local minimum, negative eigenvalues indicate a local max-

imum, and mixed eigenvalues indicate a saddle point.

3.13 � REVIEW QUESTIONS

1.	 How is matrix multiplication used during the forward propagation of a neural network?
2.	 What roles do vectors and matrices play in representing data and weights within the network?
3.	 Define a partial derivative and discuss its importance in the context of multivariate functions 

in deep learning.
4.	 How does a partial derivative differ when calculated with respect to different variables?
5.	 What is a gradient in multivariable calculus? Explain its significance in optimizing neural 

network parameters during training.
6.	 Compare and contrast stochastic, mini-​batch, and batch gradient descent. Under what 

circumstances might each be preferred?
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7.	 How do Jacobians and Hessians contribute to deep learning? Provide examples of how these 
higher-​order derivatives can be applied in model optimization and analysis.

8.	 How does the learning rate influence the convergence of neural network training? What 
potential issues can arise if the learning rate is set too high or too low?

9.	 Explain the backpropagation algorithm.
10.	 How does backpropagation use the chain rule of calculus to update the weights and biases 

in a neural network?

3.14 � PROGRAMMING QUESTIONS

3.14.1 �E asy

Implement gradient descent to find the minimum of the function g x y x y,( ) = +2 23 .

1.	 Define the function g(x, y).
2.	 Compute the gradient of the function.
3.	 Implement the gradient descent algorithm.
4.	 Choose a starting point, learning rate, and number of iterations.

3.14.2 �M edium

Implement gradient descent with momentum to minimize the function h x y x y,( ) = −( ) + +( )2 3
2 2

.

1.	 Define the function h (x, y).
2.	 Compute the gradient of the function.
3.	 Implement the gradient descent algorithm with momentum.
4.	 Choose a starting point, learning rate, momentum factor, and number of iterations.
5.	 Visualize the function and the path taken by gradient descent with momentum.

3.14.3 �H ard

Implement gradient descent to minimize the function k x y x y, sin cos( ) = ( ) + ( ).

1.	 Define the function k(x, y).
2.	 Compute the gradient of the function.
3.	 Implement the gradient descent algorithm.
4.	 Choose a starting point, learning rate, and number of iterations.
5.	 Visualize the function and the path taken by gradient descent.
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4	 Probability Theory and 
Statistics

4.1 � INTRODUCTION

In this chapter, we begin by exploring the fundamental role of probability distributions in 
understanding and modeling the randomness inherent in real-​world data. From the discrete sim-
plicity of a dice roll to the continuous variations in financial markets, probability distributions help 
us frame our predictive models in terms that align closely with observed phenomena. As we navi-
gate this chapter, we introduce you to various probability distributions tailored to specific data and 
analysis requirements. We also discuss how these distributions interact with neural network (NN) 
architectures, particularly Bayesian Neural Networks (BNNs), to provide a robust framework for 
handling uncertainty and making informed predictions.

4.2 � PROBABILITY DISTRIBUTIONS

Probability distributions are fundamental statistical tools, offering mathematical models that predict 
the likelihood of various outcomes. These outcomes could be as simple as a dice roll or as complex 
as forecasting investment returns. Each type of probability distribution is tailored to specific kinds 
of data and assumptions, making them necessary for analyzing patterns, making predictions, and 
drawing meaningful conclusions about data.

4.2.1 �D iscrete Probability Distributions

These types of distributions apply discrete random variables with many possible outcomes. For 
example, when you roll a dice, the outcomes are discrete numbers ranging from 1 to 6. Another 
instance is counting the number of heads when you flip three coins. Here are a few widely used dis-
crete probability distributions.

1.	 Binomial Distribution: It measures the number of successes in a fixed set of independent yes/​
no trials, each with the same probability of success. For instance, it can predict the likelihood 
of flipping heads 10 times out of 20 coins’ tosses. Here is the mathematical representation 
for binomial distribution:

	 P X k
n

k
p pk n k=( ) =
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where:

	• n is the number of trials,
	• p is the probability of success, and
	• k is the number of successes.

For binomial distribution, suppose you flip a coin 20 times, and the probability of heads 
is 0.5. The binomial distribution can predict the likelihood of getting exactly 10 heads. 
Using the binomial formula:

	 P X =( ) =




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=10
20

10
0 5 0 5 0 17610 10( . ) ( . ) .

2.	 Poisson Distribution: It is ideal for estimating the probability of a particular number of 
events occurring within a fixed interval; this distribution is often used for rare events, such 
as the frequency of earthquakes in a specific area over a year. Here is the mathematical 
representation for Poisson distribution:

P X k
e

k

k

=( ) =
−λ λ

!

where:

	• λ is the average rate of occurrence,
	• k is the number of events.

For the Poisson distribution, if, on average, two earthquakes occur per year in a region, 
the Poisson distribution can estimate the probability of having exactly three earthquakes 
in a year, with λ =​ 2:

P X
e

=( ) = =
−

3
2

3
0 18

3 2

!
.

3.	 Geometric Distribution: It shows the probability of achieving the first success on the nth trial.
Here is the general formula for geometric distribution:

P X k p pk=( ) = − ⋅−( )1 1   

where:

	• X is the random variable representing the number of trials until the first success,
	• p is the probability of success on any given trial,
	• k is the trial number where the first success occurs, and
	• (1 − p) is the probability of failure on a given trial.

The formula calculates the probability that the first success happens on the kth trial. The 
term ( )1 1− −p k  represents the probability of failing k –​ 1 times before achieving success 
on the kth trial. Suppose you are flipping a coin, and the probability of getting heads 
(success) is 0.5. You want to calculate the probability that the first heads appear on the 
fifth flip. Using the formula:
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P X =( ) = − ⋅ = ⋅ =−5 1 0 5 0 5 0 5 0 5 0 031255 1 4( . ) . ( . ) . .   

		 The probability of getting the first heads on the fifth flip is 0.03125, or 3.125%.
4.	 Uniform Distribution: In uniform distribution (discrete), all outcomes have an equal prob-

ability of occurring, such as rolling any number from 1 to 6 on a fair die. Here is the general 
formula for discrete uniform distribution:

	 P X k
n

=( ) =
1

	

where:

	• X is the random variable representing the outcome,
	• k is a specific outcome, and
	• n is the number of equally likely outcomes.

		 The formula is used to calculate the probability of any specific outcome k when all outcomes 
are equally probable. For example, rolling any number on a fair six-​sided die would have the 
same probability because the die is fair, and each face is equally likely. Suppose you roll a fair 
six-​sided die. The probability of rolling any specific number (like rolling a 3) is equal for all 
outcomes. As there are six possible outcomes, the probability is:

	 P X =( ) = ≈3
1

6
0 1667. 	

The probability of rolling a 3, or any other specific number, is 0.1667, or 16.67%.

4.2.2 �C ontinuous Probability Distributions

They are used for continuous random variables, assuming any value within a specified range. A typ-
ical example is the height of individuals in a population, which can vary continuously. Some of the 
standard continuous probability distributions are as follows.

4.2.2.1 � Uniform Distribution (Continuous)
It is applied when any value within a specified range is equally likely. This distribution is typically 
used to model situations where every outcome in an interval is equally probable, such as randomly 
selecting a number between two values. Here is its general formula:

	 f x
b a

a x b( ) =
−

≤ ≤
1

, for 	

where:

	• a is the lower bound of the interval,
	• b is the upper bound of the interval,
	• f(x) is the probability density function (PDF).

This distribution is “flat,” meaning every outcome between a and b has the same probability density. 
The total area under the PDF equals 1, ensuring it is a valid distribution. Suppose you want to model 
the probability of selecting a random number between 0 and 1. The PDF would be:

	 f x x( ) =
−

= ≤ ≤
1
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Thus, the probability of any specific range (e.g., between 0.2 and 0.8) can be calculated as:

	 P X0 2 0 8 0 8 0 2 1 0 6. . . . .≤ ≤( ) = −( )⋅ = 	

This means the probability of selecting a number between 0.2 and 0.8 is 60%.

4.2.2.2 � Normal (Gaussian) Distribution
The normal distribution is one of the most widely used continuous distributions, known for its bell-​
shaped curve. It is determined by two parameters: the mean (μ) and the standard deviation (σ). Here 
is its general formula:

	 f x e
x

( ) =
− −1

2

2

22

σ π

µ
σ

( )

	

where:

	• μ is the mean,
	• σ is the standard deviation,
	• f(x) is the PDF.

The mean μ represents the center of the distribution, while the standard deviation σ determines the 
spread of the data. The total area under the curve equals 1. The further a value is from the mean, 
the lower the probability density. Suppose the height of individuals in a population is normally 
distributed with a mean of 170 cm and a standard deviation of 10 cm. The probability of an indi-
vidual being between 160 and 180 cm can be found using the cumulative distribution function 
(CDF). Approximately 68% of individuals fall within 1 standard deviation of the mean:

	 P X160 180 0 68≤ ≤( ) ≈ . 	

This means there is a 68% probability that an individual’s height will be between 160 and 180 cm.

4.2.2.3 � Exponential Distribution
It is used to model the time between continuous, independent events that occur at a constant average 
rate. It is frequently used in scenarios like waiting times, such as the time between incoming calls at 
a call center. Here is its general formula:

	 f x e xx( ) = ≥−λ λ , 0	

where:

	• λ is the rate parameter (the inverse of the mean time between events), and f(x) is the PDF.

The rate parameter λ describes how frequently events occur. The exponential distribution has the 
“memoryless” property, meaning the probability of an event occurring in the future is independent 
of how much time has already passed. If the average time between incoming calls at a call center is 

2 minutes, the rate parameter is λ .= =
1

2
0 5per minute. The probability of waiting less than 1 minute 

for the next call is:
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	 P X e e( ) ..< = − = − ≈− ⋅ −1 1 1 0 39351 0 5λ 	

Thus, there is a 39.35% probability of receiving the next call within 1 minute.

4.2.2.4 � Beta and Gamma Distributions
The beta distribution is useful for modeling probabilities and proportions for values bounded 
between 0 and 1, while the gamma distribution is often used for modeling waiting times or life 
durations and can be seen as a generalization of the exponential distribution. The general formula 
for beta distribution is:

	 f x
x x

B
x( ) =

−
( ) ≤ ≤

− −α β

α β

1 11
0 1

( )

,
, 	

where:

	• α and β are shape parameters,
	• B(α, β) is the beta function.

The beta distribution is highly flexible and can take on various shapes depending on α and β. It is 
particularly useful when modeling events that have an inherent probability or proportion. Suppose 
you want to model the distribution of success probabilities in a series of experiments with α =​ 2 and 
β =​ 3, the beta distribution models the probabilities, for example, by getting a success rate between 
0.2 and 0.8, using the CDF. The general formula for gamma distribution is:

	 f x
x e

x
x

( ) = ( ) ≥
− −λ
α

α α λ1

0
Γ

, 	

where:

α is the shape parameter,
λ is the rate parameter,
Γ(α) is the Gamma function.

The gamma distribution is a generalization of the exponential distribution (when α =​ 1) and is used 
for modeling waiting times when there is more than one event occurring. If the average lifespan of 
a device is modeled by a Gamma distribution with shape parameter α =​ 2 and rate parameter λ =​ 1/​
3 (representing 3 units of time on average), you can calculate the probability of a device lasting less 
than 5 units of time.

4.2.3 �C haracteristics of Probability Distributions

4.2.3.1 � Mean (Expected Value)
The mean (or expected value) represents the average or central value of the distribution. It is 
calculated as the weighted average of all possible values, with the weights being the probabilities 
associated with those values. The mathematical representation is as follows:

	 µ = ( ) = ⋅ ( )∑E X x P x
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For a continuous distribution:

	 µ = ( ) = ⋅ ( )
−∞

∞

∫E X x f x dx	

where:

μ is the mean,
xi represents the possible values,
f(x) is the PDF (for continuous distributions).

For a normal distribution with a mean of μ =​ 50, the mean represents the center of the distribution. 
Most of the data will be centered around 50, with equal probabilities on either side of the mean.

4.2.3.2 � Variance and Standard Deviation
Variance and standard deviation measure how much the values of the distribution deviate from 
the mean. Variance is the average of the squared differences from the mean, while the standard 
deviation is the square root of the variance. The mathematical representation of variance is as 
follows:

	 σ µ2 2= ( ) = − ⋅ ( )∑Var X x P x
i

i i
( ) 	

For a continuous distribution:

	 σ µ2 2= − ⋅ ( )
−∞

∞

∫ ( )x f x dx	

The mathematical representation of standard deviation is as follows:

	 σ = ( )Var X 	

For a normal distribution with μ =​ 50 and a standard deviation σ =​ 5, the variance is σ2 25= . This 
means that most values fall within 1 standard deviation of the mean, that is, between 45 and 55.

4.2.3.3 � Skewness
Skewness measures the asymmetry of the distribution. A skewness value of zero indicates a sym-
metric distribution. Positive skewness means the distribution has a longer tail on the right, and 
negative skewness means it has a longer tail on the left. The mathematical representation is as 
follows:

	 Skewness =
−( ] =

− ⋅ ( )∑E X x P x
i i i[ ) ( )µ

σ
µ
σ
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For a right-​skewed distribution with a mean of μ =​ 40, if the skewness is positive, it indicates that 
there are more extreme values on the right side of the distribution. This often happens in income 
distributions where there are a few very high values.

 

 

 

 

 

 

 

 



97Probability Theory and Statistics

4.2.3.4 � Kurtosis
Kurtosis measures the heaviness of the tails of the distribution relative to a normal distribution. 
A higher kurtosis value indicates heavier tails, meaning more outliers. A kurtosis value of 3 is typ-
ical for a normal distribution (this is referred to as mesokurtic). The mathematical representation is 
as follows:

	 Kurtosis =
−( ] −

E X[ )µ
σ

4

4
3	

Subtracting 3 from the formula centers the kurtosis at zero for a normal distribution (called excess 
kurtosis). Positive excess kurtosis indicates a heavy-​tailed distribution (leptokurtic), while negative 
kurtosis suggests a light-​tailed distribution (platykurtic). If a distribution has a kurtosis value greater 
than 3, it indicates that it has heavy tails and is prone to producing extreme values or outliers.

4.2.3.5 � Mode
The mode is the value that appears most frequently in the distribution. In a unimodal distribu-
tion (like the normal distribution), the mode coincides with the mean. However, for multimodal 
distributions, there may be more than one mode. The mode is useful for understanding the most fre-
quent outcomes in a distribution, particularly for discrete data or skewed distributions. In a normal 
distribution, the mode is equal to the mean (μ =​ 50), and the most frequent value is 50. In a right-​
skewed distribution, the mode would be less than the mean and closer to the peak of the distribution.

4.2.4 �F unction Representations

4.2.4.1 � Probability Mass Function
The probability mass function (PMF) represents the probability that a discrete random variable is 
exactly equal to a specific value. It is used for discrete distributions, where the random variable takes 
on a finite or countably infinite number of values. Its general formula is as follows:

	 P(X =​ x) =​ p(x)	

where:

	• P(X =​ x) is the probability that the random variable X takes on the value x,
	• p(x) represents the PMF for the discrete variable X.

Consider a discrete random variable representing the number of heads when flipping two coins. 
The possible outcomes for the number of heads are 0, 1, or 2. The PMF would give the following 
probabilities:

	 P X P X P X=( ) = =( ) = =( ) =0
1

4
1

2

4
2

1

4
, , 	

This shows that there is a 25% probability of getting 0 heads, a 50% probability of getting 1 head, 
and a 25% probability of getting 2 heads.

4.2.4.2 � Probability Density Function
It is used for continuous random variables and describes the relative likelihood of the random vari-
able taking on a particular value. Unlike the PMF, the PDF does not give the probability of the 
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random variable being exactly equal to a value (because for continuous variables, that probability 
is zero), but rather the likelihood of it falling within a small interval around that value. The general 
formula is as follows:

	 f x
P x X x x

xx
( ) =

≤ ≤ +( )
→

lim
∆

∆
∆0

	

where:

f(x) is the PDF for the continuous variable X,
X is the continuous random variable.

For a normal distribution with a mean μ =​ 0 and standard deviation σ =​ 1, the PDF is given by:

	 f x e
x

( ) = −1

2

2

2
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This PDF describes the likelihood of values around the mean μ =​ 0. The value of f(x) is highest at 
the mean and decreases symmetrically as x moves away from the mean. For instance, around x =​ 0, 
the PDF will have its peak, and as you move toward x =​ ±1, the likelihood of these values decreases.

4.2.4.3 � Cumulative Distribution Function
It gives the probability that a random variable X is less than or equal to a specific value x. The CDF 
is used for both discrete and continuous random variables and is defined as the integral (for con-
tinuous) or sum (for discrete) of the PMF or PDF. The general formula for discrete random variables 
is as follows:

	 F x P X x P X t
t x

( ) = ≤( ) = =( )
≤
∑ 	

The general formula for continuous random variables is as follows:

	 F x P X x f t dt
x

( ) = ≤( ) = ( )
−∞
∫ 	

where:

	• F(x) is the CDF,
	• f(x) is the PDF for continuous variables, or P(X =​ t) for discrete variables.

For a normal distribution with μ =​ 0 and σ =​ 1, the CDF gives the probability that the random vari-
able is less than or equal to a particular value. For example:

	 P X ≤( ) ≈1 96 0 975. . 	

This means that approximately 97.5% of the values in this distribution are less than or equal to 1.96.
Figure 4.1 shows four common probability distributions: binomial, Poisson, normal, and uni

form. In subplot Figure 4.1a (binomial distribution), represented by blue bars, the probability of 
achieving a specific number of successes in a fixed number of trials is clearly illustrated. An anno-
tation labeled “Peak at n*p” points to the most probable number of successes, emphasizing the 
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distribution’s central tendency around the expected value n × p. Adjacent to it, Figure 4.1b (Poisson 
distribution) showcases orange bars depicting the probability of a given number of events occurring 
within a fixed interval. The annotation “Peak at λ” highlights the mode of the distribution, where 
the expected number of events λ occurs with the highest probability. Moving to Figure 4.1c (normal 
distribution), a smooth green curve with a shaded area beneath it represents the continuous PDF. An 
annotation labeled “Mean (μ)” points to the center of the distribution, underscoring the concept of 
the mean as the peak of the bell curve. Finally, Figure 4.1d (uniform distribution) is depicted with a 
solid purple line and a filled area, illustrating a constant probability density across the interval from 
0 to 1. The x-​axis covers the range of possible values, and the y-​axis shows the uniform probability 
density. The annotation “Constant Probability” succinctly conveys the essence of the uniform distri-
bution, where every outcome within the specified interval is equally likely.

4.2.5 �C onnection Between Overfitting and Underfitting to Probability   
Distributions

From a probabilistic standpoint, overfitting can be seen as maximizing the likelihood of the 
parameters given the training data excessively to the point where the model is improbable to 
perform well on new data. This is similar to tuning a musical instrument so precisely to a spe-
cific environment that it sounds out of tune in any other setting. Regularization techniques, such 
as L1 and L2, address these issues by adding a penalty term to the complexity of the model. This 
approach can be conceptualized through Bayesian statistics: the penalty term acts as a prior distri-
bution that inherently favors simpler models, reducing the likelihood of overfitting by penalizing 
complexity.

Figure 4.2 demonstrates the concepts of underfitting, good fit, and overfitting using polyno
mial regression models of varying complexity. The dataset consists of 30 data points generated 
using the function y x x= sin( ) with some added Gaussian noise. These data points are represented 
as black dots on the plot in Figure 4.2, providing a visual reference for the underlying pattern in 
the data. Three models with varying degrees of complexity are fitted to the data. The first model, 
represented by the blue dashed line, uses simple linear regression. This model fails to capture the 
underlying pattern of the data, resulting in a poor fit. This underfitting is characterized by a high 
bias and low variance, indicating that the model is too simple to represent the data accurately. The 
second model, represented by the green solid line, uses a cubic polynomial (degree 3). This model 
accurately captures the underlying pattern of the data, providing a good balance between bias and 
variance. This good fit is characterized by an appropriate level of complexity that models the data 
well without overfitting. The third model, represented by the red dash-​dot line, uses a polynomial 
of degree 10. This high-​degree polynomial model fits the training data almost perfectly, capturing 
both the underlying pattern and the noise in the data. This overfitting is characterized by a low bias 
and high variance, indicating that the model is too complex and is likely to perform poorly on new, 
unseen data.

4.2.6 �C onnecting BNNs to Probability Distributions

BNNs incorporate principles of Bayesian probability into traditional neural network (NN)  
architectures. This integration allows BNNs to provide a measure of uncertainty in their predictions,  
enhancing decision-​making processes in scenarios where certainty is crucial. Unlike traditional NNs  
that use fixed weights, BNNs treat weights as probability distributions. This approach means that  
a single fixed number does not represent each weight but a distribution that reflects our beliefs or  
uncertainties about the values of these weights. This probabilistic treatment allows BNNs to express  
and manage uncertainty more effectively. In Bayesian statistics, prior distributions represent our  
initial beliefs about the parameters before observing any data. As data is observed and processed  

 

 

 



100
M

ath
em

atical Fo
u

n
d

atio
n

s fo
r D

eep
 Learn

in
g

FIGURE 4.1  Common probability distributions.
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101Probability Theory and Statistics

by a BNN, these prior beliefs are updated to form posterior distributions, which reflect new  
understandings gained from the data. This dynamic updating mechanism, absent in traditional NNs,  
allows BNNs to adapt their beliefs based on incoming information continuously. BNNs generate  
a distribution over possible outcomes when making predictions rather than producing a single-​ 
point estimate. This output provides a detailed spectrum of potential results and their associated  
probabilities. In Bayesian frameworks like BNNs, regularization is naturally incorporated through  
prior distributions. These priors can act as constraints or regularizes, penalizing deviations from  
established beliefs or biases. This regularization helps prevent overfitting by smoothing the learning  
process, ensuring that the model adheres to the training data at the expense of its generalization  
ability. The mathematical representations for the distributions are as follows.

4.2.6.1 � Prior Distribution
It represents the distribution of the model’s parameters (e.g., weights) before any data is observed. 
In Bayesian inference, this reflects our initial belief or assumptions about the model’s parameters. 
The distribution of weights before observing the data:

	 P w( ) ( )~ , 0 2σ 	

where:

w represents the weights of the NN,
P(w) is the prior distribution of the weights, which could follow a certain distribution (e.g., 

normal distribution).

Suppose you are using a BNN to predict house prices, and you initially believe the weight (or 
impact) of the number of rooms on house price follows a normal distribution N 0 5 0 12. , .( ). This 
means that before seeing any data, you assume the effect of the number of rooms on house price is 
centered around 0.5, but with some uncertainty (variance of 0.01).

FIGURE 4.2  Demonstration of underfitting, good fit, and overfitting.

 

 

 

 



102 Mathematical Foundations for Deep Learning

4.2.6.2 � Posterior Distribution
It represents the updated distribution of the model’s parameters after observing the data. The pos-
terior distribution combines the prior beliefs with the likelihood of the observed data to give an 
updated belief about the parameters. After observing the data, the posterior distribution of weights is:

	 P w
P w P w

P
| data

data |

data
( ) =

( ) ( )
( ) 	

where:

w are the weights,
data is the observed data,
P(data | w) is the likelihood of the data  the weights,
P(w) is the prior distribution,
P(data) is the evidence (normalizing constant).

The posterior distribution adjusts the prior belief based on the data observed. The more data you 
have, the more the posterior distribution reflects the influence of the data rather than the prior. After 
observing data (e.g., historical house prices and the number of rooms), the BNN updates its belief 
about the weight of the number of rooms. Now, instead of assuming a fixed value for this weight 
(e.g., 0.5), the posterior distribution could be refined to something like N 0 55 0 052. , .( ), which means 
the model now believes the number of rooms has a slightly higher impact on price, but with reduced 
uncertainty (variance of 0.0025).

4.2.6.3 � Prediction
In BNNs, predictions are made by integrating the possible weights. This means the model considers 
the uncertainty in the weights rather than using a single fixed value. The model predicts a distribu-
tion over possible outcomes rather than a single-​point estimate. The general formula for prediction 
is as follows:

	 P y x D P y x w P w D dw, , ) )| ( | ( |( ) = ∫ 	

where:

	• y is the predicted output,
	• x is the input (e.g., features like the number of rooms),
	• P(w | D) is the posterior distribution of weights,
	• P(y | x, w) is the likelihood of predicting y given input x and weights w.

The prediction integrates all possible weight values based on the posterior distribution, resulting in 
a prediction that captures the uncertainty in the model’s parameters. This is a key feature of BNNs 
compared to traditional NNs, which make predictions based on fixed weight values. For predicting 
the price of a house, the BNN does not output a single price. Instead, it provides a range of possible 
prices, say from $300,000 to $350,000, with different probabilities assigned to each outcome. This 
prediction reflects the model’s uncertainty about how strongly the number of rooms influences the 
price, as the weight for that feature is not fixed but distributed.

Figure 4.3 presents a visualization of Bayesian ridge regression applied to a synthetic dataset.  
Figure 4.3 illustrates several important elements of this regression technique. The data points (in  
blue) represent the observed values from the dataset. The predictive mean line (in dark green)  

 

 

 

 

 



103Probability Theory and Statistics

indicates the model’s prediction for the mean outcome as a function of the input variable X. The  
shaded region around the predictive mean represents the 95% confidence interval (in light green),  
which provides a measure of uncertainty in the model’s predictions. This interval shows where we  
expect the true values to lie with 95% confidence, allowing us to assess the model’s reliability.

4.3 � SAMPLING METHODS

Sampling methods are essential in statistics, especially in fields like Bayesian statistics, where 
they approximate distributions that are otherwise too complex or costly to compute directly. These 
methods are vital in various applications, including surveys and statistical model fitting, particularly 
in scenarios involving large or inaccessible full datasets due to constraints such as time, cost, or 
accessibility.

4.3.1 � Simple Random Sampling

Simple random sampling (SRS) is a sampling method where each member of the population has 
an equal chance of being selected, ensuring no selection bias. This method is straightforward and 
easy to implement, making it a popular choice for many studies. However, its simplicity can be a 
drawback when dealing with heterogeneous populations, as it may not be efficient in such cases 
and could lead to the underrepresentation of certain subgroups. Suppose you have a population of 
1,000 people, and you want to select a sample of 100 individuals. Using SRS, each person has a 
1 in 10 chance of being selected, ensuring that everyone has an equal probability of inclusion in 
the sample. The probability of selecting any individual in SRS from a population N with a sample 
size n is:

	 P
n

N
selection( ) = 	

FIGURE 4.3  Bayesian ridge regression with uncertainty.
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If N =​ 1000 and n =​ 100, the probability of selecting any individual is:

	 P selection( ) = =
100

1 000
0 1

,
. 	

4.3.2 � Stratified Random Sampling

Stratified random sampling involves dividing the population into homogeneous subgroups (strata) 
and then applying SRS within each section. This method can provide more precise estimates, par-
ticularly if the differences between divisions are significant. However, it is more complex to imple-
ment compared to SRS, requiring careful identification and separation of strata before sampling can 
proceed. Suppose a population consists of 1,000 students, and you want to divide them into strata 
based on grade level: 200 freshmen, 300 sophomores, 250 juniors, and 250 seniors. If you want to 
sample 10% of the population, you apply SRS by selecting 20 freshmen, 30 sophomores, 25 juniors, 
and 25 seniors. This ensures that each grade level is proportionally represented in the sample. For a 
population divided into k strata, the sample size for each stratum h is calculated as:

	 n
N

N
n

h
h= × 	

where:

	• Nh is the population size of stratum h,
	• N is the total population size,
	• n is the total sample size.

If N =​ 1000, Nh =​ 300 (sophomores), and n =​ 100, the sample size for sophomores would be:

	 n
sophomores

= × =
300

1000
100 30	

4.3.3 �C luster Sampling

Cluster sampling divides the population into clusters, randomly selects certain clusters, and studies 
all members within these chosen clusters. This method is particularly efficient for geographically 
dispersed populations, reducing the costs and logistical challenges of data collection. However, it 
can be potentially less precise than SRS of an equivalent size, as the variability within clusters might 
not fully represent the entire population. Suppose a city has 50 schools, and you want to sample 
students. Using cluster sampling, you divide the population by schools (each school is a cluster). 
You randomly select 10 schools and study all the students in these selected schools. If each school 
has 200 students, you end up with a sample size of 2,000 students from the selected clusters. The 
probability of selecting a cluster is:

	 P cluster selected
Number of clusters selected

Total number of cl
( ) =

uusters
	

If 10 clusters are selected from 50 schools, the probability of selecting any specific school is:

	 P cluster selected( ) = =
10

50
0 2. 	

 

 

 

 

 

 

 

 



105Probability Theory and Statistics

4.3.4 � Systematic Sampling

Systematic sampling selects a random starting point, and then every kth member of the population 
is chosen. This method is more convenient than SRS due to its straightforward approach and ease 
of implementation. However, there is a risk of bias if the population has a periodic pattern, as this 
could result in a non-​representative sample. Suppose you have a population of 1,000 people, and you 
want to sample 100 individuals. You randomly select a starting point, say 5, and then select every 
10th person after that (e.g., 5th, 15th, 25th, and so on) until you have your sample of 100 people. If 
N is the population size, and n is the desired sample size, the sampling interval k is calculated as:

	 k
N

n
= 	

If N =​ 1000 and n =​ 100, the interval k is:

	 k = =
1 000

100
10

,
	

4.3.5 � Quota Sampling (Non-​Probability Method)

Quota sampling is a non-​probability method that divides the population into subgroups and selects 
individuals non-​randomly. This approach is simple and cost-​effective, making it attractive for 
studies with limited resources. However, the absence of random selection makes it less reliable, as 
it may introduce bias and limit the generalizability of the results. Suppose you want to survey 500 
people about their favorite type of transportation. You decide to divide the population into subgroups 
by age: 200 people aged 18–​29, 150 people aged 30–​49, and 150 people aged 50+​. Instead of ran-
domly selecting individuals from each group, you select people conveniently or based on certain 
characteristics until you meet the quota for each age group. In quota sampling, the sample size for 
each subgroup is predefined based on the desired proportions. If the total sample is 500 and 40% of 
the population is aged 18-​29, you need to select:

n = × =0 40 500 200.  individuals from the 18 to 29 group.

4.3.6 �M onte Carlo Sampling

Monte Carlo sampling employs repeated random sampling to compute numerical results based on 
the law of large numbers. This method is widely used in numerical integration and probability 
computations, providing robust estimates for complex mathematical problems by simulating random 
variables and averaging the results. The Monte Carlo estimate of an integral I over a domain D is 
computed as:

	 I
N

f x
i

N

i
≈ ( )

=
∑1

1

	

where:

	• N is the number of random samples,
	• f(xi) is the function value at random points xi drawn from a uniform distribution over D.

Suppose you want to estimate the value of π by using the Monte Carlo method. You randomly gen-
erate 100,000 points in a square with side length 2 and count how many fall inside a circle with 
radius 1 centered at the origin. If 78,539 points fall inside the circle, the estimate for π is:
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	 π ≈ × =4
78 539

100 000
3 14156

,

,
. .	

4.3.7 �I mportance Sampling

Importance sampling focuses on sampling more frequently from important but rare regions of the 
sample space. This method is particularly effective in scenarios where certain outcomes are rare, as 
it allows for more efficient and accurate estimation of probabilities and expectations by emphasizing 
the critical regions of the distribution. The expected value  f X( )   is estimated as:

	  f X
N

f X p X

q Xi

N
i i

i

( )  ≈
( ) ( )

( )=
∑1

1

	

where:

	• p(X) is the original probability distribution,
	• q(X) is the importance sampling distribution, and
	• N is the number of samples.

Suppose you want to estimate the probability of an event that occurs rarely, like a tail risk in finance. 
Instead of uniformly sampling from the entire space, you sample more frequently from the tail of 
the distribution. If you perform 10,000 simulations with a focus on the tail, and 200 events fall in the 
rare region, you can adjust the estimates based on the importance of this region, improving accuracy 
over random sampling.

4.3.8 �R ejection Sampling

Rejection sampling involves sampling from a simple distribution and then accepting or rejecting 
each sample based on a predefined criterion. This method is particularly useful for sampling from 
complex distributions, as it allows for the generation of samples that meet specific criteria even 
when direct sampling from the desired distribution is challenging. Given a target distribution p(x) 
and a simpler proposal distribution q(x), you accept a sample x if:

	 u
p x

M x
q

≤
( )
( )	

where:

	• u is a random uniform number between 0 and 1,
	• M is a constant such that Mq(x) ≥ p(x) for all x.

Suppose you want to sample from a distribution with a complex shape, like a Gaussian distribution, 
but instead, you sample from a uniform distribution between 0 and 1. You generate 10,000 points 
uniformly, and for each point, you compute its likelihood under the target distribution. If the ratio 
of the likelihood to the maximum is greater than a random number, you accept the point; otherwise, 
you reject it. After performing this process, you are left with 2,500 valid samples.

4.3.9 �M arkov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) constructs a Markov chain that reaches the desired distribution 
as its balance. This approach is widely used for sampling from complex probability distributions. 

 

 

 

 

 

 

 



107Probability Theory and Statistics

Key algorithms within MCMC include Metropolis–​Hastings, Gibbs sampling, and Hamiltonian 
Monte Carlo, each offering different strategies for constructing and navigating the Markov chain 
to efficiently explore the sample space and achieve accurate results. In Metropolis–​Hastings, the 
acceptance probability for moving from the current state x to a proposed state x′ is:

	 α x x
p x q x x

p x q x x
→( ) =

( ) ( )
( ) ( )







′

′ ′
′

min ,
|

1
| 	

where:

	• p(x) is the target distribution,
	• q(x′ | x) is the proposal distribution for transitioning between states.

Suppose you want to estimate the posterior distribution of a parameter in a Bayesian model. Using 
MCMC, specifically the Metropolis–​Hastings algorithm, you generate a Markov chain of 100,000 
samples. The first 10,000 samples are discarded as burn-​in to ensure the chain has reached equilib-
rium, and the remaining 90,000 samples represent the parameter’s posterior distribution.

Figure 4.4 demonstrates the results of a Metropolis–​Hastings MCMC simulation targeting a 
standard normal distribution. It illustrates the dynamics of the MCMC algorithm and its ability to 
sample from complex probability distributions. Here, the trace plot illustrates the progression of 
sampled values over 1,000 iterations. The blue line represents the MCMC chain, showing how the 
sampled values evolve as the algorithm explores the distribution. A vertical red dashed line marks 
the end of the burn-​in period at iteration 200, after which the samples are considered to have reached 
a stable distribution. An annotation highlights the burn-​in period, emphasizing its importance in 
allowing the chain to converge toward the target distribution before collecting samples for analysis.

Figure 4.5 displays the posterior distribution of the samples collected after the burn-​in period.  
The green histogram depicts the density of the sampled values, providing a visual approximation of  
the target distribution based on the MCMC samples. Overlaid on the histogram is a black dashed line  
representing the true standard normal distribution. The close alignment between the histogram and  
the target distribution indicates that the MCMC sampler has effectively approximated the standard  
normal distribution through the sampling process.

FIGURE 4.4  MCMC trace plot: convergence to target distribution.
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4.3.10 �G ibbs Sampling

Gibbs sampling is a specific type of MCMC method that is particularly suitable for multivariate 
distributions. It is often used when the components of the distribution are conditionally independent. 
By iteratively sampling each variable conditional on the current values of the other variables, 
Gibbs sampling efficiently explores the sample space and can handle complex, high-​dimensional 
distributions. For a joint distribution p(X, Y), Gibbs sampling iteratively updates the variables by 
sampling from the conditional distributions:

	 X p X Yt t+( ) ( )( )1 ~ | 	

	 Y p Y Xt t+( ) +( )( )1 1~ | 	

Suppose you want to sample from a bivariate distribution with variables X and Y. Using Gibbs sam-
pling, you iteratively sample X conditional on Y, and Y conditional on X. After 10,000 iterations, 
the algorithm generates a sample that approximates the joint distribution of X and Y.

4.3.11 �L atin Hypercube Sampling

Latin hypercube sampling (LHS) is a stratified sampling method that divides the sample space into equally 
probable subdivisions. This approach is particularly efficient for multi-​dimensional sampling, ensuring 
that each variable is sampled across its entire range, which leads to more representative and coverage of 
the sample space compared to SRS. In LHS, for each variable Xi (where i indexes the dimensions), the 
range is divided into N equally probable intervals. Each sample is then selected such that:

	 x
j

N

j

N
j N

i
j( ) ∈

−





= …
1

1 2, , , , .for 	

Suppose you need to sample from a three-​dimensional (3D) parameter space, with each dimension 
divided into 10 intervals. Using LHS, you randomly select one point from each interval for all three 

FIGURE 4.5  MCMC sample distribution after burn-​in.
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dimensions, ensuring that every part of the parameter space is represented. This results in 10 points 
per dimension, and the total sample size is 10 rather than the 1,000 points needed for full factorial 
sampling.

4.3.12 �R esampling Methods

Techniques like bootstrapping estimate properties of estimators by sampling from an approximating 
distribution. These methods are commonly used to assess the variability or stability of statistical 
models, providing insights into the accuracy and reliability of the model’s predictions by repeatedly 
sampling with replacement from the dataset to create numerous simulated samples. For each boot-
strap sample B, drawn with replacement from the original dataset D:

	 ˆ*θ
B

= ( )statistic resample 	

The empirical distribution of ˆ*θ  (e.g., the sample mean) across many resamples provides an esti-
mate of the variability and confidence intervals for θ, the population parameter. Suppose you have a 
dataset with 500 observations and want to estimate the mean of the population. Using bootstrapping, 
you generate 1,000 resampled datasets by randomly selecting 500 observations with replacements 
from the original dataset. For each of the 1,000 resamples, you calculate the mean, and the distri-
bution of these means provides an estimate of the variability and confidence intervals for the popu-
lation mean.

Figure 4.6 illustrates three distinct sampling methods, SRS, stratified random sampling, and 
cluster sampling, through a series of subplots, each providing a visual representation of how samples 
are drawn from a population. In subplot Figure 4.6a, the SRS method is depicted, where 15 samples 
are randomly selected from the entire population without replacement. The population data is 
represented by light gray dots spread uniformly along the index axis, while the SRS samples are 
highlighted with red dots edged in black, scattered randomly across the index range. Figure 4.6b 
showcases stratified random sampling, where the population is divided into three distinct strata. 
Each stratum is sampled separately, with five samples drawn randomly from each. The sampled data 
points are colored differently, green, blue, and purple, to represent each stratum, and are also edged 
in black for emphasis. In Figure 4.6c, cluster sampling is presented, where the population is divided 
into five clusters, and two clusters (specifically clusters 2 and 5) are entirely selected for sampling. 
The sampled clusters are depicted with orange and purple dots, again edged in black, and an anno-
tation points to one of the sampled clusters to illustrate that entire groups, rather than individual 
random samples, are included.

4.3.13 � Sampling Methods and Overfitting/​Underfitting

Sampling methods are pivotal in how well a statistical model can learn and generalize from data. 
Improper sampling can lead to overfitting and underfitting, each affecting model performance 
significantly.

4.3.13.1 � Overfitting
Overfitting occurs when a model learns the specific details and noise within the training data, which 
can ultimately reduce its performance on new, unseen data. One contributing factor to overfitting 
is biased sampling, where non-​representative sampling techniques lead to training on a skewed 
subset of the population. For example, if a model is trained primarily on data from a particular 
demographic due to sampling biases, it may struggle to generalize to data from other demographics. 
Another factor is the overuse of resampling techniques. While bootstrapping can be useful for esti-
mating model accuracy, excessive use without proper cross-​validation can result in overly optimistic 
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FIGURE 4.6  Comparison of sampling methods. (a) Simple random, (b) stratified random, (c) cluster sampling.
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111Probability Theory and Statistics

performance evaluations. This can create a false impression of a model’s effectiveness, leading to 
overly complex models that are prone to overfitting the training data.

4.3.13.2 � Underfitting
Underfitting occurs when a model is too simple to capture the underlying patterns in the data effect-
ively or when it has not been exposed to a sufficient amount of data. One cause of underfitting is 
insufficient sampling, where the sampling method fails to gather enough data or fails to capture the 
complexity of the underlying population. For instance, in a large and diverse dataset, sparse sam-
pling may result in a model that struggles to generalize beyond the limited training examples it has 
seen. Another issue that can lead to underfitting is the use of sparse sampling methods, which may 
provide too few data points or systematically overlook key aspects of the data distribution. This risk 
is common with systematic sampling techniques, where an overly large step size may skip important 
variations in the data, preventing the model from learning the full range of patterns needed for 
accurate predictions.

Figure 4.7 demonstrates the concepts of overfitting and underfitting through two illustrative plots. 
In subplot Figure 4.7a, the overfitting example showcases how an overly complex model, a high-​
degree polynomial, fits the sampled data perfectly within a limited range but fails to generalize to 
the broader dataset. The sampled data, represented by red dots, are collected from a biased portion 
of the dataset (specifically where x < 4), and the overfitted model is depicted by a dark red curve 
closely following these points. However, this model diverges significantly from the true underlying 
function, indicated by the green dashed line, when extended beyond the sampled region, highlighting 
the model’s inability to generalize. In subplot Figure 4.7b, the underfitting example illustrates how a 
simplistic linear model fails to capture the complexity of the data due to insufficient model capacity 
and sparse sampling. The sampled data here are blue dots sparsely scattered across the entire range 
of x, and the underfit model is represented by a dark blue straight line that does not align well with 
the true function’s quadratic and sinusoidal patterns.

4.4 � BAYESIAN STATISTICS

Bayesian statistics is a branch of statistics that employs probability to represent all forms of uncer-
tainty. After Thomas Bayes formulated the fundamental theorem underpinning this method, Bayesian 
statistics offered a robust framework for making inferences. At the core of Bayesian statistics lies 
Bayes’ theorem, which provides a method for updating probabilities as new evidence is introduced. 
The theorem is expressed as:

	 P A B
P B A P A

P B
( |

( |
)

)
=

( )
( ) 	

where:

	• P(A | B) is the posterior probability,
	• P(B | A) is the likelihood,
	• P(A) is the prior probability, and
	• P(B) is the evidence (the marginal likelihood).

The prior represents initial beliefs about an event or model parameters before any new evidence 
is considered. It sets the baseline from which Bayesian inference starts. Likelihood measures how 
probable the observed data are, given the model parameters. It plays a crucial role in updating the 
prior into the posterior. The posterior is the result of combining the prior and the likelihood of 
the observed data. It represents updated beliefs after considering new evidence. Often acting as a 
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FIGURE 4.7  Impact of sampling methods on model. (a) Overfitting scenario and (b) underfitting.
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normalization constant, the evidence ensures that the posterior probabilities sum to one. It integrates 
the likelihood over all possible values of the unknown parameters. The advantages of Bayesian 
statistics are:

1.	 Flexibility: Incorporates both new data and prior knowledge.
2.	 Interpretability: Results are expressed as probabilities, making them intuitively 

understandable.
3.	 Full Distribution: Provides a complete probabilistic description of model parameters, not 

just point estimates.

Given the complexity of deriving posterior distributions analytically, computational methods 
like MCMC and variational inference are crucial for approximating these distributions. Bayesian 
methods are employed across various fields, including machine learning, genetics, medicine, eco-
nomics, and astronomy. There are still some challenges like:

1.	 Choice of Prior: The subjective nature of selecting a prior can lead to biases.
2.	 Computational Intensity: Bayesian methods can require significant computational resources, 

particularly for complex models.

Unlike frequentist statistics, which often focuses on likelihoods and provides point estimates and 
confidence intervals without incorporating prior beliefs, Bayesian statistics integrate prior know-
ledge with observed data to offer a probabilistic view of model parameters.

Figure 4.8 illustrates the Bayesian updating of beliefs regarding the probability of heads in a 
coin flip. It compares the prior belief with the posterior belief after observing the outcome of 50 
coin’s flips. Initially, the prior belief is represented by a beta distribution with parameters α =​ 2 and 
β =​ 2, reflecting an assumption that the coin is fair. The blue dashed line shows this prior distribu-
tion, which is symmetric around 0.5. The prior mean, indicated by a vertical blue dashed line, is 
0.5. After conducting 50 coin’s flips with an observed true probability of heads being 0.7, the data 
yields 35 heads and 15 tails. This observed data updates the prior distribution to form the posterior 
distribution, depicted by the red solid line. The updated posterior parameters are α =​ 37 and β =​ 17. 
The posterior mean, shown by a vertical red dashed line, shifts towards the observed probability of 
heads and is approximately 0.69, reflecting the new belief after incorporating the evidence from the 
coin flips.

4.4.1 �O verfitting and Bayesian Statistics

Overfitting occurs when a statistical model captures noise or random fluctuations in the data instead 
of the true underlying patterns. This is often a result of model complexity exceeding what the data 
can support. Bayesian statistics offer several tools and concepts to mitigate this common problem. In 
Bayesian modeling, priors serve as a form of regularization. By incorporating prior beliefs about the 
parameters, Bayesian methods can constrain parameter estimates, pulling them toward more plaus-
ible values despite what the raw data might suggest. This is particularly useful when the likelihood 
derived from a small or noisy dataset might lead the model to overfit. A well-​chosen strong prior can 
effectively shrink estimates, thus preventing the model from fitting too closely to the noise. Bayesian 
model comparison inherently includes a penalty for complexity. Tools like the Bayesian Information 
Criterion (BIC) or the Deviance Information Criterion (DIC) balance model fit with complexity, dis-
couraging unnecessary complexity in model structure. This approach helps select complex models 
to capture essential data characteristics that are simple enough that they overfit the noise. The pen-
alties ensure that a simpler, more generalizable model may be chosen over a more complex one that 
fits the training data slightly better. Unlike frequentist approaches that often yield point estimates, 
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FIGURE 4.8  Bayesian updating of beliefs in coin toss.
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Bayesian methods provide complete probability distributions over model parameters, offering a 
deeper insight into the uncertainty associated with each parameter. This feature of Bayesian analysis 
is particularly beneficial for identifying overfitting; an overfitted model may display implausibly 
narrow confidence intervals around predictions, indicating excessive confidence. In contrast, a well-​
fitted Bayesian model will show wider uncertainty intervals in areas where the data does not provide 
strong evidence, thereby reflecting a more realistic level of confidence.

Figure 4.9 compares two approaches to modeling noisy data: an overfitted model and a Bayesian 
model with a strong prior. The synthetic data is generated by adding Gaussian noise to a sine wave, 
creating a realistic scenario where noise is present. In Figure 4.9, the data points are shown as gray 
dots, representing the noisy observations of the sine function. The overfitted model, represented 
by the red line, is fitted using a high-​degree polynomial (degree 15). This model captures the noise 
along with the underlying trend, resulting in a wavy and complex fit that closely follows the data 
points but is likely to generalize poorly to new data. The Bayesian model with a strong prior is 
depicted by the blue line. This model uses a simple linear fit with added Gaussian noise to simulate 
uncertainty. The simplicity of the model, enforced by the strong prior, prevents it from overfitting 
the noise in the data. The shaded blue region around the Bayesian model line represents the uncer-
tainty interval, illustrating the confidence range of the predictions.

4.4.2 �U nderfitting and Bayesian Statistics

Underfitting in statistical modeling occurs when a model is too simplistic, failing to capture the data’s 
complexities or underlying distribution. Bayesian statistics offer robust tools to tackle underfitting, 
enhancing model complexity appropriately without overcomplicating the model. Bayesian statistics 
allow for constructing hierarchical models, which is particularly useful for managing model 
complexity. One model’s parameters can be modeled in hierarchical models, creating layers of 
parameters, each with its priors. By allowing parameters to vary across groups or contexts within a 
structured framework, hierarchical models can introduce complexity dynamically, adapting to the 
data’s structure. This helps capture underlying patterns without needing an overly complex global 
model that could lead to overfitting. Hierarchical modeling facilitates borrowing strength across 
groups, improving estimation accuracy, especially in cases where data for certain groups might be 
sparse. One common reason for underfitting is overly restrictive priors that must adequately reflect 
the data’s reality or variability. Bayesian statistics provide:

1.	 Adaptability: The flexibility to adjust and choose priors based on updated knowledge or new 
data. If initial assumptions lead to underfitting, priors can be revised to be less informative 
or adjusted to capture the data’s distribution better.

2.	 Incorporation of Expert Knowledge: Bayesian methods allow the integration of expert 
knowledge through the selection of priors, which can be particularly beneficial in fields 
where prior research or domain expertise can inform model parameters.

Figure 4.10 illustrates the differences between an underfitted model, and a Bayesian model 
applied to a synthetic dataset. The orange line represents the underfitted model, a low-​degree poly-
nomial that is too simplistic to capture the true underlying function of the data (dashed green line). 
This model fails to represent the complexity of the data, leading to poor performance. In contrast, 
the blue lines represent samples from a Bayesian model, which introduces uncertainty around the 
mean prediction (solid blue line) by incorporating priors. This allows the model to balance com-
plexity and uncertainty, improving its ability to generalize to new data. The true underlying function 
is shown by the dashed green line, and the observed noisy data points are plotted in gray. Figure 4.10 
demonstrates how Bayesian regularization can avoid the issues of underfitting by dynamically 
adjusting model complexity to better capture the underlying patterns in the data.
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FIGURE 4.9  Comparison of overfitting vs. Bayesian regularization.
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FIGURE 4.10  Comparison of underfitting and Bayesian regularization.
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4.4.3 � Bayesian Neural Networks

BNNs extend traditional NN architectures by incorporating probabilistic inference into their frame-
work. This involves placing a prior distribution on the network weights, fundamentally changing 
how learning and prediction are approached. In BNNs, the use of priors acts as a natural form of 
regularization. By imposing prior beliefs about the distribution of weights, BNNs inherently reduce 
the risk of overfitting. These priors can penalize weights that stray too far from zero (or some other 
prior assumption), much like L1 or L2 regularization in traditional networks. Unlike traditional NNs 
that output single-​point estimates, BNNs distribute possible outputs for each input. This probabilistic 
output is crucial for applications where understanding the uncertainty of predictions is important, such 
as in medical diagnosis, where it is essential to quantify confidence in diagnostic decisions. The prob-
abilistic nature of BNNs contributes to their robustness, particularly in handling adversarial attacks 
or responding to shifts in data distribution. BNNs can maintain performance even when conditions 
change or when faced with deliberately misleading input data by considering a range of possible 
weight configurations rather than a single fixed set. Bayesian methods are known for their data effi-
ciency. In the context of NNs, BNNs can often achieve comparable or superior performance to trad-
itional NNs with less data. This is because they effectively leverage prior knowledge and the inherent 
uncertainty in their parameters to make more informed predictions. The major drawback of BNNs is 
their computational cost. The process of maintaining and updating distributions over weights is com-
putationally intensive.

Figure 4.11 compares a traditional NN prediction and a BNN prediction for a synthetic dataset.  
The gray dots represent the original data points generated using a polynomial function with added  
noise. These points are the actual observations from which predictions are made. The red dashed  
line, marked with circles, represents the prediction made by a traditional NN. This line is fitted  
to the data using a polynomial regression as a proxy for the traditional NN. The red circles indi-
cate specific prediction points along the red dashed line, making it easier to see the line’s trajec-
tory. The solid blue line represents the mean prediction made by the BNN. This line is also fitted  
using the same polynomial regression but incorporates Bayesian inference to estimate the mean  

FIGURE 4.11  Comparison of traditional NN and BNN predictions.
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prediction. The light blue shaded area around the blue line represents the uncertainty in the BNN  
predictions. This region is defined by an upper and lower bound, calculated as the mean prediction  
plus or minus a constant uncertainty value. The shaded area highlights the range within which  
the true values are expected to fall with a certain confidence level, reflecting the model’s uncer-
tainty in its predictions. The red arrow points to the red dashed line, representing the traditional  
NN prediction.

4.5 � MOMENTS IN STATISTICS AND PROBABILITY THEORY

In statistics and probability theory, moments are fundamental metrics that describe the shape and 
characteristics of probability distributions. The nth moment of a random variable X about a value c 
is the expected value ( )X c n− . If this expectation exists and is finite, the nth moment of X is said to 
exist. The types of moments are as follows.

1.	 Raw Moments (Crude Moments): The raw moments of a distribution describe the expected 
values of powers of the random variable. When c =​ 0, these moments are referred to as raw 
or crude moments. They provide insights into the overall shape of the distribution. The gen-
eral formula is as follows:

	 ′ = ( )µ
n

nE X
	

where:

	• ′µ
n
 is the nth raw moment,

	• E X n( ) is the expected value of the nth power of the random variable X.

The raw moments capture the distribution’s shape relative to the origin (0). The first 
raw moment is the mean, which provides the central tendency of the distribution. For a 
normal distribution with a mean of 0 and a standard deviation of 1, the first raw moment 
E(X) is 0, and the second raw moment E X 2( ) is 1, representing the variance.

2.	 Central Moments: The central moments are the expected values of powers of deviations 
from the mean. The nth central moment measures the variability of the random variable 
around the mean. The general formula is as follows:

µ
n

nE X E X= − ( )( [ )

where:

	• μn is the nth central moment,
	• E(X) is the mean of the random variable X.

The first central moment is always zero because it represents the deviation of the data 
from the mean, and the second central moment is the variance, which quantifies the dis-
persion or spread of the distribution. Higher-​order central moments help describe the 
shape of the distribution. For a normal distribution with a mean of 50 and standard devi-
ation of 5, the first central moment (deviation from the mean) is zero, and the second 
central moment (variance) is 52 =​ 25.
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3.	 Standardized Moments: Standardized moments are the central moments divided by an appro-
priate power of the standard deviation. These moments provide shape-​related characteristics 
of the distribution, including skewness and kurtosis. The general formula is as follows:

Standardized moment =
µ
σ

n

n

where:

	• μn is the nth central moment,
	• σ is the standard deviation.

4.	 Skewness (Third Standardized Moment): We explained skewness as it measures the asym-
metry of the distribution. A skewness value of zero indicates a symmetric distribution. 
Positive skewness indicates a longer right tail, and negative skewness indicates a longer left 
tail:

Skewness =
µ
σ

3

3

4.	 Kurtosis (Fourth standardized moment): We explained kurtosis as it measures the 
“tailedness” of the distribution. A kurtosis of 3 corresponds to a normal distribution. Values 
greater than 3 indicate heavy tails (leptokurtic), while values less than 3 indicate light tails 
(platykurtic).

Kurtosis = −
µ
σ

4

4
3

For a right-​skewed distribution with a positive skewness value of 1.5, this means that the distribution 
has a longer right tail compared to the left. If the kurtosis is greater than 3, it indicates the distribu-
tion has more extreme values or outliers compared to a normal distribution.

Figure 4.12 illustrates a comparative analysis of three different probability distributions using 
histograms: the normal distribution, the skewnorm (positive skew) distribution, and the Laplace 
(heavy tails) distribution. Figure 4.12, top-​left, subplot displays the normal distribution in blue, 
showcasing a symmetric bell-​shaped curve centered around the mean, highlighting its character-
istic of light tails and symmetry, which indicates that data is evenly distributed around the central 
value. Figure 4.12, top-​right, subplot presents the skewnorm distribution in green, demonstrating 
a positive skew where the tail on the right side is longer or fatter than the left. This indicates that 
a majority of the data values fall to the left of the mean, with fewer high-​value outliers stretching 
the distribution to the right. Figure 4.12, bottom-​left, subplot depicts the Laplace distribution in 
red, characterized by a sharper peak at the mean and heavier tails compared to the normal distribu-
tion, signifying a higher probability of extreme values occurring and more variability in the data. 
Figure 4.12, bottom-​right, subplot overlays all three distributions using their respective colors, blue 
for normal, green for skewnorm, and red for Laplace, with semi-​transparency, allowing for direct 
comparison of the distributions within the same scale and axes. This composite view highlights the 
differences in their shapes, central tendencies, and tail behaviors. Each subplot includes grid lines 
for better readability and axes labeled with “Value” and “Frequency” to indicate the data range and 
the count of occurrences within each bin, respectively. The normal distribution shows symmetry 
and light tails, suggesting data points are commonly close to the mean. The skewnorm distribution 
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FIGURE 4.12  Comparison of distribution shapes.
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122 Mathematical Foundations for Deep Learning

highlights asymmetry due to its positive skew, indicating a tendency toward lower values with occa-
sional higher outliers. The Laplace distribution emphasizes the presence of heavy tails, implying a 
higher likelihood of extreme deviations from the mean.

4.5.1 �M oments and BNNs

BNNs fundamentally alter the traditional NN paradigm by directly incorporating uncertainty into 
the model’s structure using probability distributions for weights. Let us explore how moments are 
critical in managing this uncertainty and influencing model performance. In BNNs, each weight is 
characterized not by a single fixed value but by a probability distribution. The first two moments 
of these distributions, the mean and variance, are particularly significant. The mean represents the 
expected value of the weight, essentially indicating the “average” strength of the connection the 
weight represents. The variance measures the uncertainty or reliability of this weight. A higher 
variance suggests less confidence in the weight’s exactness, introducing a degree of flexibility or 
hesitance in the model’s decisions.

The complexity of a BNN can have a profound impact on its performance. A highly complex 
BNN, with numerous parameters or low variance in weight distributions, might be overfitted by 
capturing not just the underlying data patterns but also the noise, including higher moments like 
skewness and kurtosis. Conversely, a too simplistic BNN might fail to capture sufficient moments of 
the data distribution, overlooking crucial information that could lead to underfitting. In BNNs, vari-
ance also plays a dual role by acting as a form of regularization. High variance on certain weights 
can indicate areas where the model should be less confident, preventing it from relying too heavily 
on data that may represent noise rather than signal. This mechanism helps to balance the model, 
ensuring it does not become overly confident based on the limited or noisy training data, thereby 
mitigating the risk of overfitting. Overfitting could occur if the model’s weights had variances close 
to 0, leading to excessive certainty in potentially noisy data patterns. In BNNs, each weight wi is 
modeled as a distribution characterized by moments (mean and variance):

	 w
i i i
  N~ ,µ σ2( )	

where:

	• μi is the mean (expected value) of the weight,
	• σi is the variance (uncertainty) of the weight.

Suppose in a BNN a particular weight has a mean of 0.5 and a variance of 0.1. The model is confi-
dent in the connection strength but allows for some uncertainty. If another weight has a variance of 
0.3, this indicates more uncertainty in that weight’s value, meaning the model is less confident in 
the connection.

Figure 4.13 illustrates the effect of weight variance in BNNs on prediction stability and con
fidence. Figure 4.13 is divided into two subplots: In subplot Figure 4.13a (BNN with low weight 
variance), the blue prediction lines are closely clustered around the true function, represented by the 
green line. This clustering indicates that the model’s predictions are consistent and closely aligned 
with the actual underlying relationship, demonstrating high confidence and stability. The light blue 
shaded area encompasses the range of these predictions, highlighting the model’s narrow uncer-
tainty band. Conversely, subplot Figure 4.13b (BNN with high weight variance) showcases a more 
dispersed set of orange prediction lines surrounding the same green true function. This dispersion 
reflects the model’s increased uncertainty due to high variance in its weights, resulting in a broader 
prediction range illustrated by the light orange shaded area.
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FIGURE 4.13  Effect of weight variance in BNN. (a) BNN with low variance, (b) BNN with high variance.
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124 Mathematical Foundations for Deep Learning

4.5.2 �C onnection Between Moments and Overfitting/​Underfitting

Moments are crucial in shaping our understanding of data distributions and how they relate to model 
fitting in statistics and machine learning. Here, we explore how moments impact the assumptions 
behind model building and the common pitfalls of overfitting and underfitting. Statistical and 
machine learning models often rely on specific assumptions about their data distributions. For 
example, linear regression models assume that residuals are normally distributed, which pertains 
to having zero skewness (symmetry) and a certain kurtosis (peakedness). We can validate these 
assumptions by understanding moments such as mean, variance, skewness, and kurtosis. Significant 
deviations in these moments from expected values can indicate a potential misfit, suggesting that 
the model may not perform well on data that does not adhere to these assumed distributions. 
Overfitting occurs when a model too closely fits the training data, capturing noise and outliers as 
if they were true underlying patterns. This issue can arise if the model is excessively complex or 
needs to be correctly regularized. While mean and variance often receive most of the focus, higher 
moments like skewness and kurtosis are also critical. If these higher moments are influenced by 
noise, and the model attempts to accommodate them, it may overfit. Monitoring these moments 
can serve as a diagnostic tool; for instance, a model that captures extreme skewness or kurtosis 
in the training data may be overfitting, especially if these characteristics are not representative 
of the broader dataset. Conversely, underfitting happens when a model is too simplistic, often 
considering only the first moment (mean) and possibly the second (variance) but ignoring more 
complex moments such as skewness and kurtosis. This lack of complexity can prevent the model 
from capturing essential patterns in the data, leading to poor training and unseen data performance. 
Monitoring all moments provides insights into potentially overlooked data distribution aspects. For 
example, if the data exhibits high skewness or kurtosis and the model needs to account for these, it 
might underfit, failing to generalize effectively. The higher moments (skewness γ and kurtosis κ) 
are computed as:

	 γ
µ

σ
κ

µ
σ

=
−( ] =

−( ] [ )
,

[ )X X3

3

4

4
	

where:

	• μ is the mean,
	• σ is the standard deviation.

Suppose you are fitting a regression model to a dataset with a mean (first moment) of 0, variance 
(second moment) of 1, skewness (third moment) of 0.5, and kurtosis (fourth moment) of 3.5. If your 
model only accounts for the mean and variance, it may underfit by failing to capture the skewness 
and kurtosis of the data. Alternatively, if the model attempts to fit extreme skewness (e.g., skewness 
of 2) caused by noise in the training set, it may overfit. In overfitting, the model may overly conform 
to deviations in these higher moments (e.g., skewness and kurtosis), while in underfitting, it ignores 
these moments, leading to poor generalization. Monitoring these metrics helps diagnose and miti-
gate fitting issues.

Figure 4.14 presents a comparative analysis of how different data distributions, specifically posi
tively skewed data and high kurtosis data, impact the performance of a simple linear regression 
model. Figure 4.14a displays positively skewed data generated using a skewed normal distribution. 
The scatter plot, depicted in blue, shows a concentration of data points on the left side with a tail 
extending to the right, characteristic of positive skewness. The orange line represents the linear fit 
applied to this skewed data. Due to the asymmetry in the data distribution, the linear model fails to 
capture the underlying trend effectively, resulting in a fit that does not align well with the majority of 
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FIGURE 4.14  (a) Fit to positively skewed data, and (b) fit to high kurtosis data.
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the data points. Conversely, Figure 4.14b on the right showcases high kurtosis data generated using 
the Laplace distribution. The scatter plot in green exhibits a sharp peak with heavy tails, indicative of 
high kurtosis. The same orange linear fit is applied to this dataset, revealing that the model struggles 
to accommodate the pronounced peak and the extreme values in the tails. This results in a linear fit 
that oversimplifies the data’s variability, failing to accurately represent the distribution’s heavy tails.

4.6 � REAL-​WORLD APPLICATIONS AND EXAMPLES

4.6.1 �I mage Recognition and Processing

Linear algebra is fundamental in image recognition and processing tasks. Images are typically 
represented as matrices, where each pixel is a value in a matrix. Operations like image filtering, 
transformation, and enhancement involve matrix manipulations such as convolution, eigen-
value decomposition, and singular value decomposition (SVD). convolutional neural networks 
(CNNs), which are widely used for image recognition tasks, rely on these linear algebra 
operations to extract features, recognize patterns, and classify images accurately. For example, 
in facial recognition systems, CNNs process the pixel values of images through multiple layers 
of convolutions, pooling, and fully connected layers to identify and verify individuals based on 
their facial features.

4.6.2 �N atural Language Processing

Probability theory and statistics are essential in Natural Language Processing (NLP), where models 
often need to handle the uncertainty and variability inherent in human language. Language models, 
such as those used in machine translation or text generation, rely on probability distributions to 
predict the likelihood of a word or sequence of words given a context. Bayesian methods, which 
combine prior knowledge with observed data to update beliefs, are particularly useful in NLP tasks 
that involve uncertainty. For example, in a spam detection system, Bayesian classifiers use prob-
ability distributions to calculate the likelihood that an email is spam based on the presence of certain 
keywords or phrases, making decisions even when there is ambiguity in the data.

4.6.3 �R obotics and Control Systems

In robotics, the principles of multivariate calculus and linear algebra are applied to control systems 
and motion planning. Robots must navigate and interact with their environment, which requires 
solving optimization problems in real time. For example, the control of a robotic arm involves 
computing the joint angles needed to move the end effector to a desired position. This computa-
tion requires solving a system of non-​linear equations, which is achieved using techniques from 
multivariate calculus and linear algebra. Additionally, probability theory is used in robotics for state 
estimation and sensor fusion, where the robot must estimate its position and orientation based on 
noisy sensor data.

4.6.4 �H ealthcare and Medical Diagnostics

In healthcare, statistical methods and probability theory are applied to medical diagnostics and 
treatment planning. Bayesian networks, which model the probabilistic relationships between 
different variables, are used to predict the likelihood of diseases based on patient symptoms and 
medical history. For example, in a diagnostic system for cancer detection, a Bayesian network can 
integrate various risk factors, such as genetic predispositions and lifestyle choices, to estimate the 
probability of a patient having cancer. This probabilistic approach allows for more personalized and 
accurate diagnoses, enabling better treatment decisions.
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4.7 � HANDS-​ON EXAMPLE

In this section, we will walk through a hands-​on example that demonstrates the application of 
probabilistic models and the handling of uncertainty in NNs using BNNs. We will use a synthetic 
dataset to show how BNNs provide a measure of uncertainty in their predictions compared to trad-
itional NNs.

4.7.1  Step 1. Setup and Import Libraries

In this section, we are installing and importing the necessary packages for our project. The 
command!pip install tensorflow tensorflow-​probability matplotlib NumPy ensures that the latest 
versions of the TensorFlow, TensorFlow Probability, matplotlib, and NumPy libraries are installed. 
After installing, we import these libraries to make use of their functions and capabilities throughout 
the project.

# Install the required packages
!pip install tensorflow tensorflow-​probability matplotlib numpy
import tensorflow as tf
import tensorflow_​probability as tfp
import numpy as np
import matplotlib.pyplot as plt

4.7.2  Step 2. Generate Synthetic Data

In this step, we are generating synthetic data to use in our model or for visualization purposes. 
First, by setting np.random.seed(42), we ensure that the random number generation is consistent 
across runs, which is important for reproducibility. Then, x =​ np.linspace(−3, 3, 100) creates an 
array of 100 evenly spaced values between −3 and 3, which serves as the input data points. The 
corresponding y values are generated using the sine function (np.sin(x)) with added noise (0.3 * 
np.random.randn(100)) to simulate a real-​world scenario where data is often noisy. Finally, a scatter 
plot of the data is created using matplotlib, with appropriate labels for the axes and a title to describe 
the plot.

# Generate synthetic data
np.random.seed(42)
x =​ np.linspace(-​3, 3, 100)
y =​ np.sin(x) +​ 0.3 * np.random.randn(100)
plt.scatter(x, y, label=​‘Data’)
plt.xlabel(‘x’)
plt.ylabel(‘y’)
plt.legend()
plt.title(‘Synthetic Data’)
plt.show()
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4.7.3  Step 3. Define the BNN

In this step, we are defining a BNN using TensorFlow and TensorFlow Probability. First, the tf.   
keras.backend.set_​floatx(‘float64’) command ensures that all computations are done with double 
precision (64-​bit floats) for better numerical stability. The create_​bnn_​model() function builds a 
sequential model with three layers using DenseFlipout from TensorFlow Probability. DenseFlipout 
layers allow the model to learn weight distributions, enabling it to estimate uncertainty in 
predictions. The model has two hidden layers, each with 64 units and Rectified Linear Unit (ReLU) 
activation, and one output layer with a single unit for regression. After creating the model, it is 
compiled with the Adam optimizer and mean squared error loss, which are commonly used for 
training NNs. This setup prepares the BNN for training on data, enabling it to handle uncertainty 
in predictions effectively.

# Define a Bayesian Neural Network
tf.keras.backend.set_​floatx(‘float64’)
def create_​bnn_​model():
model =​ tf.keras.Sequential([
tfp.layers.DenseFlipout(64, activation=​‘relu’, input_​
shape=​(1,)),
tfp.layers.DenseFlipout(64, activation=​‘relu’),
tfp.layers.DenseFlipout(1)

])
return model

bnn_​model =​ create_​bnn_​model()
bnn_​model.compile(optimizer=​tf.optimizers.Adam(learning_​rate=​
0.01),

loss=​‘mean_​squared_​error’)

4.7.4  Step 4. Train the BNN

# Train the Bayesian Neural Network
bnn_​model.fit(x, y, epochs=​1000, verbose=​0)

4.7.5  Step 5. Make Predictions and Plot Uncertainty

In this step, we are using the previously defined BNN to make predictions and visualize the results 
along with uncertainty estimates. The x_​test array is created using np.linspace(−3, 3, 100) to gen-
erate 100 evenly spaced points within the range of −3 to 3, which serve as test inputs. The BNN 
model is run 100 times (for _​ in range(100)) to obtain multiple predictions for each input point, 
capturing the model’s uncertainty. These predictions are stored in y_​pred, which is then converted 
into a NumPy array for easier manipulation. We calculate the mean (y_​pred_​mean) and standard 
deviation (y_​pred_​std) of the predictions at each test point, reflecting the model’s predictive distri-
bution. Finally, we plot the results: the original data points are shown as blue scatter points, the mean 
predictions as a red line, and the uncertainty (±2 standard deviations) as a shaded region around 
the mean.
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# Make predictions with the BNN
x_​test =​ np.linspace(-​3, 3, 100)
y_​pred =​ [bnn_​model(x_​test) for _​ in range(100)]
y_​pred =​ np.array(y_​pred)
# Calculate mean and standard deviation of predictions
y_​pred_​mean =​ y_​pred.mean(axis=​0).flatten()
y_​pred_​std =​ y_​pred.std(axis=​0).flatten()
# Plot the results
plt.figure(figsize=​(10, 6))
plt.scatter(x, y, label=​‘Data’, color=​’blue’)
plt.plot(x_​test, y_​pred_​mean, label=​‘Predictive Mean’, color=​’red’)
plt.fill_​between(x_​test, y_​pred_​mean -​ 2 * y_​pred_​std, y_​
pred_​mean +​ 2 * y_​pred_​std, color=​‘red’, alpha=​0.3, label=​
’Uncertainty (±2 std)’)
plt.xlabel(‘x’)
plt.ylabel(‘y’)
plt.legend()
plt.title(‘Bayesian Neural Network Predictions with 
Uncertainty’)
plt.show()

Figure 4.15 demonstrates the predictive capability and uncertainty quantification of a BNN on a 
synthetic dataset. Figure 4.15a shows the predictive mean (red line) and the actual data points (blue). 
Figure 4.15b highlights the uncertainty (±2 standard deviations), predictive mean, and actual data. 
The shaded area in Figure 4.15b represents the uncertainty, showing how the BNN captures the vari
ability in its predictions.

4.8 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

4.8.1 �U nderstanding Probability Distributions

	• Mistake: Confusing discrete and continuous distributions.
	• Tip: Remember that discrete distributions deal with countable outcomes (e.g., number of  

heads in coin flips), while continuous distributions handle outcomes over a range (e.g., height  
of individuals).

FIGURE 4.15  Predictive mean and actual data points of a BNN on synthetic data.
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	• Mistake: Misinterpreting the properties of distributions (e.g., thinking all data are normally 
distributed).

	• Tip: Always check the data and select the appropriate distribution. For example, a Poisson 
distribution can model the number of events occurring in a fixed interval.

4.8.2 �A pplying Probability Distributions

	• Mistake: Using inappropriate distributions for the data type.
	• Tip: Match your data characteristics to the distribution. For instance, the binomial distribu-

tion can be used for binary outcomes, and the normal distribution can be used for continuous, 
symmetric data.

4.8.3 �O verfitting and Underfitting

	• Mistake: Ignoring signs of overfitting and underfitting in model performance.
	• Tip: Monitor model performance on both training and validation sets. High training accuracy but 

low validation accuracy indicates overfitting. Low accuracy on both sets suggests underfitting.
	• Mistake: Not using regularization techniques to combat overfitting.
	• Tip: To penalize model complexity, Implement regularization methods like L1/​L2 regulariza-

tion, dropout, or Bayesian priors.

4.8.4 � Bayesian Neural Networks

	• Mistake: Treating BNNs like traditional NNs without considering uncertainty.
	• Tip: Embrace the probabilistic nature of BNNs. Use the posterior distributions of weights to 

gauge uncertainty in predictions, which is crucial for making informed decisions.

4.8.5 �M oments in Statistics

	• Mistake: Misinterpreting the significance of higher-​order moments like skewness and kurtosis.
	• Tip: Use skewness to understand asymmetry in data and kurtosis to assess tail heaviness. 

These moments provide deeper insights into data distribution beyond mean and variance.
	• Mistake: Relying solely on mean and variance for data analysis.
	• Tip: Consider higher-​order moments when data exhibits skewness or heavy tails. This can pre-

vent misinterpretation of data characteristics and improve model fitting.

4.8.6 � Sampling Methods

	• Mistake: Not ensuring randomness in sampling.
	• Tip: Implement truly random sampling methods to avoid bias. For systematic sampling, ensure 

that the population does not have periodic patterns that could bias results.
	• Mistake: Ignoring the need for stratified sampling in heterogeneous populations.
	• Tip: Use stratified sampling to ensure all population subgroups are adequately represented, 

improving the precision of estimates.

4.8.7 � Bayesian Statistics

	• Mistake: Choosing inappropriate priors in Bayesian models.
	• Tip: Select priors that reflect prior knowledge or are non-​informative when little prior infor-

mation is available. Sensitivity analysis can help understand the impact of different priors on 
posterior distributions.
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4.9 � REVIEW QUESTIONS

1.	 How do BNNs handle uncertainty differently from traditional NNs? Discuss the role of prob-
ability distributions in BNNs.

