———
\
%
D ——
h‘h

e —— —

B —

— =

__'_-_#
___#

_—#

s

__-#

b

s

—

_..-#
i

Understanding
Large Language
Models

Learning Their Underlying Concepts
and Technologies

Thimira Amaratunga

ApPress’

Understanding Large
Language Models

Learning Their Underlying
Concepts and Technologies

Thimira Amaratunga

Apress’

Understanding Large Language Models: Learning Their Underlying
Concepts and Technologies

Thimira Amaratunga
Nugegoda, Sri Lanka

ISBN-13 (pbk): 979-8-8688-0016-0 ISBN-13 (electronic): 979-8-8688-0017-7
https://doi.org/10.1007/979-8-8688-0017-7

Copyright © 2023 by Thimira Amaratunga

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Laura Berendson

Editorial Project Manager: Shaul Elson

Cover designed by eStudioCalamar
Cover image designed by Cai Fang from Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/
services/source-code.

Paper in this product is recyclable

https://doi.org/10.1007/979-8-8688-0017-7

Dedicated to all who push the boundaries of knowledge.

Table of Contents

About the AUtROK ...eceeeeiiirrrrrrsssssssrr s nsns e e n e s nnnnnnnnnns Xi
About the Technical REVIEWETcoursrermsmssssmsssssssssssssssssssssssssssssssnnnns Xiii
Acknowledgments.......cccccummssssssmssnmmmmmssssssssssssssssessssssssssnnnsssssssssssnnnnnns XV
g] 1 XVii
Chapter 1: Introduction..........ccccvineemnnmnnssennnmmssssnmmmsssssmesssssssssmms 1
A Brief HiSTOry OF Al......coce oo ereree st r e se e s s ne e s s s e e sne e nannns 2
WHErE LLIMIS STANG.......ceiireiiieereeerseeesseessseessseesssesssessaseessssessssesssssssnsesssessssensn 6
SUMMANY....ceirierireresese s e s s e e e p e e e nnnnn e 7
Chapter 2: NLP Through the Ages.......cscsmsssmsmsssnsssssnsssssnsssssasssssnsssssanss 9
HIiSTOrY OF NLPcovecccie e sa s s sa s s s 9
FOrmal GrammMarS....cuccvieenssirsrirssisssisssesssesssesssesssesssesssesssessssssssssssssssssssssssssnes 11
Transformational Grammar and Generative Grammar........c.ccoveviensensseninnns 11
Parsing and Syntactic ANalYSiS.........cccvvrrevnrnnnieninnnsensene s sessessesees 11
Context and SEMANTICS.......cccvviiiiinii i ——————— 11
Language Understanding........c.ccocevvrnvnernnensensesessssessessessssessessessessssessessenes 12
Knowledge ENGINEEIiNG........ccuvvrerernsensereresensessessesessessessessssessessesassessessesaes 12
ProbabiliStic MOGEISccvveeriririnrinsinsenssesssesssessse e sssssssssssessess s snes 13
Hidden Markov MOGEIS.......ccvceerrmnrmnrinsinsinsessensesssesssessssssssssssssssssssssssssns 13
N-Gram Language MOGEIS........ccverrrverierennnensenese s ssesessessessesees 13
Maximum Entropy MOdEIS........ccvevvvnieniennnnsene s sessesaesees 13
Conditional RaNdom FieldsSccvviiriiiinsinnsnnsnssns s ssesssssssssnsssssns 14

TABLE OF CONTENTS

Large Annotated COrpora........coveverrerverernsensessesessssessessessssessessessessssessessees 14
Word Sense Disambiguationc.ccocvvvierennrniniennsensesesesessesesessssessensens 14
Machine TransIation ... 14
Information Retrieval...........ccorninnnnnnn s 14
Statistical ADPrOaCNES........ccvcvierererrerre s ene s 15
Availability of Large TeXt COIPOraccccvrererrrrerserseressessessessessssessessessssessessens 15
Supervised Learning for NLP TasKS......cccvevvrrerrerensssensessessssessessesessssessessenes 15
Named Entity Recognitioncccvrrvninnnninnnsen e 16
SeNtiMENt ANAIYSIS.....ccvevererierererer e s sr e ene s 16
Machine TransIation ... 16
Introduction of Word Embeddingscccvvvrininrnneninsensinnesevsessesseesenenns 16
Deep Learning and Neural NEtWOrkS.........cccocvvrvenneniensensensesensessesssessesenns 16
Deployment in Real-World Applicationsccccvverinvnnnnnnnsnnsensenesennns 17
TASKS OF NLP ... 17
Basic Concepts Of NLP.........ccovvivnininnnnscnesn e ssessssessesnens 18
QL1 C:] 11742 (o PR 20
Corpus and VOCaDUIANY ... 21
WOrd EMBDEAAINGSccoveueereeereeerereesese s sessesennenens 24
Language MOdeling.........coovevrererenerrnsesenesesesesssse s ssssesessessssssessesesessesenns 34
N-Gram Language MOGEIS.........ccccrerrermrnsenrnseneseserssesessesesssse s sessesessssesennes 36
Neural Language MOEIS.........cccvrurerrenmrnsesmsenesesesessesesesessesesessesessesessssessnses 43
SUMMANY....eitieeirestre s e e p e e 53
Chapter 3: TranSfOrmMers.......ccccmrnmsssnnmmmssssnnnmmssssssnsssssssssessssssnssssssnnnnss 55
Paying AENtioN......c..covververere v 55
The Transformer ArchiteCtUre ... 64
LTI = 100 L 66
LT3R L=T 0 0o -] 68

TABLE OF CONTENTS

Scaled Dot Product..........ccccoriinnmnensss s 71
Multihead AHENTIONccvirrr s 76
11T 111 T o O 79
Chapter 4: What Makes LLMS Large?cccesrusssssnssssssssnsssssssnnssssssnnnnes 81
What Makes a Transformer Model an LLM.........c.ccoronrerernscnnerere e 81
Number of Parameters ... 82
SCAIE Of DALAcovreereeerrecree e 82
Computational POWET ... s 83
Fine-Tuning and Task Adaptation............ccoverrerrnennsesrese e 83
CapaDIlItIEScceieieirir e —————— 83
Why Parameters Matter ... 84
Computational Requirements...........cccvirirnnninennsnsesse s 84
RiSK OF OVEIfittiNg........cccrueeerercrerereresc s 85
MOEI SIZE ... s 85
The Scale Of DALAcocoerenerecrerere s 86
TYPES OF LLMS ..ot se s se s s s sensssennsaens 90
Based on the ArchiteCturecocccvvernrsnese s 90
Based on the Training ODJECLIVEcccovererererere s 91
Usage-Based Categorizationscouevvererenernsesensesessssessssesessesessssessnnes 105
Foundation MOGEIS.........ccovererinernseninesere e 106
Pre-training on Broad Data............ccovvererinennnmsnesensse e sessessssenens 106
Fine-Tuning and Adaptability..........c.ccorerernsennesensse e 107
Transfer LEarningc.cooccvvvvenenenesesnsesssessssse s e s ssssssesssssssssesenns 107
ECONOMIES OF SCAIEccovverirrirerrrse s 107
General-Purpose ADIlIEIESc.cuceeererernserne s 107
Fine-Tuning CapabilitieSccoouvrnrenninennsernese e 108
Transfer LEarningcucccvvvevnenenesesnsesnsesssssesessesssss s ssssssessssessssesenns 108

vii

TABLE OF CONTENTS

Economies 0f SCale ... s 108
Rapid Deployment ... e 108
Interdisciplinary AppliCationsccoccvvrinneninin s 108
Reduced Training OVErNEad.........ccovvevverrererenserseressssessessessessssessessessssessessens 109
Continuous Adaptability.......cccceeerrerrrrieriernsrserere e 109
Democratization of Al ... 109
APPIYING LLIMS..... ot s 109
Prompt ENGINEEIiNG.......ccccoiiirrriererrsine e ssssesnesnens 109
EXPlCITNESSeveieciecer et 110
Examples as GUIAANCEceeerrrvererereriererne s ses s s e se s e sessenens 111
Iterative REfinemMENt ..o 111
Controlling Verbosity and CompleXityccceeernvernienerissennsesensesesenerennes 111
Systematic Variations..........ccccccvrvvnennnsnns s 111
FINE-TUNING.....coiererrr e sr e nnen 114
0= 11 T S 116
Catastrophic FOrgettingccouervserensesesinnmsnsessssssess s sessesessssessnnes 116
EVAIUALIONcovieeicrceriee s s 116
SUMMAIY.c.eeitestrerere et e s s s r e e s e s saese e e e e e aesa e e s e s aesae e e e nannnees 116

Chapter 5: Popular LLMScccummmmmmssssssnnsmssmssssssssssssssssssssssssssssssnee 1 19

Generative Pre-trained TranSfOrmer............ccoovnnnnnnnnnssss s 119
Bidirectional Encoder Representations from Transformersc.cccvvcncennenn 127
Pathways Language MOELccoocerererenerrereree e 128
Large Language Model Meta Al...........occoveernnennenennnesnseseseses s sessssessnnes 129
SUMMANY....ceiiiernerirese e r e e nr e 130

viii

TABLE OF CONTENTS

Chapter 6: Threats, Opportunities, and Misconceptions...........ccusssees 131
LLMs and the Threat of a Superintelligent Alccccccvrvnnreirncrnsesrecennne, 132
LEVEIS OF Al ...t 132
Existential Risk from @n ASI..........oovoeinnnnenescrerre e 135
WREIE LLIMS Fil......oeeeeeeee e 137
Misconceptions and MiSUSE..........cccuverrniniennnnseness s ssssessesse s 139
OPPOMUNITIES ..vvvireciecirer e e e 145
SUMMANY ...t s r e r e np e 148
INA@X . iiiiisssnnnnnnnnnnnnsssssssnnnnnnnnnssssssssnnnnnnnnssssssssssnnnnnnnsnsssssssnnnnnnnnnenssssnnn 149

ix

About the Author

Thimira Amaratunga is a senior software
architect at Pearson PLC Sri Lanka with more
than 15 years of industry experience. He is also
an inventor, author, and researcher in the Al,
machine learning, deep learning in education,
and computer vision domains.

Thimira has a master’s of science degree in

computer science and a bachelor’s degree in
information technology from the University of Colombo, Sri Lanka. He is
also a TOGAF-certified enterprise architect.

He has filed three patents in the fields of dynamic neural networks and
semantics for online learning platforms. He has published three books on
deep learning and computer vision.

Connect with him on LinkedIn: https://www.linkedin.com/in/
thimira-amaratunga.

https://www.linkedin.com/in/thimira-amaratunga
https://www.linkedin.com/in/thimira-amaratunga

About the Technical Reviewer

Kasam Shaikh is a prominent figure in India’s
artificial intelligence landscape, holding the
distinction of being one of the country’s first
four Microsoft Most Valuable Professionals
(MVPs) in AL Currently serving as a senior
architect at Capgemini, Kasam boasts an
impressive track record as an author, having
written five best-selling books dedicated to
Azure and Al technologies. Beyond his writing

endeavors, Kasam is recognized as a Microsoft
Certified Trainer (MCT) and influential tech
YouTuber (@mekasamshaikh). He also leads the largest online Azure

Al community, known as DearAzure | Azure INDIA, and is a globally
renowned Al speaker. His commitment to knowledge sharing extends to
contributions to Microsoft Learn, where he plays a pivotal role.

Within the realm of Al, Kasam is a respected subject-matter expert
(SME) in generative Al for the cloud, complementing his role as a senior
cloud architect. He actively promotes the adoption of No Code and Azure
OpenAl solutions and possesses a strong foundation in hybrid and cross-
cloud practices. Kasam’s versatility and expertise make him an invaluable
asset in the rapidly evolving landscape of technology, contributing
significantly to the advancement of Azure and Al.

In summary, Kasam is a multifaceted professional who excels in both
technical expertise and knowledge dissemination. His contributions
span writing, training, community leadership, public speaking, and
architecture, establishing him as a true luminary in the world of Azure
and AL

xiii

Acknowledgments

The idea for this book came during my journey to understand the latest
developments in Al In creating this book, I want to help others who seek
the same knowledge. Although this was my fourth book, it took a lot of
work. Luckily, I received support from many individuals along the way, for
whom I would like to express my sincere gratitude.

First, would like to thank the team at Apress: Smriti Srivastava,
Sowmya Thodur, Laura Berendson, Shaul Elson, Mark Powers, Joseph
Quatela, Kasam Shaikh, Linthaa Muralidharan, and everyone involved in
the editing and publishing of this book.

To my loving wife, Pramitha. Thank you for the encouragement and
the motivation given from the inception of the idea to its completion.
Completing this might not have been possible without your support
through the long hours and days spent writing and perfecting this book.

To my colleagues and managers at Pearson PLC, who have guided me
throughout the years, I am grateful for your guidance and encouragement.

Finally, to my parents and sister, thank you for your endless support
throughout the years.

Preface

Today, finding someone who hasn’t heard of ChatGPT, the AI chatbot that
took the world by storm, is hard. ChatGPT—and its competitors such as
Google Bard, Microsoft Bing Chat, etc.—are part of a broader area in Al
known as large language models (LLMs). LLMs are the latest frontier in

Al resulting from recent research into natural language processing (NLP)
and deep learning. However, the immense popularity these applications
have gained has created some concerns and misconceptions around them
because of a lack of understanding of what they truly are.

Understanding the concepts behind this new technology, including how
it evolved, and addressing the misconceptions and genuine concerns around
it are crucial for us to bring out its full potential. Therefore, this book was
designed to provide a crucial overall understanding of large language models.

In this book, you will do the following:

o Learn the history of Al and NLP leading up to large
language models

o Learn the core concepts of NLP that help define LLMs

e Lookat the transformer architecture, a turning point in
NLP research

o See what makes LLMs special
e Understand the architectures of popular LLM applications

¢ Read about the concerns, threats, misconceptions, and
opportunities presented by using LLMs

This is not a coding book. However, this book will provide a strong
foundation for understanding LLMs as you take your first steps toward them.

xvii

CHAPTER 1

Introduction

It was late 2022. Reports were coming in about a new Al that had human-
like conversational skills and seemingly infinite knowledge. Not only was
it able to articulate answers to a large number of subject domains such
as science, technology, history, and philosophy, it was able to elaborate
on the answers it gave and perform meaningful follow-up conversations
about them.

This was ChatGPT, a large language model (LLM) chatbot developed
by OpenAl. ChatGPT has been trained on a massive dataset of both text
and code, giving it the ability to generate code as well as creative text
content. Being optimized for conversations, ChatGPT allowed users to
steer the conversations to generate the desired content by considering the
succeeding prompts and replies as context.

Because of these capabilities and it being made available to the
general public, ChatGPT gained immense popularity. It became the
fastest-growing consumer software application in history. Since release,
it has been covered by major news outlets, reviewed in both technical
and nontechnical industries, and even referenced in government
documents. The amount of interest shown in ChatGPT by the general
public is something previously unheard of. The availability of it has made
a substantial impact on many industries both directly and indirectly.
This has resulted in both enthusiasm and concerns about Al and its
capabilities.

© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_1

https://doi.org/10.1007/979-8-8688-0017-7_1

CHAPTER 1 INTRODUCTION

While being the most popular LLM product, ChatGPT is barely the
tip of the iceberg when it comes to the capabilities of large language
models. Ushered in by the advancements of deep learning, natural
language processing (NLP), and the ever-increasing processing power
of data processing, LLMs are the bleeding edge of generative Al. The
technology has been in active development since 2018. ChatGPT is not
the first LLM. In fact, it was not even the first LLM from OpenAl. It was,
however, the most impactful one to reach the general public. The success
of ChatGPT has also triggered a wave of competitor conversational Al
platforms, such as Bard from Google and LLaMA from Meta Al, pushing
the boundaries of the technology further.

As with any new technology, not everyone seems to have grasped
what LLMs really are. Also, while many have expressed enthusiasm
regarding LLMs and their capabilities, there are concerns being raised. The
concerns range from Al taking over certain job roles, disruption of creative
processes, forgeries, and existential risk brought on by superintelligent
Als. However, some of these concerns are due to the misunderstanding of
LLMs. There are real potential risks associated with LLMs. But it may not
be from where most people are thinking.

To understand both the usefulness and the risks, we must first learn
how LLMs work and the history of Al that led to the development of LLMs.

A Brief History of Al

Humans have always been intrigued by the idea of intelligent machines:
the idea that machines or artificial constructs can be built with intelligent
behavior, allowing them to perform tasks that typically require human
intelligence. This idea pre-dates the concept of computers, and written
records of the idea can be traced back to the 13th century. By the 19th
century, it was this idea that brought forward concepts such as formal
reasoning, propositional logic, and predicate calculus.

CHAPTER 1 INTRODUCTION

In June 1956, many expert mathematicians and scientists who were
enthusiasts in the subject of intelligent machines came together for a
conference at Dartmouth College (New Hampshire, US). This conference—
The Dartmouth Summer Research Project on Artificial Intelligence—was
the starting point of the formal research field of artificial intelligence. It
was at this conference that the Logic Theorist, developed by Allen Newell,
Herbert A. Simon, and Cliff Shaw and what is now considered to be the
first artificial intelligence program, was also presented. The Logic Theorist
was meant to mimic the logical problem-solving of a human and was able
to prove 38 out of the first 52 theorems in Principia Mathematica (a book
on the principles of mathematics written by Alfred North Whitehead and
Bertrand Russell).

After its initiation, the field of artificial intelligence branched out
into several subfields, such as expert systems, computer vision, natural
language processing, etc. These subfields often overlap and build upon
each other. Over the following years, Al has experienced several waves
of optimism, followed by disappointment and the loss of funding (time
periods referred to as AT winters, which are followed by new approaches
being discovered, success, and renewed funding and interest).

One of the main obstacles the researchers of Al faced at the time
was the incomplete understanding of intelligence. Even today we lack a
complete understanding of how human intelligence works. By the late
1990s, researchers proposed a new approach: rather than attempting to
code intelligent behavior into a system, build a system that can grow its
own intelligence. This idea created a new subfield of Al named machine
learning.

The main aim of machine learning (ML) is to provide machines with
the ability to learn without explicit programming, in the hopes that such
systems once built will be able to evolve and adapt when they are exposed
to new data. The core idea is the ability of a learner to generalize from
experience. The learner (the Al system being trained), once given a set of

CHAPTER 1 INTRODUCTION

training samples, must be able to build a generalized model upon them,
which would allow it to decide upon new cases with sufficient accuracy.
Such training in ML can be provided in three main methods.

e Supervised learning: the system is given a set of labeled
cases (training set) based on which the system is
asked to create a generalized model that can act on

unseen cases.

o Unsupervised learning: The system is given a set of
unlabeled cases and asked to find a pattern in them.
This is ideal for discovering hidden patterns.

e Reinforcement learning: The system is asked to take
any action and is given a reward or a penalty based on
how appropriate that action is to the given situation.
The system must learn which actions yield the most
rewards in given situations over time.

Machine learning can also use a combination of these main learning
methods, such as semi-supervised learning in which a small number of
labeled examples are used with a large set of unlabeled data for training.

With these base concepts of machine learning several models were
introduced as means of implementing trainable systems and learning
techniques, such as artificial neural networks (models inspired by how
neurons of the brain work), decision trees (models that use tree-like
structures to model decisions and outcomes), regression models (models
that use statistical methods to map input and output variables), etc. These
models proved exceptionally effective in areas such as computer vision
and natural language processing.

The success of machine learning saw a steady growth in Al research
and applications over the next decade. By around 2010 few other factors
occurred that pushed their progress further.

CHAPTER 1 INTRODUCTION

Building AI models, especially machine learning models such as
neural networks, has always been computationally intensive. By the early
2010s computing power started becoming cheaper and more available
as more powerful and efficient processors were becoming available. In
addition, specialist hardware platforms that benefited Al model training
became available. This allowed more complex models to be evaluated.

In parallel, the cost of data storage and processing continued to decline.
This made collecting and processing large datasets more viable. Finally,
advancements in the medical field increased the understanding of how
the natural brain works. This new knowledge, and the availability of
processing power and data, allowed more complex neural network models
to be created and trained.

It was identified that the natural brain uses a hierarchical method
to obtain knowledge, by building complicated concepts out of simpler
ones. The brain does this by identifying lower-level patterns from the
raw inputs and then building upon those patterns to learn higher-level
features over many levels. This technique, when modeled on machine
learning, is known as hierarchical feature learning and allows such
systems to automatically learn complex features through multiple levels of
abstraction with minimal human intervention. When applying hierarchical
feature learning to neural networks, it results in deep networks with many
feature learning layers. Thus, this approach was called deep learning.

A deep learning model will not try to understand the entire problem
at once. Instead, it will look at the input, piece by piece, so that it can
derive from its lower-level patterns/features. It then uses these lower-level
features to gradually identify higher-level features, through many layers,
hierarchically. This allows deep learning models to learn complicated
patterns, by gradually building them up from simpler ones, allowing them
to comprehend the world better.

Deep learning models were immensely successful in the tasks they
were trained on, resulting in many deep learning architectures being

developed such as convolutional neural networks (CNNs), stacked

CHAPTER 1 INTRODUCTION

autoencoders, generative adversarial networks (GANs), transformers,
etc. Their success resulted in deep learning architectures being applied
to many other Al fields such as computer vision and natural language
processing.

In 2014, with the advancements in models such as variational
autoencoders and generative adversarial networks, deep learning
models were able to generate new data based on what they learned from
their training. With the introduction of the transformer deep learning
architecture in 2017, such capabilities were pushed even further. These
latest generations of Al models were named generative Al and within a
few short years were able to generate images, art, music, videos, code, text,
and more.

This is where LLMs come into the picture.

Where LLMs Stand

Large language models are the result of the combination of natural
language processing, deep learning concepts, and generative Al models.
Figure 1-1 shows where LLMs stand in the Al landscape.

CHAPTER 1 INTRODUCTION

Artificial
Intelligence

Machine
Learning

Natural
Language
Processing

Figure 1-1. Where LLMs are in the Al landscape

Summary

In this chapter, we went through the history of Al and how it has evolved.
We also looked at where large language models stand in the broader

Al landscape. In the next few chapters, we will look at the evolution of
NLP and its core concepts, the transformer architecture, and the unique
features of LLMs.

CHAPTER 2

NLP Through the
Ages

Natural language processing (NLP) is a subfield of artificial intelligence
and computational linguistics. It focuses on enabling computers to
understand, interpret, and generate human language in a way that is
both meaningful and useful. The primary goal of NLP is to bridge the
gap between human language and computer understanding, allowing
machines to process, analyze, and respond to natural language data.
NLP is the heart of large language models (LLMs). LLMs would
not exist without the concepts and algorithms developed through NLP
research over the years. Therefore, to understand LLMs, we need to
understand the concepts of NLP.

History of NLP

The conception of natural language processing dates to the 1950s. In
1950, Alan Turing published an article titled “Computing Machinery and
Intelligence,” which discussed a method to determine whether a machine
exhibits human-like intelligence. This proposed test, most popularly
referred to as the Turing test, is widely considered as what inspired early
NLP researchers to attempt natural language understanding.

© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_2

https://doi.org/10.1007/979-8-8688-0017-7_2

CHAPTER 2 NLP THROUGH THE AGES

The Turing test involves a setup where a human evaluator interacts
with both a human and a machine without knowing which is which.