2.	 Explain the concepts of overfitting and underfitting in the context of statistical modeling. 
What are some methods used to prevent these issues in machine learning models?

3.	 Define and explain the importance of the following terms in the context of probability 
distributions: mean, variance, skewness, kurtosis.

4.	 What is Bayes’ theorem, and how is it applied to Bayesian statistics? Provide a simple 
example to illustrate its use.

5.	 Discuss how model complexity affects the performance of a machine learning model. How 
do Bayesian statistics help manage model complexity?

6.	 Compare and contrast the three sampling methods discussed in the chapter. Which method 
would you choose for a given scenario involving a large, heterogeneous population, and 
why?

7.	 Provide an example of a real-​world application where the statistical principles discussed in 
this chapter can be applied. How do these principles improve the prediction accuracy or reli-
ability of the model?

8.	 What are regularization techniques, and how do they relate to Bayesian statistics? Explain 
how these techniques help in handling overfitting.

9.	 How does understanding the uncertainty in model predictions benefit the deployment of 
machine learning models in sensitive areas like healthcare or autonomous driving?

10.	 How do prior and posterior distributions differ in Bayesian statistics? Discuss their roles in 
updating beliefs as new data becomes available and provide an example of how this concept 
is applied in machine learning.

4.10 � PROGRAMMING QUESTIONS

4.10.1 �E asy

Implement a program that generates a set of data points following a normal distribution.

1.	 Use a random number generator to create a set of data points that follow a normal distribu-
tion with a specified mean and standard deviation.

2.	 Calculate the theoretical PDF of the normal distribution using the specified mean and 
standard deviation.

4.10.2 �M edium

Implement Bayesian linear regression to predict a dependent variable based on an independent 
variable.

1.	 Create a dataset with an independent variable, x, and a dependent variable, y, with added 
Gaussian noise.

2.	 Specify the Bayesian linear regression model with priors for the weights and noise.
3.	 Use a Bayesian inference method to estimate the posterior distributions of the weights.
4.	 Generate predictions for new data points and compute credible intervals for the 

predictions.
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4.10.3 �H ard

Implement variational inference for a BNN to perform classification on a synthetic dataset.

1.	 Create a synthetic dataset for a binary classification problem with clear decision boundaries.
2.	 Specify the architecture of the BNN using variational inference methods (e.g., Bayes by 

Backprop or Flipout layers in TensorFlow Probability).
3.	 Train the BNN on the synthetic dataset using an appropriate optimizer and loss function.
4.	 Perform variational inference to estimate the posterior distributions of the weights.
5.	 Generate predictions for a grid of points covering the input space. Compute the uncertainty 

in the predictions for each point in the grid.
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5	 Optimization Theory

5.1 � INTRODUCTION

Optimization theory is a key part of mathematics and applied sciences, and it takes a deep look 
into how we make decisions. At its core, optimization is about finding the best solution from many 
possible options. It’s focused on accuracy, blending logic and function to achieve the most effective 
results. Whenever we seek knowledge or try to solve a problem, we’re quietly pursuing perfection, 
and optimization guides us on this journey toward excellence. From dividing up resources in an 
economy to improving the algorithms that run our digital world, the search for the best choice is 
always ongoing. Optimization theory provides the tools and viewpoints we need to navigate this 
area, offering solutions and a deeper understanding of how we reach them. This chapter explores 
some of the most popular optimization methods in deep learning.

5.2 � OPTIMIZATION THEORY

Optimization theory is basically about making choices and picking the best option from a set of 
available alternatives based on specific, measurable criteria. At its core, it sheds light on the prin-
ciple of selection: when faced with many options, how do we identify the most suitable or advan-
tageous one? This field provides systematic and analytical methods to determine the “best” choice, 
where “best” could mean minimizing costs, maximizing efficiency, reducing waste, or achieving 
any other measurable goal. For example, imagine a business evaluating different marketing strat-
egies to find the most cost-​effective one, an engineer choosing the most durable material for a new 
design, or a traveler planning the quickest route to their destination. Constraints are an essential 
part of optimization problems. They define the feasible solutions and ensure that these solutions are 
practical and applicable to real-​world scenarios. Constraints limit the decision variables and set the 
boundaries for the optimal solution. They are restrictions or limitations placed on decision variables 
and can be equality constraints (e.g., x +​ y =​ 10) or inequality constraints (e.g., x +​ y ≤ 10). These 
constraints shape the feasible region in the decision variable space, within which the optimal solu-
tion must be found. There are different types of constraints:

	• Equality constraints must be satisfied exactly, such as the total weight of items in a knapsack 
problem.

	• Inequality constraints set an upper or lower limit, like a budget constraint where total costs 
must not exceed a specific value.

	• Bound constraints directly limit the range of decision variables, such as a percentage that 
must be between 0 and 100.
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Feasible solutions are those that meet all the constraints, while infeasible solutions violate one  
or more constraints. Active constraints are those that, if slightly changed, would alter the optimal  
solution. Binding constraints are specific inequality constraints that are exactly met at the optimal  
solution and directly influence it. Many optimization algorithms are initially designed for problems  
without constraints. However, there are several effective methods to handle constraints. Penalty  
methods convert a constrained problem into an unconstrained one by adding penalties to the  
objective function for any violations of the constraints.

Figure 5.1 features two primary constraint lines: the green line represents the inequality x x
1 2

4+ ≤ ,    
while the orange line corresponds to 2 6

1 2
x x+ ≤ . These lines present the boundaries within which 

the variables x1 and x2 must lie to satisfy both constraints simultaneously. The area where these 
constraints overlap is a shaded area, highlighting the feasible region where potential solutions exist. 
At the core of this feasible region lies the optimal solution, marked prominently with a large purple 
scatter point. This point, situated at the coordinates (x1, x2), represents the values of x1 and x2 that 
maximize the objective function 3x1 +​ 2x2 while adhering to the defined constraints.

5.3 � TYPES OF OPTIMIZATIONS

5.3.1 �L inear Optimization

Linear optimization, also known as linear programming, focuses on finding the best outcome, like 
maximizing profit or minimizing cost, in models where all relationships are linear. The main com-
ponent is the objective function that you want to optimize. For example, if you’re trying to maximize 
profit from selling two products, A and B, the objective function could be written as P aA bB= + , 
where a and b represent the profit per unit of products A and B, respectively. In linear optimization, 

FIGURE 5.1  Feasible region and constraints in linear programming.
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you have limits called constraints, which are expressed as linear equations or inequalities. Using 
the example above, constraints might include limitations on available resources like raw materials 
or labor, represented in linear terms. These constraints define the set of all feasible solutions that 
meet the requirements. The optimal solution is the one that maximizes or minimizes the objective 
function within this feasible set. In two-​dimensional cases, this optimal point is often found at a 
vertex of the feasible polygon, the corner points of the area defined by the constraints. The sim-
plex method is the most recognized technique for solving linear optimization problems, but other 
methods, like interior point methods, are also effective, especially in specific situations. However, 
linear optimization assumes that both the objective function and the constraints are linear, which 
might not be true in more complex, real-​world scenarios. Nonetheless, some non-​linear problems 
can be approximated as linear to make use of linear optimization methods, broadening their applic-
ability. The general form of a linear optimization problem is:

	 Maximize or minimize Z c x c x c x
n n

= + +…+
1 1 2 2

	

Subject to:

	 a x a x a x b
n n11 1 12 2 1 1

+ +…+ ≤ 	

	 a x a x a x b
n n21 1 22 2 2 2

+ +…+ ≤ 	

	 x x x
n1 2

0, , ,… ≥ 	

Suppose a company produces two products, A and B, with profit margins of $3 per unit for product 
A and $4 per unit for product B. The objective function for maximizing profit is:

	 Maximize P A B= +3 4 	

Subject to the following constraints: A +​ 2B ≤ 14 (raw material constraint), 3A +​ B ≤ 18 (labor con-
straint), and A, B ≥ 0.

Figure 5.2 features two primary constraint lines: the light blue line represents the inequality 
A B+ ≤2 14, while the blue line corresponds to A B+ ≤ 18. These lines present the boundaries within 
which the variables A and B must reside to satisfy both constraints simultaneously. The intersection 
of these constraints forms the vertices of the feasible region, which is shaded to visually demarcate 
the area where potential solutions lie. At the core of this feasible region is the optimal solution, 
marked prominently with a large green point. This point, situated at approximately (4, 3), represents 
the values of A and B which maximize the objective function P =​ 3A +​ 4B while adhering to the 
defined constraints. Additionally, the red dashed line represents the objective function at its optimal 
value, P =​ 24, illustrating the level curve of the objective function that intersects the feasible region 
at the optimal point. This line serves as a visual cue, demonstrating how the objective function 
interacts with the constraints to determine the optimal solution.

5.3.2 �N on-​linear Optimization

Non-​linear optimization deals with situations where the objective function, the constraints, or both  
involve non-​linear relationships. Unlike linear relationships, which are represented by straight lines  
or flat surfaces, non-​linear interactions add complexity, making these problems more challenging  
and more reflective of real-​world dynamics. This flexibility is crucial in many scientific and indus-
trial applications because it models complex relationships. In non-​linear optimization, the objective  
function includes non-​linear expressions of the decision variables. For example, consider the  
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function P A B AB= + −2 33 4 , where the goal is to maximize or minimize P. This creates a dynamic  
landscape of possible solutions, making the optimization process more complicated. Constraints can  
also be non-​linear, such as A B2 2 9+ ≤ , which represents a circular boundary in a two-​dimensional  
space for variables A and B. This geometric constraint shapes the feasible solution space into forms  
that are not just flat or polyhedral. The solution techniques include:

(a)	 Gradient-​Based Methods: These include gradient descent, Newton’s method, and quasi-​
Newton methods, which utilize derivatives to guide the optimization process.

(b)	 Direct Search Methods: For instance, the Nelder–​Mead method operates without derivative 
information and is suitable for problems where derivatives are infeasible to calculate.

(c)	 Evolutionary and Genetic Algorithms: Inspired by natural selection, these methods use 
heuristic approaches to explore the solution space, which is especially useful in complex 
landscapes.

A general non-​linear optimization problem can be formulated as:

	 Maximize or minimize f x x x
n1 2

, , ,…( )	

Subject to:

	 g x x x b g x x x b g x x x b
n n m n m1 1 2 1 2 1 2 2 1 2

, , , , , , , , , , , ,…( ) ≤ …( ) ≤ … …( ) ≤ 	

FIGURE 5.2  Linear optimization: feasible region and objective function.
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In this case, f(x1, x2) represents the non-​linear objective function, and g(x1, x2) represents the non-​
linear constraints, shaping the feasible region. Techniques like gradient descent would be used to find 
optimal solutions. Suppose you aim to maximize the non-​linear objective function P A B A B,( ) = +2 2,   
subject to the non-​linear constraint A B2 2 9+ ≤ , which represents a circular boundary with a radius 
of 3. The feasible solution space is the interior of this circle, and the maximum value of P occurs at 
the boundary where P A B AB= + −2 33 4 , producing a maximum value of P(3, 0)=​9.

Figure 5.3 features a vibrant contour map of the objective function P A B AB= + −2 33 4 , rendered 
using the perceptually uniform colormap. Central to the visualization is the constraint A B2 2 9+ ≤
, depicted as a prominent dashed black circle with a radius of 3. This boundary defines the feasible 
region in which optimization must occur. The area inside the circle, where both constraints are sat-
isfied, is subtly highlighted with a semitransparent overlay of the same colormap, reinforcing the 
feasible region’s significance without overwhelming the objective function’s contours. Additionally, 
a specific point within the feasible region, such as (1, 1), is marked with a large red scatter point.

5.3.3 �I nteger Optimization

Integer optimization (IO), or integer programming (IP), focuses on optimization problems where  
some or all decision variables must assume integer values. This requirement arises when fractional  
solutions are impractical, such as determining the number of items to produce, personnel assignments,  
or scheduling tasks. IO is critical for problems demanding discrete solutions, presenting unique  
challenges distinct from those of continuous optimization. The types of IO are:

FIGURE 5.3  Non-​linear optimization with constraints.
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(a)	 Pure Integer Programming (PIP): All decision variables are integers.
(b)	 Mixed Integer Programming (MIP): Combines integer and continuous variables, addressing 

a more complete range of practical scenarios.
(c)	 Binary Integer Programming (BIP): Decision variables are binary (0 or 1), ideal for problems 

involving binary decisions like turning a process on or off.

In some optimization problems, the variables are required to be whole numbers (integers). The 
objective function, which we aim to maximize or minimize, can be linear or non-​linear, leading to 
situations known as linear IP or non-​linear IP. Similarly, the constraints in these problems can be linear 
or non-​linear and may also demand that the variables be integers. Several techniques are employed to 
solve these IP problems. One method is branch and bound (B&B), which involves branching on the 
fractional parts of variables. This technique systematically explores different possible solutions and 
uses upper and lower bounds to reduce the search space, making it easier to find the optimal integer 
solution. Another approach is cutting plane method, which add extra constraints called cutting planes 
to the problem. These methods derive valid inequalities to eliminate fractional solutions, guiding the 
search toward integer solutions. Additionally, heuristic methods like rounding or diving provide quick 
ways to find feasible integer solutions. While these methods are faster, they may not always find the 
best possible solution but offer an acceptable one. A general IO problem can be formulated as:

	 Maximize or minimize Z c x c x c x
n n

= + +…+
1 1 2 2

	

Subject to:

	 a x a x a x b x x x
n n n11 1 12 2 1 1 1 2

+ +…+ ≤ … ∈, , , , 	

This formulation captures the requirement that decision variables must be integers, and methods 
like B&B or cutting plane methods are used to solve these problems. Suppose a company needs 
to produce tables and chairs. The decision variables are the number of tables T and chairs C to 
produce. The profit is given by the linear objective function Z T C= +20 15 , and the constraint is 
that the total production cannot exceed 100 units T C+ ≤ 100. As fractional tables or chairs cannot 
be produced, T and C must be integers. The IO problems are classified as NP-​hard, meaning the 
computational difficulty can scale exponentially with problem size. The discrete nature of the solu-
tion space restricts the use of gradient-​based optimization methods that are effective in continuous 
scenarios. Due to their complexity, IO problems often necessitate specialized computational tools.

Figure 5.4 illustrates the feasible region defined by the constraint A +​ B ≤ 12 and highlights the 
optimal solution that maximizes the objective function P =​ 3A +​ 2B. The plot features a grid of 
discrete points where both A and B range from 0 to 12, representing all possible combinations of 
these variables. The feasible solutions are depicted using a scatter plot with square markers, colored 
according to their corresponding objective function values P. The semitransparent light gray shading 
delineates the feasible region where the constraint A +​ B ≤ 12 is satisfied, providing a boundary 
that confines the optimization problem’s solution space. At the heart of the feasible region lies the 
optimal solution, marked prominently with a large golden-​yellow scatter point. This point represents 
the values of A and B that maximize the objective function P while adhering to the constraint.

5.3.4 �C onvex Optimization

Convex optimization is a specialized area within optimization where both the objective function and 
the constraints are convex. This property greatly simplifies the optimization process because any 
local minimum is also a global minimum, eliminating the uncertainty often found in non-​convex 
optimization. A function f is considered convex over an interval I if, for any two points x

1
 and x

2
 in 

I and any λ in the interval [0, 1], the following inequality holds:
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	 f x x f x f xλ λ λ λ
1 2 1 2

1 1+ −( )( ) ≤ ( ) + −( ) ( )	

Graphically, this means that the line segment between any two points on the graph of the function 
lies above or on the graph itself. A set S is convex if, for every pair of points x

1
 and x

2
 in S and 

any λ in the interval [0, 1], the point λ λx x
1 2

1+ −( )  also belongs to S. This ensures that the 
entire line segment between any two points in S is contained within S. Convex optimization 
problems have several key features. First, if a solution exists, it is unique and globally optimal. 
Unlike non-​convex problems, convex optimization does not have local optima that are not global. 
Additionally, the intersection of all constraints forms a convex feasible set, which simplifies 
the search for the optimal solution. Various techniques are used to solve convex optimization 
problems. Gradient descent is an iterative method that moves in the direction of the steepest 
decrease of the function. Interior point methods explore the inside of the feasible set to find the 
optimal solution. Subgradient and proximal methods are particularly useful for convex optimiza-
tion problems that are not smooth. Despite their advantages, convex optimization problems can 
present challenges. Finding the global optimum might be computationally demanding, especially 
in high-​dimensional spaces. Moreover, not all real-​world problems are convex, and transforming 
non-​convex problems into convex ones can be limiting and impractical. A general convex opti-
mization problem can be formulated as:

	 Minimize f x( )	

FIGURE 5.4  Integer optimization.
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Subject to:

	 g x i x
i ( ) ≤ ∀ ∈0 ,  	

where:

	• f(x) is a convex function,
	• gi(x) represents convex constraints, and
	• C is a convex set.

This ensures that any local minimum is also a global minimum, and techniques like gradient descent 
or interior point can efficiently solve such problems. Consider the convex function f(x) =​ x2 +​ 4x +​ 
4, which has a global minimum at x =​ −2. The objective is to minimize this function, subject to the 
constraint x ≥ −3. As f(x) is convex and the constraint forms a convex set, the optimal solution is 
x =​ −2, where the function achieves its minimum value of 0.

In Figure 5.5, the function f x x( ) = 2 is plotted as a smooth curve. This quadratic function 
represents a simple convex shape, making it suitable for demonstrating the gradient descent method. 
The gradient descent process begins at the starting point, marked by the green dot, located on the 
right side of the function. From here, gradient descent iteratively updates the value of x to minimize 
f(x). At each step, the algorithm moves in the direction of the negative gradient (the slope of the 
function at the current point), adjusting x to decrease the function value. These steps are represented 
by the blue dots along the curve. Each dot shows a position where the algorithm evaluates and 
updates the function value, gradually moving toward the minimum. As the algorithm approaches 

FIGURE 5.5  Convex optimization using gradient descent on f x x( ) = 2.

 

 

 



141Optimization Theory

the minimum point, highlighted in yellow, the steps become smaller. This behavior illustrates that 
as the gradient (slope) decreases near the minimum, the updates become less significant, allowing 
the algorithm to converge precisely at the minimum. The minimum of f x x( ) = 2 occurs at x =​ 0, 
where the function value is also zero. The shaded area under the curve provides visual emphasis on 
the function’s domain, while the red dashed line shows the trajectory of the algorithm’s updates, 
highlighting how it progressively converges toward the minimum.

5.3.5 �C ombinatorial Optimization

Combinatorial optimization is an important field within optimization that deals with problems 
in discrete and combinatorial settings, such as finding the shortest path in a network or graph. It 
addresses optimization challenges where the solution space consists of distinct, countable options, 
and the number of possible solutions can be immense, often increasing exponentially as the problem 
grows larger. A key feature of combinatorial optimization is the discrete nature of its solution space, 
meaning solutions are separate and countable. As the size of the problem increases, the complexity 
and the number of potential solutions expand dramatically. These problems often involve selecting 
the best combination or sequence of elements from a set, which is a defining characteristic of this 
type of optimization. Common examples of combinatorial optimization problems include the trav-
eling salesman problem (TSP), where the objective is to find the shortest possible route that visits 
each city exactly once and returns to the starting point. Another example is graph coloring, where 
colors are assigned to the vertices of a graph so that no two adjacent vertices share the same color, 
aiming to use the fewest colors possible. Bin packing involves efficiently packing objects of different 
sizes into the smallest number of bins. Various techniques are used to solve combinatorial optimiza-
tion problems. Exact algorithms, such as B&B or the Hungarian algorithm, guarantee an optimal 
solution but are often very computationally intensive. Heuristic algorithms, like the greedy method 
or hill climbing, aim to find a good solution quickly, though they do not guarantee the best pos-
sible solution. Metaheuristic algorithms, such as genetic algorithms or ant colony optimization, are 
higher-​level strategies that guide simpler heuristics toward better solutions. The main challenges in 
combinatorial optimization include the NP-​hard nature of many of these problems, meaning there is 
no known efficient (polynomial-​time) solution, and it is uncertain if one exists. Additionally, the vast 
size of the solution space makes exhaustive searches impractical except for the smallest problems.

Figure 5.6 showcases an example of the TSP, which is a classic optimization problem where the 
objective is to determine the shortest possible route that visits each city exactly once and returns to 
the starting point. The figure illustrates five cities, labeled A, B, C, D, and E, positioned on a 2D 
coordinate plane. Each city is marked with a distinct shape and color to enhance clarity. The optimal 
path connecting these cities is shown by the dark line traversing from one city to the next. The total 
length of this optimal route is indicated in the legend as 20.06 units, representing the shortest path 
that satisfies the TSP criteria for these specific cities. The path begins at city A (blue circle), moves 
through city B (orange star), then continues to city E (purple plus), city C (green triangle), and 
finally reaches city D (red diamond) before looping back to city A.
The objective function for the TSP is:

	 Minimize
i

n

i i
d x x

=
+∑ ( )

1
1

, 	

where:

	• xi is the ith city in the tour,
	• d(xi, xi+​1) represents the distance between cities xi and xi+​1, and
	• the solution space consists of all possible permutations of city visits, making the problem 

combinatorial.
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This formulation represents the challenge of finding the optimal sequence of cities with an enormous  
solution space, often tackled using exact or heuristic methods. Consider the TSP with five cities.  
The goal is to find the shortest route that visits each city exactly once and returns to the starting city.  
If there are five cities, there are 120 possible routes (since 5! =​ 120). Using an exact algorithm like  
B&B, the shortest route can be found by systematically evaluating and pruning possible routes.

5.3.6 G radient Descent

Gradient descent is a foundational optimization technique in machine learning, essential for solving 
complex problems where analytical solutions are either unavailable or computationally prohibitive. 
This iterative method is adept at navigating multi-​dimensional data landscapes to find the local min-
imum of a function, typically a loss function in machine learning contexts. The primary objective 
of gradient descent is to minimize the loss function, which measures the discrepancy between the 
predicted outputs of a model and the actual outcomes. The principle behind gradient descent is 
analogous to descending a hill. Mathematically, this is achieved by moving in the direction opposite 
to the function’s gradient at the current point, which points toward the steepest ascent. Let us go to 
the detailed mechanics of it:

	• Gradient: For a function f x( ), where x is a vector of parameters, the gradient ∇ ( )f x  is a 
vector of partial derivatives. It indicates the direction and rate of the steepest increase.

FIGURE 5.6  Traveling salesman problem.
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	• Update Rule: The parameter vector x is updated iteratively using the rule:x x f x
xnew old old

= − ∇ ( )α  
where α is the learning rate.

	• Convergence: Properly tuning the learning rate, and under certain conditions (e.g., con-
vexity of the function), gradient descent can converge to the global minimum. In non-​convex 
scenarios, it may settle at a local minimum or a saddle point.

Gradient descent comes in several variations, each designed to enhance efficiency, stability, or con-
vergence when solving optimization problems. Stochastic gradient descent (SGD) uses a single 
randomly selected data point to estimate the gradient, which speeds up each iteration and can help 
avoid getting stuck in local minima. Mini-​batch gradient descent uses a small subset of data to com-
pute the gradient, offering a middle ground between the speed of SGD and the stability of using 
the full dataset. The momentum method adds a portion of the previous update to the current step. 
This approach aims to accelerate convergence and reduce oscillations, especially in areas where the 
loss function changes sharply. Adaptive learning rate methods, like Adagrad, RMSprop, and Adam, 
adjust the learning rate based on previous gradients. This allows for more precise convergence and 
improved stability during training. Setting the learning rate too high can cause the algorithm to 
diverge, while setting it too low might lead to slow convergence or getting stuck in suboptimal points. 
With non-​convex functions, there’s a risk of converging to local minima or saddle points instead of 
the global minimum. As gradient descent is sensitive to the scale of the features, normalizing or 
standardizing them is often necessary for effective optimization. Despite these challenges, gradient 
descent remains a fundamental tool in optimization, especially in machine learning. It supports a 
wide range of applications, from simple regression tasks to complex deep learning algorithms. Its 
flexibility and efficiency make it indispensable for researchers and practitioners.

The updated rule for gradient descent is given by:

	 θ θ α θ
new old

= − ∇ ( )J 	

where:

	• θ is the parameter vector,
	• α is the learning rate, and
	• ∇∇J(θ) is the gradient of the cost function with respect to θ.

This iterative process continues until the gradient converges, minimizing the loss function and 
finding the optimal parameters for the model. Suppose you are training a linear regression model 

to predict house prices. The cost function J
m

h x y
i i

θ θ( ) = ∑ ( ) −
1

2
2( )  needs to be minimized, where 

θ represents the model parameters. Let the initial value of θ =​ 0.5, and the gradient at this point be 
calculated as ∇∇J(θ) =​ 1.2. Using a learning rate α =​ 0.01, the update rule would adjust θ as follows:

	 θ θ α θ
new

= − ∇ ( ) = − × =J 0 5 0 01 1 2 0 488. . . . 	

Figure 5.7 shows the trajectory of gradient descent on the quadratic function f(x) =​ x2. The plot starts 
with a high initial value (the “Starting Point”) and iteratively updates based on the gradient, moving 
toward the function’s minimum. The objective is to reach the lowest point of the function, which is 
at x =​ 0, also marked as the “Final Point.” Each red dashed line and crimson scatter point represents 
a step in the gradient descent process, with every fifth step labeled for clarity. The goal is to illus-
trate how the gradient descent algorithm takes steps proportional to the negative of the gradient to 
minimize the function. The plot helps visualize the optimization process, showing how the gradient 
descent path narrows down towards the optimal solution.
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FIGURE 5.7  Gradient descent on a quadratic function.
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5.3.7 � Stochastic Optimization

Stochastic optimization is a field that deals with problems under uncertainty. In these cases, some 
parts of the model, such as parameters, constraints, or the objective function, include random 
variables. This uncertainty makes the optimization process more complex but also more reflective 
of real-​world situations. The goal in stochastic optimization is often to find a feasible and optimal 
solution on average or with a high probability rather than one that is deterministically optimal. This 
approach is crucial for handling scenarios where exact information about the model is unavailable 
or when the system is subject to random fluctuations and noise. Several techniques are used in sto-
chastic optimization. One method is sample average approximation (SAA), which involves solving 
the problem multiple times using different samples from the probability distributions of the uncer-
tain parameters and then averaging the results. Another technique is SGD, an extension of the trad-
itional gradient descent method that uses a randomly selected subset of data, called a mini-​batch, 
to perform each update. This method is commonly used in machine learning for training models on 
large datasets. Monte Carlo simulation is also employed to assess the impact of risk and uncertainty 
in prediction and forecasting models by simulating a wide range of possible outcomes. Stochastic 
optimization faces several challenges. The inherent uncertainty in these problems makes solutions 
computationally complex and difficult to obtain. The quality of the solutions heavily depends on the 
quality and quantity of the data available about the uncertainties involved, leading to data depend-
ency issues. Scalability becomes a concern as the size of the data and the number of uncertain 
parameters increase, requiring significantly more computational resources to find a solution effi-
ciently. Despite these challenges, stochastic optimization is increasingly important in industries 
and sectors where uncertainty is a significant factor. By incorporating randomness directly into 
the decision-​making process, organizations can develop strategies that are not only theoretically 
optimal but also practical and robust against real-​world variability and unpredictability. This opti-
mization approach improves decision-​making by providing frameworks that anticipate and effect-
ively manage the inherent uncertainties of various operational environments. The general form of a 
stochastic optimization problem is:

	 Minimize  f x,ξ( ) 	

where:

	• f(x, ξ) is the objective function,
	• ξ represents random variables (uncertainties), and
	•  is the expectation over the random variables.

Techniques such as SAA estimate the objective by averaging over several samples of ξ, helping 
optimize decisions under uncertainty. Suppose a company wants to optimize its inventory man-
agement under uncertain demand. Using SGD, they aim to minimize the cost function J(θ), where 
θ represents the reorder point. With demand data subject to randomness, they update the reorder 
point iteratively using small mini-​batches of demand data. If the gradient estimate at iteration 1 is 
∇∇J(θ) =​ 0.6 and the learning rate is α =​ 0.05, the updated reorder point would be:

	 θ θ α θ θ
new old

= − ∇ ( ) = − ×J 0 05 0 6. . 	

Figure 5.8, illustrates the process of SGD for optimizing the objective function f x x( ) = +2 noise.   
The blue line represents the noisy objective function, f x x( ) = +2 noise, which includes random-
ness, making the curve less smooth. The path of SGD is traced with red dashed lines, highlighting 
the steps taken from the starting point to the final point. The green dot marks the starting point of 
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FIGURE 5.8  Stochastic gradient descent.
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x =​ 10, where the optimization process begins. The orange dot indicates the final point after 30 
iterations, showing where the algorithm has converged. Red dots along the dashed line indicate the 
positions visited by SGD at each iteration. To avoid clutter, every fifth step is annotated with “Step 
X”, where X is the iteration number, showing the algorithm’s progression.

5.3.8 � Simplex Method

The Simplex method is a fundamental algorithm in linear optimization, widely used to solve linear 
programming problems. In linear programming, the primary objective is to maximize or minimize 
a linear function while satisfying a set of linear equality or inequality constraints. These constraints 
define the feasible region, which is typically a polyhedron or polytope where the solution must lie. 
If an optimal solution exists, it will be found at one of the vertices (corner points) of this feasible 
region. The algorithm starts at a vertex of the feasible region and moves from one vertex to another, 
checking at each step whether the move improves the value of the objective function. This process 
continues until it reaches a vertex where no adjacent vertex offers a better value, indicating that the 
optimal solution has been found. The Simplex method is generally very efficient in practice, even 
though its worst-​case time complexity can be exponential. This means that while it could theoretic-
ally take a very long time for some problems, it usually performs exceptionally well in real-​world 
scenarios. Sometimes, the method might cycle between the same vertices without making progress. 
To prevent this, strategies like Bland’s Rule are used to ensure that the algorithm moves toward a 
solution without getting stuck in a loop. Every linear programming problem has a corresponding 
dual problem. Understanding the relationship between the original (primal) problem and its dual can 
provide deeper insights and can sometimes simplify finding the solution. The Simplex method has 
been adapted into various forms to handle more complex situations, such as the Two-​Phase Simplex 
method and the Revised Simplex method. While the Simplex method remains a dominant technique 
in linear programming, it faces competition from interior-​point methods, which can be more suit-
able for solving very large-​scale linear programming problems. The linear programming problem 
in standard form is:

	 Maximize Z c x c x c x
n n

= + +…+
1 1 2 2

	

Subject to:

	 Ax b x≤ ≥, 0	

where:

	• c c c
n1 2

, , ,…  are the coefficients of the objective function,
	• A is the matrix of constraint coefficients,
	• x is the vector of decision variables, and
	• b is the vector of constraint bounds.

This formulation represents the optimization problem, where the Simplex method navigates the 
feasible region defined by the constraints to find the optimal solution. Consider a linear program-
ming problem to maximize the objective function Z =​ 3x

1
 +​ 2x

2
, subject to the constraints:

	 x x x x x x
1 2 1 2 1 2

4 2 6 0+ ≤ + ≤ ≥, , , 	

The Simplex method starts at one vertex of the feasible region, say (0, 0), and iteratively moves 
to adjacent vertices, checking for improvement in the objective function. The method eventually 
reaches the optimal solution at x

1
 =​ 2, where Z =​ 10.
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Figure 5.9 demonstrates the application of the Simplex method in solving a linear programming 
problem. The objective is to find the optimal solution that maximizes or minimizes a linear  
objective function subject to constraints. In this illustration, the constraints are represented by the  
lines: x x

1 2
4+ ≤  (blue line) and 2 6

1 2
x x+ ≤  (green line). These constraints define the feasible  

region, shaded in light gray. The feasible region is the set of all points that satisfy both inequalities  
simultaneously, and it represents all possible solutions to the linear programming problem. The  
Simplex path is marked in brown and shows the sequence of steps taken by the Simplex algorithm  
as it moves from one vertex of the feasible region to another, improving the objective function  
value at each step. The path culminates at the optimal point (2, 2), highlighted in yellow, which  
represents the optimal solution that maximizes (or minimizes) the objective function under the  
given constraints.

5.3.9 �L agrangian Multipliers

Lagrange multipliers are a robust optimization method used to find a function’s local maxima 
and minima subject to equality constraints. Named after Joseph-​Louis Lagrange, this technique 
transforms constrained optimization problems into unconstrained ones, facilitating their solu-
tion. Consider the problem of finding the extremum (maximum or minimum) of a function/​
subject to a constraint g x x x

n1 2
0, , ,…( ) = . The method introduces an auxiliary variable, λ (the 

Lagrange multiplier), to incorporate the constraint into the objective function. The Lagrangian, 
L, is formulated as:

	  x x x f x x x g x x x
n n n1 2 1 2 1 2

, , , , , , , , , ,…( ) = …( ) + …( )λ λ 	

FIGURE 5.9  Simplex method.
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To find the extremum of f subject to g, we solve for the points where the gradient of the Lagrangian 
is zero:

	 ∇ = ∇ + ∇ =L f gλ 0	

This results in a system of equations that, when solved, provide the values of the variables and 
the Lagrange multiplier. The Lagrange multiplier, has a meaningful interpretation. Generally, it 
measures the rate of change in the maximum or minimum value of the objective function as the 
constraint varies. Lagrange multipliers are applied across various fields. In economics, they are 
used for utility maximization and cost minimization problems. In machine learning, algorithms 
like support vector machines use Lagrange multipliers for optimization with constraints. While 
robust, Lagrange multipliers are primarily suited for equality constraints. For problems involving 
inequality constraints, methods like the Karush–​Kuhn–​Tucker (KKT) conditions are more appro-
priate. Consider maximizing the function f(x, y) =​ xy, subject to the constraint x +​ y =​ 10. Using the 
Lagrange multiplier λ, we form the Lagrangian:

	  x y xy x y, ,λ λ( ) = + − −( )10 	

To find the extremum, we take the partial derivatives with respect to x, y, and λ and set them equal 
to zero:

	
∂
∂

= − =
∂
∂

= − =
∂
∂

= − − =
  
x

y
y

x x yλ λ
λ

0 0 10 0, , 	

Solving this system yields x =​ y =​ 5, giving the maximum value of f(x, y) =​ 25. The Lagrange multi-
plier method transforms a constrained optimization problem into an unconstrained one by introdu-
cing a new variable λ. The Lagrangian is defined as:

	  x f x g x c,λ λ( ) = ( ) + ( ) − 	

where:

	• f(x) is the objective function,
	• g(x) =​ c is the constraint,
	• λ is the Lagrange multiplier.

The solution is found by solving the system of equations obtained from setting the gradients of the 
Lagrangian to zero:

	 ∇ ( ) = x,λ 0	

Figure 5.10 displays a contour plot of the function f(x, y)=​ xy, with contour lines representing levels 
of constant function values. The color gradient indicates the objective function’s values, transitioning 
from blue (lower values) to red (higher values), giving a visual sense of how f(x, y) changes across 
the plane. The dashed blue circle represents the constraint x y2 2 1+ = , which defines the feasible 
region for this optimization problem. This constraint forms a circle of radius 1 centered at the origin, 
encompassing all points that satisfy the equation. The red dots marked as optimal points (0.71, 0.71 
and −0.71, −0.71) indicate where the function reaches its maximum and minimum values within the 
constrained region. These points are located on the circle where the product xy is maximized and 
minimized, showing how the constraint influences the objective function’s optimization.

 

 

 

 

 

 



150 Mathematical Foundations for Deep Learning

5.3.10  Branch and Bound and Cutting Plane Methods

B&B and cutting plane methods are crucial algorithms for solving optimization problems, particu-
larly combinatorial and IP challenges. B&B is a systematic method for exploring possible solutions 
within a tree structure. The process begins with branching, where the main problem is divided 
into smaller subproblems, creating branches in a solution tree. In bounding, each subproblem is 
evaluated by calculating a bound, and if this bound is better than the current best solution, the 
subproblem is explored further; otherwise, it is discarded. Pruning occurs when subproblems that 
cannot improve upon the best-​known solution are eliminated, enhancing efficiency by reducing 
unnecessary calculations. The cutting plane methods iteratively solve IP problems by refining the 
feasible region. Here are its general steps:

(a)	 Starting Solution: Start by solving the problem’s linear programming relaxation, ignoring 
integer constraints.

FIGURE 5.10  Optimization with constraints.
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(b)	 Check & Cut: Verify if the solution meets integer constraints. If not, a cut (linear inequality) 
is added to exclude the current fractional solution while retaining feasible integer points.

(c)	 Iterate: Repeat until an acceptable integer solution is found or proven that none exists.

The B&B method explores a solution tree, where each subproblem is a branch, and solutions are 
bounded. The cutting plane method iterates by adding constraints to refine the feasible region. For 
the cutting plane method, starting from a linear relaxation:

Maximize Z c x c x= +
1 1 2 2

 Subject to:Ax b x≤ ≥, 0

If the solution is not integer, add a cut (a linear inequality) to exclude fractional solutions while 
retaining feasible integer points. These methods iteratively refine and solve the problem, improving 
computational efficiency by avoiding exhaustive searches. Consider an IP problem where we aim to 
maximize Z =​ 3x

1
 +​ 4x

2
, subject to the constraints x

1
 +​ 2x

2
 ≤ 8 and x

1
, x

2
 ≥ 0, with x

1
 and x

2
 required 

to be integers. Using B&B, we solve the linear relaxation (ignoring integer constraints), yielding 
a solution of x

1
 =​ 4, x

2
 =​ 2. We then branch by creating subproblems where x

1
 ≤ 3 and x

1
 ≥ 4, con-

tinuing to solve and prune subproblems until the optimal integer solution is found.
Figure 5.11 illustrates the B&B tree used to solve a knapsack problem, a combinatorial optimiza

tion challenge where the goal is to maximize the value of items placed in a knapsack without exceeding 
its weight capacity. The tree starts with the initial node labeled “Start” (value =​ 0, weight =​ 0), where 
no items have been considered yet. From this node, the algorithm branches out, evaluating two 
choices: Include item 1 (value =​ 40, weight =​ 2) or exclude item 1 (value =​ 0, weight =​ 0). Each 
choice generates a new branch, exploring the impact of either including or excluding the item. As 
the tree progresses, it evaluates further branches for item 2, following the same process of including 
or excluding the item. Nodes that exceed the weight capacity are marked as pruned/​infeasible, indi-
cating that these paths do not satisfy the problem’s constraints and are thus discarded from fur-
ther consideration. The algorithm eventually reaches the optimal node (value =​ 190, weight =​ 10), 
representing the best possible solution that maximizes the value while staying within the weight 
limit. This node is highlighted to signify that the optimal solution has been found.

Figure 5.12 illustrates the cutting plane method for solving an integer linear programming (ILP) 
problem. This approach refines the feasible region of a linear programming problem to efficiently iden-
tify integer solutions. The plot presents a system of constraints, each represented as a line: −x − 2y ≤ 
−3 (blue line), x +​ 2y ≤ 8 (green line), and 2x +​ y ≤ 10 (purple line). These constraints collectively form 
the feasible region, shaded in light gray, where all points satisfy the inequalities simultaneously. The 
objective is to find an integer solution within this region that optimizes the objective function. To achieve 
this, the figure shows two cutting planes represented by dashed lines. Cutting plane 1, marked as a red 
dashed line, adds an additional constraint to exclude non-​integer solutions from the feasible region. 
Cutting plane 2, shown as an orange dashed line, further refines the solution space, ensuring that only 
integer solutions remain. The optimal solution, indicated by a yellow dot within the feasible region, 
represents the best integer solution that meets all constraints while optimizing the objective function.

5.3.11 �E volutionary Algorithms

Evolutionary algorithms (EAs) are optimization techniques inspired by natural selection. They 
simulate the biological principles of evolution, including survival of the fittest, to solve complex 
problems in various fields such as computer science and engineering. These are the basic concepts:

	• Population: A group of potential solutions.
	• Chromosomes: Each potential solution.
	• Genes: Elements of a solution.
	• Fitness: The quality or suitability of a solution.
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FIGURE 5.11  Branch and Bound tree for knapsack problem.

 

 
new

genrtpdf
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The major steps in EAs are:

	• Initialization: Generate an initial population of possible solutions randomly.
	• Selection: Choose solutions based on fitness to contribute to the next generation. Higher 

fitness increases the likelihood of selection.
	• Crossover (Recombination): Combine selected solutions to create new ones, mimicking 

reproduction.
	• Mutation: Introduce small changes to new solutions with a certain probability to ensure gen-

etic diversity.
	• Replacement: Replace the old population with the new one.
	• Termination: Repeat the process until a stopping criterion is met, such as a maximum number 

of generations or a satisfactory fitness level.

The types of EAs include genetic algorithms (GAs), which are the most popular type and use muta-
tion, crossover, and selection to evolve potential solutions. Genetic programming evolves computer 
programs as solutions, while differential evolution is used for real-​valued function optimization. 
Evolution strategies focus on strategy parameters such as mutation strength, and evolutionary pro-
gramming focuses on the mutation of finite-​state machines. The main applications of EAs include 
function optimization, where they are used to find the maximum or minimum of functions. In machine 
learning, they are used for feature selection, hyperparameter tuning, and neural network training. 
The advantages of EAs include flexibility, as they can be applied to a wide range of problems, and 
global search capabilities, as they have a higher likelihood of finding global optima than many trad-
itional methods. They also support parallelism, allowing for the simultaneous evaluation of many 

FIGURE 5.12  Cutting plane method.
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solutions, which can be done in parallel with modern hardware. However, the limitations include 
being computationally intensive, as the required computational resources can grow significantly 
with problem size and complexity. Additionally, they do not provide certainty, often offering rea-
sonable solutions without guaranteeing the global optimum. In GAs, the fitness function evaluates 
each solution x:

	 Fitness x f x( ) = ( )	

The process involves applying selection, where individuals are chosen based on fitness scores. This 
is followed by crossover, which generates new offspring by combining traits from selected individ-
uals. Finally, mutation is applied by randomly altering some genes to maintain diversity within the 
population and prevent premature convergence. This iterative process continues until the stopping 
criteria are met, typically optimizing the objective function. Suppose you are optimizing a function 
f(x) =​ −x2 +​ 4x. You initialize a population of 10 potential solutions (chromosomes) for the variable 
x, each with random values between 0 and 5. The fitness of each solution is calculated using the 
objective function f(x), and after selection, crossover, and mutation steps, the best solution x =​ 2, 
with a fitness value of f(2) =​ 4, is found after 100 generations.

Figure 5.13, demonstrates the application of a GA to optimize the Rastrigin function, a common 
benchmark problem in evolutionary computation. The Rastrigin function, known for its large search 

space and many local minima, is defined as f d x x
i

d

i i
x( ) = ⋅ + −( )

=
∑10 10 2

1

2 cos( )π , where d is the 

FIGURE 5.13  Genetic algorithm optimization of Rastrigin function.
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number of dimensions. This example plots the function in two dimensions over the range [−5.12, 
5.12] for x and y. The contours are filled using the colormap, visually representing the function’s 
values across the grid. A color bar on the side indicates the corresponding function values. The GA 
is executed to find the minimum value of the Rastrigin function over 50 generations with a popula-
tion size of 100, selecting 20 parents in each generation and applying a mutation rate of 0.1. The best 
solution the GA finds is highlighted with a red dot on the contour map, indicating the optimal point.

5.4 � GLOBAL VERSUS LOCAL OPTIMA

Understanding the difference between global and local best solutions in optimization is very 
important because it affects how we find the best answer to a problem. This challenge is especially 
significant in complex problems where the solution landscape has many ups and downs. A global 
optimum is the absolute best solution among all possible options. For problems where we want to 
minimize something (like cost), it’s the lowest point. For problems where we want to maximize 
something (like profit), it’s the highest point. A local optimum, on the other hand, is a solution that’s 
better than nearby options but might not be the best overall, like finding a small hill that isn’t the 
tallest mountain. You can think of the function we’re trying to optimize as a landscape with hills and 
valleys. The local optima are the smaller hills and valleys, while the global optimum is the highest 
hill or the deepest valley. Many optimization methods might get stuck at a local optimum, depending 
on where they start. When there are multiple local optima, the landscape becomes rugged, making 
it harder to find the global best solution. In simpler problems, called convex problems, any local 
optimum is also a global optimum, which makes finding the best solution easier. However, in more 
complicated, non-​convex problems, it’s hard to tell if the solution we found is the absolute best 
without knowing the whole landscape. To avoid getting stuck at local optima, we can use sev-
eral strategies. One method is random restarts, where we run the optimization multiple times from 
different starting points to increase the chances of finding the global optimum. Another technique is 
simulated annealing, which is inspired by the process of slowly cooling metal to make its structure 
more uniform—​a practice in metallurgy. In optimization, this means occasionally accepting worse 
solutions to escape local optima and explore more possibilities. We can also use GAs, which mimic 
natural selection by keeping a group of possible solutions and combining them in new ways, hoping 
to find better solutions through processes similar to mutation and crossover in biology. Swarm intel-
ligence techniques, like particle swarm optimization, use multiple agents that move through the 
solution space, sharing information to find the best solution together. In real-​world applications 
such as machine learning, finance, and engineering, optimization problems often have complex 
landscapes with many local optima. Whether we end up at a local or global optimum can greatly 
affect performance, costs, and outcomes. While we can’t always guarantee we’ll find the global best 
solution, using different techniques, monitoring how the solution progresses, and understanding the 
problem better can help us get closer to it.

A general optimization problem can be represented as:

	 Minimize f x x( ) ∈, 	

where f(x) is the objective function, and S is the solution space. A global minimum is defined as:

	 f x f x x*( ) ≤ ( ) ∀ ∈,  	

A local minimum occurs when:

	 f x f x x x* *,( ) ≤ ( ) ∀ in the neighborhood of 	
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Strategies like simulated annealing or GAs are used to escape local optima and find the global min-
imum in complex landscapes. Consider a non-​convex function f x x x( ) = − +4 33 2. The function  
has two local minima and one global minimum. A local minimum occurs at x =​ 2, where f(2) =​ 2,  
but the global minimum occurs at x =​ 0.5, where f(0.5) =​ −0.375. If an optimization algorithm starts  
near x =​ 2, it may converge to the local minimum instead of the global minimum.

Figure 5.14 presents the plot of the function f x x x( ) = − ⋅ +( )( )1 22  showing its behavior across 
the domain with key points. The graph illustrates the different types of extrema, including a local 
minimum, a local maximum, and a global minimum. The function initially rises to a local maximum 
at the point (−0.60, 3.58), marked in green. This point is where the function reaches a temporary peak 
before declining. As the graph continues, it reaches a local minimum at (−2, 0), highlighted in red. 
This local minimum indicates a point where the function temporarily decreases before increasing 
again. However, this is not the lowest value the function can attain within the entire domain. Further 
along, the function drops to the global minimum at the point (1, 0), shown in orange. This global 
minimum represents the lowest point of the function across its entire domain, indicating the true 
minimum value of f(x). Beyond this point, the function rises again.

5.5 � RECENT DEVELOPMENTS IN OPTIMIZATION

The rise of big data and more powerful computers has greatly changed the field of optimization. New 
developments such as distributed and real-​time optimization, quantum computing, and advances in 
machine learning are key areas of current research. These advancements are driven by the need 
to solve large problems efficiently and make quick decisions. As data grows rapidly, optimiza-
tion algorithms need to process huge amounts of information effectively. Big data often involves 

FIGURE 5.14  Global versus local optima.
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complex, high-​dimensional spaces where traditional methods may not work well, so new strategies 
are needed to handle these challenges. Optimization tasks are now often spread out and run across 
multiple computers or nodes, which helps in dealing with large-​scale problems. However, this brings 
challenges like ensuring data security, keeping everything synchronized, and managing communica-
tion between nodes. Optimization is also very important in situations that need immediate solutions 
or decisions in a short time, often as data is being created. Examples include self-​driving cars and 
high-​speed trading systems. These applications must balance speed and accuracy to compute quickly 
without losing solution quality. Quantum computers, which use principles from quantum mechanics, 
offer incredible computing power. Algorithms like the quantum approximate optimization algorithm 
(QAOA) are being developed to tap into this potential, possibly bringing big changes to fields like 
cryptography, materials science, and machine learning. Machine learning, especially deep learning, 
relies a lot on optimization to train models. At the same time, machine learning techniques are 
improving optimization algorithms. Automated systems help in choosing the best machine learning 
models and fine-​tuning their settings. In real-​world situations that often have uncertain or noisy data, 
robust optimization finds solutions that work well under different scenarios, while stochastic opti-
mization deals with uncertainties in constraints and objectives. Moreover, real-​world problems often 
have conflicting goals, leading to new methods that aim to find the best possible solutions where 
improving one goal doesn’t make another worse. Optimization is going through a major change, 
driven by new technologies and the complexities of modern problems. As we move further into the 
digital age, optimization remains essential for finding efficient and effective solutions in a rapidly 
changing world. In distributed optimization, we often solve a problem by spreading it across mul-
tiple computers or nodes. This can be represented as:

	 Minimize x Xf x f x
i

n

i( ) = ( ) ∈
=
∑

1

	

where:

	• fi(x) is the local objective function on the ith node,
	• X is the shared feasible set across nodes.

Techniques such as distributed gradient descent are used to optimize functions across mul-
tiple machines, significantly speeding up the process for large-​scale data. Consider an optimiza-
tion problem in high-​frequency trading that requires decision-​making in less than a millisecond. 
Using real-​time optimization, an algorithm balances speed and accuracy by processing 1 million 
transactions per second across 100 nodes, reducing latency from 5 milliseconds to 1 millisecond.

Figure 5.15 demonstrates the process of distributed optimization applied to the objective 
function f x x x( ) = +2 10sin( ). The function’s behavior, represented by the blue curve, displays 
the combined effects of a quadratic term and a sinusoidal component, resulting in multiple local 
minima and maxima across the domain. The function’s domain is divided into different regions, 
each assigned to a separate node, indicated by distinct shaded areas. Node 1, represented in dark 
gray, Node 2 in green, Node 3 in tan, Node 4 in pink, and Node 5 in light blue, each handle a specific 
segment of the function. The results from each node are marked with dots, showing where each node 
has found significant points such as local minima or maxima. For example, Node 1 identifies a point 
at (−6.00, 38.79), while Node 3 finds a local minimum at (−2.00, −5.09). The figure illustrates how 
distributed optimization techniques divide the problem into smaller, manageable parts, allowing 
each node to optimize the function locally within its region. This approach not only enhances com-
putational efficiency but also allows for parallel processing, which is especially advantageous for 
large-​scale or complex optimization problems.
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FIGURE 5.15  Distributed optimization.
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5.6 � OPTIMIZATION METHODS IN DEEP LEARNING

Optimization in deep learning is crucial because the goal is to minimize (or sometimes maximize) 
a loss function. This loss function measures how far our predictions are from the actual values. By 
optimizing this function, we ensure that our model generalizes well to new, unseen data.

5.6.1 � Batch Gradient Descent (BGD)

BGD, specifically, calculates the gradient of the loss function with respect to each parameter for 
the entire training dataset at once. BGD guarantees convergence to the global optimum for convex 
functions and is straightforward to implement. It systematically reduces the loss function by taking 
steps proportional to the negative gradient of the loss function. The steps are controlled by a learning 
rate, which determines the size of each step. The algorithm works by first initializing the parameters 
randomly. Then, for each iteration, the gradient of the loss function with respect to each parameter 
is calculated using the entire dataset. The parameters are updated by subtracting the product of the 
learning rate and the gradient. This process is repeated until the parameters converge to values that 
minimize the loss function. However, BGD is not feasible for large datasets that do not fit in memory. 
It can also be slow on extensive datasets due to the need to process the entire dataset for each update. 
This means that every iteration can be time-​consuming, especially for high-​dimensional data. The 
update rule for BGD is:

	 θ θ α θ
new old

= − ∇ ( )J 	

where:

	• θ is the parameter vector,
	• α is the learning rate, and
	• ∇J(θ) is the gradient of the loss function J(θ), calculated over the entire dataset.

This process is repeated until convergence, minimizing the loss function for the entire dataset. 
Suppose you are training a linear regression model to predict house prices. The loss function is the 
mean squared error (MSE), and you have a dataset with 1,000 houses. Using BGD, you calculate the 
gradient of the loss function for all 1,000 houses in each iteration. With a learning rate of α =​ 0.01, 
the parameters θ are updated by subtracting α × ∇J(θ) from the current values. For example, if the 
gradient of the loss function at a specific iteration is ∇J(θ) =​ [1.5, −2.0], and the current parameter 
values are θ =​ [2.0, 3.0], the updated parameters will be calculated as:

	 θ θ α θ
new current

= − × ∇ ( )J 	

Substituting the values:

	 θ
new

= [ ] − × − =] [ − + =] [2 0 3 0 0 01 1 5 2 0 2 0 0 015 3 0 0 02 1 985. , . . . , . . . , . . . ,33 02. 	

This process continues until the parameters θ converge to values that minimize the loss function, 
ensuring the model provides the best predictions for house prices based on the training data. 
BGD ensures smooth updates, but its computational cost can become a bottleneck for very large 
datasets.
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5.6.2 � Stochastic Gradient Descent (SGD)

SGD is an optimization algorithm used to minimize the loss function by iteratively adjusting the 
model parameters. Unlike BGD, which computes the gradient using the entire dataset, SGD computes 
the gradient using only a single sample (or a small batch) at each iteration. SGD is known for its 
faster convergence compared to BGD, especially when dealing with large datasets. As it updates the 
parameters more frequently, it often reaches a good solution faster. Additionally, the noisy updates 
from using individual samples can help SGD escape local optima, providing a better chance of 
finding a global optimum in non-​convex optimization problems. The algorithm works by first initial-
izing the parameters randomly. For each iteration, it selects a random sample from the dataset and 
computes the gradient of the loss function with respect to each parameter. The parameters are then 
updated by subtracting the product of the learning rate and the gradient. This process is repeated, 
and a new random sample is selected at each iteration until convergence. However, the high vari-
ance in updates can cause SGD to oscillate around the minimum, making convergence harder to 
control. This variability means that while SGD can quickly reach the vicinity of the optimal solu-
tion, it might struggle to settle precisely at the minimum. Techniques such as learning rate decay, 
momentum, and mini-​batching are often employed to mitigate these issues and stabilize conver-
gence. The update rule for SGD is:

	 θ θ α θ
new old

= − ∇ ( )( ) ( )J x yi i; , 	

where:

	• θ is the parameter vector,
	• α is the learning rate, and
	• ∇ ( )( ) ( )J x yi iθ; ,  is the gradient of the loss function computed for the single sample x yi i( ) ( )( ), .

This process repeats, updating the model for each random sample, allowing faster convergence in 
large datasets. Suppose you are training a model to predict stock prices with a dataset of 10,000 
samples. In each iteration, SGD randomly selects one sample and updates the parameters based on 
that sample. If the learning rate α=​0.001 and the gradient for a specific iteration is 0.5, the parameter 
θ is updated as:

	 θ θ θ
new old old

= − × = −0 001 0 5 0 0005. . . 	

5.6.3 �M ini-​Batch Gradient Descent

Mini-​batch gradient descent is an optimization algorithm that offers a compromise between BGD 
and SGD. It updates the model parameters based on smaller subsets, or “mini-​batches,” of the 
dataset. Mini-​batch gradient descent combines the advantages of both BGD and SGD. By using 
mini-​batches, it reduces the variance in parameter updates compared to SGD, leading to more stable 
convergence. At the same time, it does not require processing the entire dataset in each iteration, 
making it more efficient than BGD. This approach can also benefit from parallelized hardware, such 
as Graphics Processing Units (GPUs), which can process mini-​batches concurrently. The algorithm 
works by first initializing the parameters randomly. Each iteration randomly selects a mini-​batch 
of samples from the dataset and computes the gradient of the loss function with respect to the 
parameters using only this mini-​batch. The parameters are then updated by subtracting the product 
of the learning rate and the gradient. This process is repeated for each mini-​batch until the entire 
dataset has been processed, completing one epoch. The procedure is iterated over multiple epochs 
until convergence. One of the key considerations in mini-​BGD is the choice of batch size. The batch 
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size can significantly impact performance and convergence speed. A smaller batch size offers noisier 
updates and may benefit from the regularization effects similar to those of SGD. In contrast, a larger 
batch size provides a more accurate estimate of the gradient, leading to more stable updates, but at 
the cost of computational efficiency. The update rule for mini-​BGD is:

	 θ θ α θ
new old

= − ∇ ( )
=

( ) ( )∑1

1m
J x y

i

m
i i; , 	

where:

	• θ is the parameter vector,
	• α is the learning rate,
	• m is the mini-​batch size, and
	• ∇ ( )( ) ( )J x yi iθ; ,  is the gradient of the loss function computed for the mini-​batch samples 

x yi i( ) ( )( ), .

This method strikes a balance between the computational efficiency of BGD and the frequent 
updates of SGD. Suppose you are training a neural network with 10,000 samples, and you decide 
to use a mini-​batch size of 100. In each iteration, you randomly select 100 samples from the dataset 
and compute the gradient. If the learning rate α =​ 0.01 and the average gradient for the mini-​batch 
is 0.4, the parameter θ is updated as:

	 θ θ θ
new old old

= − × = −0 01 0 4 0 004. . . 	

5.6.4 �M omentum

Momentum is an optimization technique used to accelerate gradient descent by considering past 
gradients in the update process. This approach helps gradient descent algorithms converge faster 
and reduce oscillations, especially in cases where the objective function’s surface has features of 
different scales or saddle points. The key idea behind momentum is to maintain a velocity vector 
that accumulates the gradient of the loss function over time. This accumulated gradient is used to 
update the model parameters, resulting in faster convergence and smoother trajectories. The velocity 
vector is updated using a combination of the current gradient and the previous velocity. The updated 
equations for gradient descent with momentum are as follows:

	 v v f
t t t

= + ∇ ( )−β α θ
1

	

	 θ θ
t t t

v+ = −
1

	

where:

	• v
t
 is the velocity vector at iteration t,

	• β is the momentum term (a hyperparameter typically set between 0 and 1),
	• ∇ ( )f

t
θ is the gradient of the loss function with respect to the parameters at iteration t,

	• θ
t
are the model parameters at iteration t, and

	• α is the learning rate.

The momentum term β controls the contribution of the previous gradients to the current update. 
A higher momentum value emphasizes the past gradients more, leading to faster convergence but 
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potentially overshooting the minimum if set too high. Momentum offers several advantages. It 
accelerates convergence compared to vanilla SGD, particularly in the presence of saddle points or 
when the features have different scales. Reducing fluctuations helps the optimization process navi-
gate the parameter space more efficiently and reach the optimum faster. However, momentum also 
introduces an additional hyperparameter, the momentum term β, which requires tuning. The choice 
of β can also significantly impact the performance of the optimization algorithm, and finding the 
optimal value often involves empirical experimentation. Assume we’re optimizing a simple quad-
ratic function using gradient descent with momentum. The function we want to minimize is:

	 f x x( ) = −( )3 2	

For example, if the parameters are:

	• Learning rate (α): 0.1,
	• Momentum (β): 0.9,
	• Initial value of x: 0 (starting point), and
	• Gradient at iteration t is g

t
 =​ 2(x

t
−3)

At iteration 1, starting from x
0
 =​ 0:

	• Gradient is: g
1
 =​ 2(x

0
−3) =​ 2(0−3) =​ −6

	• Velocity update is: v v g
1 0 1

0 9 0 0 1 6 0 6= + = × + × −( ) = −β α . . .
	• Parameter update is: x

1
 =​ x

0
 -​ v

1
 =​ 0 -​ (−0.6) =​ 0.6

At iteration 2:

	• Gradient is: g
2
 =​ 2(x

1
−3) =​ 2(−0.6 − 3) =​ −7.2

	• Velocity update is: v v g
2 1 2

0 9 0 6 0 1 7 2 1 26= + = × −( ) + × −( ) = −β α . . . . .
	• Parameter update is: x

2
 =​ x

1
 -​ v

2
 =​ −0.6 -​ (−1.26) =​ 1.86

Here, you can see how the momentum term accelerates the descent by considering the past vel-
ocity v1 along with the new gradient g2, leading to a faster movement toward the minimum at x =​ 3. 
As the iterations progress, the oscillations are reduced, allowing the algorithm to converge more 
efficiently.

5.6.5 �A dagrad (Adaptive Gradient Algorithm)

Adagrad is an optimization algorithm that adapts the learning rates of all model parameters by 
scaling them inversely proportional to the square root of the sum of all historical squared gradients. 
This method is particularly useful for dealing with sparse data and features that have varying degrees 
of informativeness. The key idea behind Adagrad is to adjust the learning rate for each parameter 
individually, allowing for larger updates for infrequent parameters and smaller updates for frequent 
ones. This is achieved by accumulating the squared gradients over time and using this accumulated 
value to adjust the learning rates. The update rule for Adagrad is as follows:

	 g g f
t i t i t i, , ,

( )= + ∇ ( )−1
2θ 	

	 θ θ α θ
t i t i

t i

t ig
f

, ,

,

,
= −

+
∇ ( )− −1 1
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where:

	• ∇ ( )f
t i

θ
,

 is the gradient of the loss function with respect to parameter i at iteration t,
	• g

t,i
 is the sum of the squares of the gradients with respect to parameter i up to iteration t,

	• α is the global learning rate, and
	• is a small constant added to prevent division by zero.

Adagrad is particularly advantageous for dealing with sparse data, where some features are much 
more informative than others. By scaling the learning rate based on historical gradients, Adagrad 
ensures that infrequent but informative features receive larger updates, improving the model’s ability 
to learn from these features. However, one of the main drawbacks of Adagrad is that the learning 
rate can decrease significantly over time, causing the algorithm to stop learning prematurely. As the 
sum of squared gradients grows, the effective learning rate diminishes, which can hinder further 
progress, especially in non-​convex optimization problems or over long training periods. Assume we 
are optimizing a simple function:

	 f x y x y,( ) = +2 22 	

For example, if the parameters are:

	• Global learning rate (α): 0.1
	• Small constant (ϵ): 10−8

	• Initial values of x
0
 =​ 2, y

0
 =​ 2

At iteration 1, we calculate the gradients for x and y:

	• Gradient of x: g
x1

 =​ 2x
0
 =​ 2 × 2 =​ 4

	• Gradient of y: g
y1

 =​ 4y
0
 =​ 4 × 2 =​ 8

	• Accumulated squared gradients for x and y: G g G g
x x y y1 1

2 2
1 1

2 24 16 8 64= = = = = =,

	• Update rule for x
1
: x x

G
g

x

x1 0

1

1 8
2

0 1

16 10
4 2 0 1 1 1 9= −

+
× = −

+
× = − × =

−

α


.
. .

	• Update rule for y
1
: y y

G
g

y

y1 0

1

1 8
2

0 1

64 10
8 2 0 1 1 1 9= −

+
× = −

+
× = − × =

−

α


.
. .

At iteration 2:

	• Gradients at new values x
1
 =​ 1.9, y

1
 =​ 1.9: . . , . .g g

x y2 2
2 1 9 3 8 4 1 9 7 6= × = = × =

	• Accumulated squared gradients:

	 G G g G G g
x x x y y y2 1 2

2 2
2 1 2

2 216 3 8 30 44 64 7 6 121 76= + = + = = + = + =. . , . . 	

	• Update rule for x
2
: x

2 8
1 9

0 1

30 44 10
3 8 1 9 0 069 1 831= −

+
× ≈ − =

−
.

.

.
. . . .

	• Update rule for y
2
: y

2 8
1 9

0 1

121 76 10
7 6 1 9 0 069 1 831= −

+
× ≈ − =

−
.

.

.
. . . .

As you can see, the learning rate for both x and y decreased slightly at the second iteration due to 
the accumulation of squared gradients. This helps balance the learning, allowing more updates to 
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infrequent parameters while slowing down updates to frequent ones. However, over many iterations, 
the learning rate will continue to diminish.

5.6.6 �R oot Mean Square Propagation (RMSprop)

RMSprop is an optimization algorithm designed to address the issue of diminishing learning rates in 
Adagrad. By introducing a decay factor, RMSprop ensures that the learning rate does not decrease 
too aggressively, making it more suitable for training deep networks. RMSprop modifies Adagrad by 
maintaining a moving average of the squared gradients instead of accumulating all the past squared 
gradients. This moving average helps to prevent the learning rates from becoming excessively small, 
allowing the optimization process to continue learning effectively over time. The update rule for 
RMSprop is as follows:

	 g f
t i t i, ,

= ∇ ( )θ 	

	 E g E g g
t i t i t i, , ,

( )2
1

2 21=] [  + −( )−β β 	

	 θ θ α
t i t i

t i

t i
E g

g+ = −
  +

1
2

, ,

,

,


	

where:

	• gt,i is the gradient of the function f with respect to the parameter θi at iteration t,
	• β is the decay rate (typically set to 0.9),

	• E gt i,
2  is the moving average of squared gradients for parameter i up to iteration t,

	• θt+​1,i is the updated parameter,
	• α is the global learning rate,
	• ϵ is a small constant to prevent division by zero.

RMSprop’s decay rate γ  controls how much the algorithm considers the recent gradients compared 
to the past gradients. By adjusting this parameter, RMSprop can balance the influence of the current 
gradient and the historical gradients, preventing the learning rate from diminishing too quickly. The 
main advantage of RMSprop is that it resolves Adagrad’s problem of diminishing learning rates, 
making it more suitable for training deep neural networks. The controlled adjustment of learning 
rates allows RMSprop to maintain a more consistent and effective learning process, even over 
extended training periods. Assume we are optimizing a simple function:

	 f x x( ) = −( )2 2	

For example, if the parameters are:

	• Global learning rate (α): 0.01,
	• Decay rate (β): 0.9,
	• Small constant (ϵ): 10−8, and
	• Initial value of x

0
 =​ 4.

At iteration 1, we calculate the gradient for x:

	• Gradient at x
0
: g

x1
 =​ 2(x

0
−2) =​ 2(4−2) =​ 4

	• Exponential moving average of squared gradients (starting from 0):
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	 E g E g g
x x x1
2

0
2

1
2 21 0 9 0 0 1 4 1 6=] [  + −( ) = × + × =β β . . . 	

	• Update rule for x1: x x
E g

g

x

x1 0

1
2

1 8
4

0 01

1 6 10
4 4 0 1 3 9= −

  +
× = −

+
× ≈ − =

−

α



.

.
. .

At iteration 2:

	• Gradient at x
1
 =​ 3.9: g

x2
 =​ 2(3.9−2) =​ 3.8

	• Update the exponential moving average of squared gradients:

	 E g
x2
2 20 9 1 6 0 1 3 8 2 928  = × + × =. . . . . 	

	• Update rule for x
2
: x

2 8
3 9

0 01

2 928 10
3 8 3 9 0 07 3 83= −

+
× ≈ − =

−
.

.

.
. . . .

In this example, RMSprop adjusts the learning rate dynamically by calculating the exponentially 
decaying average of past squared gradients. This prevents the learning rate from diminishing too 
rapidly, as seen with Adagrad, allowing for more controlled and consistent updates to x.

5.6.7 �A dam (Adaptive Moment Estimation)

Adam is an optimization algorithm that combines the benefits of both Adagrad and RMSprop. 
It leverages the advantages of adaptive learning rates and incorporates momentum to accelerate 
convergence and stabilize updates. Adam maintains individual learning rates for each param-
eter by computing the first and second moments of the gradients. The first moment is the mean 
of the gradients, and the second is the gradients’ uncentered variance. These moments are used 
to adapt the learning rates for each parameter dynamically. The updated rules for Adam are as 
follows:

	 g f
t t

= ∇ ( )θ 	

	 m m g
t t t

= + −( )−β β
1 1 1

1 	

	 v v g
t t t

= + −( )−β β
2 1 2

21 	

	 m̂
m

t
t

t
=

−1
1

β
	

	 v̂
v

t
t

t
=

−1
2

β
	

	 θ θ α
t t

t

tv
m+ = −

+1 ˆ
ˆ


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where:

	• g
t
 is the gradient of the loss function with respect to the parameters at iteration t

	• m v
t t
and  are the first-​moment (mean) and second-​moment (uncentered variance) estimates, 

respectively
	• β

1
and  β

2
 are the decay rates for the moment estimates (commonly set to 0.9 and 0.999, 

respectively)
	• m̂

t
and  v̂

t
 are the bias-​corrected moment estimates

	• α is the learning rate
	•   is a small constant added to prevent division by zero

Adam combines the adaptive learning rate benefits of Adagrad and the exponentially decaying 
average of squared gradients from RMSprop while also incorporating momentum to smooth out 
the updates. This results in a robust and efficient optimization algorithm that performs well across 
various problems. The main advantages of Adam are its suitability for problems with extensive 
data and parameter spaces and its general effectiveness in practice. Adam typically converges faster 
and more reliably than other optimization algorithms, making it a popular choice for training deep 
neural networks and other complex models. However, Adam also has some drawbacks. The choices 
of hyperparameters, such as learning and decay rates, can be critical and require fine-​tuning. The 
default values for these hyperparameters often work well, but for specific problems, manual tuning 
may be necessary to achieve optimal performance. Assume we are optimizing a simple quadratic 
function:

	 f x x( ) = −( )3 2	

For example, if the parameters are:

	• Global learning rate (α): 0.1,
	• Decay rates for the first moment (β

1
): 0.9,

	• Decay rates for the second moment (β
2
): 0.999,

	• Small constant (ϵ): 10−8,
	• Initial value of x

0
 =​ 0,

	• Gradient at iteration t: g
t
 =​ 2(x

t
−3).

At iteration 1:

	• Gradient is: g
1
 =​ 2(x

0
−3) =​ 2(0−3) =​ −6

	• First-​moment estimate (m
1
): m m g

1 1 0 1 1
1 0 9 0 0 1 6 0 6= + −( ) = × + × −( ) = −β β . . .

	• Second-​moment estimate (v
1
): v v g

1 2 0 2 1
2 21 0 999 0 0 001 6 0 036= + −( ) = × + × − =β β . . ( ) .

	• Bias-​corrected first moment (m̂
1
): ˆ

.

.
m

m
1

1

1
11

0 6

1 0 9
6=

−
=

−
−

= −
β

	• Bias-​corrected second moment (v̂
1
): ˆ

.

.
v

v
1

1

2
11

0 036

1 0 999
36=

−
=

−
=

β

	• Parameter update: x x
v

m
1 0

1

1 8
0

0 1

36 10
6 0 0 1 0 1= −

+
× = −

+
× −( ) = + =

−

α
ˆ

ˆ
.

. .

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At iteration 2:

	• Gradient at x
1
 =​ 0.1: g

2
 =​ 2(0.1−3) =​ −5.8

	• First-​moment estimate (m
2
): m

2
0 9 0 6 0 1 5 8 1 12= × −( ) + × −( ) = −. . . . .

	• Second-​moment estimate (v
2
): v

2
20 999 0 036 0 001 5 8 0 068= × + × − =. . . ( . ) .

	• Bias-​corrected first moment (m̂
2
): ˆ

.
.m

m
2

2

21 0 9
5 89=

−
= −

	• Bias-​corrected second moment (v̂
2
): ˆ

.
.v

v
2

2

21 0 999
34 06=

−
=

	• Parameter update: x x
2 1

0 1

34 06
5 89 0 1 0 1 0 2= −

+
× −( ) ≈ + =

.

.
. . . .



In this example, you can see how Adam combines the first and second moments (mean and variance) 
to adjust the learning rate dynamically. The algorithm benefits from both momentum (accelerating 
convergence) and adaptive learning rates (preventing small updates), making it highly effective for 
optimizing complex functions.

5.6.8 �A daMax

AdaMax is an Adam optimization algorithm variant based on the infinity norm (maximum norm) 
rather than the L2 norm used in Adam. By using the infinity norm, AdaMax provides a different way 
of adapting the learning rates, often leading to more stable and robust performance. The update rules 
for AdaMax are like Adam but with modifications to incorporate the infinity norm:

	 g f
t t

= ∇ ( )θ 	

	 m m g
t t t

= + −( )−β β
1 1 1

1 	

	 u u g
t t t

= −max( , )β
2 1

	

	 m̂
m

t
t

t
=

−1
1

β
	

θ θ α
t t

t
tu

m+ = −
1

ˆ

where:

	• g
t
 is the gradient of the loss function with respect to the parameters at iteration t,

	• m
t
 is the first-​moment (mean) estimate,

	• u
t
 is the exponentially weighted infinity norm,

	• β
1
and  β

2
 are the decay rates for the moment estimates (commonly set to 0.9 and 0.999, 

respectively),

	• m̂
t
 is the bias-​corrected first-​moment estimate, and

	• α is the learning rate.
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The key difference between AdaMax and Adam lies in the estimation of the second moment. Instead 
of using the uncentered variance, AdaMax uses the gradients’ infinity norm. This change simplifies 
the denominator of the parameter update rule, leading to potentially more stable updates.

The main advantage of AdaMax is its stability and robustness compared to Adam. Using the 
infinity norm helps control the learning rate more effectively, especially in scenarios where the 
gradients can vary significantly. This can lead to more consistent performance and faster conver-
gence in some cases. Assume we are optimizing a simple quadratic function:

	 f x x( ) = −( )3 2	

For example, if the parameters are:

	• Global learning rate (α): 0.1,
	• Decay rates for the first moment (β

1
): 0.9,

	• Decay rates for the second moment (β
2
): 0.999,

	• Initial value of x
0
 =​ 0, and

	• Gradient at iteration t: g
t
 =​ 2(x

t
−3).

At iteration 1:

	• Gradient: g
1
 =​ 2(x

0
−3) =​ 2(0−3)  =​ −6

	• First-​moment estimate (m
1
): m m g

1 1 0 1 1
1 0 9 0 0 1 6 0 6= + −( ) = × + × −( ) = −β β . . .

	• Infinity norm (maximum gradient value) (u
1
): u u g

1 2 0 1
0 999 0 6 6= = × − =max( , ) max( . , )β

	• Bias-​corrected first moment (m̂
1
): ˆ

.