The evaluator’s task is to determine which participant is the machine
and which is the human based solely on their responses to questions or
prompts. If the machine is successful in convincing the evaluator that it
is human, then it is said to have passed the Turing test. The Turing test
thus provided a concrete and measurable goal for Al research. Turing’s
proposal sparked interest and discussions about the possibility of
creating intelligent machines that could understand and communicate in
natural language like humans. This led to the establishment of NLP as a
fundamental research area within Al

In 1956, with the establishment of the artificial intelligence research
field, NLP became an established field of research in AI, making it one of
the oldest subfields in Al research.

During the 1960s and 1970s, NLP research predominantly relied on
rule-based systems. One of the earliest NLP programs was the ELIZA
chatbot, developed by Joseph Weizenbaum between 1964 and 1966. ELIZA
used pattern matching and simple rules to simulate conversation between
the user and a psychotherapist. With an extremely limited vocabulary
and ruleset ELIZA was still able to articulate human-like interactions. The
General Problem Solver (GPS) system, developed in the 1970s by Allen
Newell and Herbert A. Simon, working with means-end analysis, also
demonstrated some language processing capabilities.

In the 1970s and 1980s, NLP research began to incorporate linguistic
theories and principles to understand language better. Noam Chomsky’s
theories on generative grammar and transformational grammar influenced
early NLP work. These approaches aimed to use linguistic knowledge and
formal grammatical rules to understand and process human language.

The following are some key aspects of linguistic-based
approaches in NLP.

10

CHAPTER 2 NLP THROUGH THE AGES

Formal Grammars

Linguistics-based NLP heavily relied on formal grammars, such as
context-free grammars and phrase structure grammars. These formalisms
provided a way to represent the hierarchical structure and rules of natural
language sentences.

Transformational Grammar and Generative
Grammar

Noam Chomsky’s transformational grammar and generative grammar
theories significantly influenced early NLP research. These theories
focused on the idea that sentences in a language are generated from
underlying abstract structures, and rules of transformation govern the
relationship between these structures.

Parsing and Syntactic Analysis

Parsing, also known as syntactic analysis, was a crucial aspect of
linguistics-based NLP. It involved breaking down sentences into their
grammatical components and determining the hierarchical structure.
Researchers explored various parsing algorithms to analyze the syntax of
sentences.

Context and Semantics

Linguistics-based approaches aimed to understand the context and
semantics of sentences beyond just their surface structure. The focus was
on representing the meaning of words and phrases in a way that allowed
systems to reason about their semantic relationships.

11

CHAPTER 2 NLP THROUGH THE AGES

Language Understanding

Linguistics-based NLP systems attempted to achieve deeper language
understanding by incorporating syntactic and semantic knowledge. This
understanding was crucial for more advanced NLP tasks, such as question
answering and natural language understanding.

Knowledge Engineering

In many cases, these approaches required manual knowledge engineering,
where linguistic rules and structures had to be explicitly defined by human
experts. This process was time-consuming and limited the scalability of
NLP systems.

There are, however, some limitations in linguistics-based NLP
approaches. While linguistics-based approaches had theoretical
appeal and offered some insights into language structure, they also
faced limitations. The complexity of natural languages and the vast
number of exceptions to linguistic rules made it challenging to develop
comprehensive and robust NLP systems solely based on formal grammars.

Because of these limitations, while linguistic theories continued to
play a role in shaping the NLP field, they were eventually complemented
and, in some cases, surpassed by data-driven approaches and statistical
methods.

During the 1990s and 2000s, NLP started shifting its focus from
rule-based and linguistics-driven systems to data-driven methods.
These approaches leveraged large amounts of language data to build
probabilistic models, leading to significant advancements in various
NLP tasks.

Statistical NLP methods used several approaches and applications. Let
us look at a few next.

12

CHAPTER 2 NLP THROUGH THE AGES

Probabilistic Models

Statistical approaches relied on probabilistic models to process and
analyze language data. These models assigned probabilities to different
linguistic phenomena based on their occurrences in large annotated

corpora.

Hidden Markov Models

Hidden Markov models (HMMs) were one of the early statistical models
used in NLP. They were employed for tasks such as part-of-speech tagging
and speech recognition. HMMs use probability distributions to model the
transition between hidden states, which represent the underlying linguistic
structures.

N-Gram Language Models

N-gram language models became popular during this era. They predicted
the likelihood of a word occurring given the preceding (n-1) words.
N-grams are simple but effective for tasks such as language modelling,
machine translation, and information retrieval.

Maximum Entropy Models

Maximum entropy (MaxEnt) models were widely used in various NLP
tasks. They are a flexible probabilistic framework that can incorporate
multiple features and constraints to make predictions.

13

CHAPTER 2 NLP THROUGH THE AGES

Conditional Random Fields

Conditional random fields (CRFs) gained popularity for sequence labeling
tasks, such as part-of-speech tagging and named entity recognition. CRFs
model the conditional probabilities of labels given the input features.

Large Annotated Corpora

Statistical approaches relied on large annotated corpora for training and
evaluation. These corpora were essential for estimating the probabilities used
in probabilistic models and for evaluating the performance of NLP systems.

Word Sense Disambiguation

Statistical methods were applied to word sense disambiguation (WSD)
tasks, where the goal was to determine the correct sense of a polysemous
word based on context. Supervised and unsupervised methods were
explored for this task.

Machine Translation

Statistical machine translation (SMT) systems emerged, which used
statistical models to translate text from one language to another. Phrase-
based and hierarchical models were common approaches in SMT.

Information Retrieval

Statistical techniques were applied to information retrieval tasks, where
documents were ranked based on their relevance to user queries.

While statistical approaches showed great promise, they still faced
challenges related to data sparsity, handling long-range dependencies in
language, and capturing complex semantic relationships between words.

14

CHAPTER 2 NLP THROUGH THE AGES

During the 2000s and 2010s, as we discussed in the history of AJ,
there was a significant rise in the application of machine learning (ML)
techniques. This period witnessed tremendous advancements in ML
algorithms, computational power, and the availability of large text corpora,
which fueled the progress of NLP research and applications.

Several key developments contributed to the rise of machine learning-
based NLP during this time. Let us explore a few of them.

Statistical Approaches

Statistical approaches became dominant in NLP during this period.
Instead of hand-crafted rule-based systems, researchers started using
probabilistic models and ML algorithms to solve NLP tasks. Techniques
like HMMs, CRFs, and support vector machines (SVMs) gained popularity.

Availability of Large Text Corpora

The rise of the Internet and digitalization led to the availability of vast
amounts of text data. Researchers could now train ML models on large
corpora, which greatly improved the performance of NLP systems.

Supervised Learning for NLP Tasks

Supervised learning became widely used for various NLP tasks. With
labeled data for tasks like part-of-speech tagging, named entity recognition
(NER), sentiment analysis, and machine translation, researchers could
train ML models effectively.

15

CHAPTER 2 NLP THROUGH THE AGES

Named Entity Recognition

ML-based NER systems, which identify entities such as the names of people,
organizations, and locations in text, became more accurate and widely used.
This was crucial for information extraction and text understanding tasks.

Sentiment Analysis

Sentiment analysis or opinion mining gained prominence, driven by the
increasing interest in understanding public opinions and sentiments

expressed in social media and product reviews.

Machine Translation

Statistical machine translation (SMT) systems, using techniques such
as phrase-based models, started to outperform rule-based approaches,
leading to significant improvements in translation quality.

Introduction of Word Embeddings

Word embeddings, like Word2Vec and GloVe, revolutionized NLP by
providing dense vector representations of words. These embeddings
captured semantic relationships between words, improving performance
in various NLP tasks.

Deep Learning and Neural Networks

The advent of deep learning and neural networks brought about a
paradigm shift in NLP. Models like recurrent neural networks (RNNs), long
short-term memory (LSTM), and convolutional neural networks (CNNs)
significantly improved performance in sequence-to-sequence tasks,
sentiment analysis, and machine translation.

16

CHAPTER 2 NLP THROUGH THE AGES

Deployment in Real-World Applications

ML-based NLP systems found practical applications in various industries,
such as customer support chatbots, virtual assistants, sentiment analysis
tools, and machine translation services.

The combination of statistical methods, large datasets, and the advent
of deep learning paved the way for the widespread adoption of ML-based
NLP during the 2000s and 2010s.

Toward the end of the 2010s, pre-trained language models like ELMo,
Generative Pre-trained Transformer (GPT), and Bidirectional Encoder
Representations from Transformers (BERT) emerged. These models
were pre-trained on vast amounts of data and fine-tuned for specific NLP
tasks, achieving state-of-the-art results in various benchmarks. These
developments enabled significant progress in language understanding,
text generation, and other NLP tasks, making NLP an essential part of

many modern applications and services.

Tasks of NLP

With the primary goal of bridging the gap between human language and
computer understanding, over its history, NLP has been applied to several

tasks concerning language.

o Text classification: Assigning a label or category to
a piece of text. For example, classifying emails as
spam or not spam, sentiment analysis (identifying
the sentiment as positive, negative, or neutral), topic
categorization, etc.

e NER: Identifying and classifying entities mentioned
in the text, such as names of people, organizations,
locations, dates, and more.

17

CHAPTER 2 NLP THROUGH THE AGES

e Machine translation: Automatically translating text
from one language to another.

o Text generation: Creating human-like text, which could
be in the form of chatbots, autogenerated content, or
text summarization.

o Speech recognition: Converting spoken language into
written text.

o Text summarization: Automatically generating a
concise and coherent summary of a longer text.

e Question answering: Providing accurate answers to
questions asked in natural language.

o Language modeling: Predicting the likelihood of a given
sequence of words occurring in a language.

The combination of one or more of these tasks forms the basis of
current NLP applications.

Basic Concepts of NLP

To achieve the previously mentioned tasks, NLP employs a set of key
concepts. These are some of the most common:

o Tokenization: Tokenization is the process of breaking
down a text into smaller units, typically words or
subwords. These smaller units are called tokens, and
tokenization is an essential preprocessing step in most
NLP tasks.

e Stopword removal: Stopwords are common words
(e.g., the, is, and) that often appear in a text but carry
little semantic meaning. Removing stopwords can help
reduce noise and improve computational efficiency.

18

CHAPTER 2 NLP THROUGH THE AGES

e Part-of-speech (POS) tagging: POS tagging involves
assigning grammatical tags (e.g., noun, verb, adjective)
to each word in a sentence, indicating its syntactic role.

e Parsing: Parsing involves analyzing the grammatical
structure of a sentence to understand the relationships
between words and phrases. Dependency parsing and

constituency parsing are common parsing techniques.

o Word embeddings: Word embeddings are dense
vector representations of words that capture semantic
relationships between words. Word2Vec and GloVe are
popular word embedding models.

e NER: NER is the process of identifying and classifying
named entities mentioned in the text, such as names of

people, organizations, locations, dates, etc.

o Stemming and lemmatization: Stemming and
lemmatization are techniques used to reduce words to
their base or root form. For example, running, runs, and
ran might all be stemmed or lemmatized to run.

o Language models: Language models predict the
likelihood of a sequence of words occurring in a
language. They play a crucial role in various NLP tasks,

such as machine translation and text generation.

Apart from these other task-specific techniques such as sequence-
to-sequence models, attention mechanisms and transfer learning
mechanisms are also used in NLP.

Let us investigate some of these concepts in depth, which will give us a
better understanding of the internal workings of LLMs.

19

CHAPTER 2 NLP THROUGH THE AGES

Tokenization

Tokenization is the process of breaking down a text or a sequence of
characters into smaller units, called fokens. In NLP, tokens are typically
words or subwords that form the basic building blocks for language
processing tasks. Tokenization is a crucial preprocessing step before text
can be used in various NLP applications.
Let’s take an example sentence: “I love natural language processing!”
The word level tokenization output would be as follows:

["I", "love", "natural", "language", "processing", "!"]

In this example, the tokenization process splits the sentence into
individual words, removing any punctuation. Each word in the sentence
becomes a separate token, forming a list of tokens.

Tokenization can be performed using various methods, and the choice

of tokenizer depends on the specific NLP task and the characteristics of the

text data. Some common tokenization techniques include the following:

o Whitespace tokenization: The text is split into tokens
based on whitespace (spaces, tabs, newlines). It'’s a
simple and common approach for English text and can
handle most cases, but it may not handle special cases
like hyphenated words or contractions well.

o Punctuation tokenization: The text is split based
on punctuation marks, such as periods, commas,
exclamation marks, etc. It can be useful when handling
text with significant punctuation, but it may result
in issues when dealing with abbreviations or other
special cases.

20

CHAPTER 2 NLP THROUGH THE AGES

o Word tokenization: This is a more advanced tokenizer
that uses language-specific rules to split text into words.
It can handle special cases like hyphenated words,
contractions, and punctuation in a more linguistically
accurate manner.

o Subword tokenization: Subword tokenization methods
like byte-pair encoding (BPE) and SentencePiece
split words into subword units, allowing the model to
handle out-of-vocabulary words and handle rare or

unseen words more effectively.

The choice of tokenizer can depend on the specific use case and
requirements of the NLP task. Tokenization is the first step in converting
raw text into a format that can be processed and analyzed by NLP models

and algorithms.

Corpus and Vocabulary

In NLP, a corpus refers to a large collection of text documents or utterances
that are used as a dataset for language analysis and model training. A
corpus serves as the primary source of data for various NLP tasks, allowing
researchers and practitioners to study language patterns, extract linguistic
information, and develop language models.

A corpus can take various forms depending on the specific NLP task or
research objective. Some common types of corpora include the following:

o Text corpora: A text corpus is a collection of written text
documents, such as books, articles, web pages, emails,
and social media posts. Text corpora are commonly
used for tasks such as language modeling, sentiment
analysis, text classification, and information retrieval.

21

CHAPTER 2 NLP THROUGH THE AGES

e Speech corpora: A speech corpus consists of audio
recordings or transcriptions of spoken language.
Speech corpora are used in tasks such as speech
recognition, speaker identification, and emotion

detection.

e Parallel corpora: A parallel corpus contains text in
multiple languages that are aligned at the sentence or
document level. Parallel corpora are used for machine
translation and cross-lingual tasks.

e Treebanks: Treebanks are annotated corpora that
include syntactic parse trees, representing the
grammatical structure of sentences. Treebanks are
used in tasks like parsing and syntax-based machine
learning.

e Multimodal corpora: Multimodal corpora include
text along with other modalities, such as images,
videos, or audio. They are used in tasks that involve
understanding and generating information from
multiple modalities.

Building and curating high-quality corpora is essential for the success
of various NLP applications, as the performance and generalization of
language models heavily rely on the quality and diversity of the data they
are trained on.

A vocabulary in NLP refers to the set of unique words or tokens present
in a corpus of text. It is a fundamental component of language processing,
as it defines the complete list of words that a model or system can
understand and work with.

22

CHAPTER 2 NLP THROUGH THE AGES

When processing text data, the following steps are typically performed
to create a vocabulary:

1. Tokenization: The text is split into individual tokens,
which can be words, subwords, or characters,
depending on the tokenization strategy used.

2. Filtering and normalization: Common
preprocessing steps such ss converting text to
lowercase, removing punctuation, and filtering out
stopwords are applied to clean the data and reduce
the size of the vocabulary.

3. Building vocabulary: After tokenization and
preprocessing, the unique tokens in the text data
are collected to form the vocabulary. Each token is
assigned a unique numerical index, which serves as
its representation in the model or during encoding
processes.

The vocabulary is often used to create numerical representations
of text data. In many NLP models, words are represented as dense
vectors (word embeddings) where each word’s embedding is indexed
using its integer representation in the vocabulary. This allows words to
be processed and manipulated as numerical data, making it easier for
machine learning models to work with textual information.

The size of the vocabulary depends on the corpus of text used for
training the model. Large-scale models, such as LLMs, often have very
extensive vocabularies containing hundreds of thousands or even millions
of unique words.

Handling the vocabulary size can be a challenge, as very large vocabularies
require more memory and computational resources. Techniques like
subword tokenization, which splits words into subword units, and methods
like Byte-Pair Encoding (BPE) or SentencePiece, can be used to handle large
vocabularies more efficiently and handle rare or out-of-vocabulary words.

23

CHAPTER 2 NLP THROUGH THE AGES

Word Embeddings

Word embeddings are dense vector representations of words in a
continuous vector space, where similar words are closer to each other.
These representations capture semantic relationships between words,
allowing NLP models to understand word meanings based on their
context.

The main advantages of word embeddings are as follows:

o Semantic meaning: Word embeddings capture
semantic meaning and relationships between words.
Similar words are close to each other in the embedding
space, and analogies like “man is to woman as king is to
queen” can be represented as vector arithmetic.

o Dimensionality reduction: Word embeddings reduce
the dimensionality of the word representation
compared to one-hot encodings. While one-hot
encodings are binary vectors with a length equal to the
vocabulary size, word embeddings typically have much
smaller fixed dimensions (e.g., 100, 300) regardless of
the vocabulary size.

e Generalization: Word embeddings generalize across
words, allowing models to learn from limited data.
Words that share similar contexts tend to have similar
embeddings, which enables models to understand the
meaning of new words based on their context.

o Continuous space: The embedding space is continuous,
enabling interpolation and exploration of relationships
between words. For example, one can add the vector
for “Spain” to “capital” and subtract “France” to find a
vector close to “Madrid.”

24

CHAPTER 2 NLP THROUGH THE AGES

Word embeddings are a fundamental tool in NLP and have greatly
improved the performance of various NLP tasks, such as machine
translation, sentiment analysis, text classification, and information retrieval.
Popular word embedding methods include simpler methods such as bag-
of-words (BoW) to more sophisticated methods such as Word2Vec, Global
Vectors for Word Representation (GloVe), and fastText. These methods
learn word embeddings by considering the co-occurrence patterns of words
in large text corpora, allowing the representations to capture the semantic
meaning and contextual relationships of words in the language.

Let us investigate two of these methods, bag-of-words and Word2Vec,
in more detail.

Bag-of-Words

The BoW method is a simple and popular technique for text
representation. It disregards the order and structure of words in a
document and focuses on the frequency of each word in the text. The
BoW model represents a document as a histogram of word occurrences,
creating a “bag” of words without considering their sequence.

Here are the steps of the bag-of-words method:

1. Tokenization: The first step is to break down the text
into individual words or tokens.

2. Vocabulary creation: The BoW model creates a
vocabulary, which is a list of all unique words
found in the corpus. Each word in the vocabulary is
assigned a unique index.

3. Vectorization: To represent a document using BoWw,
avector is created for each document, with the
length equal to the size of the vocabulary. Each
element of the vector corresponds to a word in the
vocabulary, and its value represents the frequency
of that word in the document.

25

CHAPTER 2 NLP THROUGH THE AGES

Here is an example on the bag-of-words method:
Let us take a corpus of the following three sentences:

e “Ilove to eat pizza”
e “She enjoys eating pasta.”
o “They like to cook burgers.”

Step 1: Tokenization

” u ” u ” «

The tokens in the corpus are: [“I’, “love’, “to’) “eat’, “pizza’; “She’,
“enjoys’, “eating’, “pasta’; “They’, “like’; “to’;, “cook’, “burgers”].

Step 2: Vocabulary Creation

The vocabulary contains all unique words from the tokenized corpus:

” u ” u ” u

[“T) “love’, “to’, “eat’, “pizza’, “She’) “enjoys’, “eating’, “pasta’; “They’, “like’,
“cook’; “burgers”].

The vocabulary size is 13.

Step 3: Vectorization

Now, each document is represented as a vector using the vocabulary.

The vectors for the three sentences will be as follows:
[1J 1) 1’ 1) 1) O) OJ 0) 0) O) OJ 0) 0]

(The vector shows that the words I, love, to, eat, and pizza appear once
in the document.)

[0, 0, 0, 1, 0, 1, 1, 1, 1, 0, O, O, O]

(The vector shows that the words She, enjoys, eating, and pasta appear
once in the document.)

[0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

(The vector shows that the words They, like, to, cook, and burgers
appear once in the document.)

Note that the order of the words is lost in the BoW representation, and
each document is represented solely based on the frequency of the words

presentin it.

26

CHAPTER 2 NLP THROUGH THE AGES

The BoW method is a straightforward and effective way to convert text
into numerical vectors for use in various machine learning algorithms and
NLP tasks, such as text classification and information retrieval. However,
it does not consider the context or semantics of words, which can limit its

ability to capture deeper meaning in language data.

Word2Vec

Word2Vec is a popular and influential word embedding method in NLP. It
was introduced by Tomas Mikolov et al. at Google in 2013 and has since
become a foundational technique in various NLP tasks. The main idea
behind Word2Vec is to represent words as points in a high-dimensional
space, where the relative positions of words capture their semantic
relationships and contextual similarities. Words that appear in similar
contexts or have similar meanings are mapped to vectors that are close to
each other in the embedding space.

There are two primary architectures for training Word2Vec models.

e Continuous bag-of-words (CBOW)

CBOW aims to predict the target word given its context
(surrounding words). It uses a neural network to learn

word embeddings by taking the context words as input
and predicting the target word.

The context words are represented as one-hot-encoded
vectors or embeddings, and they are averaged to form a
single context vector.

The CBOW model tries to minimize the prediction
error between the predicted target word and the actual
target word.

27

CHAPTER 2 NLP THROUGH THE AGES

o Skip-gram

Skip-gram, on the other hand, aims to predict the
context words given a target word. It tries to learn the
embeddings by maximizing the likelihood of the context
words given the target word.

The target word is represented as a one-hot-encoded
vector or embedding, and the model tries to predict the
surrounding context words based on this representation.

Skip-gram is often preferred when the dataset is large, as
it generates more training examples by considering all

the context words for each target word.

During training, Word2Vec uses a shallow neural network to learn the
embeddings. The weights of the neural network are updated during the
training process using stochastic gradient descent or similar optimization
techniques. The objective is to learn word embeddings that effectively
capture the word semantics and co-occurrence patterns in the corpus.

Once trained, the Word2Vec model provides word embeddings
that can be used as input to various NLP tasks or serve as a powerful
representation for downstream applications. The trained embeddings
can be used in tasks such as sentiment analysis, machine translation,
document classification, and information retrieval, where they capture the
meaning and relationships between words in a continuous vector space.
Word2Vec has been instrumental in advancing the performance of NLP
models by enabling them to work effectively with textual data in a more
semantically meaningful manner.

28

CHAPTER 2 NLP THROUGH THE AGES

The typical process to train a Word2Vec model would involve the

following steps:

1.

Data preparation:

Gather a large corpus of text data that will be used
for training the Word2Vec model. The corpus should
represent the domain or language you want to
capture word embeddings for.

Tokenization:

Tokenize the text data to break it down into
individual words or subwords. Remove any
unwanted characters, punctuation, and stopwords
during tokenization.

Create context-target pairs:

For each target word in the corpus, create context-
target pairs. The context is a window of words
surrounding the target word. The size of the window
is a hyperparameter, typically set to a small value
like 5 to 10 words. The context-target pairs are used
to train the model to predict the context given the
target word, or vice versa.

Convert words to indices:

Convert the words in the context-target pairs into
numerical indices, as Word2Vec models typically
work with integer word indices rather than actual
word strings.

29

CHAPTER 2 NLP THROUGH THE AGES

5. Create training examples:

Use the context-target pairs to create training
examples for the Word2Vec model. Each training
example consists of a target word (input) and its
corresponding context words (output) or vice
versa, depending on the architecture (CBOW or
skip-gram).

6. Architecture selection:

Choose the architecture you want to use for the
Word2Vec model. The two main architectures are
the following:

e CBOW: Predict the target word based on the

context words.

o Skip-gram: Predict the context words based on
the target word.

7. Define the neural network:

Create a shallow neural network for the chosen
architecture. The network will consist of an
embedding layer that represents words as dense
vectors and a softmax layer (for CBOW) or negative
sampling (for skip-gram) to perform the word
predictions.

8. Training:

Train the Word2Vec model on the training

examples using stochastic gradient descent or other
optimization algorithms. The objective is to minimize
the prediction loss, which measures the difference
between predicted and actual context or target words.

30

CHAPTER 2 NLP THROUGH THE AGES

9. Learn word embeddings:

As the model trains, the embedding layer learns to
map each word to a dense vector representation.
These word embeddings capture semantic
relationships and meaning based on the co-
occurrence patterns of words in the corpus.

10. Evaluation:

After training, evaluate the quality of the learned
word embeddings on downstream NLP tasks, such
as word similarity, analogies, or text classification,
to ensure they capture meaningful semantic
information.

The training process may require hyperparameter tuning, and the
model may need to be trained on a large corpus and for multiple epochs to
learn effective word embeddings. Once trained, the Word2Vec model can
be used to generate word vectors for any word in the vocabulary, enabling
the exploration of semantic relationships between words in a continuous
vector space.

Because of the popularity of the Word2Vec model, many machine
learning and NLP libraries have built-in implementations of it. This allows
you to easily utilize Word2Vec embeddings in your code without having to
manually train neural networks for it.

Bag-of-Words vs. Word2Vec

While both Bag-of-Words and Word2Vec are text representation methods
in NLP there are some key differences between them.

31

CHAPTER 2

32

NLP THROUGH THE AGES

Representation

Bag-of-Words (BoW): BoW represents a document as

a histogram of word occurrences, without considering
the order or structure of the words. It creates a “bag” of
words, and each element in the vector represents the
frequency of a specific word in the document.

Word2Vec: Word2Vec, on the other hand, represents
words as dense vectors in a continuous vector space.
It captures the semantic meaning and relationships
between words based on their context in the corpus.
Word2Vec embeddings are learned through a shallow
neural network model trained on a large dataset.

Context and semantics

BoW: BoW does not consider the context or semantics
of words in a document. It treats each word as an
independent entity and focuses only on the frequency
of occurrence.

Word2Vec: Word2Vec leverages the distributional
hypothesis, which suggests that words with similar
meanings tend to appear in similar contexts. Word2Vec
captures word embeddings that encode semantic
relationships, allowing for better understanding of
word meanings and similarities based on context.

Vector size

BoW: The size of the BoW vector is equal to the size
of the vocabulary in the corpus. Each word in the
vocabulary is represented by a unique index, and the
vector elements indicate the frequency of occurrence.

CHAPTER 2 NLP THROUGH THE AGES

Word2Vec: Word2Vec generates dense word
embeddings, typically with a fixed size (e.g., 100, 300
dimensions). The size of the word embeddings is
generally much smaller compared to the BoW vector,
which can be useful for memory and computational
efficiency.

Order of words

BoW: BoW ignores the order of words in the document,
as it treats each document as a collection of individual
words and their frequencies. The order of words is lost
in the BoW representation.

Word2Vec: Word2Vec considers the order of words
in the context window during training. It learns word
embeddings by predicting the likelihood of words
appearing in the context of other words, which
allows it to capture word meanings based on the
surrounding words.

Application

BoW: BoW is commonly used for text classification,
sentiment analysis, and information retrieval tasks. It
is a simple and effective representation for these tasks,
especially when the sequence of words is not crucial.

Word2Vec: Word2Vec is more suitable for tasks that
require understanding word semantics and capturing
word relationships, such as word similarity, word
analogies, and language generation tasks.

33

CHAPTER 2 NLP THROUGH THE AGES

In summary, bag-of-words is a straightforward and interpretable
method that represents text using word frequencies but lacks contextual
understanding. Word2Vec, on the other hand, generates dense word
embeddings that capture semantic meaning and relationships between
words based on context, making it more suitable for various advanced
NLP tasks.

Language Modeling

In natural language processing, language models are a class of models that
are designed to predict the likelihood of a sequence of words occurring in
alanguage. In other words, A language model is a probability distribution
over sequences of words. These models learn the statistical properties and
patterns present in a given language to generate new text or evaluate the
likelihood of a sentence.

Language models play a crucial role in various NLP tasks, such as
machine translation, speech recognition, text generation, sentiment
analysis, and more. They are fundamental to many advanced NLP
applications such as LLMs and have contributed significantly to the
success of modern NLP techniques.

Based on the tasks they perform language models can be broadly
classify into two categories:

o Generative language models: These models are
designed to generate new text based on the patterns
they have learned from the training data. They take a
seed input (known as a prompt or starting sequence)
and then generate the next word or sequence of words
one step at a time. Generative language models can
be used for tasks like text generation, story generation,
and poetry writing.

34

CHAPTER 2 NLP THROUGH THE AGES

Predictive language models: These models are used

to predict the likelihood of the next word in a given
context. They take the previous words as input and
predict the most probable next word based on the
training data. Predictive language models are widely
used in tasks like autocomplete, next-word prediction,

and machine translation.

Based on their approach, there are primarily two types of

language models:

N-gram language models: N-gram language models
are the simplest form. They predict the probability

of a word based on the occurrence of the previous
(n-1) words in the text. The “n” in n-gram refers to

the number of words in the sequence. For example,

a 2-gram (bigram) language model predicts the
probability of a word based on the previous word, and
a 3-gram (trigram) language model considers the two
preceding words.

Example (2-gram model):
Sentence: “I love to”
Probability of “to” given “Ilove”: P(to | I love)

N-gram models have limitations in capturing long-
range dependencies and contextual information, as they
consider only a fixed number of preceding words.

Neural language models: Neural language models, also
known as neural network-based language models, are
more advanced and widely used in modern NLP. These
models use deep learning techniques to learn word
representations and capture complex relationships
between words in a more flexible manner.

35

CHAPTER 2 NLP THROUGH THE AGES

e Recurrent neural networks (RNNs): RNNs are one
of the earliest neural language models that can
consider variable-length context. They use a recurrent
architecture to process words sequentially while
maintaining a hidden state that captures the context.

e Long short-term memory (LSTM) and gated recurrent
units (GRUs): These are variations of RNNs designed to
address the vanishing gradient problem, allowing them
to capture long-range dependencies more effectively.

o Transformers: Transformers have revolutionized the
field of NLP and are the basis for many state-of-the-art
language models. Transformers utilize self-attention
mechanisms to process words in parallel, capturing
both short and long-range dependencies efficiently.
LLMs like Generative Pre-trained Transformer (GPT)
and Bidirectional Encoder Representations from
Transformers (BERT) are examples of successful
transformer-based language models.

Let us investigate each of the approaches to language models.

N-Gram Language Models

N-gram language models are a class of statistical language models used in
NLP to predict the likelihood of a sequence of words (n-grams) occurring
in a given text. These models are based on the principle of conditional
probability, where the probability of a word is estimated based on the
context of the preceding words.

36

CHAPTER 2 NLP THROUGH THE AGES

In an N-gram language model, an “N-gram” refers to a contiguous
sequence of N words from a text. For example:

e Unigram (1-gram): Single words in isolation
o Bigram (2-gram): Pairs of consecutive words
o Trigram (3-gram): Triplets of consecutive words
e N-gram: A sequence of N consecutive words

The primary idea behind N-gram language models is to approximate
the probability of a word given its N-1 preceding words, as shown by the
following formula:

Pwi | wi, w2, ..., w{i-1}) =~ Count(w _{i-N+1}, w _{i-N+2},
ceey W {i-1}, w i) / Count(w_{i-N+1}, w_{i-N+2}, ..., w {i-1})
where:
e P(wi| w1, w2, ..., w{i-1}) isthe probability
of word w_i given the context of the preceding words
Wi, w2, ..., w{i-1}.
o Count(w {i-N+1}, w {i-N+2}, ..., w {i-1}, w i)

is the count of the N-gram (sequence) w_{i-N+1}, w_
{i-N+2}, ..., w {i-1}, w_iin the training data.

o Count(w {i-N+1}, w_{i-N+2}, ..., w {i-1})isthe
count of the (N-1)-gram (sequence)w_{i-N+1}, w_{i-
N+2}, ..., w_{i-1}inthe training data.

In practice, to compute these probabilities, a large corpus of text
is used as the training data. The model builds a frequency table of all
observed N-grams in the training data, and the probabilities are estimated
by dividing the count of the N-gram by the count of its context.

37

CHAPTER 2 NLP THROUGH THE AGES

The main steps in building and using an N-gram language model are

as follows:

1. Collect and preprocess a large corpus of text for

training.
2. Tokenize the text into words or subwords.

3. Build a frequency table of N-grams and their counts
in the training data.

4. Estimate the probabilities of N-grams using the
frequency table.

5. Use the N-gram probabilities to predict the next
word in a given context or to generate new text.

Let us take an example for building an n-gram language model using
lyrics from the song “Imagine” by John Lennon:

"Imagine there's no heaven
It's easy if you try

No hell below us

Above us only sky

Imagine all the people
Living for today

Ah..."

e Step I: Preprocess and tokenize

imagine, there's, no, heaven
it's, easy, if, you, try

no, hell, below, us

above, us, only, sky
imagine, all, the, people
living, for, today

ah

38

CHAPTER 2 NLP THROUGH THE AGES
Step 2: Building the N-grams

Here, bigrams (2-grams) are considered for
simplicity.

["imagine", "there's
"heaven"]

], ["there's", "no"], ["no",
1tlsll’ leasyll]) [lleasyll, Ili_Fll]’ [Ili_Fll) Ilyou"]’
you", "try"]

Ilnoll’ Ilhellll], [Ilhellll, Ilbelowll],

"belowﬂ’ "uS"]

above s "uS"]) ["uS", uonlyu]’ ["Only") "Sky"]
Ilimaginell, Ilallll], [llallll, Ilthell], [Ilthell,

[ulivingn’ "fOI"], ["fOI", "today"]

Step 3: Calculating the probabilities

We can do this by counting the occurrences of
each bigram.

"imagine", "there's"]: 2 times

[

["there's", "no"]: 1 time
["no", "heaven"]: 1 time
["it's", "easy"]: 1 time
["easy", "if"]: 1 time
["1f", "you"]: 1 time
["you", "try"]: 1 time
["no", "hell"]: 1 time
["hell", "below"]: 1 time
["below", "us"]: 1 time

[above", "us"]: 1 time

[

[

0_3_3‘<

us", "only"]: 1 time
only", "sky"]: 1 time

39

CHAPTER 2

NLP THROUGH THE AGES

["imagine", "all"]: 1 time
["all", "the"]: 1 time
["the", "people"]: 1 time
["living", "for"]: 1 time
["for", "today"]: 1 time

Then calculate the probability of each based on the

occurrences.
P("imagine" | "there's"): 2/2 = 1.0
P("there's" | "no"): 1/1 = 1.0
P("no" | "heaven"): 1/1 = 1.0
P("it's" | "easy"): 1/1 = 1.0

Once the bigram probabilities are calculated, they can be used to

generate new text.

For example, start with the seed phrase “Imagine there’s.”

P("imagine" | "there's") = 1.0

Predicted next word: "no
New phrase: "Imagine there's no"

New Seed phrase: "Imagine there's no"
P("there's" | "no") = 1.0

Predicted next word: "heaven"

New phrase: "Imagine there's no heaven"

New Seed phrase: "Imagine there's no heaven"
P("no" | "heaven") = 1.0

Predicted next word: "it's"

New phrase: "Imagine there's no heaven it's"

40

CHAPTER 2 NLP THROUGH THE AGES

We can continue running the new phrase through the model again and
again to get more and more predictions. In practice, higher-order n-grams
(e.g., trigrams or higher) may be used to improve text generation quality.
This example illustrates just the basic concept of building an n-gram
language model using song lyrics as input.

Handling Unknown N-Grams

In the previous example, all bigrams have occurred in the training data,
but in a real-world scenario, you may encounter unseen bigrams. To
handle this, you can use techniques such as smoothing to assign a small
probability to unseen bigrams.

Smoothing, also known as add-one smoothing or Laplace smoothing,
is a technique used to address the issue of zero probabilities for unseen
n-grams in language modeling. In an n-gram language model, when an
n-gram is encountered in the test data that was not present in the training
data, the probability of that n-gram becomes zero in the model. This can
lead to unreliable and unrealistic predictions when generating text.

Smoothing addresses this problem by adding a small constant
value (usually 1) to the count of all n-grams in the training data before
calculating their probabilities. This ensures that even unseen n-grams
receive a nonzero probability, and it prevents the model from assigning
absolute zero probabilities to any possible sequence of words.

To illustrate smoothing, let us look back at the previous example:

"imagine", "there's"]: 2 times

[

["there's", "no"]: 1 time
["no", "heaven"]: 1 time
[

[

'1t's", "easy"]: 1 time

easy", "if"]: 1 time

41

CHAPTER 2 NLP THROUGH THE AGES
Here it is without smoothing:

P("there's" | "no") = 1/1 = 1.0
P("no" | "heaven") = 1/1 = 1.0

In this case, the probabilities for “there’s” given “no” and “no” given
“heaven” are 1.0, which seems reasonable based on the training data.
However, if we encounter a new bigram in the test data, such as [“no’,
“worries”], the probability for this unseen bigram will be zero since it was
not in the training data.

Let’s look at it with smoothing (add-one smoothing).

Apply add-one smoothing by adding 1 to all bigram counts:

["imagine", "there's"]: 3 times (original count + 1)
["there's", "no"]: 2 times (original count + 1)

["no", "heaven"]: 2 times (original count + 1)

["it's", "easy"]: 2 times (original count + 1)

["easy , "if"]: 2 times (original count + 1)

["no", "worries"]: 1 time (unseen bigram, now has a
non-zero count)

P("there's" | "no") = 2/2 = 1.0

P("no" | "heaven") = 2/2 = 1.0

P("no" | "worries") = 1/2 = 0.5 (with add-one smoothing)

By applying add-one smoothing, the probabilities for unseen n-grams
are no longer zero, and they receive a small probability value. This makes
the model more robust and prevents it from being overly confident about
the probabilities of unseen n-grams.

Smoothing is a widely used technique in language modeling,
especially with small training datasets or when dealing with higher-
order n-grams, where the likelihood of unseen n-grams becomes more
prevalent.

42

CHAPTER 2 NLP THROUGH THE AGES

N-gram language models are relatively simple to implement and
can provide reasonable results, especially for lower-order N-grams (e.g.,
bigrams or trigrams). However, they have limitations when it comes
to capturing long-range dependencies and understanding the context
beyond a fixed window of N words. To address these limitations, more
advanced models like neural language models have been developed,
which can capture longer dependencies and generate more coherent
and contextually accurate text. Nonetheless, N-gram models remain an
essential concept in NLP and have been used in various applications,
including text generation, spell checking, speech recognition, and
machine translation.

Neural Language Models

Neural language models are a class of advanced language models used
in NLP that leverage neural networks to learn the statistical patterns and
relationships between words in a large corpus of text. Unlike traditional
N-gram models that have limited context and struggle with capturing long-
range dependencies, neural language models can process sequences of
words with variable length, making them more effective in understanding
the context and generating coherent and contextually relevant text.

Neural language models are typically based on two main architectures:
recurrent neural networks and transformer-based models.

Recurrent Neural Networks

RNNs are a type of neural network designed to handle sequential data,
making them well-suited for processing sequences of words in natural
language. RNNs have a recurrent structure that allows them to maintain
hidden states, capturing information about the context of previous words.
This context is crucial in language modeling, where the meaning of a

43

CHAPTER 2 NLP THROUGH THE AGES

word often depends on the words that precede it. One of the most widely
used RNN variants in language modeling is the long short-term memory
(LSTM) network, which is designed to address the vanishing gradient
problem and handle long-range dependencies.

Transformer-Based Models

Transformers are a revolutionary architecture introduced in the paper
“Attention Is All You Need” by Vaswani et al. in 2017. Transformers employ
self-attention mechanisms to capture dependencies between all words

in a sequence simultaneously, enabling them to process long-range
dependencies more effectively than RNNs. The transformer architecture
has become the foundation for many state-of-the-art language models,
including the widely known BERT and GPT models.

The training process for neural language models typically involves
feeding the model with sequences of words and training it to predict the
next word in a sequence given the preceding words. The model’s weights
are updated during training using backpropagation and gradient descent
to minimize the prediction error. The trained model can then be used
for various NLP tasks, including text generation, machine translation,
sentiment analysis, question-answering, and more.

Recurrent neural networks (RNNs) are bi-directional artificial neural
networks, allowing the output from some nodes to affect subsequent
input to the same nodes. Their ability to use internal state (memory) to
process arbitrary sequences of inputs makes them particularly well-suited
for sequential data, making them effective in capturing the temporal
dependencies and context in natural language.

The main idea behind RNNs is that they maintain hidden states, which
act as memory, to capture information from previous time steps and
pass it along to the next time step. This property enables RNNs to handle
sequences of variable length and maintain context as they process each
word in a sentence.

44

CHAPTER 2 NLP THROUGH THE AGES

Typical workings of an RNN-based language model include the

following:

Word embeddings: The word embeddings used for
RNNs must capture the semantic meaning of words
and help the model understand the relationships
between different words. Therefore, methods like
Word2Vec are used.

Sequence processing: The word embeddings are fed into
the RNN one word at a time in a sequential manner.

At each time step, the RNN takes the current word
embedding and the hidden state from the previous
time step as inputs and produces an output and an
updated hidden state.

Hidden states: The hidden state at each time step is
updated based on the current word embedding and the
previous hidden state, allowing the RNN to remember
relevant information from previous words.

Training: During training, the RNN is fed with
sequences of words from a large corpus of text, and it is
trained to minimize the prediction error between the
predicted next word and the actual next word in the
sequence. The training process uses backpropagation
and gradient descent to update the model’s parameters
and optimize its performance.

Prediction: The output at each time step can be used to
predict the probability distribution over the next word
in the sequence. By using the output and hidden state
at each time step, the model can predict the next word
given the preceding words.

45

CHAPTER 2 NLP THROUGH THE AGES

RNN-based language models have the advantage of capturing long-
range dependencies in sequences, making them effective in understanding
the context of words in a sentence. However, they also suffer from some
limitations, such as the vanishing gradient problem, which hinders their
ability to capture long-term dependencies effectively.

The vanishing gradient problem is a challenge that arises during the
training of RNNSs, especially those with many layers or long sequences. It
occurs due to the nature of the backpropagation algorithm, which is used
to update the model’s weights during training.

In RNNs, the same set of weights is shared across all time steps,
allowing the model to maintain memory of past information and capture
sequential dependencies. When processing long sequences, however,
the gradients (partial derivatives of the loss with respect to the model’s
parameters) can become extremely small as they are repeatedly multiplied
together during backpropagation.

As the gradients become very small, the updates to the model’s weights
during training become negligible. Consequently, the RNN struggles to
learn long-term dependencies and may fail to capture relevant information
from the distant past. This results in the RNN being unable to retain
meaningful context beyond a few time steps, limiting its effectiveness in
capturing long-range dependencies in the input sequences.

The vanishing gradient problem is particularly problematic in
deep RNNs (those with many layers) or when processing sequences of
considerable length. When the gradients vanish, the model’s learning
process slows down significantly, and it may even get stuck in a state where
it fails to make any meaningful progress.

To address this issue, various RNN variants with specialized
architectures have been introduced, such as the long short-term memory (LSTM)
and gated recurrent unit (GRU).

LSTM and GRU architectures include gating mechanisms that
selectively control the flow of information through the network. These
gating mechanisms help RNNs retain and update relevant information

46

CHAPTER 2 NLP THROUGH THE AGES

over longer time scales, effectively mitigating the vanishing gradient
problem and improving the model’s ability to learn long-term
dependencies in sequential data.

LSTM-based language models are a variant of RNNs. LSTMs use gating
mechanisms to selectively retain and update information in their hidden
states, making them more capable of maintaining relevant context over
longer sequences.

The basic concepts of LSTM-based language models are as follows:
o LSTM structure:

The LSTM cell is the fundamental building block of

the LSTM-based language model. It consists of several
components, including the input gate, forget gate, output
gate, and cell state.

o Cell state and hidden state:

The LSTM maintains two primary states: the cell state
(often denoted as ‘c’) and the hidden state (often denoted
as ‘h’).

The cell state is responsible for capturing long-term

dependencies in the input sequence. It acts as a memory
that stores relevant information from previous time steps.

The hidden state contains the relevant context for the
current time step and is used for making predictions.

e Gating mechanisms:

LSTMs use gating mechanisms to control the flow of
information through the cell state. These gates are
sigmoid-activated neural networks that produce values
between 0 and 1.

47

CHAPTER 2

48

NLP THROUGH THE AGES

The input gate determines how much of the new
information should be added to the cell state at the
current time step.

The forget gate determines how much of the previous cell
state should be retained and carried over to the current
time step.

The output gate determines how much of the cell
state should be exposed to the next time step as the
hidden state.

LSTM computation:

At each time step, the LSTM cell takes the current word
embedding and the previous hidden state as inputs.

It then computes the values of the input gate, forget gate,
and output gate using sigmoid activation functions based
on the inputs and the previous hidden state.

The cell state is updated by combining the output
of the forget gate (to forget irrelevant information)
and the output of the input gate (to add new relevant

information).

The updated cell state is then used to compute the new
hidden state, which becomes the output of the LSTM cell
at the current time step.

The LSTM cell’s output (hidden state) is then used to
predict the probability distribution over the next word in
the sequence.

CHAPTER 2 NLP THROUGH THE AGES

Training and generation:

During training, the LSTM-based language model is

fed with sequences of words from a large corpus of text
and is trained to minimize the prediction error between
the predicted next word and the actual next word in the
sequence.

Once the LSTM-based language model is trained, it can
be used to generate new text or complete existing text by
predicting the next word given a seed input, similar to the
standard RNN-based language models.

LSTM-based language models have shown significant
improvements in handling long-range dependencies and
capturing context in sequential data. They have become a
standard architecture in various NLP tasks.

GRU-based language models are another variant of
RNNs that address the vanishing gradient problem.
GRUs use gating mechanisms to selectively control the
flow of information through the hidden state, making
them effective in retaining relevant context over longer

sequences.

The following are the basic concepts of GRU-based language models:

GRU structure:

The GRU cell is the fundamental building block of the
GRU-based language model. It is similar to the LSTM cell
but has a simplified structure with fewer parameters.

The GRU cell consists of several components, including
the reset gate and update gate.

49

CHAPTER 2

50

NLP THROUGH THE AGES

Hidden state:

Similar to LSTM-based language models, the GRU
maintains a hidden state (often denoted as ‘h’a).

The hidden state contains the relevant context for the
current time step and is used for making predictions.