.
m

m
1

1

1
11

0 6

1 0 9
6=

−
=

−
−

= −
β

	• Parameter update: x x
u

m
1 0

1
1

0
0 1

6
6 0 0 1 0 1= − × = − × −( ) = + =

α
ˆ

.
. .

At iteration 2:

	• Gradient at x
1
 =​ 0.1: g

2
 =​ 2(0.1−3) =​ −5.8

	• First-​moment estimate (m
2
): m

2
0 9 0 6 0 1 5 8 1 12= × −( ) + × −( ) = −. . . . .

	• Infinity norm update (u
2
): u

2
0 999 6 5 8 6= × − =max( . , . )

	• Bias-​corrected first moment (m̂
2
): ˆ

.
.m

m
2

2

21 0 9
5 89=

−
= −

	• Parameter update: x x
2 1

0 1

6
5 89 0 1 0 098 0 198= − × −( ) ≈ + =

.
. . . .

In this example, AdaMax uses the infinity norm (maximum value) of the gradient, which makes the 
denominator stable over iterations. This ensures smoother and more stable parameter updates, even 
when gradients fluctuate. AdaMax’s stability can lead to more consistent performance, particularly 
in problems where the gradients vary significantly.

5.6.9 �N adam (Nesterov-​accelerated Adaptive Moment Estimation)

Nadam is an optimization algorithm combining RMSprop’s and Nesterov momentum’s benefits. By 
integrating the adaptive learning rate mechanism of RMSprop with the momentum-​accelerated gra-
dient updates of Nesterov momentum, Nadam aims to achieve faster and more reliable convergence 
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in various optimization tasks. Nadam modifies the standard Adam update rules by incorporating 
Nesterov momentum. The key difference is in how the gradients are calculated, with Nadam com-
puting the gradients at the predicted future position of the parameters. The updated rules for Nadam 
are as follows:

	 g f
t t

= ∇ ( )θ 	

	 m m g
t t t

= + −( )−β β
1 1 1

1 	

	 v v g
t t t

= + −( )−β β
2 1 2

21 	

	 m̂
m

t
t

t
=

−1
1

β
	

	 v̂
v

t
t

t
=

−1
2

β
	

	 g g m
t t t

= + β
1

ˆ 	

	 θ θ α
t t

t

tv
g+ = −

+1 ˆ 
 	

where:

	• g
t
 is the gradient of the loss function with respect to the parameters at iteration t,

	• m v
t t
and  are the first-​moment (mean) and second-​moment (uncentered variance) estimates, 

respectively,
	• β

1
and  β

2
 are the decay rates for the moment estimates (commonly set to 0.9 and 0.999, 

respectively),
	• m̂

t
and  v̂

t
 are the bias-​corrected moment estimates,

	• α is the learning rate, and
	•   is a small constant added to prevent division by zero.

Nadam enhances the standard Adam algorithm by incorporating the look-​ahead mechanism of 
Nesterov momentum. This mechanism anticipates the future position of the parameters based on 
their current velocity, leading to more informed and potentially more effective updates. The main 
advantage of Nadam is that it can converge faster than Adam in some scenarios due to the added 
momentum. By leveraging the predictive capability of Nesterov momentum, Nadam can accelerate 
the optimization process, especially in cases where the objective function has complex or noisy 
gradients. Assume we are optimizing a simple quadratic function:

	 f x x( ) = −( )3 2	

For example, if the parameters, be:

	• Global learning rate (α): 0.1,
	• Decay rates for the first moment (β

1
): 0.9,
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	• Decay rates for the second moment (β
2
): 0.999,

	• Small constant (ϵ): 10−8,
	• Initial value of x

0
 =​ 0, and

	• Gradient at iteration t: g
t
 =​ 2(x

t
−3).

At iteration 1:

	• Gradient: g1 =​ 2(x
0
−3) =​ 2(0−3) =​ −6

	• First-​moment estimate (m
1
): m m g

1 1 0 1 1
1 0 9 0 0 1 6 0 6= + −( ) = × + × −( ) = −β β . . .

	• Second-​moment estimate (v
1
): v v g

1 2 0 2 1
2 21 0 999 0 0 001 6 0 036= + −( ) = × + × − =β β . . ( ) .

	• Bias-​corrected first moment (m̂
1
): ˆ

.

.
m

m
1

1

1
11

0 6

1 0 9
6=

−
=

−
−

= −
β

	• Bias-​corrected second moment (v̂
1
): v̂

v
1

1

2
11

36=
−

=
β

	• Look-​ahead gradient adjustment using Nesterov momentum: g g m
1 1 1 1

6 0 9= + = − + ×β ˆ .
−( ) = −6 11 4.

	• Parameter update: x x
v

g
1 0

1

1 8
0

0 1

36 10
11 4 0 0 19 0 19= −

+
× = −

+
× −( ) = + =

−

α
ˆ

.
. . .




At iteration 2:

	• Gradient at x
1
 =​ 0.19: g

2
 =​ 2(0.19−3) =​ −5.62

	• First-​moment estimate (m
2
): m

2
0 9 0 6 0 1 5 62 1 1= × −( ) + × −( ) = −. . . . .

	• Second-​moment estimate (v
2
): v

2
20 999 0 036 0 001 5 62 0 067= × + × − =. . . ( . ) .

	• Bias-​corrected first moment (m̂
2
): ˆ

.
.m

m
2

2

21 0 9
5 89=

−
= −

	• Bias-​corrected second moment (v̂
2
): ˆ

.
.v

v
2

2

21 0 999
33 5=

−
=

	• Look-​ahead gradient adjustment: g g
2 2

0 9 5 89 5 62 5 3 10 92= + × −( ) = − + −( ) = −. . . . .

	• Parameter update: x x
2 1 8

0 1

33 5 10
10 92 0 19 0 19 0 38= −

+
× −( ) = + =

−

.

.
. . . .

In this example, Nadam combines the adaptive learning rate of Adam and the look-​ahead mech-
anism of Nesterov momentum. By anticipating the future position of the parameters, Nadam can 
accelerate convergence, especially when dealing with noisy gradients. The look-​ahead adjustment 
helps make more informed updates, potentially improving performance over Adam in some opti-
mization tasks.

5.6.10 �L earning Rate Annealing or Decay

Limited-​memory Broyden–​Fletcher–​Goldfarb–​Shanno (L-​BFGS) is an optimization algorithm 
approximating the BFGS process using limited computer memory. It is a quasi-​Newton method 
that is particularly efficient for smaller datasets and certain types of optimization problems where 
memory usage is a concern. Unlike the standard BFGS algorithm, which requires storing and 
updating a full approximation of the Hessian matrix, L-​BFGS maintains only a limited number of 
vectors representing the approximation. This makes it more memory-​efficient while still benefiting 
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from the quasi-​Newton approach, which leverages curvature information to accelerate convergence. 
The key steps of L-​BFGS include initialization, iteration, and updating. Initially, the parameters 
are set, and initial values for the limited-​memory vectors are established. For each iteration, the 
parameters are updated using a direction derived from the limited-​memory approximation of the 
inverse Hessian. The limited-​memory vectors are then updated based on the latest parameter values 
and gradients. The algorithm repeats these steps until convergence, using a small set of historical 
gradients and parameter updates to approximate the curvature information. L-​BFGS is efficient 
for smaller datasets and certain types of optimization problems where memory usage is a concern. 
It leverages curvature information to potentially accelerate convergence compared to first-​order 
methods like gradient descent. It is well-​suited for optimization problems with a relatively small 
number of parameters or when the full Hessian is impractical to compute and store. However, L-​
BFGS is less commonly used for very large-​scale deep learning tasks due to memory constraints 
and the complexity of maintaining the limited-​memory approximation in high-​dimensional spaces. 
It may not perform as well as some specialized optimization algorithms designed for deep learning 
tasks, which can handle the unique challenges of training large neural networks. Suppose you are 
optimizing a function with 50 parameters and storing a full Hessian matrix (which would require 50 
× 50 =​ 2500 elements) is too memory-​intensive. Using L-​BFGS, you limit the storage to only the 
five most recent updates, significantly reducing memory usage while still approximating the curva-
ture information. After initializing the parameters, each iteration updates the parameters using the 
stored five vectors, allowing for faster convergence with minimal memory overhead. The L-​BFGS 
update rule is derived from the BFGS update but uses limited memory. The direction pk at iteration 
k is calculated as:

	 p H f
k k k

= − ∇ 	

where:

	• Hk is the inverse Hessian approximation,
	• ∇∇fk is the gradient of the function at iteration k.

L-​BFGS stores a small number of past gradients and updates to approximate Hk efficiently, updating 
the inverse Hessian approximation iteratively. This allows for memory-​efficient optimization while 
still leveraging second-​order information. Suppose you are optimizing the function:

	 f x y x y, ( ) ( )( ) = − + +2 32 2	

For example, if the parameters are:

	• The function has two parameters, x and y, to minimize.
	• Let’s assume you are using L-​BFGS with a memory size of 2, meaning you store the 2 most 

recent gradient updates.
	• Initial values: x

0
 =​ 0, y

0
 =​ 0.

Iteration 1 (Initial Setup):

	1 Gradient is: ∇ ( ) = −( ) +( )( ) = −( ) +( )( ) = −( )f x y x y
0 0 0 0

2 2 2 3 2 0 2 2 0 3 4 6, , , , . This gradient 
will be stored as the first historical gradient.

	2 Initialize Hessian approximation H
0
 =​ I (the identity matrix, as L-​BFGS starts with no curva-

ture information).
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	3 Direction calculation: p H f x y I
0 0 0 0

4 6 4 6= − ∇ ( ) = − × −( ) = −( ), , ,

	4 Parameter update: x y x y p
1 1 0 0 0

0 0 0 1 4 6 0 4 0 6, , , . , . , .( ) = ( ) + = ( ) + × −( ) = −( )α

Iteration 2:

1.	 Gradient is: ∇ ( ) = −( ) − +( )( ) = −( )f x y
1 1

2 0 4 2 2 0 6 3 3 2 4 8, . , . . , . . This gradient is stored as the 
second historical gradient.

2.	 Approximate Hessian update: Using the difference between gradients and parameter updates 
from iteration 1 to iteration 2, the Hessian inverse approximation H

1
 is updated using limited 

memory (only the last two updates are stored).
3.	 Direction calculation: p H f x y

1 1 1 1
= − ∇ ( ),

		 The direction now incorporates curvature information from the stored gradients, allowing for 
a more efficient update.

4.	 Parameter update: x y x y p
2 2 1 1 1
, ,( ) = ( ) + α

The updated parameter values after this step will move toward the minimum more efficiently than 
gradient descent. Instead of storing the full Hessian matrix (which for two parameters would be 2 × 
2), L-​BFGS only stores the most recent two gradients and updates, making it much more memory-​
efficient. In a higher-​dimensional example with 50 parameters, L-​BFGS would store only a few 
historical gradients and parameter updates (e.g., 5 or 10), rather than the full Hessian, which would 
require 50 × 50 =​ 2500 elements. This reduction in memory allows for optimization in cases where 
the full Hessian is impractical to compute and store. This memory efficiency makes L-​BFGS suit-
able for smaller-​scale problems or problems with limited memory resources while still benefiting 
from second-​order information for faster convergence.

5.7 � REAL-​WORLD APPLICATIONS AND EXAMPLES

5.7.1 � Supply Chain Optimization

Optimization techniques are extensively used in supply chain management to streamline operations 
and reduce costs. For instance, linear programming is often employed to optimize the distribution 
of goods from warehouses to various retail outlets. The goal is to minimize transportation costs 
while meeting demand at each location. This involves solving a linear optimization problem where 
constraints include transportation capacities, demand requirements, and available inventory. The 
Simplex method is particularly effective here, providing an optimal solution that balances these 
factors and ensures efficient resource allocation across the supply chain.

5.7.2 �P ortfolio Optimization in Finance

In finance, optimization theory plays a crucial role in portfolio management, where the objective is 
to maximize returns while minimizing risk. Portfolio optimization typically involves solving a non-​
linear optimization problem where the return on investment is maximized under constraints such as 
budget limitations and risk tolerance. Techniques such as quadratic programming are used to allo-
cate assets in a way that optimizes the expected return for a given level of risk, taking into account 
the covariance between different assets. This approach helps investors make informed decisions, 
balancing potential gains with associated risks.

5.7.3 �T elecommunications Network Design

Designing efficient telecommunications networks requires solving complex optimization problems 
to ensure reliable and cost-​effective service delivery. Integer programming is frequently used to 
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determine the optimal placement of network nodes and the routing of data across the network. This 
involves minimizing the overall cost of the network infrastructure while ensuring sufficient cap-
acity and coverage to meet user demand. The B&B method is particularly useful for these types of 
problems, where decision variables are often binary (e.g., whether to install a particular piece of 
equipment or not).

5.7.4 �E nergy Management and Power Grid Optimization

The management of power grids is a complex optimization problem that involves balancing supply 
and demand while minimizing operational costs and ensuring stability. Convex optimization is often 
applied to optimize the generation and distribution of electricity across the grid. The objective is 
to minimize the cost of power generation while meeting the demand and adhering to operational 
constraints, such as transmission limits and generation capacities. This is crucial for maintaining a 
reliable power supply and reducing energy costs.

5.7.5 �T ransportation and Logistics

Combinatorial optimization is widely used in transportation and logistics to solve problems like 
vehicle routing and scheduling. The TSP is a classic example where the goal is to find the shortest 
possible route that visits a set of locations and returns to the starting point. Solutions to this problem 
are crucial for delivery companies that need to minimize fuel costs and delivery times. Advanced 
algorithms like genetic algorithms or ant colony optimization are employed to find near-​optimal 
solutions to these NP-​hard problems, enabling companies to optimize their logistics operations.

5.8 � HANDS-​ON EXAMPLE

In this hands-​on example, we’ll explore advanced optimization techniques for deep learning, 
focusing on gradient descent and its variants.

Step 1: Import necessary libraries
In this step, we are importing the necessary libraries to build and train a neural network using 
TensorFlow’s Keras API. First, we import the TensorFlow library and essential components from 
TensorFlow.Keras, which is an easy-​to-​use API for building deep learning models. The sequential 
class is used to create a linear stack of layers for the model, while dense layers are fully connected 
layers, commonly used in neural networks. We also import three popular optimizers: SGD, Adam, 
and RMSprop, each of which offers different strategies for adjusting the model’s weights during 
training to minimize the loss function. Lastly, matplotlib.pyplot is imported as plt, which allows us 
to create visualizations and plot the model’s performance.

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import SGD, Adam, RMSprop
import matplotlib.pyplot as plt

5.7.2 Step 2: Prepare the dataset
In this step, we are loading and preprocessing the MNIST dataset, which is a widely used dataset of 
handwritten digits (0–​9) for training and evaluating machine learning models. The tf.keras.datasets.
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mnist is a built-​in function in TensorFlow that provides easy access to this dataset. The dataset is 
split into training (x_​train, y_​train) and testing (x_​test, y_​test) sets. Each image is represented as a 
28 × 28-​pixel grayscale image, where the pixel values range from 0 to 255. To simplify the model’s 
learning process, the images are normalized by dividing each pixel value by 255, resulting in pixel 
values within the range [0, 1]. This normalization step ensures that all input values are on the same 
scale, which improves convergence during training. Finally, the images are flattened from 2D arrays 
(28 × 28) into 1D arrays with 784 elements (28 × 28) to prepare them for input into a fully connected 
neural network. This preprocessing step transforms the dataset into a suitable format for training 
neural networks.

# Load the MNIST dataset
mnist =​ tf.keras.datasets.mnist
(x_​train, y_​train), (x_​test, y_​test) =​ mnist.load_​data()
# Normalize the images to the range [0, 1]
x_​train, x_​test =​ x_​train /​ 255.0, x_​test /​ 255.0
# Flatten the images
x_​train =​ x_​train.reshape(-​1, 28 * 28)
x_​test =​ x_​test.reshape(-​1, 28 * 28)

5.7.3 Step 3: Build a simple neural network model
In this step, we define the function build_​model that creates a simple neural network model using 
the Keras Sequential API. The model consists of two layers: the first is a dense layer with 128 
neurons and the Rectified Linear Unit (ReLU) activation function, which processes the flattened 
784-​dimensional input (representing each 28 × 28 pixel MNIST image), and the second layer is a 
dense output layer with 10 neurons (one for each digit class, 0–​9) and a softmax activation function. 
The softmax function converts the outputs into probability distributions, making it suitable for 
multi-​class classification tasks. The model is compiled with the specified optimizer, the sparse cat-
egorical crossentropy loss function, which is used for multi-​class classification, and the accuracy 
metric to monitor performance during training. The function returns the compiled model, ready to 
be trained on the MNIST dataset. This model is a simple feed-​forward neural network designed to 
classify the handwritten digits.

def build_​model(optimizer):
model =​ Sequential([
Dense(128, activation=​‘relu’, input_​shape=​(784,)),
Dense(10, activation=​‘softmax’)
])
model.compile(optimizer=​optimizer,
loss=​‘sparse_​categorical_​crossentropy’,
metrics=​[‘accuracy’])

return model

5.7.4 Step 4: Train the model with different optimizers
In this step, we are defining a dictionary of three different optimizers (SGD, RMSprop, and Adam), 
each with specified learning rates. These optimizers control how the model updates its weights 
during training. The goal is to compare how different optimization algorithms perform on the same 
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task. The for loop goes through each optimizer in the dictionary and builds a new model using the 
build_​model function with that optimizer. For each model, training is carried out for 10 epochs 
on the MNIST dataset with an 80–​20 split between training and validation data. The model.fit() 
function is responsible for training the model, and the training history, which includes details about 
the loss and accuracy over each epoch, is stored in the histories dictionary. This setup allows us to 
compare the performance of different optimization algorithms on the same model and dataset. The 
progress of each optimizer is printed out, although the training output is set to be quiet with ver-
bose=​0 to avoid cluttering the console.

optimizers =​ {
‘SGD’: SGD(learning_​rate=​0.01),
‘RMSprop’: RMSprop(learning_​rate=​0.001),
‘Adam’: Adam(learning_​rate=​0.001)

}
histories =​ {}
for name, optimizer in optimizers.items():
print(f“Training with {name}...”)
model =​ build_​model(optimizer)
history =​ model.fit(x_​train, y_​train, epochs=​10, validation_​
split=​0.2, verbose=​0)
histories[name] =​ history

5.7.5 Step 5: Evaluate the models
In this step, we are evaluating the performance of models trained with different optimizers on the 
test set. For each optimizer in the optimizers dictionary, a new model is created using the build_​
model function, and the model is trained for 10 epochs on the MNIST dataset. The validation_​
split=​0.2 ensures that 20% of the training data is used for validation during training. After training, 
the model is evaluated on the test set (x_​test, y_​test) using the model.evaluate() function, which 
computes the test loss and test accuracy. The accuracy on the test set is printed for each optimizer, 
allowing us to compare how well each optimization algorithm generalizes to unseen data. The ver-
bose=​0 option ensures that the output is minimal, focusing on the final test accuracy results for each 
optimizer, formatted to four decimal places for clarity.

for name, optimizer in optimizers.items():
model =​ build_​model(optimizer)
model.fit(x_​train, y_​train, epochs=​10, validation_​split=​0.2, 
verbose=​0)
test_​loss, test_​acc =​ model.evaluate(x_​test, y_​test, verbose=​0)
print(f’Test accuracy with {name}: {test_​acc:.4f}’)

5.9 � COMMON MISTAKES AND TROUBLESHOOTING TIPS IN OPTIMIZATION

5.9.1 �L inear Optimization

	• Mistake: Misinterpreting the feasible region in linear programming problems.
	• Tip: Always clearly define and plot the constraints. Ensure the feasible region is correctly 

identified as the intersection of all constraint regions.
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5.9.2 �N on-​linear Optimization

	• Mistake: Ignoring the potential for multiple local optima.
	• Tip: Use multiple starting points or global optimization techniques to increase the likelihood 

of finding the global optimum.
	• Mistake: Assuming that gradient-​based methods will always converge to the global optimum.
	• Tip: Recognize that gradient-​based methods can get stuck in local optima. Consider using 

hybrid methods that combine gradient-​based approaches with heuristic or metaheuristic 
methods.

5.9.3 �I nteger Optimization

	• Mistake: Treating integer variables as continuous.
	• Tip: Ensure that the optimization algorithm respects the integer constraints. Use specific 

integer programming solvers like B&B or cutting plane methods.
	• Mistake: Using standard linear programming methods for integer problems.
	• Tip: Employ algorithms designed for integer programming, such as the Simplex method 

combined with B&B, to handle integer constraints effectively.

5.9.4 C onvex Optimization

	• Mistake: Misidentifying non-​convex problems as convex.
	• Tip: Verify the convexity of the objective function and the feasible region. Only convex 

problems guarantee that any local minimum is a global minimum.
	• Mistake: Neglecting the role of constraints in defining convexity.
	• Tip: Ensure that both the objective function and all constraints are convex so that convex opti-

mization techniques can be applied correctly.

5.9.5 C ombinatorial Optimization

	• Mistake: Expecting exact solutions from heuristic methods.
	• Tip: Understand that heuristic and metaheuristic methods provide good approximations 

but not necessarily exact solutions. Use them when exact methods are computationally 
infeasible.

5.9.6  Stochastic Optimization

	• Mistake: Ignoring the impact of randomness on convergence.
	• Tip: Use multiple runs with different random seeds to ensure robustness. Average the results 

to get a more reliable solution.
	• Mistake: Failing to model uncertainty accurately.
	• Tip: Incorporate accurate probabilistic models for uncertainty. Use methods such as SGD and 

SAA appropriately.

5.9.7 G radient Descent

	• Mistake: Using an inappropriate learning rate.
	• Tip: Tune the learning rate carefully. A too-​high learning rate can cause divergence, while a 

too-​low rate can lead to slow convergence.
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	• Mistake: Not normalizing input features.
	• Tip: Normalize or standardize input features to ensure that gradient descent converges more 

efficiently.

5.9.8 � Simplex Method

	• Mistake: Misinterpreting degeneracy and cycling.
	• Tip: Use anti-​cycling rules like Bland’s rule to handle degeneracy and ensure convergence.
	• Mistake: Ignoring the potential for large numbers of iterations in complex problems.
	• Tip: For significant problems, consider alternative methods like Interior Point Methods that 

may be more efficient.

5.9.9 L agrangian Multipliers

	• Mistake: Misapplying Lagrangian multipliers to inequality constraints.
	• Tip: Use Karush–​Kuhn–​Tucker (KKT) conditions for problems involving inequality 

constraints.

5.9.10 � B&B and Cutting Plane Methods

	• Mistake: Underestimating the computational effort required.
	• Tip: Use hybrid and heuristic methods to reduce computational effort in large-​scale problems.
	• Mistake: Ignoring the importance of initial bounds.
	• Tip: Start with reasonable initial bounds to enhance the efficiency of B&B methods.

5.9.11 �E volutionary Algorithms

	• Mistake: Overfitting to the training data in GAs.
	• Tip: Use techniques like cross-​validation and regularization to ensure the generalizability of 

the solutions.
	• Mistake: Neglecting parameter tuning.
	• Tip: Tune parameters such as population size, mutation rate, and crossover rate to balance 

exploration and exploitation effectively.

5.10 � REVIEW QUESTIONS

1.	 What are the critical differences between linear and non-​linear optimization?
2.	 How do objective functions and constraints define an optimization problem?
3.	 What is the Simplex method, and how is it used to solve linear optimization problems?
4.	 How are feasible regions, constraints, and objective functions represented in linear 

programming?
5.	 What challenges are associated with non-​linear optimization compared to linear optimization?
6.	 What standard methods are used to solve non-​linear optimization problems, such as    

gradient-​based and direct search methods?
7.	 What is integer programming, and in what scenarios is it advantageous?
8.	 How do B&B and cutting plane methods work, and what problems do they solve?
9.	 How do techniques like SAA and SGD handle uncertainty in optimization problems?

10.	 In what types of optimization problems are GAs particularly effective?
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5.11 � PROGRAMMING QUESTIONS

5.11.1 E asy

Implement a simple linear regression model using gradient descent to fit a line to a set of data points.

1.	 Generate or load a dataset with a single feature and target variable.
2.	 Set initial values for the slope (m) and intercept (b) of the line.
3.	 Calculate the predictions using the current values of m and b.
4.	 Calculate the gradients of the loss function with respect to m and b.
5.	 Repeat the gradient descent steps for the specified number of iterations.

5.11.2 M edium

Build a neural network to classify handwritten digits from the MNIST dataset.

1.	 Load the MNIST dataset. Normalize the images to the range [0, 1].
2.	 Split the dataset into training and testing sets.
3.	 Define a sequential model with input, hidden, and output layers.
4.	 Select an optimizer, loss function, and evaluation metric.
5.	 Include a validation split to monitor validation accuracy and loss.

5.11.3 H ard Problem

Create a CNN to classify images from the CIFAR-​10 dataset.

1.	 Load the CIFAR-​10 dataset. Normalize the images to the range [0, 1].
2.	 Define a sequential model with convolutional, pooling, and dense layers.
3.	 Select an optimizer, loss function, and evaluation metrics.
4.	 Train the model on the training data with validation.
5.	 Evaluate the model’s performance on the test set.
6.	 Experiment with different architectures, hyperparameters, and regularization techniques 

to improve performance. Use techniques such as grid search or random search for 
hyperparameter optimization.
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6	 Information Theory

6.1 � INTRODUCTION

Information theory is foundational in various areas, including communication, data compression, 
cryptography, etc. Information is paramount in our rapidly evolving technological landscape, 
bridging the gap between abstract thought and tangible computation. It defines how we communi-
cate, store, and process data. The theory’s ability to measure uncertainty, optimize data encoding, 
and ensure reliable communication even in noisy environments underpins today’s digital infrastruc-
ture. As we delve into this subject, you will be introduced to foundational concepts such as entropy, 
which quantifies the unpredictability of information content, and mutual information, which reveals 
the shared knowledge between variables.

6.2 � ENTROPY

Entropy, in the context of information theory, can be considered a measure of unpredictability or 
uncertainty. Regarding data or messages, entropy scales the average level of “surprise” contained 
in the potential outcomes. This might seem abstract but consider the flip of a fair coin. As it has an 
equal probability of landing heads or tails, the result is very uncertain, leading to higher entropy. 
In contrast, if you had a biased coin that almost always landed heads, its outcome’s entropy (or 
uncertainty) would be much lower. For a discrete random variable x with a given probability distri-
bution P(x), where x is an outcome and P(x) is the probability of that outcome, the entropy H(x) is 
calculated as:

	 H X P x P x
x X

( ) = − ( ) ( )
∈
∑ log 	

where:

	• H(X) is the entropy of the discrete random variable X,
	• P(x) is the probability of outcome x,
	• The summation runs over all possible outcomes x in the set X.

Here, the sum spans over all possible outcomes of x. The logarithm base often used in information  
theory is base 2, which means the entropy is measured in bits. However, natural or logarithms to the  
base 10 can also be used, resulting in entropy being measured in nats (when the logarithm base is  
e (natural logarithm)) or dits (or Hartleys (when the logarithm base is 10)), respectively. The main  
question is: Why does entropy matter? When considering transmitting messages or data, we want  
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to use as few bits as possible. Entropy gives us a lower bound on the average number of bits needed  
to represent symbols from x. If symbols are encoded optimally, a more frequent symbol should  
be assigned a shorter code, while a rare symbol might get a more extended code. This principle is  
leveraged in data compression techniques like Huffman coding. Entropy H(x) tells us the minimum  
average number of bits we would need per symbol if we could design our encoding most efficiently.  
Entropy quantifies the uncertainty or unpredictability in a set of outcomes, guiding efficient data  
encoding and offering insights into data’s inherent structure and randomness.

Figure 6.1 illustrates the probability distributions of a fair coin and a biased coin. The bar 
plot shows the probability of obtaining “Heads” and “Tails” for each type of coin. The fair coin, 
represented in blue with a striped pattern, has equal probabilities of 0.5 for both outcomes, resulting 
in higher entropy, indicating maximum uncertainty. In contrast, the biased coin, shown in orange 
with a slanted hatch, has a much higher probability for “Heads” (0.9) and a lower probability for 
“Tails” (0.1), leading to lower entropy and reduced uncertainty.

6.3 � JOINT AND CONDITIONAL ENTROPY

Joint and conditional entropies offer richer insights into systems with multiple interacting variables. 
They provide a deeper understanding beyond individual uncertainties, offering a clearer picture of 
the system’s dynamics and the relationships between its components.

6.3.1 � Joint Entropy

When we talk about two random variables, let us say X and Y, their combined uncertainty can be 
represented by what we term “Joint Entropy.” The joint entropy of X and Y measures the uncer-
tainty (or unpredictability) associated with the pair (X, Y) when they are considered together. 

FIGURE 6.1  Probability distributions of a fair coin and a biased coin.
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Mathematically, for discrete random variables X and Y with joint probability distribution P(x, y), 
the joint entropy H(X, Y) is defined as:

	 H X Y P x y P x y
x X y Y

, , log ,( ) = − ( ) ( )
∈ ∈
∑∑ 	

where:

	• H(X, Y) is the joint entropy of the random variables X and Y,
	• P(x, y) is the joint probability of the outcomes x and y,

Here, the sum runs over all possible combinations of outcomes x from X and y from Y. Joint entropy 
provides a more general view of the system’s unpredictability when both random variables are 
considered together. For instance, if we have two correlated variables, knowing the outcome of one 
might reduce the unpredictability of the other, leading to a joint entropy that is less than the sum of 
their entropies. Suppose we have two random variables, X and Y, where X represents the outcome of 
a coin toss (Heads or Tails), and Y represents the outcome of rolling a six-​sided die (numbers 1–​6). 
Let’s assume that X has two possible outcomes: Heads (H) and Tails (T), each with a probability of 
P(X =​ H) =​ 0.5 and P(X =​ T) =​ 0.5. Y has six possible outcomes: Y =​ {1, 2, 3, 4, 5, 6}, with each 

outcome having a probability P Y y=( ) =
1

6
 (fair die). The joint probability distribution P(X, Y) 

would give the probability of each combination of X and Y. As X and Y are independent, the joint 
probability P(X =​ x, Y =​ y) =​ P(X =​ x) ⋅⋅ P(Y =​ y). For example:

	 P X H Y P X T Y= =( ) = × = = =( ) = × =, . , , .1 0 5
1

6

1

12
2 0 5

1

6

1

12
and 	

and so on for all other combinations. Let’s compute joint entropy H(X, Y) for this example:

	 H X Y P x y P x y
x H y

, , ,( ) = − ( ) ( )
∈ =
∑∑

1

6

2
log 	

As P x y,( ) =
1

12
 for each combination, the joint entropy will be:

	 H X Y( , ) log ( . ) .= − × 





= − × × −





=12
1

12

1

12
12

1

12
3 585 3 585

2
 biits	

This value, 3.585 bits, represents the total uncertainty in the system when considering both the coin 
toss and die roll together. The joint entropy is smaller than the sum of the individual entropies of X 
and Y, reflecting the combined unpredictability of both variables.

6.3.2 �C onditional Entropy

Conditional entropy, denoted as H Y X( ), represents the average uncertainty remaining in Y once 
the value of X is known. In other words, it quantifies how much we still do not know about Y even 
after observing X. The conditional entropy H Y X( ) can be defined as:

	 H Y X P x H Y X x
x X

( | ( |) )= ( ) =
∈
∑ 	
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where H Y X x=( ) is the entropy of Y given a particular value x for X. Alternatively, it can be 
expressed in terms of joint and marginal probabilities:

	 H Y X P x y P y x
x X y Y

( | ( |) , log )= − ( )
∈ ∈
∑∑ 	

It is a powerful metric to determine how much one variable informs about another, providing 
insights into the interdependencies and relationships between variables. This measure is central to 
information theory and has significant implications in various domains, including data analysis and 
machine learning. Imagine we have two random variables: X represents the weather, with possible 
outcomes: Sunny (S) or Rainy (R). Y represents whether a person will carry an umbrella, with pos-
sible outcomes: Yes (Y) or No (N). Let’s say the following probabilities are given based on past data:

	• P(X =​ S) =​ 0.7, P(X =​ R) =​ 0.3 (the weather is sunny 70% of the time and rainy 30% of the 
time).

	• P(Y =​ Y ∣∣ X =​ S) =​ 0.2, P(Y =​ N ∣∣ X =​ S) =​ 0.8 (if it’s sunny, the person carries an umbrella 
20% of the time).

	• P(Y =​ Y ∣∣ X =​ R) =​ 0.9, P(Y =​ N ∣∣ X =​ R) =​ 0.1 (if it’s rainy, the person carries an umbrella 
90% of the time).

The conditional entropy H(Y ∣∣ X) measures the uncertainty in Y (whether the person carries an 
umbrella) given that we already know X (the weather). We can calculate it using the formula:

	 H Y X P X x P Y y X x P Y y X x
x y

) )| ( | log ( |( ) = − =( ) = = = =∑ ∑ 2
	

Now, let’s compute it:

1.	 For X =​ S (Sunny): P(Y =​ Y ∣ X =​ S) =​ 0.2, P(Y =​ N ∣ X =​ S) =​ 0.8

	 H Y X S( | ) . log ( . ) . log ( . ) . ( . ) . (= = − +( ) = − × − + × −0 2 0 2 0 8 0 8 0 2 2 322 0 8
2 2

00 322

0 2 2 322 0 8 0 322 0 4644 0 2576 0 722

. )

. . . . . . .
( )

= × + × = + =  bits
	

2.	 For X =​ R (Rainy): P(Y =​ Y ∣ X =​ R) =​ 0.9, P(Y =​ N ∣ X =​ R) =​ 0.1

	 H Y X R( | ) . log ( . ) . log ( . ) . ( . ) . (= = − +( ) = − × − + × −0 9 0 9 0 1 0 1 0 9 0 152 0 1
2 2

33 322

0 9 0 152 0 1 3 322 0 1368 0 3322 0 469

. )

. . . . . . .
( )

= × + × = + =  bits
	

Now, using the total probability P(X), we can compute the overall conditional entropy:

	 H Y X P X S H Y X S P X R H Y X R)| | ( |( ) = =( )⋅ =( ) + =( )⋅ = 	

	 H Y X( | bits) . . . . . . .= ⋅ + ⋅ = + =0 7 0 722 0 3 0 469 0 5054 0 1407 0 646 	

Thus, the conditional entropy H(Y ∣∣ X) =​ 0.646 bits tells us the remaining uncertainty about whether 
the person will carry an umbrella after knowing the weather. As this value is less than the entropy of 
Y alone, it indicates that knowing the weather reduces our uncertainty about Y.

Figure 6.2 illustrates two key concepts in information theory: joint probability distribution and 
conditional entropy. The left part of Figure 6.2a displays the joint probability distribution P(X, Y), 
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FIGURE 6.2  (a) Joint probability distribution P(X, Y), and (b) conditional entropy H(Y | X).
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showing how two random variables, X and Y, are related. Each cell in the matrix represents the 
probability of a particular combination of values of X (X

1
, X

2
, X

3
) and Y (Y

1
, Y

2
, Y

3
). For instance, 

the probability of X
2
 occurring with Y

1
 is 0.20, indicating that this combination is more likely 

compared to others, such as X
1
 and Y

3
, which have a lower probability of 0.05. The color scale on 

the right provides a visual guide, with higher probabilities represented by yellow and lower prob-
abilities by darker shades. The right part of Figure 6.2b shows the conditional entropy H(Y ∣ X) 
for each value of X. This measure quantifies the uncertainty or unpredictability of Y given that X 
has already occurred. For example, when X =​ X

1
, the conditional entropy is approximately 1.522, 

indicating a moderate level of uncertainty about Y. In contrast, when X =​ X
2
, the entropy value is 

lower at around 1.379, suggesting that knowing X
2
 provides more information about Y compared 

to other cases.

6.4 � INFORMATION GAIN

Information gain quantifies the reduction in uncertainty about one variable given knowledge of 
another variable. When the value of X significantly reduces the uncertainty of Y, the conditional 
entropy H(Y | X) becomes much smaller than the entropy H(Y). This reduction in uncertainty indicates 
that X provides information about Y, suggesting a strong dependency between them. Conversely, if 
H(Y | X) is approximately equal to H(Y), knowing X does not enhance the prediction of Y signifi-
cantly, indicating that X and Y are largely independent regarding the information they convey. If 
H(Y | X) =​ 0, knowing X allows us to predict Y perfectly, indicating a deterministic relationship. If 
H(Y | X) is high but not equal to H(Y), X provides some information about Y, but significant uncer-
tainty remains. In machine learning, information gain is crucial for feature selection and decision 
tree algorithms. During feature selection, conditional entropy helps identify features that reduce 
the uncertainty of the target variable. A feature X that significantly reduces H(Y | X) compared to 
H(Y) is valuable for the model. Algorithms like decision trees use information gain to select features 
that provide the highest reduction in entropy. At each step, the feature that offers the most signifi-
cant information gain about the target variable is chosen, improving the tree’s predictive accuracy. 
Consider a simple weather prediction scenario where we want to predict whether it will rain (Y) 
based on whether there are clouds in the sky (X).

	• Outcomes for Y (Rain): Yes (1), No (0)
	• Outcomes for X (Clouds): Yes (1), No (0)

Probabilities are:

	• P(Y =​ 1) =​ 0.4 P(Y =​ 1) =​ 0.4 P(Y =​ 1) =​ 0.4 (probability of rain)
	• P(Y =​ 0) =​ 0.6 P(Y =​ 0) =​ 0.6 P(Y =​ 0) =​ 0.6 (probability of no rain)
	• P(X =​ 1) =​ 0.5 P(X =​ 1) =​ 0.5 P(X =​ 1) =​ 0.5 (probability of clouds)
	• P(X =​ 0) =​ 0.5 P(X =​ 0) =​ 0.5 P(X =​ 0) =​ 0.5 (probability of no clouds)
	• P(Y =​ 1 ∣ X =​ 1) =​ 0.8 P(Y =​ 1 | X =​ 1) =​ 0.8 P(Y =​ 1 ∣ X =​ 1) =​ 0.8 (probability of rain given 

clouds)
	• P(Y =​ 1 ∣ X =​ 0) =​ 0.2 P(Y =​ 1 | X =​ 0) =​ 0.2 P(Y =​ 1 ∣ X =​ 0) =​ 0.2 (probability of rain given 

no clouds)

Let us calculate the entropy:

1.	 Entropy of Y (Rain):

	 H Y( ) [ . log . . log . ] [ . ( . ) . ( . )]= − + ≈ − × − + × −0 4 0 4 0 6 0 6 0 4 1 322 0 6 0 737
2 2

≈≈ 0 970.  bits	
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2.	 Conditional Entropy of Y given X:

	 H Y X P X H Y X P X H Y X )| | ( |( ) = =( )⋅ =( ) + =( )⋅ =1 1 0 0 	

	 H Y X( | ) [ . log . . log . ] .= = − + ≈1 0 8 0 8 0 2 0 2 0 722
2 2

 bits	

	 H Y X( | ) [ . log . . log . ] .= = − + ≈0 0 2 0 2 0 8 0 8 0 722
2 2

 bits	

	 H Y X( | bits) . . . . .= ⋅ + ⋅ ≈0 5 0 722 0 5 0 722 0 722

3.	 Information gain:

IG Y X Y Y X; . . .( ) = ( ) − ( ) = − ≈H H | bits0 970 0 722 0 249

The information gain of 0.249 bits indicates that knowing whether there are clouds in the sky reduces 
the uncertainty about whether it will rain by 0.249 bits.

6.5 � MUTUAL INFORMATION

Mutual information is a fundamental quantity in information theory that quantifies the information 
obtained about one random variable by observing another. It measures the dependence between two 
variables and has wide applications in feature selection, machine learning, and data analysis. Mutual 
information provides a quantitative measure of the relationship between two random variables. In 
contexts like feature selection, it can help determine which features (variables) carry the most infor-
mation about the target variable, thereby being most relevant for tasks like classification or regres-
sion. There are three main basic properties of mutual information:

1.	 Symmetry: Mutual information is symmetric. This means that the amount of information 
gained about X by knowing Y is the same as the amount of information gained about Y by 
knowing X. It can be shown as: I(X; Y) =​ I(Y; X)

2.	 Non-​Negative: Mutual information is always non-​negative. If I(X; Y) =​ 0, it implies that the 
two random variables are independent, and knowing the value of one does not provide any 
information about the other.

3.	 Range: Mutual information can take a value between 0 (when the variables are independent) and 
the entropy of one of the variables (when one variable is a deterministic function of the other).

Here are the brief explanations of the mutual information formula:

	 I(X; Y) =​ H(X) –​ H(X | Y)	

This formula means that the mutual information between X and Y is the difference between the 
entropy of X (the uncertainty in X) and the conditional entropy of X given Y (the remaining uncer-
tainty in X when we know Y):

	 I(X; Y) =​ H(Y) –​ H(Y | X)	

Similarly, this formula shows that the mutual information between X and Y is the difference between 
the entropy of Y (the total uncertainty in Y) and the conditional entropy H(Y ∣ X) (the remaining 
uncertainty in Y given that X is known).
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Mutual information is a powerful tool because it captures non-​linear dependencies between 
variables, unlike other measures, such as correlation, which capture only linear dependencies. If 
the mutual information between two variables is high, the variables are strongly related. Suppose 
we have two random variables: X represents the outcome of flipping a fair coin, with possible 
outcomes: Heads (H) or Tails (T), each with a probability P(X =​ H) =​ 0.5 and P(X =​ T) =​ 0.5. Y 
represents whether or not a person decides to walk based on the weather, with possible outcomes: Walk 
(W) or Stay (S), each with a probability dependent on the coin flip (to simulate a correlation).

Let’s assume the probabilities based on the coin flip are:

If X =​ H (Heads), the person decides to walk with probability P(Y =​ W ∣∣ X =​ H) =​ 0.8 and stays 
with P(Y =​ S ∣∣ X =​ H) =​ 0.2.

If X =​ T (Tails), the person decides to stay with probability P(Y =​ S ∣∣ X =​ T) =​ 0.9, and walks 
with P(Y =​ W ∣∣ X =​ T) =​ 0.1.

Step 1: Calculate the individual entropies H(X) and H(Y):

H(X): Since X is a fair coin flip, the entropy of X is:

H X P X x P X x
x

( ) ( ) log ( ) ( . log . . log . )= − = = = − + =∑ 2 2 2
0 5 0 5 0 5 0 5 1 bit

H(Y): To calculate the entropy of Y, we first need the marginal probabilities for Y. These are:

	 P Y W P Y W X H P X H P Y W X T P X T P=( ) = = = ⋅ =( ) + = = ⋅ =( )( | ) ( | ) 	

	 P Y W=( ) = ⋅( ) + ⋅( ) = + =0 8 0 5 0 1 0 5 0 4 0 05 0 45. . . . . . . 	

	 P Y S P Y W .=( )= − =( )=1 0 55	

Now, we can calculate H(Y):

H Y( ) ( . log . . log . ) ( . . . .= − + = − × − + × −0 45 0 45 0 55 0 55 0 45 1 152 0 55 0 86
2 2

33 1 027) .=  bits

Step 2: Calculate the conditional entropy H(X ∣∣ Y):

We need the conditional probabilities P(X ∣∣ Y), but it’s easier to calculate H(X ∣∣ Y) using the joint 
probabilities of X and Y:

	 P X H Y W P Y W X H P X H= =( ) = = = ⋅ =( ) = × =, ( | ) . . .0 8 0 5 0 4	

	 P X H Y S P Y S X H P X H= =( ) = = = ⋅ =( ) = × =, ( | ) . . .0 2 0 5 0 1	

	 P X T Y W P Y W X T P X T= =( ) = = = ⋅ =( ) = × =, ( | ) . . .0 1 0 5 0 05	

	 P X T Y S P Y S X T P X T= =( ) = = = ⋅ =( ) = × =, ( | ) . . .0 9 0 5 0 45	

Using the joint probabilities, we calculate the conditional entropy H(X ∣∣ Y):

	 H X Y P X x Y y
P X x Y y

P Y yx y

( | ) ,
,

,

= − = =( ) = =( )
=( )∑ log

2
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	 H X Y( | ) . log
.

.
. log

.

.
. log

.

.
.= − + + +0 4

0 4

0 45
0 05

0 05

0 45
0 1

0 1

0 55
0 4

2 2 2
55

0 45

0 55
0 56

2
log

.

.
.







≈  bits	

Step 3: Calculate mutual information I(X; Y):
Finally, mutual information I(X; Y) is the difference between the entropy of X and the conditional 

entropy H(X ∣∣ Y):

I(X; Y) =​ H(X) − H(X ∣ Y) =​ 1 − 0.56 =​ 0.44 bits

This result tells us that knowing Y provides 0.44 bits of information about X, meaning there is 
some dependency between the two variables (but not complete dependence). The mutual infor-
mation quantifies this relationship and can be used to assess the strength of the dependency 
between X and Y.

Figure 6.3 provides a view of the relationship between variables X and Y using information-​
theoretic concepts. In subplot Figure 6.3a, the joint probability distribution P(X, Y) is visualized 
as a heatmap. The distribution shows the probability values for combinations of X (with values X

1
, 

X
2
, X

3
) and Y (with values Y

1
, Y

2
, Y

3
). Each cell in the matrix displays the probability associated 

with a particular combination of X and Y. For example, P(X
2
, Y

2
) has a higher probability value 

(0.20), highlighted in yellow, compared to other combinations. This heatmap provides insight into 
how the two variables interact, showing the likelihood of different outcomes. Subplot Figure 6.3b 
illustrates the conditional entropy H(Y ∣ X), which measures the uncertainty in Y given that X is 
known. The bar plot presents the conditional entropy values for each category of X. The values are 
1.522 for X1, 1.379 for X2, and 1.500 for X3, indicating how much uncertainty remains in Y when 
each corresponding value of X is observed. Subplot Figure 6.3c shows the mutual information I(X; 
Y), which quantifies the amount of information shared between X and Y. It is represented as a single 
bar with a value of 0.059 bits, indicating that there is some degree of dependency between X and Y, 
although it is relatively small.

6.6 � DATA COMPRESSION

Data compression is a method to reduce the quantity of data used to represent information. 
Understanding the statistical properties of data makes it possible to represent it more compactly 
without losing essential information. With concepts like entropy, information theory offers a math-
ematical foundation to understand the limits and potential of data compression. The tools and 
principles derived from this theory have driven the development of many efficient algorithms and 
standards in digital communication and storage. In simple terms, entropy quantifies the amount 
of uncertainty or randomness in a source of information. It measures the “surprisal,” how unex-
pected or uncertain a message is. When considering data compression, a high-​entropy source means 
that the data is complex to predict and, hence, more challenging to compress, while a low-​entropy 
source indicates the opposite. For a given source of data or a message, the entropy provides a the-
oretical lower bound on the average number of bits needed to encode symbols from that source. In 
other words, it gives the minimum bits required to represent the information without any loss. This 
understanding is pivotal in designing efficient encoding schemes. If an encoding scheme achieves 
this bound, it is considered optimal. There are several applications for it in encoding. For instance, 
if you are trying to encode a text written in English, not all letters or combinations of letters occur 
with equal frequency. Spaces, vowels like “e” and “a,” are more frequent than letters like “z” or “q.” 
One can achieve compression by using fewer bits to represent frequently occurring letters and more 
bits for less frequent ones. This is the basic idea behind Huffman coding, a popular lossless data 
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FIGURE 6.3  (a) Joint probability distribution P(X, Y), (b) conditional entropy H(Y | X), and (c) mutual information I(X; Y).
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compression algorithm. Let us have a review on lossless vs. lossy compression. It is essential to dif-
ferentiate between two primary types of data compression: lossless and lossy.

1.	 Lossless Compression: This method ensures that the original data can be perfectly 
reconstructed from the compressed data. It is used in applications where the preservation of 
original data is crucial, like text files or certain types of image and audio files (e.g., PNG, 
FLAC).

2.	 Lossy Compression: This method sacrifices some data for higher compression rates, meaning 
the original data cannot be perfectly reconstructed. It is often acceptable for multimedia 
applications like audio, images, and videos where some loss of detail might not be percep-
tible to human senses (e.g., MP3, JPEG).

Consider a text written in English where each letter has a different frequency of occurrence. The 
letter “e” appears frequently, while the letter “z” appears much less often. Using Huffman coding, a 
lossless data compression technique, we can assign shorter codes to more frequent letters and longer 
codes to less frequent ones. Suppose the probabilities of four letters are as follows:

	 “e”: 0.3; “a”: 0.25; “t”: 0.2; and “z”: 0.05	

Using Huffman coding, we can assign binary codes like this:

	 “e” → 1 (1 bit), “a” → 01 (2 bits), “t” → 001 (3 bits) and “z” → 000 (3 bits)	

The most frequent letter, “e,” gets the shortest code (1 bit), while the least frequent letter, “z,” gets 
a longer code (3 bits), making the overall encoding more efficient. The entropy of a source, denoted 
as H(X), quantifies the uncertainty or “randomness” in the source and provides a lower bound on the 
average number of bits required to encode the data. For a source X with probabilities p(xi) for each 
symbol xi, the entropy is defined as:

	 H X p x p x
i

n

i i( ) = − ( ) ( )
=
∑

1
2

log 	

For the example above with letters “e,” “a,” “t,” and “z,” the entropy calculation would be:

	 H X( ) ( . log . . log . . log . . log . ) .= − + + + ≈0 3 0 3 0 25 0 25 0 2 0 2 0 05 0 05 1
2 2 2 2

99 bits	

This means, on average, 1.9 bits are required to represent a letter from this source, and Huffman 
coding brings us close to this limit.

Figure 6.4 explores the frequency distribution of letters in English text and their corresponding 
encoding lengths using Huffman Encoding. In subplot Figure 6.4a, the letter probabilities are shown 
as a bar chart, representing the relative frequencies of each letter in English text. The chart reveals 
that some letters, like “e” (with a probability of 0.112) and “t” (with a probability of 0.080), occur 
more frequently than others, such as “q” and “z,” which have much lower probabilities (0.001). This 
variation in frequencies reflects the nature of English, where certain letters are used far more often. 
Understanding these probabilities is fundamental for efficient data encoding, as frequent letters 
can be assigned shorter codes to reduce overall message length. Subplot Figure 6.4b illustrates 
the Huffman Encoding Lengths assigned to each letter based on the probabilities shown in subplot 
Figure 6.4a. In Huffman encoding, letters that appear more frequently are assigned shorter binary 
codes, while those that occur less frequently are given longer codes. For instance, the letter “e” with 
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FIGURE 6.4  (a) Letter probabilities in English text, and (b) Huffman encoding lengths for letters.
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the highest probability, has an encoding length of 4 bits, while infrequent letters like “q” and “z” 
require 11 bits.

6.7 � CHANNEL CAPACITY AND SHANNON’S THEOREM

In practical terms, Shannon’s theorem laid the theoretical foundation for modern digital communi-
cation systems. Many communication systems today, like those used in cellular networks or satel-
lite communication, employ error-​correcting codes to approach the channel capacity as closely as 
possible and ensure reliable data transfer. Channel capacity is a fundamental concept in information 
theory. It represents the highest rate at which information can be reliably transmitted over a given 
communication channel. Expressed in bits per second (bps), the maximum number of bits that can 
be sent over the channel per unit of time with an arbitrarily low error rate. Importantly, capacity is 
not about the speed of data transfer but how much information can be reliably conveyed. This means 
that even if a channel can transfer large amounts of data quickly, it might still have a low capacity 
if much of that data is redundant or corrupted. Factors that can impact the channel capacity include 
the channel’s bandwidth, the signal’s power, the environment’s noise, and the channel’s inherent 
characteristics. The Shannon theorem is a profound insight into the nature of communication over 
noisy channels. In essence, it states that reliable communication over a noisy channel is possible 
up to a specific maximum rate, known as the channel capacity. It is possible to encode messages 
below this rate so that the probability of error in decoding the message can be made arbitrarily small. 
However, above this rate, no encoding method will avoid a high probability of error. Given a noisy 
channel with a known capacity, it suggests that one can design encoding and decoding schemes (or 
error-​correcting codes) to ensure almost error-​free communication as long as the communication 
rate stays below the channel capacity. However, errors will become unavoidable once you try to 
transmit information at a rate higher than the channel capacity. Consider a cellular network where 
the channel has a bandwidth of 1 MHz (1,000,000 Hz), and the signal-​to-​noise ratio (SNR) is 10 (in 
linear scale, equivalent to 10 dB). Using Shannon’s theorem, we can calculate the maximum channel 
capacity, which gives the upper limit on how much information can be transmitted reliably over 
this channel. Shannon’s channel capacity theorem defines the maximum rate C (in bps) at which 
information can be transmitted over a noisy channel without error as long as the transmission rate is 
below this capacity. The formula for the channel capacity C is given by:

	 C B= +( )log SNR
2

1 	

where:

	• C is the channel capacity in bps,
	• B is the bandwidth of the channel in hertz (Hz),
	• SNR is the signal-​to-​noise ratio (in linear form, not dB).

For the cellular network example, bandwidth B =​ 1,000,000 Hz, and SNR =​ 10 (in linear scale).
Using the formula:

	 C = × +( ) ≈ × ≈1 000 000 1 10 1 000 000 3 459 3 459
2

, , , , . .log Mbps	

This means the maximum channel capacity for this network is approximately 3.459 Mbps. As long 
as the transmission rate remains below this limit, reliable communication with very low error rates 
is possible.
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Figure 6.5 represents the relationship between SNR and the maximum achievable data rate (in  
bps/​Hz) of a communication channel, following Shannon’s capacity formula. The blue curve shows  
how the channel capacity increases as the SNR improves. At lower SNR values, specifically when  
the SNR is below 0 dB (marked by the vertical dashed line), the capacity remains low, indicating  
the region of unreliable communication, highlighted in red. This area signifies that when the noise  
level is too high compared to the signal strength, achieving a reliable communication rate is challen-
ging or impossible. As the SNR increases beyond the 0 dB threshold, the channel enters the reliable  
communication region, shaded in green. In this region, the capacity of the channel improves signifi-
cantly with higher SNR values, reflecting that a stronger signal relative to noise allows for higher  
data transmission rates while maintaining reliability.

6.8 � KULLBACK–​LEIBLER DIVERGENCE

The Kullback–​Leibler (KL) divergence is used to quantify the difference between two probability 
distributions. It is essential in statistics, information theory, and machine learning. The KL divergence 
is a powerful tool for understanding and quantifying differences between probability distributions, 
playing a central role in many machine learning algorithms and statistical measures. The KL diver-
gence is defined for two discrete probability distributions, P and Q. Usually, P represents the “true” 
distribution of data, observations, or a precisely calculated theoretical distribution. In contrast, Q 
typically represents the approximation, hypothesis, or a model’s predictions. The KL divergence of 
Q from P is defined as:

	 D P Q P x
P x

Q xx
KL

( || ) log= ( ) ( )
( )∑ 	

The logarithm is typically taken in base two if we measure the divergence in bits or base e (natural 
logarithm) for nats. KL divergence is asymmetric, meaning D P Q

KL
( || ) is not necessarily equal 

FIGURE 6.5  Channel capacity as a function of SNR.
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to D Q P
KL

( || ). This is a fundamental property, implying that the “cost” of approximating P with 
Q can differ from the “cost” of approximating Q with P. In machine learning, KL divergence 
is commonly used in algorithms that involve probability distributions. For instance, it is used in 
variational inference to measure the divergence between the actual posterior distribution and its 
approximation. We are training specific generative models like variational autoencoders (VAEs). 
Information retrieval is used to compare the distribution of terms in different documents. A KL 
divergence of 0 indicates that the two distributions are identical. As the divergence increases, the 
difference between the two distributions grows. However, be cautious: the KL divergence can be 
infinite if any value for which P(x) is non-​zero and Q(x) is zero. This is because the logarithm of 
zero becomes undefined, highlighting a fundamental mismatch between the distributions. Consider 
two probability distributions P and Q for a simple coin flip scenario, where the coin can land on 
heads (H) or tails (T). Let:

	• P(H) =​ 0.6, P(T) =​ 0.4 (true distribution),
	• Q(H) =​ 0.5, Q(T) =​ 0.5 (model’s predicted distribution).

The KL divergence between P and Q quantifies how much information is lost when using Q to 
approximate P. The KL divergence between two discrete probability distributions, P and Q, is 
defined as:

	 D P Q P x
P x

Q xx
KL

( || ) log= ( ) ( )
( )∑ 	

where:

	• DKL(P ∣∣∣∣ Q) is the KL divergence of Q from P,
	• P(x) is the probability of event x in the true distribution P,
	• Q(x) is the probability of event x in the model’s approximation Q.

For the coin flip example, the KL divergence is calculated as:

	 D P Q
KL
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Calculating each term:
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Thus:

	 D P Q
KL

( || ) . . .≈ − =0 04751 0 03876 0 00875	

In this case, the KL divergence (D
KL

(P ∥ Q)) is approximately 0.00875, quantifying the extent to 
which the distribution Q diverges from P. KL divergence of 0 would indicate that the two distributions 
are identical, while any positive value reflects the difference in information content between them.

Figure 6.6 represents these differences and quantifies them using KL divergence. Figure 6.6 
subplot a illustrates the true distribution (P), where probabilities are assigned to each event as 
follows: Event 1 has a probability of 0.40, Event 2 is assigned 0.35, Event 3 is 0.20, and Event 4 is 
0.05. This distribution serves as the baseline or observed probabilities for each event. In contrast, 
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FIGURE 6.6  (a) True distribution P and (b) approximate distribution Q.
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subplot Figure 6.6b displays the approximate distribution (Q), where the probabilities differ: Event 
1 is assigned a probability of 0.30, Event 2 is 0.25, Event 3 remains at 0.20, and Event 4 increases 
significantly to 0.25. These changes indicate deviations between P and Q, suggesting that Q only 
partially approximates the true distribution. Above the bar plots, the figure presents the calculated 
KL divergence values. The KL(P ∥ Q) is 0.220 bits (shown in blue), quantifying the information lost 
when Q is used to approximate P. The KL(Q ∥ P) is 0.335 bits (shown in red), measuring the diver-
gence in the reverse direction. The asymmetry in these values highlights that KL divergence is not 
symmetric. The difference in magnitude reflects the distinct perspectives of approximating P using 
Q vs. Q using P. The smaller value for KL(P ∥ Q) suggests that Q provides a relatively reasonable 
approximation of P, but some discrepancies remain.

6.9 � INFORMATION THEORY IN MACHINE LEARNING AND DEEP LEARNING

In machine learning, information gain, a concept based on entropy, is used in decision trees to decide 
which feature to split on at each node. Clustering algorithms utilize mutual information to measure 
cluster similarity, enhancing the grouping of similar data points. In neural networks, especially in 
areas like VAEs, concepts such as KL divergence are employed to measure the difference between 
the learned representation and the actual data distribution, thereby optimizing model performance 
and representation accuracy. As deep learning continues to evolve, the foundational principles of 
information theory will likely remain integral in providing insights and tools for advancing the field. 
Information theory provides a framework to quantify the maximum amount of information that a 
network can store or process, which is intricately linked to its architecture and size. The architecture 
of a neural network, including the number of layers and the number of neurons per layer, determines 
its capacity to represent complex functions. Information theory helps quantify this capacity, offering 
a precise measure of how much information the network can capture from the input data. This 
understanding is crucial for designing networks that are neither underfitting nor overfitting the 
data. Activation functions play a pivotal role in how information flows through a network. From 
an information-​theoretic perspective, activation functions can be analyzed based on their ability to 
maintain or transform information as it propagates through the layers. For instance, functions like 
ReLU (Rectified Linear Unit) can help preserve the gradient during backpropagation, preventing 
issues like vanishing gradients and ensuring efficient information flow. Optimizing the selection and 
design of activation functions can significantly enhance the network’s performance and efficiency. 
The information bottleneck principle provides another layer of understanding by examining how 
networks compress input information into a more compact representation while retaining essen-
tial features. This principle aids in developing models that balance complexity and generalization, 
ensuring that the network captures the most relevant information for the task at hand. Techniques 
such as mutual information can measure the amount of information shared between different net-
work layers. This measurement can guide the adjustment of network parameters to maximize the 
flow of relevant information, thereby improving the learning process and the model’s overall effect-
iveness. Consider a neural network with three layers: an input layer with 10 neurons, a hidden layer 
with 50 neurons, and an output layer with 5 neurons. The architecture defines the network’s capacity 
to store and process information. Using information theory, we can analyze how much information 
this network can theoretically capture from the input data and how efficiently it can transform that 
information across layers. The capacity of a neural network can be related to the number of weights 
(parameters) it has. For a simple, fully connected neural network with L layers, where each layer i 
has ni neurons, the total number of weights is:

	 Total weights = ×
=

−

+∑
i

L

i i
n n
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In our example:

	• Input layer: 10 neurons,
	• Hidden layer: 50 neurons,
	• Output layer: 5 neurons.

The number of weights between layers is:

	• From input to hidden: 10 × 50 =​ 500 weights,
	• From hidden to output: 50 × 5 =​ 250 weights.

Thus, the total number of weights is:

	 500 +​ 250 =​ 750 weights	

This means the network can store a significant amount of information across these 750 connections, 
which directly influences its capacity to represent complex functions.

6.9.1 �R egularization and Optimization

Regularization and optimization in neural networks often utilize concepts from information theory 
to improve model performance and generalization. For example, VAEs are a generative model 
that incorporates the KL divergence as a regularization term. This information-​theoretic measure 
ensures that the learned latent variable distribution remains close to a prior distribution, typically 
Gaussian, thereby enhancing the generative capabilities of the model. Another method, the infor-
mation bottleneck, aims to retain as much relevant information about the input while compressing 
or removing irrelevant information. This method quantifies compression and retention using mutual 
information, balancing the trade-​off between preserving essential information and reducing redun-
dancy. By focusing on these principles, neural networks can achieve more efficient and effective 
learning outcomes. Regularization techniques, such as dropout or weight decay, are also informed 
by information theory, aiming to control the amount of information stored in the network weights 
and promoting better generalization to unseen data. Consider training a VAE on the MNIST dataset, 
where the latent space is represented by two dimensions, and the goal is to generate digit images. 
A KL divergence regularization term is used to ensure that the latent space z follows a Gaussian 
distribution with a mean of 0 and variance of 1. Let’s assume the learned latent variable distribution 
has a mean μ =​ 0.5 and variance σ2 =​ 0.25. The KL divergence between this learned distribution and 
the prior N(0, 1) (a standard normal distribution) is calculated as:

	 D q z x p z
KL

( | || ) log
.

. ( . )
.( ) ( ) = +

+
− =

1

0 25

0 25 0 5

2
1 1 386

2

	

This KL divergence value of 1.386 indicates that the learned distribution deviates from the Gaussian 
prior, and the model will be penalized accordingly.

6.9.2 �G eneralization and Overfitting

The capacity of a model is intrinsically related to its ability to fit noise in the data. A model with 
a higher capacity, such as a deep neural network, can fit the training data more closely but is also 
more prone to overfitting. Overfitting occurs when the model captures not only the underlying 
patterns but also the random noise in the data, leading to poor generalization on new, unseen data. 
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Information-​theoretic measures provide a quantitative framework to assess this capacity and the 
trade-​off between fitting the data and overfitting. By using concepts such as entropy and mutual 
information, researchers can evaluate how much information the model retains and whether this 
information is relevant or merely noise. This approach helps in designing models that balance com-
plexity and generalization, ultimately enhancing their performance on real-​world tasks. Consider a 
neural network trained on a dataset of 1000 points. The model has 100,000 parameters (weights), 
which gives it a high capacity to fit the data. During training, the model achieves near-​perfect 
accuracy, with a training loss of 0.02. However, when tested on unseen data, the test loss is much 
higher, at 1.5, indicating overfitting. The model has captured not only the true patterns in the training 
data but also the noise, leading to poor generalization.

6.9.3 �M odel Interpretability

Model interpretability is crucial for understanding how a deep learning model makes its predictions. 
Using mutual information, we can quantify the importance of different features or inputs by meas-
uring how much information each feature shares with the output. This information-​theoretic 
approach provides a clear and quantitative method to identify which features contribute most to the 
model’s predictions, enhancing our ability to interpret and trust the model. By analyzing mutual 
information, researchers can gain insights into the relationships between inputs and outputs, leading 
to more transparent and explainable models. This interpretability is essential for applications where 
understanding the decision-​making process is as important as the predictions themselves. Suppose 
a neural network is trained to predict housing prices using features like square footage, number 
of rooms, and distance to the city center. Using mutual information, we can calculate that square 
footage has a mutual information score of 0.8, while the distance to the city center has a mutual 
information score of 0.4. This tells us that square footage contributes more to the model’s predictions 
than the distance to the city center, helping us interpret the model.

6.9.4 �T ransfer Learning and Domain Adaptation

Information theory offers valuable tools for measuring and managing the differences between 
source and target domains in transfer learning and domain adaptation. A crucial aspect of this pro-
cess is measuring domain shift, which involves quantifying the difference between source and 
target distributions using measures like KL divergence. These information-​theoretic metrics help in 
understanding how much the domains differ, allowing models to be adapted accordingly. Optimal 
transport techniques, such as the Wasserstein distance, which is rooted in information geom-
etry, provide a more nuanced approach to measuring the difference between distributions. These 
techniques are particularly effective in guiding the alignment of source and target domains, ensuring 
that the model can generalize well to the target domain by minimizing the discrepancies between the 
distributions. By leveraging these information-​theoretic approaches, transfer learning, and domain 
adaptation can be more precisely tuned, leading to better model performance in new and diverse 
environments. Imagine a model trained on a source domain of animal images (e.g., cats and dogs) 
and then applied to a target domain of wild animals (e.g., lions and tigers). The KL divergence 
between the source and target distributions is calculated as 1.2, indicating a significant shift in data. 
By minimizing this divergence, the model can be adapted to perform better on the target domain.

6.9.5 �A dversarial Attacks and Robustness

Information theory can be a powerful tool for measuring the robustness of neural networks to 
adversarial attacks. By quantifying how much an adversarial input perturbs the information flow 
within the network, we can assess the network’s vulnerability. Specifically, information-​theoretic 
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measures can help determine the extent to which an adversarial input disrupts the network’s 
internal representations and decision-​making processes. This quantification allows for a deeper 
understanding of the network’s resilience and provides insights into developing more robust models 
that can withstand adversarial perturbations, ultimately leading to more secure and reliable neural 
network applications. Suppose a neural network is trained to classify images of digits (0–​9), and an 
adversarial attack perturbs an input image, changing the model’s classification from 3 to 7. Using 
mutual information, we calculate that the perturbed input reduces the information shared between 
the network’s internal layers and the true label by 0.6 bits, indicating a significant disruption in the 
network’s decision-​making process.

6.9.6 �N eural Architecture Search

Information-​theoretic concepts can significantly enhance the process of Neural Architecture Search 
(NAS) by guiding the exploration of efficient neural architectures with an optimal trade-​off between 
accuracy and complexity. By applying measures such as entropy and mutual information, researchers 
can evaluate and compare different architectures to identify those that capture the most relevant 
information while maintaining a manageable level of complexity. This approach helps in designing 
neural networks that achieve high performance without unnecessary computational overhead, 
leading to models that are both accurate and efficient. Utilizing information theory in NAS allows 
for a more systematic and theoretically grounded search for the best possible neural architectures. 
Consider two neural architectures: Architecture A with 5 million parameters and Architecture B 
with 2 million parameters. Using mutual information, we find that Architecture A captures 1.2 bits 
of relevant information from the input, while Architecture B captures 1.1 bits. Despite the slight 
difference in information captured, Architecture B is more efficient due to its lower parameter count, 
making it a better choice in terms of balancing accuracy and complexity.

6.9.7 �L ayer-​Wise Relevance Propagation

Layer-​wise relevance propagation (LRP) is an interpretability technique that uses concepts rooted 
in information theory to explain the decisions of deep networks. By propagating relevance scores 
from the output back to the input, LRP provides a measure of the contribution of each input feature 
to the final decision. This backward propagation of relevance scores helps in understanding which 
features are most influential in the model’s predictions, offering valuable insights into the inner 
workings of the network. This technique enhances model transparency and trustworthiness, making 
it easier to diagnose model behavior and improve its design based on the relevance of different 
features. Consider a neural network that classifies images of cats and dogs. For an image of a dog, 
LRP assigns relevance scores to input pixels. The pixels corresponding to the dog’s ears and eyes 
receive high relevance scores of 0.9 and 0.8, respectively, indicating that these features are the most 
influential in the model’s decision. LRP computes relevance scores for each neuron in the network. 
The relevance score Rj for neuron j in layer l is propagated from the relevance scores Rk of neurons 
in the next layer l +​ 1:
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where:

	• aj is the activation of neuron j,
	• wjk is the weight between neuron j and neuron k in the next layer.
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6.10 � REAL-​WORLD APPLICATIONS

6.10.1 �D ata Compression

One of the most direct applications of information theory is in data compression. The concept of 
entropy, which measures the unpredictability or information content of a source, is foundational in 
developing efficient compression algorithms. For instance, Huffman coding, a widely used method 
for lossless data compression, leverages entropy to assign shorter codes to more frequent symbols 
and longer codes to less frequent ones. This approach minimizes the average length of the data 
representation, reducing storage requirements without losing any information. This principle is vital 
in formats such as PNG for images and FLAC for audio, where exact reproduction of the original 
data is crucial.

6.10.2 �C ryptography

Information theory plays a crucial role in cryptography, ensuring secure communication by meas-
uring the uncertainty and unpredictability of data. The entropy of a cryptographic key, for instance, 
quantifies its strength: the higher the entropy, the more unpredictable and secure the key is. 
Information theory also guides the design of encryption algorithms, helping to balance the trade-​offs 
between security and performance. Mutual information, which measures the dependency between 
variables, is used to assess the strength of encryption schemes by ensuring that encrypted data 
reveals minimal information about the original data.

6.10.3 �T elecommunications and Error Correction

Shannon’s noisy channel coding theorem, a cornerstone of information theory, underpins the design 
of reliable communication systems. This theorem quantifies the maximum rate at which information 
can be transmitted over a noisy channel while still being reliably decoded. In practice, this principle 
is applied in developing error-​correcting codes, such as Reed-​Solomon or Turbo codes, which are 
used in CDs, DVDs, and mobile communications. These codes add redundancy to the transmitted 
data, allowing the receiver to correct errors caused by noise, ensuring the integrity of the information 
despite transmission errors.

6.10.4 �N etwork Security and Anomaly Detection

Information theory aids in detecting anomalies in network traffic, a crucial aspect of cybersecurity. 
By analyzing the entropy of network packets, security systems can identify unusual patterns that may 
indicate a security breach or attack. For example, a sudden decrease in entropy might suggest that 
an attacker is using a predictable, repetitive pattern to infiltrate the network. Similarly, mutual infor-
mation can be used to detect relationships between seemingly unrelated data streams, uncovering 
hidden channels or covert communication attempts within the network.

6.10.5 � Biological Data Analysis

In bioinformatics, information theory is employed to analyze complex biological data, such as 
gene expression patterns. Entropy measures the diversity and variability within gene expression 
profiles, helping researchers identify genes that are most variable across conditions or diseases. 
Mutual information is used to assess the dependency between different genes or between genes and 
phenotypic traits, providing insights into the underlying regulatory mechanisms. This application is 
crucial for understanding complex biological systems and for identifying potential targets for drug 
development.
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6.10.6 �F inance and Risk Management

In finance, information theory assists in portfolio optimization and risk management by analyzing 
the dependency and information flow between different financial assets. Mutual information can be 
used to measure the strength of the relationship between different stocks or asset classes, helping 
investors diversify their portfolios effectively. By understanding the information shared between 
assets, financial models can predict market movements more accurately and manage risk more 
effectively, leading to more robust investment strategies.

6.11 � HANDS-​ON EXAMPLE

In this section, we will explore the concept of entropy and mutual information within the context of 
neural networks.

6.11.1  Step 1: Import Necessary Libraries

First, we are importing essential libraries for building and evaluating machine learning models. First, 
NumPy is imported as np for numerical operations such as array manipulation. Then, matplotlib.
pyplot is imported as plt for plotting and visualizing data. TensorFlow (tensorflow) is imported, 
along with Keras modules (Sequential and Dense) to define and build neural network models. 
Additionally, we import mutual_​info_​score from the sklearn.metrics library, which is used to com-
pute the mutual information between two variables, a measure of how much information one vari-
able provides about another. Finally, entropy from scipy.stats is imported to compute the entropy of 
distributions, which quantifies the uncertainty or randomness in the data.

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.metrics import mutual_​info_​score
from scipy.stats import entropy

6.11.2  Step 2: Generate Sample Data

We define a function generate_​data to create a simple synthetic dataset for binary classification. The 
function takes n_​samples as an input, which specifies the number of data points to generate. Inside 
the function, X is a 2D array of shape (n_​samples, 2) containing random values between 0 and 1, 
generated using np.random.rand(). Each row of X represents a sample with two features. The target 
labels y are then computed based on a simple rule: if the sum of the two features in a sample is 
greater than 1, the corresponding label is set to 1; otherwise, it’s set to 0. This creates a classification 
problem where the decision boundary is the line x

0
 +​ x

1
 =​ 1. The dataset consists of X (features) and 

y (labels), and after generating the data for 1000 samples, it is stored in the variables X and y for 
further analysis or model training.