Gating mechanisms:

GRUs use two gating mechanisms: the reset gate and the
update gate. These gates are sigmoid-activated neural
networks that produce values between 0 and 1.

The reset gate determines how much of the previous
hidden state should be forgotten or reset, allowing the
GRU to selectively update the hidden state based on the
current input and the previous hidden state.

The update gate determines how much of the new
information should be retained and merged into the
hidden state.

GRU computation:

At each time step, the GRU cell takes the current word
embedding and the previous hidden state as inputs.

It computes the values of the reset gate and update gate
using sigmoid activation functions based on the inputs
and the previous hidden state.

The GRU then computes the candidate activation,
which is a new proposed hidden state that incorporates
information from the current input and the reset

gate’s output.

CHAPTER 2 NLP THROUGH THE AGES

The candidate activation is combined with the previous
hidden state, weighted by the update gate’s output, to
compute the new hidden state at the current time step.

The GRU cell’s output (hidden state) is then used to
predict the probability distribution over the next word in
the sequence.

Training and generation:

During training, the GRU-based language model is fed
with sequences of words from a large corpus of text and
is trained to minimize the prediction error between the
predicted next word and the actual next word in the
sequence.

Once the GRU-based language model is trained, it can
be used to generate new text or complete existing text by
predicting the next word given a seed input, similar to
other RNN-based language models.

GRU-based language models have shown excellent performance in

capturing long-range dependencies and context in sequential data. They

have become popular alternatives to LSTM-based models due to their

simpler architecture and efficient training process.
While they share some similarities, LSTMs and GRUs have key
differences in their architecture and functionality:

Architecture complexity

LSTM: LSTM has a more complex architecture
compared to GRU. It includes three gating
mechanisms: the input gate, forget gate, and output
gate. These gates control the flow of information and
decide what to remember, forget, or output at each
time step.

51

CHAPTER 2 NLP THROUGH THE AGES

e GRU: GRU has a simpler architecture compared to
LSTM. It includes only two gating mechanisms: the
reset gate and the update gate. These gates allow the
GRU to selectively update and retain information in the
hidden state.

Number of parameters

e LSTM: Because of its more complex architecture with
three gating mechanisms, LSTM generally has more
parameters compared to GRU.

e GRU: GRU has fewer parameters compared to
LSTM due to its simpler architecture with two gating
mechanisms.

Gate interactions

e LSTM:In LSTM, the input gate, forget gate, and output
gate interact with each other separately, allowing the
model to independently control the flow of information
through each gate.

¢ GRU: In GRU, the reset gate and update gate interact
with each other in a more integrated manner. The
update gate acts as a combination of the input gate and
forget gate in LSTM, controlling both updating and
forgetting.

Handling long-term dependencies

e LSTM:LSTM is explicitly designed to capture long-term
dependencies in sequential data. Its architecture with
the input, forget, and output gates allows it to retain
relevant information in the cell state for longer periods.

52

CHAPTER 2 NLP THROUGH THE AGES

e GRU: GRU is also effective in handling long-term
dependencies but has a simpler gating mechanism,
which may make it more efficient and easier to train in

some cases.
Computation efficiency

e GRU: Because of its simpler architecture and fewer
parameters, GRU may be computationally more
efficient compared to LSTM. This makes GRU a
preferred choice in scenarios where computational

resources are limited.

LSTM and GRU are both effective in addressing the vanishing gradient
problem and capturing long-term dependencies in sequential data.
LSTM'’s complex architecture with three gating mechanisms provides a
more fine-grained control over information flow, making it suitable for
tasks requiring precise memory management. On the other hand, GRU'’s
simpler architecture and fewer parameters make it an efficient alternative
to LSTM, especially when computational resources are limited. The choice
between LSTM and GRU depends on the specific task, available resources,
and the trade-off between complexity and performance.

Summary

In this chapter, we discussed the evolution of natural language processing
and how different approaches—linguistic-based, statistical, machine
learning-based—were applied for language modeling over the years. We
also talked about some of the core concepts of NLP such as tokenization,
word embeddings, and n-grams. Finally, we looked at RNN-based
language models and the advantages they provide.

53

CHAPTER 2 NLP THROUGH THE AGES

While RNN-based language models have made significant
contributions to NLP tasks, they have been partly surpassed by more
recent architectures like transformers. Transformers, especially those
used in models like BERT and GPT, have shown superior performance
in capturing long-range dependencies and have become the de facto
standard for many NLP tasks.

Transformers are the topic of our next chapter.

54

CHAPTER 3

Transformers

In 2017, Ashish Vaswani et al. from Google Brain and Google Research
proposed a revolutionary new architecture of neural networks for natural
language processing (NLP) and other sequence-to-sequence tasks in their
“Attention Is All You Need” paper. In this paper, Vaswani et al. presented

a new approach that relies heavily on attention mechanisms to process
sequences, allowing for parallelization, efficient training, and the ability to
capture long-range dependencies in data.

This new architecture proved extremely effective and efficient to train,
resulting in transformers having effectively replaced other approaches,
such as RNNs and LSTMs, after their introduction.

At the core of the transformer architecture, and the key to its
efficiency, is the attention mechanism. Therefore, let us look into how
attention works.

Paying Attention

In terms of neural networks and deep learning, attention is a mechanism
that allows a model to focus on—or “pay attention to”—specific parts of
the input data while processing it. It is inspired by the human cognitive
process of selectively concentrating on certain elements of sensory
information while ignoring others. Attention has proven to be a powerful
tool in various tasks, particularly in NLP and computer vision.

© Thimira Amaratunga 2023 55
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_3

https://doi.org/10.1007/979-8-8688-0017-7_3

CHAPTER 3 TRANSFORMERS

The initial idea of attention mechanisms dates back to the early
machine learning concepts of the 1990s and has its origins in cognitive
psychology and neuroscience, where researchers studied how humans
selectively focus on specific information while processing sensory input
and how that behavior can be utilized in machine learning models.

One of the notable early works that utilized attention mechanisms
was the work “Neural Turing Machine” by Graves et al. (2014), which
introduced a differentiable memory addressing mechanism that allows
neural networks to access external memory using attention. An application
of attention used with computer vision was shown by Xu et al. in “Show,
Attend and Tell: Neural Image Caption Generation with Visual Attention”
in 2015, which used attention to improve image captioning by focusing on
different parts of an image while generating each word of the caption.

Attention mechanisms gained prominence with the development
of sequence-to-sequence models. In tasks such as machine translation,
the model needs to capture long-range dependencies between the
input and output sequences. “Neural Machine Translation by Jointly
Learning to Align and Translate” by Bahdanau et al. (2015) introduced the
attention mechanism in the context of machine translation. This attention
mechanism allowed the model to align different parts of the source and
target sentences.

In 2017, Vaswani et al., in their “Attention Is All You Need” paper,
further improved the concept by introducing self-attention, scaled dot
product, and multihead attention mechanisms.

The attention mechanism works by enabling the model to focus on
the most relevant information while generating the output by assigning
different weights to different parts of the input sequence. Figure 3-1 shows
a visualization of an example of learned dependencies from an attention
module of a transformer model.

56

CHAPTER 3 TRANSFORMERS

=
pel
s © o
s 8 8z £ S & a
= — 7] 0
e 2 _ > .= - o o =) © 0 = O &
£ BT 0 0 O S wac o @ = £ o 0 = >a w o
F 13T coao .afaoavo 2 S9TTFGE .EEOS .V VWV
/.
|
/ |
| |
i .
] . t |
0 TS L O TS HED O WL R OODD - BC A A
3T 208 BZ=8388 £TEz5-=< £Es wo
= 3 D = = 3 = = = B = Oa
= 8 S % 2 g wy
= E iy
o
w

Figure 3-1. A visualization of an example learned dependencies from
an attention module of a transformer model. Source: “Attention Is All
You Need” by Vaswani et al.

These long-distance relationships learned during the training phase
allow the model to focus on what is important in a sequence as well as
predict the next element in a sequence. Figure 3-2 shows a visualization of
how next-word dependencies can be derived.

57

CHAPTER 3 TRANSFORMERS

It

It

%)
2
5 5
> & £ = 0
g 8E 3 e £ L% = 4
= = E = Q
© £
05 5 22383828808, £85¢€ 9
:EQ‘E ml-EO(U(U %EgmgthhoE w
» E S oS wmESACocac @ EESES >saET LV
W MwEE o =% Cc 000 W O OO C s oW = - A
"_E-EE ":OSE:’Q%BUOCEOOC‘DE: %)
= o= 5 @ W -~ g EO T ¥ = = (5]
@ 2 c 2 c 0 R © 5] = o
@ o E © £ = > O : w
E EE = 2 s BV
o
< g 5
C) -

Figure 3-2. A visualization of how next-word dependencies can be
derived. Source: “Attention Is All You Need” by Vaswani et al.

The typical attention mechanism has three main components: the

queries (Q), keys (K), and values (V).

58

Query (Q)

o The query vector represents the current element for
which attention is being computed.

o [Itisalearned vector that captures the properties or
features of the current element.

Key (K)

o The key vectors represent other elements in the

sequence.

o They are also learned vectors that encode the
properties or features of these other elements.

<pad=>

<pad>

CHAPTER 3 TRANSFORMERS

Value (V)

The value vectors hold information or content
associated with each element in the sequence.

They are used to compute the weighted sum of values
based on attention scores.

To build the attention scores, the following functions are applied to the

components.

Attention scores

Attention scores quantify the relevance or similarity
between the Query vector and the Key vectors.

They are typically computed using the dot product
between the Query and Key vectors.

Softmax function

The softmax function is applied to the attention scores
to obtain attention weights.

The softmax operation converts the scores into a
probability distribution, ensuring that the weights sum
up to 1.

Weighted sum (context vector)

The attention weights obtained from the softmax
operation are used to compute a weighted sum of the
Value vectors.

The weighted sum is the context vector, which captures
the contribution of each element to the current

element’s representation.

59

CHAPTER 3 TRANSFORMERS
Figure 3-3 illustrates a simplified view of this workflow.

V2 V3 V4 WValues

b hJ

V1

Multiply]) o
and ® o= ® = ® L _) Atention Value
Sum ‘ 4

I —

al a? a3 ad Weights
e = e —ry- > 2nd Step
Softman) i .
51 52 53 s4 Similarity
o _.-._--...-] .. '. e
— L — :)
k1 k2 k3 k4 Keys

Figure 3-3. The attention mechanism workflow

These components work together to compute attention scores that
determine how much each element contributes to the representation of
the current element. The context vector obtained through the weighted
sum of Value vectors reflects the importance of different elements in the
sequence relative to the current element.

To better understand the attention mechanism workflow, let us look at
a simplified code example of how attention scores are calculated. We will
use Python for this.

We will need Numpy and Scipy libraries in Python for this.

import numpy as np

from numpy import array

from numpy import random

from scipy.special import softmax

60

CHAPTER 3 TRANSFORMERS

We will start by defining the embeddings of four words. In practice,
these word embeddings are calculated. But for simplicity we will define
them manually here.

word 1 em = array([1, 1, 0])
word 2 em = array([o0, 1, 1])
word 3 em = array([1, 0, 1])
word 4 em = array([o0, 0, 1])

We will stack these together to get the word matrix.
words = np.stack((word 1 em, word 2 em, word 3 _em, word 4 em))

print(words)

Next, we will initialize the weight matrices for queries, keys, and values.
The word embeddings will be multiplied with these to generate the query,
key, and value matrices in the next step. In practice, these weights will be
learned by the model during training. Here we are initializing them with
random values for simplicity.

W Q = random.randint(3, size=(3, 3))
W K = random.randint(3, size=(3, 3))
W V = random.randint(3, size=(3, 3))

Now we can generate the query, key, and value matrices using matrix

multiplication.

Q = words @ W Q
K = words @ W K
V = words @ W_V

61

CHAPTER 3 TRANSFORMERS

Note The @ operator is used for matrix multiplication in Python. It
was introduced in Python 3.5.

We then calculate the score values for the queries against all the key
vectors, again using matrix multiplication.

scores = Q @ K.transpose()

The score values are then passed to the softmax function to calculate
the weight values. Typically, at this step, the score values are divided by
the square root of their dimensionality before being passed to the softmax
function. This is done to overcome the vanishing gradient problem. This
approach is known as the scaled dot product. We will discuss it in detail in
the next section.

weights = softmax(scores / K.shape[1] ** 0.5, axis=1)

Finally, the attention values for the words can be calculated using
these weights.

attention = weights @ V
print(attention)

Output:

[[3.11697171 1.70806649 1.86853077]
[2.97681807 1.62234515 1.91717725]
[2.98420993 1.74276532 1.94358637]
[2.59605139 1.68473833 2.12315889]]

The complete code for this example looks like this:

import numpy as np

from numpy import array

from numpy import random

from scipy.special import softmax

62

CHAPTER 3 TRANSFORMERS

setting the seed for the random functions, allowing us to
reproduce the values
random.seed(101)

defining word embeddings of 4 words
word 1 em = array([1, 1, 0])
word 2 em = array([o0, 1, 1])
word 3_em = array([1, 0, 1])
word 4 em = array([0, 0, 1])

stacking all the words to get a single word matrix
words = np.stack((word 1 em, word 2 em, word 3 _em, word 4 em))

print(words)

randomly initialize the weight matrices for queries, keys,
and values

W Q = random.randint(3, size=(3, 3))
W K = random.randint(3, size=(3, 3))
W V = random.randint(3, size=(3, 3))

generating the query, key, and value matrices
Q = words @ W Q
K = words @ W K
V = words @ W_V

E=

calculating the scores for the queries against all
key vectors
scores = Q @ K.transpose()

computing the weights using softmax operation
weights = softmax(scores / K.shape[1] ** 0.5, axis=1)

computing the attention by a weighted sum of the
value vectors

63

CHAPTER 3 TRANSFORMERS
attention = weights @ V
print(attention)

The attention mechanism enables the model to capture relationships
and dependencies between elements and is a fundamental building block
in sequence modeling tasks.

The Transformer Architecture

The paper “Attention Is All You Need” explains that while recurrent neural
network (RNN) architectures such as long short-term memory (LSTM)
and gated recurrent networks (GRN) have firmly established at the time
as the de facto approaches for sequence modeling tasks such as language
modeling and machine translation, progress to push their capabilities
further has been slow due to some fundamental limitations of such
architectures. RNN-based models have limited parallelization options
because they naturally require sequential computing.

The transformer architecture overcomes this limitation by forgoing
any recurrent components and instead relying entirely on attention
mechanisms. ConvS2S and ByteNet models, which were used for
sequence-to-sequence modeling prior to transformers, require an
increasing number of operations to calculate long-range dependencies as
the distance between the elements increases. The number of operations
in ConvS2S increases linearly and logarithmically in ByteNet with the
distance. In transformers, with self-attention, this can be reduced to a
constant number of operations.

Self-attention, also known as intra-attention, is a generalized version
of traditional attention mechanisms that relate different positions of a
single sequence to build a representation of the sequence. By using self-
attention, the transformers architecture is able to both parallelize the

operations as well as improve the performance of single operations.

64

CHAPTER 3 TRANSFORMERS

Figure 3-4 shows the architecture of a transformer.

Output
Probabilities
s ™
Add & Norm
Feed
Forward
e ™\ Add & Norm
r—>— :
Add & Norm Viali-Head
Feed Attention
Forward ') Nx
| —
Nix Add & Norm
(—>-| Add & Norm | e
Multi-Head Multi-Head
Attention Attention
L L
—_— J \. '
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 3-4. The transformer architecture

The following are the components of the transformer architecture:

o Tokenizers, which convert text into tokens

o Embedding layers, which convert tokens into

semantically meaningful representations

65

CHAPTER 3 TRANSFORMERS

o Transformer layers, which carry out the reasoning
capabilities, and consist of attention and multilayer
perceptron (MLP) layers

The transformer layers can be of two types: encoder and decoder.
The original architecture of Vaswani et al. used both encoders and
decoders. Some later variations of the transformer model used one or the
other, such as generative pre-trained transformer(GPT) models, which

are decoder-only, while bidirectional encoder representations from
Transformers (BERT) models are encoder-only.

The Encoder

Transformers typically use byte pair encoding to tokenize the input. Unlike
many other NLP architectures that use traditional word embeddings
like Word2Vec or GloVe, transformer models are unique in using a
combination of token embeddings, positional encodings, and other
specialized embeddings (such as segment embeddings in BERT) to
effectively capture both content and sequential context. In more recent
variants of transformers (such as GPT-3 and beyond), the concept of
subword embeddings and byte pair embeddings has gained prominence.
These embeddings enable the model to handle out-of-vocabulary words
and provide a more fine-grained representation of words by breaking them
down into smaller units.

The encoder, shown in Figure 3-5, is a stack of N identical layers. In the
implementation of the original paper, this was set to 6 layers (N=6). Each of
these layers is composed of two sublayers, which are as follows:

o The firstis a multihead self-attention mechanism.

e The second is a fully connected feed-forward network
(multilayer perceptron) consisting of two linear

66

CHAPTER 3 TRANSFORMERS

transformations with rectified linear unit (ReLU)

activation in between.

Qutput
Probabilities

' ™

Feed
Forward

y E——
s | Add & Norm h
r—“* .
el B Multi-Head

Feed Attention

Forward)) Nx
_ 3
Add & Norm
Nx

y—bl Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
L At
— _ ——
Positional Positional
o ® @ :
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 3-5. The encoder

The N layers of a transformer encoder apply the same linear

transformations—with each layer employing different weight and bias
parameters—to all the words in the input sequence. Each of the two

CHAPTER 3 TRANSFORMERS

sublayers has a residual connection around them and is succeeded by a
normalization layer.

The encoder’s main goal is to capture relevant information from the
input sequence and create a higher-level representation that can be used
by downstream tasks or passed to the decoder for generating output
sequences.

As the transformer architecture does not use recurrence, it inherently
cannot capture information about the relative positions of the words in the
sequence. To overcome this, the positional information has to be injected
into the input embeddings, which is done by introducing positional
encodings.

The positional encoding vectors have the same dimension as the
input embeddings. These are generated using sine and cosine functions of
different frequencies. Then, they are summed to the input embeddings in
order to inject the positional information.

The Decoder

The decoder, shown in Figure 3-6, is a stack of N identical layers. In the
implementation of the original paper, this was set to 6 layers (N=6). Each of
these layers is composed of three sublayers, which are as follows:

1. The first sublayer receives the output of the previous
decoder stack. It then augments it with positional
information and implements multihead self-
attention over it. The decoder is designed to attend
only to the preceding words, as opposed to the
encoder, which is designed to attend to all words
in the input sequence, disregarding their position
in the sequence. Thus, the prediction for a word
at a given position will only depend on the known
outputs for the words that come before it in the

68

CHAPTER 3 TRANSFORMERS

sequence. This is achieved by introducing a mask
over the values that are produced by the scaled
multiplication of the Q and K matrices (Query and
Key metrics we discussed in attention mechanisms)
in the multihead attention mechanism of the
decoder.

The second sublayer implements a multihead
self-attention mechanism similar to the one in the
encoder. This multihead mechanism of the decoder
receives the queries from the previous decoder
sublayer with the keys and values from the output of
the encoder, which allows the decoder to attend to
all the words in the input sequence.

The third sublayer implements a fully connected
feed-forward neural network, which is similar to the
one in the encoder.

69

CHAPTER 3

TRANSFORMERS
Qutput
Probabilities
Softmax
Linear
Add & Norm
Feed
Forward
g 1 =\ | Add & Norm |<_:
—{Add & Norm } Multi-Head
Feed Attention
Forward 7T 7 Nx
Nx Add & Norm
Add & Norm TEAGR
Multi-Head Multi-Head
Attention Attention
A P A g
— y, —
Positional Positional
£ : D @ :
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

Figure 3-6. The decoder

(shifted right)

Similar to the encoder, the sublayers on the decoder also have

residual connections around them. These sublayers are succeeded by a

normalization layer similar to the encoder, and positional encodings are

added to the input embeddings in the same way as the encoder.

The output embeddings of the decoder are offset by one position. This,

combined with the masking (in the masked multihead attention layer),

ensures that the predictions for any given position “will depend only on

the known outputs at positions less than i.”

70

CHAPTER 3 TRANSFORMERS

Along with the transformer architecture, the original paper introduced
two other important concepts: the scaled dot product and multihead
attention.

Scaled Dot Product

The scaled dot product was introduced to overcome the vanishing gradient
problem. As discussed in the previous chapter, the vanishing gradient
problem occurs when the gradient in backpropagation becomes so small
that it prevents the network from learning further.

Let us look at a simple code example to understand the scaled dot
product.

Note We are using Python code for the example.

Suppose we create a normal distribution that has a mean of 0 and a
standard deviation of 100.

a = np.random.normal(0,100,size=(10000))
If we plot the histogram of that distribution, it will look like Figure 3-7.

plt.hist(a)

71

CHAPTER 3 TRANSFORMERS

2500 -

2000 -

1500 -

1000 -

500 -

-400 -300 -200 -100 0 100 200 300 400

Figure 3-7. Histogram of a normal distribution that has a mean of 0
and a standard deviation of 100

If we plot the softmax of the distribution, it will look like Figure 3-8.

plt.plot(softmax(a))

0.6 -
0.5 -
0.4 -
0.3 -
0.2 -

0.1-

0.0 -

0 2000 4000 6000 8000 10000

Figure 3-8. Softmax output of the distribution

72

CHAPTER 3 TRANSFORMERS

Now, assume we use these softmax values for backpropagation. While
the peak values would backpropagate, the other values (which are near
zero) would get lost due to their significantly smaller values, resulting in a
vanishing gradient.

To overcome this, we can scale the original distribution to a standard
deviation of 1 (the original has a standard deviation of 100) by dividing it
by the square root of the dimentionality.

unit_a = a / 100

Plotting the histogram of the original and scaled distributions will look
like Figure 3-9.

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1l.hist(a)
ax2.hist(unit_a)

2500 -
2000 2000
1500 -
1000 -

1000 -

500 - 500 -

0- " 0 g v g v u i o- g g g g g ¥)
=400 =300 -200 -100 O 100 200 300 400 =4 -3 =2 -1 o 1 2 3 4

Figure 3-9. The normal and scaled distributions

The histograms are identical except for the scale.
If we now plot the softmax of the two distributions, it would look like
Figure 3-10.

fig, axs = plt.subplots(2, 2)
axs[0, 0].hist(a)
axs[0, 0].set title('Original Distribution")

73

CHAPTER 3

axs|[o,
axs[o,
axs[1,
axs[1,
axs[1,
axs[1,

2500 -

2000 -

1500 -

1000 -

500 -

o- " g g
=400 =300 =200 =100

0.6 -

0.5

0.4 -

0.3-

n0z-

0.1 -

0.0 -

1].hist(unit_a)

TRANSFORMERS

1].set title('Scaled Distribution')

0].plot(softmax(a))

0].set_title('Softmax of Original')

1].plot(softmax(unit_a))

1].set _title('Softmax of Scaled')

Original Distribution

0
Softmax of Original

100 200 300 400

0

2000

4000

6000

8000

10000

2500 -

2000 -

1500 -

1000 -

500 -

0.0025 -

0.0020 -

0.0015 -

0.0010 -

0.0005 -

0.0000 -

Scaled Distribution

4 -3 -3 4 0 1 2 3 4
Softmax of Scaled

0 2000 4000 6000 8000 10000

Figure 3-10. The normal and scaled distributions with their
softmax output

These scaled softmax values have a higher chance of backpropagating

properly and allowing the model to train successfully.

import numpy as np
import matplotlib.pyplot as plt

from scipy.special import softmax

74

The complete code for the previous example is as follows:

CHAPTER 3 TRANSFORMERS
from matplotlib import style
plt.style.use('ggplot")
a = np.random.normal(0,100,size=(10000))
plt.hist(a)
plt.plot(softmax(a))
unit a = a / 100
print(np.std(a))
print(np.std(unit_a))

plt.rcParams['figure.figsize'] = [12, 4]
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(a)

ax2.hist(unit_a)

plt.rcParams['figure.figsize'] = [12, 8]
fig, axs = plt.subplots(2, 2)

axs[0, 0].hist(a)

.set_title('Original Distribution")
.hist(unit_a)

.set_title('Scaled Distribution')
.plot(softmax(a))
.set_title('Softmax of Original')
.plot(softmax(unit_a))
.set_title('Softmax of Scaled")

o

QU
x
wn
o
-
=
—_— e e)) e e

Q
x
wn
o O
- e
= O

QU
x
%
[N
-
o

o]
x
(%]
Lo B e B e BN m B s B s B s |
=
-
o

=
-
=

axs[1, 1

In traditional attention modules, there are dot product and softmax
operations, making them susceptible to the vanishing gradient problem.
As shown, scaling the output of the dot product to have a standard
deviation of 1 makes the softmax output less susceptible to the vanishing
gradient problem. Figure 3-11 shows the steps of the scaled dot product.

75

CHAPTER 3 TRANSFORMERS

MatMul

Figure 3-11. Scaled dot product

The input of scaled dot product consists of queries and keys (with
dimension dk) and values (with dimension dv). The dot products will
be computed of the query with all keys, divided each by dk, and finally
applying a softmax function to obtain the weights on the values.

Multihead Attention

Instead of using a single attention mechanism multihead attention
mechanism linearly projects the queries, keys, and values h times and uses
a different learned projection for each of them. Single attention is then
applied to each of these h projections in parallel to produce h outputs.
These outputs are then concatenated and projected again to produce a
final result. Figure 3-12 shows the multihead attention mechanism.

76

CHAPTER 3 TRANSFORMERS

Concat

Scaled Dot-Product h
Attention

kil LA 1L
[L g
Linear Linear | Linear l]

V K Q

Figure 3-12. The multihead attention mechanism

The multihead attention mechanism allows the model to attend to
information from different representation subspaces at different positions,
which is not achievable from a single-head implementation. Figure 3-13
shows an example visualization of how two heads of the same layer have
learned different representations.

77

CHAPTER 3 TRANSFORMERS

c
o
= & "
s 9 S - = s @4
) -~ = o e o %) © é £ O ®
= = = o [= £ 0 Q2 .= >a W a
r—é;ggg-n@mﬁg.a.ﬁ.ﬂgg'ﬁE,EEo,vv
i L = - J
J 1 Fi
\ J
J L [_—
o = OB "= N T OE ' OO OO "€ >c A A
220809 i D = el = = £9 »w o
T =z > [} o 2 = S = T = 2
CATE % g T Iz 2 5 O
- g Oﬁ vg o w
153 o v
o
[=X
©
c
S
— © o
- 5] oB pod c AL
] o L2 3 = B 2 88
© = = > y = - o] - 7] " o ® = @
@ T 0 o 0 S g oc o2 = £ e R s 20 w a
= 2 £ i a S w2 r SR g B ak Ele i N
\ \ ’

o) = = = =0 e D O el oDy g Se YA A
gﬁ;gn% B-‘:.ggng £ Eaa,g E o 3 R
S = 2 = =
¢ & 8 & > ¢ g wé¢

= o v
o
o
©

Figure 3-13. Example visualization of how two heads of the same
layer have learned different representations. Source: “Attention Is All
You Need” by Vaswani et al.

With multihead attention, the total computational cost is closer to
a single-head attention with full dimensionality because of the reduced
dimensionality of each head. This improves the training efficiency
massively by allowing parallelism as well as improved efficiency in each
parallel path.

78

CHAPTER 3 TRANSFORMERS

Summary

With our understanding of the core concepts of NLP from the previous
chapter, we looked at the transformer architecture and attention
mechanism in this chapter. The attention mechanisms allowed language
models to focus on the important parts of the input sequence. The
transformer architecture took that concept further by focusing entirely on
attention mechanisms to overcome the limitations of RNN-based models.

The introduction of the transformer architecture revolutionized the
NLP field. The efficiency improvements introduced by it are directly
responsible for the emergence of large language models.

Large language models are the topic of our next chapter.

79

CHAPTER 4

What Makes LLMs
Large?

By now you should have a high-level understanding of the concepts of
natural language processing and how the transformer architecture and
attention mechanisms revolutionized the NLP field and how it changed
the way we look at language modeling. Now we are ready to step into our
main topic: large language models.

You might be wondering what makes a large language model. Is an
LLM the same as a transformer? And, more importantly, why do we call
them “large” language models?

Let’s find out.

What Makes a Transformer Model an LLM

You may see that in many instances of talking about LLMs that the terms
transformer model and large language model are used interchangeably.
However, there is a difference as well as a connection between
transformers and LLMs.

A transformer, as we learned in the previous chapter, specifically
refers to a type of neural network architecture that was introduced in the
Google Brain and Google Research paper “Attention Is All You Need”
by Vaswani et al. in 2017 (https://arxiv.org/abs/1706.03762). This

© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_4

https://doi.org/10.1007/979-8-8688-0017-7_4
https://arxiv.org/abs/1706.03762

CHAPTER 4 WHAT MAKES LLMS LARGE?

is the architecture that uses the attention mechanism and different
arrangements of encoder/decoder blocks for language modeling.

There are variations of the model with encoder-decoder, encoder-only,
or decoder-only in different implementations catering to different
requirements. The capabilities as well as the efficiency of the transformer
architecture has made it the basis for many large language models.

The term large language model generally refers to a language model
that has a large number of parameters and is trained on a massive dataset.
As mentioned, most large language models use some variation of the
transformer architecture. In terms of Al models, parameters are the
aspects of the model that are learned from the training data during the
training process. Typically, the larger the number of parameters, the more
the model can learn. Modern large language models can have hundreds
of billions of parameters. As an example, GPT-3 is estimated to have 175
billion parameters.

Therefore, following factors are what makes a transformer into a large
language model.

Number of Parameters

One of the defining features of a “large” language model is the number
of parameters it has. More parameters generally mean the model can
learn more complex representations of the data, though it also increases
computational requirements.

Scale of Data

These models are trained on enormous datasets that can range from
hundreds of gigabytes to terabytes in size. This allows them to learn from a
wide variety of textual contexts.

82

CHAPTER 4 WHAT MAKES LLMS LARGE?

Computational Power

Training large language models requires significant computational
resources, often involving specialized hardware like GPUs or TPUs running
in parallel across multiple machines.

Fine-Tuning and Task Adaptation

Once a large language model is trained, it can be fine-tuned on specific
tasks or datasets to improve its performance in specialized applications.

Capabilities

Because of their size and complexity, large language models often
display capabilities that surpass smaller models, such as better context
understanding, error correction, and even some level of commonsense
reasoning.

In summary, a transformer becomes a “large language model” when it
is scaled up in terms of parameters, trained on a large and diverse dataset,
and optimized to perform a wide array of language tasks effectively.

It should also be noted that transformers are not the only architecture
that is capable of building large language models. Recurrent neural
network (RNN) models such as long short-term memory (LSTM) networks
as well as convolutional neural network (CNN) models are capable of
creating large language models. However, because of the groundbreaking
performance as well as the training efficiency demonstrated by
transformer models, the vast majority of LLMs we see today are based on
the transformer architecture.

83

CHAPTER 4 WHAT MAKES LLMS LARGE?

Why Parameters Matter

The number of parameters in a neural network model is a critical aspect
that often corresponds to the model’s capacity to learn and represent
information. In the context of transformers, the number of parameters
represents the following:

e Capacity to learn: The number of parameters in a
model often relates to its ability to fit a given dataset.
With more parameters, a model has a greater capacity
to capture nuances and complexities in the data.

o Expressiveness: A large number of parameters allows
the model to represent more intricate functions,
making it possible for the model to generalize better to
unseen data, provided it is trained appropriately and
doesn’t overfit.

e Memory: In the context of transformers, having more
parameters essentially means that the model has a
broader “knowledge” base. For instance, models like
GPT-3 with 175 billion parameters have shown an
ability to remember and generate information across a
vast range of topics.

However, when scaling up a transformer model, there are some

trade-offs that need to be considered.

Computational Requirements

As the number of parameters increases, so do the computational
requirements for training. Training large models necessitates powerful
GPUs or TPUs and can be time-consuming and expensive.

84

CHAPTER 4 WHAT MAKES LLMS LARGE?

Risk of Overfitting

A model with an excessive number of parameters, when trained on limited
data, can memorize the training data (rather than generalizing from it).
This results in overfitting, where the model performs well on the training
data but poorly on unseen data.

Model Size

Having more parameters means larger model sizes, which can be a
concern for deployment, especially on edge devices or in real-time
applications.

The unique architecture of transformers provides several aspects that
allow the number of parameters to scale up:

e Depth and width: Transformers can have many layers
(depth), and each layer can have a large number of
neurons or attention heads (width). Both factors
contribute to the total parameter count.

o Embedding layers: The initial embedding layer,
which converts input tokens into vectors, can have a
significant number of parameters, especially when the
vocabulary size is large.

o Attention mechanisms: Self-attention mechanisms,
which are central to transformer architectures, involve
multiple weight matrices that contribute to the overall
parameter count.

While increasing the number of parameters generally improves the
model’s performance on many tasks, many neural network models have
a point of diminishing returns. However, recent trends, especially in the
development of models like GPT-3, have shown that continually scaling up

85

CHAPTER 4 WHAT MAKES LLMS LARGE?

can lead to surprising improvements in performance, enabling capabilities
such as few-shot (where the model is trained to perform tasks with very
little labeled data by leveraging its pre-trained knowledge) or even zero-
shot (where the model is trained to generalize to tasks without having any
labelled data for that specific task) learning. This may indicate that we have
not yet reached the limit of the capabilities of transformer models, and the
current limitations could be computational power and data scale.

The Scale of Data

The scale of data used to train a model is a crucial component in
determining the model’s effectiveness, especially for transformers like
those used in large language models, because of the following factors.

Model Generalization

The more data a model is exposed to during training, the better its ability
to generalize to unseen examples. This is particularly true for models
with a large number of parameters. The vast parameter count offers the
potential to learn a lot, but it also brings the risk of overfitting. A massive
dataset can mitigate this risk.

Diverse Knowledge

A large-scale dataset provides a wealth of diverse information. For a
language model, this means understanding different writing styles, topics,
facts, and even languages.

Rare Scenarios

Big datasets can capture less common, edge-case scenarios, which might
not be present in smaller datasets. This allows the model to respond to
more niche queries or situations.

86

CHAPTER 4 WHAT MAKES LLMS LARGE?

Large language models typically use a combination of existing text
corpus as well as sourcing data from the Internet, encompassing websites,
books, articles, and other textual content. The following are some of the
commonly used corpus:

e Common Crawl: This is a vast web corpus collected by
crawling the Internet. It contains petabytes of data from
billions of web pages and is one of the most extensive
datasets available. Models like GPT-3 have been known
to use subsets of Common Crawl.

o Wikipedia: Because of its comprehensive coverage of
knowledge and structured writing, Wikipedia dumps
(in various languages) are frequently used for training
language models.

e BooksCorpus: This contains more than 11,000 books,
totaling about 5 billion words, from diverse genres and
subjects.

e OpenSubtitles: This is a dataset containing subtitles
from movies and TV shows. It’s especially useful for
training conversational models because of its dialogue-
heavy content.

o WebText: Used by OpenAl for training GPT-2, it’s a
collection of web pages amounting to about 40GB of
text data.

o Toronto Book Corpus: This is similar to BooksCorpus
but contains different books, amounting to more than
44 million words.

o English Gigaword: This contains a significant amount of
newswire text data, making it rich in current events and

journalistic language.

87

CHAPTER 4 WHAT MAKES LLMS LARGE?

e Stanford Question Answering Dataset (SQuAD): While
it’s primarily designed for question-answering tasks,
the dataset, which contains passages from Wikipedia
and associated questions, can be beneficial in training
models to understand context.

e Microsoft MAchine Reading COmprehension Dataset
(MS MARCO): This contains real-world questions and
answers, making it valuable for training models on
practical, user-generated queries.

o Common datasets for translation tasks: These include
Workshop on Machine Translation (WMT) datasets,
European Parliament Proceedings (Europarl), and
United Nations documents (MultiUN) for training
multilingual models.

e LMIB: This is a benchmark dataset for language
modeling containing 1 billion words from the One
Billion Word Benchmark.

e Penn Treebank: While smaller than many other
datasets, this is a staple in linguistic and syntactic
analyses, containing tagged, parsed, and raw Wall
Street Journal data.

Gathering the data from these and other corpora, as well as from
Internet sources, is followed by a data filtering and cleaning step. This is
because not all collected data might be useful. It might have errors, be
redundant, or be unsuitable for training. Proper preprocessing, cleaning,
and filtering are essential to ensure the model learns from high-quality
data. Model-specific per-processing steps such as tokenization are applied
afterward.

However, as with the parameters, scaling up the data brings its own
challenges.

88

CHAPTER 4 WHAT MAKES LLMS LARGE?

Computational Overheads

Training on a massive dataset requires high computational power and
memory. Parallel processing, often spanning multiple GPUs or TPUs,
becomes a necessity.

Storage

Simply storing huge datasets necessitates significant storage solutions,
often distributed across multiple devices or cloud storage solutions.

Data Bias

Large datasets sourced from the Internet can contain biases present in
the content. This means models can inadvertently learn and perpetuate
these biases.

Noise

With scale comes noise. Some incorrect or misleading information may
be present in vast datasets, which the model might learn if not properly
cleaned.

Transformers, with their attention mechanisms, are particularly
suited to benefit from large-scale data. The self-attention mechanism can
learn intricate patterns, relationships, and dependencies present in vast
datasets, enabling the model to capture deep semantic relationships in
language. The breakthroughs observed in models like GPT-2 and GPT-3
can be attributed in part to the enormous scale of data they were trained
on. When combined with the models’ large parameter counts, this data
scale allows them to exhibit remarkable language understanding and
generation capabilities.

89

CHAPTER 4 WHAT MAKES LLMS LARGE?

Types of LLMs

Large language models can be categorized based on various factors such
as architecture, training objectives, data types, and applications. Let us see
a few of these factors and categorizations.

Based on the Architecture

As we discussed earlier, there are several architectures that can be used to
build LLMs.

Transformers

Most of today’s large language models, such as Generative Pre-trained
Transformer (GPT), Bidirectional Encoder Representations from
Transformers (BERT), and Pathways Language Model (PaLM), are based
on the Transformer architecture.

Recurrent Neural Networks

Older language models often used recurrent neural networks (RNNs) or
variations like long short-term memory (LSTM) and gated recurrent units
(GRUSs), although these are less common for very large models because of
scaling limitations.

Convolutional Neural Networks

Although less common for language tasks, some models have employed
CNN architectures for text classification and other NLP tasks.

90

CHAPTER 4 WHAT MAKES LLMS LARGE?

Based on the Training Objective

The training objectives of large language models can vary based on the
specific tasks they are designed to perform or the kinds of abilities they
are expected to possess. A single model may have one or more training
objectives.

o Autoregressive models: Like GPT, these models generate
one word at a time and use previously generated words
as context for future words.

o Autoencoding models: BERT is an example that is
trained to predict masked-out words in a sentence, and
it processes the entire sequence at once.

e Sequence-to-sequence (Seq2Seq) models: These
are often used for translation, summarization, and
other tasks where both input and output can be of
variable lengths. Examples include OpenNMT and
Tensor2Tensor (T2T).

e Hybrid models: Some models, like XLNet, combine
elements of both autoregressive and autoencoding
approaches.

Let us look into few of these categories in detail.

Autoregressive Models

Autoregressive models are models trained to generate text one token
(usually a word or a subword) at a time. They leverage the concept of
autoregression, where the prediction of each new token is conditioned on
the previously generated tokens.

The following are some key features of autoregressive models.

91

CHAPTER 4 WHAT MAKES LLMS LARGE?

Sequential Generation

Autoregressive models generate text in a left-to-right manner, predicting
one token at a time based on the tokens that have come before it. This is in
contrast to “autoencoder” models like BERT, which predict missing words
in an entire sequence in parallel.

Contextual Understanding

Because they rely on previously generated text, autoregressive models are
good at maintaining context in a conversation or text. This makes them
suitable for tasks such as dialogue generation, storytelling, and even code
writing.

Long-Range Dependencies

The architecture of these models, especially transformer-based ones like
GPT, is capable of handling long-range dependencies in the text, allowing
them to generate more coherent and contextually relevant text over
extended sequences.

Causal Relationship

Autoregressive models maintain a causal relationship in the sequence
where each token is generated based on a fixed history of preceding tokens
and not future tokens. This is a crucial feature for many natural language
understanding and generation tasks.

92

CHAPTER 4 WHAT MAKES LLMS LARGE?

The training process of an autoregressive model typically follows

these steps:

Data preprocessing: The model is usually trained on
large datasets that are tokenized into smaller pieces,
like words or subwords.

Masking and loss function: During training, the
model uses a mask to ensure that the prediction for a
particular token does not have access to future tokens
in the sequence. The most common loss function
used is the cross-entropy loss between the predicted
probabilities and the actual tokens.

Parameter optimization: The model’s millions

or billions of parameters are adjusted through
backpropagation and optimization algorithms like
Adam to minimize the loss function.

Fine-tuning: Autoregressive models are often fine-
tuned on specific tasks or datasets to make them more
effective for specialized applications.

Autoregressive LLMs have many applications, such as the following:

Natural language generation: This includes everything
from chatbots to creative writing.

Machine translation: Some autoregressive models are
fine-tuned for translating between languages.

Summarization: You can generate concise summaries
of long documents.

Question answering: You can generate answers to
questions based on context or a given passage.

93

CHAPTER 4 WHAT MAKES LLMS LARGE?

e Code generation: Some specialized autoregressive
models can write or complete code based on a prompt.

e Other NLP tasks: Though not strictly generative tasks,
models like these can be adapted for classification,
sentiment analysis, and more by adding specialized
layers or training setups.

However, autoregressive models do have some limitations, a few of

which are as follows:

e Speed: Since autoregressive models generate text one
token at a time, they can be slower for generation tasks
compared to parallel models.

e Repetition: These models can sometimes get stuck in
loops and generate repetitive text.

o Lack of revision: Once a token is generated, it can’t be
changed, which may lead to errors accumulating in
long sequences.

o Context limit: There’s a maximum sequence length
beyond which the model can’t maintain context, due to

architectural limitations.

Autoencoding Models

Autoencoding language models are designed to generate a fixed-size
representation or “encoding” for a given input text. Unlike autoregressive
models, which predict one word at a time based on previous words,
autoencoding models take an entire sequence of words as input and
predict some of those words in parallel.

The following are some key features of autoencoding models.

94

CHAPTER 4 WHAT MAKES LLMS LARGE?

Bidirectional Context

These models consider both the preceding and following words to predict
a target word, thereby offering a bidirectional context. This is different
from autoregressive models, which use only preceding words.

Masked Language Modeling

In training, some words in the input sequence are randomly masked out,
and the model tries to predict them.

Fixed-Size Encoding

These models produce a fixed-size vector representation of the entire input
sequence. This vector can capture the semantic meaning of the input and
can be used for various downstream tasks.

Parallelism

Because masked words are predicted in parallel, training and inference
with autoencoding models can be faster for certain types of tasks
compared to autoregressive models.

The training of an autoencoding model typically involves the following:

e Data preprocessing: Text is tokenized into subwords or
words, and some tokens are randomly replaced with a
[MASK] token or other special tokens.

e Objective function: The model is usually trained using a
cross-entropy loss function, where it tries to minimize
the difference between the predicted probabilities for
the masked words and the actual words.

95

CHAPTER 4 WHAT MAKES LLMS LARGE?

Backpropagation: Gradients are computed based on
the loss, and the model’s parameters are updated using
optimization algorithms like Adam.

Fine-tuning: Similar to autoregressive models,
autoencoding models can be fine-tuned on specific
tasks to adapt their capabilities.

The applications of autoencoding LLMs include the following:

Text classification: The fixed-size encoding can be used
to classify text into various categories.

Named entity recognition: This can identify entities
such as names, places, and organizations in text.

Question answering: This can be adapted to provide
specific answers based on the question and a given
context.

Sentiment analysis: This can classify the sentiment of a

sentence or document as positive, negative, or neutral.

Search engines: This can be used to understand and
rank documents relevant to a query.

Summarization: While not as straightforward as using
sequence-to-sequence models, BERT-like models can
still be adapted for text summarization tasks.

Autoencoding models also have certain limitations.

96

Token limit: Like autoregressive models, these models
also have a maximum sequence length, beyond which
they can’t process text.

CHAPTER 4 WHAT MAKES LLMS LARGE?

e Lack of coherency: For sequence generation tasks,
autoencoding models don’t naturally generate
coherent and contextually relevant sequences as
effectively as autoregressive models.

o Complexity: These models can be computationally
expensive to train, particularly because the
bidirectional context requires more computational

resources to capture.

o Ambiguity: Sometimes the masked word can have
multiple plausible replacements, making the task
inherently ambiguous. The model is trained to predict
the most likely word, which may not always be the most
contextually appropriate one.

Sequence-to-Sequence Models

Sequence-to-sequence (Seq2Seq) models are designed to transform an
input sequence into an output sequence, where both the input and output
sequences can have variable lengths. These models are often employed

in tasks like machine translation, text summarization, and speech
recognition.

The following are the key features of Seq2Seq models.

Encoder-Decoder Architecture

A typical Seq2Seq model consists of two main components: an encoder
that processes the input sequence and compresses the information into
a fixed-size “context vector,” and a decoder that generates the output
sequence based on this context vector.

97

CHAPTER 4 WHAT MAKES LLMS LARGE?

Attention Mechanisms

Modern Seq2Seq models often use attention mechanisms to allow the
decoder to focus on different parts of the input sequence for each element
of the output sequence. This is particularly useful for handling long
sequences and for tasks where the alignment between input and output is

complex.

Variable-Length Sequences

Unlike fixed-size autoencoders, Seq2Seq models can handle input and
output sequences of different lengths, making them extremely versatile.

Bidirectional Context in Encoder

The encoder often uses bidirectional layers (e.g., bidirectional LSTMs or
GRUs) to capture the context from both directions of the input sequence.
The training of a Seq2Seq model includes the following:

e Data preparation: In training, pairs of input-output
sequences are needed. For example, in machine
translation, you would have pairs of sentences in two
different languages.

o Teacher forcing: During training, the actual output
from the training dataset (not the predicted output) is
often fed into the decoder in the next time step to guide
learning. This technique is known as teacher forcing.

e Loss function: A common loss function used is the
cross-entropy loss between the predicted output
sequence and the actual output sequence.