# Generate a simple dataset
def generate_​data(n_​samples):
X =​ np.random.rand(n_​samples, 2)
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y =​ (X[:, 0] +​ X[:, 1] > 1).astype(int)
return X, y

X, y =​ generate_​data(1000)

6.11.3  Step 3: Calculate Entropy

Here, we define a function calculate_​entropy that calculates the entropy of a given set of labels. 
Entropy is a measure of the uncertainty or randomness in the distribution of labels. The function uses 
np.unique() to find the unique values in the labels array and count their occurrences. The entropy 
is then computed using the entropy() function from the scipy.stats library, which takes the counts 
of each unique value as input. Higher entropy means the labels are more evenly distributed, while 
lower entropy indicates that the labels are more skewed toward a particular value. After defining the 
function, we calculate and print the entropy of the labels y, which were generated in the previous 
dataset, with the result formatted to four decimal places. This allows us to quantify the uncertainty 
or distribution balance of the labels in the dataset.

def calculate_​entropy(labels):
value, counts =​ np.unique(labels, return_​counts=​True)
return entropy(counts)

print(f’Entropy of y: {calculate_​entropy(y):.4f}’)

6.11.4  Step 4: Mutual Information Calculation

Now, we define a function calculate_​mutual_​information to compute the mutual information 
between the features X and the labels y. Mutual information is a measure of how much infor-
mation one variable provides about another, quantifying the dependency between them. In this 
case, we are using mutual_​info_​score from the sklearn.metrics library to calculate the mutual 
information between X (the features) and y (the labels). The X.ravel() function flattens the 2D 
array X into a 1D array to align with the expected input format for the mutual information calcu-
lation. After defining the function, we compute and print the mutual information between X and 
y, formatted to four decimal places. This measure helps us understand how much information the 
features X contain about the target labels y, thereby indicating the strength of the relationship 
between them.

def calculate_​mutual_​information(X, y):
return mutual_​info_​score(X.ravel(), y)

print(f’Mutual Information between X and y: {calculate_​mutual_​
information(X, y):.4f}’)

6.11.5  Step 5: Build and Train a Simple Neural Network

Finally, we are building and training a simple neural network using TensorFlow’s Keras API. The 
network is defined using the Sequential model, which stacks layers sequentially. The first layer is a 
Dense layer with 10 neurons, a ReLU activation function, and an input dimension of 2 (as the input 
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data X has two features). The second layer is a Dense output layer with 1 neuron and a sigmoid acti-
vation function, which is commonly used for binary classification problems. The model is compiled 
with the Adam optimizer, a popular optimization algorithm for training neural networks, and the 
binary cross-​entropy loss function, which is appropriate for binary classification tasks. The perform-
ance is tracked using accuracy as the evaluation metric. Finally, the model is trained on the dataset 
X and y for 100 epochs using model.fit(), with the training progress being silent (verbose =​ 0). This 
neural network is designed to learn the relationship between the two input features and the binary 
target labels in the dataset generated earlier.

# Build a simple neural network
model =​ Sequential([
Dense(10, input_​dim=​2, activation=​‘relu’),
Dense(1, activation=​‘sigmoid’)

])
model.compile(optimizer=​‘adam’, loss=​’binary_​crossentropy’, 
metrics=​[‘accuracy’])
history =​ model.fit(X, y, epochs=​100, verbose=​0)

6.12 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

6.12.1 �M isinterpreting Entropy

	• Mistake: Confusing entropy with variance or other measures of spread.
	• Tip: Remember that entropy measures the unpredictability or uncertainty of a random vari-

able, not the variability of its outcomes. Entropy quantifies the average amount of information 
produced by a stochastic data source.

6.12.2 �I ncorrect Calculation of Entropy

	• Mistake: Using incorrect probabilities or forgetting to sum over all possible outcomes.
	• Tip: Ensure that the probability distribution sums to 1 and carefully calculate entropy by 

summing the product of each probability and its logarithm.

6.12.3 �M isunderstanding Joint and Conditional Entropies

	• Mistake: Treating joint and conditional entropies as independent of each other.
	• Tip: Joint entropy accounts for the combined uncertainty of two variables, while conditional 

entropy measures the remaining uncertainty of one variable given the other. Always consider 
their relationship and dependencies.

6.12.4 �O verlooking the Asymmetry of KL Divergence

	• Mistake: Assuming KL divergence is symmetric and misinterprets the results.
	• Tip: Remember that D P Q D Q P

KL KL
( || ) ( || )≠ . The divergence from P to Q is not the same as 

from Q to P. Always interpret the direction correctly.
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6.12.5 �C onfusing Mutual Information with Correlation

	• Mistake: Equating mutual information with linear correlation.
	• Tip: Mutual information measures any dependency between variables, not just linear 

relationships. It captures both linear and non-​linear dependencies, unlike Pearson correlation.

6.12.6 �I gnoring the Basis of Logarithms in Entropy Calculations

	• Mistake: Using inconsistent logarithm bases when calculating entropy.
	• Tip: Use base 2 logarithms for entropy measured in bits. Ensure consistency in the logarithm 

base throughout your calculations.

6.12.7 �M isapplying Shannon’s Noisy Channel Coding Theorem

	• Mistake: Misinterpreting the channel capacity or ignoring noise effects.
	• Tip: Understand that channel capacity is the maximum reliable transmission rate over a noisy 

channel. Ensure that your encoding and decoding schemes are designed to operate below this 
capacity to minimize errors.

6.13 � REVIEW QUESTIONS

1.	 Define entropy. How does it measure the unpredictability or randomness of information?
2.	 Explain the significance of entropy in the context of data transmission and compression.
3.	 How is entropy mathematically defined for a discrete random variable? Provide an example 

using a binary source.
4.	 What are joint entropy and conditional entropy? How do they differ from and relate to 

standard entropy?
5.	 Provide an example where knowing one variable significantly reduces the uncertainty of 

another variable.
6.	 Define mutual information and explain its importance in feature selection and machine 

learning models.
7.	 How is mutual information used to assess the relationship between two variables?
8.	 How does Shannon’s theorem guide the design of error-​correcting codes?
9.	 Explain the concept of the information bottleneck method. In what ways is this method 

utilized in deep learning?
10.	 Describe the KL divergence and its significance in comparing probability distributions.

6.14 � PROGRAMMING QUESTIONS

6.14.1 E asy

Calculate the entropy of a given discrete random variable and plot its probability distribution.

1.	 Define a discrete random variable with given probabilities for each outcome.
2.	 Calculate the entropy of the random variable using the entropy formula.
3.	 Create a bar plot to visualize the probability distribution of the random variable.
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6.14.2 M edium

Calculate the mutual information between two discrete random variables and interpret the results.

1.	 Define two discrete random variables with given joint probabilities.
2.	 Calculate the marginal probabilities of each variable.
3.	 Compute the joint entropy, marginal entropies, and conditional entropies.
4.	 Calculate the mutual information using the formula: I(X; Y) =​ H(X) +​ H(Y) –​ H(X, Y).
5.	 Interpret the mutual information value and explain what it signifies about the relationship 

between the two variables.

6.14.3 H ard

Implement and train a neural network on a synthetic dataset, then analyze the change in entropy and 
mutual information of the hidden layers’ activations during training.

1.	 Generate a synthetic dataset for binary classification.
2.	 Build a neural network with multiple hidden layers using a deep learning framework (e.g., 

TensorFlow or PyTorch).
3.	 Train the neural network on the synthetic dataset, recording the activations of each hidden 

layer at each epoch.
4.	 Calculate the entropy of the activations for each hidden layer at different epochs.
5.	 Calculate the mutual information between the input and the activations and between the 

activations and the output at different epochs.
6.	 Visualize the change in entropy and mutual information over the training epochs using line 

plots.
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7  Graph Theory

7.1 � INTRODUCTION

In the world of deep learning, mathematical structures like graphs have emerged as an effective 
tool to model complex relationships and patterns. Graph theory, with its ability to depict pairwise 
relations between entities, has proven to be required, bridging gaps that traditional linear methods in 
machine learning could not address. As our digital universe grows increasingly connected, the webs 
of relationships, from social networks to molecular structures, demand a more subtle approach to 
data representation and analysis. Neural networks, the backbone of many modern artificial intelli-
gence (AI) systems, have started integrating principles from graph theory, giving birth to innovative 
models tailored to handle this newfound complexity. The union of graph theory and neural networks 
is not just a theoretical attraction; it carries significant practical implications. By treating data as 
nodes and their relationships as edges, a crowd of real-​world applications, from social media ana-
lysis to drug discovery, has been unlocked. This chapter explores the role of graph theory in deep 
learning.

7.2 � GRAPH THEORY FOR DEEP LEARNING

Understanding the basic types of graphs and their properties is fundamental for modeling and 
solving problems in various domains, including computer science, biology, social sciences,   
and more. Graphs provide a useful and powerful way to represent and analyze the relationships and 
structures within data.

7.2.1 �G raph

A graph is a fundamental mathematical structure consisting of a set of nodes (vertices) and edges. 
The key components of the graph are nodes and edges.

7.2.1.1 � Nodes (Vertices)
Nodes represent entities or objects within the graph. Each node can contain attributes or features that 
provide additional information about the entity it represents.

7.2.1.2 � Edges (Connections)
Edges represent the relationships or connections between nodes. Edges can be directed or undir-
ected, weighted or unweighted, depending on the nature of the relationship they model.
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7.2.2 �D irected Graph

A directed graph is a type of graph in which the edges have a specific direction. This means each edge 
points from one node to another, indicating a one-​way relationship. Directed graphs are represented 
visually by arrows that show the direction of the connection between nodes. Directed graphs provide 
a clear and effective way to model and analyze systems where directionality is a critical component 
of the relationships between entities. They enable the study of influence, flow, and hierarchy within 
a network. Its key characteristics are directional edges and asymmetry.

7.2.2.1 � Directional Edges
Each edge has a direction, typically represented by an arrow pointing from the source node (start) 
to the target node (end).

7.2.2.2 � Asymmetry
The relationship between nodes is not necessarily equal. For instance, if there is a directed edge 
from Node A to Node B, it does not imply there is an edge from B to A.

7.2.2.3 � Directed Graph Example
Consider a citation network in academia. Each research paper is represented as a node, and a citation 
from one paper to another forms a directed edge. For instance, if Paper A cites Paper B, we have a 
directed edge from Node A to Node B. This means that the influence flows in one direction—​Paper 
A is influenced by Paper B. However, this does not imply the reverse relationship (i.e., Paper B may 
not cite Paper A). A directed graph is defined as G =​ (V, E), where V is a set of vertices (or nodes), 
and E ⊆⊆ V × V is a set of directed edges. Each edge (u, v) ∈∈ E represents a directed connection from 
Node u to Node v. This directionality distinguishes directed graphs from undirected graphs. For 
instance, let’s define a small citation network with three papers: Paper A cites Paper B and Paper C, 
and Paper B cites Paper C. This directed graph can be represented as: V =​ {A, B, C} and E =​ {(A, 
B), (A, C), (B, C)}.

7.2.3 �U ndirected Graph

An undirected graph is a type of graph in which the edges have no direction. This means that 
each edge simply connects two nodes without implying any order or hierarchy between them. In 
undirected graphs, the relationships represented by the edges are mutual and bidirectional. Its key 
characteristics are bidirectional edges and symmetry.

7.2.3.1 � Bidirectional Edges
Each edge connects two nodes without any direction, indicating that the relationship goes both ways.

7.2.3.2 � Symmetry
If there is an edge between Node A and Node B, it implies a two-​way relationship, meaning A is 
connected to B, and B is connected to A.

7.2.3.3 � Undirected Graph Example
Undirected graphs are ideal for modeling scenarios where the relationships are inherently mutual. 
Consider a social network. In this network, each person is represented by a node, and each friendship 
is represented by an undirected edge between two nodes. For example, if Alice and Bob are friends, 
there is an undirected edge between the nodes representing Alice and Bob. This edge implies a 
mutual relationship, meaning Alice is connected to Bob, and Bob is equally connected to Alice. An 

 

 

 

 

 

 

 

 

 



207Graph Theory

undirected graph is defined as G =​ (V, E), where V is a set of vertices (or nodes), and E ⊆⊆ {{u, v} ∣∣ 
u, v ∈∈ V} is a set of edges, where each edge {u, v} connects Node u and Node v, with no direction 
implied. For example, consider a simple social network with three people: Alice (A), Bob (B), and 
Carol (C). Suppose Alice is friends with both Bob and Carol, and Bob is friends with Carol. The 
undirected graph representing this network can be expressed as: V =​ {A, B, C} and E =​ {{A, B}, {A, 
C}, {B, C}}. In this graph, the edge {A, B} means that Alice and Bob are friends, and the relation-
ship is bidirectional.

7.2.4 �W eighted Graph

A weighted graph is a type of graph in which each edge has an associated weight. These weights 
typically represent some quantitative attribute of the connection between nodes, such as cost, length, 
capacity, or strength. Weighted graphs provide a more detailed representation of relationships by 
incorporating the magnitude of the connections. One of the key characteristics of weighted graphs is 
the presence of edge weights. Each edge in the graph has a numerical value, or weight, that quanti-
fies the strength, cost, or capacity of the connection between the nodes. These weights play a crucial 
role in determining the significance of relationships within the graph. Weighted graphs are particu-
larly useful in scenarios where the strength or cost of connections needs to be considered. Consider 
a transportation network where cities are nodes and roads between them are edges. A weighted 
graph is defined as G =​ (V, E, w), where V is the set of vertices (or nodes), E ⊆⊆ V × V is the set of 
edges, and w: E → R is a function that assigns a weight to each edge. In this case, the weight w(e) 
represents the quantitative value associated with edge e. For example, consider a transportation net-
work with three cities: A, B, and C. Let the distances between the cities be: A to B: 200 km, A to 
C: 150 km, and B to C: 300 km. This weighted graph can be represented as follows: V =​ {A, B, C}, 
E =​ {(A, B), (A, C), (B, C)}, w(A, B) =​ 200, w(A, C) =​ 150, and w(B, C) =​ 300.

Figure 7.1 illustrates the structure and transformation of graphs under different configurations. 
In Figure 7.1a, an undirected graph is displayed, where nodes A through E are connected by edges 
that do not have any directional information. This layout is useful for modeling scenarios where the 
relationship between entities is bidirectional or symmetrical, such as social connections or mutual 
collaborations. Figure 7.1b shows the same set of nodes in a directed graph configuration. In this 
graph, the edges are directed, indicated by arrows pointing from one node to another, demonstrating 
that the relationship now has directionality. This change is essential in cases where the flow of infor-
mation or influence is one way, such as in citation networks or communication pathways. Nodes A 
through E are connected in a manner that shows the direction of influence or dependency among 
them, providing insights into the asymmetry of these relationships. The third Figure 7.1c introduces 
a weighted directed graph, where both the direction and the magnitude of influence are represented. 
The edges not only show the direction (as indicated by arrows) but also have associated weights, 
which are indicated by the thickness of the edges and labeled numbers along the arrows. These 
weights quantify the strength or significance of the connections, which is crucial for understanding 
the intensity of relationships or the capacity of flows between nodes, such as in transportation 
networks or neural connections in brain models.

7.3 � GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) seamlessly blend classical graph algorithms with deep learning 
techniques, showcasing neural networks’ incredible flexibility and adaptability. They represent a 
promising future where diverse data types are naturally integrated into AI models. Unlike images or 
sequences with structured formats, graph data is inherently irregular. GNNs rise to this challenge, 
offering a class of neural networks designed explicitly for graph-​structured data. At the heart of 
GNNs lies the principle of neighborhood aggregation, also known as message passing. Each node 
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FIGURE 7.1  (a) Undirected graph, (b) directed graph, and (c) ss weighted graph.
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209Graph Theory

aggregates information from its immediate neighbors to update its representation in this process. 
This iterative approach allows information to flow through the graph, ensuring each node gains con-
textual knowledge about its broader neighborhood. The update rule is mathematically expressed as:

	 h W h u N v
v
k k

u
k( ) ( ) −( )= ⋅ ∈ ( ){ }( )( )σ AGGREGATE 1 : 	

where:

	• h
v
k( )  is the representation of Node v at the kth iteration,

	• σ is a nonlinear activation function,
	• W is a learnable weight matrix,
	• N(v) denotes the neighbors of Node v, and
	• AGGREGATE is an aggregation function, such as sum, mean, or max.

Consider a simple graph with four nodes: A, B, C, and D. The connections are as follows:

	• Node A is connected to Node B and Node C,
	• Node B is connected to Node A and Node D,
	• Node C is connected to Node A, and
	• Node D is connected to Node B.

The adjacency list representation is N(A) =​ {B, C}, N(B) =​{A, D}, N(C) =​{A}, and N(D) =​ {B}, and 
each node has an initial feature vector (representation): h

A
0 1( ) = [ ], hB

0 2( ) = [ ], hC
0 3( ) = [ ], and h

D
0 4( ) = [ ]; 

for example, the parameters are as follows:

	• Aggregation function: Sum
	• Activation function (σ): ReLU (Rectified Linear Unit), defined as σ(x) =​ max(0, x)
	• Weight matrix (W): For simplicity, use a scalar W =​ [0.5].

Here, we’ll perform one iteration (k =​ 0 to k =​ 1).

1.	 Aggregate Neighbor Features: For each node, sum the features of its neighbors.
	• Node A:

a.	 Neighbors: N(A) =​ {B, C}

b.	 Neighbor features: h h
B C
0 02 3( ) ( )= [ ] = [ ],

c.	 Aggregated features: AGG
A B C

h h= + = +] [ =] [ 
( ) ( )0 0 2 3 5 .

	• Node B:
a.	 Neighbors: N(B) =​ {A, D}
b.	 Neighbor features: h h

A D
0 01 4( ) ( )= [ ] = [ ],

c.	 Aggregated features: AGG
B A D

h h= + = +] [ =] [ 
( ) ( )0 0 1 4 5 .

	• Node C:
a.	 Neighbors: N(C) =​ {A}
b.	 Neighbor features: h

A
0 1( ) = [ ]

c.	 Aggregated features: AGG
C A

h= = [ ]( )0 1 .
	• Node D:

a.	 Neighbors: N(D) =​ {B}
b.	 Neighbor features: h

B
0 2( ) = [ ]

c.	 Aggregated features: AGG
D B

h= = [ ]( )0 2 .
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2.	 Apply Weight Matrix and Activation Function: Compute the new representation for each node.
	• Node A:

a.	 Before activation: W
A

⋅ = [ ]⋅ =] [ AGG 0 5 5 2 5. .

b.	 After activation: h
A
1 2 5 0 2 5 2 5( ) = [ ]( ) = [ ] = [ ]σ . max( , . ) . .

	• Node B:
a.	 Before activation: W

B
⋅ = ⋅] [ =] [ AGG 0 5 5 2 5. .

b.	 After activation: h
B
1 2 5 2 5( ) = [ ]( ) = [ ]σ . . .

	• Node C:
a.	 Before activation: W

C
⋅ = ⋅] [ =] [ AGG 0 5 1 0 5. .

b.	 After activation: h
C
1 0 5 0 5( ) = [ ]( ) = [ ]σ . . .

	• Node D:
a.	 Before activation: W

D
⋅ = ⋅] [ =] [ AGG 0 5 2 1 0. .

b.	 After activation: . .h
D
1 1 0 1 0( ) = [ ]( ) = [ ]σ .

Updated node features after one iteration: h
A
1 2 5( ) = [ ]. , h

B
1 2 5( ) = [ ]. , h

C
1 0 5( ) = [ ]. , and h

D
1 1 0( ) = [ ]. . Node 

A and Node B now have the same updated feature, reflecting the influence of their neighbors. Node 
C has a lower updated feature because it is only connected to Node A, which had an initial lower 
feature. Finally, Node D’s updated feature reflects its connection to Node B.

Figure 7.2 depicts a graph with 20 nodes and 40 edges. Each node is represented as a circle,  
with its color indicating the predicted class determined by the GNN. The layout uses a spring-​ 
based algorithm, ensuring an even distribution of nodes for better visualization. The dashed edges  

FIGURE 7.2  Graph neural network (GNN).

 

 



211Graph Theory

connect related nodes and emphasize the graph’s topology. A color bar on the side maps the colors  
to corresponding node classes, making each node’s class after classification clear. The node classi-
fication relies on node features and numerical attributes specific to each node. These features are  
processed through the GNN layers, which learn patterns based on both the node features and their  
connections in the graph. After the second layer of the GNN, each node is assigned to one of two  
classes (class 0 or class 1), visualized by distinct colors in the figure. The process demonstrates how  
GNNs capture structural information and use it for classification tasks. Here are the node features  
after GNN propagation:

	 [[–​1.2524378, –​0.33660233], [–​1.3791587, –​0.29007196], [–​1.0469463, –​0.43233487]	

	 [–​0.92821044, –​0.5029573], [–​0.73885995, –​0.6494331], [–​0.9682473, –​0.47762945]	

	 [–​2.123791, –​0.12735331], [–​1.6736698, –​0.2077101], [–​0.6209714, –​0.7709404]	

	 [–​0.5346627, –​0.88156784], [–​1.7315028, –​0.19482112], [–​0.51204944, –​0.91445786]	

	 [–​0.5225032, –​0.89902604], [–​0.90361524, –​0.5193661], [–​2.2530715, –​0.11101644]	

	 [–​2.3229516, –​0.10312293], [–​0.5895047, –​0.80878687], [–​0.6153719, –​0.77748555]	

	 [–​1.3487849, –​0.30050445], [–​0.92802536, –​0.50307834]]	

The output numbers represent the transformed node features after passing through the GNN. Each pair 
corresponds to a specific node, with two values indicating the log probabilities of the node belonging to 
two different classes (class 0 and class 1). Below is an example of how nodes are classified:

	• Example 1 (Node 0): The output is [−1.2524378, −0.33660233]. The first value (−1.2524378) 
corresponds to class 0, and the second value (−0.33660233) corresponds to class 1.    
As −0.33660233 is greater (less negative) than −1.2524378, Node 0 is assigned to class 1.

	• Example 2 (Node 4): The output is [−0.73885995, −0.6494331]. The first value (−0.73885995) 
corresponds to class 0, and the second value (−0.6494331) corresponds to class 1.   
As −0.6494331 is greater (less negative) than −0.73885995, Node 4 is also assigned to class 1.

The classification process determines the class of each node by selecting the class with the higher 
log probability value. These assignments are visualized in Figure 7.2, where nodes are color coded 
according to their respective class.

7.4 � WHY GRAPHS FOR DEEP LEARNING?

Data in many real-​world applications, such as social networks, transportation systems, and biological 
networks, is inherently graph-​structured. Traditional neural networks aren’t designed to handle this 
type of data effectively. Graph-​based deep learning methods, like GNNs, address this challenge by 
modeling relationships and interactions between entities, capturing underlying structures that trad-
itional methods cannot. Here, we discuss why graphs are crucial for deep learning in these contexts.

7.4.1 �I ntuitive Representation of Complex Relationships

Graphs effectively represent complex relationships and dependencies between entities. In social 
networks, for example, users are nodes connected by edges representing friendships or follows. This 
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structure is fundamental for analyzing user behavior, predicting community formation, and studying 
information propagation. By examining these connections, we gain valuable insights into individual 
and collective behaviors, which is essential for tailoring services and targeting audiences.

7.4.2 �E ncoding Relational Information

Graphs inherently encode relational information by directly representing connections between 
entities. This allows models to leverage these relationships for analytical tasks. A key application 
is link prediction, which infers missing or future connections by analyzing existing patterns. This 
is useful for suggesting new friends in social networks, recommending products in e-​commerce, 
or hypothesizing protein interactions in biology. Another application is node classification, where 
nodes are labeled based on their attributes and connections, improving accuracy in tasks like classi-
fying research papers or categorizing users into interest groups.

7.4.3 �F lexibility and Versatility

Graphs can represent diverse data types and relationships, making them suitable for various 
applications. They can include weighted edges with numerical values like strength or cost, useful in 
transportation networks (distances and travel times) and communication networks (bandwidth and 
latency). Directed edges indicate one-​way relationships, essential for modeling web links, citation 
networks, and social media interactions. Graphs can also represent heterogeneous relationships, 
modeling different types of connections in complex systems like biological networks or recom-
mendation systems. For instance, in transportation networks, cities are nodes, and roads are edges 
with weights representing distances to calculate efficient routes; in airline networks, directed edges 
represent one-​way flights.

7.4.4 �E fficiency and Scalability with GNNs

GNNs excel at efficiently propagating information through graphs, capturing both local and global 
structures. They allow nodes to aggregate information from neighbors, learning features from imme-
diate connections and distant nodes, resulting in a complete representation of the graph. Unlike 
traditional methods that struggle with scalability due to complex connections, GNNs reduce com-
putational complexity by focusing on neighborhood aggregation. This makes them well-​suited for 
processing large-​scale datasets like social networks or biological networks without compromising 
speed or accuracy. Their ability to capture intricate relationships enhances performance in tasks like 
node classification, link prediction, and recommendation systems.

7.4.5 �U ncovering Advanced Insights

Graph-​based methods enable deep learning models to uncover advanced insights that are valuable 
for decision-​making and predictive modeling. They help identify influential nodes, those with many 
connections or those bridging different communities. In social networks, these influential users 
effectively spread information and are central to multiple groups; targeting them is invaluable for 
marketing campaigns or strategic dissemination. Graph algorithms also detect communities within 
the network by revealing clusters where nodes are densely connected. Understanding these com-
munities provides insights into the network’s structure and behavior, aiding in discovering user 
groups with similar interests or identifying functional modules in biological networks. Additionally, 
analyzing how graphs evolve over time enhances understanding of network dynamics, including 
information spread and relationship changes, which is critical for predicting future trends and    
behaviors.
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Figure 7.3 offers an exploration of various graph configurations and processes, demonstrating how 
different graph structures and analyses reveal distinct aspects of networked systems. In Figure 7.3a, 
an undirected graph is shown, where each connection between nodes is mutual, representing a 
scenario where relationships are bidirectional, such as friendships in a social network. Figure 7.3b 
displays a directed graph, introducing arrows that indicate the direction of relationships between 
nodes. This structure is essential for modeling systems where interactions are not reciprocal, such 
as citations in academic papers or one-​way communication channels. Nodes like D and C show 
directional influence over other nodes, highlighting how information or influence flows through 
the network. Figure 7.3c progresses to a weighted directed graph, where each edge not only has 
a direction but also a weight that quantifies the strength of the relationship. The weights, labeled 
and represented by the thickness of the edges, provide additional depth by illustrating the intensity 
or capacity of each connection, which is crucial in contexts like transportation networks or influ-
ence spread models. Figure 7.3d illustrates information propagation within the graph, showing how 
information can travel from one node to others based on their connections. Figure 7.3e depicts com
munity detection within the graph, where nodes are grouped based on their connectivity patterns. 
Nodes that are closely interconnected are grouped together, representing clusters or communities. 
Figure 7.3f focuses on identifying influential nodes in the graph. The nodes are colored based on 
their influence, with red indicating the most influential Node A.

7.5 � NODE AND GRAPH CLASSIFICATION

7.5.1 �N ode Classification

Graph convolutional networks (GCNs) effectively predict labels for nodes within a graph by lever-
aging both the features of each node and the attributes of its neighbors, a task known as node classi-
fication. This application is crucial across many domains, offering valuable insights and enhancing 
predictive capabilities. For example, in social networks, GCNs can categorize users based on 
behavior and connections, distinguishing between influencers, regular users, or potential spammers 
and predicting user interests for personalized recommendations and targeted advertising. The clas-
sification process involves aggregating features from a node’s neighbors and combining them with 
its own features to capture the local structure and context within the graph. Through multiple layers 
of convolution, GCNs learn meaningful representations of nodes that encode both their attributes 
and relational context. These representations are then used by a classifier to predict the label or 
category of each node. Imagine a small social network where we want to classify users into two 
categories: “Regular Users” or “Influencers” based on their connections and attributes. Assume, we 
have a graph with five nodes representing users: Node A, Node B, Node C, Node D, and Node E. 
The connections (edges) are as follows:

	• Node A is connected to Node B and Node C.
	• Node B is connected to Node A, Node C, and Node D.
	• Node C is connected to Node A, Node B, and Node E.
	• Node D is connected to Node B.
	• Node E is connected to Node C.

The adjacency list is as follows: N(A) =​ {B, C}, N(B) =​ {A, C, D}, N(C) =​ {A, B, E}, N(D) =​ {B}, 
and N(E) =​ {C}. Each node has a two-​dimensional feature vector representing user attributes (e.g., 
activity level and content quality):

	• h
A
0 0 9 0 1( ) = [ ]. , .  (high activity and low content quality)

	• h
B
0 0 8 0 2( ) = [ ]. , .  
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FIGURE 7.3  (a) Undirected graph, (b) directed graph, (c) weighted graph, (d) information propagation, (e) community detection, and (f) influential nodes.

 

 
new

genrtpdf



215Graph Theory

	• h
C
0 0 3 0 7( ) = [ ]. , .  

	• h
D
0 0 2 0 8( ) = [ ]. , .  

	• h
E
0 0 1 0 9( ) = [ ]. , .  (low activity and high content quality).

Node labels are as follows:

	• Labeled Nodes: Node A: Regular user (Label 0) and Node D: Influencer (Label 1)
	• Unlabeled Nodes: Node B:?, Node C:?, Node E:?.

Our goal is to predict the labels for Nodes B, C, and E. GCN layer equation is as follows:

	 H D AD H Wk k k+( ) − − ( ) ( )= ( )1 1 2 1 2σ   

/ / 	

where:

	• H(k): Node features at layer k,
	• A A I= + : Adjacency matrix with self-​loops (I is the identity matrix),
	• D: Diagonal node degree matrix of A,
	• W(k): Weight matrix at layer k,
	• σ: Activation function (e.g., ReLU).

We’ll perform one GCN layer (k =​ 0 to k =​ 1) and use ReLU as the activation function: σ(x) =​ max(0,x). 
For simplicity, we will use the mean aggregation instead of normalized adjacency and the same 
weight matrix W for all nodes. Here are the step-​by-​step computations:

1.	 Build the Adjacency Matrix with Self-​Loops: The adjacency matrix (A) is:

	 A =























0 1 1 0 0

1 0 1 1 0

1 1 0 0 1

0 1 0 0 0

0 0 1 0 0

	

A is Adjacency matrix (without self-​loops) and With self-​loops added (Ã =​ A +​ I):

	 A A I= + =























1 1 1 0 0

1 1 1 1 0

1 1 1 0 1

0 1 0 1 0

0 0 1 0 1

	

2.	 Compute Degree Matrix: Calculate the degree (number of connections) for each node, 
including self-​loops.
	• Node A: Degree =​ 1 (self-​loop) +​ 2 (B and C) =​ 3,
	• Node B: Degree =​ 1 (self-​loop) +​ 3 (A, C, D) =​ 4,
	• Node C: Degree =​ 1 (self-​loop) +​ 3 (A, B, E) =​ 4,
	• Node D: Degree =​ 1 (self-​loop) +​ 1 (B) =​ 2,
	• Node E: Degree =​ 1 (self-​loop) +​ 1(C) =​ 2.
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Degree matrix ( D) is as follows:

		  D =























3 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 2 0

0 0 0 0 2

	

(3)	 Compute Normalized Adjacency Matrix: Using mean aggregation (simplified here), we’ll 
divide each row of A by the degree of the node. The normalized adjacency matrix Â is:

	 Â
A

Dij

ij

ii

=




	

Compute each element:

	• For Node A (Row 1): ˆ
,

A
A A

=
1

3
, ˆ

,
A

A B
=

1

3
, and ˆ

,
A

A C
=

1

3
.

	• For Node B (Row 2): ˆ
,

A
B A

=
1

4
, ˆ

,
A

B B
=

1

4
, ˆ

,
A

B C
=

1

4
, and ˆ

,
A

B D
=

1

4
.

Continue similarly for other nodes. For shortness, we’ll represent Âas a matrix:

	 Â =


















1

3

1

3

1

3
0 0

1

4

1

4

1

4

1

4
0

1

4

1

4

1

4
0

1

4

0
1

2
0

1

2
0

0 0
1

2
0

1

2 














	

4.	 Define Weight Matrix: Assume a weight matrix W for transforming features:

	 W =










0 5 0 1

0 3 0 7

. .

. .
	

As our initial features are two-​dimensional and we aim to obtain two-​dimensional outputs, 
W should be a 2 × 2 matrix.

5.	 Compute Updated Node Features: Compute H AH W1 0( ) ( )= ( )σ ˆ . Let’s compute this step by 
step for each node. Compute the product H W0( )  for each node:

	• For Node A: h W
A
0 0 9 0 1

0 5 0 1

0 3 0 7

0 9 0 5 0 1 0 3 0

( ) = [ ]









= ( )( ) + ( )( )

. , .
. .

. .

. . . . , .. . . . . , .9 0 1 0 1 0 7 0 48 0 16( )( ) + ( )( ) =] [ 

.
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	• For Node B: h W W
B
0 0 8 0 2 0 44 0 22( ) = =] [ . , . . , . .

	• For Node C: h W W
C
0 0 3 0 7 0 36 0 52( ) = =[ . , . ] [ . , . ]  .

	• For Node D: h W W
D
0 0 2 0 8 0 34 0 58( ) = =] [ . , . . , . .

	• For Node E: h W W
E
0 0 1 0 9 0 32 0 64( ) = =[ . , . ] [ . , . ] .

Assemble H W0( )  matrix:

	 H W0

0 48 0 16

0 44 0 22

0 36 0 52

0 34 0 58

0 32 0 64

( ) =


















. .

. .

. .

. .

. .










	

Compute ÂH W0( ) : Compute the weighted sum of neighbor features for each node. For 
Node A:

	 h A h W
A

j N A A
A j j

1 0( )
∈ ( )∪{ }

( )= ⋅








∑σ ˆ

,
	

Compute the contributions:

	• Self-​loop contribution: ˆ . , . . , .
,

A h W
A A A

⋅ = ⋅ =] [ 
( )0 1

3
0 48 0 16 0 16 0 053 .

	• From Node B: ˆ . , . . , .
,

A h W
A B B

⋅ = ⋅ =] [ 
( )0 1

3
0 44 0 22 0 147 0 073 .

	• From Node C: ˆ . , . . , .
,

A h W
A C C

⋅ = ⋅ =] [ 
( )0 1

3
0 36 0 52 0 12 0 173 .

Sum them up:

	

h
A
1 0 16 0 053 0 147 0 073 0 12 0 173

0 427

( ) = +] [ +] [ ( )
=

σ
σ

. , . . , . . , .

. , 00 299 0 427 0 299. . , .[ ]( ) = [ ] 	

For Node B, the contributions are:

	• Self-​loop: ˆ . , . . , .
,

A h W
B B B

⋅ = ⋅ =] [ 
( )0 1

4
0 44 0 22 0 11 0 055 .

	• From Node A: ˆ . , . . , .
,

A h W
B A A

⋅ = ⋅ =] [ 
( )0 1

4
0 48 0 16 0 12 0 04 .

	• From Node C: ˆ . , . . , .
,

A h W
B C C

⋅ = ⋅ =] [ 
( )0 1

4
0 36 0 52 0 09 0 13 .

	• From Node D: ˆ . , . . , .
,

A h W
B D D

⋅ = ⋅ =] [ 
( )0 1

4
0 34 0 58 0 085 0 145 .
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Sum them up:

h
B
1 0 11 0 055 0 12 0 04 0 09 0 13 0 085 0 145( ) = +] [ +] [ +] [ σ . , . . , . . , . . , . ( )

= [ ]( ) = [ ]σ 0 405 0 37 0 405 0 37. , . . , .

For Node C, the contributions are:

	• Self-​loop: ˆ . , . . , .
,

A h W
C C C

⋅ = ⋅ =] [ 
( )0 1

4
0 36 0 52 0 09 0 13 .

	• From Node A: ˆ . , . . , .
,

A h W
C A A

⋅ = ⋅ =] [ 
( )0 1

4
0 48 0 16 0 12 0 04 .

	• From Node B: ˆ . , .
,

A h W
C B B

⋅ = [ ]( )0 0 11 0 055 .

	• From Node E: ˆ . , . . , .
,

A h W
C E E

⋅ = ⋅ =] [ 
( )0 1

4
0 32 0 64 0 08 0 16 .

Sum them up:

h
C
1 0 09 0 13 0 12 0 04 0 11 0 055 0 08 0 16( ) = +] [ +] [ +] [ (σ . , . . , . . , . . , . ))

= [ ]( ) = [ ]σ 0 4 0 385 0 4 0 385. , . . , .

For Node D, the contributions are:

	• Self-​loop: A h WD D D


, . , . . , .⋅ = ⋅ =] [ 
( )0 1

2
0 34 0 58 0 17 0 29 .

	• From Node B: ˆ . , . . , .
,

A h W
D B B

⋅ = ⋅ =] [ 
( )0 1

2
0 44 0 22 0 22 0 11 .

Sum them up:

	 h
D
1 0 17 0 29 0 22 0 11 0 39 0 4 0 39 0 4( ) = +] [ ( ) = [ ]( ) = [σ σ. , . . , . . , . . , . ]]	

For Node E, the contributions are:

	• Self-​loop: ˆ . , . . , .
,

A h W
E E E

⋅ = ⋅ =] [ 
( )0 1

2
0 32 0 64 0 16 0 32 .

	• From Node C: ˆ . , . . , .
,

A h W
E C C

⋅ = ⋅ =] [ 
( )0 1

2
0 36 0 52 0 18 0 26 .

Sum them up:

	 h
E
1 0 16 0 32 0 18 0 26 0 34 0 58 0 34( ) = +] [ ( ) = [ ]( ) =σ σ. , . . , . . , . . , 0 58.[ ]	

6.	 Classification: Now, we’ll use the updated node features H(1) to classify the unlabeled nodes. 
We’ll use a simple linear classifier:

Logits
c

= ( )H W1 , where Wc is a weight matrix mapping node features to class scores.
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Assume:

	 W
c

=
−

−










1 0 1 0

1 0 1 0

. .

. .
	

This is a simple weight matrix for illustrative purposes. Compute logits for each node.

	• Node B:
Logits

B B c
h W= = [ ] −

−








 =

( )

( )1 0 405 0 37
1 0 1 0

1 0 1 0

0 405

. , .
. .

. .

. 11 0 0 37 1 0 0 405 1 0 0 37 1 0 0 035 0 0. . . , . . . . . , .( ) + ( ) −( ) ( ) −( ) + ( )( ) =] [ − 335 

.

	• Node C: Logits
C C c c

h W W= = [ ] = −[ ]( )1 0 4 0 385 0 015 0 015. , . . , . .

	• Node E: Logits
E E c c

h W W= = [ ] = −[ ]( )1 0 34 0 58 0 24 0 24. , . . , . .

Apply SoftMax to get probabilities:

	 Softmax z
e

ei

z

j

z

i

j
( ) =

∑
	

Compute for Node B:

	• z =​ [0.035, −0.035].
	• Exponentials: e0.035 ≈ 1.0357, e−0.035 ≈ 0.9658.
	• Sum: 1.0357 +​ 0.9658 =​ 2.0015.

	• Probabilities: Class 0 (regular user): 
1 0357

2 0015
0 5178

.

.
.≈ , Class 1 (Influencer):   

0 9658

2 0015
0 4822

.

.
.≈ .

Similarly, compute for Nodes C and E. For Node C, the probabilities are similar to Node B 
due to close logits. These probabilities will be around 0.5075 for Class 0 and 0.4925 for class 
1. The Node E probabilities are:
	• z =​ [−0.24, 0.24]
	• Exponentials: e−0.24 ≈ 0.7866, e0.24 ≈ 1.2712
	• Sum: 0.7866 +​ 1.2712 =​ 2.0578

The probability of class 0 is 
0 7866

2 0578
0 3823

.

.
.≈  0 and that of class 1 is 

1 2712

2 0578
0 6177

.

.
.≈ .

Assign predicted labels:

	• Node B: Class 0 (regular user) with probability ~51.78%
	• Node C: Class 0 (regular user) with probability ~50.75%
	• Node E: Class 1 (influencer) with probability ~61.77%

Here, Node B and Node C are predicted to be regular users, which aligns with their 
connections to Node A, a regular user. Node E is predicted to be an influencer due 
to its strong feature vector, which reflects high content quality, and its connection to 
Node C.
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7.5.2 �G raph Classification

GCNs can predict labels for entire graphs, a task known as graph classification. This is particu-
larly valuable in fields where the overall graph structure determines its classification. In fraud 
detection, for instance, financial transactions can be represented as graphs, where the nodes 
are bank accounts or individuals, and the edges represent transactions between these accounts. 
GCNs classify these graphs as either “Fraudulent” or “Legitimate.” The methodology involves 
representing each graph with nodes, edges, and features. GCNs aggregate features from all nodes 
and edges to capture the graph’s global structure. After multiple convolutional layers, a global 
pooling operation generates a fixed-​size representation of the entire graph. This pooled represen-
tation is then fed into a classifier to predict the graph’s label. Let’s consider an example of finan-
cial transaction data for fraud detection. Each transaction network is represented as a graph. 
The nodes represent bank accounts, and the edges represent the transactions between them. Our 
goal is to classify these networks as either “Fraudulent” or “Legitimate” based on the graph 
structure. Let us work with a small dataset consisting of three transaction networks: Network A, 
Network B, and Network C. Network A is a legitimate transaction network (Label 0), Network 
B is fraudulent (Label 1), and Network C is legitimate (Label 0). The graph structures for these 
networks are as follows: In Network A, there are three nodes representing three accounts. Account 
1 has transactions with Account 2 and Account 3. In Network B, Account 1 is linked to a poten-
tially fraudulent account (Account 4), which in turn transacts with Account 3. Lastly, Network C 
consists of four nodes, with Account 1 connected to Accounts 2 and 3, and Account 2 connected 
to Account 4. The graph structure allows us to represent the relationships between accounts. We 
begin by representing each account using a one-​hot encoding based on its type: regular accounts 
are encoded as [1, 0], and potentially fraudulent accounts are encoded as [0, 1]. The initial node 
features for each network are as follows:

	• Network A: Account 1, Account 2, and Account 3 are regular accounts, so their initial features 
are [1, 0].

	• Network B: Account 1 is regular [1, 0], Account 4 is potentially fraudulent [0, 1], and Account 
3 is regular [1, 0].

	• Network C: Accounts 1, 2, 3, and 4 are all regular accounts, so their initial features are [1, 0].

Next, we define the adjacency matrices to represent the connectivity between nodes. For Network 
A, the adjacency matrix would look like this:

	 A
Network A

=
















0 1 1

1 0 0

1 0 0
	

This matrix shows that Account 1 is connected to both Account 2 and Account 3, while Account 
2 and Account 3 are not directly connected to each other. Similarly, the adjacency matrices 
for Networks B and C would represent their respective connections. We then perform graph 
convolutions to update the node features. A GCN layer aggregates the feature vectors of each 
node’s neighbors. The aggregation function we use here is mean aggregation, where each node’s 
feature is updated by averaging its own features and those of its neighboring nodes. The GCN 
layer equation for Node v at layer k +​ 1 is:

	 h
N v

W h
v
k

u N v

k
u
k+( )

∈ ( )

( ) ( )= ( )








∑1 1σ 	
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where:

	• h
v
k( ) is the feature vector of Node v at layer k,

	• W(k) is the weight matrix for layer k,
	• N(v) is the set of neighbors of Node v, and
	• σ is the activation function (ReLU).

We start with Network A, where the initial node features for all nodes are [1, 0]. We use the following 
weight matrix for the first GCN layer:

	 W 0
0 5 0 1

0 3 0 7
( ) =











. .

. .
	

Step 1: Initial Node Features for Network A: Account 1: [1, 0], Account 2: [1, 0], and Account 
3: [1, 0].

Step 2: Linear Transformation: Using the weight matrix W(0), we perform the linear transform-
ation for each node:

Account 1: [1, 0]⋅W(0) =​ [0.5, 0.1],
Account 2: [1, 0]⋅W(0) =​ [0.5, 0.1],
Account 3: [1, 0]⋅W(0) =​ [0.5, 0.1].

Step 3: Mean Aggregation: Now, we aggregate the node features using the mean of the neighbors’ 
features (including self-​loops). For Account 1, its neighbors are Account 2 and Account 3. The 
aggregated feature for Account 1 is:

	
0 5 0 1 0 5 0 1 0 5 0 1

3
0 5 0 1

. , . . , . . , .
. , .

+] [ +] [  = [ ] 	

Similarly, for Accounts 2 and 3, the aggregation process results in the same feature: [0.5, 0.1].
Step 4: Apply Activation Function (ReLU): The ReLU activation function keeps the features 

unchanged as they are all positive. The updated node features after this GCN layer remain [0.5, 
0.1] for all nodes in Network A.

We repeat this process for Network B and Network C by applying the same linear transformation 
and aggregation steps and adjusting for the different adjacency structures. After updating the node 
features, we use global pooling to generate graph-​level representations. We apply sum pooling, 
which adds the feature vectors of all nodes in a graph. Here is the sum of the features of all three 
nodes, known as the graph-​level representation:

	• For Network A, the graph-​level representation is: gA =​ [1.5, 0.3].
	• For Network B, the graph-​level representation is: gB =​ [1.3, 0.9].
	• For Network C, the graph-​level representation is: gC =​ [2.0, 0.4].

Finally, we classify the graphs using a simple classification layer. We define a weight vector 
Wc =​ [−1.0, 1.0] and a bias b =​ 0. We compute the logits for each network:

	• Network A: logit
A c A

W g b= ⋅ + = −1 2.

	• Network B: logit
B

= −0 4.
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Applying the sigmoid function to get probabilities:

	• Probability of Fraud for Network A: P Fraud
e

( ) =
+

≈
1

1
0 23

1 2
.

.
 (predicted as legitimate).

	• Probability of Fraud for Network B: P Fraud
e

( ) =
+

≈
1

1
0 40

0 4
.

.
 (predicted as legitimate).

If these predictions don’t match the actual labels, the model needs further training to adjust the 
weights and improve accuracy.

Figure 7.4 illustrates different network structures, distinguishing between legitimate and fraudulent 
patterns through node interactions and configurations. In Figure 7.4a, the graph shows a variety of node 
colors, each indicating different account types or groups within a network of legitimate interactions. 
Nodes are connected in a way that suggests diverse, healthy exchanges with no apparent signs of 
suspicious clustering. Figure 7.4b depicts a linear, chain-​like structure where each node connects to 
the next in a sequence. This pattern is often associated with fraudulent activity as it may signify a 
controlled sequence of interactions or transactions, a common tactic in creating synthetic behavior 
that mimics legitimate patterns. Figure 7.4c shows a fully connected triangle, where each node is 
interconnected with others in a balanced and symmetrical manner. Figure 7.4d presents a quadrilateral 
structure, suggesting a looped pattern where nodes engage in orchestrated interactions. The symmetry 
and closed shape indicate a coordinated fraud ring, which could be used to manipulate interactions, 
such as forming closed loops to hide the origin and destination of transactions. Figure 7.4e highlights 
a combination of legitimate and fraudulent nodes. The red nodes (A, B, C, and D) represent fraudu-
lent entities embedded within a chain of blue nodes, which may be legitimate. This setup shows how 
fraudulent actors could leverage legitimate accounts to facilitate fraudulent transactions or disguise 
their activities, creating a mixed network where legitimate and fraudulent behaviors are intertwined. 
Figure 7.4f illustrates a scenario where a central node (B1) serves as a hub, connected to various other 
nodes that represent legitimate accounts (green nodes). This central hub potentially manages fraudu-
lent operations by utilizing these connections to distribute activities or transactions, making it harder 
to trace. The presence of the central fraud node indicates a strategic attempt to leverage legitimate 
connections for malicious purposes, a hallmark of organized fraud operations.

7.6 � CHALLENGES

Addressing the challenges associated with GCNs is crucial for their broader adoption and effect-
iveness in real-​world applications. Researchers are actively developing techniques to improve 
scalability, handle dynamic graphs, and manage heterogeneous graphs more effectively. These 
advancements aim to make GCNs more robust, efficient, and capable of dealing with the complex-
ities of real-​world graph data. In this section, we discuss some of these challenges.

7.6.1 � Scalability

One of the significant challenges with GCNs is scalability. Deep learning models, particularly 
those involving graphs, can be computationally intensive. As the size of the graph increases, the 
amount of data and the number of computations required also grow, leading to high memory and 
processing demands. Large graphs, such as social networks or biological networks with millions 
of nodes and edges, can be particularly challenging to process efficiently. To address this issue, 
researchers are developing methods that help manage the scalability of GCNs. One such approach 
is graph sampling, as exemplified by techniques like GraphSAGE. This method involves sampling 
a subset of nodes and edges to create mini-​batches for training, which reduces the computational 
burden while preserving the graph’s structural information. Another approach is mini-​batch training, 
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FIGURE 7.4  These graphs represent various account interactions, including (a, c) legitimate loops, (b, d) potential fraud rings, (e) mixed 
legitimate and fraudulent networks, (f) centralized fraud operations.
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which processes the graph incrementally rather than all at once. This technique allows for incre-
mental updates, making it possible to train on large graphs without exceeding memory limits. These 
methods are crucial for enabling the use of GCNs on large-​scale data, ensuring that the models 
remain efficient and effective even as the size and complexity of the graphs increase. Consider a 
social network where millions of users (nodes) and billions of connections (edges) form a massive 
graph. Processing this entire graph at once using traditional GCNs would require enormous compu-
tational resources, making it difficult to scale effectively.

7.6.2 �D ynamic Graphs

Many real-​world graphs are not static but dynamic, with nodes and edges frequently being added 
or removed. Handling such dynamic graphs poses a significant challenge because the model must 
continuously update its structure and parameters to accommodate these changes. This requires 
algorithms that can adapt to changes in the graph in real time without necessitating a complete 
retraining of the model. One key approach to addressing this challenge is incremental learning. This 
method involves developing techniques that update the model incrementally as new data arrives, 
allowing the GCN to adapt to changes without starting from scratch. Another approach is processing 
graph data in a streaming fashion, known as streaming graphs. This allows for real-​time updates and 
ensures that the model maintains its accuracy over time as the graph evolves. These approaches are 
essential for effectively managing dynamic graphs, enabling the models to remain responsive and 
accurate as the underlying data changes. Consider a social network where new users (nodes) are 
constantly joining, existing users are unfollowing or following others, and posts (edges) are continu-
ously being posted or deleted. This creates a dynamic graph that evolves over time. To ensure that 
the GCN handling this data remains accurate and up-​to-​date, it must be capable of adjusting to these 
changes without needing to be retrained from scratch every time the graph changes.

7.6.3 �H eterogeneous Graphs

Another challenge is dealing with heterogeneous graphs, where nodes and edges can be of different 
types. For example, in a knowledge graph, nodes might represent various entities such as people, 
places, and organizations, while edges might represent different types of relationships such as 
friendships, locations, and affiliations. Heterogeneous graphs require models capable of handling 
multiple types of nodes and edges, capturing the complex interactions between them. One solution 
to this challenge is the use of heterogeneous GNNs (HetGNN). These specialized architectures 
are designed to process and learn from heterogeneous graphs, effectively capturing the diverse 
interactions and relationships within the data. Another approach is the use of metapath-​based 
methods, which leverage metapaths to capture the relationships between different types of nodes 
and edges, enhancing the model’s ability to learn from heterogeneous data.

7.7 � OTHER GRAPH-​BASED DEEP LEARNING MODELS

These models represent significant advancements in graph-​based deep learning, each addressing 
specific challenges associated with processing graph-​structured data. By incorporating techniques 
such as neighborhood sampling, attention mechanisms, and polynomial approximations, these 
models enhance the scalability, expressiveness, and efficiency of GNNs, making them more suitable 
for various real-​world applications.

7.7.1 �G raphSAGE (Graph Sample and Aggregation)

GraphSAGE is a scalable technique designed to address the computational challenges of GCNs when 
applied to large graphs. By sampling a fixed-​size subset of neighbors for each node, GraphSAGE 
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reduces computational complexity while preserving essential structural information. This approach 
ensures that memory and processing requirements remain manageable, even as the graph size grows, 
making it ideal for large-​scale graphs, such as social networks or biological networks. A key feature 
of GraphSAGE is its neighborhood sampling method. Rather than using all neighbors of a node, 
it samples a fixed number, allowing the model to scale without sacrificing important local struc-
ture. The model introduces several aggregation functions to combine the features of the sampled 
neighbors. The mean aggregation function calculates the mean of the neighbors’ features, pro-
viding a smooth representation of the local structure. The long short-​term memory network (LSTM) 
aggregation function uses a LSTM to capture sequential information and dependencies between 
neighbors. The pooling aggregation function, such as max pooling, highlights the most significant 
features in the neighborhood. The GraphSAGE methodology involves several steps. First, a fixed 
number of neighbors is sampled for each node, reducing neighborhood size while capturing repre-
sentative structural information. Next, an aggregation function (mean, LSTM, or pooling) is applied 
to combine the sampled neighbors’ features, which are then used to update the node’s representa-
tion. Through multiple layers of sampling and aggregation, GraphSAGE learns meaningful node 
representations that incorporate both node features and the structural information from their neigh-
borhood. These learned representations are then used to perform tasks such as node classification, 
link prediction, or graph classification. For a given Node v, GraphSAGE first samples a fixed-​size 
set of neighbors N(v). The feature vectors of these neighbors are then aggregated using one of the 
aggregation functions. For example, using mean aggregation, the new representation for Node v at 
layer l +​ 1 is computed as:

	 h W h h u N v
v
l l

v
l

u
l+ = ⋅ { } ∪ ∀ ∈ ( ){ }( )( )1 σ mean , 	

where:

	• h
v
l is the feature vector of Node v at layer l,

	• W l is a weight matrix,
	• N(v) is the set of sampled neighbors of v, and
	• σ is a nonlinear activation function, such as ReLU.

This process is repeated over multiple layers, enabling the model to incorporate multi-​hop neigh-
borhood information. Consider a simple undirected graph with six nodes: A, B, C, D, E, and F. 
Connections (edges) are as follows:

	• Node A is connected to Nodes B and C.
	• Node B is connected to Nodes A, D, and E.
	• Node C is connected to Nodes A and F.
	• Node D is connected to Node B.
	• Node E is connected to Node B.
	• Node F is connected to Node C.

The adjacency list is: N(A) =​ {B,C}, N(B) =​ {A,D,E}, N(C) =​ {A,F}, N(D) =​ {B}, N(E) =​ {B}, 
and N(F) =​ {C}. Each node has a two-​dimensional feature vector representing certain attributes 
(e.g., properties or characteristics): h

A
0 1 0( ) = [ ], , h

B
0 0 1( ) = [ ], , h

C
0 1 1( ) = [ ], , h

D
0 0 0( ) = [ ], , h

E
0 0 1( ) = [ ], , 

and h
F
0 1 0( ) = [ ], . The parameters, for example, are:

	• Sampling Size (K): At each layer, sample up to two neighbors per node
	• Number of Layers: Two layers (we will update node representations over two iterations)
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	• Aggregation Function: Mean aggregation
	• Activation Function (σ): ReLU

	• Weight Matrices: W 1
0 5 0 1

0 3 0 7
( ) =











. .

. .
 and W 2

0 6 0 2

0 4 0 8
( ) =











. .

. .
.

For each node and at each layer, these three steps should be done:

Step 1: Sampling Neighbors: Randomly sample up to K neighbors from the node’s immediate 
neighbors.

Step 2: Aggregate Neighbor Features: Apply the aggregation function to the sampled neighbors’ 
features.

Step 3: Update Node Representation: Combine the node’s own feature with the aggregated 
neighbor features, apply the weight matrix, and pass it through the activation function to get 
the new node representation.

The step-​by-​step computation is as follows. At the first layer (from h(0) to h(1)):

Step 1. Sampling Neighbors: For this example, we’ll fix the sampled neighbors for consistency:
	• Node A: Sampled Nodes B and C
	• Node B: Sampled Nodes A and D
	• Node C: Sampled Nodes A and F
	• Node D: Sampled Node B (only neighbor)
	• Node E: Sampled Node B (only neighbor)
	• Node F: Sampled Node C (only neighbor).

Step 2. Aggregate Neighbor Features: Using mean aggregation, compute the aggregated neighbor 
features for each node.

	• Node A:
a.	 Sampled neighbors: B and C
b.	 Neighbor features: h

B
0 0 1( ) = [ ],  and h

C
0 1 1( ) = [ ],

c.	 Aggregated feature: agg mean
A B C

h h1 0 0
0 1 1 1

2
0 5 1( ) ( ) ( )= { }( ) =

+] [  = [ ],
, ,

. , .

	• Node B:
a.	 Sampled neighbors: A and D
b.	 Neighbor features: h

A
0 1 0( ) = [ ],  and h

D
0 0 0( ) = [ ],

c.	 Aggregated feature: agg
B
1

1 0 0 0

2
0 5 0( ) =

+] [  = [ ], ,
. , .

	• Node C:
a.	 Sampled neighbors: A and F
b.	 Neighbor features: h

A
0 1 0( ) = [ ],  and ,h

F
0 1 0( ) = [ ]

c.	 Aggregated feature: agg
C
1

1 0 1 0

2
1 0( ) =

+] [  = [ ], ,
, .

	• Node D:
a.	 Sampled neighbor: B
b.	 Aggregated feature: ,agg

D B
h1 0 0 1( ) ( )= = [ ].
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	• Node E:
a.	 Sampled neighbor: B
b.	 Aggregated feature: agg

E B
h1 0 0 1( ) ( )= = [ ], .

	• Node F:
a.	 Sampled neighbor: C
b.	 Aggregated feature: agg

F C
h1 0 1 1( ) ( )= = [ ], .

Step 3. Update Node Representations: Update each node’s representation using 
h W h

v v v
1 1 0 1( ) ( ) ( ) ( )= ⋅( )( )σ | |agg . Here, || denotes the concatenation of the node’s own features with 

its aggregated neighbor features, resulting in a four-​dimensional vector. Accordingly, W(1) 
should be a 2 × 4 matrix. For simplicity, we’ll adjust W(1) to match the dimensions. Let us 
redefine W(1) as a 2 × 4 matrix:

	 W 1
0 5 0 1 0 4 0 2

0 3 0 7 0 6 0 8
( ) =











. . . .

. . . .
	

	• Node A:
a.	 Concatenated features: h

A A
0 1 1 0 0 5 1( ) ( ) = [ ]|| , , . ,agg

b.	 Multiply by W(1):

h W
A
1 1 1 0 0 5 1

0 5 1 0 1 0 0 4 0 5 0( ) ( )= ⋅( ) =
( )( ) + ( )( ) + ( )( ) +

σ σ[ , , . , ]
. . . .


..

. . . . .

2 1

0 3 1 0 7 0 0 6 0 5 0 8 1

( )( )
( )( ) + ( )( ) + ( )( ) + ( )( )





















= σσ
0 5 0 0 2 0 2 0 9

0 3 0 0 3 0 8 1 4
0 9 1 4

. . . .

. . . .
. , .

+ + + =
+ + + =

















= [ ]

c.	 Apply ReLU: h
A
1 0 9 1 4( ) = [ ]. , .

•	 Node B:
a.	 Concatenated features: h

B B
0 1 0 1 0 5 0( ) ( ) = [ ]|| , , . ,agg

b.	 Multiply by W(1):

	

h
B
1

0 5 0 0 1 1 0 4 0 5 0 2 0

0 3 0 0 7
( ) =

( )( ) + ( )( ) + ( )( ) + ( )( )
( )( ) + ( )σ

. . . . .

. . 11 0 6 0 5 0 8 0

0 0 1 0 2 0 0 3

0 0 7

( ) + ( )( ) + ( )( )




















=
+ + + =
+

. . .

. . .

.
σ

++ + =
















= [ ]
0 3 0 1 0

0 3 1 0
. .

. , . 	

Nodes C, D, E, and F can be computed similarly. Also, similar steps should be done for layer 2 
(from h(1) to h(2)).

7.7.2 �G raph Attention Networks

Graph attention networks (GATs) enhance GCNs by introducing an attention mechanism that 
allows nodes to assign different levels of importance to their neighbors’ features. Instead of treating 
all neighboring nodes equally, each node dynamically learns which neighbors are most relevant 
during the training process. This adaptive focus enables the model to capture intricate relationships 
within the graph more effectively, improving its expressiveness and performance, especially 
in heterogeneous and complex graphs where nodes and edges vary in type and significance. 
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By selectively concentrating on the most pertinent neighbors, GATs provide more accurate and 
insightful representations of the data. The methodology includes the following steps:

Step 1. Graph Representation: Each node is initially represented by its feature vector, capturing 
the node’s attributes.

Step 2. Attention Calculation: For each node, calculate the attention coefficients with its neighbors. 
These coefficients represent the importance of each neighbor’s features. The attention coeffi-
cient aij  between nodes i and j is computed as:

	 a a Wh Wh||ij j i j=  ( )( )softmax LeakyReLU  	

where a is the attention vector, W is the weight matrix, h
i
 and h

j
 are the feature vectors of nodes 

i and j, || denotes concatenation, softmax j is the softmax function applied over all neighbors 
j of Node i, and LeakyReLU is a nonlinear activation function applied to the computed value 
before the softmax.

Step 3. Feature Aggregation: Aggregate the features of the neighbors using the attention 
coefficients. This results in a new feature representation for each node that emphasizes the 
more relevant neighbors:

	 h a Wh
i

j N i
ij j′

∈ ( )
=









∑σ 	

where N i( ) denotes the neighbors of Node i, and Ã is an activation function such as ReLU.
Step 4. Multihead Attention: To stabilize the learning process and improve performance, GATs 

often use multihead attention, where multiple attention mechanisms run in parallel, and their 
outputs are concatenated or averaged.

7.7.3 �C hebNet (Chebyshev Networks)

ChebNet utilizes Chebyshev polynomials to generalize convolution operations on graphs, enab-
ling efficient and localized computations. By approximating the graph Laplacian’s eigenfunctions 
with Chebyshev polynomials, ChebNet avoids the explicit computation of eigenvectors, addressing 
computational challenges associated with spectral methods. This approach enhances scalability and 
performance, particularly for large and sparse graphs. ChebNet employs Chebyshev polynomials, 
orthogonal polynomials that approximate spectral graph convolutions, to make the convolution pro-
cess more efficient. This method allows the network to perform localized operations, effectively 
capturing the local structure of the graph by focusing on the immediate neighborhood of each node. 
This focus preserves important local details while maintaining computational efficiency. By lever-
aging polynomial approximations, ChebNet significantly reduces computational costs, streamlining 
spectral graph convolutions and making it suitable for large-​scale graphs. Its scalability allows it 
to handle large and sparse graphs efficiently, making it well-​suited for real-​world datasets without 
overwhelming computational resources. Additionally, ChebNet’s approach enables the model to 
capture multiscale features within the graph, providing a better understanding of the graph’s struc-
ture and properties. This multiscale feature capture enhances the model’s ability to perform various 
complex graph-​based tasks effectively. The methodology includes the following steps:

Step 1. Graph Representation: Each node in the graph is represented by its feature vector. The 
graph’s structure is captured by its adjacency matrix A and the degree matrix D.
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Step 2. Chebyshev Polynomial Approximation: ChebNet approximates the spectral convolution 
operation using Chebyshev polynomials of the graph Laplacian L. The graph Laplacian is 
defined as A (adjacency matrix), D (degree matrix), and L =​ D−A (graph Laplacian). The 

scaled graph Laplacian is: L L I= −
2

λ
max

, where λ
max

 is the largest eigenvalue of L, and I is the 

identity matrix. The convolution operation is defined as:

′ = = ( )
=
∑x g x T L x
k

K

k kθ θ*
0



 

	• x′ is the output feature vector after applying the convolution,
	• gθ represents the filter parameterized by the Chebyshev coefficient θk,
	• θk is the Chebyshev coefficient to be learned,

	• T Lk
( ) is the Chebyshev polynomial evaluated at the scaled Laplacian L

L
I= −

2

λ
max

, and

		 x is the input feature vector.

Step 3. Localized Convolution: Using a finite number of Chebyshev polynomials, the convolu-
tion operation becomes localized, meaning that the filter only considers a local neighborhood 
of nodes.

Step 4. Model Training: Train the ChebNet model using the localized convolution operations to 
learn meaningful node representations for various tasks such as node classification or graph 
classification.

7.7.4 �I mproved Scalability and Efficiency

Traditional graph algorithms are often designed to be highly efficient and scalable, particularly for  
large graphs. By combining these algorithms with deep learning models, it is possible to preprocess  
or simplify the graph structure using classical methods, reducing the computational burden on the  
deep learning model. For example, a graph clustering algorithm can be used to partition the graph  
into smaller, more manageable subgraphs, which can then be processed by a GNN. Deep learning  
models can be used to predict important graph properties or optimize certain aspects of the graph,  
which can then guide the application of classical algorithms. For instance, a GNN can predict the  
critical nodes or edges in a network, which can be prioritized in a shortest path or maximum flow  
algorithm. This combination can lead to more targeted and efficient solutions for problems such as  
network optimization, routing, and resource allocation. Many real-​world problems require both the  
predictive power of deep learning and the optimization capabilities of classical algorithms. By inte-
grating these approaches, it is possible to tackle complex, multifaceted problems more effectively.  
For example, in transportation networks, a GNN can predict traffic patterns and congestion, while  
the shortest path algorithm can optimize routes based on these predictions, providing a solution for  
traffic management. Consider a transportation network where cities are represented as nodes and  
roads as edges, and the goal is to optimize traffic management. Traditional graph algorithms like  
shortest path or maximum flow can effectively solve specific optimization problems, such as finding  
the quickest route or maximizing traffic throughput. However, predicting future traffic conditions or  
identifying critical points in the network requires more advanced models. By combining GNNs with  
classical algorithms, we can achieve both predictive power and optimization. For instance, a GNN  
can be trained to predict traffic patterns based on historical data, identifying critical nodes where  
congestion is likely to occur. These predictions can then inform the shortest path algorithm, allowing  
it to prioritize specific routes that avoid congested areas. In this way, the integration of deep learning  
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with classical methods leads to a more scalable and efficient solution for optimizing transportation  
networks.

Figure 7.5 offers a visualization of the different stages and components involved in the GNN 
process, specifically illustrating how it transforms graph data for node classification. In Figure 7.5a, 
initial node features, the graph is presented in its original state, with each node colored based on the 
average of its normalized feature values. Moving to Figure 7.5b, node classification using GCN, the 
graph displays the results of node classification after being processed by a GCN. In Figure 7.5c, a 
graph with weighted edges, the focus shifts to the relationships between nodes, with edges assigned 
random weights to simulate varying degrees of connection strength. The thickness and color inten-
sity of the edges represent the magnitude of these weights, utilizing the “Blues” colormap. This 
gradient ranges from light blue for weaker connections to deep blue for stronger ones, visually 
conveying the influence of each connection between nodes. Thicker edges denote higher weights, 
emphasizing more influential relationships within the graph. Finally, Figure 7.5d, a graph with 
attention mechanisms, incorporates attention mechanisms into the graph, illustrating how the GNN 
selectively focuses on certain edges over others. This gradient highlights the edges that the GNN 
deems more influential or relevant for node classification tasks. Thicker and more intensely colored 
edges indicate higher attention weights, showcasing the GNN’s ability to prioritize significant node 
relationships while downplaying less important ones.

FIGURE 7.5  (a) Initial node features, (b) node classification using GCN, (c) graph with weighted edges, and 
(d) graph with attention mechanisms.
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Figure 7.6 provides a visualization of the GNN process, showcasing various stages and meth
odologies employed in transforming and analyzing graph-​structured data for node classification. 
In Figure 7.6a, a directed graph, a foundational directed graph is depicted, consisting of five nodes 
interconnected by several directed edges. Transitioning to Figure 7.6b, an undirected graph, the 
same set of nodes and connections from Figure 7.6a is presented without the directional arrows. This 
undirected version underscores mutual relationships or bidirectional connections between nodes, 
suggesting that interactions are reciprocal and not confined to a single direction. Figure 7.6c, a 
weighted graph, introduces an additional layer of complexity by assigning random weights to the 
previously unweighted directed edges. These weights symbolize the strength or significance of the 
connections between nodes. In Figure 7.6d, initial node features, the focus shifts to the attributes 
of the nodes themselves. Figure 7.6e, node classification using GCN, showcases the impact of the 
GCN on node classification. After undergoing two convolutional layers, each node’s features are 
updated by aggregating information from their immediate neighbors. In Figure 7.6f, node classifi
cation using GAT, the results of node classification after processing with a graph attention network 
(GAT) are illustrated. Figure 7.6g, node classification using GraphSAGE, presents the outcomes of 
node classification using the GraphSAGE algorithm. GraphSAGE aggregates features from a node’s 
local neighborhood to generate its representation, which is then utilized for classification.

7.8 � REAL-​WORLD APPLICATIONS

7.8.1 � Social Network Analysis

Social networks are a prime example where graph theory is extensively applied. Users are represented 
as nodes, and their interactions, such as friendships or follows, are depicted as edges. By analyzing 
the structure of these networks, we can gain insights into social behaviors, community formation, 
and information propagation. For example, social network platforms use graph-​based deep learning 
models to recommend new friends or connections by predicting potential links between users. These 
models analyze the existing connections and suggest new links based on patterns observed in the 
network, enhancing user engagement and expanding the social graph.

7.8.2 �R ecommendation Systems

Graph-​based recommendation systems leverage user–​item interaction graphs to provide personalized 
suggestions. In these systems, nodes represent users and items (e.g., movies, products), while edges 
represent interactions such as ratings or purchases. GNNs process these interactions to predict which 
items a user might be interested in, leading to more accurate and relevant recommendations. This 
approach is widely used by platforms, where understanding the relationships between users and 
items is crucial for delivering a tailored experience.

7.8.3 � Biological Network Analysis

In biology, graph theory is essential for understanding the interactions within complex biological 
systems, such as protein–​protein interaction networks or gene regulatory networks. By representing 
these interactions as graphs, researchers can apply GNNs to predict unknown interactions or clas-
sify proteins based on their functions. This method is particularly valuable in drug discovery, where 
identifying potential interactions between proteins can lead to the development of new therapeutic 
targets.
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FIGURE 7.6  (a) Directed graph, (b) undirected graph, (c) weighted directed graph, (d) initial node features, (e) node classification using GNN, (f) node classification 
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7.8.4 �T ransportation and Logistics

Graph theory also plays a vital role in optimizing transportation networks. In these networks, cities 
or transportation hubs are represented as nodes, and the routes between them as edges. The effi-
ciency of these networks can be improved by applying graph-​based algorithms to optimize routes, 
reduce travel times, and minimize costs. For example, delivery companies use these models to opti-
mize their logistics operations, ensuring timely and cost-​effective deliveries.

7.8.5 �F raud Detection

In finance, graph theory is employed to detect fraudulent activities by analyzing transaction networks. 
In these networks, accounts are represented as nodes and transactions as edges. By identifying 
unusual patterns or anomalies in the graph, such as clusters of accounts with suspicious interactions, 
financial institutions can detect and prevent fraudulent activities more effectively. This approach is 
particularly useful in combating complex financial crimes, where traditional methods may fall short.

7.8.6 �H ealthcare and Epidemic Modeling

Graph theory is increasingly used in healthcare to model and predict the spread of diseases. In epi-
demic modeling, individuals are represented as nodes, and their interactions as edges. By analyzing 
these graphs, public health officials can predict how diseases spread through populations and iden-
tify critical nodes (individuals or locations) where interventions can be most effective.

7.9 � HANDS-​ON EXAMPLE

The objective is to build a simple GNN model that can classify nodes in a graph based on their 
features and connections.