98

CHAPTER 4 WHAT MAKES LLMS LARGE?

Training algorithms: Optimization algorithms like
Adam or RMSprop are often used to adjust the model
parameters to minimize the loss.

Fine-tuning: Seq2Seq models can also be fine-tuned for
specific domains or tasks to improve performance.

The following are some of the applications of Seq2Seq LLMs:

Machine translation: Translating text from one
language to another

Text summarization: Generating a concise summary for
along document

Question answering: Providing a precise answer to a
question based on a given context

Speech recognition: Converting spoken language into
written text

Image captioning: Generating textual descriptions
of images

Dialog systems: Used in chatbots and virtual assistants
for generating conversational responses

The limitations of Seq2Seq models include the following:

Complexity: The encoder-decoder architecture
and attention mechanisms make these models
computationally intensive to train.

Data requirements: Seq2Seq models often require large
annotated datasets, especially for complex tasks like

machine translation.

99

CHAPTER 4 WHAT MAKES LLMS LARGE?

e Long sequences: While attention mechanisms
have alleviated this issue to some extent, handling
extremely long sequences is still challenging due to

computational limitations.

e Lack of interpretability: The attention mechanism
provides some insight, but the models are largely black
boxes, making it hard to understand why they make
specific decisions.

Hybrid Models

Hybrid language models attempt to combine the strengths of different types of

models or incorporate additional features to improve performance in specific

tasks. While pure autoregressive, autoencoding, or sequence-to-sequence

models are powerful in their own right, each has its limitations. Hybrid

models aim to address these by fusing different architectures or techniques.
The following are some common types of hybrid models.

Autoregressive + Autoencoding

One common approach is to combine autoregressive and autoencoding
models. For example, you could use an autoencoding model like BERT to
generate a fixed-size representation of the input and then feed this into an
autoregressive model like GPT to generate output text. This could be useful
for tasks where you need both a deep understanding of the input and a
coherent output, such as in complex question-answering systems.

Seq2Seq + Attention

While attention mechanisms are commonly used in Seq2Seq models,
advanced hybrid versions might incorporate multiple types of attention
mechanisms or mix attention with other techniques such as reinforcement
learning for better performance.

100

CHAPTER 4 WHAT MAKES LLMS LARGE?

Incorporating External Knowledge

Some hybrid models are designed to interface with external databases
or knowledge graphs, allowing them to pull in real-world facts when
generating text.

Multimodal Models

These are hybrid models designed to handle multiple types of input (e.g.,
text and images or text and audio). GPT-3, for instance, has been adapted
to generate image captions based on both text prompts and the images
themselves.

Classifier + Generator

In tasks such as sentiment analysis followed by text generation, a
classification model may first determine the sentiment of the input, and
then an autoregressive model could generate a response that aligns with
that sentiment.

Because of their nature, some unique training techniques are used
with hybrid models, such as the following:

e Multi-objective loss function: When you're combining
different model types, you often have to optimize a
loss function that’s a combination of the loss functions
appropriate for each individual model.

o Two-step training: Sometimes, one part of the model is
trained first, followed by the second part. For example,
an autoencoder could be pre-trained on a large dataset
and then fine-tuned along with an autoregressive
model on a specific task.

e End-to-end training: In some cases, the entire hybrid
model is trained together from scratch, although this
can be computationally expensive.

101

CHAPTER 4 WHAT MAKES LLMS LARGE?

Some of the unique use cases of hybrid models include the following:

Advanced question-answering: Hybrid models can
be particularly effective for generating accurate and
contextually relevant answers to complex questions.

Summarization: Combining the strengths of different
model types could lead to more coherent and factually

accurate summaries.

Multimodal tasks: When tasks involve multiple types
of data, like text and images, hybrid models can be
particularly effective.

Although they have their benefits, hybrid models have their own set of

limitations.

Computational complexity: Combining different
architectures can lead to models that are even more
computationally intensive to train and deploy.

Overfitting: With more parameters and complexity,
there’s an increased risk of overfitting, especially when
not enough data is available.

Interpretability: As models get more complex, it
becomes increasingly difficult to understand why they
make certain decisions.

Engineering challenges: Building and maintaining
hybrid models can be more complex and require
specialized expertise.

Because the term hybrid is quite broad, it can be applied to a variety of

architectures and is not limited to the previous examples. The overarching

theme is the attempt to combine different techniques or models to

overcome the limitations of using any single approach.

102

CHAPTER 4 WHAT MAKES LLMS LARGE?

Other Training Objectives

Other than the language modeling objectives we discussed earlier, LLMs

may have other training objectives associated with them based on their

intended use. Some of these are as follows:

Text Classification Objectives

Sentiment analysis: The objective is to classify the
sentiment expressed in a text as positive, negative, or
neutral.

Topic classification: The model is trained to categorize
texts into predefined topics or classes.

Information Retrieval Objectives

Document ranking: The objective is to rank a set of
documents based on their relevance to a query.

Keyword extraction: The objective is to extract
important terms or phrases from larger bodies of text.

Multimodal Objectives

Image-text association: In multimodal models like CLIP
and DALL-E, the model is trained to understand and
generate associations between text and images.

Audio-text association: Some models are trained to
transcribe or understand spoken language and its
relationship to written text.

Specialized Objectives

Named entity recognition (NER): The objective is to
identify named entities such as people, organizations,
locations, etc., in a text.

103

CHAPTER 4 WHAT MAKES LLMS LARGE?

Part-of-speech tagging: The model is trained to identify
the part of speech for each word in a sentence.

Dependency parsing: The objective is to identify
grammatical relationships between words.

Text generation: Some models are specialized for
creative text generation, including poetry, storytelling,

and more.

Other Objectives

Few-shot learning: The model is trained to perform
tasks with very little labeled data by leveraging its pre-
trained knowledge.

Zero-shot learning: The model is trained to generalize
to tasks without having any labeled data for that
specific task, often by understanding the task
description in natural language.

Multitask learning: The model is trained to perform
multiple tasks simultaneously, often sharing a common
representation to improve performance across tasks.

Adversarial training: To improve robustness, some
models are trained to withstand adversarial attacks,
where small, carefully crafted changes to the input can
mislead the model.

Different training objectives are often combined to create more

versatile models, and task-specific objectives are often tackled by

fine-tuning a pre-trained general-purpose model.

104

CHAPTER 4 WHAT MAKES LLMS LARGE?

Usage-Based Categorizations

Apart from the architecture and the objectives, LLMs can also be broadly

categorized based on their usage and input. The following are a few of

those categories:
Based on Data Types

Text-based models: Most large language models are
trained primarily on text data.

Multimodal models: These models are trained on
multiple types of data, like text and images. DALL-E
and CLIP by OpenAlI are examples.

Cross-lingual models: These are trained on text from
multiple languages and can perform tasks across
different languages without needing separate training

for each.

Based on Applications

General-purpose models: These are designed to handle
a variety of tasks without being specialized for any
particular one. Examples include GPT and BERT.

Task-specific models: These are fine-tuned versions of
general-purpose models, adapted for specific tasks
such as text classification, sentiment analysis, or
machine translation.

Domain-specific models: These are trained or
fine-tuned on specialized data from fields such as
healthcare, law, or finance.

105

CHAPTER 4 WHAT MAKES LLMS LARGE?

o Conversational agents: Some large language models,
like Meena by Google, are designed to improve
conversational abilities for chatbots and virtual
assistants.

o Code generation models: Models like GitHub’s Copilot
are specialized for generating code based on natural
language queries.

Different types of large language models may overlap in their
characteristics. The landscape is continually evolving, with new types and
hybrids appearing as the field progresses.

Foundation Models

The term foundation models emphasizes the shift in machine learning
from training models for individual tasks to a paradigm where a single,
powerful model can serve as a foundation for a multitude of applications.
Foundation models refer to pre-trained models, typically of
considerable size and capacity, that serve as a base or “foundation” upon
which more specific applications or tasks can be built. While the term can
technically apply to various domains, it’s often used in the context of large-
scale machine learning models, especially in natural language processing.
The following are some key characteristics of foundation models.

Pre-training on Broad Data

Foundation models are typically trained on vast and diverse datasets to
learn a wide array of patterns, structures, and knowledge. This generalist
pre-training phase is what enables them to serve as a “foundation.”

106

CHAPTER 4 WHAT MAKES LLMS LARGE?

Fine-Tuning and Adaptability

Once pre-trained, foundation models can be fine-tuned or adapted to
specific tasks or domains, inheriting the general knowledge from
pre-training and specializing based on new, task-specific data.

Transfer Learning

The essence of foundation models lies in transfer learning, where
knowledge gained during one task is transferred to improve performance
on a different, yet related, task.

Economies of Scale

Given the resources required to train large models, it’s often more efficient
to train a single, large foundation model that can serve multiple purposes
rather than training separate models for each specific task.

Large language models are considered foundation models because
they exhibit properties and characteristics that position them as
foundational building blocks for a plethora of applications.

The following are some of the characteristics of LLMs that make them
foundation models.

General-Purpose Abilities

LLMs are trained on vast and diverse text corpora, enabling them to handle
a wide range of tasks out of the box, from simple text generation to more
complex tasks such as summarization, translation, and

question-answering.

107

CHAPTER 4 WHAT MAKES LLMS LARGE?

Fine-Tuning Capabilities

Once pre-trained on a broad dataset, LLMs can be fine-tuned on specific
tasks or domain-specific data, making them adaptable to various
specialized applications.

Transfer Learning

The knowledge captured by LLMs during their extensive pre-training can
be transferred and utilized in numerous applications, reducing the need
for task-specific data or training.

Economies of Scale

Training LLMs requires significant computational resources. But once
trained, they can serve countless applications, providing a cost-benefit
when distributed across multiple tasks or domains.

Rapid Deployment

With LLMs as a foundation, developers can rapidly prototype and deploy
applications. For instance, with just a well-crafted prompt, GPT-3 can
perform tasks that traditionally would require specialized models.

Interdisciplinary Applications

Beyond text-centric tasks, LLMs have been utilized in areas like code
generation, art creation, and even scientific domains, underscoring their

foundational nature.

108

CHAPTER 4 WHAT MAKES LLMS LARGE?

Reduced Training Overhead

Instead of training a model from scratch for every specific task, developers
can leverage the foundational knowledge of LLMs, reducing the data
requirements and computational overhead for many applications.

Continuous Adaptability

LLMs have the potential to adapt to new information and trends either by
continuous training or by combining them with other models and systems.

Democratization of Al

Given the right interfaces and platforms, nonexperts can tap into the
capabilities of LLMs, enabling a broader set of users to benefit from Al
without deep technical knowledge.

Applying LLMs

While having general-purpose abilities, when applying large language
models for a specific task or a domain, often you would need to tune them
for that specific task or domain in order for them to be more effective in

it. This can be done in two ways: using prompt engineering and/or using
fine-tuning.

Prompt Engineering

Prompt engineering refers to the art and science of crafting effective
input prompts to guide the behavior of large language models, especially
when seeking specific or nuanced responses. As large models like GPT-3
or GPT-4 do not have traditional “task-specific” configurations, the way

109

CHAPTER 4 WHAT MAKES LLMS LARGE?

you phrase or structure the input prompt can significantly influence the
output. This has been especially noted in zero-shot, few-shot, or many-
shot learning scenarios.

The following are the key aspects of prompt engineering:

e Precision: Crafting prompts that help the model
understand exactly what kind of information or format
you are seeking.

o Context: Providing enough background or context to
guide the model to generate relevant outputs.

e Examples: In few-shot learning scenarios, giving the
model a couple of examples to demonstrate the desired
task can help in eliciting the right kind of response.

e Rephrasing: If a model doesn’t produce the desired
output with a given prompt, rephrasing the question or
request might yield better results.

o Constraints: Specifying constraints in the prompt to
restrict or guide the model’s responses. For instance,
asking the model to “explain in simple terms” or

“provide an answer in less than 50 words.”

In terms of LLMs, the following principles can be used for optimizing
the prompts.

Explicitness

Being clear and precise in the instruction can help the model grasp the
exact requirement. For instance, instead of asking “Tell me about apples,”
you might say “Provide a 200-word summary about the nutritional benefits
of apples.”

110

CHAPTER 4 WHAT MAKES LLMS LARGE?

Examples as Guidance

Providing examples can be a way to demonstrate the expected output.
For instance, if you're trying to get the model to transform sentences
into questions, you might provide an example: “Transform the following
sentences into questions. Example: ‘It is raining’ becomes ‘Is it raining?”

Iterative Refinement

Prompt engineering often involves an iterative process of refining the
input based on the outputs received. If a particular phrasing doesn’t work,
rephrasing or providing additional context can be helpful.

Controlling Verbosity and Complexity

Directives like “in simple terms,” “briefly explain,” or “in detail” can guide
the length and depth of the model’s response.

Systematic Variations

Trying systematic variations of prompts helps in understanding the kind of
phrasing that works best for a particular task.

Prompt engineering is extremely important because of the following
factors:

e Optimal outputs: Even with a highly capable model, the
quality of the output often depends on how the input
is framed. Effective prompt engineering ensures you're
getting the most out of the model.

e Handling ambiguity: Language can be inherently
ambiguous. By refining prompts, users can reduce
ambiguity and guide the model toward the most
relevant interpretation of their query.

111

CHAPTER 4 WHAT MAKES LLMS LARGE?

o Task customization: Since large models like GPT-3
aren’t trained for specific tasks in the traditional
sense, prompt engineering allows users to effectively
“customize” the model for a wide array of tasks without
needing to retrain it.

There are several techniques that can be employed to engineer
prompts when working with LLMs:

o Prompt templates: Creating templates where only
specific parts of the prompt change can help in
achieving consistency, especially in tasks like data
extraction.

e Prompt concatenation: Sometimes combining multiple
prompts or instructions in a sequence can guide the
model better. For instance, “Translate the following
English text to French. Ensure the translation is suitable
for a formal business setting.”

e Question decomposition: For complex queries, breaking
down the prompt into multiple simpler questions
might yield more accurate answers.

e Prompt priming: Introducing a context or “priming”
the model with a statement can sometimes help. For
example, “Pretend you are a history teacher. Explain
the significance of the Renaissance period.”

112

CHAPTER 4 WHAT MAKES LLMS LARGE?

Prompt engineering gives several benefits when applying LLMs to

specific tasks:

Versatility: Through prompt engineering, a single
pre-trained model can be “repurposed” for a wide
array of tasks without the need for fine-tuning.

Efficiency: It offers a quicker way to adapt the model to
new tasks, especially when compared to retraining or
fine-tuning.

Customizability: Different users or applications might
have unique requirements, and prompt engineering
provides a way to customize model outputs without
changing the underlying model.

However, there are some limitations and challenges with prompt

engineering as well:

Inconsistency: Even with an optimized prompt, models
might occasionally produce inconsistent or unexpected
outputs.

Overhead: Effective prompt engineering can
require extensive trial and error, which might be

computationally or time-expensive.

Domain limitations: For very niche or specialized tasks,
prompt engineering might not suffice to achieve high
accuracy, and fine-tuning on domain-specific data
might be necessary.

Trial and error: Finding the right prompt might
require several iterations, especially for complex or
nuanced tasks.

113

CHAPTER 4 WHAT MAKES LLMS LARGE?

o Overtfitting to prompts: If users are too specific or rely
heavily on prompt examples, the model might overfit to
those examples, which can reduce the generality of its
outputs.

e Predictability: Even with good prompts, the inherent
randomness in model outputs means results might not
always be entirely consistent.

Prompt engineering is a blend of understanding the model’s
capabilities, linguistic nuances, and the specific requirements of a
task. As transformer-based models grow in size and capability, prompt
engineering stands out as a crucial skill to harness their potential fully. It's
an active area of research and experimentation, with both the Al research
community and industry professionals exploring novel strategies to
optimize interactions with these models.

Fine-Tuning

In certain scenarios, domains, or tasks, prompt engineering alone may not
yield the required results. In such cases model fine-tuning may be needed.
Fine-tuning is the process of adapting a pre-trained large language
model to a specific task or domain, capitalizing on the general knowledge
the model has acquired and tailoring it to be more effective for specialized

applications.

LLMs are initially pre-trained on a vast and diverse text corpora.
During this phase, the model learns language structures, grammar,
facts, reasoning abilities, and even some biases present in the data. This
general training yields a model that’s knowledgeable but not necessarily
specialized in any particular task.

114

CHAPTER 4 WHAT MAKES LLMS LARGE?

After pre-training, the model can be further trained (or “fine-tuned”)
on a smaller, narrower, task-specific dataset. This dataset is typically
labeled and relates to a specific application, such as sentiment analysis,
question answering, or medical text classification.

This provides several benefits:

e Specialization: While the pre-trained model is a jack-
of-all-trades, fine-tuning tailors it to be an expert in a
particular domain or task.

o Transfer learning: Fine-tuning leverages the general
knowledge gained during pre-training, allowing the
model to achieve strong performance on specific tasks
even with a smaller amount of task-specific data.

e Efficiency: Training a model from scratch on a
specific task might require a vast amount of data and
computational resources. Fine-tuning a pre-trained
model can achieve competitive, if not superior, results
with less data and in less time.

For fine-tuning, you need a labeled dataset corresponding to your
specific task. For instance, if you're fine-tuning for sentiment analysis,
you’d need a dataset of sentences/paragraphs labeled as positive, negative,
or neutral.

Instead of initializing the model with random weights (as you would
when training from scratch), you start with the weights from the pre-
trained model. You then update these weights using your task-specific data.

A crucial aspect of fine-tuning is selecting an appropriate learning rate.
Often, a smaller learning rate is chosen compared to pre-training because
you want to make smaller adjustments to the already learned weights,
rather than significant changes.

However, when attempting to fine-tune an LLM, several key aspects
needs to be considered.

115

CHAPTER 4 WHAT MAKES LLMS LARGE?

Overfitting

Given that LLMs have a massive number of parameters, they can easily
overfit to a small fine-tuning dataset. Regularization techniques, early
stopping, or even using a smaller version of the pre-trained model can
help mitigate this.

Catastrophic Forgetting

If fine-tuned too aggressively, the model might “forget” some of the
general knowledge it acquired during pre-training. A balanced approach
is necessary to retain the general knowledge while adapting to the
specific task.

Evaluation

Always evaluate the fine-tuned model on a separate validation or test set to
gauge its performance on the specific task.

Fine-tuning is a powerful mechanism in the transfer learning paradigm
that allows developers to harness the might of LLMs for a wide range
of tasks without the need for vast amounts of labeled data or extensive
training times.

Summary

In this chapter, we discussed what factors make a transformer model into
a large language model and how factors such as parameter count and the
scale of data affect their capabilities. We talked about how LLMs can be
categorized using different perspectives such as their architecture, training
objectives, and applications. We looked at the concept of foundation

116

CHAPTER 4 WHAT MAKES LLMS LARGE?

models, and how LLMs possess those characteristics. Finally, we looked
at how prompt engineering and fine-tuning can be used to adapt LLMs to
specific tasks more effectively.

In the next chapter, we will look at several of the popular LLMs, their
architectures, and capabilities.

117

CHAPTER 5

Popular LLMs

Over the past couple of chapters, we have discussed the history of NLP, its
concepts, and how it evolved over time. We learned about the transformer
architecture and how it revolutionized how we look at language models
and paved the way for LLMs.

Now, with that understanding, we should look at some of the most
influential LLMs in recent years.

Although the field has been around for only a couple of years, the
number of innovations in the LLM space has been massive. With new
and improved models being released frequently and some models being
proprietary in nature, it is not easy to talk about every variation. But here,
we have made a list of some of the most impactful models and their details
that are publicly available.

Generative Pre-trained Transformer

Generative Pre-trained Transformer (GPT) is the model that popularized
LLMs to the general public. GPT is a family of LLMs released by OpenAl,
an American artificial intelligence research laboratory consisting of the
nonprofit OpenAl Inc. and its for-profit subsidiary, OpenAI LP. The GPT
models are a collection of foundation models based on the transformer
architecture that have been sequentially numbered, referred to as

the “GPT-n" series, with GPT-1 being the first and GPT-4 being the

most recent.

© Thimira Amaratunga 2023 119
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_5

https://doi.org/10.1007/979-8-8688-0017-7_5

CHAPTER5 POPULAR LLMS

In 2018, OpenAl published an article titled “Improving Language
Understanding by Generative Pre-Training.” In this article, they
introduced the first GPT system, which later became known as GPT-1. The
introduction of the transformer model in 2017 marked the beginning of
pre-trained transformer models, which are generative.

As we learned in the earlier chapters, prior to the introduction of the
transformer model, neural NLP models primarily employed supervised
learning from large amounts of manually labeled data. This reliance
on supervised learning limited their use of datasets that were not well-
annotated. In addition, the limited parallelization of those models
made training extremely large models prohibitively expensive and time-
consuming. Therefore, some languages, such as Swahili or Haitian Creole,
were deemed near impossible to model using those methods because of a
lack of available text for corpus-building.

To overcome these limitations, OpenAI's GPT model used a semi-
supervised approach, which was the first time such an approach was used
with transformer models. The approach involved two stages:

1. Anunsupervised generative pre-training stage in
which a language modeling objective was used to
set initial parameters

2. Asupervised discriminative “fine-tuning” stage
in which these parameters were adapted to a
target task

The first GPT architecture (GPT-1) used a 12-layer decoder-only
transformer, using 12 masked self-attention heads, with 64-dimensional
states each (for a total of 768), followed by linear-softmax. For the position-
wise feed-forward networks, 3,072-dimensional inner states were used.
Figure 5-1 shows the architecture of GPT-1.

120

CHAPTER5 POPULAR LLMS

Transformer Block Quptut

N

Output Linear

]

[sofmax__] (Gelu)
[]

Linear W

Transformer Block
Layer L

Transformer Block

Linear

| Matmul | [Matmul | [Matmul |
[

L]]]
[Dropout] [Dropoul] [Dropout]

= [) [] [}
E?‘Z':ET; (+) [Softmax] [Softmax I [Softmax]

[] [] [}
Input [Mask || [Mask || [Mask |
Embedding [)) [}

[Matmul] [Matmul I [Matmul]
Input [} [[}

[]

Head 1 Head . Head H
\ Linear

\ | LayerNorm I /

Transformer Block Input

Figure 5-1. The architecture of GPT-1. Source: “Improving Language
Understanding by Generative Pre-Training,” OpenAl

The model used the Adam optimization algorithm rather than the
more commonly used stochastic gradient descent (SGD). The learning rate
was increased linearly from zero over the first 2,000 updates to a maximum
of 2.5x107%, and annealed to 0 using a cosine schedule. The model used
mini-batches of 64 randomly sampled, contiguous sequences of 512

121

CHAPTER5 POPULAR LLMS

tokens and was trained for 100 epochs. The model used bytepair encoding
vocabulary with 40,000 merges and residual, embedding, and attention
dropouts with a rate of 0.1 for regularization, also employing a modified
version of L2 regularization with w = 0.01 on all nonbias or gain weights.
Gaussian Error Linear Unit (GELU) was used as the activation function.

Hyperparameter settings from the unsupervised pre-training stage
were reused for the most part in the fine-tuning stage. A 0.1 dropout
rate has been added to the classifier, and a learning rate of 6.25e-5 and a
batchsize of 32 has been used. The model used a linear learning rate decay
schedule with warmup over 0.2 percent of training and a A value of 0.5.
OpenAl has noted that GPT-1 can sufficiently adapt to most tasks with just
three epochs of fine-tuning.