7.9.1 � Step 1: Import Required Libraries

In this code snippet, we import various libraries necessary for building a GCN using TensorFlow 
and the Spektral library, along with utilities for data manipulation and visualization. NumPy is 
imported for numerical operations, while tensorflow.keras is used to build neural network models. 
The input and dense layers from Keras will help define the network structure. Spektral’s GCNConv 
layer is a specialized layer for handling graph data, which operates by learning features for nodes 
in a graph based on their connections. The normalized_​adjacency function helps in normalizing the 
adjacency matrix of the graph, a preprocessing step often required in graph-​based learning tasks. 
The adjacency matrix will be handled as a sparse matrix using csr_​matrix from scipy.sparse, which 
efficiently stores large, sparse matrices. For visualization, matplotlib.pyplot is used to plot graphs, 
and networkx is imported for graph generation and manipulation.

import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense
from tensorflow. keras.models import Model
from spektral.layers import GCNConv
from spektral.utils import normalized_​adjacency
from scipy.sparse import csr_​matrix
import matplotlib. pyplot as plt
import networkx as nx
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7.9.2 � Step 2: Create the Graph

In this part of the code, we create an adjacency matrix representing a simple undirected graph using 
a sparse matrix format. The matrix adj_​matrix is constructed using the csr_​matrix function from 
scipy.sparse, which is efficient for storing large matrices with many zeros. In this example, the adja-
cency matrix represents a graph with three nodes. The value 1 in position (i, j) indicates that Node i 
is connected to Node j, while 0 indicates no connection. For this specific matrix, Node 0 is connected 
to Node 1, Node 1 is connected to both Node 0 and Node 2, and Node 2 is connected to Node 
1. This symmetric structure of the matrix reflects the undirected nature of the graph. The dtype=​
np.float32 ensures that the values are stored as 32-​bit floating-​point numbers, which is common in 
deep learning applications. This adjacency matrix will later be used in a GCN to define the structure 
of the graph on which the model operates.

adj_​matrix =​ csr_​matrix([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]], dtype=​np.float32)

7.9.3 � Step 3: Normalize the Adjacency Matrix

In this section, we prepare the normalized adjacency matrix for use in a GCN by converting it into a 
format suitable for TensorFlow. First, the normalized_​adjacency() function normalizes the adjacency 
matrix, a common preprocessing step in GNNs to ensure the graph’s structure is properly scaled. 
Here, we use symmetric normalization (symmetric =​ True), which adjusts the adjacency matrix 
symmetrically to account for the degree of each node. Next, the adjacency matrix is converted to 
COO (coordinate list) format using tocoo(). COO is an efficient format for sparse matrices, which 
stores the nonzero elements by their row and column coordinates. The indices variable is created by 
stacking the row and column indices of the nonzero elements, which will be used to build a sparse 
tensor in TensorFlow. The adjacency matrix is then converted into a TensorFlow SparseTensor (A_​tf), 
where indices hold the coordinates of nonzero elements, values hold the actual nonzero values from 
the adjacency matrix, and dense_​shape represents the overall shape of the matrix. Finally, tf.sparse.
reorder() ensures that the sparse tensor is correctly ordered internally for efficient computations in 
TensorFlow. This processed sparse adjacency matrix will be used as input for graph-​based deep 
learning models like a GCN, allowing the model to learn from the graph structure.

adj_​matrix =​ normalized_​adjacency(adj_​matrix, symmetric=​True)
# Convert to COO format if not already
adj_​matrix =​ adj_​matrix.tocoo()
indices =​ np.column_​stack((adj_​matrix.row, adj_​matrix.col))
A_​tf =​ tf.sparse.SparseTensor(indices=​indices, values=​adj_​
matrix.data, dense_​shape=​adj_​matrix.shape)
# Ensure the sparse tensor is in the correct order
A_​tf =​ tf.sparse.reorder(A_​tf)

7.9.4 � Step 4: Define Node Features

In this line of code, we create a feature matrix for the graph’s nodes using np.eye(3, dtype=​
np.float32), which generates a 3 × 3 identity matrix. The identity matrix is often used as a simple 
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feature representation in graph-​based learning tasks, where each node has a unique feature vector. 
For a graph with three nodes, each row of the matrix represents the features of a node, and the iden-
tity matrix ensures that each node is represented by a unique one-​hot encoded feature vector. For 
instance, Node 0 has the feature vector [1, 0, 0][1, 0, 0][1, 0, 0], Node 1 has [0, 1, 0][0, 1, 0][0, 1, 
0], and Node 2 has [0, 0, 1][0, 0, 1][0, 0, 1]. The dtype=​np.float32 ensures the matrix is stored as 
32-​bit floating-​point numbers, which is common in machine learning tasks. This feature matrix will 
be used as input to the GCN, allowing the model to learn relationships between the graph’s nodes 
based on their features.

features =​ np.eye(3, dtype=​np.float32)

7.9.5 � Step 5: Define Node Labels

In this line of code, we are creating a label matrix for a classification task associated with the nodes 
of the graph. The labels array is a 3 × 2 matrix, where each row corresponds to the one-​hot encoded 
label for a node. The np.array() function is used to create the matrix, and dtype=​np.float32 ensures 
the data is stored as 32-​bit floating-​point numbers. For this example, Node 0 and Node 2 have the 
label [1, 0][1, 0][1, 0], meaning they belong to class 0, and Node 1 has the label [0, 1][0, 1][0, 1], 
meaning it belongs to class 1. Each label is a one-​hot encoded vector representing the class member-
ship of the corresponding node. This label matrix will be used during training of the GCN, allowing 
the model to learn to classify each node into the appropriate class based on its features and the graph 
structure.

labels =​ np.array([[1, 0], [0, 1], [1, 0]], dtype=​np.float32)

7.9.6 � Step 6: Build the GCN Model

In this part of the code, we are building a GCN model using TensorFlow and the Spektral library. 
The model takes both node features and the adjacency matrix as inputs to learn from graph-​structured 
data.

input_​features =​ Input(shape=​(3,), dtype=​‘float32’)
input_​adj =​ Input(shape=​(None,), sparse=​True, dtype=​‘float32’)
gc =​ GCNConv(16, activation=​‘relu’)([input_​features, input_​adj])
output =​ Dense(2, activation=​‘softmax’)(gc)
model =​ Model(inputs=​[input_​features, input_​adj], outputs=​
output)
model.compile(optimizer=​‘adam’, loss=​’categorical_​crossentropy’, 
metrics=​[‘accuracy’])

7.9.7 � Step 7: Train the Model

In this line, we are training the GCN model on the graph data using the model.fit() function. The 
inputs to the model are the features matrix and the adjacency matrix (in sparse tensor format), 
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and the target labels are provided in the labels array. During training, the GCN learns to classify 
nodes by propagating and transforming information from node features and neighboring nodes’ 
features based on the structure of the graph. The model will adjust its weights to minimize the 
categorical cross-​entropy loss, and the accuracy will be evaluated after each epoch to track 
progress.

model.fit(x=​[features, A_​tf], y=​labels, epochs=​10, verbose=​1)

7.9.8 � Step 8: Predict and Visualize

Finally, the graph is displayed with plt.show(), providing a visual representation of the nodes and 
their predicted classes, demonstrating the classification results of the GCN model.

# Predict the node classes
predictions =​ model.predict([features, A_​tf])
predicted_​classes =​ np.argmax(predictions, axis=​1)
# Create a simple graph for visualization
G =​ nx.Graph()
for i in range(len(predicted_​classes)):
   G.add_​node(i, label=​predicted_​classes[i]‌)
# Add edges
edges =​ [(int(i), int(j)) for i, j in zip(adj_​matrix.row, adj_​
matrix.col) if i < j]
G.add_​edges_​from(edges)
# Color map for visualization
color_​map =​ [‘blue’ if label =​=​ 0 else ‘red’ for label in 
predicted_​classes]
# Draw the graph
plt.figure(figsize=​(8, 8))
pos =​ nx.spring_​layout(G, seed=​42)  # for consistent layout
nx.draw(G, pos, node_​color=​color_​map, with_​labels=​True, 
labels=​{i: f’Node {i}\nClass {predicted_​classes[i]‌}’ for i in 
G.nodes()},
       node_​size=​700, font_​color=​‘white’, font_​weight=​’bold’, 
edge_​color=​’gray’, linewidths=​2, alpha=​0.9)
plt.title(‘Node Classification with GCN’, fontsize=​16)
plt.show()

7.10 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

7.10.1 �I mproper Node and Edge Representation

	• Mistake: Incorrectly representing node features or edge connections, leading to errors in graph 
construction and analysis.

	• Tip: Verify the structure of your graph data by visualizing it. Ensure that node features and 
edge connections are accurately represented and that any preprocessing steps (like normaliza-
tion) are correctly applied.
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7.10.2 �I nadequate Data Preprocessing

	• Mistake: Failing to preprocess data appropriately, which can lead to poor model performance 
or training issues.

	• Tip: Normalize node features and ensure that the graph’s adjacency matrix is correctly 
constructed. Handle missing data, and ensure consistency in the representation of nodes and 
edges.

7.10.3 �O ver-​Smoothing in GNNs

	• Mistake: Over-​smoothing where node representations become too similar after multiple layers 
of graph convolutions.

	• Tip: Limit the number of GNN layers, and consider using skip connections or residual 
connections to mitigate over-​smoothing. Experiment with different aggregation functions and 
regularization techniques.

7.10.4 �I gnoring Graph Size and Complexity

	• Mistake: Applying standard GNN models directly to very large or complex graphs without 
considering scalability.

	• Tip: Use models like GraphSAGE or sampling techniques to handle large graphs. Consider 
hierarchical approaches or graph coarsening to reduce complexity.

7.10.5 �O verlooking Edge Weights and Attention Mechanisms

	• Mistake: Not leveraging edge weights or attention mechanisms, leading to suboptimal per-
formance in tasks requiring nuanced relational understanding.

	• Tip: Incorporate edge weights into your model if your graph data includes them. Use graph 
attention networks (GATs) to apply attention mechanisms, which can weigh the importance 
of different edges.

7.10.6 �I nsufficient Model Evaluation

	• Mistake: Failing to evaluate models thoroughly, leading to misleading conclusions about 
model performance.

	• Tip: Use cross-​validation, and ensure that evaluation metrics are appropriate for the specific 
graph-​related task. Visualize model predictions and errors to gain insights into performance.

7.10.7 �M isapplying Classical Graph Algorithms

	• Mistake: Incorrectly integrating classical graph algorithms with neural network models, 
leading to errors in analysis or suboptimal solutions.

	• Tip: Thoroughly understand the principles of classical graph algorithms before integrating 
them with neural networks. Ensure compatibility and correctness in implementation.

7.10.8 �N eglecting Dynamic and Heterogeneous Graphs

	• Mistake: Ignoring the dynamic nature of graphs or the presence of multiple types of nodes and 
edges, leading to incomplete or incorrect analysis.

	• Tip: Use dynamic GNN models and account for the heterogeneity in your graph data. Develop 
custom models or preprocessing steps to handle dynamic and heterogeneous graphs effectively.

 

 

 

 

 

 

 

 



238 Mathematical Foundations for Deep Learning

7.11 � REVIEW QUESTIONS

1.	 What are the fundamental components of a graph, and how do they contribute to the graph’s 
structure and functionality?

2.	 How do directed and undirected graphs differ, and in which scenarios is each type particu-
larly useful?

3.	 What is a weighted graph, and how do edge weights influence the outcomes of graph 
analysis?

4.	 What are the limitations of traditional neural networks when processing graph-​structured 
data, and why are specialized models like GNNs necessary?

5.	 How do GNNs process graph-​structured data, and what is the significance of their architec-
ture in handling complex networks?

6.	 How do GCNs generalize the convolution operation to effectively handle graph data?
7.	 What are the typical real-​world applications of GCNs, and how do they provide value in 

those contexts?
8.	 What are the primary challenges encountered when implementing graph-​based deep learning 

models, particularly in large-​scale or complex datasets?
9.	 What is GraphSAGE, and how does it enhance the scalability and efficiency of GNNs in 

processing large graphs?
10.	 How does ChebNet utilize Chebyshev polynomials to generalize the convolution operation 

for graphs, and what advantages does this method offer?

7.12 � PROGRAMMING QUESTIONS

7.12.1 �E asy

Implement a single GCN.

1.	 Define the adjacency matrix and node feature matrix for a small graph.
2.	 Implement the GCN layer function, which includes normalizing the adjacency matrix and 

applying the GCN formula to the node features.
3.	 Apply the GCN layer to the graph data, and print the updated node features.

7.12.2 �M edium

Use a GCN to perform node classification on the Cora citation network dataset.

1.	 Load and preprocess the Cora dataset, including the adjacency matrix and feature matrix.
2.	 Split the dataset into training and test sets.
3.	 Define a GCN model using TensorFlow/​Keras or PyTorch with multiple GCN layers.
4.	 Train the GCN model on the training set and evaluate its performance on the test set.
5.	 Visualize the learned node embeddings and the classification results.

7.12.3 �H ard

Implement and train a GAT for node classification on a large graph dataset.

1.	 Load and preprocess a large graph dataset, such as PubMed or Reddit, including adjacency 
matrix and feature matrix.
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2.	 Implement the GAT layer, focusing on computing attention coefficients and applying 
attention to the node features.

3.	 Define a GAT model with multiple GAT layers.
4.	 Train the GAT model using appropriate techniques for large graphs.
5.	 Evaluate the model’s performance on a test set and visualize the results, comparing them 

with a baseline GCN model.
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8  Differential Geometry

8.1 � INTRODUCTION

As we move into the digital age, with rapid advances in technology, differential geometry is finding 
new importance in deep learning. As deep learning becomes more complex, the need to under-
stand its inner workings grows. This is where differential geometry becomes crucial. By interpreting 
neural networks using concepts like manifolds and curvature, we can gain valuable insights into how 
these networks train, optimize, and represent information. This chapter reviews these concepts in 
more detail.

8.2 � BASICS OF DIFFERENTIAL GEOMETRY

Differential focuses on properties of space that remain unchanged under smooth transformations, 
like bending or stretching, and its understanding of the geometry of data and model parameters is 
crucial in deep learning and neural networks.

8.2.1 �M anifolds

A manifold is a topological space that, when examined closely, looks like a flat piece of Euclidean 
space. To illustrate, think of an ant walking on the surface of a basketball. From the ant’s perspec-
tive, the surface appears flat, as it can only see a small portion at any given time, even though the 
surface is curved. This idea of being “locally flat” is the essence of a manifold. The number of 
coordinates required to describe a point on the manifold determines its dimension. For example, 
while the surface of a sphere curves in three-​dimensional (3D) space, it is a 2D manifold because 
any small region looks flat, like a plane. In deep learning, data often exists in high-​dimensional 
spaces, and understanding the structure and dimensionality of this data is essential for tasks like 
visualization, dimensionality reduction, and feature extraction. The manifold hypothesis suggests 
that high-​dimensional data often resides on or near a lower-​dimensional manifold. For instance, 
images of faces might occupy a lower-​dimensional space within the vast high-​dimensional space 
of all possible images. Consider a set of handwritten digits. Each image may be high-​dimensional, 
such as a 28 × 28 pixel grid, but the variations between different images of the same digit can often 
be captured by just a few parameters, like thickness or slant. This implies that the images of hand-
written digits sit on a lower-​dimensional manifold within the higher-​dimensional space of all pos-
sible pixel combinations. Methods such as Principal Component Analysis (PCA) and t-​Distributed 
Stochastic Neighbor Embedding (t-​SNE) help identify these lower-​dimensional manifolds, making 
data analysis and visualization more manageable. Understanding manifolds helps deep learning 
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practitioners grasp the underlying structure of data, leading to more effective models and deeper 
insights. Let X ⊂ Rn be a high-​dimensional dataset, and assume that X lies on a manifold M ⊂ Rd, 
where d ≪ n. The goal of techniques like PCA or autoencoders is to find a mapping f: Rn → Rd, 
such that:

	 x f z z xd n= ( ) ∈ ∈, .where and  	

Here, z represents the coordinates on the lower-​dimensional manifold, and f maps these coordinates 
back to the high-​dimensional space. For example, in PCA, the data are projected onto the first few 
principal components, which form the lower-​dimensional manifold.

8.2.2 �T angent Space

To understand a tangent space, imagine picking a point on a curved surface, like a sphere. Now 
picture a flat plane that touches the surface at that exact point but doesn’t cut through it. This plane 
represents tangent space, and it captures all possible directions from which you could move. For 
a 2D surface, the tangent space is a flat plane, but for higher-​dimensional manifolds, the concept 
extends into more complex spaces. In deep learning, the idea of a tangent space becomes important 
when we consider optimization methods like gradient descent. When we compute the gradient of 
a loss function at a given point, that gradient can be viewed as a vector lying in the tangent space 
of the loss landscape. This vector points in the steepest direction of increase, and by following its 
opposite direction, we perform gradient descent, moving toward a local or global minimum. The 
tangent space provides a useful linear approximation of the curved manifold at a specific point. 
This approximation allows gradient-​based optimization methods to update parameters effectively, 
even in the complex, curved spaces that arise in deep learning. For example, imagine standing at the 
North Pole of a sphere; the tangent space at this point would be a flat plane, representing all pos-
sible directions you could step. Though the surface is curved, the tangent plane gives a simple, local 
approximation of the surface’s behavior. In the context of deep learning, the loss landscape can be 
seen as a high-​dimensional manifold. The tangent space at any point on this manifold provides a 
way to navigate the loss landscape using gradient information. The gradient vector within this space 
shows the direction of the steepest ascent, but in optimization, the algorithm moves in the opposite 
direction, down the slope, toward minimizing the loss. For a manifold M ⊂⊂ Rn and a point p ∈∈ M, 
the tangent space at p, denoted as TpM, is a vector space that contains all the possible directions in 
which one can move from p on the manifold. Formally, the tangent space at p is spanned by the par-
tial derivatives of the coordinate functions at p. In the context of gradient descent, at each iteration, 
the parameter update is given by:

	 θ θ η θ
t t t

L+ = − ∇ ( )1
,	

where

	• θ
t
 represents the parameters at time step t,

	• η is the learning rate,
	• ∇L(θ

t
) is the gradient of the loss function L at θ

t
.

The gradient ∇L(θ
t
) can be interpreted as a vector in the tangent space of the loss surface at θ

t
. This 

vector points in the steepest direction of increase, but gradient descent moves in the opposite direc-
tion to minimize the loss.
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Figure 8.1 illustrates a 3D visualization of a paraboloid surface defined by the function z x y= +2 2.   
The plot highlights the geometric and differential properties of the surface at a specific point of  
tangency located at coordinates (1, 1, 2). The paraboloid surface extends upward, demonstrating  
a smooth, continuous curvature characteristic of this quadratic function. At the point of tangency  
(1, 1, 2), a tangent plane is shown in light blue, providing a linear approximation of the surface  
at this point. This plane represents the best local approximation of the surface around this point,  
illustrating how the differential geometry concept of tangent spaces applies to this curved surface.

Additionally, two tangent vectors, labeled Tangent Vector 1 and Tangent Vector 2, are visualized 
on the plane. Tangent Vector 1 is depicted in red, while Tangent Vector 2 is in green. These vectors 
lie within the tangent plane, showing the directions along which the surface changes most rapidly 
at the point of tangency. The vectors highlight how the surface’s behavior can be understood locally 
through these directional derivatives, capturing the rate and direction of change. The point of tan-
gency itself is marked by a black dot, emphasizing the specific location where the tangent plane and 
vectors interact with the surface.

FIGURE 8.1  3D paraboloid surface with tangent plane and vectors at (1, 1).
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8.2.3 �M etric Tensor

The metric tensor is a key concept that helps us understand how to measure distances on curved 
surfaces or manifolds. It extends the idea of the dot product, which we use in flat, Euclidean spaces, 
to more complex, curved spaces. This allows us to calculate distances and angles on those curved 
surfaces. Essentially, the metric tensor gives a manifold its unique geometric structure by defining 
how lengths and angles are measured at each point. Mathematically, the metric tensor works by 
taking two tangent vectors at any point on the manifold and returning a number (a scalar). This 
number represents the inner product of those two vectors, which helps determine their lengths and 
the angle between them. Through this process, the metric tensor defines the local geometric prop-
erties of the manifold. In the context of neural networks, the metric tensor is closely related to 
something called the Fisher Information Matrix. The Fisher Information Matrix helps us understand 
the shape (or curvature) of the parameter space, showing how changes in the model’s parameters 
influence its predictions. It essentially measures how much information a random variable provides 
about an unknown parameter. Understanding the metric tensor and Fisher Information Matrix can 
be beneficial in several ways. In optimization, knowing the geometry of the parameter space can 
lead to better strategies; for example, natural gradient descent leverages the Fisher Information 
Matrix to adjust parameter updates, enabling faster and more efficient convergence. Regularization 
also benefits from this understanding, as the curvature of the parameter space defined by the metric 
tensor provides insights into designing regularization methods. By assessing the complexity of a 
model’s geometry, techniques can be developed to prevent overfitting by penalizing overly complex 
models. Additionally, the metric tensor aids in interpreting how sensitive a model is to changes in 
its parameters. By analyzing the parameter space geometry, we can pinpoint areas where the model 
remains stable or becomes highly sensitive to small changes, which can inform efforts to refine 
model performance. Consider a 2D surface, like the surface of a sphere. To measure the distance 
between two points on this curved surface, we need more than the usual Euclidean distance formula 
because the surface is not flat. The metric tensor defines how distances and angles are measured on 
this curved surface, giving us the ability to compute the length of curves and the angle between two 
directions at a given point. In 2D Euclidean space, the metric tensor is simply the identity matrix, 
but on a curved surface like a sphere, the metric tensor is more complex, adapting to the curvature 
of the space. For a manifold M with coordinates (x1, x2, …, xn), the metric tensor g is a function that 
assigns a matrix gij to each point on the manifold. This matrix is used to compute the inner product 
of two tangent vectors u and v at a point p on the manifold:

	 u v g p u v
i j

ij
i j, ,

,

= ( )∑ 	

where ui and vj are the components of the tangent vectors, and g
ij
 are the components of the metric 

tensor at point p. For example, on the surface of a 2D sphere, the metric tensor g might look like:

	 g =






1 0

0 2sin ( )
,

θ
	

where θ is the angle in spherical coordinates. This metric tensor adjusts how distances and angles 
are measured depending on where you are on the sphere.

Figure 8.2 provides a 3D visualization of a curved surface, illustrating the impact of the metric  
tensor on vector lengths across different regions of the surface. The surface itself is defined by a  
function that creates a wavelike structure, showing variations in height represented by the color  
gradient. The surface height ranges from lower elevations in deep purple to higher elevations in  
yellow, as indicated by the color bar on the right. Vectors are placed at various points on the surface,  
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and their lengths are determined by the metric tensor, which accounts for the local curvature of the  
surface. The vectors, shown in red, indicate the directions and magnitudes at these points. As the  
surface curves, the vectors change in length, reflecting the influence of the metric tensor in scaling  
them according to the surface’s geometric properties.

8.2.4 �C urvature

Curvature is a concept that describes how much a surface or manifold bends or deviates from being 
flat. For example, a sheet of paper has zero curvature because it’s perfectly flat, while a sphere has 
positive curvature because it curves uniformly in all directions. Curvature gives us insight into the 
local shape and geometry of a manifold, and it can be measured in different ways. One common 
method is Gaussian curvature, which considers the bending in two principal directions at a point, 
while Ricci curvature generalizes this concept to higher dimensions, helping us understand the overall 
shape of the space. In the context of deep learning, curvature plays an important role when analyzing 
the loss landscape, the complex surface that represents how the model’s performance changes with 
different parameter values. Understanding the curvature of this surface is crucial for several reasons. 
In optimization, areas of the loss landscape with high curvature represent steep slopes and sharp 
valleys, which can make it challenging for optimization algorithms like gradient descent to find 
the optimal solution. The steepness in these regions can cause unstable updates or slow progress. 
Conversely, flatter regions with lower curvature are easier to navigate, enabling smoother and faster 
convergence. Curvature also plays a role in parameter sensitivity; in high-​curvature areas, even 
small changes to the model’s parameters can lead to significant changes in the loss function, making 
the model more sensitive and potentially unstable. Recognizing these high-​curvature regions allows 

FIGURE 8.2  Influence of metric tensor on vector lengths on a curved surface.
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for adjustments in optimization strategies, such as lowering the learning rate, to prevent instability. 
Furthermore, curvature affects generalization, as flat regions in the loss landscape are typically 
linked to better generalization. In these areas, the model is less sensitive to small variations in 
the data, resulting in more stable and robust performance. In contrast, high-​curvature regions may 
suggest that the model is overly fine-​tuned to the training data, which can be a sign of overfitting and 
lead to poor performance on unseen data.

Consider a simple loss landscape shaped like a bowl. If the bowl is steep and narrow (high curva-
ture), it will have a sharp minimum, and gradient-​based optimization methods like gradient descent 
may struggle to converge quickly or smoothly. Conversely, if the bowl is shallow and wide (low 
curvature), the optimization process is easier, and the parameter updates are more stable and less 
sensitive to small changes. One common way to measure curvature is through Gaussian curvature, 
which is the product of the principal curvatures k

1
 and k

2
 at a given point on a 2D surface:

	 K k k= ⋅
1 2

	

	• If K > 0, the surface has positive curvature, like a sphere,
	• If K =​ 0, the surface is flat, like a plane,
	• If K < 0, the surface has negative curvature, like a saddle.

For higher-​dimensional manifolds, Ricci curvature is used to generalize this concept. The Ricci 
curvature at a point provides a way to quantify how much the manifold deviates from being flat in 
various directions.

Figure 8.3 visualizes a 2D manifold represented by a sphere, with a tangent plane positioned 
at the point (1, 0, 0). The sphere, shown in light blue, models the manifold, emphasizing its 
curved nature and continuous surface. At the point (1, 0, 0), marked in red, the tangent plane is 
illustrated as a flat, yellow surface intersecting the sphere. This plane serves as the best local 
approximation of the manifold at that specific point, demonstrating the concept of a tangent 
space in differential geometry. It is depicted as being tangent to the sphere’s surface only at the 
red point, illustrating how the manifold’s curvature is locally linearized at this location. Two tan-
gent vectors, labeled Tangent Vector 1 (in blue) and Tangent Vector 2 (in green), lie within this 
tangent plane. These vectors represent the directions along which the surface changes most rap-
idly at the point of tangency. They provide insight into the local geometry of the sphere, showing 
how different directional derivatives describe the manifold’s behavior at this point. The vectors 
highlight how, even in a higher-​dimensional curved space, local analysis can be simplified using 
linear approximations.

8.3 � DIFFERENTIAL GEOMETRY IN DEEP LEARNING

Differential geometry offers a robust mathematical framework that provides profound insights into 
the behavior, optimization, and utility of neural network models when applied to deep learning. As 
deep learning continues to evolve, integrating these fields is expected to deepen, leading to more 
robust and interpretable models.

8.3.1 �L oss Landscapes

In deep learning, the loss function is critical as it measures how far a model’s predictions deviate 
from the true values. Training a model means adjusting its parameters iteratively to minimize this 
loss. As models grow in complexity, often with millions or billions of parameters, the loss landscape 
becomes a highly intricate, multi-​dimensional surface. You can imagine it as a vast, uneven terrain 
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filled with valleys, mountains, plateaus, and ridges. Navigating this terrain to find the lowest point 
(the minimum loss) is key to improving model performance, and this is where concepts from differ-
ential geometry, like curvature, become essential. Curvature provides insights into the shape of the 
loss landscape. For instance, in convex regions, imagine the inside of a bowl, the path to the min-
imum is smooth and straightforward. Gradient descent can reliably find the minimum in these areas, 
which leads to faster and more predictable convergence. These are the regions we want our opti-
mization methods to find. However, deep neural networks rarely have simple, convex landscapes. 
Instead, they often feature saddle points, places on the surface that are neither a peak nor a valley 
but a combination of both, like a mountain pass. These points have a mix of positive and negative 
curvature along different directions. Because the gradient is close to zero in these regions, training 
can stall, with gradient descent making painfully slow progress. Understanding the curvature of 
the loss landscape is critical for developing more efficient optimization techniques. For example, 
methods like Newton’s method use second-​order information (such as the Hessian matrix) to cap-
ture the curvature more accurately, allowing for smarter updates to the parameters. However, these 
methods can be computationally expensive for large networks. Alternatively, adaptive learning rate 

FIGURE 8.3  Visualization of a 2D manifold (sphere) with a tangent plane at the point (1, 0, 0).
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algorithms like Adam or RMSprop adjust the learning rate based on the observed gradients, which 
allows them to implicitly respond to the local curvature, making them more efficient in navigating 
complex loss landscapes. Let’s say you’re training a neural network to classify images, and your loss 
function is cross-​entropy. As the model updates its parameters, it effectively “travels” across this 
multi-​dimensional loss landscape. Curvature tells you a lot about where you are on the landscape. In 
a convex region, like the inside of a bowl, gradient descent works smoothly because the slope always 
leads toward the minimum. But if you hit a concave region (the outside of a dome) or a saddle point, 
optimization becomes more difficult. Saddle points, where the gradient is nearly zero, but you’re not 
at the lowest point, are particularly tricky in deep learning because they can slow training and con-
fuse the optimizer. In higher-​dimensional spaces, saddle points become even more common. This is 
because there are many directions in which the curvature can be either negative (concave) or zero. 
For instance, imagine a deep network’s loss surface has a saddle point where the gradient is nearly 
zero, but the surrounding areas have varying curvatures. This can stall the training process, as the 
gradient descent algorithm may mistakenly interpret this point as being close to an optimum, even 
though it is not. Let L(θ) represent the loss function, where θ is the vector of model parameters. The 
gradient ∇L(θ) gives the direction of steepest ascent, and the Hessian matrix H(θ) provides second-​
order information about the curvature of the loss landscape:

	 H
L

θ
θ

θ
( ) =

∂ ( )
∂

2

2
	

At a convex point, all eigenvalues of the Hessian are positive, indicating that the surface curves 
upwards in every direction. At a saddle point, some eigenvalues are positive, and others are negative, 
indicating mixed curvature.

Figure 8.4 visualizes a hypothetical loss landscape, illustrating the presence of different critical 
points, a global minimum (convex), a local maximum (concave), and a saddle point. The global min-
imum, marked with a red sphere, represents the lowest point on the surface, indicating where the loss 
function reaches its minimum value. This convex region is where optimization algorithms ideally 
aim to converge, as it signifies the most optimal solution in the parameter space. The surrounding 
contour lines further emphasize this low point, showing concentric circles that decrease in height 
as they approach the minimum. The local maximum, indicated by a blue triangle, is a peak in the 
landscape where the function reaches a temporary high value within a specific region. This concave 
region demonstrates how optimization paths might be trapped if they encounter this point, thinking 
they have reached a maximum when, in reality, it is not the global extremum. The blue arrow points 
to this maximum, showing its prominence within its neighborhood. The saddle point, marked by a 
yellow square, is another critical feature of the landscape. This point illustrates where the surface 
curves upward in one direction and downward in another, forming a mix of convex and concave 
characteristics. Saddle points are significant in optimization because they can mislead algorithms, as 
gradients might not clearly indicate which direction moves toward the global minimum. The labeled 
yellow square highlights its position, and its location shows how it interrupts smooth descent or 
ascent paths on the surface.

Suppose we are training a simple neural network with one parameter to minimize a loss function. 
We’ll explore different loss functions to see how their landscapes affect the optimization process.

Step 1. Quadratic Loss Function (Convex Region)
	• Loss Function: For this L θ θ( ) = −( )2 2 as a simple convex function (a parabola) with 

a minimum at θ =​ 2. The loss landscape is “bowl-​shaped,” and gradient descent should 
efficiently find the minimum.

	• Gradient and Hessian: the gradient is ∇ ( ) = −( )L θ θ2 2  and Hessian is H θ( ) = 2
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Optimization Steps: Let’s start with an initial parameter θ0 =​ −4.
1.	 Iteration 1:

a.	 Compute gradient: ∇ = − − = −( ) = −L
o

( ) ( )θ 2 4 2 2 6 12

b.	 Update parameter (using a learning rate α =​ 0.1): θ θ α θ
1 0 0

= − ∇ ( ) =L  
− − −( ) = − + = −4 0 1 12 4 1 2 2 8. . .

c.	 Compute loss: L θ
1

2 22 8 2 4 8 23 04( ) = − − = − =( . ) ( . ) .

2.	 Iteration 2:
a.	 Compute gradient: ∇ ( ) = − −( ) = −( ) = −L θ

1
2 2 8 2 2 4 8 9 6. . .

b.	 Update parameter: . . . . . .θ
2

2 8 0 1 9 6 2 8 0 96 1 84= − − −( ) = − + = −
c.	 Compute loss: ( . ) ( . ) .L θ

2
2 21 84 2 3 84 14 7456( ) = − − = − =

The parameter θ is moving toward the minimum at θ =​ 2. The loss decreases with each 
iteration, and the convex landscape allows gradient descent to converge efficiently.

Step 2. Saddle Point Example
	• Loss Function: This function L θ θ( ) = 3 has a saddle point at θ =​ 0. The gradient is zero 

at θ =​ 0, but it’s neither a minimum nor a maximum. The loss landscape is not convex 
or concave throughout.

	• Gradient and Hessian: The gradient is ∇ ( ) =L θ 3 and the Hessian is H θ θ( ) = 6
At θ =​ 0: ∇L(0) =​ 0 and H(0) =​ 0

FIGURE 8.4  Hypothetical loss landscape with convex, concave, and saddle point regions.
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	• Optimization Steps: Starting with θ
0
 =​ 0.01:

1.	 Iteration 1:
a.	 Gradient: ∇ ( ) = = × =L θ

0
23 0 01 3 0 0001 0 0003( . ) . .

b.	 Update: θ
1

0 01 0 1 0 0003 0 01 0 00003 0 00997= − ( ) = − =. . . . . .

c.	 Loss: L θ
1

3 70 00997 9 910 10( ) = ≈ × −( . ) .

2.	 Iteration 2:
a.	 Gradient: ∇ ( ) = ≈L θ

1
23 0 00997 0 0002982( . ) .

b.	 Update: θ
2

0 00997 0 1 0 0002982 0 00997 0 00002982 0 00994018= − ( ) = − ≈. . . . . .

c.	 Loss: L θ
2

3 70 00994018 9 821 10( ) = ≈ × −( . ) .

The gradient is very small near the saddle point. Parameter updates are tiny, causing slow progress. 
Even though the gradient is near zero, we’re not at a minimum. Gradient descent struggles to escape 
the saddle point region.

Step 3. Non-​Convex Function with Multiple Minima
	• Loss Function: This function L θ θ( ) = −( )2 21  has two minima at θ =​ −1 and θ =​ 1. 

There is a saddle point at θ =​ 0.
	• Gradient and Hessian: The gradient is ∇ ( ) = −( )L θ θ θ4 12  and the Hessian is 

H θ θ( ) = −( )4 3 12

		 At θ =​ 0: ∇L(0) =​ 0 and H(0) =​ −4 (negative curvature)
	• Optimization Steps: Starting with θ

0
 =​ 0.1:

1.	 Iteration 1:

a.	 Gradient: ∇ ( ) = ( ) −( ) = ( ) −( ) = −L 0 1 4 0 1 0 01 1 4 0 1 0 99 0 396. . . . . .

b.	 Update: θ
1

0 1 0 1 0 396 0 1 0 0396 0 1396= − −( ) = + =. . . . . .

c.	 Loss: L θ
1

2 20 1396 1 0 738( ) = − ≈( . ) .

2.	 Iteration 2:
a.	 Gradient: ∇ ( ) = ( ) −( ) = ( ) −( ) ≈ −L 0 1396 4 0 1396 0 0195 1 4 0 1396 0 9805 0 5467. . . . . .

b.	 Update: θ
2

0 1396 0 1 0 5467 0 1396 0 05467 0 19427= − −( ) = + =. . . . . .

c.	 Loss: L θ
2

2 20 19427 1 0 648( ) = − ≈( . ) .

The gradient descent is moving away from the saddle point at θ =​ 0 toward one of the 
minima. Depending on the starting point, it could converge to either θ =​ –​1 or θ =​ 1. 
The saddle point at θ =​ 0 can slow down the optimization if the starting point is near it.

Step 4. Hessian Matrix and Curvature
In higher dimensions, we consider the Hessian matrix H(θ), which contains second-​order partial 
derivatives of the loss function with respect to the parameters.

	• Loss Function: For example, it has two parameters θ =​ [θ
1
, θ

2
]:L θ θ θ θ

1 2 1
2

2
2,( ) = −

	• Gradient: ∇ ( ) =

∂
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∂
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	• Hessian Matrix: H
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The eigenvalues of H(θ) are λ
1
 =​ 2 and λ

2
 =​ −2. Positive eigenvalue indicates convexity 

in the θ
1
 direction. A negative eigenvalue indicates concavity in the θ

2
 direction. This 

confirms that L(θ) has a saddle point at θ =​ [0, 0]. Gradient descent may oscillate or make 
slow progress near the saddle point because the gradient points in different directions. 
The optimizer might need many iterations to move away from the saddle point.

Step 5. Improving Optimization with Adaptive Methods
Improving optimization with adaptive methods helps navigate complex loss landscapes that 
include saddle points and varying curvature. Algorithms like Adam or RMSprop are particu-
larly effective in these scenarios. The Adam algorithm uses adaptive learning rates, adjusting 
the rate for each parameter based on the first and second moments of the gradients. This adjust-
ment accelerates training by enabling larger steps in directions with small gradients, which are 
common near saddle points. For instance, when using Adam with default parameters, during 
iterations near a saddle point, the algorithm increases the effective learning rate for parameters 
with small gradients. This helps the optimizer move past regions where gradient descent might 
otherwise stall. The result is faster convergence, as the model escapes saddle points more effi-
ciently, and greater stability, as adaptive methods handle varying curvature better, leading to 
more stable training.

8.3.2 �F eature Space Analysis

As data passes through a neural network, it changes form, moving from raw input to increasingly 
abstract representations. Early layers pick up on simple features, like edges in an image, while 
deeper layers capture more complex patterns, shapes, objects, or even higher-​level concepts. This 
transformation shifts the data into what’s called a “feature space,” a high-​dimensional space where 
each point represents the processed version of the original input. Understanding this feature space 
gives us important insights into what the network has learned. In this space, data points that are 
similar to one another are mapped closer together, while points that are different are pushed apart. 
This is crucial for tasks like classification, where the goal is to group similar items and separate 
those that belong to different categories. By studying how data is arranged in this feature space, 
we can get a sense of how well the model is performing its task. A key tool in understanding the 
feature space is the concept of a metric tensor, which essentially measures the distances between 
points in the space. By calculating these distances, we can tell how well the network can differ-
entiate between different classes of data. For instance, if points from the same class are grouped 
tightly together, it means the network has learned to recognize important features of that class. If 
points from different classes are well-​separated, it suggests the network is good at distinguishing 
between categories. Here are some practical uses for feature space analysis. Techniques like t-​SNE 
and Uniform Manifold Approximation and Projection (UMAP) can simplify the high-​dimensional 
feature space into a 2D or 3D map, making it easier to see how the network is organizing the data. 
This lets us check whether the network is correctly grouping similar data points (such as different 
images of the same object) and separating different classes. By analyzing how far apart the clusters 
of data from different classes are, we can evaluate the network’s ability to separate categories. If the 
clusters overlap, it might indicate problems with the model, while large separations suggest strong 
performance. Looking at misclassified points in the feature space can help pinpoint where the model 
is going wrong and how to improve it. When a network has learned features that generalize well, 
they can be reused for other tasks. By analyzing the feature space, we can figure out if the network’s 
learned features can be transferred to new problems or datasets, saving time and effort by avoiding 
retraining from scratch. Adversarial examples, intentionally crafted inputs designed to trick a model, 
can be studied in the feature space. A robust model should keep real and adversarial examples far 
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apart in this space. By examining how these inputs are mapped, we can develop strategies to protect 
against such attacks. Let us have an example for better understanding. Consider a simple image clas-
sification task using the MNIST dataset of handwritten digits. Each input image is a 28 × 28 pixel 
grid, resulting in a high-​dimensional input space (784 dimensions). As the data moves through the 
layers of a neural network, it is transformed into different representations, with each layer extracting 
increasingly complex features. In the earlier layers, the network might focus on low-​level features 
such as edges, while in the deeper layers, it learns more abstract features like digit shapes. By the 
time the data reaches the final layer, each input image is represented as a point in a high-​dimensional 
feature space, where similar digits (e.g., “1”s) are mapped closer together, and dissimilar digits (e.g., 
“1”s and “8”s) are pushed farther apart. Let’s define the feature space mathematically. Suppose x 
∈ Rn is the input (an image), and fθ(x) is the neural network that transforms this input into a high-​
dimensional feature vector. After several layers of transformation, the feature vector z =​ fθ (x) lies 
in a high-​dimensional space Rd, where d ≪ n. The distance between two feature vectors z

1
 and z

2
 

(representing two different images) can be computed using the Euclidean distance:

	 Distance z z z z z z
i

d

i i1 2 1 2 2
1

1 2
2, ( )

, ,( ) = − = −
=
∑ 	

This distance quantifies how similar or dissimilar the representations of two images are in the fea-
ture space. If the network has learned good features, images of the same digit (e.g., “1”) will have 
smaller distances between their feature vectors, while images of different digits (e.g., “1” and “8”) 
will have larger distances. Suppose we have a simple neural network trained to classify two types of 
data points: Class A: Points clustered around [2, 2] and Class B: Points clustered around [−2, −2]. 
The Class A data points are [2, 2], [2.1, 1.9], [1.9, 2.2], and Class B data points are: [−2, −2], [−1.8, 
−2.1], and [−2.2, −1.9]. The neural network structure is as follows:

	• Input layer: 2 neurons (features x
1
 and x

2
)

	• Hidden layer: 2 neurons with ReLU activation
	• Output layer: 1 neuron with sigmoid activation (for binary classification)

The weights and biases are as follows:

	• Weights from input to hidden layer (W
1
): W

1

1 0

0 1
=









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	• Biases for hidden layer (b
1
): b
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0
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=
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
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	• Weights from hidden to output layer (W
2
): W

2

1

1
=







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	• Bias for output layer (b
2
): 0

Here is a forward pass example. Let’s compute the network’s output for a data point from Class A, 
say [2, 2]:

	• Hidden layer activation (h):

	 h W x b= ⋅ +( ) =
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	• Output layer activation (ŷ):

	 ˆ . ,y W h b= ⋅ +( ) = [ ]⋅








 +





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= ( ) ≈σ σ σ
2 2

1 1
2

2
0 4 0 982 	

where σ z
z

( ) =
+ −

1

1 e
 is the sigmoid function. The output ˆ .y ≈ 0 982 indicates a high probability that 

the input belongs to Class A.

8.3.3 �N eural Network Generalization

Generalization refers to how well a trained model performs on new, unseen data. It’s a measure of 
the model’s usefulness; if it can’t generalize beyond the data it was trained on, it won’t be effective 
in real-​world applications. Improving generalization is a key goal when building machine learning 
models. Interestingly, the shape of the loss landscape, which reflects how the model’s performance 
changes with different parameter settings, has a strong link to generalization. Research shows that 
models tend to generalize better when the loss landscape has wide, flat regions (minima). In con-
trast, sharp, narrow minima often lead to models that perform well on the training data but struggle 
with new data. Here’s how the geometry of the loss landscape relates to generalization. Flat regions 
in the loss landscape indicate that small changes in the model’s parameters don’t drastically affect 
its predictions. This stability means the model is less sensitive to slight variations in the data, making 
it more robust for new inputs. Models that find flat minima are better at capturing general patterns 
in the data rather than overfitting to specific examples in the training set. In practice, this results in 
better performance when the model encounters unseen data. Sharp, narrow minima suggest that the 
model is highly sensitive to its parameters. In these regions, the model’s parameters are finely tuned 
to the training data, which may lead to excellent performance during training but poor results on 
new data. In these cases, even small changes in the input or the parameters can cause the model’s 
output to vary dramatically, making it less reliable when faced with unfamiliar data. This is often a 
sign that the model has overfitted, memorizing the training data rather than learning general patterns. 
Let’s have an example for better understanding. Consider two neural networks trained on the same 
dataset for a classification task. Network A converges to a flat minimum, while network B converges 
to a sharp minimum on the loss landscape. Network A might not achieve the lowest possible training 
error but performs well on unseen test data, indicating strong generalization. In contrast, network B 
achieves near-​perfect performance on the training set but struggles with test data due to overfitting. 
Flat minima correspond to regions in the loss landscape where the loss function remains relatively 
constant over a broad range of parameter values. This implies that the model’s predictions are stable 
and not overly sensitive to small changes in the parameters. Mathematically, this flatness can be 
captured by the eigenvalues of the Hessian matrix H, which is the second derivative of the loss 
function with respect to the model parameters:

	 H
L

θ
θ

θ
( ) =

∂ ( )
∂

2

2
.	

For flat minima, the eigenvalues of the Hessian are small, indicating low curvature. This suggests 
that the model has found a stable set of parameters, making it more robust to small perturbations 
in the input or noise in the data. A model that converges to a flat minimum is likely to have better 
generalization because it has learned general patterns in the data rather than memorizing the training 
examples. In contrast, sharp minima are regions where the loss function changes rapidly with small 
parameter adjustments. This is characterized by large eigenvalues of the Hessian matrix, indicating 
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high curvature. A model that converges to a sharp minimum is typically more sensitive to small 
variations in the data, meaning that a slight change in the input can lead to significant changes in 
the model’s predictions. This sensitivity is often a sign of overfitting, where the model has learned 
specific details of the training data that do not generalize well to new, unseen data. Let L(θ) represent 
the loss function, where θ is the vector of model parameters. Generalization can be influenced by 
the sharpness of the minimum found during training, which is often measured by the Hessian matrix 
H(θ). If the Hessian’s eigenvalues are small, we are in a flat region, which is beneficial for general-
ization. Conversely, large eigenvalues indicate sharp regions:

	 λ λ
max max

flat region vs. sharp regionH H( ) ≈ ( ) ( ) ( )0 0 , 	

where λ
max

H( ) is the largest eigenvalue of the Hessian. Suppose we are training a simple neural 
network to perform binary classification on a small dataset. We want to classify whether a number 
is even or odd.

Training Data                                                    Validation Data

Input (x) Label (y)

1 1
2 0
3 1
4 0

Input (x) Label (y)

5 1
6 0

We will compare two models with the same architecture but different training outcomes: Model A 
to find a flat minimum in the loss landscape and Model B to Find a sharp minimum in the loss land-
scape. The loss function is mean squared error (MSE) and the architecture is as follows: input layer; 
1 neuron and output layer; 1 neuron with Sigmoid activation (outputs probability). Let do train the 
models:

1.	 Model A (Flat Minimum): Uses L2 regularization to prevent overfitting. The training 
outcomes are weight (w): 0.5 and bias (b): 0.

2.	 Model B (Sharp Minimum): No regularization; the model may overfit the training data and 
the training outcomes are weight (w): 10 and bias (b): –​25.

Now, let us do model predictions

1.	 Model A Predictions: Using ŷ wx b= +( )σ , where σ is the sigmoid function.
a.	 Training Data:

	• For x =​ 1: ˆ . . .y = × +( ) = ( ) ≈σ σ0 5 1 0 0 5 0 622

	• For x =​ 2: . . .ŷ = × +( ) = ( ) ≈σ σ0 5 2 0 1 0 0 731
Predictions are around 0.6–​0.7, not exactly matching labels but reasonable.

b.	 Validation Data:
	• For x =​ 5: ˆ . . .y = × +( ) = ( ) ≈σ σ0 5 5 0 2 5 0 924

	• For x =​ 6: . . .y = × +( ) = ( ) ≈σ σ0 5 6 0 3 0 0 953
Predictions are high, indicating even numbers, which may not perfectly match validation 
labels.
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2.	 Model B Predictions:
a.	 Training Data:

	• For x =​ 1: ŷ = × −( ) = −( ) ≈ × −σ σ10 1 25 15 3 10 7

	• For x =​ 2: .y = × −( ) = −( ) ≈σ σ10 2 25 5 0 0067
The model outputs are extremely low or high, closely matching labels.

b.	 Validation Data:
	• For x =​ 5: ˆ .y = × −( ) = ( ) ≈σ σ10 5 25 25 1 0

	• For x =​ 6: ˆ .y = × −( ) = ( ) ≈σ σ10 6 25 35 1 0
Predictions are very high, indicating odd numbers, which is incorrect for x =​ 6.

In flat minimum (Model A), the loss doesn’t change drastically with small changes in weights, and 
the model is not overly sensitive to exact weight values. In sharp minimum (Model B), small changes in 
weights cause a significant loss increase, and the model memorizes training data but doesn’t generalize 
well. But for generalization performance, Model A, the training loss is slightly higher due to less precise 
fitting, and validation accuracy is better, as the model makes reasonable predictions on unseen data on 
Model B, the training loss is very low, almost zero, the model fits training data perfectly, and validation 
accuracy is poor, as the model fails to predict correct labels on new data (e.g., misclassifies x =​ 6). The 
model’s performance is stable under small data or parameter changes and gives better generalization as 
handling unseen data more effectively. On sharp minima, sensitivity, and minor variations can lead to 
large errors and overfitting, and it performs well on training data but poorly on new data.

8.3.4 �I nformation Geometry

Information geometry is a fascinating intersection of probability theory and differential geometry. 
It studies random variables and probability distributions using geometric structures. One prominent 
concept from information geometry is the Fisher Information Metric. In deep learning, this metric 
helps us understand the sensitivity of a model’s predictions to its parameters. In Bayesian deep 
learning, where we consider a distribution over neural network weights instead of fixed values, 
information geometry plays a crucial role in understanding the model’s uncertainty and guiding the 
learning process. Imagine a neural network trained for image classification. Instead of treating the 
weights of the network as fixed values, we treat them as random variables, representing our uncer-
tainty about the optimal weights. In this probabilistic framework, Information Geometry helps us 
understand the geometry of the parameter space in terms of probability distributions. The Fisher 
Information Metric is a key tool here, as it measures how sensitive the model’s predictions are to 
small changes in the weights. The Fisher Information Metric defines a Riemannian metric on the 
space of probability distributions. It essentially measures how much information a random variable 
carries about the unknown parameters of a distribution. In the context of deep learning, it helps 
quantify how much influence a small change in the model’s parameters θ has on the predicted prob-
ability distribution. Mathematically, if p(x∣θ) is the probability distribution of the data x given the 
parameters θ, the Fisher Information Matrix I(θ) is defined as:

	 I
p x p x

T

θ
θ

θ
θ

θ
( ) =

∂ ( )
∂







∂ ( )
∂




















log log

,
| |

	

where:

	• p(x ∣ θ) is the likelihood function.
	• The expectation E is taken with respect to the data distribution.
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This matrix tells us how sensitive the likelihood is to changes in the parameters. If the Fisher 
Information Matrix has large values, it indicates that small changes in the parameters will signifi-
cantly affect the likelihood, suggesting that the model is highly sensitive to those parameters.

In Bayesian deep learning, where we model a distribution over the neural network weights 
instead of using fixed weights, information geometry provides insights into uncertainty. The Fisher 
Information Metric can guide how the weight distribution is updated during training. Instead of 
taking fixed steps in parameter space, we adjust the steps based on the geometry of the space, 
leading to more informed updates. Consider the Fisher Information Matrix as a measure of the local 
geometry around a point in parameter space. In natural gradient descent, the Fisher Information 
Matrix is used to scale the parameter updates in a way that takes into account the underlying geom-
etry of the probability distributions. The natural gradient update is given by:

	 θ θ η θ θθt t t t
I L+

−= − ∇ ( )1
1( ) ,	

where:

	• I(θ
t
)−1 is the inverse of the Fisher Information Matrix,

	• ∇θL(θ
t
) is the gradient of the loss function,

	• η is the learning rate.

This approach ensures that parameter updates are adapted to the sensitivity of the model to changes 
in the parameters, improving convergence, especially in high-​dimensional or complex models.

Figure 8.5 provides a comparative visualization of a loss landscape Figure 8.5a and feature space 
clusters Figure 8.5b to demonstrate how different parameter configurations and feature distributions 
impact classification and optimization in machine learning. In Figure 8.5a, the 3D loss landscape 
illustrates how the value of the loss function changes across different parameter settings. The sur-
face is colored using a gradient from blue (low loss) to red (high loss), indicating convex, concave, 
and saddle regions as the parameter values vary. The contour lines highlight the elevation levels, 
making it easier to visualize the gradient flow and pathways toward minima. The convex region 
(highlighted in red) represents areas where the function value is higher, typically seen in regions 
away from the global minimum. The concave region (blue) indicates a valley where the loss value 
is minimized. The green dot marks a saddle point, where the surface curves upward in one direc-
tion and downward in another, demonstrating the challenges faced during optimization when tra-
versing such regions. Figure 8.5b presents a 2D scatter plot of feature space, showing two clusters 
corresponding to different classes: Class 1 (orange circles) and Class 2 (blue squares). The clusters 
are well-​separated, indicating that the features provide enough distinction for classification. Arrows 
point to the centers of each class cluster, demonstrating the centroids where the mean feature values 
for each class lie.

8.4 � PRACTICAL IMPLICATIONS

8.4.1 �R egularization

Building on our earlier example of Model A, which converges to a flat minimum, and Model B, 
which settles into a sharp minimum, regularization techniques play a crucial role in guiding the opti-
mization process toward flatter regions of the loss landscape. To explore these concepts, we begin 
by creating a simple graph with three nodes arranged in a chain structure. The adjacency matrix is 
normalized and converted into a sparse tensor format suitable for processing by a Graph Neural 
Network (GCN). Each node’s features are represented by an identity matrix, and the labels are 
encoded using one-​hot vectors for two distinct classes. After training the GCN, we predict the node 
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FIGURE 8.5  (a) Loss landscape, and (b) feature space clusters.
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classes and visualize the graph with nodes colored based on their predicted classes. To further dem-
onstrate manifold learning, we generate a Swiss roll dataset with 1,000 samples and a small amount 
of noise. We apply t-​SNE and UMAP, two popular dimensionality reduction techniques, to project 
the high-​dimensional Swiss roll data into two dimensions. Additionally, we compute the pairwise 
distance matrix, derive the Laplacian matrix, and perform singular value decomposition (SVD) to 
understand the data’s geometric structure.

Figure 8.6 provides a visual exploration of different data transformation and dimensionality 
reduction techniques. Figure 8.6a shows node classification results from a graph convolutional net
work (GCN). The blue dots likely represent nodes in a graph that have been classified into distinct 
categories after training the model. This visualization demonstrates how the GCN has grouped nodes 
based on their learned features. In Figure 8.6b, we see the popular 3D Swiss roll dataset, which is 
often used to test algorithms that deal with nonlinear data structures. The Swiss roll is a twisted 
3D manifold that provides a challenging structure for machine learning algorithms to untangle and 
understand. Figure 8.6c and d display the results of applying two different dimensionality reduction 
techniques to the Swiss roll dataset. In Figure 8.6c, the t-​SNE method has been used to reduce the 
high-​dimensional data into a 2D space. t-​SNE focuses on preserving the local relationships between 
points, meaning points that were close in the original high-​dimensional space are still close in this 
2D projection. In Figure 8.6d, the UMAP method has been applied to the same dataset. UMAP, like 
t-​SNE, reduces high-​dimensional data into two dimensions but often does so more efficiently, pre-
serving both local and global relationships between points.

8.4.2 �O ptimization

Optimizing deep neural networks involves finding effective minima within the complex, high-​
dimensional loss landscapes they inhabit. Differential geometry provides powerful tools to better 
understand and navigate these landscapes, leading to improved optimization strategies. Saddle 
points are locations in the loss landscape where the curvature changes direction; they are neither 
purely convex nor concave. In high-​dimensional spaces, these points can significantly delay the 
training process, causing slow convergence. At saddle points, the curvature of the loss landscape is 
positive in some directions and negative in others. This variation in curvature means that conven-
tional optimization algorithms may struggle, as they might incorrectly interpret the local geometry. 
By considering curvature information, optimization algorithms can be designed to rapidly escape 
saddle points. Techniques such as second-​order optimization methods or algorithms incorporating 
curvature estimations can effectively navigate away from these problematic regions. Understanding 
the geometry of the loss landscape can inform the design of optimization techniques that achieve 
faster convergence. By adapting to the local curvature of the landscape, these methods can make 
more informed updates to the model parameters. Metrics derived from differential geometry, such as 
the curvature of the loss surface, can guide the adjustment of step sizes. This adaptive approach helps 
maintain an efficient trajectory through the landscape, avoiding areas of slow progress and making 
the optimization process more robust. Algorithms like Adaptive Moment Estimation (Adam) exem-
plify this approach. Adam adjusts the optimization trajectory based on the geometry of the loss 
landscape, effectively using curvature information to adapt learning rates. This results in more effi-
cient and stable convergence, even in the presence of varying curvature. By leveraging the insights 
provided by differential geometry, deep learning practitioners can develop optimization algorithms 
that not only avoid saddle points but also achieve faster convergence. This dual focus on geometry-​
aware optimization techniques leads to more efficient training processes and improved performance 
of deep neural networks.
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8.4.3 �M odel Interpretability

As neural networks become more complex, understanding their decision-​making process becomes 
crucial. Deep neural networks transform input data into abstract representations in hidden layers 
known as feature spaces. The geometry of these feature spaces can provide insights into the 
relationships between different inputs and the learned features. For example, points close in the fea-
ture space might be similar in a meaningful way. Techniques like t-​SNE, a dimensionality reduction 
method, can visualize these high-​dimensional feature spaces in 2D or 3D. It tries to preserve the 
local structure, allowing us to see clusters of similar data points. By understanding the geometry of 
feature spaces, we can gain insight into what features the network considers essential. The curva-
ture or shape of these spaces at different layers can tell us about the complexity and hierarchy of the 
learned features. Activation maximization or feature inversion techniques can be employed to study 
the feature spaces. By examining what excites the neurons the most, we can visualize the patterns 

FIGURE 8.6  (a) Node classification results (GCN), (b) 3D Swiss roll dataset, (c) t-​SNE embedding,  
(d) UMAP embedding.

 

 

 



259Differential Geometry

or features the network has learned. This approach helps in understanding the network’s learning 
process and the importance of various features in decision-​making.

Figure 8.7 illustrates the practical implications of differential geometry in deep learning: The left 
plot shows a loss landscape with sharp (blue) and flat (red) minima. Penalizing regions of the loss 
landscape with high curvature (sharp minima) can guide the training process toward flatter areas, 
leading to better generalization. The middle plot shows a lost landscape with a saddle point (green). 
Saddle points can slow down the training process as the loss landscape is not purely convex or con-
cave at these points. By understanding the curvature of the loss landscape, optimization algorithms 
can be designed to quickly escape from saddle points, improving the overall training efficiency. The 
right plot shows the feature space clusters for two classes using t-​SNE. Data progresses through 
a neural network and is transformed into various representations in hidden layers. The clusters 
represent how the data for each class is grouped in the feature space, providing insights into what 
the network has learned.

8.5 � CHALLENGES

8.5.1 �H igh Dimensionality

Deep neural networks can have millions, if not billions, of parameters. This results in a highly high-​
dimensional parameter space, which introduces a significant level of complexity when trying to 
understand or visualize the behavior of the network. Differential geometric concepts like curvature, 
tangent spaces, and manifolds become increasingly complex in high dimensions, making their study 
and application non-​trivial. The challenges in high-​dimensional spaces are as follows.

8.5.1.1 � Curvature
In high-​dimensional spaces, curvature becomes a multi-​faceted concept that is challenging to com-
pute and interpret. Curvature can vary dramatically in different directions, making the loss landscape 
highly intricate. Understanding curvature in high-​dimensional spaces is crucial for optimization. 
Techniques that use second-​order information, such as Newton’s method, rely on understanding 
the curvature to adjust the optimization path. However, computing and storing the Hessian matrix 
(which contains second-​order derivatives) becomes impractical for large networks due to their size 
and computational cost. Tangent spaces provide a local linear approximation of the manifold at a 
point. In high dimensions, the concept of a tangent space helps in understanding local behavior but 
becomes harder to visualize and compute. The gradient, which lies in the tangent space, guides the 
optimization process. In high-​dimensional settings, the gradient can point in complex directions, 
and small changes can have significant impacts, making the optimization path difficult to predict 
and control. Data and parameter spaces in neural networks often form high-​dimensional manifolds. 
Understanding the structure and geometry of these manifolds is crucial for tasks like optimiza-
tion, regularization, and generalization. Techniques like PCA, t-​SNE, and UMAP attempt to reduce 
high-​dimensional manifolds to lower dimensions for visualization and analysis. However, these 
techniques can lose important structural details, making it challenging to capture the true com-
plexity of the manifold.

8.5.2 �V isualization

One of the most discussed topics about differential geometry in deep learning is the loss land-
scape. However, visualizing a high-​dimensional loss landscape is inherently challenging. Simple 
visualizations, like 2D or 3D plots, provide only a limited view, which might not capture the intri-
cacies of the loss landscape of deep networks. While techniques like dimensionality reduction can 
help, they may not retain all the essential geometric features of the original space. The challenges 
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FIGURE 8.7  (a) Regularization: penalizing sharp minima, (b) optimization: avoiding saddle points, and (c) model interpretability: feature space clusters.
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in visualizing high-​dimensional loss landscapes. Traditional visualizations are limited to two or 
three dimensions, whereas the loss landscape in deep learning is typically situated in a param-
eter space with millions or billions of dimensions. These simple visualizations can only provide a 
very narrow perspective on the true complexity of the landscape. Projecting high-​dimensional data 
into lower dimensions often leads to a loss of important structural information. Critical features 
such as the curvature and the arrangement of minima and saddle points might not be accurately 
represented. Methods like PCA, t-​SNE, and UMAP attempt to reduce the dimensionality of the 
data while preserving its most significant features. While these techniques can highlight certain 
aspects of the loss landscape, they might fail to retain all the essential geometric properties. For 
example, they might distort distances or lose information about the local curvature and the shape 
of valleys and ridges.

8.5.3 �C omputational Cost

Computing specific differential geometric properties, such as curvature, for high-​dimensional 
spaces can be computationally expensive. In a training loop where computations need to be effi-
cient, introducing these calculations might significantly slow down the training process. This high 
computational cost can make the application of these concepts infeasible for extensive models or 
large datasets. Challenges of computational cost are as follows. Calculating curvature involves 
second-​order derivatives, such as those found in the Hessian matrix. For high-​dimensional spaces, 
the Hessian is extremely large, making its computation and storage impractical. The time com-
plexity of computing the Hessian matrix scales quadratically with the number of parameters, 
resulting in significant computational overhead for large networks. In practice, training loops are 
designed to be as efficient as possible to handle large datasets and complex models. Introducing 
additional computations for differential geometric properties can hinder the overall training speed. 
Modern deep learning relies on batch processing to optimize resource utilization. Incorporating 
curvature computations within each batch can disrupt this balance and slow down the training pro-
cess significantly.

8.5.4 �T heoretical vs. Practical Gap

Differential geometry is a mathematical field that deals with abstract structures and concepts. In 
the context of deep learning, there is often a gap between theoretical insights and practical imple-
mentation. While differential geometric properties such as curvature can provide valuable insights 
into the behavior of neural networks, translating these insights into concrete steps for training and 
optimizing models can be challenging. The challenges of the theoretical vs. practical gap are as 
follows. Differential geometric concepts like curvature, manifolds, and tangent spaces are inher-
ently complex and abstract. Understanding these concepts requires a solid foundation in advanced 
mathematics, which can be a barrier for many practitioners. While these concepts can offer deep 
intuition about the behavior of neural networks, applying them in a practical setting, such as during 
the training of a model, is not always straightforward. Theoretical insights suggest that regions 
with flat minima in the loss landscape correlate with better generalization. However, designing 
algorithms or modifying training procedures to explicitly find these flat regions is challenging. 
While understanding the curvature of the loss landscape can guide the development of optimization 
algorithms, implementing these ideas in a way that is computationally efficient and effective for 
large-​scale neural networks is non-​trivial.
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8.5.5 � Scalability

Modern deep learning often involves massive models and huge datasets. Even if specific differential 
geometric tools prove beneficial for smaller problems, scaling them to handle state-​of-​the-​art models 
and datasets can be challenging. The ability to apply these tools efficiently at scale is critical for their 
practical adoption in contemporary deep learning applications. The challenges of scalability are as 
follows. State-​of-​the-​art deep learning models can have millions or even billions of parameters. The 
sheer size of these models makes computing differential geometric properties, such as curvature or 
the Hessian matrix, computationally intensive and often impractical. Storing and manipulating large 
parameter sets and their associated geometric properties require substantial memory, which can 
exceed the capacity of even high-​end hardware. Training on large datasets involves processing vast 
amounts of data in each training iteration. Integrating differential geometric computations into this 
process can significantly slow down the training pipeline. Efficient training relies on processing data 
in batches. Adding complex geometric calculations to each batch increases the computational over-
head, making it difficult to maintain the required throughput for timely model training.

8.5.6 �E merging Insights

Deep learning research is vibrant and ever-​evolving, with new architectures, techniques, and best 
practices emerging regularly. As the field progresses, the relevance and applicability of specific differ-
ential geometric insights might change. Keeping geometric tools and analyses updated and relevant in 
this dynamic environment is a constant challenge. The challenges of emerging insights are as follows. 
The introduction of new neural network architectures, such as transformers, graph neural networks, 
and neural ordinary differential equations (ODEs), can shift the focus of geometric analysis. Methods 
that were effective for earlier architectures may need adaptation or re-​evaluation for these newer 
models. Advances in training techniques, such as self-​supervised learning, transfer learning, and meta-​
learning, introduce new dynamics in the loss landscape and optimization process, impacting the appli-
cation of geometric insights. The geometric tools and methods must evolve alongside advancements 
in deep learning. This requires ongoing research to refine and adapt these tools to new contexts and 
challenges. Collaboration between mathematicians, computer scientists, and domain experts is essen-
tial to ensure that geometric tools remain relevant and effective for emerging deep learning paradigms.

The plots in Figure 8.8 illustrate some of the challenges of applying differential geometry 
concepts to deep learning: The left plot shows a simplified high-​dimensional loss landscape in 2D. 
This highlights the difficulty of understanding and visualizing complex, high-​dimensional, deep-​
learning concepts. The middle plot shows the impact of additional computational cost on training 
time. The shaded area represents the additional time required for these computations. The right plot 
illustrates the gap between theoretical insights (green) and practical impact (orange) on training due 
to curvature.

8.6 � REAL-​WORLD APPLICATIONS

8.6.1 �A utonomous Systems and Robotics

In the realm of robotics, differential geometry is instrumental in path planning and control. 
Autonomous systems, such as drones or self-​driving cars, must navigate through complex envir-
onments while making real-​time decisions. The concept of manifolds, which represent the possible 
states or configurations of a system, is crucial in this context. For instance, the configuration space 
of a robot arm, which includes all possible positions and orientations, can be modeled as a mani-
fold. Understanding the curvature and topology of this space allows the robot to plan efficient and 
collision-​free paths. This geometric insight is particularly valuable in dynamic environments, where 
the robot must adapt to changing conditions while maintaining optimal performance.
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FIGURE 8.8  (a) High dimensionality: simplified loss landscape, (b) computational cost impact on training time, and (c) theoretical vss. practical gap.

 

 
new

genrtpdf



264 Mathematical Foundations for Deep Learning

8.6.2 �M edical Image Analysis

Differential geometry is also pivotal in the analysis of medical images, where it aids in the seg-
mentation and interpretation of complex anatomical structures. In medical imaging, the surfaces 
of organs or tissues can be modeled as manifolds, and the curvature of these surfaces provides 
critical information about their shape and structure. For instance, in brain imaging, the cortex can 
be represented as a 2D manifold embedded in 3D space. By analyzing the curvature of the cortical 
surface, researchers can detect abnormalities such as tumors or atrophy, which are indicative of 
neurological disorders. The ability to model and analyze these geometric properties enables more 
accurate diagnoses and better treatment planning.

8.6.3 �C omputer Vision and Image Recognition

In computer vision, differential geometry provides the mathematical foundation for understanding 
how images are processed and recognized by neural networks. The concept of manifolds is particu-
larly important in image recognition tasks, where the high-​dimensional space of all possible images 
is often constrained to a lower-​dimensional manifold that captures the essential features of specific 
objects. For example, face recognition systems rely on the fact that images of the same person under 
different conditions (e.g., lighting, pose) lie on a manifold in the space of all possible images. By 
learning the geometry of this manifold, the system can accurately identify individuals across a wide 
range of variations. This approach has been successfully applied in various domains, from security 
systems to social media platforms.

8.6.4 � Signal Processing and Communications

Differential geometry is also used in signal processing, where it helps in the analysis and compres-
sion of complex signals. For instance, in wireless communications, signals transmitted through the 
air can be affected by the curvature of the Earth’s surface and other obstacles. By modeling the 
signal propagation using geometric principles, engineers can design more efficient communication 
systems that minimize interference and maximize data transmission rates.

8.7 � HANDS-​ON SECTION

In this hands-​on section, we will explore the concepts of manifold learning and curvature in high-​
dimensional spaces using differential geometry.

8.7.1  Step 1: Import Libraries

In this part of the code, we are installing and importing the necessary packages for dimensionality 
reduction and visualization. The command!pip install umap-​learn scikit-​learn matplotlib ensures 
that the required libraries are installed. After installation, we import key functions and classes. These 
tools are essential for exploring and visualizing high-​dimensional data in a lower-​dimensional space, 
making it easier to understand patterns, clusters, and relationships in the data.

# Install necessary packages
!pip install umap-​learn scikit-​learn matplotlib
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_​swiss_​roll
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from sklearn.decomposition import PCA
from sklearn.manifold import Isomap, TSNE
import umap

8.7.2  Step 2: Set Random Seed for Reproducibility

In this section, we are generating a synthetic dataset known as the Swiss roll using make_​swiss_​
roll from scikit-​learn. The Swiss roll is a common 3D dataset used to test and demonstrate 
dimensionality reduction techniques because it has a complex, curved structure that is challenging 
for linear methods to handle.

np.random.seed(42)
# Generate the Swiss Roll dataset
n_​samples =​ 1000
noise =​ 0.05
X, color =​ make_​swiss_​roll(n_​samples, noise=​noise)

8.7.3  Step 3: Apply PCA for Dimensionality Reduction

In this section, we are applying four different dimensionality reduction techniques to project the 
high-​dimensional Swiss roll dataset into 2D space. Dimensionality reduction is crucial for visual-
izing complex datasets in lower dimensions, making patterns or clusters easier to interpret.

pca =​ PCA(n_​components=​2)
X_​pca =​ pca.fit_​transform(X)
# Apply Isomap for Dimensionality Reduction
isomap =​ Isomap(n_​components=​2, n_​neighbors=​10)
X_​isomap =​ isomap.fit_​transform(X)
# Apply t-​SNE for Dimensionality Reduction
tsne =​ TSNE(n_​components=​2, random_​state=​42)
X_​tsne =​ tsne.fit_​transform(X)
# Apply UMAP for Dimensionality Reduction
try:
umap_​reducer =​ umap.UMAP(random_​state=​42)
X_​umap =​ umap_​reducer.fit_​transform(X)

except Exception as e:
print(f“Error with UMAP: {e}”)
X_​umap =​ np.zeros((X.shape[0]‌, 2))  # Fallback to prevent 
plot from being empty

8.7.4  Step 4: Plotting All Graphs in One Frame

In this section, we are visualizing the results of dimensionality reduction techniques applied to the 
Swiss roll dataset in a series of subplots.
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fig, axs =​ plt.subplots(2, 3, figsize=​(18, 12))
# Plot a: Swiss Roll Dataset in 3D
ax =​ fig.add_​subplot(2, 3, 1, projection=​‘3d’)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=​color, cmap=​plt.
cm.Spectral)
ax.set_​title(“a) 3D Swiss Roll Dataset”)
# Plot b: PCA projection
axs[0, 1].scatter(X_​pca[:, 0], X_​pca[:, 1], c=​color, cmap=​plt.
cm.Spectral)
axs[0, 1].set_​title(“b) PCA Projection”)
axs[0, 1].set_​xlabel(“PCA 1”)
axs[0, 1].set_​ylabel(“PCA 2”)
# Plot c: Isomap embedding
axs[0, 2].scatter(X_​isomap[:, 0], X_​isomap[:, 1], c=​color, 
cmap=​plt.cm.Spectral)
axs[0, 2].set_​title(“c) Isomap Embedding”)
axs[0, 2].set_​xlabel(“Isomap 1”)
axs[0, 2].set_​ylabel(“Isomap 2”)
# Plot d: t-​SNE embedding
axs[1, 0].scatter(X_​tsne[:, 0], X_​tsne[:, 1], c=​color, cmap=​
plt.cm.Spectral)
axs[1, 0].set_​title(“d) t-​SNE Embedding”)
axs[1, 0].set_​xlabel(“t-​SNE 1”)
axs[1, 0].set_​ylabel(“t-​SNE 2”)
# Plot e: UMAP embedding
if X_​umap.any():
   axs[1, 1].scatter(X_​umap[:, 0], X_​umap[:, 1], c=​color, 
cmap=​plt.cm.Spectral)
else:
   axs[1, 1].text(0.5, 0.5, ‘UMAP Failed’, horizontalalignment=​
’center’, verticalalignment=​’center’)
axs[1, 1].set_​title(“e) UMAP Embedding”)
axs[1, 1].set_​xlabel(“UMAP 1”)
axs[1, 1].set_​ylabel(“UMAP 2”)

Figure 8.9 presents a comparative analysis of various dimensionality reduction techniques applied 
to the Swiss roll dataset. Figure 8.9a depicts the original 3D Swiss roll, illustrating its complex and 
nonlinear structure. Figure 8.9b shows the results of PCA, a linear technique, which flattens the 
data and loses much of the intrinsic geometric structure of the manifold, revealing only the global 
variance. Figure 8.9c displays the Isomap embedding, which successfully captures the underlying 
manifold by preserving geodesic distances, offering a more accurate low-​dimensional representa-
tion. Figure 8.9d presents the t-​SNE embedding, which excels in maintaining local relationships and 
clusters within the data but might distort global distances, offering a view of fine-​grained structures. 
Figure 8.9e shows the UMAP embedding, which provides a balanced representation that preserves 
both local and global structures, giving a clear and meaningful visualization of the data’s manifold 
structure.
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FIGURE 8.9  Comparing dimensionality reduction techniques on the Swiss roll dataset. (a) 3D Swiss roll dataset, (b) PCA projection, (c) Isomap embedding, (d) t-​
SNE embedding, and (e) UMAP embedding.

 

 
new

genrtpdf



268 Mathematical Foundations for Deep Learning

8.8 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

8.8.1 �M isinterpreting Geometric Concepts

	• Mistake: Misunderstanding fundamental geometric concepts like manifolds, tangent spaces, 
and curvature can lead to incorrect assumptions and implementations.

	• Tip: Review basic differential geometry textbooks and online resources. Visual aids and inter-
active tools can help solidify understanding.

8.8.2 �V isualizing High-​Dimensional Spaces

	• Mistake: Attempting to visualize high-​dimensional loss landscapes or feature spaces without 
appropriate techniques can result in misleading interpretations.

	• Tip: Use dimensionality reduction techniques like t-​SNE or PCA to visualize high-​dimensional 
data. Be aware of the limitations and what information might be lost during dimensionality 
reduction.

8.8.3 �I gnoring Curvature in Optimization

	• Mistake: Neglecting the curvature of the loss landscape during optimization can lead to poor 
convergence or getting stuck at saddle points.

	• Tip: Implement optimization algorithms that consider curvature, such as those based on 
second-​order derivatives or adaptive learning rates. Regularly evaluate and adjust these 
methods based on empirical performance.

8.8.4 �O verfitting and Generalization

	• Mistake: Focusing too much on achieving low training loss without considering the geometry 
of the loss landscape can lead to overfitting.

	• Tip: Use regularization techniques that penalize sharp minima. Monitor validation perform-
ance closely and use early stopping to prevent overfitting.

8.8.5 �C omputational Overhead

	• Mistake: Incorporating complex differential geometric calculations without considering com-
putational cost can slow down training significantly.

	• Tip: Balance the computational cost with the benefits. Use approximations or heuristics where 
possible to reduce the computational burden.

8.8.6 � Bridging Theory and Practice

	• Mistake: Failing to translate theoretical insights from differential geometry into practical 
applications can limit the usefulness of these concepts.

	• Tip: Focus on practical implementations and empirical validation. Start with simple models 
and gradually incorporate more complex geometric insights as you gain confidence and 
understanding.

8.8.7 �H andling Large-​Scale Models

	• Mistake: Applying techniques that work well on small models to large-​scale models without 
considering scalability issues can lead to inefficiencies.
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	• Tip: Test on smaller subsets of your data and incrementally scale up. Use distributed com-
puting and parallel processing techniques to handle large-​scale models effectively.

8.9 � REVIEW QUESTIONS

1.	 What are the fundamental concepts of differential geometry, and how do they apply to neural 
networks?

2.	 What is the difference between flat and sharp minima, and why are flat minima preferred for 
better generalization?

3.	 How do neural networks transform input data into high-​dimensional feature spaces?
4.	 What insights can be gained from analyzing the geometry of these feature spaces?
5.	 Why is understanding the curvature of the loss landscape crucial for improving a model’s 

generalization to unseen data?
6.	 What is the Fisher information metric, and how does it help understand the sensitivity of a 

model’s predictions?
7.	 How does information geometry apply to Bayesian deep learning?
8.	 What is the impact of penalizing sharp minima on the training and generalization of neural 

networks?
9.	 What are saddle points, and why is it essential to design optimization techniques that 

avoid them?
10.	 How does the geometry of feature spaces enhance the interpretability of neural networks?

8.10 � PROGRAMMING QUESTIONS

8.10.1 �E asy: Implementing Basic Manifold Learning

1.	 Generate a synthetic high-​dimensional dataset.
2.	 Apply PCA to reduce the dimensions to 2.
3.	 Visualize the reduced dataset using a scatter plot.

8.10.2 �M edium: Comparing Manifold Learning Techniques

1.	 Use a complex dataset such as MNIST or CIFAR-​10.
2.	 Apply t-​SNE and UMAP separately to reduce the dimensions to 2.
3.	 Visualize the results side by side and compare their ability to preserve the structure.

8.10.3 �H ard: Analyzing Curvature in High-​Dimensional Dataset

1.	 Implement Laplacian eigenmaps to reduce the dimensions of a high-​dimensional dataset.
2.	 Calculate the Laplacian matrix and perform eigenvalue decomposition.
3.	 Visualize the eigenvalues and analyze the curvature based on their distribution.
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9  Topology in Deep Learning

9.1 � INTRODUCTION

In the vast field of deep learning, the design and layout of neural networks are crucial in shaping how 
they work and how effective they are. This design, often referred to as “topology” in deep learning, 
is the base that allows algorithms to learn and improve. However, the word “topology” isn’t used 
only for neural networks. It originally comes from a detailed area of mathematics that studies the 
properties of spaces that stay the same even when they are stretched or bent without breaking. This 
link between deep learning and mathematical topology helps us better understand how neural net-
work algorithms come together and behave. This chapter reviews this concept in more detail.

9.2 � BASIC TOPOLOGY

Topology is a part of mathematics that looks at the ways spaces can stay the same even when they 
are changed in certain ways, especially smooth and continuous changes. It began by trying to under-
stand the basic nature of shapes and spaces, focusing on important features rather than minor details. 
In the end, although the word “topology” is used differently in pure mathematics and deep learning, 
both areas are all about structure and the properties that come from that structure.

9.2.1 �C ontinuous Transformations and Invariance

A key idea in topology is the concept of homeomorphism: a continuous, one-​to-​one, onto map 
whose inverse is also continuous. Intuitively, a homeomorphism lets you bend or stretch one shape 
into another without cutting or attaching new pieces. If two shapes are connected by a homeo-
morphism, they are considered the same in topology, or “homeomorphic.” This concept ignores 
measures like distances or angles, focusing instead on the fundamental properties that remain 
unchanged under continuous deformations. For example, topologically, a circle can be deformed 
into an ellipse without breaking or merging parts, so they are homeomorphic. A classic illustration 
is the coffee mug and the donut, each has exactly one hole, making them topologically equivalent 
despite looking quite different in everyday terms.

Figure 9.1a shows a circle (solid blue line) and an ellipse (dashed green line), which can be 
stretched or compressed into each other without cutting or gluing. This ability to transform smoothly 
shows that the circle and ellipse are topologically equivalent, they share the same fundamental struc-
ture in topology. Figure 9.1b illustrates a 3D view of a torus (donut shape) characterized by a single 
hole. This hole is a key topological feature that distinguishes it from shapes like the circle or ellipse, 
which have none. Together, these plots demonstrate how topology focuses on properties like con-
nectedness and the number of holes rather than exact shapes.

 

 

 

 

 

http://dx.doi.org/10.1201/9781032690742-9


271
To

p
o

lo
gy in

 D
eep

 Learn
in

g

FIGURE 9.1  (a) Circle and ellipse, topologically equivalent due to smooth transformations. (b) Torus, highlighting its single hole as a distinct topological 
feature.
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9.2.2 �N eural Networks and Topological Structure

In deep learning, when we talk about the topology of a neural network, we mean its structure or 
design. This includes how many nodes (or neurons) there are, how they are arranged into layers, 
and how they are connected to each other. This “structure” acts like a plan that guides how the net-
work works. However, comparing the topology of neural networks to mathematical topology is not 
straightforward. In mathematics, topology is about properties that stay the same even when shapes 
are stretched or bent. In deep learning, topology is more about the basic setup of the network, such 
as the number of layers and how the neurons are linked. The “shape” of the network affects how 
powerful it is, how it processes information, and the types of problems it can solve. There is also a 
deeper link between them. The way you design the topology of a neural network can affect how well 
it learns and how it can apply what it has learned to new situations. In some ways, the network’s 
design and the way it learns work, like the rules in mathematical topology, deciding what parts can 
change and what parts stay the same as the network learns from data.

9.3 � RELATION TO CONVERGENCE OF LEARNING ALGORITHMS

The topology of a neural network sets the foundation for how well it performs. However, factors 
like the number of layers (depth), the number of neurons in each layer (width), how the neurons are 
connected, and the activation functions used, all along with the type of data and the specific task, 
play a crucial role in how effectively the learning algorithm works and how quickly it converges. 
Good design, proper ways to start the network (initialization), and techniques to prevent overfitting 
(regularization) are essential, especially as the network becomes more complex. The way a neural 
network is structured can greatly affect how successfully the learning algorithm can find the best 
solution.

9.3.1 �D epth and Width

9.3.1.1 � Depth (Number of Layers)
The depth of a network, meaning the number of layers it has, is very important for its ability to 
understand and learn complex patterns and ideas. The layers in a deep network learn features in a 
hierarchical way:

1.	 Initial Layers: The first layers of a deep network usually learn simple and basic features, like 
edges, corners, and textures in images. These simple parts are the building blocks for more 
complicated patterns.

2.	 Intermediate Layers: As the data move through the network, the middle layers combine 
these simple features to create more complex shapes and outlines. This stage provides a 
more detailed and richer understanding of the input data.

3.	 Deep Layers: The deepest layers of the network capture very complex and abstract features. 
For example, in image recognition, these layers might identify specific objects, scenes, or 
intricate patterns that are important for high-​level understanding and making decisions.

Adding more layers to neural networks has clear benefits for both how they represent data and how 
well they perform. First, having more layers helps the network learn and show complex patterns 
in data, which is especially useful for tasks like recognizing images and speech or processing lan-
guage. With more layers, deep networks can understand features at different levels, allowing them to 
grasp data in a hierarchical way, which often works better than networks with fewer layers. Second, 
deeper networks have led to major improvements in performance. For example, very deep networks 
have achieved significant increases in accuracy for image recognition, setting new records in various 
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tasks and demonstrating how depth can enhance a neural network’s performance. However, deeper 
networks also bring some challenges, such as overfitting, problems with training, and the need for 
a lot of computing power. First, deeper networks with more parameters are more likely to overfit, 
especially when there is not enough data. Overfitting happens when the model learns the noise in the 
data instead of the useful patterns, which makes it worse at handling new data. Second, as networks 
become deeper, they can have trouble converging during training. This means that the gradients used 
to update the network’s parameters can either become very small (vanish) or very large (explode), 
making it hard to optimize the model effectively. Finally, deeper networks need more computa-
tional power, which makes training them time-​consuming and resource-​heavy. These networks often 
require powerful GPUs or TPUs and distributed computing systems, which can be a challenge for 
those who do not have access to advanced hardware.

Figure 9.2a shows the decision boundary created by a shallow neural network with a single hidden 
layer containing five neurons. The network is limited in its ability to capture complex patterns, leading 
to a relatively simple decision boundary. This demonstrates how initial layers in a shallow network 
primarily capture basic features, resulting in a straightforward separation of the data. Figure 9.2b 
shows the decision boundary of a neural network with two hidden layers, each containing 10 neurons. 
This medium-​depth network captures more complex patterns than the shallow network, leading to a 
smoother and more detailed decision boundary. The plot illustrates how intermediate layers allow the 
network to learn and combine more intricate features, improving its ability to model the underlying 
structure of the data. Figure 9.2c shows the decision boundary produced by a deep neural network 
with three hidden layers, each containing 50 neurons. The deep network is capable of capturing 
highly complex and abstract patterns, resulting in a very refined and intricate decision boundary.

9.3.1.2 � Width (Number of Nodes per Layer)
The width of a layer in a neural network refers to how many nodes or neurons are in that layer. The 
width affects how well the network can learn from data and recognize complex patterns. Making 
the network wider can sometimes mean you don’t need to make it deeper, but it also brings its own 
challenges. One of the main benefits of having wider neural networks is that they have a better ability 
to learn. Wider layers have more parameters, which allows the network to learn more features and 
handle more complicated tasks. This increased capacity can help the network fit the training data 
better. Sometimes, a wider network can perform just as well as a deeper one while being simpler 
in design. Another advantage of wider layers is that they enable the model to learn a more diverse 
set of features from the data. This variety helps the model work better with different types of data, 
especially complex datasets, and can improve performance without needing to add more layers. 
However, there are also challenges when increasing the width of neural networks. One major issue 
is overfitting. Wider layers can make the network too complex, causing it to memorize the training 
data instead of learning to work well with new, unseen data. This can lead to poor performance 
when the network is tested with real-​world data. Making the network wider also means there are 
more parameters, which requires more computing power and longer training times. This can slow 
down the training process and may need stronger hardware like GPUs or TPUs. Additionally, more 
parameters use more memory, which can be a problem for very wide networks. Lastly, there comes 
a point where making the network wider won’t significantly improve its performance. Adding more 
nodes might not make the network more accurate or effective. It’s important to balance the width 
of the network with how efficiently it uses resources. Finding the right design is often better than 
simply adding more nodes. For example, imagine a neural network that classifies images into 10 
categories, such as handwritten digits from 0 to 9. In this case, adjusting the width of the network 
can help it learn to recognize the different digits more effectively without necessarily making the 
network deeper. Let’s look at two different situations: In the first situation, called a narrow network, 
the hidden layer has 50 nodes. If the input layer has 784 nodes, which represent a 28 by 28 image, 
then the number of connections between the input layer and the hidden layer is 784 multiplied by 50. 
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FIGURE 9.2  Hierarchical feature learning across network depths, (a) initial layers, (b) intermediate layers, (c) deep layers.
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This equals 39,200 connections. In the second situation, called a wide network, the hidden layer has 
500 nodes instead of 50. With the same input layer of 784 nodes, the number of connections between 
the input and hidden layers becomes 784 multiplied by 500, which is 392,000 connections. In this 
example, the wider network has ten times more connections than the narrow network. This larger 
number of connections allows the network to recognize more detailed and complex patterns in the 
training data. However, having so many connections also increases the chance that the network will 
overfit. Overfitting happens when the network learns the training data too well, including any noise 
or specific details, which makes it perform poorly when it encounters new, unseen data.

9.3.2 � Skip Connections

Skip connections, also known as residual connections, allow information to move directly across 
one or more layers by creating a straight path around certain layers. This design is important for 
training very deep neural networks because it helps solve some of the main problems that come 
with having many layers. Skip connections have several benefits. They help prevent the vanishing 
gradient problem, which is when the signals used to train the network become too small as they 
move through many layers. By providing a direct path for these signals, skip connections keep them 
strong, making the training process more stable and efficient. This allows deeper networks to be 
trained effectively. Another advantage of skip connections is that they support a type of learning 
called ensemble learning. This means that each layer can focus on learning the difference between 
what it currently predicts and what it should predict. This approach allows each layer to build on 
what the previous layers have learned, leading to better performance and faster learning.

Skip connections also make the network more flexible. They let different layers adjust their 
outputs on their own, which helps the network handle various levels of detail and complexity in 
the data. This makes the network more adaptable to different tasks. However, skip connections also 
come with some challenges. They make the network more complex by creating multiple paths for 
information to flow, which requires careful design to keep everything stable. Additionally, they use 
a bit more memory and processing power because the network needs to combine the outputs from 
both the direct and the bypassed paths. Despite these challenges, the advantages of skip connections 
usually outweigh the drawbacks, especially when using efficient designs and modern hardware. 
Figure 9.3 illustrates the impact of skip connections on the gradient flow through a neural network’s 
layers, comparing scenarios with and without skip connections. On the y-​axis, the plot represents 
the gradient magnitude on a logarithmic scale, while the x-​axis displays the layers of the network. 
Without skip connections, represented by the red dashed line, there is a significant reduction in 
gradient magnitude across layers, a phenomenon known as the vanishing gradient. This issue is 
prominent in deeper networks, where gradients become too small to effectively update weights, 
leading to poor learning. In contrast, the blue solid line shows the preserved gradient flow when 
skip connections (residuals) are introduced. These connections enable the gradient to remain rela-
tively stable even as the network deepens, addressing the vanishing gradient problem. As seen in the 
plot, the gradient magnitude remains higher and more stable, preventing degradation of the learning 
process. The shaded gray region between the lines emphasizes the difference in gradient behavior, 
highlighting the improvement achieved through skip connections in deep neural networks.

9.3.3 �R ecurrent Connections

Recurrent neural networks (RNNs) are built to work with data that comes in a sequence by using  
loops that let information carry over from one step to the next. This setup allows RNNs to handle  
sequences of different lengths and understand how things change over time and depend on each  
other in order. The main benefits of these looping connections in neural networks are seen when pro-
cessing sequential data and keeping information over time. First, the loops let RNNs handle data in  
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the order it happens, making them great for tasks like analyzing time-​based data, understanding lan-
guage, and recognizing speech. These networks can work with input sequences that vary in length,  
which is important for tasks where the size of the input can change a lot, such as predicting the next  
word in a sentence or processing spoken words. Second, the looping connections give the network a  
kind of memory because information can stay available across different steps. This means the model  
can use what it learned before to make better predictions now, giving it a deeper understanding of  
how things are related in the sequence. For example, think about trying to predict the next word in  
a sentence. Suppose we have the sequence: “The cat is on the.” The goal is to guess the next word,  
which is likely “mat.” An RNN looks at this sequence one word at a time, using the words that came  
before to help predict the next one. In this case, each word is treated as a separate step. At each step  
t, the RNN takes in an input xt (like the word “The,” “cat,” “is,” etc.) and updates its hidden state ht  
based on the current word and the hidden state from the previous step ht−1

. For example:

	• At t =​ 1, the RNN processes “The,” and updates its hidden state h1.
	• At t =​ 2, it processes “cat,” using both x2 (“cat”) and the hidden state h1 (from “The”).

This continues until the RNN processes “the” at t =​ 4, using all previous context to predict the next 
word, “mat.” The RNN’s recurrent connections allow information from earlier time steps to influ-
ence later predictions. In the example above, knowing “The cat is on the” helps the model predict 
“mat” because of the context it has accumulated over the sequence. At each time step t, the RNN 
updates its hidden state using the following equations:

	 h f W h W x b
t h t x t

= ⋅ + ⋅ +( )−1
	

where:

	• ht is the hidden state at time t,
	• ht-​1 is the hidden state from the previous time step,

FIGURE 9.3  Impact of skip connections on gradient flow in deep networks.
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	• xt is the input at time t,
	• Wh and Wx are weight matrices,
	• b is the bias term, and
	• f is the activation function (typically a non-​linear function like tanh or ReLU).

The hidden state ht stores information from previous time steps, enabling the RNN to “remember” 
the context as it processes new data. Finally, the output at each time step, yt, is given by:

	 y f W h c
t y t

= ⋅ +( )	
where:

	• Wy is the output weight matrix,
	• c is the output bias.

For example, if we want to guess the next word in a sentence, yt would show the chances of different 
words coming next. The word with the highest chance is chosen as the next word. Recurrent 
connections in neural networks have some problems, such as vanishing and exploding gradients, 
and slow training. First, when training the network, the information (called gradients) is sent 
back through time. In long sequences, these gradients can either become very small (vanishing 
gradients) or very large (exploding gradients). When gradients vanish, the network struggles to learn 
connections that are far apart in the sequence. When gradients explode, the training can become 
unstable. These problems can make training slow or ineffective, especially for tasks that need to 
understand long-​term relationships. Second, RNNs handle data one step at a time, with each step 
depending on the one before it. This makes training slower compared to other types of networks like 
convolutional neural networks (CNNs), which can handle many parts of the data at the same time. 
Because RNNs work step by step, they require more computing power and memory, making the 
training process take longer and use more resources.

9.3.4 �A ctivation Functions

Activation functions add non-​linearity to the network, which helps it learn complex patterns. ReLU is 
a popular activation function used in neural networks. It doesn’t get stuck at certain values, which often 
makes the network train faster. However, ReLU can cause some neurons to stop working, meaning 
they never activate. To fix this, variations like LeakyReLU and ParametricReLU have been created. 
Other common activation functions are Sigmoid and Tanh. Sigmoid functions are usually used in the 
output layer for tasks that have two possible outcomes because they produce values between 0 and 
1. Tanh functions are used when the output needs to be between −1 and 1, which is useful for certain 
hidden layers. However, both Sigmoid and Tanh can cause a problem called the vanishing gradient 
because they can make the values very small. This makes it hard to train deep networks effectively.

Figure 9.4 presents six subplots, each representing the training process of neural network models 
with different depths and activation functions. The x-​axis represents the number of epochs, while 
the y-​axis displays the loss and accuracy values. The red line indicates the loss, and the blue line 
shows the accuracy.

Depth: 1, Activation: relu: This subplot shows the training results for a neural network with a 
single hidden layer using the ReLU activation function. Initially, the loss decreases rapidly, and 
the accuracy increases, indicating that the model is learning. As training progresses, both metrics 
stabilize, suggesting the model has reached a plateau. Depth: 1, Activation: tanh: This subplot 
represents a neural network with one hidden layer using the Tanh activation function. The loss 
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decreases steadily over the epochs, while the accuracy improves. Compared to the ReLU activation, 
the Tanh function shows a more gradual learning curve, reflecting different dynamics in how the 
network converges. Depth: 3, Activation: relu: This subplot corresponds to a neural network with 
three hidden layers and the ReLU activation function. Initially, the model showed rapid improve-
ment in both loss and accuracy. The increased depth allows the network to capture more complex 
patterns, leading to higher accuracy than the single-​layer models. Depth: 3, Activation: tanh: Here, 
the neural network with three hidden layers uses the Tanh activation function. The training process 
shows a steady decrease in loss and an increase in accuracy. The multiple layers with Tanh acti-
vation help the network learn effectively, with the training curves indicating smooth convergence. 
Depth: 5, Activation: relu: This subplot shows the performance of a deeper neural network with 
five hidden layers using ReLU. The training curves indicate rapid initial learning, with both loss 
and accuracy reaching stable values. The depth of the network provides the capacity to model com-
plex relationships, reflected in the training metrics. Depth: 5, Activation: tanh: This final subplot 
represents a neural network with five hidden layers and Tanh activation. The loss decreases, and 
accuracy increases steadily, similar to other Tanh-​activated models. The depth combined with Tanh 
activation allows the network to converge smoothly, capturing intricate patterns in the data.

9.4 � TOPOLOGICAL DATA ANALYSIS IN NEURAL NETWORKS

Integrating Topological Data Analysis (TDA) with neural networks is a new and promising area that 
can lead to many discoveries and improvements. TDA  provides tools and methods to examine and 
understand the shape and structure of datasets. This helps us gain deep insights into how data are 
organized and how different parts of the data are related. When TDA is used with neural networks 
that are learning intensively, it offers a unique way to understand both the data and how the network 
behaves.

9.4.1 �P ersistent Homology

Persistent homology is a technique from computational topology that helps analyze the shape 
and structure of data at different levels. It is especially useful for understanding complex, high-​
dimensional data by looking at how its features remain or change as we examine it at various scales. 
In persistent homology, the main ideas include topological features, filtration, and visualizations 
like persistence diagrams and barcodes. Topological features are the basic shapes in the data, such 
as points, lines, loops, and cavities. These features are counted using Betti numbers. For example, 
the zeroth Betti number counts the number of separate pieces or connected components, the first 
Betti number counts the number of loops or cycles, and the second Betti number counts the number 
of voids or enclosed spaces. A filtration is a step-​by-​step process where we build a series of shapes 
called simplicial complexes by changing a scale parameter. A simplicial complex is made up of 
points, lines, triangles, and other simple shapes that approximate the data’s structure. This process 
allows us to analyze the topological features at different scales. Each feature has a birth scale, which 
is when it appears, and a death scale, which is when it disappears. The difference between these 
scales measures how long the feature persists. Visualizations like persistence diagrams and barcodes 
are used to show how the topological features appear and disappear as the scale changes. Features 
that last through many scales are considered important, while those that appear and disappear 
quickly are usually seen as noise. Consider a group of six data points: (0, 0), (1, 0), (0, 1), (1, 1), (2, 
1), and (3, 1) arranged in a two-​dimensional (2D) space. We will use persistent homology to study 
the shapes and structures within this data. First, let’s talk about topological features, specifically 
Betti numbers, which help us understand the structure of the data. The Betti-​0 number counts the 
number of separate pieces or connected components. Initially, with a very small radius around each 
point, there are six separate components because all points are disconnected. As we increase the 
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radius, some points start to connect. For example, at a radius of 0.5, some points merge into fewer 
connected components. Eventually, when the radius is large enough, all points come together into 
one single connected component, so the Betti-​0 number drops to one. Next, Betti-​1 numbers count 
the number of loops or cycles in the data. When we increase the radius further, some connections 
form loops. For instance, the points at (0, 0), (1, 0), (0, 1), and (1, 1) can create a square-​like loop, 
making the Betti-​1 number equal to one. If we keep increasing the radius, this loop might fill in 
and disappear, causing the Betti-​1 number to go back to zero. Filtration is the process of gradually 
increasing the radius around each point and keeping track of when topological features appear and 
disappear. At the start, with radius r =​ 0, there are six separate components. As the radius grows to 
0.5, some points connect, reducing the number of components to three. When the radius reaches 1.5, 
these connections might form one connected component and one loop. Finally, when the radius is 
2.5, all points merge into a single connected component, and no loops remain. A persistence dia-
gram is a way to visualize when each feature (like connected components or loops) appears and 
disappears as the radius changes. For example, a connected component might appear at r =​ 0 and 
merge with others at r =​ 0.5. A loop might form at r =​ 1.0 and disappear at r =​ 2.0. These diagrams 
help us see which features last longer and are more important, while short-​lived features are often 
considered noise. Persistent homology has many useful applications in data analysis. In shape ana-
lysis, it helps examine the geometric structure of data, such as 3D shapes or molecular structures, by 
identifying important shapes within the data. In machine learning, persistent homology can extract 
topological features from complex data, which can improve tasks like classification or grouping 
similar data together by capturing structural information that traditional methods might miss. It also 
helps reduce noise by focusing on features that persist over many scales and ignoring those that dis-
appear quickly, making it especially useful for datasets with a lot of noise. Additionally, in network 
analysis, persistent homology can study complex networks like social, biological, or communica-
tion networks, providing insights into how these networks are connected, how they cluster, and their 
overall structure.

Figure 9.5 demonstrates the application of  TDA using persistent homology to analyze and visu
alize topological features in a dataset. Figure 9.5a shows a scatter plot of data points grouped into 
two clusters, labeled as Cluster 1 and Cluster 2. These clusters highlight distinct regions in the 
dataset, illustrating how data can be divided into separate components based on proximity. The 
arrows point to representative clusters, emphasizing the idea of connectivity within each region. 
Figure 9.5b presents a persistence diagram, a tool that visualizes the birth and death of topological 
features as the scale parameter varies. Two types of features are shown: connected components 
(H0) and loops (H1). The diagonal line represents features that appear and quickly disappear, which 
are often considered noise. Points farther from the diagonal correspond to persistent features that 
remain across multiple scales, indicating their importance in understanding the data’s structure. For 
instance, a loop (H1) appears at a specific scale and persists for some time, reflecting a significant 
cycle in the data’s topology.

Figure 9.6 illustrates a visualization of TDA using three interconnected panels: (a) a point cloud, 
(b) a persistence diagram, and (c) a persistence barcode. These visualizations collectively show-
case the persistence of topological features in the data across multiple scales. Figure 9.6a depicts 
the scatter plot of a two-​cluster point cloud, with Cluster 1 and Cluster 2 labeled in blue and green, 
respectively. This representation highlights the raw spatial distribution and connectivity of data 
points, providing an initial view of the clusters’ structure. Figure 9.6b, the persistence diagram, 
captures the birth and death of topological features, such as connected components (H0) and loops 
(H1). Points closer to the diagonal indicate short-​lived features, often regarded as noise, while points 
farther from the diagonal represent persistent features that are structurally significant. For example, 
loops (H1) and connected components (H0) are annotated to emphasize their relevance at specific 
scales. Figure 9.6c visualizes the same topological features using a persistence barcode. Each hori
zontal bar represents a feature’s lifespan, starting at its birth and ending at its death. Longer bars 
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FIGURE 9.5  (a) Point cloud and (b) persistence diagram.
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FIGURE 9.6  TDA visualization. (a) Point cloud, (b) persistence diagram, (c) persistence barcode.
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283Topology in Deep Learning

signify features that persist over a wide range of scales, indicating their importance, while shorter 
bars represent transient noise. The barcode succinctly complements the persistence diagram by pro-
viding an alternative view of feature longevity.

9.5 � TOPOLOGICAL DATA ANALYSIS WITH DEEP LEARNING

Combining TDA with deep learning is becoming more popular and provides new ways to under-
stand and improve neural network models. TDA helps us examine and use the natural shape and 
structure of data, which can lead to stronger and more efficient learning methods.

9.5.1 �P ersistent Homology in Deep Learning

Persistent homology is an important idea in TDA. It looks at the shapes and features of data at 
different levels. By doing this, it helps us understand the data’s structure by finding things like 
connected parts, loops, and empty spaces. In deep learning, persistent homology can be used in 
several powerful ways. One key use is analyzing the loss landscape, which is the graph of the 
loss function that the neural network tries to minimize. Persistent homology helps us study the 
shapes of this loss function by looking at how many low points and saddle points it has. This gives 
researchers important information about how difficult the optimization problem is. With this know-
ledge, they can create better algorithms to optimize the network. For example, if there are many low 
points, they can develop methods to avoid getting stuck and find better overall solutions. Another 
major use is feature extraction. Persistent homology can pull out topological features from the data, 
such as connected parts, holes, and higher-​dimensional empty spaces. These features capture com-
plex information that regular methods might miss. These extracted features can be added as extra 
inputs to neural networks, helping the model find more detailed patterns, work better on new data, 
and be more reliable. Additionally, persistent homology helps reduce the number of dimensions 
by highlighting the most important topological features. This makes the input data simpler for the 
neural network to handle.

When using persistent homology in deep learning, there are several practical things to consider. 
First, it can be very computationally heavy. Calculating persistent homology for large or complex 
datasets can take a lot of resources, so efficient algorithms and software are needed. To use persistent 
homology in large-​scale deep learning, it’s important to manage the computational load carefully. 
Next, integrating persistent homology with neural networks requires several preprocessing steps 
to calculate the topological features and then smoothly add them to the network’s structure. It’s 
important to make sure this process doesn’t slow down training or prediction. Also, calculating per-
sistent homology involves setting certain parameters, like the scale for filtering, which need to be 
carefully adjusted to capture important features without adding unnecessary noise. Finally, being 
able to interpret and visualize the topological features is crucial. The features found by persistent 
homology need to make sense for the specific task, and understanding how they relate to the data is 
key for using them effectively. Imagine we have two datasets: Dataset A, points arranged in a cir-
cular shape, and Dataset B, points scattered randomly within a square. Our goal is to train a neural 
network to classify new data points as belonging to either Dataset A or Dataset B. To improve 
the neural network’s performance, we will extract topological features from each dataset using 
persistent homology and incorporate these features into the training process. Let’s represent each 
dataset numerically. In Dataset A (circle), we have eight points evenly spaced around a unit circle:

	

1 0 2 2 2 2 0 1 2 2 2 2 1 0

2 2 2 2
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/ / / /
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In Dataset B (square), we have eight points randomly scattered within a unit square:

	 0 1 0 9 0 4 0 7 0 6 0 2 0 9 0 4 0 3 0 5 0 7 0 8. , . , . , . , . , . , . , . , . , . , . , .( ) ( ) ( ) ( ) ( ) ( )) ( ) ( ), . , . , . , .0 5 0 1 0 2 0 6 	

To extract topological features, we’ll compute the persistent homology of each dataset. Persistent 
homology studies the shape of data by analyzing features like connected components and loops 
across different scales.

Step 1: First, we calculate the pairwise Euclidean distances between points in each dataset. 
For Dataset A (circle), let’s compute the distance between the first point (1, 0) and the other 
points: The distance to 2 2 2 2/ /,( ) :

	

d = − + − ≈ + −
≈ + ≈

( / ) ( / ) ( . ) ( . )

. .

1 2 2 0 2 2 0 2929 0 7071

0 0858 0 5 0

2 2 2 2

     .. .5858 0 7654≈ 	

And distance to (0, 1) is d = − + − = + = ≈( ) ( ) .1 0 0 1 1 1 2 1 41422 2 . We repeat this for all 
pairs, constructing a distance matrix DA for Dataset A. For Dataset B (square), We compute 
distances between each pair of points in a similar manner, creating a distance matrix DB .

Step 2: We construct Vietoris–​Rips complexes for each dataset at various distance thresholds 
ϵ. A Vietoris–​Rips complex connects points that are within a distance ϵ of each other. Let’s 
choose several ϵ values (e.g., 0.5, 1.0, 1.5) and observe how the topology changes. For Dataset 
A (circle), at ϵ =​ 0.5, points are connected only to their immediate neighbors, forming indi-
vidual edges and resulting in multiple connected components. As ϵ increases to 0.8, more 
points connect, forming a loop that represents a 1D hole resembling a circular shape. When ϵ 
reaches 1.5, all points are connected, and the loop fills in, causing the hole to disappear. For 
Dataset B (square), at ϵ =​ 0.5, some points are connected, but no significant loops are formed. 
As ϵ increases to 1.0, more connections appear; however, any loops that emerge are due to 
random arrangements and are not persistent, indicating they do not represent meaningful topo-
logical features.

Step 3: Betti numbers quantify the topological features: β0 is a number of connected components, 
and β1 is a number of 1D holes (loops). For each ϵ, we compute β0 and β1. For Dataset A 
(circle), at ϵ =​ 0.5, the Betti numbers are β₀₀ =​ 8 (each point is a separate component) and β₁₁ =​ 0 
(no loops). At ϵ =​ 0.8, β₀₀ becomes 1 as all points connect into one component, and β₁₁ becomes 
1, indicating one persistent loop. By ϵ =​ 1.5, β₀₀ remains 1, and β₁₁ returns to 0 as the loop fills 
in. For Dataset B (square), at ϵ =​ 0.5, β₀₀ varies depending on the point distribution, while β₁₁ 
remains 0 (no loops). As ϵ increases, β₀₀ decreases as components merge, and β₁₁ stays at 0 or 
shows insignificant loops that quickly disappear.

Step 4: We plot persistence diagrams for each dataset, where each topological feature is represented 
as a point with coordinates (birth ϵ, death ϵ). For Dataset A (circle), the persistent loop appears 
at ϵ ≈ 0.8 and disappears at ϵ ≈ 1.5. This results in a point at (0.8, 1.5) in the persistence dia-
gram, indicating a significant topological feature. For Dataset B (square), No significant per-
sistent loops are observed, and features in the diagram have short lifespans (birth and death ϵ 
values are close), indicating they are noise.

Step 5: From the persistence diagrams, we extract features: For Dataset A, the most significant 
β1 feature (loop) has a persistence of 1.5 –​ 0.8 =​ 0.7. For Dataset B, any β1 features have low 
persistence, close to zero. We can define a topological feature vector for each dataset based on 
the persistence of loops. For Dataset A, the topological feature is the persistence of the loop, 
which is 0.7. For Dataset B, the topological feature is the persistence of the loop, which is 0, 
indicating no significant loops persist.
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Step 6: We augment each data point with its dataset’s topological feature. For example, the first point 
in Dataset A has original coordinates (1, 0) and a topological feature value of 0.7. Therefore, the 
augmented vector is (1, 0, 0.7). Similarly, for Dataset B, the first point has coordinates (0.1, 0.9) 
with a topological feature value of 0, resulting in the augmented vector (0.1, 0.9, 0).

Step 7: We use the augmented data to train a neural network for classification. The network archi-
tecture is structured as follows: The input layer consists of three neurons, representing the 
x-​coordinate, y-​coordinate, and topological feature. The hidden layer contains a small number 
of neurons, such as five, using an activation function like ReLU. The output layer comprises 
one neuron with a sigmoid activation function, designed for binary classification to distinguish 
between Dataset A and Dataset B. The training process is as follows: For each epoch, we per-
form the following steps:

1.	 Forward Pass: Compute the output of the network for each data point.
2.	 Loss Calculation: Use a loss function like binary crossentropy to measure the difference 

between predicted and actual labels.
3.	 Backpropagation: Compute gradients of the loss with respect to weights and biases.
4.	 Parameter Update: Adjust weights and biases using an optimizer like stochastic gra-

dient descent (SGD).

Step 8: After training, we evaluate the neural network’s performance on a test set (could be a 
subset of the data or new data points).

Figure 9.7 presents an analysis of two datasets, one circular (Dataset A) and one square (Dataset 
B), using persistent homology and Vietoris–​Rips complexes to study their topological features 
across different scales. Figure 9.7a shows Dataset A, which consists of points arranged in a circular 
shape. Similarly, Figure 9.7b displays Dataset B, where points form a square-​like structure. These 
datasets highlight the initial spatial arrangement of the data. Figure 9.7c illustrates the Vietoris–​Rips 
complex for the circular dataset at ϵ =​ 0.8. This complex connects points based on their pairwise 
distances, capturing the underlying circular topology through the formation of loops while pre-
serving the dataset’s geometric structure. Figure 9.7d shows the persistence diagram for Dataset 
A (circle), where connected components (H0) and loops (H1) are tracked as the scale parameter 
changes. The diagram reveals the persistence of the circular structure, with the H1 loop indicating 
the presence of a significant circular feature. Figure 9.7e presents the Vietoris–​Rips complex for 
the square dataset at ϵ =​ 0.8. This representation connects points in the square, forming a network 
that captures its geometric structure, including potential loops. Figure 9.7f displays the persistence 
diagram for Dataset B (square), showing connected components (H0) and loops (H1). The square’s 
topology is reflected in the emergence and disappearance of loops, highlighting differences in per-
sistence compared to the circular dataset.

9.5.2 � Betti Numbers in Deep Learning

Betti numbers are whole numbers that show how many different types of holes exist in a shape or 
space. They provide a quick summary of how complex the shape of the data is. In deep learning, 
Betti numbers help us understand the structure of the data better and make our models stronger and 
more reliable. Using Betti numbers in neural networks is useful for two main purposes: analyzing 
data complexity and improving model robustness. When analyzing data complexity, Betti numbers 
can be calculated to measure how complicated the dataset is. This understanding helps in choosing 
the right neural network design. For example, if the data has many complex features indicated by 
high Betti numbers, we might need deeper or more advanced network structures to capture these 
intricate patterns. Additionally, Betti numbers can guide us in deciding how to prepare the data or 
apply specific techniques to handle its complexity effectively during training. In terms of model 
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FIGURE 9.7  (a) Dataset A (circle), (b) Dataset B (square), (c) Vietoris–​Rips complex circle at epsilon 0.8, (d) persistence diagram for Dataset A (circle), (e) Vietoris–​
Rips complex square at epsilon =​ 0.8, (f) persistence diagram for Dataset B (square).
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robustness, Betti numbers provide insights into the topological properties of the data, which helps 
in building models that can handle these features well. For instance, if the data has many loops, as 
shown by a high first Betti number, the model can be designed to recognize and work with these 
loops accurately. Incorporating this topological information makes models better at dealing with 
noisy data and unexpected changes. Furthermore, Betti numbers can be added as extra features to 
the data, enhancing the model’s ability to capture the true structure of the data and perform better on 
new, unseen information. Imagine we have two datasets composed of 2D points: Dataset A: Points 
arranged in a circular shape (simple topology), and Dataset B: Points forming a figure-​eight shape 
(more complex topology). Our goal is to analyze the topological complexity of these datasets using 
Betti numbers and understand how this information can inform the design and robustness of a neural 
network trained to classify these shapes. Betti numbers are integers that quantify the topological 
features of a space: β₀₀ (Zeroth Betti number) counts the number of connected components. β₁₁ (first 
Betti number) counts the number of 1D holes (loops). β₂₂ (second Betti number) counts the number 
of 2D voids (in 3D space).

•	 Computing Betti Numbers for Dataset A (Circle):

1.	 We represent the circle using points sampled uniformly around a unit circle. Points, (cos(θi)
,sin(θi)) for i =​ 1, 2, ..., N, where θi are angles evenly spaced between 0 and 2π. For simpli-
city, let’s take N =​ 8 points:

	 a  . cos( ,sin( )) , ,0 0 1 0( ) = ( ) 	

	 b  / / / /. cos( ,sin( )) , ,π π4 4 2 2 2 2( ) = ( ) 	

	 c  / /. cos( ,sin( )) , ,π π2 2 0 1( ) = ( ) 	

	 d  / / / /. cos( ,sin( )) , ,3 4 3 4 2 2 2 2π π( ) = −( ) 	

	 e  . cos( ,sin( )) , ,π π( ) = −( )1 0 	

	 f  / sin / / /. cos( , ( )) , ,5 4 5 4 2 2 2 2π π( ) = − −( ) 	

	 g  /  /. cos( , sin( )) , ,3 2 3 2 0 1π π( ) = −( )  	

	 h  /  sin / / /. cos( , ( )) ,7 4 7 4 2 2 2 2π π( ) = −( ) .	

2.	 We Construct a Vietoris–​Rips Complex: In constructing a Vietoris–​Rips complex, the first 
step is to compute the distance matrix, which involves calculating the pairwise distances 
between points in the dataset. For instance, the distance between Point 1 and Point 2 is

		 approximately d
1 2

2 21 2 2 0 2 2 0 765
,

( / ) ( / ) .= − + − ≈ . The next step is to choose a 
distance threshold (ϵ). This value determines which points are connected; if the distance 
between two points is less than or equal to ϵ, they are connected in the complex.

3.	 Computing Betti Numbers at Different ϵ Values: At ϵ =​ 0.7, edges connect pairs of points 
where d

i j,
.≤ 0 7 di. The connected components (β₀) indicate that each point remains a sep-

arate component, so β₀ =​ 8. No loops are formed at this stage, resulting in β₁ =​ 0. At ϵ =​ 1.1, 
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more connections form between the points. All points become connected, resulting in β₀ =​ 1. 
A single loop forms around the circle, so β₁ =​ 1. At ϵ =​ 2.0, the complex fills in with higher-​
dimensional simplices. The connected components remain at one (β₀ =​ 1), but the loop fills 
in, causing β₁ to drop to 0.

•	 Computing Betti Numbers for Dataset B:

1.	 Dataset Representation: We represent the figure-​eight by combining two circles intersecting 
at the origin: The top loop is centered at (0, 1) with points defined as (cos(θi), sin(θi)+​1). The 
bottom loop is centered at (0, –​1) with points given by (cos(θi), sin(θi) − 1). In both cases, 
N =​ 8 points are used per loop.

2.	 Building a Simplicial Complex: Building a simplicial complex begins with computing the 
distance matrix by calculating pairwise distances between points. Next, choose appropriate 
ϵ values, similar to the previous approach, to determine which points are connected in the 
complex based on their pairwise distances.

3.	 Computing Betti Numbers: At ϵ =​ 0.7, points within each loop start connecting internally. 
The total number of connected components is two, as the top and bottom loops remain sep-
arate, resulting in β₀₀ =​ 2. No loops are present at this stage, so β₁₁ =​ 0. At ϵ =​ 1.1, the inter-
section point at the origin connects the two loops, reducing the connected components to 
one (β₀₀ =​ 1). Two loops form, one in each loop of the figure-​eight, giving β₁₁ =​ 2. At ϵ =​ 2.0, 
the loops begin to fill in, and the connected components remain at one (β₀₀ =​ 1). Both loops 
are filled, reducing β₁₁ to 0. Interpreting the Betti numbers for the given datasets provides 
insights into their topological structure. For Dataset A, the Betti numbers are β₀₀ =​ 1 and 
β₁₁ =​ 1. The value of β₀₀ =​ 1 indicates that the dataset consists of one connected component, 
meaning all points form a single continuous structure. The value of β₁₁ =​ 1 means there is one 
loop, which corresponds to the circular shape of the dataset. In Dataset B, the Betti numbers 
are β₀₀ =​ 1 and β₁₁ =​ 2. The β₀₀ =​ 1 shows that after merging all parts of the figure-​eight, the 
dataset still has one connected component. The β₁₁ =​ 2 indicates the presence of two loops, 
corresponding to the two distinct loops in the figure-​eight shape.

Figure 9.8 illustrates the application of TDA in deep learning, focusing on the relationship 
between the loss landscape and topological persistence. Figure 9.8a depicts the loss landscape, 
where the normalized loss is plotted against the perturbation index. The color gradient highlights 
variations in normalized loss, with darker shades representing lower values and lighter shades indi-
cating higher losses. This visualization captures the ruggedness and overall structure of the opti-
mization surface, emphasizing regions of low loss that correspond to stable solutions. Figure 9.8b 
presents the persistence diagram, which tracks the birth and death of topological features, such 
as connected components (H0) and loops (H1), during the analysis of the loss landscape. Points 
near the diagonal represent short-​lived features, typically considered noise, while points farther 
away correspond to significant topological structures that persist across scales. For example, the 
H0 features highlight the number of distinct connected regions, while H1 features capture cyclic 
patterns in the loss landscape.

9.6 � REAL-​WORLD APPLICATIONS AND EXAMPLES

9.6.1 � Biological Network Analysis

In the field of bioinformatics, topology plays a crucial role in understanding the complex interactions 
within biological networks, such as protein–​protein interaction networks and gene regulatory 
networks. TDA enables researchers to uncover patterns and relationships that are not immediately 
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FIGURE 9.8  TDA in deep learning: (a) loss landscape and (b) persistence diagram.
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290 Mathematical Foundations for Deep Learning

apparent using traditional methods. For example, by analyzing the topological features of these 
networks, such as loops and connected components, scientists can identify key regulatory pathways 
and potential targets for drug development. The use of Betti numbers and persistent homology helps 
in quantifying the robustness and connectivity of these networks, leading to better insights into the 
underlying biological processes.

9.6.2 �M aterial Science and Nanotechnology

Topology is also integral to material science, particularly in the design and analysis of nanomaterials. 
The topological properties of materials, such as the arrangement of atoms in a lattice or the connect-
ivity of pores in a spongy material, can significantly influence their physical properties. For instance, 
topological insulators, materials that conduct electricity on their surface but not in their interior, 
are a prime example of how topological considerations guide the development of new materials 
with unique electrical properties. Understanding the topological structure of these materials allows 
scientists to design more efficient and resilient nanostructures for applications in electronics, energy 
storage, and catalysis.

9.6.3 �R obotics and Autonomous Systems

In robotics, topology helps in the design and control of autonomous systems that must navigate com-
plex environments. Topological maps, which abstract the environment into a network of connected 
regions, enable robots to plan and execute paths efficiently. For instance, in the development of 
autonomous vehicles, topological mapping allows the vehicle to understand its surroundings and 
navigate safely through dynamic and unpredictable environments. This approach is essential for 
tasks such as urban driving, where the vehicle must make decisions based on the connectivity and 
layout of roads, intersections, and other obstacles.

9.6.4 �N euroscience and Brain Connectivity

In neuroscience, topology provides valuable insights into the brain’s connectivity and function. 
The human brain can be modeled as a complex network where neurons and synapses form intricate 
topological structures. By applying TDA, researchers can study the brain’s connectivity patterns and 
understand how different regions interact to produce cognitive functions. For example, persistent 
homology has been used to analyze the topology of brain networks in patients with neurological 
disorders, revealing changes in connectivity that correlate with disease progression. This approach 
is crucial for developing more effective treatments and interventions for conditions like Alzheimer’s.

9.6.5 � Social Network Analysis

Topology is also applicable in the analysis of social networks, where it helps in understanding the 
structure and dynamics of human interactions. Social networks can be represented as graphs, with 
individuals as nodes and their relationships as edges. By studying the topological features of these 
graphs, such as clusters and communities, researchers can gain insights into social behavior, influ-
ence patterns, and the spread of information or diseases. For instance, topological analysis can 
identify influential individuals or groups within a network, which is valuable for targeted marketing 
campaigns, public health interventions, and understanding the spread of misinformation.
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9.6.6 �F inancial Modeling and Risk Assessment

In finance, topology aids in modeling the complex relationships between assets and markets. TDA 
allows for the identification of persistent features in financial data, such as market cycles and 
anomalies, which can inform trading strategies and risk management practices. By analyzing the 
topological structure of financial networks, such as the connections between different markets or 
the relationships between assets in a portfolio, investors can better understand market dynamics 
and make more informed decisions. This approach is particularly useful in stress testing, where 
understanding the topological structure of financial systems can help in predicting how markets 
might react to extreme events.

9.7 � HANDS-​ON EXAMPLE

In this hands-​on section, we will cover persistent homology, Betti numbers, and visualize high-​
dimensional data using t-​SNE and UMAP.

9.7.1  Step 1. Install Required Libraries

In this section, we are installing and importing a variety of libraries essential for working with 
graph neural networks, dimensionality reduction, and topological data analysis. This combination of 
libraries enables us to work with graph-​based neural networks, analyze high-​dimensional data using 
dimensionality reduction techniques, and perform topological data analysis, which can uncover 
hidden structures in datasets.

!pip install spektral umap-​learn gudhi
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
from spektral.layers import GCNConv
from spektral.utils import normalized_​adjacency
from scipy.sparse import csr_​matrix
import matplotlib.pyplot as plt
import networkx as nx
from sklearn.datasets import make_​swiss_​roll
from sklearn.manifold import TSNE
import umap
import gudhi as gd
from gudhi import CubicalComplex, SimplexTree

9.7.2  Step 2. Generate the Swiss Roll Dataset

In this line of code, we are generating a synthetic Swiss Roll dataset using the make_​swiss_​roll 
function from scikit-​learn. This dataset is often used in machine learning to test and visualize 
dimensionality reduction techniques because of its complex, non-​linear structure. The Swiss Roll is 
a 3D dataset that resembles a spiral rolled up in 3D space.
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n_​samples =​ 1000
noise =​ 0.05
X, color =​ make_​swiss_​roll(n_​samples, noise=​noise)

9.7.3  Step 3. Compute the Persistent Homology Using Gudhi

In this section, we are performing TDA on the Swiss Roll dataset using the Gudhi library. Specifically, 
we are computing the persistence diagram of the dataset through the following tasks: Rips Complex 
Construction, Simplex Tree Creation and Persistence Diagram Computation.

rips_​complex =​ gd.RipsComplex(points=​X, max_​edge_​length=​1.0)
simplex_​tree =​ rips_​complex.create_​simplex_​tree(max_​dimension=​2)
diag =​ simplex_​tree.persistence()

9.7.4  Step 4. Extract Betti Numbers

In this line of code, we are calculating the Betti numbers of the Swiss Roll dataset using the sim-
plex tree that was constructed earlier through the Rips complex. By calculating Betti numbers, we 
gain a deeper understanding of the inherent structure of the Swiss Roll dataset, revealing important 
topological properties that may not be easily visible in lower-​dimensional projections or traditional 
data analysis methods.

betti_​numbers =​ simplex_​tree.betti_​numbers()

9.7.5  Step 5. Apply t-​SNE to Reduce Dimensions

In this section, we are applying t-​SNE (t-​Distributed Stochastic Neighbor Embedding) to the Swiss 
Roll dataset for dimensionality reduction. t-​SNE is particularly useful for visualizing complex 
datasets with non-​linear structures, as it reveals clusters and local patterns that might not be captured 
by linear methods like PCA.

tsne =​ TSNE(n_​components=​2, random_​state=​42)
X_​tsne =​ tsne.fit_​transform(X)

9.7.6  Step 6. Apply UMAP to Reduce Dimensions

In this section, we are applying UMAP (Uniform Manifold Approximation and Projection) to 
the Swiss Roll dataset for dimensionality reduction. UMAP is favored in many cases due to 
its balance between preserving local and global structures in the data, and the results can be 
visualized to reveal patterns, clusters, or the underlying structure of complex datasets like the 
Swiss Roll.

umap_​reducer =​ umap.UMAP(random_​state=​42)
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X_​umap =​ umap_​reducer.fit_​transform(X)

9.7.7  Step 7. Plotting All Graphs in One Frame

In this section, we are visualizing the Swiss Roll dataset and its dimensionality-​reduced 
representations using t-​SNE, UMAP, and a Persistence Diagram to explore the topological features 
of the dataset.

fig, axs =​ plt.subplots(2, 2, figsize=​(16, 12))
# Plot a: Swiss Roll Dataset
ax =​ fig.add_​subplot(2, 2, 1, projection=​‘3d’)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=​color, cmap=​plt.
cm.Spectral)
ax.set_​title(“a) Swiss Roll Dataset”)
# Plot b: t-​SNE Embedding of the Swiss Roll Dataset
axs[0, 1].scatter(X_​tsne[:, 0], X_​tsne[:, 1], c=​color, cmap=​
plt.cm.Spectral)
axs[0, 1].set_​title(“b) t-​SNE Embedding of the Swiss Roll 
Dataset”)
axs[0, 1].set_​xlabel(“t-​SNE 1”)
axs[0, 1].set_​ylabel(“t-​SNE 2”)
# Plot c: UMAP Embedding of the Swiss Roll Dataset
axs[1, 0].scatter(X_​umap[:, 0], X_​umap[:, 1], c=​color, cmap=​
plt.cm.Spectral)
axs[1, 0].set_​title(“c) UMAP Embedding of the Swiss Roll 
Dataset”)
axs[1, 0].set_​xlabel(“UMAP 1”)
axs[1, 0].set_​ylabel(“UMAP 2”)
# Plot d: Persistence Diagram
gd.plot_​persistence_​diagram(diag, axes=​axs[1, 1])
axs[1, 1].set_​title(“d) Persistence Diagram”)
plt.tight_​layout()
plt.show()

Figure 9.9 provides a detailed analysis of the Swiss Roll dataset using dimensionality reduc
tion techniques and persistent homology. Figure 9.9a illustrates the Swiss Roll dataset in its ori
ginal 3D form, with points color-​coded to represent variations along the z-​axis. This dataset is a 
well-​known example of a non-​linear manifold in 3D space, often used to evaluate the effective-
ness of dimensionality reduction algorithms. Figure 9.9b presents a 3D t-​SNE embedding of the 
dataset, where the high-​dimensional Swiss Roll is projected into a lower-​dimensional space. The 
t-​SNE embedding focuses on preserving local neighborhoods, effectively revealing clusters and 
the dataset’s overall structure. Figure 9.9c displays the results of applying UMAP to the Swiss Roll 
dataset, also reducing its dimensionality to two dimensions. UMAP emphasizes both local and global 
structural preservation, offering a clear representation of the Swiss Roll’s continuity and manifold 
properties, sometimes surpassing t-​SNE in retaining the dataset’s global relationships. Figure 9.9d 
shows the persistence diagram of the Swiss Roll dataset, capturing its topological features across 
various scales. The H0 features represent connected components, while the H1 features correspond 
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FIGURE 9.9  (a) 3D visualization of the Swiss Roll dataset, (b) 2D t-​SNE embedding of the Swiss Roll dataset, (c) 2D 
UMAP embedding of the Swiss Roll dataset, (d) persistence diagram for the Swiss Roll dataset.
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to loops in the data. The most persistent H1 loop, highlighted in red, signifies the prominent spiral 
structure inherent in the dataset.

9.8 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

9.8.1 �M isunderstanding Topological Concepts

	• Mistake: Misinterpreting fundamental topological concepts like continuous transformations, 
homeomorphisms, and Betti numbers can lead to incorrect applications and analyses.

	• Tip: Review foundational resources on topology and TDA. Use visual aids and interactive 
tools to solidify your understanding of these abstract concepts.

9.8.2 �O verfitting in Deep Networks

	• Mistake: Designing neural networks with excessive depth or width without adequate regular-
ization, leading to overfitting.

	• Tip: Use techniques like dropout, batch normalization, and early stopping to prevent overfitting. 
Regularly validate your model on separate datasets to monitor for overfitting.

9.8.3 �I gnoring the Impact of Network Architecture

	• Mistake: Neglecting the importance of network architecture and its influence on convergence 
and performance.

	• Tip: Experiment with different architectures and configurations. Use grid search or random 
search to find the optimal structure for your specific problem.

9.8.4 �V isualizing High-​Dimensional Data

	• Mistake: Struggling to visualize high-​dimensional data and loss landscapes, leading to misin-
terpretation of model behavior.

	• Tip: Utilize dimensionality reduction techniques like t-​SNE or PCA for visualizing high-​
dimensional data. Understand the limitations and ensure the reduced dimensions retain critical 
information.

9.8.5 �C omputational Cost and Efficiency

	• Mistake: Underestimating the computational cost of applying topological analysis to large 
datasets and neural networks.

	• Tip: Optimize your code and use efficient libraries for TDA computations. Consider using 
cloud computing resources or distributed computing to handle large-​scale analyses.

9.8.6 �I ntegrating TDA with Neural Networks

	• Mistake: Failing to effectively integrate TDA insights with neural network models, resulting 
in limited improvements.

	• Tip: Apply TDA techniques to extract meaningful features and incorporate them into your 
neural network pipeline. Validate the added value through controlled experiments.
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9.8.7 �O verfitting to Topological Features

	• Mistake: Overfitting to topological features extracted from the data, leading to models that do 
not generalize well.

	• Tip: Ensure a balance between topological features and other relevant data features. Use cross-​
validation to assess the generalization performance of your models.

9.8.8 � Bridging Theory and Practice

	• Mistake: Struggling to bridge the gap between theoretical insights from topology and their 
practical application in deep learning.

	• Tip: Focus on practical implementation and empirical validation. Collaborate with domain 
experts to translate theoretical concepts into actionable strategies for improving neural net-
work models.

9.9 � REVIEW QUESTIONS

1.	 What is topology, and why is it important to understand the properties of space?
2.	 How do continuous transformations define topological equivalence? Provide examples.
3.	 How does the topology of a neural network influence its performance and convergence 

properties?
4.	 Explain the differences between network depth and width. What are the pros and cons of 

increasing each?
5.	 What are skip connections, and how do they benefit deep neural networks like ResNet?
6.	 Describe the advantages and challenges of using RNNs for sequential data.
7.	 What are the benefits and potential problems associated with using the ReLU activation 

function?
8.	 What is persistent homology, and how can it be applied to analyze neural network loss 

landscapes?
9.	 How do Betti numbers help understand the topological complexity of data?

10.	 How can integrating TDA and neural networks lead to more robust and effective models?

9.10 � PROGRAMMING QUESTIONS

9.10.1 �E asy

Generate a 3D S-​curve dataset and visualize it.

1.	 Generate the S-​curve dataset.
2.	 Apply t-​SNE to the dataset and visualize the 2D embedding.
3.	 Apply UMAP to the dataset and visualize the 2D embedding.
4.	 Compare the embeddings from t-​SNE and UMAP.
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9.10.2 �M edium

For a given high-​dimensional dataset, compute its persistence diagram using different metrics (e.g., 
Euclidean, cosine) and compare the results.

1.	 Select a high-​dimensional dataset (e.g., MNIST or CIFAR-​10).
2.	 Compute the pairwise distance matrices using different metrics.
3.	 Generate persistence diagrams for each metric.
4.	 Compare the persistence diagrams and interpret the results.

9.10.3 �H ard

Using the MNIST dataset, compute the persistence diagrams for each image and use the resulting 
topological features as input to a machine learning classifier.

1.	 Preprocess the MNIST dataset to compute persistence diagrams for each image.
2.	 Extract topological features (e.g., persistence pairs) from the diagrams.
3.	 Train a machine learning classifier using these topological features.
4.	 Evaluate the classification performance using standard metrics (accuracy, precision, recall).
5.	 Compare the performance to a classifier trained on raw pixel values.
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10  Harmonic Analysis for CNNs

10.1 � INTRODUCTION

Understanding signals in both time and frequency is important for digital signal processing. Tools 
like Fourier (FT) and Wavelet (WT) transform help find hidden patterns in raw data, such as radio 
waves or images used in machine learning. In deep learning, convolutional neural networks (CNNs) 
examine images by identifying features from pixel information. This is similar to harmonic analysis, 
where frequency methods explain how signals behave. By combining deep learning with harmonic 
ideas, we can better understand how CNNs work and find more efficient ways to compute. In this 
chapter, we explore these ideas.

10.2 � FOURIER ANALYSIS

10.2.1 �F undamentals of Fourier Analysis

The strength of Fourier analysis is that it can break any complex signal into simple sine and cosine 
waves. This separation lets us look closely at the signal’s different frequencies. Understanding these 
frequencies is important in many areas, from engineering to science. It helps us design filters, study 
waveforms, and process data more effectively.

10.2.2 �F ourier Transform

The Fourier transform (FT) is a mathematical operation that converts a function from its original 
domain (typically time or space) into the frequency domain. This transformation provides a fre-
quency spectrum that shows how much of each frequency is present in the original signal. For a 
continuous time-​domain function f(t), the FT F w( )  is defined as:

	 F f t e dtj tω ω( ) = ( )
−∞

∞
−∫ 	

where:

	• f t( ) is the function in the time domain,
	• ω is the angular frequency, which is related to the frequency f by ω =​ 2πf, and
	• e j t− w  is the complex exponential function, where j is the imaginary unit (i.e., j2 =​ –​1).
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This transformation is similar to decomposing a complex musical chord into individual notes. 
Each note corresponds to a frequency component of the chord, and the FT helps identify these 
components. Let’s consider a time-​domain signal composed of two sine waves:

	 f t t t( ) = × + ×3 2 50 2 2 120sin( ) sin( )π π 	

Here:

	• 3 sin(2π × 50t) is a sine wave with an amplitude of 3 and a frequency of 50 Hz.
	• 2 sin(2π × 120t) is a sine wave with an amplitude of 2 and a frequency of 120 Hz.

We plan to use the FT to identify the frequency components and their amplitudes in f(t).

Step 1. Apply the FT: Think of the FT as a tool that takes your complex sound and breaks it down 
into its basic building blocks, the pure tones (sine waves). For our sound, which is:

	 F t t e dtj tω π π ω( ) = × + ×[ ]
−∞

∞
−∫ 3 2 50 2 2 120sin( ) sin( ) 	

Using the linearity property of the FT, this can be separated into:

	 F t e dt t e dtj t j t( ) sin( ) sin( )ω π πω ω= × + ×
−∞

∞
−

−∞

∞
−∫ ∫3 2 50 2 2 120 	

We want to find out the frequencies (50 and 120 Hz) and their strengths (3 and 2).
Step 2. Compute the Transform for Each Sine Wave: The FT of sin(2πft) is given by:

	 {sin( )}2
2

2 2π δ ω π δ ω πft
j

f f= −( ) − +( )  	

Applying this to each sine component:

1.	 For the 50 Hz tone: 3 sin(2π × 50t): The math shows that there’s a spike (a sharp point) at 50 
Hz. The strength of this spike is related to the number 3 in front of the sine wave.

	 3
2

2 50 2 50
3

2
100 100× − ×( ) − + ×( )  = −( ) − +( ) 

j jδ ω π δ ω π δ ω π δ ω π 	

2.	 For the 120 Hz tone: 2 sin(2π × 120t): Similarly, there ’s another spike at 120 Hz, and its 
strength comes from the number 2.

	 2
2

2 120 2 120 240 240× − ×( ) − + ×( )  = −( ) − +( ) 
j

jδ ω π δ ω π δ ω π δ ω π 	

Step 3. Combine the Results:

	 F
j j

j jω δ ω π δ ω π δ ω π δ ω π( ) = −( ) − +( ) + −( ) − +( )3

2
100

3

2
100 240 240 	
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The FT F(ω) reveals spikes (delta functions) at specific angular frequencies: ω =​ 100π rad/​s    
(which corresponds to 50 Hz) and ω =​ 240π rad/​s (which corresponds to 120 Hz). The 
coefficients in front of the delta functions indicate the amplitude and phase of each frequency 

component. At 50 Hz the amplitude is 
3

2

j
 and at 120 Hz the amplitude is j. As the original signal 

	 f(t) is real-​valued, the FT exhibits symmetry: Positive frequencies (e.g., 50 and 120 Hz) have 
corresponding negative frequencies. The magnitudes of the Fourier coefficients correspond to 
the amplitudes of the sine waves.

Figure 10.1 illustrates three individual sine waves at 5, 50, and 120 Hz, along with their combined 
time-​domain signal and their frequency-​domain representation. In Figure 10.1a, the slowest oscilla
tion at 5 Hz is shown, displaying only a few cycles over the 1-​second interval. Figure 10.1bintroduces 
the 50 Hz wave, which has considerably more peaks and troughs in the same time frame. Figure 10.1c 
presents the highest-​frequency component at 120 Hz, where many closely spaced oscillations occur 
within one second. These three sine waves are summed in Figure 10.1d, producing a complex wave
form in the time domain whose various undulations result from the superposition of 5, 50, and 120 
Hz components. In Figure 10.1e, the FT of this combined signal shows three clear spectral peaks 
corresponding to each individual sine wave, verifying that all three frequencies are indeed present. 
Finally, Figure 10.1f zooms in on the 0–​100 Hz region, highlighting the 5 and 50 Hz peaks more 
clearly while the 120 Hz peak remains outside the zoomed frequency range.

10.2.3 �I nverse Fourier Transform

The inverse Fourier transform (IFT) reverses the FT process, converting a function from the fre-
quency domain back to its original domain (often time or space). This operation is crucial for 
reconstructing the original signal after analysis or manipulation in the frequency domain. The 
inverse transform of F ω( ) is given by:

	 f t F e dj t( ) = ( )
−∞

∞

∫
1

2π
ω ωω 	

where:

	• f(t) is the recovered time-​domain function.

	• The factor 
1

2π
 ensures proper scaling during the transformation.

Understanding the IFT is essential for practical applications where signals are analyzed in the fre-
quency domain and then transformed back to their original form for further processing or interpret-
ation. Suppose we plan to reconstruct the original time-​domain signal from its frequency components 
using the IFT. Given frequency components: A sine wave with amplitude 3 at 50 Hz and a sine wave 
with amplitude 2 at 120 Hz. These components can be represented in the frequency domain as spikes 
at their respective frequencies.

Step 1. Express the Frequency Components: Each sine wave in the frequency domain can be 
represented using delta functions (spikes):

	 F ω δ ω π δ ω π δ ω π δ ω π( ) = −( ) − +( )  + −( ) − +( ) 3 100 100 2 240 240 	
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FIGURE 10.1  (a) Sine wave 1 (5 Hz). This waveform oscillates at the slowest frequency of the three, completing 5 cycles per second. (b) Sine wave 2 (50 Hz). 
A higher-​frequency sinusoid that completes 50 cycles per second. (c) Sine wave 3 (120 Hz). The fastest oscillation among the three waves, with 120 cycles per second. 
(d) Combined time-​domain signal. The result of summing all three sine waves (5, 50, and 120 Hz). (e) Frequency-​domain representation. The FT of the combined signal, 
showing distinct peaks at 5, 50, and 120 Hz. (f) Zoomed-​in frequency domain (0–​100 Hz). A closer look at the low-​ and mid-​frequency peaks (5 and 50 Hz), with the 
120 Hz peak lying outside this zoom range.
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(Note: ω =​ 2πf, so 50 Hz becomes 100π rad/​s and 120 Hz becomes 240π rad/​s.)
Step 2. Apply the IFT: Using the IFT formula:

	 f t e e e ej t j t j t j t( ) = −( ) + −( ) 
− −1

2
3 2100 100 240 240

π
π π π π 	

Step 3. Simplify Using Euler’s Formula: Recall that e e jj jθ θ θ− =− 2 sin( ):

	

f t j t j t

f t

( ) = × + ×[ ]

( ) =

1

2
3 2 100 2 2 240

1

2
6

π
π π

π

sin( ) sin( ) and then

jj t j tsin( ) sin( )100 4 240π π+[ ] 	

As the original signal is real, the imaginary units cancel out:

f t t t f t t( ) = + ( ) =
6

2
100

4

2
240

3
100

π
π

π
π

π
πsin( ) sin( ) sin( and then )) sin( )+

2
240

π
πt

Simplifying further, recognizing that 100π rad/​s is 50 Hz and 240π rad/​s is 120 Hz:

f t t t( ) = × + ×3 2 50 2 2 120sin( ) sin( )π π

This matches our original time-​domain signal:

	 f t t t( ) = × + ×3 2 50 2 2 120sin( ) sin( )π π 	

Figure 10.2 depicts on the same three-​sine-​wave combination but provides additional insights 
into reconstruction and error analysis. Figure 10.2a again displays the time-​domain signal formed 
by superimposing 5, 50, and 120 Hz waves, reflecting a more complex pattern compared to any 
single wave alone. Figure 10.2b shows the frequency-​domain representation, showing distinct peaks 
at 5, 50, and 120 Hz that confirm the presence of all three components. Figure 10.2c illustrates 
how the inverse fast Fourier transform (IFFT) can recover the original time-​domain waveform 
from its frequency-​domain data, demonstrating near-​perfect alignment with the combined signal. 
Figure 10.2d shows the minimal difference between the original and reconstructed signals, which 
hovers near numerical precision and confirms the accuracy of the forward and IFT process.

10.3 � WAVELETS

Wavelet analysis is a useful tool in signal processing, offering capabilities that extend beyond those 
of Fourier analysis. While Fourier analysis breaks signals into sine and cosine waves, wavelet ana-
lysis uses wavelets, functions that can capture both frequency and time (or space) information simul-
taneously. This makes wavelets particularly effective for analyzing non-​stationary signals, where the 
characteristics of the signal change over time or space. Wavelets are especially useful in applications 
where localized variations in the signal must be captured and analyzed. Wavelets are oscillating 
functions that start and end at zero, with their amplitude peaking in between. This shape gives 
wavelets the ability to zoom in on localized signal features. Their flexibility makes them ideal for 
multi-​resolution analysis, enabling the study of signals at different scales. By adjusting the scale of 
the wavelet, we can analyze both the fine details and broader patterns in the signal, making wavelet 
analysis highly effective for signals that vary over time or space.
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FIGURE 10.2  (a) Combined time-​domain signal. This is the same three-​wave sum shown in Figure 1(d), plotted over 1 second. (b) Frequency-​domain representation. 
The magnitude spectrum again reveals peaks at 5, 50, and 120 Hz. (c) Reconstructed signal (IFFT). The IFT of the frequency-​domain data, showing a near-​identical 
recovery of the original time-​domain signal. (d) Difference between original and reconstructed signals. The minimal discrepancy on the order of numerical precision, 
verifies the accuracy of the FT and IFT.
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10.3.1 �W avelet Transform

The wavelet transform (WT) is an advanced analytical method that converts signals from the time 
domain into a series of coefficients based on shifted and scaled versions of a predetermined base 
function, known as a mother wavelet. This transformation is particularly adept at handling non-​
stationary signals, those whose frequency content changes over time. The continuous wavelet trans-
form (CWT) of a function f(t) is mathematically represented as:

	 CWT s
s

f t
t

s
dtτ ψ τ

,( ) = ( ) −





−∞

∞

∫
1

	

Here, τ and s are parameters that control the translation (shift) and scale (compression or stretching) 
of the wavelet, respectively. ψ(t) is the mother wavelet, a function localized in both time and fre-

quency. The normalization factor 
1

s
 ensures that the wavelet has the same energy at each scale. 

Wavelets are unique in that they are localized in time and frequency, unlike the sinusoids used in 
FTs, which extend infinitely. This localization allows wavelets to precisely capture and analyze 
transient features and abrupt changes in a signal. The adaptability of wavelets in terms of scale 
and translation makes them ideal for analyzing signals that exhibit features at multiple scales or 
that have significant local variations in time or frequency. Consider an example where a heartbeat 
signal is analyzed using the WT. A heartbeat signal, characterized by sharp spikes followed by slow 
waves, presents challenges in identifying features like the QRS complex and the T wave when 
using Fourier analysis due to its non-​stationary nature. Using a WT, the signal is decomposed into 
coefficients that represent different frequency components at different times. For instance, selecting 
a wavelet such as the Daubechies wavelet, which closely resembles the sharp spikes of a QRS com-
plex, would allow for efficient isolation and analysis of these features without interference from 
slower-​moving trends in the signal. This ability to customize the wavelet to match specific features 
of the signal is a key advantage of the WT, enabling more effective signal analysis and feature detec-
tion. Consider a simple time-​domain signal composed of two parts:

1.	 A sharp spike (representing a transient event) lasting from t =​ 1 to t =​ 2 seconds.
2.	 A slow sine wave with a frequency of 5 Hz active throughout the signal duration.

The signal f(t) can be represented as:

	 f t
t

t
( ) =

≤ ≤
×





10 1 2

5 2 5

,

sin( ),π otherwise
	

Step 1. Choose a Mother Wavelet: Let’s use the Daubechies 4 (db4) wavelet, known for its ability 
to handle sharp transitions effectively.

Step 2. Apply the WT: The CWT will analyze the signal at different scales and positions. For sim-
plicity, we’ll examine two scales: Scale 1 captures high-​frequency components, such as sharp 
spikes, while Scale 8 captures low-​frequency components, like a slow sine wave.

Step 3. Compute Wavelet Coefficients: At scale 1, the wavelet is narrow and highly responsive 
to rapid changes. The sharp spike occurring between t =​ 1and t =​ 2 generates significant 
wavelet coefficients, indicating a strong transient event. In contrast, the sine wave produces 
minimal coefficients at this scale due to its low-​frequency nature. At Scale 8, the wavelet is 
wider, enabling it to capture slower variations. The sine wave at 5 Hz results in prominent 
wavelet coefficients, reflecting its sustained oscillation. The sharp spike contributes less to the 
coefficients at this scale due to the wavelet’s lower sensitivity to high-​frequency events.
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Step 4: Reconstruct the Signal Using Selected Scales: To reconstruct the original signal, we can 
combine the wavelet coefficients from both scales:

	 f t( ) ≈ +Reconstruction from Scale1 Reconstruction from Scale 88 	

This combination captures both the transient spike and the underlying sine wave.

10.3.2 �A pplications of WT

WTs have broad applications across various fields. In image compression, they are the backbone of 
the JPEG 2000 standard, offering efficient, high-​quality compression. Wavelets are also key in noise 
reduction, where they remove noise while preserving important signal features. In signal processing, 
wavelets enable time-​frequency analysis, making them ideal for examining signals that change over 
time. Additionally, in medical imaging, WTs help enhance image analysis by highlighting crucial 
structures and details, improving diagnostic accuracy. Consider a signal composed of two sine 
waves with frequencies of 5 and 20 Hz.

Figure 10.3 illustrates the relationship between the original signal and its WT. Figure 10.3a 
shows the time-​domain signal, which is a combination of two sine waves. The signal’s varying 
pattern over time is a result of these interacting frequencies. Figure 10.3b represents the WT of the 
signal, revealing how its frequency components change over time. The color intensity in the plot 
corresponds to the magnitude of the wavelet coefficients, highlighting the signal’s decomposition 
into different scales, where the red regions indicate higher magnitudes.

10.4 � CONVOLUTION IN THE FREQUENCY DOMAIN FOR CNNS

CNNs are very important in deep learning, especially for tasks like processing images and videos. 
The key part of CNNs is the convolution operation. In this operation, a filter (or kernel) moves over 
an input (like an image) to calculate sums of products for each area it covers. When we look at 
convolution in the frequency domain, it has big computational benefits, especially for large filters 
or specific tasks. It can change the convolution process into simple multiplications, which makes 
computations faster in some situations.

10.4.1 �C onvolution Theorem

The convolution theorem explains how two important math operations, convolution and multiplica-
tion, are connected using the FT. This theorem is a powerful tool for studying and changing signals 
in both time and frequency. When you convolve two signals in the time domain, you mix them 
together to create a new signal that combines features from both original signals. Similarly, when 
you multiply the FTs of two signals in the frequency domain, it has the same effect as convolving 
the two signals in time. This means that by working in the frequency domain, we can simplify the 
convolution process by just multiplying the FTs, which can make calculations faster. The convolu-
tion theorem can be expressed mathematically as:

	  f t g t F G( ) ( ){ } = ( )⋅ ( )* ω ω 	

where:

	• f t( ) and g t( ) are signals in the time domain,

	• F ω( )  and G ω( )  are their corresponding Fourier,
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FIGURE 10.3  (a) Original signal (time domain) and (b) WT (frequency domain).
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307Harmonic Analysis for CNNs

	• * denotes the convolution operation in the time domain, and
	• ⋅ represents multiplication in the frequency domain.