GPT-1 was trained on BookCorpus, a dataset consisting of the text of
around 11,000 unpublished books scraped from the Internet. BookCorpus
(also known as the Toronto Book Corpus) was introduced in a 2015 paper
by researchers from the University of Toronto and MIT titled “Aligning
Books and Movies: Towards Story-like Visual Explanations by Watching
Movies and Reading Books” as a dataset consisting of free books written by
yet unpublished authors. The dataset consists of around 985 million words,
and the books that comprise it span a range of genres, such as science
fiction, romance, and fantasy. GPT-1 used a subset of the BookCorpus
dataset, which was around 7,000 books and was chosen to contain the
long passages of continuous text that helped the model learn to handle
long-range dependencies. The raw text of the dataset was cleaned using
the FTFY library (a heuristic-based Python library designed by Robyn
Speer at Luminoso that is used for fixing broken Unicode text), followed
by standardization of whitespace and punctuation. The tokenization
was done using the spaCy library, an open-source library for Python and
Cython for part-of-speech tagging, named entity recognition (NER), text
categorization, and dependency parsing, which uses convolutional neural
network models.

122

CHAPTER5 POPULAR LLMS

GPT-2, the successor of GPT-1, was partially released in February 2019,
which was followed by the release of the full 1.5-billion-parameter model
in November 2019. The reason for the controlled release was concerns
about potential misuse, including generating fake news or malicious
content due to the capabilities displayed by the model. One of GPT-2’s
main strengths is its ability to generate coherent and contextually relevant
text. Given a prompt or partial sentence, GPT-2 can generate complete,
realistic, and contextually appropriate text.

For the training of GPT-2, the CommonCrawl corpus was initially
considered because of its large size. CommonCrawl is a large text corpus
created using web crawling and was commonly used in training NLP
systems. However, it was later rejected as a training dataset as data quality
issues and unintelligible content were found during the initial reviews of
GPT-2 training. Instead, OpenAl created a new corpus, known as WebText,
specifically for training GPT models. Unlike CommonCrawl, WebText was
generated by scraping only pages linked to Reddit posts, with the condition
that the post has received at least three upvotes prior to December 2017,
as opposed to scraping content indiscriminately from the web, which
was done in previous datasets such as CommonCrawl. The scraped data
of WebText was then cleaned, HTML documents were parsed into plain
text, duplicate pages were eliminated, and Wikipedia pages were removed
from the dataset since their presence in many other datasets could have
induced overfitting.

OpenAl first announced GPT-2 in February 2019. However, OpenAl
refused to publicly release the GPT -2’s source code initially in contrast
to GPT-1, which was made available immediately upon announcement.
OpenAl cited that the reluctance was due to the risk of malicious use.
Initial concerns on GPT-2 were its potential ability to generate text that can
be considered obscene or racist or that spammers can use the generated
text to exploit and evade automated filters since the generated text was
usually completely novel.

123

CHAPTER5 POPULAR LLMS

Because of these concerns, OpenAl opted not to release the fully
trained model for GPT-2 nor detail the corpora it was trained on with the
February 2019 announcement. However, researchers were able to replicate
GPT-2 using the descriptions of OpenAl’s methods in prior publications
and the free availability of the underlying code of earlier models.
OpenGPT-2 was one such replication. It was released in August 2019.
Along with it, a freely licensed version of WebText called OpenWebText was
also released. OpenAl released a partial version of GPT-2 in August 2019.
This version had 774 million parameters, which was roughly half the size of
the full model, which had 1.5 billion parameters.

By November 2019, OpenAl stated that they had not seen strong
evidence of misuse so far, and the full 1.5 billion parameter model was
released in November 2019.

In May 2020, OpenAl announced GPT-3. While architecturally
similar to earlier GPT models, it has higher accuracy. This is attributed
to its increased capacity and greater number of parameters. It uses a
2,048-tokens-long context and then-unprecedented size of 175 billion
parameters, requiring 800GB to store. The model demonstrated strong
zero-shot and few-shot learning on many tasks.

GPT-3 was trained on the following data:

e 60 percent of the data was from a filtered version of
Common Crawl consisting of 410 billion byte-pair-
encoded tokens

e 22 percent of the data was from WebText2, consisting of
19 billion tokens

e 8percent of the data was from 12 billion tokens of the
Books1 dataset

e 8percent of the data was from 55 billion tokens from
the Books2 dataset

o 2 percent of the data was from 3 billion tokens from
Wikipedia
124

CHAPTER5 POPULAR LLMS

Note OpenAl has not disclosed the origin or the contents of Books1
or Books? at the time of this writing.

The capabilities of GPT-3 directly lead to the concept of prompt
engineering.

With the success of the GPT-3 model, OpenAl has released a family of
GPT-3 models that can be utilized for different purposes.

Model Name # of Parameters
GPT-3 Small 125 million
GPT-3 Medium — “Ada” 350 million
GPT-3 Large 760 million
GPT-3 XL — “Babbage” 1.3 billion
GPT-32.7B 2.7 billion

GPT-3 6.7B — “Curie” 6.7 billion
GPT-313B 13 billion

GPT-3 175B — “DaVinci” 175 billion

In March 2022, OpenAl made available new versions of GPT-3 and
OpenAl Codex in its API with edit and insert capabilities under the names
“text-davinci-002” and “code-davinci-002.”

Codex is a variation of the GPT-3 model, fine-tuned for use in
programming applications, which gives the ability to parse natural
language and generate code in response. In March 2023, concerns raised
by the software community caused OpenAl to shut down access to
Codex. The main concerns were whether the code snippets generated by
Codex could violate copyright (in particular, the GPL condition requiring
derivative works to be licensed under equivalent terms) and whether

125

CHAPTER5 POPULAR LLMS

training on public repositories falls into fair use. The Codex model is now
available to be used only by researchers of the OpenAl Research Access
Program.

In November 2022, OpenAl began referring to the text-davinci
and code-davinci models as belonging to the “GPT-3.5” series. At
the same time, they released ChatGPT, a GPT-3.5 model fine-tuned
for conversations. ChatGPT was notable for allowing users to steer
the conversations to generate the desired content by considering the
succeeding prompts and replies as context.

In April 2023, OpenAl introduced a new variant of its GPT-3.5
series model, known as “GPT-3.5 with Browsing,” building upon the
capabilities of its predecessors text-davinci-002 and code-davinci-002, and
incorporating the ability to access and browse online information leading
to more accurate and up-to-date responses to user queries. The GPT-3.5
with Browsing model was made available to the public in April 2023.

GPT-3 marked the transition of the GPT-n family from open source to
proprietary models. In September 2020, Microsoft announced that it had
licensed exclusive use of GPT-3. While others can still use the public API
to receive output, only Microsoft will have access to GPT-3’s underlying
model. The architecture details and the training dataset used remain
undisclosed.

OpenAl released GPT-4 in March 2023. OpenAl has demonstrated
video and image inputs for GPT-4. However, these features remain
inaccessible to the general public at this time. OpenAl offers the ChatGPT
Plus subscription service, which gives access to a ChatGPT version
powered by GPT-4. Microsoft Bing Chat also uses GPT-4. So far, OpenAl
has declined to reveal any technical information about GPT-4, such as
the size of the model. Experts have, however, speculated that GPT-4 has
around 1.8 trillion parameters across 120 layers and has been trained on 13
trillion tokens.

126

CHAPTER5 POPULAR LLMS

GPT models have had a massive impact on the NLP field by
popularizing LLMs and their capabilities and triggering the creation of
competitor models, which keep pushing the boundaries of Al.

Bidirectional Encoder Representations
from Transformers

Bidirectional Encoder Representations from Transformers (BERT) was
introduced in 2018 by researchers at Google Jacob Devlin et al. in their
paper titled “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding.” Within a short time, BERT became the
baseline for state-of-the-art NLP experimentations, with more than 150
publications citing the model and its improvements.

BERT is an encoder-only transformer model. BERT’s innovation
lies in its ability to capture context from both forward and backward
directions in a sequence, enabling it to create highly contextualized word
representations. Unlike earlier traditional language models that were
unidirectional (predicting the next word given previous words), BERT
predicts missing words in a sentence by considering both the left and right
context, allowing it to capture contextual nuances more effectively.

BERT has used the masked language model training objective for its
pre-training. During training, random words in sentences are masked,
and the model learns to predict these masked words based on the
surrounding context. Its bidirectional nature enables it to predict masked
words effectively. BERT’s input representation involves tokenizing text
into subword units (WordPieces) using the WordPiece tokenizer. This
technique helps with handling out-of-vocabulary words and breaking
down complex words. BERT introduces segment embeddings to
distinguish between different sentences in a document or context. These
segment embeddings are especially useful for tasks where the model needs
an understanding of the relationships between sentences, such as question

127

CHAPTER5 POPULAR LLMS

answering. BERT’s output embeddings are contextualized, meaning they
capture each word’s context concerning the entire sentence. This context
awareness contributes to its strong performance in understanding nuances
and relationships within the text.

The original English language implementation of the BERT model had
two sizes:

e BERTg.qr: 12 encoders, 12 bidirectional self-attention
heads, 110 million parameters in total

o BERT srce: 4 encoders, 16 bidirectional self-attention
heads, 340 million parameters in total

The BASE and LARGE models were pre-trained on the Toronto
BookCorpus (800M words) and English Wikipedia (2,500M words).

In October 2019, Google announced that they had started applying
BERT models for English language search queries within the United States.
In December 2019, it was reported that Google Search had adopted BERT
for more than 70 languages. By October 2020, almost every single English-
based query was processed by a BERT model.

Pathways Language Model

The Pathways Language Model (PaLM) is a transformer-based large
language model developed by Google. The model was first announced
in April 2022 and remained private until March 2023. At the time of this
writing, the PaALM API was made available for developers through a
waitlist, and Google stated that it would be made publicly available later.
The main implementation of PaLM has 540 billion parameters. The
researchers have also built two smaller versions of the PaLM model
with 8 and 62 billion parameters for different tasks. The PaLM model
has demonstrated its capabilities in a wide range of tasks, such as
commonsense reasoning, mathematical reasoning, joke explanation,

128

CHAPTER5 POPULAR LLMS

code generation, and language translation. When combined with chain-
of-thought prompting (a prompt engineering technique that allows large
language models to solve a problem as a series of intermediate steps
before giving a final answer), PaLM has achieved significantly better
performance on datasets requiring multistep reasoning, such as word
problems and logic-based questions.

In January 2023, Google developed an extended version of the PaLM
540B model called Med-Pal.M, which was fine-tuned on medical data
and outperformed previous models on medical question-answering
benchmarks. Med-PaLM became the first Al model to obtain a passing
score on U.S. medical licensing questions. It not only was able to answer
both multiple-choice and open-ended questions accurately but also
provided reasoning and was able to evaluate its own responses.

Google then further extended PaLM using a vision transformer to
create PaLM-E, a state-of-the-art vision-language model that can be used
for robotic manipulation.

In May 2023, Google announced PaLM 2, which is reported to be a 340
billion parameter model trained on 3.6 trillion tokens.

In June 2023, Google announced AudioPal M for speech-to-speech
translation, which uses the PaLM-2 architecture and initialization.

Large Language Model Meta Al

Large Language Model Meta AI (LLaMA) is a family of large language
models developed by Meta Al (an artificial intelligence laboratory
belonging to Meta Platforms Inc., formerly known as Facebook, Inc.)
starting in February 2023.

The first version of LLaMA had four model sizes trained on 7, 13, 33,
and 65 billion parameters, respectively. LLaMA’s developers reported that
the 13 billion parameter model’s performance on most NLP benchmarks
exceeded that of the much larger GPT-3, which has 175 billion parameters.

129

CHAPTER5 POPULAR LLMS

In July 2023, in partnership with Microsoft, Meta announced Llama 2.
Llama 2 had three model sizes with 7, 13, and 70 billion parameters,
respectively. The model architecture remains largely unchanged from
Llama 1 models, but 40 percent more data was used for training.

Compared to GPT-3, LLaMA has these key differences:

¢ LLaMA uses the SWiGLU activation function instead
of ReLU.

o LLaMA uses rotary positional embeddings instead of
absolute positional embedding.

o LLaMA uses root-mean-squared layer-normalization
instead of standard layer-normalization.

o LLaMA increases context length from 2048 (in Llama 1)
tokens to 4096 (in Llama 2) tokens between.

Meta has released the LLaMA’s model weights to the research
community under a noncommercial license, unlike many other LLMs,
which remain proprietary.

Summary

What we discussed in this chapter is only a portion (although some
of the most impactful tools) of the LLM landscape. Because some of
these models are proprietary, as well as being extremely new, details of
their inner workings are scarce. We may get to learn more as time goes
on. For the time being, the best way to learn about their capabilities is
to experiment with them. Al model repositories such as HuggingFace
(https://huggingface.co) contains either official or open-source
recreations of the models we discussed with instructions to get you started.
As arapidly developing area, new architectures, improvements, and
achievements in the LLM field happens daily. We may yet to see the full
capabilities of LLMs.

130

https://huggingface.co

CHAPTER 6

Threats,
Opportunities, and
Misconceptions

The release of ChatGPT was a significant milestone in Al, not just because
of its groundbreaking capabilities and its pushing of the boundaries of
technology but also because of the unprecedented interest it generated

in the general public. While AI technology components have been part

of day-to-day technology for decades, this level of enthusiasm from the
general public was previously unheard of.

It was not only the technology enthusiasts or the research community
alone. The interest was from people from many other technical and
nontechnical fields as well as from media outlets. This popularity, together
with the fact that the capabilities of ChatGPT were open to the general
public to use, helped it become the fastest-growing consumer software
application in history, which in turn directly led to the widespread
recognition of large language models (LLMs) and an explosion of
competing models from different vendors.

This widespread enthusiasm, as well as the media hype around them,
has caused some misunderstandings and misinterpretations of LLMs and
their capabilities. This has led to some concern, and in some cases fear,
toward LLMs and Al technology in general.

© Thimira Amaratunga 2023 131
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_6

https://doi.org/10.1007/979-8-8688-0017-7_6

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

There are some aspects regarding LLMs that pose legitimate concerns
and need to be addressed as the technology progresses and gets applied.
However, from the conversations happening about LLMs, it is clear that
some of the concerns gaining traction are misplaced.

In this book, we have gone through the history, reasoning, techniques,
and various implementations of LLMs. So, with our understanding of
how large language models work, let’s look into some of the concerns,
misconceptions, and opportunities surrounding LLMs.

LLMs and the Threat of a Superintelligent Al

The capabilities of ChatGPT and its counterparts have mesmerized people.
Its ability to have human-like conversations and the demonstration of
knowledge from a vast set of distinct domains has people considering it
to have superhuman abilities. While many have praised these capabilities
and are enthusiastic to utilize them, it has brought up a deep-rooted fear:
the existential threat from a superintelligent Al

To understand this better, we must look at the levels of Al

Levels of Al

The goal of Al research, as we learned in the first chapter, is to build
machines that have intelligent behavior. The levels of Al refer to different
stages or capabilities of artificial intelligence in that journey. These can
depend on everything from simple, rule-based algorithms to hypothetical
machines that might one day surpass human intelligence in all areas.
These levels are defined to help clarify discussions around Al’s capabilities
and potential future developments and theoretical capabilities.

The main levels of Al are as follows.

132

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

Narrow or weak Al

These are Al systems designed and trained for a specific task.
They operate based on a predefined set of rules or models trained on
specific data.

Characteristics:

o Task-specific: Performs well on one task but lacks
versatility

e No consciousness: Operates without understanding,
emotions, or self-awareness

e Needs input: Relies on human-defined parameters

o Examples: Image recognition software, chatbots
tailored to specific services, and algorithms that

recommend videos or songs based on user behavior

Artificial general intelligence (AGI)

Al that has the capability to understand, learn, and perform any
intellectual task that a human can, possessing similar cognitive abilities to
a human.

Characteristics:

o Versatility: Can learn and excel in multiple tasks, not
just the ones it was specifically trained for.

e Learning and adaptation: Can learn new tasks without
being explicitly programmed for them.

o Conceptual understanding: Can understand abstract
concepts, reason through problems, and make

decisions in unfamiliar situations.

o Examples: A theoretical concept that doesn'’t yet exist;
often depicted in science fiction

133

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

Artificial superintelligence (ASI)

This is Al that surpasses human intelligence, not just in specific tasks,

but in virtually every field, including creativity, general wisdom, problem-

solving, and social intelligence.

consider.

134

Characteristics:

Superiority: Surpasses the best human brains in
virtually every field

Autonomous decision-making: Can make decisions and
set its own objectives

Self-improvement: Has the potential for recursive self-
improvement, where it can improve its algorithms and
structures autonomously

Examples: Theoretical and doesn'’t exist yet; often
the subject of speculative fiction and philosophical
discussions, as its realization could lead to profound
societal changes

When we are talking about AGI or AS], there are few things we need to

Progression: It's essential to note that the progression
from weak Al to AGI and then ASI isn’t just about
scaling up. Similar to how NLP moved from RNNs to
transformers, this involves foundational advancements

in AT algorithms, understanding, and architecture.

Timeframe: Predictions about when (or if) we might
achieve AGI or ASI vary widely among experts. Some
believe it’s just a few decades away, while others think
it might take much longer or may never occur at all.

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

Ethical and safety concerns: As we move toward more
advanced forms of Al, ethical and safety concerns
intensify. Ensuring that advanced Al aligns with human
values can be controlled and is used ethically becomes
paramount.

Understanding these levels is important as discussions about Al’s

societal impact, ethical considerations, and potential become more

prevalent. Each level presents its challenges, benefits, and implications.

The emergence of an ASI could bring some unprecedented benefits.

Solving complex problems: Issues like climate change,
disease, or even theoretical physics problems could be
tackled efficiently.

Technological advancements: Rapid innovation could
occur in fields such as space exploration, medicine,
energy, and more.

Enhanced human abilities: Through brain-computer
interfaces, humans might merge with Al to some
extent, enhancing our cognitive abilities.

However, alongside these potential benefits, there are some concerns

about existential risks.

Existential Risk from an ASI

An existential risk is one that threatens the extinction of intelligent life or

the permanent and drastic reduction of its potential.

135

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

136

These are some of the main existential concerns related to ASI:

Loss of control: Once an ASI system surpasses human
intelligence across the board, controlling or predicting
its actions becomes challenging. If it’s capable of
recursive self-improvement, it might quickly evolve in
ways we can’t foresee or comprehend.

Misalignment of values: Ensuring that an ASI’s goals
align with human values is a significant challenge. A
small misalignment might lead the ASI to take actions
that are technically in line with its programmed goals
but detrimental to humans.

Resource competition: ASI might see resources that
humans rely on as useful for its own goals, leading to
competition and potential conflict.

Weaponization: ASI could be used in warfare or by
malicious actors, leading to unparalleled destructive
capabilities.

Dependency and de-skilling: Over-reliance on ASI could
lead to humanity losing essential skills or becoming
overly dependent on the technology.

Ethical and moral concerns: Decisions made by AS],
especially those affecting human lives, might not align
with our moral and ethical frameworks.

Economic disruption: ASI could render many jobs
obsolete, leading to economic and social upheavals.

Existential unease: The mere existence of an entity that
surpasses human capabilities in every domain might
lead to existential unease or a reevaluation of human

purpose and identity.

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

Apart from these concerns, there are the ethical considerations of the
Al itself: if an AT achieves a superintelligent state, questions about its rights
and the ethical considerations of its treatment arise. Should it be granted
personhood? Would “turning it off” be considered an ethical violation?

Addressing this problem before achieving ASI is crucial because,
post-development, we might not get a second chance to make corrections.
This requires rigorous research in Al alignment, safety protocols, and
ethical guidelines. Some Al researchers advocate for an international
collaboration to ensure that the race to develop ASI prioritizes safety over
speed. The aim is to ensure that if and when ASI is realized, it benefits all of
humanity and doesn’t harm or jeopardize our existence.

Where LLMs Fit

Because of the demonstrated abilities of current LLMs, many are assuming
them to be ASIs and in turn concerned of the associated existential threats
we discussed earlier.

However, this concern is misplaced as LLMs in their current form
are not at the capability of ASIs. While they represent a significant
advancement in machine learning and natural language processing, they
are not examples of artificial superintelligence.

In fact, current LLMs are not even at the AGI level.

For an Al model to reach the AGI level, it needs to be able to
understand, learn, and perform any intellectual task that a human can.
This means that an Al needs to be able to at least match human cognitive
abilities in every area to be considered an AGI. To be considered an ASI, it
needs to excel in abilities in every cognitive area.

Current LLMs are good language models and great for text generation
and comprehension. But they do not have capabilities beyond that.

However, they can be viewed as steppingstones on the path toward
more advanced Al capabilities.

137

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

Here are some of the ways LLMs are helping the Al field as a whole to
move forward:

o Demonstration of scalability: LLMs show that as we
increase model size, data, and compute resources,
performance on a variety of tasks tends to improve.
This suggests that, to some extent, scaling up current
techniques might be a viable path to more capable
Al systems, though it’s uncertain if it will lead
directly to ASI.

o Transfer learning and generalization: LLMs are trained
on diverse datasets and can perform a range of tasks
without task-specific training, showcasing the potential
of transfer learning. The ability to generalize across
tasks is a crucial aspect of AGI and, by extension, ASI.

o Foundational for more complex systems: While
LLMs are primarily designed for text generation
and comprehension, components based on similar
architectures could be integrated into more complex Al
systems that have multimodal capabilities (handling text,
image, video, etc.) or more advanced reasoning abilities.

o Ethical and safety precedents: LLMs provide a testing
ground for ethical and safety concerns related to
Al Issues like bias in Al outputs, the potential for
misuse, and the challenges in specifying desired
behavior are all apparent even at the LLM level.
Addressing these challenges now helps in preparing for
more advanced Al systems.

e Human-Al interaction: LLMs offer insights into human-
Al collaboration. By using LLMs, we can learn more
about how humans and advanced Al systems might
coexist, collaborate, and communicate in the future.

138

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

It’s crucial to differentiate between the capabilities of current LLMs
and the theoretical capabilities of ASI. LLMs, no matter how large, don’t
possess consciousness, self-awareness, or general intelligence that
surpasses human capabilities across all fields. They operate based on
patterns in the data they were trained on and lack true understanding or
reasoning.

The limitations and failures of LLMs can inform Al researchers about
the gaps between current technologies and the desired features of AGI or
ASI. For instance, LLMs’ occasional nonsensical outputs, susceptibility
to adversarial inputs, or inability to reason deeply about complex topics
highlight areas that need significant advancements.

In summary, while LLMs are not close to ASI, they play a role in the
Al research landscape, offering insights, raising important questions, and
pushing the boundaries of what machine learning models can achieve.
They can be viewed as a piece of the puzzle, helping the AT community
understand certain aspects of the journey toward more advanced Al forms.

Misconceptions and Misuse

While we may not need to be concerned about Al taking over the world
yet, there are some misconceptions regarding LLMs that may cause either
intentional or unintentional misuse.

The following are some of the widely held misconceptions and
misunderstandings about LLMs.