The applications of the convolution theorem include signal processing, where it allows for effi-
cient computation of convolutions by transforming signals to the frequency domain, performing 
element-​wise multiplication, and then using the IFT to return the result to the time domain. This 
method is often faster than direct convolution, especially for large signals. In filter design, the the-
orem is fundamental, as it enables the specification of filtering effects in the frequency domain. By 
defining the filter’s frequency response and multiplying it with the FT of the input signal, the filtered 
signal can be obtained efficiently. In image processing, convolutional filters like edge detectors, blur 
filters, and sharpening filters can be applied more easily using the convolution theorem, simplifying 
the implementation of complex filtering operations. Additionally, in system analysis, particularly for 
linear time-​invariant (LTI) systems, the theorem aids in understanding system responses to various 
inputs by analyzing the system’s impulse response in the frequency domain, allowing prediction of 
the output for any given input. Consider two time-​domain signals, f(t) and g(t). To convolve these 
signals using the convolution theorem:

1.	 Compute the FTs of f(t) and g(t):

	 F f t G g tω ω( ) = ( ){ } ( ) = ( ){ } , 	

2.	 Multiply the FTs in the frequency domain:

	 H F Gω ω ω( ) = ( )⋅ ( )	

3.	 Compute the IFT of the product to obtain the convolved signal in the time domain:

	 h t H F G( ) = ( ){ } = ( )⋅ ( ){ }− − 1 1ω ω ω 	

Consider two simple continuous-​time signals:

1.	 Signal f(t):

	 f t
t( ) =

≤ ≤



1 0 1

0

,

, otherwise
	

A rectangular pulse of amplitude 1 lasting from t =​ 0 to t =​ 1 second.

2.	 Signal g(t):

	 g t
t( ) =

≤ ≤



1 0 1

0

,

, otherwise
	

Another identical rectangular pulse of amplitude 1 lasting from t =​ 0 to t =​ 1 second.
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Step 1: Compute the FTs of f(t) and g(t)
The FT of a rectangular pulse f(t) is given by:

	 F f t e dt e dt
e

j
j t j t

j

ω
ω∞

∞
ω ω

ω

( ) = ( ) = =
−

−

− −
−

∫ ∫
0

1 1
	

Similarly, the FT of g(t) is:

	 G g t e dt e dt
e

j
j t j t

j

ω
ω∞

∞
ω ω

ω

( ) = ( ) = =
−

−

− −
−

∫ ∫
0

1 1
	

Step 2: Multiply the FTs in the frequency domain
According to the convolution theorem:

	  f t g t F G( ) ( ){ } = ( )⋅ ( )* ω ω 	

Multiply F(ω) and G(ω):

	 F G
e

j

e

j

j j

ω ω
ω ω

ω ω

( )⋅ ( ) =
−





=
−− −1 1

2
2

2

( )

( )
	

Step 3: Compute the IFT to obtain the convolved signal. To find f(t) ∗∗ g(t), take the IFT of F(ω) 
⋅⋅ G(ω):

	 f t g t
e

j

j

( ) ( ) =
−








−
−

*  1
2

2

1( )

( )

ω

ω
	

Simplifying the expression:

	 ( )
( )

( ) ( )
1 1 2

1 1 22 2
2

2 2
− = − +

−
= −− − −

− −

e e e
e

j j

ej j j
j j

ω ω ω
ω

ω ω
and

ωω ω

ω ω( ) ( )j

e

j

j

2

2

2
+

−

	

IFT:

	 f t g t
j

e

j

e

j

j j

( ) ( ) =








−








+− −
−

−
−

*   1
2

1
2

1
21

2
( ) ( ) ( )ω ω ω

ω ω

22









	

Using standard FT pairs:

	  − −
−








= ⋅ ( ) 







= −( )1
2

1
2

1

( ) ( )j
t u t

e

j
t k

j k

ω ω

ω
and ⋅⋅ −( )u t k 	

where u(t) is the unit step function.

Applying these:

	 f t g t t u t t u t t u t( ) ( ) = ⋅ ( ) − −( )⋅ −( ) + −( )⋅ −( )* 2 1 1 2 2 	
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Final convolved signal:

	 f t g t

t

t t

t t

t

( ) ( ) =

<
≤ ≤

− < ≤
>










*

0 0

0 1

2 1 2

0 2

,

,

,

,

	

A triangular pulse that rises linearly from 0 to 1 between t =​ 0 and t =​ 1, then decreases linearly from 
1 to 0 between t =​ 1 and t =​ 2. To ensure our frequency-​domain approach is correct, let’s perform 
the convolution directly in the time domain.

	 f g t f g t d*( )( ) = ( ) −( )
−
∫
∞

∞

τ τ τ	

Given the definitions of f(t) and g(t), the limits of integration are reduced based on the overlap of 
the signals.

1.	 For 0 ≤ t ≤ 1:

	 f g t d t
t

*( )( ) = ⋅ =∫
0

1 1 τ 	

2.	 For 1 < t ≤ 2:

f g t d t
t

*( )( ) = ⋅ = −
−
∫

1

1

1 1 2τ

3.	 For t < 0 and t > 2:

	 f g t*( )( ) = 0	

This matches the result obtained using the convolution theorem.

10.4.2 �I mplication for CNNs

Convolution is a basic operation in CNNs, where a filter (or kernel) moves over an input, like an 
image, to calculate the sum of element-​wise products. Usually, this convolution happens in the 
spatial domain, meaning the filter works directly with the image. This approach is easy to under-
stand and is commonly used in tasks like image processing, where the filter finds features by 
repeatedly applying to small parts of the input, creating an output feature map. While this method 
is simple, it can become very slow when the filter size grows. Looking at convolution from the 
frequency domain can offer useful insights, especially for tasks that require a lot of computation. 
The convolution theorem says that convolution in the spatial domain is the same as multiplica-
tion in the frequency domain. In practice, this means that instead of convolving directly in the 
spatial domain, we can transform both the input and the filter into the frequency domain using 
the FT. Once in the frequency domain, convolution turns into a simple element-​wise multiplica-
tion. After multiplying, we use the IFT to convert the result back to the spatial domain, getting 
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the final output. This method can save a lot of computation time, especially with large filters, 
because the complexity of convolution in the frequency domain grows more slowly compared to 
the spatial domain. In the spatial domain, the time it takes to perform convolution increases with 
the filter size, which is a problem for large filters. However, in the frequency domain, using the 
fast Fourier transform (FFT) can reduce this complexity, making it much more efficient for large-​
scale operations. For small filters, traditional spatial convolution is usually faster, but for larger 
filters or big datasets, frequency-​domain convolution can provide quicker results. This is espe-
cially useful in large-​scale image processing or signal processing tasks. Deciding whether to use 
the spatial or frequency domain depends on the specific problem, available resources, and filter 
size. If you’re working with standard-​sized filters and have enough computational power, spatial 
domain convolution is still practical and effective. On the other hand, for larger filters or when 
computational resources are limited, the frequency-​domain method can offer significant perform-
ance improvements. Additionally, understanding convolution in the frequency domain can help 
develop more efficient CNN designs or specialized approaches that combine the strengths of both 
domains. By exploring frequency-​domain convolution, you can optimize parts of CNN design, 
improve computational efficiency, or customize the convolution process for tasks that use large 
filters, such as video processing or high-​resolution image analysis. For example, consider a scen-
ario where a CNN is processing high-​resolution images with very large filters. The frequency-​
domain approach can be utilized as follows:

1.	 Transform to Frequency Domain: Compute the FT of the input image I and the filter K:

	 I I x y K K x yω ω( ) = ( ){ } ( ) = ( ){ } , , , 	

2.	 Element-​Wise Multiplication: Perform element-​wise multiplication in the frequency domain:

	 H I Kω ω ω( ) = ( )⋅ ( )	

3.	 IFT: Transform the result back to the spatial domain using the IFT:

	 h x y H,( ) = ( ){ }− 1 ω 	

This approach can significantly reduce the computational burden for large filters, making it a valu-
able technique in specific applications. Let us review an example for better understanding. A CNN 
is processing a small grayscale image with a size of 3 × 3 pixels using a 2 × 2 filter (kernel). We’ll 
demonstrate both spatial and frequency-​domain convolution. Given:

1.	 Input Image I:

	 I =
















1 2 3

4 5 6

7 8 9

	

2.	 Filter K:

K =
−











1 0

0 1

 

 

 

 

 

 



311Harmonic Analysis for CNNs

Step 1. Spatial Domain Convolution: Perform convolution by sliding the filter over the input image.

Convolution output size:

(3 –​ 2 +​ 1) × (3 –​ 2 +​ 1) =​ 2 × 2

Computing each output element: 

1.	 Top-​Left Position:

1 2

4 5

1 0

0 1
1 1 2 0 4 0 5 1 1 0 0 5 4









 ⋅

−








 = ×( ) + ×( ) + ×( ) + × −( ) = + + − = −   

2.	 Top-​Right Position:

2 3

5 6

1 0

0 1
2 1 3 0 5 0 6 1 2 0 0 6 4









 ⋅

−








 = ×( ) + ×( ) + ×( ) + × −( ) = + + − = −   

3.	 Bottom-​Left Position:

4 5

7 8

1 0

0 1
4 1 5 0 7 0 8 1 4 0 0 8 4









 ⋅

−








 = ×( ) + ×( ) + ×( ) + × −( ) = + + − = −   

4.	 Bottom-​Right Position:

5 6

8 9

1 0

0 1
5 1 6 0 8 0 9 1 5 0 0 9 4









 ⋅

−








 = ×( ) + ×( ) + ×( ) + × −( ) = + + − = −

Resulting Convolved Feature Map:

	 ( )f g*
spatial

=
− −
− −











4 4

4 4
	

Step 2. Frequency-​Domain Convolution: Now, we’ll perform convolution using the convolution 
theorem.

Step 2.1. Zero-​Padding: To perform convolution via the FT, zero-​pad both the input image and the 
filter to match the size of the convolution result.

•	 Input Image I (padded to 4 × 4):

I
pad

=



















1 2 3 0

4 5 6 0

7 8 9 0

0 0 0 0
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•	 Filter K (padded to 4 × 4):

	 K
pad

=
−



















1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

	

Step 2.2. Compute the FTs: Compute the 2D FFTs of both padded signals. For simplicity, we’ll 
present hypothetical FFT results:

	 F k k I G k k K
1 2 1 2

    = ( )     = ( )FFT2D   FFT2D
pad pad

and 	

Step 2.3. Element-​Wise Multiplication in Frequency Domain: Multiply the corresponding elem-
ents of F and G:

	 H k k F k k G k k
1 2 1 2 1 2

  =] [  ×] [   	

Step 2.4. Compute the IFT: Take the IFFT of H[k1][k2] to obtain the convolved feature map in 
the spatial domain.

	 ( )f g H k k* IFFT2D
frequency

=    ( )1 2
	

Assuming accurate FFT computations, the result should match the direct convolution:

	 ( )f g*
frequency

=
− −
− −











4 4

4 4
	

Figure 10.4 illustrates the process of filtering an input image using frequency-​domain techniques, 
highlighting both the spatial and frequency-​domain representations. Figure 10.4a shows the original 
input image, a binary image containing a white square at the center. This serves as the starting point 
for the filtering process. Figure 10.4b depicts the filter image, which is a smaller white square designed 
to act as a convolution kernel in the spatial domain. This filter will be applied in the frequency 
domain to modify the original image’s components. Figure 10.4c presents the filtered image obtained 
after applying the convolution operation in the frequency domain. The result demonstrates how the 
filter modifies the spatial characteristics of the input image, introducing smoothed edges around the 
square. Figure 10.4d visualizes the FT of the input image, where the central peak represents low-​
frequency components that capture the overall structure of the image, while surrounding patterns 
indicate higher-​frequency details. Figure 10.4e shows the FT of the filter, highlighting its effect in the 
frequency domain. The smaller peak emphasizes the localized nature of the filter’s influence on the 
input image. Figure 10.4f displays the FT of the result image, showing how the filtered peaks reflect 
the combined effect of the input image and the filter in the frequency domain.

10.5 � REAL-​WORLD APPLICATIONS

10.5.1 �M edical Imaging and Diagnostics

In medical imaging, FT and WT play a key role in enhancing and analyzing images like MRIs, CT 
scans, and X-​rays. FTs are used to filter out noise and enhance resolution by converting image data 
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FIGURE 10.4  (a–​c) Example input image and filter. (d–​f) Frequency-​domain representations and the convolution result after applying the IFTs.
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314 Mathematical Foundations for Deep Learning

from the time domain to the frequency domain. For example, in MRI scans, Fourier analysis allows 
clear visualization of tissues and abnormalities. WTs, on the other hand, are effective in isolating 
fine details, such as detecting microcalcifications in mammograms, aiding in early cancer detection 
through multi-​resolution analysis.

10.5.2 �A udio Signal Processing

Harmonic analysis plays a fundamental role in audio signal processing, helping to analyze, com-
press, and enhance sound signals. The FT breaks down audio into its frequency components, 
allowing specific sounds to be isolated or unwanted noise to be removed. This method is crucial in 
applications like audio compression (e.g., MP3 encoding) and noise reduction technologies, such 
as in hearing aids. WTs offer better time-​frequency localization, which is vital for processing tran-
sient sounds, such as speech or music, enhancing applications like speech recognition and audio 
watermarking.

10.5.3 �D ata Compression

Data compression methods like JPEG and JPEG 2000 depend on harmonic analysis to reduce image 
size while maintaining quality. The JPEG standard uses Fourier analysis to transform image data into 
the frequency domain, where high-​frequency components (often linked to noise) can be minimized 
or removed. JPEG 2000 employs WTs, allowing for multi-​resolution image representation, leading 
to more efficient compression and better preservation of key details. These compression techniques 
are essential in reducing storage needs and transmission costs, particularly in bandwidth-​limited 
environments.

10.5.4 �C ommunications and Signal Transmission

FT and WT are essential in communications, enabling efficient modulation and demodulation of 
signals. In digital communication, FTs and converts signals between the time and frequency domains, 
facilitating technologies like Orthogonal Frequency Division Multiplexing (OFDM), which is used 
in 4G and 5G networks to boost data rates. WTs, with their multi-​scale analysis, enhance advanced 
coding methods such as wavelet-​based data compression in satellite communications, ensuring 
high-​quality transmission even in challenging environments and optimizing both bandwidth and 
reliability.

10.5.5 �C ryptography and Security

Harmonic analysis plays a significant role in cryptography by enhancing the design of secure com-
munication systems and encryption algorithms. Fourier analysis is used to study signals, identi-
fying potential vulnerabilities in communication channels. WTs, with their ability to localize both 
time and frequency information, are employed in steganography, a technique for embedding hidden 
information within digital media. These methods are crucial for safeguarding sensitive data, pro-
viding additional layers of security in today’s digital and interconnected world.

10.6 � HANDS-​ON EXAMPLE

Enhance image features using convolutional filters in the frequency domain to demonstrate the com-
putational advantages and precision aspects discussed in the chapter.
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10.6.1  Step 1: Load the Image

At first, we define a function load image to load an image from a given file path using the OpenCV 
library (cv2). This function is useful in various computer vision applications, especially when 
working with grayscale images, such as in image classification, feature extraction, or object 
detection.

import cv2
def load_​image(file_​path):
# Load an image from file path
image =​ cv2.imread(file_​path, cv2.IMREAD_​GRAYSCALE)
return image

10.6.2  Step 2: Apply FT

Here, we define a function apply_​Fourier_​transform that computes the discrete Fourier transform 
(DFT) of an input image and returns its magnitude spectrum. This function is useful in various 
image processing applications where understanding or manipulating the frequency components of 
an image is required, such as in edge detection, image compression, or denoising.

import numpy as np
def apply_​fourier_​transform(image):
# Apply the Discrete Fourier Transform
dft =​ cv2.dft(np.float32(image), flags=​cv2.DFT_​COMPLEX_​OUTPUT)
dft_​shift =​ np.fft.fftshift(dft)
magnitude_​spectrum =​ 20 * np.log(cv2.magnitude(dft_​

shift[:,:,0], dft_​shift[:,:,1]) +​ 1)
return magnitude_​spectrum

10.6.3  Step 3: Apply Sobel Edge Detection

Then, we define the function apply_​sobel_​filter, which applies the Sobel operator to an image to 
detect edges by calculating the gradient in both horizontal and vertical directions. The Sobel filter is 
commonly used in image processing to detect edges and features. By computing the gradient in both 
horizontal and vertical directions, the Sobel operator identifies regions of an image where intensity 
changes sharply, making it useful for tasks such as edge detection, feature extraction, and object 
recognition.

def apply_​sobel_​filter(image):
# Apply Sobel operator in both horizontal and vertical 
directions
sobelx =​ cv2.Sobel(image, cv2.CV_​64F, 1, 0, ksize=​5)
sobely =​ cv2.Sobel(image, cv2.CV_​64F, 0, 1, ksize=​5)
sobel =​ cv2.magnitude(sobelx, sobely)
return sobel
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10.6.4  Step 4: Display Results

Now, we define the function display results, which creates a visualization of multiple images in a 
grid layout using Matplotlib.

import matplotlib.pyplot as plt
def display_​results(images, titles):
# Display the list of images with titles
plt.figure(figsize=​(10, 5))
for i in range(len(images)):
plt.subplot(1, len(images), i+​1)
plt.imshow(images[i]‌, cmap=​‘gray’)
plt.title(titles[i]‌)
plt.xticks([]), plt.yticks([])

plt.show()

10.6.5  Step 5: Integrate and Run

Finally, we define a function process_​and_​display_​image that processes an image using various 
image processing techniques and displays the results.

def process_​and_​display_​image(file_​path):
image =​ load_​image(file_​path)
magnitude_​spectrum =​ apply_​fourier_​transform(image)
sobel_​image =​ apply_​sobel_​filter(image)
display_​results([image, magnitude_​spectrum, sobel_​image],

[‘Original Image’, ‘Magnitude Spectrum’, 
‘Sobel Edge Detection’])

# Replace ‘path_​to_​image.jpg’ with your actual image file path
process_​and_​display_​image(‘path_​to_​image.jpg’)

Figure 10.5 presents a comparison of image processing techniques applied to an input image, 
thereby highlighting transformations in both the spatial and frequency domains. Figure 10.5a shows 
the original image, which serves as the input for subsequent processing. This grayscale image 
contains intricate details and textures, forming the basis for analysis. Figure 10.5b displays the 
magnitude spectrum obtained by applying the FT to the original image. This visualization maps the 
frequency components of the image, with the central peak representing the low-​frequency features 
that correspond to the overall structure. Figure 10.5c illustrates the Sobel-​filtered image, empha
sizing edges and transitions in intensity within the original image. This technique detects gradients, 
highlighting the boundaries and contours of the objects in the image. Figure 10.5d shows the 
resulting image after IFFT, reconstructed by modifying and then inverting the frequency-​domain 
representation. This reconstruction retains specific features based on the frequency modifications 
applied, demonstrating the selective enhancement or suppression of image components. Figure 
10.5e visualizes the FFT of the input image, providing a detailed frequency-​domain representation 
before any modifications. This serves as a baseline for comparison with the processed results. Figure 
10.5f displays the FFT of the result image, capturing the frequency components of the reconstructed 
image. Comparing this with the FFT of the input image reveals changes introduced by the pro-
cessing steps, particularly the filtering and reconstruction stages.

 

 

 

 

 



317
H

arm
o

n
ic A

n
alysis fo

r C
N

N
s

FIGURE 10.5  (a) Input image. (b) Log-magnitude FFT of the input. (c) Canny edge map (σ=2, dilated). (d) FFT of input with DC peak annotated. (e) FFT of 
the Laplacian filter. (f) FFT of the filtered result.
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10.7 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

10.7.1 �M isinterpreting FT and WT

	• Mistake: Confusing the mathematical principles and practical applications of FT and WT.
	• Tip: Review fundamental resources and practical tutorials on both transforms. Use visualiza-

tion tools to see how each transform decomposes signals and to understand their differences.

10.7.2 �O verlooking the Disadvantages of Frequency-​Domain Convolution

	• Mistake: Assuming frequency-​domain convolution is always faster and more efficient than 
spatial domain convolution without considering filter size and computational overhead.

	• Tip: Evaluate the specific use case to determine whether frequency-​domain convolution offers 
a computational advantage. For small filters, stick with spatial domain convolution to avoid 
unnecessary overhead.

10.7.3 �I gnoring Precision Issues

	• Mistake: Neglecting the precision errors that can arise when performing FT and IFT.
	• Tip: Be aware of the potential for numerical approximation errors. Validate the results by com-

paring the outputs of frequency-​domain and spatial-​domain convolutions.

10.7.4 �M isapplying WT for Non-​Stationary Signals

	• Mistake: Using WTs incorrectly, particularly when dealing with non-​stationary signals, and 
failing to exploit their multi-​resolution analysis capabilities.

	• Tip: Understand the nature of your signals and the specific advantages that wavelets offer. Use 
appropriate mother wavelets and scales to capture the signal characteristics accurately.

10.7.5 �O verfitting in Convolutional Neural Networks

	• Mistake: Designing CNNs with excessive depth or complexity, leading to overfitting.
	• Tip: Implement regularization techniques like dropout, batch normalization, and early 

stopping. Regularly validate your model on separate datasets to monitor for overfitting.

10.7.6 �I nefficient Implementation of Convolution Theorem

	• Mistake: Inefficiently implementing the convolution theorem, leading to suboptimal perform-
ance gains.

	• Tip: Utilize optimized libraries and tools for FFT and IFFT operations. Parallelize operations 
where possible to enhance computational efficiency.

10.7.7 �M isunderstanding the Convolution Theorem

	• Mistake: Misinterpreting the convolution theorem and its application to CNNs, leading to 
incorrect implementations.

	• Tip: Study the mathematical foundation of the convolution theorem and its practical 
implications. Ensure you understand the steps involved in transforming, multiplying, and 
inverse transforming signals.
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10.7.8 �F ailing to Validate Models

	• Mistake: Neglecting to validate CNN models after implementing harmonic analysis 
techniques, resulting in unchecked errors and inefficiencies.

	• Tip: Conduct thorough validation using various datasets and benchmarks. Compare the per-
formance of models using harmonic analysis techniques against traditional methods.

10.8 � REVIEW QUESTIONS

1.	 What is the primary purpose of Fourier analysis in signal processing?
2.	 How does the FT convert a time-​domain signal into its frequency-​domain representation?
3.	 Explain the difference between the FT and the IFT.
4.	 What are the key features of the WT that make it suitable for analyzing non-​stationary 

signals?
5.	 How does the convolution theorem relate convolution in the time domain to multiplication 

in the frequency domain?
6.	 What steps involve convolution in the frequency domain using the FT?
7.	 Discuss the advantages and disadvantages of using frequency-​domain convolution 

in CNNs.
8.	 In what scenarios might you prefer wavelet analysis over Fourier analysis?
9.	 How can understanding frequency-​domain convolution improve the efficiency of signal-​

processing tasks in deep learning?
10.	 Provide examples of real-​world applications where FT and WT are particularly useful.

10.9 � PROGRAMMING QUESTIONS

10.9.1 �E asy

Implement a 1D convolutional layer using TensorFlow and visualize the filter’s response to a sine 
wave input.

1.	 Create a simple 1D convolutional model.
2.	 Generate a sine wave as input data.
3.	 Apply the convolutional filter to the input data.
4.	 Plot the input sine wave and the filter’s output.

10.9.2 �M edium

Compare the performance of different activation functions (ReLU, Sigmoid, Tanh) in a simple CNN 
on the CIFAR-​10 dataset.

1.	 Create a simple CNN model with configurable activation functions.
2.	 Train the model with ReLU activation and record the accuracy.
3.	 Repeat the training with Sigmoid and Tanh activations.
4.	 Compare the results and discuss the impact of each activation function on model 

performance.
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10.9.3 �H ard

Implement a CNN with batch normalization and dropout layers to improve the model’s robustness 
and accuracy on the Fashion MNIST dataset.

1.	 Create a CNN model with batch normalization and dropout layers.
2.	 Train the model on the Fashion MNIST dataset.
3.	 Evaluate the model’s performance and compare it with a baseline CNN without batch nor-

malization and dropout.
4.	 Analyze the effects of batch normalization and dropout on the model’s training stability and 

accuracy.
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11	 Dynamical Systems and 
Differential Equations 
for RNNs

11.1 � INTRODUCTION

In this chapter, we look at how recurrent neural networks (RNNs) are connected to the math ideas of 
dynamical systems and differential equations. RNNs are especially good at working with sequences 
and remembering information over time, which makes them important for many real-​life uses. By 
understanding the basic ideas behind RNNs, we can better see how they function. Here, we’ll go 
beyond the simple concepts of neural networks and use ideas from dynamical systems to understand 
how RNNs handle and process data that come in a sequence. The goal is to give a clearer picture of 
how these networks work and how their functions are similar to those of dynamical systems.

11.2 � THEORY OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS

Dynamical systems and differential equations help us understand how things change, grow, or 
decrease over time, both in nature and in human-​made systems. These math ideas let us study and 
predict how complex systems behave as they develop. By learning about them, we can see the 
patterns that shape the world around us and use these principles in different areas, including tech-
nology and neural networks.

11.2.1 �D ynamical Systems

A dynamical system is a way to describe how something changes over time using a set of rules. 
These systems are used in many areas of science and engineering to track things like how planets 
move or how populations grow. The strength of dynamical systems is their ability to show how 
different states change, making them useful for understanding and predicting behavior over time. In 
math, they are shown by maps that illustrate how one state changes to another, allowing us to follow 
paths and predict future states in a certain space.

11.2.1.1 � Discrete Dynamical Systems
Not all changes occur continuously; some happen in a distinct, step-​wise fashion. In discrete dynam-
ical systems, state changes are quantized and occur in well-​defined steps. A function, commonly 
denoted as f, governs these steps. If we know the system’s state at a particular step n, we can apply f 
to determine the state at the next step, n +​ 1. This type of system is particularly useful for modeling 
processes that evolve in stages, such as population growth in generations or iterative algorithms in 
computer science. Consider the discrete dynamical system represented by:

	 x f x
n n+ = ( )1
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where x
n

is the state at step n, and f is the function defining the rule of evolution. This framework 
allows for the analysis and prediction of future states based on the initial condition. Let us con-
sider a simple population growth model with an initial population of 100 individuals. The growth 
function, given as f(x) =​ 1.2x, indicates a 20% growth per generation. The population size in the next 
generation can be calculated using this growth function. For example, starting with 100 individuals, 
the population after the first generation would be 100 × 1.2 =​ 120. After the second generation, the 
population would be 120 × 1.2 =​ 144, and so on, increasing by 20% with each generation. Let’s con-
sider a simple population growth model. Here are the steps:

1.	 Generation 0: x0 =​ 100
2.	 Generation 1: x1 =​ 1.2 × 100 =​ 120
3.	 Generation 2: x2 =​ 1.2 × 120 =​ 144
4.	 Generation 3: x3 =​ 1.2 × 144 =​ 172.8
5.	 Generation 4: x4 =​ 1.2 × 172.8 =​ 207.36
6.	 Generation 5: x5 =​ 1.2 × 207.36 =​ 248.83

After five generations, the population grows from 100 to approximately 249 individuals. This 
example shows how discrete dynamical systems predict fut ure states through repeated application 
of a growth function.

11.2.1.2 � Continuous Dynamical Systems
Unlike discrete systems, continuous dynamical systems change smoothly over time, with each tiny 
moment affecting the system’s state. These systems are usually modeled with differential equations, 
which explain how the system changes continuously. Continuous dynamical systems are important 
in areas like physics and engineering, where processes such as fluid flow, electrical circuits, and 
mechanical motion change smoothly over time. A continuous dynamical system is represented by a 
differential equation:

	
dx t

dt
f x t

( )
= ( )( )	

where:

	• x(t) is the system’s state at time t,
	• f describes how the state changes over time.

Let’s model a simple exponential growth system:

	
dx t

dt
x t

( )
= ( )0 5. 	

This equation describes a system where the growth rate is proportional to the current state, with a 
growth rate of 0.5. Initial Condition: x 0 100( ) = . In this equation:

	 x t x e t( ) = ( )⋅0 0 5. 	

Substitute the initial condition x 0 100( ) = :

	 x t e t( ) = ⋅100 0 5. 	
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For different time values, we can calculate various states of the system:

	• At t x e= ( ) = ⋅ ≈1 1 100 164 870 5: .. ,

	• At t x e= ( ) = ⋅ ≈2 2 100 271 831: . ,

	• At t x e= ( ) = ⋅ ≈3 3 100 448 171 5: .. .

The system grows continuously, with the population increasing exponentially over time.
Figure 11.1 presents a comparison between continuous and discrete dynamical systems, illus

trating their behavior over a specified time interval. The x-​axis denotes time, while the y-​axis 
represents the state of the system. The continuous system is depicted by a smooth blue curve, thus 
highlighting the uninterrupted, smooth evolution of the state as time progresses. This smooth curve 
signifies that in continuous systems, changes occur gradually and are tracked at every infinitesimal 
point in time, providing a view of the state dynamics. On the other hand, the discrete system is 
shown as a red line connecting markers at specific time intervals. The markers represent the state 
values captured at each discrete time step, reflecting how the system’s state is updated only at these 
discrete points. This piecewise linear representation indicates that in discrete systems, time and 
state changes are not continuously tracked but rather approximated at selected intervals. In sections 
where the state changes gradually (e.g., between time steps 0 to 2 and 6 to 8), both the continuous 
and discrete trajectories closely align. However, at regions where the state exhibits rapid changes 
(e.g., around time steps 3 and 9), slight discrepancies emerge. These differences illustrate how dis-
crete systems might approximate the continuous system’s behavior but may miss finer details or 
introduce minor deviations when the state changes abruptly.

11.2.2 �D ifferential Equations

Differential equations, often called the language of change, let us model how systems behave. These 
equations describe the state of a system and tell how it changes by using derivatives, which measure 
how quickly things are changing.

FIGURE 11.1  Comparison of continuous and discrete dynamical systems.
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11.2.2.1 � Ordinary Differential Equations
Ordinary differential equations (ODEs) describe how a function and its rates of change are related 
using one variable, usually time. These equations are often used to model natural things, like how a 
pendulum swings or how diseases spread. ODEs help us explain how a system’s state changes over 
time based on its current state. An ODE is typically expressed in the form:

	
dy

dt
f t y= ( ), 	

where y represents the dependent variable (the state of the system), t is the independent variable 
(often representing time), and f(t,y) is a function that describes the rate of change of y with respect to 
t. A classic example of an ODE is the simple harmonic oscillator, which models the motion of systems 
such as a pendulum or a mass-​spring system. The equation for a harmonic oscillator is given by:

	
d y

dt
y

2

2
2 0+ =ω 	

where y(t) represents the position of the object over time, and ω is the angular frequency of the 
oscillation. This second-​order ODE describes how the position of the object changes as it oscillates 
back and forth under the influence of a restoring force proportional to its displacement. The general 
solution to this equation is:

	 y t A t B t( ) = +cos( ) sin( )ω ω 	

where A and B are constants determined by the initial conditions of the system, such as the initial 
position and velocity of the object. For instance, if the system begins at y(0) =​ 1 with an initial vel-
ocity of zero, the solution simplifies to y(t) =​ cos(2t), assuming an angular frequency ω =​ 2 rad/​s. 
This equation describes an object oscillating with a frequency of 2 rad/​s, moving smoothly between 
its maximum and minimum positions over time. In this way, ODEs serve as a powerful tool for mod-
eling dynamic behaviors in various fields, providing insights into how systems evolve continuously 
over time based on their initial conditions and the laws that govern them.

Figure 11.2 depicts the displacement of a simple harmonic oscillator, modeled as a mass-​spring 
system, over time. The x-​axis represents time in seconds, while the y-​axis indicates the displacement 
in meters from the equilibrium position. The blue curve follows the equation x(t) =​ Acos(ωt +​ θ), 
where A is the amplitude, ω is the angular frequency, and θ is the phase angle. The graph highlights 
several key aspects of the oscillator’s behavior. The maximum displacement, marked by a green 
dot, shows the furthest point the mass reaches above the equilibrium. At this point, the energy in the 
system is entirely potential, with zero velocity. The minimum displacement, marked by a red dot, 
indicates the lowest point the mass reaches, showing a similar state where the velocity is zero and 
the potential energy is maximized. The purple dot represents the phase angle, illustrating how the 
initial position and timing of the oscillator’s motion are influenced, shifting the curve horizontally. 

The differential equation 
d x t

dt
x t

2

2
2 0

( )
+ ( ) =ω , displayed at the bottom left, governs this harmonic 

motion. It indicates that the acceleration of the system is directly proportional and opposite to the 
displacement, a characteristic of simple harmonic oscillators.

11.2.2.2 � Partial Differential Equations
Partial differential equations (PDEs) are more complicated than ODEs because they involve  
functions with several variables and their partial derivatives. These equations are fundamental in  
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many areas of physics and engineering, like modeling how heat spreads, how fluids flow, and elec-
tromagnetic fields. PDEs let us describe systems where changes happen in multiple directions, such  
as time and space. A PDE is typically written in the form:

	
∂
∂

=
∂
∂

∂
∂

…





u

t
F t x u

u

x

u

x
, , , , ,

2

2
	

where u is the dependent variable representing the state of the system, t, and x are independent 
variables (often representing time and space), and F is a function that describes how u changes over 
time and space. A well-​known example of a PDE is the heat equation, which describes how heat 
diffuses through a material. It is expressed as:

	
∂
∂

=
∂
∂

u

t

u

x
α

2

2
	

where u(t, x) represents the temperature of the material as a function of time t and position x, and α 
is the thermal diffusivity, a constant that quantifies how quickly heat spreads through the material. 
Consider a metal rod of length 10 units. The ends of the rod are maintained at a constant tempera-
ture of 0°C, while the initial temperature at the center of the rod is 100°C, with the rest of the rod at 
0°C. The goal is to determine how the temperature changes over time. At time t =​ 0, the temperature 
distribution along the rod can be described as:

FIGURE 11.2  Simple harmonic oscillator: mass-​spring system.
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	 u x
x

0
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With the given boundary conditions, u(t, 0) =​ u(t, 10) =​ 0 for all values of t. Assuming the thermal 
diffusivity α is 0.01, the heat equation governs how the temperature evolves over time. After a short 
time, say at t =​ 1, the temperature at the center of the rod would decrease as heat begins to diffuse 
toward the ends of the rod. The approximate temperature distribution at this point might be:

	 u x
x

x x
1

60 5

0 0 10
,

,

,
( ) =

=
= =





if 

if  or 
	

As time progresses, the temperature continues to even out along the rod. By t =​ 5, the temperature 
at the center might decrease further to 20°C, while the ends of the rod remain at 0°C. The tempera-
ture distribution over time can be obtained by solving the heat equation numerically or analytically, 
depending on the specific boundary and initial conditions.

Figure 11.3 displays the temperature distribution along a rod over time, as governed by the heat 
equation. The x-​axis represents the position along the rod in meters, while the y-​axis indicates time in 
seconds. The color gradient in the figure reflects temperature values, ranging from low (dark colors) 
to high (light colors). The heat distribution evolves as time progresses, showing how heat diffuses 
from the center toward the ends of the rod. At the initial moment, the temperature is concentrated at 
the center, indicated by the bright yellow region. As time advances, the heat spreads outward, grad-
ually decreasing in intensity as it moves toward the boundaries of the rod. The equation displayed at 

the lower left corner, 
∂
∂

=
∂
∂

u

t

u

x
α

2

2
, represents the heat equation, where u denotes the temperature, t is 

time, x is the spatial position along the rod, and α is the thermal diffusivity constant. This equation 

FIGURE 11.3  Heat equation: temperature distribution over time.
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describes the rate of change in temperature over time and position, indicating that the temperature 
change depends on the second spatial derivative of the temperature, which signifies the flow of heat. 
The temperature color map on the right further provides a scale, showing the range of temperatures 
from 0°C (dark) to 96°C (light yellow), allowing for a clear visualization of how the temperature 
changes over both space and time.

Figure 11.4a illustrates a discrete dynamical system modeled using the logistic map equation 
x

n +​ 1
 =​ rx

n
 (1 − x

n
). The x-​axis represents iterations, while the y-​axis shows the population value 

normalized between 0 and 1. The blue line, with points marking each iteration, demonstrates the 
population’s evolution over time, revealing oscillatory and chaotic behavior typical of discrete 
non-​linear systems. The red dot marks the final population state at the end of the 100 iterations, 
highlighting how such systems can vary and exhibit complex, unpredictable behavior despite being 
governed by a simple equation. Figure 11.4b displays a continuous dynamical system in the form 
of a simple harmonic oscillator. The x-​axis shows time in seconds, while the y-​axis indicates the 

position of the oscillating mass. The green curve follows the equation x t A t
v

t( ) = ( ) + ( )cos sinω
ω

ω0 ,  

representing a combination of cosine and sine components where A is the amplitude, ω is the 
angular frequency, and v0 is the initial velocity.

11.3 � UNDERSTANDING THE BEHAVIOR OF RNNS

11.3.1 �M emory and Dynamics

Recurrent neural networks (RNNs) can remember past information because of their repeating struc-
ture. This means that at any time, an RNN’s state shows not only the current input but also infor-
mation from earlier inputs, similar to how a dynamical system changes over time with its current 
state affected by previous states. This “memory” makes RNNs very powerful for tasks that involve 
sequences of data. For example, in time series prediction, consider predicting stock prices over a few 
days. If the stock prices over five days are:

	 Prices =​ [100, 102, 101, 105, 107]	

An RNN can be trained to predict the price for the next day (day 6) based on these previous values. 
After training, the RNN might predict:

	 Predicted Price on Day 6 =​ 109	

In this case, the RNN learns the trend from the data; the general upward movement in prices 
suggests that the next value will likely be higher. By remembering the prices from the previous 
days, the model can make a more informed prediction about the future. In natural language pro-
cessing (NLP), RNNs also excel. For instance, consider sentence generation. Given the starting 
phrase:

“The stock market”
The RNN uses its memory of the earlier words to predict the next word. If the RNN has been trained 
on financial articles, it might generate the sentence:

“is expected to rise.”
Here, the prediction of each word is influenced by the previous words, allowing the RNN to create 
a coherent sentence by remembering the context. Similarly, in speech recognition, the input to an 
RNN might be a sequence of sounds, such as:
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Sounds =​ [“s,” “o,” “f,” “t”].
Using the memory of the earlier sounds, the RNN can predict that the word is “soft.” If the input 
sounds were:

Sounds =​ [“h,” “a,” “r,” “d”].
The RNN might predict the word “hard.” In both cases, the ability to maintain context across the 
sequence of sounds allows the RNN to recognize entire words. This memory of past inputs is crit-
ical to understanding the current input and making accurate predictions, whether it’s a word in a 
sentence or a value in a time series.

Figure 11.5 illustrates the memory dynamics of a RNN over time, showing both a broad over
view and a detailed zoomed-​in view of the input and output sequences. Figure 11.5a displays the 
overall behavior of the RNN across 4000 time steps. The blue line represents the input sequence, 
demonstrating its repetitive and periodic pattern, which spans the entire range. The green line cor-
responds to the true output sequence generated based on the input, while the orange dashed line 
shows the RNN’s predicted output sequence. Despite the periodicity and repetition in the input 
sequence, the predicted output remains close to the true output sequence, indicating the RNN’s 
capability to learn and generalize the pattern over a long duration. Figure 11.5b zooms into the 
first 100 time steps to provide a detailed view of the RNN’s behavior. The blue line continues to 
represent the input sequence, showing sharp spikes at regular intervals. The green line captures 
the true output sequence, which responds more gradually and sinusoidally to changes in the input, 
demonstrating how the system processes and smooths the input signals. The orange dashed line is 
the predicted output sequence by the RNN, closely following the pattern of the true output but with 
slight deviations. A red dot marks the maximum prediction value in this window, highlighting a spe-
cific point where the RNN reaches its highest output, with the annotation indicating the maximum 
value observed.

11.3.2 �E xplaining via ODEs

RNNs, especially those built with continuous changes, can be easily understood using ODEs. Using 
ODEs helps us model how the system changes over time, giving us a better understanding of how 
the network behaves. One important idea in this approach is stationary states, or fixed points, which 
are states where the system stays the same and does not change over time. A fixed point x* occurs 
when the ODE governing the system reaches a state where:

	
dx t

dt
f x t

( )
= ( )( ) = 0	

In the context of RNNs, these fixed points represent the long-​term behavior of the network, where 
the internal state stays the same over time. For example, if an RNN reaches a stable fixed point, it 
will give consistent outputs for sequences, making its performance reliable. Another important idea 
is stability analysis, which looks at whether the fixed points of the system are stable or unstable. 
A stable fixed point means that if the system’s state is slightly changed, it will eventually go back to 
the fixed point. On the other hand, an unstable fixed point means that any small change will make 
the system move away from that point. This analysis helps us understand if the RNN will settle into 
a stable state, show repeating patterns, or even behave unpredictably over time. To explain this with 
a numerical example, consider a simple ODE describing the continuous evolution of a state x(t) 
over time:
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	 x t
dx t

dt
kx t( ) ( )

= − ( )	

where k > 0 is a constant. In this case, the system has a fixed point at x* =​ 0. The stability of this 
fixed point can be analyzed by observing how the state changes for different initial conditions. If 
x(t) starts at a positive value, it will gradually decay toward zero, indicating that the fixed point at 
x* =​ 0 is stable. This behavior models how some RNNs stabilize over time to produce consistent 
outputs. In more complex RNNs, ODEs can model situations where multiple fixed points exist. For 
example, consider the ODE:

	
dx t

dt
x t x t

( )
= ( ) − ( )3	

This system has three fixed points: x* =​ –​1, 0, and 1. The stability of these points can be determined 
by analyzing the derivative of the function around these points. In this case, x* =​ –​1 and x* =​ 1 are 
stable fixed points, while x* =​ 0 is unstable. This means that the system will converge to either –​1 
or 1, depending on the initial state, but if the system starts exactly at x =​ 0, any small perturbation 
will push it away from this point.

11.3.3 �T raining and Dynamics

Training of RNNs can be very difficult, especially in deep networks where the training process can 
act like chaotic systems. Small changes in settings can lead to very different results, making the 
network’s behavior hard to predict. Ideas from dynamical systems theory, such as chaotic behavior 
and bifurcations, can help us understand and manage these challenges. In deep RNNs, even small 
changes in the weights can cause big changes in the output, similar to chaos in dynamical systems. 
Tiny changes in the starting conditions can lead to very different outcomes over time. For example, 
imagine an RNN with a single neuron where the hidden state ht at time t is calculated as:

	 h W h W x
t h t x t+ = +

1
tanh( )	

Here, Wh is the recurrent weight, Wx is the input weight, and xt is the input at time t. Suppose:

	 Wh =​ 0.9, Wx =​ 1.0, Initial state h0 =​ 0.5 and Input sequence x =​ [1,0,1,0]	

The hidden states over time would be:

	• h1 =​ tanh(0.9 × 0.5 +​ 1 × 1) =​ tanh(1.45) ≈ 0.9,
	• h2 =​ tanh(0.9 × 0.9 +​ 1 × 0) =​ tanh(0.81) ≈ 0.67,
	• h3 =​ tanh(0.9 × 0.67 +​ 1 × 1) =​ tanh(1.603) ≈ 0.92,
	• h4 =​ tanh(0.9 × 0.92 +​ 1 × 0) =​ tanh(0.828) ≈ 0.68.

Now, suppose we make a small change in the recurrent weight, increasing Wh slightly to 0.91. The 
hidden states will change as follows:

	• h1 =​ tanh(0.91 × 0.5 +​ 1 × 1) =​ tanh(1.455) ≈ 0.9,
	• h2 =​ tanh(0.91 × 0.9 +​ 1 × 0) =​ tanh(0.819) ≈ 0.67,
	• h3 =​ tanh(0.91 × 0.67 +​ 1 × 1) =​ tanh(1.611) ≈ 0.92,
	• h4 =​ tanh(0.91 × 0.92 +​ 1 × 0) =​ tanh(0.835) ≈ 0.68.
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The changes in the output may seem small here, but as the network gets deeper, small changes like 
this accumulate, leading to chaotic behavior where outputs can change unpredictably. Bifurcations 
occur when a small change in a parameter causes a qualitative change in the network’s behavior. 
Consider the same RNN, but instead of a small change, we increase Wh significantly from 0.9 to 1.2. 
The hidden states now evolve as follows:

	• h1 =​ tanh(1.2 × 0.5 +​ 1 × 1) =​ tanh(1.6) ≈ 0.92,
	• h2 =​ tanh(1.2 × 0.92 +​ 1 × 0) =​ tanh(1.104) ≈ 0.8,
	• h3 =​ tanh(1.2 × 0.8 +​ 1 × 1) =​ tanh(1.96) ≈ 0.96,
	• h4 =​ tanh(1.2 × 0.96 +​ 1 × 0)=​tanh(1.152)≈0.82.

Compared to the previous example, a larger change in the weight Wh has caused the hidden state to 
jump to much higher values. This is a bifurcation point, where the small increase in the weight led 
to a qualitative change in the RNN’s behavior, making the network more prone to oscillations or 
even chaotic patterns. These dynamics make training RNNs difficult because even small parameter 
changes can lead to instability or chaotic behavior, disrupting the training process. Gradient clipping 
can prevent weights from growing too large, helping to avoid bifurcations or chaotic dynamics.

11.3.4 �V anishing and Exploding Gradients

One big problem when training deep RNNs is the vanishing and exploding gradient issue. To under-
stand this, think of RNNs as dynamic systems where each step is like a moment in time. As the 
RNN processes more steps (or inputs), the gradients used to update the model during training can 
either get very small (vanish) or become too large (explode), making the model hard to train. This 
happens because, like in dynamic systems where states can grow or shrink over time, RNNs can 
have their gradients affected the same way during backpropagation. If the gradients vanish, the 
model has trouble learning long-​term dependencies because the updates become too small. If the 
gradients explode, the updates become too large, causing the training to become unstable. To fix 
exploding gradients, a common method is gradient clipping, which limits the size of the gradients 
during backpropagation to keep them from getting too big. For the vanishing gradient problem, 
more advanced RNN architectures like long short-​term memory (LSTM) networks and gated recur-
rent units (GRU) were created. These architectures have built-​in systems that help keep important 
information over long sequences, thus allowing the model to remember things for longer and avoid 
the vanishing gradient issue. Additionally, techniques like batch normalization can also help by 
stabilizing gradients during training, making the optimization process smoother and improving 
the model’s performance. A helpful way to understand this issue is by viewing RNNs as dynamic 
systems, where each step in an RNN is like a moment in time. Over time, the gradients used to 
update the network’s parameters can either become too small (vanish) or grow too large (explode), 
making training difficult. To make this clearer, let’s look at an example. Imagine an RNN processing 
a sequence over 10 time steps. If the gradient at each step is slightly smaller than 1 (say 0.8), after 
10 steps, the gradient would shrink as follows:

	• After 1 step: 0.8,
	• After 2 steps: 0.8 × 0.8 =​ 0.64,
	• After 3 steps: 0.8 × 0.64 =​ 0.512,
	• ...,
	• After 10 steps: 0.810 =​ 0.107.

After 10 steps, the gradient decreases to around 0.107. This small value makes it hard for the net-
work to learn because the gradient becomes too tiny to make useful updates to the model’s weights; 
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this is the vanishing gradient problem. Now let’s see what happens with an exploding gradient. 
Suppose the gradient at each step is slightly larger than 1 (say 1.2). Over the same 10 steps:

	• After 1 step: 1.2,
	• After 2 steps: 1.2 × 1.2 =​ 1.44,
	• After 3 steps: 1.2 × 1.44 =​ 1.728,
	• ...,
	• After 10 steps: 1.210 =​ 6.191.

In this case, after 10 steps, the gradient has grown to about 6.191. As the network gets deeper, this value 
continues to grow larger, making the training unstable and causing the weights to update too aggres-
sively; this is the exploding gradient problem. Gradually clipping is often used to deal with exploding 
gradients. This method limits the size of the gradients during backpropagation so that they don’t grow 
too large. For example, if the gradient exceeds a certain value (say 5), it’s clipped to 5. This helps keep 
the training process stable. These architectures have special gates that help maintain important infor-
mation over time, allowing the model to avoid losing the gradient in long sequences.

Figure 11.6 illustrates critical challenges and dynamics within RNNs, focusing on the vanishing 
and exploding gradient problems as well as memory retention behavior. Figure 11.6a highlights the 
vanishing and exploding gradient issues encountered during training RNNs. The x-​axis represents 
the timestep, while the y-​axis shows the gradient magnitude. The blue line indicates the vanishing 
gradient, where the gradient value diminishes over time, approaching zero as timesteps increase. 
This phenomenon hampers the RNN’s ability to learn and update weights effectively, especially for 
long-​term dependencies. In contrast, the red line represents the exploding gradient, where the gra-
dient magnitude increases exponentially with each timestep. This can lead to instability in training as 
the gradient becomes excessively large, making it challenging to converge. Figure 11.6b illustrates 
the memory dynamics of an RNN, focusing on how the network retains and decays information over 
time. The x-​axis represents the timestep, while the y-​axis denotes the memory state. The green curve 
shows memory decay, where the memory state gradually reduces as time progresses. This decay 
demonstrates how RNNs struggle to maintain information over long sequences, contributing to dif-
ficulties in capturing long-​term dependencies without enhancements like LSTMs or GRUs, which 
are designed to preserve memory over extended periods.

11.4 � DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS FOR DEEP 
LEARNING

The interplay between dynamical systems and differential equations offers a rich framework for 
understanding and improving deep learning models, particularly RNNs. In RNNs, small differences 
in the initial states or input data can lead to completely different outputs, making the network’s 
behavior hard to predict. This sensitivity can be both good and bad. On one hand, it allows the net-
work to capture complex patterns. On the other hand, it can make training the network unstable. 
Looking at RNNs from the perspective of dynamic systems helps us understand these complexities 
and shows how they can work well with new data.

11.4.1 �L otka–​Volterra Equations and Neural Networks

The Lotka–​Volterra equations, also known as the predator–​prey equations, are a pair of first-​order, 
non-​linear differential equations used to describe the dynamics of biological systems where two 
species interact: predator and prey. The equations are:

	
dx

dt
x xy

dy

dt
xy y= − = −α β δ γ, 	
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where:

	• x is the number of prey,
	• y is the number of predators, and
	• α β δ γ, , ,  are parameters representing the interaction between the two species.

We can generate data using the Lotka–​Volterra (predator–​prey) equations and then train a neural 
network to learn their underlying dynamics. To make the concept clearer with specific numbers, let’s 
assume the following parameters:

FIGURE 11.6  (a) Vanishing and exploding gradient in RNNs, (b) memory dynamics in RNNs.
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	• α =​ 1.1 (prey reproduction rate),
	• β =​ 0.4 (rate of predation),
	• γ =​ 0.4 (predator death rate),
	• δ =​ 0.1 (rate of predator growth by eating prey).

Suppose we start with an initial population of 40 prey and 9 predators. Using the equations, we can 
calculate how both populations change over time. At the initial time step (t =​ 0), the populations 
are: x(0) =​ 40, y(0) =​ 9.

At the next time step, we calculate the change in prey and predator populations using the differ-
ential equations:

	
dx

dt
= × − × × = − = −1 1 40 0 4 40 9 44 144 100. . 	

So, the prey population decreases by 100.

	
dy

dt
= × × − × = − =0 1 40 9 0 4 9 36 3 6 32 4. . . . 	

Thus, the predator population increases by 32.4. Update populations over Δt =​ 0.1:

	 x x
dx

dt
t0 1 0 40 100 0 1 40 10 30. . ,( ) = ( ) + 





= + −( )× = − =∆ 	

	 y y
dy

dt
t0 1 0 9 32 4 0 1 9 3 24 12 24. . . . . .( ) = ( ) + 





= + × = + =∆ 	

After just 0.1 unit of time, the prey population is 30 (instead of going negative), and the predators 
have risen to 12.24. By repeating these small-​step updates over many increments, you will typ-
ically see oscillatory cycles: as prey increases, predators flourish; as predators increase, they 
reduce the prey supply, leading to a subsequent predator decline, and so forth. In practice, this 
generates time-​series data that mimic real predator–​prey interactions. You can then train a neural 
network to learn these dynamics, by feeding it time-​lagged samples of (x, y), so it can predict 
future population levels given current conditions. This offers a powerful way for neural networks 
to capture complex biological interactions and other non-​linear systems governed by differential 
equations.

Figure 11.7 illustrates the analysis of predator–​prey dynamics using the Lotka–​Volterra model 
and a neural network for population prediction. Figure 11.7a represents the Lotka–​Volterra predator–​
prey model, showing the oscillatory relationship between prey (x) and predator (y) populations over 
time. The prey population (blue) and predator population (orange) exhibit periodic fluctuations, 
reflecting the cyclical nature of ecological interactions. The equations governing the system, 
dx

dt
ax xy

dy

dt
xy y= − = −β δ γand , are annotated on the plot. A key observation is marked by a red  

dot at the point of maximum predator population (23.0073), emphasizing the peak of the predator cycle. 
Figure 11.7b compares the actual predator population (orange) against the predicted predator population 
(green, dashed) generated by a neural network. The model includes two hidden layers with 64 neurons 
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each. A notable point, labeled “First Prediction” (purple dot), demonstrates the neural network’s ini-
tial prediction accuracy. Despite capturing the trend, the predicted population deviates from the actual 
values, reflected in the high mean squared error (MSE: 766.06) and poor R2 score (–​7707.30).

11.5 � REAL-​WORLD APPLICATIONS AND EXAMPLES

11.5.1 �M odeling Epidemics with Differential Equations

Differential equations can accurately model how infectious diseases spread. One common model is 
the Susceptible, Infected, Recovered (SIR) model. This model tracks how people move from being 
susceptible to an infection to becoming infected and then recovering (or gaining immunity). By 
using these rates, public health officials can predict how an epidemic will grow and see how different 
strategies can help control it. For example, during the COVID-​19 pandemic, differential equations 
were very important for forecasting the virus’s spread. These models helped show the possible 
effects of actions like social distancing, wearing masks, and vaccination programs. This allowed 
governments and health organizations to make better, data-​based decisions. By understanding how 
fast the virus spreads and how people recover, authorities could plan and adjust their responses to 
reduce the epidemic’s impact. This mathematical approach is crucial for controlling outbreaks and 
getting ready for future waves.

11.5.2 � Stability Analysis in Engineering

In engineering, dynamical systems theory is an important tool for checking the stability of structures 
and machines. For example, in aerospace engineering, engineers study the stability of an aircraft’s 
flight path using differential equations that model how it moves through the air. These equations help 
engineers understand when an aircraft might become unstable, such as during a stall or spin, which 
could cause it to lose control. By examining these possible instabilities, engineers can create control 
systems that automatically detect and fix problems, ensuring the aircraft flies steadily. This stability 

FIGURE 11.7  (a) Lotka–​Volterra predator–​prey model. (b) Actual vs. predicted predator population.
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analysis is essential not only for safety but also for improving the performance of aircraft in different 
flight conditions, leading to more efficient and safer aviation systems.

11.5.3 �E conomic Modeling and Forecasting

In economics, dynamical systems and differential equations are important tools for modeling and 
predicting how markets and economies behave over time. A good example is using the Lotka–​
Volterra equations, which were first used in biology to describe predator and prey relationships, to 
model competition between companies in a market. These equations help economists study how 
things like available resources or the level of competition affect whether businesses grow or decline. 
By using these models, economists can better understand how markets work and create strategies 
or policies to encourage economic stability and growth. For example, the equations can show how 
market competition affects whether companies survive, helping decision-​makers adjust regulations 
or policies to ensure a healthy and competitive economic environment.

11.5.4 �C limate Change Projections

Climate scientists use differential equations a lot to model the Earth’s climate and predict how human 
activities will affect it. These models include the complex interactions between the air, oceans, and 
land, tracking how things like temperature, humidity, and carbon dioxide levels change over time. 
By considering these factors, scientists can create different scenarios, such as varying amounts of 
greenhouse gas emissions. These simulations help scientists forecast possible climate changes and 
understand the likely effects of human actions. This information is essential for shaping global pol-
icies on climate action and helping governments and organizations make informed decisions about 
reducing emissions, setting environmental regulations, and adopting sustainable practices to lessen 
the impact of climate change.

11.5.5 �N euroscience and Brain Dynamics

In neuroscience, dynamical systems and differential equations help model the brain’s electrical 
activity. A famous example is the Hodgkin–​Huxley model, which uses these equations to show 
how neurons create action potentials, electrical signals that send information through the nervous 
system. These models are important for understanding how brain circuits work and how problems 
in these circuits can cause conditions like epilepsy. By studying these models, neuroscientists learn 
how brain disorders happen and can develop treatments like deep brain stimulation to restore normal 
brain function. These mathematical tools are powerful for exploring both healthy and unhealthy 
brain activity and for guiding treatment methods.

11.5.6 �R obotics and Autonomous Systems

In robotics, dynamical systems theory is important for controlling how robots and self-​driving 
vehicles move. For example, path planning algorithms often use differential equations to calculate 
the best path a robot should take, making sure it reaches its destination while avoiding obstacles. 
This method is essential for designing robots that can work safely and efficiently in changing envir-
onments. For instance, drones flying through complicated areas or robotic arms doing precise tasks 
in factories rely on these models to adjust their movements in real time. By using dynamical systems 
theory, robots can respond to changes around them and handle new challenges, making them more 
reliable and effective in real-​world situations.
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11.6 � HANDS-​ON EXAMPLE

We’ll simulate a scenario where the RNN is tasked with learning a time-​dependent sequence, 
allowing us to observe the effects of memory retention and the potential occurrence of vanishing or 
exploding gradients.

11.6.1 Step 1: Import Libraries

First, we import essential libraries for building machine learning models and visualizing results. 
Together, these libraries are essential for tasks ranging from building neural network models and 
handling data to visualizing results for analysis and interpretation.

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

11.6.2  Step 2: Generate Synthetic Sine Wave Data

In this section, we are generating a time series dataset using the sine function. This setup is useful 
for simulating periodic data, such as waves or oscillations, which can be visualized and analyzed.

# time variable
t =​ np.linspace(0, 2*np.pi, 100)
data =​ np.sin(t)

11.6.3  Step 3: Prepare Data for RNN: Format (batch_​size, Timesteps, Features)

In this section, we are preparing the input and target data for a time series prediction model, where 
each value in the sine wave is used to predict the next value. We are creating a one-​step-​ahead pre-
diction model, where the goal is to predict the next value in the time series based on the current 
value. This reshaping process is crucial for feeding the data into machine learning models, particu-
larly RNNs or LSTMs, where the 3D input shape is required.

X =​ data[:-​1].reshape(-​1, 1, 1)
Y =​ data[1:].reshape(-​1, 1)

11.6.4  Step 4: Define the RNN Model

In this section, we are building a simple RNN using the Keras Sequential API from TensorFlow. 
The model consists of an RNN layer followed by a Dense output layer for time series prediction.

model =​ tf.keras.Sequential([tf.keras.layers.SimpleRNN(10, 
input_​shape=​(None, 1), activation=​‘tanh’), tf.keras.layers.
Dense(1)])
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11.6.5  Step 5: Compile the Model

Here, we are compiling the RNN model, which prepares it for training by specifying the optimizer, 
loss function, and potentially other metrics. By compiling the model with the Adam optimizer and 
mean squared error loss, we ensure that the model will learn effectively during training by minim-
izing the prediction error on the time series data. This setup is ideal for time series prediction tasks, 
where the goal is to make accurate continuous-​value predictions.

model.compile(optimizer=​‘adam’, loss=​’mean_​squared_​error’)

11.6.6  Step 6: Train the Model

In this line of code, we are training the RNN model on the time series data using the fit function in 
Keras.

history =​ model.fit(X, Y, epochs=​100, verbose=​0)

11.6.7  Step 7: Predict Using the Trained Model

In this line of code, we are using the trained RNN model to make predictions on the time series 
data. This line is crucial in time series forecasting, as it allows us to observe how well the model 
has learned to predict future values based on the historical data provided during training. These 
predictions can be compared to the actual target values (Y) to evaluate the model’s performance.

predictions =​ model.predict(X)

11.6.8  Step 8: Plot the Results

In this section, we are visualizing the results of the RNN predictions alongside the actual data using 
Matplotlib.

plt.figure(figsize=​(10, 5))
plt.plot(t[1:], Y, label=​‘Actual Data’)
plt.plot(t[1:], predictions, label=​‘Predicted Data’, linestyle=​
’-​-​’)
plt.title(‘RNN Simulation of a Sine Wave’)
plt.xlabel(‘Time’)
plt.ylabel(‘Amplitude’)
plt.legend()
plt.show()
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Figure 11.8 illustrates how the RNN has learned to approximate the sine wave pattern. By  
training on sequences of the wave, the RNN effectively captures both the amplitude and phase of  
the cycle, thus demonstrating its utility in time-​series prediction tasks. The slight discrepancies  
between the actual and predicted values underscore the challenges inherent in perfecting sequence  
modeling, particularly in capturing exact dynamics without overfitting to noise or anomalies in the  
data.

11.7 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

11.7.1 �M isinterpreting Dynamical Systems Theory

	• Mistake: Failing to grasp the fundamental principles of dynamical systems and how they 
relate to RNN behavior.

	• Tip: Start with the basics of dynamical systems theory before diving into its applications in 
RNNs. Use simple examples and simulations to build a solid foundation.

11.7.2 �O verlooking the Importance of Initial Conditions

	• Mistake: Ignoring the sensitivity of RNNs to initial conditions, leading to unpredictable 
behavior during training.

	• Tip: Pay close attention to the initialization of RNN parameters. Use strategies like careful 
initialization and gradient clipping to mitigate sensitivity issues.

11.7.3 �U nderestimating the Complexity of Training Dynamics

	• Mistake: Simplifying the training process of RNNs without considering the complex dynamics 
that can arise, such as bifurcations and chaotic behavior.

	• Tip: Monitor the training process closely, looking for signs of instability. Employ regulariza-
tion techniques and dynamic learning rate adjustments to stabilize training.

FIGURE 11.8  RNN simulation of a sine wave.
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11.7.4 �N eglecting the Vanishing and Exploding Gradient Problem

	• Mistake: Failing to address the vanishing and exploding gradient problem, which can severely 
affect the training of deep RNNs.

	• Tip: Use techniques like LSTM networks, GRUs, gradient clipping, and proper initialization 
methods to manage gradient issues.

11.7.5 �M isapplying Differential Equations

	• Mistake: Incorrectly applying differential equations to model RNN behavior, leading to 
flawed analyses.

	• Tip: Ensure a strong understanding of ODEs and their application to continuous-​time RNNs. 
Validate your models with known solutions and simpler systems.

11.7.6 �O vercomplicating Models

	• Mistake: Creating overly complex models without sufficient justification, leading to difficul-
ties in training and interpretation.

	• Tip: Start with simpler models and gradually increase complexity as needed. Use model selec-
tion criteria and cross-​validation to ensure that added complexity improves performance.

11.7.7 �F ailing to Validate Neural Network Models

	• Mistake: Neglecting thorough validation of neural network models, resulting in unchecked 
errors and inefficiencies.

	• Tip: Validate models using various datasets and benchmarks. Compare the performance of 
RNNs modeled with dynamical systems theory against traditional methods.

11.8 � REVIEW QUESTIONS

1.	 What is the difference between discrete and continuous dynamical systems? Provide 
examples of each.

2.	 How do the Lotka–​Volterra equations model the interaction between predator and prey 
populations? What do the parameters α, β, γ represent?

3.	 How do RNNs retain information from previous inputs? How is this similar to the behavior 
of dynamical systems?

4.	 Explain how ODEs can represent certain RNNs. Why is this helpful representation?
5.	 Describe the challenges of training RNNs, particularly the vanishing and exploding gradients. 

How does viewing RNNs as dynamic systems help address these challenges?
6.	 What are bifurcations in dynamical systems, and how can similar phenomena affect the 

behavior of RNNs during training?
7.	 How do the concepts of chaotic behavior and sensitivity to initial conditions in dynamical 

systems relate to the predictability and complexity of RNNs?
8.	 How can neural networks be used to learn the dynamics of systems described by differential 

equations, such as the Lotka–​Volterra model?
9.	 Why is it important to understand the behavior of dynamical systems and differential 

equations when working with deep learning models, particularly   RNNs?
10.	 Discuss how the principles and tools of dynamical systems can be applied to real-​world 

problems beyond biological systems, providing at least one example.
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11.9 � PROGRAMMING QUESTIONS

11.9.1 �E asy

Design a Sequence Generation Task for RNN Evaluation.

1.	 Choose a type of sequence, such as arithmetic progressions (e.g., 2, 4, 6, 8, ...) or sinusoidal 
sequences.

2.	 Explain why this sequence can effectively test the RNN’s learning capabilities.
3.	 Generate training data that reflects the chosen sequence.
4.	 Split the data into training and validation sets.
5.	 Train the RNN on the training dataset.

11.9.2 �M edium

Analyze RNN Behavior with Variable Input Lengths.

1.	 Create datasets with varying lengths of input sequences, maintaining consistent complexity 
across datasets.

2.	 Adjust the RNN architecture if necessary to handle variable input lengths.
3.	 Train the same RNN model on each dataset separately.
4.	 Evaluate the model on a validation set that also varies in sequence length.

11.9.3 �H ard

Explore the Impact of Network Depth in RNNs.

1.	 Modify an existing RNN model by adding multiple recurrent layers.
2.	 Ensure gradient clipping is implemented to mitigate exploding gradients.
3.	 Prepare a dataset suitable for deep RNNs, ensuring it has enough complexity to benefit from 

deeper architectures.
4.	 Train the modified RNN model using a rigorous training regime, possibly involving 

techniques like curriculum learning to gradually increase difficulty.
5.	 Evaluate the deep RNN model on a test set and compare it against a shallower baseline model.
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12  Quantum Computing

12.1 � INTRODUCTION

Quantum computing combines ideas from quantum mechanics and computer science, and it could 
change deep learning. By using the special abilities of quantum systems, we might soon be able to 
handle and analyze data in ways that regular computers can’t. This chapter will look at how quantum 
computing can make deep learning better, such as speeding up the learning process, improving 
complex models, and even solving problems that were once impossible. We will focus on important 
quantum algorithms, like Shor’s algorithm, which can break encryption, and Grover’s algorithm, 
which can search through large databases quickly. We will also discuss how these algorithms can 
help deep learning by providing new methods to optimize and manage data.

12.2 � INTRODUCTION TO QUANTUM COMPUTING

Quantum computing has grown from just an idea into a fast-​developing technology. It is based on 
quantum mechanics, a branch of science that started in the early 1900s when scientists studied how 
tiny particles behave in strange ways. It wasn’t until the 1980s that people began to understand 
what quantum computing could be. Early researchers saw that regular computers had a hard time 
simulating quantum systems efficiently. They suggested that a computer using quantum ideas could 
do these tasks better by using quantum superposition, which allows for natural parallel processing 
and could make quantum computers much faster. In the 1990s, important discoveries in quantum 
algorithms showed that quantum computing could change areas like encryption and searching 
through large databases. Even with these theoretical successes, creating real quantum computers 
was difficult because of problems like keeping quantum states stable and reducing mistakes. Since 
the 2000s, big companies have invested a lot in quantum research, and there has been significant 
progress. A major achievement happened in 2019 when a quantum processor was shown to be 
faster than classical supercomputers for certain tasks. Today, quantum computing keeps advancing 
quickly, with ongoing improvements in qubit stability, error correction methods, and algorithms, all 
building on the basic work from earlier years. Quantum computing is an exciting mix of quantum 
mechanics and computer science, using ideas that seem almost magical compared to regular physics. 
Three main ideas drive quantum computing: qubits, superposition, and entanglement.

12.2.1 � Qubits

Think of qubits as the quantum version of regular bits. While regular bits can only be a 0 or a 1, 
qubits can be both at the same time because of something called superposition. This ability allows 
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quantum computers look at many possibilities all at once, making them potentially much faster than 
regular computers for certain tasks.

12.2.2 � Superposition

Imagine a spinning coin that’s both heads and tails at the same time, only deciding which side it 
is when you stop it. Superposition works like that; it lets a qubit be in multiple states at once. This 
ability to hold and consider many possibilities all at once gives quantum computers incredible power 
for certain calculations.

12.2.3 �E ntanglement

One of the strangest parts of quantum mechanics is entanglement. When two qubits become 
entangled, the state of one instantly affects the state of the other, regardless of how far apart they are. 
This “spooky action at a distance” means that if you change one qubit, it immediately influences its 
entangled partner. This allows for fast and coordinated calculations across many qubits.

12.3 � QUANTUM ALGORITHMS

12.3.1 �K ey Quantum Algorithms

Quantum algorithms leverage the unique properties of quantum mechanics to solve problems more 
efficiently than classical algorithms. Two key algorithms have had a major impact and have broad 
applications.

(a)	 Factoring Algorithm: This algorithm revolutionized cryptography by making it possible 
to factor large numbers exponentially faster than classical methods. While traditional 
algorithms take significantly more time as the numbers grow larger, this quantum algorithm 
uses superposition and entanglement, along with a quantum Fourier transform, to factor 
numbers quickly. This poses a serious threat to widely used encryption systems like RSA, 
pushing the need for quantum-​safe cryptography.

(b)	 Search Algorithm: This algorithm dramatically speeds up the process of unstructured 
searching. In a database of N entries, the quantum algorithm can find the target in about 
√N steps, while classical methods would require N steps. By amplifying the probability of 
finding the correct answer, this algorithm is especially useful for tasks like database searches 
and optimization problems.

In Figure 12.1, the Bloch sphere provides a three-​dimensional visualization of a qubit’s state space. 
The sphere represents all possible states a qubit can take, with different arrows showing specific 
states. The dark red arrow indicates the ∣0⟩ state, which points along the positive z-​axis. This corres-
ponds to the qubit being in a pure state of 0, as seen at the top of the sphere. On the other hand, the 
dark green arrow points in the opposite direction, along the negative z-​axis, representing the qubit 
in the ∣1⟩ state. This highlights the qubit being in the pure 1 state. These two states, ∣0⟩ and ∣1⟩, are 
analogous to the binary states in classical computing. The dark blue arrow, located on the equator of 
the sphere, represents the ∣+​⟩ state. This state is a superposition of both ∣0⟩ and ∣1⟩, where the qubit 
is not purely in one state but exists in a blend of both. The positioning of the ∣+​⟩ state on the equator 
emphasizes the fact that it is a balanced superposition, equidistant from ∣0⟩ and ∣1⟩, thereby demon-
strating the core idea of quantum superposition.
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12.3.2 � Quantum Machine Learning Algorithms

Quantum machine learning combines quantum computing with regular machine learning, opening 
up new possibilities for tasks like grouping data (clustering), sorting it into categories (classifica-
tion), and making predictions (regression). Quantum clustering methods, like the Quantum k-​means 
algorithm, improve how we group items by using quantum properties like superposition to calculate 
distances between data points all at once. For example, imagine you have 10 apples and want to 
group them by weight. With quantum clustering, the computer can compare all the apples simul-
taneously, making the process much faster than traditional methods that handle comparisons one at 
a time. Quantum classification algorithms, such as Quantum Support Vector Machines (QSVM), 
enhance how we classify data by mapping features into a higher-​dimensional quantum space. Think 
of it like sorting animals based on size, habitat, and diet. A QSVM can make it easier to find clear 
differences, even between animals with similar traits, uncovering patterns that regular methods 
might miss. Quantum regression algorithms, like quantum linear regression, offer faster predictions 
by solving complex equations more efficiently. For instance, when predicting future temperatures 
from past data, quantum regression can quickly spot trends and create accurate forecasts, saving 
time compared to classical methods.

While quantum machine learning holds great promise, it is still in its early stages. One major 
challenge is converting regular data into quantum states, a process that can be complicated and 
time-​consuming, sometimes canceling out the speed advantages. Additionally, current quantum 
computers are prone to errors and can only hold quantum states for a limited time, which can affect 
the accuracy of calculations. For example, suppose you’re using a quantum machine learning algo-
rithm to predict stock prices based on the last 10 days’ closing prices: $150, $152, $148, $155, 
$160, $158, $162, $165, $167, and $170. First, you need to convert these numbers into quantum 
states, which is tricky. Even if the data is successfully encoded, errors might occur because the 
quantum computer may struggle to maintain its state, potentially leading to incorrect predictions. 
Instead of forecasting a rise to $175, the computer might mistakenly predict a drop to $140 due to 
the instability of the quantum system.

FIGURE 12.1  Qubit states on the Bloch sphere.
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12.4 � INTEGRATION WITH DEEP LEARNING

12.4.1 � Quantum Neural Networks (QNNs)

QNNs combine quantum computing with artificial neural networks to boost their performance, 
especially for complex tasks like high-​dimensional data analysis and pattern recognition. QNNs are 
built using quantum bits (qubits) instead of classical binary units, allowing them to take advantage 
of quantum mechanics, like superposition and entanglement. This gives them a huge computational 
advantage over traditional neural networks. Here’s how QNNs work:

1.	 Quantum Gates as Neurons: Each quantum neuron acts like a quantum gate, performing 
operations on input qubits while preserving quantum information.

2.	 Superposition and Parallelism: QNNs use superposition, allowing quantum neurons to pro-
cess multiple calculations at once, making the network much faster.

3.	 Entanglement for Feature Correlation: Entanglement links quantum neurons, helping QNNs 
detect and relate complex data patterns more effectively than classical networks.