LLMs understand content.

e Misconception: LLMs understand the text they generate
in the same way humans do.

e Reality: LLMs don’t “understand” content. They
generate text based on patterns in the training data but
lack a deep or conscious understanding of the concepts
they discuss.

139

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

LLMs are conscious or self-aware.

Misconception: Due to their advanced capabilities,
LLMs possess consciousness or self-awareness.

Reality: LLMs are not conscious entities. They process
information and generate outputs without awareness,
emotions, or intent.

LLMs always produce correct information.

Misconception: Outputs from LLMs are always accurate
and trustworthy.

Reality: LLMs can produce incorrect, misleading, or
biased information, depending on the prompt and the
patterns in their training data.

LLMs are knowledge models.

Misconception: LLMs have knowledge on a vast
number of fields; therefore, we can use them as
knowledge models.

Reality: LLMs are only as good as their training
data, and only able to learn linguistic relationships
from them

Bigger is always better.

140

Misconception: Increasing the size of a model will
always lead to better and more accurate results.

Reality: While larger models often exhibit better
generalization, there are diminishing returns, and other
challenges such as increased computational costs and
potential overfitting can arise.

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

LLMs can invent novel, advanced knowledge.

e Misconception: LLMs can create or discover new
knowledge, theories, or facts.

e Reality: LLMs generate text based on their training data.
They can’t invent genuinely novel scientific theories or
facts beyond the scope of their training.

LLMs are free from bias.

e Misconception: LLMs provide objective and unbiased
information.

e Reality: Since LLMs are trained on vast amounts of
Internet text, they can and do inherit biases present in
that data.

LLMs can replace all human jobs.

e Misconception: Because of their text generation
capabilities, LLMs will replace all jobs related to

writing, customer service, etc.

e Reality: While LLMs can automate some tasks, many
jobs require human judgment, creativity, empathy, and
context-awareness that LLMs currently lack.

LLMs responses are deliberate or endorsed by their creators.

e Misconception: If an LLM generates a particular
statement, it reflects the beliefs or intentions of its
creators or trainers.

e Reality: LLMs generate outputs based on training
data patterns, without intent. An output doesn’t imply
endorsement by the model’s creators.

141

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

All LLMs are alike.

Misconception: All large language models, irrespective
of their architecture or training data, behave similarly.

Reality: Different models, training processes, and fine-
tuning can result in varied behavior and capabilities.

Understanding these misconceptions is crucial, especially as LLMs

become more integrated into products, services, and decision-making

processes. Proper education and communication about what LLMs can

and cannot do are essential to harness their potential responsibly.

Researchers have also found that LLMs can suffer from a situation

called hallucinations. These refer to instances where the model generates

information that isn’t accurate, grounded in reality, or present in its

training data. Essentially, the model “makes things up” or provides outputs

that might seem plausible but aren’t factual or real.

There can be many reasons for hallucinations.

142

Generalization from training data: LLMs generalize
from their vast training data to answer queries or
generate text. While this generalization is often useful,
it can sometimes lead the model to create outputs that
are not strictly accurate.

Lack of ground truth: Unlike some other Al models that
have a clear “ground truth” or correct answer (e.g., an
image classifier labeling a picture of a cat), LLMs work
in domains where the truth can be more nebulous. This
makes it challenging to always generate the “correct”
response, especially when the prompt is ambiguous.

Bias and incorrect information in training data: If the
model’s training data contains misinformation, biases,
or outdated information, the model might reproduce or
even amplify these inaccuracies in its outputs.

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

Overfitting or memorization: While LLMs like GPT-3
are designed to generalize rather than memorize,
there’s always a risk that a model might “remember”
and reproduce specific patterns, phrases, or pieces of
information from its training data, even if they aren’t
accurate or relevant to the prompt.

User prompt influence: The way a user crafts a prompt
can significantly influence the model’s output.
Ambiguous or leading prompts can increase the
likelihood of hallucinated responses.

No external fact-checking mechanism: LLMs generate
responses based on patterns in their training data and
don’t have the capability to fact-check against external
or up-to-date sources in real time.

To address hallucinations, researchers and developers use techniques

like fine-tuning on more specific datasets, adding human-in-the-loop

review processes, or building external verification systems to cross-check

outputs.

Users should always approach outputs from LLMs with a critical

mindset, especially when using them for tasks that require high accuracy

or have significant real-world implications.

LLMs provide a vast range of positive applications because of their text

generation capabilities, but their power also opens the door to potential

intentional misuse as well. The following are some of the areas that misuse

can happen:

Disinformation and fake news: LLMs can generate
believable but entirely fictitious news articles or
stories. These can be used to spread false information,
manipulate public opinion, or create political
instability.

143

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

144

Impersonation: With enough data about a person’s
writing style, an LLM could be used to generate
messages or emails that mimic that individual, leading

to potential fraud or misinformation.

Automated spam and phishing: LLMs can craft highly
personalized and convincing spam emails, increasing
the likelihood of people falling for phishing schemes.

Toxic and harmful content: If not properly controlled,
LLMs can produce or amplify harmful, biased, or

offensive content.

Cheating in education contexts: Students could use
LLMs to automatically generate essays, project reports,
or answers to questions, undermining educational

integrity.

Unfair competition in content creation: LLMs can be
used to mass-produce articles, blog posts, or other

written content, potentially flooding platforms with
low-cost, generic content and squeezing out human

creators.

Deepfakes: While deepfakes primarily involve
manipulating videos, the scripts or dialogues for these
videos could be generated by LLMs to make them
sound more convincing.

Stock market manipulation: By generating fake news
or rumors about companies, LLMs could be used to
manipulate stock prices for financial gain.

Unwanted data extraction: Users could craftily question
LLMs to retrieve specific information from their
training data, potentially leading to privacy concerns.

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

Manipulation in social engineering attacks: Attackers
could use LLMs to craft persuasive messages or
narratives that trick individuals into revealing personal
information or taking actions against their best
interests.

Intensifying echo chambers: By providing content that
aligns with users’ existing beliefs (based on input data),
LLMs could further entrench individuals in their echo
chambers, exacerbating polarization.

Recognizing these potential misuses is the first step in creating

safeguards. Developers and platforms using LLMs should be aware of

these risks and employ measures to prevent them, such as fine-tuning

models for safety, adding layers of human review, or setting guidelines for

responsible usage.

Opportunities

Large language models have introduced a myriad of opportunities across

various domains because of their advanced text generation capabilities.

Here are some handful of examples from a wide array of possibilities.

Content creation assistance

LLMs can help writers generate ideas, structure
content, or even write drafts. And they can assist in
poetry, storytelling, scriptwriting, and other forms
of creative expression to supplement human created
content rather than to replace them.

145

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

Education

e Tutoring: LLMs can offer personalized explanations on
arange of topics, helping students understand complex
concepts.

o Language learning: They can assist language learners
by offering translations, explanations, or conversational

practice.
Research and information gathering

e LLMs can summarize large amounts of text, generate
literature reviews, or help researchers explore various

perspectives on a topic.
Business applications

o Customer support: The can automate responses to
frequently asked questions or guiding users through
troubleshooting.

e Drafting emails: The can assist professionals in crafting
well-structured and articulated emails or reports.

Programming and development

e Code generation: Given a human-readable prompt,
LLMs can generate code snippets or even assist in
debugging.

Gaming

e LLMs can be used to generate dialogue for characters,
create dynamic storylines, or even craft entire in-game
worlds based on textual descriptions.

146

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

Entertainment

o They can create dialogue for movies, generate plot
ideas, or assist in scriptwriting.

Human-computer interaction

e With LLMs, the interaction between users and software
can become more natural, with the software better
understanding and generating human-like text.

Accessibility

e LLMs can be used to develop advanced chatbots
for individuals who may need companionship or
support, or they can translate complex text into simpler
language for individuals with different cognitive needs.

Cultural preservation

o LLMs trained on diverse datasets can help in
preserving and sharing knowledge about various
cultures, languages, and traditions that might be less
represented online.

Idea generation and brainstorming

e They can assist teams in coming up with creative
solutions, product names, or marketing strategies.

Mental health and well-being

e While not a replacement for professional therapy, LLMs
can be used as interactive journaling tools, offering
responses or reflections based on user input.

While these opportunities are exciting, it’s crucial to use LLMs

responsibly. Ensuring the generated content aligns with human values

is factually accurate (where necessary) and doesn’t unintentionally

147

CHAPTER 6 THREATS, OPPORTUNITIES, AND MISCONCEPTIONS

propagate biases or misinformation is essential. Moreover, in areas such as
mental health, LLMs should be used with caution, always underlining the
importance of human expertise and intervention.

Summary

As with the introduction of any new technology, LLMs have given rise to
a set of concerns and perceived threats. Most of these concerns are due
to not understanding what LLMs truly are. However, there are genuine
concerns as well. The capabilities of LLMs can be misused—either
intentionally or not—that may have negative impacts in our day-to-day
lives. As LLMs technologies become more common, it is important to
understand these risks and add safeguards to prevent them.

As we are still at the beginning of the LLM era, we may see new
opportunities, approaches, and entire industries emerge around them in
the near future.

Large language models are a milestone in artificial intelligence
and human ingenuity. It is our responsibility to use them correctly and
rationally to ensure progress and a bright future for all.

148

Index

A

Accessibility, 147

Add-one smoothing, 41, 42

Adversarial training, 104

Artificial general intelligence (AGI),

133, 137

Artificial intelligence (AI), 3
AGI, 133
ASI, 134
democratization, 109
generative Al, 6
landscape, 7
LLMs, 138, 139
ML, 4
model training, 5
narrow/weak Al, 133
optimism, 3
repositories, 130
subfields, 3

Artificial neural networks

(ANNs), 4

Artificial superintelligence (ASI)
benefits, 135
characteristics, 134
considerations, 134, 135

© Thimira Amaratunga 2023

existential risk, 135-137
Attention mechanism, 56, 64

key vectors, 58

query vector, 58

scores, 59, 60

softmax function, 59

value vectors, 59

weighted sum, 59
Audio-text association, 103
Autoencoding models, 91

applications, 96

bidirectional context, 95

limitations, 96, 97

masked language modeling, 95

parallelism, 95

training, 95
Autoregression, 91
Autoregressive models, 91

applications, 93, 94

causal relationship, 92

context understanding, 92

limitations, 94

long-range dependencies, 92

sequence generation, 92

training process, 93

149

T. Amaratunga, Understanding Large Language Models,

https://doi.org/10.1007/979-8-8688-0017-7

https://doi.org/10.1007/979-8-8688-0017-7

INDEX

B

Backpropagation, 44-46, 71,
73,93, 96
Bag-of-words (BoW), 25
machine learning
algorithms, 27
representation, 33
size, 32
steps, 25
vocabulary, 25
Word2Vec, 31, 32
application, 33
context/semantics, 32
order of words, 33
vector, 32
Bidirectional Encoder
Representations from
Transformers
(BERT), 90, 127
BookCorpus, 87, 122
Business applications, 146

C

Catastrophic forgetting, 116
ChatGPT, 1, 2, 132
Code generation models, 106
CommonCrawl corpus, 123
Complex systems, 138
Computing Machinery and
Intelligence, 9
Conditional random fields
(CRFs), 14

150

Content creation assistance, 145
Conversational agents, 106
Convolutional neural networks
(CNNs), 5, 83, 90

Corpus

multimodal, 22

parallel, 22

speech, 22

text, 21

treebanks, 22

types, 21
Cross-lingual models, 105
Cultural preservation, 147

D

Data-driven approaches, 12
Data preparation, 98
Data preprocessing, 95
Decoder, 68
Deep learning, 5
Dependency parsing, 104
Dialog systems, 99
Document ranking, 103
Domain-specific

models, 105

E

Education, 146
Encoder, 66-68, 70
English Gigaword, 87
Entertainment, 147
Explicitness, 110

F

Few-shot learning, 104
Fine-tuning, 93, 96, 99, 114-116
Foundation models, 106
adaptability, 107
Al 109
continuous adaptability, 109
deployment, 108
economies of scale, 107, 108
fine-tuning, 107, 108
general-purpose abilities, 107
interdisciplinary applications, 108
pre-training, 106
training, 109
transfer learning, 107, 108

G

Gaming, 146
Gated recurrent units (GRUs), 90
Gating mechanisms, 51, 52
Gaussian Error Linear Unit
(GELU), 122
General-purpose models, 105
Generative adversarial networks
(GANs), 6
Generative language models, 34
Generative Pre-trained
Transformer (GPT),
66,90, 119
Adam optimization
algorithm, 121
bytepair encoding
vocabulary, 122

INDEX

GPT-1, 120-122

GPT-2, 123

GPT-3, 124-126

GPT-3.5, 126

GPT-4, 126

GPT-n series, 119

hyperparameter settings, 122

learning rate, 121

OpenAl, 120, 123, 124, 126

semi-supervised approach, 120

supervised learning, 120
GRU-based language

models, 49, 51

H

Hallucinations, 142
Hidden Markov models
(HMMs), 13
Hierarchical feature learning, 5
Histograms, 73
Human-AlI interaction, 138
Human-computer interaction, 147
Hybrid models, 91, 100
attention mechanisms, 100
autoregressive/
autoencoding, 100
classifier/generator, 101
external databases/
knowledge, 101
limitations, 102
multimodal models, 101
training techniques, 101
use cases, 102

151

INDEX

l,J
Idea generation and
brainstorming, 147
Image captioning, 99
Image-text association, 103
Intelligent machines, 2, 3
Intra-attention, 64
Iterative refinement, 111

K

Keyword extraction, 103

L

Language model, 19, 34, 36
generative language models, 34
N-gram language models, 35
predictive language models, 35
role, 34

Laplace smoothing, 41

Large Language Model Meta Al

(LLaMA), 129, 130

Large language models (LLMs), 1,9
Al 6,7,138, 148
aspects, 132
capabilities, 83
ChatGPT, 1
complexity, 111
computational power, 83
computational requirements, 84
concerns, 2, 148
encoder-decoder, 82

152

fine-tuning, 83
guidance, 111
limitations/failures, 139
misconceptions /
misunderstandings
conscious/self-aware, 140
content, 139
creators/trainers, 141
hallucinations, 142, 143
human jobs, 141
information, 140
knowledge models, 140
knowledge/theories/
facts, 141
misuse areas, 143-145
model sizes, 85, 86
opportunities, 145-147
overfitting, 85
parameters, 82, 84
scale of data, 82
computational overheads, 89
data bias, 89
knowledge, 86
model generalization, 86
noise, 89
scenarios, 86, 88
storage, 89
task adaptation, 83
verbosity, 111

Lemmatization, 19
Linguistics-based

approaches, 11

Linguistics-based NLP systems, 12

LMI1B, 88
Long short-term memory (LSTM),
64, 83, 90

Loss function, 98

LSTM-based language models, 47
cell state, 47
concepts, 47
forget gate, 48
gating mechanism, 47, 53
GRU cell, 49, 51, 53
hidden state, 47, 48, 50
parameters, 52
training, 49

Machine learning (ML), 3-5, 15
Machine translation, 15, 17, 18, 25,
28, 35, 43, 44, 56, 93, 99
Masking and loss function, 93
Matrix multiplication, 62
Maximum entropy (MaxEnt), 13
Mental health and well-being, 147
Microsoft MAchine Reading
COmprehension Dataset
(MS MARCO), 88
ML-based NLP systems, 17
Multihead attention
mechanism, 76, 77
Multihead self-attention
mechanism, 66
Multimodal models, 101, 103, 105
Multitask learning, 104

INDEX

N

Named entity recognition (NER),
96, 103, 122
Natural language generation, 93
Natural language processing
(NLP), 2,9, 55, 81
concepts, 18
language models, 19
NER, 19
parsing, 19
POS tagging, 19
stemming and
lemmatization, 19
stopwords, 18
tokenization, 18
word embeddings, 19
corpus, 21
ELIZA, 10
linguistics-based, 11, 12
linguistic theories, 12
linguistic theories and
principles, 10
LLMs, 9
ML-based, 16
parsing and syntactic
analysis, 11
performance, 14, 15
probabilistic models and ML
algorithms, 15
research and applications, 15
statistical approaches, 15
supervised and unsupervised

153

INDEX

Natural language processing
(NLP) (cont.)

methods, 14
task, 17
transformation, 11
transformers, 36
turing test, 10
vocabulary, 22, 23
word embeddings, 16
Neural language models, 35, 43
Neural networks, 5
Neural Turing Machine, 56
N-gram language model, 37, 41
building and using, 38
probability, 37
text generation quality, 41
N-gram language models, 13,
35, 36, 43
Noam Chomsky’s theories, 10
Noam Chomsky’s transformational
grammar, 11
Normal and scaled
distributions, 73

O

Objective function, 95
OpenSubtitles, 87
Overfitting, 102, 114, 116, 123, 140

P

Parameter optimization, 93

154

Part-of-speech (POS)
tagging, 19, 104
Pathways Language Model
(PaLM), 90, 128
Penn Treebank, 88
Positional encoding vectors, 68
Predictive language models, 35
Programming and
development, 146
Prompt engineering, 109
benefits, 113
importance, 111, 112
key aspects, 110
limitations/challenges, 113, 114
systematic variations, 111
techniques, 112
Python, 60

Q

Q and K matrices, 69

R

Recurrent neural networks (RNNs),
36, 43, 44, 83, 90
Regression models, 4
Reinforcement learning, 4
Research and information
gathering, 146
RNN-based language models,
45, 46, 54

S

Scalability, 138
Scaled dot product, 62, 71, 75, 76
Scaled softmax values, 74
Search engines, 96
Self-attention, 64
Sentiment analysis, 16, 96, 103
Sequence-to-sequence (Seq2Seq)
models, 91, 97
applications, 99
attention mechanisms, 98
bidirectional context, 98
encoder-decoder
architecture, 97
limitations, 99, 100
training, 98, 99
variable-length sequences, 98
Skip-gram, 28
Softmax, 73
Speech recognition, 99
Stanford Question Answering
Dataset (SQuAD), 88
Statistical approaches, 13, 14
Statistical machine translation
(SMT) systems, 14, 16
Statistical methods, 12
Statistical NLP methods, 12
Statistical techniques, 14
Stemming, 19
Stopwords, 18
Subject domains, 1
Subword tokenization methods, 21
Supervised learning, 4, 120

INDEX

T

Task-specific models, 105
Teacher forcing, 98
Tensor2Tensor (T2T), 91
Text-based models, 105
Text classification, 96
Text generation, 104
Text summarization, 99
Tokenization, 18, 20, 21
NLP, 20
output, 20
and preprocessing, 23
punctuation, 20
Subword tokenization
methods, 21
whitespace, 20
words, 21
Topic classification, 103
Toronto Book Corpus, 87, 122
Traditional attention modules, 75
Training algorithms, 99
Training data, 42
Training objectives, 91
information retrieval
objectives, 103
multimodal objectives, 103
specialized objectives, 103, 104
text classification objectives, 103
Transfer learning, 107, 108, 138
Transformer architecture, 64, 65
Transformers, 44, 55, 66, 71, 81,
83-85, 89, 90
architecture, 65, 68

155

INDEX

Transformers (cont.)
attention, 55, 56
components, 65
encoder and decoder, 66
neural networks and deep

learning, 55
visualization, 57
Turing test, 9, 10

u,Vv

Unsupervised learning, 4

W XY

WebText, 87

156

Wikipedia, 87
Word2Vec model, 27-31
Word embeddings, 24, 31
continuous
space, 24
dimensionality, 24
generalization, 24
semantic meaning, 24
Word sense disambiguation
(WSD), 14
Workshop on Machine Translation
(WMT), 88

Y4

Zero-shot learning, 104

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction
	A Brief History of AI
	Where LLMs Stand
	Summary

	Chapter 2: NLP Through the Ages
	History of NLP
	Formal Grammars
	Transformational Grammar and Generative Grammar
	Parsing and Syntactic Analysis
	Context and Semantics
	Language Understanding
	Knowledge Engineering
	Probabilistic Models
	Hidden Markov Models
	N-Gram Language Models
	Maximum Entropy Models
	Conditional Random Fields
	Large Annotated Corpora
	Word Sense Disambiguation
	Machine Translation
	Information Retrieval
	Statistical Approaches
	Availability of Large Text Corpora
	Supervised Learning for NLP Tasks
	Named Entity Recognition
	Sentiment Analysis
	Machine Translation
	Introduction of Word Embeddings
	Deep Learning and Neural Networks
	Deployment in Real-World Applications

	Tasks of NLP
	Basic Concepts of NLP
	Tokenization
	Corpus and Vocabulary
	Word Embeddings
	Bag-of-Words
	Word2Vec
	Bag-of-Words vs. Word2Vec

	Language Modeling
	N-Gram Language Models
	Handling Unknown N-Grams

	Neural Language Models
	Recurrent Neural Networks
	Transformer-Based Models

	Summary

	Chapter 3: Transformers
	Paying Attention
	The Transformer Architecture
	The Encoder
	The Decoder
	Scaled Dot Product
	Multihead Attention

	Summary

	Chapter 4: What Makes LLMs Large?
	What Makes a Transformer Model an LLM
	Number of Parameters
	Scale of Data
	Computational Power
	Fine-Tuning and Task Adaptation
	Capabilities
	Why Parameters Matter
	Computational Requirements
	Risk of Overfitting
	Model Size
	The Scale of Data
	Model Generalization
	Diverse Knowledge
	Rare Scenarios
	Computational Overheads
	Storage
	Data Bias
	Noise

	Types of LLMs
	Based on the Architecture
	Transformers
	Recurrent Neural Networks
	Convolutional Neural Networks

	Based on the Training Objective
	Autoregressive Models
	Sequential Generation
	Contextual Understanding
	Long-Range Dependencies
	Causal Relationship

	Autoencoding Models
	Bidirectional Context
	Masked Language Modeling
	Fixed-Size Encoding
	Parallelism

	Sequence-to-Sequence Models
	Encoder-Decoder Architecture
	Attention Mechanisms
	Variable-Length Sequences
	Bidirectional Context in Encoder

	Hybrid Models
	Autoregressive + Autoencoding
	Seq2Seq + Attention
	Incorporating External Knowledge
	Multimodal Models
	Classifier + Generator

	Other Training Objectives

	Usage-Based Categorizations

	Foundation Models
	Pre-training on Broad Data
	Fine-Tuning and Adaptability
	Transfer Learning
	Economies of Scale
	General-Purpose Abilities
	Fine-Tuning Capabilities
	Transfer Learning
	Economies of Scale
	Rapid Deployment
	Interdisciplinary Applications
	Reduced Training Overhead
	Continuous Adaptability
	Democratization of AI

	Applying LLMs
	Prompt Engineering
	Explicitness
	Examples as Guidance
	Iterative Refinement
	Controlling Verbosity and Complexity
	Systematic Variations
	Fine-Tuning

	Overfitting
	Catastrophic Forgetting
	Evaluation
	Summary

	Chapter 5: Popular LLMs
	Generative Pre-trained Transformer
	Bidirectional Encoder Representations from Transformers
	Pathways Language Model
	Large Language Model Meta AI
	Summary

	Chapter 6: Threats, Opportunities, and Misconceptions
	LLMs and the Threat of a Superintelligent AI
	Levels of AI
	Existential Risk from an ASI
	Where LLMs Fit

	Misconceptions and Misuse
	Opportunities
	Summary

	Index