Suppose we have a binary classification task where we want to classify inputs into two classes based 
on a single binary feature. There are class 0 and class 1, and the two inputs are as follows: Input 0, 
with a binary value of 0, should be classified as class 0, and Input 1, with a binary value of 1, should 
be classified as class 1. To perform this classification, we will design a simple QNN using one qubit 
and basic quantum gates. Before we proceed, let’s review some fundamental quantum computing 
concepts. Qubit is the basic unit of quantum information, analogous to a bit in classical computing. 
A qubit can be in a superposition of states ∣0⟩ and ∣1⟩: ψ α β= +0 1 , where α and β are complex 
numbers satisfying α β| |2 2 1+ = . Quantum Gates are operations that change the state of qubits. 
Examples include:

	• Hadamard Gate (H): H =
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Measurement is observing a qubit collapse of its state to either ∣0⟩ or ∣1⟩ with certain probabilities. 
Let us go to the computation steps:

Step 1. We need to encode our classical binary inputs into quantum states. Input 0, represented by 
the quantum state ∣0⟩, and Input 1, represented by the quantum state ∣1⟩, which we obtain by 
applying the Pauli-​X gate to ∣0⟩: ∣1⟩=​X∣0⟩. Quantum states for Inputs are as follows: For Input 

0, ψ
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Step 2. Our QNN consists of one Qubit to represent the quantum state and one Quantum Gate 
with a trainable parameter. We’ll use the rotation gate Ry(θ) as our quantum neuron.

Step 3. We apply the rotation gate Ry(θ) to the input qubit. The angle θ is our trainable parameter 
(analogous to weights in classical neural networks).
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	• Rotation Gate Ry(θ): R
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Step 4. When we measure the qubit, the probability of getting ∣0⟩ or ∣1⟩ is given by the square of 
the amplitudes. For a state ψ α β= +0 1 , probability of ∣0⟩ is P 0 2( ) =| |α  and probability 
of ∣1⟩ is P 1 2( ) =| |β .

	• Calculate probabilities for Input 0: ψ
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The probabilities are the same for both inputs, so the QNN cannot distinguish between the 

classes with θ π
=

2
.

Step 5. Our goal is to find a θ that allows the QNN to classify the inputs correctly. The desired 
probabilities are as follows: For Input 0 (should be Class 0), Maximize P(0), and for Input 1 

(should be Class 1): Maximize P(1). Try θ =​ 0 and compute Ry(0): R
y

0
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0 0 0 : P(0) =​ 1 and P(1) =​ 0,

Process Input 1: | ψ
output

= ( ) =R
y

0 1 1 : P(0) =​ 0 and P(1) =​ 1,

Input 0: High probability of ∣0⟩ ⇒ Class 0 (correct),
Input 1: High probability of ∣1⟩ ⇒ Class 1 (correct).
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If we set θ to 0, the QNN correctly sorts the inputs. In this case, θ acts like a trainable parameter, 
similar to weights in regular neural networks, that we adjust to reduce classification errors. QNNs 
have significant advantages over classical neural networks. They can process certain tasks exponen-
tially faster, especially those involving large datasets or complex pattern recognition. This speed is 
a huge benefit in fields with high computational demands. Quantum mechanics naturally handles 
calculations in spaces with many dimensions, making QNNs highly efficient for tasks like image 
recognition, modeling complex systems, and financial analysis where there are many features to 
consider. Additionally, unique quantum properties like superposition and entanglement could lead to 
new learning algorithms that outperform classical ones in efficiency or effectiveness. The qubits are 
then processed through a series of quantum gates like the Hadamard, CNOT, and Pauli-​X gates. The 
Hadamard gate creates a superposition of states, allowing qubits to be in multiple states at once. The 
CNOT gate is used to entangle qubits, linking their states no matter how far apart they are. The Pauli-​
X gate flips the state of a qubit, like changing from 0 to 1. These gates are essential for manipulating 
qubit states to perform complex calculations that are uniquely quantum. The transformed qubits pass 
through quantum circuits, which are dynamic arrangements of various quantum gates designed to 
run specific quantum algorithms. These circuits are the backbone of quantum computing, allowing 
for smooth control of qubits to solve problems that classical computers can’t handle. After the 
quantum operations are complete, the qubits are measured. This crucial step causes the qubit states 
to collapse from their quantum superpositions into definite states that we can interpret using clas-
sical computing. The measurement outputs classical data, keeping the computational advantages 
gained from quantum processing. These classical data are then sent through traditional computing 
stages. Here, regular computing techniques refine, analyze, and use the data from the quantum 
processes. This integration bridges the gap between quantum and classical computing, using the 
strengths of both to enhance computational power and efficiency.

12.4.2 �H ybrid Quantum-​Classical Models

Hybrid quantum-​classical models combine the strengths of both quantum and classical com-
puting, improving performance by using each where it works best. Instead of trying to replace 
classical computing entirely, quantum methods are used for specific tasks like advanced optimiza-
tion or handling complex calculations where they have clear advantages. This mix is especially 
useful in neural networks, where hybrid models can speed up learning and enhance results. In these 
models, tasks are divided between the quantum and classical parts. One key example is creating 
quantum feature maps. Here, classical data is turned into a quantum state in a high-​dimensional 
space, making it easier to see relationships between data points. This clearer view helps with tasks 
like classification or clustering, which can then be converted back into classical data for further 
analysis. Another important use is quantum optimization. Quantum algorithms, like the Quantum 
Approximate Optimization Algorithm (QAOA), fine-​tune parameters like weights and biases in 
neural networks. These algorithms are especially helpful in complex situations with many local 
minima, where traditional methods might struggle. By finding better solutions faster, quantum opti-
mization can improve the overall performance of the model. Hybrid models are practical because 
they use the best features of both computing systems. They offer enhanced computational power 
while staying within the current limits of quantum technology. This makes hybrid models more 
scalable and usable than purely quantum systems. In practice, they help solve problems that are too 
slow or complicated for classical computers alone, especially in tasks involving large datasets or 
heavy computational demands. Another benefit is flexibility; hybrid models can incorporate future 
quantum advancements without needing to overhaul the entire system. However, there are challenges. 
Integrating quantum and classical components is complex, requiring careful engineering and pro-
gramming. Current limitations of quantum hardware, such as short qubit coherence times, high error 
rates, and a limited number of qubits, also reduce the efficiency of hybrid models. Additionally, 
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developing algorithms that fully take advantage of these hybrid systems demands ongoing research 
and a solid understanding of both quantum mechanics and machine learning. A practical example 
of a hybrid quantum-​classical model is in financial modeling. In this case, the quantum component 
might be used to optimize investment portfolios across many variables, while the classical part 
handles routine data processing and transaction tasks. This combination allows quantum computing 
to tackle complex, high-​level problems while classical systems manage day-​to-​day operations.

12.5 � APPLICATIONS OF QUANTUM COMPUTING IN DEEP LEARNING

12.5.1 �E nhanced Optimization

Quantum computing offers exciting possibilities for improving how we optimize neural network 
training, potentially outperforming classical methods in both speed and efficiency. The power of 
quantum optimization comes from its unique properties, superposition, entanglement, and quantum 
tunneling, which allow quantum algorithms to explore complex optimization landscapes more 
effectively than classical approaches. In quantum computing, superposition lets each quantum 
bit (qubit) represent multiple states at once. This means quantum algorithms can evaluate many 
possible solutions simultaneously, unlike classical computers that process one solution at a time. 
For neural network training, this ability allows a quantum optimizer to assess different combin-
ations of weights and biases all at once, reducing the time needed to find the best or nearly the best 
configurations. Quantum systems also use quantum tunneling, a phenomenon where particles can 
“tunnel” through barriers that would be impossible to cross in classical physics. In optimization, this 
allows a quantum optimizer to avoid getting stuck in local minima, solutions that seem optimal but 
aren’t the best overall. Instead, it can keep exploring other areas of the solution space, increasing the 
chances of finding the global minimum. Entanglement, another key property, means that the state 
of one qubit can instantly affect the state of another, no matter how far apart they are. In optimiza-
tion, entanglement helps quantum algorithms by linking the relationships between different parts of 
a solution. This means the quantum optimizer can consider how various parameters are connected, 
leading to a more efficient exploration of possible configurations. Consider a simple non-​convex 
function: L x x x( ) = − +4 28 16. This function has multiple minima and maxima. The function has 
local minima and maxima due to its quartic and quadratic terms. The global minimum is at x =​ 0. Let 
us first do classical optimization using gradient descent. We start at an initial point and iteratively 
move in the direction opposite to the gradient.

1.	 Initialization: Start at x0 =​ 4 and Learning rate α =​ 0.1,
2.	 Iteration 1: Compute the gradient of L x x x( ) = − +4 28 16 that is equal to 

′ ( ) = −L x x x4 163 , ′ ( ) = ( ) − ( ) = − =L 4 4 64 16 4 256 64 192 and If x0 =​ 4, you then 
update x by subtracting the product of the gradient L′(x0) =​ 192 and the learning 
rate 0.1: ′ ( ) = − ( ) = − = −L x

0
4 0 1 192 4 19 2 15 2. . .

3.	 Iteration 2: ′ −( ) = − − −( )L 15 2 4 15 2 16 15 23. ( . ) . , then, Compute and update x2.

The steps may overshoot or get stuck in local minima. Finding the global minimum is not guaran-
teed. Now, let us do quantum optimization. Quantum annealing uses quantum mechanics to find 
the global minimum of an objective function by exploiting quantum tunneling and superposition. 
The key concepts in quantum mechanics that influence quantum computing include superposition, 
quantum tunneling, and entanglement. Superposition allows a system to consider all possible states 
simultaneously, which is fundamental to quantum computation’s ability to handle complex problems 
efficiently. Quantum tunneling enables the system to transition through energy barriers between local 
minima, helping escape from suboptimal solutions in optimization tasks. Entanglement correlates 
different variables in such a way that it allows a holistic search of the solution space, enhancing the 
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system’s capacity to explore multiple possibilities simultaneously. These concepts provide quantum 
computing with its unique computational power.

In this scenario, we represent possible values of x using a finite set of states, where x∈{−4, −3, 
−2, −1, 0, 1, 2, 3, 4}. Each state corresponds to a unique qubit configuration, and we use qubits to 
encode these states. The Hamiltonian H encodes the objective function L(x), with the goal of finding 
the state with the lowest energy, which corresponds to the global minimum of L(x).

We begin by preparing the qubits in a superposition of all possible states, such that the quantum 

system is represented by a state ψ 0( ) = ∑
x

x
c x , where cx are complex coefficients, and ∣∣x⟩⟩ 

represents each state. The system’s Hamiltonian then evolves slowly from an initial Hamiltonian 
H0 to the problem Hamiltonian Hp, which encodes the objective function. The adiabatic theorem 
ensures that if the evolution is slow enough, the system will remain in its ground state throughout 
the process. During this evolution, quantum tunneling enables the system to pass through barriers, 
allowing it to avoid being trapped in local minima and ensuring it can find better solutions. At the 
end of the annealing process, the qubits are measured, collapsing the quantum system into a single 
state ∣∣xmin⟩⟩, which corresponds to the global minimum and provides the optimal solution to the 
problem. This process efficiently leverages quantum properties such as superposition and tunneling 
to explore the solution space and find the global minimum. Now, let’s look at a numerical example 
by computing the function L(x) for discrete states:

	• L(−4) =​ 256 − 128 +​ 16 =​ 144,
	• L(−3) =​ 81 − 72 +​ 16 =​ 25,
	• L(−2) =​ 16 − 32 +​ 16 =​ 0,
	• L(−1) =​ 1 − 8 +​ 16 =​ 9,
	• L(0) =​ 0 − 0 +​ 16 =​ 16,
	• L(1) =​ 1 − 8 +​ 16 =​ 9,
	• L(2) =​ 16 − 32 +​ 16 =​ 0,
	• L(3) =​ 81 − 72 +​ 16 =​ 25,
	• L(4) =​ 256 − 128 +​ 16 =​ 144.

In this case, the function reaches its global minimum when L(x) equals 0 at x =​ −2 and x =​ 2. When 
comparing classical gradient descent with quantum annealing, we see distinct differences in how 
each method searches for solutions. Classical gradient descent often follows the steepest path and 
can get stuck in local minima, such as at x =​ −1 or x =​ 1, where L(x) equals 9. This happens because 
gradient descent moves toward the nearest low point without a mechanism to escape local minima. 
In contrast, quantum annealing uses quantum tunneling to perform a more global exploration of the 
solution space, allowing it to pass through barriers and avoid being trapped in local minima. As a 
result, quantum annealing finds the global minimum at x =​ −2 or x =​ 2, where L(x) equals 0. This 
ability to bypass local minima makes quantum annealing more efficient at identifying the best pos-
sible solution.

12.5.2 �A pplications in Neural Network Training

Quantum computing offers new ways to improve how we train neural networks, making the learning 
process faster and more efficient. Quantum algorithms, like the Quantum Approximate Optimization 
Algorithm (QAOA), can adjust the weights and biases in neural networks more effectively than trad-
itional methods. For example, in an image recognition neural network, each neuron’s weight and 
bias affect how it processes data like pixel values. Traditionally, finding the best set of weights and 
biases is a slow, repetitive task that becomes very demanding for large networks. QAOA solves this 
problem by converting it into a quantum system, where all possible combinations of weights and 
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biases are represented as quantum states. Superposition allows the algorithm to explore many com-
binations at the same time, while quantum entanglement ensures these combinations are updated 
based on how well they recognize images. This parallel exploration speeds up the process, improves 
the network’s accuracy, and reduces training time. Quantum computing is also helpful for handling 
high-​dimensional data, which is a common challenge in machine learning. Quantum algorithms can 
reduce the size of the data by selecting the most important features. For instance, when predicting 
patient health outcomes based on hundreds of variables, not all features are equally useful, and some 
may add noise. A quantum algorithm can turn this complex data into a quantum state, allowing it to 
process the data naturally in a high-​dimensional space. By using techniques like quantum annealing, 
the algorithm finds the most relevant features, reducing the data’s complexity without hurting the 
model’s performance.

12.5.3 �H andling Complex Data

Quantum computing has special abilities for handling data with many features, because of the unique 
properties of quantum mechanics. When you add more qubits to a quantum system, its data-​handling 
capacity grows exponentially. In classical computing, doubling the number of bits only doubles the 
capacity in a straightforward way. However, in quantum systems, each qubit can represent both 0 
and 1 at the same time due to superposition, so adding a qubit doubles the state space, leading to 
exponential growth. This exponential increase means that quantum computers, even with relatively 
few qubits, can handle an enormous number of possible states. This is especially useful for pro-
cessing complex, high-​dimensional datasets that can overwhelm classical systems. For example, 
imagine a machine learning task that requires analyzing hundreds of features to classify data. In 
classical computing, this would need vast amounts of memory and computational power. A quantum 
system, however, can manage this high dimensionality much more efficiently because each added 
qubit greatly increases its capacity to represent and process data. Quantum systems can encode high-​
dimensional data into the amplitudes of a quantum state using a method called quantum amplitude 
embedding. This allows classical data to be represented within a quantum state, enabling efficient 
manipulation during quantum operations. For instance, in a quantum machine learning application, 
complex feature vectors can be encoded into a quantum state using fewer qubits than the number of 
dimensions in the original dataset. Once encoded, quantum algorithms can quickly perform tasks 
like calculating inner products or measuring distances between data points. These operations, which 
would take significant time and resources on a classical computer, are completed more efficiently in a 
quantum system by using superposition and entanglement to explore the high-​dimensional space all 
at once. Although the theoretical advantages of quantum computing for handling high-​dimensional 
data are clear, several challenges remain. These include building stable quantum systems that resist 
errors and developing algorithms that consistently outperform classical methods. Another difficulty 
is encoding real-​world data into quantum states in a way that keeps important information without 
adding unnecessary complexity. Researchers are actively working on these challenges, aiming to 
fully unlock the potential of quantum computing for processing complex datasets.

12.5.4 �P rocessing Complex Structures

Quantum computing could greatly improve how we process complex data structures like 3D models 
and images by changing how we handle feature extraction and pattern recognition. Traditional 
methods for analyzing geometry, texture, or spatial relationships in 3D models can require a lot 
of computing power. Quantum computing changes this by using quantum parallelism, which lets 
us process multiple features or data points at the same time. For example, think about a 3D model 
used in architectural design or virtual reality. This model has various elements like edges, surfaces, 
and textures, all of which need to be analyzed for rendering or simulation. Quantum algorithms can 
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encode these elements into quantum states, and by using superposition, they can evaluate different 
combinations of features all at once. This parallel processing speeds up tasks like simplifying the 
model by removing unnecessary details or enhancing features to improve visual quality and func-
tionality. Quantum computing is especially powerful for pattern recognition, which is essential 
when analyzing complex 3D datasets. Its ability to assess multiple patterns simultaneously allows 
for a deeper exploration of spatial relationships, which is vital for accurate pattern recognition in 
3D spaces. In medical imaging, such as MRI scans that create 3D views of organs, finding patterns 
and abnormalities is crucial for diagnosis. A quantum system could quickly scan the 3D structure 
for irregularities like tumors by analyzing different parts of the image in parallel. This parallel pro-
cessing, made possible by quantum superposition, is much faster and more efficient than classical 
methods. Entanglement, another important quantum property, enhances how quantum algorithms 
analyze connections between different parts of a 3D object. For example, in mechanical engineering, 
simulating how different parts of a machine interact under stress is a complex task. Quantum com-
puting can model these interactions more thoroughly by entangling quantum states that represent 
different components, allowing for simultaneous stress tests across multiple configurations. Despite 
these promising advantages, challenges remain in applying quantum computing to 3D data pro-
cessing. The accuracy of quantum-​based feature extraction and pattern recognition depends heavily 
on the stability of quantum states, and current systems still face issues like decoherence and high 
error rates. Additionally, efficiently converting classical 3D data into formats that work with quantum 
computers while keeping important details is a critical area of ongoing research.

12.6 � CHALLENGES AND LIMITATIONS

12.6.1 �T echnical Challenges

Quantum computing has huge potential, but it faces important technical challenges before we can 
fully use it. These challenges mainly involve the physical hardware, errors in quantum operations, 
and how long qubits can maintain their quantum state. Each problem presents unique difficulties 
that researchers are actively trying to solve. One big issue is the hardware used to build quantum 
computers, especially when it comes to making them bigger and more complex. As we add more 
qubits, keeping them stable and controlling how they interact becomes harder. For example, 
superconducting qubits need to be cooled to near absolute zero. While adding more qubits increases 
processing power, it also makes it tougher to maintain quantum coherence and control interactions. 
Heat and electromagnetic interference can cause qubits to interfere with each other, reducing per-
formance. Building quantum processors requires extreme precision, and even small flaws in materials 
or design can lead to errors. This problem is made worse by the lack of large-​scale manufacturing, 
making production expensive and difficult. Advances in materials science and error correction 
techniques are slowly addressing these challenges, improving scalability and reliability. Quantum 
systems also have high error rates, mainly because of quantum decoherence and low gate fidelity. 
Decoherence happens when qubits lose their quantum state due to interactions with the environ-
ment, leading to computation errors. Researchers are improving isolation techniques, like better 
shielding and cooling, to combat this. Quantum error correction also helps by spreading quantum 
information across multiple qubits, allowing errors to be detected and corrected. Gate fidelity, which 
is the accuracy of quantum operations, is another challenge. Small mistakes in gate operations can 
add up over time, especially in complex circuits. In systems like trapped ion quantum computers, 
even tiny changes in laser intensity or timing can disrupt operations. Progress in error correction and 
gate control is making these systems more reliable, but challenges remain. Coherence time, or how 
long a qubit can keep its quantum state before decoherence occurs, is crucial for effective quantum 
computing. Longer coherence times allow for more complex calculations, but current systems often 
have short coherence times, limiting their ability to handle advanced tasks. For example, running 
Shor’s algorithm to factor large numbers requires many operations, but if a qubit loses coherence 
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too soon, the computation will fail. To extend coherence times, superconducting qubits need to be 
cooled to near absolute zero, and systems require advanced designs like dilution refrigerators to 
minimize environmental noise. Scaling quantum systems while maintaining coherence will need 
further innovation. Several strategies are being developed to overcome these challenges. Quantum 
error correction plays a key role, with methods like the surface code that encodes logical qubits 
across multiple physical qubits to detect and fix errors without destroying the quantum state. New 
designs are also emerging to reduce errors and improve coherence. For example, topological qubits, 
which use the properties of topological phases to resist disturbances, are being explored for their 
robustness against errors. Hybrid quantum-​classical systems are another promising approach. They 
use quantum hardware for specific tasks, like optimization, while relying on classical computers 
for more routine computations. This allows quantum computers to focus on areas where they excel 
without being overburdened by the entire computational workload.

12.6.2 �A lgorithmic Challenges

While quantum computing could revolutionize many fields, developing and using quantum 
algorithms have significant challenges. These challenges come from limitations in algorithm design 
and the difficulty of scaling quantum algorithms to effectively solve real-​world problems. Quantum 
algorithms must be designed to fully use quantum properties like superposition, entanglement, and 
interference. This requires deep expertise in quantum mechanics and computational theory, which 
means only a small number of researchers can contribute to the field. Many quantum algorithms show 
theoretical speed-​ups for specific tasks but finding quantum solutions that work across a wide range 
of problems, which classical algorithms have already solved, is a complex challenge. One major 
hurdle is translating real-​world problems into formats that quantum algorithms can process. Setting 
up quantum states, gates, and system dynamics accurately is critical because even small errors can 
lead to inefficient or incorrect results. Hybrid algorithms, which combine quantum and classical 
computing, are commonly used in practical applications. However, designing these algorithms to 
effectively manage tasks between quantum and classical systems is challenging. Often, the clas-
sical parts become bottlenecks, reducing the potential speed-​up from quantum computing. Another 
issue is scalability. Current quantum computers, called Noisy Intermediate-​Scale Quantum (NISQ) 
machines, have limited qubits and are prone to errors and decoherence, limiting their ability to solve 
large, complex problems. Many quantum algorithms require large numbers of qubits and specific 
configurations of entanglement. As the complexity of algorithms grows, so do resource demands. 
Additionally, quantum error correction, which is essential for reliable quantum computing, requires 
many physical qubits to create a single logical qubit, greatly increasing the resources needed as 
algorithms scale. This makes large-​scale quantum computing difficult with current technology. 
To address these challenges, researchers are working on new quantum algorithms that need fewer 
resources, are more resistant to errors, and can operate with fewer qubits and gates. In quantum 
machine learning, for example, variational quantum algorithms are being explored because they can 
adapt to the problem, allowing more efficient model training with fewer resources and better noise 
resistance. Innovations in quantum error correction also aim to reduce the extra resources needed for 
reliable computation. Software and compilers are becoming critical as quantum systems grow more 
complex. These tools help translate high-​level quantum algorithms into instructions that can run on 
quantum hardware. They optimize circuit layouts, reduce gate usage, and manage error correction 
more efficiently. Future compilers that can adjust circuits based on specific hardware setups and 
error rates will be key to improving performance and scalability. Hardware improvements are at 
the heart of progress in quantum computing. Researchers are focused on increasing the number 
of qubits while improving their quality, especially regarding coherence times and error rates. 
Innovations in materials science, superconducting technologies, and new qubit designs like topo-
logical qubits are expected to make quantum computers more stable and capable. Silicon-​based 

 

 



354 Mathematical Foundations for Deep Learning

quantum dots, which use existing semiconductor manufacturing techniques, could also help make 
scalable quantum computing possible, potentially allowing the production of quantum chips with 
thousands of qubits. These hardware advancements are essential to support the growing complexity 
of quantum algorithms and their practical uses.

12.7 � REAL-​WORLD APPLICATIONS

12.7.1 �C ryptography and Cybersecurity

Quantum computing brings both challenges and opportunities to cybersecurity. Quantum algorithms 
like Shor’s algorithm could potentially break many of today’s encryption systems, such as RSA 
and ECC, which rely on the difficulty of factoring large numbers or solving certain mathematical 
problems. This threat has spurred the development of quantum-​resistant or post-​quantum cryptog-
raphy, aiming to create encryption methods secure against both quantum and classical computers. 
Quantum Key Distribution (QKD) uses principles of quantum mechanics to allow secure communi-
cation, where keys are shared using quantum states, making any interception detectable.

12.7.2 �D rug Discovery and Materials Science

Quantum computing could greatly change the way how we find new drugs and develop materials 
by improving how we model molecules. By precisely simulating molecular structures and how they 
interact, quantum computers can help predict how effective potential drugs are and what side effects 
they might have, making the drug discovery process faster.

12.7.3 �F inancial Modeling

Quantum computing can greatly improve finance, especially in tasks like choosing the best 
investments and analyzing risks. Quantum algorithms can evaluate and optimize many finan-
cial scenarios at the same time, offering solutions that consider more variables and how they are 
connected, all at incredible speeds. With better computing power, it’s possible to analyze huge 
amounts of data for unusual or fraudulent patterns more efficiently than ever before.

12.7.4 �A rtificial Intelligence and Machine Learning

Quantum computing is expected to greatly change artificial intelligence (AI) and machine learning. 
Quantum machine learning algorithms can handle large datasets more efficiently, leading to faster 
training of models and better accuracy in areas like image recognition, natural language processing, 
and predictive analytics. Because quantum computers can explore many states at the same time, 
they are especially good at processing complex, high-​dimensional data and optimizing complicated 
models. This opens up new possibilities in AI research and applications.

12.7.5 �C limate Modeling and Sustainability

To accurately predict climate change, we need complex simulations that include many factors, 
like weather conditions and human activities. Quantum computers can handle these complicated 
simulations faster, leading to more precise climate models. This could result in better predictions 
of future environmental changes, thereby helping governments and organizations make smarter 
decisions to fight climate change and manage resources more sustainably.
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12.7.6 �H ealthcare and Personalized Medicine

Quantum computing’s ability to handle complex data could have a big impact on healthcare, espe-
cially in personalized medicine. By analyzing huge amounts of genetic and clinical data, quantum 
algorithms can help find the best treatments for each individual patient. This could lead to more 
targeted therapies, reducing trial and error in treatments, and improving patient outcomes.

12.8 � HANDS-​ON EXAMPLE

This example demonstrates how to integrate quantum computing into a machine learning task, spe-
cifically using a quantum node within a classical neural network for classification.

Step 1: Import libraries
First, we install and import several key libraries to work on quantum machine learning and classical 
machine learning tasks using TensorFlow and PennyLane. This combination of libraries allows us 
to work on hybrid quantum-​classical machine learning models. PennyLane provides the tools for 
quantum computing, TensorFlow enables classical machine learning models, and Matplotlib helps 
with visualizing the results.

!pip install pennylane tensorflow matplotlib
import pennylane as qml
from pennylane import numpy as np
import tensorflow as tf
from sklearn.model_​selection import train_​test_​split
import matplotlib.pyplot as plt

Step 2: Quantum device setup: 2 qubits with default.qubit simulator
In step 2, we set up a quantum device using PennyLane, which is essential for running quantum 
circuits.

dev =​ qml.device(“default.qubit”, wires=​2)

Step 3: Quantum circuit: define a simple quantum node with two qubits
In this step, we define a quantum circuit using the PennyLane framework. This circuit applies 
quantum gates to two qubits and measures their expectation values. The quantum circuit is decorated 
with @qml.qnode(dev), indicating that it runs on the quantum device dev (previously defined as 
default.qubit with 2 qubits).

1.	 Quantum Node (@qml.qnode(dev)): @qml.qnode(dev): This decorator converts the function 
quantum circuit into a quantum node (QNode), which represents a quantum circuit executed 
on the device dev. A QNode is responsible for running quantum operations and returning the 
results. In this case, the QNode runs on the two-​qubit default.qubit simulator.

2.	 Quantum Circuit Definition (quantum_​circuit): The function quantum_​circuit(x1, x2) takes 
two input parameters (x1 and x2), which represent the angles for rotating the qubits along 
the x-​axis.

3.	 Quantum Gates:
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	• qml.RX(x1, wires=​0): This applies an RX gate (rotation around the x-​axis) to qubit 0, 
with a rotation angle x1. The RX gate is a fundamental single-​qubit gate used to rotate 
qubits in quantum circuits.

	• qml.RX(x2, wires=​1): This applies an RX gate to qubit 1, rotating it around the x-​axis 
by the angle x2.

	• qml.CNOT(wires=​[0, 1]): A CNOT gate (Controlled-​NOT gate) is applied between 
qubit 0 and qubit 1, entangling them. The CNOT gate flips qubit 1 (target) if qubit 0 
(control) is in the |1⟩ state. This gate creates quantum correlations between the two 
qubits.

4.	 return [qml.expval(qml.PauliZ(i)) for i in range(2)]: This line measures the expectation 
value of the Pauli-​Z operator for both qubits (0 and 1). The expectation value of the Pauli-​Z 
operator reflects the probability of measuring the qubits in the |0⟩ state (up spin) versus the 
|1⟩ state (down spin). These expectation values are returned as a list.

@qml.qnode(dev)
def quantum_​circuit(x1, x2):
qml.RX(x1, wires=​0)  # Rotate around x-​axis for qubit 0
qml.RX(x2, wires=​1)  # Rotate around x-​axis for qubit 1
qml.CNOT(wires=​[0, 1])  # Entangle qubit 0 and 1
return [qml.expval(qml.PauliZ(i)) for i in range(2)]  # 
Measure expectation values

Step 4: Define a quantum layer
Here, we define a function quantum layer that integrates a quantum circuit into a TensorFlow work-
flow. The function applies the quantum circuit to input data using TensorFlow’s map_​fn to handle 
batch processing.

def quantum_​layer(inputs):
# Use tf.map_​fn to apply the quantum circuit over the input data
output =​ tf.map_​fn(lambda x: tf.cast(tf.stack(quantum_​
circuit(x[0]‌, x[1])), tf.float32), inputs, dtype=​tf.float32)
return output

Step 5: Generate a toy dataset
In this section, we are generating synthetic data for a binary classification task using NumPy. The 
input data consists of random values, and the labels are assigned based on the sum of the values in 
each input sample.

X =​ np.random.uniform(0, np.pi, (100, 2)) # Random values 
between 0 and π
y =​ np.array([0 if np.sum(x) < np.pi else 1 for x in X]) # 
Binary labels
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Step 6: Split into training and testing sets
In this line of code, we are splitting the dataset into training and test sets using the train_​test_​split 
function from scikit-​learn.

X_​train, X_​test, y_​train, y_​test =​ train_​test_​split(X, y, test_​
size=​0.2, random_​state=​42)

Step 7: Build a simple classical neural network
In this section, we are building a hybrid quantum-​classical neural network using TensorFlow and 
Keras. The model integrates a quantum layer (defined by the quantum_​layer function) into a clas-
sical neural network architecture.

inputs =​ tf.keras.Input(shape=​(2,))
quantum_​output =​ tf.keras.layers.Lambda(quantum_​layer)(inputs)
outputs =​ tf.keras.layers.Dense(2, activation=​‘softmax’)
(quantum_​output)
model =​ tf.keras.models.Model(inputs=​inputs, outputs=​outputs)

Step 8: Compile the model
In this line of code, we are compiling the hybrid quantum-​classical neural network, which prepares 
the model for training by specifying the optimizer, loss function, and evaluation metrics.

model.compile(optimizer=​‘adam’, loss=​’sparse_​categorical_​
crossentropy’, metrics=​[‘accuracy’])

Step 9: Train the model
Finally, we are training the hybrid quantum-​classical model using the fit function from Keras, which 
runs the training process over a specified number of epochs, batch size, and validation data.

history =​ model.fit(X_​train, y_​train, epochs=​30, batch_​size=​8, 
validation_​data=​(X_​test, y_​test))

12.9 � COMMON MISTAKES AND TROUBLESHOOTING TIPS

12.9.1 �M isunderstanding Superposition and Entanglement

	• Mistake: Assuming that superposition means a qubit is “both 0 and 1 at the same time” in a 
classical sense or confusing entanglement with simple data correlations.

	• Tip: Superposition means the qubit exists in a probability state of both ∣0⟩ and ∣1⟩ until 
measured. Always think in terms of probabilities rather than absolutes. For entanglement, 
remember that it is a quantum connection where the state of one qubit directly affects another, 
regardless of distance.
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12.9.2 �O verlooking Quantum Decoherence

	• Mistake: Not accounting for quantum decoherence when designing quantum algorithms. 
Many assume qubits will remain stable throughout long computations, but decoherence can 
lead to loss of information.

	• Tip: Always factor in the limitations of coherence time when designing algorithms, espe-
cially for complex tasks. Use techniques such as error correction to mitigate the effects of 
decoherence.

12.9.3 �I mproper Quantum State Initialization

	• Mistake: Incorrectly initializing quantum states or failing to prepare qubits in the necessary 
initial states. This can lead to faulty results from the very start of the computation.

	• Tip: Carefully define the initial state of each qubit before performing quantum operations. 
Double-​check the input states in algorithms such as QAOA or Grover’s algorithm to ensure 
accuracy.

12.9.4 �N eglecting Hybrid System Integration

	• Mistake: Assuming quantum computers will handle everything without recognizing the need 
for hybrid quantum-​classical algorithms.

	• Tip: For now, quantum computers are best suited for specific tasks like optimization, while 
classical systems handle data preprocessing and other computations. Focus on a balanced 
approach, where quantum and classical systems work together to solve parts of the problem 
efficiently.

12.9.5 �M isinterpreting Quantum Results

	• Mistake: Expecting deterministic results from quantum algorithms. Quantum computing is 
inherently probabilistic, so the results are based on probabilities, not guarantees.

	• Tip: Run quantum algorithms multiple times and analyze the distribution of results. Use stat-
istical methods to interpret outcomes rather than relying on a single execution.

12.9.6 �I gnoring Hardware Limitations

	• Mistake: Designing algorithms that assume ideal, large-​scale quantum hardware, which isn’t 
yet available. Many fail to consider the qubit limitations and error rates in current NISQ 
devices.

	• Tip: Always account for the limitations of available hardware, such as qubit count, error rates, 
and gate fidelity, when designing and testing quantum algorithms. Keep algorithms simple and 
adaptable to near-​term quantum hardware.

12.9.7 �F ailure to Optimize Qubit Allocation

	• Mistake: Using too many qubits for simple operations, which can lead to inefficiencies and 
increase the likelihood of errors.

	• Tip: Optimize your algorithm by reducing unnecessary qubits or operations. Efficient use of 
qubits can significantly improve system performance and reduce error rates.
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12.9.8 �N ot Using Error Correction

	• Mistake: Assuming that current quantum systems are stable enough without error correction, 
leading to inaccurate computations.

	• Tip: Always implement quantum error correction schemes, such as the surface code, espe-
cially for long or complex computations. These techniques help maintain the integrity of 
quantum states over time.

12.10 � REVIEW QUESTIONS

1.	 Explain how superposition and entanglement contribute to the power of quantum computing. 
How do these concepts differ from classical computing?

2.	 What is quantum decoherence, and why is it a challenge for building stable quantum 
computers?

3.	 Define the Bloch sphere and describe how it represents the state of a qubit. Why is the ∣+​⟩ 
state positioned on the equator of the sphere?

4.	 Describe the key difference between Shor’s Algorithm and Grover’s Algorithm. In what spe-
cific areas can these algorithms outperform classical methods?

5.	 In your own words, explain how the Quantum Approximate Optimization Algorithm 
(QAOA) works in the context of neural network training. How does it differ from classical 
optimization methods?

6.	 Provide an example of how hybrid quantum-​classical algorithms are used in machine 
learning. What challenges arise in designing these hybrid algorithms?

7.	 How can quantum computers improve feature extraction and pattern recognition in 3D data 
structures, such as in medical imaging or 3D modeling?

8.	 What are the practical challenges of integrating quantum computing into neural network 
training? Discuss both algorithmic and hardware limitations.

9.	 What role does quantum error correction (QEC) play in ensuring the accuracy of quantum 
optimization algorithms? Give an example of a QEC method and explain how it improves 
performance.

10.	 What are the major algorithmic challenges in designing quantum algorithms for real-​
world applications? Why is it difficult to scale these algorithms using current quantum 
hardware?

12.11 � PROGRAMMING QUESTIONS

12.11.1 �E asy

Write a Python program that simulates a quantum superposition of a qubit using classical bits. The 
qubit can be in the ∣0⟩ state, ∣1⟩ state, or a superposition of both. The program should print both the 
∣0⟩ and ∣1⟩ probabilities.

1.	 Create a function to simulate the qubit’s superposition state using random probability values 
for ∣0⟩ and ∣1⟩.

2.	 Ensure the probabilities for ∣0⟩ and ∣1⟩ sum to 1.
3.	 Print the final probabilities for each state.
4.	 Test the program by running it several times to observe different superposition states.
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12.11.2 �M edium

Implement a Python program that represents a quantum state as a vector of complex numbers. 
Write a function that normalizes a quantum state vector, ensuring that the sum of the squared 
magnitudes of the elements equals 1 (i.e., unitary condition). Test the function on a vector of your 
choice.

1.	 Define a quantum state as a list of complex numbers, e.g., [1+​0j, 0+​1j].
2.	 Write a function to compute the squared magnitude of each element in the vector.
3.	 Sum the squared magnitudes to check if the total is 1 (or normalize the vector if it isn’t).
4.	 Output the normalized vector and verify the result.

12.11.3 �H ard

Implement a simplified version of the QAOA to solve a small optimization problem.

1.	 Choose an optimization problem, such as minimizing the sum of squares:   
 f x x x x

n( ) = + +…+
1
2

2
2 2.

2.	 Write a function to generate random potential solutions using superposition-​like behavior, 
where multiple potential values for variables are explored.

3.	 Implement an iterative optimization process that simulates QAOA by “measuring” potential 
solutions, updating probabilities, and converging toward the optimal solution.

4.	 Output the steps and final result of the optimization
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Index
3D visualization, of a curved surface, 243, 244

A

Activation functions, 3, 5, 7, 22–​23, 32–​33, 36, 40, 42, 44, 
45, 63–​64, 72, 89, 174, 195, 201, 209, 215, 226, 
228, 272, 277–​279, 285, 319

Adagrad (Adaptive Gradient Algorithm), 162–​164
drawbacks of, 163

Adam (adaptive moment estimation), 35–​36, 165–​167, 247, 
250, 257

advantages of, 166
algorithm, 169
optimizer, 128, 202, 339

AdaMax, 167–​168
advantage of, 168

Adaptive learning, 35, 89, 143, 165, 166–​167, 170, 246, 
250, 268

Artificial intelligence (AI), 1, 5
game-​playing, 7
neural networks, 205
use of quantum computing in, 354

Artificial neural networks (ANNs), 5–​7
key components of, 6, 7
layers of, 5
operations performed by, 5
structure of, 6, 7

Audio signal processing, 314
Autonomous vehicles, 85, 290

B

Backpropagation algorithm, 2, 5, 41
forward propagation, 73
gradient descent and, 24
gradient matrices, 33
Jacobian matrix and, 79
reverse propagation, 73
weight update, 33–​34

Batch gradient descent (BGD), 73, 89, 143, 159, 160
Batch normalization, 36–​37, 41, 46, 295, 318, 320, 332
Batch operations, 41
Batch processing, 24–​25, 31–​32, 261, 356
Bayesian deep learning, 254–​255, 269
Bayesian inference, 8, 101, 111, 118, 131
Bayesian Information Criterion (BIC), 113
Bayesian Neural Networks (BNNs), 91, 118–​119, 126

common mistakes and troubleshooting tips, 130
connecting to probability distributions, 99–​103
defined, 128
drawback of, 118
effect of weight variance in, 123
moments and, 122

Bayesian probability, 99
Bayesian regularization, 115

vs. overfitting, 116
vs. underfitting, 117

Bayesian statistics, 99, 103, 111–​113
common mistakes and troubleshooting tips, 130
overfitting and, 113–​115
underfitting and, 115–​117

Bayes’ theorem, 111, 131
Bayes, Thomas, 111
Beta distribution, 95, 113
Betti numbers, 279–​280, 284, 292

in deep learning, 285–​288
Biases vector, 36
Bias-​variance trade-​off, 3
Bidirectional edges, 206
Binary integer programming (BIP), 138
Binomial distribution, 91–​92, 98
Bioinformatics, 288
Biological data analysis, 199
Biological networks, 211–​212, 222, 225, 231, 288–​290
Bits per second (bps), 191
Bland’s Rule, 147, 177
Bootstrapping technique, 109
Bound constraints, 133
Brain connectivity, 290
Brain imaging, 264
Branch and bound (B&B) method, 138, 141, 150–​152, 

173, 177
Broadcasting, 38, 41, 63

C

Cellular networks, 191
Channel capacity, 191–​192

as a function of SNR, 192
ChebNet (Chebyshev Networks), 228–​229
Chebyshev coefficient, 229
Chebyshev polynomials, 228–​229, 238
Choice of prior, 113
CIFAR-​10 dataset, 178, 269, 297, 319
Climate modeling and sustainability, use of quantum 

computing in, 354
Clustering algorithms, 195
Cluster sampling, 104, 109
CNOT gate, 348
Column matrix, 27
Combinatorial optimization, 141–​142, 176
Common probability distributions, 98, 100
Communication channel, 192
Communications and signal transmission, 314
Complex relationships, intuitive representation of, 211–​212
Computational cost, 83, 118, 159, 228, 259, 261, 262, 

268, 295
Computational efficiency, 31, 151, 157, 161, 228, 310, 318
Computational intensity, 113
Computational topology, 279
Computer vision, 7, 57, 264, 315
Constant probability, 99
Constraints, types of, 133
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Continuous dynamical systems, 322–​323
Continuous Wavelet Transform (CWT), 304
Convergence, effect of depth and activation functions 

on, 278
Convex optimization, 138–​141, 176

using gradient descent, 140
Convolutional neural networks (CNNs), 3, 25–​26, 32–​33, 

45, 57, 126, 178, 277, 298
convolution in the frequency domain for, 305
convolution theorem, 305–​309
harmonic analysis for 

common mistakes and troubleshooting tips, 318–​319
Fourier analysis, 298–​302
frequency domain for CNNs, 305–​312
hands-​on example of, 314–​317
programming questions, 319–​320
real-​world applications of, 312–​314
review questions, 319
Wavelet analysis, 302–​305

implication for, 309–​312
Convolution theorem, 305–​309

implementation of, 318
misunderstanding, 318

Cross-​entropy, 74
Cryptography, 157, 199, 314

quantum-​safe, 344
use of quantum computing in, 354

Cumulative distribution function (CDF), 94, 98–​99
Curvature, 244–​245, 259

Hessian Matrix and, 249–​250
Cutting plane methods, 150–​151, 153, 177
Cybersecurity 

use of information theory in, 199
use of quantum computing in, 354

D

Data compression, 39, 180, 187–​191, 199, 314
Data distribution, 111, 118, 124
Data representation 

use of matrix in 
batch processing, 31
input data, 31

vector relevance in, 20–​22
feature vectors, 20
word embeddings, 21–​22

Data transfer, 191
Data transformation, 8, 257
Daubechies wavelet, 304
Decision boundary, 200, 273
Decision-​making processes, 44, 145, 197, 258

in real time, 85
Deep learning, 11–​12, 24, 157, 171, 197, 229, 240, 241, 298

algorithms, 1
applications of, 7
Bayesian deep learning, 255
Betti numbers in, 285–​288
brief overview of 

artificial neural networks, 5–​7
simulating human-​like learning, 5

differential geometry in, 245–​255
dynamical systems and differential equations for, 

333–​336
gradient in, 72–​74
graph theory for, 205–​207
Hessian matrix in, 81–​84
importance of mathematics in 

designing and interpreting algorithms, 3
imposing rules on randomness, 2
improving models, 3
infusing data with meaning, 2–​3
structuring chaos, 1–​2

information theory in, 195–​198
Jacobians in, 78–​80
in linear transformations, 44–​46
matrices in, 30–​37

visual representation of, 37
optimization methods in, 159–​172
partial derivatives in, 66–​68
predictive power of, 229
singular value decomposition in, 57
tensors in, 40
topology in,  see topology, in deep learning
vector relevance in the context of 

activation functions and layers, 22–​23
batch processing, 24–​25
convolutional neural networks (CNNs), 25–​26
data representation, 20–​22
dot product in neural network, 23
gradient descent and backpropagation, 24
neural network parameters, 22

Deep neural networks, 72, 74, 196, 257
Depth of a network, 272–​273
Deviance Information Criterion (DIC), 113
Diagonal matrix, 27, 42, 49–​52, 63
Differential equations, 323

for deep learning, 333–​335
ordinary differential equations (ODEs), 324
partial differential equations (PDEs), 324–​327

Differential geometry 
basics of 

curvature, 244–​245
manifolds, 240–​241
metric tensor, 243–​244
tangent space, 241–​242

challenges associated with 
computational cost, 261
emerging insights, 262
high dimensionality, 259
scalability, 262
theoretical vs. practical gap, 261
visualization, 259–​261

common mistakes and troubleshooting tips 
bridging theory and practice, 268
computational overhead, 268
handling large-​scale models, 268–​269
ignoring curvature in optimization, 268
misinterpreting geometric concepts, 268
overfitting and generalization, 268
visualizing high-​dimensional spaces, 268
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in deep learning 
feature space analysis, 250–​252
information geometry, 254–​255
loss landscapes, 245–​250
neural network generalization, 252–​254

hands-​on example of 
apply PCA for dimensionality reduction, 265
import libraries, 264–​265
plotting all graphs in one frame, 265–​267
set random seed for reproducibility, 265

practical implications 
model interpretability, 258–​259
optimization, 257–​258
regularization, 255–​257

programming questions, 269
real-​world applications of 

autonomous systems and robotics, 262–​263
computer vision and image recognition, 264
in medical image analysis, 264
signal processing and communications, 264

review questions, 269
Digital age, 240
Digital communication, 187, 191
Directed graphs, 206–​208, 213–​214, 225, 231, 234
Directional edges, 206
Direct search methods, 136
Discrete Fourier transform (DFT), 315
Discrete random variable, 97
Disease progression, 290
Distribution shapes, comparison of, 121
Domain adaptation, 197
Dot product, in neural network, 23
Dropout, 34
Drug discovery, use of quantum computing in, 354
Dynamical system, theory of 

continuous dynamical systems, 322–​323
for deep learning, 333–​335
discrete dynamical systems, 321–​322
hands-​on example of 

defining the RNN model, 338
generate synthetic sine wave data, 338
import libraries, 338
preparation of data for RNN, 338

real-​world applications of 
climate change projections, 337
economic modeling and forecasting, 337
modeling epidemics with differential equations, 336
neuroscience and brain dynamics, 337
robotics and autonomous systems, 337
stability analysis in engineering, 336–​337

Dynamic graphs, 222, 224

E

Edge detection, 315–​317
Eigenvalues and eigenvectors, 30, 126, 250

common mistakes and troubleshooting tips, 63
in deep learning, 52–​57
of Hessian matrix, 83
in linear algebra, 50–​52

quadratic function with, 55
visual representation of, 52

Embedding layers, 46
Energy management and power grid optimization, 173
Equality constraints, 133, 148–​149
Euclidean distance, 2, 251

between data points, 3
Euclidean space, 240, 243
Euler’s formula, 302
Evolutionary algorithms (EAs), 136, 151–​155, 177

steps in, 153
types of, 153

Expert knowledge, 115
Exploding gradients, 46, 63, 72, 89, 277, 332–​333, 338, 

341–​342

F

Factoring algorithm, 344
Fast Fourier transform (FFT), 310, 316
Feature space, 250–​252
Feature vectors, 20, 22, 209, 213, 219–​221, 225, 228–​229, 

235, 251, 284, 351
Financial modeling, 291

use of quantum computing in, 354
Fisher Information Matrix, 243, 254–​255
Fourier analysis, fundamentals of, 298
Fourier transform (FT), 298–​300
Fraud detection, use of graph theory in, 233
Frequency-​domain convolution, 310, 318–​319
Function representations 

cumulative distribution function, 98–​99
probability density function, 97–​98
probability mass function (PMF), 97

G

Game-​playing AI, 7
Gamma distribution, 95
Gated recurrent units (GRU), 332–​333
Gate fidelity, 352
Gaussian curvature, 244–​245
Gaussian noise, 57, 99, 115, 131
Gene expression profiles, 199
Generative adversarial networks (GANs), 7
Gene regulatory networks, 231, 288
Genetic algorithms (GAs), 136, 141, 153
Genetic programming, 153
Geometric distribution, 92–​93
Gibbs sampling, 107, 108
Global versus local optima, 155–​156
Gradient-​based methods, 136, 138, 176

optimization methods, 241
Gradient descent, 24, 72–​73, 142–​144, 176–​177, 246, 249

batch gradient descent (BGD), 159
convex optimization using, 140
mini-​batch gradient descent, 73, 160–​161
on a quadratic function, 144
stochastic, 146
Stochastic Gradient Descent (SGD), 25, 73, 143, 

146, 160
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types of, 73
updated rule for, 143

Gradients 
common mistakes and troubleshooting tips, 89
concept of, 68–​72
in deep learning, 72–​74

backpropagation algorithm, 73–​74
gradient descent, 72–​73

exploding, 72
geometric interpretation of, 68
loss function of, 69
power of, 72
properties of, 70
saddle points, 72
vanishing, 72

Graph attention networks (GATs), 227–​228, 231, 237
Graph-​based algorithms, 233
Graph clustering algorithm, 229
Graph convolutional networks (GCNs), 213, 234, 257

computational challenges of, 224
node classification using, 231
scalability of, 222
use of, 224

Graphics Processing Units (GPUs), 160, 273
Graph neural networks (GNNs), 207–​211, 229, 234, 

255, 262
over-​smoothing in, 237
visualization of, 231

GraphSAGE (Graph Sample and Aggregation), 222,  
224–​227, 231, 237

Graph theory 
advanced insights in, 212–​213
challenges associated with 

dynamic graphs, 224
heterogeneous graphs, 224
scalability, 222–​224

ChebNet (Chebyshev Networks), 228–​229
common mistakes and troubleshooting tips 

ignoring graph size and complexity, 237
improper node and edge representation, 236
inadequate data preprocessing, 237
insufficient model evaluation, 237
misapplying classical graph algorithms, 237
neglecting dynamic and heterogeneous graphs, 237
overlooking edge weights and attention 

mechanisms, 237
over-​smoothing in GNNs, 237

for deep learning, 205–​207
directed graph, 206
graph, 205
undirected graph, 206–​207
weighted graph, 207

encoding relational information, 212
flexibility and versatility, 212
graph attention networks (GATs), 227–​228
graph classification, 220–​222
graph neural networks (GNNs), 207–​211

efficiency and scalability with, 212
GraphSAGE (Graph Sample and Aggregation), 224–​227
hands-​on example of 

building the GCN model, 235

creating the graph, 234
defining the node features, 234–​235
defining the node labels, 235
importing required libraries, 233
normalization of the adjacency matrix, 234
predicting and visualizing, 236
training the model, 235–​236

improved scalability and efficiency, 229–​231
intuitive representation of complex relationships, 

211–​212
node classification, 213–​219
programming questions, 238–​239
real-​world applications of 

biological network analysis, 231–​232
fraud detection, 233
healthcare and epidemic modeling, 233
recommendation systems, 231
social network analysis, 231
transportation and logistics, 233

review questions, 238
Grayscale image, 316
Grouping data (clustering), 345
Grover’s algorithm, 343, 358, 359
GUDHI library, 292

H

Hamiltonian, 350
Monte Carlo sampling, 107

Harmonic oscillators, 324–​325, 327, 328
Healthcare 

medical diagnostics, 126
medical imaging, 85

Healthcare and epidemic modeling, use of graph theory 
in, 233

Healthcare and personalized medicine, use of quantum 
computing in, 355

Heat equation, 325–​326
Hessian matrix, 53, 55, 170, 246–​247, 252, 259, 261

challenges in using in deep learning, 84
common mistakes and troubleshooting tips, 89
concept of, 80–​81
and curvature, 249–​250
in deep learning training, 81–​84
eigenvalues of, 83
features of, 83
importance of, 81
for large-​scale models, 84
of simple neural network, 83
visualization of, 82, 84

Heterogeneous GNNs (HetGNN), 224
Heterogeneous graphs, 222, 224, 237
Homeomorphism, concept of, 270
Huffman coding, 180, 187, 199
Human-​like learning, simulation of, 5
Hungarian algorithm, 141
Hybrid quantum-​classical models, 348–​349, 353

I

Identity matrix (or unit matrix), 27, 234
Image compression, 305, 315
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Image filtering, 126
Image processing, 57, 85, 126, 309, 316

comparison of, 317
Image recognition, 5, 7, 25, 33, 85, 126, 264, 272, 348, 

350, 354
Importance sampling, 106
Inequality constraints, 133, 147
Information gain, 184–​185
Information geometry, 254–​255
Information-​theoretic metrics, 197
Information theory 

channel capacity and, 191–​192
common mistakes and troubleshooting tips, 202–​203
data compression, 187–​191, 199
entropy of, 179–​180

conditional, 181–​184
joint, 180–​181

hands-​on example of 
building and training a simple neural network, 

201–​202
in calculating entropy, 201
in generating sample data, 200–​201
importing necessary libraries, 200
mutual information calculation, 201

information gain, 184–​185
Kullback–​Leibler (KL) divergence, 192–​195
in machine learning and deep learning, 195–​198

adversarial attacks and robustness, 197–​198
generalization and overfitting, 196–​197
Layer-​wise relevance propagation (LRP), 198
model interpretability, 197
Neural Architecture Search (NAS), 198
regularization and optimization, 196
transfer learning and domain adaptation, 197

mutual information, 185–​187
probability distributions of a fair coin and a biased 

coin, 180
programming questions, 203–​204
real-​world applications of 

biological data analysis, 199
cryptography, 199
data compression, 199
finance and risk management, 200
network security and anomaly detection, 199
telecommunications and error correction, 199

review questions, 203
Shannon’s theorem, 191–​192

Integer linear programming (ILP), 151
Integer optimization (IO), 137–​139, 176

types of, 137
Integer programming (IP), 137–​138, 172
Interior Point Methods, 177
Inverse fast Fourier transform (IFFT), 302, 316
Inverse Fourier transform (IFT), 300–​302, 307

J

Jacobian matrix 
and backpropagation, 79
color gradient in, 80
common mistakes and troubleshooting tips, 89

components of, 78
computational aspects, 77–​78
concept of, 74–​76
in deep learning, 78–​80
determinant of, 76
optimization process, 76
relation with the chain rule, 76–​77
as tool for analyzing the sensitivity of a neural network’s 

outputs, 79
vector-​valued function, 78
visualization of, 78, 80

Joint probability distribution, 181–​183, 187–​188

K

Karush–​Kuhn–​Tucker (KKT) conditions, 149, 177
Kernels, 25
Knapsack problem, Branch and Bound tree for, 152
Kullback–​Leibler (KL) divergence, 192–​197, 202
Kurtosis value, 97

L

L
1
 and L

2
 regularization techniques, 3

Lagrange, Joseph-​Louis, 148
Lagrange multipliers, 148–​149, 177
Laplace distribution, 120, 122, 126
Laplacian matrix, 257, 269
Latent Semantic Analysis (LSA), 57
Latin hypercube sampling (LHS), 108–​109
Layer-​wise relevance propagation (LRP), 198
LeakyReLU, 277
Learning algorithms, convergence of, 272
Learning rate annealing, 170–​172
Leptokurtic (heavy-​tailed distribution) value, 97
Limited-​memory approximation, 171
Limited-​memory Broyden–​Fletcher–​Goldfarb–​Shanno  

(L-​BFGS) optimization algorithm, 170–​172
Limited-​memory vectors, 171
Linear algebra, 7, 126

application of matrices in, 29–​30
common mistakes and troubleshooting tips, 61–​62
eigenvalues and eigenvectors, 30
hands-​on example, 59–​61
real-​world applications of 

image processing and computer vision, 57
natural language processing, 59
robotics and autonomous systems, 59

system of linear equations, 29–​30
transformations, 30

Linear approximation, 241–​242, 245, 259
Linear equality, 147
Linear equations, 29–​30, 50
Linear inequality, 151
Linear optimization, 134–​135, 147, 175
Linear programming, 147, 150, 172

feasible region and constraints in, 134
Linear regression model, 46, 124, 131, 143, 159, 178
Linear transformations, 30, 40, 42

in deep learning, 44–​46
convolutional neural networks, 45
embedding layers, 46
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initialization, 46
loss functions and optimization, 46
neural network layers, 44–​45
regularization techniques, 46

matrix representation of, 42
reflecting vectors, 44
rotating vectors, 44
scaling, 42–​43
shearing, 44
visual representation of, 45

Long short-​term memory (LSTM) networks, 225, 332–​333
Loss computation, 41–​42
Loss functions, 245–​250
Lossless compression, 189
Lossy compression, 189
Lotka–​Volterra equations, 333–​336

M

Machine learning, 24, 142, 157, 192, 255, 298, 345, 349
information theory in, 195–​198
use of quantum computing in, 354
vector format for, 20

Markov Chain Monte Carlo (MCMC), 106–​108, 113
sample distribution after burn-​in, 108
trace plot, 107

Materials science, 157, 290, 353
use of quantum computing in, 354

Matrices 
applications in 

deep learning, 30–​37
linear algebra, 29–​30

concept of, 26
in deep learning, 30–​37

activation functions, 33
backpropagation, 33–​34
batch normalization, 36–​37
data representation, 31
operations in layers, 32–​33
optimizers, 34–​36
parameters of the network, 31–​32
regularization, 34

definition of, 26
dimension of, 26
operations of 

addition and subtraction, 28
common mistakes and troubleshooting tips, 63
determinant, 28
inverse, 29
matrix multiplication, 28, 32
scalar multiplication, 28
transpose, 29

types of, 26–​27
Matrix factorization techniques 

eigenvalues and eigenvectors, 50–​52
in deep learning, 52–​57

LU decomposition, 46–​48
QR decomposition, 48–​49
singular value decomposition, 49–​50

in deep learning, 57
Matrix multiplication, 22, 28, 32–​33, 38, 40–​41, 59, 63, 89

Matrix–​vector multiplications, 22, 42
Mean squared error (MSE), 34, 159, 253, 339
Medical image analysis, 264, 312–​314
Memory-​efficient optimization, 171
Message passing, 208
Metaheuristic algorithms, 141
Metric tensor, concept of, 243–​244
Metropolis–​Hastings sampling, 107
Mini-​batch, 145

gradient descent, 73, 160–​161
Mixed integer programming (MIP), 138
MNIST dataset, 20, 31, 173, 178, 251, 297, 320
Mobile communications, 199
Model interpretability, 197, 258–​260
Momentum technique, 161–​162
Monte Carlo sampling, 105
Monte Carlo simulation, 145
Mother wavelet, 304, 318
Multivariate calculus, 74

applications of, 85
common mistakes and troubleshooting tips, 88–​89
example of, 86–​88
gradients, 68–​74
Hessian matrix, 80–​84
Jacobian matrix, 74–​80
partial derivatives, 65–​68
programming questions, 90
review questions, 89–​90

Mutual information, 185–​187

N

Nanotechnology, 290
Natural language processing (NLP), 5, 21, 59, 85, 126, 327
Nelder–​Mead method, 136
Nesterov-​accelerated Adaptive Moment Estimation 

(NADAM), 168–​170
Network security and anomaly detection, 199
Neural Architecture Search (NAS), 198
Neural networks (NNs), 2, 11, 40, 44–​45, 72, 79, 91, 99, 

173, 195, 201, 205, 207, 243, 270
activation functions for, 3
architectures, 262
artificial neural networks (ANNs), 5–​7
convolutional neural networks (CNNs), 3, 25–​26
dot product in, 23
generalization of, 252–​254
Hessian matrix of, 83
mathematical operation in, 23
optimization algorithm for training, 202
parameters, 22, 31–​32
quantum computing, 350–​351
robustness of, 197
and topological structure, 272
topology of, 272
weights and biases in, 348
width of a layer in, 273–​275

Neuroscience, 290, 337
Newton’s Method, 77, 81, 136, 246, 259
Node classification, 213–​219
Noise reduction, 39, 57, 59, 305, 314
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Noisy channel, 199
Noisy Intermediate-​Scale Quantum (NISQ) machines, 353
Non-​convex optimization problems, 160, 163
Non-​linear dependencies, 186, 203
Non-​linear differential equations, 333
Non-​linear equations, 126
Non-​linear optimization, 135–​137, 176
NumPy library, 86, 200

O

Optimization algorithms, 5, 160, 162, 166, 244, 257
for training neural networks, 202

Optimization theory 
branch and bound and cutting plane methods, 150–​151
common mistakes and troubleshooting tips in 

B&B and cutting plane methods, 177
combinatorial optimization, 176
convex optimization, 176
evolutionary algorithms, 177
gradient descent, 176–​177
integer optimization, 176
Lagrangian multipliers, 177
linear optimization, 175
non-​linear optimization, 176
simplex method, 177
stochastic optimization, 176

concept of, 133–​134
in deep learning 

Adagrad (adaptive gradient algorithm), 162–​164
Adam (adaptive moment estimation), 165–​167
AdaMax, 167–​168
batch gradient descent (BGD), 159
learning rate annealing or decay, 170–​172
mini-​batch gradient descent, 160–​161
momentum, 161–​162
Nadam (Nesterov-​accelerated Adaptive Moment 

Estimation), 168–​170
root mean square propagation (RMSprop), 164–​165
Stochastic Gradient Descent (SGD), 160

evolutionary algorithms (EAs), 151–​155
global versus local optima, 155–​156
hands-​on example of 

in building of a simple neural network model, 174
in evaluation the models, 175
importing of necessary libraries, 173
preparation of the datasets, 173–​174
training the model with different optimizers, 174–​175

programming questions, 178
real-​world applications and examples 

energy management and power grid optimization, 173
portfolio optimization in finance, 172
supply chain optimization, 172
telecommunications network design, 172–​173
transportation and logistics, 173

recent developments in, 156–​157
review questions, 177
types of 

combinatorial optimization, 141–​142
convex optimization, 138–​141
gradient descent, 142–​144

integer optimization (IO), 137–​138
Lagrange multipliers, 148–​149
linear optimization, 134–​135
non-​linear optimization, 135–​137
simplex method, 147–​148
stochastic optimization, 145–​147

Optimizers 
Adam (Adaptive Moment Estimation), 35–​36
RMSprop (Root Mean Square Propagation), 34–​35

Ordinary differential equations (ODEs), 262, 324, 331
Orthogonal Frequency Division Multiplexing (OFDM), 314
Overfitting 

vs. Bayesian regularization, 116
and Bayesian statistics, 113–​115
common mistakes and troubleshooting tips, 130
concept of, 109–​111
connection between moments and, 124–​126
risk of, 118

P

Parametric ReLU (PReLU), 277
Partial derivatives 

common mistakes and troubleshooting tips, 88
concept of, 65
contours of, 67
in deep learning, 66–​68
geometric interpretation of, 65–​66
higher-​order, 66
surface plot of, 67

Partial differential equations (PDEs), 324–​327
Pattern detection, 5
Pattern recognition, 3, 346, 348, 351–​352, 359
PennyLane, 355
Perturbation index, 288
Platykurtic (light-​tailed distribution) value, 97
Poisson distribution, 92, 99, 130
Polyhedron, 147
Polynomial-​time solution, 141
Polytope, 147
Pooling layers, 41
Portfolio optimization, 200

in finance, 172
Power grids, management of, 173
Predator–​prey equations,  see Lotka–​Volterra equations
Principal component analysis (PCA), 3, 50, 54, 240, 

266, 292
goal of, 241
visualization of, 56

Probability density function (PDF), 93, 97–​98
Probability distributions, 181, 192, 254

characteristics of 
kurtosis, 97
mean (expected value), 95–​96
mode, 97
skewness, 96
variance and standard deviation, 96

common mistakes and troubleshooting tips, 129–​130
concept of, 91
connecting BNNs to, 99–​103

posterior distribution, 102
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predictions, 102–​103
prior distribution, 101

connection between overfitting and underfitting to, 99
continuous probability distributions 

beta and gamma distributions, 95
exponential distribution, 94–​95
normal (Gaussian) distribution, 94
uniform distribution (continuous), 93–​94

discrete probability distributions 
binomial distribution, 91–​92
geometric distribution, 92–​93
Poisson distribution, 92
uniform distribution, 93

function representations 
cumulative distribution function, 98–​99
probability density function, 97–​98
probability mass function (PMF), 97

hands-​on example 
defining a BNN using TensorFlow and TensorFlow 

Probability, 128
generating synthetic data, 127
make predictions and plot uncertainty, 128–​129
setup and import libraries, 127
training the BNN, 128

moments in, 119–​122
central moments, 119–​120
kurtosis (fourth standardized moment), 120
raw moments (crude moments), 119
skewness (third standardized moment), 120

programming questions, 131–​132
real-​world applications and examples 

healthcare and medical diagnostics, 126
image recognition and processing, 126
Natural Language Processing (NLP), 126
robotics and control systems, 126

Probability distributions of a fair coin and a biased 
coin, 180

Probability mass function (PMF), 97
Problem solving, 343
Protein–​protein interaction networks, 288
Pure integer programming (PIP), 138
Pythagorean theorem, 12, 61
Python program, 359–​360

Q

QRS complex, 304
Quantum algorithms, 350, 354, 358

key quantum algorithms, 344–​345
quantum machine learning algorithms, 345

Quantum annealing, 349
Quantum Approximate Optimization Algorithm (QAOA), 

157, 348, 350, 358, 359
Quantum clustering methods, 345
Quantum computers, 157, 353
Quantum computing 

applications of 
in artificial intelligence and machine learning, 354
in climate modeling and sustainability, 354
in cryptography and cybersecurity, 354
in drug discovery and materials science, 354

enhanced optimization, 349–​350
in financial modeling, 354
in handling complex data, 351
in healthcare and personalized medicine, 355
in neural network training, 350–​351
in processing complex structures, 351–​352

challenges and limitations of 
algorithmic challenges, 353–​354
technical challenges, 352–​353

common mistakes and troubleshooting tips 
failure to optimize qubit allocation, 358
ignoring hardware limitations, 358
improper quantum state initialization, 358
misinterpreting quantum results, 358
misunderstanding superposition and 

entanglement, 357
neglecting hybrid system integration, 358
not using error correction, 359
overlooking quantum decoherence, 358

entanglement, 344
hands-​on example of, 355–​357
integration with deep learning 

hybrid quantum-​classical models, 348–​349
Quantum Neural Networks (QNNs), 346–​348

programming questions, 359–​360
qubits, 343–​344
review questions, 359
superposition, 343, 344
theory of, 343

Quantum decoherence, 352, 358–​359
Quantum dots, silicon-​based, 354
Quantum error correction (QEC), 352, 359
Quantum Fourier transform, 344
Quantum gates, 346, 355

as neurons, 346
Quantum Key Distribution (QKD), 354
Quantum k-​means algorithm, 345
Quantum linear regression, 345
Quantum machine learning algorithms, 345–​346, 354
Quantum mechanics, 157, 343, 348–​349
Quantum Neural Networks (QNNs), 346–​348
Quantum node (QNode), 355
Quantum optimization, 348–​349, 359
Quantum optimizers, 349
Quantum regression algorithms, 345
Quantum superpositions, 344, 348
Quantum Support Vector Machines (QSVM), 345
Quantum technology, 348
Quantum tunneling, 349–​350
Quasi-​Newton methods, 136, 170–​171
Qubit states, on the Bloch sphere, 345
Quota sampling (non-​probability method), 105

R

Real numbers, 19
Rectified Linear Unit (ReLU), 5, 22–​23, 33, 42, 72, 83, 

128, 174, 195, 201, 228, 277, 279, 285
Activation Output matrix, 36

Recurrent neural networks (RNNs), 53, 59, 275–​277, 321, 341
explaining via ODEs, 329–​331
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memory dynamics in, 327–​329, 334
training and dynamics of, 331–​332
vanishing and exploding gradients, 332–​333, 334

Reed-​Solomon code, 199
Reflecting vectors, 44
Regularization techniques, 34, 46, 63, 99, 130–​131, 196, 

237, 255, 268, 318
Reinforcement learning, 7
Rejection sampling, 106
Relational information, encoding of, 212
Resampling methods, 109
Residual connections,  see Skip connections
Reverse (backward) propagation, 74
Revised Simplex method, 147
Ricci curvature, 244–​245
Riemannian metric, 254
Risk assessment, 291
Risk management, 200
Robotics 

and autonomous systems, 59, 262, 290
and control systems, 85, 126

Root Mean Square Propagation (RMSprop), 34–​35,  
164–​165, 168, 173, 247

Rotating vectors, 44
Row matrix, 26

S

Saddle points, 72, 83
Sample average approximation (SAA), 145, 176
Sampling methods 

cluster sampling, 104
common mistakes and troubleshooting tips, 130
Gibbs sampling, 108
importance sampling, 106
Latin hypercube sampling (LHS), 108–​109
Markov Chain Monte Carlo (MCMC), 106–​108
Monte Carlo sampling, 105
overfitting, 109–​111
quota sampling, 105
rejection sampling, 106
resampling methods, 109
simple random sampling (SRS), 103–​104
stratified random sampling, 104
systematic sampling, 105
underfitting, 111

Satellite communication, 191, 314
Scaling vectors, 42–​43
Search algorithm, 344
Self-​driving cars, 59, 262
Sequence processing, 41
Sequential Data, 40
Shannon’s theorem, 191–​192, 199
Shearing, 44
Shor’s algorithm, 343, 354, 359
Sigma matrix, 50–​52
Sigmoid, 33
Signal processing and communications, 264, 310
Signal-​to-​noise ratio (SNR), 191

channel capacity as a function of, 192

Simple random sampling (SRS), 103–​104
Simplex method, 147–​148, 176, 177

application of, 148
Sine wave, 115
Single input vectors, concept of, 24
Singular value decomposition (SVD), 11, 39, 49–​50, 126, 257

common mistakes and troubleshooting tips, 63
in deep learning, 57
visual representation of, 54

Skewnorm distribution, 120
Skew-​symmetric matrix, 27
Skip connections, 275
Sobel filter, 315
Social network analysis, 231, 290
Social networks, 213, 222
Spatial-​domain convolutions, 318
Spring-​based algorithm, 210
Square matrix, 27
Stochastic Gradient Descent (SGD), 25, 73, 143, 146, 

160, 285
Stochastic optimization, 145–​147, 157, 176
Stratified random sampling, 104, 109
Stress testing, 291
Superconducting technologies, 353
Supply chain optimization, 172
Symmetric matrix, 27
Symmetry, 206
Systematic sampling, 105, 111, 130

T

Tangent space, 9, 241–​242, 245, 259, 261, 268
Tangent vectors, 243, 245
Tanh (hyperbolic tangent), 33
Tanh-​activated models, 279
t-​Distributed Stochastic Neighbor Embedding (t-​SNE), 240, 

250, 257, 259, 266, 291
Telecommunications 

and error correction, 199
mobile communications, 199
network design, 172–​173
satellite communication, 191

TensorFlow, 128, 173–​174, 200, 233, 355
Keras API, 201

TensorFlow Probability, 127–​128, 132
Tensors 

concept of, 37–​38
in deep learning, 40–​42
higher-​dimensional, 38
one-​dimensional, 38
operations of 

dot product (contraction), 38
element-​wise, 38
matrix-​specific, 38–​39

two-​dimensional, 38
zero-​dimensional, 38

Thermal diffusivity constant, 326
Time-​frequency localization, 314
Topological Data Analysis (TDA), 295

application of, 280, 288
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with deep learning 
Betti numbers, 285–​288
persistent homology, 283–​285

in neural networks, 279–​283
persistent homology, 279–​283
visualization of, 280, 282

Topological mapping, 290
Topology, in deep learning 

basic topology 
continuous transformations and invariance, 270
neural networks and topological structure, 272

common mistakes and troubleshooting tips, 295–​296
data analysis with deep learning 

Betti numbers, 285–​288
persistent homology, 283–​285

hands-​on example 
to apply t-​SNE to reduce dimensions, 292
apply UMAP to reduce dimensions, 292–​293
computing the persistent homology using Gudhi, 292
to extract Betti numbers, 292
to generate the Swiss roll dataset, 291–​292
in installation of required libraries, 291
plotting all graphs in one frame, 293–​295

programming questions, 296–​297
real-​world applications of 

biological network analysis, 288–​290
financial modeling and risk assessment, 291
material science and nanotechnology, 290
neuroscience and brain connectivity, 290
robotics and autonomous systems, 290
social network analysis, 290

relation to convergence of learning algorithms 
activation functions, 277–​279
depth and width, 272–​275
recurrent connections, 275–​277
skip connections, 275

review questions, 296
topological data analysis in neural networks 

persistent homology, 279–​283
Traffic management, 229
Transfer learning, 197
Transforming data and identifying patterns, 4
Transportation and logistics 

optimization of, 173
use of graph theory in management of, 233

Transportation networks, 207, 212–​213, 229–​230
Traveling salesman problem (TSP), 141–​142, 173

objective function for, 141
Turbo code, 199
Two-​Phase Simplex method, 147

U

Underfitting 
vs. Bayesian regularization, 117

and Bayesian statistics, 115–​117
common mistakes and troubleshooting tips, 130
concept of, 111
connection between moments and, 124–​126

Undirected graphs, 206, 208
Uniform distribution, 93
Uniform Manifold Approximation and Projection (UMAP), 

250, 257, 266, 291
Uniform probability density, 99
Unimodal distribution, 97

V

Vanishing gradients, 72
Variational autoencoders (VAEs), 193, 196
Vectors 

components of, 17–​18
concept of, 11–​12
in context of deep learning 

activation functions and layers, 22–​23
batch processing, 24–​25
convolutional neural networks (CNNs), 25–​26
data representation, 20–​22
dot product in neural network, 23
gradient descent and backpropagation, 24
neural network parameters, 22

format for machine learning models, 20
magnitude and direction of, 18–​19
operations of, 13–​17, 61

addition, 13
cross product, 15–​17
dot product, 13–​14
scalar multiplication, 13

representation of, 12
spaces, 19–​20
two-​dimensional (2D), 11

Video processing, 85
Vietoris–​Rips complex, 284–​285, 287

W

Wavelet analysis, 302
Wavelet transform (WT), 298, 304–​305

applications of, 305
for non-​stationary signals, 318

Weighted graphs, 208
key characteristics of, 207

Weights Matrix, 36
Wide network, 274–​275
Word2Vec, 59
Word embeddings, 21–​22, 59
Worst-​case time complexity, 147

Z

Zero matrix, 27
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